
• 

'''N81-14703 
Generation of Orthogonal Boundary-Fitted 

Coordinate Systems 

Roderick M. Coleman 

Computation, Mathematics, and Logistics Department 
David W. Taylor Naval Ship Research and Development Center 

Bethesda, Maryland 20084 

ABSTRACT 

A method is presented for computing orthogonal boundary-fitted 
coordinate systems for geometries with coordinate distributions specified 
on all boundaries. The system which has found most extensive use in 
generating boundary-fitted grids is made up of the Poisson equations 

(1) 

The functions P and Q provide a means for controlling the spacing and 
density of grid lines in the coordinate system. Since all calculations are 
done in the computational plane, the dependent and independent variables in 
Equation (1) are interchanged, giving the usual transformed equations 

ax~~ - 2Bx~n + yx + J2(px~ + Qx ) 0 
nn n 

ayC;C; 2BY~n + YYnn + J2(py~ + Qy
n

) 0 

where 

Ct := x2 + y2 (3 x~xn + y~yn n n 

Y = x2 
~ 

+ y2 
f, 

J = x Y - x Y 
~ n n ~ 

The condition for orthogonality, i.e., ~ := constant lines 
n "" constant lines, is (3 = 0, 

which is equivalent to 

because 

-y Ix 
n n 

l/y I 
x n "" constant 

= -y I 
x ~:= constant 

As a generating system based entirely on 8, we consider 

B = B = 0 
~ n 

(2) 

perpendicular to 

(3) 

which can have an orthogonal solution only when B = 0 at the corners of the 
computational region. An iterative solution of the generating system given 
in Equation (3) is applied successfully to several geometries. While questions 
remain concerning the existence and uniqueness of orthogonal systems, the 
generating method presented here adds to the available, useful techniques for 
constructing these systems. 
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Figure I provides a comparison of two grids generated for a square 

region with nonuniform boundary coordinate spacing in both vertical and 

horizontal directions. The nonorthogonal mesh shown in Fig. 1a was 

generated using the Poisson system given by Equation (2) with P:: Q:: O. 

Equation (2) was replaced with central difference formulae and the resulting 

system was solved by successive overrelaxation (SOR). The orthogonal mesh 

shown in Fig. lb was obtained using Equation (3) as a generating system. 

Equation (3) was expanded and each derivative was replaced with the 

appropriate central difference formula. Again, the resulting system was 

solved by SOR iteration. 
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Two 21 x 21 girds generated for a simply-connected region with 

one convex boundary are shown in Figure 2. Fig. 2a shows a nonorthogonal 

coordinate system generated by Equation (2) with P = Q = 0 (a Laplace 

system); Fig. 2b shows a coordinate system generated by Equation (3). 

Note the orthogonality of the coordinate lines intersecting the curved 

upper boundary in Fig. 2 and the resultant bending of these lines in the 

interior. 
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Figure 3 shows a region similar to that of Fig. 2 with a concave 

rather than convex curved boundary. As before, Fig. 3a shows a Laplace­

generated grid and Fig. 3b shows a S-generated grid obtained using 

Equation (3). The orthogonal mesh must have rather fine spacing near 

the concave upper boundary to accommodate the curvature. To verify that 

the fine mesh spacing in Fig. 3b is due to the geometry and not to a 

singularity in the transformation, we have refined the mesh as seen in 

the next figure. 
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Figure 3 
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Figure 4 compares two different grids, one coarse with 1681 points 

and the other fine with 6561 points, generated for the concave region. 

The fact that corresponding grid lines are in about the same position in 

both meshes confirms that the coarse discretization yields a good 

approximate solution to the exact problem. A further confirmation comes 

from consideration of the Jacobian at the midpoint of the upper boundary. 

The value of the Jacobian computed on the coarse mesh is nonzero and 

agrees very well with the value computed on the fine mesh. There is no 

indication of a zero Jacobian anywhere in the region. 
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To demonstrate some of the problems that can arise, we attempted 

to generate an orthogonal mesh on a region similar to the previous one 

but with greater curvature of the concave boundary. The grid shown in 

Fig. 5a was generated by a Laplace system and the unacceptable grid in 

Fig. 5b was generated by the system of Equation (3). To verify that a 

mesh with crossing lines can also be produced by a Poisson system, we 

computed directly the forcing functions P and Q using Equation (2) with 

x and y as given in Fig. 5b. We then solved Equation (2) iteratively for 

x and y using this P and Q, and regenerated the grid of Fig. 5b. 
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As the final example, we considered a doubly-connected region 

bounded by concentric circles as shown in Fig. 6. Since this region is 

symmetric with respect to any line passing through the center, each grid 

was generated for half the region and reflected in the line of symmetry. 

The symmetry line was treated as a boundary with fixed coordinate 

distribution, thus assuring that 8 ~ 0 at the corners of the computational 

region. The spacing on the outer boundary, but not on the inner boundary, 

was uniform. Had the spacing on both boundaries been uniform, the grid 

produced by the Laplace generating system (Fig. 6a) would have been the 

usual polar coordinate system which is orthogonal. In Figs. 6a and 6b, the 

line of symmetry was taken as a horizontal line through the center of the 

figure. The mesh of 6a was used as an initial guess for the iterative 

procedure used to obtain the mesh of 6b. 
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Figure 6 
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In Fig. 7, we show a S-generated grid computed for the same doubly­

connected region used in the previous figure. As before, the mesh of 

Fig. 6a was used for the initial guess, but in this case the line of 

symmetry was taken as a vertical line through the center. Interestingly, 

the two orthogonal grids generated for the same physical region (Figs. 6b 

and 7) are quite dissimilar because different points were held constant 

after the same initial guess. 

Figure 7 
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