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ABSTRACT 

This presentation describes a three-dimensional body-fitted coordi­
nate system developed for use in the calculation of inviscid flows over 
ablated, asymmetric reentry vehicle nosetips. Because of the potential 
geometric asymmetries, no standard coordinate system (e.g., spherical, 
axisymmetric reference surface-normal) is capable of being closely aligned 
with the nosetip surface. To generate a 3-D, body-fitted coordinate 
system an analytic mapping procedure is applied that is conformal within 
each meridional plane of the nosetip; these transformations are then 
coupled circumferentially to yield a three-dimensional coordinate system. 
The mappings used are defined in terms of "hinge points", which are 
points selected to approximate the body contours in each meridional 
plane. The selection of appropriate hinge points has been automated to 
facilitate the use of the resulting nosetip flow field code. 
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PROBLEM DEFINITION 

The goal of this effort is the development of a procedure for cal­
culating supersonic/hypersonic inviscid flows over asymmetric ablated 
reentry vehicle nosetips. These asymmetric shapes, such as illustrated 
in this figure, result from asymmetric transition on the nosetip, which 
occurs at the lower altitudes during reentry (i.e., below 15.24 km). 
Because these shapes occur in the high Reynolds number, turbulent regime, 
with thin boundary layers, an inviscid solution ;s capable of accurately 
predicting the pressure forces on the nosetip. The nosetip flow field 
solution is also required to provide the required initial data for after­
body calculations; this coupling of nosetip and afterbody codes allows 
accurate prediction of the effects of the nosetip shape on the afterbody 
flow field. 

The flow field code developed is a finite-difference solution of 
the unsteady Euler equations in IInon-conservationll fonn (i.e., the de­
pendent variables are the logarithm of pressure, P, the velocity compo­
nents, U,V,W, and the entropy, s). In this approach the steady flow 
solution is sought as the asymptotic limit of an unsteady flow, starting 
from an assumed initial flow field. 
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CALCULATION OF SUPERSONIC/HYPERSONIC INVISOD FLOWS OVER ASYMMETRIC ABLATED 

REENTRY VEHICLE NOSETIPS 

ASYMMETRIC ABLATED NOSETlP SHAPE 

APPROACH 

• FINITE-DIFFERENCE SOLUTION OF UNSTEADY EULER EQUATIONS 

• STEADY flOW SOLUTION SOUGHT AS THE ASYMPTOTIC LIMIT OF 

UNSTEADY flOW 
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J COORDINATE SYSTEM REQUIREMENTS 

It is well known that accurate numerical calculation of fluid flows 
requires the use of a coordinate system closely aligned with the principal 
features of the flow. For the nosetip problem this requirement would be 
satisfied by a coordinate system which closely follows the body shape and, 
hence, the streamlines of the flow. Because of the asymmetric nosetip 
geometries being considered, standard coordinate systems (e.g., spherical, 
axisymmetric reference surface-normal) are incapable of being aligned with 
the nosetip surface at all points. Thus, a coordinate transformation is 
sought that will align the coordinate system with an arbitrary nosetip 
geometry. By requiring the transformation to be in analytic form, the 
need of solving partial differential equations to define the transformation 
can be avoided. Finally, the transformation should be in a form that 
readily lends itself to automated definition, minimizing the inputs re­
quired of a user of the code. 

OPTIMUM COORDINATE SYSTEM FOR NUMERICAL FLOW FIELD CALCULATIONS 

IS BODY-ORIENTED 

COORDINATE TRANSFORMATION SOUGHT THAT: 

1.) ALIGNS COORDINATE SURFACES WITH BODY 

SURFACE 

2.) IS ANALYTIC (SOLUTION OF POE'S NOT REQUIRED 

TO DEFINE TRANSFORMATION) 

3.) CAN BE READILY AUTOMATED (TO MINIMIZE INPUTS 

REQUIRED FROM USER) 
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COORDINATE TRANSFORMATION 

The nosetip geometry is defined in an (x,y,~) cylindrical coordinate 
system, and a mapping to a (~,n,e) transformed coordinate system is sought. 
Since current reentry vehicle nosetips are initially axisymmetric (prior 
to ablative shape change), it is assumed that nosetip cross-sections re­
tain some "axisyrranetric" character during reentry. Thus, no transforma­
tion of the circumferential coordinate is required, and e = ¢ is assigned. 
(This transformation can readily be generalized to e = f(¢) if required 
for other applications of this approach.) Within a ¢ = constant merid­
ional plane, the transformation reduces to the two-dimensional form 
~=~(x,y), n = n(x,y). Conformal transformations from the z = x+iy to 
the I'; = t:+in plane are desirable, ensuring that an orthogonal (~,n) grid 
maps back onto an orthogonal grid in the (x,y) p1ane. 
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(x,y,¢) CYLINDRICAL COORDINATES IN PHYSICAL SPACE 

