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PREFACE 

This volume constitutes the final report for NASA Contract 

NAS-1-15770. This contract was funded by NASA Langley Research 

Center for the period of 10 April 1979 through 9 April 1980, 

although the project actually began in January 1979. 

This project was used to fulfill part of the requirements 

for the Master of Engineering (ME) and Doctor of Engineering (DE) 

degrees for three graduate students at the University of Kansas. 

Major Garey T. Mat suyama , a DE candidate on leave from thp United 

States Air Force Academy, served as project director. Assisting 

him were Kevin Hawley and Paul Meredith, ~1E candidates, who both 

made significant contributions to the project. 

The objective of the ME-DE progrdlD at the U!liversity of 

Kansas is to providz students with an educational experience 

which includes graduate level Lechnical and management courses, 

practical engineering experi~l'\ce tlorough an internsnip program 

in industry or government, and a signifirar.t engineering project 

which provides direct experience with management problems. 

interpersonal relations. communication. and challenging technical 

problems. 

We are grateful to the NASA Langley Research Center for 

supporting this project which not only provided the unique 

experiences required for the success of this educational pr'~ram 
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but also contribured to advancing the level of aeronautical 

technology. 

David L. Kohlman 
Principal Investigator 
Professor of Aerospace Engineering 
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CHAPTER 1 

SUMMARY 

A study directed toward the identification and evaluation of 

applicable advanced technologie~ for general aviation was per-

form~d. An extensive data base was generated through visits to 31 

general aviation manufacturers and 3 NASA research centers as well 

as through an exhaustive literature search. An evaluation tech-

nique was developed which allowed candidate technologies to be 

ranked according to potential benefit. Finally, design studies 

were performed for a 6-passenger personal/business airplane and a 

19-passenger commuter airplane. The General Aviation Synthesis 

Program (GASP) was utilized during the design studies t0r propul-

sion system and vehicle sizing as well as mission periormance 

analysis. 

In assembling the data base, extensive notes which were ac-

qui red from the visits were eciited and are included in the report 

as an appendix. ~6 of the 137 technologies initially identified 

were evaluated and are discussed se~arately in the report. 

The results of the technology evaluation indicated that 

propulsion, aerodyn3mic, and composite technologies are extremely 

attractive to general aviation. ~len these technologies were in-

corporated into the design synthesis of the two airplanes, higher 

wing loadings and smaller ahplanes resulted. Fuel savings of 

50% for the 6-passenger airplane and 40% for the commuter were 

realized. 
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CHAPTER 1. 

INTRODUCTION 

General aviation represents 96% of the civilian pilot force 

flying 99% of the civil aircraft and 84% of the total flight hours 

in the United States. During 1979 alone, factory billings for 

aircraft shipments amounted to $2.2 billion. However, propeller 

technology is largely of World War II vintage, reciprocating 

propulsion systems are cooled by excessively rich mixtures during 

climb, autopilot functions are fed back to the pilot as distract

ing control movements, and construction is typified by conven

tional aluminum sheet-stringer structure with protruding rivet 

heads in a large number of current aircraft. 

This apparent conflict, where the fleet size is large and 

heavily utilized, the industry is enjoying record sales, while 

the equipment appears outmoded, points to some unique character

istics of the general aviation environment. Specifically, 

(1) the users (particularly single-engine and commuter users) are 

much more sensitive to purchase price than their heavy-jet, 

commercial airline counterparts, (2) manufacturers are reluctant 

to incur increased production costs through product improvement 

for an apparently already satisfied market, and (3) the capital 

intensive nature of the industry may easily spell financial dis

aster for the manufacturer who misjudges the product improvement 

expectations of the user. 
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However, the fuel price and availability problema which 

began in 1973, together with strong public reaction to noiae and 

emissions pollution, have resulted in the acceleration in develop

ment of several new and promising technologies. 

2.1 BACKGROUND 

The recent development of many different technologies with 

potential application to the general aviation fleet of aircraft 

has reached a point where radically improved airplanes can now be 

foreseen. However, to realize these improvements applicable 

technologies must be identified and actively pursued in an 

orderly and timely manner. Also, synergistic effects resulting 

from the integration of appropriate technnlogies require identi

fication in order to better define research. 

To illustrate this latter point, consider the development of 

an advanced natural lamina~ flow airfoil. Thorough evaluation of 

this technology would appear to dictate eventual full scale tunnel 

tests and flight teste. However. since surface roughness can 

impose severe penalties on the performance of this airfoil, a 

composite or bonded ~ing may be called for in order to eliminate 

the problem of rivet lines and butted skin joints. Here, a 

decision t~ pursue natural laminar airfoils through conventional 

manufacturing techniques may lead to an erroneous evaluation, 

while a decision to investigate a co~posite wing may be delayed 

if its potential benefit is seen only as an improvement in 

empty weight (when a conventional airfoil is utilized). 

........... 



The key issues facina both research institutions (NASA 

Research Centers) and a capital intensive industry when confronted 

with the question of which techno1oaiea to pursue appear to lie 

in how to identify thoae technologies which offer great potential 

for improving safety. performance, and cost as well as how to 

identify those with questionable benefits. An attendant result 

of such an evaluation appears to be the identification of those 

technologies with noteworthy (as opposed to highly ~ignificant) 

benefits which might be attained for a rather low level of 

development effort. 

Silnificant pioneering work done in this area of techno1olY 

evaluation was recently completed by Berley (Ref. 18). The 

present research represents an effort to continue with this type 

of work on a much broader scale and in much Ireater depth. 

2.2 PURPOSE 

In light of the above discussion, the purpose of this 

res~arch is threefold: 

(1) Identify candidate technologieF which appear to offer 

improvements in safety, fuel efficiency, performance, and 

utility of general aviation airplanes. 

(2) Quantify the magnitude of these improvements. 

(3) Investigate the synergistic effects of advanced technology 

integration on general aviation airplanes. 
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2.3 SCOPE 

Recognizing the different requirement, of different types of 

airplane. within general aviation, this reaearch effort w •• 

directed to an investigation of the impact of new technologies 

on a small airplane with a 6-passenger cabin (including pilots) 

and a larger airplane with at least a l2-passenger cabin (exclud-

ing pilots). Performance guidelines for these two airplanes were 

very broad. General guidelines adopted for this study included 

high maximum 1ift-to-drag ratios on the order of 18, cruise 

speeds on the order of 250 knots, and landing speeds below 60 

knotb. 

Those tasks which were specified as a part of this study 

included the following: 

(1) R~presentative manufar.turers within the beneral aviation 

industry and certain NASA Research Centers were visited in 

or~er to integrate the views of government agencies and 

industry concerning new technologies. 

(2) Promising new technologies were identified. and their impacts 

on two dif~erent airplanes were evaluated. 

(3) Trade studies for the two specified airplanes configured 

conventionally witL aft tails and also as canards were 

performed (althou6h the canard studies met with difficulties). 

(4) The Gen~ral Aviation Synthesis Program (GASP) was utilized 

in the evaluation of those technologies which affect vehicle 

weight and performance. 

w -



2.4 APPROACH 

The approach utilized to accomplish the required tasks lead-

ing to successful attainment of the goal of this research may be 

broadly categorized as follows: 

(1) Identify and develop a data base. 

(a) Conduct a literature search. 

(b) Acquire, review, and tabvlate pertinent documents. 

(c) Visit manufacturers and NASA research centers. 

(2) Identify, develop, and test an evaluation technique. 

(3) Identify and evaluate techuologies. 

(4) GASP 

(a) Gain familiarity with the program. 

(b) Modify as required to evaluate technologies. 

(c) Benchmark against current technologies. 

(d) Use to size configurations. 

(5) Design and evaluate two advanced technology airplanes. 

2.5 REPORT FORMAT 

Each of the four major tasks listed previously in Section 2.3 

is liscuss~d in a separate chapter within this report, and an 

associated appendix is included where supporting documentation 

for three chapters is prcvided. Here Appendix A is provided for 

Chapter 3 (visits). Appendix B is provided for Chapter 4 (techno-

evaluation), and Appendix C is provided for Chapter 5 (designs). 

GASP modifications ar~ discussed in Chapter 6. 

Finally, Chapter: summarizes the results of the research ef-

fort and Chapter 8 closes with conclusions and recommendations. 

~ 

I 

.. 



3.1 INTRODUCTION 

CHAPTElll 

VISITS !Q MANUFAC'l1JRERS 

AND RESEARCH FACILITIES 

Visits to manufacturers and NASA research facilities formed 

one of three major thrusts of the present research. The purpose 

of this particular effort was to interview representative indus

try and research facilities with the goal of developing the 

information base and contacts required to support the project. 

The 34 facilities which were visited provided a wealth of infor

mation and. as a spinoff. directed attention to many other sources 

of pertinent information. 

This chapter presents an overview of the planning. initiation, 

proceedings, and results of the visitation phase. Appendix A is 

included as a supplement. where notes assembled by the research 

team during each visit have been compiled. ecl:ted. and are 

presented in abbreviated form. 

3.2 MANUFACTURERS, RESEARCH FACILITIES, AND MEE'fINCS 

The work state~ent for this research pff~rt listed 28 manu

facturers and research facilities to be visited. As the project 

progressed, the list was modified to accomodate changes in order 

to provide the required data b~se for the ensuing technrylogy 

evaluation. In order to support the final visitation list without 

exceeding budget constraints, different modes of transportation 
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were utilized. Figure 3.1 illu.trates the scope of the visitation 

phase by presentina the geographical location of the facilitiee 

involved in thi3 reeearch project. I 
3.2.1 Manufacturing Facilities I 

Table 3.1 provides a listing of those manufacturere vieited. I 

3.2.2 Changes ~ the Manufacturer Visitation Scbedule 

These changes represent the addition of five facilities to 

those already planned for. The following is a summary of the 

changes and the rationale for including them. 

(1) Bellanca Aircraft Engineerlng. This firm was responsible 

for the development of the Bellanca Skyrocket, a high per-

formance single engine aircraft. The inclusion of this firm 

was believed to be important because of their achievements 

in low drag airframes and composite construction techniques. 

(2) Hartzell, Hamilton Slandard, and McCauley. An examination of 

the initial list of facilities detected deficiencies in 

the propulsion area. While engine manufacturers were in-

eluded, representatives of the propelier manufacturers were 

not. These three companies were added to the facility list 

to broaden the propulsion technology base. 

(3) Curtiss-Wright. This facility was added because of their 

work with rotary combustion engines. 

3.2.3 Professional ~~eting~ 

These meet!ngs proved valuable to the research efforts of the 

project and provided significant insight to technology 
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Table 3.1- General Aviation Manufacturing Facilities Visited 

i 
Type 

~ , Facility Canpany Loe,uion 
I-
I 

" Airframe Beech Aircraft I Wichit&, Kansas , 
; ! 

Corporation 

II ~ Bellanca Aircraft Alexandria, Minnesota 
Corporation 

Bellanca Aircraft Middletown, Delaware 
Engineering, Inc. 

e'ssna Aircraft 
Corporation 

Pawnee Division Wichita, Kansas 

Wallac£ Division Wichita, Kansas 

Gates Learjet Wichita, Kansas 
Corporation 

Gu1fstream American Savannah, Georgia 
Corporation 

Mooney Aircraft Kerrville, Texas 
Corporation 

Piper Aircraft Lakeland, Florida 
Corporation t 

Rockwell International I 
General Aviation Bethany, Oklahoma 
Division 

Rutan Aircraft Mojave, California 
Factory 

Avionics Brittain Industries. Tulsa, Oklahoma 
and Inc. 
Autopilots 

Cessna Aircraft 
Corporation 

Aircraft Radio & Boonton, New Jersey 
Control Division 
(ARC) 
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Table 3.1. 

Avionics 
and 
Autopilots 
(cont) 

Systems 

General Aviation Manufacturing 'aclliti.s Visited 
(Continued) 

Edo Aire/Mltchell 

King Radio 
Corporation 

Narco Avionics 

Rockwell International 

Avionics and 
Missile Group 
(Collins Avionics) 

Sperry Flight Systems 

Avionics Division 

Mineral Wells. Texas 

Olathe, KanEias 

Fort Washington, 
Pennsylvania 

Cedar Rapids, Iowa 

Phoenix, Arizona 

Bell Helicopter Textron Fort Worth, Texas 

Bertea Corporation 
(Division, Parker 
Hannifin Corp) 

Garrett AiResearch 
Industrial Division 

Systems Technology 
Inc. (STI) 

Irvine, California 

Los Angeles. California 

Hawthorne, California 

Propulsion Avco Lycoming 
Stratford DiviRion 

Stratford, Connecticut 

Cessna Aircraft 
Corporation 

McCauley Accessory 
Division 

Curtiss-Wright 
Corporation 

Garrett AiResearch 
Manufacturing Co. 

Hartzell Propeller 
Inc. 
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Table 3.1. General Aviation Manufacturing Facilities Visited 
(Concluded) 

Propulsion 
(cent) 

Teledyne Continental 
Hotors 

Aircraft Products 
Division 

Unit~d Technologies 
Corporation 

Hamilton Standard 
Division 

Pratt and Whitney 
of Canada 

Williams Res~~rch 
Corporation 

Mobile, Alabama 

Windsor Locks, 
Connecticut 

Montreal. Canada 

Walled Lake. Michigan 

implementation, current state-of-the-art, and advanced technology 

development efforts. An attendant benefit was the acquisition of 

reference material. The presentations provided exposure to many 

subject areas of interest and th~ acquired papers provided 

documented support for the opinions expressed by the speakers. 

The NBAA meeting differed significantly from the others in tliat 

it provided product information as well as an exposure to the 

marketing strategi~s of manufacturers. Table 3.2 provides a list 

of the meetin~s attended. 

3.2.4 Research Facilities ------>- ---- .. -.. ----

Three NASA r('searl'h facilitlt>s were;> visitpd as shown in 

Table 3.3. These centers provided the necessary technical 

background fOT emcrgin~ technologies which would otherwise be 

l~ 
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Table 3.2. Professional Meetings 

Meeting 

1st Central Oklahoma 
AlM Mini SyU\posium 

Organizat ion 

American Institute 
of Aeronautics and 
Astronautics 

Society of 

Month 
(1919) Location 

Feb Norman, 
Oklahoma 

Apr Wichita, Business Aircraft 
Meeting Automotive Engineers Kansas 

Display Systems 
Engineering Short 
Course 

AIM Systems and 
Technology Meeting 

University of 
California at 
Los Angeles 

American Institute 
of Aeronautics ilt1 d 
Astronautics 

Jun Los Angeles, 
California 

Aug New York, 
New York 

NBM National National Business Aug Atlanta, 
Georgia Convention Aircraft Association 

General Aviation Lewis Research Nov Cleveland, 
Ohio Propulsion Conference Center (NASA) 

unavailable (unpublished). Also, they wi1ling:y discussed both 

strengths and weaknesses of candidate technologies within their 

fields of expertise. 

Table 3.3. NASA Researc~ Centers 

Center Date Location 

Ames Research Center June, 1979 Moffett Field, Calif. 

Langley Research Center August. 1979 Hampton, Virgir.ia 

Lewis Research Center June. 1979 Clevel1\nd. Ohio 
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3.2.5 Facility Contac!! 

Successful implementation an~ completion of the visitation 

phase relied heavily upon the contacts established with the 

facilities. Table 3.4 lists the final contacts at each facility. 

3.3 MEETINGS 

All meetings within the v1sitation phase proved quite fruitful. 

In every esse. the reception of the oroject staff by the facility 

representatives was exceptional, and an open and candid atmosphere 

prevailed throughout all discussions. Areas of mutual interest 

regarding current work on advanced technologies as well as the 

impressions and attitudes of the general aviation industry were 

discussed. To cover each of these meeti..gs individually is 

impractical in this text. Therefore, an abbreviated compilation 

of notes generate~ by the project staff at each of the facilities 

visited is included as Appendix A. 

The following discussion is intended to serve as an intro-

duetion to that appendix. As such, it provides a brief description 

of the subject areas discussed during the meetings. Manllfacturer 

visits are first discussed, followed by NASA visits. 

3.3.1 Discussions Nith Manllfactur:.!E.S. Facilities 

3.3.1.1 Airframe. The airframe manufacturers are, in every sense, 

the generalists of the industrv. Their final produc~, an op~ra-

tiona1 airplane, must include products representing many techno-

logies and disciplines. Th~s, these manufacturers ml'.st have an 

awareness of all aspects of the industry. 
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Table 3.4. Facility Contacts 

Facility Contact 

Ames Research Cent.r Seth Anderson 
Research Assistant 
Intra-Agency Programs 

Avco Lycoming Walt Schraeder 
Director of Advanced Technology 
Engines 

Beech Aircraft Corporation Bill Wise 
Vice President 
Advanced Technology 

Bell Helicopter Textron Hugh Upton 
Group Engineer 
Research Electronics 

Bellanca Aircraft Corporation Andrew Vano 
Chief Engineer 

Bellanca Aircraft August Bellanca 
Engineering, Inc. President & Chief Engineer 

Bertea Corporation John C. Hall 

Brittain Industries. Inc. 

Cessna Aircraft Corporation 

ARC Division 

McCauley Accessory 
Division 

Pawnee Division 

Wallace Division 

Curtiss-Wright Corporation 

Group Vice President 

Charles Walters 
President 

Virgil Davis 
Chief Engineer 

W.B. Voisard 
Chief Engineer 

Harvey Nay 
Chief Engineer 

Emmett Kraus 
Supervisor of Advanced Design 

Bill Silvestri 
RC Engin~ Program Manager 

r 
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Table 3.4. Pacility Contacts (Continued) 

Facility Contact 

Edo Aire/Mitchell John Nixon 
Chief Engineer 

Garrett AiResearch 

Industrial Division 

Manufacturing Company 

Gates Learjet Corporation 

Gulfstream American 
Corporation 

Hartzell Propeller Inc. 

King Radio Corporation 

Langley Research Center 

Lewis Research Center 

Mooney Aircraft Corporation 

Narco Avionics 

Dick Barcus 
Project Engineer 
Aircraft Systems & Control 

M.C. Steele 
Director of Engineering 

Richard Etherington 
Director of Technical 
Engineering 

Bob Stewart 
Assistant to the Vice 
President of Engineering 

Ben Harlamert 
Vice President. Engineering 
& Chief Engineer 

Dan Rodgers 
Group Leader 
Special Programs 

Bruce Holmes 
Aerospace Technologist 
Flight Mechanics Division 

William Strack 
Supervisory Aerospace Engineer 
PropulSion Section 

Fen Taylor 
Chief of Aerodynamics and 
Performance 

Norman Messinger 
Manager 
Advanced Development 

13 

t rrt rtrt 



Table 3.4. Facility Contacts (Concluded) 

Facility Contact 

Piper Aircraft Corporation 

Rockwell International 

Grahame Gates 
Director 
Advanced Engineering 

Collins Avionics G.L. Benning 
Vice President of Advanced 
Technology and Engineering 

General Aviation Division Larry McHughes 
Director, Engineering 

Rutan Aircraft Factory Bert Rutan 

Sperry Flight Systems w.r. Robertson 
Manager, Engineering 

Systems Technology Inc. 

Teledyne Continental Motors 

United Technologies Corp. 

Irving L. Ashkenas 
Vice President 

L. Waters 
Vice President 
Aeronautical Engineering 

Hamilton Standard Division D.F. Phillips 
Head of Technical Planning 

Pratt & Whitney of Canada Sid Monaghan 
Chief, Research and Development 
Support 

Williams Research Corporation Edward J. Lays 
Senior Applications Engineer 
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.. 
Key areas included in the discus.iona were: 

(1) Propulsion and powerplantl. New generation enginel, engine 

controls, propellers, and their integration into an airframe. 

I (2) Structures. Composites, metal~etal bonding_ 

r 

I 
(3) Systems. Flight control systems, micro-computer based 

systems, and avionics. 

(4) Aerodynamics. New generation NASA airfoil sections, and 

computational aerodynamics. 

(5) Configuration. The advantages and disadvantages of canards 

and tandem wings. 

3.3.1.2 Propulsion. Much developmental work is occuring within 

this industry, and many promising concepts are emerging. The 

"new generati.on" of general aviation powerplants and propellers 

was a prime topic throughout the industrial and research community. 

Topic<; discllssed with the propulsion repres(>ntatives were: 

(1) General Aviation Turbine Engine - GATE. 

(2) General Aviation Propeller Study - GAP. 

(3) Advanced propellers - configuration aspects, advanced airfoil 

sections, composite materials. 

(4) Propulsion integration - airframe-powerplant integration. 

(5) High speed propellus - p.:-c'I,fan. 

(6) Posit ive displacement engines - diesel, n,tary combust ion 

engine. advanced reciprocatin~ en~ine concepts. 

(7) Powerplant control - integrated controls. microprocessor-

based c.mtrols. 

3.3.1.3 Avionics. Ad~anced technology prpvails within this manu-

facturing group ~ue to the competitive nature of this particular 
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market. Survivability demands continued re ... rch and development 

in new technolo,y areas, re.ulting in a level of sophistication 

that often aurpaas.s military and commercial markets. 

Areas covered during the discussions included: 

(1) Digital technology - analog veraus digital avionica. 

(2) Integration - multi-fw\ction avionics packages and atandardi

zation, multiplexing. 

(3) Displays - electronic displays and instrumentation. 

(4) 'light controls - digital Lad electronic flight cOutrol 

systems. 

3.3.1.4 Systems. Systems manufacturers offer areas of technology 

transfer to general aviation. For the most part, their main 

contributions lie in areas other than general aviation. Broad 

foundations in other fields allow "spinoff" technologies to filter 

in onder circumstances and costs that are acceptable to the 

community of manufacturers and users. 

The areas discu@sed included: 

(1) Fli~ht control actuators - advanced hydraulics applied to 

general aviation. 

(2) Turbocharging - advancements for general aviation. 

(3) ~isplays - Heads up and head mounted displays. 

(4) Fiber optics - signal transmission, airframe structural 

monitoring. 

(5) Flight control systems - microprocessor based systems. 

fluidics. 
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It ahould be noted that co.menta by induatry repreaentatlvea 

were not ltmited aolely to the topic. liated. Due to the nature 

of the interviews. the perlonal interesta of the participanta, 

and the degree of integration required for production of general 

aviation hardware, much overlap between subject area. existed. 

Appendix A should be eon.ulted for further information. 

3.3.2 NASA Research Centers 

Appendix A also includes the summari2:ed notes from the visits 

to the Ames, Langley, and Lewis Research C:enters. 

3.3.2.1 Ames Research Center Topics. 

(1) Avionics 

(a) Preliminary Candidate Advanced Avionics Systems (PCAAS). 

(b) Demonstrator for Advanced Avionics Systems (DAAS). 

(2) Stall/spin aerodynamic tailoring. 

(3) Cooling drag. 

(4) Small Transport Aircraft Technology (STAT). 

(5) Aerodynamics. 

3.3.2.2 Langley Research Center ropic~. 

(1) Crash dynamics - seats. restraints, structures, fire preven

tion. 

(2) Composites - types, testing, characteristics. 

(3) Aerodynamics 

(a) 3-dimensional 

(b) 2-dimensional 

natural lamin~r flow sections 

. low speed sectio~s 
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• high speed sections 

(4) Avionics and control. - pilot-ATC interface, fluidics. pilot 

workload. 

(5) Stall/.pin research. 

3.3.2.3 ~~ Research Center 1opic •• 

(1) GATE 

(2) Positive displacement en,ines 

(a) Advanced reciprocating engines. 

(b) Alternative engine systems 

• Diesel engines 

Rotary combustion engines 

(3) Propeller Technology - turboprop, prop fan, variable pitch 

fan. turbofan, GAP program. 

3.4 RESUL'f~ 9F THE FACIl.ITY VISITS 

The visitation phase of the project proved to be quite 

successful. A strong data base was developed through the inter-

views as well as from those sourc~s of information identified 

during the intervic~s. Also, the insight and opinions of the 

I 

I 
various representatives pr~vided indications of the practicality 

and/or feasibility for advanced technology development. 

3.4.1 Technology and the Industry 

To general aviation. like other industries. a technology 1s 

of no use unless: 
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(1) 1t .. t1af1e. a need, 

(2) tbe developer CaD afford 1t, 

(3) 1t 1. prof1table to the u.er, aDd 

(4) 1t 1. 1ntroduced at tbe r11bt u .... 

The molt iaportant factor affect1na technology fmpleaentation 

1. u.er acceptance. Manufacturer. cannot afford to pursue a 

technololY merely to improve a product unle •• tbe u.er require. 

1t. A market for tbe techDololY mult ex1st, and tbe as.oc1~t.d 

develo~ntal costs mu.t be acceptable to tbe manufacturer. 

3.4.2 TechnololY and £2!l 

Three major cost constraints exist for tbe general aviation 

manufacturer when incorporating new technologies. tn general, 

'hese may be grouped into the broad categories of developmental 

costs, certification costs, and product liability COltS. 

3.4.2.1 Developmental~. Developmental COStl can be extreme, 

particularly in high technology areas. Many companies cannot 

absorb these and must rely instead on developments within NASA 

research centers or industries external to general aviation. 

Often. the production base or technology requirements of the 

automotive industry or the spinoffs realized from ~ther technolo-

gies serve to reduce general aviation developmental costs. For 

example, the cost of the 8,000 aircraft turbochargers producod 

annually benefits significantly from the 1 million unit. demanded 

by the automotive and tru,king industry. 
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3.4.2.2 Certification~. WhUe the project val conceruct 

pri.ari1y with an ........ nt of .dvanced tecbDoloaie •• the fe •• f-

bility of proai.iaa tecbno108ie. heiDI intelr.ted into future 

airp1.nes .ppe.red to be jeopardized •• .uch by certific.tion COltl 

as by techno10lic.1 ri.kl. Some manuf.cturer •• for example, 

pointed out that theae coata can amount to 10 to 100 time. the 

co.t of deve10pine the te,hn010gy itae1f. 

Since this difficulty ~resented serious imp1icstigns fo~ the 

research at hand. an effort wat made to aolicit the opiniona of 

manufacturers regarding certific.tion procedures. This w.s done 

in order to evaluate manufacturer p~rception. of the process and 

is not intended to be an evaluation of the process itself. In 

every case discussed, members of the present research team noted 

that sufficient information t.~ allow an unbiased evaluation of 

the problems identified was lacking. However, the following 

points appear to merit further discussion and consequently are 

incorporated into this report. 

(1) Interpretations of the same regulation by different FAA 

regional offices may sometime'J result in mark':!dly diffen~nt 

certification r~quirement.s for the same technology in differ-

ent regions. 

(2) Delays resulting from "excessive red tape" nrt! e:o:pensive to 

manufacturers. One frustrated manufacturer produced docu-

mentation which indicated that an application filed !fIure 

than 6 months earlier had yet to generate a response. 

(3) Personnel qualifications were addressed by one manufacturer. 

25 



In this particular case. the manufactur.~ was irritated 

because aL inexperienced individual with a civil ena1neer

ina backaround was aiven the responsibility for establishina 

compliance with propulsion/airframe certification require

ments. 

(4) New technoloaies are often evaluated by old or outdated 

techniques. In one case. an attempt to utilize a finite 

element computer code (NASTRAN) to validate structural 

integrity computations was perceived by the manufacturer 

to be hampered by a lack of familiarity with the code on the 

part of the certifying officials. 

The significant and common denominator which appeared when

ever a manufacturer chose to identify "difficulties with certifi

cation" was that the issue was usually an emotional one. Better 

corom"aications between manufacturers and FAA regional offices 

such that both parties recognize the difHculties faced by the 

other appears to be a fundamental requirement if the issues are 

to be resolved. The inescapable fact is that manufacturers pay a 

heavy premium in order to certify a new t.echnology. 

3.4.2.3 Product Liability Costs. These costs are also high. 

One airframe manufacturer pointed out that 15% of a single engine 

airplane's price represented product liability costs. Another 

general aviation manufacturer pointed to insurance premiums of $3 

million per year to illustrate these costs. 

Nuisance suits seem to prevail within this industry, and 

several examples were pointed out by some of the manufacturers. 
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Whether justified or not, such suits represent a very real coat 

to the manufacturer. 

The disturbing aspect of high product liability costa ts that 

they point to a history of large court settlements. This would 

appear to deter the incorporation of new technologies and, 

instead, promote an atmosphere !'f conservatism wi.thin the indus-

try. 

Two facets of product liability deserve mention. In one 

case, manufacturers may avoid new technologies for fear that the 

incorporation of improvements to systems may be interpreted to 

mean that deficiencie3 exist in previous models of the same 

system. This otherwise unne~e9sary exposure to suits can be a 

very real deterrent to the incorporation of new technologies. 

The second point to be made is thpt the incorporation of a 

new technology always has attendant risks. Here, the experience 

gained with a mature system will no longer assist the manufacturer 

in avoiding the many unforeseen problems associated with new 

technologies. Product liability takes on added Significance under 

these conditions. 

3.5 RECOMMENDATIONS FOR NASA 

The following suggestions and recommendations are the result 

of observations made during (he visits to manufacturers and 

research facilities. 

3.5.1 Communications 

Better communications need to be maintained between NASA and 

27 



the industry with regard to fortbcomina research topics .nd the 

results of completed research projects. For example, several 

companies indicated that they were not aware of the final reeults 

of the RedhAwk. and ATLIT programs. While this points to a dis

turbing llck of awareness of technical publications on the part 

of industry, NASA will promote its 1m3ge tmmensely if industry 

oHidals are advised of the availability of these reports. 

tnt':restingly, NASA publications designed to fulfill this task 

(SCAN's, STAR's, Tech Briefs, etc) apparently are not reaching 

the industry or are not being used by them. 

3.5.2 Basic Research and Product Development 

Industry encourages NASA involvelllent with basic ref€tlrch and 

discourages any efforts aimed toward product development. Sin~e 

industry involvement with basic research is Sffiall (less than 5% 

·f!&? .. 

of the total engineering budget for ont' of the industry's leaders), 

this research team emphasizes that NASA should continue its efforts 

in basic research. High risk technologies such as those associated 

with propulsion, and sophisticated aerodynamic analytical tools 

such as those associated with natural laminar flow airfoils and 

numerical optimtzation techniques deserve special attettion. 

Avionics manufacturers. on the other hand, appear wery of any NASA 

efforts which may be perceived to lead to standardization similar 

to those embodied in ARINC specifications. 

3.5.3 Research Contracts 

NASA should not fund programs which diminish a competitive 
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advantage which .. y already be enjoyed by a manufacturer th~ouah 

its own research efforts. In those ca.es where the problem is 

.are perceived than real, NASA should clearly and publicly define 

the limits of the research contract being awarded. 

.. 
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CHAPTER ! 

TECHNOLOGY EVALUATION 

The goal of this phase of the study was to establish a rank 

ordering of technologie& according to their benefits to General 

aviation airplanes. This involved three major task,l: (1) select-

ing the method of evaluation, (2) identifying the candidate tech-

nologies, and (3) ·avaluating the candidate technologies. 

4.1 METHOD OF TECHNOLOGY EVALUATION 

In selecting the evaluation method, the following criteria 

were applied to the available techniques in an effort to deter-

mine the technique best suited to the requirements of the present 

=esearch effort. 

(1) The method must allow the evaluation of specific technologies. 

(2) The method must allow dissimilar technologies to be evaluated 

in a consistent manner. 

(3) The method must be within the means (cost and time) of the 

project. 

(4) The method must be as objective as possible subject to the 

three previous criteria. 

Many of the techniques used in technological forecasting did 

not fulfill the requirements of this research effort. For example, 

regression and trend analyses assume one has suitable data to con-

struct extrapolations. Such data does not exist for many of the 

technologies considered in this SL~=Y because they have had only 

limited use in _eneral aviation airplanes. A direct technology 
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evaluation uSing the Delphi Method (Ref. 125) was rejected aa 

beyond the means of the project due to the large number of techno-

logies to be investigated. The evaluation method finally adopted 

is based on a technology figure of merit concept and has already 

met with some success (Ref. 18). This method, here termed 

"evaluation technique," is a simple linear compensatory lDOdel and 

is discussed below. 

4.1.1 Evalua~ Technique 

In the evaluation technique (ET), candidate technologies (eT) 

are evaluated relative to current technologies by assessing their 

impacts on a group of categories. The categories model the major 

factors involved in the operation of an airplane and are assigned 

weightings (w) according to their relative importan('e. The impact 

of a CT in a given category is quantified by a relative benefit 

(b). where b > 0 indicates that the CT offers an improvement in 

the category (relative to current technology) and b < 0 indicates 

that the CT causes a degradation in the category (relative to 

current technology). Summing the products of the relative benefits 

and category weightings yields a figure of merit (FM) for the CT 

which is a measure of how much improvement the candidate technology 

offers in the overall operation of the airplane. The figure of 

merit is defined by Equation 4.1 while Fig. 4.1 illustrates the 

general concept of the evaluation technique. 

FM '"' i 
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where n is th~ number of categories, 

bij is the relative benefit of technology i in category j, 

Wj is the weighting of category j. and 

FMi is the figure of merH of technOlogy i. 

Referring to Fig. 4.1, one notes that the adoption of t:his 

type of technology evaluation method is not without difficulties. 

First, the categories must be selected, and second, their weight-

ings must be determined. So, while the ET inherently satisfied 

the first three criteria, the fourt •• criteria, that of objectivity, 

demanded that special attention be given to the category selection 

and weighting. 

4.l.~ Category Selection 

The first step in defining the category group was the estab-

lishment of the following ~election criteria: 

(1) The group of categories must be broad enough to model the 

major factors involved in the operation of an airplane. 

(2) There should be a mini~um of overlap between individual 

categories. 

(3) The number of categories should be as small as possible 

while satisfying the first two criteria. 

Various selection schemes were studied, and it soon became 

obvious that all of them involved generating a consensus from a 

set of opinions. The Delphi Method, althou~h too involved for 

th~ overall t~chnology evaluation, ~eemed \lell suited to th~ cate-

gory selection problem and was therefore used. The survey group 

for the cateogry selection consisted of the project staff and the 
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the faculty members of the Department of Aerolpace Engineering 

at the University of Kansas. 

The category selection survey I involved the following pro-

cedures: 

(1) Obtain a category list, confidence level, and comments from 

each of the participants. The confidence level is a measure 

of a participant's confidence in his response. 

(2) Analyze the group response and generate an "average" category 

list. 

(3) Feed back the average category list along with participant 

comments. 

(4) Repeat (2) through (3) until a viable "average" category list 

is obtained. 

The Delphi Method worked quite well although the analysis of 

the group response was complicated by the fact that the survey 

dealt with symbols (in the form of category names) instead of 

numbers. The survey converged to an acceptable category list 

(17 categories) in four survey rounds. The final category list is 

given in Table 4.1. 

Referring to Table 4.1, one notes that some categories appear 

to overlap. Examples are the categories of Fuel Efficiency, 

Reliability, and Direct Operating Cost. The problem is minimized 

when one considers that Fuel Efficiency is concerned wit:- fuel 

availability as well as with fuel costs. Lik~wise, Reliability 

is concerned with operational readiness as well as maintenance costs. 
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With these faetors in mind, the eatelory list was eonsidered 

aeeeptable. Further diseussion of the eatelory selection survey 

may be found in Appendix B.l. 

Table 4.1. TeehnololY Evaluation Catelories 

Catelory Definition 

Ceiling 

Crashworthiness 

Cruise Speed 

Direct Operating Cost 

Emissions 

Empty Weight 

Exterior Noise 

Fuel EfficiE-ncy 

Interior Noise 

Altitude at which the maximum 
rate of climb ia 0.51 mls 
(service ceilinl). 

The characteristics of an air
plane which determine the level 
of occupant protection in the 
event of a crash. 

Maximum continuous cruise 
speed. 

All costs directly attributable 
to flying and keeping an air
plane operational. All 
scheduled and unscheduled main
tenance costs and fuel costs 
are included. 

Pollutants produced during 
the operation of an airplane; 
does not include noise. 

Airplane weight without fuel, 
crew, and payload. 

Noise perceived at ground 
level due to the operation 
of an airplane. 

Airplane cruise efficiency 
measured in air-miles per 
pound-fuel. 

Noise perceived by the occu
pants of an airplane. 
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Table 4.1. Technology Evaluation Categorias (concluded) 

Catelory 

Pilot Workload 

Purchase Price 

Range 

Reliability 

Ride Qualities 

Safety 

Static Comfort 

Takeoff/Landing Performance 

Definition 

The amount of time. concentra
tion. and effort a pilot must 
devote to the safe operation 
of an airplane. This includes 
the affacts of airplane handl
ing qualities. 

The price paid for a new air
plane by the user. including 
avionics and equi~ment co~ts. 

The distance an airplane can 
fly without refueling. allow
ing for appropriate fuel 
reserves. 

A measure of the pr('babllity 
of failure of an airplane com
ponent or system. 

A measure of the effects of 
ai~craft motion on the smooth
ness and comfort of the ride 
experienced by the occupants. 

A measure of an airplane's 
inherent characteristics 
which reduce the probability 
of an accident. 

A measure of an airplan~'s 
inherent comfort. This in
cluUp.s roominess, seat com
fort. ventilation, decor, 
ease of entry, etc. 

This parameter includes take
off and landing speeds, field 
length requirements, and 
rates of climb and descent. 

37 

• 



4.1.3 Catelory Weiahttgas 

Having compll~ad the category selection survey, the Delphi 

Method was again used in the deta1'llination of the cstegory _tahU. 

This survey, termed the "category rating survey". was cODducted on 

a much larser scale than the category selection survey with 42 

participants representing general aviation manufacturers and user 

groups, university faculty, NASA centers, and project staff. A 

list of the participants is aiven in Table 4.2. 

Upon reviewing thf! 17 categories to be weighted, it was 

noted that in general, different types of airplanes would have 

different sets of category weights because of differing operational 

priorities. Because the statement of work (for this study) speci-

fied that two types of airplanes were to be investigated, two sets 

of category weightings were generated. In the rest of the text, 

the two airplanes are referred to as Airplane A, which is a six 

passenger (including pilots) airplane for business and/or personal 

transportation, and Airplane B, which is a 19 passenger (excluding 

pilots) commuter airliner. 

\ 
I 

f , 

The category rating survey was conducted as outlined below: 

(1) PartiCipants gave each cat=gory (for each airplane) a rating 

(R) constrained by 0 < R < 10 with a minimum scale increment 

of .5. R· 10 was aSSigned to the cat~gory considered most 

important and the other categories were rated in a relative 

manner with R • 0 mean~ng the category is of no importance 

relative to the most important one. Duplications in ratings 

were allowed because two or more categories could be of equal 
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T"-'le 4.2. Cat.aory latina Survey Participant. 

Aircraft Ownere and Pilote Aasociation 

AVCO Lycoming 

Beech Aircraft Corporation 

Bell Helicopter Textron 

Be11ance Aircraft Corporation 

Bellance Aircraft Engineering, Inc. 

Brittain Industries, Inc. 

Cessna Aircraft Company - Aircraft Radio and Co.~I;rol Division 

Cessna Aircraft Company - Pawnee Division 

Cessna Aircraft Company - Wallace Division 

Commuter Airlines Association of America 

Curtiss-Wright Corporation 

Edo-Aire Mitchell Division 

Garrett-AiResearch - Industrial Division 

Gates Learjet Corporation 

Gulfstream American Corporation 

Hartzell Propeller. Inc. 

King Radio Corporation 

Mooney Aircraft Corporation 

Narco Avionics Division 

NASA Ames RL'search Center 

NASA Langley Research Center 

NASA Lewis Research Center 

National Business Aircraft Association 

39 

• 

_-......._----------------_ ..... ---~--.--



~~ ....... ...-______ sz"""'~· --.-.;;;....~ .. -~.~.~ .. ~-

i 

* 

Table 4.2. Catelory Rating Survey Participant. (concluded) 

Parkel H8~nlfin Corporation - Control 5Ylt .. Divi.1on 
(formerly Bertea Corporation) 

P1.pe) Aircraft Corporation 

Pratt & Whitney Aircraft of Canada, Lld. 

Rockwell International - ColUnl Dividon 

Rockwell International - General Aviation Divilion 

Sperry Flight SY8tems - Avionics Division 

Systems Technology Incorporated 

leledyne Continental 

Williams Research Corporation 

* University of Kansas, Aerospece Engineering Faculty 

* Projecl Staff 

These groups each contributed more than one particl~ant 

importance. Participants also rated their degree of confi-

dence in their response with a confidence level (Cl) con-

strained by 0 ~ ~T. ~ 1 for each airplane. Comments on the 

category ratings were encouraged. 

(2) Feedback to the participant3 consisted of information regard-

iug the mean category ratings, the category rating distribu-

tions (in the form of histograms). and p~rticipant CJmments 

faT each of the airplanes. 

(3) The survey continued until the participant response reached 

a predetermined level of stability (less than 151. change in 

partir.ipant voting). 
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The category rating survey required three rounds to achieve 

satisfactory convergence. The category weightings used in the 

evaluation technique are simply the mean category ratings trom the 

final survey rounds. 

Table 4.3 presents the final category weightings for Airplanes 

A and B and Table 4.4 shows the category rankings in order of 

importance. Details of the category rating survey may be found in 

Appendix B.2. 

4.2 CANDIDATE TECHNOLOGY IDENTIFICATION 

This section deals with the selection of the technologies to 

be analyzed with the evaluation technique and discuss~s the data 

base used. Since a large list of advanced technologies is easily 

created, several constraints were placed on the selection process. 

An early list, defined as "Preliminary Candidate Technologies," and 

a final list, defined as "final Candidate Technologies," are both 

discussed here. 

4.2.1 Data Base 

In selecting candidate technologies, one must first collect 

information regarding technolo~:~s in general. The project relied 

on three major sources of information as detailed below. • 
4.2.1.1 Literature Search. A computerized literature search was 

conducted using the Lockheed DIALOG system. In preparing for the 

computer search, a manual search was made of the NASA STAR index 

to identify key words, technology areas, and ~amp1e titles. This 
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Table 4.3. Evaluation Technique Category Weighting. 

Weighting. 
Category * ** Airplane A Airplane B 

Ceiling 5.429 5.447 

Crashworthiness 6.816 7.333 

Cruise Speed 7.922 7.480 

Direct Operating Cost 7.906 9.451 

Emissions 1.606 2.156 

Empty Weight 4.340 5.657 

Exterior Noise 4.287 5.413 

Fuel Efficiency 8.157 8.606 

Interior Noise 7.037 7.452 

Pilot Workload 7.349 6.998 

Purchase Price 8.515 7.761 

Range 7.290 7.181 

Reliability 8.854 9.547 

Ride Qualities 6.110 7.238 

Safety 9.422 9.544 

Static Comfc~ L 6.244 6.797 

Takeoff/Landing 
Pe:."formence 6.874 7.407 

* Airplane A - 6 Passenger Business/Personal Airplane 

** Airplane B - 19 Passenger Commuter Airliner 
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Table 4 .4. Evaluation Technique Catelory Rankinls 

Rank 
Catelories 

Order * ** Airplane A Alrplli.&"l~ B 

1 Safety Reliability 

2 Reliability Safety 

3 Purchase Price Direct Operatinl Cost 

4 Fuel Efficiency Fuel Efficiency 

" ,I Cruise Speed Purchase Price 

6 Direct Operating Cost Cruise Speed 

7 Pilot Workload Interior Noise 

8 Range Takeoff/Landing 
Performance 

9 Interior Noise Crashworthiness 

10 Takeoff/Landing Ride Qualities 
Performance 

11 Crashworthiness Range 

12 Static Comfort Pilot Workload 

13 Ride Qualities Static Comfort 

14 Ceiling Empty Weight 

15 Empty Weight Ceiling 

16 Exterior Noise Exterior Noise 

17 Emissions Emissions 

* Airplane A - 6 Passenger Business/Personal Airplane 
'II'll 

Airplane B - 19 Passenger Commuter Airlinet 
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resulted in six primary search topics (a-f) to which three specific 

topics (g-i) were later added. 

(a> Aircraft Design 

(b) Aircraft Propulsion 

(c) Aircraft Structures 

(d) Flight Controls 

(e) Navigational Aids 

(f) Avionics 

(g) Canard Configurations 

(h) NAVSTAR/GPS 

(i) GASP (General Aviation Synthesis Program) 

Table 4.5 presents the initial results of the computer search 

in terms of the number ci abstracts printed for each search topic; 

note that some topics were combined to eliminate duplications. 

The 1655 abstracts were reviewed individually to identify pertinent 

articles. This resulted in 107 articles which were obtained from 

NTIS. The specific search procedures used for each topic may be 

found in Appendix B.3. 

4.2.1.2 Visits and Meetings. Quite a few articles were found 

through recommendations of various people and from the references 

given in other articles. Also, aviation related magazines and 

journals were helpful in finding information. 

The bibliography lists the most important bOGks, articles, 

and papers obtained while the discussion~ of Chapter 3 and Appendix 

A summarize the information gained from the visits and meetings. 
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Table ~.5. Computerized Literature Search Resulta 

Topic Abatra.~.cr ~"inted . ~ .. 
(a) Aircraft Design .. 33 

(b) Aircraft Propulsion 206 

(c) Aircraft Structures 275 

(d) Flight Controls 780 

(e) Navigational Aids 780 

(f) Avionics 780 

(g) Canard Configurations 22 

(h) NAVSTAR/GPS 89 

(i) GASP 0 

4.2.2 Preliminary Candidate Technologies 

The preltminary candidate technologies (PCT) were the result 

of the first formal attempt to identify technologies felt to have 

some application to General Aviation airplanes. Selecting the 

PCT proved more difficult than expected for several reasons, not 

the least of which was how to define a "technology." To select 

technologies in a consistent manner, three criteria were formulated. 

(1) Operational results of a technology are not themselves , 
technologies: Examples: "stall/spin prevention" and 

"increased TBO (time between overhaul)" are the results of 

the application of various technologies. 
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(2) Design variables (parameters) are not technologies. Examples: 

"high wing loading," ''high aspect ratio." 

(3) Non-specific ''wish list" technologies are to be avoided. 

Examples: "low-cost sensors," "low-cost weather radar." 

TIlese criteria were followed as closely as possible but mar-

giual technologies were given the benefit of the doubt to insure 

that all applicable technologies were considered. The PCT selec-

tion process resulted in 137 technologies which are given in 

Table 4.6, grouped according to technology area. 

Table 4.6. Preliminary Candidate Technolo~ies 

1. AERODYNArHCS (11) 

• Winglets 

• Variable geometry winglets 

• Spoilers 

• Fowler flaps 

• Low drag surface coatings 

• Leading edge devices 

• Advanced low and medium speed airfoils (turbulent) 

• Supercritical airfoils 

• Advanced natural laminar flo· ... airfoils 

• Improved stall/spin through aerodyna~ic tailoring 

• Active laminar flow control 

II. AIRCRAFT SYSTFHS (g) 

• Microwave anti-icing 

• Sonic/pulsating anti-icing 
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Table 4.6. Preliminary Candidate Technologies (continued) 

II. AIRCRAFT SYSTEMS (concluded) 

• Lithium hydroxide/hydrogen peroxide batteries 

• Air cycle environmental systema 4 , 

• Imp~oved lead-acid batteriee 

• AC electrical systems 

• Passive anti-icing through icephobic coatings 

• Variable cycle environmental systems 

• Accurate fuel mon.ttoring and management 

• High s~eed brushless alternator 

• Single unit starter-generator 

• Air bearings 

III. COHPUTA'l'IONAL METHODS (~J 

• Computational aerodynamics 

• Computational structural deSign/analysis 

• Aeroacoustic modeling/analysis 

• CADCAM 

IV. CRASm~ORTHINESS (7) 

• Load limiting seats 

• Improved restraints 
.. 

• Foam filled fuel tanks 

Burst/tear resistant fuel tanks 

• Energy absorbing floor 

• Anti-misting fuel treatment 

• frangible fuel fittings 
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Table 4.6. Preliminary Candidate Technologies (continued) 

V. FLIGHT CONTROL SYSTEMS (21) 

• Fly-by-wire 

• Fly-by-light 

• Active gust alleviation 

• Active ride smoothing 

• Active flutter supression 

• Active controls for re13xed inherent stability (CCV) 

• Integrated low-cost wing leveler 

• Integrated yaw damper 

• Separate surface technology 

• Winglets for lateral-directional control 

• Direct side-force control 

• Direct lift control 

• Single level thrust/drag control 

• Force-stick controllers 

• Digital automatic flight controls 

• Fluidic automatic flight controls 

• Stick shaker/pusher for stall prevention 

• Stabilizer/elevator spoilers for stall prevention 

• Pneumatic actuators 

• Hydraulic actuators 

• Electro-mechanical actu~tors 

VI. INFORNATION SYSTEMS (28) 

• Flush antennas 

• Digital data links 



Table. 4.6. Preltminary Candidate Technolo8ies (cont!nued) 

VI. INFORMATION SYSTEMS (continued) 

• Single function CRT displays 

• Time-shared CPT displays 

'HUD 

Micro HOO 

• Warning annuciators 

• Total panel-mounted avionics 

• Active outside imaging 

• Fluidic shed-vortex airspeed sensor 

• Airplane health/diagnostic systems 

• Fluidic rate sensors 

• Multiplexing 

• ARINC-type broadcast hierarchy 

• Integrated avionics and displays 

• Piezoyresistive preasure transducers 

• Fiber optics for data transmission 

• Liquid crystal displays 

Flat CRT displays 
• 

• Touch sensitive CRT 

• '~eather radar 

• Alternate weather detection 

• Radar altimeter 

• Onboard computing capability 

• 3-axis magnetometer acceleration sensor 
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Table 4.6. Pre1tminary Candidate Technologies (continued) 

VI. INFORMATION SYSTEMS (concluded) 

• Improved stall warning 

• Laser gyros 

VII. MATERIALS/PROCESSES (12) 

• Metal/metal bonding 

• Fiberglass composites 

• Kev1ar composites 

• Graphite composites 

• Honeycomb core composite skin panels 

• Single crystal metal 

• Powdered metal 

• Isothermal forging 

• Diffusion bonding 

• Friction welding 

• Corrosion resistant coatings 

• Matched-die fiber reinforced plastic (FRP) 

VIII. NAVIGATION CONCEPTS (11) 

• V()R/DME RNAV 

• Scanning VOR/Dt'.E RNAV • 
• Omega 

• Differential Omega 

• VLF NAVCOM 

• Loran C 

• NAVSTAR/GPS 

Sfl 
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Table 4.6. Preliminary Candidate Technologiel (continued) 

VIII. NAVIGATION CONCEPTS (concluded) 

• Inertial navigation 

• Doppler navigation 

• MLS 

• Inertial amoothina 

IX. NOISE (6) 

• Noise absorbing materials 

• Improved mufflers 

• Variable engine/prop gearing 

• Q~iet propeller technology 

• Low level pressurization 

• Ducted propulsors 

X. PROPULSION (25) 

• Advanced diesel engine 

• Advanced rotary combustion engine 

• Advanced reciprocating engine 

• GATE engine 

• Auto engine conversions 

• QCGAT engine 

• Liquid cooling 

• Stratified chatge 

• Improved turbocharging 

• Variable timing 

• Electronic ignition 
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Table 4.6. Preliminary Candldate Techaololle. (concluded) 

x. PROPULSION (concluded) 

• Automatic mixture control 

• Lean burn combustion 

• Density compensatlnl fuel injection 

• Total microprocessor enaine control 

• Variable bypa.s turbofan 

• Variable pitch fan 

• Efficient propeller technology 

• Prop fan 

• Cooled turbine blades 

• Ceramic turbines 

• Composite propellers 

• Torsionally (aeroelastically) tailored propeller blades 

• Single lever throttle/mixture control 

4.2.3 Yinal Candidate Technologies 

As a group, the 137 PCT of Table 4.7 were not equally suited 

to the evaluation technique. First, the PCT exhibit different 

technology levels. In the propulsion area for example, complete 

advanced technology engines are compared against component tech

nologies. One cannot really compare the two although both may 

be iJ~portant. Second. the PCT exhibit different technology orders, 

meaning that while most technologies are first order (i.e., ~ 

the airplane) some arc second order (i.e., ~ ~ the airplane). 
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Examples are "advanced natural l_tnar flow atrfoUa" (firet 

order) and "cOliputational aerodynaaics" (second order). The firat 

requires the second. Hence. the two technololies ~re not r .. lly 

cOliparable. In addition to these fUftdament~l probl .. s. four other 

constraints are noted: (1) the IT cateaory weiahtinas are valid 

only for six pa.senaer and commuter airplanes. (2) the project 

scope requires 1990 technology implementation. (3) technologies 

for which data are lackina cannot be evaluated objectively. and 

(4) some of the technologies are already gain1ng acceptance in 

general aviation. 

These factol's gave rise to a second set of n 1 teria which 

were used to select the final candidate technologies (FCT). 

(1) Try to reduce the differences in technoiocy levels. 

(2) Delete second order technologies. 

(3) Delete technologies not applicable to the six passenger 

or commuter airplanes. 

(4) Delete technologies which will not be ready for implementa-

tion by 1990. 

(5) Delete technologies for which sufficiEnt data are lacking. 

(6) Delete technologies already gaining acceptance in general 

A;)pl1cation of the abo",e criteria resulted in 56 final candi-

date te,~hnologiE's which are presented in Table 4.7 and are subse-

quencly discussed in Section 4.4. Appendix B.3 contains a complete 

discussIon of the candidate technology selection process. 
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table 4.7. Pinal CaDd1clate Tecbaololiu 

I. AERODYNAMICS (!> 

• Winall!u 

• Spoilers 

• Fowler flaps 

• Low dral surface coatioll 

• Active lasainar flow control 

• Leadinl edse devices 

• Advanced low/medium speed airfoils 

• Improved stall/spin through aerodynamic tailoring 

II • AIRCRAFT SYSTEMS (~.> 

• Anti-icing surtace coatings 

• AC electrical systems 

III. CRASHWORTHINESS (4) 

• Load limiting seats 

• Energy absorbing floor 

• Im,rcved restraints 

• Burst/tear resistant fuel tanks 

IV. FLIGHT CONTROL SYSTEMS (14) 

• Fly-by-wire 

• Fly-by-l ight 

• Active gust all~viatlon 

• Active ride smoothing 

• Active flutter suppression 
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Table 4.7. Final Candidate Technologies (continued) 

IV. FLIGHT CONTROL SYSTEMS (concluded) 

• Active controls for relaxed inherent stability (CCV) 

• Integrated yaw damper 

Integrated low-cost wing leveler 

• Separate surface technology (SSSA) 

Direct side-force control 

• Direct lift control 

• Single lever thrust/drag control 

• Fluidic automatic flight control system 

• Act~'!e stall prev.!ntion 

V. INFOF~TION SYSTEMS (~) 

• Digital data links 

• CRT displays 

• :ll;D 

• Micro HUD 

• Systems status d~~play 

• Integrated avionics and displays 

• Fiber optics for data tr3~smission 

• Laser gyros 

VI. NAVIGATION CONCEPTS (§) 

• NAVSTAR/GPS 

• Inertial navigat~on 

• Doppler navigation 

__ ~ri_~~_st t. wt.tt 1 ._ 
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Table 4.7. Final Candidate Technologies (concluded) 

VI. NAVIGATION CONCEPTS (concluded) 

• Microwave Landing System CHLS) 

• Loran C 

• Omega 

V!I. ~(~ 

• Quiet. efficient propeller technology 

• Low-level pressurization 

• Ducted propulsors 

VIII. PROPULSION (7) 

• GATE engine 

• Stratified charge rotary combustion en&ine 

• HCRLB reciprocating engine 

• Stratified charge reciprocating engine 

• Advanced diesel engine 

• Liquid cooling 

• Improved turbocharging 

IX. STRUCTURAL ~1ATERIALS (1) 

• Fiberglass composites 

• Kevlar composites 

• Graphite composites 
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4.3 APPLICATION ~~ EVALUATION TECHNIQUE 

The application of the ET involved three main tasks: the 

mechanization of the ET, the determination of the relative bene-

fits, and the analysis of the ET-generated fiaures of merit. The 

reader may find Figure 4.1 useful in the following discussion. 

Mechanization of the Evaluation Technique 

Because of the sheer number of calculations required to 

evaluate 56 technologies in 17 categories for two airplane types, 

a FORTRAN computer program known as TCHLST was written to compute 

the figures of merit. Since the considerations of paramount 

in.terest to any user (input, output, and efficiency) are particu-

lar1y significant for the case at hand, input and output were 

simplified by employing a problem oriented language (POL) known 

as SCAN, while efficiency was maintained by using arrays, array 

pointers, and packed arrays. While SCAN is available from the 

University of Illinois for several mainframes, its limited use 

together with other peculiarities built into TCHLST which are 

system-dependent (word size and system software) have resulted in 

a decision not to include the program listing with this report. 

The program capabilities, however, are briefly discussed here in 

order to support the resulting data. 

!nput datl, if not managed properly, can quickly invalidate 

results. Hence SCAN was em?loyec ~o allow data inputs in the 

form: 
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AIRPLANE A 

AERODYNAMICS 

'WINGLETS' .5 0 0 .5 0 -2 0 .5 0 0 -1 .5 0 0 0 0 0 

, SPOILERS' - • 5 0 2 1 0 1 0 1 0 • 5 0 1 0 2 0 0 0 
I 
I 

and incorporate commands such as 

PRINT INPUT 

PRINT TABULAR CATEGORIES 

OMIT CRASHWORTHINESS 

PRINT BARCHART ALL 

RESET OMIT 

RESET PRINT, etc. 

in order to (1) allow easy data entry, (2) allow accurate input 

verification, (3) allow quick, accurate data analysis, and (4) 

provide for s~nsitivity analyses under different category weight-

ings. Efficiency was maintained by array management where, for 

example, different addresses were packed into the left and right 

half of a word size (36 bits). Hence, although not portable, 

the program was very efficient. with costs on the order of $3 to 

compute. sort, format, and output original data as well as per-

turbed data (which could be demanded in real time). 

4.3.2 Determination of Relative Benefits 

In assigning relative benp.fits, three factors were found to 

be of great importance. They are the relative benefit scale, the 
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technology baseline. and the technology application and inte-

gration. 

4.3.2.1 Relative Benefit Scale. The scale of relative benefits 

(-b < bij < b ) must be broad enough to allow adequate max - - max 

differentiation between technology impacts but narrow enough that 

guessing is avoided. This is a strong function of the amount of 

information available for a given technology so in general, an 

optimum scale for one technology will not be optimum for anothe~ 

technology. A workable compromise was found to be -3 ~ bij ~ 3 

where increments of + 1 are normally used but, if justified, 

increments of + .5 are allowed. 

4.3.2.2 Technology Baselines. A technology baseline must be 

established before any relative benefits are obtained because by 

definition. a relative benefit compares a candidate technology to 

a current technology baseline. Since different classes of air-

planes utilize different technolo~~~~. separate technology base-

lines were established for the six passenger and commuter airplanes. 

These baselines are presented in Table 4.8. 

4.3.2.3 Technology Application and Integration. In evaluating 

a given technology, a decision must be made as to how the 

technology will be used and to what extent other airplane para-

meters will change. For example, spoilers do not offer much (if 

any) advantage over ailerons unless the freed trailing edge is 

used for additional flap span. Even then, one must decide if 
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Table 4.8. Technology Baselines 

* ** Airplane A Airplane B 

• Reciprocating engine • Turboprop 

• Aluminum structure • Aluminum structure 

• Limited flush riveting and/or 
bonding 

• Conventional avionics with 
VOR/DME RNAV but no auto
pilot 

• Plain or single-slotted flaps 

• Conventional controls and 
control surfaces 

• No anti-icing 

• Extensive flush riveting 
and/or bonding 

• Conventional avionics with 
autopilot but no RNAV 

• Single-slotted Fowler flaps 

• Conventional controls and 
control surfaces 

• Anti-icing in the form of 
hot air or boots 

Airplane A - 6 Passenger Business/Personal Airplane 

Airplane B - 19 Passenger Commute~ Airplar.e 

takeoff and landing performance will be improved with a fixed wing 

loading, or if an improv~ment in cruise efficiency will be sought 

by increasing wing loading. Similar technology application and 

integration effects are exhibited by many technologies, especially 

in the areas of composite structures and advanced propulsion. 

After reviewing the performance characteristics of current six 
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passenger and commuter airplanes. it was decided that technologies 

offering either cruise or takeoff and landing performance improve

ments would be used to benefit cruise since the current airplanes 

seemed to have adequate takeoff and landing performance. 

~.3.3 Sensitivity ~ Relative Benefits 

Uncertainty in generating relative benefits is unavoidable and 

therefore must be accounted for. Using the guidelines of Section 

A.3.2, three sets of relative benefits were generated for each 

technology and are termed "pessimistic." "likely," and "optimis-

tic" (PLO) relative benefits. Their use and definition are 

analogoub to the pessimistic, most likely, and optimistic time 

estimates frequently used in CPM and PERT analvses. Likewise, 

a Beta distribution is assumed such that an "expected" relative 

benefit is obtained as given by Equation 4.2 (Ref. 219). 

b + 4bL + b 
b _ P 0 

E 6 
(4.2) 

To avoid unnecessary computations, only the PLO relative bene-

fits ~re fou~d and the expected figures of melit (FME) are 

obtained directly from the PLO figures of merit. It is easy to 

show that the expected figure of merit is given by Equation 4.3. 

FU of 4~ + FM 
fl~ = -L 6 0 (4.3) 
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The PLO relative benefits were gener~ted by an iterative 

process. First, information on each of the technologies was ob

tained from the project data base; Second, the PLO relative benefits 

for each technology were estimated. Finally, the PLO relative 

benefits were reviewed and updated as required. The PLO relative 

benefits are preltminary in that they are used only to test the 

evaluation procedure. , 
Figure 4.2 presents a sample of the pessimistic, likely, 

optimistic, and expected (PLOE) figures of merit where the expected 

figures of merit were computed with equation 4.3. (Complete 

results may be found in Appendix 8.4.) This figure illustrates 

the characteristics of consistency and uncertainty which are dis

cussed below. 

4.3.3.1 Consistency of Relative Benefits. To obtain a meaningful 

ranking of the technologies, each ~ust be evaluated in a similar 

manner with the same level of objectivity. DOing so results in a 

consistent set of likely relative benefits. While it is impossible 

to illsure absolute consistency, the PLOE figures of me~it provide 

information which allows on~ to check for reasonable consistency. 

This is done by comparing the likely and expected figures of merit 

for each technology. If a technology exhibits a large difference 

in these figures of merit, it implies that the likely relative bene

fit was itself either optimistic <F'Mz. > ~) or pessimistic 

(F't\ < ~) and needs to be re':ined. The data of Figure 4.5 is 

typical and shows that the preliminary likely relative benefits 
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are quite consistent in that the likely and expected figures of 

merit are nearly identical for most technologies. The small incon

sistencies exhibited by a few technologies ~~re kept in mind when 

the final relative benefits were determined. 

4.3.3.2 Uncertainty of aelative Benefits. It was hoped that the 

PLOE approach. in addition to providing a check on consistency. 

would give a measure of the uncertainty involved in the evalua

tion of ea~h technology. 

For example. examining Fig. ~.2 one might conclude that the 

degree of uncertainty in the evaluation of a technology is 

directly related to the difference in its optimistic and pessimis

tic figures of merit. This has not proved to be a legitimate 

assumption because technologies which impact nearly all of the 

categories exhibit large changes in figure of merit for small 

changes in the relative benefits which results in an exagger!ted 

perception of uncertainty. 

The initial t.::sting of the evaluation techdque (PLOE stun1es) 

proved that the procedures established for evaluating the tech

nologies worked well and resulted in ccnsistent 8nalyses. The follow

ing sections address tht! final evaluatir.m of the candidate techno

logies in detail. 

4.4 OBSERVATIONS ON THE !1TILIZATION OF THE r;VALUATION .TECHNIQUE 

This section briefly discusses some of the more salient points 

involving the use and interpretation of the evaluation tec.htdque. 

Specific items addressed include: 
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(1) the effect ~f qualitative values of different raters in aaa1gn-

ing relative benefits to tecbno1oliea, 

(2) the atabi1ity of figurea of merit under different conditione, 

(3) the orthogonality of categories, 

(4) the effect of varying the weighting for Empty Weight, and 

(5) the Significance of figure of merit scores. 

4.4.1 Q~a1itative Values ~ Raters 

As the evaluation technique was applied, tt became evident 

thkt different raters had a different range of figures of merit 

resulting from different relative benefits applied to each of the 

technologies. However, an examination of the several results 

indicated remarkable consistency between the relative rankings 

of technologie'l. It wa& thert!fore decided to u.se one rater and 

emphasize the refinement of relative benefits generated by the 

rater rather than to standardize the results of several raters 

at the expense of exhaustive refinement. 

4.4.2 Stability of Figures of Merit 

After several data sets were analyzed. it became evident t~at 

the figures of merit: 

(1) exhibited consistency in ranking technologies as was 

predicted by the PLOE studjes dhcussed previously in Section 

4.3.3. 

(2) could change significantly if its ant:/clpated application and 

integration changed (Section 4.3.2.3) regardless of whether 
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thia change reeulted fro. a techDololY breakthrouah or a more 

innovative (le •• cons .. rvative) application. 

In l~ght of (2) above, every effort has been made to define the 

baaeline and the perceived application of each technology aa 

.hown in Section 4.5. 

4.4.3 Orthogonality 2! Categories 

Th~ orthogonality of categories and their weighting. as 

developed by Surveys 1 and 2 and discussed in Section. 4.1.2 and 

4.1.3 was investigated by performing a factor analysis of the rela

tive benefit matrix (56 x 17) for both Airplanes A and B. The 

Biomedical Computer Programs (BHDP) statistical computer package 

as described in Reference 218 and available on-line at the Univer

sity of Kansas was used to generate the factor data. 

