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We have made detailed parametric studies of the effect of grid system on 
finite element calculation for potential flows. These studies have led to the 
formulation of a design criteria ror optimum mesh system and the development of 
two methods to generate the optimum mesh system. The guidelines for optimum mesh 
system are: 

1. The mesh structure should be regular. 
2. The element should be as regular and equilateral as possible. 
3. The distribution of size of element should be consistent with that of 

flow variables to insure maximllln uniformity in error distribution. 
4. For non-Dirichlet boundary conditions, smaller boundary elements or 

higher-order interpolation functions should be used. 
5. The mesh should accommodate the boundary geometry as accurately as 

possible. 

We shall present in this paper the results of our parametric studies. 
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Fig. 1. We choose three potential flow problems around an elliptic cylinder as 
the test problems to evaluate and to compare computational errors. 
In these problems, the computational domain is transformed into a 
rectangular domain by using the elliptic-cylindrical coordinate system 
(u,v). This corresponds to an isoparametric element in the physical 
plane where element boundaries are curved isoparametric lines. 
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Fig. 2. Numerical solutions are obtained for the test problems using a sector 
method. A sector is defined by a combination of elements surrounding 
a node or nodes. It becomes the finite cut-off zone of influence of 
the interior node or nodes. The solution procedure is to construct 
.the sec tor matrix for each sec tor and to iterate by sweepi ng all the 
sectors. This method provides a way to avoid the tedious data 
handling in constructing the system stiffness matrix and facilitates 
the treatment of boundary conditions. 
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Types of Sectors shown are: 
(a) Six Triangular Elements, One Interior Node. 
(b) Ten Triangular Elements, Two Interior Nodes. 
(c) Six Triangular Elements, Seven Interior Nodes. 
Cd) Four Quadrilateral Elements, One Interior Node. 
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Fig. 3. Three different grid systems for an elliptic boundary. 
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The system (a) has a larger number of nodes and better resolution near 
the.body, however, the structure of the elements is irregular. Table 1 
shows the maximum percent error obtained for Problem 1 for the case of 
Dirichlet boundary conditions. The grid system (a) has much larger 
error despite the fact that it has more mesh points near the body. 
This larger error comes from unfair treatment of the influence of 
neighboring points. The unfair treatment results not only from the 
irregular shapes of the e1emen~s but also from the use of several 
types of sectors, i.e., sectors consisting of different number of 
elements. The error increases as more types of sectors are used. 
The fact that the error in grlc(system (c) is greater than that in 
grid system (b) is a further indication of this effect. Only one 
type of sector, which consists of six elements is used in grid 
system (b), while two types of sectors, one with eight elements 
and the other with four, are used in grid system (c). Note that 
five different types of sectors are used in grid system (a). 
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(a) Computational Plane 

(b) Physical Plane 

Fig. 4. The mesh structure of Fig. 3(b) is used to study the effect of element 
shapes. The shapes considered are equilateral or isosceles triangles, 
as shown here, in addition to the right-angled triangles, as shown in 
Fig. 3(b). The maximum errors at both the body surface and the outer 
boundary are tabulated. The evaluation of the effect of the element 
shape on the computational errors is based on the comparison of these 
two errors. For case (1) with right-angled triangles, the error at 
the body surface is much greater; therefore, the error due to element 
shape dominates. For case (2) with isoceles triangles, the outer 
boundary error dominates. For case (3) with equilateral triangles, 
the two errors are nearly equal. In fact, the error distribution i~ 
almost uniform. Such a uniformity in error distribution is important 
for any flow field computation. 
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(a) Computational Plane 

(b) Physical Plane 

Fig. S. The effect of element size distribution was studied by comparing the 
error for two grid systems shown in Fig. 3(b) and Fig. 5 respectively. 
These two systems have the same structure; however, the distribution 
of nodes in the system shown in Fig. 5 is not as uniform. The compari­
son of errors is given in Table 3. The error for the system of Fig. 5 
is greater because the distribution of nodes deviates significantly 
from the change of field variables. 
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(R) Computational Plane 

(b) Physical Plane 

Fig. 6. The error of the system with the triangular element is compared with 
that with the quadrilateral elements. The interpolation functions in 
both cases are of second order in the field variables, but differ in 
their derivatives. The triangular element has a first order accuracy 
while the quadrilateral element has a second order accuracy. The 
results are summarized in Table 4. Even though the difference in error 
in the stream function between the two cases is small, the difference 
in errors in the velocities is appreciable. In comparing the errors 
in velocities, it may be more informative to examine the maximum 
deviations from the exact solutions. This maximum deviation is found 

-4 
to be of 0[10 ] per unit free stream velocity for the quadrilateral 

-2 
element and 0[10 J for the triangular element. 
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Fig. 7. Optimum mesh system submerged elliptical 

cylinder near a free surface. 

Fig. 8. Optimum m~sh sys~em cylinder of irregular shape. 

Two methods of numerical transformation into a set of orthogonal 
coordinates have been developed to generate an optimum mesh system which 
meets the guidelines listed above. Figs. 7 and 8 show examples of mesh 
systems generated. 
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Table 1. Effect of Mesh Structure 

Problem Problem I, Fig. I 

Element Type 

Mesh System 

Outer Boundary 

Triangular Element 

Fig. 3 

u + 0.75 7T 
o 

Mesh System {a) (b) (c) 

% Error 29.4 0.979 1. 64 

Table 2. Effect of Element Shapes . ,-T" 1'"' DRTf""nnL Pr'.-';':' ~ 1v .~ •• 

Problem Problem I, Fig. 1 OF POOR QUALE"{ 

Element Type Triangular Element 

Case (a) (b) (c) 

Mesh System Fig. 3(b) Fig. 4 Fig. 4 

Element Shape Right-angled Isosceles Equilateral 
Triangles Triangles Triangles 

% Error 0.979 0.254 0.172 near body 
-

% Error at 0.363 0.363 0.174 Outer Boundary 

u out u +0.75 7T u +0.75 7T u + 7T 
0 0 0 

'-



Table 3. Effect of Element Size Distribution 

--

Problem 

Element Type 

Number of Nodes 

Outer Boundary 

Mesh System 

% Error 

Problem I, 

Triangular 

13 x 13 

u :: Uo out 

Fig. 3 (b) 

0.979 

Fig. 1 

Element 

+ 0.751T 

Fig. S 

6.652 

Table 4. Effect of Element Type and Interpolation Functions 

% Error 

Maximum 

Problem 

Number of Nodes 

Outer Boundary 

Element Type 

Mesh System 

Stream Function 

u-Velocity 

v-Velocity 

u-Ve1ocity 

Deviation v-Velocity 

-

-

Problem I, Fig. 1 

16 x 16 

u + 1T 
o 

Triangular 

Fig. 3 (b) 

0.856 

34.95 

33.98 

0.010 

0.068 

Quadrilateral 

Fig. 6 

0.710 

1.435 

1.096 

0.0004 

0.0004 
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