(~,n,e) COORDINATES IN TRANSFORMED SPACE 

TRANSFORMATION OF CIRCUMFERENTIAL COORDINATE NOT REQUIRED 

(NOSETIPS INITIALLY AXISYMMETRIC); ASSUME TRANSFORMATION 

TAKES THE FORM 

~ =~ (x,Y,</l) 

n =n (x,y,cp) 

e = cp 

IN A MERIDIONAL PLANE (cp = CONSTANT), THE TRANSFORMATION 

REDUCES TO 

~=~(x,y) 

n = n (x,y) 



DEFINITION OF TRANSFORMATION 

The approach used to define the coordinate transformations is a 
modification of the "hinge point" approach of Moretti*. The mapping 
is defined as a sequence of conformal transformations of the form 

6· 
Zj+l - 1 = [Zj - hj +1,j] J 

wh~re ~j = Xj +iYj (j = 1 ;s physical space) and hi j is the ith hinge 
p01nt 1n the Zj plane. The hinge points ;n the physlcal (Zl) plane are 
selected to approximately model the body geometr~. By mapping the 
hinge pOints sequentially onto the horizontal aX1S, the image of the 
body surface will then be a nearly horizontal contour. 

INDEPENDENTLY IN EACH MERIDIONAL PLANE. DEFINE A SEQUENCE 

OF CONFORMAL TRANSFORMATIONS 

6· 
z'+1-1 ~ (z. - h

J
.+ 1 .] J j ~ 1.2, ...• JA 

J J.J 

z. ~ x. + ; . (j ~ 1 IS PHYSICAL SPACE) 
J J YJ 

h .. ~ ith "HINGE POINT" IN }h SPACE 
1.J 

HINGE POINTS ARE SELECTED TO APPROXIMATE BODY GEOMETRY 

L---~r-----~~----------------------------.Xl 

HINGE POINT DEFINITION 

*Moretti, G., "Confonnal Mappings for Computations of Steady, Three­
Dimensional, Supersonic Flows,1I Numerical/Laboratory Computer Methods 
in Fluid Mechanics, ASME, 1976. 
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SEQUENCE OF TRANSFORMATIONS 

In the jth mapping of the sequence, the transformation is centered 
around the hinge point hj+l,j. The mappings have the property of keep­
ing the hinge points, hi j (i ~ j+I) on the horizontal axis, while mapping 
the hinge point hj+2 j onto the horizontal axis. Thus, after JA trans­
formations, all JA+2' hinge points in the JA+l space will lie on the 
horizontal axis. (Each mapping in this sequence may be considered a 
"point-wise Schwarz-Christoffel" transformation.) This figure illustrates 
the sequence of transformations for JA = 3. 
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TRANSFORMATIONS - CONTINUED 

In order to establish a grid suitable for flow field calculations 
when the image of the body contour is a nearly horizontal surface, it is 
desirable to have the image of the centerline external to the body lie 
along the vertical axis. This;s achieved using an additional conformal 
transformation, centered around the second hinge point, of the form 

The last transformation is a simple stretching (which ;s also conformal): 

l; = ~ + in = aZJA+2 

(This stretching is used in the calculation procedure along the center­
line.) This figure illustrates the body contour resulting in the l;-plane 
for the case of a sphere with JA = 3, where the body surface ;s defined 
as n = b(~). 

MAP CENTERLINE ONTO VERTICAL AXIS WITH 

AllOW FOR SIMPLE STRETCHING (REQU1RED FOR CENTERLINE 

TREATMENT) WITH 

1; = ; + i n = az JA+ 2 

RESULTING BODY CONTOUR: 

n 

n = b(;) 
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COMPUTATIONAL TRANSFORMAT~ON 

For the flow field calculation it is desirable to have equally 
spaced grid points. Thus, a transformation to a computational coordinate 
system (X,Y,Z) is used, in which grid points are equally spaced circum­
ferentially ;n e, longitudinally in ~ within each meridional plane, and 
in n between the body and the shock. It is important to note that the 
(X,Y,Z) system is not orthogonal, and that the computational transforma­
tion varies with time as the bow shock position varies during the time­
dependent calculation. These sketches illustrate the computational grids 
resulting in a meridional plane in both physical (z = x+iy) and trans­
formed (s = ~+in) space for a typical ablated nosetip contour (with the 
shock layer thickness exaggerated for clarity). 
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DESIRE GRID POINTS EQUALLY SPACED IN C ALONG BODY, IN n BETWEEN 

BODY AND SHOCK, AND IN e CIRCUMFERENTIALL Y 

e 
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PARAMETERS OF THE TRANSFORMATION 