The ~ntent of this study was to determine the possibility of 

grouping the 17 categories into a smaller, orthogonal set of com

ponents. If this could be done (and it was strongly suspected 

that such would be the case), then the possibility of reducing the 

number of categories into a smaller and more managea~le set needed 

to be investigated (see Section 4.1.2). 

BMDP results for both Airplane A and Airplane B indicated 

that six factors would explain a significant amount of the variance 

in both relative benefit data sets (74% for Airplane A and 76% 

for Airplane B). Furthermore. the first three factoIS explained 

~O% and 51% of the data variance for Airplane A dnd B respectively. 

These three factors included 11 of the 17 categories for both 
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airplanes where ten of the 11 cateaorie. were coalOn to both. 

Th! .ix factors are shown in Table 4.9. 

An examination of this table, however, quickly identifie. 

extreaA difficulti.. 10 iapleaentlna an evaluation technique con

sisting of only six ortho80~1 component.. Specifically, the 

loss of differentiation between vehicle performance .... ur .. ents 

would defeat the purpo&e of the technology evalu~tlon. For 

example, benefits in cruise speed could not be differentiated 

from those accorded to empty weight. Likewise, improvements in 

noise control could not be differentiated from takeoff and landing 

performance. Although purchase price is gIouped with DOC and 

reliability for Airplane B. it is statistically tied to static 

comfort and crashworthiness fOT Airplane A. Yet, purchase price 

received a score other. than zero in 51 of 56 technologies for 

Airplane A and 44 of 51 technologies for Airplane B. 

Armed with this information, it was decided that the 17 ~ate

gories developed by Survey 1 ~rovided a better measurement of a 

technology's i~pact than th~ six factors resulting from the 

factor enalysls. 

4.4.4 Effect of ~ Weight 

A concern expressed early in the developoent of the evaluation 

technique dealt with the quantification of ~ategory weightings 

through the Delphi Method. Since a major benefit of the method is 

to allow r~spondents to preserve their views without coercion from 

othl~rs, a decision to halt further rounds of the surveys is often 

67 



L@@ XW44-:_ - --

Table 4.9. Six Pactor. for Airplue. A aDd B 

Airplane A Airplane B 

Factor Categories Factor Categorie. 

1 bnge 1 Fuel Efficiency 
Cnti.e Speed Cailinl 
Ceiling Cruiae Speed 
Fuel Efficiency Ranle 
Empty Weight Empty Weilht 

2 Exterior Noise 2 Exterior Noile 
Interior Noise Interior Noise 
Takeoff/Landing Takeoff /Land.lnl 

Performance Perfonaance 

3 Reliability 3 DOC 
DOC Relinbility 
Emission. Purchase Price 

4 Static Comfort 4 Safety 
Crashworthiness Pilot Workload 
Purchase Price 

5 Safety 5 Crashworthlnes8 
Pilot Workload Static Comfort 

14 Ride Quality 6 Emissions 
Ride Quality 

made based on the stability of responses. This implies that the 

use of an average rating may be misleading if a large dispersion of 

responses is noted. (Note that "stability" is implied by a large 

numt-~~r oi unchanged responses from one round to tht: next, and does 

n~( ~ply that ratings have converged about a mean.) Such was the 

case for the Empty Weight category for Airplane B. As shown in the 

histograms in Appendix B.2., these ratings ranged almost uniformly 

from 0 to 9.5. Hence, results reflecting Fapty Weights of 0, 5.657. 

and 9.5 (low. meall, hi) for Airplane B are included in Appen~ix B.S. 
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4.4.5 Significance!!! riaure !!! ~ kor .. 

Before proceeelial to the actual ruu1ta of the evaluatioa 

technique. oae shou14 be .ware of the followilll .epeeta of the 

figures of meLit: 

(1) Values near Bero illPly 110 aip1f1cant i1Iprov8ll8llt ill effect 

on the user. For example. an illproveM1lt ill ranae _y be 

offset by high coat or maintenance. 

(2) Positive numbers reflect net benefits to the user widle 

negative numbers reflect net peoalites to the user. 

(3) Macroscopic figures of merit (~) are fairly stable. where 

FMi - 50 signals greater benefit from technology i than 

FMj - 30 does for technology j. However, PMi - 50 is diffi

cult to differentiate from say, ~ - 45. A major exception 

to this rule is noted in (4) below. 

(4) Those technologies impacting many categories have higher 

figures of merit than those which affect only a few. Hence, 

the four technologies listed under the crashworthiness group 

have scores which do not truly measure their benefit to the 

user. This is due to the fact. that although they all received 

maximum scores (+3) for Crashworthiness, they did not impact 

DOC, Safety, Reliability, etc. (Also, Crashworthines8 received 

relatively low scores as shown in Tables 4.3 and 4.4.) 

(5) The figures of merit reflect relative benefits as opposed to 

benefit/risk. Hence, although the pro~ulsion group reflects 

particularly high benefits to the user, the extremely high 

risk of development to the manufacturer is not accounted for. 
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4.5 EVALUATION TECHNIqUE UlULTI 

Tbis .ec:ti01l discu .... the fiul fip •• of .. r1t obta1aed 

wh.n Equation 4.1 .e .pplhd to the 56 liMl c .... i4.t. t.chnolo-

11ea (PCT) identified 1n T.bl. 4.1. The 17 cat.lory _tahtt u.ed 

h.re are tho.e ahoWD 1a T.ble 4.3 and .r. ave rase we1sbts. T.cb-

oolOIY IrOupi1l,e were •• tabliebed for convenience and have no 

bearinl on the relative benefits or the ftaurea of merit. 

Each technology Iroup ie first discussed in leneral terms 

followed by a tabular rankina of those technololiea whicb were 

considered to be in the particular Ir~up. ~ brief discussion of 

each technololY then follows. 

4.5.1 OVerall Technology Ranking 

Tab1es4.10 and 4.11 show overall rankinls for the 56 and 

51 technologies considered for Airplanes A and B respectively. 

Both lists are identical except for iive propulsi~n technololies 

which were not considered appropriate for Airplane B. 

4.5.2 Aerodynamics 

Nine technologies were evaluated and are shown in Table 4.12. 

As shown in Table 4.10, the first three technologies under Airplane 

A were among the top seven oZ 56 technologies. Winglets, when 

considered for a new wing, offer little b~nefit to the user of 

eith2r airplane. Spoilers (implying full-span Fowler Flaps) 

appear rather attractive for Airplane B as shown in Table 4.11. 
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Table 4.10. 

s, •• , 'M' 'ICI~ '.'IN' o. 
CIT USI'L"U O. 
OI'EC' ~"l 'O~"OL o. 
MCIL. '!c!~ '.'I.E o. 
~I"OW"VI L~.' •• ' I'S'I" o. 
... IfIU./;iPS o. 
"S"'£A, "SIS 'U'L lrs o. 
l'f~"O'le S'C COA'IN'S -0.5 

A,TlIfE LAHI.A' 'LOW CTl 2.0 

1."""'(' 'AW 'AHI'(' D. 
HI"O MUD o. 
• , 'l('l'J'AL S'STIHS o. 
A'T 'TLS '0' 'LI S"l" D.5 
OUcrE' ~'O~ULIO'S -0.5 
SGI LIV(. '"'US"'" C'L D. 
WI.'UTS 0.5 
ILUI'IC AUTO 't, e'l SY' -0.5 
LOW-"A, I" 'OATIN'S o. 
Dl'(C' SI" 'O'CI C'L o. 
'CT '1'1 S.OO'.IN, O. 
lASE' ,UOI D. 
LOW-L(V(l ~.ISSU.II"'ION o. 
.. U.I-UIi' '1~Ii'L'" O. 
LO.'. C c. 
Ila" OIl"ICS (,"'" , •• S, O. 
OH,'. o. 
'OIl'~L(' .AV,'A'ION O. 
AC' rLU"(' IUII'~'EIIIOI o. 
AU ,usr ALLV o. 
HY-a,-wu' o. 
nY-BY-LIS"' c. 
INE"IAL N.~I'ATIO. o. 

Overall Technology Banking For Airplane A (coocluded) 

o. o. 1.0 1.0 -0.5 O. 1.0 O. O. -t.O 1.5 O. O. I. 

o. O. O. O. O. o. O. O. 1.0 -1.0 O. 1.0 O. 0.5 

D. D. O. o. -O.S O. o. O. 1.0 -t.O O. -0.5 1.0 1.0 

o. o. 0.5 1.0 O. O. 0.5 O. O. -0.5 0.5 0. O. O. 
O. o. 0.5 O. O. 1.0 o. O. O. -1.0 O. O. C. 1.0 
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Tabl. 4.12 4erod~~c. 

Flaur.. of ~rlt for 

Techno1olY (9) Airplane A Airplane B 
56/-53/85* 51/-57/58* 

Natural Laminar Plow Airfoila sa 25 

Spoilers 57 38 

Fowler Flap. 48 24 

Low/Medium Speed Airfoil. 29 31 

Leading Edge Device. 24 29 

Improved Stall/Spin --
Aerodynamic Tailoring 24 15 

Activp. Laminar Flow Control 4 -46 

Wing1et. - 3 - 4 

Low Drag Surface Coatings -14 -15 

It 
Total number of technologies/lowest PM/highest PM 

4.5.2.1 Winglets. The advantages of winglets are not yet clear. 

Although they promise to reduce induced drag while increasing 

wing bending moments when applied a •• modification to existing 

aircraft, there is little data to suggest that they would offer 

improvements to aerodynamic efficiency that could not be gained 

through increased aspect ratio and wing twist. Difficulties 

involving flutter an~ large sideslip angles require further 

study. Reference 156 describes theoretical improvements in range 

of 6% to 8% over a similar wing without winglet.. Although 
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thia article citea larae atabili_iDa .a.ent. in ,.. at aidaalip 

all.lee of 60 to 80
, the addition of vinalat. dao raau1ted ill • 

w.akly diveraent dutch roll aDda. 

The baaalin. a.aillet which thia teebDoloay va. evaluated for 

both Airplane A aDd Airplane B va8 a hiah-a.pect-ratio. twi.ted 

wina. Small benefite in cruiee performance were offaat by waiaht 

penalties to compensate for aubatential increaaea in root bendiDa 

moments. 

4.5.2.2 SR9ilera. Spoilers alone offer only small advanteaes 

to general aviation aircraft by el~inating adverBe yaw. However, 

they offer the promise of major improvements in performance by 

freeing the ent~re wing trailing edge for high lift device. (full 

span flaps). As mentioned previously in Section 4.3.2, this addi-

tional maximum lift capability can be used to either ~prove 

takeoff and landing performance or, at the other extreme, improve 

cruise performance by increasing wing loading (W/S). Since in-

creased wing loading offers substantial benefits in fuel effi-

ciency and ride qualities with only a small penalty (if any) in 

cruise ceiling, this technology is evaluated from the standpoint 

of increased wIs. It should be noted that since typical single 

engine aircraft operate at w/s = 730 to 1220 N/m2 while commuters 

2 operate at w/s = 2390 to 2870 N/m , Airplane A will reflect larger 

~pacts from this technology (W/S for heavy transports are 

typically on the order of 4790 to 6700 N/m2). 

Although cruise performance promises to reflect substantial 

gaIns, the incorporation of spoihra doE'S have attendant riaks. 
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loaliD .. r coatrol r .. ,.... .IUUi ....... , cOlltrol Hftr.u (clu. to 

flov r .. ttact.Mlt). 1acr .... of authority with full epa flap. 

deployed, au4 10 •• of control authority at aeaati.- ADIl" of 

attack are 'but a f. whicb er. 1cl_tUied in the literature • 

• poiler. i. attributabla not ao 8Uch to the lack of .poiler haacl-

book data, but rather to the vaet a.ount of aileron haDclbook data 

available (Ief. 121). 

Still unavaUable 18 a verified thiD-ai rfoU _thod for pre-

dictina 2D characteristica of a wina-spoiler-slotted-flap confiaura-

tion. However, Parkiu.on baa reported on relearch ulina a numeri-

cal thick airfoil _thod utilizina a 2-aource .odel to predict c
t 

and c va. a for an airfoil with a spoiler and alotted flap 
mo 

(Ref. 159). 

Furthermore, Reference 111 reports favorably on fliaht test 

results of spoiler characteristics on a modified Cessna 177 Car-

dinal (Redhawk program) and Reference 110 does likewise for apoilers 

on a modified PA34-200 Piper Seneca (ATLIT program). Reference 183 

provides an overview of the state of the art of general aviation 

spoilers in 1974. 

4.5.2.3 Fowler Flaps. Fowler flap. offe~ significan~ improve

ments in maximum lift coefficient (eL ) when compared to the plain, 
max 

split, or single slotted flaps which are typical of the 8ing1e 

engine general aviation (GA) fleet. However, their real benefits 

are more fully exploited when uBed a. full .pan fiapi in conjunction 
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with apoUe~.. AlthcNab tlaia 14u 18 DOt ... (Wenacu 10, 122, 224). 

dUficulUe ••• eocute4 wiCb iatea~.t_ the .po1l.~. have Mla,.. 
the v1de.p~ead u .. of thb CODCept. 

Paul101l (Ref. 161) ~apo~tI aD iDu.... in '" of 961 __ 
.ax 

Fowler flap. were fully deflected o. a wiDd tUIUMl lDOCIel wiaa. 1ft 

a comparison between plain, elotted, aDd Fowler fla .. _ where the 

plaift and slotted flap. had flap apana aptlroxi_te1y 501 ,.r the 

wing semi-span while the Fowler flaps had flap spans a~orox~t.ly 

75% of the willi leai-epaD, Paulsoft (Ief. 162) report a ~ CL for 
ux 

the Fowler flap approximat.e1y 48% Ireater than the plain or elotted 

flap. Under the conditions of thb latter investilaUon, the Fowler·· 

flapped configuration could either land at 8 speed 18% lower than 

its counterpart or reduce its wing area by 33%. Wentz (Ref. 224) 

reports a CL • 3 for a one-quarter scale ATLIT wing equipped with 
max 

full span Fowler flap •• 

For the evaluation at hand, Airplane A is presumed to have 

plain or linlle slotted half apan flapi and Airplane B il preau.ed 

to be equipped with half span Fowler flapl. The anticipated 

effects of full span Fowler flaps il reflected in the evaluation. 

Hence, this technology is considered to be interlrated with lpoilera. 

~.5.2.4 Low DraB Surface Coatinas. This technology is described 

in Reference 22, where an inve.tigation w~s conducted by the ~e1ns 

Commeri~al Airplane Company of nine liquid coatings and 60 filml 

adhesive Iyatems. !hil inveltilation is part of the Energy Efficient 

Transport (EET) element of the Aircraft Energy Efficiency (ACE!) 
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proara ad •• perf01:'Mll UDder coatract to lIASl-LlDale, ..... ch 

Cent.r. Tbr .. l1qutd eo&t1llp .... four fi1ll/ed_lY .. ar. cur

rntly UDdarao1Da further tutiq aDd evaluatioD. 

MOtivation for this r .... rch va. aupplied by the 1973 fu.l 

crisis, aDd preUainary r .... rch by NASA of • T-33 v1Da reflected 

• 12X reduct1.oD in draa when .kin joint., hilll. 11 .• a. etc. were 

covered with a tIIIOOth thiD fila. Boe1q'a r .... rch iDd1cat ... 

however. tbat only a 1.6% reductton ill draa coefficient (~) CaD 

be expected due to the exiatance of unaealed lap. 101' hilh lift 

devices and eGntrol aurfacea. St1ll, thie 1.6% reduction traDa

lates to a fuel savinls of 128,690 1 (34,000 aals) per Boeina 727 

per year. 

Analy.1a of the data reveals that although almort all of the 

drag associated with rouahness 10 elta1nated from wina and tails, 

only 25% of the draa associated with saps was eltainated. Hence. 

application of a low dral surface cnatins to a wins with protruding 

rivets makes little sense. Prom a ai •• i~n profile consideration, 

Airplane A could benefit more from this technolosy than Airplane B 

because its mi.sion is cruise dominated whereas Airplane B's i. 

characterized by more time in climbs an/ approaches where drag

due-to-llft is usually more slsnificant than profile draa. 

However, even if one considers an advanced airplane charac

terized by flush rivets, bonded surfaces, or composite construction, 

the propulsion system will ir,variab1y include a propeller. and 

system efficiencies will dictate lower cruise speeds closer to 
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L/DIIU tban for a tur1M»jet 01" tur1M»fau CfnIDtel"pftt. • .. 1f._le 

"viDa. due to _11 I'HuettOlUl 18 ,..oftla dna an ,nbabl, .on 

thaD off .. t by pau1Uea til _taht, 18it1al. coat, .. DOC f. both 

Airplay A .. I. 

4.5.2.5 Active 1MIiur ~ CoDtn1. Thi. tachDo1oay 1a l'aceiYiDI 

r.aewed iDterut ill 11aht of .oariDa fuel coate. Aa Shev.ll 

pointe out ln bference 191, ftOthiDa el .. has the potential of 

reducing draa to a. areat .. extent. AD ...,1e in hla uticle, 

based on an aircraft operatiaa at leyno1d. aa.ber. of 20 to 70 x 106 

with 200 paaaeoaers and Grana. of SSOO uutlca1 aile., illustrate. 

hi. point. If thls vehicl. operated with 751 of It. wiaa and tail 

surfac.s effectively laminarized, dra; would be reduced by 30% and 

LID would increa •• by 30%. For a at-flar type of vehicle ~.8, 

200 pa •• eaaere. JT9D engin •• ), Maddalon point. out that l_inar 

flow control (LFC) energy requireaents d.cr.a.e as AI incr ..... 

above 7 (lef. 129). For this type of air carrier operation, DOC 

decreased d.spite a 17% penalty in aaintenence CO.tl snd a 3% 

penalty in purchase price. 

Although LFC offera a far greater potential for parasitic 

draa reduc~lun than low drag surface coatings, it atill proai ••• 

lignificant penalties for Airplane A and Airplane B. As with all 

systeas which reduce parssitic drag, the benefit. realized 

by a propeller-powered airplane may be expected to be leas than for 

a jet or fan powered vehicle. Also, fuel costa repr~.ent a 

aignitil'antly ... 11er perC,:Htage of oc,c for Alr.,lane A, atld the 
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mi.sion profile of Airplane B do.a not allow it to take full 

advantage of the syata. The low altitude enviroaaent of Airplane 

B and the a .. ociated hi,her susceptibility to inaacu. duat. aDC! 

other debris aUlleat hi,her matnteaance coat. for Ai~lane B 

than for a high-altitude cruiae vehicle. 

It should be reiterated at this point that one factor whicb 

this evaluation proceas significantly does not measure is risk. 

For the case at hand. an airplane optimized for LFC operation from 

the beginning of the design process ~lll have markedly different 

characteristics than a non-LFC counterpart. Degradation or the 

LFC system promises significant (although yet unquantified) 

penalites in performance and operating costs. 

4.5.2.6 Leading Edge Device~. These devices. which are found on 

almost every cont~porary commercial jet liner, are only rarely 

founrl in GA aircraft. Fixed devices offer the same low pe~for-

manee advantages as retractable Krueger flaps or slats. However, 

crui~e performance is degraded in exchange for the simplicity of 

a fixed system. Reference 111 presents some flight test results of a 

Krueger system installed on the Redhawk. Although they displayed 

excellent characteristics (.~CL ·.59 for the Krueger flaps with 
max 

Fowler flaps deployed 40°), it was suggested that such a dystem 

was probably too heavy and too complex for a It6ht GA single 

engine aircraft. 

In exchange for the in~~~ase in CL ,w/s could be increased 
max 

~ven further to lmpt-ove cruise performance. However, these benefits 

would he offset by a probable degradation in ceiling. 
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An interesting application of a retract.bl. leading edge 

device would be in their use on the outboard section of the aft 

wing of a canard configured vehicle. Such an appllcation could 

offset the effects of increased u~ash from the canard during low 

speed high angle-of-attack operations. 

4.5.2.7 Advanced Low and Medium Speed Airfoils. Tbese airfoils 

are characterized by turbulent flow co~iition8 and were initially 

designed as low speed airfoils to provide low cruise drag, high 

climb lift-to-drag ratios, high maximum lift, and well behaved 

stall characteristics. Results of these efforts are documented 

by McGhee, Beasley and Whitcomb in Reference 139 and are shown 

in Figures 4.3 and 4.4, where the L5(l) series ~ncompasses both 

the GA(W)-l and GA(W)-2. As shown, these low speed airfoils 

have better c~ than more conventional NACA sections and 
max 

tIc ~ .13 produced the highest c~ Reference 139 also describes 
max 

work done to reduce pitching moments of a 17% thick airfoil as well 

as increase the lift-to-drag ratio of a 21% thick airfoil. These 

low speed airfoils all have a design c~ of 0.4. Two mEdium speed 

airfoils are described where c1 a .3, Re • 14 X 106, and M • .72 

and .68. The design family of airfoils is shown in Figure 4.5. 

These airfOils, howevet, are characterized by higher pitching 

moments and higher drag than, for example, 6-series airfoils. 

Accordingly, an effort by Hicks and Schairer to increase the maxi-

mum lift coeffici~nt of 63 2-215 airft:l is described in Reference 

84. Figure 4.6 shows the modification and Figure 4.7 shows one of 
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;;s SY!l&<J?l% 

k . \¥40 

several fiaure. deplct1nl typical re.ult.. Thl ... y b. compared 

to Figure 4.8 from aeference 139 which ,howe low and medium 

.peed airfoil data. 

2.4 

2.2 -

2.0 

C l,max 1. 8 
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1. 4 -

1.2 

Airfoils Smooth 
M • 0.15 6 
Re • 6 x 10 

o NASA LSu)-SER IES ICt d == 0. 40) 
o NACA 23O-SER IES ' 
o NACA 44-SER IES 
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(frolT". Ref. 139) 

Fi~. 4.1. c~ va tic of NASA Low-Speed and NACA Airfoil!.. 
max 
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Fig. 4.4. Effect of tIc on c t and ~/d for NASA Low-Speed 
Airfoils. max 

One difficulty which is posed for the thinner airfoils (tIc::: .13) 

is that these airfoils do not lend themselves to easy configuration 

integration in GA aircraft. Thicker airfoils <tIc:::: .17) offer more 

wing vohlme for fuel and control linkages. Also, they suffer a 

smaller weight penalty in construction. 
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I Fig. 4.5. Design Family of NASA Low-Speed Airfoils. 
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Fig. 4.0. Hodification to NACA 63
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-715 Airfoil. 
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Fig. 4.7. Experim~ntal Results of a Modification to an NACA 
632-215 Airfoil. 

Difficulties with implementation of the LS(l) series into a con-

figuration are suggested by the highly aft-loaded airfoil pressure 

distribution and suggest that a moderate amount of tailoring may 

be required at the wing-body junction to preclude premature flow 

separation of both the wing and fuselage in this region. 

For the technology evaluation, it was assumed that neither 

Airplane A or B employed low Or medium speed airfoils. Airplane B 

$ .-
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should suffer a smaller penalty in paraaitic drag since its mission 

profile 1s more dominated by climbs and approaches where drag-due-

to-lift is more dominant than in cruise • 

2.0 
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Cz 
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em 
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R • 4 x 10 e (x/d T • 0.075 

o lS(})-(M17 
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I I I 
.03 .04 .05 

Cd 

(from Ref. 139) 

Fig. 4.8. Experimental Results of Low and Medium Speed Airfoilri. 

4.5.2.8 Advanced Natural Laminar Flow Airfoils. Present efforts 

to develop a natural laminar airfoil are aimed at achieving a cR. 
max 

at least as great as that associated with the GA(W) -2 while main-

taining pitching moment coefficients lower than those of the same 

airfoil. Preliminary work suggests sectIonal reductions in drag 
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by a. much as 25% at desian Ct' Improvement. in performance are 

offset by a requirement to maintain a amooth surfac •• and relativ.ly 

sev.re penalti •• in drag appear with the introduction of roughD •••• 

Thia suggest a that fluah riveting, bonding. or compo.ite materiala 

may be required to eliminate protruding rivet h.ads. Also, the 

user may expect to be confronted with a requirement to maintain a 

relatively insect-free surfac •• 

This technology proved fairly difficult to evaluate. Airplane A 

c~uld benefit rather significantly from this technology, but purchase 

cost penalties could outweigh benefits if a baseline of present 

manufacturing processes is upgraded to total flush riveting. For 

purposes of this evaluation, it will be assumed that this technology 

will be integrated with a composite wing since the latter offers 

reduced manufacturing costs. In the absence of an insect-free sur-

face technology, Airplane B will encounter DOC expenses and reliability 

penalties associated with its more severe operating environment. 

4.5.2.9 Improved Stall/Spin Characteristics Through Aerodynamic 

Tailoring. Solutions to stall/spin accidents range from better 

pilot stall recognition training to better designed vehicles. This 

evaluation addresses only the latter solution (in a rather restricted 

sense. 

Anderson notes that solutions to the design problem appear to 

lie in (1) providing good handling qualities up to and beyond 

maximum lift, (2) making the aircraft spin resistant, and (3) pro

viding stable static and dynamic stability characteristics with 
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good con~rol about the pitch, roll, aDd yaw axe. (Ref. 4). Three 

approaches which appear feasible are: 

(1) Control stall proareesion on the wina to provide Ireater post

etall roll dupina and natural buffet stall wamina. 

(2) Ltmit lonaitudinal control power to prevent complete wing 

stall. 

(3) Minimize adverse cross couplinl by automatic (SAS) means. 

Item 2 is addressed by attempts to reduce the relative hori

zontal tail power throulh (1) tailoring, (2) active controls (Ref. 29) 

or (3) employing a canard configuration (Ref. 185). Item 3 has 

already been successfully demonstrated by the military. Certainly, 

separate surface technology as discussed elsewhere in this paper 

should be investigated. Artificial stall warning devices appear to 

provide significant contributions, and Ellis notes that a large 

portion of stall, mush, and spin accidents occur in airplanes 

which are not equipped with these systems (Ref. 49). Stick shakers 

appear to be th~ most effective warning device. Aural warnings 

also provide a certain margin of safety, but visual-only angle-of

attack indicators appear ineffective. 

Having discussed certain problems and solutions which appear 

in the literature, emphasis is now focused on methods of controlling 

stall progression through aerodynamic tailoring. Feistal, Anderson, 

and Kroeger have reported on plomising results based on a leading 

edge discontinuity as illustrated in Figure 4.9 (Ref. 8S). 

Figure 4.10 depicts an essentially flat-topped lift curve out to 
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could theoretically be modified to move the initial It all to the 

wina root without affecUns either Ipan lo.d1nS or iDduced draa 

charecteriitici (Ref. 83). 

For this Itudy, only the techDololiel reprelentinl efforts to 

control separation are evaluated. Both Airplane A and B achieve 

substantial benefits in safety at little coat. 

... 

• .a 

A 

Full Scale Tunnel, Tail Off, V - 89 kt 

• • .... I ! I 

• • 

, .. 

• II . ... 
(b) Basic aircraft. 

• • 
(a) Aircraft with modified 

leading edge. 
f:l:'om Ref. 55 

Fiq. 4.10. Flat-Topped Lift Curve from Leading Edgp. Modification 
for Stall/Spin Alleviation. 

~.5.3 Aircraft Systems 

Only twu systems as shown in Table 4.12 were evaluated. Sur-

prisingly, Icephobic Surface Coatings did not fare as exceptionally 

well as one might expect. Here, miDCir penalties in weight (which 

affected ceiling and range to a lesser extent) and cost almost 

t~tally negated the +3 relative benefit awarded for sGfety. Airplane B 

appears to benefit substantially when pneumatic boots or hot air 

systems are replaced. 
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Table 4.13. Aircraft S,.t ... 

F1aure. of Merit for 
TechnololY (2) 

Airplane t 
56/-53/85 

Airplane I 
51/-57/58 

Icephobic Surface eoatings 5 33 

AC Electrical Syst(~. 0 17 

* Total number of technololies/lowest FM/highest FM 

4.5.3.1 Icephobic Surface Coatings. Very little was found 1.n the 

literature on icephobic surface coatings. Although Reference 18 

mentions olefin plastics on helicopter blades, no mention is made 

of the success or failure of this research. Certainly, the rewards 

obtainable f~om a surface coating of this type demand further 

research. When one consideres that vertical and horizontal tails, 

wheel pants. struts, etc., could all be protected from ice accumu-

1ation in addition to the more conventional and limited GA applic-

cation to wing leading edges only, the potential benefits of such 

a system become staggering. It is suspected that in-house, ua-

published rese3r~h has already been performed by interested 

agencies. However, no information relating to efforts or results • 
surfaced in the data gathering trips performed as part of this 

research. 

For this technology evaluation. the baseline for Airplane A 

is not considered tl) be equipped with an ant:l-icing system, whHe 

the baseline for Airplune B is presumed to be equipped with a 

pneumatic system con.i&ting of either boots or ducted hot air. 
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Airplane A is penaliaed for -iaht aACl co.t but raceiv .. e. hiper 

benefit in aafety. On the other had. Airplane B racetv .. an 

l~prQveaent in reliability, coat. and weiaht with only ... 11 

tmproveaenta in aafety. 

4.5.3.2 !£. Electrical Syat .. s. Major reaearch activity in ahifUna 

from DC to AC electrical syat .. a va. not detected either 1n the 

literQture or during dMta gathering tripa. However, at leaat one 

manufacturer cited a potential for large we1,ht savings in their 

aircr.ft product l~ne. 

For the r!'e5ent, neither Aircraft A',. nor Aircraft B's tech

nology basel! ~~ is expecled to benefit to any great extent. Airplane 

A is characterized by Um.it~d weight penalties aaeociated with 

wirin~. while Aircraft B is leno",-!! t' favor panel-mcunted va remote

mounted avionics due to cost conaiderations (Ref. 167). Although 

newer C.:llllllluters are uaually equipped with autopilou and flight 

director systems, it is suspected that tre majority of operational 

commuters are still hand flown on cYnv~ntional round dial instru

ments with cross ?oj~ters. Hence, the potential weight savings are 

not as great as for a cunent business jet. 

4.5.4 Crashworthiness 

rour technologies as shown in Table ~.14 vere investigated. 

TIaesl' technologies are considered to he extremely attractive. As 

explained earlier, their figures of meri.t are relatively low because 

they affect only a few categories and specifically do not influence 

DOC. Safety. or Reliability. Also. as shown in Table 4.3 and 4.4. 
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the catelory vellhtlal for Cra.bworthtDe •• va. 6.816 <'11 of 17) 

for Airplane A aDd 7.333 (19 of 17) for Airplane B. 

T.ble 4.14. Cra.hworthine •• 

Flauree of Medt for 
Technology (4) 

Airplane A Airplane I 
56/-53/85* 511-57/58 

Load Limitjnl Seat. 17 J.9 

Energy Abeorbins Floor 14 15 

Improved Reltrainta 14 lS 

Burst/Tear Resi.tant Tauk. 8 9 

* Total number of technologies/lowest FH/high-st FH 

4,5.4.1 Load Limiting Seats. Efforts to improve occupant .urvi-

vabiltty in the event of a crash are becoming more refined wtth 

the corre1at!ons of tp.st data obtained from the NASA Impact 

Dynamics Research Facility (IDRF) and the FAA Civil Aeromedical 

Institute (CAM!) with analytical data from a modified <omputer 

algorithm known as MSmtLA (for Modified Seat-Occupant Model for 

Light Aircraft). Fasanella and Alfaro-Bou note good agreement 

between CAMI sled data clnd fllll scale results from the lOR!:'. 

f1S0MLA (which USCJ a spring-dampeT medel a8 opposed to the finite 

element model h, ~(MLA) alse showed good agreement (Ref. 53). 

Having noted that there is much which can be done towards 

.::4proving survivability through improved seat design, three different 

94 

....-------~.---.. ---~---



types of improved seats .a .hown in Figures 4.11 (b). (c). and (d) 

are being investigated. The wire bending load limitp.r is shown 

in Figure 4.11 (a). 

() Wlr b nding 10 d l imi r (b) C iling usp nd d at 
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During stroking, the wire loop ia tranalated aloDS the wire under 

a ~'oustant forca of 4.4 kN (1000 lbf). T.ats as of April 1979 

indicate that ~he ceiling mounted aeat reduced longlttidunal pelvic 

accelerations by 40% during a 15 m/s (50 fps) sled pulse and ver

tical accelerations by 50% during a 13 m/s (42 fps) sled pulse 

(Ref. 53). This seat. which has a 9.1 kS mass, suffers 

from added installation weight and a poasible 10s8 of ~troking 

distance resulting from cabin deformation at impact. From an 

appljcations/integration viewpoint, it appears that the floor 

mounted seat (10 kg or 23 Ibm) may offer more promise. However, 

preliminary test results indicated a requirement for further 

development work for the floor mounted and rocker action seats. 

Thomson aud Goetz (Ref. 210) note in a similar report that the 

human tolerance of 25 g's can be met with a 30 em (12 in) stroke 

dissipated over 0.1 sec. Such a system places an upper bound of 

12.2 mls (40 fps) on the seats. 

Since the typical general aviation seat of 11 kg (25 lb) 

dissipates energy through seat deformation and leg buckling, load 

limiting seats offer great potential for improving vehicle 

crashworthiness and occupant survivability. 

4.5.4.2 Energy Absorbing Floor. Several schemes which offer pro-

mise in application are described in Reference 210 and depicted in 

Figure 4.12. Assuming a 15 cm (6 in) available stroke (through 

floor deformation), Thomson and Goetz point to an upper limit of 

8.2 m/s (27 fps) which can be dissipated by the floor structure 

through controlled collapse. Despite information obtained from 
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airframe manufacturers which indicates that this type of occupant 

protection is already being introduced in a few product lines, wide-

spread incorporation is not yet noted . Teats and data correlation 

with analytical models indicate that three computer codes (KRASH. 

ACTION and DYCAST) demon~trate good quantitative results in pr -

dictin dynamic vehicle response to impact loadings (Ref. 79). The 

continued development of these tools promises to give further in-

sight to floor and cabin deformation. Fasanella and Alfaro-Sou 

report, for xample, that IDRF data showed a GA aircraft cabin 

during a 27 mls (89 fps) impact d forming and become 21 em (8.3 in) 

wid r od 23 cm (9 in) low r. The appar nt uph av ul of the center 

fl or s tion was actually th r sult 0 th cabin side walls forc-

in th f loor down t h wall Junction. Incorporation of the energy 

ab orbin f loor into futur ircraft tak 5 on add d significanc 

in vi w f:; u h re nt t st d ta. 

BEFORE a 
IMPACT~ 

Am R L:;;;;). 
IMPACT ~ 

FORMABU CORRUGATrD WEB 
K£EL WEB (SANDWICH) 
WITH fOAM 

CORRUuA1[D 
WEB . &EADED 
BULKH[AD. 
NOTCHE 0 CORNE R 
WI :H FOAM 

CORRUGATED 
SUBFLOOR 

Fi~ . . 12 . En · t-·\' bs t' bln~ Fl • r r: nc'pts . 

LON GlTUDI AL 
CYLINDERS + 
INTERIOR FOAM 
AND/ OR 
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Both Airplane A and B will gain significantly in craabworthi

ness from thia technology at an undetermined coat in weight. 

(Note that all of the five concept. depicted in Figure 4.12 incor

porate an energy-dissipating foam.) 

4.5.4.3 Improved Restraints. Wben an ana1ysi& of business air

craft accident investigations showed that the use of sho~lder 

belts reflected a marked increase in survival, the researchers 

concluded that this use is considered to be the single most impor

tant means of improving occupant crash impact protection (Ref. 194). 

This report also noted that restraints attached to the seat pro

vided little protection when the seat failed and separated from 

lhe floor. Further research by others indicates that a single 

shoulder strap allows the occupant to rollout of the restraint 

in some accidents. Hence, a restraining system consisting of two 

shoulder straps, two lap belts, and crotch strap, all connected 

at a single point centered on the lap belts appears to offer major 

improvements in crashworthiness. (Fig. 4.l3(a) depicts such a 

system.) Such a system would incorporate locking inertia reels 

in the shoulder harness and thereby afford the passenger more 

freedom of movement during normal operations than a diagonal 

single shoulder strap would. Tests to date indicate that a tensile 

force of .54 kN (122 lb) may be encountered in the harness system 

during a 27 m/sec (89 fps) impact. Hence, metal-to-metal 

buckles are preferred to metal-to-fabric cam systems. 

This technology promises significant benefits to both Airplane 

A and B. AntIcipated penalties lie in increased costs. 
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(a) Impro;_d Restraint (b) Conventional Restraint 

Fig, 4,] 3. Fi v straint vs Conv ntional Restraint 
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catapult. Reference 48 hotes that the lightest tank which per-

formed sa(isfactorily with no leakage after a 29 mls (96 fps} 

impact was one manufacture~ by Uniroyal Corporation from a single 

ply with a fabric weight of 43.23 gram/m2 • None of the 2- and 

3-ply tanks failed . bu:: two other (lighter) I-ply tanks and the ori-

ginal tank did. Figure 4.14 shows the installed tank, and 

Figures 4.15 and 4.16 show the crash site and test where the test 

vehicle impacted an eart~en hill equipped with sunken steel tubes 

and rock piles. Figure 4.17 shows the external damage done to the 

wing where the single ply tank did not fail. (Note that a ~ystem 

to shear the fuel line from the tank was incorporated, and the 

frangible fittings did not leak.) 

• 

Fig . 4 . 14 . ~dified Fu _l Tank Ins t alled i n Wing . 
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tanks may be expected to have a volume difference of less than 

3.8 liters (1 gal) from conventional bladder tanks. These weight 

and volume pena1ites are expected to be greater when compared 

to a wet wing con~ept. However, a wet wing may be expected to 

suffer from post crash impact failures at least as often as 

conventional bladder tanks. 

Fi . 4 .1. Tvpl 1 rmpa t f irfram Fo llow i ng Ca t apult Ac l e r ation. 
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Fig . 4 . 17. Win Dama Wh r a I - Ply T~nk Did 
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on the other hand. suffers no penalty in costs (autopilot replacement) 

and smaller benefits in Pilot Workload and Ride Quality. 

Table 4.15. Flight Control Syst ... 

Figures of Harit for 
Technology (14) 

Airplane A Airplane B 
56/-53/85* 51/-57/58* 

Integrated Low Cost Wf.ng Leveler 39 8 

Separate Surface Technology 22 24 

Active Stall Prevention 13 16 

Direct Lift Control 11 12 

Integrated Yaw Damper 3 6 

Act Ctls for Relaxed Stability -0 5 

Single Lever Thrust/Drag Control -3 -3 

Fluidic Automatic Flight Controls -12 -1 

Active Ride Smoothing -14 4 

Direct Side Force Control -14 -11 

Active Flutter Suppression -3e -38 

Active Gust Alleviation -42 -35 

Fly-by Wire -47 -33 

Fly-by-Light -47 -30 

* Total number of technologies/lowest FM/highest FM 
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Active controls, fly-by-wire, and fly-by-light are extremely 

unattractive due to coat, where the flight environment con.idered 

for Airplane A and B (low cruise speed) does not take full 

advantage of the benefite available to aircraft with high cruise 

speeds. 

4.5.5.1 F1Y-!l-Wire. ~is technology is considered to be fairly 

well developed but very costly. Papers presented at an AGARD 

Conference in 1974 (Ref. 2~ and 57) noted then that the methods 

of designing a fly-by-wire (FBW) system were well understood but 

that s&fety considerations alone (without regard for certification 

requirements) cause the systems to be very complex and expensive. 

The economic justification for such a system is very much dependent 

on the aircraft mission. Hence it is difficult to visualize their 

incorporation into the GA fleet witnin the next ten years, especially 

when one considers tile availability and cost of Iliaintenance for 

such systems. Some points regarding such a system deserve mention, 

h~wever. For p.xample, tha integratioa of FBW is considered manda-

tory if and when active fl!ght controls prove economically justi-

fiQbl~. Such flig~t c.cntrols include those designed for rel~~ed 

longitudinal static st3bility. gust alleviati~ot and flutter su}pres-

sion. All of these technologies promise weight savings and improved 

operational efficiencies which lower direct operating costs (DOC) 

for conunerc~.al air transport. An intri.guing r?tiearch program 

which is curr~ntly being pursued by the NASA/Langley Research 

Center together wit, Princeton University involves Langley's 

Di.gital AvioniLf' Rese~rr.h syster .. (DARE), and Princeton's Avion1:.& 
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Research Air:raft (AlA). The AlA is a fully inatru.ented. five

d.lree~f -freedom, FBW, lov-Vinl, &inal. eDline GA aircraft. Thia 

vehicle, which hal already b.en uaed to 1nv.atilate flyinl quali

ti.s, humaD. factora, and control, will be used with DARE to expand 

on the above investigations as well as thos. dealing with advanced 

di,ital control concepts (Ref. 45). 

4.5.5.2 FIY-!l-Llght. This technology complements the capabilities 

and possible active controls applicr-tiona of a FBW system because 

of the following characteristics attributable to fiber optics: 

(1) Quicker data transmission than possible with wires. 

(2) Large bandwidth capability offers the potential for replacing 

several wires with one fiber. 

(3) Fibers are non-inductive and non-conductive. 

(4) Provides better signal isolation than wires by decreasing 

"crosstalk." 

(5) Does not present either electrical or fire hazards. 

However, fly-by-light (FBL) systems represent a somewhat 

Bignificant cost penalty over FBW systems. As ~uch, their integra

tion into the general aviation fleet appears even more remote than 

FBW ~ystems. At the same time, it shoulj be noted that Bell 

Helicopte~ has logged several hundred flight test hours on their 

Model 206 equipped with a fiber optic yaw SeAS wH~h includes an 

optical encoder, ~iber optic link, and an optical receiver aud 

decoder. Bell also employed five complete fiber optic systems in 

the control of the 8~ shplate of an iron bird configuration 

106 

• ne:t«m: • 

.. 

--



-. 

... .~ 

demonstrator. In this confiauration. failura of thrae syst ... 

still allowed control authority over the main rotor. 

4.5.5.3 Active ~ Alleviation. Thi. technoloay could offer 

potentially large performance benefits resulting fro. reduced 

structural weiaht for those high 8pe.~ aircraft which operate out 

of short fields on the order of 610 m (2000 ft). These aircraft 

will require relatively low wing loadings on the order of 1.9 kN/m2 

(40 Ib/ft
2
). and structural weight penalties may be incurred 

when decreased field length capabilities are sought. Active gust 

alleviation holds promise for configuratio'ns subjected to gust 

load factors on the order of five or above. When integrated to 

reduce structural weight (and strength), however, the system 

becomes safety-of-flight critical and requires costly redundancies 

and certification testing. A unique passive system for Single 

engine GA aircraft is described in Reference 173 where auxiliary 

aerodynamic surfaces were attached to a Cessna 172 to sense 

angle-of-attack and drive the flap system through a direct linkage. 

Although this syqtem successfully attenuated gusts up to 3 mls 

(11: tPF'J in the frequen~y range betwe.en that of the phugoid and 

short-per1o~ mode, it did so at the expense of reducing C • m a 
Consequently. further btt;'~:;"'O; where a linkage to ,.~ 

troIs can be investigated appear warranted. An b;;~.-,,~ (.h,L ~,!'iHt i.,. 

be made here is that gust alleviation hecomes attractive when 

significant structural weight savings can be realized. Sinc~ 

these savings USt1311y represent the elin.1nation of penalties 

incurred through strenJo:th ceql!irt-III~I.ta ... :hich are dictated by 
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aclvene pa.t load I ill cruile t ., IYlt_ or techDololY which 

1ncrea.e. ~ of a ViDI (aDd thereby allow. for hiaher ViS) vill 
1UX 

probably be IIOre COlt .ffecUV8 for tbe low-.peed GA fl .. t. 

Active SUit allaviatiOD i. not expected to offer qUADtifiable 

benefitl to eitber Airplane A or B due to tbe relatively low cruile 

lpeed. (low SUit factors) of tbe.e vebi,~le •• 

4.5.5.4 ~tive Ride s.oothinl. rbi. technology i, differentiated 

from that of active SUit alleviation in the lenle that this 1,1-

tem doe I not p~ovide for reduced Itructural weilht.. AI luch it 

is not safety-of-flight critical. 

Primary benefits result from improved handlinl qualities and 

ride comfort. Reference 34 IUllests that additional cost penal-

ties for a cOUlDereial transport would be approximately 2% to 5% 

of total testing and certification expenses of a new vehicle 

with an integrated system. Retrofit of the system would incur 

higher cost penalties. Feadbility studies using a deHavu'land 

DH6 have been performed and indicate that total system weight 

should not exceed 2% of the aircraft's gross weight while total 

power requirements would not exceed 0.3% of total engine power. 

However, an. effective ride smoothing system will require relatively 

large direct lift and side force surfaces located near the aircraft 

center-of-gravity (Ref. 34). No major reliability or maintenance 

problems are forseen. 

For the present evaluation, both Aircraft A and B w11l incur 

C08t penalties in exchange for improvements in ride and handling 

qualities. 
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4.5.5.5 Activ. Flutter Control. Thi. techDoloay'. attractive-

nes. i. degendent laraely on the aDOunt of weight which could be 

.aved at the expense of tor.ional .tiffn.... Wben abort haul 

airplan •• with their attendant low W/S and high Ai are con.idered, 

advocate. of ~~t1ve control point to wtng structural weight .avina. 

on the order of 40% attributable directly to au.t alleviation 

system.. T!l1s weight .avi1,lg •• however, may reduce torsional 

stiffness and flutter spe~d, and mandate active flutter control 

systems. 

GA aircraft, on the other hand, already operate at low W/S 

and relatively low cruise speeds. As AR is increased, ~ore atten-

tion will have to be focused on problems associated with aeroelas-

tic phenomena such as flutter. Active flutter control is attrac-

tive when otherwise realizable structural weight savings result 

in an unacceptable degradation of torsional stiffness. 

For the prescnt evaluation. both Airplane A anA Bare pre-

sumed to possess suffici~nt torsional stiffness to negate a require-

ment for flutter suppression. As wIth active gust alleviation, 

this sy~tem is safety-of-flight critical since its anticipated 

use would be to reduce structural weights by n; .clng aerodynami(. 

loads. It must be realized that the evaluation ratings ~ill 

chan!-:c l'unsiderably if .111 unanticipated increace in torsional 

stiffness is requ lred as a result of increases in a ... peet ratio. 

4.5.5.6 Active Controls for Relaxed Inherent Stability. This 

concept holds promise for reduced DOC through reduced fuel con-

sunption. Like all active cun~rol systems, however, it poses 
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very M.gh penalites in terms of front end (purchase) coata. Un

like guat alleviation and flutter suppresaion, where aerod~ic 

efficiencies result from decreased structural weights. this 

technology offera a direct payoff by allowing for reduced drag 

resulting from relaxed (natural) stability constraints. This is 

a:hieved by sizing the tail to meet control constraints instead of 

stability constraints and usually results in smaller tails with 

dec'_~sed (parasitic) downloads when the main (forward) wing is 

moVt-:~ fryr-.iud. Results from studies of medium and heavy C011lD8r

cial transports were very promising. Reference 107 showed that 

in the cade where takeoff gross weight w~s kept constant, either 

payload was increased by 15% Or range was increased by 20%. 

Reference 144 noted that in ~he case where the mission (payload 

and range) waR kept constant, relaxed static statility could 

yield a 10% reduction in gross weight and a 5% increase in cruise 

LID. Reference 118 notes that a study involvbg the NASA Jetstar 

airplane, where active gust alleviation and relaxed ntatic stability 

were investigated, showed tail Rurface areas reduced oy 40% and 

fuel consumption reduced by 21%. This latter example should be 

interpreted with caution, however, since th~ effect of the gust 

alleviation system was to allow for a substantial decrease in wing 

sweep with an increase in AR form 5.3 to 9, which in itself 

offered a significant improvement in LID. 

4.5.5.7 Integrated Yaw Damper. Yaw dampers typically are employed 

on high altitude, high speed airplanes, although they also may 

be applied effectively for yaw damping at low speeds in general 
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Aviation aircraft. Typically, they may be employed whenever a 

poorly damped dutch roll mode attributable to low values of the 

yaw damping derivative C are encountered. The integration of 
nr 

this type of syst~ is difficult with present autopilots, how-

ever, because yaw damper functions are typically fed back to the 

GA pilot through the controls as annoying distractions, usually 

dUL'ilg the approach-to-landing phase. This may lead pilots to 

turn the system off at a time when they need it the most. Hence, 

a system integrated through separate surface technology where the 

pilot receives no feedback and system failures do not result in 

critical situations appears attra~tive. Yaw dampers will allow 

aircraft vertical control surfaces (rudders) to be optimally sized 

for P~L~4r~lar flight conditions while retaining superior handl-

ing qualities over th~ aircraft's entire flight envelope. 

4.5.5.8 Integrated Low Cost Wing Leveler. Bergey notes that an 

automatic and low cost wing leveler that does not depend on auxi-

liary power would be extremely valuable to the GA cOIlll1unity (Ref. 18). 

While investigating inflight airframe failures for the period 

1966-1975, Staple ford (Ref. 197) notes that a lack of spiral 

8tability is probably a key f~ctor in determining the frequency of 

loss of control. Two flight test programs (one by the FAA using 

a Beech Debonair A-33 and one by NASA using a Mooney H20) 

clearly demonstrated the serious problens encountereri by a non-

instrument-rated pilot who ventures into IFR conditions. Staple-

ford goes on to note that the absence of any airframe failures 
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by the Mooney H2O during the ten years investigated and encompassing 

over six million flight hours points clearly to the benefits of 

a wing leveler. (The H2O was equiVped with a wiDI 1..,.1.1" as 

standard equipment.) The attractiveness of a wing leveler, then, 

is predicated on ~nhancing spiral stability and reducing the 

potential for airframe failures resulting from recovery procedures 

(or lack of them) from unusual attitudes. Under more favorable 

flight conditions, a wing leveler still offers significant bene

fits in reduced pilot workload. 

At present, there is a low cost (~ $100) fluidic system avail

able to the GA community. Also, a separate surface system retro

fitted to a Cessna 172 has been satisfactorily demonstrated 

(Ref. 176). For the evaluation at hand, data on forecast auto

pilot use appears to indicate that half the aircraft in Airplane 

A's category will have autopilots, and almost all new commuters 

(Airplane B) will be so equipped. Hence, it will be arbitrarily 

assumed that Airplane A does not have a basic autopilot and that 

Airplane B does. 

4.5.5.9 Separate Surface Jechnology. This technology has parti

cular significance to the GA community due to;the nature of 

controls (reversible) incorporated by most single engine and 

commuter airplanes. In such systems, autopilot functions are 

mechanized by tying a servomotor into the primary surface cable 

controls. Hence, all autopilot functions are fed back to the pilot 

and, with the system off, stability augmentation capabilities which 
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may be incorporated into the autopilot a~e lost. Separate 

surface technology, on the other hand, can provide continuous 

wing leveler and yaw damper functions with appropriate wash out 

circuits incorpora~ed 60 as not to interfere with pilot control, 

and hence remain totally transparent to the pil.;)t. An autopilot 

function could also be incorporated which, too, would be trans-

parent. Such a system (SSSA) has been flight tested in a Cessna 

172 in a wing leveler mode and a Beech U99 in a three axis 

autopilot attitude command mode with excellent results. Costs 

of such a system are expl~ted to be similar to present auto-

pilots, with improved safety. diird-over failures result in the 

pilot flying the aircraft in an out-of-trim condition with no require-

ment to override an autopilot servomotor since one is not tied to 

the primary cable system. References 175, 176, 181, and 182 provide 

more details on SSSA, and Reference 20 notes that the development 

of samaTian cobalt motors makes SSSA dppear even more attractive. 

It should be noted that SSSA has recently been incorporated into 

the GA neet in the form of a yaw damper on the Hitsubishi 

Diamond I. As with the wing leveler evaluation. Airplane A is 

consid~red to not have an autopilot while Airplane B does. 

4.5.5.10 Direct Side Force Control. The primnry application of 

this type of system would be to augment active ride smoothing 

systems. Lapins and Jacobson (Ref. 119) noted that side force 

controllers are more effective than rudders alone in alleviating 

the effects of turbulence through active ride smoothing systems. 
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This same requirement was noted by Conner and Thompson in Refer

ence 85. When used for ride smoothing. such a.ystea will not be 

considered safety-of-fllght critical. Still, heavy cost penalties 

are expected for both Airplane A and B, although Airplane B should 

benefit considerably through greater passenger satisfaction in what 

promises to be a more turbulent flight environment. 

4.5.5.11 Direct Lift Control. Severs1 applications of direct lift 

eontrol (DLe) are envisioned, and all Kre mechanized through 

spoilers. In th.~ lIu'1"e sophisticated systems, DLC will be required 

for ride smoothing in order lO offset vertical loads. In some 

large commercial aircraft, DLC may be required for ~dequate flight 

path control as wls is increased. When such a system was employed 

in the Redhawk (modified Cessna 172), more precise, easier, and 

apparently safer approaches resulted since flight path angles 

could be controlled without changing aircraft attitude. Like

wise, landing ground roll can be reduced substantially in those 

cases where the approach path is constrained by obstacles. This 

would allow descents beyond the obstacle without a requirement 

to lower the aircraft nose and increase airspeed. Also, when 

the spoilers are maintained in a partially deployed configuration, 

a more conventional approach may be flown at hip-her airspeeds 

without incurring a landing performance penalty. This latter 

application promises improved safety since a greater airspeed 

stal1 lnargin can be maintained. 

4.5.5.12 Single Leve~ Thrust/Drag Co~!tro1. The use of spoilers 

to control flight path angle during approach to landing is known 



to improve the landing performance of moat pilots. When such. 

system 1- mechanized through the throttle. pilot workload is 

reduced both during the approach and during any required go

arounds. Improvements in reduced pilot workload ,'ere noted even 

in the CAse where the throttle lever retains its individual func

tion but has the DLC spoiler control mounted on it as .!1 thumb wheel 

(as was done on the Redhawk), 

It should be mentioned that single lever thrust control alone 

offers promising advantages in reduced workload, Teledyne Con

tinental Motors has incorporated a governor into a single lever 

control which effectively combines the functions of throttle, 

mixture, and RPM. This system, although not yet in production, has 

undergone over three years of development and is presumed ready 

for production. In its present configuration, the throttle is 

used to set RPM, and the governor mechanization acts to control 

manifold pressure and fuel flow. 

4.5.5.13 Fluidic Automatic Flight Control Systems. The fluidic 

three axis system designed for NASA by Honeywell and subsequently 

flight tested in an Aero Commander 680 FP showed excellent relia

bility and functioned very similarly to conventional autopilot 

systems (Ref. 222). Altitude hold, however, was degraded above 

1,830 m and power re.covery of the fluidic servo amplifiers was only 

40%. Yet, systems such as th~se demonstrate a clear capaLility 

for further developemnt. The continuing decrease in the cost of 

microprocessor logic, however, has done much to offset the initial 
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advantages of lower coat and high reliability attributed to 

fluidic ayatema. On the other hand, developments in low-coat 

fluidic sensors auch aa the low apeed a1~apeed indicator, the 

vortex rate aensor, and fluidic atall aenaor, offer significant 

benefits at reduced coat. One of the most advantageoua a~st~4s 

to result from efforts in fluidica was a winf leveler which 

incorporated a laminar flow proportional fluid amplifier with a 

very high signa\-to-noise ratio that vas developed by NASA 

Langley personnel. 

4.5.5.14 Active Stall Pr~vention. This technology offers great 

potential for reducing stall/spin accidents. Work by Chevalier 

where a spoiler is added to the lower· surface of the horizontal 

tail to prevent the attainment of the stall angle-of-attack 

(Ref. 29) appears encouraging. Since it appears that a signifi-

cant number of stall-related accidents occur in airplanes which 

are not euqipped with artificial stall warning systems (Ref. 

49), the neeJ for an effective stall warning/prevention device 

appears well justified. Several warning concepts (stick shaker, 

audible horn, visual angle of attack indicator) are technologically 

mature. Of these, the stick shaker appears to be the most effec-

tive. The possibility of incorporating a stick pusher also appears 

attractive. 

One detraction to active prevention systems lies in their 

accurate operation. Although the incorporation of active preven-

tion in light GA single engine aircraft appears warranted, the 

question of degraded control authotity below the stall angle-of-attack 
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detracts from the otherwise undisputed utility of such a systea. 

Cost appear A to be another possible detraction. In order to 

achieve widespread acceptance, such a aystem must either be 

mandated or offered at very low cost. 

3.5.6 Information Systems. 

Eight technologies were evaluated under this grouping and 

are shown in Table 4.16. As illustrated, Digital Data Llnks, 

Integrated Avionics and Displays, and Systems Status Displays are 

all fairly attractive technologies. The Micro HUn, although 

presently reflecting no benefit to the user, deserves mention here, 

This system, discussed further in Section 4.5.6.5, promises to 

provide all HUD functions without either a CRT or the associated 

optical system. Presently, its main penalty lies in cost. 

Widespread use of such a system could dr1.ve costs down significantly 

and make this technology extremely attractive. 

4.5.6.1 Digital Data Links. This concept entails the communca

tion of data (which is presently rendered verbally) between the 

airplane and various agencies in a digitized format much as 

present data links are used for encoding altimeters. Three types 

of systems are addressed in this section. The Digital Data 

Broadcast System (DDBS) is intended to provide RNAV systems Wit~l 

infonlation required to satisfactorily navigate both preplanned 

direct routes and "whatf!ver charted routes which are retained as 

an integral part of the ultimate area navigation environment" 

(Ref 97). Data would be broadcast in repeating data streams for 
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specified station or route coverage and would be accessed by tuniua 

in the appropriate VORTAC frequency. It should be ~~te6 that this 

system would marry RNAV to the exist ina VORTAC route structure 

iustead of providing the more flexible option of inputting geographic 

coordinates. The present status of this system i. unknown, and 

the last time it appeared in the literature used in the present 

research was in 1976 (Ref. 97). 

* 

Table 4.16. Information Systems 

Figures of Merit for 
Technology (8) 

Digital Data Links 

Integrated Avionics and Displays 

Systems Status Displays 

CRT Displays 

Micro HUD 

Laser Gyros 

Heads up Displays 

Fiber Optics (Data Trns) 

Airplane A 
56/-53/85* 

33 

32 

25 

11 

2 

-16 

-23 

-26 

Total number of technologies/lowest FM/highest FM 

Airplane B 
51/-57/58* 

38 

42 

25 

21 

2 

-14 

-24 

-23 

The second system to be discussed here is the Discrete 

Address Beacon System (DABS), which formed a significant aspect of 

the upgraded third generation ATC system (UG3RD) as discussed by 

the DOT Air Traffic Control Advisory Connnittee in December 1969. 

118 

-~~---"""------.-------------



This system has continuously appeared in the literature and rdceive. 

further attention in a report prepared a. part of the 1979 Summer 

Faculty Fellowship Program in Engineering System. Desian (Ref. 

148). As discussed in that reference. DABS will a~ccmmod.te the 

following information between the aircraft and its ATC environment: 

(1) Clearances. 

(2) Runway surface winds to include wind shear and wake vortex 

information. 

(3) Weather information. 

(4) Minimum safe altitude warning. 

(5) Confirmation of assigned altitude. 

(6) Automated Terminal information Service (ATIS). 

(7) Runway Visual Range (RVR). 

(8) Holding instructions. 

(9) Approach and departure clearance. 

(10) Conflict alert and resolution instructions. 

(11) Instructions as tc proper heading, speed, altitude, and the 

time t~ execute the ATC instructions. 

The third system La :'e discusbied is the Automatic Conununica-

tion and Reporting System (ACARS), which is used in conjunction 

with existing \11F udio equipment and allows for both voice as 

well as digitized information cOIllnunication to enhance a~_r-ground 

operational control communications. Although t~is type of system 

has been available h.r ten years, it has not been impletllented as 

rapidly as hoped due primarily to its $5,000 price tag (Ref. 148). 
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It appeara aipif1c&11t at this time to po1t\t out that studte. 

of future ATe enviroaments point to a conge.tad environment as a 

very real possibility, and this .ullesta that the pilot could 

well become .aturated with communications function. alone. At. 

NASA-sponsored Avionics and Controls Research and Technology 

Workahis;. (Ref. 147). the team diacuss1ng "General AViation and 

Short Haul" recommended that a principal focus for research is 

suggested to: 

(1) Minimize or eliminate the requirement for communication (talk) 

to as great an extent as possible. 

(2) Allow IFR flights of the future to be performed as easily as 

VFR flights are today. 

In vjew of this observation/recommendation, DABS appears to 

offer the most significant benefits of the three systems discussed. 

It should be noted that DABS is crucial to the Intermittent Posi

tive Control (IPC) conception for Collision Aviodance Systems (CAS). 

A basic DABS unit may be expected to cost about the same amount as 

present transponders ($750) or $2000 with an IPC display (Ref. 97). 

For the present evaluation, both airplanes are presumed to 

already be equipped with encoding altimeters but are penalized 

fllr ~L\e IPC display. Substantial benefits in improved pilot 

workload and safety are realized. 

4.5.6.2 fathode Ray Tube (CRT) Displays. CRT displays may be 

evaluated against mecuanical, conventional instruments, or against 

other electronic displays. For purposes of this evaluation, they 
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will be evaluated agaiDlt the former becauae other electronic 

systems are not envision~J to be competitive froa a coat atand

point. 

Still, some discuasion appears warranted for various electronic 

display methods. The following data of 1975 vintage ia condenaed 

from Reference 196 and shown here a8 Table 4.17. 

Table 4.17. 1975 CharactEristics of Some Electronic Displays 

System $/Character Volts/Panel 

CRT < 1 10.000-25.000 

Plasma Panel < 3 100 

LED < 4 

LC • < 6 

The display application also needs to be addressed and is summarized 

in Table 4.18 in terms of their 1979 status. 

The versatile capabilities and low cost of the CRT tend to more 

than offset its disadvantage of relative size and high voltage. 

althoughthe latter can pose a safety problem. A flat panel CRT. 

developed by Northrop for the Army and whose rights were sub

sequently sold to Texas Instru~ents. greatly reduces the problem 

of size but was found to be prohibitively expensive due to high 

mdnufacturing costs (Ref. 219). Present CRT's rely on a $130 

m111iun annual market 1n computer terminals (which is doubling 

every three years) to offer very low costs. Indeed. one source 
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(Taunas, Ref. 219), aUlae.tm OIM coat. of $9.00 for black aDd 

white unit. and $36.00 for color in very larae quantitie.. When 

pre.ent CRT capabilitiea are uaed a. a baaeline, the relative 

performance of other electronic di.playa in aix major probl .. 

area. may be briefly tabulated as in Table 4.19. 

Table 4.18. Electronic Display Technology Per.pective 

Display Application 

Discretes, Keters, & 
Legends 

Alphanumeric 

• 

Vectorgraphic 

Video 

Available In R&D 

Electromechanical Liquid Crystal 
Galvanometers 
Incandescent 
Light Emitting Diode 

Cathode Ray Tube 
Electromechanical 
Ir." 'lndescent 
Light Emitting Diode 
Liquid Crystal 
Plasma 

Cathode Ray 'rube 
Plasma Panel 

Cathode Ray Tube 

Chemoluminescent 
Electrochromic 
Electroluminescent 
Electrophoretic 
Ferroelectric 

Electroluminescent 
Light Emit ting 

Diode 
Liquid Crystal 

Electroluminiscent 
Ferroelectric 
Laser 
Liquid Crystal 
Plasma Panel 

(data from Reference 219) 

Armed with this background information, CRT's are evaluated 

now against their me~t~nical conventional counterparts. These 

systems offer reduced pilot workload 1n that scanning tasks can be 
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Table 4.19. Six Major Display Problem Areas & Their Impact on New Technologle. 

(X designates problem with respect to current CRT) 

Light Plasma I Flat Electco- Liquid Electro- Electro-
Emitting Discharge CRT luminescence Crystal phoretlcs chroai(.s 
Diodes 

Luminous 
Efficiency X X 

t-tatrix 
Addressing X X X 

Duty Cycle X X X X 

Uniformity/ 
Gray Scale X X X X 

Full Color X X X X !: 

Cost (includ-
ing Electronics) X X X X X X X 

------

(data fro. Refereoce 219) 
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reduced from a 22 em (9 in) radius about the artificial horizon 

to 6.4 cm (2.54 in). This, of course, implies an integrated 

avionics package capable of providing continuous systems monitor-

ing and, inherently, warning-by-exception. Since the CRT's 

eliminate mechanical flags, etc. <as many as five or more in an 

integrated attitude director) reliability will be increased. 

(One avionics manufacturer indicated that possible sticking 

needles and flags on a product ~.on ADI were corrected through the 

i!leorporation of servomotors to drive the flags.) For those 

airplanes using remote mounted avionics, substantial weight savings 

can result by r~ducing the number of signal paths. 

Both Airplane A and B should receive significant benefits 

in reduced pilot workload and safety. (Recall that a display 

device is ess~ntial to DABS/IPC implementation.) 

4.5.6.3 Heads Q£ Displays .(RUD). HUD systems offer the potential 

for reducing pilot workload during approaches to landing under 

both VFR and IFR conditions. Currently, they display information 

such as course gJid~nce, airspeed, angle-of-attack, altitude, 

etc., via a CRT through a lens system/combining screen which 

collimates the display on the aircraft windscreen. Thus the 

pilot may devote hls attention to external cues from his landing 

environment and still receive flight data without having to re-

direct (and re-focus) his attention to within the cockpit. 

