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USE OF HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS 

TO GENERATE BODY FITTED COORDINATES 

-- * Joseph L. Steger 
Flow Simulations, Inc., Sunnyvale, CA 94086 

and 

Reese L. Sorenson 
NASA Ames Research Center, Moffett Field, CA 94035 

Abstract 

Interpreting previous work, hyperbolic grid 

generation procedures are formulated in the style 

of the elliptic partial differential equation 

schemes used to form body fitted meshes. For 

problems in which the outer boundary is not 

constrained, the hyperbolic scheme can be used 

to efficiently generate smoothly varying grids 

with good step size control near the body. 

Although only two dimensional applications are 

presented, the basic concepts are shown to 

extend to three dimensions. 

Now with Stanford University. 
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The task of generating the exterior mesh about 

an arbitrary closed body as indicated in this slide 

is undertaken. The locati'on of the outer botmdary 

is not specified; it only need be far removed from 

the inner boundary. Such a grid generation problem 

is encountered in external flow aerodynamics. 

We seek a grid composed of constant s and n 

lines as indicated in this slide, given initial x,y 

data along ~ at n = O. The grid generation 

equations, just as the flow field equat ions, are 

solved in the uniform transform plane. 

SKETCH OF PHYSICAL AND COMPUTATIONAL PLANE 

77max 
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Partial differential equations are sought to 

generate a smoothly varying mesh such that grid lines 

of the same family do not inter'ect or coalesce. Two 

systems of nonlinear hyperbolic partial differential 

equations have been considered for the given initial 

data sketched in the previous slide. As indicated 

in this slide, these systems each use the condition of 

orthogonality and a geometric constraint. 

HYPERBOLIC GRID GENERATION EQUATIONS 

ARC LENGTH-ORTHOGONALITY SCHEME 

2 2 2 2 2 
X ~ + y ~ + X

77 
+ Y 77 = (~S) 

X~X77 + Y~Y77 = 0 

VOLUME-ORTHOGONALITY SCHEME 

X~Y77 - x77Y~ = V 

x~x77 + Y~Y77 = 0 

IN BOTH CASES ~~ = A77 = 1 
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The previously described nonlinear partial 

differential equations must be shown to be properly 

posed for the given initial value data. As a first 

step. the equations are cast in a locally linearized 

form so that they can be analysed as a system of two 

first order partial differential equations. For the 

locally linearized form to be meaningful. the equations 

are expanded about a nearby known solution or state. 

LOCALLY LINEARIZED FORM 

X~X11 + Y~Y 77 = 0 

x~Y77 - x77Y~ = V 

EXPAND X AND y ABOUT KNOW STATE X, Y 
E.G. x~y 11 = (x + X-X) ~ (Y + Y-Y)11 

= X~Y11 + (x~ - x~)Y11 + (Y11 - Y11)x~ + 0(.6
2

) 

- - - - (2) = Y11x~ + x~Y11- x~Yl1 + 0 Ll 

OBTAIN LOCALLY LINEARIZED FORM 

- - -
(~~ ~X:) (~)~ + (:J~ 



Analysis of the locally linearized partial 

differential equations indicates that the equations 

can be marched in n provided that x~ + y~ 1 o. 
That is, the grid spacing in ~ cannot be of zero 

length. The fact that B-1A is a symmetric matrix 

ensures that it has real, distinct eigenvalues. 

This then means that the system is hyperbolic 

if n is used as the marching or time-like 

direction. 

HYPERBOLICITY 

LOCALLY LINEARIZED VOLUME-ORTHOGONALITY EQUATION 

FIND: 

a) B-1 EXISTS I F x~ + Y~ =1= 0 

b) B-1 A IS SYMMETRIC 

THEREFORE LINEARIZED EQUATIONS ARE HYPERBOLIC 
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The grid generation equations can be solved 

using standard numerical techniques for first order 

systems of hyperbolic partial differential equations. 

In our case we have used a noniterative implicit 

finite difference procedure. An unconditionally 

stable implicit scheme was selected so that an 

arbitrary mesh step size can be specified in the 

marching direction. The same kind of numerical 

procedure is used to solve the flow field equations. 

NUMERICAL SOLUTION OF VOLUME-ORTHOGONALITY "-
EQUATIONS 

USES IMPLICIT FINITE DIFFERENCE SCHEME FOR 

x~YTl - xTlY~ = V 

x~xTl + Y~YTl = 0 

SCHEME IS: a) UNCONDITIONALLY STABLE 
b) NONITERATIVE 
c) SECOND ORDER IN ~, FIRST ORDER IN Tl 

d) REQUIRES A BLOCK TRIDIAGONAL INVERSION 



The volume orthogonality scheme requires that the 

user specify the volume (area in 2-D) of each mesh 

cell. The quality of the grid will, to a large extent, 

be determined by the user's cleverness in specifying 

these volumes. To specify these volumes, we currently 

define a simple geometric shape (e.g. circle or straight 

line) which has exactly the same arc length as the body 

we wish to grid. An algebraically clustered grid is 

then created by the user for the simple geometric shape. 

