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The present paper treats several practical aspects connected with 

the notion of computation with flow oriented mesh systems. Simple, 

effective approaches to the ideas discussed are demonstrated in current 

applications to blown forebody shock layer flow and full bluff body 

shock layer flow including the massively separated wake region. 

The first task in constructing an adaptive mesh ;s to identify the 

gross flow structures that are to be captured on the mesh and to work 

out a grid topology that conforms to them. Among the properties the mesh 

topology ought to admit are both computational accuracy and algorithmic 

compatibility. Both these properties are served by grids that feature 

large connected segments of natural or computational boundaries fitted 

by mesh surfaces or curves of constant coordinate. But it is neither 

necessary or always desireable that the entire surface of a particular 

boundary feature be fitted by a single surface segment of one family 

of coordinates. For accuracy, convenience, and particularly from the 

point of view of modern algorithms that embody such features as vector 

organization, spatial splitting, and implicit solution, it is very 

desireable that the mesh be composed of identifiable continuous grid 
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lines, not necessarily of homogeneous coordinate type, that run from 

boundary to boundary. 

These notions are illustrated in the application to high Reynolds 

number full bluff body flow in axisymmetry. Here the basic structure 

of the turbulent flow is well known, Figure 1. The computational mesh 

that we have adapted to the flow is shown in Figure 2. 

We note that in the mesh shown the computational boundaries -

axis of symmetry, bowshock, body, and outflow plane - are all fitted by 

continuous grid lines. The mesh is so constructed as to be flow aligned 

over the four principal regions - forebody shocklayer, base recircula­

tion, outer inviscid wake, and inner turbulent viscous wake. We note 

the wrap around mesh provides continuity of the boundary layer and 

shear layer 1n the aft expansion zone. The continuity of the mesh 

coordinate topology is broken in the recompression zone which embeds 

a saddle surface of the turbulent flow solution at the interface of 

the recirculant base flow and downstream viscous wake. The Singular 

topology of the mesh 1n the base recompression zone is illustrated in 

Figure 3. The viscous wake core box of the mesh, which provides con­

tinuity across the viscous-inviscid wake shear layer, can be regarded 

as a separate sheet of the topology with a cut taken along a line from 

the singular point down through the recompression zone to the wake axis. 

The cut forms part of a set of construction lines embedded in the 

mesh, Figure 4. It is central to the method described that these lines 

which largely define the base mesh structure are also representative 

of the flow structures which the mesh is to fit. Thus in the approach 

presented here the construction lines serve the role of supplemental 
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~. imaginary boundaries along which mesh nodes are distributed according 

to the usual criteria on ordinary boundaries. The resulting bounded 

domains can then be filled in with computational grid by any of a large 

variety of means, for examplel ,2,3,4. 

The particular grid shown in Figure 2 is quite adequate in concept, 

though not optimized in detail, and was simply constructed in a single 

pass using one dimensional distributions along straight coordinate lines 

between boundary points. Where non-uniform distributiohs have been 

required they have been conveniently accomplished using a universal 

stretching function due to Vinokur 5. In the program, for the stretching 

function as we have adapted and use it, the total interval along the 

coordinate line and the (approximate) first mesh spacings from either 

end of the interval are specified. The function then returns the dis-

tribution between boundary points. As convenient, the stretchings are 

done variously in X, Y, or S (arc length). The actual X and Y coordinates 

of mesh points are then found by the functional relationships of points 

on the given coordinate curve, which of course can be piecewise defined. 

Where fictitious boundary lines are to be embedded in the mesh, actual 

boundary points are defined on the connecting coordinate lines at half­

first-mesh-cell intervals away from the fictitious lines. 

A virtue of meshes constructed of distributions along analytically 

defined coordinate curves, and particularly straight lines, is that 

differential displacements of boundary points are readily functionally 

transformed through kinematic relations into corresponding displacements 

of the intervening grid points so as to leave invariant the relative 

distributions of mesh points along the given coordinate curves. For 
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the mesh shown in Figure 2, we presently use this property to analyt-

ically deform the outer flow portion of the mesh in relative conformity 

with the moving, fitted bowshock. 