Associated with this capability, howe~er, is the problem of cost. 

HUD systems are envisioned to cost on the order of $25 to $45 
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thousand f~r GA applications while they may ~~st savera! $100 

thousand in mil~tary applications. Other data which tends to 

detract from HUn implementation are the observations that: 

(1) At the NASA-sponsored General Aviation Avionics Workshop, 

no general agreement could be reached on the question of 

whether HUD studies for GA should be pursued (Ref. 196). 

(2) A USAF study concerning the use of HUD's as a primary instru-

ment reference in the A-7D, F-15, and F-lllD in 1976 resulted 

in mixed responses from 123 pilots on the question of using 

FUn's during approach to landing. Although a significant 

majority of A-7D and F-15 pilots said the HUD enhanced IFR 

operations, only a small percentage preferred its use during 

approaches. Most F-lllD pilots preferr~d not to use the 

HUD for normal operations where weapons delivery was not 

involved (Ref. 15). The major complaint of the USAF pilots 

was that erroneous information could be displayed without 

warning. 

For both Airplane A and B, improvements in pilot workload and 

safety were offset by penalties in maintenance cost, empty weight, 

reliability, anc purchase price. 

4.5.6.4. t-1icro HUD. A micro HUD. developed by Bell Helicopter 
... 

Textron, offers HUD capability at an anticiapted 50% of the cost of 

regular HUD's. Although this cost penalty is stLll significant 

for GA, the system merits discussion due to its unique imp1ementa-

tion. The system uses a micro-processor to drive a fiber optic 
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symbol generator which presently has the capability to generate 

a large range of dynamic symbols and numbere. (When the signal 

generator was viewed during July 1979, the microprocessor was not 

fully imp1eaented and consequently only a limited set of symbols 

were generated. This generator is illustrated in Figure 4.18.) 

The most unique aspect of the system however, lies in the absence 

of the large and heavy optical system required of conventional 

HUD's. This system uses a pair of eyeglasses with a minute 

mirror centered in the eyepiece as shown in Figure 4.19. Signals 

are transmitted to the glasses via a fiber optic bundle and collimated 

to display images as shawn in Figure 4.20. Two similar systems 

are currently being tested by the Army. 

The benefits of this system over conventional HUD's lie 1n 

the elimination of (1) the high voltage and higher power require-

ments of a CRT, and (2) the elimination of costly and healY 

associated optical equipment. 

Although the same benefits for the HUD were credited here, 

severe cost penalties were also awarded on the basis of an 

estimated $20,000 price tag, which could not be supported by 

either Airplane A or 8. 

4.5.6.5. Systems Status Displays. Comprehensive engine health 

~?nitoring is significantly absent in present GA aircraft and, 

consequently, pilots are confronted with having to derive this 

information from existing displays (when sufficient raw data is 

available). The current DAAS system promises to rectify this 

situation by sensing: 
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Fig. 4.19. Micro HUD with Fiber Optic Link and Mirror. 

(1) Nanifold pressur e 

(2) Engine RPM 

(3) Fuel Flow 

(4) Fuel Quanti t y 

(5) Oil Temperatu r e 

(6) Oil Pressure 

(7) Cy linder h ad tempe r atu r for each cylinder 

(8) Exhaus t gas t n.perature fo r ei'\ch cylind r 

(9) Exhaust gas oxygen fur a~h cy lind r 

(10) Cowl f1ao position 

(11) Auxiliary fuel pumps 
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Fig. 4.20. Micro HUD Image Display. 

plus numerous other aircraft system parameters. This system will 

alert the pilot to any critical out-of-tolerance condition and 

advise corrective action in some cases. It also presents commands 

to the pilot for setting the mixture lever (Ref. 39). Such 

enhanced ca~abilities do much to relieve the pilot from scanning 
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and provides warning signals on an exception basis. The incorpora

tion of an annunciator of some sort appears warranted for such a 

system, and it is noted that Princeton's Avionics Research Airplane 

(ARA) is so equipped. Reference 31 points to integrated multi

function displays as having the highest priority of ten eqLipment 

discip4ines for NASA funding/study. This report (done in 1974) 

identifies a desired or expected purchase price of such displays 

at $500-$1500 for a single enc.·ne airplane and $3000-$7000 for a 

turboprop system. 

When sufficiently integrated, system status displays promise 

more advanced warning of possible engine failures, more informa

tion to assist in selecting optimal power settings, and reduced 

pilot workload. Engine TBO's may have the opportunity for being 

improved through better engine management on the part of the pilot. 

These benefits appear to apply equally to Loth Airplane A and B. 

4.5.6.6 Integrated Avionics and Displays. This concept has 

received considerable interest and publicity over the past decade, 

due largely to the antieipdted effects of increased dir traffic 

congestion and the attendant increased pilot workload associated 

with a more restrictive flight environment, particularly under 

single-pilot IFR operations. NASA efforts to identify and 

develop an orderly investigation involving industry, educational 

institutions. and other agene ies, ar~ reflected in the Langley

sponsored Avionics and Controls Research and Technology Workshop 

(Ref. 147) and the 1979 Summer Fac-ulty Fellowship Program in 

Engineering Systems DCti :gn which was cu-sponsored by ASEE (Ref. 148). 
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Ames efforts have been centered on the Advanced Avionics Systems 

studies which recently resulted in a Honeywell/King Radio contract 

in August 1978 to design and build a Demonstration Advanced 

Avionics System (DAAS) which will eventually be flight tested in 

a twin engine aircraft. Highlights of this program include 

several studies and a workshop as follows: 

(1) An ATC environment forecast (Ref. 97). 

(2) An electronics technology forecast. 

(3) A GA advanced avionics workshop (Ref. 196). 

(4) Preliminary candidate Advanced Avionics Systems (PCAAS) 

study contracts to Southern Illinois University (Ref. 133) 

and Systems Technology Incorporated (Ref. 208). 

(5) In-house efforts at Ames investigated I among other things, 

different low-cost options to solve t~,lIv1gation algorithms 

and to define a low-cost option to gyro sensors. 

Interesting results to number five above involve the incorporation 

of a phase-locked-loop to enhance VOR scanning capabilities and 

the incorporation of magnetometers to solve the attitude sensing 

problem. Preliminary results comparing INS data with derived 

data using magnetometers is presented in Figure 4.21. 

Under the present contract, the Honeywell/King DAAS effort 

will incorporate the following functions (Ref. 39): 

(1) Automated guidance and navigation using VOR/DHE navigational 

facilities. 

(2) Flight planning. 

131 

rte 

.. 



·.....",~~~--."~::==7~~~ ·-.~-=":=-~::;:;l1''';;;;uA:;;;;;;;''~iIIiiiili ___ '''''''''''''''' __ '''''''' ____________________ ---"~SS;;;;;IlI!II .. 

-··-~D 
i~~ 

170 

" 

... , .. , .. 2M ___ _ 

TIIIII._ 

AmTUDI 

-INS 
--- - - COMI'UTEO 

ATTITUDE 

_INI 
----COMI'UTEO 

~5~--~--~----~--~--~----~--~--~ o ~ ~ ~ ~ ~ ~ ~ ~ 

TIME .... 

Fig. 4.21. Comparison of Pitch. Heading. and Roll Computations. 
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(3) Weight and balance and performance calculation •• 

(4) Monitoring and warning. 

(5) St~rage of normal and emergency checklists and operational 

limitations. 

Pilot interface with this system i:s through a touch panel which 

in turn provides inputs to the Integrated Data Control Center (IDCe). 

The system is organized around an IEEE 488 bus and includes five 

microproc~ssors. Conventional pilot displays are incorporated 

with the exception of two CRT's. One serves as an IDCC interface 

with the pilot and the other serves as an Electronic Horizontal 

SlL~ation Indicator (ERSI) with an electronic map capability. 

Unfortunately, no cost forecasts for this system were readily 

available. The STI study (which was dependent on the availibility 

of a $6000 OMEGA system) penalized an unsophisticated avionics 

user $4900 for a $13,275 total avionics package and a sophisticated 

user $13,300 for a $62.645 system. The SIU study, on the other 

hand. forecast a cost of $23,850 for a full IFR system in a Cessna 

402 and $9962 for ~ Single engine new installation. (The STI 

PCAAS system used co~kpit display formats similar to DAAS but 

with seven microprocessors, and the SIU system replaced all con

ventional instruments with plasma panel displays.) 

It should be mentioned that the GA avionics community is not 

in total agreement with the single bus architecture, and at least 

two manufacturers which were v.' sited expressed concern over 

possible single point failures Hhich would render the entire system 
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either inoperative or unacceptably degraded. On the other haud, 

the concept of an integrated avionics system with or without the 

bus structure offers certain advantages Which would otherwise 

be delayed. For example, the powerplant health monitoring capa-

bility of DAAS is seen as a major advance over present syste.a. 

Here, the advantage of DAAS is that it allows for more types 

of information to be displayed to the pilot through the IDCC, 

where present configurations do not allow for either the required 

panel display space or separate display costs to be efficiently 

absorbed. 

A forseeable spin-off from a system which incorporates micro-

processor logic systems lies in the further introduction of these 

systems into GA aircraft. Certainly, one of the most beneficial 

applications of such logic systems lies in the electronic control 

of propulsion fuel systems to allow for more efficient operation. 

For example, ajvanced positive displacement engines will almost 

invariably require a high-pressure fuel injection system where 

the fuel is injected directly to each cylinder. Such a system 

will benefit substantially from an electronic control which senses 

induction air density and modulates as well as times the fuel 

flow. (This is to be contrasted to low-pressure continuous-flow .. 
systems in operation today.) Since the possibility of failure 

of such an electronic fuel injection system may be unacceptably 

high, the system could be mechanically driven and only modulated 

by an electronic logic circuit in order to achieve the highest 
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efUciencies. The fact that DMS already inco"y-,ratu a propulalon 

monitoring fun ~ion (no con:rol) could lead to a reduction of in-

flight en~ine failures by providing advance warning or indication 

of impending failure. 

4.5.6.1 ~ Optics for Data Transmission. Fiber optics have 

the capability to: 

(1) Transmit data faster than by wires. 

(2) Replace several wires with one fiber since fibers have a 

larger bandwidth capability. 

(1) Function without the inductive or conductive properties of 

wires. 

(4) Retain bette~ signal isolation between fibers than possible 

between wires. 

(5) Function without introducing electrical and/or fire hazards. 

(Ref. 158.) 

However, no appreciable weight savings or benefits may be anti-

cipated for retrofit systems, especially where data transmission 

rates are lower than one megabyte/ sec. 

Hence, fiber optic data transmission systems are not 

envisioned to offer advantages significant enough to justify their 

cost 1n the GA fl~et. 

4.5.6.8 Laser Gyros. These systems, developed by Honeywell, con-

tain no moving parts and sense accelerations by measuring fringe 

shifts between two laser beams. Reliability is expected to be 

very high. but costs are expected to be equally high. Hence. thp.ir 

incorporation into the GA fleet is not envisioned at this time. 
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4.5.7 Havilation Concepta 

Six technololiea as ahown in Table 4.20 were evaluated in 

this technolOIY group. Microwave Landini Syst ... appear more 

attractive to Airplane B than ~ dn. to a larler number of In 

terminal operations. Of the three area navilation conCC?tI inves-

tilated. none appeared to provide significant bunefits. This 

was due largely to the fact that both airplanes were presumed 

to already have full IFR capability. and Airplane A was also 

equipped with an existing RNAV system. The ~wo velocity informa-

tion sources (Doppler and Inertial systems) were both extremely 

unattractive to Airplanes A and B. 

Table 4.20. Navigation Concepts 

Figures of Merit for 
Technology (6) 

Airplane A 
56/-53/85* 

Airplane B 
51/-57/58* 

Hicrowave Landing Systems 9 21 

NAVSTAR/GPS 8 8 

Loran C -24 -30 

Omega -26 -32 

Doppler Navigation -37 -40 

Inertial Navigation -53 -57 

* Total number of technologies/lowest FM/highest FM 
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4.5.7.1 NAVSTAl/GPS. Th1s system 1s a global, aatellite-based 

navigation .ystea beinl pursued by the U.S. Air Force. Six of 

the originally-planned 24 aatellites are already in orbit (Ref. 148), 

but Reference 8 indicates that the total nuaber has been reduced 

to 18, with. planned operational date of 1987 to 1990. This 

system is ext~emely attractive to civil aviation because it 

provides a (forecast) reasonably priced navigation ~y8tem capable 

of 

(1) Extreme accuracies in x, y. z and t reference frames. 

(2) Area navigation. 

(3) Global coverage down to ground level. 

(4) Collision avoidance. 

When one considers that g general aviation GPS system is expecte~ 

to possibly cost as little as $2800 (Ref. land 102) to $3600 

(Ref. 148) whil~ an ~~AV system comprised of 1 VOR. 1 DME and 1 RNAV 

computer will cost $3700 (Ref. 148) while still being dependent 

on an ~bility to receive an acceptable VOR/DME signal, the attractive

neS8 of GP~ becomes clearly evident. It should be noted that 

the VOR/DME.'RNAV system iescribed above still cannot provide 

altitude information, and velocity information is highly cependent 

upon accurate VOR/DME position fhes which must be differentiated. 

Three levels of system accuracy are provided. where the 

first two are protected by the military. The third, envisioned 

to relnain unprotected for civil aviation use. was recently found 

to be "too accurate" and consequently will probably be degraded 

117 

. • 



to offer 200 meter (660 ft) accuracies with a SOl confidence 

level (Ref. 8). In order to realize how accurate GPS i8, one 

should note that tests pdrformed at 6 km (20,000 ft) by a C-14l 

using either one or both of two satellites which were then in orbic 

reflected errors on the order of 4 m (13 ft) in x, y, and z (Ref. 1). 

It is significant that a GPS-equipped aircraft will never be 

threatened by a signal-saturated environment because airborne 

equipment is totally passive, i.p.. no signals are transmitted from 

the aircraft as is the case with DME. When a dig:l.tal data link is 

added (Time-Division-Multiple-Access Link) together with a ground

based GPS transmitter, accuracies sufficient for terminal area 

guidance results, togeth~r with a collision avoidance capability. 

In view of the above, benefits are expected for both Airplane 

A and B in terms of safety. Since the baselines for both airplaneR 

incl\~de IFR avionics, only minor cost penalties are expected. It 

should be noted here that the forecast data on costs is considered 

fairly optimistic and did not appear to be supported by manufac

turers. Hence, a penalty of -1 was assessed. If, on the other 

hand. costs do attain forecast levels, then a +1 might be 

warranted. In such a case, the figures of merit for both airplanes 

would be on the order of +24. 

4.5.7.2 Inertial ~avigation Systems (INS). Inertial navigation 

provides the attractiveness of a self-contained navigational sys

tem. Also, it provi1es a capability of computing reasonably accurate 

velocities which normally could not be obtained by other means 
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w~.thout enhancement. e. 8. J ILS signals are too noisy to be differ-

entiated with any confidence (Ref. 155). When INS is used with 

radio ranging and a Kalman filter, an Aided INr results, which 

has applicability to short haul transports by providing 4-D or two-

segment approach guidance (Ref. 193). However, INS purchase prices 

are on the order of $100,000 in larger commercial arieraft and are 

not expected to fall below $30,000 for the GA market (Ref. 97). 

The Aided INS system is an exception since it is predicated on low 

cost gyros. Annual maintenance costs are also exorbitant. In 
I 

i a study of relative avionics costs to the user, one investigator 

i 
penalized INS $9000/year while choosing not to assess such ~osts 

against other systems (Ref. 195). 

Based on the above, both Airplane A and B will suffer 

severe penalties with only negligible gains in their operating 

environment. GPS, for example, can provide global coverage with 

velocity capabilities for a fraction of the cost. 

self contained and therefore not dependent on ground based I 
1 

4.5.7.3 Doppler Navieatio~. This navigation mode, like INS, is 

systeu.. When used in conjunction with current navigation aids 

such 2S VOR/DME, it offers the potential fer 4-D navigation in 

the terminal area. Like INS, however. it is an expensive alter- ... 
native to an augmented GPS terminal environment. In the enroute 

phase of flight. the differentiation of DME signals when pro-

ceeding tal from a DHE station or the integrat ion of R.~AV capabilities 

wi~h D~1E and, say, three VOR stations should provide a satisfactory 
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velocity computation in either the airway or area navigation 

environment. Certainly, CPS should provide satisfactory velocities 

in its conventional (unaupented) mode duril\g enroute flight. 

Doppler navigation systems are therefore expected to assess 

high cost penalites to users where the saae capabilities are 

expected to be available at much lower costs. 

4.5.7.4 Microwave Landing Systems (MLS). MLS offers an attractive 

alternative to conventional Instrument Landing Systems (ILS) due 

to an ability to handle several ~ircraft flying at different air

speeds in the approach phase. This capability offers promise even 

today to the GA aircraft operating in high-density, mixed-

traffic, terminal environments. Figure 4.22 shows a conventional 

ILS profile and Figure 4.23 show~ an MLS profile where the 

advantages of such a system are more obvious. If one visualizes 

a GA aircraft operating at 40% to 60% the approach speed of 

larger connnercial jets lind trying to execute an approach to the 

same ~~lway as his jet counterparts are, the advantages of the 

MLS system becomes evident. Certainly. signcficant savings in 

fuel expended in the terminal area may be expected, particularly 

by commuter operations whose flight profiles dictate that larger 

amounts of their total flight time between refuelings is spent 

in the approach to landing phase. 

Although Madden and Desai (Ref. 130) noted in 1973 that it 

was possible to track a curved approach path using MLS and DME to 

accuracies within the resolution of ATC radar, Hoffman and Hollister 

(Ref. 97) noted in 1976 that pilots expressed a reluctance to: 
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(1) fly steep approaches which do not level off to the more 

o conventional 3 prior to the final flare, and 

(2) 
o 

fly curved approaches beyond the point where the 3 glide 

slope is intercepted. 

A reasonable plan appears to be ene where the curved and steeper 

flight paths are used to within 150 m (500 ft) AGL and a transi-

tion is made to a conventional glide slope. 

Current ILS systems are characterized by reliability, safety, 

and efficient service. Probably, its only drawbacks are ltmited 

available channels (40, although only 20 are used currently) and 

performance degradation resulting from terrain irregularities and 

heavy snow. (Terrain effectA stem from the fact that ILS glide 

slope signals require radiated energy to be reflected from the 

ground plane.) MLS incorporates a microprocessor as well as a 

digital data link and costs are forecast to be on the order of 

$2000 for GA and $34000 for the commercial jet carrier by the 

year 2000. 

MLS on the ot~er hand. offer~ five times the channel avail· 

ability and is not affected by terrain features. Also. a spin-off 

from the versatility of the MLS is that noise abatement procedures 

can be more easily integrated than under present ILS systems. 

Hence. MLS offers improvements in efficient terminal opera-

tions and possible noise benefits for some penalty in cost to both 

Airplane A and Airplane B. 
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4.5.7 .• 5 LORAN!l. LORAN C is a low-frequency, lona-rante. a11-

weather radio navigation system with absolute accuracies on 

the order of 0.5 km (1600 ft). This accuracy may be improved 

by a factor of 2 or 3 by implementing more sophisticated user 

equipment. Use of LORAN is predicated on having velocity infor

~tion. and this implies either differentiating the LORAN C 

time difference measurements (TD) or implementing an INS. LORAN 

provides area navigation capabilities down to ground level, but 

at present does not have full coverage of the Continental United 

Stat~~ (:ONUS). GA user costs for a receiver (without INS) 

are expe~ted to be as low as $3000 (Ref. 195), while military 

systems may cost $20,000 (Ref. 148). The receiver unit weighs 

approximately 11 kg. 

LORAN C is being considered as a possible GA navigation aid 

primarily because it is being considered as a replacement for the 

present VOR/OME network which is characterized by extremely 

high operations and maintenance costs. The LORAN C ground-based 

system costs are expected to be an order of magnitude smaller than 

the present VOR/OME network. 

As presently conceived, Airplane A and B will both suffer 

cost peualties if LORAN C is implemented. LORAN C does not pro

vide precision terminal guidance, althou3h ILS systems do. In 

evaluating this tE'chnology, the system is considered without an 

INS. Hence, the cost penalty is not as severe but is traded for 

deficiencies in reliability and safe~y. 
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As this report was being finalized, new information regarding 

a joint test effort between DOT. NASA and the State of Vermont 

~urfaced. The interested reader 1q referred to Aviation Week and 

Space Technology. March 24, 1980, pgs. 51-58. 

4.5.7.6 OMEGA. Like LORAN C, OMEGA is a low-frequency, long-

range, all weather navigation system. Unlike LORAN, however, it 

does have complete CONUS coverage. Its gteatest deficiency is 

that of accuracy, and CEP's on the order of 4 km (13,000 ft) 

are reported in Reference 1. When an accurate INS is integrated with 

the system, errors on the order of 2 km (6500 ft) are quoted. 

Consequently, no terminal guidance is provided. Cost for an 

inexpensive OMEGA system is forecast to be on the order of 

$30ro (Ref. 195) without the INS. However, it should be noted 

that 1977 receiver costs were on the order of $ZO,OOO to $59,000 

(Ref. 208). 

Like LORAN C, this system's attractiveness lies in operational 

and maintenance costs of ground facilities which may be two orders 

of magnitude below that of the current VOR/DME network. This is 

better underst.ood when one considers that only eight stations are 

used to provide complete global coverage. 

For the present evaluation where neither Airplane A nor Air-

plane B is used over water, OMEGA (without INS) offet 'c l1cnalties 

in cost and safety. 
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4.5.8 Noise 

The three technologies investigated here are shown in 

Table 4.21. Quiet. Efficient Propeller technolotlY appears fairly 

attractive to both Airplane A and B. due primarily to a promise for 

reduced interior noise. Ducted Propulsors appear attractive to 

Airplane B due to the maximum scores (+3) awarded for interior 

and exterior noise and this vehicle's unique flight profile. 

Table 4.21. Noise 

Figures of Merit for 
Technology (3) 

Airplane t Airplane B 
56/-53/85 51/-57/58* 

Quiet Efficient Propellers 24 29 

Ducted Propulsors - 2 18 

Low Level Pressurization -17 -18 

* Total number of technologies/lowest FM/highest FM 

4.5.8.1 ~ Efficient Propeller Technology. The fact that 

current propellers already operate at efficiencies on the order 

of 87% may lead one to doubt the existence Ot significant payoffs 

in this particular field of endeavor. A review of the literature, 

however, quickly identifies shortcomings: most of the propellers 

in use today are based on WW II technology. with appropriate 

refinements resulting from "cut and try" processes epplied to a 
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basic design. More recently, however, the requirements for 

reduced fuel consumptionandnoise pollution have led to renewed 

interest in propeller technology. 

NASA efforts to aid in the development of improved pro

pellers are focused in the General Aviation Propeller (GAP) 

Technology program, with a goal toward reducing fuel use by 8% 

to 9%, lowering noise by 5 to 10 db, and improving safety. This 

ambitious program involves propeller and airframe manufacturers. 

consultants, and several universities. 

Essentially, the major problem associated with propellers 

lies in the fact that they have been traditionally designed for 

performance, with little regard for noise. As one attempts to 

reduce noise, penalties in performance and/or weight usually mater

ialize. However. since the propeller produces approximately 85% 

of powerplant noise, the attenuation of this noise will do much 

to improve community relations and ride comfort. 

A major hurdle in reducing noise lies in its accurate pre

diction. Succi (Ref. 205) recent~y reported on the accurate pre

diction of the sound field using the Ffowcs-Williams Hawkins 

equation modified for computational simplicity. Having achieved 

this, he then reported on different means of reducing flyover noise: 

(1) Reducing propeller radius by 20% resulted in an 8 dbA reduc-

tion with a 4 1/2% loss in efficiency. 

(2) Altering the radial load concentration from 80% to 60% 

by 
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(a) re-twisting resulted in a 4.2 dbA reduction with a 

3.9% 108s in efficiency. 

(b) changing planform resulted in a 4.8 dbA reduction and 

a 1% 108s in efficiency. 

Two additional methods are also discussed (increasing the number 

of blades and the blade sweep) but results were not quantified 

as above. 

Other developments which promise to increase fuel efficiencies 

lie in airfoil development. The ARA-D, reported in Reference 38, 

appears particularly promising for turboprop application. Briefly, 

this particular airfoil retains its takeoff performance instead of 

showing the typical reductions in thrust which accompany reduc

tions in activity factor. When one considers that higher cruise 

efficiencies are obtainable at lower activity factors (and what 

has traditionally implied lower takeoff performance), the ARA-D 

looks very attractive. 

Increasing the number of blades has been recognized as an 

effective means of reducing noise. However, this presents a 

weight penalty which is compounded possibly by increased strength 

re~uirements resulting from increased vibration. In this light, 

the Kevlar composite propeller developed and certified by Hartzell 

is extremely attractive. This propeller has a 50% blade weight 

reduction with a 100% increase in strength. Unfortunately, its 

price was increased by a factor of 2.5. As composites are better 

understood and manufacturing processes refined. significant weight 

and price reductions a,pear inevitable. 
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In light of the above di.cu.sion. both Airplane A and B 

should receive significant benefit. in noi.. and weight reductions 

as well a8 safety, with a modest penalty in cost. 

4.5.8.2 Low Level ?res.urization. This technology was envisioned 

as employing a low 6p on the order of 14 kN/m2 (2 psi) for the 

sale purpose of attenuating noise. However, the addition of such 

a system ~ill still require that a pressurization system be 

added at a distinct cost and weight penalty. Also, it was 

quickly noted that although this 6p could reduce an ambient 

altitude of 4.87 km (16,000 ft) to a ~abin altitude of 3.05 km 

(10,000 ft), it would also exert an outward force of 9.61 KN 

on 3 0.762 x 0.914 m door (2160 Ibf on a 2.5 x 3 ft door). Hence, 

even "low level pressurization" will impose significant loads on 

the aircraft structure, implying f~rther (structural) weight 

penalties in addition to those of the system. 

Both airplanes may be expected to be heavily penalized for a 

reduction in interior noise. 

4.5.8.3 Ducted Propulsors. Ducted propulso(s are investigated 

here as a possible means for reducing noise. Associated with 

much improved interior and exterior noise characteristics are 

improved takeoff and landing performance characteristics. However, 

cruise performance is degraded and significant- weight penalties 

may be incurred. Hence, ducted propulsors offer Airplane B 

greater benefits intakeoff and landLng performance due to its 

mission profile. 
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An intereatina propoaal toward attenuatina noiae is the Q-Fan 

as reported in leference 230. However. thb .yet. is llot con-

sidered compatible with the low speed characteristics of Airplane 

A and B. 

4.5.9 Propulsion 

Five propulsion systems and two related technologies were 

considered for Airplane A, while only two propulsion systems 

were examined for Airplane B. As sh;;,wn in Table 4.22, the GATE 

Engine had the highe~t figure of merit for Airplane A, and the 

Stratified Charge Rotary Combustion Engine was second. As shown 

in Table 4.10. the third technology for Airplane A had a figure 

of merit of 58. The ratings for both engines considered for 

Airplane B are encouraging since the baseline for this vehicle 

already included a turboprop. 

In view of the particularly high figures of merit attained 

by this technology group, it appears appropriate to reiterate 

the fact that the present evaluation technique provides a measure 

of potential benefit to the user as opposed to a benefit/risk 

evaluat iOli. 

4.5.9.1 GATE Engine. The General Aviation Turbine Engine studies 

which were begun in l~77 involved Detroit Diesel Allison. Garrett 

AiResearch, Teledyne CAE. and Williams Research, while management 

of the program was provided by the NASA Lewis Research Facility. 

This study was ,!:·voted to investigating opportunities for advanced 
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Table 4.22. Pt'opulaion 

Figure. of Merit for 
Technology (8) 

GATE Engine 

Stratified Charge Rotary 
Combustion Engine 

Advanced Diesel Engine 

Improved Turbocharging 

Liqu id Cool ing 

Stratified Charge Reciprocating 
Engine 

HCRLB Reciprocating Engine 

Airplane A 
56/-53/85* 

85 

84 

36 

31 

13 

12 

11 

Total number of technologies/lowest FM/highest FM 

Airplane B 
51/-51/85* 

32 

21 

technologies in small turbine engines below the 750 kw size 

class. and one key i,;sue involved the question of how to make the 

turbine engine cost-competitive with reciprocating engines. The 

results of the study were extremely encouraging and have been 

reported in the literature (Ref. 12. 65, 123. 204). Briefly summar-

ized. turbine engines in gene13l traditionally suffer from penalties 

in purchase price and fuel consumption and consequently have not 

penetrated the cost-conscious GA market. Their dominance in 

larger 5ircraft can be attribut~d in lArge part to their attrac-

tive features which include lower weight. apparently better 

safety, improved ride comfort, and improvec aircraft performance 

lSl 



expressed in terms of higher ceilings and cruise speeds. In 

addition, tre JP4 which they utilize has an approximate 10% 

advantage in energy content and a 10% price advantage when compared 

with avga~ (Ref. 204). Interestingly, three of the four study 

participants forecast competitiv~ purchase prices which were the 

result of lower component manufacturing costs and increased 

sales volume. The fourth participant elected to increase sophis

tication and efficiencies to the extent that purchase price was 

raised but operating costs were much lowe~. 

Two major advantages of turbines which may not be readily 

apparent lie in its three-to-one weight advantage and potential 

for attaining greater cruising speeds. In a cruise dominated 

m1ssi~~ this results in a markedly smaller airplane for the same 

payload and range as a red procating-powered cOlnterpart due to 

the cascading effect that lower ~ngine weight and cleaner installa

tions have on vehicle size. As an illustration, consider that the 

lighter engine allows for a smaller and lighter vehicle, which 

allows for less drag. Thb allows for a reduction in required 

fuel volume which results in an even smaller airplane, which 

requires even less fuel. 

For the present evaluation, Airplane A was considered to be 

powered b~" a conventional reciprocating engine. A maximum pur

chase price penalty (-3) was assess,d primarily becau3e the 

market forec3st used in the GATE studies appeared somewhat 

optimistic. Airplane B, on the other hand, was given a purchase 
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price advantage due to an anticipated significant reduction in 

manufacturing cost. Recall that this airplane's baseline was 

presumed to already be powered by a turboprop. Hence. perfor-

mance improvements in speed and ceiling were not allowed although 

f 
I 
I 

imorovements in BSFC and purchase price were credited. 

4.5.9.2 Stratified Charge Rotary Combustion Engine. Research in 

this particular field shows promising results. The rotary com-

bustion engine, possesses several inherent features which make 

it extremely attractive for application as an aircraft powerplant. 

For example. it is sim?le. lightweight, and compact. Since power 

generation is not based on reciprocating pistons it is smoother. 

Liquid cooling allows for quieter operation. safer cabin ~eat and 

a probable reduction in cooling drag (since present air cooled 

installations are typically somewhat inefficient with unnecessary 

drag penalties). The absence of valves and cams also promises 

quieter operation and improved maintenance. Whereas homogeneous 

charge fuel efliciencies were less than competitive some years 

ago, (BSF :: ,328 kg/kW/hr or .54 lb/hp/hr). stratified charge 

BSFC's of .262 kg/kW/hr (.43 lb/hr/hr) have recently been 

achieved and compare very favorably with present reciprocating 

engines. Projections for the future are for BSFC's on the order 

of .231 kg/kW/hr (.38 lb/hp/hr). 

A significant feature of this system lies in its multi-fuel 

capacity. One engine presently operational at Curtiss-Wright 

burns lP4, diesel fuel, alcohol. or avgas. As such, it is 

extrel11('ly attractive in that transitions from avgas to JP4 with 
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changes in market trends which may be forced through fuel shortages 

will have minimal effects on this powerplant. The key to this 

versatility lies in the air motion within the combustion chamber 

which apparently is conducive to stratified charge operation. 

However, certain drawbacks to this system may be deduced 

from present and forecast levels of the state-of-the-art. 

Specifically, high pressure, timed fuel injection and time~ igni

tion systems are expected to be required. These represent fairly 

high cost technologies. Also, although the induction manifold 

is smaller than for reciprocating counterparts (leading to lower 

turbocharging requirements), an improved turbocharging capability 

will probably ~e required. This alone can represent significant 

increases in cost, particularly if the production base is not 

supported by auto~otive engine requirements. 

For this evaluation, Airplane A is presumed to be powered 

by a conventional reciprocating engine and Airplane B by a current 

technology turboprop. 

4.5.9.3 High Comprssion Ratio Lean Burn Engine (HCRLB). In

creasing compression ratio and leaning the fuel mixture are the 

most effective ways of improving fuel economy. When this process 

is applied to improve the performance of a current technology, homo

g~neous charge reciprocating engine, the type of engine identified 

by the acronym HCRLB results. High compression ratio offers 

increases in thermal efficicl':y of both air standard cycles as 

well as fuel-air cycles. However, when applied to a homogeneous 
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charge engine, an upper limit is established by fuel octane 

number. (Present engines operate at CR's on the order of 

8.5:1 and have BSFC's on the order of .255 to .268 kg/kW/hr 

(.42-.44 lb/hp/hr». When improved fuel injection (timed, 

moderate pressure) and improved cylinder cooling techniques are 

applied, leaner fuel/air mixtures may be obtained. Reference 

169 points to BSFC improvements on the order of 4% to 5% when 

leaner operation incorporating improved fuel injection and cooling 

methods are applied to a TCM IO-520 engine. However, costs to 

the user are expected to be p40hibitive1y high as recertification 

costs are recouped. The reader is referred to Ref~rences 169 and 

170, both by Rezy, Stukes, Tucker, and Meyers, for excellent dis

cussions and analytical results of very current concepts regard

ing the emissions and fuel consumption of reciprocating engines. 

Only Airplane A was considered in the present evaluation, 

where B was considered to be powered by a turboprop. 

4.5.9.4 Stratified Charge Reciprocating Engine. Much of the 

discussior, material presented in this section resulted frOlLl infor

mation received from Teledyne Continental Motors and is unpub

lished. Their assistance is deeply appreciated and acknowledged. 

Interpretations of the general information acquired, on the 

other hand, are sulely those of the present reserrch team. 

Reciprocating engine stratified ~harg~ systems are not new. 

Three concepts presently being pursued by industry are (1) the 

Honda Compound vortex Controlled Combustion (CVCC) system, 

(2) the Texaco Controlled Combustion System (TCCS), and (3) The 
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Ford Programmed Combustion System (PROCO). These three systems 

operate under different combustion processes and are briefly 

described below. 

Stratified Charge systems differ from homogeneous charge 

(current) systems in that the fuel/air mixture of the former is 

not homogeneous within the combustion chamber. Instead, a rich 

zone is maintained at the point of ignition, and the flame front 

then progresses into a lean region which would not normally be 

expected to sustain combustion ~lone. The overall effect is 

a leaner combustion process which yields lower emissions and 

better fuel efficiency. TWo ~ethods of charge stratification 

are currently visualized. In one case, stratification is achieved 

physically by Injtcting the rich mixture into a prechamber where 

it is ignited. The second method relies on obtaining an air 

flow pattern within the cylinder itself to maintain stratifica-

tion and hence is called an open chamber system. The CVCC is 

based on a prechamber system ~hile the PROCa and TCCS employ 

open chamber methods. 

At present, ~rechamber technology appears to have progressed 

to the point where a GA powerplant could be put into production 

with a certain degree of conf;dence. Such a system, when compared 

to open chamber systems, appears to have less efficient output 

which would result in a heavier engine for a given power level. 

Also, the chamber itself will probably require additional cooling, 

and this may present a problem in an air-cooled configuration. On 
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the other hand, the lean fuel-air r.atio can probably be extended, 

arid NO will be greatly reduced while HC and CO may be expected x 

to increase. 

The PROCO and TCCS. both open chamber systems, differ 

primarily in fuel injection time, PROCO uses early injection 

near BDC, while TCCS uses late injection near TDC. PROCO, as 

a result, offers the possibility of better air utilization but 

has no multi-fuel capability. TCCS, while rp.taining a multi-fuel 

capability, can suffer from a smoke problem due to incomplete 

air utilization. Both systems operate at very high compression 

ratios with TCCS at 12:1 and PROCO at 11:1. 

Of the above systems, TCCS appears to be more attractive 

for GA application ~ue to its multi-fuel capability. Also, due 

to its ltite injection feature, turbocharging and compression 

ratios are limited by st~uctural considerations rather than 

combustion considerations. When tested in a jeep, TCCS showed 

BSFC reductions on the order of 35% under part load operation. 

At the anticipat~d higher power loadings, differences between 

homogeneous and stratified charge operations indicate a 25% 

improvement with a turbocharged Tecs displaying BSFC's on the order 

of .25 kg/kl.J/hr {.4l lh/hp/hr) at BMEP' s of 552 to 689 kN/m2 

(80 to 100 psi). Turbocharging the TeCS is expected to increase 

output without redllcing fuel economy or multi-fuel capability. 

If air throttling is employed. its application will probably be 

used to i~rrove emissions control at low power settings. 
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With respect to present GA engines, TCCS will require a high 

pressure, timed fuel injection system and a variable timing igni

tion system. Less effective air utilization points to heavier 

engines while complexity points to increased costs. Improvements 

to the reciprocating engine, then, tend to detract from its 

presently undisputed cost aevantage, while its advantage in fuel 

efficiency appears to be eroding. On the other hand, one cannot 

ignore the fact that this powerplant has established itself in 

the GA market, and it is difficult to visualize other engine 

types replacing it in the next decade. 

4.5.9.5 Advanced Diesel Engine. The diesel engine appears attrac

tive for GA application due to its low-cost fuel (20% advantage) 

and its low BSFC's. Its fuel characteristics alone (where it is 

not octane/detonation limited) allow for higher ccmpression ratios 

and higher efficiencies. 

At present, Teledyne Continental Motors, General Products 

Division, is invt.·stigating advanced two-stroke diesel eL.~ine 

conct::pts which are being 3pplied to a six cylinder, radial, 30U kW 

(400 hp) engine and a four cylinder, radial, 150 kW (201) hp) 

engine. The 300 kW engine is considered to involve higher risk 

than the 200 kW engine. and includes those associated with (1) 

ceramic comp' nents, (2) operation in an unfinned cylinder environ

ment (no cooling air), (3) high speed turbo starter/alternator, 

and (lb) catalytic combu~tors. Impressive performance characteristics 

of this engine includc- takeoff BSFC's on the order of .225 kg/kW/hr 
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(.37 lb/hp/hr) and cruise BSFC's of .195 kg/kW/hr (.32 Ib/hp/hr). 

Since this engine already enjoys a fuel price advantage, fuel c~.t. 

alone could experience a 40% reduction over present day GA pro

pulsion systems. Other attributes of this system include what 

has occasionally been called "uncooled operation." However, 

although the cylinders are unfinned. the injector pumps and after

cooler require cooling, and it is evident that cooling air of some 

sort must be provided for. This requirement is nevertheless 

anticipated to alJow for lower cooling drag losses than presently 

experienced by the GA fleet of air-cooled engines. Weight 

advantages of the system could not be ascertained. Alt~vugh the 

dry engine weight of the 300 kW engine is listed as 207 kg 

(457 lb) vs 262 kg (578 Ib) for a comparable GTSIO-520-H, the 

diesel engine is known to require oil cooling, and this suggests 

that inEtalled weight advantages may fail to materialize if the oil 

system weight is high. The purChase price disadvantage has been 

estimated to b~ on the order of 20%. 

Airplane A should receive advantages in DOC due to fuel 

efficiencies but is penalized for purchase price. No data for 

emisaions characteristics was found, but the quieter ope~3tion 

attributed to the ab3ence of valVES was considered to be only a 

~mall advantage. 

4.5.9.6 ~iqui<! CooliI!.li' This technology is considered mature but 

due to risks involved with single point failures such as those 

associated with leaks, thermostat failures, and pump failures, 



has disappeared from the GA reciprocating en,ine powered fleet. 

Still, the advantages attributed to its incorporation are signi-

ficant enough that its possible re-fmplementation is investigated 

here. Only a few of the more salient characteristics associated 

with its advantages and disadvantages are listed here. 

Advantages: 

(1) More uniform cylinder temperatures can be maintained, 

thereby relieving thermal stresses and improving TaO. 

(2) Engines can be manufactured with closer cl .. ·r~nces by 

reducing the effect of thermal stresses, particularly 

those associated with idle power rapid letdowns. This 

could aid in TBO imp~ovement. 

(3) More freedom is gained in engine/airframe configuration 

integration. 

(4) Engines can be more compact due to the absence of fin 

spacing reGuirements. 

(5) Critical cooling requirements such as required for exhaust 

valves can be more easily met. 

(6) Fuel consumption durir.g chmbs should improve on the 

order of 10% due to the elimination of the requirement for 

cooling through rich operation. 

(7) Cooling drag associated with inefficient methods o=~c, 

encountered in air-cooled installations can be significantly 

reduced. (This drag can be significant as reported in 

References 36 and 142.) 
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(8) Quieter operation may be expected due to the water jacket 

provided about the engine. 

(9) Cabin heat can be provided much more safely through a 

liquid heat exchanger than through present methods. The 

latter suffers from the distinct possibility of introducing 

exhaust fumes into the cockpit should the exhaust pipe heat 

exchanger fail. 

Disadvantages: 

(1) Single point failures resulting from a loss of coolant, 

thermostat failures in the closed position, or pump failures, 

are serious. 

(2) Warm up times will be extended. In cold weather, this could 

result in severe engine wear, with tpe distinct possibility 

of condensed products of combustion contributing to cylinder 

corrosion. 

(3) Deterioration of system efficiency through scaling suggests 

problems with system maintenance. 

(4) A vapor pocket in the coolant system can result in localized 

interruptions in cooling. 

(5) Engine maintenance costs may be expected to inc~ease due to 

an increase in manhours required to remove or disassemble 

the engine. Air cooled systems offer the possibility of 

removing single cylinders from the engine. 

(6) Although dry weights may be expected to be on the order of 

air cooled systems, installed (wet) weights will be greater. 
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For the present evaluation. both reliability and s.fety were 

penalized by -1. thereby reflecting some optimism in the ability 
"-
I 
i 

of technological improvements to offaet Disadvantage No.1. If 

~ this assumption should prove to be invalid. the severe penal tv 

which would result will make liquid cooling extremely unattractive. 

4.5.9.7 Improved Turbocharging. Improved turbocharging promises 

to improve fuel efficiency and increase cliMb and cruise speed. 

by increasing thf critical altitude and aircraft ceiling, signi-

ficant improvements on the order of 10% to 15% can be expected 

in range. 

Howpver, procurement costs can be expected to be si8Oifi-

cantly highe-: if the !.mprovements in turbochttrging are dictated 

for the GA fleet alone. Today, for example, procurement r.osts are 

kept low due to a very high production base provided by the auto-

motive and truck engine markets. A major manufacturer, for example, 

cites a production base on the order of one million units/year, 

with only 8,000 units being used by the GA fleet. The specific 

te~hnology which promises to have the greatest impact on improved 

turbocharger performance appears to be that of air bearings. • 

It seems safe to predict that improved turbochargers will 

not find their way into the GA fleet until automotive requirements 

dictate their production. Howeve~. efforts toward improving 

fuel efficiencies (including the possibility of production of the 

PRoca or TCeS engines) may dictate their improvement.. According-

ly, only a modest penalty in cost is assessed for this technology. 
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4.5.10 Structural Materials 

Three technologies were considered and, a •• hown in Table 

4.23, appear ext'famely attractive. Here, all three were evaluated 

on the basia of anticipated maturity in certification procedures 

and small purchase price penalties. Hence, in view of presently 

increasing manpower costs which would be significantly offset 

by composite ~nufacturing processes, the user was forecast to 

suffer no significant purchase price renalties. The advantages 

of composites which lie in cleaner aerodynamic shapes and weight 

reductions, allow for improvements in ceiling, crllise speed, 

fuel eff:1.ciency t and range. 

Table 4.23 Structural Materials 

Figures of Mer:!.t for 
Technology 3 

Airplane A 
56/-53/85* 

Airplane B 
51/-51/58* 

Fiberglass Composites 55 58 

Kevlar Composites 51 56 

Graphite Compo~ites 43 t.8 

* Total number of t~chnologies/lowest FM/highest FM 

... 
I 

4.5.10.1 Fiberglass Co'llposites_. These comp.:>sites are attractive 

because they promise significant weight reductions at lower cost 

and risk than those associated \o/ith Kevlar or ::.raphite. although 

the latter two show greater tensile strength. Advantages noted 

also include the promise of reduced production cost, improved drag 
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characteriatics, low corrosion, and araater etaenath than aluainua. 

In OBe corrosion teat, epoxy-fiberalaas va. note' to not ~orroda 

vhen in contact with anodized, primed, or painted alU1linull sur

faces. In fact, ita inert and durable characteristics allow it 

to be used ~s one of lev~ral isolatorl for graphite, which 

reacts very stronaly al a cathode to almost every metAl. In one 

test, epoxy fiberglaa. va. exposed to a 5% salt spr3y for 5000 

hour. and showed only superficial corrosion (Ref. 12~). In another, 

a helicopter blade fabricated by Bell Helicopters was cracked an~ 

then run for an additional 900 hours without further failure 

(Ref. 120). 

Its use in primary aircraft structures has seen only limited 

application in Rutan's canard configured vehicles, the Windecker 

Eag1p, and the Bellanca Skyrocket, but this is seen to be largely 

the result of the over-designing required to certify a new produc

tion process, where weight advantages are quickly nullified. 

4.5.10.2 Kev1ar Composites. These aramid fibers l~ve greater 

tensile strength than either fiberglass or graphite and are 

inherently inert. Current costs are 01 the order of $33 per kg 

as a woven cloth vs graphite, which costs on the order of $110 

per kg in cloth form. 

Hartzell's certified composite propE.'ller is made frotJI Kevlar. 

Thi~ blade is 50% lighter and tyice as strong 8S its conventional 

counterpart but costs 2.5 times as much. As certification pro

cedures are refined to allow the full potential of composites to be 

exploited. both cost and weight ~hould be considerably reduced. 
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4.5.10.3 GTaphite Composites. Host of the liteTatuTe on coaposites 

published Teceatly appeaTs to deal with gTaphite. This composite 

has the strength and stiffnes8 of steel, but only 60% of the density • 

Although it does not posless the tensile stTength of KevlaT, ita 

compTessive strength is greater. and offeT8 the potential fOT a 

30% weight reduction in certain compouents. Although essentially 

ineTt when isolated, it acts as a strong cathode when in contact 

with Rluminum and must be isolated through the use of other mater-

ia1s such as fiberglass. It is by far the most expenaive of the 

three compos4.tes invest igated. although costs have dropped from 

$550-$1200 per kilogram in 1968 to $55-$110 per kilogram currently. 

Here. the lower figure is for sin.;le fiber filaments while the 

upper figure represents the cost for its woven cloth form. As 

in many of the other tectmo10gies, its cost is expected to drop 

substantially if the auto industry forms a production baRe for 

its use. 

As its characteristics becom,_ better understood, its intru-

sion into the GA market appears inevitable. At pres~nt. it is 

expected to be used extens1ve1y in the Lear Fan. 

4.6 OTHER PROMISING TECHNOLOGIES 

As one might suspect, certain pr~lsing technologies were 

omitted from the present evaluation due primarily to application 

considerationa for airplane type as discussed previously in Section 

4.2.3. In othE'r words. a technology ;tppHcable to the jet neet 

but not applicable to the single en;~inet li6ht twin, or commutE:f 
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airplane fleet could not be evaluated utll1a1D.I the pre.ant 

technique .ince the catelory weights were developed for .pecific 

mis8ion profiles. 

Two technologies raeeivins considerable attention in the 

current literature and which were not considered to be a part of 

the present research are the Prop Fan and the Quiet, Clean General 

Aviation Turbofan (QCGAT). Both of these technologies appear very 

promising for long-haul high speed cruise, and are discussed here. 

4.6.1 Prop!!!!. 

The no," familiar 8-bladed propeller which has appeared in 

several periodicals offers extreme promise for the present turbo-

fan-powered commercial fleet. It was not evaluated as part of 

Airplane A-or Airplane B-related technologies due to the fact that 

it is presently being develof<!d for Mach numbers on the order of 

0.8. 

Presently, both an 8-bladed and a 10-bladed version have 

been investigaLed with extremely promising results. Fuel effi-

ciency improvements on the order of 22% are forecast, with DOC 

improvements of 7% over comparable turbofans possible with improve-

ments in design for maintainability (Ref. 46). The fuel figure 

is particularly impressive when one realizes that a 1% improve-

ment provides an annual SQvings of 100 million gallons of air-

craft fuel (Ref. 46) for the present civil fleet. 

The major disadvantage of the prop fan is noise, and extensive 

studies are being performed to rectify this difficulty. When one 
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considers that military long endurance aircraft can realize 35% 

fuel savings and reduce gross weight by 25%, the additional 

weight penalty for noise treatment appears to be a small price. 

However, exterior noise still would not be resolved. (Notet'hat 

noise cancelling techniques already employed through blade sweep 

have decreased sound pressure levels on the order of 6 db.) The 

interested reader is directed to References 46, 100, 101, and 

141 for further information regarding prop fans. 

4.6.2 ~, Clean, General !viation Turbofan (QCGA~) 

AVCO Lycoming and Garrett AiResearch have both performed 

research in this area for NASA Lc.w1s with promislug tesults. As 

was the case for the prop fan, tn1s technology was not evaluated 

as part of the present study due to the lack of applicabJlity of 

turbofans to either Airplane A or B. In the research performed, 

Garrett chose to synthesize a stretched Lear 35 with a range of 

33uO km (1780 nm) at an altitude of 12,200 m (40,000 ft) and 

M - 0.8 for its modified TPE 731-3. AVCO, on the other hand, 

had Beech synthesize an aircraft for its modified LTS 101 which 

resulted in a vehicle capable of 2780 km (1500 nm) at an a1ti-

tude of 10,000 m (33,000 ft) and M = 0.6. It is emphasized that 

although the airplanes were synthesized, the modified engines were 

operational (although not flightworthy) and have been delivered 

to and tested by NASA-Lewis personnel. Results of the program ware 

extensively discussed at the General Aviation Propulsion Conference 

h~ld at the Lewis Research Fad ~ 0° -.:.y in Novemb-:r 1979, and indicated 
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that _jor loala were Ht. Noticeably nrc aoala wera not aat 

under moat conditione. However. all noi.e loala (which repre

aented a 90% reduction in noiae footprint) aDd moat .. iaaiona 

goals were .. t. 

Since a major thruat of the QCGAT prolraa waa to deaouatrate 

larle-engine technology transfers to amall-enaine •• it appear a 

that the program was quite successful. Certainly, the noise 

goals ac.hieved are extremely impressive. 

4.7 SUHMAR.Y OF .!!!! TECHNOLOGY EVAWATION 

S~veral significant po1r.ts made earlier in th~.s chapter are 

repeated here for emphasls. Flnally, a list of attraetive and un

attractive technologies will be disucssp~. 

4.7.1 

(1) 

Features of the Evaluation Technique 

The rating yardstick used for Airplane A and Airplane B 

reflect a concensus of opinion both in the identification 

of relevant categories as well. as in their quantification. 

(2) Responses to the three rounds of the survey to quantify the 

categories (Survey 2) ranged from 70% to 95%. 

(3) Only comparable technologies should be evaluated under the 

present technique. For example, high pressure, timed, fuel 

injection should not be compared with Rtratified charge re

ciprocating engines. 

(4) The relative figures of merit generated by different raters 

display significarot stability in ranking different techno

logies despite differences in magnitude noted between raters. 
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(5) Large changes in relative figures of merit between technolo-

gies are not observed when relative ~enef1t. are perturbed 

aboHt an expected value. Howeve:, sut:"~ changes may be 

expected if the state-of-the-art improves and ~esults in an 

unforeseen application scenario. 

(6) The four technologies in the crashwortl'.iness group appear sOlle-

what underrated. This is attributable to the fact that improve-

ments are restricted to only the crashworthiness category. and 

that this category had relatively low weights for both Airplane 

A and Airplane B. 

(7) Small differences in figures of merit should not be inter-

preted to rank one technology ovet another. 

(8) The ranking of technologies by figures of merit does not re-

flect risk in the present analysis. 

4.7.2 Attractive Technologies 

(1) The GATE engine and the stratified charge rotary combustion 

(2) 

(3) 

engine dominate the rankings for Airplane A as shown in 

Table 4.9 and offer significant advantages to Airplane B as 

shown in Table 4.10. 

All propulsion engines offer benefits to both airplanes. 

Fiberglass, Kev1ar, and graphite composites are all extremely 

attractive provided certification procedures are refined and 

~ modest decrease in price is noted. 
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(4) Aerodynamic concepts such as natural laainar flow airfoils. 

spoilers with full span flaps, and low/.ediua speed airfoils 

appear extremely atteactive. 

(5) Integrated avionics systems which alleviate pilot workload 

such as UAAS and Digital Data Linke are very attractive. 

A very important consideration which deserves mention at this 

point is that many technologies whle', were eliminated from con-

sideration due to the criteria of Section 4.2.3 are directly 

inferred from the list of attractive technologies just defined. 

For example, improved fuel injection, improved turbochargers, 

variable timed ignition systems, and ceramic technol~gy are all 

implied for the improved positive displacement engines. Also, 

improvements 1n ~;"mputatior.al aerodynamics are required in order 

to permit three dimensional wing-body-tail analyses as well as 

wing-spoiler-flap analyses. 

4.7.3 Unattractive Technologies 

(1) Area navigation concepts such as LORAN C and OMEGA are 

fairly unattractive to the user although they offer signi-

ficant sav I.ngs in operations and maintenance expenses for 

the ground sites. 

(2) Active controls, Fly-by-Hire, and Fly-by-Light are extremely 

unattractive to both Airplane A and Airplane B, as are HUD's, 

Doppler, and Inertial Navigation. 
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CHAPTER 1 

DESIGN STUDIES 

- X kE._ 

The design st;.I1ies illustrate the direct and synergistic 

impacts of advanced technologies bj ~o~paring advanced and current 

technology airplanes that have been d~signed to the same specifi

cations. 

5.1 DESIGN SPECIFICATIONS 

The statement of work specified that conventio~al and canard 

configurations be developed for two types of airplanes incorpnrati.ng 

appropriate advanced technologies. The preliminary specifications 

gi-,en are as follows: 

(1) Design conventional and canard configurations for: 

(a> A small airplane with at least a 6-passenger cabin 

(including pilots), and 

(b) A large airplane with at least a 12-passenger cabin 

(excluding pilots). 

(2) Performance objectives are: 

(a) Maximum LID ~ 18 

(b) Cruise speed ~ 250 kt 

(c) Landing speed ~ 60 kt 

For design purposes, the two airplane types were more narrowly 

defined. The "small" airplane is defined as a 6-passenger (incluJ

ing pilots) single engine business anMor personal airplane and 
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eorre.pond. to Airplane A of Chapter 4. The "larle" airplane i. 

defined a •• 1t-pa •• euaer (exelud1na pilot.) eOlDU'ter airliner and 

eorreapond. to AirFlane B of Chapter 4. The two type. of airplane. 

are refered to a. the "6'pasaenaer" and "eOlaUter" 1n thb ehapter. 

5.1.1 6-Pa •• enger Design ~peeifieationa 

Charaeteriatic8 of exiatina 6-pasaeDger airplane. were used 

as guidelines in completing the 6-passenaer design specifications. 

As shown in Table 5.1, the resulting specifications were split 

into "required" and "desired" sets. This was done because LID> 18 

stronaly conflicts with Vstall ~ 60 kt: Furthermore, since it was 

felt that landing apd takeoff distances are much more important 

than the speeds involved, the stall speed requirements were 

relaxE'd. 

5.1.2 Commuter Design Specifications 

The characteristics of existing commuter aircraft were used 

as guidelines in establishing the commuter design specifications. 

Again, the resulting specifications were divided into "required" 

and "desired" sets. The "desired il requirements for the commuter 

were relaxed extensively because of its operating envelope. Com-

muter Lircraft operate at low altitudes, making a desired LID of 

18 extremely difficul~ to attain. Furthermore, a landing speed 

of less than 60 knots is somewhat unrealistic in the size of 

commuters typical of this study. Balanced field length, together 

with landing distance, is more important than landing speed. The 

resultfn· specifications follow in Table 4.5.2. 
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Table 5.1. 6-Pas8enaer Design Specifications 

, Required: (1) Seating for 6 persons (including 2 c~ew) 

with baggase. 

(2) V > 250 Itt at aros. weight. 
• cl'.1ise -
• 

(3) Ranse ~. 900 nm with 45 min. reserves 

carrying 6 passengers and baggage. 

(4) Takeoff distance over a 10.7 m obstacle 

~ 610 m, sea level (ISA) and maximum 

gross weight. 

(5) Landing distance over a 15.2 m obstacle 

~ 610 m, sea level (ISA) and maximum 

gross weight. 

(6) Meet FAR 23 requirements except for 

Vstall as noted in (8). 

Desired: (7) Maximum Lin ~ 18 cruise. 

(8) Vstall ~ 60 kt in the landing configura-

tion at maximum gross weight and sea 

level (ISA). 

5.2 TECHNOLOGY INTEGRATION .. 
A major preliminary task performed during the course of the 

design study was the identification of those technologies to be 

incorporated into the designs. The technology evaluation of Chapter 4 

was helpful in this respect and served as a guideline in selecting 

particular technologies. 
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Tabl. S.2. eo..uter De.iID Specificationa 

Required: (1) SHUna for 21 peraona (including 2 crew) 

Desired: 

(2) 

with baasaaG. 

Vi> 250 kt at maximum takeoff weiaht cn se -

at 3050 m MSL (ISA). 

(3) 2000 am ferry raDge where ferry ranle is 

determined for full fuel + 2 crew (only) 

at 250 kt with 45 min. reserves. 

(4) Segmented range of nine 87 nm legs without 

refueling with a 60J load factor (12 pax) 

and with 45 min. reserves. 

(5) SIngle leg range of at least 400 nm at 

100% load factor with 45 min. reserves. 

(6) Balanced field length of 1370 m or less 

at sea level elSA) and maximum takeoff 

weight. 

(7) Meet FAR part 25 raquirements. 

(8) (a) Maximum LID ~18 at cruise. 

(b) Vstall ~ 60 kt in the landing config-

uration at maximum gross weight 

It should be noted that the impact of many of the evaluated 

technologies cannot be determined by design studies. For example, 

while the impact of composite materials may be evaluated, the 
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effects of load ltmiting .eat. and CRT displays are much harder 

to quantify. In general, only techDolo,ies which directly 

influence the miasion performance of an airplane are capable of 

being analyzed. 

5.2.1 6-Passenaer T.cnnology .Integration 

As one would expect, the highest ranking technologies iden

tified in the analysis of Chapter 4 were in the areas of prop~18ion, 

structures, and aerodynamics. Specific technologies from ~~ch of 

these areas were selected and are termed "Primary Technologies" 

in that they directly influence airplane performance. Other 

TEchnologies whi.ch do not directly influence airplane performance 

were also int;')rr .'lrated and are termed "Secondary Technologies." 

Table 5.3 lists the Primary and Secondary Technologies which were 

incorporated into the advanced technology 6-passenger airplanes. 

The reasons for selecting the technologies in Table 5.3 are 

as follows: 

(1) Spoilers and Full Span Fowler Flaps 

Trade studies (see Section 5.3.1) showed that high wing load

ingB (1915 to 2394 N/m2) markedly improve cruise efficiency 

but degrade takeoff and landing performance. The obvious 

solution here is to utilize spoilers for primary roll con

trol and free the trailing edge of the wing for full span 

flaps. Fowler flaps are used because they provide high 

lift and low drag at small deflections (for takeoff) and 

higher lift and drag at large deflections (for landing). 
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Table 5.3. 6-Pa •• enger Advanced Tecbnololle. 

* Primary Technoloaie. 

Spoilers for roll control 

Full span Fowler flaps 

Advanced natural laminar 
flow airfoil 

Kevlar and/or graphite 
composite structure 

Stratified charge. highly 
turbocharged rotary 
combustion engine 

Quiet. efficient propeller 
technology 

* SecODdary TechDologie. 

Load lillitinl .eata 

EnerlY absorbing floor 

Improved restraint. 

Integrated avionics and 
di.play. 

Integrated low-cost fluidic 
wing leveler 

Primary Technologies are those which directly influence airplane 
performance while Secondary Technologies do not. 

(2) Advanced Natural Laminar Flow Airfoil 

Preliminary data show that computer generated natural laminar 

flow (NLF) airfoils have low-drag characteristics approaching 

those of NACA 6-series airfoils and maximum lift coeffi-

cients resembling those of tre turbulent-flow NASA LS-series 

airfoils, which are also computer generated. Furthermore. 

the advanced NLF airfoils are far less sensitive to rough-

ness (in terms of maximum lift coefficient) than the NACA 

6-series airfoils. 

(2) Kevlar and/or Graphite Composite Structure 

Advanced composites can significantly reduce structural 

weight while providing a stiff and aerodynamically smooth 

176 

.. 

i 

·1 
~ 



.'l~SW.-.-~£,,"""""2 •• _._""~"""~.1 •. -.-"""~"~--"--~~---¥~----'_¥~~=J_~ 

i 
1 

.urface. Several .tudie. indicate that .. jor co.t ".,ina. 
are po.dbl. due to a reductiOll .i.tt the IWllber of parte aDd 

man-hour. raquired for production. 

(4) Stratified Chari., HilMy Turbocbarl_ Iotary eo.buetion (aC) 

Engine 

Thi. 8Uaine i. cbaracteriaed by a biab power to weilbt 

ratio, good .pecific fuel consumption, and liquid coolina. 

The ac 8Uaine was .el~cted instead of the GATE turboprop 

primarily because the former is undergoing teaU while the 

latter 18 a paper study. Furthermore. the GAT! engine 11 

evolvina into a higher horsepower category than required 

for the 6-pa.senger airplane. 

(5) Quiet-Efficient Propeller Technology 

This includes computer generated hlade sections, optimized 

planforms. composite blades, etc. Cruise efficiency gains 

are relatively small (2-3%) but significant improvements 

in takeoff and climb efficiencies and noise characteristics 

are possible. 

(6) Load Limit{ng Seats and Energy Absorbing Floor 

These technologies can reduce peak vertical g-loadings by 

50% and therefore greatly reduce the risk of death or injury 

in the event of a crash. Little or no weight and cost 

penalties are expected. 

(7) Improved Restraints 

Improved restraints are a , .. .i.nor technology in terms of air-

plane weight and cost but greatly enhance sur/ivability by 
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1uuriaa that tbe occupant rnain. in bia ... t durina a 

cra.h. 1f loed It.itlna ... ts are uaed, effective re.traint. 

beeoa. mandatory. Th. oaly prObl ... ideotified appear 

to b. tho •• a,soicated witb coafort aDd .... of u'e. 

(8) Intearated Avionics and Display. 

wnile not directly influencing perfor.ance. thi' tecbnoloay 

cara improve the utility and flexibility of an airplane aDd 

can be considered to incr ... e .afety .ince it ha. the potential 

to lub.tantally reduce pilot workloat4.. The degree of 

sophi.tication of the .ystem aa applied to the 6-pa •• enser 

airplane has not been defined but the capabilities of the 

technology in general are illustrated by the t~SA Ames 

PCAAS and DAAS studies. 

(9) Integrated Low-Cost Fluidic Wing Leveler 

This wing leveler 1s visualized as a basic part of the air-

plane. Because most airplanes are not spirally stable. 

this technology can significantly improve safety. part i-

cularly 1n IFR conditions by reducing pilot workload. 

This system is commerCially available to the homebuilt 

market for less than $200. 

5.Z.2 Commuter Technology Integration 

The discussions of advanced technologip.s int.,·grated int., the 

6-passenger designs apply to the commuter designs. Identical 

technologies were integrated with two exceptions: (1) powerp1ant 
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and (2) airfoil. Table 5.4 presents the advanced technologies in-

corporated into the commuter design • 

it 

Table 5.4. ColilDUter Advanced TE'cbnolosies 

* Primary Technologies 

Spoilers for roll control 

Full span Fowler flaps 

Advanced low-speed airfo::!.l 

Kevlar and/or graphite 
composite structure 

GATE technology turboprop 
engine 

Efficient propeller 
technology 

* Secondary Technologies 

Load limiting seats 

Energy absorbing floor 

Improved rebtraints 

Integrated avionics and 
displays 

Primary Technologies are those which directly influence aircraft 
while Secondary Technologies do not. 

The technologi.es not previously discussed but applicable to 

tne commuter are: 

(1) GATE technology t.llrboprop ~ngine. 

This cngine was selected because of its high power-to-weight 

ratio. low pur~hase price, and good specific fuel consumption. 

Other advantages attributed to turboprops include high 

reliability and long engine lifetimes. 

(2) Advanced low-speed airfoil. 

The advanced NASA low-speed airfoils (LS-series) have 

characteristics similar to the original GA(W) series uf 
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airfoila and exhibit aood max~ lift characteriatics toaether 

with tmproved pitch1na moment characteristica. Alao, the 

thickne.s of the low-speed section a •• iats in .. int.inina 

low wina weiahta while providina a hiah volume for fuel. 

S.3 PARAMETRIC ~ STUDIES 

Parametric trade studies were conducted to establish the 

im?act of basic airplane parameters (wing loading. aspect ratio, 

power loading. etc.) ~n mission performance. 

5.3.1 6-Passenger Trade Studies 

Three types of trade studies were ~onducted covering cruise. 

taekoff, and landing ~erformance. Detailed derivations may ba 

found in hppeodix C.I. 

