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Coordinate transformations are powerful tools for the solution of the 

partial differential equations which describe physical phenomena. The 

use of transformations leads to well ordered discretizations of the 

physical domain and thereby renders a simplification in a numerical solution 

process. The discretization is constrained by the underlying physics, the 

problem geometry and the topology of the region where the solution is to 

be obtained. The constraints can be stated in geometric terms. In 

particular they can be categorized as boundary constraints, uniformity 

constraints, and internal constraints. Boundary constraints include: the 

basic geometry of solid objects, the transmissive junctures between and 

around solid objects, the choice of representation for the boundaries, the 

angles at which transverse coordinate curves intersect boundaries, and the 

rate of entry for such coordinate curves. Uniformity constraints are 

applied to either local or global distributions of coordinate curves or 

points to form a basis from which the curves or points can be redistributed. 
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This may be based on an a priori specification of a distribution function 

or on a solution adaptive approach. In either case, the redistribution 

must not be distorted by the underlying transformation. Internal con­

straints are applicable when an interior shape or interior mesh structure 

is to be smoothly embedded within a global mesh to simplify the simulation 

of physical processes in the given region. 

Algebraic mesh generation techniques are highly advantageous for 

meeting the constraints described above. Algebraic techniques provide 

exact control of the mesh properties necessary to satisfy the given 

constraints. Although other methods have been developed which provide some 

degree of control, the level of control is not in general sufficient to 

satisfy certain of the constraints. For example, the smooth embedding of 

a Cartesian mesh within a global mesh structure cannot be readily con­

structed with the application of differential equation techniques. Also, 

three dimensional meshes are not in general readily obtained with non-

algebraic techniques. On the other hand, algebraic techniques require 

more complex specification of the data to assemble a mesh. The purpose 

of this paper is to present an overview of algebraic techniques for mesh 

generation and set forth the underlying concepts which have been successful. 

Both two- and three-dimensional domains are considered. 

The Multi-Surface Transformation 

When curvilinear coordinates are employed in the numerical solution 

of a boundary value problem, constraints must often be placed upon the 

coordinates, in addition to the basic requirement that the bounding sur­

faces are coordinate surfaces of one or more coordinate systems. The 
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~. locations of the constraints can occur anywhere in the problem domain. 

On the boundaries, a particular pointwise distribution may be needed; in 

regions near boundaries, a particular coordinate form may be advantageous; 

and away from the boundaries, an internal coordinate specification may 

also be required. Typically, the constraints will arise either to resolve 

regions with large solution gradients or to cause some simplification in 

the problem formulation and solution. 

In conjunction with the demand for constraints, the general multi-

surface transformation [lJ will be examined. The multi-surface transfor-

mation is a method for coordinate generation between an inner bounding 

surface ~l and outer bounding surface ~N' To establish a particular 

distribution of mesh points on each bounding surface, a common parameteriza­

tion 1 is chosen for each surface. This is equivalent to a coordinate 

description of the surfaces which yields the desired surface mesh when the 

parametric components of t are given a uniform discretization. With the 

parametric description, the inner and outer bounding surfaces are denoted 

by ~l(t) and ~N(1) respectively. In continuation, parameterized 

intermediate surfaces ~2(t)""'~N_l(1) are introduced so that they 

can be used as controls over the internal form of the coordinates. The 

intermediate surfaces are not coordinate surfaces but, instead, are 

surfaces which are used to establish a vector field that is composed of 

tangent vectors to the coordinate curves spanning the coordinate system 

to connect bounding surfaces. It is also assumed that the collection 

of surfaces ~l(t), ~2(1)""'~N(1) is ordered from bounding surface 

to bounding surface. An illustration is given in Fig. 1. For a fixed 
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Fig. 1 - A piecewise linear curve and its tangent field. 

parameter value t, there is a corresponding point on each surface. The 

piecewise linear curve obtained by connecting corresponding points is 

given by the dashed curve in Fig. 1. From the figure, it can be observed 

that the tangent directions determined by the piecewise linear curve are 

piecewise constants. As t is varied, the field of tangent directions 
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io...... obtain their smoothness (level of differentiability) only in t. To obtain 

smoothness in going from bounding surface to bounding surface, a suffi-

ciently smooth interpolation must be performed. The result is a smooth 

vector field of undetermined magnitude which gives the desired tangential 

directions for coordinate curves connecting the bounding surfaces. A 

unique vector field of tangents is then obtained by correc~ly choosing 

magnitudes so that, on integration, the bounding surfaces are fit precisely. 

In symbols, a vector field tangent to the piecewise linear curves is 

given by 

(1) 

between the kth and (k + l)th surfaces where k is taken to vary (if 

N > 2) from the first bounding surface to the final intermediate surface. 

