
... N81-14697 
.., .~, A ~ 

Introducti on: 

Component-Adaptive Grid Embedding 

E. H. Atta 
Lockheed-Georgia Company 

One of the major problems related to transonic flow prediction 

about realistic aircraft configuration is the generation of a suitable 

grid which encompasses such configurations. In general, each aircraft 

component (wing, fuselage, nacelle) requires a grid system that is 
usually incompatible with the grid systems of the other components; 
thus, the implementation of finite-difference methods for such 

geometrically-complex configurations ;s a difficult task. 

In this presentation a new approach is developed to treat such a 
problem. The basic idea is to generate different grid systems, each 
suited for a particular component. Thus, the flow field domain is 
divided into overlapping subdomains of different topology. These 

grid systems are then interfaced with each other in such a way that 
stability, convergence speed and accuracy are maintained. 

157 



Mode 1 : 

To evaluate the feasibility of the present approach a two-dimensional 
model is considered (figure 1). The model consists of a single airfoil 
embedded in rectangular boundaries, representing an airfoil in a wind 
tunnel or in free air. The flow field domain is divided into two 
overlapping subdomains, each covering only a part of the whole field. The 

inner subdomain employs a surface-fitted curvilinear grid generated by an 

elliptic grid-generator (ref. 1). while the outer subdomain employs a 

cartesian grid. The overlap region between the two subdomains is bounded 
by the outer boundary of the curvilinear grid and the inner boundary of the 
cartesian grid. 
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Figure 1.- Composite grid for an airfoil. 
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~roach: 

Figure 2 shows the two subdomains (A,B) of the flow field; 
each has a grid adapted to suit its geometry. The flow in both 
subdomains is governed by the transonic full-potential equation. 
While a Neumann-type boundary condition is used at the inner bound­

ary of subdomain B (overlap inner boundary), a Dirichlet-type 
boundary condition is used at the outer boundary of subdomain A 
(overlap outer boundary). These boundary conditions are updated 

during the solution process. The implicit approximate factoriza-
, 

tion scheme is used in both grid systems. The code of ref. 1 ;s 
modified to fit into the present scheme. 

The solution process ;s performed in cycles, starting by 
solving for the flow field in subdomain A, then switching after a 
number of iterations to solve for the flow field in subdomain B. 
During each cycle the overlap boundary conditions are updated by 

using a two dimensional second order Lagrangian interpolation scheme. 
This process is then repeated until convergence ;s achieved ;n both 
su bdoma i ns. 

Figure 2.- Grid topology for the different subdomains. 
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Comparison with a homogeneous grid: 

The results of the present method are compared with the results 
obtained from using one homogeneous grid for the entire flow field 
(ref. 1). In all the test cases considered, a standard grid with 
(31 x 147) points and a circular outer boundary located 6 chord­

lengths away from the airfoil are used. (See figure 3.) 

Figure 3.- Uniform grid for an airfoil (ref. 1). 



~- Computed Results: 

Results of the present method are compared with the results 
obtained from the code of ref. 1. Two sets of parameters affecting 

the performance of the numerical scheme are listed in tables I and 

II. Figures 4 and 5 display the pressure-coefficient distributions 
for a NASA-0012 airfoil resulting from the flow field solutions. 

The results are in good agreement for both subcritical and super­

critical cases; savings in computing time are achieved by reducing 

the size of the flow field covered by the curvilinear grid 

(subdomain A). 
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Figure 4.- Comparison of pressure coefficient for NACA-0012. 
(M = 0.75, a = 0.) 
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Figure 5.- Comparison of pressure coefficient for NACA-DD12. 
(Moo = D.8, a = D.) 
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Flow Field Topology: 

The extent of the overlap region between the different grids and 

the relative size of each subdomain are the main factors affecting 

the accuracy and convergence speed of the present scheme. Figure 6 

shows the flow field topology for several test cases. In these cases 
the overlap extent and subdomain sizes are varied to determine their 

optimum va1ues that will minimize the computing effort. while maintain­

ing a reasonab1e accuracy. 
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Figure 6.- Flow-field topology with different grid-overlap. 
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,-,J Overlap arrangement: 

Test cases with different grids-arrangement are compared to 
determine the optimum choice for the extent of the overlap region. 
A work factor w [number of iterations for convergence x number 
of grid points (curvilinear grid)] is taken as a measure of the 
computing effort. Numerical results show that increasing the ex­
tent of the overlap region decreases the number of iterations for 
convergence; however, this also increases the computing effort 
(figure 7). To minimize the computing time the Cartesian grid 

should overlap 15-25% of the curvilinear grid, and the inner 

boundary of the Cartesian grid should not be located less than 

0.25 chord-length away from the airfoil. 
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Figure 7.- Effect of overlap parameters on work factor w. 
(NACA-0012, Moo = 0.8, a = 0.) 
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Computed Results: 

The use of nonoptimal parameters for grids arrangement (overlap 
extent, relative grid sizes) can produce inaccurate results and/or 
slow down convergence. The Peaky pressure coefficient distribution 
shown in figure 8 is corrected by increasing the extent of the 
overlap region described in Table III . 