The cruise trades were fonnulated to show the affective power 

loading ([n p/w1. hp/lb) required to cruise at 250 kt as a function p 

of wing loading (W/S), effective aspect ratio (Ae), zero lift 

drag coefficiept (CD ). and altitude. It quickly became apparent 
o 

that the high LID requirement necess·tated high cruising altitudes. 

Figures 5.1 and 5.2 present the cruise trades for altitudes of 

blOO m and 9140 m. respectively. 

The tlll<eoff ".rades were expressed in terns of wing loading 

(W/S) and power loading (P/W) required for a 610 ~ ~akeoff dis-

tanee over a 15.2 m ohstacle. (This requirement was later changed 

to a blO m takeoff distance over a 10.7 m ohstacle.) The 

requirement proved to be a very strong {·.lnction of the maximum 
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takeoff lift coefficient (C
L 

) and a very weak function of 
maA TO 

aspect ratio (A) and zero lift drag coefficient (Cn ). These 
o 

characteris tics led to a fairly simple representation of t ::e 

takeoff protlem as shovn in Figure 5.3. 
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The landing trades show wing loadings and maximum landing 

lift coefficients (~ ) required for a 610 m landing 

~ 
distance over a 15.2 m obstacle and for a stall speed of 60 kt. 

Figure 5.4 gives the results of the landing trade study. 

The trade studies of Figures 5.1-5.4 ar~ summarized in 

Table 5.5. 

As a result of the trade studies, it was decided that relax-

ing the Vstall ~ 60 kt requirement was justified since it would 

otherwise arbitrarily restrict the application of advanced tech-

nologies. Airplane parameters and design goals for the advanced 

technology 6-Passenger airplanes were established as follows: 

Parameters: 

w/s - 2155 N/m2 (45 Ib/ft2) 

A • 11 

hcruise • 9144 m (30.000 ft) 

Goals: 

CD < .02 
o 

e > .75 

CL > 2.5 and CD < .10 
maxTO °TO 

C
L 

> 3.0 
maxLDG 

5.3.2 Commuter Trade Studies ---
Two types of trade studies were conducted for the commuter 

aircraft and consisted of cruise and balanced field length per

formance. Detailed derivations are included in Appendix C.2. 
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Table 5.5. 6-Passenger Trade Study Summary 

CRUISE TRADE STUDY 

~-----------------------------------------------------~ Current high performance single engine airplanes typically have 
Cn : .02. Ae ~ 5.5. and w/s : 1005 N/m2 which r~su1ts in Lin • 

o 
11 at 9140 m. 

Lin • 18 requires much higher w/s (2l55 N/m2) and larger Ae (80) 
for ~ • .02. and Cn • .02 is very difficult to achieve with 

o 0 

wi S • 2155 N/m2 • 

TAKEOFF TRADE S~JDY 

p/w required for constant w/s is a very strong function of 
C

L 
• 

maXoro 

Because cruise requirements demand high wls, advanced flap 
technology (full span Fowler flaps) becomes a necessity if 
reasonable Pl.W is to be maintained. 

LANDING TRADE STUDY 

Vstall ~ ~O kt is a very limiting requirement compared to the 

610 m landing distance requirement. 

If the Vstall requirement is adopted. it becomes the critical 

factor in selecting wIs. If the landin~ distance requirement 
is used instead, the takeoff distance requirement becomes 
critical. 

Similar to the 6-passenger studies. the commuter cruise studies 

show the effective power loading (n P/W) r~quired to cruis~ at p 

250 kt and 3050 m as a function of wing loading (W/S), effective 

aspect ratio (Ae) and zero lift drag coefficient (CD). Figure 
o 

5.5 presents the cruise trade studies. 
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The balanced field length 8tudie. were developed in term. of 

~ • effective a.pect ratio Ae, maxtmum 11ft coefficient in takeoff 
o 

configuration (~ ). and effective power loadina (n P/W). The 
1UX.ro p 

studie. .how that balanced field length i8 dependent priaarily on 

~ and (n P/W). Results of this study are pre.ented a. 
max P 

TO 
Figures 5.6, 5.7, and 5.8, and were developed for values of 

~ • .075 and Ae • 10. 
o 

Wing Loadlng,wls-Nlm2 
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1000 
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Ae -10 
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Fig. 5.6. Commuter Balanced Field Length Studies 
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appear 10 Table 5.6. 

Table 5.6. Commuter Trade Study S~ry 

CRUISE TUDE STUDIES 

Current commuters have values of ~ : .025, Ae : 6.0, and 
a 

w/s : 2155 N/m2• at a cruise altitude of 3050 •• 

LID • 18 demands extremely low values of ~ (:.02), coupled 
a 

with high wing loadings (:3352 N/m2). As was the case with 
the 6-passenaer design a CD !:it .02 appears very difficult. to 

a 
achieve undeT conditions of high wing loadings. 

BALANCED FIELD LENGTH 

Because of the high wing loadings desired in cruise flight, 
advanceo nap technology is required (full span Fowler. flaps). 
High ~ in takeoff allows lower power loadings for takeoff 

max 
and thereby maintains a more reasonable difference between 
cruise and takeoff power requirements. 

These re6ults dictated relaxation of two of the original 

specifications. First. the requirement for V 11 < 60 kt is sta -

not practicn~ for the commuter aircraft since these aircraft (~n 

the 18-19 pas:;·;:l\$C!r ~.:"'ge) tYI'i.cally are not constrained by 

this requirement. A ~urvey for a commuter traffic model pre-

sented in Reference 44 showed that 93% of th~ airports in use had 

effective runway lengths of 1220 m or greater. where e:tective 

length is defined as the actual runway length corrected to sea 

level standard conditions. Hence. balanced field length as 

191 

.12 22 

• 



F L - ~ ~ .. - - . - - ~- - ." - - -- -

oppoaed to .tall .peed i • .ore critical in the deter.lnat1oD of 

acce •• ible airport.. Second, the LID requir..-nt of 18 va. relaxed 

to a value of 12 due to a de.ired crul.e altitude of 3050 a. 

This altitude was .elected becau.. available data indicated 

that the bulk of the c~ter .. rut could be acc •• aed vlthout 

bevinl to cruiae at hilher Altitude.. Piaure 5.5 clearly 1adicat •• 

that LID = 12 is a more reali.tic losl. Th. de.ilD loa1. e.tab-

li,hed for the commuter aircraft were: 

Paraaeter.: 

wls • 3112 N/m2 

A • 12 

Goala: 

~ = .020 - .025 

° e ::: .75 

5.4 CONCEPTUAL lJF.SIGNS 

This section describes the conceptual design of conventional 

and canard configurations for the 6-passenger and COMmUter airplanes 

which incorporate the advanced technologies discussed in Section 5.2. 

Current technology baseline £irplan~1 were also eltabliahed to 

provide a basis for comparison of the advanced technology deligus. 

The project staff was aided in this effort by the senior 

design class of the Aerospace Engineering Department at the Univer-

sity of Kansas. The additional manpower proved valuable to the 
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design effort and assisted in identifyinl unforeseen difficulties 

s.socia~~~ wi!h technology integration and configuration analysis. 

5.4.1 6-Passenger Designs 

A current technology baseU.r.a, an advanced technology «:on-

ventionally configured vehicle, and a canard configuration were 

synthesized. 

All three designs utilize the same basic cabin, which seats 

six passenget~ (all facing forward), and has a baggage area behind 

the rear seats. The cabin, which is illustrated in Figure 5.9, 

is somewhat idealized since it was common to all three designs. 

A more involved design effort would probably result in a more 

rounded cross-section with contours more closely matched to the con-

figuration in question. 

Design of the 6-Passenger airplanes followed the methods 

outlined below. Detailed procedures may be found in Appendix C. 

(1) Preliminary Sizing 

An initial gross weight was estimated using the Breguet 

range equation and the wing was sized ac~ordingly. Tail 

areas were sized with tail volume coefficients obtained hom 

similar types of existing airplanes. 

(2) Weight a~d Balance 

Component weights were calculated giving an improved weight 

estimate and providing center of gravity information. 

(3) Horizontal Tail Sizing 

The horizontal tail area required was determined from static 

margin and takeoff rotation requirements. 
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Nons: (I) Scele: I/lto 

(2) All dimensions Ire Inside dlmenslo". 
()) Cabin length • .66 m 
(It) MIX cabIn width • 1.17 m 
(5) Max cabin height • 1.27 m 
(6) Cabrn wall thickness •• 08 m 

(]) Seat pitch •• 66 m 

A-A B-B c-c 

Cab I n Wid t h.' • , 2 rn Cab I n Wid t h • 1.' 7rd Cab I n W i Ii t h • I., 2 III 

Cabin Height - l.nll1 Cabin Height. I.27m~ahln Height. I.27m 

Seat Width •• 46 I" Seat \Jldth • .!t(, III Seat \lidth • .51 f1\ 

A I s leW I d t h·. 25 ill 

-----_._ ... _------_ .. __ ._---._._-----..... 

Fig. ~.9. b-Pass~n~pr Cahin l~yout 
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(4) Aerodynamics 

~irplane wetted area and zero 11ft drag coefficient were 

calculall!d. 

(5) Final Sizing 

GASP (General Aviation Synthesis Program) was used to tlflytl 

the airplane. Engine aile and gross weight were adjusted to 

meet the design specifications. Prior to the aclual sizing. 

GASP weight and drag routines were callb~ated agair-at the 

manual calculations. 

The three 6-Passeng~r designs are discussed separately in 

the following sections. 

5.4.1.1 Current Techn~ Baseline. The 6-Passenger current 

technology baseline (6PAXBL) provides a basip of compdrison for the 

advanced technology airplane. 

In designing 6PAXBL, characteristics of current high r~rfo~-

mance, single engine, general aviation airplanes were retained 

as much as possible. The major ex~entio~ was that a 7620 m 

cruise altitude was assumed so that the power required at cruise 

would not result 1.n an exceptionally large engine. Specifications 

for this airplane are those shown in Table 5.1 with the exception 

of the LID,::, 18 goal. 6PAXBL hilS the following characteristics: 

(1) Geared, fuel injected, turbocharged, air-cooled, 6-cy1indcr 

(opPOI:' ~(n reciprocating engin~. 

(2) Conventional aluminum structure. 
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(3) Partial spaD, .inal.-.lott~ flap •• 

(4) Conventional control surfac ••• 

(5) Cruise altitude of 7620 m; pressurized to maintain 

a 2440 m cabin. 

(6) NAC! 642-A215 airfoil. 

(7) W/S. 1053.4 N/.2 (22 Ib/ft2). 

(8) A.. 7.S. 

The design procedures discussed in Section 5.4.1 resulted in 

the 6PAXBL design shown in Figure 5.10 and Table 5.7 summarizes 

the characteristics and performance of this airplane. 

Referring to Tsble 5.7 one notes that 6PAXBL is a high per-

formance airplane which has speed. payload. and range characterls-

tics more similar to those of the Bellanca Skyrocket than to 

those of more conventional genersl aviation airplanes. A compari-

son of 6PAXBL to the advanced technology designs and to existing 

airplanes 13 discussed in Section 5.5. 

5.4.1.2 Advanced T~chnology Conventional Configuration. The 6-

Passenger conventional configuration. advanced technology airplane 

(6PAXAD) incorporates the technologies listed in Table 5.3. The 

trade studies of ~ection 5.3.1 were used to define the basic 

airplane parameters. 

No real problems were encountered in the conceptual design 

of 6PAXAD but detailed design of the flap and spoiler systems 

would be complicated ~1 the small size of the wing. The general 

characteristics of this airplane are as follows: 
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Table 5.7. 6-Pa.senaer Current Technology Baaeline Characteriatica 

WEIGHTS 

Gross • l859.8 kg (4100 Ib) Payload • 544.3 kb (1200 Ib) 

Empty • 1051.4 kg (2318 Ib) Fuel (max payload) • 264 kg (582 lb) 

ENGINE 

Geared, fuel injected, turbocharged, air-cooled 6-cylinder 
(opposed) reciprocating 

Max Power • 317 kW (425 hp) 

Critical Altitude • 7620 m (25.000 ft) 

~ 1b Cruise BSFC - .274 kW-hr (.450 hp-hr) 

Dry Specific Weight • .894 kg/kW (1.47 lb/hp) 

TBO • 1800 hr 

PERFORMANCE 

1 Vi· 250 kt (75% power, gross weight) cru se 

Range - 900 nm + 45 min. reserves (250 kt, 544.3 kg (1200 1b) 
payload) 2 

1 
LID • 11.7 (250 kt, gross weight) 

Vstail • 58.3 kt (flaps 40°) 

Takeoff dist. over 10.7 m (35 ft) obstac:e - 540 m (1771 ft) 
(flaps 10°)2 

Landing dist. over 15.2 m (50 ft) obstacle - 351 m (1152 ft) 
(flaps 40°)2 

1 7620 m (25,000 ft) altitude 
2 Sea level, gross weight 
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(1) Geared, stratified charge. highly turbocharged, liquid 

cooled, 2-rotor. rotary combustion engine. 

(2) Composite (Kevlar and/or graphite) structure • 

(3) Full span single-slotted Flower flaps. 

(4) Spoilers for roll control. 

(5) Cruise altitude of 9140 m; pressurized to maintain 

a 2440 m cabin. 

(6) NASA advanced natural laminar flow airfoil. 

(7) wIs. 2154.6 N/m2 (45 Ib/ft2) 

(8) A· 11 

Here. the design procedures previously discussed in Section 5.4.1 

resultecl in the 6PAXAD design shown in Figure 5.11 and Table 5.8 

summarizes its characteristics and performance. 

Table 5.8 shows that the 6PAXAD design meets the required 

specifications of Table 5.1 but does not have the desired LID ~ 18 

or V 11 < 60 kt. A detailed discussion of 6PAXAD together with sta -

a comparison with 6PAXBL is presented in Section 5.5. 

5.4.1.3 Advanced Tech~ology Canard Configuration. The 6-Passenger 

canard configuration, advanced tehcnology airplane (6PAXC) in-

corporates the technologies listed in Table 5.3 and the trade 

studIes of Section 5.3.1 were again used to define the basic air-

plane parameters. 

Several problems were encountered in the design of 6PAXC. 

First, methods for sizing the canard and for calculating induced 

drag were lacking. Second, GASP will not handle canards. For 
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~USELAGE: Length. 7.53 m (24.7 ft) 

Height • l.~~ m (5.38 ftl 

EN:;I~j£: l1ax Power - 205 kll (27S hpl 

Crit Alt • ~144 m (30000 ttl 

WING: Area - 5.73 m2 (61.7 f(2) 

Span - 7.92 m (26 ftl 

Asp~ct Patio. 11 

Tap~r R.tiQ •• 5 

FLAPS: Sir,gle slotted Fowler flaps 

cfl< •• 3~ bf/b - .n::. 
Tak~off 5ettinq • 20 deg 

HO~ TAIL: Area. 1.61 m2 (17.3 ft 2) 

Span • 3. 11 m (10.2 ft) 

A:;pect Rat:o - (. 

VEIIT TAil: Arca· 1.71 m2 (13 ft 2) 

Span - 1.55 M (5.1 ft) 

Aspect Ratio a 2 

(; 

Wldt~ - 1.32 m (4.33 ftl 

, Passenger •• 6 

Prop Di" - 1.83 m (6 ftl 

I Blade •• 

Sweep (.25e) - 1.7 deg 

Dined .. ,1 - 6 deg 

WHhout • 2 deg 

Airfoil: NASA NlF 

landing Setting - 40 deg 

Taper Ratio· .S 

Sweep (.25c) - 3.17 deg 

Airfoil: NACA 0009 

Taper Ratio - .5 

Sweep (.25c) • 14 deg 

Airfoil: NACA 0009 

aj 
~~ 3 

L~_ iJ ~ 

I 
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Fig. 5.11. Advanced Technology Conventional Configuration 6-Passenger Design 
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Table 5.8. 6-P ••• eoaer Advanced TechDololY Conventional CoDfiauratioD 

Characteristic. 

WEIGHTS 

Gross • 1258.7 kg (2775 lb) Payload • 544.3 kl (1200 lb) 

Empty • 582 kg (1283 lb) Fuel (max payload) • 132.5 kg (292 lb) 

ENGINE 

Geared. stratified charge. highly turbocharged. liquid-cooled 
2-rotor, rotary combustion 

Max Power • 205 kW (275 hp) 

Critical Altitude - 9144 m (30.000 ft) 

~ 1b 
Cruise BSFC - .231 kW-hr (.38 hp-hr ) 

Dry Specific Weight • .45 kg/kW (.74 1b/hp) 

TBO - 3000 hr 

PERFORMANCE 

1 Vi· 250 kt (75% power, gross weight) cru se 

Range • 900 nm + 45 min. reserves (250 kt, 544.3 kg (1200 1b) 
payload) 2 

1 LID • 14.2 (250 kt, gross weight) 

V 11 - 64.5 kt (flaps 40°)2 sta 

Takeoff diet. over 10.7 m (35 it) obstacle • 610 m (1999 ft; 
(flaps 20°)2 

Landing dist. ~ver lS.2 m (50 ft) obstacle • 406 m (1332 ft) 
(flaps 40°) 

1 9144 m (30,000 ft) altitude 
2 Sea level, gross weight 
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I 
these reasons, 6PAXC cannot legitimately b. coapare4 to 6PAlBL 

or 6PAXAD, and as presented here, muat be couid.red only as a 

po.sible configuration and not a. a refined desian. The.e prob~ 

lema are discussed in greater detail in Section 5.4.3. 

General characteristics of the canard desian are the .... 

aa those of 6PAXAD as followa: 

(i) Geared, stratified charge, highly turbocharged. liquid 

cooled. 2-rotor. rotary combustion engine. 

(2) Composite (Kevlar and/or graphite) structure. 

(3) Full span single-slotted Fowler flaps. 

(4) Spoilers for roll control. 

(5) Cruise altitude of 9140 mj pressurized to maintain 

a 2440 m cabin. 

(6) NASA advanced natural laminar flow airfoil. 

(7) W/S - 2154.6 N/m2 (45 lb/ft2) 

(8) A· 11 

The full span flaps called for may create a trim problem 

but the extent of the problem, if it exists, was not investigated 

d'Je to the previouoly mentioned lack of reliable analysis technique~. 

Fi&ure 5.12 presents a 3-view of the advanced technology 

canard configuration. 

5.4.2 Commuter Designs 

An advanced technology conventional configuration and an 

advanced technology canard configuration were synthesized. A 

third existin~ aircraft was selected as a baseline for co~parison. 
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fUSELAGE: l~~9tn. 6.22 m (20.~ ftl 

"eight. 1.42 m (4.67 ft) 

ENGINE: "a. Power. 20S kW (275 hpj 

Crit Alt • '14~ m (30000 ft) 

WING: Area. 5.67 ~2 (61 ft1) 

Spotn. 1.89", (25.9 ft) 

Asp"et llat io • I I 

Tap". Ru io •• 5 

flAPS: Single slotted fOWler flap, 

eflc •• 10 b,/b •• 7~:; 
Takeof' Setting. 20 deg 

CANARD: Aru. I.J' m2 (15 ft2) 

Span. 2.9 m (9.5 ft) 

Aspec t llat io • 6 

Vldth • 1.32 N (~.13 ft) 

I P.ssengers • 6 

Prop Oi •• 1.83 • (6 ft) 
I Ih,des • 3 

Sweep (.2Sc) • 18.S deg 

Dihedral. 0 C:eg 

WaShout • 2 deg 

AirfOil: NASA Nlf 

landing Settlnq • ~O deg 

t..per Ratio •• 5 

Sweep (.25c) • 1.17 deg 

Airfoil: NASA lS(H)-0417 

V£RT TAil: Data Is for. single vertie.1 tail (winglet) 

Are ••• 6, _2 (7.~1 ft 2) Taper Ratio •• 5' 
Sp~n • '.1£ ~ (J.79 ft) 

Aspect Ratio. 1.)4 

f======= ~ 
G G 11 

Sweep (.2Sc) - 17 deg 
Airfoil: NACA 000, 

• • . 

c/'50~ 
@ ® 

Fig. 5.12. 
Advanced Technology Canard Configuration 6-Passenger Design 
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The exi.tina aireraft selected ba. a 19 pas.eDger eapabl1ity aDd 

was •• leeted becaus. it i. one of very fev .ircraft specifically 

d •• tlDed .s a commuter. 

Both advanced tecnnoloay conceptual de.iana utili.e the 

.... fuselaa. interior. Accommodationa are included for 19 

paalenaers (sit tina thre~ abreast) and two pilots. Additional 

space 1s included for cabin furnishina8 and a fliaht attendant. 

A baggaae/cargo area is included behind the passenger area. with 

access through an upward opening cargo door. The pa.senger area 

of the aircraft is entered through a smaller door at the front of 

the cabin. Figure 5.13 presents this interior arrangement. 

Design of the advanced technology aircraft followed the pro-

cedures outlined below. Detailed data and calculations may be 

found in Appendix C.2. 

(1) Preliminary Sizing 

The gross weight of each of the advanced designs was 

matched to the baseline aircraft. Tail areas were deter-

mined initially by minimum static stability requirements. 

(2) Weight and Balance 

A detailed we.ight and balance calculation was perfonned 

for each of the designs because interior furnishings and 

accommodations for these aircraft constitute a large portion 

of the aircraft wetght. 

(3) Horizontal Tail Sizing 

The horizontal tail was sized for static margin and rota-

tion requirements. 
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--Passenger Door 

a • 0.991 m (39 in) 
b - 0.451 m (17.75 in) 
C - 0.409 m (16.1 in) 
d - 0.511 m (20.1 in) 

e - 0.419 m (16.5 in) 

-let-

d 

" If , .. c -, II 

Sectlf)n A-A 

--,,-
I 
a 

T 

II 

(typ i ca 1) 

Fil. 5.13. eo..uter Cabin Layout 

--..-.
Cargo Door 

Scale: 1 in • ~8 in 

Cabin Length • 32.4 ft 

• • 

Hax Cabin Width - 75.6 in (inside) 

Hax Cabin Height • 69 In ~inside) 

Seat Pitch - 36 in 

-.. 



(4) Aarodynaaic. 

Airplane vatted area aDd aero 11ft draa coefficient vere 

calculated. 

(5) Final Sialn, 

GASP was used to perfor. the mis.ion analysis of the air

craft. Here, gross weight was maintained whl1e engine slze 

was adjusted to meet design specifications. Two specific 

missions were analyzed. The fir6t involv.d a 8ingle leg 

mission at gross weight, while the second v •• characterized 

by nine 87 nm legs at a 60% load factor. Both missions were 

flown at 3048 s. Pdor to mission analyt;is, GASP was 

calibrated to obtain the drag and wci.ght characteristi.C8 

which were predicted through manual calculations. 

The two advanced desi~ns and the basebne a:l:rcraft "r~ 

discu8sed separat ely in the following s.~(~t i CHi 's • 

5.4.2.1 Current .:r_e.chno1o~ .~as('lin!:.. The I.l:ir·cralt utl.U.u!d for 

the current technology baseline {COMBL) appears in F:lgu1:'i' :) .11 •• 

The characteristics of COtIBl. are: 

(1) Twin turboprop engines. 

(2) Conventional aluminum structure. 

(3) Partial span, double-slotted flu.!):!!. 

(4) Conventional control suriacp:,;, 

{5} Cru1~e altitude. 3048 m. 

(6) NASA 65
2
A2lS at the f(\ot. NACA 64

2
.\41i :Ii" t h,.~ tip, 

(7) W/S· 2lS7 N/m2 

(8) A· 7.71 
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The p rformance characteristic.s of COMBL are summarized in 

Table 5.9. 

Table 5.9. Com~uter Currert Technology Baseline 
Characteristi s 

WEIGHTS 

Gross - 5670 kg (12500 lb) 

Empty = 3379 kg (7450 Ib) 

Hax Fuei ;'; · i ht .. 1969 kg (4342 lb) 

ENGINES 

Turboprop with inj e tion 

Nax row :- 708.1+ kW (950 hp) 

Crui SSF ( . 5 Ib 
"" hp-hr ) 

Dry Sp cHi W i Ilt .. 4. kW/k o (2.65 hp/lb) 

TB .. )000 hr 

PERFORHANC F 

V ru i I w~ r, 048 m (10 ,000 ft).5670 k 

LID = 1 .44 048 m (10 ,000 f t), 670 k (1 2 , 5001b) 

o 7 k t (fl;1p 1 v I, 70 kg (12, 0 1b» t a ll 

Tak off Dlstan ' 
(l1 3p 0 , S l'::! 

v ' r 11), 7 111 (I t l ) (l h s l ' \ lL 

t 'v 1. 70 kg (l , 00 1 b » 
1 m (Joaa f t 

Land In ' Oi ' ldn \. ov r 
(fl, ps 6 0

• 

II ngLh 
o 1b 

l )bs l a l ' .. 7 m ( f t) 
(12 , 00 1b) 

114 m ( 77 1 (t:lk· on f igur ti. n, 

6_ m (1 , 0 0 ( t) 

.. 



The performance charaeteristics of COMBL are summarized in 

Tabb 5.9. 

Table 5.9. Com.uter Currer.t Technology Baseline 
Characteristics 

WEIGHTS 

Gross • 5670 kg (12500 Ib) 

Empty • 3379 kg (7450 Ib) 

Max Fuel ~~ight • 1969 kg (4342 Ib) 

ENGINES 

Turboprop with emergency methanol injection 

Max POWt::' 708.4 kW (950 hp) 

Cruise 8SFC • .335 kw~fr (.55 h!~hr) 
Dry Specific Weight • 4.36 kW/kg (2.65 hp/lb) 

T80 - 3000 hr 

PERFORMANCE 

Vi· 250 kt @ 60% power, 3048 m (10,000 ft),5670 kg 
cru se (12,500 lb) 

L/D - 10.44 [ 3048 m (10,000 ft), 5670 kg (12,500 1b) I 

Vstall • 87 kt {flaps 36°, sea level, 5670 kg (12,500 Ib» 

Takeoff Distance over 10.7 m (35 Et) obstacle = 914 m (lOaD ft) 
(flaps 0°, sea level, 5670 kg (12,500 lb» 

Landing Disrance over 15.2 m (SO ft) obstacle • 897 m (2944 Et) 
(flaps 16°, sea level, 5670 kg (12,500 lb» 

Balanced Field Length = 1149 m (1771 ft)(takeoff configuration, 
5670 kg (12,500 lb» 

Singlp. Engine Service Ceiling ~ 1962 m (13,000 ft) 
(5670 kg (12,500 lb» 
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5.4.2.2 Conventional Configuration Advanced Technology ~ter. 

The conventional configuration, advanced technology commuter 

(ADCOM) incorporates the technologies listed in Table 5.4. The 

trade studies of Section 5.3.2 were used as guidelines for the 

definition of the basic airplane parameters. 

The conceptual design of ADCOM proceeded rather smoothly, 

and only one major difficulty was encountered. Because of the 

small wing size, the wing volume available for fuel became cri-

tical. However, a manual calculation using conservative approxi-

mations revealed that availabl~ wing volume could accommodate 

the mission fuel. Figure S.lS presents a 3-view of ADCOM. 

Also. the characteristics of ADCOM are presented in Table 

5.10. 

5.4.2.3 Canard Configured Advanced Technology Commuter. The 

problems encol1nt~red with the 6-Pas3enger canard design also 

hampered the commuter canard design. Initial sizing and wing! 

canard location were determined utili~ing conventional con-

figuration analysis methods. For this reason. the advanced tech-

nology canard commuter (ADCOMCN) should closely approximate the 

results which could be expected from more sophisticated methods. 

However, lacking verification, this canard should not be compared .. 
with the advanced technology conventional configuration (ADCOM) 

or the baseline aircraft (COMBL). 

Figure 5.lh presents a 3-view of ADCOMCN. which is characterized 

by the following: 

, 
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Tub 5. 10. ....aaced Tee_lop eoov.tlaul CoeflpratioD 

eo..uter Cbaracteriat1ca 
....,.,........ ~ ,_ ".. .. • _ ... ,;;: j'_ .. """'-- , _~, ~.~ ~_i*_,. ...... , - .. 

1 WlIGllTS 

~ Groa. • 3706 q (12,510 lb) 

'JaptJ • 3058 ka (6,742 lb) 

\Max ,*,1'" • 1724 ka (3800 1b) 
L 

'GATE 'furbopr::»p 

Max Power • 457 kW (613 hp) 

Crui&. BSFC • .274 kw~\r (.45 hpl~hr) 
Dry Specific Weight • 3.29 kW/kg (2.0 hp/lb) 

TBO • 3000 hI' 

PERFORMANCE 

Vi· 250 kt @ 70% power, 3048 m (10,000 ft), 5706 kg 
cru se (12,580 Ib) 

LID • 12.5 @ 5706 kg (12,580 Ib), 3048 m (10,000 ft) 

Vsta11 • 84 kt (flaps 40·, sea level, 5706 kg (12,580 Ib» 

Takeoff Diatance over 10.7 (35 ft) obstacle • 1047 m (3600 ft) 
(f1apa 20·, sea level, 5706 kg (12,580 Ib» 

Landing Distance over 15.2 m (50 ft) obstacle • 588 m (1930 ft) 
(flapa 40·, sea level, 5606 kg (12,580 Ib» 

Balanced Field Length • 1097 m (3600 ft) (flaps 20·, sea level, 
5706 kg (12,580 lb» 

Single EoSine Service Ceiling • 2475 m (8120 ft) 5706 kg 
(12,580 Ib) 
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(1) Twill turboprop ...... . I f 1;l ... 
(2) 0aIIp0I1te (mlu "'or Poaflatt.) etnchh. , 

(3) Pull ..... 11q1e-alotted fowler fla,.. 

(4) SpoUerl for roll cOGtrol. 

(5) Cruiee altitude • 3048 a. 

(6) LS(M) - 0417 lov-epeed airfoU. 

(7) V'S • 3259 R/a2• 

(8) A • 12 

Iotb the co .... tioDal aDd claard lClvaaced tee_l.., COIl-

fiaurationa utili •• !tbe .... fUI~lal" with the ......... trical 

parameterl for the winl. with the exceptioa of sweep. 

The canard configuration does offer some interestinl lidl 

effecta in configuration analyais. Conventional .ethodl of 

aaalyaia indicated that wing sweep wa. required to properly 

balance the aircraft while maintaining an aerodynamic center 

location t~t was acceptable froa a static longitudinal stability 

standpoint. 

Although wing weight generally increase a with the addition 

of sweep. increaaing the wing root chord 8uch that the wing 

trailing edge sweep may be reduced to zero (aa when a "Yehudi" 

i8 incorporated) will allow the relocation of the .. in llnding 

Rear from within the torque box to a poaition aft of the rear 

spar. The resulting torque box weight savinga may be expected 

to off.et the weight penalty incurred through winl sweep. 

Additional characteriatic8 of the canard are ex .. ined in 

Section 5.4.3. 
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5.4.3 Canard Analysis Problems I 
Development of the 6-p .... na.r .nd commuter canard confia- I g 

urations was halted because of .n .bsenc. of r.liable canard . 
• 

an.lysis methods. The difficulty here li.s in the fact that 

present methods do not account for the eff_cts of wake deformation 
I 

frClll the canard on the main (aft) wina. Althouah thia situation 1 

I 
does not pose severe ltmitations at l~~ angles-of-attack or when 

the canard is not highly loaded, it was suspected that non-short-

I 
coupled canards under either of these conditions would displuy 

characteristics which would be significantly different than those 

predicted by present methods. 

Initial attempts to rectify the situation involved the use of 

the Quasi Vortex Lattice Method (QVLM) of Lan (Ref. 116). Here, 

the configuration of Figure 5.17 (Ref. 68) was used as a validation 

case. This particular configuration was wind tunnel tested at the 

NASA Langley Research Center under conditions similar to the flight 

regime of the advanced technology canard configurations. Although 

QVLM does not model a deformed wake, this effect was expected to 

be minimal at low angles-of-attack due to the short-coupled nature 

of the test configuration. Leading edge separation was assumed at 

the higher angles of attack, and the strakes were not included in 

the QVLM-tested configuration. 

Figure 5.18 illustrates the results of the computer andlysis 

where fairly good agreement with the tunnel data is noted. Here. 

the observed differences are believed to result from augmented 

vortex lift generated on the wing by canard vortices. However, 
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Fig. 5.18. Comparison of Experimental and QVLH Results for the 
~alidation Configuration 

further attempts to test QVLM on non-short-coupled configurations 

were hampered by an absence of published wind tunnel results for 

these configurations. Furthermore, an investigation of conventional 

vortex lattice methods (VLH) indicated that all of those codes 

which were examined employed undeformed, planar wakes. These 

observations, together with the following three points, led 
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.veatuaUy to a eleclaloa to balt fUftMT caarct aaal,ua. 

(1) CAS. re.ults for the comreatloDal. coafiprau.. reflected 

aaal.s-ot-attack GIl the order of ,0 to 100 UlMler cutaia 

low .paed fl1&ht caacllt101l1. 

(2) 'rel1alDary caurcl coofiaurat101l. appeared to fnor DOIl-

ahort-coupled caaards. 

(3) Current successful high aspact ratio canard configuration. are 

characterized by very heavily loaded canards. 

5. 5 DESIGlt STUDY SUlIWlY 

This aactioa s~rbes the result. of the de.ign study. 

Advanced and current technology airplanes are compared uaina GASP 

and a parametric analysis. As previously mentioned, the canard 

configurations were not fully developed and are therefore omitted 

in these comparisons. 

5.5.1 ~ Comparisons 

The impact of advanced technologies on the airplanes which 

were analyzed proved quite dramatic. GASP provided soae very 

interesting and useful information. especially since it accounts 

for synergistic effects. 

5.5.1.1 6-Passenger Designs. Data for the current and advanced 

technology designs were presented in Tables 5.7 and 5.8 respec-

tively. Table 5.11 summarizes the characteristics of the two 

airplanES. and emphasizes those quantities which illustrate the 

impact of advanced technologies. 
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Currt..9flt Tecbao1oa1 Adftaced TacImoloa7 

W1Da Loadial 1053.6 N/.2 (22 Ib/ftZ) 2154.6 ./.2 (45 lb/ft2) 

Power Loadllll 57.56./kW (9.65 Ib/hp) 59.6S B/kN (10.0 Ib/bp) 

Aapect Ratio 7.5 11 

Wetted Area 67.71 .2 (72a.1 ft2) 40.37 .2 (434.5 ft2) 

Gro.. Weight 1159.1 kg (4100 Ib) 1258.7 ka (2775 Ib) 

IIIpty Weiaht 1051.4 ka (2318 Ib) 582 Ita (1283 Ib) 

Eapty/Gros. .565 .462 

Vstall 
1 108 ka/hr (58.3 kt) 110.5 km/hr (64.5 kt) 

Takeoff Diet. 2 540 • (1771 ft) 609. (1999 ft) 

Landina Dist. 1 351 • (1152 ft) 406 • (1332 ft) 

Lift/Draa
' 

11. 7 14.2 

Fuel Required 4 264 kg (sa2 Ib) 132.5 kg (292 Ib) 

Ava. Cruise Fuel 
Eff. S .84 kmJka (12.1 ~) 1.10 ka/kl (25.9 ~) 

1 Sea level, gross weiaht, landing flap •. 
2 Sea level, gro •• w.iaht, takeoff naps. 
3 Cruise altitude, 250 kt, gros. weight. 

4 900 am + 45 a1a. reserves, 250 kt, 544.3 ka (1200 Ib) payload 
S Cruise altitude, 250 kt, .id~eight. 

Refering to Table 5.11, the integration of advanced technologies 

(see Table 5.3) had the followina results: 

(1) Wetted area i. reduced by 40%. 

(2) Maximum aro •• weight i. reduced by 32%. 
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(3) IIIpty to lrou wtpt ratio i. lownII by 111. 

(4) LUt to draa ratio 18 incr ...... by 211. 

(5) Fuel r.quiracl 18 recluetld by -501 • 

(6) "'1'" em .. fuel .fflcl.acy 18 tac ....... by U41 • 

• (7) Takeoff dl.taac. 18 1acroued by 131 • 

• (I) .... .1na diatac. 18 lac ......... by 161 • 

(9) Stall apeed 1. tDcreaaed by 111 • 

• lequlr4lllllllt. vel' •• till Mt or exc ...... 

In the curr_t ualy.18. it 18 DOt po.aible to ainal- out 

exactly how auch a liveD techDololY beaefita the airplane: the 

effect. are hilb1y .ynerli.tie. POl' exaaple iacr ... iol wina 

lo.diol (with help of full span flap.) deer ..... vetted ar .. aad 

vinl vei,ht which allows a .. ller _line which deer .. ses veilht 

aDd fuel cona.pHon. which agaiD allOWll a .. l1er viDl. etc. 

Ideally, GASP could be used to investicate the iapact. of 

individual techDololie. and varl~us combinations of techDololies 

but thb proved to be beyODd the scope of the current study. 

The problem waa overcome by uaing a parametric .ethed of compariaon 

as dis~uased in S~tion 5.5.2. 

5.5.1.2 r~ter Deaians. Table 5.12 summarizes the conflauration 

cnaracteristics of the two designs which were analyzed and displaYR 

those quant1Lies ~9t affected by advan~ed technolocy integration. 
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Table 5.12. c-ter CoiIpar1801l try CASP 

Dul .. Cron W.l.aht 

Curreat Teclmolol7 Advaaced Te~bnolo8Y 

Viq Loadiq 2155 ./.2 (45 lb/ft2) 3219 M/.2 (68 lb/fC2) 

PowI' Loacliaa 4.07 ka/kW (6.69 lb/hp) 6.63 ka/kV (lO.9 lb/hp) 

Aapeet Ba~lO 7.11 12 

Lift/Draa 10.44 12.55 

Wetted Area 165.2 .2 (1778.7 ft2) 
, 

136.5 • (1469.2 ft2) 

Max. Cro •• We1aht 5670 ka (12,500 lb) 5706 ka (12,580 lb) 

rapty Welaht 3379 ka (7,450 lb) 3058 Ita (6,742 lb) 

rapty/Gro •• .596 .536 

The results of technology integration into the co..at.er 

aircraft are: 

(1) Wetted area i. r.educed by L7%. 

(2) mapty to gross weight ratio lowered by 10%. 

(3) Lift to dra, ratio increased 20%. 

Performance compar.isons of the aircraft were obtained from 

!;~;e GASP analy.h of the IllUlti-leg llla.lon, where a 60% load 

factor was assumed for each aircraft and the remainiDI weight va. 

allowed for fuel. Recent FAA regulations (Ref. 215) allow COMBL 

a zero-fuel weight of 5675 kg, or a gross weight of 63;6 kg. 

A comparison of ADCOH with respect to COMBL (with additional fuel) 

allows a realistic evaluation of advanced technololY incorporation 
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lDto • co.uter operation. Table 5.13 _ria .. the perfor-.ce 

characteristics of the two aircraft. 

Tabl. 5.13. Coapar1son of Baseline and Advanced Techno1oIY ~ter. 
for the MUlti Mission* 

COMBL ADC(If 

Max. Gross Weight 6350 kg (14,000 1b) 5289 kg (11,660 Ib) 

Payload 1089 kg (2,400 1b) 1089 kg (2,400 1b) 

Takeoff Distance 1113 m (3,650 ft) 1091 • (3,580 ft) 

Landing Distance 967 m (3,173 ft) 579 III (1,900 ft) 

Balanced Field 
Length 1345 III (4,412 ft) 1006 m (3,300 ft) 

Single Engine 
Service C~i1.1.ng 3094 m (10,150 ft) 3094 m (10,150 ft) 

Fuel Required 1311 kg (2,890 1b) 782 kg (1,723 Ib) 
45 min. reseT.Ve 216 kg res (477 1b res) 127 kg res (279 1b 

res) 
Time Required 4.84 hrs 5.0 hrs 

." 
Nine 87 om legs, including taxi, takeoff, climb, and cruise. 

The effect of technology integration on the performance 

characteristics of the commuter aircraft are: 

(1) Maximum gross weight is reduced by 17%. 

(2) Takeoff distance is virtually matched. 

(3) Landing di8tance is redured 40%. 

(4) Balanced field length is reduced 25%. 

(5) Single-engine service ceiling is matched. 
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(6) Puel required i. reduced 401. 

(7) Ki •• ioD ti .. i. iacrea.ad 31. 

5.5.2 Par ... tric eo.pariaona 

A ... aure of airplane cruise .ffici .• cy teraact ''lanaa Pactor" 

(...r) va. derived ua1nl the Breauet ranle equation with an expr ... 1on 

for 11ft to dral ratio. RP 18 defined aa pound (payload) ail .. 

per &&llon of fuel and is a function of ranle (I). altitude (h). 

velocity (V). empty to gross weilht ratio (WE'WG). effective 

aspect ratio (Ae), zero lift dTag coefficient (CD ), effective 
o 

specific fuel consumption (sfc/np)' and winl loadina (VIS). 

Since the independent variables are functions of technololY 

the RF will illustrate the impacts of advanced technololies. 

Derivation of RF may be found in Appendix C. 

5.5.2.1 6-Passenaer Designs. The RF comparisons were done for 

four different technology baselines defined as follows: 

(1) Current technology non-turbocharged baseline 

• non-turbocharged reciprocating engine. 

• conventional aluminum structure· 

• conventional controls and control surfaces. 

(2) Current technology turbocharged baseline 

• turbocharged reciprocsting engine. 

• conventional aluminum structure. 

• conventional controls and control surfaces. 

(3) Low risk advanced technolo~v baseline 

• Advanced turbocharged reciprocating engine; lower sfc and 

higher critical altitude. 
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• couventioaal aluainum structure. 

• spoiler a for roll control; full s,.alaa1e-a1otted Fowler 

flapa • 

• lIOCIerately iIlcreaaed wing louina and aapect ratio. 

(4) Biah risk advanced techaololY baseline 

• _vanced. stratified charge. hilhly turbocharged rotary 

combustion engine. 

• composite structure. 

• spoilers for roll control; full span single-slotted Fowler 

flaps. 

high wing loading and aspect ratio. 

The RF variables for baselines (1) and (2) are determined 

by averaging data for various existing 6-Lassenger single engine 

airplanes. No desig~s were established for baseline (3) so the 

RF variables were estimated using available data. The RF 

variables for baseline (4) are obtained from the GASP designed 

advanc~d technology airplane (6PAXAD). Table 5.14 presents the 

data used in the RF comparisons. 

Range factor is plotted as a function of spe.ed for each 

of the technology baselines in Figur~ ;'.19. Range has been nor-

malized to 900 nm + 45 min. reserves to make the comparisons 

consistent. 
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Table 5.14. Data Used for 6-Pa.aanaer lanae ractor 
eo.par1aoua 

TechnololY BaaeliD.a 
Variables 

(1) (2) (3) (4) 

h (.) 2,133.6 6,096 7,620 9.144 

(ft) 7,000 20,000 25,000 30,000 

WS/WG 
.590 .595 .565 .462 

A 6.57 7.08 10 11 

e .7 .7 .7 .7 

S> .0226 .0226 .0250 .0286 
0 

SFC ~ (kV-hr) .260 .271 .231 .231 

lb 
(hp-hr) .428 .445 .380 .380 

I) .85 .85 .85 .85 p 

WIS (N/m2) 969.56 1035.63 1635.63 2154.57 

Ob/ft2) 20.25 21.63 35 45 

The technology impacts illustrated in Figure 5.19 are very 

interesting and are summarized as follows: 

(1) Turbocharging allows baseline (2) airplanes to cruise at 

higher altitudes than baseline (1) airplanes and thus 

increases RF at typical cruise speeds. Maximum RF occurs at 

a higher speed but is Slightly lower. 

(2) The low risk technologies, baseline (3), increase maximum RF 

very significantly and cause RF to occur at a higher speed. max 
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(3) The high risk technoloaiea. baa.line (4). further incr •••• 

RPaax and shift RFaax to a hi,her apeed. 

I (4) (6PAXBL) is -The GASP deaiped current technology baae11ne " , 
I much more efficient at 250 kt than baseline (2) due to lower 

CD ' lower WE'WG, and higher cruise altitude. , 

0 .. 
(5) GASP co.parisODs between the advanced technology (6PAXAD) 

a~d current technololY (6PAXBL) de.ips •• discussed in 

Section 5.5.1.1 are validated. 

5.5.2.2 Commuter Designs. IF comparisons were made for four 

technology baselines: 

(1) Current technology baseline 

• turboprop engines. 

• conventional aluminum structure. 

• conventional control surfaces. 

(2) Low risk advanced technology baseline 

• turboprop engines. 

• conventional aluminum structure. 

• spoilers for roll control, full span single-slotted Fowler 

flaps. 

• High wing loading and high aspect ratio. 

(3) Medium risk advanced technology baseline 

• turboprop engine. 

composite structure. 

• spoilers for roll control; full span single-slotted Fowler 

flaps. 
" 

• high wing loading and high aspect ratio. 
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(4) Blah risk adYanced teebaology basell_ 

• GAT! teclmolOlY eDll.s. 

• composite structures. 

• spoilers for roll control; full span single-slotted Fowler 

• flaps • 
\ 

• high wing loading and high aspect ratio. 

The variables for the RF baseline, (1), were taken from OOKBL. 

The high risk baseline, (4), wa~ leveloped using the characteristics 

of ADCOH. The low risk technology baseline, (2), was developed 

using variables common to the other two baselines by integrating 

the drag characteristics and high wing loadings of ADCOM with 

the propulsion and structural characteristics of COMBL. The 

medium risk technology baseline, (3), was developed by integrating 

composite structures into baseline (2). 

The variables used in the RF analyses follow in Table 5.15. 

The results of the comparison appear in Figure 5.20, where 

range factor RF is shown as a function of speed for a single leg 

range of 800 run. 

The technology impacts are: 

(1) The current technology baseline state-of-the-art is fairly high. 

Incorporation of low risk technologies will not substantially 

, 

t 
benefit the performance of the aircraft. 

(2) High risk technologies offer substantial performance improve-

ments for this size of commuter aircraft. Fuel efficiency is 

more than doubled, while low risk technology offers only a 30% 
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ena1ne provides a Ireater impro~t 1a afficieac, thaD 

the intelration of coapositea. 

Table 5.15. Data Uaecl for Commuter Ranle Factor 
Coapariaona 

Techno1olY Base1in.s 
Variables 

(1) (2) (3) (4) 

h (11) 3048 3048 3048 3048 

(ft) 10,000 10,000 10,000 10,000 

WE/WG .596 .596 .536 .536 

A 7.71 12 12 12 

e .81 .71 .71 .71 

CD .0253 .0268 .0268 .0268 

° 
afe (k:fhr) .335 .335 .335 .274 

1b 
(hp/hr) .551 .551 .551 .450 

np .88 .88 .87 .87 

W/S (N/m2) 2154 3256 3256 3256 

(lb/ft2) 45 68 68 68 
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CIIAPTD ! 
GINEIAL AVIATIOlC .SYI'l'IIISIS PIOCIAM 

This program, developed by the RASA-AM. le.eareb c.ter 

under the supervision of ntomas L. Galloway. baa been diaeu •• ed 

in the literature as early as 1973 (Ref. 64). been utilized in 

several vehicle trade studies of 1975 vintage (e.g. Ref. 80 and 

153), and more recently been used by some of the manufacturers 

who participated in the General Aviation Turbine Engine (GATE) 

studies. As of this writing, it is still receiving significant 

attention, and ongoing improvements to the code appear to signal 

even greater versatility and applicability to the particular 

synthesis problems faced by general aviation. 

6.1 PROGRAM FAMILIARITY 

Gaining familiarity with the program's capabilities was 

given a high priority during the early phases of the research 

effort. Here, the continuous and extensive support rendered by 

Galloway proved invaluable. Through his assistance, extensive 

familiarity with the program logic was gained in a relatively 

short period of time. 

The program is particularly versatile and the user is 

offered a wide range of input variables with which to define 

significant vehicle, propulsion system, and mission parameters. 

Vehicle sizing as well as propulsion system sizing are available 
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as standard options, and user-specified tDpute allow for various 

capabilities of the proar. to be .. erciMd. For ...,le. clurifta 

the actual eaployaent of GASP. .1&irI& the "ehicle and propulsiOll 

• yatem va misaion par ... tera without actually exerciaiDa the 

mis.ion trajectory options proved to be particularly coat 

effective. 

Three uniquely different types of proaram executiofts will be 

referred to throughout this chapter. Accordingly they will be 

defined here for clarification. 

(1) Short Run - execute only the vehi,l. weight, drag. and 

propulsiun system sizing options without trsjectory defini

tion. This is a standard program option. 

(2) Standard Run - proceed with the short run and continue with 

trajectc;·ry definition. This is also a standard program 

option. 

(3) Commuter Run - execute successive legs where gross takeoff 

weight and fuel remaining at the beginning of each leg are 

derived from the preceeding leg. This is a non-standard 

option and represents a modification by the present research 

team as discussed in Section 6.2.3. 

6.1.1 Canard Configurations 

GASP does not possess the capability to handle canards. By 

this, it is meant that GASP will not allow for the investigation 

of possible reductions in induced drag due to the upload on the 

forward tail nor will it make any allowance for structural 
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weight. Which .. y dif~~r due to differeDt apaD 1oadtaa- aDd/or 

fuHl ... bead"" ....au. The wder1yiaa factor for thia abort

coaina ia aSllply • lack of caurd data whicb would allow for the 

developaeDt aad incorporation of ..,irical we1&ht aDd/or 

urodynaaic equationa. 

6.1.2 Propulsion Syat .. SiziDl 

GASP synthesizes vehicles with either a "rubber" ensine or 

a fixed propulsion system based on user-specified inputs. The 

very attractive "rubber" engine feature of this progr81l allowed 

for rotar.y combustion, reciprocating, and turbine powered config

urations to be matched with a propeller and sized for different 

vehicles. 

6.1.3 Drag ~ Weight Calculations 

The program will compute both a drag polar and a component 

weight breakdown. It also provides the user 'fith sufficient 

input capability to generate specific drag and weight character

istics. For the evaluation at hand, aerodynamic and weight 

characteristics were manually calculated and then compared 

against results generated by GASP. Although aerodyn81lic coeffi

cients showed reasonably good agreement, structural component 

weights for the current technology 6-passenger airplane did not. 

Since consistent results were required for the technology 

evaluation comparisons, it was decided to incorporate manually 

calculated drag and weight characteristics for all computer runa. 

This required that several short runs be made to size the 
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propu18ioD ayae_ aa _U .. obtaiD deaind -tabt aDd dna 

characteriatica, where the latt.r charaeteriat1c ...... Rtdaed 

throuah iIlputa already proricled for ill the proar_. 

6.2 PaoGlAM IIJDDICATIOI S 

Three modificationa were .ade to GASP in order to allow for 

ita .. x~ utilization. 

6.2.1 1!!! Ea&ine CenterlinJ Thrust 

-

The first involved the addition of an input variable ~~ich 

would allow lor a twin engine vehicle to be confiaured with 

centerline thrust in a tractor-pusher arranaeaaent. No aerodyn~ic 

chanae. were accounted for. However, this modification allowed 

for the retention of preliminary tail sizina and lonaitudinal 

balancing options which already exist in GASP. Structural weiahts 

and the drag of the wing and fuselage could be expected to change 

when engines are removed from the wing and added to the fuselaae. 

6.2.2 ~ Specific !!!! Consumption (B5FC) 

GASP computes a scaled BSFC for a given propulsion system 

type and applies this figure to compu~e range and/or fuel used 

during vario~s mission sesments. Although one manufacturer 

provided a subroutine which reflected the 5FC's of its GATE 

proposal, a decision was made to modify the program and allow a 

user-specified input to correct the computed B5FC to a desired 

level. Hence, after the propul~ion system was sized over several 

short runs, this input was arplied to adjust the B5FC to different 

levels based on technology forecasts for different engines. 
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6.2.3 eo..ut!F M1lllon Profil. 

The two .olt attractive r~.tur'l of ~ lie 1D It. propul-

I 
~ , • 

tCAjyC~ory analy.i. for takeoff. cltab, aDd acceleration. Thia 

I latter f .. tur. 11 loat, however, when a c~ter ie ... l1&ed 

t , 
• becaue on!y one lea can be flown at a tlare. Althougb tbe pro-

ar .. doea po.aeaa tbe veraat111ty to exaatne al.alon. at otbar 

than takeoff groas weigbU witb full fuel, aubaequent c~ter 

legs .at be individually loaded and executed after prevlOu. lea 

weights bave been determined. 

To overcome this difficulty and still utilize tbe full 

potential of GASP, an extensive modification waa made to tbe 

I 
I 

program. Three major goals of this modification were to 

(1) In*ure that every GASP computational methodology be retained. 

(2) insure tbat all GASP capabilities be retaiued. and (3) keep 

the modification totally transparent to the user. 

At present, all three goals appear Lo have been achieved. 

One variable ;~"s been added to the original nOllle1iat called 

$INGASP and acts as a switch. Test run~ of the program with thia 

switch on or off allows all of those pro&ram capabilities 

actually used in the present rhearch to be accessed and utilized. 

With the switch on. an additional namelist containing only seven 

variables (three are lO-e1ement arravs) is read. Here, up to 

ten legs at different altitudes, Mach numbers. and ranges may be 

specified together with any range-eorrecting options. Once 
l 

GASP entets the mission profile analysis phaf.e, each specified 
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leg is analyzed utilizing only GASP methode. Three fuel -tahu 

for each 1es are computed .a in the ori&1na1 prosr_. and the 

remaining design fuel quantity tos_thar with the landing veiaht 

are transferred to the next leg a8 tn!tlal values. Pailure to , , 
meet all specified leg8 r.esults in au error measase identifYina 

the accumulated successful les completions and the point of fuel 

exhaustion or, if elected. vehicle resizing together with a 

further analysis of the mission trajectory. Although simple in 

concept. the reader who is familiar with the lateral and highly 

interrelated structure of GASP will recognize that this modifi-

cation ultimately controls the majority of the 72 subroutines 

in the program. 

Numerous commuter runs were made to test the validity of 

this modification. The most successful of these involved a nine-

leg specification of 161 km (87 nm) each for the Swearingen 

Metro. Each subsequent leg reflected anticipated reductions in 

time-to-climb and range-in· ~limb, and the final leg resulted in 

a 5.6 km (3 nm) difference from an expect.ed range which had been 

predicted in a scenario generated for a commuter study performed 

in Reference 215. 

6. 3 PROGRAM BENCHMARKS 

In order to validate the use of GASP, the program was bench-

marked against two vehicles whose characteristics were manually 

calculated. 

In the case of the 6-passenger airplane, a new vehicle repre-

senting current reciprocating engine technology with a conventional 
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aluminWl structure was dea1ped and analyzed. Several abort runa 

were made to verify weight, dral, fuel capacity, aDd pro~al.ion 

characteristics. The final standard run over a desired 1667 b 

(900 DIll) ranle resulted in a 9 km (5 lUI) deficienc7. 

When a similar analysiS was performed for the coawter, the 

resulting vehicle had almost identical characteristics with those 

shown for Example A in Volume I of the published GASP document a-

tio~. This latter airplane had a gross weight of 5675 kg 

(i2,500 lb) and a range of 1117 km (603 nm) at 3048 m (10,000 ft) 

with a 45 minute reserve. The example data were subsequently 

modified by calculating available fuel volume and then limiting 

gross weight to approximately 6356 kg (14,000 lb) based on com-

promises between available fuel volume and a zero fuel weight of 

5675 kg (12,500 lb) with a payload of 19 pas~engers. Commuter 

runs were then made with excellent agreement between results and 

manual calculations. 

In all cases, Significant differences between expected and 

GASP-generated structural weights were noted. Some concern was 

expressed by the present research team over the unusually high 

aspect ratios (on the order of 12) which were being examined. 

Manual computations, however, reflected good agreement between 
.. 

the methods of Nicolai (Ref. 154), Torenbeek (Ref. 214), and 

those of one airframe manufacturer. Consequently, inputs to GASP 

were adjusted over several short runs until desired component 

weights resulted. These correction factors were then considered 

constant for subsequent investigations of advanced technology 
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vehicle.. It must be DOted that this decision to u.. aaoually 

lenerated data doe. not reflect an opinion that the GASP aetboclo-

10lY is incorrect. Rather, since coapari80118 bet1ftWn current aDd 

advanced technololies were beul conducted, it was felt that the 

a\._. procedure would yield IIOre consistent results. 

Differences in dral characteristics between expected and 

GASP-Ienerated values were small. However, dral cOilputatioDS 

were also adjusted for the baselin. vehicles over several short 

runs until desired values were ob~ '!ned. These correction factors 

were then also considered constant for the investigation of 

advanced technology vehicles. 

It is significant that thes~ correction factors are already 

provided for in the GASP input list. Hence, the adaptability of 

GASP is not degraded due to input limitations. 

6.4 USE OF GASP 

The results obtained from the use of Gh32 are reflected in 

the performance and trade studies discussed previously in 

Chapter 5. Additional data are presented in Appendix C. 

6.5 RESULTS OF GASP IMPLEMENTATION 

The use of GASP contributed markedly to the productivity of 

this research effort and allowed for the analysis of several 

airplane configurations in a rapid and orderly ruanner. The wide 

range of inputs already provided in the basic program presents 

the user with attractive options for vehicle definition, and the 
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propulsion sizins and trajectory definition capabilities offer 

sianificant contributions to General Aviation aircraft synthesis 

capabilities. 
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7.1 OVERVIEW or !!!!! PEBlOIMED 

This research, which spanned 12 .oaths, was purauecl in an 

attempt to identify those advanced technologies which, when inte

grated into general aviation airplanes. would offer significant 

improvements in safety. performance. efficiency. and utility. In 

order to achieve this primary goal. several diverse and otherwise 

independent tasks were performed. These may be broadly grouped 

as follows: 

(1) A thorough and in-depth data base was established. 

(a) 31 manufacturers were visited. 

(b) 3 NASA research centers were visited. 

(c) 6 professional meetings were attended. 

(d) A detailed literature search was performed. 

(2) A technology evaluation technique was developed, tested, and 

evaluated. This technique needed to reflect the consenSUB 

of the general aviation community. be broad enough to consi

der all aspects of a technology's impact, be relatively sen

sitive to differences in a technology's potential benefit. 

and display a degree of stability. 

(a) Survey 1 was a Delphi survey used to identify the meas

urements of a technology's impact (category identifica

tion). 17 categories were identified after four rounds 
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of the survey were completed. 

(b) Survey 2 was a Delphi Burvey used to quantify the meas-

urements (category ratina). Three rounds were used to 

establish the ratings (category weights). 

(c) Pessimistic, Likely, Optimistic, and Expected relative 

benefits were determined and examined to establish 

the stability of the evaluation technique (PLOB 

studies). 

(d) A factor analysis was performed for the relative benefit 

matrix to determine the suitability of the selected 

categories. 

(e) The effect of different raters was examined. 

(f) An analysis of variations in the Empty Weight category 

rating was performed because it appeared that the 

definition of this category and/or its impact on payload 

was not adequately defined to Survey 2 participants. 

(3) The effects of integrated technologies on two classes of 

airplanes were examined. Both airplanes were specified to 

cruise at 250 knots. Airplane A was synthesized as a 6-

passenger. high performance. personal/business airplane. 

Airplane B was synthesized as a 19-passenger commuter. 

(4) The General Aviation Synthesis Program (GASP) was evaluated. 

modified. and used to investigate the effects of technology 

integration on Airplanes A nnd B. It Is e~ph8sized here 

that the modifications were made only to adapt the program 

to the study at hand and do not reflect deficiencies in 
If": 
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the proaraa. 

(5) A modified version of the Quasi Vortex Lattice Method (QVLM) 

was uaed to investigate canard configurations. Bere, the 

modification allowed the investigation of the effects of a 

forward tail on an aft main wing. Fairly good agreement waa 

noted for a short-coupled canard, but non-short-coupled con

figurations were not evaluated due to an absence of wind 

tunnel data. 

7.2 RESULTS OF TASKS PERFORMED 

The results of the separate tasks identified in Section 7.1 

are summarized below according to major areas of emphasis. 

7.2.1 Manufacturer and Research Center Visits 

All visits contributed tmmeasureab1y to the data base re

quired for the technology evaluation. Manufacturers contributed 

significantly by sharing their vi ~ws of both advanced technology 

development as well as of NASA research in general. Comments 

regarding technologies requiring further study and recommendations 

for further NASA research may be found in Appendix A. However, 

the following opinions and perceptions of the manufacturers are 

emphasized here. 

(1) NASA research should be confined to basic research, whereas 

product development should be left to manufacturers. 

(2) High risk technologies such as those encountered in propul

sion require NASA funding if they are to materialize as 

haJdware. 
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(3) Certification and product liability coat. are ofteQ far 

greater than those coat. incurred in the actual dftYelopaaDt 

of a technoiosy. 

7.2.2 Technolosy ~ation 

An evaluation technique based on • linear compensatory .o4el / 

was successfully developed, tested, and ~plemented. This model 

reflects the opinions of the general aviation community both in 

the identification of categories to be used as measurement devices j 
as well as in the determination of the relative importance of 

these categories. 

Two sets of category weights were developed as part of this 

research. The first was for a 6-passenger, high performance. 

personal/business airplane, and the second wa$ for a 19-passenger 

commuter. 

7.2.2.1 Attractive Technologies. The following technologies 

appear to be attractive to general aviation. 

(1) All propulsion technologies. The GATE turboprop and Strati-

fied Charge Rotary Combustion Engine were distinctly ahead 

of all other technologies considered for Airplane A. 

(2) Fiberglass. Kevlar, and graphite composite materials. Certi-

I ~ 

fication procedures must reflect the latest composite test 

t data, however. to preclude overly restrictive requirements 

from nullifying otherwise significant weight reductions. f 
i 

Designs will also need to incorporate proven methods for 

lightning protection. Only areas most vulnerable to lightning I 
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strikes need protection, such as tips of wtDas aa4 tail aurface. 

or any relatively sharp pointed projection. PrOllliaina I18thods 

for pNtection include flame sprayed aluaioum cl,atina. aternal 

conductors or diverters, and embedded aluminum or copper wire 

mesh. 

(3) Natural laminar flow airfoils, spoilers with full span Fowler 

flaps, and low/medium speed airfoils. Development of these 

technologies requir£s improvements in computational aerodynamics. 

(4) Advanced integrated avionics systems which reduce pilot work-

load. 

7.2.2.2 Unattractive Technologies. The following technologies 

appear unattractive. 

(1) Area navigati~n concepts such as Loran C and Omega. 

(2) Active controls, fly-by-wire, and fly-by-light. 

(3) HUD's, Doppler navigation, and inertial navigation. 

7.2.2.3 Technologies Not Examined. Technologies with significant 

potential but not evaluated due to their inapplicability to 

Airplane A and/or 8 include the following: 

(1) Prop fan 

(2) Quiet. Cle&n General Aviation Turbine engine (QCGAT). 

7.2.3 Design Studies 

Design trade studies for both airplanes reflect significant 

performance gains resulting from the integration of new technolo-

gies. Here. the synergistic effects of composites. aerodynamics, 

and propulsion technologies were examined. The resulting air-
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plan •• displayed .. rked t.provementl in perforaance, operatiRl 

co.t. and npty wei,ht and served to verify the prediction. 

evolvina fro. the lYaluation Technique. Liahter aircraft with 

hiaher wiDa load ina. and improved propulsion .yatea. showed 40% 

to 50% reductions in fuel used. 

1.2.4 GASP 

The use of GASP aided immensely in the evaluation of the 

impact of advanced technoloaies. Here. manual calculations for 

weight and drag were input. and the program was used to size the 

vehicle and propulsion system. and to evaluate mission performance. 

Its versatility promises significant benefits for general avia-

tion synthesis. 

7.2.5 QVLM 

Although this analysis tool reflected fairly good agreement 

for the one configuration evaluated. the inability of this method 

as well as conventional VLM methods to model a deformed wake was 

perceived to be a shortcoming to the investigation of non-short-

coupled canard configurations. 

246 

i 
f 

1 
I 

• f 

I 

___ .~ __ ~ ___________ == _______ F _________ · ____ ~·~·~::==~"~----



t 
; 
f 

• 

CHAPTER! 

CONCLUSIONS AND RECOMMENDATIONS 

8.1 CONCLUSIONS 

The identification and integration of certain advanced tech-

nologies can have significant and profound impact on future gen-

eral aviation ai'planes. The results of the present study suggest 

that it may be possible to integrate certain high-risk technolo-

gies into two low-speed general aviation airplanes and realize 

substantial fuel savings while improving safety, comfort, and 

performance. These fuel savings alone represent significant re-

ductions in the cost of owning and operating an airplane. 

The initial cost of the airplanes, however, is expected to 

be high. Developments which would substantially lower purchase 

price include: 

(1) A NASA commitment to develop advanced propulsion system 

technologies specifically for general aviation. 

(2) A requirement by the automotive and trucking industry for 

more sophisticated and efficient turbochargers. 

(3) A similar requiremant by the automotive industry for large 

supplies of Kevlar and graphite composites. 

(4) The development of a substantial data base for composites 

which would lead to better-defined certification require-

ments. 
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The key to the iaprovecl perfoEWance and efficiency of the 

6-paalenaer liaht 11D&le-enaina airplane tnv .. tiaated lie. 10 

increased wina loadina. Hisher aspect ratio., a NASA natural 

laminar flow airfoil, liahter weiaht throulh the use of co.pos

ites, and lIIlproved propulsion syateas alao contributecl I1p1fi

cantly. Since wina loadina il constrained by ltall .peed re

quirements of 61 kt for this cluss of airplanes, a re-examination 

of this requirement appearl warranted. 