These vectors are indicated in Fig. 1. The coefficients Ak are scalars 

which determine the magnitude of the vectors but not the directions. When 

an independent variable r is assumed for the spanning direction, a 

partit ion r l < < rN- l can be specified in correspondence with the 

tangents of Eq. 1. The partitioned variable can then be used to represent 

the tangents as the discrete vector valued function which maps rk into 

Vk for k = 1 ... N-l. A sufficiently smooth vector field V(r,t) is 

then obtained by a sufficiently smooth interpolation V(rk,t) = ~k(t). 

With r as a continuous independent variable, the r-derivative of the 

coordinate transformation P(r,t) is equal to the interpolant and is 

given by 

77 



ClP -+ N,-l 
~ = v = L ~k(r)Vk(t) , 
or k= 1 

where ~k(rj) is unity at k = j and vanishes otherwise. When Eq. 2 

is integrated with an initial r 1 value of P1(t), the transformation 

becomes 

where 

r 
= f I/Jk(x)dx , 

r l 

(2) 

(3) 

(4) 

from whi ch we observe that the i nterpo 1 ants 1Vk must be conti nUOL'S 1,11 

differentiable up to an order which is one less than the level of smoothness 

desired for the coordinates. The construction of local controls on the 

coordinates will rely upon the development of suitably smooth interpolation 

functions. If the magnitudes Ak of Eq. 1 are chosen so that each 

AkGk(rN_l ) is unity, then the evaluation of the transformation at rN-l 

will reduce to PN(t) by means of a telescopic collapse of terms in 

Eq. 3. With this choice, we obtain the general multi surface transformation 

of Eiseman [lJ which is given by 

(5) 
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On examination, each interpolation function ~k can be rescaled without 

changing the transformation; hence, the original vector field interpolation 

becomes an interpolation only on vector directions. 

When the interpolants ~k are polynomials in r, the coordinate 

curves which connect the bounding surfaces are globally defined by poly­

nomials in r of one greater degree. The specification of boundary 

properties for the curves and a global control over their general form are 

obtained by choices of intermediate surfaces and the associated partitions 

of r. For notational simplicity, let r, = 0 and rN_l = 1. In the 

simplest case when there are no intermediate control surfaces, there is 

just one vector field direction V,(t) which is determined solely by 

the bounding surfaces. The interpolant ~l is then a constant function, 

G,(r) = r~)l' G,(r)/G,(l) = r, and the polynomial 2-surface transformation 

becomes 

which is the case of linear coordinate curves connecting boundaries. The 

linear case has occurred in many studies including [2J, [3J, and [4J and 

is limited to at most one prescribed coordinate property per boundary 

which can be either a pointwise distribution or a distribution of angles 

with the linear transverse coordinate curves. To allow for the prescrip­

tion of an additional coordinate property on one of the boundaries, an 

intermediate control surface is introduced and the polynomial 3-surface 
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transformation is computed from Eq. 3 with ~l = 1 - r and ~2 = r 

corresponding to directions of Vl(t) and V2(t) of Eq. 1 and Fig. 1. 

The integrals from Eq. 4 become 

(7) 

and since G1(1) = G2(1) = t. the original vector field which is discrete 

in r is determined by 

because Ak = l./Gk(l) in Eq. 1. Upon substitution from Eq. 7 the 

polynomial 3-surface transformation is given by 

In continuation, an additional coordinate property can be prescribed 

(8) '-

(9) 

on each boundary when two intermediate control surfaces are used. The 

polynomial 4-surface transformation is computed from Eq. 3 with interpolants 
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\jJ,(r) = (' - r)(r2 - r), 

( '0) 

which respectively correspond to the directions of V,(t), V2(t), and 

V3(t) which, in turn, are respectively associated with partition points 

r, = 0, r 2, and r3 = 1 and which are defined to vanish at all partition 

points except the ones of association for each function. For simplicity, 

1 we will set r 2 = 2 so that the partition is uniform. The nonuniform 

case is a simple but algebraically more complex extension [lJ. With 

r2 = !, the integrals from Eq. 4 become 

1 3 2 1 3 G,(r) = 2 r - 4 r +"3 r , 

1 2 1 3 
G2 (r) = 2 r -"3 r , 

, 3 1 2 
G3(r) = "3 r - 4 r , 

and from an evaluation at the endpoint r = 1 

1 1 G2(1) = 6' and G3(1) = 12' By substitution, the polynomial 4-surface 

transformation is given by 

( 11 ) 
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P(r,t) = Plet) + r(6 - 9r + 4r2)[P2Ct) - P1(t)] 

+ r2(3 - 2r)[P3(t) - ~2(t)] 

+ r2(4r - 3)[P4(t) - P3(t)]. 

with r-derivative 

~~ = 6(1 - r)(l - 2r)[P2(t) - P1(t)] 

+ 6r(1 - r)[P3(t} - P2(t)] 

+ 6r(2r - 1)[P4(t) - P3(t)] . 

