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It is demonstrated by analyses and by numerical illustrations that any 
arbi trarily prescribed contour, open or closed, can be mapped conform ally onto a 
simple contour, such as a unit circle, using any arbitrarily prescribed distribution 
of scale factor of transformation. This flexibility of selecting a scale factor 
distribution on the contour is not in violation of the well-known Riemann's 
uniqueness theory for conformal mapping. The much used Joukowski 
transformation is shown to be one of a family of conformal transformations that 
map a given airfoil contour onto a unit circle. For flow problems, the conformal 
mapping of a region bounded by a complicated contour onto a corresponding 
region bounded by a simple contour is of interest. With an arbitrarily prescribed 
scale factor, there exist in general singular points located at finite distances 
from the contour. (The case where singularities are located infinitely far from 
the contour is an exception.) Numerical methods for generating conformal grids 
should therefore incorporate a mechanism that ensures the absence of singular 
points in the region of interest. In this context, the distribution of scale factor on 
the contour cannot be arbitrary. The restriction on the scale factor distribution 
is not stringent. There exists ample freedom in the control of grid spacing on the 
contour so that, in general, the physics of the flow problem can be 
accommodated by a suitably designed conformal grid. 
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DESIRED FEATURES OF GRID SYSTEMS 
-----------

Be body-fitted. 

Possess control over grid-spacing. 

Yield algebraic equations amenable to highly efficient numerical 

procedures. 

Require minimal computational efforts to generate. 

L __ -_______ . __ -_ -----.. --.-----.. -----.-------.-.. --
The first feature listed above is generaUy accepted as being the key to the 

successful computation of flows. The second feature is essential to the 

computation of complex flows with diverse length scales in different regions of 

the flows. The third feature is critical in situations where the amount of 

computation required is very large. The fourth feature is important if repeated 

generation of grids is desired during the solution of a given problem. (For 

example, in the solution of a time-dependent problem, different grids may be 

desired for different time intervals). 



i' 

------~--.-- -------._- --_._-------.. _---
CURVILINEAR COORDINATES AND GRID SYSTEM 

-----.. ------ ---_ .. _._-------------------------------1 

Non-orthogonal coordinates yield transformed differential equations 

that are substantially more complicated than the original equations. 

Orthogonal non-conformal coordinates yield less complicated equations. 

Conformal coordinates yield simplest transformed equations. 

The requirements th~t a transformation be conformal and that it 

possesses a grid-spacing-control ability are not mutually exclusive. 

Conformal mapping can be generated very efficiently. 

l
~ Orthogonal grids can be easily developed using conformal mapping. I 

"----------..... --- ..... '--'-"'-' ---.. ------_ --.----_____ J 
The advantages of using conformal grids are most clearly demonstrated by 

the numerical procedures available for the Poisson's equation. Algebraic 

equations obtained in conformal grids can be solved using direct methods such as 

the block Gaussian elimination, the odd-even reduction, and the Fourier series 

methods. Tile choice of methods is somewhat more limited in an orthogonal non­

conformal grid. With non-orthogonal grids, iterative procedures are generally 

required. The main purpose of this paper is to show that any prescribed two­

dimensional body contour can be conformally mapped onto a simple shape, such 

as the unit circle, and such mappings do possess a grid-spacing-control ability. 
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------------~-.. --------------------.. 

CONFORMAL MAPPING 

f--------------- ---- --- ,--.-------.. ----
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'--______________ . _______ . ____________________ ---l 

Any usual contour, open or closed, can be mapped conform ally onto a 

simple contour, such as a circle or a straight line segment, using any prescribed 

distribution of the scale factor of transformation on the contour. This is true for 

smooth contours as well as for contours with discontinuous slopes. The unit circle 

is used as the canonical contour for the following discussion. A total of K 

equally spaced points are assigned on the unit circle, with the point 'k given 

by 

where K is an odd integer. 

The corresponding points, zk ,on the original contour are sequenced as shown but 

otherwise arbitrarily located. 