Improvemenu in cOllllUter efficiencies. while not as great as 

experienced by the 6-passenger airplane, were still dramatic. 

Lmproved propulsion systems, higher aspect ratios and wing load

ings, lighter structural weights through the use of composites, 

and the incorporation of a NASA low-speed airfoil, all contribu

ted significantly to the improvements enjoyed by this vehicle. 

8.2 RECOMMENDATIONS 

Those technologies identified in Chapter 4 and r~peated in 

Section 7.2.2.1 should be pursued. Additionally, those techno

logies which impr.ove the crashworthiness of an airplane (s.'ats, 

restraints, floor, fuel tanks) should receive continued attention 

by both NASA and the FAA. 

Computational methods which allow for the more accurate 

aerodynamic analysis of wing-body-tail configurations (both fore 

and aft tail) should be developed. Finally, verified prediction 

techniques for wing-spoiler--flap configurations should also be 

developed. 
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Intearatecl aviOilic. .yat_ aD4 related tedlDolopa deataMd 

to rftuce pUot workload IlUst be pur.ued. Tlds tapUe. that a 

viaoroua m.an factors reMarcb proar- directed towarda _ 

aaalysia of the pilot-airplane-flilbt .. vi~~t interface ahould 

al.o be conducted. 

While the MeS DMS concept and the Princeton MVA1lced 

lesearch Airplane appear well suited to investiaate tbe effects of 

advanced avionics, advanced aerodynamic technoloaies DUst be 

actively and carefully investigated and flight tested in order 

to establish a verified data base for the integration of theae 

technologies. Furthermore, although advanced propulsion systems 

play a key role in the present research, significant benefits to 

general aviation appear possible through the incorporation of only 

aerodynamic technologies. 

The research of advanced technology general aviation air-

planes should be continued. While the separate technologies all 

require development, an integrated test vehicle should be pursued 

in order to realistically investigate the actual benefits rea1-

izeable through the synergistic effects of the different techno-

10gies. In view of the fairly long lead times which are charac-

teristic of the aviation industry, research should be directed .s 

soon .s possible to a high-aerodynamic-technology vehicle. Such 

a vehicle would be characterized by composite structures (for 

both weight and surface finish), advanced airfoils, higher wins 

loadings, and higher aspect ratios. 
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APPIIDU! 

IO'rIS l!!! VISITS !2. MAlUl'Am!pI 

~ USBAICII CiI'1'DS 

Th1a appeDdix cOIltd •• aot .. ,, __ rAted by the re ... rch t_ 

dud .. the cour .. of vult. to 31 MDUfacturer. _ thr •• 

r .... rch center.. Th. DOt .. hav. be_ ed1ted to a c.rtalla d.ar .. 

and the n~. of MlWfactur.ra have beaD d.leted. They are 10-

cluded .. a part of th1e r.port bee"".. co.&Ilt.. 14.... -.-. ..ad 

opiai.taDa .aiaed fro. the v1e1ta were of atr_ value to the 

pre.ent reaeat'ch effort. Abo, it 18 hoped that certain vf.eva 

expre.sed frOli tiM to t1llle .Y now be made a _tter of public 

record tn a form more a~ceasible to the ,eneral aviation coaaunlty 

than previously possible. 

It must be emphasized that thb .ppendix contatn. the vie,,'" 

of thou persona v181ted .nd do not nec •••• rU,. reflect the 

opinions of the .uthors of this report. In tho.e c •••• wh.re 

technologies which were ev.luated .a p.rt of this re.earch .r. 

discussed, the reader i •• dvised to refer to Chapt.r 4 for further 

information. Also, when • st.teaent .ttributtn, aa.e char.cter-

istic of "Coap.ny Btf .ppe.r. under. diacussion for "CoIIpany A", 

the at.tement reflecta Company A'. view of Cump.ny B'. position, 

involvement. or action • 
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A.l.1 Co!pany! 

I. Powerplanta aDd Propulsion 

The real need here is powerplants up to and inclucl1ng the 
746 kw (1000 BP) range. 

Liquid Cooling 

The major advantage ia aa a configuration tool. The 
engine and radiator can be placed independently of each 
other in the aircraft. Might poasibly reduce cooling 
drag. 

More efficient; cooling liquid can be used to heat the 
cabin. 

On a direct weight and cost comparison with air-cooled 
engines, liquid cooling will weigh more an~ cost more. 
Excess cost can be returned in performanc~ gains and 
configuration allowances. 

Increases TBO of the engine by cooling the cylinders 
more evenly and thereby allowing closer tolerances 
between components. 

Diesel Engines 

High fuel tolerance. Will burn practically anything. 

Excellent fuel efficiency. 

Could suffer a weight problem. 

Stratified Charge Engines 

Higher fuel efficiency. 

Low emissions. 

Rotary Engines 

Offers advantages in size and smoothness of operation. 

Coupled with a stratified charge mixture, ~uel consump
tion can be lowered to conventional aircraft engine 
levels. 
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Curr~nt aircraft turbocharaera are not .. tched to 
enainaa. They are .taply die •• l truck turbochar •• r8 
which are "tacked on" to alrplue 8nain ••• 

If turbocharserl were optimiled for aircraft, 3047 m 
(lO.OOO ft) could be ~dded to current cellina8. 

This imrrovem.nt 1s one of the most realistic and 
achievable goala for the present. 

Inc?"ea.ed TBO's 

Turbine engines have the potential for 5000 to 7000 hour 
TBO's with careful monitoring. Without it, 3500 hour 
T80'. are still possible. However, a strict maintenance 
8chedule may be too expensive and ttme consuming. 

Current reciprocating engines have TBO's of only 2000 
hOUfS. The high-powered, 6 cylinder injected engine is 
a real maintenance problem. 

Liquid cooling is essential to increasing TBO's. It 
allows closer tolerances. If not liquid cooled, TBO's 
of current reciprocating engines could still be increased 
by the installation and incorporation of larger bearings 
and by adding 50 Ibs of structural "beef-up" to the 
engine. 

Improved Ignition and Carburet ion 

Current aircraft reciprocating engines need spark 
advance incorporated into them. Prest!ntly. they have 
none. At least mechanical advances should be used. 

Electronic control with a J1\anual blH'kup for throttle and 
mixture would inerease rang~ by 20%. (Note that best 
power and t'conomy occur B'. tliO llifferent operating points.) 

A combination of thl'sc would greatly improve engine Ufe 
and fuel economy. 

Propclll'rs 

Propellers can be improved by utjli~ing thinner airfoils 
t3tlorP~ to th~ span of the blndr. 

Compo.-1te conf4trtlction of blades would increase the 
d~~aRc tolerance of the prop~ller . 



(Company A) 

N< 'ise reduction 1s required. One way of aCCOIIPllshilla 
this i8 to .... p the blade tip •• 

Bapbasis vas placed 01l ecollOll1cs. schedules. .... judaeaent 
vs analysis during the design phase. Cost is the most 
important underlyina factor. 

The skill of the labor force i. an iaportant consideration. 
''Planes 1IUst be built by folks, not crsftsmen. It 

11. Structures 

Metal-to-metal bonding 

This 1s a current technology for general aviation, both 
on secondary and primary structures. 

This company currently bonds 4000 to 6000 subassemblies 
per month. 

Composites 

Composites are used extensively, but in secondary 
structure only. 

Use of composites in primary structures is constrsined 
by the FAA. The FAA requires two times the normal 
factor of safety of 1.5. This added strength require
ment eliminates any weight savings from composites. 

Aluminum is still used because of its low cost. 

Prediction Methods 

A flight test flutter prediction method is needed. Must 
allow real time flutter analysis. 

A good noise prediction method is needed, both for 
internal and external noise. 

A high frequency loads analysis method is needed for 
the 70 to 100 Hz range. 

III. A~rodynamic8 

Required Prediction Methods 

Tail effectiveness as a function of tail and wing loca
tion, both longitudinally and vertically. 
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(eo.pa1\J A) 
A method for examining the fuaelage-nacelle channel on 
twins is required. Providing low-epeed inboard lift is 
a key requirement. Must eUlI1nate tail buffet. A load 
potential flow model would probably solve the probl ... 

An accurate method for predictina hins- moaeots for 
ailerona, flaps, and spoilers ia needed. 

Tailored Airfoil Sections 

Sections should be generated for the specific task 
instead of ~eing picked aut of a handbook. Tailoring 
the section ~an reduce drag by as much as 35 counts. 

GA(W) wing (~irfoil) is difficult to manufacture. 

OSU airfoil service is not used because of an inhouse 
capability for generating airfoil sections. 

IV. Systems 

Suggested Methods for Anti-Icing 

Microwave, but interferrence with MLS may be possible. 

Sonic and pulsating methods. 

Avionics 

Primary emphasis in this area should be placed on 
reducing pilot workload. This requires simplified 
ao/ionics. 

Engine Conuition Moniters 

So~e are currently in operation. 

Suggested engine particles be monitored, and that 
microphones be used for detecting unusual sounds. 

V. Canards 

Not a good airplane and doesn't compete with this manu
facturer's product line. Present canards are "neat" 
airplanes, but shouldn't be considered a utility 
airplane. 

Locating the landing gear and fuel will be difficult. 

Trim difficulties expected when flaps are incorporated 
on the aft wing. 
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A.1.2 Company! 

1. Propulsion 

NASA-Levis Research Programs 

Co.pany B would like to Bee the four .. jor progr... for 
General Aviation continued: (1) GATE, (2) Stratified 
Charge Reciprocating Engine, (3) Stratified Charge 
Rotary Combustion Engine, (4) Advanced Diesel. 

Also want to see continued propeller studies. with 
emphasia on weight. compoSites, noise, and efficiency. 

Currently is involved with the GAP program: (1) Agricul
tural aircraft, (2) Turboprops, (3) Light single engine 
aircraft. 

Mentioned the Ames ~ooling drag project and expressed 
interest in it. 

Noise 

Keenly interested in exterior and interior noise 
research. Supports the noise reduction tests at KU 
and LaRC. 

Suggested possibility of electro-static cancellation of 
interior noise. 

Turbocharging 

Current turbochargers need to be optimized. 

Fuels and alternate power sources 

More research needed on alternate fuels for General 
Aviation. 

Suggested NASA investigate alternate power sources. 

Lockheed is doing work on battery development: Lithium 
Hydroxide. Hydrogen Peroxide. Might have significant 
advantagp.s for aviation applications, especially if 
electric propulsion becom~s a possibility. 

Liquid Cooling 

Sees major advantages here. 

50% increase in TBO's is required in order to make this 
attractive. 
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(Coaapany B) 
Improved Ignition .nd Csrburetion 

Sees. definite need here, but feels thRt very ba.ic 
r •• earch is required to fully •••••• benefits of 
advancing timin, as well as better mixture and 
throttle control. 

This company w.s involved in a timing change study. 

Turboprops and Turbofan. 

Visualizes the 149 kw - 373 tv (200 -500 HP) range 
o becoming a reality for turbines. 

Turbofans cannot match the efficiency of turboprops 
below a 400 knot flight regime. 

Rotary Combustion Engine 

Not much :i,nterest here. 

II. Crashworthiness and Safety 

Crashworthiness 

Further work required here, particularly with respect to 
composites. Composites splinter and release energy all 
at once as opposed to aluminum which (In crush and 
dissipate loads. 

Safety 

An investigation of the stall/spin problem is needed 
now. Since the simplest way to prevent a spin is to 
prevent the stall. incorporate active stall prevention. 
Don't give the pilot the ability to stall. 

III. Aerodynamics 

GA(W) sections 

Feels as though this section was oversold. Wing-body 
interference problems outweigh benefits. Aft loaded 
sections cause problems with wing-body interference/ 
separation as well as with trim drag due to pitching 
moment characteristics. Control surfaces tend to float. 

OSU Computer Service 

Company B uses the service. 

Thi~ company would like to Bee results of programs like ATLIT 
and Redhawk disseminated more quickly. 
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IV. Structures 

Compo.it •• 

FAA certification i. a "robl_. but this i. to be 
expected because there ar~ .evere technical probl ... 
with the incorporation of c01lposites. 

A Genetal Aviation composites study is required (c01lpre
hensive) over a 15 year period. All aapect •• such a. 
manufacturing, aging. environmental effects. should be 
addressed. Moisture absorption is a problem. 

NASA should support composite tests for General Aviation 
much like the programs for commercial transports. 

Composites are utilized in secondary structure only. 
Lack of sufficient data precludes use in primary struc
ture. 

Stiffness characteristics as oppoced to strength should 
be verified. 

Investigate possible implementation in engines. Good 
potential for weight savings there. 

Has 6Teat concern for crashworthiness aspects. 

V. Systems 

Aircraft systems, if improved, offer potential for substantial 
gains. Tradeoffs in dollars, weight, and side effects are 
significant. 

Electrical 

Areas such as 6enerators, alternators. and starters 
need more attention. Antennas can be greatly improved. 

Fly-by-Wire and Fly-by-Light 

Despite anticipated certification difficulties, outlook 
is optimistic for fly-by-wire. 

Fly-by-light has little ~pplication. 

SSSA and Active controls 

Gust alleviation systems offer substantial benefits. 
Ride Quality is second to gust alleviation. Active 
flutter suppression might be attractive. 
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(Companie. B & C) 

SSSA would be 100d •• a win8 leveler, yaw d_per, or 
total autopilot control. Certification probl ... might 
be encounterec1. 

Avionics 

Digital data links between the aircraft and around are 
required for reducing cockpit noise, voice communication, 
and pilot workload. 

A real need exists for advanced integrated displays in 
the cockpit. 

Digital data links with the ground could also provide 
weather information and collision avoidance. 

CRT displays cou10 make IFR flight as easy as VFR. 

Key to advanced avionics is effective integration of 
advanced microprocessors. Required if advanced systems 
like engine controls are to be incorporated. 

More efficient heating and cooling for the cabin is desirable. 
Better air cycle systems should be developed with better 
efficiencies. The same is needed for electric, hydraulic, 
and pneumatic systems. 

VI. Canards 

This company is neutral toward canard configurations. Some 
points expressed include: 

Might be an attractive solution to stall/spin problems. 

Night impair visibility from the cockpit. 

Notes: (1) 8e energy conscious. 

(2) Research institutions should solve the technical 
problems. Industry will solve the production and 
certification problems if the technology has enough 
merit. 

A.l.3 Company £ 

1. Cost 

New Technologies 

New technologies are attractive only if low cost. 
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(Coapany C) 

An incr .. se in purchase price 18 allowable only when 
a decrease i~ life cycle coats are reali.ed. Price 
ia not too important in the hiSh performance cateaory 
of airp lane a • 

II. Pliaht D8!OpItrator 

lleduced Nobe 

U.e muf.flers. 

Explore Boeina method for acoustic paneling in the 
inlets of turbine engines. 

Drag Reduction 

Increase aspect ratio. Negligible benefit expected 
for small aircraft due to increase in weight. 

Perform a general clean-up of the exterior surfaces. 

Configuration 

Explore canards and tandem wings and determine if the 
benefits claimed really exist. 

Winglets 

Utilize for lateral-directional control. 

Explore the effects of variable geometry winglets. 

High Lift Devices 

Explore different high lift devices and determine what 
is most effective for reducing approach and landing 
speeds. 

Composites 

No composites are used by this company except for 
fiberglass radomes and fairings. 

Graphite corrodes metal rivets. 

Crashworthiness aspects need to b~ explored. 

Major problem is a lack of data on fatigue, manufactur
ing methods, inspectability, and certification require
ments. 

288 

JJS 

" 

• 

• 



(Coapany C) 

Composit.s are ~ difficult endeavor for manufacturera 
to pursue due to costs and certification difficulties. 
Bere. a lI&D.ufacturer _st laiD. apertence with 
secondary structure. before rursuina .ore ambitious 
projects. 

Bonding 

The military has had problem. with field servlcina and 
maintenance of bonded structures. 

No bonding is used by this company. 

IV. Systems 

Fly-by-wire and Fiber Optics 

Fiber optics offer potential weight savings. 

Interference problems hamper electronic systems. EMI 
shielding doubles conventional wire weight. Fiber 
optics, however, are free of radio interference. 

Active Controls 

Hampered by expensive redundancies. 

May payoff in ride control for dt'craft with low wing 
loadings. Load control can be effective in reducing 
weight of the vertical fin and high aspect ratio wings. 

This company is uncertain about the application of 
active controls to general aviation aircraft. 

Batteries 

New lead-acid batteries are better in cost and weight 
than NICAD~,. 

V. Computational Methods and Research 

Airfoils 

Work with NASA has been help(ul in comparing codes. 

The OSU facility has not been used. 

NASTRAN 

Used with good correlation noted. 
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(CoIIpmi .. C , D) 
'lutter 

fr .. pla, _ fricti. 11\ fU,ht cODtroi. _ thair 
effeet OIl flutter 1lMCl to be .tuell..... What are 
aUowable tolerances here? 

Aileron ''bun" needs to be studiecl. 

VI. Propulsion 

TaO 

One problem known to exist with a pMrtlcular turbofan 
i. a dearadation in maintenance where typical values 
experienced reflect 

300 hours between inspection and overhaul of the 
hot section. 

900 hours between inspection and overhaul of the 
learbox. 

By campaTison. a turboj~t presently in use has a 4000 
hour TBO. 

~: Engineering support costs and certification costa amount to 
10 to 100 times the cost of the technology itself. 

A.I.4 Company ~ 

1. Propulsion 

Liquid C<')()1ing 

No major advantages. While it would improve !BO, only 
a 1% improvement in cooling drag reduction could be 
attained. 

Rotary Combustion Engine 

Development of this enline should be pursued. 

At pr.esent. the engine 8uffeTs from high SFC, high weight, 
and is not as smooth as expected. The following poten
tials could be realized if the rotary were pur.u~: 

Weight savings. 
Fuel consumption comparable to current recips. 
Good turbo~harging candidate. 
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(CoIIpaay D) 
Dle_el 

Exc_Ilent fuel efficiency. 

A 2-cycle supercharged diesel 1_ knOWD to be receiving 
attention. 

GAT! Turbine !naine 

Definitely worth pursuina. 

The 373 kw (500 hp) size should be a.phaafaed. A 
flat rating would make it coapatible with present 
high performance sincle enaine applications. 

GATE resulted in little new technology ident1f1.~s,.ton. 

Do not pursue very small tUl'hines on the order of 75 ltv (100 hp). 

Cost j exp.cted to be high. Oft the order of 5:1 v. 
rccipJ"Jcating engines. 

II. ~on(iguration~ 

Configuration research is a waste of time. It is mature a. 
a result of 75 years of evolution. 

HI. Airfoils 

GA(W) 

Mixed views were expressed for this class of airfoils. 
The section is sensitive to contours, leakaae. and 
interference, and is heavily aft-l~aded. 

osu Airf~il Service 

Never really supported the service. 

Airfoils developed by Hicks at NASA Ames are good. 

IV. Structures 

Ccmpotli tes 

~ery little composites are used by this ca.pany. 
Further research appears dictated before this techno
logy gains acceptance in general aviat.ion. 
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eo.parale. D • E) 
Bond ina 

Bondina 11 uhd on strinaers, doors, cowle, snd other 
secondsry atructures. It is IU)t uHCl on priaary 
structures. 

Advantages: smooth contours, better appearance, stiffer, 
and saves on labor. 

Disadvantages: Costly to tool up for, and bas field 
repair probl .... 

Few problems with delamination have been experienc~d. 

v. Controls 

Fly-by-wire and Fiber Optics 

Not seen as a possibility in general aviation in the 
foreseeable future. 

Weight savings ~QUld not offset the cost penalty for 
general aviation. 

Not enthusiastic towards active control systeas, SSSA, 
etc., at all. 

However. a gust alleviation system to improve ride 
quality might be attractive to general aviation. 

VI. Avionics ~ Electronir-s 

Integrated Avionit:::: .snd Microprocessors 

Expect cost digadvantages due to redundancy requirements. 

Advanced avionics might be attractive to the market. 
On the other hand. today's avionics may already be too 
advanced. 

A.l.S fompany! 

1. Structures 

Metal Bonding 

Prime fast~ning method to n .. place riveting. 

Major advantages: reduction in man-hours and reduces 
surface roughness. 
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(Caapany &) 

Major probl_: lack of uaderet.cU.", of life cycle. 
t.pleaentation by e -.aufacturer require. a lara
capital outlay. EnvironaeDtal effect., •• pecially 
huJlidity, are of .. jor concern 

IDepectability, repairability, aDd .. 1DtaiDabillty are 
al.o questiODable. 

No bondilll ie uHd by \-bie coapaay. 

Better adhealv~. wblc~ are le.. pre.aure aaneitlve are 
needed, vith attendant reaearch of propertlee. 

Bonding distributes loads more effectively and bas 
better fatigue properties. 

Composites 

Use will possibly replace metal bonding, but 1a expected 
to occur later. 

General aviation will see primary structures composed 
of composite materials in about 20 years. 

Concern was expressed about carbon in a crasb environ-
1IIent. 

This compAny had a fiberglass door on one of their air
craft but had to replace it with a metal one because 
the original waR nut stiff enough. 

Company B utilized a honeycomb 8tru~~ure in the belly 
of one of their aircraft for crash~~~tnine8. energy 
absorption. 

tIe Pro2ulsion 

GATE 

Company F is following the developments of tbis program. 

Appears that fuel problem~ facing the countey will 
have major impact on this pro~ram. 

Expects to see smaller turbines in general aviation by 
the late 1980's. 

Diesel Engi,\es 

Have much proruise because of excellent specific fuel 
consumption characteristics. 
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(c.pany I) 

Die.el. Iliaht M .on attractive ... beDefic1al to ,aMra! 
aviaUOIl thaD turb:lae -ain.a. 

Liquid CooHIlI 

Abaolute aace.ity for h1aher pcnMr.dea.ity _in ... 
400 hp is the U..it for air cooled eoainee. Uneven 
cool1!18 is a •• rioWi probl_ with air cooled &yet .. 
during rapid descent •• 

Should significantly 1Dcrease TBO by reducing cyclic 
thermal load. and allowing the ..aufacture of a 
"tighter" engine. 

Should significantly reduce cooling drag and at.plify 
engine/airframe integration. 

Development of this technology will probably require 
government funding. 

Fuel Controls 

Considered to be a very near term objective. 

Examined an auto~ixture control for use but found the 
controls unreliable and inconsistent as shown below. 

~ ______ actual 

Fuel 
Flow 

Alt I tude 

Rotary Combustion Engine 

cases 

ldeai 
...----- case 

Unsure of real benefits in this area. 

Stratified charge, however, has real potential. 
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(Coapany I) 

Propellera 

Has experieftced probl... with vibration and blade 
flutter on ~ propeller. which required a chana-. 

Turbocharlina 

Can anticipate installation problema on smaller enainea. 
Not much of a s.lection available. They are Dot 
optimized. Current systems are structurally sound, aad 
l~ve displayed excellent reliability. 

Turboprops 

Does not see demand in general aviation airplanes under 
6 place, pressurized, single engine versiana. 

Studies of weight savings of turboprops is misleading 
because of the requirement for additional equipment such 
as radios. pressurization, etc. for the aircraft to 
operate in the ideal and efficient environment for the 
turboprop. 

Engines currently used by this company are 4 and 6 cylinder 
models, with TBO's ranging up to 2000 hours. Turboebarging 
reduces TBO down to tbe 1000 to 1200 hour range. 

Wing Loadings 

Expects higher w/s to appear in general aviation. A 
major problem with high w/s is the higb power required 
to cope with the associated higi-. CL' s. 

Airfoils 

Aft loaded airfoils cause interference problems. 

Llkes the OSU center and is maintaining contact. 

Not highly interested In airfoil refinements. 

Computational Aerodynamics 

Methods should be used to design aft fuselage sections 
and examine cooling drag. 
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(eo.paay I) 

Stall/Spin 

If a1rcraft are Md_ atall-proof. they wUl DOt apiD. 
Quaation of how to atall-proof an a1.rpl .. e 18 aipUl
eat. IncorporatiDa a atick puahar. or Ua1tiaa 
elevator power are effecti98 but ltait part of the 
perform&aca envelope. 

Canarda 

Believes the follo"inS advantaau exiBt: reduced wetted 
area, possible SUat alleviation, lower fuaalaae weiaht. 

Company I baa rea11aed gaina from reduction of coolina draa 
aDd retatina eDaiDea to 75% power. 

IV. Flight Controls ~ Avionics 

Very interested in microproce~80r integration into aircraft 
systems. 

Flight Controls 

Impressed with the SSSA approach. 

Gust alleviation is a good candidate for advanc~d 
active control. 

Fly-by-wire and light offer substantial weight savings. 
Multiplexing with fiber optics would reduce wire bundle 
weight significantly. 

Active controls will be needed in the future. 

Avionics and Displays 

In 1971-72, this company performed a study of a HUD with 
a side stick force controller. The study wss constrained 
by cost. NASA could further investigate these areas. 

The Omega navigation Gystem is good but does not provide 
terminal guidance. It needs sovernment Bupport for a 
fully integrated system to be developed • 

Single-pilot IFR workload is much too high. What is 
needed is a visual, automated communication mode rather 
thau present verbal methods. This would improve the 
workload and accuracy of information transfer. 
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(Companiea I , P) 
v. Crashworthiness 

Definitely need. IIOre work. Seats are not d •• ianed for 
energy absorption. 

As plane. are good cra.hworthine.8 example.. Roll cage, 
good seat belts, and shoulder harn •• ses. 

More realistic design specification. are needed. 

VI. Noise 

More attention should be and will be paid to noise in the 
future design of aircraft. Low level pressurization offers 
some potential for interior noise reduction. 

A.I.6 Company I 

General philosophies for building aircraft: 

"Keep it siOllple. Eliminate systems. Make it easy 
to fly." 

I. Structures 

Composites should be pursued. 

II. Configuration and Aerodynamic~ 

Can.nd 

Allows lower gross we1.ght and less wetted area. The 
wetted area of a canard configuration can be 2/3 that 
of a comparable conventional aircraft. 

For a push-pull canard configuration, the fuselage has 
two inflection points in bending moment. This allows 
for ~ much lighter fuselage. 

Wing Sweep with Winglets 

Allows winglets to be used for directional stability. 

Get Ct without dihedral. 
S 

Sells air?lanes (looks good). 

Wing Strakes 

Provides volume for fuel and interior cabin space for 
elbows. 
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(~y r) 
Aerodyna1ea of Canard Confiaurationa 

The win. tip 18 in upwaah and reau1ta in locaU .... low 
to negative induced draa. With the tipa loaded up. 
the winaleU work vell.· 

Care mat be exercised in .electins the proper airfoil 
.ection for a hi&h1y loaded canard. W/s of the caaard 
can be twice that of the main winS. and the canard and 
winS can carry a SO/50 load diatribution. 

} .onord 

......... .._--- rna I n wi n9 - sweep 

a 

causes gentle stall 

little 11ft lost 
due to canard 

When the trim requirements for a canard with the lift 
characteristics of the previous figure are examined, it 
can be seen that the main wing cannot be stalled. 
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L as .sa adt. Z£i .su.a. ... ( =U . 

(Caa,aniea P , G) 
Efficiency ractor 

Effective e > 1 when total area ia counted in A • b2/S. 

s • S d + S 4~ft canar w ..... 

III. Engine CoolinS 

Updraft Cooling 

Produces much I1lOre uniform cooling of the cylindera, 
which could increase TBO significantly. Posaible 
problem with 011 spray from the enaine dearadina cabin 
forward view. 

The cooling air is only slightly affected when passina 
over the exhaust manifold first. 

I-++- ba ff 1 e 

air { 
I"~ake -----.. high pressure 

plenum 

cylinder 

IV. Avionics, Systems, and pisplays 

Very interested in HUDts, improved displays, warning annunci
ators. Much improvement is needed here. 

Would like to see an angle-of-attack indicator. 

Avionics need improvement in price and reliability. 

Fuel indicators are terrible. Should be non-linear and very 
&ccurate for the last )0 to 60 minutes of available fuel. 

A.I. 7 Company Q 

1. Propulsion 

GATE Studies 

Particularly interested in a 280 kw (275 hp) unit and 
another on the order of 746 kw (lOOO hp). 
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(CoIIlpany C) 

Endor ••• GATE with re.ervations. ..c~. that the 
rans_ of sizes of GATE be well d.fined. 

Aircraft !asine. 

Believ •• that the low bypass turbofan stUl offer. mor. 
efficient thrust at high operating altitude •• 

A variable bypass engine is needed with a capability for 
bypass ratio. of .2 to .3 at 41,000 ft. 

Boise i. a big probl.. with low bypa.s engines but 
variable bypaas would help. 

If the GATE studies are accurate, a suece •• ful single 
engine turboprop will materialize. 

II. Aerodynamics and ~lity and Control 

Wing Development 

A design by this company incorporated a supercritleal 
high aspect ratio wing (8). The new wing design proved 
to be too expensive for production so an existing wing 
was modified. It was not clear if production of an 
entirely new wing was cost prohibitive, or whether 
production problems associated with the supercritical 
wing were prohibitive. 

The wing modification for the design consists of the 
following: the aft 601 of the existing wing was 
retained. The front 40% was replaced with a computer 
generated section. Each wing tip was extended 3 feet, 
and winglets were added. These modifications resulted 
in a 17% increase in L/D at cruise. 

When used, wing1ets accounted for a 3% to 4% reduction 
in drag, and modifications of an existing wing resulted 
in a 230 1b weight penalty. 

Light Aircraft 

A modified 64-A215 had leading edge stall problems. 
Hence, a highly cambered (drooped) l~qding edge was 
incorporated which corrected the pr;~Llem by maintaining 
flow attachment at the leading edge. 

The Whitcomb airfoils could have problems with spins 
because of high leading edge suction. Th~' high suction 
on the drooped airfoil on one plane aggravates spin 
characteristi,~s . 
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(Company G) 

Expressed interest in an airfoil section developed at 
the University of Illinoi8. It i. reported to produce 
leading edge stall without the nora.lly a.sociated 
effects, and could have pos.ibilities with apin-proofina 
or control during post-atall maneuvers. 

More work needs to be done with airfoil design for gen
eral aviation. Forward camber i. more attractive than 
aft camber. 

T-tai1s are good for resolving spin probl .... 

High Speed Aircraft Control 

Spoilers are used for primary lateral control. 

Although direct lift control is not used, it har 
excellent technical merit. 

ttt. Structures 

Bonding 

No bonding iD used at highly loaded joints. 

Feels that the ideal extent of bonding should be about 
1/2 of what is currently in use on a particular light 
airplane. 

Delamination at the trailing edges of wings, etc •• and 
its causes (e.g. moisture) must be examined. 

Since large portions of an aircraft are bonded at once, 
a parts shortage can halt the bonding process. 

Multiple stage bonding can weaken old joints. 

Quality control is a major problem, and strict environ
mental conditions must be maintained at all times. 

Bonding has allowed the construction of .1 very simple 
airframe which also costs less. 

Composites 

Certification is a major problem associated with compos
ites. NASA needs to work on certification criteria that 
are suited to composites, particularly where primary 
structures are involved. 
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eo.poait.a h.v. primary .dvant.... of 

(1) Waiaht reduction 
(2) Coat reductiOD 

32 ~ ;;ti!'_ 

(~niea C , Bl 

(3) Ability to .ccOIIIIOdate c_lu· 'ahape. 

Composites in propellera will yield better uniforaity. 

Honeycomb 

Used extensively in the cabin are. of the fuselage 
on one light aircr.ft. 

Only used in floor and rada.e of a particular high 
speed aircraft. 

IV. Systems 

Flight Controls 

Digital flight controls look good but are not being 
pursued at the moment. 

Avionics 

Panel mounted systems are more attractive than remote 
ones in terms of lighter weight, less complexity and 
lower cost. 

V. Research By NASA 

Recommends methods be developed for determining the effects 
of humidity on flight test results. No methods currently 
exist, nor is it accounted for in certification. 

A.l.S Company! 

I. Aerodynamics and Configuration 

T-Ta11s 

T tails were designed for market appeal. and any 
performance gained is an "extra". 

T tails can provide for less trim change while iJ'!lpro,'
iug power-on stability. 

GA(W)-l 

Designs can suffer from wing-body interference. However. 
they produce high CL's and gentle stall characteristics. 
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(Coapani.. H & 1) 
Canard. 

Hot convinced about the benefit. of a caaard. 

Cooling Draa 

Twin eDline aircraft with a third engine mounted in the 
nose of the aircraft can be (have ben) used for 
coolina dral determination. 

II. Bondina 

Some bondinl is utilized in cowls. Further bondina is 
being incorporated alowly. 

III. NASA Involvement With General Aviation 

NASA should be very selective in their entrance into general 
aviation and should confine their work to basic research 
as opposed to providina iudustrial luidance. 

A.I.9 Compan~! 

I. Propulsion 

Air Cooled Engines 

There are no near term alternatives to air-~ooled 
engines. 

Variable timing and electronic ignition will be utilized 
when required and when their flexibility and reliability 
are proven. 

The auto~otive industry is not the leader of technology, 
but the leader of marketing. 

An automatic system is needed to properly maintain 
correct mixture cettings for best efficiency in cruise. 

Operating an engine lean of peak results in cooler 
operation. (see sketch on next page) 

Cooling design methods exist, but cooling requirements 
for general aviation engines are not specified in 
enough detail. Major problems with cooling drag lie 
in (1) inlets which are too large, (2) exhaust vents 
which are not well ~nalyzed. and (3) lack of an effi
cient diffuser (plen~). 
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Engine Opcr~ting Chnrnctcrinticn 

(Coopaa, 1) 

ISFe 

IHP 

EGT 
CHT 

Definition of cooling drag: the momentum loss of air 
required to cool the engine. 

Liquid Cooling 

Could be done without a weight penalty over air cooled 
systems. 

It is more efficient from a cooling drag standpoint. 

The high reliability required results in increased 
cost. 

Turbines 

Use only for justified purp068s. 

The turbocharged reciprocating engine offers some 
advantages over the turboprop. As an example, see the 
figure at the top of the next page. 

A larger turboprop must be used to retain hot day 
performance and to offset a relatively high lapse rate. 

304 

I 
1 
1 

• 



I! 

" 

. . ' 
- - ~ -- ~ - - - - - - ' - - - _. - - - __ • - .& __ 0 _ _ _ :::- _ __ =-

BHP 

\ 
\ 
\ 
\ 
\ 

\ 
turbopro~ 
hot d.y \ 

\ 
\ 

turboprop 

w.-- turboch.rged 
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Ah I tude 
Rcclprocntin~ En~inc va Turhoprop Pcrfo~r.cc. 

11. Aerodynamics 

High Wing Loadings 

Face the following problems 

(1) Public reluctance to accept the handling 
qualities associated with higher cruiRe 
speeds. 

(2) Landing anc takeoff distances are increased. 
(3) High wing loading generally requires high 

power loading, 

High w/s requires effective flap systems. and possibly 
even full span flaps with spoil~r roll control. 

The general aviation data base for full span Fowlers 
with spoiler roll control is small. 

Some effective wing area is regained for takeoff with 
moderately deflected Fowlers. but is accompanied by a 
(small) drag increase. 

Natural Laminar Flow 

Studies need to be done on effects of contour shape 
tolerances and surface finishing. 

Eppler's work on airfoils is encouraged and supported. 
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(CcapaJ I) 
III. Wety aDd Cruhworth!aass - ~ -....... .---... 

Delei ... and Mti-leiq 

llare von should be cIOM ill the ... reh for .. icapboblc 
audace catiaa. 

Weather 

Stud i.. of severe waather .tructural re.pon.. aDd 
d.... l1aiti... Mtbocls shoulcl be purauecl. 

More r •••• rch reaarcliaa liahtniaa strikes is neeclecl. 

Cr •• bwrtMne •• 

Definitely need. lIOre work. NASA ahould continue ita 
pre.ent re8earcb in tbi,. ,rea. 

Specific area a whicb merit 8t~dy: fuel cont.ia.ent, 
eftgine compArtment fire cont.inment, effect of 
composite8, beat tolerant metals. 

IV. Noise 

Pos8ible methods for reduction include 

(1) Vibration damping. 
(2) Quiet, yet power-effective mufflers. 
(3) Quieter propellers. 
(4) Sound damping in th~ cabin. 
(5) Variable transmission and/or aearing syst ... 

for tbe engine/propeller interface. Could be 
attractive for certain applications by hold
ing propeller rpm constant while allowing 
eng ioe rpm to vary. 

V. Operations 

ATC 

Would like to see NASA involved more in the conceptual 
stages of ATe planning. 

Nev basic concepts which allow for the opt~ized use 
of inertial nav and RHAV are needed. These would belp 
fuel efficiency quite a bit. 

Flight Manuals 

More standardization of flight manuala for aircraft 
is needed. GAHA is working on tbis. 
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VI. 'UI"1!!!1 

'lllht Te.t Pilot. 

- - -----~- " 
_->" =_J __ ~*~_~_.~~. ~ ~ ___ ~ _~ ._. __ "'"-'- ~_~ __ 

(ec.pany I) 

The technical capabilities of te.t pilot. need. to be 
t.proved through better tralniaa. 

MaMa_nt need. to be ItOre aware of the fuac:tiOD •• 
qualification.. experti... aDd capabilitie. of te.t 
piloU. 

In.tt\IMQtatiOll 

Good thrust and torqU4! metera are needed to deteraine 
performance accurately. 

More development i. needed on the '~ortex cene~atiDI 
airspeed sensor. Airspeed measurement without 
disturbinc the flow field requires development. 

A hUDIidity detection device 1& needed to il!lprove t~le 
accuracy of encine operatina parameters. 

VII. General Comments 

FAA reculatory procedures are overly restrictive. Also. the 
regions are auton01llous. and cert:ffication requirements based 
on the interpretation of a regulation by one region may differ 
substantially fr01ll those of another region. 

NASA may want to hold a seminar to educate managem( .. t on the 
availability of high technologies. 

NASA may also want to educate the younger engineering genera
tion on older (pre-l954) documents. 

Management and marketing decisions can conflict with techno
logy and result in bad airplanes. 

Most general aviation airplanes aren't designed. Rather. they 
are just built. 

Product liability is the worst problem confronting the 
industry. 

Regarding airfoils. NASA should publish data for realistic 
flight condit ions in addition to those for " .. ooth airfoUs". 
etc. 

Rewrite the Pratt and Whitney reciprocatin~ engine manuals 
(circa 1940-1945) for application to general aviation. They 
are good. 

)07 



..J 

(Coapul.. I, J. • ~) 
Anyth1na that _es aero de.lan IIOr8 of a lCi81lC8 aad 
le .. of an art will be u iaportant area of r .... rch. 

A. 1. 10 Company l 

1. ~8rat~unal BnvirODMDt 

The cr i tical area for advanceaent is not the vehicle t but 
the operatiooal envirol1lleut. i. e.. the pilot'. interface 
rith the systems aust be improved. 

Pilots ~~ed clearances, weather. and traffic advisories, 
which s ~ cur~ently obtained verbally. These should 
ideally :~ c~1cated visually. 

Solutiont:t 

Develop data links from the ground to the aircraft. 

If these problems were solved using the data link and 
CRT display, it would eliminate unnecessary voice 
communications, radar sets, and possible collision 
avoidance equipment. The system would reduce work load 
and be more efficient. 

II. Composites 

Cost and certification are the most serious problems. 

Ill. Propulsion 

Available turbochargers are not optimized for alrc~aft use. 
Ceneral aviation Is constrained to off-the-shelf equipment. 

IV. Liability 

Plagued by nuisance suits. Eve~ if the company is innocent, 
it still costs money. This is a big factor for a small 
company. 

10% of the vehicle cost 1s liability insurance. 

A.I.II Company! 

Company K developed a single-engine, very high performance 
aircraft emp'.oying a composite structure. 

I. Structures 

Compcsite construction of the aircraft is not advanced tech
nology. The material used (fiberglass) h~8 been available 
since the 1950's. 
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(Companies K & L) 
Composite structure allows a aianificant reduction in parts 
count. This should cut CO&~ •• 

The fuselage is constructed in halvea. The left half is 
outfitted with all bulkheads, engine mount, and internal 
hardware. After this is done. the riaht half i. bonded to 
it. This method should reduce labor costs significantly 
since construction time is reduced. It allows the worker to 
outfit the aircraft easily without baving to crawl throuah the 
fuselage shell as is required with conventional aircraft 
manufacturing processes. 

The aircraft is not particularly liahter tban existing 
aircraft. 

The major construction material is a fiberglass honeycomb 
sandwich. 

II. Aerodynamics 

No advanced technology. All airfoil section& are NACA 
se~(ions. 

Wing loading is relatively low and on the order of 20 to 
30 psL 

This airplane is aerodynamically clean. Lack of joint lines 
and protrusions. together with a "slick" surface finish which 
the composite construction allows. creates a very low-drag 
airframe. 

With 298 (400 hp) and 6 passengers, the aircraft is capable 
of 261 kt cruise at 6096 m (20,000 ft). 

A.2 PROPULSION MANUFACTURERS 

A.2.1 Compa~ ~ 

I. Advanced Airfoil Sections 

Currently working on an airfoil section with Ohio State to 
develop 8 thinner section that produces greater maximum lift 
to reduce weight. 

Want to maintain current crui~e efficiency (n • .9) while p 
improving low-speed perfo~mance. The goal is an efficiency 
of .7 to .75 in climb. 

Doesn't believe that cruise efficiency can be lmproved. Thus 
they are concentrating on the low-speed regime. 
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II. ~ _Planfora/ConfiluraUon 
(Company L) 

Blade number 18 inc rea dna in twin.. Sinale .. ina aircraft 
will remain with 2 or 3 bladed propeller. becauae of -laht 
and enaine characteristic •• 

The Q-tip reduces noise while aenerally aaintainina rpa. 
Perforaance i. not tmproved. 

Proplets are n~t vinaleta. lather, they are Q-tipa bent in 
the opposite direction. 

Ill. Materia.!! 

Composite blades are made with Kevlar. 

The composite blade was desianed to twice the strength of a 
comparable aluminum blade. This conservatism in strength 
was a safeguard for certification. After certification, 
plans for reducing strength and weight to more realistic 
values may be undertaken. 

The composite blade costs 2 1/2 times as much as an aluminum 
blade but weighs half as much. 

Costs of the composite blade appear more favorable each day. 
The cost of Kevlar is declining and the price of aluminum 
is increasing. In adrlition, when strength is reduced to 
realistic levels. the.·emoval of Kevlar will reduce costs 
even more. 

For the composit~ propeller configuration. the propeller 
assembly weight is divided equally b~l\~en hub and blade 
weights. 

Five different blade designs are undergoing testing for 
acoustics. These propellers are all 1/2 scale, and are 
currently being wind tunnel tested. A full scale test is 
expected to follow. 

V. Operations 

For reciprocating engine propellers, one must forego cruise 
airfoils to allow for Vibration. Example: Use Clark Y 
instead of n 16 series section. 

For turbine aircraft, vibration is not as great a problem, 
and the most efficient airfoil can be used. 
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(~anies L , K) 
Blade erosion has proven to be no more of a problem for the 
composite blades than for aluminua blades. 

Five bladed propellers are performina well. Wh8ll more than 
three blades are used, however, vibration considerations 
impact more heavily on the design. 

VI. NASA Research 

Need studies on propeller characteristics when used for 
reverse thrust. 

A.2.2 Company ~ 

I. GAP Studies 

Purpose 

Identify technologies that will reduce fuel costs. 
Identify technologies that i'llprove noise characteristics. 

Technology Elements include weight, noise, cost, life, 
airframe integration, and emphasize "clean sheet" airplane 
design. 

11. Technologies Applicable to Propellers 

Advanced Airfoils 

Looking at ARAD ch~racteristics over their entire 
performance range. 

Utilizing computer-aided design of airfoils. 

Comparing LIn, CL, etc. of Clark Y, GA(w) , current 

in-house designs, and ARAD. 

Current cruise efficiency stands at n = 85% to 87%. Advanced p 
airfoils offer 1% to 2% efficiency increase, and also help 
relieve compressibility losses. 

Improved Propeller-Nacelle Integration 

Looking primarily at a performance improvement. 

Engine shape is a significant parameter. 

Using potential flow analysis to determine what the 
nacelle effectR are on the propeller fJow field . 
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(Company M) 

Possibly realize a 3% to 4% incr .... in .ffici.ncy. 

Desiln Opt~ization 

Blade aweep. Also, reduce tic throuah the u.e of 
composi tes. 

Composite Materials 

Screening materials. Looking for optimized materials 
and the manufacturing techniques required in • pro
duction environment. 

Composites offer the greateBt value in fatigue life and 
low weight but have large penalties in cost, both in 
acquisition and in processing. 

Effects Qf tip speed: Diameter and rpm tradeoffs. 

Effect of number of blades 

Effect of blade loading on noise 

Current blade loadings are designed for performance and 
are not optimized for noise. 

III. Areas Where Greatest Gains Can Be Made in Propeller 
Technology 

Advanced Airfoils 

Propeller/Nacelle Integration 

Compressibility Studies 

Current losses are on the order of 1% to 5%. 

o Sweep of 45 at the tips can gain half of the losses 
back. 

A combination of tip sweep and advanced airfoils should 
gain most of the losses back. 

Believes 90% installed efficiency can be realized 
compared to the current levels of 85% to 87%. 

Analysis of propellers done with a 3-D strip computer 
code. based on a 2-D method by North Carolina State 
and Lockheed. 
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(Campanies M & N) 
IV. NASA !!.search and Fund1ns 

COIlposltes 

Investigate materials and processes • 

Establish time criteria for fattaue testing. etc. 

Develop and substantiate data. 

A.2.3 Company! 

1. Propulsion 

Q-Fan 

Work was halted because of lack of industry interest. 

Prop-fan 

Designed for higher Mach application: .55 and above. 

Features 

Area-ruled spinner. 
Swept blade shape. 
Integrated nacelle shape. 
High power loading. 

Objectives 

5% to 10% savings in DOC. 
20% reduction in fuel consumption at M • .8. 

Sweeping blades appropriately can cancel noise at the 
source. Works well for the prop-fan. but the effects 
on conventional propellers is unknown. 

The prop-fan doesn't really represent difficult 
structural problems. Metal spar, foam leading edge 
and trailing edge, composite shell. 

It has better performance on takeoff than a turbofan. 

The integral spar with shell is designed primarily for 
safety. Damage to a blade will not result in failure 
of the complete propeller. 
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(Coaapany N) 
II. Environmental Control Systems 

Goals 

Reduce power requirements. 
Reduce Life Cycle Costs (LCC) for entire aircraft .ystem. 

A variable air-cycle system was produced for a fiabter 
aircraft, with a broad ranae of applicability in mind. 

The system saved 817 Ita on a 28150 kg aircraft, and a180 
saved .37 cubic meter of internal space, or 40% of the envi
ronmental control system compartment. 

Reliability of the variable cycle system is just about as 
good as a ~onventional system even th~ugh it has more 
moving parts. 

Recirculation can save 30% of a 373 kw power requirement. 

Air cycle is lighter than vapor cycle, but requires more 
power. 

III. Air Bearings 

Offer great promise for high speed rotary machirt.:ry. 

Have more load capability at high speeds, but tend to fail 
at low speeds (just the opposite of ball bearings). 

Have the potential for greater reliability. No maintenance. 

Systems are heavy and cost more than ball bearings. 

IV. Micro-Electronics 

Engine Control Systems 

Total electronic controls for engines utilizing no 
mechanical parts or backup systems for operat1v:l. 

Engine ('ontrol systems will have to control more 
functions and more accurately. 

For small engines, cost is the important factor. This 
company produces the engine controls for a current small 
turbofan at approximately $3 to $4 thousand per unit. 

Controls synchronize. synchrophase. and control fuel 
flow of the engines. Results in a 7% to 15% improvement 
in sfc. 
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(Compani.. N • 0) 

Fly-by-wire and Fiber Optic Systems 

For flight controls and engine controls. 

Distributed microprocessors seam more likely than a 
single computer. 

When developing fly-by-l1&ht and d1&itsl control •• the 
following points must first be considered. 

(1) Huw much redundancy is required for the 
mission, and what methods for redundancy will 
work beBt for the situation. 

(2) Policing the system is difficult, because 
failure determination requires much complexity. 

Advanced Data Diagnostic Systems 

Airborne integrated data system. Monitors health of 
aircrsft systems and engines. 

Will also be applied to flight profile monitoring. 

General aviation could use at least an engine monitoring 
system. 

At first. the system will probably be ground based. As 
more electronic systems (microprocessors) appear on 
aircraft, onboard monitoring systems will emerge. 

A.2.4 Company Q 

1. General Aviation ~ngine Market 

The total piston engine market in general aviation is 
$250 to $300 million per year. 

$25 to $30 million would be required to start from scratch 
with a new engine and take it to production. 

Technology must be cost effective for the manufacturer. 

Liability 

Is a problem within the industry. A company may 
pay over $3 million per year for liability insurance. 

General aviation engines today are very sophisticated and 
not World War II products. 
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II. !!! Teclmololie8 

Improved ruel Injection 

(ec-paay 0) 

The fuel injection .ystem currently uaed i8 aimple, 
low coat, and reliable, but doe. not compensate for 
atmospheric density changea. 

Fuel injection could be tmproved to provide fa~ d~n81ty 
compensation so that fuel consumption could be reduced 
3% to 4% during takeoffs, landings, and cltmbs. 

Variable Timing 

Offers the potential of a 3 1/2% increase in fuel 
economy. 

Metallurgy 

Methods need to be developed for lower cost production 
of titanium. It is an abundant element. 

If engines were designed with titanium, a 30% weight 
reduction over current engines could be redlized. 

If the goal of 1.6 kw/kg (1 hp/1b) is to be realized, 
titanium must be utilized. 

III. Ideas On Advanced General Aviation Engines 

Diesel Engine: No such thing as an "uncoo1ed engine". 

Rotary Combustion Engine: Will never be feasible because 
of the following reasons: 

(1) low volume sales. 

(2) complex tool-up and machining. 

GATE Engines: 

The following :l.s a comparison between a reciprocating 
ngine (turbocharged) and a GATE turboprop. 
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(Compania. 0 • P) 

Enline Power, kw (HP) Altitude 

Company 0 242,·231 (325-310 ) Sea Level 

Company ° 186 (250) 7620 m (25,000 ft) 

GATE Turboprop 269 (360) 7620 m (25,000 ft) 

GATE Turboprop 500 (670) Sea level 

Turbocharged Reciprocating Engine va GATE Turboprop 

By this comparison, GATE doesn't look that good. 

Derating (flat rating) will already affect the turbo
prop. Utilizing it at an off design point degrades 
the fuel specifics. 

The hot day performance of a turboprop is not as 
good as a turbocharged reciprocating engine. 

The GATE engine costs are unrealistic. The projected 
market is totally unrealistic. For example, a currently 
produced comparable turboprop engine costs roughly 
$50,000, compared to an existing reciprocating engine 
which is $25,000. Both have similar sea level horse
power. The costs of the turboprop have been amortized 
for years, and it still costs a lot. How will a 
small turbine, utilizing advanced technology, cost 
anywhere near a current reciprocating engine? 

The "real world" factors of marketing and aesthetics 
need to be accounted for in design. 

A.2.S Company f. 

I. Harket ing 

Technology of no use unless 

It satisfies a need. 

Developer can aff~r.d it. 

It's profitable to the user 

It's introduced at th~ right time. 
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I 
(Ca.pany P) 

TUrboprop Mature ~k.t Prioritie. 

Price - Very aenaitive at equal hp. 

BP - Wanta more borsepower at. .... $!hp. 

Reliability and product a~pport. 

src (but not 80 iaport4nt, aince otber factora 
c~tribute to DOC.) 

TBO and otber .. intenance costs. 

Operating characteristics. 

Weight. 

Turboprop New Market Priorities 

SFC - Emotional as well as economical issue. 

Price. 

Reliability and product support. 

TBO and other maintenance costs. 

Operating characteristics. 

Weight. 

Engine Targets 1490 kw (2000 hp) - .262 kg/kw-hr sfc 
522 kw (700 hp) .27 kg/kw-hr afc 
224 kw (300 ho) -- .32 kg/kw-hr sfc 

Turboshaft Priorities 

SFC @ 60% power (installed), @ low altitude. 

Weight (installed). 

Price. 

Reliability and product support. 

TBO and other maintenance costs. 

Operating characteristics. 
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(Company P) 
kaad n .... 

Price ~portance i8 inver .. ly proportional to aros. 
vetaht. 

Turbine Engine Market 

CU8tomers 1978 1985 

Corporate 58% 65% 
Utility, commuter, 

& paramiUtary 16% 27% 
Military 16% 4% 
Civil Helicopters 10% 4% 

Sales: Forecasting a 5.8% arowth rate for turbine 
aircraft over the next ten years. 

Turbofan Priorities 

Thrust: Speed improvement. 

SFC: Range improvement. 

Price. 

II. Advanced Design 

GATE Studies 

Goal was to use high technology but obtain lower costs. 
l~is goal is contradictory. 

Marketing Considerations 

~~t favorable for small turboprop -- high volume but 
low dollar sales. 

Market penetration of a 224 kw (300 hp) engine at 5000 units/yr 
for $20 thousand • $100 million/yr. This is small for 
Company P considering an anticipated $~O million develop-
ment cost. For $100 million, can develop a 1491 kw (2000 hp) 
turboprop. and make more on less volume of sales. 
The development costs are not much different for & small 
or a large engine. 

The only way a small turboprop will be developed is 
throug~; NASA sponsorship of research and development. 
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(ec.paDY P) 
111. Mrod)'!!!!ic a.aearcb 

Concemed witb coaapreaaors. cOIIbuatora. and turb1Dea. 

Compressors 

Centrifugal Coaapressora 

Pressure ratios of 7 to 11. 

Current engine with centrif",al coaapresaor 
gained four points in nand 7% in sfc. 

Always looking for better shapes. 

Does extensive cOIIputaU.onal aerodynamics work 
in tbe design and analysis of compressors. 

Axial Coaapressors 

Maximum presoure ratio for 2 stages is approxi
mately 2. 

Looking at a rotating hub with stators cantilevered 
from outer ring. This reduces the stall margin. 

IV. Mechanical Research 

Looking at: Structures. 
Cooled turbine. 
Fan blade foreign object damage. 
Reduction gearbox. 
Rotor fragment containment. 
High On (diameter x speed) roller bearing 

Technology. 
Journal bearing technology. 
Supercritical rotor dynamics technology. 

Structures Te~hnology 

In-house finite element programs supposedly better 
than NASTRAN. Finite element progratDs used for: 

Transient dynamic analysis. 
Contact analysis. 
r.)de shapes. 

Also, experimentally determining mode shapes via 
a holographic analysis is attractive. 
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(CoIIpaDy P) 
Pinite element progra for turbi. bl .... ba. 12 ,000 
dear ••• -of-freedoa. 

Alao can aoaly.. .ff.ct. of flana. 1...... aDd foretan 
obj.ct inae.tion. 

Cooling Technology 

Used l2,~ deare.-of-ireedom model for one blade. 

TIT 1170·C (2140· F) but blade teaperature 1e 977· C (1790· P) • 

Cool turbine blade with integral air channels a8 shown 
above. 

Gearboxes 

En~ine rpm's as high as 30,000. 

Vibration is a big problem in gearbox~ •• 

Matched gearing and indexing can reduce vibration by 50%. 

Increasing the thickness of the shaft usually helps 
reduce overall flexibility. 

IV. Prop-Fans and Variable Pitch Fans 

~cop-fan offers efficienci~8 of .8 at Mach • .8. 

Also attractive for short to medium range air~raft. 

Directly challenges turbofan. 

Variable pitch fan (VPF) challenges medium-speed turboprops. 
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(Com.pany P) 

RecOIIIIlendations 

Block 
Fuel 

Savings 

Investigate prop-fan application to aaall buainess 
aircraft for Mach numbers of .7 to .8. 

35% 

2000 nm 

Range 

Prop-Fan Savings vs Turbofan. 

Investigate variable pitch fan application to 
cOOI1lnter aircraft. 

turboprop 

__ ~~ __ --__ ~_variable pitch 
fan 

.6 __ ~~ ___ high bypass 
turbofan 

.3 

O~ ____________________ _ 

.5 
Mach 

Variable Pitch Fan, Turboprop, and Turbofan 
Efficiencies. 
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(Company P) 

VI. Hiah Efficie~cy Propellers 

Propeller lesearch 

Blade design, afterbody effects, airfoils, nacellea. 
and inlet effects, control. hub design. material., all 
require study. 

Need propeller developments to match engine developments. 

Tradeoffs 

As velocity increases, propulsive efficiencies 
become more significant. 

With conventional airfoils, a large diameter is 
required for high efficiency. For noise reduction. 
need to reduce diameter and/or rpm. 

Commuters need high thrust/power for takeoff, 
possibly attained by compr<lmisi,'g cruise per
formance. 

Areas under review 

More efficient airfoils. 

Noise (FAR 36 near and far field). 

Optimization. 

Integration of spinner and nacelle. 

Increasing number of blades 

Advantages Disadvantages 

reduce diameter complex hub 
shorter undercarriage higher cost 
reduce engine-out problems higher weight 

(thrust-line closer to e.g.) 
increase high speed efficiency 
looks better 
lowers noise 
engine speed goes up but torque goes down 

Anticipated work needed for 

High speeds - increase propfan efficiencies. 
Low speeds - increase turboprop efficiencies. 
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(Cc.pany P) 

rree-turbin~ propeller ha. cruise noi.. .dvant .... 
(variable propeller speeds). 

Research 

Direct towards maximum fuel economy. 

~pply (integrate) new technologies in areas of: 

Airfoil shapes, 
Materials and construction, and 
Control concepts. 

VII. Fuels 

A main thrust is that engines be able to use a wide range of 
fuels. Specifically applicable for turbines and diesels. 

Tar sands may be important as a fuel sour~e. 

VIII. Materials 

Priorities 

Safety, inspection, and simplicity. 

Low first cost. 

Weight. 

Effects on fuel economy. 

Durability/cost tradeoffs in defining desired TBO'd. 

Influencing Factors 

Increased energy cost affects materials cost. 

Increased fuel cost requires increased efficiency. 

Supply of critical materials such as chromium, cobalt, 
and tat.talum could be a problem. 

Chromium - 95% comes from Rhodesia and South 
Airtca. Used for corrosion resistance and 
strength. 
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Cobalt - replaceable at a cost. 

Tantalum - used for oxidation resistance in 
turbine blades. 

New and/or Alternate Materials 

Ceramics - Reliability. 

Substitutes - Nickel for cobalt. 
Aluminum for chromium or 
Molybdenum for chromium. 
Columbium for tantalum. 
No substitute for titanium in impellers. 

Reduce Input Materials for Lower Costs. 

Powdered metal is expensive, and costs twice 
that of bar stock. 

CastIngs - need better non-destructive testing 
even when using hot isostatic pressing. 

folixcd processes - diffusion bonding or friction 
We ld ing of castings and forgings. 

Note: Forginl-'s have a high rejection rate: 
Kl'Pp IS~ and discard 85%. 

Improved Corrosion Resistance Methods 

R.lpid sol i:llf il'~L ion ratc (RSR) - sing}€ crystals. 

Improve L'~)nl idL'nl'l' in 

Ca~;t i 11)'. me t Iwe! s . 
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A.2.6 Company Q 

I. Significant points made durin, preliminan brief in. 

Reciprocating engine performance and operations are 
often adversely affected by enroute as well as des
tination weather. 

Turbine engines are lighter, more reliable, faster, 
and l~ss susceptible to enroute weather than their 
reciprocating counterparts. Also, .they are not 
subject to cooling drag. 

The disadvantages of a turbine include cost, and higher 
specific fuel consumption. The latter is offset 
somewhat by the elimination of cooling drag. 

If turbines are to get any cheaper, broad usage must 
be found. 

Turbines are still not the answer to all segments of 
general aviation: best over 150-186 kw (200-250 hp). 

General aviation accident rates are much higher for 
reciprocating powered aircraft than for turbines. 

II. Comments on General Aviation 

Businessmen like quiet working atmosphere in aircraft 
(more productive use ot time). 

Corporate passengers like long range, comfortable, 
over-the~eather fl}ing capability. 

General aviation's major drawback is cost. New 
technology must be incorporated without large price 
increases. 

III. GATE Project 

Design Philosophy 

Traditional - reduce parts count, and make the remaining 
parts more efficient. 

Cheaper production, commonality. 

Cost Factors - high expense 

Rotation speed - affects life, shaft dynamics and 
bearing suspensions 
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High tip speeds create high str..... in compr.ssor and 
turbine blades. 

Precision: surface finish is critical. 

Low volume production, tooling co~ts. and r.quired 
research and development (I & D). 

Cost Solution 

The solution is lower rotational speed. 

Multi-stage axial compressor (5-6 stages). 

Again, the low speed of the turbine reduces stresses 
(50% in the turbine blades). 

Shaft fuel injection, with centrifugal fuel nozzels 
(low-pressure system). 

The net result is a much lighter weight turboprop, 
compared to a reciprocating engine (a 224 kw recipro
cating engine weights 272 kg). Smoother, quieter, no 
cooling drag, smaller nacelle, jet fuel. competitive 
BSFC, and longer TBO's. are all advantages over the 
reciprocating engine. Costs $19,000 on a large-scale 
production basis. 

Turbofan Concept 

Turbofan utilizes a common hot core with the turboprop. 

Add 3-stage low-pressure compressor and fan, and a 
3-stage low-pressure turbine. 

Bypass ratio = 5 to 5.5:1; thrust = 4.319 KNi weight -
84 kg; sfc = 40.5 kg/KN-hr at SL, 69.44 kg/KN-hr at 
9140 m with 1.113 KN thrust. 

Forecasting a THO of 10,000 hours (aircraft life). 

Priced at $23.000 with several thousand/year production 
run. 

GATE Realization 

Minimum time required to get the GATE engine to a 
demonstrator level is 3-4 years (optimistic). 5-6 
years for certification. 
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There are no plans for turboprop hardware at Company Q 
currently. The coat of development to demonatration 
would probably be under $10 million. 

However, if NASA doesn't fund additional GATE work, 
industry probably won't pursue it. 

Small turbine development led to • LOW cost turbojet. 
The unit cost $2000 for a 1000 unit producUon rutl in 
1976. It was designed for 30 minutes to 1 h~ur of life 
at 35,000 rpm. Th~ !ngine has been tested up to 18 
hours, and has a TS~!~ of 132.6 compared to 117.3 kg/KN-hr 
of another similar engine. Life of the engine is limited 
by the use of grease-packed bearings. 

60% of the cost of this turbojet was in the turbine. 

Simple compressor concept is proven by this turbojet with 
only minimal compromises in aerodynamics. TSFC goes up, 
but not unreasonably. The reduction in performance 
results from lower pressure ratios. 

Turbine design is flexible: 

build to high stress - long life. 
build to low stress - lower initial cost. 

GATE turboprop description 

6-stage axial compressor, I-stage centrifugal compressor, 
4-stage turbine. 

low gearing 

," .... 

1.02 m (40 in) long, weighs 72.6 kg (160 lb) without starter. 

12.5 pressure ratio, 10100 C TIT, 280 kw (376 hp) and 
0.356 KN (80 Ib) thrust. 

IV. C~rrent Work 

Military application 

A broad production base for a current small turbofan 
might be realized from a likely contract. 

Another B,nall turbofan used in a different program is 
derated iO% to 15%. 

Utilizes oil lubricated bearings and ~ould benefit 
general aviation through spinoff~. 
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A.2.7 Company! 

Developing rotary combustion engines for aircraft and other 
vehicles. 

I. Aotary Configuration 

Rot~r system is simple and easily adaptable to different 
sizes. 

Size (displacement) can be changed by 

(1) increasing width of rotor. 
(2) adding rotors. 
(3) increasing diameter of rotors. 

Item 3 is the least attractive, because apex speed is a 
factor. Items land 2 are easy. 

4 rotors is an attractive maximum. Allows the engine case 
to be built in two parts, each with two rotors. In this 
manner, the crankshaft does not have to be split for the 
timing mechanism. This keeps cost down. 

Wide rotors are not very desirable (current motiel is 3 
inches wide) because of crankshaft bending under loads. 

II. Seals 

Unique apex and side seals are incorporated which resolved 
previous seal problems. 

The seals are sintered ferrous metal, which is very com
patible with the trochoidal surface coating. Compatibility 
is the key. Trochoidal coating is high cost and applied 
with a detonation gun. 

Other less costly methods exist, including plasma spray and 
chrome. 

In a test of seals. this company found 

(1) their trochoidal surface showed imperceptible 
wear. 

(2) their apex seal wear after 2000 hours was very low 
and forecast to last 5000 hours. 

This test was, however. performed at a lower BMEP than 
expected for aircraft. 
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III. General eo-enta E!! Rotary Combustion 

(1) lower weight. 
(2) lower cost. 
(3) multi-fuel capability - not reatricted to AVGAS. 

3000 hour TIO for the aircraft rotary combuation enaine ia 
a viable goal. 

Lower cost due to simpler system and easy adaptation to 
different sizes. Reciprocating engine manufacturing is 
cost-constrained (or cost-fixed) by lot sizes of production 
runs. 

The rotary engine OEM cost will be better than for a similar 
technology level reciprocating engine. At the worst, it 
will be the same. 

Now running a military contract for development of a rotary 
engine. In addition, they have contracted an airframe 
manufacturer to do Sizing studies utilizing their aircraft 
rotary engine. 

Engines are liquid cooled although air cooling has been 
demonstrated. The liquid cooled engines are lighter than 
equivalent reciprocating engines, even with coolant and 
radiators. Therefore. they offer advantages both in cooling 
drag and weight. 

