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FAST GENERATION OF BODY CONFORMING GRIDS FOR 3-D 

AXIAL TURBOMACHINERY FLOI.J· CALCULATIONS 

Djordje S. Dulikravich* 
NASA Lewis Research Center 

A fast algorithm has been developed for accurately generating boundary 
conforming, three-dimensional, consecutively refined, computational grids 
applicable to arbitrary axial turbomachinery geometry. The method is based 
on using a single analytic function to generate two-dimensional grids on a 
number of coaxial axisymmetric surfaces positioned between the hub and the 
shroud. These grids are of the "O"-type and are characterized by quasi­
orthogonality, geometric periodicity, and an adequate resolution throughout 
the flowfield. Due to the built-in additional nonorthogonal coordinate 
stretching and shearing, the grid lines leaving the trailing edge of the 
blade end at downstream infinity, thus simplifying the numerical treatment 
of the three-dimensional trailing vortex sheet. 
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The main objective of this work is to develop a fast algorithm for gen- '--
erating body-conforming three-dimensional computational grids. An equally 
important objective is to preserve the high accuracy of the discretized re­
presentation of the solid boundaries. When analyzing steady flows thrcugh 
turbomachinery rotors and stators, it is sufficient to consider a single 
rotationally periodic segment of the flowfield. This segment is a doubly 
infinite strip stretching in the direction of the axis of rotation. The 
strip has a constant angular width of 2TI/B where B is the total number 
of blades. Each blade has an arbitrary spanwise distribution of taper, 
sweep, dihedral and twist angle. The local airfoil shapes can vary in an 
arbitrary fashion along the blade span. The rotor hub and the duct (or 
shroud) can have different arbitrary axisytmnetric shapes. 

Such an arbitrary three-dimensional physical domain (Fig. 1) is first 
discretized in the spanwise direction by a number of coaxial axisymmetric 
surfaces which are irregularly spaced between hub and shroud. 
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The major problem in generating the spanwise surfaces is an accurate 
determination of the intersection contours between the irregular blade sur­
face and the coaxial axisymmetric surfaces cutting the blade. The coordi­
nates of the points on these contours are defined by fitting cubic splines 
along the blade and interpolating at the radial stations corresponding to 
each axisymmetric surface r = Constant. 
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The two-dimensional grid should have the following features: (a) grid ~ 
cells should conform with the contour shape and the shape of the periodic 
boundaries ab and cd, (b) grid should be geometrically periodic in the 
e'-direction meaning that the grid Ioints along the periodic boundary ab 
must have the sal~e respective x'-coordinates as the grid points along the 
periodic boundary cd, (c) grid lines should not be excessively non-
orthogonal in the vicinity of solid boundaries, (d) a grid line emanating 
from the trailing edge should end at downsteam infinity and (e) grid cells 
should be concentrated in the regions of high flow gradients. 
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~j Once the shape of the intersection contour on a particular cutting 
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axisymmetric surface is known, the problem becomes one of discretizing a 
doubly connected two-dimensional domain ~ = x + ie. 
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A grid with these properties can be most easily generated with the use "-
of a single analytic function. One such function is 

where 
a unit 
'" z ::: ±m 
length 

"V is (m - ~) -is (1 - m~) w ::: e In ---", + e In '" ; 0 < m < 1 
m + z 1 + mz 

"V 
w = X + is and z::: ~ + in. This complex function maps conformally 
circle with a slit in the middle whose end-points are situated at 
onto the cascade of straight slits in the ~-plane. Each slit has a 
is where 

is ::: 4(COS S sinh-1 Zm coszS + sin S sin- l Zm sinzs) 
1 - m I + m 

The slits are spaced 2TI cos S distance apart, where S is the stagger 
angle of the cascade of slits. 
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I.J The unit circle is "unwrapped" using elliptic polar coordinates (refs. 1 
and 2) resulting in a deformed rhomboidal shape which is then sheared in the 
horizontal and vertical direction (ref. 2) resulting in a rectangular (X,Y) 
computational domain. 
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The transformation of an actual cascade of airfoils will result in a 
cascade of unit circles which are even more deformed. Consequently, more 
nonorthogonality will be introduced in the transformation by additional 
shearing of coordinates. A uniform grid in the (X,Y) plane which is symmet­
rically spaced with respect to the Y-axis, remaps back into the physical 
(x,e) plane as an "Oil-type boundary conforming grid. The actual radial 
coordinates are obtained by fitting cubic splines along the elliptic mesh 
lines and interpolating at a number of axial stations at which the radius of 
the corresponding axisymmetric surface is known. 
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~ The present method is equally applicable to the blades with blunt (or 
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rounded), wedge and cusp trailing and/or leading edge. 
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A disadvantage of the present method is that it is not applicable for 
the very thick, highly stagered blades which are very closely spaced. This 
problem can be resolved by using a different form of the mapping function; 
for example, one which maps a cascade of circles into a cascade of circular 
arcs instead of a cascade of straight slots. 
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A sample run shows that it takes 7.3 seconds of CPU time on an IBM 3033 
~. to generate (x, y, z) coordinates of two 3-D grids and to write them on two 

separate disks. The first (coarse) grid consisted of 27x9x9 points and the 
second (refined) grid has 51x15x17 points. 
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