By direct evaluation 

and 
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P(O,t) = P
1
(t), 

P(1,!) = P
4
(t) , 

~~ (O,t) = 6[P2(t) - P1(t)], 

~~ (l.t) = 6[P4(t) - P3(t)], 

( 12) 

(13) 

( 14) 

(15 ) 



~ which explicitly shows that in addition to fitting the boundaries (Eq. 14), 

the intermediate surfaces P2(t) and P3(t) can be used to control the 

angles at which the transverse coordinate curves in r intersect the 

boundaries (Eq. 15). Moreover, the choice of intermediate surfaces can 

also be used to control the shape of the transverse curves and the distribu­

tion of the constant r coordinate surfaces. The general derivation and 

discussion is given in Eiseman [lJ. For our purposes, the discussion on 

coordinate system controls will be deferred until local methods are pre­

sented for our survey of some of the material developed in Eiseman [5J, 

[6J. 

An alternative form of the polynomial 4-surface transformation (Eq. 12) 

can be obtained from the evaluations of the transformation (Eq. 14) and its 

derivatives (Eq. 15). With the evaluations. the intermediate surfaces 

can be expressed entirely in terms of boundary data, which results in 

( 16) 

and 

Upon substitution of Eqs. 14 and 16 into Eq. 12 we obtain 

( 17) 

2 aP 7 2 aP 7 + r(1 - r) 3r (0,1:) - r (1 - r) 3r (1,1:), 
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after grouping terms by boundary type. By examination, the coefficients 

of the boundary evaluations for the transformation and its r-derivative 

can easily be identified as just the canonical Hermite cubic interpolants 

on the unit interval 0 < r < 1. When the r-derivatives are specified 

to be normal to the respective boundaries, we obtain the transformation 

presented by Smith and Weigel [3J. 

In continuation, polynomial N-surface transformations can be 

systematically established from Eqs. 3-4 and the interpolants 

N-l 
IT 

i=l 
i1k 

( 18) 

for k = 1,2, ... ,N-l. In each case, the transverse coordinate curves are 

polynomials of degree N-l in r with vector valued coefficients which are 

functions of the surface coordinates t. Polynomials, however, are globally 

defined for all r, and as a consequence, local mesh properties cannot be 

controlled without a global effect. As an example, suppose that we wish 

to smoothly embed a general rectilinear Cartesian system within a global 

mesh structure to obtain a system of the form illustrated in Fig. 2 where 

the Cartesian region within the mesh is bounded by the darkened curves. 

In the Cartesian part of the mesh, coordinate curves in r would be lines 

which pass through it at a uniform rate. Since global polynomials in r 

would be uniquely determined by the Cartesian region, curved boundaries 

could not be fitted. 
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Fig. 2 - A smoothly embedded Cartesian region 
within a global mesh structure. 

To obtain precise local controls which could be successfully applied 

to generate a mesh as illustrated above in Fig. 2, local forms of the 

multisurface transformation (Eqs.3-4) were established and analyzed by 

Eiseman [5], [6], and [7J. Our discussion will follow the development 

given by Eiseman in [6] and will focus upon two-dimensional applications 

with a surface coordinate t = t. When the interpol ants ~k are 

nonvanishing on only a local region, the precise local controls over the 

coordinates that were obtained will be illustrated with the local piecewise 

linear interpolants that are depicted in Fig. 3. For algebraic simplicity, 

the analysis is restricted to the case with the uniform partition rk = k 

with the clear understanding that nonuniform partitions will follow the 

same analytic pattern. Since the multi-surface transformation remains 

unchanged when the interpol ants are scaled by any sequence of nonzero 
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1 2 3 k-l k k+l N-2 N-I 

Fig. 3 - Piecewise linear local interpolants with partition points 
rk = k for k = 1,2, ... ,N-l . 

numbers. the height ~k(rk) of each interpolant can be chosen arbitrarily. '--

In particular, the form of the multi-surface transformation can be 

simplified when the heights are adjusted so that each interpolant integrates 

to unity which yields Gk(rN_l ) = 1 for all k. The integrals are 

obtained from triangular areas, and by direct observation, lead to the 

height adjustments ~1(r1) = 2, ~k(rk) = 1, and ~N-1(rN-l) = 2 in 

correspondence with the successive illustrations in Fig. 3. Also. in 

correspondence, the explicit form of the normalized interpolants are 

given by 

for 1 < r < 2 

tJ!,(r) 

for 2 < r < N 
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0 for l<r<k- 1 

(r - k) + 1 for k - 1 < r < k 
tfJk (r) = 

(k - r) + 1 for k<r<k+ 1 

0 for k + 1 < r < N - 1 

for 1 < r < N - 2 

for N - 2 < r < N 

and their integrals defined in Eq. 4, by 

Gk(r) 

2 1 - (2 - r) 

1 

0 

for 1 < r < 2 

for 2 < r < N - 1 

for 1 < r < k -

1/2(r - k)2 + (r - k) + 1/2 for k - 1 < r < 

-1/2(k - r)2 _ (k - r) + 1/2 for k<r<k+ 

1 

k 

1 

1 for k + 1 < r < N 

o for 1 < r < N - 2 

(r - N + 2)2 for N - 2 < r < N - 1 

which are depicted in Fig. 4. 