In a similar manner it is intended in future work to differentially 

adapt the interior base mesh to the changing flow solution by moving 

the underlying construction lines. A central requirement to do this is 

to define relationships tying the construction lines to the base flow 

solution. In this regard it is intended that the X coordinate of the 

mesh singularity correspond to the axial location of maximum wake pres­

sure. Presumably, the Y coordinate of the singularity which lies on 
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the construction line through the viscous-inviscid wake shear layer ought 

to be determined from a fit to the axial velocity gradient. 

Along the same lines, however, we have developed an adaptive mesh 

for the blown forebody shock layer which is intended to represent flow 

over an ablating body. Here we wish to distribute points in predetermined 

ways in the blown layer, the shear layer interface, and in the outer 

flow region. In this case a construction line demarking the interface 

between the blown and outer flow regions can readily and unambiguously 

be fitted to the zero of the stream function based on mass flux and this 

is what we have done. 

We note in connection with the blown shock layer that the associated 

flow has regions of steep gradient in density, velocity, mass flux, and 

temperature and that these properties by no means vary together. We 

take it that an accurate calculation ought to resolve all these features. 

Thus we think for this application a mesh distribution approach based 

on the integral of gradient of a single flow property such as Dwyer6 
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has demonstrated ;s not evidently optimum. A similar distribution 

based on weighted gradients is certainly feasible but this would appear 

to be more tedious to implement than a compromise ~ hoc distribution 

tied to key features of the flow structure as we have done. In the 

paper we shall present curves showing the variation of relevant flow 

properties across a blown shock layer and show how the simple ~ hoc 

distribution approach we use results in satisfactory resolution of all 

properties. 

References 

1. Smith, R.E. and Weigle, B.L., IIAnalytic and Approximate Boundary 
Fitted Coordinate Systems for Fluid Flow Simulation," AIAA-80-0l92, 
AIAA 18th Aerospace Sciences Meeting, Pasadena, CA, Jan. 14-16, 1980. 

....,i 2. Eiseman, Peter R., "Coordinate Generation with Precise Controls,1I 

-

:::./ 

Seventh International Conference on Numerical Methods in Fluid 
Dynamics, Stanford University and NASA-Ames Research Center, 
June 23-27,1980. 

3. Thompson, J.F., Thames, F.C., and Mastin, C.W., "Automatic Nu~erical 
Generation of Body-Fitted Curvilinear Coordinate Systems for Fields 
Containin9 Any Number of Arbitrary Two-Dimensional Bodies,lI Journal 
of Computational Physics, 15, 299, 1974. 

4. Middlecoff, J.F. and Thomas, P.D., "Direct Control of the Grid 
Point Distribution in Meshes Generated by Elliptic Equations," AIAA-
79-1462, AIAA Computational Fluid Dynamics Conference, Williamsburg, 
VA, July 23-25, 1979. 

5. Vinokur, Marcel, liOn One-Dimensional Stretching Functions for Finite­
Difference Calculations,1I Final Technical Report for Period July 1, 
1978 to June 30, 1979, Grant No. NSG 2086, The University of Santa 
Clara, CA. 

6. Dwyer, H.A., Kee, R.J., and Sanders, B.R., !IAn Adaptive Grid Method 
for Problems in Fluid Mechanics and Heat Transfer," AIAA-79-1464, 
AIAA Computational Fluid Dynamics Conference, Williamsburg, VA, 
July 23-25, 1979. 

381 



0 

0 

c 
en 

c 
.; 

0 

....: 

c 
.0 

c >-< • 
III 

C 

.: 

c 
n 

c 
rJ 

0 -
c 
0 

-1.0 0.0 

382 

It:JBOUNDARY LAYER 
~SHEAR LAYER 

I 
I 
I 
I 

RECOMPRESSION I 
SHOCK I 

_-c:ro:-----~ I 
I 

TURBULENT WAKE 

~I 

BOUNDARY 
LAYER 

Figure 1.- Geometry and principal structure 
of full bluff body flowfield. 
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Figure 2.- Full bluff body mesh. 
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Figure 3.- Base region mesh detail showing topology of 
the coordinate lines in the vicinity of the 
singular point s. 
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