. 8 

.6 
o 
• 

. 4 ~ 

.2 

-.2 

-.4 

• o 

o homoaeneous 0rid 

.0 composite grid 

o 
• o • 
o 

Figure 8.- Comparison of pressure coefficient for NACA-0012. 
(Moo = 0.75, a = 0.) 



Figures 9 and 10 display the pressure coefficient distributions 

for two lifting cases for the parameters described in Tables IV and 
V. The evolution of circulation, and hence lift, is slowed down as 

the solution process alternates between the different grids. This 

is dealt with by decreasing the number of iterations performed in 

each grid. 
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Figure 9.- Comparison of pressure coefficient for NACA-0012. 
(Moo; 0.63, a = 2°.) 
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Figure 10.- Comparison of pressure coefficient for NACA-0012. 
(Moo = 0.75, a = 2°.) 



Errors in sonic line position: 

Should the shock wave extend into the overlap region, the 
interpolation process can produce errors in the shock location 
and strength. Comparisons of the results of the present method 
with those of a homogeneous grid shows that the maximum relative 
error did not exceed 1.5%. (See figure 11.) 
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Figure 11.- Effect of interface location on sonic line position. 
(NACA-0012, Moo = 0.8, a = 0.) 
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--' Conclusion: 

A method for interfacing grid systems of different topology is 
developed. This offers a new approach to the problem of transonic 
flow prediction about mUltiple-component configurations. The method 

is implemented in a 2-D domain containing two grid systems of differ­
ent topology. The numerical scheme in the present method proved to 

be stable and accurate. Savings in computer time and/or storage is 

achieved by the proper choice of the overlap region between the differ­

ent grids. 
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TABLE I 

Code of Ref. 1 Present Method 

TAIR Code 

Curvilinear grid 31 x 147 15 x 147 21 x 147 

Cartesian grid 30 x 30 30 x 30 

X cpu time reduc ti on 
as cOr.1pared to TAIR 30% 10% 
Code 

location of subdomain 6 chord- 6 chord-
S ou ter bounda ry length 1 ength 

location of subdomain 1 chord- 2 chord-
B inner boundary 1 ength 1 ength 

location of subdomain 1 c hord- 4 chord-
A outer bounda ry length length 

number of cycles for 9 10 
convergence 

TABLE II 

Code of Ref. 1 

TAIR Code 
Pre sent Met hod 

Curvilinear grid 31 x 147 18 x 147 14 x 147 

Ca rtesi an gri d 30 x 30 50 x 50 

% cpu time reduction 
as compared to TAIR 20% 10% 
Code 

location of subdomain 6 chord- 6 chord-
B outer boundary 1 ength length 

location of subdomain 1 chord- 1/4 chord-
S inner boundary 1 ength 1 ength 

location in subdomain 2 chord- 1 chord 

A outer boundary lellgth length 

number of cycles for 12 15 

convergence 
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TABLE I II 

Code of Ref. 1 

TAIR Code Present ~lethod 

Curvilinear grid 31 x 147 lOx 147 15 x 147 

Cartes ian grid 30 x 30 40 x 40 

location of subdomain 6 chord- 6 chord-
B outer boundary length length 

location of subdomain 1/4 chord- 1/4 chord-
B inner boundary length length 

location of subdomain 1.5 chord- 1 chord-
A outer boundary length length 

TABLE IV 

Code of Ref. 1 

lAIR Code Present Method 

Curvilinear grid 31 x 147 15 x 147 

Cartesian grid 30 x 40 

% cpu time reduction as 39;; compared to lAIR Code 

location of subdomain B 6 chord-length outer boundary 

location of subdomain B 
inner boundary 1 chord-length 

location of subdomain A 3 chord-length outer boundary 

lift coefficient 0.334 0.337 

number of cycles for 
convergence 16 
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TABLE V 

Code of Ref. 1 

lAIR Code Present Method 

Curvilinear grid 31 x 147 21 x 147 

Cartesian Grid 30 x 30 

% cpu time reduction as 
compared to TAIR Code 2% 

location of subdomain B 
outer boundary 6 chord -1 ength 

location of subdomain B 
inner boundary 2 chord-length 

location of subdomain A 
outer bounda ry 4 chord-length 

lift coefficient 0.574 .584 

number of cycles for 14 convergence 
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