(20) 

(21) 

(22) 

; (23) 

- 1 

(24) 
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Fig. 4 - Integrals of normalized interpolants for the partition rk = k. 

On the i nterva 1 k < r < k + 1, the integrals G.(r) which correspond 
- 1 

to interpol ants defined over nonintersecting intervals are either unity or 

vanishing depending upon whether the interval of definition precedes or 

follows the interval under examination. When i = 1,2, ... ,k - 1 which 

is nonvacuous for k > 1, the integrals Gi(r) have been evaluated over 

the entire domain for which the respective interpolant ~i is nonvanishing; 

hence, these preceding integrals are unity by the chosen normalization. 

When i = k + 2, k + 3, ... ,N - 1, the interpolants ~i each vanish on 

1 < r < k + 1; hence, the integrals G. also vanish there. As a 
1 

consequence, G. 
1 

for i = k, k + 1 yield the only nontrivial contribu-

tions for the multi-surface transformation which reduces to 

(25) 
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~ which depends upon only the three control surfaces Pk, Pk+l , Pk+2 

which can be arbitrarily selected to our advantage when they are not 

bounding surfaces. With substitutions from Eq's. 22-24, we obtain the 

partition point (rk = k for k = 1,2, ... ,N - 1) evaluations 

-" 

(26) 

which, in addition to boundary fitting at the end points r = 1 and 

r = N - 1, also shows that the transformation passes through the midpoints 

of the lines which connect the intermediate control surfaces for any 

fixed surface coordinate t. Moreover, from the general multi-surface 

construction (Eqs. 1-5 and Fig. 1), the transverse coordinate curves are 
. 

tangent to the connecting lines at the partition point evaluations. The 

tangents at partition points can be explicitly obtained from substitutions 
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of the interpolation functions (Eqs. 19-21) into the r-derivative of 

the transformation (Eq. 25) and are given by 

aP ~ ~ 
or (N-l,t) = 2[t'N(t) - '"'N-l(t)]. 

In graphical form, this process is depicted in Fig. 5. 

90 
c-J-
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~ 

Fig. 5 - Coor"dinate curve segments for k s r < k+ 1. 

F 
N 

Between the control surfaces Pi and P. for i > j. the distribution 
J 

of constant r coordinate surfaces can be controlled for the general 

multisurface transformation (Eqs. 4-5) when uniformity can be specified 

along a direction of measurement 

P;Ct)-PjCt) 
(28) 

I IP.(t) - P.(t)1 I 
1 J 

for then arbitrary distributions can be applied relative to uniform 

conditions. An illustration is given in Fig. 6. 
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Fig. 6 - Measurement of uniformity. 

To obtain uniformity, the projected arc length 

(29) 

depicted in Fig. 6 must be linear in r, or equivalently aSp/ar must be 

independent of r. But then from Eq. 25 and with the relative projections 

Cm(t) = [Pm+1 (t) - -Pm(t)] • ~(t), we have 

" 

92 

-

'-



-

J 
-2Cl (t) + C2(t) for k = 1 

= -Ck{t) + Ck+l(t) for 1 < k < N - 1 r + function of t, (30) 
= 
- -CN_2(t) + 2CN_l (t) for k = N 1 ~ 

where the last equality comes from Eqs. 19-21. Hence, for k = j, j+l , ... , i-1, 

uniformity is obtained if 2C l (t) = C2(t) should k = 1, Ck(t) = Ck+,(t) 

should 1 < k < N - 1, and CN_2(t) = 2CN_l (t) should k = N - 1. A more 

thorough discussion on uniformity is available in Eiseman [lJ for the 

global case, in Eiseman [5J, [6J for the local case, and in Eiseman [7] 

for the general cases. 

To explicitly demonstrate the application of the local controls, and 

at the same time, reveal the basic algorithmic steps, coordinates will 

~ be obtained for a simple transition from a purely Cartesian system into a 

purely Polar system. For 0 ~ t ~ 1, the Cartesian coordinates will be 

specified below a line Q(t) = (2t-l,O) and the Polar coordinates, beyond a 

circular arc 12. O(t) where ·u(t) = (-cos 0, sin e) for 0 = (2t + 1)n/4. 