In transforming the governing equations from physical to the (X,Y,Z) 
computational coordinates, certain derivatives of the transformation are 
required. Because the transformation has been defined in analytic form, 
these derivatives can readily be evaluated analytically and are functions 
only of the hinge point locations. Within a meridional plane (o = constant), 
the required derivatives are g = dS/dZ and ~ = d(log g)/dS' Circumferen­
tially, the independent transformations in each meridional plane can be 
coupled to produce a three-dimensional transformation by assuming that 
hinge point locations can be expressed as hi j{o). The required circumfer­
ential parameters of the transformation, ~¢ and go' can be evaluated 
analytically if each meridional plane has the same number of hinge points 
and assuming the form of interpolating functions for hi,j(o). Alterna­
tively, it has been found to be sufficient to evaluate ~o and go from 
Taylor series expansions using data at computational (X,Y,Z) mesh paints, 
with the forms of the resulting expressions shown in the figure. 

REQUIRED IN WRITING GOVERNING EQUATIONS IN TRANSFORMED 

COORDINATES 

9 = dl; = G e iw = f, + in = -if, + Tj 
Ilz x x y y 

CAN BE EVAlUATED ANALYTICAllY 

CIRCUMFERENTIAL PARAMETERS OF THE TRANSFORMATION 

~4,g$ CAN BE EVALUATED ANALYTICALLY IF EACH MERIDIONAL 

PLA~E HAS THE SAME NUMBER OF HINGE POINTS, ASSUMING INTER­

POLATING FUNCTIONS FOR hi,j (4)) 

ALTERNATIVELY, EVALUATE FROt-', TAYLOR SERIES EXPANSIONS: 

( )1 ~ (X-~X,Y,Z), ( )2 ~ (X+~X,Y,Z) IN COMPUTATIONAL MESH 
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AUTOMATIC GENERATION OF HINGE POINTS 

To simplify the application of this coordinate transformation to the 
asymmetric nosetip flow field problem, the selection of hinge points that 
define the transformations has been automated. Within each meridional 
plane to be computed, body normals are constructed at points equally 
spaced in wetted length along the body profile. The hinge points are then 
selected to lie a distance 0 inside the body along these normals. By re­
lating 0 to any convenient scale factor for a nosetip geometry, the only 
input required of the user of the code is the number of hinge points to 
be used. The locations of the first two hinge points (i.e., those that 
lie on the x axis) are the same in each meridional plane~ in order to 
simplify the treatment of the centerline. Typically, no more than nine 
hinge points per meridional plane (JA = 7) are necessary for the nosetip 
flow field problem. 
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HINGE POINTS LOCATED DISTANCE 0 ALONG INWARD BODY NORMALS, FROM 

BODY POINTS EQUALLY SPACED IN WETTED LENGTH 

ONLY INPUT REQUIRED OF USER IS NUMBER OF HINGE POINTS TO BE 

USED IN EACH MERIDIONAL PLANE 
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TREATMENT OF CENTERLINE 

The greatest complication encountered in the use of this 3-D coordi­
nate transformation is the extra care that must be taken in treating the 
grid points on the centerline. Since the transformations in each merid­
ional plane are independent, the scale factors g = 3~/3z along the 
centerline will not be the same in each meridional plane. Thus, one 
computational grid point at the centerline will represent different physical 
points for each value of ¢. To minimize these discrepancies, the stretch­
ing transformation ~ = aZJA+2 is used to ensure that the images of the 
first hinge point are coincident in all meridional planes. The remaining 
discrepancies are small enough that simple linear interpolations can be 
used to account for differences in the scale factors. 

In addition to the mapping complications along the centerline, the 
governing equations in cylindrical coordinates are singular along y = o. 
This difficulty has been avoided by using a Cartesian (xl,X2,X3) coordinate 
system for the centerline analysis. The required Carteslan derivatives 
can be expressed in terms of the radial derivative 3/3y in cylindrical 
coordinates for certain values of ¢, as shown in this figure. The only 
restriction resulting from this analysis is that computational planes must 
be located at ¢ = O. n/2, n, and 3n/2. 

AT THE CENTERLINE (y = 0), SCALE FACTORS (9 = a~/az) VARY WITH ¢ 

STRETCHING TRANSFORMATION USED TO MINIMIZE DISCREPANCIES, WITH 

CARTESIAN COORDINATES (x1 ,x2'x3) USED IN CENTERLINE ANALYSIS 

a a 

~ ax 

a = cos¢ 1.. -~ a 
dX 2 ay y Cl¢ 

a =sin¢~+Cos<p~ 
aX3 

ay y a¢ 

WITH 1 im 1 a a2 
FINITE, y+O y ~ = aya¢ 

a a 
aX2 

= cos ¢ ay , ¢ = 0, rr 

a 
=Sin¢;y'¢= 

11 3rr 
aX 3 2' T 
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RESULTING FLOW FIELD CODE 

