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ABSTRACT 

.., ..... " " 

The General Interpolants Method (GIM) code solves the multi­

dimensional Navier-Stokes equations for arbitrary geometric domains. 

The geometry module in the GIM code generates two- and three­

dimensional grids over specified flow regimes, establishes boundary 

condition information and computes finite difference analogs for use in 

the GIM code numerical solution module. The technique can be classified 

as an algebraic equation approach. 

The geometry package uses multivariate blending function interpola­

tion of vector-values functions which define the shapes of the edges and 

surfaces bounding the flow domain. By employing blending functions 

which conform to the cardinality conditions the flow domain may be mapped 

onto a unit square (2-D) or unit cube (3 -D), thus producing an intrinsic 

_- coordinate system for the region of interest. The intrinsic coordinate 

system facilitates grid spacing control to allow for optimum distribution 

of nodes in the flow domain. 

The GIM formulation is not a finite element method in the classical 

sense. Rather, finite difference methods are used exclusively but with the 

difference equations written in general curvilinear coordinates. Trans­

formations are used to locally transform the physical planes into regions 

of unit cubes. The mesh is generated on this unit cube and local metric-

like coefficients generated. Each region of the flow domain is likewise 

transformed and then blended via the finite element formulation to form 

the full flow domain. In order to treat "completely-arbitrary" geometric 

domains, different transformation functions can be employed in different 

regions. We then transform the blended domain to physical space and solve 

the Cartesian set of equations for the full region. The geometry part of the 

problem is thus treated much like a finite element technique while integration 

of the equations is done with finite difference analogs. 

*This work was supported, in payt, by NASA Langley 
Contracts NAS1-15341, 15783, and 15795. 
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BU I LD I NG BLOCK CONCEPT 

The development is done in local curvilinear intrinsic coordinates based 

on the following concepts: 

• Analytical regions such as rectangles, spheres, cylinders, 
hexahedrals, etc., have intrinsic or natural coordinates. 

• Complex regions can be subdivided into a number of 
smaller regions which can be described by analytic 
functions. The degenerate caSe is to subdivide small 
enough to use very small straight-line segments. 

• Intrinsic curvilinear coordinate systems result in 
constant coordinate lines throughout a simply 
connected, bounded domain in Euclidean space. 

• The inter section of the lines of constant coordinates 
produce nodal points evenly spaced in the domain. 

• Intrinsic curvilinear coordinate systems can be pro­
duced by a univalent mapping of a unit cube onto the 
simply connected bounded domain. 

Thus, if a transformation can be found which will map a unit cube uni­

valently onto a general analytical domain, then any complex region can be 

piecewise transformed and blended using general interpolants. 

Consider the general hexahedral configuration shown. The local intrinsic 

coordinates are 111,112,113 with origin at point PI' The shape of the geometry 

is defined by 

• Eight corner points, P. 
1 

• Twelve edge functions, E. 
1 

• Six surface functions, S. 
1 

This shape is then fully described if the edges and surfaces can be specified 

as continuous analytic vector functions S. (x, y, z), E. (x, y, z), 
1 1 



BUILDING BLOCK CONCEPT 
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a. Point Designations 

E 
3 

b. Edgl! Designations 

c. Surface Designations 
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GENERAL INTERPOLANT FUNCTION 

Based on the work of Gordon and Hall we have developed a general 

relationship between physical Cartesian space and local curvilinear intrinsic 

coordinates. This relation is given by the general trilinear interpolant shown 

on the adjac ent figure. 

In this equation, ~ vector is the Cartesian coordinates 

and Si' Ei are the vector functions defining the surfaces and edges, respectively, 

and Pi are the (x,y, z) coordinates of the corner points. Edge and surface func­

tions that are currently included in the GIM code are the following: 

• EDGES (Combinations of up to Five Types) 

Linear Segment 
Circular Arc 
Conic (Elliptical, Parabolic, Hyperbolic) 
Helical Arc 
Sinu soldal Segment 

• SURF ACES (Bounded by Above Edges) 

Flat Plate 
Cylindrical Surface 
Edge of Revolution 

This library of available functions is simply called upon piecewise via input 

to the computer code. 

With this transformation, any point in local coordinates 1']1' 1']2' 1']3 can 

be related to global Cartesian coordinates x, y, z. Likewise any derivatives 

of functions in local coordinates can be related to that derivative in physical 

space. 