-~--~-.----------,-.--- ... ----------------
THE LAURENT SERIES 

I----~-- ---.-------.-".--------._----
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By analytic continuation, the Fourier coefficients of the Laurent series are 

those obtained above. The finite Laurent series therefore can be used to compute 

the grid-point locations away from the contour that corresponds to specified grid 

points in the , -plane. The above analysis can be carried out for an infinite 

Laurent series. The only change is that the Fourier coefficients are then 

expressed as integrals instead of sums. The finite Laurent series represents an 

approximation of the infinite Laurent series whose regular part converges inside 

a certain circle and whose principal part converges outside another certain 

circle. The domain of convergence of the infinite Laurent series is the common 

annulus of the two circles. The finite Laurent series produces accurate conformal 

grids in this domain of convergence. The conformality of the grids thus generated 

;,:....r. is ensured by the analyticity of the Laurent series. 
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A CONFORMAL GRID WITH SINGULAR POINTS 
NEAR THE CONTOUR 

.-.------ .... - .. -.--... ------ .- .... _._---

dz = 0 
ds 

.. -.----------.-~----------

With an arbitrarily prescribed distribution of the scale factor, there exist in 

general "singular points" located at finite-distances from the contour. Therefore, 

numerical methods for generating conformal grids should contain provisions that 

ensure the absence of singular points in the region of computational interest. In 

this context, the distribution of the scale factor on the contour cannot be 

arbitrary. In this figure is shown a grid around a symmetric airfoil with singular 

points located near the airfoil. This figure is obtained using the finite Laurent 

series method. The prescribed points on the airfoil are symmetrically distributed 

about the line of symmetry of the airfoil. The grid lines shown are mapped onto 

the radial lines and concentric circles shown on the next figure. 



[ 
-----._-------------_.------------ ------------, 

THE GRID SYSTEM IN THE CIRCLE-PLANE 

----- ... _ ... -----.-.. -•.. -- .------------.----.----------~ 

-_ .. _+ -----
'-----_. __ ._-------------_._._-- ...... _------------

The "canonical" domain used here is the domain exterior to the unit circle. 

The grid lines shown here are mapped conform ally onto the grid lines shown in 

the airfoil-planes at all points except the Singular points where the mapping 

ceases to be conformal. The gird shown is orthogonal with equal spacings in the 

angular and the radial directions. 

,-, 1'\" I ,_.j .11 'Iv" 
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--------------------------_._------------, 
SOLUTION FIELD AROUND AN AIRFOIL 

12% Thick Joukowski Airfoil 
Re = 3.63 x 106 , a = 15°, t = 13.2 J 

Here are shown some streamlines and constant vorticity lines around a 9% 

thick symmetric airfoil. With the integro-differential approach the authors are 

using, the solution field can be confined to the vortical region of the flow. In 

consequence, the presence of the singular points in the conformal grid outside 

the vortical region is acceptable. With prevailing method, the flowfield is usual1y 

truncated and it is permissible to have singular points present outside the 

truncated region. 



,.---------- --------------------------- -------------------------. 
JOUKOWSKI GRID 

t-------------------- ---------------------- ------------

i 

I _ .-l.----1 __ f---t-----4--l 

L_. __________ . __________ ~~ _____ -.. ____ ~ __ _ 
This figure shows the grid lines around a 9 % thick symmetric airfoil that is 

mapped using the Joukowski transformation 

0.854078 
z = , - 0 0 05214 + ,_ 0.05214 

With this transformation there is no singular point at a finite distance from the 

airfoil. The trailing edge in this transformation is rounded (so as to avoid the 

need of the Schwarz-Christoffel procedure, which would have introduced 

complications unnecessary at this stage of development). The finite Laurent 

series method, with grid points on the airfoil boundary assigned properly, 

produces a grid system that is indistinguishable from the one shown. 

ORIGIJ\T\I n' _ 
OF -. J .t "~, :~ J-; 
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· ..... _. __ .. - ... ------.---.----~ 

A SYMMETRIC BILINEAR GRID 
f---~---' -.. -- .. ------- -- .---- .--.---- ..... --.... ---.- .. _- --------

~-------- -.----.-.-.- ... --_. - -_._ .. -- ..... __ ._ .. _ .. _._ ... _- ----_._._ .. _ ... _-------- .----.. 