The volumes of this simple grid, the control volume grid, 

are then used directly on a point by point basis in the 

hyperbolic grid generation equations. 

SELECTION OF VOLUMES 

SPECIFIED 
CONTROL 
VOLUME 
GRID 

a 

PHYSICAL 
GRID 

"/// .///////// .////////// 
b 
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These slides show views of a viscous grid generated 

for a typical cross section of an aircraft fuselage. 

The control volumes were specified about a circle whose 

arc length matches that of the fuselage. Initially 

these control volumes are proportional to the grid-point 

arc-length spacing around the fuselage. Ultimately, 

however, control volumes that are uniformly spaced in 

the circumferential (i.e. e) direction are specified. 

Thus in far field a polar coordinate system is formed. 

y 

y 

VISCOUS GRID GENERATED ABOUT TYPICAL 
AIRCRAFT·FUSELAGE CROSS SECTION 

OVERVIEW 
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This slide shows views of an inviscid grid 

generated about a highly cambered profile. The 

same type of control volume used previously is 

employed. A uniform grid spacing was specified 

in the direction away from the body as is clear 

from the view showing grid detail near the body. 

y 

y 

INVISCID GRID GENERATED ABOUT HIGHLY 
CAMBERED AIRFOIL 

OVERVIEW 
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GRID DETAIL OF SLADE 
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In this case a viscous grid is generated about 

the cambered profile. The normal grid spacing at 

the body is 0.01% of the chord length. Note that 

because volume is specified the grid spacing grows 

in the marching direction so as to prevent the 

circumferential spacing from vanishing. For a 

profile with twice the camber, however, this 

process breaks down and grid lines do coelesce. 

In these cases a more sophiticated means of 

specifying the volumes is needed. 
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VISCOUS GRID GENERATED ABOUT HIGHLY 
CAMBERED AIRFOIL 
GRID DETAIL NEAR BODY 
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GRID DETAIL NEAR LEADING EDGE 
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These views show the hyperbolic grid generation 

scheme applied to generating a "C-grid" about a cambered 

airfoil. Here the control volume grid is generated 

about a straight line, that is, it is nothing more 

than a clustered rectangular grid. It is clear from 

the view at the trailing edge that some adjustments 

are needed to the current numerical treatment of 

discontinuous boundary data. 

GENERATION OF C-GRID ABOUT 
CAMBERED AIRFOIL 

OVERVIEW 



GRID DETAIL NEAR BODY 

GRID DETAIL AT TRAILING EDGE 
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HYPERBOLIC GRID GENERATION ADVANTAGES 

• SMOOTHLY VARYING GRID IS FOUND 

• GOOD USER CONTROL OF CLUSTERING NEAR BOUNDARY 

• FAST GRID GENERATION 

• ORTHOGONAL OR NEARLY ORTHOGONAL 

• AUTOMATICALLY TREATS COMPLEX SHAPES 

HYPERBOLIC GRID GENERATION DISADVANTAGES 

• OUTER BOUNDARY CANNOT BE SPECIFIED (UNLESS 
ITERATIVE SHOOTING METHOD DEVISED) 

• SCHEME TENDS TO PROPAGATE DISCONTINUOUS 
BOUNDARY DATA 

• POORLY SPECIFIED BOUNDARY DATA AND CONTROL 
VOLUMES CAN RESULT IN "SHOCK-WAVE" LIKE BREAKDOWN 
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The hyperbolic grid generation scheme can also be 

formulated in three di~nsions. With volume specified 

as one constraint, orthogonality can only be enforced 

in two of the coordinate directions. The three partial 

differential equations shown form a hyperbolic system 

for marching in~. Proof that the equations are 

hyperbolic was quite tedious, required considerable 

insight, and was carried out by Dennis Jespersen of 

Oregon State University. 

EXTENSION TO THREE DIMENSIONS -

VOLUME AND TWO ORTHOGONALITY 

~ ~ 

dr . dr = 0 
d17 d~ 

I 
a(X,y,Z) 1= V 
a(~,17,~) 

SYSTEM IS FOUND TO BE 
HYPERBOLIC 
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The three constraints of orthogonality do not 

form a hyperbolic system of partial differential 

equations. Neither are the equations of elliptic 

type. In fact, their classification and what if 

any type of boundary data makes them unique is 

unknown to the authors. 

EXTENSION TO THREE DIMENSIONS 
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THREE ORTHOGONALITY 

~ ~ 

dr . dr = 0 
d17 d~ 

SYSTEM CANNOT BE MARCHED 
AND IS NOT ELLIPTIC 
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