
ABSTRACT 
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Manton Lane 

Bedford, England 

In the past decade significant advances have been made uSlng flow field 

methods in the calculation of external transonic flows over aerodynamic 

contiguratiuns. It is now possible to calculate inviscid transonic flow 

over three-dimensional configurations by solving the potential equation. 

H,)'.olever, with the exception of the Transonic Small Disturbance methods 

whirh have the advantage ()f a simple cartesian grid, the configurations 

over which it is possible to calculate such flows are relatively simple 

(eg wing plus fuselage). The major reason for this is the difficulty of 

producing compatibility between grid generation and flow equation solutions. 

The main programs in use, eg Jameson in US and Forsey in UK, use essentially 

analytic transformations for prescribed configurations and, as such, are not 

easy to extend. Whilst there is work in progress to extend this type of 

system to a limited extent, our longer term effort is directed towards a 

more genera] approach. This approach should not be restricted to producing 

grid systems in isolation but rather a consideration of the overall problem 

of flow field solution. 

This paper describes one approach to this problem. 

*This work has been carried out with the support of Procurement Executive, 
Ministry of Defence. 
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GRID GENERATION 

GENERAL APPROACH 

1. Grid generation, or equivalent, vital to solution of general 
flow field problems. 

2. It is not obvious which technique to use. 

3. Various methods being explored 

a) Non-aligned grid 

b) Aligned grid with global solution for 
grid with control function 

C) Aligned grid with local grids 
patched together 

Catherall R.A.E 

Roberts British 
Aerospace 

Forsey A.R.A 

FIGURE 1 GENERAL APPROACH TO GRID GENERATION 
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'J 1. GENERAL APPMA~H TO GRID GENERATIO~ 

Accepting the requirement to solve a set of discretised partial differential 

equations on the nodes of a suitable grid, then some method of grid generation 

is vital. Since ~here are a number of ways in which one can tackle this 

problem and, at the moment, no one technique appears sufficiently superior to 

others, it would appear judicious to attempt more than one approach. Therefore, 

a progranl of work is being undertaken in various UK establishments to investigate 

suitable techniques and the method described in this paper is part of this 

overall project. 

Probably the first question one poses when considering the requirement of a 

computing grid is whether or not to align the grid with the surface. Catherall 

at RAE is investigating the non-aligned grid concept. The grid, being cartesian, 

can be generated in a straight forward manner with the major problems being the 

complicated application of boundary conditions and the general 'housekeeping' 

for complex configurations. However, extra components can be added fairly 

easily and it should be versatile. 

If an aligned grid is considered mandatory then the application of boundary 

conditions becomes much simpler and grid generation becomes a major problem. 

Roberts at British Aerospace is attempting to produce a method of grid generation 

for general three-dimensional configurations by producing a global solution of a 

set of partial di.fferential equations. The introduction of mapping singularities 

is used to control the distribution of grid points using discretisation based on 

t r j q \l ill r 1(: 5 pI iDe s . 

The work described here investigates a method some way between these two 

techniques. The requirement for an aligned grid system is accepted but with 

the flow field divided into segments, each segment with its own rather straight 

forward grid system. The surface boundary conditions are easy to apply but 

the main problem is one of solving the flow equations through the boundaries 

where the segments are patched together. This approach will now be described 

in more detail. 
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FIGURE 2 BASIC ISOPARAMETRIC MAPPING 
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2. BASIC ISOPARAMETRIC MAPPING 

The patching technique consists of splitting up regions of interest into a 

series of quadrilateral segments which are patched together across common 

boundaries. For the grids in each segment any convenient method of grid 

generation may be used. However, as it is necessary to match the grids 

across common boundaries and to maintain some control over the grid spacing 

in these regions, which is most conveniently done using interactive graphics, 

a grid generation technique combining simplicity with minimal computer 

requirements is needed. 

One such method, which has been used extensively in finite element work, is 

the isoparametric or blending function method. This method consists of 

defining the x and y coordinates of points within a quadrilateral as 

parametric functions (f) of two parameters (s,t) where s = 0,1 and t = 0,1 

define the sides of the quadrilateral in parametric space. If the values of 

f are defined along s = 0,1 and t = 0, I (ie the point distributions along 

~ the sides are prescribed) then the blending function f defines internal points 

as a smooth blending between these boundary values. Taking equal intervals 

in sand t then defines the grid lines within the quadrilateral. 