The unit circle in the , -plane can be mapped onto a unit circle in the w­

plane through a bilinear transformation of the form 

, W - q 
= • 

l-aw 

For any assigned value of a ,the points on the airfoil boundary that correspond 

to uniformly distributed grid points on the unit circle can be located. The finite 

Laurent series method then yields a conformal mapping of a region exterior of 

the circle in the w-plane onto a region exterior of the airfoil in the z -plane. The 

concentric circles and radial lines in the w-plane are mapped onto the grid lines 

shown above for the case a = 1/8 . The grid lines are symmetric about the line of 

symmetry of the airfoil. 



--------- --_._-_._-----_._-_. __ . __ .. ---- --"'- --_. _. "" --.. _.- .. _---_.- ._---

A NON-SYMMETRIC BILINEAR GRID 

Using a complex value for ex , the concentric circles and radial lines in the 

w-plane are mapped onto non-symmetric grid lines in the airfoil-plane. The 

figure above shows grid lines for the case Q'=..,.~i. The singular points of the grid 

system shown here and in the previous figure are sufficiently far from the airfoil 

so that the grids are of practical interest. 
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~---------.---- .. --.--.---.--.-----.----.---.---.--------

A GRID IN USE 
~---------------------------------------------1 

-.-. : ,----

This grid has been used in a computation of a flow past a 9 % thick 

symmetric airfoil at an angle of attack of 15%. The grid is a bilinear grid with 

Q' = 16. In this study, the boundary layer region of the flow is computed 

separately from the detached region. It is only necessary to generate a grid 

covering the computation field and to keep the singular point away from this 

computation field. 

t;-­
~ 



...--._--- --_._-----------------------_._------------
INITIAL FLOW PATTERN AROUND AN AIRFOIL 

1------------------- --

I 
L _____ . ________ _ 

This and the following figures show computed streamlines and vorticity 

contours around a 9 % thick airfoil set into motion impulsively and thereafter 

kept moving at a constant velocity with an angle of attack of 150 and a Reynolds 

number of 1000. This figure is for the time level immediately after the motion's 

onset. The vorticity is confined to the boundary of the airfoil and the flow away 

from the airfoil is potential. Note that the rear stagnation point is on the upper 

surface of the airfoil. 
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FLOW AROUND AN AIRFOIL WITH A SEPARATION BUBBLE '-' 

1---------..... -.- .-. - - ..... -.- ... -. 

I 

l_ 
This figure shows the computed streamlines and constant vorticity contours 

around the airfoil after the airfoil has advanced 2.9 chord lengths rdative to the 

freestream. A separation bubble has appeared and grown to its present size. The 

vorticity field is still confined to the region near the airfoil as shown. With the 

integro-differential approach used here, it is only necessary to perform 

computations in the vortical region. Therefore the grid needs only be generated 

for the vortical region. 
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.. _-----_ .. -_.--._--_ ...... _-_ ......... _----_ ...... ---.--.-----------~ 
OUTLINE OF GRID GENERATION PROCEDURE 

The recommended procedure for generating a conformal grid with control ove 

grid spacing consists of four steps: 

I (1) The locations of grid points on the physical contour that are mapped ont 

equally spaced points on a unit circle through a "Joukowski type" conformal 

transformation are computed. 

(2) The coefficients in a finite Laurent series are computed as described 

earlier. 

(3) A suitable bilinear transformation is introduced. 

(4) Grid locations corresponding to concentric circles and radial lines in 

bilinear transformed plane are computed. 

----- . _ .... _ .. _----_._-_. __ . ---.. 

] 
A computer program (prepared by N. L. Sankar) which performs step (1) is 

available. This program uses an iterative procedure (Bauer et aI, 1977 and other 

researchers). A spline approximation is utilized to achieve a high degree of 

accuracy. The operation count for this step is small. For each given contour, 

if several different grids are to be generated, then step (4) is the only step that 

needs to be repeated. Steps (1) and (2) need to be performed only once for the 

contour. Step (3) needs to be performed only once for all contours of interest. 
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CONCLUDING REMARKS 

---------------.---------.---------~ 

Body-fitted conformal grids can be generated efficiently usmg th 

approach described. 

Ample freedom exists in the control of grid spacing on any contour so tha 

the physics of the flow can be suitably accomadated. 

------_._---

The work reviewed here represents only the initial stage of development of 

a new conformal mapping approach for grid generation. Based on the results 

obtained thus far, this approach is a highly promising one for use in computing 

complex flow problems. 