The 3-D, time-dependent, inviscid nosetip flow field code that was 
developed using the 3-D coordinate transformation described here is called 
CM3DT (Conformal Mapping 3-D Transonic)., This code can treat ideal or 
equilibrium real gas thermodynamics, has both pitch and yaw capability, 
and is able to treat weak embedded shocks on indented nosetips using the 
A-differencing scheme*. To provide total body inviscid flow field capa­
bility, the CM3DT code has been coupled to the BMO/3IS**, NSWC/D3CSS+, 
and STEIN++ afterbody codes. Complete details on the CM3DT analysis and 
results obtained with this code may be found in the following references: 

Hall, D. W., "Inviscid Aerodynamic Predictions for Ball istic Reentry 
Vehicles with Ablated Nosetips," Ph.D. Dissertation University of Penn­
sylvania, 1979. 

Hall, D. W., "Calculation of Inviscid Supersonic Flow over Ablated Nose­
tips," AIAA Paper 79-0342, January 1979. 
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• IDEAL OR [OO!LrIlP,l ... ~ REAL ~s TH[R'-10DYNAMICS 

• PIT(1i Anc YAW CAI'ASluT'T' 

• )-Drrr(RnICJrI~ ).(HEI"f USED T'J TREA.T wr4.t: ~BEDOED 

• CO:':PU"O TO AFTfR8COr [oms r!)~ TorAt INvtsCID 

F1~ FIELD CAPABll tTY 

• BMOI1IS 

• N'S1J(/J]{SS 

• SH!N 

*Moretti, G., "An Old Integration Scheme for Compressible Flow Revisited, 
Refurbished, and Put to Work," Polytechnic Institute of New York, POLY­
MjAE Report 78-22, September 1978. 

**Kyriss, C. L. and Harris, T. B., "A Three-Dimensional Flow Field Computer 
Program for Maneuvering and Ballistic Reentry Vehicles,1I 10th U.S. Navy 
Symposium on Aeroballistics, July 1975; also, Daywitt, J., Brant, D., and 
Bosworth, F., IIComputational Technique for Three-Dimensional Inviscid Flow 
Fields about Reentry Vehicles, Volume I: Numerical Analysis," SAMSO TR-
79-5, April 1978. 

+Solomon, J. M., Ciment, M., Ferguson, R. E., Bell, J. B., and Wardlaw, 
A. B., Jr., IIA Program for Computing Steady Inviscid Three-Dimensional 
Supersonic Flow on Reentry Vehicles, Volume I: Analysis and Programming," 
Naval Surface Weapons Center, NSWC/WOL/TR 77-28, February 1977. 

++Marconi, F., Salas, M., and Yaeger, L., "Development of a Computer Code 
for Calculating the Steady Super/Hypersonic Inviscid Flow around Real 
Configurations, Volume 1. Computational Technique," NASA CR-2675, April 1976. 
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CM3DT RESULTS 

This figure presents some typical results obtained with the CM3DT 
inviscid nosetip flow field code. Shown are comparisons of predictions 
to data obtained for the PANT Triconic shape* at M = 5. It is signifi­
cant that attempts to compute the flow over this srender shape using a 
time-dependent code formulated ;n a spherical coordinate system were 
unsuccessful. CM3DT, with its body-oriented coordinate system, was able 
to obtain converged solutions for this shape, with the predictions agree­
ing well with the data, as seen in this figure . 
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*Abbett, M. J. and Davis, J. E., IIInterim Report, Passive Nosetip Tech­
nology (PANT) Program, Volume IV. Heat Transfer and Pressure Distri­
bution on Ablated Shapes, Part II. Data Correlation and Analysis,1I 
Space and Missile Systems Organization, TR-74-86, January 1974. 
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CM3DT - RUN TIMES 

On a CDC Cyber 176 computer, the CM3DT inviscid nosetip code with 
A-differencing requires approximately 0.00045 CP seconds per grid point 
per time step (iteration). Typically, 400-500 time steps are required 
to obtain a converged solution. It is estimated that the computer time 
required for a solution has been increased by approximately 20% by using 
the 3-D coordinate transformation described here, when the parameters 
of the transformation on the moving grid are updated every ten time steps. 
When compared to the standard MacCormack differencing scheme, the use of 
A-differencing scheme increases the run time requirements approximately 
50% for this code. 
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ON A CDC CYBER 176, CM3DT REQUIRES 0.00045 CP SECS/POINT/STEP 

FOR IDEAL GAS CALCULATIONS WITH A-DIFFERENCING 

• 20% PENALTY INCURRED FOR COORDINATE 

TRANSFORMATION (PARAMETERS ON MOVING 

GRID UPDATED EVERY 10 TIME STEPS) 

• 50% PENALTY INCURRED FOR A-DIFFERENCING 

(RELATIVE TO MAC CORMACK DIFFERENCING) 