The line and the arc are depicted in Fig. 7. 
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12 u(t) 
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I 

I Q(t) • • • ~x 
(-1,0) (0,0) ( 1, 0) 

Fig. 7 - Basic curves for the Cartesian to Polar transition example. 

To obtain uniformity near the sides (t = 0,1) of the transitional region, 

the unit vertical distance will be used as a basis for displacements to 

establish uniformity below the line and beyond the circular arc. For the 

line, let 

-+ -+ 
P2(t) = Q(t) - (0,2), 

(31) 
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~ -

~ so that for 

(32) 

we have 

which satisfies uniformity for 1 ~ r ~ 3 and yields a Cartesian system from 

P(l,t) = P1(t) = Q(t) - (O,~). (34) 

up to 

(35) 

Similarly, for the circular are, let 

(36 ) 
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be the last three surfaces so that for 

~ (t) = 

we have 

P7(t) - P5(t) 

IIP7(t) - i's(t) II 
= u(t) (37) 

and (38) 

which satisfies uniformity for 5 < r < 6 - - and yields a Polar system from 

the circular arc 

(39) 

up to the circular arc 

(40) 

The entire collection of bounding and intermediate surfaces are depicted 

in Fig. 8. 
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Tab 1 e 1 

MESH k Gk Gk+l 
MESH r k Gk Gk+l INDEX r INDEX 

-
1 1. 00 1 .00 .00 11 3.50 3 .88 .13 
2 1.25 1 .44 .03 12 3.75 3 .97 .28 
3 1. 50 1 .75 .13 13 4.00 4 .50 .00 
4 1. 75 1 .94 .28 14 4.25 4 .72 .03 
5 2.00 2 .50 .00 15 4.50 4 .88 . 13 
6 2.25 2 .72 .03 16 4.75 4 .97 .28 
7 2.50 2 .88 .13 17 5.00 5 .50 .00 
8 2.75 2 .97 .28 18 5.25 5 .72 .06 
9 3.00 3 .50 .00 19 5.50 5 .88 .25 

10 3.25 3 .72 .03 20 5.75 5 .97 .56 
21 6.00 5 1.00 1. 00 

~--~~ 

/ '~ 

)r-.~ 
\ 

\ 
\ -r-
I , 

--l-~---, I OT',!,r:"· - , 7 

I 

I 
--:--~---

\ 
---'-._---

Fig. 8 - Control surfaces for Fig. 9 - Polar-rectangular mesh. 
polar-rectangular mesh. 

For 21 equally spaced mesh points in r, the evaluation of the 

::; r-dependent functions is given with two decimal places of accuracy 
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in the table. For a given mesh point, the interval k < r < k + 1 

containing it determines the index k for Gk and Gk+l respectively 

in Eqs. 22-24. Due to the uniform selection of partition points r
k

, a 

repetitive pattern in the Gk evaluations can be observed and is 

indicative of translated versions of the same function. When 9 uniformly 

spaced mesh points are chosen for 0 < t < 1, and when the multi-surface 

transformation of Eq. 9 is evaluated for the 21 x 9 mesh, we obtain the 

coordinate mesh which is displayed in Fig. 9. From uniformity and 

Table 1, the first 8 and the last 5 mesh points in r are seen to be 

uniformly distributed, and the mesh is respectively purely Cartesian and 

purely Polar for those points. To illustrate the computational aspect, 

we shall explicitly evaluate the transformation at the pOint with curvi­

linear variables r = 4.5, t = O. At t = 0, we have 

and 

Q(O) (2(0)-1,0) = (-1,0), 

u(O) -_ ( cos TI s,'n TI) - 4' if 
= ( __ 1, _1 ). 

./2 12 

For r = 4.5, we are at the 15th mesh index in Table 1 where we read 

across to note that we are in the 4th interval (4 ~ 4.5 ~ 5) with 

( 41 ) 

G4(4.5) = .88 and G5(4.5) = .13. By sUbstitution into the transformation 

(Eq. 25 for k = 4) we obtain 
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= (-1,0) + .88[i2(- __ 1, __ 1) 
i2 i2 

1 1 ( -1 ,0) J + . 13 (- -, -) 
i2 /2 

= (-1,0) + .88(0,1) + (-.09,09) 

= (-1 + 0 -.09, 0 + .88 + .09) 

= (- 1 .09, .97). 

(42) 

~ c In continuation with local methods, the case with nonuniform parti-
~ 

tions for the piecewise linear functions is given in Eiseman [5J. In 

addition, local interpol ants with a higher level of smoothness (derivative 

continuity) can be used and are developed in Eiseman [7J. With the local 

controls over the transverse coordinate curves which connect two bounding 

surfaces, lateral bounding surfaces can also be approximately fit. A 

precise fit of the lateral boundaries can be obtained with blending 

functions which were used by Gordon and Hall [8J to create a global method. 