The values of f along s = 0,1 and t = 0,1 are defined by cubic spline curve 

fits of f vs·s or t where sand t are taken as the arc lengths along the 

appropriate sides. 

The blending function used in the present patching method is the lowest order 

blending function which is a bilinear blending. However, higher order blendings 

(eg cubics) could be used \';1 th very little increase in computing time and the 

extra degrees of freedom then used to define the shape of some of the internal 

grid lines or the slope of the grid lines at the boundaries. 
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......... 3. STRETCHED ISOPARAMETRIC MAPPING 
----------------~------------~----~ 

The basic isoparametric mapp~ng produces grids which vary smoothly between 

opposing sides of the quadrilateral. However, for equally spaced intervals 

in parametric (s,t) space the corresponding grid lines in physical (x,y) 

space, although curvilinear, are still equally spaced. It is convenient to 

have the facility for packing grid lines near specific quadrilateral boundaries 

or near the middle of the quadrilaterals. 

Hence, preliminary stretching transformations are applied to the sand t 

coordinates. One simple stretching which gives considerable user control 1S 

to make sand t cubic functions of some other parameters sand t. Taking 

equal intervals in sand t then results in unequally spaced intervals in sand t. 

By appropriate choice of the derivatives ds/ds and dt/dt at each end of the cubic 

it 1S possible to pack points towards either end (one value of ds/ds < 1, the 

other value> 1), towards the middle (both values of ds/ds > 1), or towards both 

ends (both values of ds/ds < 1). 

For all cases except the last a single cubic appears adequate. In the last case, 

however, attempting to pack points towards both ends usually results in a grid 

which has very fine spacing near both ends but which then suddenly jumps to much 

wider spacing near the middle. This seems to be due to an inability to control 

the slope of the cubic near the middle where the slope remains much the same 

regardless of the slopes imposed at each end. One solution which we are currently 

using for this case is to replace the single cubic by a cubic spline curve through 

4 points. The slopes are still specified at the end pair of points and the middle 

pair of points are chosen to control the slope of the curve near the middle. 

In practice, the stretching parameters (ie ds/ds and dt/dt at each end plus the 

two midclle points for the. cubi~ spline stretching) are chosen interactively by 

the user with the aid of interactive graphics. 

In order to increase flexibility still further different values of the stretching 

parameters can be specified on opposing sides of the quadrilateral and a linear 

v2riation be~ween these values is used for all internal grid lines between these 

two sides. 
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(1,1) patch: s=1 segment A patched to s=O segment B 

t 

s 

x 
(1,2)patch: s=1 segment A patched to t=O segment B 
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Intake patching schematic 

FlGURE 4 PATCHING SCHEMATIC 
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0...-/ 4. PATCHING SCHEMATIC ------------------------

Individual segments, each with their own local isoparametric grids are 

joined (or 'patched') along common boundaries un'til the whole region of 

interest has been covered. Grid lines in two adjoining segments must meet 

on their common boundary which implies that the same number of points and 

the same stretching functions are used on both sides of this boundary. 

However, the grid lines may change direction through this boundary, i.e. they 

need not be smooth. Instead, special boundary conditions are applied on 

patched boundaries to ensure flow continuity. Sides of segments corresponding 

to solid surfaces or free~ stream conditions alSo have appropriate boundary 

conditions applied. 

-Si- _-", " 

Since maximum flexibility is required wlle'ri'~~hcoosing the way the region of 
y ~_:"~~H'~";""··· ~,_.. _ 

interest is split up into segments, 1t 1S necessary to allow any side of 
~,-'.' ~i'-':'-· '"_''' ",,"-,_-,", .'- ---.-

one segment to patch to any side of a'n~"acrjoTrling· segment. Two typical patches, 

designated (1,1) patches and (1,2) patches are illustrated and there are 

~ several others. In principle, different types of patch should not significantly 

increase the difficulty of applying the appropriate patch boundary conditions. 