IV. Charge Stratification 

Main research effort. 

Uses an unthrottled, direct fuel injection approach with much 
success. 

Fuel injection is followed by secondary air ingestion. 

Uses one injector for the pilot flame (~ 10% of fuel) and 
a second injector for 90% of the fuel which controls 
power output. 

Already demonstrated excellent emissions and fuel economy 
in a surface vehicle. 

V. Aircraft ~ngine 

Was testing a 246 kw (330 hp), 127 kg (280 lb) engine, but not 
at the moment. It is expected to be run again. 
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(Companies a , S) 

An earlier NASA report documents studie. of an aircraft 
rotary engine which vas 

(1) a gasoline engine. 
(2) not stratified-charged • 
(3) normally aspirated. 

Present preltminary analysis indicat.s that the above eDiine, 
when modified to stratified charge capability, will meet 
emis&1ons, have wide-cut fuel capability, and have a BSPC 
~ 0.24 kg/kw-hr (.4 lb/hp/hr). (NASA goal i8 0.23.) 

VI. Suggestions for ~ (areas NASA could help in) 

(1) More mutual effort (or an atmosphere of) between NASA 
and the manufacturers. 

(2) Stratified charge combustion modeling. 

(3) Basic research on materials - higher speeds and loads 
will require better wear rates. 

(4) Materials research of high temperature cast aluminum -
specific data on low cycle thermal fatigue. 

(5) Improved curbocharging. 

A.2.B Company ~ 

Background: Developing an advanced technology turboshaft 
engine for military helicopter applications. 

One of two companies developing this engine. 

1. Objectives 

SFC •. 55. at 358 kw (480 ESHP) (60%). 

Relatively easy to change turbine and apply to a turbcprop 
vehicle for 75% power at cruise altitude. 

Requirements - the engine component design should not contain 
any design features (inherent limitations) that would 
preclude the engine from obtaining an FAA certification. 

Front Jrive characteristic specifically designed so that it 
could be adapted to turboprop application. 

Present contract funds research through 500 hours of testing, 
but not through certification. Wvu1d like to see NASA 
fund the certification phase. 
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(Companie. S & T) 

If certification i8 attempted. the enaine could po •• ibly be 
certified by 1984. 

This 18 • hiah technoloay enaine and. even if .... produced. 
could never get below $56 to $60/kw ($75 to $80/lb). 

II. Hiahlyhts 

(1) Designed for SFC of .33 kg/kw-hr (.55 lb/hp/hr) power 
at sea level. 

(2) This 597 kw (800 ESHP) engine is to have a dry weiaht of 
90.8 kg (200 lb). Includes a FOD device at inlet, which 
would not be required for civil use. 

(3) Must have provisions for customer bleed air (pressuri
zation, etc.) 

(4) Must have 7.5 kw continuous drive pad for accessory pack. 

(5) Operation for 5 mins without oil at 75% power. 

(6) Modular assembly/Jisassembly. 

III. Noise 

Comment: anything on a flight schedule (commuter) must meet 
already mandated emissions standards and about-to-be
mandated notse standards. 

A.2.9 Company! 

I. Advanced Materials and Processes 

(1) Dir~rtionally solidified turbine blade. Exothermically 
cooled. Produces a 2.42% sfc improvement. 

(2) Abradable seals. produces a 10:1 wear ratio with 
turbines, compressors, or any component that requires 
close tolerances. 

(3) Single crystal turbine blades. Eliminates grain 
boundary strengthening alloys. Provides stronger blades. 
Allows higher blade and TIT temperatures (1092 0 C [2000 0 F] 
for blades), and no surface coatings or blade cooling is 
required. 

II. Turbine Engines 

Compared to large turbine engines, small turbin~s have less 
efficient components. Manufacturers cannot afford the 
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(Coapany T) 

coaplexity of ~ea1., clearances. aDCl coaponetlts required to 
set the .... efficiencies, t .. perature., aDd pressure 
ratio. a. are fOUDCl ill larger turbiDe .. iDe •• 

Turboprop business aircraft requir-..nts: 

(1) increased altitude and hor.epower. 
(2) increased component efficiencies and operatins teapera-

tures. 
(3) propeller noise reduction. 
(4) high horsepower propellers. 
(5) STAT studies (.ee Appendix A.5.1) 

III GATE Program 

As ellgine horsepclWr is decreased. the turbine 80gine is Ie •• 
competitive with respect to the reciprocating engine. ODe 
company representative t hO'.Iever. believes that the light. 
fixed wing aircraft market i8 an ultimate customer for the 
turbIne. 

Application of the small turbine is best suited to the light
to-medium weight category of pressurized, twin engine air
craft. 

Features: 

(1) laser hardened gears. 
(2) single stage compressor. 
(3) free turbine (see figure below). A slngle shaft 

is 2% to 3% les8 expensive than a twin shaft. free 
turbine configuration, but the twin shaft has a 
larger market with helicopter applications. 

free 
.....-. turbIne 

'7\-1in Shaft. FnT ~lIrbinl' l.onfiflJration. 
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(4) a turbtDe 1alet t..,erature (TtT) of120'· c. 
(5) aD. alrcoole4 laa1.aated ceutrlfupl. turb1De. 'l'hl8 

teebnololY allow. tho lacorporatloD of v.ry ca.plex 
coolinl air patH within tbe turbiD., waatta1nabl. 
by other fabrication teehDlqu ••• 

Re.ulta of GATE atudy vere: 

(1) overall effieieDCY (~n) 1Dcr ... ed 9.8%. 
(2) SFC vaa reduced 7.4%. 
(3) unit eost va. reduced 211. In a production ruJl of 

7,000 to 10,000 unite per year, th. projected coat 
of each engine wa. $15,000. 40% of the total 
reduction 18 attributable to a 40% reduction of 
turbine cost. and 24% of the totaJ reduction to 
tbe forecast production rate. 

(4) coat va. predicted through GASP hy tbe follOWing 
proportionality: 

cost 0. (hP)·68 

Four engine. were examined in the study: a turbojet. turbo
shaft, turboprop, and turbofan. The turboprop i8 more 
applicable than the fan to twin engine aircraft in the 
242-298 kw (325-400 hp) range. 

Cruise and takeoff criteria favor the turboprop over tbe 
jets. SFC is worse than for reciprocating engines, but the 
difference is returned in weight and size reduction. Seat
miles/gallon increases substantially. 

IV. RecolIIDended ~ of Emphasis ill Research 

(1) Energy efficient engines with improved SFC. 
(2) Alternate fuels research. 
(3) Establish durability evaluation methods (Example: methods 

for predicting engine life and TBO). 
(4) Bird strike design methodology. A method is required 

for designing turbofans of all sizes to survive bird 
strikes and still operate. 

(;) Pursue GATE. 

PropulSion groups should examine high performance, low cost 
turboprops, advanced engine cycles, and component improve
ments in efficiency and manufacturing techniques. 
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A.3 AVIONICS!!!! AUTOPILOT MANUlACTUUlS 

A.3.l Coapany! 

I. Inta,rated Av1on1ca -
Multiplexed ayat ... 

The .1litery i8 evaluat1~a the "1553" aaltip1ex1na bus. 

Multiplex1na should not be 1nco~rated int~ ~.neral 
aviation avionics .y.t .... 

0~........--.~ L---.-- controller 

Multiplexed System (military) 

(numbers indicate individual avionics units. i.e. 
navigation radio, communication radio, Automatic 
Direction Finder. etc.) 

Br~arlcast System (ARINe) 

Multiplexing has some serious disadv~ntages: 

(1) expensive. 
(2) if the controller fails, the entire system fails. 
(3) requires tripl~x lines and receivers for redundancy. 

Multiple connection between data sources and sinks is not 
necessary as shown in the broadca!;1 system. If one unit 
fails, the entire system does not fail. 

System costs 

The primary costs in avionics are flisplays and sensors. 
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(Compan)' U) 

Low volume production increaaes unit coata. 

Cost reduction ~a avionics demands that low cost. sensora 
be developed. 

New sensing methods ahould be explored: optical .8Il.ora and 
low cost solid state sensors. 

The automotive industry has not been very helpful in theae 
areaa since they do not appear to be pursuing advanced 
technology. 

II. Electronic Instrumentation 

Displays 

Color displays can be as economically produced as 
monochromatic displays. 

Multifunction displays offer great promise. 

Mean time between failure (MTBF) of the units can be 
doubled if operating temperatures are decreased 110 C (15 0 F). 

Currently developing ,high .:esolution color CRT displays 
for commercial airl inet~. 

Built-in-test 

Has some advantages if its design is not overly complex. 

Results obtainable depend largely on the innovation of 
the deSigner. 

Ill. Advanced Technologies 

Digital technology will filter down to general aviation with 
low cost computers. As electronics cost decrease, capabil
ities inCrEase. 

Airframers still decide on which major systems to incorporate 
or pursue. 

Electronic f'lel controllers show promise if they can lower 
life cycle costs. 

IV. Navigatio~ Systems 

Omega - VLF 

Not accurate enough for domestic service. 
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Loran C 
(~~anies U & V) 

Incomplete airspace coverale. 

In additio!lt 100 to 200 kHz power liD. tranaatss10ll 
control sianals tnterfere with its perfo~ 4. 

Global Positioning System 

GPS has the ability to fulfill the roles of VOR, DMB, 
RNAV, and possibly catelory I approachea. 

GPS can be made attractive to a very large Iroup of 
customers which Includes general aviation. It is 
very cost effective. 

It offers up to 10 meter accuracy with the most sophis
ticated equipment, but only 200 meters for the less 
sophisticated equipment. 

The key to GPS is integrating it into the current 
navigation system. 

In the 80's, a GPS system could possibly cost less than 
VOR-DHE for equal performance. 

Antennas are not a restrictive problem. A 15 cm diameter, 
2.5 cm thick antenna should suffice for general aviation 
operations. 

V. Suggestions for NASA 

NASA should sponsor research, but avoid in-house development. 
Industry (avionics) will develop technologies and concepts. 

A.3.2 Company y 

I. Current Avionics Trends 

Industry is leaning towards installation of complete systems 
produced by one manufacturer. Today's systems cannot be 
easily interfaced. 

OEM's will set requirements for systems integration by the 
"cotllDOn harness" concept. 

Integrated systems (or units) are evolving and already 
appearing on the market. Example unit: VOR receiver, 
DME, RNAV (4 waypoint), 1L5, Glideslope. 
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(Coapaniel v , W) 
II. CoIDenu U:2e. ~ Company 

Does not want standardization of avionics in leneral 
aviation. 7h1s tends to de.troy the ea.petitivene.s of the 
avionics .. rut. If all the units look and nperate s1aUar1y. 
freedom of design and competitive motivation could be lost. 

Avionics products are governed by the inertia of the pilot 
market. Pilots resist new changes to the current products. 
and will not buy units with radical differences from the 
norm because of their lack of understanding of the products. 
Because of this. avionics products that require operations 
training are not favored by the manufacturers. 

I II • Research f or NASA 

Human factors research is needed on the cockpit environment. 

Research is needed on "display by exception" because of the 
limited panel space in general aviation aircraft. 

A.3.) Company ~ 

I. Integration 

Integration of systems is inevitable, and is already occuring. 

Integration of avionics has some serious drawbacks. For 
example, power supplies must be redundant. 

II. Cost Drivers in Avionics 

Actual electronic component cost ia decreasing. 

The level of sophistication in usage requirements (50 to 
25 kHz spacing. better filters) has increased. This 
increases costs. 

Requirements for increased reliability of units, certifica
tion, and labor wages increase costs. 

III. New Technologies 

Health monitoring of the engine is not difficult, but low 
cost sensors must be developed to make the idea feasible 
and practical. 

Monitoring by exception would greatly reduce pilot workload. 
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(Companies W & X) 

Digital operation i. eminent and is currently being incor
porated into avionics. However. eo.pany U autopilot. are 
analog syst ... s. 

IV. Supestions for ~ "search 

(1) Human factors and pilot workload in the cockpit. 
(2) Pilot disrlays. 
(3) Low cost sensors 
(4) Standardization of cockpit layout and controls. 
(5) However, since aviation is not a crucial national 

problem, NASA might better concern itself with 
energy research. 

A.3.4 Company! 

1. Displays 

A market exists for better displays even at a higher price. 

Visualizes CRT's replacing mechanical HS1's. 

CRT's will become a part of this company's avionics products 
because more functions can be integrated into a compact 
display space. The cost will be high, however. 

NASA should research methods for replacing expensive 
mechanical instrumentation. 

Significant reductions in price would be achieved if the 
market volume was doubled or tripled. 

10% of sales is devoted to research and development. 

The DAAS program is good only for demonstration. Regardless 
of DAAS, integrated avionics technology will develop within 
the industry. 

II. Fiber Optics 

Fiber optics show great promise by replacing heavy wire 
bundles and eliminating interference. However, fiber optics 
require a standard bus for operation. 

Improvement of mechanical connectors for fiber optics will 
promote the integration of the technology • 
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(Companies X , y) 
III. Electronic Flight Coatrol. 

Absolute dependence on electronics i. becomina economically 
feasible. Quadruple redundancy can achieve extreme 
reliability. 

Fly-by-wire technology can be expected in this market, 
but only slowly. 

Separate Surface Stability Aus-entation (SSSA) shows a lot 
of promise. 

IV. Product Liability 

This is a problem for this company (like any other company), 
but they have yet to pay any prodact liabiUty claims. 

V. FAA Certification 

Has good experience with their FAA regional office. However, 
sometimes the FAA does not know how to approach new techno
logy. They attempt to test new technologies with old 
methods, sometimes nullifying any advantages. 

Lightning is not a problem for this company's products. 

A.3.S Company! 

Avionics is a $435 million/year business. Company Y controls 4S% 
of the market. Most customers are corporations. 

Caters to the market and produces airline-quality products for 
general aviation us~rs. 

Specialities: attitude and heading displays and sensors 
air data computers. displays, and sensors 
automatic flight control. 

I. Projections for Technology. The following are likely: 

More integration of functional features with regard to 
information acquisition and displays. 

More digital computation and interface. 

Strapdown AHRS (Attitude Heading Reference System) 

Flexible vs free floating gyros (for cost savings) 

CRT displays will replace conventional AD!, HSl, and 
eventually the entire panel. 
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(Company Y) 
Management systems 

GPS 

Long Range NAV 

Energy management including autothrottle. fuel controls, 
and flight contr~l systems. 

Too expensive, though highly accurate. 

Controlled by the military. Not available for 7-10 years • 

Antennas are unwieldy. 

Collision Avoidance System. Interesting because of computer 
application. 

II. Future in Flight Controls 

Looks 5 years ahead. 10 years is too far downstream. 

One of the most difficult tasks is to service obsolete 
systems. New systems appear continuously, and old systems 
are expensive to maintain. 

In general aviation today, the airframer or the user inte
grates the system. In the future, only the airframe manu
facturer will integrate systems due to complexity and lack 
of standardization. 

Because analog system capabilities are almost saturated, 
digital technology is attractive because of its increased 
functional capability, reliability, and accuracy. Company 
y dOt~s not produce digital systems currently, but ! "I 
exploring the technology. 

The emphasis on size and weight is a unique problem to 
general aviation. The bus interface will allow lower weight. 

III. Navigation and ~ergy ~lanagement 

Autoland 

Too expensive for general aviation. Category II 
approaches are impractical for general aviation pilots 
because of FAA mainte~ance and training requirements. 

Stability augmentation/load alleviation requires faster 
actuators. 
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(Companies Y & Z) 

Greater automation: dilital "Y'Iteml appear pr01d.ltna. but 
requires more power. 

Fly-by-wire and fiber optics are not being pursued. They are 
not cost effective. Even boosted systems require a cable 
backup. 

Navilation manalement capabilities and results (result of 
onboard computers) 

Integration of navigation sensors (INS. Omega. VOR/DME). 

Full ATe data base, includinl charts and plates. 

Flight planning. 

Reduced workload. 

Energy management capabilities (result of onboard computers) 

Improved fuel and engine efficiency. 

Flight manual storage. 

Automatic engine control. 

IV Air Data Systems. (see ff llowing figures) 

A.3.6 Company! 

I. Current Products and Technology 

11anufactures flight control systems for general aviation, 
primarily for those aircraft weighing 5765 kg and under 

Utilizes a single rate gyro, which is powered pneumatically 
and electrically for redundancy. 

Invented the tilted gyro turn coordinator. 

Double power system on gyro is more stable. Each power 
supply modulates the other when a power surge is experienced. 

Uses 400 Hz A.C. electric drive and pneumatics. The gyros 
regulate valves which control pneumatic servos for the 
autopilot. 

If the electrical system fails, the wing leveler function 
still operates becausp the entire system frem gyro to 
r.ervo is totally pneumatic. 
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(Compani.. Z • AAl 
11. ~ TecbPP1Qli,a 

Will not incorporate digital techDololY into their analol 
products. The COlt of recertification i. too prohibitive. 

Digital systems do not offer the redundancy of pneumatic 
systems, where the former is only electrical and the latter 
is pneumatic-electric. 

Cost also prohibita switching from pneumatic to electric 
actuators. 

Pneumatic system has advantages: altitude compensation, no 
electric Cl..lrent drain, and smoother operation. 

Familiar with the fluidic rate sensor resea~ch at Langley, 
but does not perceive future applications of the technology. 

Advanced displays 

HUD's, CRT's, are excellent for reducing pilot workload. 

Transition from IFR to VFR flight is dangerous. CRT 
displays could alleviate this problpm. A HUn allows for 
a safer transition. 

Fiber optics. No foreseeable applications at this company. 

III. Certification 

A serious problem. 

Certification procedures make minor product improvement 
changes unattractive to this company due to excessive (and 
therefore expensive) delays. 

Weeks of preparation by the company foll~wed by delay~ and 
then a trivial flight test damage the image of the FAA and 
the certification process. 

Has over 260 STC'g. Any major change on the autopilots 
would require a new STC for each aircraft: phenomenal cost 
for a small company. 

A.3.7 Company AA 

I. Current Prod~cts 

Produce flight directors, HSI's, autopilots, turn and bank 
indicators, and yaw dampers. 
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(Collpany AA) 

Preaent product. are analoa-G1lital hybrid.. Utili ...... y 
intearated circuit •• 

Uses a .train-aaae, pieso-r.si.tive pre •• ure tranaduc.r for 
altitude hold input. 

Autopilot actuators are DC servos with infinite r •• olution 
and a slipclutch. 

II. Advanced Technologies and Probl ... 

CRT's. Waitin8 to examine the success of this technolo8Y in 
the commercial aircraft market. 

SSSA. Not pursuing this technology. Conservatism and pro
duct liability £re the major drawbacks. (Conservatism on 
the part of the airfratDe manufacturers.) 

Problems with new technologies: 

Field service. Retards the incorporation of micro
processors into their products. The field maintenance 
skill level is not high enough to support this 
technology. 

User misuse and lack of understanding. Pilots do not 
read the users manual and they do not know how to use 
some of the features of lhe autopilots. 

Produ~t liability. Liability cases are so far-reaching 
today that small companies must exercise caution when 
i.lt.roducing new products. Product liability severely 
inhibits new technology, innovation, and advanced 
products. Recently hired a full-time accident 
investigator. 

Flight Directors. One representative of this company was 
not convinced of the bettefits of flight directors. Pilots 
are attracted to the HSI commands and do not maintain 
outside surveillance. 

3% of sales is returned for internal research and development. 
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A.4 SYSTEMS HANUJ'ACTUUU 

A.4.l Co!puy!! 

I. Controls 

Dla1tal Fllaht Controls: Lookina at. a distributed ~ro
processor. 

Fly-by-wire: Already developed a fly-by-'1I1re syst •• 
Utllizina a failsafe 3 motor common contr~l drive. 

Fiber optics: A fiber optic control syatem has been 
developed and flown. 

II. Composite Structures 

Control Hardware 

Developed filament-wound graphite push-pull rods. 

Developed injection molded co.posite bell crank. 
Cost analysis: 

Airframe 

Composite bellcrank -- $11.15 
Equivalent magnesium bellcrank -- $75.00 
Illustrates a savings of 85% due to composite 

material. 

Currently und~r contract to NASA-Langley Rese~rch Center 
to evaluate composite airframe componftnts in the field. 

Evaluating graphite and Kevlar. Graphite is utilized 
in controls and surfaces. Kevlar application 1s 
primarily in doors and fairings. Stiffness is not a 
restrictive problem of these composites. but their 
non-isentropic properti~s must be recognized. 

Graphite hazard: filaments of graphite are relellled 
in a crash environment and infiltrate electronics. 
cauaing short circuits. 

III. Displays 

Heads Up Displays (HUD) and Head Mounted Display (HMO) 

HUD's are extreflely useful in an IFR environment. 
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(Coapany 0) 

HMD' •• re more v.r.atil. thea BUD'a. Allow unre.t~ict~ 
movement and are at.pler aDd li.bter. 

Currant CRT head lIOuutecl dlapley. are heavy. cuabar~, 
require • he1aat .ountiD" and are GOt ca..erc1ally 
viable. They alao block peripheral viaion and have a 
~ular pre.entation. 

Dev.loped the alcro-lllJ1). A .. 11 reflectUtIl chip 18 lIOU!lted 
onto '1 •••••• directly in front of the eye. 

reflecting chip 

.,-t...--I mage 

~ye 

Top Viel, of Ey .. Gl:1;;~:t'.;. Al:;o !)CL' Sl'cLiClI1 :·.5.(-.• 4 

for phntq~raph. 

I'roj ector 

Method has broad applications. Has potential to cut cost 
over current HUD's by a factor of 4. Dynamic display capabi
lity obtained through a vibrating fiber optic display. 
(see figure on next page.) Mechanically vibrated optics, 
with timed light impulses, creates dynamic images, similar 
to CRT's. 

IV. .Fiber 9ptiCli 

Lightning strike benefits 

Aircraft that have composi~e dtructures and utilize 
fly-by-wire are vulnerable to lightning strikes. 
Current will destroy the system. 

Fiber optics are non-conducting and would not be as 
vulnerable to a current surge from lightning. 

Structural monitoring 

Fiber optics can be imbedjed within the composite 
material matrix for structural monitoring. 
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microprocessor symbol 
~ generator 

LED's 

" 
... ...' 

. .............."" " 

.. ... ..., 
.... ... 
'. ' 

.. .... 

mechanIcal 
vibrator 

... " ' ... 
~"' ....... ' ..... ,'" ' ... 

fibers ... . vibrat in9 

Vibra~i~g Fiber Optic System With Microprocessor Symbol Generator. 

Scanning the fibers with a microprocessor, a signal 
delay or lack of signal from a fiber would indicate 
a possible failure developing within the material it 
was imbedded in. 

Signal carrying 

Fi~er optics have a wider bandwidth, allowing more 
signal~ or data to be passed along them as compared 
to wires. 

Deals with control of vehicles, from aircraft to mopeds. 

1. Avionics 

PCAAS 

Projected technologies were studied, but current 
t~chnology was utilized for the demonstration prc~ram 
to minimize costs. 
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(Company CC) 

GPS system 

A GPS antenna may be too large f~r incorpoT·tion into 
a general aviation airfraae. 

II. Control Systems 

Microprocessor systems 

Electronics for advanced control systems are available 
at low cost. The problem of cost for controls stem 
from the sensors, the displays, and the actuators. 

NASA should investigate low cost sensors and actuators. 

Fluidics 

Are impaired by temperature variation because of 
thermistor control. 

Because of sensitivity to temperature, fluidics cannot 
meet the TSO temperature requirements. 

III. Safety 

Spiral 

A wing leveler should be provided for general aviation 
aircraft. 

Some aircraft have apparent spiral modes with different 
t~e constants than the actual spiral mode. These 
result from lateral out-of-trim conditions. 

An old NASf study suggests utilizing a centering spring 
to relieve the problem. 

Very speed sensitive. Also, aircraft may diverge in 
one direction and not the other. Characteristics also 
differ from plane to plane. 

FAA crash studies 

Compiled complete crash statistics over a 10 year ?eriod 
for single engine, multi-engine, and retractable gear 
categories. 

The single engine retractable gear aircraft was involved 
in the largest percentage of crash incidents. One 
aircraft, however, was equipped with a wing leveler and 
remained accident free. 
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I i 

(_Companies DD & EE) 
A.4.3 Company DD 

I. Turbocharging and Engine Control 

The match point for aircraft enginea is matching the 
turbocharger to the aircraft flight envelope. 

, , 
G) 

, turbocharged \ 
~ , 
j 

\ .... normally ~ , 
~ 

, aspirated , - , 
III \ 

hp 

The truck diesel engine turbocharger provides a 
production base of over 1 million units per year. 

Microprocessors are applicable to aircraft engines 
only if total control is exercised: simultaneous 
control of miy.ture, manifold pressure, and rpm. 

Turbochargers are generally overdesigned and will 
(must) match engine TBO. 

The most significant improvement forecast for turbo
chargers is the incorporation of air bearings. 
However, most of the turbocharger advanced technologies 
(air bearings, ceramic wheels, sheet metal housings) 
are too costly. 

Current aircraft turbochargecs have been labeled "just 
a truck turbocharger". This turbocharger, however, 
covers a wide power range and allows for low cost 
because of the diesel engine production base. 

A.4.4 Company EE 

Produces actuators for commercial aircraft and large business 
jets at the rate of 2 to 3 units per month for each type. 

I. Hydraulic Flight Control Actuators 

A, tuators are "tailored" to each application. They are 
ciesiglled for a specific aircraft type. General "off the 
shelf" hardware is not available. 
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/ ANALYTICAL MODEL, L TURBOCHARGER HAPS 
AND ASSUMPTIONS 

j 
ITERATE GUESSES 
OF PERFORMA14CE 

VAlUABLES 

+ 
COMPRESSOR DISCHARGE 
PRESSURE (FROM ENGINE 

INDUCTION PRESSURE DROPS) 

~ 
COMPRESSOR AIRFLOW 

(FROM ENGINE AND 
BLl ~D AI RFLOWS) 

J. 
COMPRESSOR DISCHARGE 

TEMPERATURE (FROM TEKP"CRATURE COMPRESSOR MAP) CORRECTION 
~ - TURBINE INLET PRESSURE 

AND FLOw (FROM TUA.B I NE 
MAP AND POWER BALANCE) 

+ 
VOLUMETRIC EFFICIENCY 
(FROM EXPERlfNCE) AND flOW BALANCE (FROM DEFINITION) --

~ I TURBINE BYPASS n.OI' 
(FROM BYPASS PERrOA~ANCE) POWER BALANCE AND (FROM CONTIWITY: 

l- • 

TURBO SPUD: SURGE: 
CklTICAl AlTIWeE T\)RB0C'jARGf~ SELEcT~ (FROM MArS) 

'--- ... 
0$:EI1 P[RFPRI'.ANCL / 
"---
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(Company II , Aaea lesearch Center) 

Actuators are very sophiaticated becau.. of redundancy 
requirements. 

Actuators must be located at the surface for production of 
maximum power. 

"Custom" actuators of these types and sophistication are too 
~Apensive for general aviation application. 

A.5 NASA RESEARCH CENTERS 

A.S.l Ames Resesrch Center 

I. Avionics 

Improved guidance and navigation based on VOR/DME. Emphasis 
here is on improved systems which use voa/DKE. 

System is based on 2 VOR/DHE systems, where the receiv
ers scan for close proximity stations. One difficulty 
lies in the fact that it takes 5 seconds to lock and 
interpret a VOR signal. Hence, the time to search for 
acceptal signals can be prohibitive. An alternative 
~~uld be the incorporation of a computer which stores 
the last station and signal to speed up the scanning 
process. 

A further difficulty lies in storage requirements. 
Inputting station longitudes and latitudes is very time 
consuming. VOR stations which hroadcast their position 
(longitude and latitl't!~Hn addition to radial informa
tion eliminate the requirement to load t-his data to 
memory, and would greatly enhance the attractiveness of 
the scanning mode. 

Scanning results could be incorporated with air data to 
greatly enhance navigation guidance. 

Pilot Interface with Avionics 

Each capability added to avionics today will affect 
pilot workloaa by a factor of 4. Hence, emphasis is 
being directed toward simplifying the pilot workload 
involved with the use of avionics. 

For example, improved navigation capabllitif!s (scanning) 
requires loading station locations. Development of an 
"electronic map" allows the pilot to input station 
locations by either a light pen, a matrixed optical 
system surrounding the rnap display, or by a touch-

354 

-- '1 

• 

• 

• 



• 

sensitive screen. 
here is currently 

'Ill 1. 1 

II 
PI" 'I ,\ 

(Ames Research Cent r) 

The map display system described 
flying in ~ Cessna 402 at Ames. 

low-cost electronic mAp dllpiAY with touch Input system could b th Interlace between pilot 
and nal/lgallon system tn adl/anc d al/lonlCS lor general aVlallon NASA Ames Research 
Center IS UStng this m p -col/ered X-Y plott r (upper right) and programmable calcu lator (left 
cen ter) to tud:; the dlspl y Int rlace conc pt and I/erlty the perlormt'nce 01 a can- tuned 
VOR DME n I/Igatlon syst m To simulate a touch Input sy~- tem . the Ames Research Center 
IS UStng a dlglllzing system that consists 01 the spark pen In th operator's hand and 
mlcrophonlc PICkU~S along th to and I II dg s ot the plotter The calculator controls the 
VOR and DME r ce,l/ers nd p rforms th Kalrn n fIltering need d to determtne present 
postllon from radlonal/lgatlon and alf data s nsor Outputs The calculator and plotter are 
Hewlett Packal 9825A and 9862A units. resp CIII/ Iy 

(Ref. 50) 

This photo is of th light pen. Also demonstrated was 
a map overlay which is inserted over a touch-sensitive 
very thin plastic grid d wires. This grid sh et is 
laid over the CRT wi th the map over it. The sheet is 
manufactured by a company t hat makes toue -sensitive 
k~'boards fo r microwav ov ns. The lar e number of 
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(Ames Research Center) 
arids per sheet and small number .anufactured resulted 
in a cost of $1200 for three arid sheets. Costs would 
be much lower for a production run. 

This touch sensitive map bas been installed in a CeSSD~ 
402. 

To locate points on the map, the pilot touches the map 
location. The plotter arm moves to the input point and 
marks the map. Then a query is returned; OK? The pilot 
responds by touching "YES" or "NO" on the screen. If 
required, the pilot is allowed to improve his map 
point by responding to "LEFT/RIGHT" queries and 'toP/ 
DOWN" queries. As such, he can quickly, accurately, and 
reliably load what amounts to an RNAV flight ,lan 
without having to load radial/DME waypoints. 

The matrixed optical system, where light beams form a 
grid in front of the CRT scree~ is shown on the following 
page. Placing a finger on the CRT display interrupts a 
light beam and results in an input to the computer. 
The weight and balanc.e system is shown where (1) the 
particular airplane loading capabilities for the parti
cular 402 exists in the software package (fuel/baggage 
mix in tip tanks and nacelles, and passenger seating 
configuration), (2) the white dot in the envelope as 
well as the airplane representation changes to show 
what (e.g.) 50 lbs in the left nacelle will do to the 
envelope as well as to the available volume in the 
nacelle. The system is virtually error proof, simple, 
and fast. 

Replacement of gyros with other sensors 

Replacement is accomplished with a 3 axis magnetometer 
which senses accelerations and integrates outputs about 
3 axes to derive pitch, roll, and yaw. 

Pressure transducers are albo receiving attention 

Silicon chip pressure transducers using piezoelectric 
~.ystals in membranes cost around $12. 

A shed vortex airspeed measurement device based on the 
principle of airspeed being proportional to the frequency 
of shed vortices is installed and working on the Cessna 402. 

Common bus 

Reduces weight, etmplifies interface of components, and 
allows multiplexing of qignals. Implies stanJard bus 
(note: general aviation is not required to meet ARINC 
standards). 
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(~eD ReD ar h Center) 

(Ref. 50 ) 

II. Stall/ pin 

Th k y to pin avoidanc e 1i s i th pr v nti~ n of pin 
entr a nd not in spin r covery . 

Res rch i s bas d on 1 adi t,g 

S c k tch on n xt p 
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Thus far: 

(Ameo Research C~ntcr) 

gloves 

vortIces 

Vortices generated at higher angles of attack 
affect separation characteristics. 

RIc model with the modified wing will not spin. 

Grumman American Yankee has vastly improved spin 
characteristics in flight test confi~lration. 

Needs: 

Theoretical basis needs to be developed. 

Twin engin~ configurations need to be examined 
(for channel flow study). 

III. Cooling Drag 

Assess level of ~ooling drag 

Cooling drag is defined as any drag resulting from pumping 
air through a nacelle (or cowl). 

Utilizing a Seneca wing and a Cessna 402 nacelle for ~~~ t~st 
configuration. The baseline was established by (1) mo(L.:yit'.g 
the nacelle to eliminate trailing edge separation. (2) stream
lining the front of the nacelle for low drag. (3) sealing the 
air inlets and the exhaust openings, and (4) removing the 
propeller. This configuration established the low drag 
baseline. 

Compared to the original configuration, a 13% drag reduction 
waf., real ized. 
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(Allies Research Center) 
Reducing the air mass flow rate required for cooling does 
not reduce drag much. 

Optimize and Investigate different nacelle shapes 

Eliminate cowl flap. Replace with louvered opening. 

[ louvered openIng 

Evaluated three inlet sizes . 

(401) (tOt) 

(tOt) 

Si ngl e , l ow inlet produced ~he bes t results . 

bet ter a t high angle of a t tack. 

allows optimized nacelle shape . 
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Better nacelle shape at front. 

IV. STAT 

(Ameo Re3carch Center) 

spinner 
fan 

STAT is the Small Transport Aircraft 1'echnolor.'" program which 
is aimed at investigating aircraft for tht: fol ~ :.J1!\4 range 
of specifications: 

15 - 80 passengers 

50 - 100 run legs 

Includes design studies of airframe, engine, and propeller, with 
specific studies of 

high/low speed compatibiHty 

good ride quality 

low noise 

identification of high cost features. 

Overview of STAT 

Will emphasize aerodynamic analysis and include: 

Analytical methods for improved performance predictions 
for multi-element high lift d~vices. 

Wind tunnel programs to examine turboprop slip stream 
effects on \-::ing configuratiC'n. 

Propulsion system resear~h to define improvements in 
turboprop and turboshaft engines. 

Structural research to identify co~t reductions in 
manufacturing through the use of advanced aluminum 
alloys. 
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(Amea leaearch Center) 
Avionics research to yield improved IFR capabilitiea. 

Aircraft flight control systema: 

fly-by-wire 
fly-by-light 
integrat~~ electronics 
digital controls 
fail safe and fail paasive controls (already incor

porated in V/STOL and helicopter aircraft) 

Improved icing protection. 

Ways to reduce commuter prIces to $SS,OOO/seat. 

May also examine bonding/composi:es because of the coata 
associated with fasteners (rive:s). 

Typical specifications that STAT ~~uld cover: turboprop, 
50 passengers, 250 kts. 

V. Aerodynamics 

General comments 

Drag reduction at high speed involves delaying Mdiv ' 

Drag reduction at low speed essentially lies in improving 
CL max. 

Computer codes: 

FLO 22 - transon~c wing on wall 

FLO 28 - transonic wing on body 

Full potential flow wing-body with attached flow and 
no small disturbances. 

Natural Laminar Flow Control (NLFC) 

6-series airfoil sections are examples of NLFC. 

NLFC is achieved by reducing adverse pressure gradients 
over the airfoil. 

Surface coatings are implied. 

Very Mach dependent. 

6-series has good cruise ~ith wide drag bucket, but adverse 
stall characteristics. 
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(Amel , Lanaley .... arch Centera) 

NLFC may not be practical due to bu,a, lna.cta, etc. 

NLrc ie difficult to evaluate ln the wind tUDGel due to 
tunnel effects. 

Commenta on GA(W) airfoil 

Use of 2D data without regard for the wing-body junction 
.ay lead to flow aeparation there. 

Beat use of a GA(W) wing might be on a high wing confiauration, 
Where the wins upper surface doesn't intersect the fuaelage. 

A.S.2 Langley Recearch Center 

I. f!:!!h Dynamics 

Crashworthiness Design 

Seats 

Energy absorbing seats can reduce peak vertical "g" 
loadings by 50%. 

Wire bending (translating a loop along wire) is a very 
efficient way to absorb energy. 

On~ of the most promising crashworth1ness features 
together with improved restraints. 

Do not locate seats over wing spars. 

Seat pan is very important. Current pans collapse. 
Must be designed with regard to the rest of the seat 
for good crashworthiness. 

Industry builds seat for comfort (thick cushions 
compress too much and cause belts to loosen). 

Restraints 

Must be anchored to seat with the seat firmly anchore1 
to the floor. 

Inertia reels are sometimes unreliable. Incorporated 
largely for ease of entry/exit. Ideally, a restraint 
helds the occupant firmly in his seat. and the seat 
and structure absorb energy. 

Lateral movement of occupants if; best controlled by a 
double harness (seat mounted). 
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(Langley ..... reh Center) 
Structure 

¥loo~/.ubfloor .ho~ld be .. de eru.hable to abaorb eneray. 
Aside fro. vertieal .troktol of the .eat, this i. the 
only other area where atrok1na di.tance esi.t. to abaorb 
energy. 

Fire prevention 

Military work on fuel contai.nment 18 quite auee •• aful 
and technology transfer is needed. 

Fuel treatment to reduee vaporization baa ea.8 
potenUal. 

Foam in the fuel tanks cost~ 1% to 2% of tank volume but 
can contain fuel and prevent spraying. 

11. ComF",sites 

Composite types 

Advanced composites include graphite, Kevlar, and boron. 
Glass is not considered an advaaced composite. Graphite 
and boron are probably too expensive for general aviation. 

Testing 

Flight Service: Aircraft with test samples include: 

L10ll, Boeing 737 - Kevlar. 
CH-54 - graphite stifferers. 
Bell 206 - Kevlar doan., fdring. 
C-l30 wing box - boron/epoxy. 
DC-10 rudder, Boeing 737 spoiler skins - graphite/epoxy. 

Worldwide ground bas~d exposure. 

Problems with ~omposites 

Lightning strike 

Graphit~ suffers only from loc~lized damage. 

Kevlar and glass are more of a problem. 

Composites do not attract lightning any more than metal 
structures. 
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(Lanal.y a. ... rch Center) 
Metal boneycOlib with coapoa1te akina could COIIProa1ae 
eafety aiDee a clear path for the .trike to dtaalpate 
.Y not be avanable. 

Solution. are po.aible by u.1Da any external coDductina 
patll auch a. \dre sc~eea •• 

Moisture absorption/high temperature 

Matrix absorbs about 1% moisture by weight. 

Paint absorbs about 3% moisture by weight. 

High temperature ar,d/or lIOisture weakens matrix. 

Miscellaneous 

Generally iapervious to fuels. 

Composite manufacturers: Dupont, Hercules, 3M, Union 
carbide. 

III. 3D Aero~amics 

See next page for 3D aerodynamics progress. 

Currently working on wing/canard design and wing/fuselage 
interaction. 

IV. 2D Aerodynamics 

Turbulent flow shapes 

Tend to be aft loaded. 

Control surface floating is not a problem. 

Indu~try is wary of aft-loaded airfoils. 

Natural Laminar Flow 

Goal: Attainment of CL equivalent to that of the 
max 

turbulent flow airfoils while maintaining the low 
drag of the NACA 6-series sections. 

Thickness and moment constraints also exist. 

Bellanca Skyrocket airfoil: t/c· 15%, CD • .006, 
o 

c~ 
max 

• 1.8. 

364 

,/ C--
L - ) 

• 

I 

1 

l 
,. 



;!'I('" 

w 

'" \.., 

Shape Flow Type 

Inviscid 
Airfoils 

Viscous 

Invlscid 

Wings Viscoas 

LE Vortex 

Inviscid 
Complete 

Viscous 
Aircraft 

LE Vortex 

+ Available 
[+) Not mature yet 

Not available 

..,. 
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(Lanaley leeearch Center) 

ct t. not .. n.telve to rouahn •••• 
max 

Drag i. moderately to s1gnificantly .... ittv. to 
roughne ••• 

Matntenanc. of .irfoil contour. (rippl.-fr •• ) i. 
more taportant than bual, in.acta, dirt, etc. Flat 
spots are bad. 

Low speed airfoils ( M ~ .4 ) 

Improve symmetrical airfoils with control surfaces. 

Attempting to reduce pitching ~nt. One exaaple 
(LSCM)-0417),when compared to the GA(W)-l. shows: 

6Ct 
max 

• +.22 

Cd 
o 

is reduced 

c shows a 30% reduction 
m 

slightly WOfse stall 

Cd lower in climb. 

Medium speed airfoils ( M ~ .7 ) 

Examing two airfoils: 13% and 17% tIc 

Retains excellent low speed characteristics 

Improved cm' ssme c~ and less Cd than old NACA 
II\3X 

sections. 

V. Avioni.£.! and Controls 

Current programs 

T-30 (Sabre business jet) will be equipped to study pilot
ATC interface. Digital and analog systems will be included. 

The heart of t •• t: system is a digital Bendix 910. 

A conventional analog autopilot i3 inclu~ea. 

Fully programmable color CRT display. 
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(Lanal.y "a .. rch Center) 

MLS, c:urved approachea. will require lI01'e than cOllven
tional flight di1'8Ctor. 

Fluidics 

Low coat. hiahly reliable, rate aensora for autopilot •• 

The wiog leveler is inexpensiv., aillple. and perfonaa 
well. An $85 model for homebuilta i. available 
cotllllerc:ially. 

Examining a 2-axis wing leveler and heading hold auto
pilot 

Working with Cessna and Piper on a fluidic: autopilot. 

Looking at an all-fluidic: airplane for demonstration. 

Pilot workload - single pilot IFl 

A simulator is an important tool fot human factors 
research. 

Unconventional controllers show promise. Example: side 
stick controller. 

Integrate displays and instrumentation. 

DABS - Discrete Address Beacon System - automatic 
uplink and downlink data flow. 

Exploring the speech synthesis problem. 

Langley has a general aviation simulator programmed to 
study these problems and possible solutions to them. 

VI. Stall/Spin ~esearch 

Tools 

Spin tunnel (Re ~ 80,000 to 90,000) - Only steady-state 
spin conditions can be examined. Spin entry cannot. Have 
encountered problems with small scale effects of the test 
models. 

R/C models, 1/5 scale. 

Wind tunnel models. 

Full scale wind tunnel. 

Flight test. 
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(~na1.y ..... rch Center) 
Simul.tion - A data ba •• i. required to develop thi •• 

Airplane. 

Yn~ 
Sundownar 
C.aana 172 
Piper T-tail prototype 

Confiauration Effecta 

Drooped leadina edae 

Full span application of this modification 
aggravated the spinning characteristics of the 
test aircraft. Spina became unrecoverable. 

Can improve spinning characteristics if (1) the 
modification covers 50% - 60% of the outboard 
span and (2) ends in a sharp break near the 
mid-span of the wing. 

The modification appears to require a chord 
extension. 

1 

i 
I 

More testing must be performed to establish the 
benefits of this modification to different air
craft types. 
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A.5.3 Levia ..... rch Center -
1. GATI -

Purposa 

Study ap,lication of advanced technology to ... 11 tur
bines to determine utility of ... 11 turblaea in leD.ral 
aviation. 

OVerall goal is 20% increaae in performance and a 50% 
reduction 1n coat (to $50/hp). 

Company participants (4) 

Detroit Diesel Al1iaon 

Garrett A1Research 

Teledyne Continental 

Williams Research 

Garrett, Williams, and Teledyne approached the problem w1th 
the low cost idea, and reduced the cost of turbine engines 
by SOl at forecast production levels. 

Allison's front end costs were higher but DOC was greatly 
improved through sophistica:10n. 

SOlIe viewpoints of GATE 

Must be advocated to NASA headquarters. 

Began two years ago. Now investigating a hardware 
program, costing $60 million with two contractors 
producing test engines. 

Low cost potential exists, although at high riak for the 
manufacturer. Hardware production will not occur soon, 
if at all. without NASA funding. 

The demonstration engine would not run until 5 to 6 ycar. 
after funds are allocated. 

t~in drawback is high risk. and that risk will not be 
acceptable to industry without NASA funding. 
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(Lewi. .. ... rcb Center) 
II. Poaitive Diaplac...at Bnainea 

General aviation poaitive di.placement eDliD. r .... rcb 

hoar .. aoela 

Improved fuel econOllY ... iaht and drill reduction. 

Major Thrusts 

Lean operation of conventional eosine. 

Improved fuel injection 

Improved cooling 

Advanced combustion chamber and modeling 

Definition of alternative engine systems (advanced 
spark ignition, light weight diesel, stratified charge 
rotary combustion) 

Advanced combustion techniques. e.g. adiabatic 

High speed/high pressure fael injection 

Continued upgrading of facilities, instrumentation, and 
analytical/diagnostic capabilities 

Aircraft Fuel Injection 

Objective: Establish requirements of an improved fuel 
injection system for leaner operation. 

Approach: Determine effects of spray quality on engine 
performance and emissions. 

Droplet size, distribution, and velocity 

Spray pattern 

Injection timing and duration 

Nozzle ~osition. 

How: Manifold flow visualization tests, injector 
characterization tests, engine'~nmbustion tests (using 
commercial and lest engines.) 
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(Levi. leoearch Cater) 

Advanced apark ignition aircraft pi.ton enaift~ d •• ian study. 

Tecbno1oay aDaly.i. ,nd d •• tan candidate evaluation • 

Define expected technology be .. for an ad.anced 
apark ignition aircraft piston engine for the 
late 1980 time period. 

Evaluate candidate de.ian it... again.t criteria 
to choose most likely advanced technolOIY for 
engine design. 

Recommend new or augmented technology progr .... 

Fuels for advanced spark ignition aircraft piston engine. 

Near term: 100 LL AVGAS or wide-cut vera ion 
(homogeneous charge combustion) 

Far ter~: kerosene base commercial jet fuel (Jet 
A). (stratified charge combustion). 

Homogeneous charge. 

Conventional: 

Compression ratio (thermal effiCiency) is 
detonation limited to approximately 8.5-9.0 
to 1. 

Fuel economy at higher power is materials 
(temperature) limited. 

High Compression Ratio Lean Burn (HCllB) 

Increased compression ratio (increased thermal 
efficiency) is possible with 100 octane fuel 
to approximately 12 to 1. 

Lower exhaust gas temperatures improve valve 
and valve guide durability. 

Minimal hardware changes to conventional 
engine produce significant results. 

Expect greater than 10% increa~e in fuel 
economy. 
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Baa1ne operational .,at ... . 

ruel delivery .y.t ... . 

llectl'ODic fuel tDject1oa. 

Electronic fuel control (..chanical fuel 
.yatea. tweeted electrical .yat .. ) 

Ilectronic air control (control. ensine 
perfor.ance by control of air flow). 

Direct cylinder injection. 

Ignition s/.t .... 

Breakerl ... , continuously variable timins. 

Breakerl ••• , .tepped tilling_ 

Engine Auxiliary .ystems. 

Single-lever control. 

Servo-mechanical. 

Servo-e1.ectrical/e1ectronic. 

Electric power generation. 

High speed, brushless alternator. 

Single-unit starter motor/generator. 

Engine driven air. conditioning 

Rovac, air-to-air heat exchanger (ro~ary 
compressor. saves weight by 50%) 

Design and technology features. 

High Compression Ratio Lean Burn engine (HeRLB) 

Six-cylinder, horizontally opposed, air/oil 
cooled. 

12:1 compression ratiO, lean burn. 100 octane avgas. 

Turbocharged for critical altitude of 10,670 m. 

Naturally aspirated version al.o made available 
(without turbocharger ouly). 
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• 
ADVANCED SPARK-IGNITION AIRCRAFT PISTON ENGl. 

ADVANCED lECHN<l.OGY ITEM EFFORT VS. Boon 

low Moderate 
..... ' Id ... Vr.. ... C 

F uti :;::::::::::::;:::~::::::::·::::::::::;::::::::;t EffOrt 
I B.neflt 

Homogeneous Charge Leln Burn 
Combustion 

System 

High 

TUS:=~~ngI ·::::::;:::;:;:;:;:;;;:;:;:;:;:;:;:;:;::::::11 mproved Supercharglng!Turbocompoundlng 

Bottoming Cycle -" - ~I 

Configuration 
.::;:::::':.;.:.;'::::::;:;.;:::>'':''::::::::::::::;:;.:::>'::::::::j V 

CJ 
:::::'::'::: :::.c: .. :;':':;:; :;';::;:: .. -:.;:::'::.:';:'.;:::;-:::.::::::::::.;:;:::::::::::::::::;:::::::::::;:::;;:;:;:::::::::;::1 

Cooling 
-.J 

Materials 
E::,:.::." ' .. :::: .:.:;:: ... ;:.::::: .... ':: -:::.::;;?>;:::;:::;;;:}::\{:;::::::;::;::.;::::::;:) 

I 

Manufacturing 
I 

Engine Auxiliary ' .. ::':>. :':>. ":::::" ;.:j 

Systems j 

lubrk:ants 
P Multlviscoslty Grade Oils 
p 

(Teledynd Continent ... l Motor.) 
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(Lcv1 ...... reh CeIltn i 
Electronic ~croca.puter stnale-lever cODtrol 
.yet_. 

T.~aet veiaht of 373 kw verslon is 163 ka. 

Cea!-4rtven propshaft - 0.75:1 (partly fer DOt .. ). 

Minllaua 2000 hour TBO. 

Compatible with c~n-cyl1nde~ f-.ily concept 
(down to 4 cylinder.). 

Stratified Cher,e 

Slx-cylindet horizontally oppoaed, alrloll cooled. 

12:1 compres.ion ratio. stratified charle, kerojet 
fuel. 

Turbocharged for critical altitude of 10,670 m. 

Nat-urally aspirated version a180 made ava~lable. 

Electronic microcomputer single-lever control 
system. 

Target weight of 373 kw version is 136 kg 
(highly turbocharged). 

Gear-driven prop.hdt - 0.7:1 

Minimum 2500 hour TBO. 

~patible with common-cyllnder family concept. 

Rotary engine program. 

Candidate for future general aviation u.~. 

Assess current state of the art. 

Look into advanced rotary engine designs. 

Program status: 

IC 2-75 Curtiss Wright engine tests - completed. 

Modified Re 2-75 test contract - in progres8. 

NASA in-house rotary engine test - just starting. 
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ADVANCED SPARK - IGNITION AIRCRAFT PISTON ENGINE 
TECHNOLOGY BASE CHRONOLOGY (OPTIMISTIC) 

80 81 82 83 84 85 86 f>1 88 89 90 

Precise Engine Defin ilion ~ I 
I 

! 
Time Available for Development I 

I 

of Advanced Technology Items ~ 
Development of Engine I 

I 

Manufacturing Techniques W/%0 
Parts and Materials I 

Procurement for Prototype ~ 
Prot.otype Engine Build-up 

I 

I 
I 

and Testing 
I 

~ ~ 
Engine and Engine/Air Frame Technology I 

I 
Certification Testing Level Frozen"""\ I ~ I 

Marketing and Customer ~ 
~ Acceptance Testing I 

I 

I 

Product Enters Market I y I 
I -
(Teledyne Continental Motors) 

L~-_ --- iFZ8s-C2 - t:~~ ta -- =.n -I':" n Y ~"'fi· Rtf if ti - ;";;;;;;;;~;;;;-~- ~~9i --. ~ i e -- .rlWz.:.~·-". 



(Lewi8 a .... rch Center) 
"clean aheet ll rotary _aine de.ian - jU8t atartiq 

Curtias Wrlaht 1119 kw atratified charae 
enaine testa - in proareaa. (land vehicle) 

Stratified charae eqiae teata - future (aircraft) 

In-house rotary enaine. 

1978 Mazda, 2 rotors, 75 kw at 7000 rpm. 

Test Proar8l\l: 

Baseline - carbureted. 

Tear down and install combustion instrumenta
tion. 

Repeat baseline. 

Autotronic fuel control and multispark 
ignition. 

Leaning study. 

Ignition effects on combustion. 

Thermal barrier coatings. 

Turhocharging. 

Stratified charge - simplified system. 

"Clean sheet" rotary design SLdy. 

Contractor: Curtiss-Wright Corporation 

Date: June 11. 1979 - June 11. 1980 

Goals: 

1 Ib/hp at takeoff power. 

BSFC ~ .23 kg/kw/hr at 75% cruise. 

Operate efficiently on 110/130 octane plus 
one or more alternative fuels. 

Meet 1979 EPA piston aircraft emission 
standards. 
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APPROACH: 

• TEST UISTIt.G ENGIN( PERFORMANCE AND EMISSIONS 
• DEFINE PHVSICAL CHARACTERISTICS INCLUDING 

SCALING EFFECTS 

FINAL RESULTS: 

u 
u... 
III 
CD 

w 
II": -

0.6 

0.5 AIr - Cooled 
Piston Enqine 

;::) 
or:: 
u 

Ranqe (149 - 224 kw) 

0.4 
0.06 0.07 0.08 0.09 

FUEL I AIR RATIO 

EHISSIONS-% OF STD Uf.IGHT** 
ItC CO NOx KG7K\~ 

EX I STI HG ENG It~E 139'~ 89 57 .77 
ENGINE RANGE 160-240 180-360 10-50 .-s5 - 1:lr9" 

'" 85% from taxi & idle 
** Includes cool ing system 

RotaTY En,ine ChaTacteTization 
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EFFECT OF ENGINE MODIFICATIONS 

• Spark Plug location (closer) 
• Compression Ratio (higher) 
• S ide Ports 

STD Spark 
Plug 1.6Ocm 
Retraction 

Standard PI ug 
Configuration - ~~~~iLSteellnsert 

Reworked Plug 
Configuration 

RC-1-75 Engine 

"-
'\<"----~ Surface Gap 

Plug .102cm 
Retraction 

77% Power, 5500 RPM .38 c: 
c: 55° BTDC Tim ing .2 
£ .00 ~ a 
a . / .36 E 
~ .58 RC-2-J5 Contract Engme /' ~ 
§ .56 @77%Prmer 1.5: 1 C. R.~ 7.5: 1 C. R. SYM Rotor 34 8 ~ 
~ f.54 ,~../ STD Plugs l.6OcmRet. . ~;i: 
~~ "'-'/./~8.5:1 C.R.SYMRotor 32~~ 
.!::! ~ .52 STD Plug 1. 60cm Ret. . ~ ~ 
:!::aJ " /. u ~ ...J .50 '--" .;!: 8.5 : 1 C. R. SY M Rotor 8. 
Q. ,.",~ Surface Gap . 89cm Ret. .30 tn 

~ .48 ---- ~ ~ ____ 8.5 : 1 C. R. SYM Rotor ~ 
~ 46 Surface Gap. 102cm Ret. .28 aJ 
aJ • L-__ ~ __ ~ __ ~ __ L-__ L-__ ~ __ ~ __ ~ 

. 054 . 058 . 062 . 066 . 070 . 074 . 078 . 082 
Fuel-Air Ratio 

RC-I-75 SFC VS. F/A Ratio 

o 

.086 
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(1.ewia bHarch Ceater) 
Manufaeturina eo.te ea.parable or le.. than 
current aircraft enaine •• 

Maintenance and overall life cycle coat. 
lower than current reeiproeatiq .. iIle •• 

Altitude capability equal to current ena1lle •• 

u •• SCRC 4-350 ae baaeline enaine • 

Conceptually design engine. 

Ingine/airfrMme integration. 

Identify new technology items which offer a signi
ficant payoff. 

Diesel engine program 

Objective: Develop in-bouse research and technical 
base to assess potential alternative engine candidates 
for future general aviation use. 

Potential benefits. 

50% reduction in life cycle cost. 

25%-40% reduction in fuel consumption. 

10%-30% reduction in specific weight. 

50% reduced specifIc size. 

Improved reliability through fewer moving parts. 

Broad range of usable fuels. 

Engine description. 

2 cycle, radial diesel (6 cylinder rated at 298 kw 
(flat» • 

3500 rpm geared to 2400 rpm for the propeller. 

Uncooled, adiabatic engine. High technology 
insulated cylinders. 

Minimum cooling configuration greatly reduces 
cooling drag. Cooling is required for the turbo
charger and oil • 
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(Lewis Re.earch Center) 

2 cycle operation re.ults in 93° C lower SGT. 

IValustinl a 149 kw and a 298 ltv al_imaa f1nneci, 
cooled enaine. 149 ltv version is 4 cylinder, with 
a BSPC of .213 to .219 ka/kw/hr. 

For the 298 kw, uncooled version, cruise BSPC 1s 
.195 Ka/kw/hr. At 6100 m and full power, 8SFC 
is expected to be on the order of .213 to .219 
Ka/kw/hr. 

The diesel operates best at full power but obtains 
its best BSFC at 75% to 80% power. 

III. Propeller Technology 

Candidate Propulsion systems (4) 

Turboprop 
Propfan 
Variable pitch fan 
Turbofan 

Parametric comparison of a small aircraft to a large aircraft: 

small large 

CL 1.7 3.0 
max 

W (kg) 5675 363200 max 

S (m2 ) 29.97 511 

W/s (N/ml) 1867 6990 

CL (min drag) .7 .7 

Qsta11 (N/m2
) 1101 2327 

QL/D (N/m2 ) 2681 10055 
max 

LIn max 13 19 

Relative to a large aircraft, general aviation aircraft 
require propulsion systems having: 

high cruise thrust at altitude 
high engine thrust/weight ratio 
low specific fuel consumption 
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PROP FAN 
FUEL SA V I NG TRENDS RnA TIVE TO TURBOFANS 

Block 
Fuel 

Savings. , 
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~ ominated 
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Operating Range 
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MAX. LID SPEED VS~ ALTITUDE FOR 
"SMAlllI AND 'URGE" AIRCRAFT 

5(DX) • • 

I I AlA. 

am 

-eDDJ 
.s 
::J 

[j lOOSS 
:t:: 
." --<20m ·CD -19 

I I / 
11m) 

• J.5CD) 

..~~ I 

11m) E -CD 
"C 
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(Lewis ..... rcb Center) 
Propulsion system comparison. 

Propfans: High speed - challeoge. the turbofan • 

Variable pitch fan: Intermediate speed - challenges the 
turboprop. 

Recommend two feasibility studies 

(1) Propfan application to ... 11 business aircraft 
(Mach • .7 to .8). 

(2) Variable pitch fan application to commuter aircraft. 

General Aviation Propeller (GAP) program 

Background 

NACA propeller research ended in the 1950's. 

Advanced turboprop of 1915 at M • .8. 

GAP - tcchnolcgy for lower speed general aviation. 

Coals 

Reduce fuel used by 8% to 9%. 

Lower noise by 5 to 10 dB. 

Improved safety through use of composites for strength. 

Current design practice 

40 years of experience. 

Aluminum construction. 

Few blade d~signs: cut down or extend tip. 
add blades. 

Aircraft integration: "cut and try" process. 
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(Levi. a. ... rch Cater) 
Deaian Trad.: 

Curreut rracti.5! 

very low coat 

llOIl-optiIUI 

Future 

optiaiaed 

noiae 1 Govt. 
ae,l. I-_ ....... ~ low noia. 

per fomance -.f EDeray I 
Shorta.e: 

t--~ .. ~ blab pedomanc. 

structure 1 bfety I---t .. ~ composites 

Program participanta 

Coat/benefit litudy - McCauley 

Improved perf;rmance concepts - Purdue 

Aero-acoustic methodologies - OSU 

Advanced pr.)peller balan\!e - contract 

McCauley GAP cost/benefit study 

Task I: Identify advanced technologies and cost/benefit. 

Task II: Optimum configurations and mlssion analysis. 

Task III: Technology assessment and program plan. 

Aircraft Categories: 

(1) Reciprocating engine, 261 kw, 250 kta. 

(2) TurbQprop, 746 kw. 

(3) Aerial application, 186-746 kw. 

McCauley Study Team: 

McCauley - Performance and coordination. 

Cessna Pawnee - Aircraft and mission analysis. 

Ohio State - Noise and performance. 

Materials Science Corporation - Composites. 
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(Levi. leeearcb Center) 
taproved Performance Concepte 

Swept liftinl line analysie. 

lap roved testiDl technique. - la.er Doppler ve1oct.eter • 

New concepts - proplets, swept blades. 

Propeller aero-acoustic methodololi.e 

Phase 1: Predict and test 1.52 • dl ... ter models 

Airfoil technology - Clark Y. NACA 16. CAW-2, 
ARA-D. 

Phase 2: Flight teat comparison. 

Phase 1: I.proved aethodologies and verification. 

Team: Ohio State 
Rockwell International 
Hartzell 
Hank Borst 
Dowty 

Small Transport Aircraft Technology (STAT) 

Lewis Research Center Capabilities 

Propulsion system performance 

Noise 

Icing Studies 

Propeller aeroelastics. 

FY 1979 Plans 

Engine and propeller studies. 
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PROPB.LER MODB. COMPAR ISON 

r~ 

Q 
G\ ,.., -SR-2 SR-l, 1M SR-3 

Tip Speed 
m/SIC (filSIC) 

244 (lD)) 244 UO» 244 (111)' 

PCMlr ~oad:;;~ 301 (37.5) 301 (37.5) 301 (37.5' 
kW/m (h ) 

No. or Blades 8 8 8 
T~ Sweep 0 30 e 

ngll, deg 
Design Eft, ~ 77 19 81 
Design Noise 143 143 137 
level, dB 

I, ... 

I _ • ___ • ______ _ 



HIGH SPEED PROPELLER PERFORMANCE SUMMARY 

J :II 3. 06 Cp = I. 7 D '"' 24.5" 

86 

84~ -- --- - - "---Idea;-Effie ienw --
82 t Blade Drag :II 

~80 f ~ ~Study Value -- ~ c 
w 

~-
:u 78 I- .... -- SweeQ u.J 76 c 

0° O'l • SR-2 Area Ruled .:r; 74 
• SR-l 30° Conic a 

72 • SR-IM 30° Conic 
70 I oSR-lM 30° Area Ruled 

- SR-3 45° Area Ruled 
68 

.60 .65 . 70 . 75 .80 .85 
Mach No., Mo 
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APPENDIX! 

TECHNOl..OGY EVALUATION 

Five significant aspects of the technology evaluation are 

discussed in this appendix. Although all are briefly mentioned in 

Chapter 4. they ar~ amplified here to further define the basis 

for the results of the technology evaluation. 

Section 8.1 discusses the Category 3elec~lon Survey (Survey 1) 

and describes how the 17 evaluation categories " .. ere splect~d. 

SectilJ,l B.2 describ(>s the Category Rating Survey (SUTVt>y 2) 

:md dl'scribes how the relativ(' importance of the 17 evaluation 

catL'gllries wt.>re estahl i shed. Histograms of round 3 and mean 

S~'l'tion ILJ Jl'scrltws till' Candld.ltL' Tl,c1l1lo1of,Y Tdt'ntification 

prllcl'ss. 81 dl'1t'tl'd tl·chnolnp.i(>s (137 Pn'lim1nary Candidate 

Tt"'hnlllo~it's - ')6 Fin.11 Cantlido'lt" T(lchnnlnr,it's) art' briefly 

SN't i('n 8.4 addrt'-.:s{'s the l'LOE studies which were performed 

as part of till' 3n:llvsiR nf ttlt' ~l'll'ctCrl Evatllat ion Technique. 

(")tnl'll'h' t.tblt.'s for till' P,'s!.qmiHi.'. iikl'lv. and optimistic 

~l'l'narilIS ;trt' rn'~l'nll'd Inr "ntl' :lirplalwh. Also, the results of 

this stud\' ,lrt' )~r;lphl('allv I'rt'M'ntl'd fpt' bllth airplanes. 

Fin;dly. Scl"tl,)1\ IL" l'xamin.·..: the effl'l't of Empty Heir-ht 

catq',llry fat lngs of () <lnd l). '> v~, th.' computed rat tnRs of 4.340 and 

5b57 (for Airplanes A and 8 r('sp('~tiv('ly) lin the technology 

rankin~s. 
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B.l CATEGOIY SE~~TtON SURVEY 

The category selection survey was based on the Delphi method 

which involves sequential rounds of written co.munication in 

which the group response from one round is fed back to partici

pants for consid£ration in the next round. The participants were 

the project staff and members of the University of Kan.a. Aero

space Engineering Department Faculty. Four survey rounds were 

required to obtain satisfactory convergence and round-to-round 

feedback consisted of partic1pant comments and participant voting 

(in the form of an "average" list) from the previous round. 

The first round established a large category list with defi

nitions for each category. This list and definitions were refined 

in subsequent rounds to arrive at the final categor} list of 17 

categories. Participants rated their own confidence in their 

responses with a confidence level,CL, (0 ~ CL ~ 10) which was used 

to weight tt~ voting. 

An average list was established after each round by compiling 

a list of the "N" most-voted categories where N w<\s the average 

number of categories in the participant lists. When two catego

ries in the average list appeared to directly overlap, the cate

gory with the smaller number of votes was deleted and the next 

most voted category was added. 

Variations in the average list were small after the first 

round and convergence was assumed after the fourth round. Tables 

B.l through B.4 present the average lists of rounds 1 through 4 

respectively. 
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Catelorx. !5!!. 
• 

Safety • • • • • • • • • • •• ) 

Fuel !ffici~c} •• • • · . · . 4 

• 
Purchase hiee · . . . 4 

Reliability · . . ~ . . . . . 4 

Survivability. . . · . 4 

Empty Weight • • • • • • • 3 

Exterior Noise • 3 

Handling Qualities · . · . 3 

Interior Noise • · 3 

Maintenanct:. i':ost · · . · . 3 

Pilot Workload 3 

Range. . . . · 3 

Stall Speed • . · 3 

Maltimum number of votes • 8 (no confiden·ce levels) 

The final list of categories was obtained by checking the 

fourth round average list against the three selection criteria 

as discussed in Section 4.1.2. This result£~ ir a final category 

list which differs from the fourth round average list in three 

respects. 