Further applications of blending functions will be presented at this work­

shop by Ericksson [9J, by Forsey, Edwards, and Carr [lOJ and by Anderson and 

Spradley [1l]. 
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Algebraic Mesh Generation - Three Dimensions 

An algebraic approach to mesh generation in three dimensions results 

in algebraic functions that relate a computational domain to a physical 

domain. If the computational domain is defined by the three variables r, 

~, and s on the unit cube 

o < r < 1 

(43) 

then the physical domain in Cartesian (x,y,z) coordinates is given by the 

transformation P(r,~,s) = (x,y,z) where 

x = x(r,Cs) , 

y = y(r,r"s) , (44) 

z = z(r,t:,l;). 

When Eq. 44 is nonsingular it has an inverse transformation denoted by 
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r = r(x,y,z) , 

f, = ~(x,y,z) , (45) 

r.; = d x ,y, z) . 

A uniform mesh is defined on the computational domain by constants ~r, 

~f" 6s (Fig. 10). This mesh maps using Eq. 44 to a corresponding mesh 

~ "?W7 ~ 05-

df£~ 

--
I 

Fig. 10 - Computational domain. 

in the physical domain which is not necessarily uniform. A simple example 

for Eq. 44 is given by 

1 01 



or 

x = 

k2r 

X { 8y + YL (e k - 1)}, y = £;, L tan 
e 2 

1 k 
+ (e 1 ~ = - £n{1 

kl 

1 k 
r = - £n{l + (e 2 

k2 

1 k 
S = k £n{l + (e 3 

3 

- 1 

k3s 
(e - 1 -k--)}' 

e 3 - 1 

- 1) x X}, 
L 

- l)(Y - tan 
x 

- 1) (~ - tan x 

(46) 

1 
6y ) y}' 

L 
(47) 

, 
8z) Z}, 

L 

where k1' k2' k3' By' 8z, XL' \' and ZL are constants. For 

~O ~ ~ ~ 1, 0 < r ~ 1, 0 ~ s ~ 1 and YL = ZL the uniform computational 

domain maps into a frustrum of a paramid (Fig. 11) and the mesh is 

concentrated in the physical domain according to the magnitudes and 

signs of k" k2' and k3. 

Equation 44 must satisfy the constraints outlined in the 

introduction and which vary from problem to problem. For many mesh 

generation problems, the constraints reduce to having the boundaries 

in the computational domain map to boundaries in the physical 
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Fig. 11 - Physical domain for Eqs. 46-47 • 

domain and concentrating the mesh in specified regions of the physical 

domain. The polynomial N-surface transformations (Eq. 6-18) are global 

algebraic mesh generation techniques which satisfy the basic boundary 

constrafnts and result in polynomial functions of degree (N 1) 

with respect to one of the independent variables. For a small N the 

polynomials are particularly simple. If the surface coordinates are 

t = (~'s), the transformation P(r,t) = (x(r,t), y(r,t), z(r,t)) 
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I 
I' 

y , 

~~z 
Fig. 12 - Boundary mapping. 

is defined such that 

XB 
= x(O,t,;,l;) :::; x,O:,d, 

1 

VB = y(O,t;,r;;) = Y1(E.;,r;), 
1 

Zs :::; z(O,~,r;) = Zl(E.:,r;), 
1 

XB = x(l,E.:,s) = X2(t;,t;), 
2 

YB =y(l,E.:,s) = Y2(E;,r;), 
2 

Z = z( 1 ,s ,I;;) = Z2(t;,r;), 
62 
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where P, (~,s) = (X B ' 
1 

YB ' ZB) is one boundary and PN(~'s) = 
1 1 

(X B ' YB ' Z[3 ) ;s the 
222 

other boundary in the physical domain (Fig. 12). 

The polynomial 4-surface transformation (Eq. 12 and 17) allows a 

constraint to be placed on the mesh in addition to that of fitting the 

boundaries. This constraint occurs when the physical mesh is required 
aX to be orthogonal at the boundaries. Since the derivatives ar (o,~,~), 

aX -ar (1 ,t;,r,) , etc. can be computed from the cross product of the tangential 
dX l dX l dY l dY l derivatives d~ (s,s), ~ (~'s), ~ (~'S), ~ (s,s), etc., we have 

--'t --'t k 1 J 

ax aY £ az£ £ 
(E~,s) 1 ,2 (49) K ~ (~,d af- (s,s) 9.- = 

dO; 

dX£ 
(~,~) 

aY £ az£ 
ar, a( (s,d az- (s,~) 

--'t -t- -+ where 1, J, and k are unit vectors and K is the magnitude of the 
- ~, ~ -

normal vector, the choice of which can be used to ap~1y cbntrols developed 

in Eiseman [1] for the shape of coordinate curves in r and for the 

distribution of constant r-surfaces. Applying this procedure will force 

the mesh to be orthogonal at the boundaries but not necessarily anywhere else. 