However, in practice they considerably increase the general program housekeeping 
-

needed and in the current program not all types of patches have been allowed 

for as yet. 

At present the way the region is divided into segments is controlled by user 

input although eventually it is hoped to (at least partially) automate this 

process. Initially, all solid surfaces1eg aerofoil surfaces etc) are defined 

accurately and then the user defines the segment boundaries, some of which are 

parts of solid surfaces and some separate hand drawn curves. A schematic 

showing a typical setting up procedure for an inlet with central bullet is 

shown. The orientations of each s'egm*~yc-and·~the type of each patch are 

indicated on the schematic. 

-'-:-·F~;:~~-
~"'$~~-~-- -
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Basic unstretched grid 

final stretched grid 

fIGURE 5 EXAMPLE Of GRID- INTAKE 
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5. EXAMPLE OF GRID - INTAKE 

~len the region has been divided into segments to the user's satisfaction, 

the next step is to define the number of points in the sand t directions 

and the corresponding unstretched grids in each segment. This g1ves a 

general idea of what the final overall grid will be like. An example is 

given at the top of Fig 5 for the intake with central bullet. 

Various stretchings are then applied to tne- s"and t coordinates in each 

segment to remove sudden changes in the width of grid intervals (particularly 

across patched boundaries) and to pack grid lines in regions where the flow 

is expected to vary rapidly. The stretching parameters are modified, and the 

resulting grids displayed, interactively using a graphics terminal. The 

final overall grid is shown at the bottom of Fig 5. Approximately two days 

work was required to produce this grid from scratch and only a small amount 

of computer time was required on a modest Prime 400 computer linked to a 

Tektronix 4051 graphics terminal. 

A few comments regarding the choice of segments for this example may be useful. 

Because of the nature of the blending functions used, the easiest way to ensure 

that grid lines are approximately normal to solid surfaces is to choose the 

shape of the patch boundaries which join such surfaces to be nearly normal to 

the surfaces concerned as has been done in segments A and F. Furthermore, in 

order to accurately model the cowl surface boundary condition and the channel 

flow between the cowl and the bullet, a fine inner grid is patched to a sparse 

outer grid but stretchings are used to ensure that a sudden change in grid 

spacing does not occur at the patch boundaries. 

It will be noticed that at one point five patch boundaries (ie grid lines) meet 

rather than the usual four. We feel that this should give no particular problems 

especially if the point is in a region where there are no flow singularities. 

(There is some e'lidence that putting such a point at a stagnation point of the 

flow can lead to difficulties). 
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grid type 1 

grid type 2 

fIGURE 6 EXAMPLE OF GRID - CASCADE 
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6. EXAMPLE OF GRID - CASCADE 

The region of interest may be divided into segments, under user control. in 

any number of ways and Fig 6 illustrates two different grids for a typical 

cascade flow problem. The generating segments are marked on each grid. In 

the two cases different numbers of segments are used with individual segments 

having quite different shapes. Although there is no restriction, in principle, 

on the number of segments which may be used, there is some evidence that, at 

the current stage of development, the convergence rate for the solution of the 

flow equation decreases with increasing numbers of segments. 

The top grid shows the first attempt at a cascade grid. In this attempt the 

main criterion in choosing the segment p was to produce a fine grid spacing 

around the leading edges of the two aerofoils, a region where many previous 

cascade grids have been deficient. Again, notice that at one point five patch 

boundaries (ie grid lines) meet rather than the more usual four. 

~ However, after producing this grid it was realised that it would be impossible 

to use periodic boundary conditions across the two lines upstream of the leading 

edges of the two aerofoils without some form of interpolation. This was because 

the upper and lower lines are formed by different combinations of segmerlt 

boundaries and hence have different numbers of points and different point 

spacings. The same argument applies to the two lines downstream of the trailing 

edge of the two aerofoils. Since neither pair of lines is intended to represent 

actual streamlines, periodic boundary conditions are the only correct boundary 

conditions which may be applied across these lines. Hence, the lower grid was 

produced to try and overcome this restriction without significantly compromising 

the other advantages of the first grid. 

