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Abstract
Finite difference solution of nonlinear partial differential

equations requircs discretizations and conseguently grid errors
are generated. These errors strongly affect stability and con-
vergence properties of differcence models. Previously such errors
were analyzed by lincarizirg the difference equations for solu-
tions. Tn this article properties of mappings of decadence [1,2]
were used to analyze nonlinear instabilities. Such an analysis
is directly affected by initial/boundéry conditions. An algorithm
has been developed, applied to nonlinear Burgers' equation [3,4]
and verified computationally. 1A preliminary test shows that

Navier—-Stokes' eguation may be trcated similarly.

*This work has been supported by Minna-James-Heineman-Stiftung
Foundation of West Germany and by Eastern Illinois University.
The work was primarily done at von Karman Institute for Fluid

Dynamics, Rhode-ST-Genese, Belgium.
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1. The Objective.

Let us consider a nonlinear partial differential eguation
du/at = L(u) (1.1)

where L is a one-dimensional Jdifferential operator in x. Let the
domain of integration be [a,b] X [0,«). Equation (1l.1) is subject
to certain initial/koundary conditions and it is assumed that the
problem is mathematically well-posed,

An explicit finite cdifference analog of (1.1) is

u" = F(u"Y (1.2)
vhere, vt = (U? Ug . U?)T £ Dc RI, (RI = the real I-dimensicnal
space) , UQ = U(xi,tn) = the net function corresponding to u? which
is the true value of u at (xi,tn).

An implicit finite difference analog of (l.l) is:
n -1
G(U') = U . (1.3)

Also, F: D ¢ rY + D and so is G. It is assumed that the trunca-
tion errors are small and their effects are negligible.

Grid error is defined by

e" = u® - un, (1.4)
Il
|

Stability is guaranteed iff V n,fe" || < K, where K is positive and

arbitrarily chosen,

In this article an attempt will be made to see how one can

3

obtain, ¥ e & r?!

lim [e"f = 0 (1.5)
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for given Ax (mesh size) and At (time step).

Obviously (l.5) guarantees stakility. It also implies con-

vergence for steady state solution.

2. Mathematical Preliminaries.

Let, ¥ n, 2" & RI, and

2" = A "7} (2.1)
= Clearly, lim 2% = ¢ iff

= n-+o

A, = Q. (2.2)

lim A A . ... A

now
Now (2.2) is true if there exists a particular norm such that
¥n >N

fla ll <o <1, (2.3)
(These are discussed in details in [2].) Under these conditions
{2.1) is said to describe a motion of decadence and An is called

a D-matrix.

If instead of (2.1) the motion is given by
A 2" = 2”71 (2.4)

it is a motion of decadance iff A;l is a D-matrix which is true
if
(27 s o <1 : (2.5)
n
for some particuler norm and ¥ n > X,

It may be proved:

Theorem: 1 If Al is a lower triangular matrix and
p(An) < a < 1, An is a D-matrix. (p(An) = Spectral Radius of An.)
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Theorem: 2 If Al is a tridiagonal matrix and (i) for 1 # j,
n n . n _ n n n n
]aij] < ]aiil and (ii) !aii (ai,i-l ai—l,i/ai—l,i—l)l > 1, ialll >1,

A;l is a D-matrix. The same is true if A, is a bidiagonal matrix

with nonnull elements on the main diagonal.

3. Analysis of Discretization Errors.

Let us consider (l1.2). Let

F(un-l) - F(Un~l) - Anen-l. (3.1)
Cbviously, if a”, is an element of A , a", = a?_(un,Un). Then
ij n 1] 13

the grid error equatiocn for (1.2) is:
e = a e 1, (3.2)

Hence, {(1.5) is true if An is a D-matrix.

If we express,

G(u") - 6(u") =a_e" (3.2)

then for (1.3), the equation (1.5) is true if A;1 is a D-matrix.

It may be seen that the effects of truncation error are total-
ly neglected in this discussion., Such effects were discussed in
[21.

Thus, for an explicit finite difference egquation, grid error
effects are damped out if An in (2.2) is a D-matrix; and for an
implicit finite difference equation, the same is true if An in

(3.3) is such that A;l exists and is a D-matrix.

4. Algorithm for Stability Analysis,

It is well known that for any sguare matrix An(I X 1)
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max |al,
1

< < T-m n
e sEslia b 1-max fal, | (4.1)

ij
for certain natural norms. Thus, for an explicit equation like

{(1.2), (1.5) is true if

I-max |af.] < o < 1. (4.2)

i3 i3
If in case An is a lower triangular matrix, Theorem: 1 may be
applied.
For an inplicit eqguation of the form (1.3), if A is a2 tridi-
agonal matrix, grid error effects may be studied by using Theorem:

2. A deneral analysis for An (or A;]) to be a D-matrix may be

found in [5].