(1) The categories of "?ayload" and "Empty Weight" overlap. 

.. Hence "Payload", having fewer votes. was deleted from the 

list. 
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tul.I.2. IIMm4 2 A.ver ... Cateaory Llat 

Vot .. Cateaory 

Purcba .. Price • • • • • • • • • 54.5 

Exterior HolM • • • • • • • • • 53.5 

49.0 Fuel Effic1ency. · . . · . . • • 

1111 •• 10118. • • • · . . · . . • • 46.5 

lel1ab1l1ty. • · . . . . · . . • 46.5 

44.5 D1reet OperatiD8 Cost. · . . . . 
Payload. • • • • • • • • • • • • 44.5 

Overall Pilot Workload • · . . 
Safety •••• · . . . . . 
Survivability. • • · . . . 
Takeof f /Landing Performanl~e. 

Interior Noise • • 

Range. • • • 

Cruise Speed • • · . . 
Ride Qualities • 

Static Comfort • • 

Empty Weight • • · . . 
Lift/Dra~ Ratio. • . . 

• 39.5 

• 39.5 

• 39.5 

39.5 

• 39.0 

37.5 

• 30.0 

• 30.0 

• 30.0 

• 24.0 

• 22.0 

Maximum number of votes • 63.5 (includes confidence levels) 

(2) "Overall Pilot Workload" was changed to "Pilot Workload" for 

clarity, but the former's definition was retained. 
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Table 1.3. IDua4 3 A".r ... CAteaory List 

CateSOn 

Direct aperatina COat · . . • • 

laaia.i01l8 • • • • • • • • • • • 

Exterior Ioi.e. • · . • • • • • 

PUel Efficiency • • • • • • · . 
Overall Pilot Workload. · • 
Purchase Price. • • · · • · 
Reliability . · · · · · · 
Safety. . . 
Takeoff/Landing Performance 

Empty Weight. · · · 
Interior Noise. · • • 

Ride Qualities. 

Static Comfort. · · • • · 
Survivability • · · · · · 
Cruise Speed. · 
Range . · · · · 
Payload . · · · · · · · · 

52.5 

52.5 

52.5 

52.5 

52.S 

52.5 

52.5 

52.5 

52.5 

43.5 

43.5 

43.5 

43.5 

42.5 

35.5 

33.5 

25.5 

Maximum number of votes • 52.5(inc1udes confidence levels) 

(3) The definitions of all of the categories w~re reviewed and 

refined if necessary. 

The final category list (17 categories) used in th~ evalua-

tion technique is presented in Table B.S. 
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Cataloq Vot .. -
Cruia. Speed. • • • • • • • •• 53.5 

Direct OparatiDa Coat • • • •• 53.5 

Ba1aaioa8 • • • • • • • • • • • 

Exterior 8oia.. • • • · . . • • 

Fuel Effici81lcy · . . · . • • • 

Interior Noiae. • . . · . . 
Overall PiJot Workload. 

Purchase Price. . . . . 

53.5 

53.5 

53.5 

53.5 

53.5 

53.5 

Rel:f.ability • • • • • • • • •• 53.5 

Ride Qualities. • 

Safety ••••• · . . 
Static Comfort. · . 

· . . 
· . . · . 

53.5 

53.5 

53.5 

Takeoff/Landing Performance 5l.5 

Empty Weight. • • 44.5 

Range •• 

CeIling • . . . . . . . 
Crashworthiness • 

Payload • • • • 

44.5 

28.0 

28.0 

24.5 

Maximum number of votes • 53.5 (includes confidence levels) 

398 

• 



, 
, . 
" 

I 
i 
f , 

i 
I 

t 

t 
• 

I 

• 

Cau1aa 

.. 
CTaabwrth1a ... 

Cruiae Speed 

Direct OperatiD, eoat 

lllabaioDs 

E1Ipty Wei,ht 

Exterior Noise 

Fuel Efficiency 

Interior Noise 

Pilot Workload 

Def1altioa 

Altitude at which tM _S
rata of cl1ab 1. .51 aI. 
( .. nica caU1q> • 

The characteruttc. of eu al~ 
pl.aae wbich datal'll1De the l .. el 
of occupant protection in tbe 
898ftt of a cra.b. 

Mataua continuous crui.. apee4. 

All coata directly attributable 
to flyina aDd keeping an air
plue operational. All achedul
ad and uascheduled uiDtelWlce 
coat a and fuel coata are 
included. 

Pollutants produced during the 
operation of an airplane. Does 
not include noise. 

Airplane wei,ht without fuel, 
crew, and payload. 

Noise perceived at ground level 
due to the operation of an 
airplane. 

Airplane cruise efficiency 
.. asurad in air-mlles per 
pound-fuel. 

Noiae perceived by the occu
pants of an airplane. 

The amount of tUte, concentra
tion, and effort a pilot must 
devote to the safe operation of 
an airplane. Thi. includes the 
effects of airplane handling 
qualities • 
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'fable 1.5. 'hull Cate.,l7 Liat UH4 Ia 'l'be Iftluatioa Tecba1que 
~ ..... )---;- -

cateaory 

Purchue Price the price paW for e new a1r
,1aae ~ the user, iaclwl1q 
av1oa1ca and equipaeat co.t •• 

The diataace an airplane c .. 
fly without refueltaa whUe 
allowiDa for appropriate fuel 
re.erv ••• 

Reliability A ..a.ure of the probability of 
faUure of an airplane coaponent 
or .y.tem. 

Rlde Qualities A measure of the effects of 
aircraft motion on the smooth
ne.. and comfort of the ride 
experienced by the occupants. 

Safety A measure of an airplane'e 
inherent ch~racteristic~ which 
reduce the probability of an 
accident. 

Static Comfort A measure of an airplane's 
inherent comfort. This includes 
roominess, seat comfort, venti
lation, decor, ease of entry, 
etc. 

Ta~~~ff/Landing Performance Thid parameter includes takeoff 
and landing speeds, fiel~ 
length requirements, and rates
of-climb and descent. 
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1.2 

the IreMI, uapaue fna .. nuad f.a fM .. It to particlpDt. for 

could.atloD ill the aut 1'Ot8l. • 42 panicipat. lInolftl1 !a 

thla .."., r~ ~nl _latin -.fectanrl, .at' .... , 

uaiv ... aity faculty, IIASA cet.ra, _ Pl'Ojeot ataff. A COIIPl.t. 

liatilla of the participata ia liveD 1u Chqt.r 4. 

Tht'ee IUnay roua4a vere raquired .. the roUC4l-to-rouad 

feedNeIt couiated of participat wttaa .. ca..ata. Part1ci-

paut VOUll, wu r.pr .... ted by' ...... aa4 "corrected Mall" cate-

101"1 rata.a aa4 votiDa diatributiou fA the fOnl of hlatolr_. 

The .... catelory rat fAil for .. ch airplane are l!llply 

_ilhted avera... coaputed U.inl Equation 1.1. 
a 
E (1l

1j
) (CL

i
) 

i • .;;.i·...::l~ ___ _ 
j a 

E (CL
i

) 
i-l 

where i j • the aean ratinl (0 ~ i j ~ 10) of catelory j. 

a • the ouaber of participant •• 

lllj· the retina (0 ~ llij ~ 10) 11ven catelOry j by 

parttc1pat 1. 

(1.1) 

CLi· the confldeoce level (0 ~ CLi ~ 1) of particlpat 1. 

The corrected ..aD cate.ory ratinal for both a11planes wet'e 

obtained by multlplyiol the .. an ratina by the ratio of the 
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au .. po .. U,l. Tatina (10) to the -t-IIJ"'Lr_f.al_<~, " 
~ = ~'" +- - = = - - - "'. :'."~ 

by IquatloD 1.2. 

i • <=1:!L) i 
cj I 1 

.ax 

(1.2) 

when llcJ· the conacted __ Tatiq (0 ~ iCj ~ 10) ol 

cat_pry j. 

i · the uxlaua Mall catelOry ratiq (0 < i < 10) ux - ux-

i j • the aean rat ina (0 ~ i j ~ 10) of cat •• ory j. 

The hiatoar... show the number of vote. each ratina received 

in a given catelory a •• howft by Equation B.3. 

(B.3) 

where Vjk • the number of votes in catelory j for ratinl k. 

Note: 

n • the number of participante. 

Tijk • the voting indicator of participant i in catelory 

j for rating k (Tijk • 1 for ye., 0 for DO). 

CLi • the confidence level of participant i. 

Vij i8 rounded to the nearest 0.5 for histogr .. plottinl 

purposes. 

Figure B.l presents the mean and corrected mean category 

ratinga and the histogr .. s from round 3. The round-to-round 

trenda of the mean r.tings are illustrated in 'ilure B.2. 
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Fig. B.1. Results of Round 3 of the category Rating Survey (continued) 
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Fig. B.2. Mean Category Ratina Trands (continued) 
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Fig. B.2. Mean Category Rating Trends (continued) 
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Fig. B.2. Mean Category Rating Trends (concluded) 

As mentioned previously, three rounds were required to obtain 

satisfactory convergence. The convergence criterion used is that 

suggested in Reference 125 and is based on the stability of 

participant voting. The procedure is as follows: 

(1) Calculate the total number of rating changes (TNC) in a 

categ~ry between two successive rounds. n~ci is the number 

of participants who changed their rating of category i 

between two rounds. 

(2) Calculate the total percent change (TPC) 

TNe
i 

TPC i • (-n-) 100 (B.4) 
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where TPCi • the total percent change in category i. 

TNCi • the total number of rating changes in category i. 

n • the number of participa~ts. 

(3~ If TPC
i 
~ 15%, then category i can be considered stable. 

Note: Only those participants who responded in two successive 

rounds can be included in this analysis. 

Some difficulty was encountered in applying the convergence 

criterion. First, some of the participants did not respond in 

every round. Second. the convergence criterion applies to indivi-

dual categories rather than the survey as a whole. These problems 

were overcome by computing the average category stability and by 

taking the magnitude of the changes in the mean ratings into con-

sideration. Table B.6 presents the round-to-round category 

stability and the computed average stability. As shown in this 

table. an average stability of 18% was achieved between rounds 2 

and 3. Although larger than the desired 15%, the stability was 

considered satisfactory due to the fact that the mean category 

r~tings were not changing significantly. 

The data reduction, histogram plotting, and stability 

analyses were done with an HP-9825 minicomputer. The program used 

computes both weighted (confidence levels included) and unweighted 

(confidence level~ excluded) mean ratings and histograms, but only 

the weighted results were used in the course of the survey. 
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Table 1.6. Category Rating Survey Stability 

Total Percent Change 

Rounds 1 to 2 Rounds 2 to 3 

Category Airplane Airplane 
A 1 A B 

Ceiling 44.44 38.46 )8.46 19.23 

Crashworthiness 33.33 50.00 30.77 38.46 

Cruise Speed 40.74 53.85 15.38 7.69 

Direct Operating 
Cost 44.44 42.31 11.54 11.54 

Emissions 40.74 42.31 26.92 38.46 

Empty Weight 40.74 50.00 11.S4 15.38 

Exterior Noise 44.44 34.62 19.23 11.54 

Fuel Efficiency 48.15 53.85 l1.S4 15.38 

Interior Noise 48.15 42.31 19.23 7.69 

Pilot Workload 51.85 38.46 23.08 19.23 

Purchase Price 51.85 53.85 11.54 23.08 

Range 55.56 42.31 11.54 23.08 

Reliability 40.74 50.00 19.23 11.S4 

Ride Qualities 37.04 42.31 15.38 26.92 

Safety 2S.93 30.77 7.69 7.69 

Statk Comfort 29.63 42.31 19.23 19.23 

Takeoff/Landing 
Performance 33.33 42.31 1S.38 7.69 

Averages 42.97% 17.99% 
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The catelory weiaht1naa uaed 1n the evaluation technique 

are the weiahted lIean cateaory nUngs froll Round 3 and are given 

in Chapter 4, Table 4.3. 
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B.3 CANDIDATE TECHNOLOGY IDENTIFICATION 

This appendix discusses the literature search, the preltmi

nary candidate technology selection, the final candidate techno

logy selection, and the deleted candidate technologies. 

(1) Literature Search - The literature search was conducted 

using the Lockheed DIALOG system. The on-line search 

resulted in 1655 abstracts from which 107 articles were 

ordered from the National Technical Information Service 

(NTIS). In conducting the search, nine search topics were 

used and are as follows: 

(a) Aircraft Design 

(b) Aircraft Propulsion 

(c) Aircraft Structures 

(d) Flight Controls 

(e> NaVigational Aids 

(f) Avionics 

(g) Canard Configurations 

(h). NAVSTAR/GPS 

(i) GASP (General Aviation Synthesis Program) 

The actual transcripts of the search are given in Tables B.7 

and B.8 for topics a, b, c, and d, e, f, g, h, respectively. 

Topic (1) yielded no new articles. 

(2) Preliminary Cdndidate Technologies - The preliminary candi

date technologies (137) were selected according to the cri

teria given in Chapter 4 and are presented in Table 4.6. 
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Table B.7. Search of A craft Design, Aircraft Propulsion, and Aircraft Structures_ 

Set Itoms O~scrlption 
1 52052 DESIGN") 
2 8333 SVtHH[SI? 
3 153 SIlIIIG 
4 9910 C.ONFiGURAT? 
5 67520 1-'1/0R 
6 26161 AIRUU,fT 
7 2193 AIRPIAtJE? 
8 33 AEROflU''4E'? 
9 23605 FLI Gil T 

10 44234 6-'J/OR 
1 1 7830 SAW110 
12 11155 OPT(Mll? 
13 5331 TRAnl'~ 

14 1637'; '2+13 
15 449 14MIDll 
16 1455 FrCHTFR? 
17 3097 IIEAIi'f 
18 558 TA/IV-EIl") 
19 12598 SPACECRAFT 
20 5984 SUPEHSOIIlC 
21 3192 HVPEkSONIC 
22 o VCI4 
23 5 .,C('tll 14 
24 11 MILll~~'(~ITRANSPO~T 
25 2 ~iLlrARY(W/TR4NSPORTS 
26 312 VTOl? 
27 65 RPV? 
28 281 REM]TELY(W)PILOTED 
29 o HIM.H 
30 11639 MISSIL~ 
31 429 VERTIC~L(W)lAKE{W)OFF 
32 628 vERrIC~ll~)TAKEOFF 
33 37642 lC-32/GR 
34 303 15-JJ 
35 3640 HELICOPTE~? 
36 40 HOVERCRAFT 
37 '575 SPAf.E\W)VEHltLE 
38 538 Sp~CrfW)'[HJClES 
39 4 GRO'JlI(J'~IIf.rr-[CTlYI)VEHICLE 
';0 3 GIIQ!}f")1 i:) EF rECTI 1~)VrHICl ES 
41 16 SL~rAl[IW)EFFECT(~)VEHICLE 
42 58 SUAFALrcw/frFECT(W)VEHICLES 
43 41'127 35-J12/0~ 

44 283 3'1-43 
45 16110 AIRCHAFT/OE 
46 145 45 "14 
47 138 44--1'-> 

48 161 TUReOf'ROP? 
49 396 RECIV? 
SO SJ5 PlSTO~P 
51 926 TURI~OF MH 
52 1249 PROPELLER? 
53 135 PROPULSIVE 
54 1 PROPEl-LOR? 
55 3302 40-54/0R 
56 26161 AIRCRAFT 
57 2193 AIRPLANE? 
59 3J ."I(P.CfJL/,NE? 
59 23605 FLIGHT 
60 442J,j 55-59;OP. 
61 13S,}78 SV~TU.,? 
62 97('09 EIlGlt.;E? 
63 27GS PO~FR(W)PlANT 
64 a363 P"~',E"(~I)f'LANTS 
652102:>3 61-G,l,:OQ 
66 955 SSM ;l"-,O. rlDG5 
67 13425 SOLMI? 
68 51428 NUCLEAR? 
69 ::·93 RA~.'JEr 

70 12593 SPACECR:..FT 
71 575 SPACE(W)VEHICLE 
72 538 SPACEIW)VEHICLES 
73 1097 TURSO-.lf:. P 
74 61 TOtH"J)E1<GINE 
75 399 ION(WIENGINES 
76 367 SCR:.:.t? 
77 o SCR,~~.H In.JET 
7B 77941 67-77,'OR 
79 788 66-78 
80 61 1 24 '.~ODEL") 
81 24628 SIf,':JLAT? 
82 627 79-\ 80+81) 
83 506 82-33 
84 11 FUEL(W)PROPERTIES 
85 10 44~B3 

B6 04 (48+50)' 03 
97 20G (48+50+52)-83 
a8 122 87-B6 

Print 44/5/1-283 
Pr;nt 87/5/1-206 

Search Time: 0.140 Prints: 

Set Items DescrIptIon 
1 lURS AIRFRM.1E? 
:2 496~6 MATERIAL? 
3 2588 SOliD lN~ 
4 15251 CO~POSIT? 
5 601186 2-4/0R 
6 23605 FlIGHT 
7 26161 AIRCRAFT 
8 43'598 6+7 
9 45145 STRUCTUR? 

10 1051 FRA',:E? 
11 45877 9+10 
12 G97 1 I '8-5 
13 61124 MODEl~ 
14 24629 SIMULAT? 
15 o SV'HPiH 
16 838' S YN THE'.; ~ 
17 63794 13-16/0R 
18 625 12-17 
19 5331 TRADE? 
20 13134 OPTIM? 
21 19 18·( 19+20) 
22 o lARG[CW)MILITARY 
23 5964 SUPERS'J'IIC 
24 3192 HYPERSO~~IC 
2S 17 21-(23+2l) 
26 582 IB-(23~241 

27 9 LARGE (W )TRANSPORT 
28 3097 HEAVY 
29 579 26-(27+29) 
30 18680 AIRCRAFT/TI.OE 
31 16172 FLIGHT/'lI.OE 
32 389 29~(30+31) 

Print 32/5/1-275 

Search Time: 0.378 Prints: 275 
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Table B.8. Search of Flight Controls, Navigational Aida, Avionics, 
Canard Confiauratio118, and NAVSTAR/GPS. 

Set 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
21 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
SO 
51 
52 
53 
54 
55 
56 

Ite~5 Description 
26161 AIRCiUFT 
231305 FLIGHT 

68 STAB III TV I W) .\UGMENTATION 
14 ACTIVEIWICONTROLS 
23 ACTIVEIW\CONTROl 

16640 STABILITY 
2020 CONTROL(W\SY~TEM 

14746 CONTnOllWISYSTEMS 
1 AUTOMATICIWIP'lOT 

519 AurOMATICIW)PIlOTS 
7 AUTO(\I'\PlLOT 
o AUrO(\~'PILOTS 

100 AUTOP (lOT? 
31673 6-13/01~ 

6019 (1+2)·'4 
605:;1 15+3.4+5 

65 RPV? 
53 TFR 
54 TERRAINIWIFOLLOWING 
76 OA T jI (W I Uf\jK 

12001 SP~CECRAFT? 
575 5PACE(~)VEHICLE 
538 SPACEIWIVEHICLES 

134'32 17-2],OR 
5651 16-24 

45145 STRUCTUR7 
871 FLU rTEIP 

13 LOAO(WIALLEVIATION 
5212 25-I~u+27+28) 

29 V/STOL 
312 VTOI. 

3640 HELICOPTER? 
7500 MI~:;IL[ 
3'99 "YP[RSONIC? 
5990 SUPERSU~IC? 

19720 30-35;OR 
30(;8 29-36 

52062 DeS IG~P 
8333 SVN1HESl? 
5331 TRjI,,[') 

13134 OPT I"'? 
75053 30-11/0R 

040 4' -:17 
611~4 r,IQDEI.? 
24628 SIMliLAT'" 

1455 F (Gill [[1' 

:2 UILlrAqY(~'TR'NSP[RTS 
3097 tlEAVV 

40 tlOVERCIl.H P 
173 SURFACEIWI~FFlCT 
II MILIIA~'I~ITPANSPORT 

79717 44-S1/0R 
500 43-5' 

4746 NAVIG:.TlOr~ 
4203 POSITIO~j? 
7806 AID? 

425 

57 20912 
58 369 
59105234 
60 257 

FAe I LI T? 
(1+2)f(54+55).(56+57) 
24+36+52 
58-59 

rl 9 5:1-60 
6· 150R 
63 7918 
64 5702 
65 2ifjl 
66 1482 
67 7997 
68 496903 
6~ 1330 
70 0 
71 14!'OO 
72 16710 
73 1030 
74 76790 
7!; 4469~ 
76 669 

AVIONICS 
INSTnUr.1ENTA T ION 
DISPI.AY? 

(1+21*(62+63+64) 
€5-5S 

77 2 
78 43 
79 55·1 
80 1267 
Bl '5513 
82 165 
83 7 

WEATHF.R 
MATERIAL? 

66-(67+61:1) 
r.IRCRACFr/DE 
FLlGIH /Dl 
AIRCRArT/DE 
(7'·72) '69 

TEST? 
n:ASUR'? 

73-(74+75) 
7C'60-53 
76-53 

76-(39+391 
79+60+53 

SATELLl T? 
CAN ArlO 
CANARJS 

84 80 
85 22 

'92+83)'(1+2) 
42'84 

Print 80/5/1-780 
Print 85/5/1-2, 

SearCh Time: 0.967 

Set Items Description 

Prints: 802 

I 0 GLOUAL(W)POSITIONIG(W)SVSTEM 
2 34 GI'S 
3 81 GLOUAL(W)POSITIONING(W)SYSTEM 
4 29 f\j,WS T AR 
5 'l 2-3·4 
6 24 2':' 
7 44 4 .. G 
8 £lei 3 .. 4 

Print 8/5/1-89 

Search TIme: 0.112 PrInts: 89 
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(3) Final Candidate Technologies - The final candidate technolo-

gies (56) were selected according to the criteria given in 

Chapter 4 and are presented in Tdble 4.7. 

(4) Deleted Technology Discussion - The reasons for deleting 

technologies from the preliminary candidate technology list 

in generating the final candidate technology list are now 

discussed for each deleted technology by area. 

I. AERODYNAMICS 

Variable Geometry Winglets 
Deleted because it appears to be more of an idea than a 
technology. Data a~e lacking. 

. Supercritical airfoils 
Deleted becau~e it is not applicable to the 6-passenger or 
commuter airplanes. It does appear very promising for high 
subsonic cruise applications and is currently used on a few 
airplanes. 

II. AIRCRAFT SYSTEMS 

Microwave Anti-Icing 
Deleted because it appears to be an idea rather than a 
technology. Data are lacking. 

Lithium Hydroxide/Hydrogen Peroxide Batteries 
Research on advanced batteries is on-going, but data are 
somewhat limited. If the potential of these batteries is 
realized, they will certainly benefit general aviation 
airplanes. Unless an electric-powered airplane becomes 
feaSible, impacts may be expected to be minimal. 

Air-Cycle Environmental Systems 
Deleted due to a lack of data. Also, improvements in most 
environmental systems can be expected to gain acceptance • 

• Improved Lead-Acid Batteries 
Lead-acid batteri~s are an established technology. Improve
ments in this area can be expected to gain acceptance of 
their own accord. 

Variable Cycle Environmental Systems 
These systems do not appear to be well suited to general 
aviation airplanes. 
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• Accurate Fuel Monitoring and Maug_wt 
This is a result of the application of various technoloaiea. 
Improvements in thi8 aree do not appear to be coat-effective 
for most general aviation applications. 

·High-Speed Brushless Alternator 
This was combined with AC electrical syatems due to techooloay 
level considerations. 

'Single Unit Starter/Generator 
Deleted due to technology level considerations. Also, viable 
developments in this area are expected to gain acceptance of 
their own accord. Although used on some turbine engines, 
gearing for reciprocating engines is expected to be heavy. 

'Air Bearings 
Deleted due to technology level considerations. However, 
this technology is considered to be the most important 
of several in order to develop improved turbochargers. 

III. COMPUTATIONAL METHODS 

This entire group was deleted for two reasons. First, all 
are second order technologies. Second, with the exception 
of CADCAM (which appears a long way off for general aviation), 
general aviation is increasingly using computational methods 
at present. Specific developments which must be realized 
are those codes with an aoility to handle (1) canards where 
deformed wakes may be accounted for. (2) 3D analytical methods 
for advanced low-speed, medium-speed, and natural laminar 
flow wings, and (3) wing-spoiler-flap configurations. 

IV. CRASHWORTHINESS 

'Foam-Filled Fuel Tanks 
Deleted primarily due to a lac~ of data. 

'Anti-Misting Fuel Treatment. 
Deleted primarily due to a la:k of data. 

'Frangible Fuel Fittings 
Current systems are quite expensive. If the costs could be 
reduced, widespread use could be expected. Note that these 
fittings are used in the Burst/~ear Resistant Fuel Tanks 
which are discussed in Section 3.5.4.4. 

v. FLIGHT CONTROL SYSTEMS 

'Winglets for Lateral-Directional Control 
This is an unlikely application of winglets except for canard 
configurations. Deleted primarily because winglets are 
included in the aerodynamics technology area. 
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-Porce-Stick Controller. 
Deleted clue to teehDolou 1-.1 couicleratt.oaa. and i. 
actually 1apliecl in the techDolo,ie. of Uy-b1-wtn act 
fly-by-liabt. 

·Digital Auto.atic P1iaht Control. 
Deleted becau.e the.e technoloaie. are already filteriD, into 
leneral aviation. 

·Stick Shaker/Pu.her ancI Stabiliaer/l1evator Spoilers for 
Stall Prevention 
The.. two technologies vere combined into one aDcI are 
evaluated (Active Stall Prevention). 

IV. INFORMATION SYSTEMS 

·Flush AnteDll&s 
This was deleted due to technololY level considerations. 

'Single-Function and Tt.e Shared caT Displays 
These were combined into "CRT Displays" aDd are evaluated. 

'Warning Annunciators and Airplane Health/Diagnostic Systems 
Theae were combined into "Syst... Status Displays" and 
are evaluated. 

'Total P.nel~unted Avionics 
Deleted because the trend is already towards panel-mounted 
avionics. 

'Active Outsi~Q Imaging 
While this is possible, it will not be feasible for general 
aviation airplanes in the for~seeable future. 

'Fluidic Shed Vortex Airspeed Sensors 
Deleted due to technology level considerations. 

'Fluidic Rate Sensors 
Deleted due to technology level ~onsiderations. 

,Multiplexing and AlINe-Type Broadcast Hierarchy 
Both were deleted because they represent design philosophies 
more than technologies. Either is applicable to integrated 
avionics packages. 

,Plezo-Resistive Pressure Transducers 
Deleted dut! to technology level considerations, 
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• Liquid Crystal Display. 
De1atad due to teelmolo,y 1a.,.1 couUal'at101ls aDd the 
fact that non-mecbanica1 display. in the near futura will 
probably be CRT'a in II08t appU,cat1ons. See the di8CWl8ion 
of display. ln Section 4.5.6.2. 

• 'lat 'anal CRT Display. 
Deleted because flat CIT'. appear unlikely in ,aural avia
tion appllcationa in the foraseeabla future. Sea the dis
cussion of display. in Section 4.5.6.2. 

• Touch Sensitive CRT 
Deleted due to technology level conalderations. This could 
be a component of a number of adv3nced avionics .ystems, 
and was an integral part of PCAAS. 

• Weather Radar and Radar Altimeter 
Deleted because they are already gaining acceptance in 
general aviation. 

• Alternate Weather Detection 
Only one alternate weather detection device (aside from 
radar) was found ana it is currently available (Ryan 
Stormscope). 

• On-Board Computing Capability 
This was deleted because it is an integral part of many 
other advanced technologies such as integrated avionics 
and displays, systems management displays, etc. 

· 3-Axis Magnetometer ~celeration Sensor 
Deleted due to technology level considerations. See related 
work discussed in Section 4.5.6.6 and Figure 4.21. 

• Improved Stall Warning 
This is more of an idea than a specific technology. Active 
stall prevention is discussed in Section 4.5.5.14. 

VII. MATERIALS/PROCESSES 

• All Processes 
These were deleted because they are second order technologies. 

· Metal/Hetal Bonding 
This t~chnology is already finding substantial acceptance. 

• Corrosion Resistant Coatings 
Deleted due to technology level considerations. 

• Honeycomb Core/Composite Skin Panels 
Considered as a possible use of all compos1.te materials. 
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VIII. NAVIGATIOH ~ .. XPTS 

·voa/l111 DAV 
1'bi8 techDoloaY ia already 1D UN. 

'Scaan1Da VOl/lItE DAV 
Thi. exteu101l of vOl/OM! DAV don aot really c...... the 
f __ tal techaololY of VOIl Daviptioll althoulh it ... 
repre •• t aD iaproveMDt i1l aor. .ff1cieat UN aad autOlla
ti01l. Work dOll. at AM. appear. 111 Sectioa 4.5.6.6. 

'VLF NAVCOH 
Deleted becau.e it 1a c~rreQtly available. 

·Differential OMEGA 
Delet'~ due to technololY consideration.. OMEGA i. evaluated 
in Sec~ :m 4.5.7.6. 

·Inerti.l s.oothinl 
Thie concept is not really applicable to general aviation 
airplanes although inertial navigation i. evaluated. Ames 
has done work in chi. area for V'l'OL aircraft. 

IX. NOISE 

'Noise Absorbing Materials 
No breakthroughs were found in this area. 

·Improved Mufflers 
This is a concept rather than a technology. No specific 
examples were found. 

·Variable Engine/Propeller Gearing 
This is a concept rather than a technology. No specific 
examples were found. 

x. PROPULSION 

'Advanced Reciprocating Engine 
This was divided into the two technologies described a8 an 
Advanced Stratified Charge Reciprocating Engine and an 
Advanced Hlgh Compression Ratio Lean Burn Engine. Both are 
assumed to have variable ignition timing and fuel injection. 

·Auto Engine C..onversions 
This was deleted because it has limited application to 
general IwiaHon although it is being ex_ined for agricultu
ral airplane •• 
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-Stratified Char ... VarUble T1aiD •• Blfttnaic lp1tioll. 
Autoaat1c Mixture Cofttrol. lAD lun ~.t1cm Cbaber. 
Den.ity eo.paaac1n& ruel lajectlon. aDd Total Hicro,roc •• 80r 
1a11M Coatl'Ol. 
TheH techD01oli •• vera either deleted due to tee_010., 
level couiderationa or weI'. cOD8U.recl to be lIaclwled ill •• 
or _1'. of the advanced teclmolOSJ aquea. . 

-Cooled Turbine Ilad •• 
Thi. technology 18 already be1na pursued. 

·Ceraaic TUrbine. 
Deleted due to technololY level con81derationa. Ceraic 
coapooente are considered a part of certain advanc~ enainea. 

°Coapoaitc Propellera 
This is inc::lude4 in quiet. efUcient propeller l.·.chDology_ 

-Torsionally (aeroela_tic) Tailored Propeller Blades 
This i_ more a concept than a technology. 

·Single Lever Throttle/Mixture Control 
Thi_ has already been developed for general aviation. 

oQCGAT Engine and Propfans 
Both of these technologies were deleted because tbey are not 
applicable to either the 6-passenger or commuter airplanes. 
However, both are very promising and are discussed in 
Section 4.6_ 

-Variable Bypass Turbofan and Variable Pitch Fan (turbofan) 
Neith~r one is applicable to the airplanes in question. 

oEfficient Propeller Technology 
This was combined with Quiet Propeller Technology_ 
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1.4 PESSIHISTIC, h~, OPTIMISTIC, ~ IXPICTID (PLQ!) nCUII 

!!. MDIT ~S1'UD::.;;,:;;;I_B:.::.S 

The rationale ana .. tbodololY of the PLOB studi.s are 

l»reseotliod in Chapter 4. Th. purpose of this appendix 1a to supply 

basic documentation fot the anslysis. 

Tsbles B.9 through 1.11 present the actual techn61ol1 wvalua-

tions for peesimistic, 11kely, and optiaistlc reletive benefits 

respectively. FilUr.~ 1.3 and I.~ illustrate the PLO! fiaures of 

.. rit for Airplanea A and B respectively. 

When reviewina the evaluations presented here, the reader ia 

reminded that they are used only to teat the evaluation technique 

and do not (in aeneral) corre8l»Qnd to the final technology 

evaluation as far as the overall orderina of the technoloaiea is 

concerned. Also, Efficient Propeller Technology and Quiet Pro-

peller Teehnolog7 are treated separately in the PLOE studies but 

were combined into a sinale technology in the final technoloay 

evaluation. 
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Table 8.9. Pessimistic Te,hnology Evaluation 

A"'lANE A 

FOllOlI' ··.TABULAR RESULTS FOR All TECHHOlOGIES 

CRSH CRUS 
CUL IITHT SPED 

£HIS [MlY EXTR FUEL I"TR PllT PReH IElI RIDE STAf fOLD 
DOC SIOH liGHT NOJS i'" NOJ5 IIR", '.CE .'1 ell' allY S'lY eN" ,IIF 

C.TEGORY WEIGHTS S.4~ ~.82 7.92 7.91 1.61 4.34 4.29 8.16 7.04 7.3S 8.51 7.29 8.IS 6.11 9.4Z 6.Z4 6.87 

GATE ENGINE 

STIT CHG ROT COMB ENGINE 

KEVLAR (OMPOSITE~ 

ADVANCED DIESEL ENGINE 

QUIET PROP TECHNOLOG' 

GRAPHI!~ eO~POSITES 

ST.AT tUG .[CIP ENGI~f 

He_Le R[tIP ENGINE 

EFFICIENT PROP TCHNLGY 

FI8ERGlJSS COMPOSITES 

SPOILERS 

IMPROVED TURBOCHA.GING 

SEPARATE SFe TECHNOLOGY 

LIQUID COOLING 

LOAD LIMITING SEATS 

N~T LAM Flail AIRFOILS 

S'S ST.TUS OSlO 

A~TIV[ lAMINA. fLOII eTl 

IMPROV!D RESTRAINTS 

INTEG AVIONICS AND DSPYS 

lOW/MEOP S~F.EO AIRFOILS 

o. 
O. 
O. 
O. 
o. 
0.5 

o. 
o. 
O. 
O. 

O. 
o. 
o. 
o. 
o. 
O. 
O. 
O. 
o. 
o. 

1.0 

1.0 
1.0 

o. 
O. 
1.0 

D. 
o. 
0.5 
t.O 

1.S 1.D 3.D O. z.o 
1.0 Z.O 2.0 1.0 1.0 

1.5 O. 2.0 O. Z.O 

1.0 3.0 D. 1.0 1.0 

O. O. 0.5 S.O o. 
1.5 O. 3.0 O. Z.O 

1.0 3.0 0.5 O. 1.0 

1.0 3.0 0.5 O. 1.0 

O.S O. 0.5 O. 0.5 

0.5 O. O.S O. 1.0 

O. 1.0 -1.0 

1.0 o. O. 
O. O. -1.0 

1.0 O. -1.0 

3.0 O. O. 
O. O. -1.0 

o. O. o. 
O. o. o. 
O. o. O. 

o. O. o.S 

1.0 Z.O 1.0 2.0 o. 
1.0 1.0 O. 0.5 1.0 

Z.O o. O. o. O. 
2.0 O.S O. 0.5 O. 
o. o.~ o. 0.5 o. 
2.0 O. O. o. o. 
1.0 O.S o. 0.5 O. 
1.0 O.S O. 0.5 O. 

0.5 1.0 O. 0.5 O. 
1.0 o. o. O. O. 

0.5 O. 1.0 D.5 O. o. O. 0.5 O. o. -0.5 0.5 O. 1.0 O. O. 
2.0 

O. 
o. 
O. 
0.5 

O. 
T.5 

O. 
O. 
O. 

o. 
o. 
O. 
3.0 

n. 
o. 
O. 

O. O. 

o. O. 

0.5 O. 

o. n. 
0.5 O.S 

O. -0.5 

'.5 1.0 

3.0 O. o. 
o. 
o. 

D. O. 

O. o. 

o. o. 
o. O. 

2.0 -T.5 

o. O. 

O. O. 

O. O. 
D. -2.5 

o. 
O. 
1.0 

O. 
O. 
O. 
O. 

O. 
D. 
O. 

O. O. 

O. O. 

0.5 O. 

1.0 

O. 
1.0 

O. 
1.0 

O. 
3.0 

O. 
O. 
0.5 

O. 
O. 
1.0 

O. 
o. 
O. 
O. 
O. 
O. 
O. 

O. -1.S 
1.0 O. 

O. -0.5 

o. o. 
O. -'.0 
Z.O -1.0 

O. -3.0 

O. O. 

Z.O -Z.O 
O. -1.0 

1.0 o. 
O. O. 

Q. -0.5 

O. O. 

0.5 o. 
O. O. 

3.0 -3.0 

O. 

D" 
o. 

o. 
O. 
O. 

O. 
O. 
O. 
O. 
O. 
O. 
O. 
O. 
o. 
o. 

o. O. 

1.0 o. 
0.5 o. 
O. -1.0 

D. O. 
1.0 O. 

O. O. 
D. -, .5 

1.0 O. 
O. O. 

0.5 
O. 
O. 
D. 
O. 
O. 
O. 
O. 
1.0 

O. 
O. 
1.0 

o. 
O. 
o. 
o. 
O. 
O. 
D. 
O. 
'.0 

.. 

'11 0' IIun 

• 

'01.'" 
74.JOO 
so. I ... 
47.4. 

'S.ZIO 

'0.1" 
39.'" 

39.47' 
3I.Z41 

JJ.749 

Z'.16S 
10.'06 
16.77' 
'6. f 11 

U.Zl0 

11.'" 
11.651 
1,I.JU 

11.'11 
1.'ft 

'.6. 
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Table 8.9. Pessimistic Technology Evaluation (continued) 

FOWlEI FLAPS o. o. o. o. O. -0.5 D. 0.5 o. D. -0.5 D. D. D.5 
ENERGY A850RBIN6 FlOOI n. 0.5 o. O. o. o. o. o. D. o. o. D. D. D. 
~Gl LEVER THAUS'/DAAG CT D. o. o. o. D. o. D. D. O. 1.0 ·0.5 o. D. D. 
AC ELECTI:CAl SYSTEMS o. o. o. o. o. 0.5 D. o. o. o. o. D. D. D. 
INTEG LOW-COST WG lVLEI o. o. O. -1.0 o. -0.5 o. D. o. Z.D ·'.0 o. ·t.5 o. 
ANTI-ICING SFC COATIN6S o. O. o. -1.0 o. -0.5 o. o. o. o. -1.5 D. -D.5 o. 
ACTivE STALL 'IEVENTION o. o. o. -1.0 o. -0.5 o. o. D. 1.0 ·Z.O o. -'.0 D. 
DATA lunes o. O. o. -1.0 o. D. o. o. o. Z.D ·'.0 D. -t.O o. 
lOW-DIA, SFC COA'INGS o. o. 0.5 o. o. ·'.D o. D.5 o. o. ·'.0 0.5 O. D. 
MICIOWAVE LANDING S'STE" o. o. o. o. o. o. D. D. D. ·'.S o. o. o. o. 
I~'I STll/SPN--AEIO TllG o. o. -1.0 -0.5 D. o. D. ·D.S o. D. D. o. o. O. 
BIST/TEAR IESIS FUEL TlS o. 1.5 o. o. o. -1.0 D. D. o. D. ·'.0 D. o. o. 
lEADING EDGE DEVICES 0.5 o. 1.0 o. o. -0.5 o. 0.5 o. o. ·'.5 0.5 -1.5 1.D 
NAVS TA. /GPS o. o. o. -0.5 o. D. D. D. D. D.5 -0.5 D. O. O. 
CAT DISPLAYS D. o. o. o. o. D. o. o. D. 1.0 ·'.5 o. O. D. 
DIAECT LIFT CONTIOl o. o. o. o. o. -1.0 o. o. o. 1.0 -'.0 D. -1.0 O. 
lOUN C o. O. D. o. o. D. o. o. D. o. -1.0 D. D. o. 
ACT CTlS FDA IlX STSlTY 1.0 o. 1.0 O. o. Z.O o. 1.5 o. o. ·3.0 1.0 -J.O D. 
W iilGlETS 0.5 o. D. 0.5 o. -Z.O o. D.S o. o. -Z.O 0.5 O. O. 
lOW-LEVEL PIESSURIZATION o. o. o. -0.5 O. -1.0 O. D. Z.O D. ·'.0 D. ·'.0 o. 
Oll£GoII D. D. O. O. O. D. O. o. O. O. ·'.5 O. O. D. 
INTEGIATED 'AW OA"'EI O. O. o. -0.5 O. O. o. O. o. '.0 -z.s o. -t.S J.D 
DUCTEO PROPULSOIS o. o. -z.o -1.0 o. -1.0 3.0 -Z.O 3.0 o. -1.0 -Z.o o. o. 
FLUIDIC AUTO FLT eTl STS O. o. O. ·1.0 O. ·'.0 o. o. D. o. 1.0 D. -1.0 o. 
loll SEll G nos o. O. O. -3.0 o. 0.5 O. O. o. O. -!..J D. Z.O O. 
'ltCIO MUD O. o. D. -1.0 O. o. O. O. O. t.O ·Z.O O. -Z.O O. 
FUU OPTICS o. O. O. -1.0 II. -0.5 O. O. O. O. -2.0 o. -D.S o. 
ACT liD( SII O. o. o. -1.0 o. -1.0 O. D. O. O. ·3.0 O. -z.o J.O 

HUD o. o. o. - t. 5 o. -1.5 O. O. O. 2.0 -1.0 o. -Z.O o. 
DIR£CT SIDE 'OICE eTl o. o. o. -1.0 O. -1.0 o. -'.0 O. -'.0 -'.0 O. ·'.0 o. 

........... 1 

",."",~.-,,~~,.ftI,~~~~,I.~_t;~"WiMf.~€ij#~ .. ~. 

D. D. 
D. o. 
D. D. 
o. D. 
Z.O D. 
S.O D. 
S.O o. 
1.0 o. 
o. O. 
1.0 D. 
'.5 O. 
D. O. 
D. o. 
O. O. 
D. O. 
D.' o. 
D. O. 
O. D. 
D. o. 
o. O. 
D. D. 
o. o. 
o.s o. 
o. o. 
o. o. 
0~5 O. 
O. O. 
O. O. 
t.O O. 
o. O. 

0.5 
o. 
o. 
O. 
D. 
O. 
O. 
o. 
D. 
o. 
o. 
O. 
O. 
o. 
D. 
0.5 
O. 
D. 
o. 
o. 
O. 
o. 
1. , 

o. 
o. 
O. 
O. 
O. 
o. 
1.0 

,. 

4.'" 
5.409 
5.0'2 
2. t 70 
1.670 
0.990 

-D.:545 
·'.155 

·'.1 " 
-'.60Z 
-1."1 
-Z.6Z. 
-S.7" 
-4.5J6 
-S.41l 
-6.'UI 

-'.515 
·'0.Sse 
-U.,t. 

-".," 
..n.17) 

-u •• u 
·11.505 

-ZI.4]19 
·Z9.3.S 

-JD.'-. 
,,".U' 
·37 .... 
-)7.50Z 
-sa.Zll 

~ ,., 
~ 
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Table B.9. Pessimistic Technology Evaluation (continued) 

DOPPLER "AWIGATlO" o. o. o. -2.0 o. -t.O o. O. O. 1.0 -3.0 O. -z.o 
IN(ATIAL "AVIG'rIOh o. o. o. -2.0 o. -t.O o. o. o. 1.0 -3.0 o. -Z.O 

At r GUST HLV O. O. O. -1.5 O. O. O. O. D. O. -3.0 o. -Z.S 
ACT flUTTER SUPRESSION o. o. O. -2.5 o. t.O O. O.S O. O. -3.0 O. -3.0 

rLf-Sf-LIGHT o. o. o. -2.0 o. -1.0 O. o. O. O. -3.0 O. -3.0 

, Lf-BY-WIRe o. o. O. -2.5 O. -t.5 O. O. O. O. -3.0 O. -3.0 

o. o.s o. 
O. O.S O. 
1.0 O. O. 
O. O. O. 
O. O. o. 
O. O. O. 

o. -51 .u, 
D. -S' .U' 
O. -U.U9 
O. -65.'55 
O. -12.159 
O. -7I.Ja2 

~k~_ "'--'::~ , " ."._~_ .. ~"~".,." __ '"_. _"" "_"",. ". " 

I'" 
\ 
1 
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Table B.9. Pessimistic Technology Evaluation (continued) 

U"LAIilI • 

••• TAIULAR RESULTS FOR ALL TECMNOLOGIES 'OlLOWI 

C.SH C'US EMIS EMT' EXT. 'UEL II11T. PllT "CH 'Ell .,D' STAT TOLD 
CEIL WTNY S'ED DOC SION WGMT NOIS ("e 111011 W.KL P'CE 'G' ILlY all' S'T' eM,T PE" 

CATEGO'Y WIIGHTS 5.45 7.33 7.41 9.45 2.16 5.66 5.41 1.61 7.4' 7.00 7.76 7.1' 9.55 7.24 '.54 6.11 7." 

KEVLAR COMPOSITES 

QUIET 'RO' TECHNOLOGY 

GRA'HITE COMPOSITES 

GAT~ ENGINE 

('II(IEN1 P'OP TCHNLG, 
fIBE.GLASS COMPOSITES 

SpOILE'S 
SEPA'.'E SfC TfCHIIIOLOGY 

lOW,MEDM SPEED AIRfOILS 

NAT lAM fLOW AI'FOIlS 

LOAO LIMITING SEATS 

IM'ROVED R[ST'AINTS 

ACTIVE LAMINA. FLOW eTL 

SYS STATUS DSP 

INT(G AVIONICS AND DSPYS 

EN(RGY A8S0.8ING FLOO. 

ANTI-ICING SFC COATIN6S 

SGL LEVER TH'UST'D,AG CT 

AC flEcr'ICAl SYSTfMS 

ACTIVE STALL P'EvENTIOIil 

LEADING EDG( DEVrCES 

o. o. 
O. o. 
0.5 O. 

o. o. 
O. O. 

O. O. 

O.S O. 

O. o. 
O. 

0.5 
o. 
O. 
1.5 

o. 
O. 

o. 
O. 
3.0 

3.0 

O. 
O. 
o. 

1.0 1.5 O. 

o. O. O. 

1.0 1.5 O. 

O. 1.0 O. 

0.5 0.5 O. 
1.0 0.5 O. 

0.5 0.5 O. 
O. o. D. 

O. 0.5 

0.5 0.5 
O. D. 

O. O. 
1.5 0.5 

O. - O. 5 

O. O. 

2.0 o. 2.0 O. O. -1.0 Z.O O. o. 
0.5 3.0 O. 3.0 C. o. O. D.5 D. 
1.0 O. Z.O O. O. -1.0 Z.O O. o. 
O. O. O. O. O. 2.0 O. 1.0 O. 
0.5 O. 0.5 O. D. D. 0.5 1.0 O. 
0.5 O. 1.0 O. O. 0.5 1.0 D. D. 

O. O. 

D.5 O. 
O. O. 
1.0 O. 

0.' O. 
O. o. 

O. 
O. 

D. 
D. 
O. 
D. 
o. 

0.5 O. 
O. o. 

D. -0.5 0.5 D. 
1.0 O. O. o. 

0.' O. D. 
O. 1.0 o. 

0.5 
O. 
o. 
O. 

1.0 

1.0 
O. 
O. 
J.O 

O. -1.0 

D. -1.0 
O. O. 
O. O. 
O. -3.0 

2.0 -1.0 
2.0 -2.0 

O. O. 

0.5 O. 
o. o. 
O. O. 
1.0 -3.0 
O. O. 

O. O. 

O. O. 

O. O. 

O. -'.0 
o. -1.5 

o. O. 

1.0 O. 

1.0 O. 
o. 
O. 
O. 

1.0 O. O. 

O. 

o. 
O. 

O. 
O. 
O. 
O. 
O. 

-1.S 

O. 
o. 
o. 

O. 
O. 
O. 
O. 
o. 

O. 
o. 
O. 
o. 
O. 
o. 
O. 

o. 
O. 
O. 
O. 
O. 
O. 
O. 
O. 
O. 
O. 
O. 
D. 

o. O. o. O. 

O. 
O. 
O. 

O. 
O. 
O. 
O. 
O. o. o. 

o. 
o. 

o. 
O. 
o. 
o. 

0.5 O. 

o. 0.5 O. 1.0 O. 
o. O. O. O. o. 
O. O. O. O.S O. 
O. -1.0 D. -0.5 D. 
1.0 o. O. -O.S O. O.S O. 

0.5 O. 
1.0 -O.S 

O. O. 
1.0 -1.5 

O. 1.0 O. -Z.O D. 
o. O. O. o. O. 
O. O. O. o. O. 
O. -1.0 O. J.O O. 

O. -1.0 0.5 -1.S 1.0 O. o. 

O. 
O. 
O. 
O. 
1.0 
O. 
D. 
O. 
1.0 

O. 
O. 
O. 
o. 
O. 
O. 
O. 
O. 
O. 
O. 
O. 
O. 

'. 

'" t' "U t 

56.1'" 
50.'" 
49.642 

44.064 

40.914 
34.102 

1I.1l1 
16.541 

" •• 06 

".", 
15.191 

H.9" 
11 .06' 
11.0n 

I. on 
7.3]] 

'.J" 
3.tT7 

2.'" 
2.16' 

D.'" 

..0 
«'" 
0/1 
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Table 8.9. Pessimistic Technology Evaluation (concluded) 

INTEGRAfED Yaw Da"PER 

~'C.OWAVE LANDIHG SYST(" 

INTEG lOW-COST wG LVLER 

Low-D.aG S'C CeATINGS 

'-PR STLL/SPN--_ERO TLIG 

D AT A LI N" S 

CRT OJ SPLAYS 

l'fIVSTIII/CoS 

DIRECT LI,f CONTROL 

ACT CTLS '011 RLX STeL TY 

lORAN C 

eR'T/T(AIi IIrSIS 'UEl TIS 

W'OfG\.fTS 

OIllEGI 

LOW-LEVEL PRESSURIZATION 

DuefED PROPUlSOIIS 

'LUIOIC aUTO 'LT CTL SYS 

LASER GYPOS 

FIBER OPT! CS 

IIIICIO HUD 

aCT IIDE Sill 

O:.ECT SIDE 'ORCE CTl 

"VII 

HT GUST ALLY 

tOPPLE. NAY"ATION 

INflTIAL HAVleATION 

ACT 'LUTTER SUP.ESSION 

'LY-BY-lIGHT 

'L Y-IY-W liE 

• 

o. 
o. 
o. 
o. 
o. 
O. 
O. 

O. 
O. 
1.0 

O. 
D. 

O. 
O. 

O. 

o. 
o. 
O. 
O. 

o. 

o. o. O. O. O. 

O. O. o. O. O. 
O. -1.0 O. -O.S O. 
0.5 O. O. 

-1.0 -0.5 O. 

O. -1.0 O. 

O. O. I). 

o. -0.5 O. 

o. o. O. 

1.0 O. O. 

-1.0 O. 

O. o. 
O. O. 

o. o. 
O. :l. 

- 1.0 O. 

::1.0 O. 

o. 
o. 
O. 
0.5 

-0.5 

O. 
O. 

O. 
O. 
1.5 

O. O. O. O. o. o. 
o. -1.5 O. O. o. O. 

O. 2.0 -'.0 o. -1.S O. 

O. 
O. 

O. 
O. 

O. 
O. 
O. 

O. -1.0 O.S O. O. 

O. O. O. O. O. 

Z.O -1.0 O. -1.0 o. 
1.0 -1.5 O. O. o. 
O.S -0.5 O. O. O. 
1.0 -1.0 O. -1.0 O. 

O. -1.0 1.0 -J.O O. 

O. 
1.0 

2.0 

O. 
o. 
o. 

O. O. 

1.5 O. 
1.0 O. 

O. O. 

O. O. 
O.S O. 

O. O. 
D. O. O. C. O. O. O. O. O. O. -1.0 O. O. 

O. -1.0 O. O. 
O. -Z.O 0.5 O. 

O. 
O. 
O. 

O. 
O. 
O. 

o. 
o. 
o. 

O. 1.5 O. O. O. -Z.O O. O. O. 

0.5 O. O. 1l.5 O. -l.O O. 0.5 O. 

o. 
O. 
o. 
O. 
o. 
o. 
O. 
o. 
o. 
O. 
O. 
o. 
o. 
o. 
O. 
O. 

O. 
O. 
O. 
O. 
D. 
O. 

O. 
O. 
O. 
O. 
O. 
D. 
O. 

O. 
O. 

O. 

O. O. O. 

O. -0.5 O. 

-2.0 -1.0 O. 

O. -1.0 O. 

O. -3.0 O. 

O. -1.0 O. 

O. -1.0 O. 

O. -1.0 O. 

O. -1.0 O. 

O. -1.5 O. 

O. -1.5 O. 

O. -Z.O O. 

O. -2.0 O. 

O. -Z.5 O. 

O. -2.0 O. 

O. -2.5 O. 

O. 
-1.0 

-1.0 

-1.0 

0.5 

O. 
O. 

-1.0 
-, .0 

-1.5 

O. 
- 1.0 

o. O. 

o. O. 

3.0 -Z.O 

O. o. 
O. o. 
o. o. 
O. O. 

O. O. 

O. -1.0 

O. O. 

O. O. 
O. O. 

-1.0 O. 

1.0 O. 
-1.0 O. 

o. 
0.5 
O. 
O. -'.5 o. 

O. o. -1.5 O. O. 
2.0 O. -1.0 O. -1.0 

l.O O. -'.0 -1.0 O. 
O. O. 1.0 O. -2.0 
O. O. -S.O O. Z.O 
O. O. -Z.O O. -0.5 
O. 1.0 -Z.O O. -z.O 
O. O. -J.O O. -Z.O 
o. -1.0 -1.0 O. -1.0 

O. 2.0 -S.O O. -z.O 
O. O. -1.0 O. -Z.S 

O. 1.0 -J.O O. -l.O 

o. O. O. 

O. O. O. 
O. 0.5 O. 
O. O. O. 

O. O. D. 
D.. o. O. 

O. 0.' O. 
J.O O. D. 
O. O. D. 
O. 1.0 D. 

1.0 O. o. 
O. 0.5 D. 

o. 
O. 
O. 
O. 

'.0 -S.O O. 

O. -lI.O O. 

O. -J.O O. 
O. -lI.O O. 

-z.o O. D.5 D. 
-J.O D. 
-J.O O. 
-3.0 O. 

O. O. 
O. D. 
D. O. 

• 

O. 
O. 
o. 
O. 
o. 
O. 
O. 
O. 
0.5 
O. 
O. 
o. 
O. 
O. 
O. 

'.S 
O. 
o. 
O. 
O. 
o. 
1.0 
o. 
O. 
O. 
O. 
O. 
O. 
o. 

O. 
-O.tSJ 
-1.217 

-f .71S 

• 

-Z .193 

-3.Z19 

-4.'" 
-5.'07 
-7.49Z 

-7.'" 
-7.76t 

-'.01' 
-n.4" 
-n.,,' 
-12.711 
-14.916 

-Z,.4" 

-29.714 

-29.747 

-Jl.Z97 

-SS.77t 

-40.6" 
-41.49. 

-54.01t 

-"., .. 
-SS.'66 

-".592 
-7t.4'J 

-14.0J7 
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SEPA_ATE SFe TECH~OLOG' o. o. 
CRT DISPLHS o. o. 
STS STATus DSP o. o. 
I"P-DVED RESTAA1~TS o. 3.0 
LOW-DRAG SFC COATI~GS o. o. 
SGL LEVER THRUST/DRG CTL o. o. 
NAVSUR/GPS o. O. 
!~TEG LOW-COST WG LVLER O. O. 
ANTI-ICING SfC COATINGS o. o. 
AC ELECTRICAL SYSTE~S o. o. 
OA fA lINK S o. o. 
I~~~ S'LL/S~N--AERO TLAG o. o. 
ENERGY ABSORBING FLOOR O. 1.0 

"'le~OWAVE LANDING HSTEI'I O. O. 
DI~E~T LifT CONT~OL O. o. 
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ACT CTLS 'OA RLI STBLTY 1.0 o. 
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This section ecmcat.a. cai.puter output fl'Oll hoar_ TCIILST 

aDd repre.ent. three differeat .eta of cetelory rattaa data for 

Airplaae A aad Atrplaae B. III all ca .... the matrix of relative 

benefiU for both airplanM •• kept conatant. 

The.e data exa.tne the effects of perturbations to the Rapty 

Wei,ht cat_lory because this catecory was awarded unusually low 

weightin8. by the res~ents to Survey 2. This waa cau.e for 

concern to the present reaearch effort becau •• .apty wei8ht i. 

directly related to payload and. for a given takeoff gro.a weight, 

technologies which reduce a.pty weight will ultimately increase 

payload if fuel capacity is maintained. As a result. Payload was 

specifically eliminated aa a category during Survey 1 because it 

overlapped at.ost completely with Empty Weight. At the conclusion 

of Survey 2, however. Empty Weight had an average weighting of 

4.340 for Airplane A and was ranked 15th of 17 ~ategories. 

Airplane B likewise had an average weighting of 5.657 and here 

the category was ranked 14th of 17 categoriea. Evaluation 

ratings varied fro. 0.0 to 9.5 for both airplanes. However, 

although the category showed some convergence to its mean for 

Airplane A. there was no apparent agreement on the weighting for 

Airplane B. and scores appeared to be distributed unIformly as 

shown in the histograms of Appendix B.l. Consequently, results 

from average category weightings ~s well as those resulting when 

~pty Weight was rated 9.5 and 0.0 are included. 
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1.5.1 .... ca~.on "1dta 

'our taltl •• an prueat" ..... the __ ... cat..., wiabt. 

.. a_rated., ... ., z an utl1tud. !a1t1e 1.12 ... nlatlft 

lteDeflt .... tecbDolOlJ raaklDp It, flpr .. of ..nt wltlalla tecJa.

D010U aroup. for Airplaiw A. The .. flpru of .. it an thoM 

.beND ta the taltl .. of Iect10D 4.5. Tabl. 1.13 1e a chapllcata of 

Taltl. 4.10 for Airplane A and ahows overall tecbuolOU raaklDle 

for thi. airplane. Table B.14 shows relative lteaelit. and tech· 

noloay r&Dltinas by f taures of aerit within tacbDolGSY aroup. for 

Airplane I. Thes. data vere alao reflected in the tabl •• of 

Section 4.5 Pinally, Tabl. 1.1S 1s a duplicate of Tabl. 4.11 for 

Airplane B and show. the overall teclmolOlY rank1l11a. Theae four 

flgure. are included here to illuatrate data output by tecbDololJ 

,roup with relative beDefits shown (Table. 1.12 and 1.14) aDd 

to fora a baseline against which to coapare the overall tacbDoloay 

ranking_ of the next two aectione. 

1.5.2 Nut.. CatelOry Wei&ht !2!: !'!!2!l W.Yht 

Here, the aaxt.um Bapty Weight ratiQJ (9.S) 1s used for both 

airplanaa as shown in Tables B.16 *1ld B.17. When Table B.16 1a 

compared with B.13 for Airplane A. it can be seen that the effect 

of increasing the significance of Empty We1ght ia to increase the 

raqe of figures of .. rit. whUe the relative rankings rellaiD 

almost coastant. Likewise. the .. e tread 1. noted for Airplane 

B wheD Tables B.17 and B.15 sre coapared. The significant points 

to be noted in these ca.parlsoas are that: 

459 



r~ 

I 

(1) tho.e techDolog1 ... :; which iaprove -.pty -1abt al80 _,,"Oft 
.... ral oth.~ ".sureHDU lfh. btearated 1Dto aD a1rplaM 

J • 
and heDCe are alread,. raakecl at the top of tM OftI'all 

I techDololY liat for both .irpl.... (fir.t I fOf AirplaDe A 

aDd fir.t 3 for AirplaDe B). 

(2) the effect of 1Dcr ... 1ng the m.pty Wei,ht rattDa .erves to 

_ke these technologies even more attractive wh_ coapared 

to other teehnologies. 

(3) those technologies which are ranked low do not apact Eapty 

Weight significantly and consequently retain their relative 

unattractiveness with respect to a figure of aerit of zero. 

B.S.3 KinimuN ~teR?!I. !!!lght For Empty Weight 

Rere, the minimum Empty Weight ratinR (0.0) 1s used for 

both airplanes 8S shown 1n Tables B.18 and B.19. ~nen these 

tables are compared with Tables B.13 and ~.l', results inferred 

from the previous section are noted. 

(1) Relative technology rankings exhibit insignificant changes 

for both airplanes. 

(2) Those technologies which are ranked high retain their rela-

tive dominance o'.er other technologies but do not display • 
-I 

I adVIsI.tM;e,j as distinct as origiflally reflected. 

(3) Unattractive technologies remain 80 and do not reflect 

changes in figures of merit with respect to zero. 
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Table B.l2. Technology Ranking By Technology Group For Airplane A 

AII"lANI A 

".TABULAI IESULTS B' CAT EGO.' 'OllOWI 

CISH CIUS ("IS ENT' EXTI 'UEl I_TI PllT "ICH RILl I'DE ,fAf fOl' 
CEil WTH' S"ED DCC SION uGHf NOIS EFFC ~)lS WilL "ICE IGI Bl" Il" S'" CR" I'll' '~tr." 

CATfGO., WEIGHTS 5.45 6.82 7.92 7.91 1.61 '.54 4.29 1.16 7.04 7.5S 8.51 7.2~ I.IS 6.11 '.4l 6.a4 6.'7 

·'AEIOD' •• "ICSI 

• AT LA" 'lOV AIIFOllS t.O 

SPOilERS -0.5 

'OVLER 'LA'S -0.5 

LOW/"!D" S"[fD AII'OILS O. 
LEADING EDGE DEVICES 1.0 

INP. STLL/IPN--AEAO TLRG O. 

ACTIVE LA"INAI FLOW CTl 2.0 

WINGLETS 0.5 

LOW-DIAG S'C COATINGS O. 

"AI.CRA'T SYSTENS: 

O. 
O. 
D. 
O. 
o. 
O • 
O. 
o. 
O. 

2.0 2.0 O. 

2.0 1.0 O. 

2.0 1.0 O. 

1.0 0.5 O. 

O.S O.S O. 

O. D. D. 

2.0 -Z.D D. 

D. O.S O. 

O. -D.S D. 

1.0 O • 

1.0 O. 

1.0 O. 

0.5 D. 
O. O. 

D. O. 

O. D. 

-2.0 O. 

-0.5 O. 

ICEPHOBIC t.' COATINGS 

ac ELECTRICAL S'SlE"S 

-0..5 O. O. 
D. 

-0.5 O. -1.0 O. 

o. O. D. O. O. O. 

"CIASHVOllHINESS: 

lOAD ll"ITING SEATS 

I"PROVED IESTIAINTS 

£NEI'Y ABSOIBING 'lOO. 

SIST/TEA. IESIS 'UEl TIS 

o. 
O. 
O. 
O. 

•• 'LIGHT CONTIOL SYSTE"S: 

INTEG LOW-COST v, LVlEI 

SEP.RAlE SFC TECHNOlO'Y 
O. 
O. 

5.0 O. 
1.0 O. 

5.0 O. 

l.O O. 

D. 
O. 
O. 
O. 

D. O. O. 
O. O. O. 

O. -0.5 o. 
O. -1.0 D. 

O. 
O. 

O. O. O. -0.5 O. 
o. -0., O. -O.S O. 

, ... 
1.0 

1.0 

D.S 
D.S 
O. 
l.D 
O.S 

D.S 

D. 
O. 

D. 
O. 
O. 
O. 

O. 
O. 

o. 
O. 
O. 
O. 
O. 
O. 
o. 
O. 
O. 

O. 
O. 

O. 
O. 
O. 
O. 

o. 
O. 

O. -0.5 

O.S O. 

O. -0.5 

O. -0.5 
O. -1.0 

O. -0.5 

O. -5.0 

O. -1.0 

O. -'.0 

Z.O -1.0 O. 

1.0 O. Z.O 

1.0 O. Z.O 

0.' tI.. O. 
0.5 O. ,:.u 
O. O. O. 
5.0 -5.11 O. 

0.5 O. o • 
O. O. O. 

O. 
O. 

-1.0 -0.5 

o. O. 
o. 
O. 

0 .. 

o. 

o. O. 

O. O. 
O. O. 
0.5 'l. 
O. O. 

S.O D. 
O. O. 

o. O. 

D. D. 

J.O O. 

O. 0_ 

'.0 57.'16 
O. 56.7t1 

O. 41.'15 
1.0 29.0" 
1.0 U.S,. 

D. 24.001 
1.0 , ••• , 

o. -Z .... 

-0.' -1S •• tl' 

O. 
o. 

5.0" 
O. 

D. D. o. o. 
O. 
O. 
O. 

O. 
O. 
O. 
O. 

O. -O.S O. ".SH 
' ... 1., 
'.,.020 

O. -D.S D. 
O. -O.S O. 

O. -'.0 O. 

O. 
O. 
O. 

O. 
O. 
o • 

5.0 -D.S O. -0.5 O. S.O O. 
S.O -Z.O O. -0.5 J.O 1.0 O. 

D. 
O. 
O. 

o. 
O. 