This perhaps illustrates the interactions between grid generation methods and 

flow calculation methods as the two cannot really be studied independently. 
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GENERAL TENSOR FORM OF THE FULL POTENTIAL EQUATION '-

ri = coordinates in transform space (r1 = r , r2 =s, r3= t ) 

C> = pE'rturbation velocity potential ( ~ = ~+x ) 
c2 =-.L + (Y-l) (1-q2) = square of local speed of sound 

Met 2 

g .. = determinant (9ij ) 
glJ= cofactor (9ij ) Ideterminant (gij ) 

g .. = axk . axl< = metric tensor 
IJ ari arr 

xk= cartesian coordinates in phySical space(x1=x,x2=y,x3=z) 

vi = gijVj = contravariant velocity 

vi = .!.t = covariant velOcity 
arl 

q2 = ViVj = total velocity 

BOUNDARY CONDITIONS 

1. Free stream boundary condition 

a) Vi = free stream velocity in i direction 
or 

b) ~ = 0 
2. Solid surface boundary condition 

vi = 0 

3. Patch boundary condition 

fIGURE 7 FLOW EQUATION 



7. FLOW EQUATION 

At all interior grid points of each segment the flow is calculated by solving 

a finite difference approximation to the compressible potential equation. 

Appropriate boundary conditions, described later, are applied on the four 

sides of each segment. We find it particularly convenient to work with the 

general tensor form of the potential equation and its boundary conditions. 

This is because this form eliminates dependence on the precise nature of the 

local grid transformations used and because the same equations encompass both 

two dimensions and three dimensions. Hence, methods developed in tensor form 

are equally applicable to two and three dimensions. 

In Fig 7 the tensor form of the potential equation is shown in terms of a 

perturbation potential ¢. It is written in so called rotated form (ie with 

the principle part split up into streamwise and streamnormal components). The 

underlined term is the streamwise component of the principle part and it is 

this term which 1S backward differenced in supersonic regions. The metric 

tensor gij represents a transformation between physical space with coordinates 

xi = w,y,z and some arbitrary space with coordinates r1 = r,s,t. 

This potential equation may be solved by any convenient numerical method. At 

present we solve it in nonconservative form using a line overrelaxation method. 

However, it is planned to implement an approximate factorisation scheme in 

order to improve the convergence rate in the near future. 

Three ma1n types of boundary conditions can be applied on the sides of each 

segment. The firs[ two types: solid surface conditions (ie zero normal flow 

through the surface) and free stream conditions (ie zero perturbation velocity 

or zero peIturbation potential) are the same as used with non-patched gIids. 

These are applied in a standard way using dummy rows of grid points outside 

of the relevant boundaries and no further description will be given. The 

third type: patch boundary conditions are the heart of the patching method 

and will be described in detail. 
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(a) 20 flow equation in non-rotated form with 

r' = S, r2 = t '-
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8. SUBSONIC PATCH BOUNDARY CONDITIONS - DIFFERENTIAL FORM 

Fundamental to the satisfactory use of patched grids ~s the treatment of 

patch boundary conditions (ie the conditions applied along the common 

boundary of adjacent segments). Since such boundarie~ do not represent 

real flow boundaries but simply boundaries between different local grids, 

the flow equation is still satisfied on these boundaries and in addition 

the flow velocity along and across such boundaries is continuous. These 

conditions are sufficient to patch the flow calculations in adjacent segments 

together to produce the overall flow solution. The technique is somewhat 

easier to apply when the flow is subsonic at the boundary points and this 

case will be described first. 

Fig 8 shows two adjacent segments A and B where for clarity the two segments 

are drawn as though separated although they are actually joined along the 

common boundary. Also shown surrounding each segment is a row of dummy 

points. These points do not actually exist but are convenient for the 

development of the patch boundary conditions. 