5. Application.

Let us consider the inviscid Purgers' equation:

u + (/2w = o0, (5.1)

Let the initial conditions be:

u(x,0) = V1 if x < i (5.2)
= V2 if » > X4
v, >V

1 2

Let u, be approximated by a two-point forward difference for-
mula and (uz)x be approximated by & two-point backward difference

forrmula. Then the difference approximation of (5.1) is:

n+l n 2 1Dy 2 n n
= - 4
uy a(ui_l) a(ui) f uy T

If u? is replaced by U: and r? (the truncation error) is dropped,
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. n n n
- = - t:
then using e, uy Ui' wve ge
n+l n n n n n n
= + - + .3
e, ax(ui_1 + Ui—l)ei-l {1 a(ui Ui)}ei (5.3)
(5.4)

where a = At/ (24%).
The linearized stability analysis requires:

a(2v)) <1
This inequality implies restriction on time
(5.5)

where Vv, = max [ul].
i,n 1

st < Ax/Vl.

step given by:
(5.6)

In the present analysis (5.3) may be expressed as:
n

en-il___Ae
n
i,i-1

where An is a bidiagonal matrix having diagonal elements a?,

1 - a(ug + UE) and elements below the main diagonal as a”

N U?+1). Then by Theorem: 1, A is a D-matrix if
$ a <1, ¥ n > N. (5.7)
At = Ax = 0.1

aluy g
0-0,

mex |al . |
- 11

1

= 1.3, V2 =

I1f one chooses arbitrarily Vl
x4), the linearized stability criterion (5.5) is violated,
Computationally, instabilities were
1l seem to be quite cor-

(and X4
although (5.7) is satisfied.
not found and the results given by fig.
Stability analysis of other explicit finite difference analogs

rect,
may be treated similarly or by using the inequality (4.1).
are approximated by two point backward

- 3 2
If both u, and (u )X
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difference formulas, we get an implicit finite difference analog of
{(5.1) and dropping the truncation error, the grid error equaticn

becomes:

n n n n n n _ _n-1
a(ui_1 + U eyt {l+alu +00))e = e, . (5.8)

Bere, A is a diagonal dominant lower triangular matrix and
i‘ >1 ¥ n >N, Eence, the nurerical scheme is unconditionally
stable by Theorem: 2.

Let (5.1) be expressed as:

u, + uu_ = 0. (5.9)

I1f U is approximated by a two-point backward difference formula
and u, is approximated by a central difference formula, the error

equation becomes:

+ {1+ atl - ul )tel + avle] | - e . (5.10)

n_n
avje;. +1 i-1 +1 i

1

Here, A is a tridiagonal matrix and considering the initial condi-
tions (5.2), ]a?il:§ 1. Hence, Theorem: 2 cannot be applied. Thus,
stability criterion is not satisfied. (Linearized stability cri-
terion is, however, unconditionally satisfied.) Actual computa-
tiong showed instabilities. Now if we change the initial boundary
conditions as: u{x,0}) = x, u{o,t) = 0, u(l,t) = 1/(1 + t),

u o, U, ¥ i and la?i{ > 1 with diagonal dominance, the im-
plicit scheme should now be unconditionally stable. Zziebarth (6]

verified it computationally.

6. A Remark on Navier-Stokes' Fquation.

Let us consider Navier-Stokes' equation in the vorticity-streaw
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function form as:

Tyt Lby = T b, = VTR (6.1)

vy = —¢ (6.2)

vhere ¢ = vorticity and ¢y = stream function. This coupled system
is subject to some specified initial-bkoundary conditions. If we
analyzc the grid errors for implicit schemes we get two equaticns

of the form

s e + o £ = " (6.3)
Anfn = e" (6.4)
where e = grid error for r and f" = grid error for ¢ [7]. These

equaticns may be expressed as
A e = e"t, (6.5)

It appears that if sharp discontinuities are present neither in the
flow field nor on the boundary, conc¢itions of Theorem: 2 will be

satisfied. Therefore, the implicit scheme will be stable.

7. Conclusion,
If the sequence of matrices {An} ke such that ¥ n,
UAnE a < 1, [e™]] will form a monotone decreasing sequence, where-

as if ¥ n > N, ﬂAnﬂ < a < 1, [|e”]] may show some oscillations before

1A

it is camped out. In both cases, however, as n » = |le®|] » 0.

N
For the linearized grid error analysis, A, = A ¥ n ancd if A is
a convergent matrix stability is obtained. Thus, linearized grid-

error theory is a particular case of the analysis presented here.
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Since elements of A are functions of u"” and U", initial-
boundary conditions affect the properties of A .

In oréder to check that An (ox Agl) is a D-matriy, some infor-
mation regarding the rnature of the solution must be known a priori.

This may be done mathematically or experimentally or both.
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1.4
= ® 838 8 o g
1.2 =
Ax = At = 0.1
1.0k
Shock speed =
(Vl + V2)/2
0.8 P~
O
0.6 L = Initial solution
O solution at 0.4s
0.4 A Solution at 0.8s
O Solution at 1.2s
A
0.2 =
4 —0—6-—66—=x
0.0 0.2 0.4 0.6 0.8 1.0

Figure 1.~ Explicit finite difference solution of equation (5.1).
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