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~ An Adaptive Computation Mesh for the Solution of Singular 

Perturbation Problems 

J. U. Brackbill and J. Saltzman 
Courant Institute of Mathematical Sciences 

An adaptive mesh for singular perturbation problems in two 
and three dimensions is reported. The adaptive mesh is generated 
by the solution of potential equations which are derived by 
minimizing the integral I, written, 

I = J [{(9;)2+(9n)2}+Av{WJ}+Ao{(9~'9n)2}]dV (l) 

D 
where X{~,i;) ,y(~,n) represent a mapping from a parameter space 
P, 0 : ~ ~ I , 0 ~ n ~ J , where w(x,y) > 0 is given, AV and Ao 
are nonnegative constants, and J, the Jacobian, is written, 

J = d(X,y) 
d (t,:,n) (2 ) 

In the usual manner, the mesh is constructed by joining points 
in (x,y) corresponding to integer values of ~ and n by straight 
lines to form a net of arbitrarily shaped, quadrilateral cells 
( 1) • 

The variational formulation is equivalent to Winslow·s 
method (2) when AO and AV are zero. The Euler equations are 
those given by Winslow, and their solution maximizes the smooth­
ness of the mapping. The additional terms modify other attributes 
of the mapping in a similar way. When AO > 0 , the mapping is 
modified to make it mo2e orthogonal. When AV > 0 , the mapping 
is modified to make wJ more nearly constant over the mesh. By 
choosing w(x,y) appropriately, and with AV , Ao > 0 , the zone 
size variation and skewness can be controlled. 

In singular perturbation problems, control of zone size 
variation can affect the effort required to obtain accurate, 
numerical solutions of finite difference equations. Consider 
a simple, difference approximation, 

<M> = 
f i +l - f i - l 
x i +l - x i - l 

( 3) 

where i corresponds to ~ , 0 < i < I. In the usual manner, 
the truncation error is written, 

193 

_\) I \ 



" 

"'" 

(4) 

When f is sufficiently smooth, E is least when x~~ = O. However, 
when f is given, for example, 

. -1 
f ; (1 + exp(x/o» (5 ) 

for which dnf/dxn = O(o-n) is not finite for 0 = 0, the error 
E is bounded only if (x~/o) < 1 in the interval -0 < x < O. 
An equally spaced mesh w~th xE sufficiently small satisfies this 
requirement, but one with x~ < 0 only when -0 <x < 0 , and 
larger everywhere else satisfies it with fewer mesh points. 
With w(x) given by, 

w (x) = I 1 df 
f dx (6 ) 

minimizing the integral in Eq. 1 causes the mesh spacing to 
approach that given by the equation, 

I j ~ I x~ = const. ( 7) 

as Ay increases. As a result, where w is largest the mesh 
spaclng is smallest, and vice versa. 

Numerical results for a singular perturbation problem in 
two dimensions are shown in the accompanying figures. A steady 
solution to the equation, 

I (8 ) 

is sought for small values of K with u given. Such solutions 
are obtained when the diffusion and convective transport are in 
balance everywhere, 

u = (9 ) 

When u is given by, 

u = (10) 
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~ the convective transport term is significantly different from 
zero in an annulus of width K with radius roo When w(r,8) is 
given by, 

w(r,8) = U'u (11) 

the zones of the computation mesh are made smaller where 1~1 
is largest as shown in Fig. 1. 

In Fig. 2, the error in the numerical solution of Eq. 8 
on the adaptive mesh as measured by the maximum norm, 

E = Max I~ - <6
1 

V¢> I max i,j-
(12) 

is compared with the error on a fixed rectilinear mesh. The 
accuracy obtained by adapting the mesh can be obtained, in 
most cases, only by a threefold refinement of the regular mesh 
in each coordinate direction. 

The adaptive mesh has been used in calculations of resistive 
magnetohydrodynamic flow in two dimensions with the weight 

U function, 

w = LV x BIB) 2 - -
The results indicate a significant increase in the maximum, 
representable magnetic Reynolds number. The adaptive mesh 
can be applied easily to other fluid flow problems with the 
appropriate choice of weight function. 

The use of the adaptive mesh in time dependent flow problems 
will be discussed, and results will be presented. 
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Figure 1.- An adaptive mesh with ro equal to 1/4 and 
K equal to 1/40 the mesh width. The cells are 
concentrated In the region of maximum gradient. 
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Figure 2.- Similar scaling of the maximum relative error 
with zone size obtained for both adaptive meshes (like 
the one shown in Fig. 1) and fixed meshes, but many 
fewer zones are required with an adaptive mesh. 




