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A Two Dimensional Mesh Verification Algorithm
R. Bruce Simpson
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada.
Abstract
A finite element mesh is commonly represented in a program by
Tists of data, i.e., vertex coordinates, element incidences, boundary data.
In general, these lists describe a collection of triangles. Whether the
triangles form proper mesh for a region or not, i.e. whether they 'tile’
a region, is data dependent in a non obvious way. This paper specifies
a set of conditions on the iriangles {i.e. on the 1ist data) which ensure
that the triangles tile a region and which also can be verified by an
algorithm which is referred to in the title and which is claimed to be
of reasonable efficiency.
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Basic List Representation of a Mesh

The mesh verification algorithm assumes that the collection
of triangles is described by three lists as shown in the following

small example.

Vertex Coordinates Element incidences Boundary References
Index x-y coordinates index vertex indices index references
1 2.00 1.00 1 1 2 3 1 1 03
2.00  2:00 2 2 4 3 2 2 2
3 1.00  1.00 3 2 5 4 3 3 1
4 1.00 2.00 45 6 4 4 4 2 dndicates ¢
5 2.00 3.-006/’/ 6 5 6 1 boundary
6 1.00 3'00}3_,,__#«@// 8 6 6 6 2 edge starts
L7 2.00 4.00}2 7,910 1 7 7 3 at —2>
8 1.00 4.00 'y ¥ & 10 2 1 8 8 1 ==
9 3.00 1.00 N/ ¥#9 1112 5 9 9 3
10 3.00 2.00 A /10 1%7,,.5,-————4 10 1
11 3.00 3.00 NS S S TR 11 11 31hg
12 3.00 4.00 \l 12 14 10 9W\i2,._. ERNCE A
13 4.00 1.00 I 13 14 15 10 13713 1 &
14 4.00  2.00 L1 14 15 11 10 14 14 2 Y
15 4.00 3.00 Pl is 15 16 11 15 15 1 ,\
16 4.00 4.00 L1 16 16 12 11 16 16 1 I
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CONDITIONS

THE TRIANGLE VERTICES ARE SPECIFIED IN COUNTER CLOCKWISE ORDER

V3,

vV ad V2,

EITHER  THE ITH EDGE OF E (K) IS THE ONLY EDGE JOINING ITS
END POINTS (ROUNDARY ELEMENT)

OR THERE 1S EXACTLY ONE ELEMENT, E (%) HAVING THE SAME
EDGE, IN THIS LATTER CASE, THE DIRECTIONS OF THIS
LINE SEGMENT As EDGES oF E () axp E (%) musT BE
DIFFERENT,

E(K)i

No POUNDARY EDGE INTERSECTS MORE THAN ONE ELEMENT, EXCEPT
AT ITS END POINTS.

A VERTEX CAN HAVE AT MOST ONE BOUNDARY EDGE DIRECTED AVIAY
FROM IT.
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IMPLICATIONS

1) MesH BOUNDARY EDGES FORM A SET OF DISJOINT, ORIENTED, SIMPLE CLOSED
CURVES
Cl, CZ’ vee CK = MESH BOUNDARY CURVES

2) EACH CURVE OF BOUNDED INTERIOR DEFINES A CONNECTED REGION. THE
BOUNDARY OF THIS REGION IS COMPOSED OF MESH BOUNDARY CURVES

v X

(Assute 1 CURVE OF BOUNDED INTERIOR - Cl)

Derine R = /Sl (inTerIoR OF C)

=1 (CONNECTIVITY K)

N

2R = Lj E Q)
&1

) Ir P €R, P IS NOT AN ELEMENT EDGE

'-‘—-'> P LIES IN EXACTLY ONE ELEMENT.
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Small Example Invalid Mesh on Hollow Square
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Coordinates of vertex 13 changed to (2.5, 2.5)

Section of Mesh Verification Algorithm Detailed Error Report

MESH VERIFICATION ERROR
INTERSECTING BOUNDARY EDGES -
EDGE FROM VERTEX 13 AT ( 2.50
EDGE FROM VERTEX 2 AT ( 2.00

MESH VERIFICATION ERROR
INTERSECTING BOUNDARY EDGES -
EDGE FROM VERTEX 14 AT ( 4.00
EDGE FROM VERTEX 10 AT ( 3.00

FROM BDSCAN, NO. OF BOUNDARY C

MESH VERIFICATION ERROR

ELEMENT
X= 3.000000E 00
X= 2.500000E 00
X= 4.000000E 00
DET = -2.000000E 00
MESH CHECK ENCOUNTERED 3 ER

14

2
r 2.

r 2.00)
, 2.00)

URVES=

TO VERTEX
TO VERTEX 10 AT

TO VERTEX 13 AT
TO VERTEX 11 AT

2

11 APPEARS TO HAVE VERTICES LISTED

( 2.50,
( 3.00,

IN WRONG ORDER

Y= 1.000000E 00
Y= 2.500000E 00
Y= 2.000000E 0O
RORS

2.50)
3.00)