A globally uniform computational mesh (for linear Sp in Fig. 6) can 

be mapped onto a physical mesh with the polynomial N-surface transformations 

given in Eqs. 6, 9, and 12. Concentration of mesh points in the r 

~ direction is accomplished by choosing a function r(r) such that 
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-o ~ r ~ 1, 0 < r < 1 and dr > 0 (Fig. 13). 
dr 

For example Smith and 

Fig. 13 - Grid control. 

Weigel [3J used the function 

-r= __ (50) 

to contract the physical grid toward one boundary or the other. The number k 

is a free parameter whose magnitude dictates the degree of contraction. When r 

is replaced by r(r) in Eq. 6, the contractive function becomes embedded 

in the linear polynomial part of Eq. 6, which results in 

(51) 
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~ where a uniform partition of a 2 r ~ 1 yields a desired nonuniform partition 

of a < r < 1 that, in turn, proportionately partitions the linear segments of 

the transformation. 

The example previously presented can be derived with this approach 

where 

x (t;;) = 

~ = 

k1t;; 
- e - 1 
E., = ~k---- , 

e 1 - 1 
(52 ) 

and 

z = z(t;;,~), 
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where 

k2r 
r = e -1 

k 
e 2 -1 

A fundamental constraint of this approach is the representation of 

the boundaries. The boundaries can be represented as analytical functions 

or approximate functions based on discrete data from the boundaries. 

In either case the representation must be in a form where parametric 

variables which can be normalized to the unit interval are the independent 

variables. If the parametric independent variables are chosen to be 

sand t, then for the two boundaries 

, 08 

t. <t<t . mln - - max 

(53) 



The choice of parametric variables can vary from problem to problem. 

A relationship between (~,r,) and (s,t) is 

(54) 

This is a linear relation which maps the unit interval onto the parametric 

variables. Contraction of the physical grid at the boundaries is 

accomplished in the same manner as for the internal grid distribution. 

~ = t(~), s!L 
d~ > 0, 

-/ 
~> - ~(d , 0, s = 
d( 

(55) 

o < ~ < 1 , O~~ < 1 , - -

-o < s ~ 1, 0 ~ s ~ 1. 

~proximate Boundary-Fitted Coordinate Systems Using Tension Spline 

Functions 

It is often the case that boundaries in a physical domain are 

described by discrete sets of points. The boundaries may be open or 

closed. An approximate boundary-fitted coordinate system can be obtained 

using the technique described and a tension spline function interpolation 

to the discrete data defining the boundaries. Tension splines are chosen 
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because standard cubic splines and other higher order approximation 

techniques often result in wiggles in the approximation. Wiggles on a 

boundary using the technique propagate into the interior grid. The tension 

parameter embedded in the tension spline approximation to the curve 

allows control of the IIcurvednessll of the approximation. A very large 

magnitude of the tension parameter corresponds to a linear approximation, 

whereas a very small value corresponds to cubic splines. Tension splines 

can be applied in two and three dimensions. An example ;s presented 

here that is applicable to a two-dimensional mesh. 

Using the tension spline technique, a point set on boundary one is 

defined by 

arc length 

arc length 

110 

and on boundary two by 

is used as a parametric independent variable. 

is: 

[(x i+l 
2 2 1/2 

s. = - xi) + (Yi+l - y.) ] + s. l' 1 1 1-

i = 1. .. n 

j = 1. .. m 

o < s· < S 
- 1 - n 

o < s· < S • - J - m 

2 1/2 
y.)] +s'l' J J-

Approximate 

The approximate 

(56) 



oJ From the computational coordinate system the unit interval (0 ~ ~ ~ 1) 

must be mapped onto each boundary; that is: 

s = s(~), 

o < s < s . - m 

This ;s accomplished by letting 

s = ~sn on boundary one and 

s = sSm on boundary two. 

The tension spline functions are piecewise continuous hyperbolic 

functions on each boundary such that 

sinh[a(s£+l - s)] 
x = g"(s ) 

£ a2s;nh[a(s£+1 - s£)] 

( 57) 

(58) 

( 59a) 
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(5gb) 

t = i on boundary one, 

t = j on boundary two, 

o = tension parameter. 

The unknowns in these equations are gll(St} and hll(st) which are second "-
t=L derivatives at the data points {x~'Yt}t=l and are obtained through enforce-

ment of the continuity of the first derivatives at the data points, and 

the specification of two end conditions. A tridiagonal system of linear 

equations results for each set of unknowns. The solutions of the tridiagonal 

systems yield g"(St) and h"(s~). 