Taking a typical point on the common boundary the usual five point finite 

difference s tar is shown for each segment. Points 1,2,3 are common to both 

segments being,on the common boundary. Points 4,7 are internal to segments 

A and B respectively while points 5,6 represent dummy points. The flow 

equation is solved at all internal grid points of segments A and B using ~ 

on the common boundary from the previous iteration. Hence, updated values 

of ~4 and ~7 are available and it is required to calculate updated values of 

~ on the common boundary, ie ¢l. ~2' ~3' 
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(1) Finite difference approximation to flow equation at 
point 2 in segment A 

(2) finite difference approximation to flow equation at 
point 2 in segment B 

(3) Continuity of normal velocity at point 2 
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c, (~5 - ~4) + C2(~'-~3)+c3 = d1(~7 - '6)+ d2(<!>'-'3)+d3 

fIGURE 9 SUBSONIC PATCH BOUNDARY CONDITION S 
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~. 9. SUBSONIC PATCH BOU~ARY CONDITIONS - DIFFERENCE FO~~ 
----~~------~~~--~---~~~~--~~~--~~----~~~~ 

This is done by writing finite difference approximations to the flow equation 

at point 2 separately for segments A and B using second order central 

differences which gives two equations and five unknowns (¢j, ¢2, ¢3, ¢S, ¢6)' 

A third equation with the same unknowns can be obtained using a finite 

difference approximation to the condition that the velocity normal to the 

common boundary is continuous across the boundary. Again second order 

central differences are used to approximate the velocities. (Continuity of 

velocity along the boundary is implicit in deriving the above equations). By 

combining these three equations the dummy values ¢S, ¢6 can be eliminated leaving 

one equation with three unknowns ¢j, ¢2, ¢3' Applying the same technique at all 

points along the connnon boundary produces a tridiagonal system of equations 

whic~ may be solved for ¢l, ¢2' ¢3 etc using the standard algorithm. 
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(a) 2D flow equation in rotated form with r =5, r2:t 

(c2_q2)ylJ$ss +(c2 _q2)y2v2<1>tt + c2(q2g11_y'y')4>ss +c2(q2g22 _y2y2)qtt '-

= cross derivatives + low order terms 

(b) Continuity of normal velocity across common boundary 

FIGURE 10 SUPERSONIC PATCH BOUNDARY CONDiTIONS 
-DIFFERENTIAL fORM 
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~ 10. SUBSONIC PATCH BOUNDARY CONDITIONS - DIFFERENTIAL FORM 

When the flow at some points on a patch boundary is supersonic there is a 

further problem in applying the patch boundary conditions. This is due to 

the backward d~ifferences used to approximate some of the flow equation 

derivatives at supersonic points. Fig 10 again shows a pair of segments 

A and B patched along a common boundary. In this case, however, there are 

two rows of dummy points around each segment to allow for bac~ward 

differencing and the difference stars have nine rather than five points. 

For any specific case only seven of the nine points are actually used, 

which seven depending on the local flow direction. If we assume that the 

local flow is from bottom left to top right then in segment A points 1,2,3, 

4,S,9,10 are used while points 1,2,3,6,7,9,12 are used in segment B: 

Comparing with the subsonic case there are now three points (4,7,10) for 

which updated values of ¢ are available from the solution of the flow 

equation at internal grid points and three dummy points (5,6,12) to be 

elimina ted. 
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(1) FInite difference approximation to flow equation at point 
2 in segment A 

a'(~2 -2~4 +'10)+ a2('2- 2'3+~9)+a3(~5-2~2 +~4)+a4(~,-2~2+~3)= as 

(2) Finite difference approximation to flow equation at point 
2 in segment B 

b'(~2-2'S+"2)+ b2('2-2'3+~9) + b3(~7 -2~2 +~s)+ bi~1-2'2 +~3)= bS 

(3) Continuity of normal velocity at point 2 (central 
differenced) 

c'(~5 - ~4) +c2(CI>,-4>3)'" c3 = d'(~7 - 'S) + d2("-'3)+ d3 

(4) Continuity of normal velocity at point 2 (backward 
differenced) 