GENERAL INTERPOLANT FUNCT ION 
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INTERNAL FLOW GRID 
(Axisymmetric Rocket Nozzle) 

The grid shown was used to compute the flow in a model of the Space 

Shuttle engine us ing the GIM code. The mesh is stretched in the radial direc­

tion to cluster points near the wall and stretched axially to place points near 

the throat of the nozzle. Only a portion of the complete grid is shown for 

clarity and illustration. The grid shows the general format used by the GIM 

code for internal, two-dimensional flows in non-rectangular shapes. 



EXTERNAL FLOW G RID 
(Two-Dimensional BI unt Body Flow) 

This figure shows a polar-like grid used for computing external flow 

over a blunt body. The body surface is treated invlscidly, and thus does 

nOt require an extremely tight mesh. The outer boundary is the freestream 

flow. The grid illustrates the GIM code technique for two-dimensional ex­

ternal flows using a polar-like coordinate system. 

149 



150 

EXTERNAL FLOW G RID 
(Non-Orthogonal Cu rvilinear Coordinates) 

The nodal network for the external flow over an ogive cylinder illustrates 

the capability of the GIM code geometry package to stretch the nodal distribu­

tion. The grid is very compact in the leading edge region and greatly expanded 

in the far field areas, The axial points follow the body surface and could gen­

erally be called ., body-oriented coordinates" in the nomenclature of the litera­

ture. The radial grid lines are not necessarily normal to the lateral lines or 

to the body surface. The GIM code, through its tlnodal-analog" concept can 

operate on this general non-orthogonal curvilinear grid. 
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THREE-DIMENSIONAL GRID 
(Simple Rectilinear Coordinates) 

Supersonic flow in expanding ducts of arbitrary crOss section is a common 

occurrence in computational fluid dynamics. This figure illustrates a simple 

grid for a three-dimensional duct whose cross section varies sinusoidally with 

the axial coordinate. The 11 top" wall and the "front" wall have this sinusoidal 

variation while the "bottom" and "back" walls are flat plates. The grid shown 

was used to resolve the expanding-recompressing supersonic flow including the 

intersection of the two shock sheets. 
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THREE-D IMENSIONAL GRID 
(Pipe Flow in a 90 deg ElbowTurn) 

There are numerous flow fields of interest which contain a sharp turn 

inside a smooth pipe. The GIM code has treated certain of these for applica­

tion to jet deflector nozzle flow in VTOL aircraft. The portion of a grid shown 

in the adjacent figure was used for this calculation. 

The 90 deg elbow demonstrates the capability to model three-dimensional 

non-Cartesian geometries. The internal nodes were emitted for clarity. The 

elbow grid was generated by employing edge-oI-revolution surfaces with circular 

arc segments as the edges being revolved. 



GRID FOR SPACE SHUTILE MAIN ENGINE 
(Hot Gas Manifold Geometry Model) 

The recent problems encountered with the Space Shuttle main engine 

tests have resulted in a GIM code analysis of the system. The I'hot gas mani­

fold" is a portion of this analysis for the high pressure turbopump system. 

The grid shown in the adjacent figure was used for this calculation. Only a 

small number of nodes are shown for clarity; the full model consists of approx­

imately 14,000 nodes. The extreme complexity of this geometry illustrates 

the necessity of using a GIM-like technique. Transforming this case to a 

square box computational domain is, of course, impossible. The results of 

the GIM code analysis agree qualitatively with flow tests that have been run 

on the hot gas manifold. 

Hot Gas Manifold Configuration 
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Inner Wall 
Omitted 

GRID FOR SPACE SHUTTLE MAIN ENGINE 
(Hot Gas Manifold Geometry Model) 

Outer Wall 

Inner Duct 



SUMMARY 

• Finite difference grids can be generated for very general con­

figurations by using multivariate blending function interpolation. 

• The GIM code difference scheme operates on general non­

orthogonal curvilinear coordinate grids. 

• This scheme does not require a single transformation of the 

flow do~nain onto a square box. Thus, GlM routines can indeed 

treat arbitrary three-dimensional shapes. 

• Grids generated for both internal and external flows in two and 

three dimensions have shown the ver satility of the algebraic 

approach. 

• The GIM code integration module has successfully computed 

flows on these complex grids, including the Sp:ice Shuttle 

main engine turbopump system. 

• Plans for future application of the code include supersonic flow 

over missiles at angle of attack and three-dimensional, viscous, 

reacting flows in advanced aircraft engines. Plans for future 

grid generation work include schemes for time-varying networks 

which adapt themselves to the dynamics of the flow. 
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