A cubic polynomial and the contracting function 
_ ekr _ 1 
r = provide 

ek - 1 
the relationship between the computational domain and physical domain. 

dX~ dY t The derivatives dn and ~ are: 

(60) 
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By defining a grid with constants and fir in the computational 

domain a corresponding grid is explicitly defined in the physical domain. 

An example of an airfoil grid is presented (Fig. 14). Data points on 

each boundary, magnitude of the normal derivative, and contract parameter 

values define the grids. Boundary data for the airfoil is shown in 

Fig. 15. Also, for closed boundaries such as the airfoil, periodic 

conditions are applied in the spline functions. 

Fig. 14 - Mesh for Karman Trefftz 
airfoil using splines under 
tension. 

(' 
/ 

i<{ 

/ 

""_0-__ 
!',' ~ 

'~_~'~-B=--:_":----:--~o.-~ I 

Fig. 15 - Data definition for 
boundaries of Karman Trefftz 
airfoil domain. 

Complex Three-Dimensional Mesh Generation 

The development of three-dimensional meshes where mesh lines are free 

to move in all three coordinate directions ;s extremely difficult. The 

reader is directed to reference 9 for examples of such unconstrained three-

! i dimensional meshes. An expedient approach for complex three-dimensional 
......... 
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geometries is to attempt to simplify the problem by rendering the three­

dimensional geometry quasi two-dimensional. This is the essence of the 

frustrum pyramid mesh previously present~d. Also when there is axis­

symmetry in a problem, two-dimensional rendering of the geometry ;s 

possible. This is demonstrated with the spike-nosed configuration shown 

in Fig. 16. Figure 17 shows an algebraic generated mesh for one plane 

Fig. 16 - Surface for a spike-nosed body. 

of the geometry. The mesh is made three dimensional by rotating the mesh 

in movements about the axis of symmetry. 

For aircraft surfaces the problem is more difficult. There are, 

however, several good software packages ([12] is a good example) for 

surface definition of aircraft aerospacecraft geometries. In [12J 
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Fig. 17 - Mesh for spike-nosed body. 

the Harris geometry is used to establish coordinates for Coon's surface 

definition of a configuration. Spline functions are used to compute 

the derivatives for t~e Coon's surface definition. Figure 18 shows the 

input description for a wing-fuselage configuration where the wing and 

fuselage are defined separately. Figure 19 shows an enriched definition 

of the configuration using the Coon's surfaces. A part of the available 

software described in [12J is the ability to compute the intersection 

of an arbitrarily defined plane anJ the1uiface definition. For the 

at a constant increment in the x direction are shown in Fig. 20. 

If an outside boundary is defined the corresponding intersection with the 
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Fig. 18 - Data definition for a configuration. 

Fig. 19 - Enriched surface definition for a wing-fuselage configuration. 
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Fig. 20 - Planar intersections with a wing-fuselage configuration. 

planes is computable. With an inside and outside boundary the techniques 

previously described can be employed in two dimensions. Complexities 

of multiconnected regions is introduced but this can be attacked with 

branch cuts (Fig. 21). 

//-- -' .. 
! \ 

-------I ) ... - \ .--
, / 
'------_/ 

.....• 

Fig. 21 - Branch cuts for"mu"ti-c<:fnhected sections. 
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Another attack on complex three dimensional problems is to define 

several computational domains (Fig. 22) with mutual boundaries. The mapping 

LZ n77w. '7777; 

~ 

II 
~l 

r:r 

~~I~ W, ~ "' 
Itt m lt~ ni~ / u 

ili :t1ffi ji1;:'l T lL 
;+~ m 

g f,r,tj. l ~J 
~lij [}~ n*t 

Fig. 22 - Multiple computational domains with mutual boundaries. 

function transforms the computational domains to parts of the physical 

domain with mutual intersections. 

Conclusions 

Algebraic methods provide precise controls for mesh generation. 

Methodologies for mesh construction can be based on a parameterized 

description of surfaces which consist of bounding surfaces and intermediate 

control surfaces. The surface locations determined by the respective 

surface parameterizations determine the nature of the transverse coordinate 

curves which connect the bounding surfaces. Relative to uniform conditions, 

precise control over the mesh placement in the physical domain can be 
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~ accomplished by embedding distribution control functions in the surface 

parameterizations or in the transverse direction. Complex bounding 

topologies, especially in three dimensions, cause mesh construction 

difficulties. It is proposed that whenever feasible, the complex topol-

ogy be simplified such as rendering the geometry quasi two-dimensional. As 

a final remark, precise controls are one of the major advantages of algebraic 

methods: they give the capability to prescribe specific desirable and 

helpful mesh formations. 
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