e,(3'2 -4'4 + "0) + e2(3~2 -4'3'" ~g) + e3 = 

fl(3~2-4~S+~12)"'f2{3~2 -4'3 + 'g) + f3 

fIGURE 11 SUPERSONIC PATCH BOUNDARY CONDITIONS 
-DIfFERENCE fURM 



II, SUPERSONIC PATCH BOUNDARY CONDITIONS - DIFFERENCE FORM 

Thus four equations are required to eliminate the dummy points for the 

supersonic case rather than three. The first three equations are 

essentially the same as for the subsonic case except that appropriate 

second derivatives in the two approximations to the flow equation are 

now backward differenced rather than centrally differenced. After some 

experimentation we find the best equation to use for the fourth equation 

is another finite difference approximation to the continuity of normal 

velocity condition but this time approximating the velocities by second 

order backward differences in the usual upstream sense. This ensures that 

the value of ~ at the extra dummy point (point 12 in this case) is not 

jnfluenced by downstream values of ~ which would violate the domain of 

dependence conditions. 

When ~5, ~6 and ¢12 have been eliminated from these four equations a 

single equation with four unknowns (¢!, ¢2, $3' ~9) is left. Applying 

the same technique at each point along the common boundary leads to a 

quadradiagonal system of equations which may be solved for ~I' ¢2, ¢3, ¢9 

etc. In practice, we reduce this set to a tridiagonal system, which is 

easier to solve, by fixing ¢9 at its value from the previous iteration: 

Experience so far suggests that supersonic points on a patch boundary are 

more likely to lead to instability than are subsonic points. However, with 

some care it has been possible to satisfactorily compute cases with all 

subsonic, all supersonic and with mixed boundary points including one case 

where a strong shock crossed the boundary. 
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GRID SYSTEM 

SEGMENT 1 SEGMENT 2 SEGMENT 3 

FIGURE 12 CONDI NOZZLE 
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v 12. EXAMPLE CONDI NOZZLE GRID 

In order to demonstrate the use of the method, we considered the case of 

a duct flow. The configuration is that of a convergent-divergent nozzle 

produced by a cosine distortion on the upper surface of a two-dimensional 

duct with an area ratio of O.B. 

Clearly, it 1S possible to produce a single segment system to solve this 

problem but for the sake of demonstration we have divided it into three 

segments. The interfaces between the segments are denoted by the more 

pronounced lines and these patches are normal to both upper and lower 

surfaces. Note that, although the lines appear to have continuous 

derivatives through the segment boundaries, this is not the case. The 

grid points have been distributed in an appropriate manner with a much 

finer grid near the bump on the upper surface. For this example the grid 

extends to finite distances upstream and downstream and uniform onset flow 

is assumed at the upstream end. 
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FIGURE 13 CONOI NOZZ L E 
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13 .. EXAMPLE CONDI NOZZLE RESULTS 

In order to check the results, comparisons have been made with a well 

established nozzle program developed by Baker at ARA. The ca~e shown 

here is for an onset Mach numPer of 0.5. The inviscid flow solution, 

wh~ch is outside the range of validity of a potential method, is 

nevertheless an appropriate test case with a very strong shock. The 

agreement between the two methods is very encouraging and the patching 

does not appear to have affected the solution. However, possibly due to 

slow convergence, there was a small discontinuity across the patch but 

when the mean value is used, the result is reasonably smooth. The 

locations of the segment interfaces are shown on the figure. Although 

they are not shown here, changes in the position and number of patches 

did not affect the result significantly. 
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CONCLUSIONS AND PROPOSALS FOR FURTHER WORK 

1 Initial use of grid patching is encouraging 

2 The range of application has been' limited 

3 further cases are now being attempted 

e.g. aerofoil in wind tunnel 

cascade flows 

intake flows 

'-4 Modifica t ions required for unrestricted far field 

5 Extension to three dimensions 

FIGURE 14 
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14. CONCLUSIONS AND PROPOSALS FOR FURTHER WORK 

The grid patching technique has been investigated using two-dimensional 

test cases and initial results are encouraging. However, the range of 

application has, so far, been limited and cases with a greater number of 

segments are now being attempted. These include an aerofoil in a wind 

tunnel together with the two configurations shown earlier, cascade and 

intake flows. For the latter case some work is required in introducing 

extra transformations for an unrestricted far field. 

We should then be in a position to deal with most two-dimensional problems 

f and this should form the basis of extending the techniques into three 

dimensions. 
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