7.StS 

S"." 
U.Z19 
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Table B.12. Technology Ranking By Technology Group For Airplane A (continued) 

ACTIVE STALL PREVENTION 

~lAECT lIFT CONTAOl 

INTE~RATEC YAW CAMPER 

ACT CTlS FOR RlX STSlTy 

~Gl lEYEQ THRUST/DRG CTl 

Fl~IOIC lUTO 'LT CTl SYS 

ACT RIDE SMOOTHING 

OIQECT SIDE FORCE CT~ 

ACT FU;TTEQ SUPPRESSION 

ACT GUST ALLY 

FLY-BY-wiRE 

FLY-Bl-L \6HT 

•• INfOR~.TION 5'51E"5: 

DIGITAL DATA LINKS 

,NTEG AvIONICS AND DSPTS 

SfS STATUS DISPLAYS 

CAT 015PLAYS 

"ICRO HUD 

LASER GYROS 

HEADS-UP D ISPlAT 

FIBER OPTICS <DATA TANS) 

•• N.YI6ATIO~ CONCEPTS: 

~ICROWAVE LANOING SYSTE~ 

NAVSTAR/GPS 

LORAN C 

OMEGA 

DOPPLER NAVIGATION 

INERTIAL NAVIGATION 

o. 
o. 
O. 
o.S 
o. 

-0. ~ 

o. 
c. 
I. 

o. 
o. 
'1. 

o. 
o. 
o. 
o. 
O. 

O. 
O. 
o. 

o. 
O. 
O. 

o. 
O. 
o. 

o. 
o. 
O. 
o. 
o. 
o. 
O. 

o. 
o. 
~. 

0. 

o. 

o. 
o. 
o. 
o. 
o. 
o. 
o. 
o. 

o. 
O. 
o. 
O. 
O. 
o. 

o. o. o. 
O. O. O. 

O. O. O. 

0.5 '.0 O. 

o. o. o. 
o. O. o. 
o. -o.S O. 
O. -0.5 O. 

O. -0.5 O. 

O. -'.0 O. 

O. -1.0 O. 

O. -'.0 O. 

O. 

O. 
o. 
o. 
o. 
o. 
O. 
O. 

o. 
O. 
o. 
o. 
O. 

o. 

O. o. 
'.0 O. 

o. O. 

o. O. 

- 0.5 O. 

- 0.5 O. 

-1.0 O. 

O. o. 

O. S O. 

o. O. 

-0.5 O. 

-0.5 O. 

-2.0 O. 

- 3. 0 O. 

- O. SO. 

-0.5 O. 

O. O. 

'.0 o. 
o. o. 

- O. 5 o. 
-O.S O. 

-0.5 o. 
o. o. 
o. O. 

-t.O O. 

-'.0 O. 

o. o. 
o. o. 
o. o. 
o. o. 

-0.5 o. 
o. o. 

-1.0 o. 
O. O. 

o. 
c. 
O. 
1.0 

O. 
-0.5 
o. 
o. 
o. 
o. 
O. 
o. 

o. 
o. 
o. 
O. 
o. 
O. 
o. 
O. 

O. 
o. 

-0.5 

O. 
-0.5 

-0.5 

1.0 o. 
o. o. 
o. o. 
o. o. 
o. O. 
O. o. 

o. 
O. 

o. 
o. 
o. 
O. 
O. 

O. 

O. 
O. 
o. 
o. 

O. 

O. 
o. 
o. 
o. 
O. 
O. 
O. 

O. 
o. 
o. 
o. 
o. 
o. 

o. -1.0 O. -o.S 
1.0 -1.0 O. -O.S 

1.0 -2.0 D. O. 
o. -3.0 1.0 -1.0 

2.0 -1.0 O. -1.0 

O. -1.0 -0.5 1.0 

0.5 -3.0 O. -O.S 
o.s -3.0 O. -O.S 

O. -3.0 O. -1.0 

o. -3.0 O. -1.0 

O. -3.0 O. -'.0 
o. -3.0 O. -1.U 

3.0 -2.CI 
3.0 -2.(1 

2.0 -1.C 

2.0 -l.t' 

2.0 -l.O 

O. -3.0 
2.0 -3.0 

o. -3.0 

O. 
O. 
O. 

O. 
o. 
o. 
O. 
O. 

D. 
O. 

D. 

1.0 

-1.0 

1.0 

-1.0 

D. 

o. 
1.0 

Z.O 
o. 
o. 
O. 
1.0 

l.O 
O. 

o. 
o. 
o. 

D. 
o. 
o. 
O. 
O. 
D. 
D. 
O. 

O. -1.0 

1.0 -1.0 

O. -1.0 

t l• 

O. 
D. O. 

O. -'.0 
1.0 -Z.O 

1.0 -3.0 

o. 
D. 
o. 
O. 

O. O. 

-D. S o. 
-'.0 o. 
-1.0 o. 
-1.0 Q. 

3.0 

1.0 

O. 
O. 
O. 
O. 
D. 
o. 
O. 
o. 
O. 
o. 

O. 

O. 

o. 
O. 
O. 
o. 
O. 
o. 
o. 
o. 
o. 
O. 

1.0 o. 
l.O O. 
2.0 O. 

O.~ O. 

l.O o. 
0.5 O. 
1.0 O. 

D. D. 

1.0 O. 
1.0 o. 

-0.5 O. 

-0.5 O. 

O. o. 
O. D. 

o. 
0.5 

D. 
o. 
o. 
o. 
D. 
o. 
O. 
o. 
o. 
O. 

O. 
o. 
O. 
O. 
O. 
O. 
O. 
o. 

o. 
O. 
O. 

O. 
O. 
D. 

13.tS4 

11.206 

2.539 
-:1.030 

-2.671 

-12.26' 

-14.090 

-14.09D 

-3I.HZ 

-42. S05 
-46.645 

-46.645 

SS.2U 

3 •• 167 

25.027 

11.Z33 

1. sn 
-n.ns 
-lZ.SlS 

-Z5.545 

9.t" 
I.ZS6 

-lS.17, 

-26.0n 

-l'.517 

-Sl.'" 
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Table B.12. Technology Ranking By Technology '~roup For Airplane A (concluded) 

··"OISE: 

QUIET E'FICIEN' 'IO'S O. O. o. o. s o. O.S 2.0 O. 2.0 O. -1.0 o.S O. u. o. D. o. ZJ •• a1 

DUCTED PIO'U~SOIS -o.s o. -1.a -1.0 o. -1.0 J.O -1.0 3.0 o. -1.0 -2.0 o. o. o.s o. 2.0 -1.7OJ 

lOW-LEVEL '1($$U."ll'ON o. O. o. -0. S o. -o.S o. -G.S z.o o. -1.0 -O.S -1.0 o. o. o. o. -17.1" 

"'~OPULSlO": 

GAT( ("'lINE 2.0 O. 1.t' 1.0 1.0 3.0 o. 2.0 1.0 1.0 -3.0 1.0 1.0 1.0 1.0 o. 1.0 1S.017 

STNT C"' lOT COlli f"'IN( 1.0 O. 1.0 2.0 2.0 1.0 O.S Z.O 1.0 '.0 -2.0 1.0 1.0 1.0 1.0 o. o. ".20S 

2 ST' 'DV DI(SEL ENGINE O. O. O. 2.0 O. O. o.s l.O O. S O. -z.o 1.0 o. o. o. O. o. ".IOJ 
,II'IOVED Tuleoc 'A"I'" 1.0 O. 1.0 O.S o. o. O. 1.0 O. O. -1.0 1.0 O. O. O. O. 1.0 ]1.110 

L1Qun eOOllllG O. O. O. 2.0 O. -1.0 1.0 1.0 1.0 O. O. O. -1.0 O. -1.0 O. o. U.'" 
STI., e"6 .(el, (NG'N( O. O. O. 1.0 2.0 -0.5 O. 1.0 O. O. -1.0 O.S O. O. O. o. O. U.ISS 

HClll I,el' EN""( O. O. O. O. S 2.0 O. O. D.S O. O. -O.S O.S O. O. o. D. O. 10.'11 
~ 
a-
w .'$TI~CTU'A~ "ATEI'ILS: 

F'I('GLASS COII'OSIT£S 2.0 O. 1.0 0.5 O. 2.0 O. 1.0 O. O. 1.0 1.0 O. O. O. O. O. SS •• '" 
~EVlA' tOll'O$,TES 1.0 O. 1.0 O. S O. 3.0 O. 1.0 O. O. O. 1.0 II. O. o. o. O. 51.2.10 

G"'"ITE eOll~OSJTfS 2.0 O. 1.0 O. S O. l.O O. 1.0 O. O. -1.0 1.0 O. O. O. D. O. 'l.'" 



+:> 
en 
+:> 

" "!'T 

" "' l\""' ..... "'.-""'''IIr'!'<lqj'~'lf'!IIor.~''' "''''111'''''~''''"'· "'",,",""l!"~>"!T'''H.jt!>I\llll!!lliIll''''''''I~''''~ 

Table B.l3. Overall Technology Ranking For Airplane A 

AIRPl.UE A 

"'TABUlAR RESULTS FOR All r~C~NOlOGIES fOLLOW: 

CRS~ CRUS EMIS E~TY EXTR FUEL INTA PILT PACH AELI RIDE STAT TOLD 
CEll Wl~Y SPED DOC SION WGHT NOIS (FFt NOIS WRKL PACE AGE BLTY QtlY S'T' eM" PER' 

(ATEGORY WEIGHTS 5.43 6.82 7.92 7.91 1.61 4.34 ~.29 a.16 7.04 7.35 a.51 7.29 8.as 6.11 9.42 6.24 6.87 

GAlf ENGINE 

SIRT eNG ROT (O~B ENGINE 

~.1 LA~ flO~ AIRFOILS 

~PO!lERS 

FleERGlASS eO~POSITES 

(rVLA~ (CMPOSITfS 

FOWLER FlJPS 

G.lP~11E COMPOSITES 

INlfG lO_-COST wr LVL~R 

, STR AOV OIE~~l fhGINE 

DIGITAL OAT. lIN~S 

INTEG aVlrNICS .~D OSpys 

[~PROV£'- TUR!OtHARGING 

LOw/.~D" SPEED AIRFOILS 

LEA~ING EOGE DFVICES 

SIS STATUS DISPLays 

IMPR STlL/SPN--AERO TLRG 

QUIET EFfICIENT PROPS 

SfPARATE S'( TEtHNOlOGY 

LOAD ll"ITING SeA'S 

I~PROVED "t~T.AINTS 

ENERGY ABSORBING FLOOR 

ACTIVE STALL PREVENTION 

LIQUID COOLING 

2.0 O. 

1.0 D. 

T.e O. 

-0.5 O. 

2.0 O. 

2.0 O. 

- O. 5 ('. 

Z.O D. 

O. O. 

o. o. 

1.0 

1. a 
2.0 

Z.O 
1.0 

1 .0 

Z.O 

1.0 

O. 
O. 

o. 
o. 
1.0 

1.0 1.0 3.0 O. 2.0 
1.0 2.0 I.L o.~ 2.0 

2.11 O. 1.0 O. 1.0 

1.0 D. 1.0 C. T.O 

0.5 O. 

0.5 O. 
1.0 O. 

O. S O. 

o. O. 

2.0 '). 

O. O. 

1.0 O. 

0.5 O. 

2.0,1. 1.0 

3.1 0. 1.0 

1.0 O. 1.0 

::;. \J O. 1.0 

-0.5 O. O. 
O. 0.5 3.0 

O. o. O. 

O. o. O. 

O. O. 1.0 

1.0 1.0 -3.0 

1.0 1.0 -2.0 

O. O. -0.5 

O. O.S O. 

O. O. 1.0 

O. O. O. 

O. O. -0.5 

O. O. -1.0 
O. 3.0 -0.5 

O.S O. -2.0 

O. 3.0 -2.0 

O. 3.0 -2.0 

O. O. -1.0 

1.0 1.0 1.0 1.0 D. 

1.0 I.e 1.0 1.0 O. 

2.0 -1.0 O. O. O. 
1.0 O. 2.0 o. O. 
1.0 O. 

1.0 O. 

T.O O. 

1.0 O. 

D. -D.S 
1.0 O. 

o. O. 

O. Ii. 

1.0 O. 

O. D. O. 

O. O. O. 

2.0 D. O. 
O. O. D. 

O. 3.0 O. 

o. O. O. 

O. 3.0 O. 

D. 2.0 O. 

0_ D. 

1.0 

O. 

1.0 

O. 
O. 

O. 
O. 
O. 
O. 
O. 

o. o. 
o. O. 

1.0 O. 

O. O. 

1.0 I). 

O. O. 

1.0 0.5 O. 

0.5 0.5 O. 
O. O. O. 

0.5 o. 
o. o. 
O. O. 

0.5 O. 

O.S O. 
O. O. 

O. -O.S 0.5 O. 
O. -1.0 0.5 O. 
2.0 -1.0 O. O. 

O. 0.:; O. 

1.0 D. O. 
O. 2.0 O. 

O. 
O. 
1.0 

1.0 

1.0 

O. 
O. 

D. 
o. 
o. 
o. 
o. 
o. 
o. 
O. 
o. 

o. 
O. 

o. 
O. 

o. O. 

3.0 O. 

3.0 O. 

3.0 O. 

O. O. 
O. O. 

O. O. 

0.5 O. 

o. o. o. 
0.5 2.0 O. 

-0.5 O. -0.5 O. 
O. O. O. o. 
o. O. o. O. 

O. 

O. 
O. 

O. O. -0.5 O. O. 

2.0 O. -1.0 D.5 O. 

o. 
O. 

3.0 O. 

O. O. 
O. 

D. 
O. 

3.0 -2.0 O. -0.5 l.O 1.0 O. O. 

O. O. O. O. o. O. -0.5 O. 
O. -O.S O. O. D. O. O. O. 

O. O. -0.5 O. O. O. O. -0.5 O. O. O. O. O. o. 
O. 
O. 

O. O. -0.5 O. O. O. O. -1.0 O. -O.S O. 3.0 O. 
2.0 D. -1.0 1.0 1.0 1.0 O. O. O. -1.0 O~ -t.O O. 

'1& 01 
"ERIT 

85.017 

14.205 

51.924 

56.717 

55.375 
51.200 

41.785 

41.6'5 

39.UI 

36.205 

33.283 

31.767 

31.110 
29.096 

25.536 

25.0n 
24.0oe 

23.901 

ll.21t 

17.U6 
16. ,,, 

14.020 

n.154 

12.617 

• 
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Table B.14. Technology Ranking By Technology Group For Airplane B 

AUPLANf B 

·"TA8~l.' '£SUlTS BY CATE60.' fOllOW: 

CA5H CAVS E~t~ E~TY ExTR FUEL I"TR PllT PRCH tELl tIDE STAT TOLD 
CEll WT~T SPED DOC StON weHT HOIS E'FC H~IS WR~L PRCE tGE BLTY ILlY SITY ,"'T PERF 

'Ii OF 
"II" 

CATEGORY wEiGHTS 5.4S 7.~3 7.48 9.4~ Z.16 5.66 5.41 1.61 7.4~ 7.00 7.76 7.18 9.55 7.24 9.S4 6.7' 7.41 

"'('COTNAI'IICS: 

speIlE'S 

lO~/~£D" SP£E~ AIPJOIlS 

,,'Ol~' fnuE OEvl~£S 

~AT LA" FLO. AIRFOILS 

fO.L£R FL'PS 

I-PR STllf~P~--a(AO TlAG 

'IIP,:jLEI5 

\.Olol-O',G S'( (O.TiliGS 

'CTIVE LA~lhaR ILC, CTL 

•• AJOCR.rT S!~if~S: 

ICEPHOBIC SfC COATl~>S 

At ElEcr~IC'l SrSTE"S 

"ClaSHWOATHI"ESS: 

LoaD LII'IITI"G SEATS 

I"PROvEO RESTRAINTS 

ENEAGY &8S0l81NG FLOOI 

BRST/TrAI 1£515 FUEL TKS 

o. O. 

C. O. 

1.0 (\. 

e. s o. 
O. O. 

O. O. 

C. SO. 

O. O. 

2.0 O. 

I.,) O. 

0.5 O. 

1.0 1.0 O. 

1.0 0.5 O. 

0.5 O. 5 O. 

1.0 1.0 O. 

0.5 0.5 O. 

O. O. O. 

O. 0.5 O. 

o. - 0.) O. 

O. -3.0 O. 

O. 

O. 

o. 
O. 

c. 
o. 

O.S O. 

0.5 O. 

O. O. 

1.0 O. 

O. O. 

o. O. 

-2.0 O. 

-c.s o. 
o. o. 

1.0 O. 

O.S o. 

o. 
o. 
o. 
O. 

:S.O O. 
1.0 O. 
3.0 O. 

3.0 O. 

o. 
O. 
O. 
O. 

O. O. O. 

O. o. O. 

O. -O.s O. 

O. -1.0 O. 

O.S 

0.5 

0.5 

1.0 

0.5 

O. 
0.5 

O. 
1.0 

o. 
O. 
O. 
o. 
O. 
o. 
O. 
O. 
O. 

0.5 O. 

o. o. 

o. 
o. 
O. 
o. 

O. 
O. 
O. 
O. 

0.5 O. 

O. -O.S 

O. -0. S 

O. -O.S 

O. O. 

O. -O.S 
O. -1.0 

O. -0.5 
O. -:S.O 

0.5 O. 1.0 

O.S O. o. 
O.S O. O.S 

1.0 -2.0 O. 

O.S O. 1.0 

O. O. O. 

O.S O. O. 

O. O. D. 

1.0 -:s.o o. 

O. 

O. 
1.0 O. o.s O. 

1.0 0.5 O. o. 

O. O. O. 

O. -O.S o. 
O. -o.s O. 
O. -1.0 O. 

o. 
o. 
o. 
o. 

o. 
o. 
O. 
D. 

o. o. 
O.S o. 
o. o. 
o. o. 
o. O. 
2.0 O. 
O. o. 
o. o. 
O. o. 

O.S O. 
O. O. 

O. 51.1190 

1.0 51.226 

1.0 21.952 

t.O 25.SS' 
D. n.597 

O. 15.207 

O. -5.755 
-0.5 -15."1 

1.0 -'t.189 

D. 

D. 
ll.7" 

16.904 

O. -0.5 O. '1.646 
11.118 

U.!90 

O. O. D. 

1'1. O. o. 
o. o. o. '.S8' 

! , 
! 
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Table B.14. Technology Ranking By Technology Group For Airplane B (continued) 

•• 'lIGHT CONT'Ol S'ST(~S: 

S[~_'AT[ SfC T(CHNOlOG' O. 
ACTIVE STALL ~'EVEN'ro~ O. 

DllrCT LifT CONT'OL O. 
INTEG lOW-COST wG lVlE' O. 
INTEG.ATED 'AW 'AM~(' O. 

'CT eTlS fOR III STILT' 0.5 

'CT -,Df SMOOTHING O. 
'LUIDIC AUTO 'LT CTL STS -0.5 

SGl lEvf' TH'UST/D'G CTl O. 
DI'fCT SlD( 'o.CE CTl O. 

flY-lf-ll'"' O. 
fLY-IT-WI'E O. 
aCT GUS' 'lL(vIATION O. 
ACT 'LUTlf. Sur-'ESSION O. 

•• IN'O.M.rION S'STEMSI 

INTEG .VIONICS AND OS~YS 

DIGITAL DATA lINKS 

SYS ST.~US .,SPlAYS 

en DISPLAYS 

"H'O MUD 

laSE' GlIOS 
fl8r. OPTICS (D.Ta T.NS) 

H(~DS-U~ DISPLa, 

• ••• VIG.TIO. CONCfPTS: 

"le.ow.vE l.NDING S'STE~ 

MAvST"""S 
LO ••• C 

O. 

O. 
o. 
o. 
o. 
O. 
O. 
O. 

o. 
O. 
O. 

" 

o. 
o. 
o. 
o. 
O. 

O. 
O. 
O. 

O. 
O. 
O. 
O. 

O. 
o. 

O. 

O. 
O. 

O. 
O. 
C. 

O. 
O. 

o. 
O. 
O. 

o. 
O. 
O. 

O. 

O. 

0.5 

O. 
O. 

O. 
O. 

O. 
O. 
O. 
O. 

O. 
O. 
o. 
O. 
O. 
O. 
t. 
O. 

o. 
O. 
o. 
o. 
O. 
1.0 

-0.5 
O. 
O. 

-0.5 

-1.0 

-1.0 

-1.0 

-0.5 

o. 
O. 

O. 
O. 

O. 

O. 
O. 
O. 
O. 
O. 

O. 
O. 

O. 
O. 

1.0 O. 

O. O. 

O. O. 
O. O. 

-0.5 O. 

-0.5 O. 

O. O. 
-1.0 O. 

O. 1.0 O. 

O. O. O. 
O. -0.5 O. 

o. 
O. 

-o.S 
o. 
O. 
1.0 

O. 
O. 
O. 
O. 
0.5 

o. 
O. 
O. 

o. 
O. 

O. 

O. 
O. 

O. 
O. 
O. 

O. 
O. 

O. 

O. 

O. 
O. 

O. O. 

O. O. 
O. o. 
O. o. 
O. O. 
O. O. 

O. O. 

-f.O O. 

O. 
O. 
O. 
O. 
O. 
t.O 
O. 

-O.S 

O. 
O. 
O. 
O. 
O. 
O. 

O. 
O. 
O. 
O. 
O. 
O. 
O. 
O. 

O. '.0 O. 

O. O. O. 

-0.5 O. O. 

O. 
O. 
O. 
O. 
O. 

O. 
O. 
O. 

O. 
O. 
O. 
O. 
O. 
o. 

o. 
O. 
o. 
O. 
O. 
O. 
O. 
O. 

o. 
O. 
I. 

1.0 O. 

O. -1.0 

t.O -t.O 
O. t.O 
1.0 -Z.O 
O. -J.:l 

1.0 -Z.O 
O. O. 

Z.O -t.O 
O. -1.0 
O. -].0 

O. -].0 
O. -].0 
O. -J.O 

O. O. t.O 
O. -0.5 O. 

O. -O.S 1.0 

O. D. D. 
O. o. Z.O 
t.O -1.0 O. 

O. -0.5 ].0 
-0.5 1.a o. 

O. -1.0 O. 

.,. -O.S J.I 

.:I. 'I. I. 
I. I. D. 
I. -t.O t.D 
O. -t.O D. 

J.O -1.0 O. 
3.0 -Z.O O. 
2.0 -1.0 O. 

Z.O -1.0 O. 

Z.O -Z.O O. 

O. -J.O O. 
O. -J.O D. 
Z.D -J.O O. 

o. O. 

O. D. 
O. D. 
t.O O. 

-t.O D. 
1.0 D. 

O. D. 
-1.D O. 

O. -O.S O. 
1.0 -1.0 O. 
O. -'.0 I. 

O. o. 
D. D. 

-0.5 D. 

1.0 

J.O 
t.O 

O. 
O. 
O. 
O. 
O. 

O. 
o. 
D. 
O. 
O. 
O. 

o. 
O. 
O. 
C. 
O. 
D. 
O. 
O. 
O. 
O. 
O. 
O. 
o. 
D. 

Z.O D. 

J.O O. 
Z.O O. 
D.5 D. 
l.O D. 
D.S II. 

O. t.. 
t.D O. 

1.0 O. 

1.0 O. 

-1.D D. 

o. 
O. 
O.S 
D. 
D. 
D. 
O. 
O. 
D. 
O. 
O. 
O. 
O. 
O. 

D. 
O. 
D. 
O. 
D. 
o. 
O. 
D. 

O. 

O. 
D. 

23.710 

16.D.7 

ti. 1 ZO 

7.761 

S.95Z 

4.SZ. 
J.6t1 

-t .070 

-J.]U 

-n.o61 
-Z ••• " 
-n.754 

-ss.O" 
-Sl.SM 

41.7'Z 

14.1" 
U.J2S 

ZO.SS4 
S.ZIt 

-1S.61t 

-ll.ZIS -U.,,, 

ZO.SZ' 
1.71t 

-Z •• 6JZ 

~ , 
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Table B.14. Technology P~nking By Technology Group For Airplane B (concluded) 

o,..£~. O. c. c. - C. 5 O. D. O. O. o. o. -, .0 O. -1.0 O. -, .0 O. O. -31.S71 

'epPLE' ~.~IG.r rON c. u. O. -2.0 O. -0.5 O. O. O. 1.0 -2.0 O. -1.0 D. O. O. O. -39.102 
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Table 8.16. Overall Technology Ranking With Eapty Weight - 9.S For Airplane A (cODcluded) 
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'L ,-enol IIMT O. O. O. -1.0 O. -t.O O. O. O. O. -S.O O. -1.0 D. D. D. D. 
1_(aTIAL .IWI,ITIO_ O. O. O. -J.O O. -O.S O. O. O. 1.0 -J.O O. -t.O D. o. o. •• 

, , 

" '" 

• 

-5'.097 
-&l.sas 
-".Ias 
-51.IOS 

·"."1 
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Table B.17. Overall Technology Ranking With Empty Weight • 9.5 For Airplane B 

"'.PLANE a 

".TA8ULAR 'ESUlTS '0. ALL TECHNOLOGIES 'OlLOW: 
CRSM CRUS I"IS E"TY Ell. FUEL INT. pILT PRCN R'LI RI8E STAT TOl' 

CEIL WTM' SPED DOC SION WGNT NOIS Effe NOIS W.KL PICE .,' all, alT' "TY eN'T PER' 

CATEGOR' VrlGHTS 5.45 7.33 7.41 9.45 l.t6 9.S~ 5.41 a.61 7.45 7.00 7.76 7.1' 9.55 T.Z4 9.54 6.71 7.41 

~EVl.R CO"POSITrs 

fiBERGLASS tO~POS'~ES 

GRAPHITE COMPOSITES 

INTEG AVIONICS AND OSP'S 

~POILE.S 

ICEPHOBIC SfC COATIHGS 

DIGITAL DATA LINKS 

LOv/"ED~ SPEED AIRFOILS 

GATf (NGINE 

QUI~' EffiCIENT PRCPS 

MA, LAM flOW AIR'OILS 

LEADI~G £DGE DEVICES 

STS STATUS DISPLATS 

SEPARATE SFe TECN~OLOGY 

fOWLER FLAPS 

c_r DISPLAYS 

"ICROWAYE LANDING STSTEN 

At ELECTRrCAL S'STEMS 

lOAD lIMITING SfATS 

IMPROYED RESTRAI"TS 

STRT eMG ROT COM8 ENGINE 

2.0 O. 

2.0 O. 

2.0 O. 

o. O. 

1.e O. 
'.0 O. 

o. o. 
O. 1.0 

O. -1.0 

3.0 -1.0 

1.0 O. 

1.0 O. 

1.0 O. 

O. o. 

o. 
O. 
O. 

C/. 

o. O. 
D. D. 

O. O. 
2.0 O. 

o. O. 

1.0 O. 

O. O. 

1.0 0.5 O. 

1.0 0.5 O. 

1.0 0.5 O. 

O. 1.0 O. 

1.') 1.0 O. 

O. O. O. 

3.0 O. 

2.0 O. 

3.0 O. 

O. O. 

0.5 O. 
1.0 O. 

1.0 O. 

O. O. 

0.5 O. 

0.5 O. 

0.5 O. O.S O. 1.0 O. D. 
O. 1.0 O. O.S O. O.S O. 

O. O. O. O. 3.0 -Z.O 

o. O. 

O. O. O. 

1.0 0.5 O. 0.5 O. D.5 O. D. -0.5 

o. O. O. 1.0 O. O. O. 1.0 O. O. O. 
0.5 Z.O O. Z.O O. -'.0 O. O. 

0.5 C. 

1.0 O. 

O. 0.5 O. 

1.0 1.0 O. 

O.S 0.5 O. 

1.0 O. 1.0 O. O. -0.5 

D. 
O. 
O. 
O. 

O. 
O.S 
o. 
O. 
O. 

, 

O. O. 

O. O. 

O. 0.5 

O. O. 
o. O. 

O. O. 
3.0 O. 

~.O O. 
O. O. 

o. 
o. 
0.5 

O. 
1.0 

O. 
O. 
O. 
1.0 

O. O. 0.5 O. O. -0.5 

o. O. 

O. O. 

O. O. 

O. O. 

O. O. 
O. D.S 

O. O. 

O. D. 

1.0 -1.0 

o. 
O. 

O. 

O. 
, .0 

O. 
O. 
O. 
D. 

o. 
O. 
O.S 

D. 
O. 

D. 
O. 
O. 
D. 

o. 
O. 
O. 
O. 
O. 
O. 
O. 
O. 
O. 

2.0 -'.0 
1.0 O. 

O. O. 

Z.O -'.0 
O. -0.5 

O. 1.0 

O. O. 
O. -0.5 
D. 1.0 

D. O. O. 
O.S O. O. 

Z.O O. O. 

0.5 O. D. 

1.0 -Z.O O. 
0.5 O. 0.5 

O. 
O. 
D.S 
O. 
O. 
O.S 
O. 
C/. 

1.0 

D. O. 
O. t.O 
O. 1.0 

1.0 O. 

O. O. 
O. o. 
n. O. 
O. O. 
O. D. 

3.0 D. 
O.S O. 

O. O. 
O. O. 
O. O. 
O. O. 
2.0 O. 

t.O O. 
O. O. 
O.S O. 

1.0 O. 

O. D. 
O. -0.5 
O. O. 
O. D. 

O. 
O. 
D. 
D. 
o. 
O. 
O. 
1.0 

D. 
o. 
1.0 

1.0 

O. 
O. 
O. 
O. 
O. 
O. 
O. 
O. 
O. 

• 

fl. " 1111 T 

".U7 
65.6" 
S9.616 
41.7n 

4D.S12 

16.SS6 
1'.11)4 

33.1'. 

n.4" 
SI.O" 

19.5" 
lI.951 
IS.US 

23.718 
ZS.St7 

ZO.S" 

10.S27 
tI.IZS 

'I.'" 
11.'" 
1'.OSO 

" 

1 ,', 

I , 

I 
! 
I' 
1 

\ 

i 
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Table B.17. Overall Technology Ranking With Emnty Weight - 9.5 For Airplane B (coacluded) 

aCTIVE S'All ~IEVfNTION 

'"~I STlL/S~.--'EIO fLI' 

Ouel!O ~IO~ULSOIS 

ENE"Y '8S018 •• ' fLOOI 

DI~tC' LII' CONflOL 

N'VSTal/'~' 

aCT CTLS fOI III ST8lT' 

'NTfG Lov-ceSf v, LYLfl 

INTEGI'TfO ,av Da"~E' 

MIST/TEal IESIS FUEL 'IS 

aCT .'Df 5"00TM'.' 

"'ICIO MUD 

'LUIDIC auTO fLT CTL SYS 

S'L LEVEl TMIUST/DI, eTL 

DI~ECT SIDE FOICE ,Tl 

wl.'LETS 

LASEI "lOS 

LOW-"I" SfC coaT'.'S 

L~V-LE.EL ~IISSUIlzaTIO. 

fle£' O~TICS (DaTa TINS) 

fL '-8Y-LIC,MT 

MEaDS-U~ OIS~Lay 

\.O"N , 

OlllE,a 

fL'-e'-WIIE 

aCT GUST aLLEViaTION 

aCT fLUTTEI SU~~IESSION 

'O~PlEI .avIGarIO. 

aCTiVe LAlillNal flOW CTL 

INf"IAl .'VI"'ION 

o. 
o. 

-O.S 

O. 
o. 
o. 
0.5 
o. 
o. 
o. 
o. 
O. 

-o.S 
O. 
o. 
0.5 

o. 
o. 
o. 
o. 
o. 
o. 
o. 
O. 
O. 
O. 
o. 
O. 
l.O 
O. 

o. 
O. 
o. 
3.0 

o. 
O. 
O. 
o. 
O. 
3.0 

O. 

o. 
o. 
o. 
O. 
O. 

O. 
c. 
O. 
o. 
O. 
O. 
D. 

O. 
O. 
O. 
O. 
D. 
O. 
O. 

o. 
O. 

o. 
~. 

o. 
o. 

-1.0 -0.5 O. 
o. 
O. 
O. 

O. 
O. 
c. 

O. 

O. 
D. 

0.5 1.0 O. 
o. 
O. 
o. 
O. 

O. 
o. 
O. 
O. 

o. 
O. 
O. 

-D.5 
-0.5 
a. 
O. 

-0.5 

c. 
O. 
O. 
O. 

O. 
0. 

O. 
O. 

o. .• S O. 

O. -0.5 O. 
o. -0.5 O. 

O. -0.5 O. 

O. O. o. 
O. -1.0 O. 

O. -1.0 O. 
0.- -O.S O. 

O. -0.5 O. 

o. -'.0 O. 
D. 
O. 
O. 
O. 
O. 

-1.0 o. 
-O.S O. 

-2.0 O. 
-S.O O. 
-3.0 O. 

o. 
o. 

o. 
O. 

o. 
O. 

-1.0 S.O -O.S 
-O.S O. O. 

-0.5 O. O. 

O. O. O. 

1.0 O. 1.0 
O. D. 

O. O. 

-1.0 O. 

O. O. 

O. O. 
o. o. 
O. o. 
O. O. 

-2.0 O. 
O. o. 

-o.s o. 
-O.S O. 

(I. o. 
o.s O. 

-f.O O. 

-O.S O. 

o. O. 
O. o. 

o. 
O. 
O. 
O. 
o. 

-a.s 
o. 
O. 
0.5 
o. 
D. 

-0.5 
O. 
O. 
O. 
O. 
O. 
O. 

o. O. -1.0 O. -O.S O. 
O. o. -0.5 O. O. O. 
J.O O. -1.0 -1.0 O. O. 
O. O. -0.5 O. O. O. 
O. 1.0 ·'.0 O. -O.S 1.0 
O. 1.0 ·1.0 O. O. O. 
O. O. -S.O t.O -t.O O. 
o. 
O. 
o. 
O. 
O. 
D. 
o. 
o. 

O. 1.0 
1.0 -l.G 
O. ·'.0 
1.0 -2.0 
Z.O -2.0 
O. D. 

2.0 -1.0 
O. -J.O 

o. O. O. 
O. O. i.O 
o. O. O. 
O. -O.S J.O 
O. -1.0 D. 

-0.' '.0 O. 
O. -1.0 O. 
O. -0.' J.O 

O. O. -1.0 0.' O. O. 
O. O. -J.O O. 1.0 D. 
O. O. 

z.O O. 
O. O. 

O. 
O. 
O. 
O. 
O. 

-D.S O. O. O. 
-1.0 -0.' -1.0 D. 
-S.O o. o. o. 

O. 
O. 
O. 
O. 
O. 

D. O. 
-1.0 D. 

-0.' O. 
-1.0 O. 

O. D. 
D. O. O. O. 

O. -S.O 
1.0 -J.O 
O. -1.0 

O. -'.0 
O. -J.O 
O. -S.O 
O. -J.O 
1.0 -Z.O 
O. -S.O 
'.0 -S.O 

O. -1.0 1.0 
O. -1.0 O. 
O. -t.o o. 
t.O -J.O O. 
O. -1.0 O. 

O. o. 
-O.S o. 

O. O. 

-0.5 O. 

O. O. 

O. O. 
1.0 O. 
O. O. 

'.0 •• 
Z.O O. 
O.S O. 
O. O. 
1.0 O. 

1.0 O. 

O. O. 
O. O. 
O. O. 
0. •• 
O. 0. 
Z.O 0. 
D.O. 

O. o. 
O. I. 
o. •• 
0.5 I. 
o. O. 

O. o. 
O. O. 
O. O. 
1.0 O. 

-1.0 O. 

-'.0 O. 
o. O. 
o. 
O. 
O. 
O. 
O. 

o. 
o. 
O. 
O. 
I. 

0. 
O. 
Z.O 
o. 
I.' 
I. 
O. 
0. 
I. 
O. 
0. 
O. 
O. 

I. 
I. 

t •••• 7 

""ZIf 
14.S07 

U.I'. 
to.I" 
'.7" 
'.In ,.,ft 
, .. " 
'.711 
J.,91 ,.,. 

-t.o,. 
- •• ltZ 

-tt .... 

o. -11.'" 
O. -n •••• 

-o.s -17.0S. 

I. -".7n .. -".,., 
J. -17.'" 
o. -".'41 
I. -.'.S" 
t. -St.S" 
o. -1I.7M 

O. -IS.I" 

O. -J'.'" 
O. -4'.", 
1.0 -,t.t. 
0. -5 •• ", 

,- ..... ~ .... 
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Table B.1S. Overall Technology Ranking With Empty Weight • 0.0 For Airplane A 

AIIIIlA"" .. 

' •• TABULAR .ESULTS '0' ALL TfCN~~La&lfS ,0LlOWI 

C.SN CRUS E~IS r~T' EXTI fUEL INTI IIILT '.CN I'll 110' STAT TOl, 
CEIL WT"f SPCO Dae SiaM WG"T NOIS ",e NOIS W.KL '.CI .,' LTY Lr, SF"~ 'N" "I 

CATEGORY wEIGHTS S.'S 6.12 1.92 7.91 1.61 9.50 4.29 •• 16 7.06 7.15 1.51 1.2' I." 6.1' '.42 6.26 6 •• 7 
•• SE£ 'IjOT£S' B£LOW: (1) 

ST.T eHG lOT co~e ENGINE 1,0 O. 

~"f £N'IN£ 2.0 O. 
~.r LA~ fLOW AIR'OILS '.~ O. 

SPOILE.r -0,5 O. 

1.0 2.0 2.0 1.0 0.5 Z.O 1.0 1.0 -Z.O 
1.0 1.0 1.0 3.0 O. Z.O 1.0 1.0 -3.0 

2.0 2.0 O. 1.0 O. 1.0 O. O. -O.S 
2.0 1.0 O. 1.0 O. 1.0 O. O.S O. 

'18EIGLISS CO~POStr!5 2.0 

'OwLE. 'LAPS -0.5 
INTEG Low-caSf WG LVLE' C. 

ClVl'. CO~POSlfES 2.0 

? ST. AOV CIESEl (NGINE O. 
OIGITAl DATA LINes O. 

INT(G 'VIONIts 'NO OSPYS O. 

(~P.OV£O tV_80(H'R'tH& 1.0 

'>.APHITE (O-POSITES 2.0 

l~w/~t." SPEt' AI.JOILS O. 
~(AG'HG EDGE DEVICES 1.0 

S's STA1US 'ISPl"~ O. 
SEPARATE S'C TfC~HOLOG' O. 

I-,I. SlLl/SII .. -Af'O TL" O. 
QUIET E"ICIENT PROPS O. 
LOAD LI'ITI_' SfATS O. 

O. 1.0 O.S O. 

O. 2.0 1.0 O. 
O. O. O. O. 
O. 1.0 0.5 O. 
O. O. 2.0 O. 
O. O. O. O. 
0, O. I,D U. 
O. 1.0 0.5 O. 
O. 1.0 0.5 O. 
O. 1.0 0.5 O. 
O. 0.5 0.5 O. 

O. O. O. O. 
O. O. -0,5 O. 
O. O. O. O. 
O. O. 0.5 O. 
3.0 O. O. O. 

2.0 O. 1.0 O. 
1.0 O. 1.0 o. 

-0.5 O. O. O. 
3.0 O. 1.0 O. 
O. 0.5 3.0 0.5 

O. O. O. O. 

O. O. O. O. 

O. O. 1.0 O. 
'.0 O. 1.0 O. 
0.5 O. O.S ~. 

l. O. 0.5 O. 

O. O. O. O. 

-0.' O. o. O. 

O. o. O. O. 

0.' Z.O O. 2.0 
O. O. o. O. 

O. 1.0 

O. -0.5 

3.0 -O.S 
O. O. 

O. -Z.O 
3.0 -Z.O 
3.0 -l.O 
O. -1.0 
O. -1.0 
O. -0.5 

O. -1.0 
2.0 -1.0 
3.0 -2.0 
O. -0.5 
O. -1.0 
O. O. 

1.0 1.0 1.0 1.8 O. 
1.0 t.O 1.0 1.0 O. 
2.0 -1.0 O. O. o. 
1.0 O. Z.O o. O. 
1.0 O. 

1.0 O. 
O. -O.S 
1.0 D. 
1.0 O. 

O. O. 
O. D. 
1.0 O. 

1.0 O. 

0.5 O. 

0.' O. 
il. O. 
O. -D.S 

O. O. 
0.' O. 
O. O. 

O. O. O. 
Z.O O. D. 
O. 3.0 O. 
O. o. O. 
O. O. O. 
O. 1.0 O. 
O. Z.O O. 
o. O. O. 
O. O. O. 
O. 0.' O. 
1.0 o. O. 
O. '.0 O. 
J.O 1.0 O. 

O. 3.0 O. 
o. O. o. 
O. O. -0.' 

O. 
t.O 
'.0 
o. 
o. 
D. 
O. 
o. 
O. 
O. 
O. 
1.0 

o. 
1.0 

1.0 

O. 
O. 
o. 
O. 
o. 

'It.r, 

7 •••• ' 

71.'" 
13.'14 
52.1n 

41 •• " 

44.'" 
".'" sa. 110 

3 •• lOS 

".11S 
31.7.7 
31.no 
2' ••• 5 

26.'16 

u.". 
ZS.027 

'6 .. 3 •• 

"."" Zt.7Jt 

17.11' 

:-
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Table B.18. Overall Technology Ranking With Empty Weight - 0.0 For Airplane A (cODtiaued) 

~ 

lllIUlD COOI.I., 

I.~'OVI' .fST.AIM'S 

(ME'G' 'ISOII •• ' .LOOI 

aCTIVE "'ll ~1£v£.TIO. 

ST •• r CMG '(CI~ f.Gl.1 

DI'EC' LI'T CO."Ol 

I'ST/TIA. IESIS 'Url TIS 

CIT OI"~lATS 

MellI '(CIP (.GIM' 

IC(~MOlt( SF, COAT IN,S 

• IC'OWAV( L'.O •• ' STSTl" 

• aI/STAl/VI 

.. UtC.LETS 

aCTIvE lA"INAI 'lOW CTl 

IIIlellO MUD 

IUC'fD ~IO~UlSOIS 

I"TE'I'TfD ,aw D'"~£I 
ae 'LEeT'ICfl STSTf"S 

o. 
o. 
o. 
O. 
O. 
O. 
O. 
O. 
O. 

-0.5 

c • 
O. 
n.s 
2.0 
o. 

-o.~ 

o. 
o. 

SGl LIVI' TN'US"'" etl O. 
aCT CTLS FO' .LI srelT' 
'LUIDIC AuTO 'Ll CTl SYS 

LOw-t." S'C CO.11.'S 

DIIICT SIll 'OIC( Ctl 

A~T "11 S.OOTMJ.~ 

lOW-lEVEL ~a(SSUIll'TtO. 

LASE' ,Y.OS 

M('IS-U~ DIS'LAY 

LOa •• C 

'11£1 O~TIC' CIATA T •• ,) 

0"(" 

c.s 
-0.5 

o. 
O. 
D. 
o. 
O. 
O. 
O. 
O. 
O. 

o. O. 
S.O O. 
S.O O. 
O. O. 

O. O. 

O. O. 
S.O O. 
O. O. 
O. O. 

O. O. 

O. O. 

z.o O. -1.0 1.0 
O. O. O. O. 

O. O. -0.5 D. 
O. O. -0.5 O. 
1.0 Z.O -0.5 O. 
O. o. -0.5 O. 

1.0 
O. 
O. 
O. 
1.0 

O. 
o. O. -t.O O. O. 

O. O. 

0.5 Z.O 

- 0.5 O. 

0.5 O. 

O. O. O. 

O. D. 0.5 
-t.O D. O. 

O. t.O o. 

1.0 O. O. o. -1.0 O. 
O. O. -0.5 O. O. ~. 

O. O. -0.5 O. O. O. 
O. O. -1.0 O. -O.S O. 
O. O. -1.0 0.5 O. O. 
C. 1.0 -'.0 O. -O.S 1.0 
O. 
O. 
O. 
o. 
O. 

O. -1.0 O. O. o. 
Z.O -Z.O O. 1.0 O. 
o. 
O. 
O. 

-0.5 0.5 O. 

-'.0 -0.5 O. 
-1.0 O. O. 

O. 
O. 
O. 

-1.0 O. 
O. O. 
O. O. 

o • o. O. O. 
o. 0.5 O. 

Z.O -Z.O O. 

C. -0.5 O. 

O. O. O. O. t.O -1.0 O. O. o. 
O. -'.0 0.5 O. O. 
O. -J.O J.O -J.O o. 

J.O O. 
O. O. 
1.0 O. 
O. O. 
0.5 O. 
o. O. 
J.O O. 
t.O o. 
1.0 O. 

o • 
o. 
O. 
c. 
o. 
D. 

-'.0 -1.0 O. 

O. O. O. 

O. O. O. 

o. o. o. O. 

O. 
O. 
O. 
O. 
O. 
O. 
O. 

O. 
O. 
O. 
O. 

0.5 1.0 O. 

o. o. O. 
O. -0.5 O. 

O. -0.5 O. 

O. -0.5 O. 

O. -0.5 O. 

O. -0.5 O. 

O. 
O. 
O. 
O. 

-1.0 O. 

-0.5 O. 

D. D. 

-0.5 O. 

-Z.O O. C.S O. O. O. 
D. O. Z.O O. O. O. 

1.1 O. -0.5 O. O. 
-1.0 J.O -1.0 

O. O. O. 

O. O. O. 

O. O. 

1.0 O. 
-0.5 O. 

-0.5 O. 
-0.' O. 
-O.S O. 
-0.5 O~ 

O. O. 

-'.0 C. 
-0.5 O. 

O. O. 

O. O. 

o. 
1.0 

-O.S 
O.S 
O. 
O. 

-0.5 

O. 
O. 
tt. 
O. 
O. 

O. Z.O -Z.O O. -t.o o. 
J.O O. -1.0 -1.0 O. o. 0.' O. 
O. 
O. 
O. 

1.0 -Z.O O. 
O. 

O. 
O. 

1.0 O. O. 
o. o. O. O. o. 

Z.o -1.0 O. -'.0 O. o. O. 

D. D. -J.O 1.0 -1.0 O. O. O. 
D. O. -1.0 -0.5 1.0 O. O. o. 

o. D. o. 
O. 

O. -1.0 O. 

0.5 ·S.O O. 
0.5 -J.O 

O. 
-O.s '.0 O. 

I. 
o. 

o. O. -0.' J.O 
1.0 O. -1.0 -0.' -1.0 O. 
O. O. -S.' O. 1.0 O. 
O. 2.0 -J.O O. -1.0 O. 

o. 
o. 

O. 
O. 

0.' O. 
1.0 O. 

o. O. -1.0 O. -0.$ O. -0.5 O. 
O. D. -'.0 O. O. I. O. O. 
o. O. -1.0 O. -1.0 O. -D.5 O. 

I. 
O. 
O. 
O. 
O. 
0.5 
o. 
o. 
o. 
O. 
O. 
O. 
o. 
'.0 
I. 
Z.O 
o. 
I. 
O. 

tr.o,' 
".'" ".1'" 
15.,,4 
16.405 

15.'" 
It •• " 
tI.ns 
to.'" •. 4,. •. u, 
..2,. , .. ,. 
J.'41 
S.705 
I.t,' 
I.U' 
o. 

-Z.6" 
o. -4.Jro 
o. -10.0" 

.... 5 -11.'" 
I. -11.120 
o. -tl •• a 
I. -14 •• ,t 
o. -IS •• S' 
I. -t,.11S 
O. -21.6" 
O. -1'.545 

I. -It.OSS 
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Table B.18. Overall Technology Ranking With Empty Weight ft 0.0 For Airplane A (concluded) f 
I 

I 
DO~~lE' _.VI'.TIO~ o. O. o. -2.0 O. -0.5 O. 
HT {LUTTE' SUPPHSSlOIi O. D. D. -0.5 O. O. ~. 

JLY-IIY--lIGHT D. O. O. -1.0 O. -1.0 O. 
• C T GUST alLV O. o. O. -'.0 O. O. O. 
JlY·lIy·wlle O. O. O. -'.0 o. -, .0 D. 
INEITIAL NAVIGATION o. O. o. -'.0 O. -D.S D. 

··_OTfS: 
( 1) E"PTY IIEIGHT IS olunu. 

O. o. 1.0 -2.0 O. -1.0 O. 
o. o. o. -'.0 O. -1.0 o. 
o. o. o. -1.0 O. -1.0 o. 
O. O. O. -J.O O. -1.0 o. 
O. O. O. -J.O O. -1.0 o. 
D. O. 1.0 -J.O o. -1.0 o. 

O. O. o. 
o. O. O. 
O. o. O. 
o. o. O. 
O. O. O. 
O. O. O. 

-54.347 
-Sl.552 

-42.505 

-4Z.JOS 

-42.JOS 

-50.7" 

~ 

f 
I 
j 

! 

I 
I 
~ 
I 

I 
I 
I 
I 
: 
I 
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Table B.l9. Overall Technology Ranking With Empty Weight • 0.0 For Airplane B 

A .... U.E • 

••• TABULA' IESULTS FOI ALL TECHNOLOGIES FOLLOW: 

CISH CIUS (NiS EN" Exrl fUEL '.TI "'LT .. ICH IILI I"E S'.' TOLl 
Ctll VT"' S"ED Dot SION WSHT .015 E"e NOIS Will .. ICE IGE Bl" 8L , I'T, CR'T .. EI' 

CA,tGOI, WEIGH'S S.45 7.JJ 7.41 9.45 l.16 9.50 5.41 1.61 7.45 7.00 7.76 7.11 9.55 7.24 9.54 6.71 7.41 
•• srE 'NOTES' BELOW, (" 

,laEIGLASS CO~"OSITES 

INTEG AVIONICS AND OSlO'S 

XEYLA' CON"OS.TES 

SPOILE'S 

DIG'TAL DATA LINXS 

GATE ENGINE 

GI.pHITE CONPOSITES 

LEADING EDGE DEVICES 

LOv/NE'N SPEED AI.FOILS 

ICEPHOBIC SFe COAtINGS 

STIT 'MG lOT CON8 ENGINE 

OUIET E"ICIENT "lOPS 

SfS STATUS DISPLA'S 

oueTE' "R'PULSO'S 

SEp.'A'E SFe TECM.OLOG' 

FOwLER FLAPS 

CIT DISpLA'S 

NIC'OVAYE LANDING S'STEN 

NAT LAN FLOW AIIFOILS 

LoaD llNITING SlAtS 

2.0 O. 
O. O. 

2.0 O. 

O. O. 

o. 
O. 
2.0 

1.0 
O. 

1.0 

O. 
o. 
o. 

-0.5 
O. 
O. 
O. 
·0. 

O.S 

O. 

o. 
O. 
O. 
o. 
o. 
O. 
O. 
O. 

O. 

O. 
O. 
O. 

O. 
O. 
o. 
5.0 

1.0 

O. 

1.0 

1.0 

O. 
O. 
1.0 

0.5 

'.0 
O. 
O. 
O. 
o. 

0.5 O. 
1.0 O. 

0.5 O. 
1.0 O. 

O. o. 
1.0 O. 

2.0 O. 
O. o. 
5.0 o. 
0.5 O. 

O. 
O. 

O. 
O. 

0.5 
0.5 
O. S 

O. 
1.0 

O. 5.0 o. 
o. o. o. 
O. D.S o. 
D. 1.0 O. 
1.0 -1.0 O. 

1.0 
O. 
1.0 
0.5 

O. 
1.0 

1.0 

D.S 
0.5 
0.5 

O. 
0.5 O. 

O. O. 

0.5 2.0 O. 

O. o. O. 

-1.0 -0.5 O. -1.0 5.0 -0.5 

D. 
D.5 
D. 

D. D. 

0.5 D. 

o. o. 
o. 1.0 O. 

1.0 t.O D. 

o. O. O. 

O. 
O. 
O. 

o. 
O. 

O. 

o. 
0.5 
O. 

O. t.O D. 

t.O o. t.O 

O. O. O. 

O. 
O. 

O. 
O. 
O. 
O. 
D. 
O. 

O. 1.0 
3.0 -1.0 

O. O. 

0.5 O. 

1.0 O. 
O. O. 
1.0 O. 

O.S O. 

5.0 -Z.O O. O. 
O. 
O. 
O. 

O. 
-1.0 
-0.5 

2.0 O. 
1.0 O. 

0.5 O. 

o. 
o. 
O. 
1.0 
O. 
O. 
O. 
0.5 

O. o. -0.5 0.5 O. O. 
O. O. 1.0 O. 0.5 O. 
O. O. 1.0 
Z.O O. -1.0 

1.0 O. 

0.5 O. 

O. 2.0 -1.0 O. 

3.CI O. 

O. 1.0 
o. o. 

-1.0 -1.0 

O. o. 
O. 0.5 

O. 
O. 
O. 
o. 

O. 
O. 
O. 
O. 
1.0 
t.O 

O. 
O. 
O. 
D. 

2.0 -1.0 

O. -0.5 
O. -0.5 

O. D. 

O. 1.0 O. 

O. O. O. 
1.0 -2.0 o. 
O. O. O. 

o. O. 

2.0 O. 

O. O. 
O. o. 
3.0 O. 

O. D. 
O. O. 
O. O. 
D.S D. 
0.' o. 
D. O. 
o. o. 
2.0 O. 
0.' O. 
t.O O. 
o. O. 

O.S O. 
1.0 D. 

o. O. 
O. -0.5 

O. 
O. 
O. 
O. 
O. 
D. 
O. 
1.0 

1.0 

O. 
O. 
O. 
O. 
2.0 

O. 
O. 
O. 
O. 
1.0 

O. 

... OF 
It .n 

".641 

4t.'" " ... , 
)5.'61 
,4.104 

JZ."'. 
)1.U6 

2 •• ", 

II.'" ".0" 
26.SS0 
26.115 
IS.SZS 

.. 

".00' 
21.'" 
U.S.7 

10.'" 
ZO.5Z1 

1 ••• " 
11.6"6 
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Table 8.19. Overall Technology Ranking With Empty Weight - 0.0 For Airplane B (continued) 

f~fIG' AI5011iNG 'lOOI 
l"PIOV[e IES'IIAINTS 

ACTIVE ST'll 'IEvENTION 

,"'I STLL/S'N--AEIO TL.G 

DIIIECT LIFT CONTROL 

IIST/TE'I I£SI5 FUEL TKS 

AC fLEtTIleAl S'STE"' 

NAVSf All ""S 
INTEG LOW-COST W, LVLEI 

II'NGlETS 

INTEGIIATED YAW OA"'£' 

ACT II~E '"OOTHING 

'"!CliO HUD 

FLUIDIC AUTO '~T CTl STS 

ACT CTlS FOA All STBlTy 

SGl LEVEP THIUST/DI' CTL 

DIREtT SIDE FO.CE eTl 

lOW-DIAG SFe COATINGS 

\.ASEI 'TIIOS 

LOll-LEVEL PIESSUIIZATION 

HlADS-UP II/SPLAT 

FISEI O'Tl(S (DATA TINS' 

lOll.,. C 

O"£GA 

fly-tn-LIG"T 

fLY-IT-WIH 

aCT GUST ALLEVIATION 

o. 
O. 
o. 
o. 
o. 
O. 
0.5 

o. 
O. 
0.5 
o. 
O. 
O. 

-0.5 

0.5 

o. 
O. 
O. 
o. 
O. 
o. 
O. 
O. 
O. 
O. 
O. 
O. 

3.0 O. 
S.O O. 

o. 
O. 

D. -0.5 O. 
O. o. o. 

O. O. 
O. O. 
O. O. 
3.0 O. 

O. o. O. O. 

o. 
O. 

O. 
o. 
O. 
D. 
O. 

O. 
O. 
o. 
O. 
O. 
O. 
O. 
o. 
O. 
O. 
O. 
O. 
O. 
O. 

D. O. O. o. 
D. 
O. 

O. -0.5 O. 

O. -1.e D. 

O. O. O. 

O. O. o. 
n. o. o. 
O. 0.5 O. 

O. O. O. 

O. -0.5 O. 

O. -0.5 O. 

O. O. O. 

0.5 1.0 O. 

Q. O. O. 

O. -O.S O. 

O. -0.5 O. 

O. -O.S O. 

O. -0.5 D. 

O. -1.0 O. 

O. C. C. 

O. -C.5 O. 

C. -0.5 O. 
O. -1.0 O. 

O. -1.0 O. 

O. -1.0 O. 

0.5 D. 
O. O. 

O. O. 

-2.0 O. 
O. O. 

O. D. 
O. O. 

O. O. 

1.0 D. 

O. O. 

O. D. 

-0.5 O. 

O. O. 

-0.5 O. 
-1.0 O. 

O. O. 

-0.5 O. 
O. O. 

0.5 O. 

O. O. 

O. O. 

o. 
o. 
O. 
O. 
O. 
O. 
O. 
O. 
O. 
0.5 

O. 
O. 
O. 

-0.5 
1.0 

O. 
O. 
O. 
O. 

-0.5 
o. 
o. 
O. 
O. 
O. 
O. 
O. 

o. 
O. 
O. 
O. 
O. 
O. 
O. 
O. 
O. 
O. 
O. 
O. 
O. 
O. 
o. 
O. 
O. 
O. 
O. 
2.0 
O. 
D. 
O. 
O. 
O. 
O. 

O. 

O. -0.5 O. G. G. 
O. -D.5 O. o. o. 
O. -1.0 O. -0.5 D. 
O. -D.5 O. D. o. 

O. O. 
D. o. 
3.0 a. 
2.0 O. 

1.0 -1.0 a. -O.S 1.0 1.0 a. 
D. -1.0 a. O. O. O. O. 
D. 1.0 0.5 O. 
t.O -1.0 O. O. 

O. 1.0 O. O. 
o. -1.0 0.5 O. 

1.0 -2.0 

1.0 -Z.O 

2.0 -2.0 

O. O. 

O. -S.O 

Z.O -1.0 

O. -3.0 

O. O. 

O. -0.5 
O. -1.0 

-0.5 1.0 
1.0 -1.0 
O. -1.0 

O. -0.5 
O. -0.5 O. O. 
O. -3.0 O. 1.0 
O. -1.0 -O.S -1.0 
2.0 -3.0 O. -1.0 

O. -3.0 D. O. 
O. -1.0 O. -O.S 

O. -1.0 D. -1.0 
O. -3.0 O. O. 
O. -3.0 O. O. 
O. -3.0 O. -1.0 

o. o. O. 

O. 1.0 O. 

o. o. •• 
O. O. O. 
2.0 O. O. 
3.0 O. o. 
O. 2.0 O. 
O. O. O. 
O. D. O. 
O. O. O. 
1.0 O. O. 
O. o. O. 
O. D.S O. 
O. O. D. 
O. 1.0 O. 

O. O. o. 
O. -1.0 O. 

O. -1.0 O. 
o. O. O. 
O. O. O. 
1.0 O. O. 

O. 
o. 
a. 
o. 
0.5 
O. 
O. 
D. 
O. 
O. 
O. 
O. 
o. 
O. 
O. 
O. 
O. 

-Ol,S 

o. 
O. 
O. 

O. 
O. 
O. 
a. 
O. 
O. 

• 

tI.ll1 
II.UI 

U."7 
n.201 
u ... , 
U.lSl 

14.Dn 

1.7" 
1.7.' 

7.tlZ 

5.f52 
3 •• fl 

3.'" 
-1 •• 70 
-,.u. 
-3.SII 

-tt .... 
-n.SOt 
-U.N' 
-n.on 

-11.141 

-n.2'3 
-Z •• 14K 
-SI.577 
-SZ.734 

-12.134 

-ss.on 

• 
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Table B.19. 0verall Technology Ranking With Empty Weight - 0.0 For Airplane B (concluded) 

• O~~LE' NAVIGATION 0. O. O • -lyO O. -O.S O. O. O. 1.0 -l.O O. -1.0 O. O. o. O. -H.'" 
ACT 'LUTTER SU~~'fSSION O. O. O. -0. S O. o. o. O. O. O. -J.O O. -1.0 O. O. O. O. -37."1 

ICTIVE LA"INI' 'LOW eTL 1.0 o. O. -].0 O. O. O. t.O O. O. -J.O 1.0 -J.O O. O. O. t.O -4'.1" 
INE.TIAL NAVI~ATION O. O. O • -J.O O. -O.S O. O. O. 1.0 -S.O O. -1.0 O. O. O. O. "4."S 

•• NOfES: 

( t) (""Ty IIEIGHI IS OlIllTTE •• 
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APPENDIX C 

!-PASSDCEl AND CClllJtIl DISIGN STUDIBS 

This appeadix detaib baaic equatioDa uaed iD the cOilfiaura-

tion tradea for both the 6-passenaer and coaauter aircraft. 

Weight and drag breakdOVD8 are ahown for both baaeline and advanced 

conventional configurations for both airplanea. Also, the lanae 

F4~tor derivation is shown. 

C.l 6-PASSENGER DESIGNS 

Three airplanes were designed: a current technology airplane, 

an advanced technology conventionally configured airplane, and an 

advanced technology canard con~igured £irplane. Specifications 

and technologies incorporated are detailed in Chapter 5 a8 is the 

cabin layout which is common to all three designs. 

The following paragraphs discuss. in order. the parametric 

trade studies. the current technology airplane. the conventional 

configuration advanced technology airplane, and the canard config-

uratlon advanced technology airplane. 

C.I.l Trade Studies 

Three trade studies were don~ covering cruise, takeoff, and 

landing performance. Derivations are as follows (the resulting 

graphs may be found in Chapter 5). 

Cruise trades were formulated to show effective rower loading 

required to cruise at 250 kt. 

Equation C. L 

.' ..... -_ .. 

The relationship is given in 

483 



..e.!!.. 0 (WI.) 

{ 

23.95 Cn I 
(np P/W) • 4882 (W/a) + w(Ae)p2 V~ 

for ~ in kg 8ec2/m~ 

V in m/a 

w/s in R/m2 

(n P/W) in ltv/R 
p 

(C.I) 

Note: <np p/W) is that required at cruise and 1s not the sea 

level maximum. 

LID can also be included in the plots because it is related 

to the effective power loading as given by Equation C.2. 

LID • (n P/W) -1 (V/ 
p 

for V in fils 

(np p/w) in kw/N 

) (C.2) 

The takeoff trade study was formulated to show wing loading 

required for a 2000 ft takeoff over a 50 ft obstacle. The 

approximations of Reference 214 were used to model the takeoff 

maneuver. 

w 
- -S 

Equation C.) presents the resulting expression. 

1 610 

.1198 

15. 7 IA 
16.505 (!) fAw 

18.J32(P/\J)CL - .02 C
L 

(C.3) 

+ .1694 ] 
- .72 CD CL maxTO maxTO o maxTO 
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for W/S Ua 1/.2 ... lwe1 (lSA) 

./v Ua kv/ka cOGcr.t. ~7 (~ • .02) 

Coaputatiou ahowecl that the required wls vaa a very weak 

functioa of CD and A ao the plota vere a.ereted with 
o 

wls • f(./w, ~~) oaly. 

The landiug trade atudy va. for.alated to ahow Wls ADCI 

CL required to land in 610 over. 15.2 • obatacle. The 

~ 
approximations of lleference 214 vere uaed to aodel tbe land1Da 

maneuver. The relation proved to be linear .. ahovl'l ill Equatioa 

C.4. 

CL • .0011 (W/S) 

IDAl1.nc 

2 for wls in N/m 

v • 1.3 V approach stall 

sea level (lSI..) 

C.l.2 Current Techno~ Design - 6PAX~ 

(C.4) 

Preltm1nary sizing of the 6PAXBL was accomplished uSing a 

standard weight breakdown and the Bre~uet range equation aa given 

by Equations C.S and C.6. 

where We • gr~ss weight 

WE ~ ~mpty weight 

W • payload veight p 

Wf • fuel weight 

48, 

(C.S) 



Ii 

"----~~-----...... 

I • 198.13 Cnp / afe) ( LID) in CWC/CWC-Wf » (C.6) 

for I in _ afe in ka/kw/hr 

Use of Equations C.S end C.6 resulted in the followial pre-

11ainary weight breakdowna: 

Wp • 545 kg 

WG • 1844 kg 

2 
Next, the wing wa~ sized for w/s • 1053 M/m and the vertical 

and horizontal tails w~re sized with volume coefficients. With 

initial dd" .. c01llpl~ted, detailed component weight eltimationl 

were done primarily using the methods of References 214 and 154. 

Wing location and horizontal tail area were th.n determined from 

static margin and takeoff rotation requirementti using a prog~am 

Which is briefly described to11owing the design discus.ions in 

Section C.l.5. The fi~l step in the manual conceptual design 

process was the calculation of the zero lift drag for which the 

methods of References 179, 214, 90, and 137 were used. 

The final sizing began by calibrating the GASP weight and 

drag routines against the previous hand calculations by varying 

already-provided inputs. GASP then sized the engine and airframe 

to meet the required specifications. Table C.l presents the 

final weight breakdown and Table C.2 presents the final drag 

breakdown for 6PAXBL. 
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Table C.l. 6.AIII. Wetpt Break ... 

Croup It. Vetpt (q)/(lb) 

Propul.toD IIlatna (41'1) 281.7 / 621 

Baatne luta1laUon 31.8 I 70 

ruel Sy.t_ 10.4 I 23 

PropeUer 33.6 I 74 

Structure. • "ina 177.4 I 391 
Miscellaneou. 

Horizontal 'ret1 27.7 I 61 

Vertical Tail 11.3 I 25 

Fu.ela,~ 219.1 I 483 

Landini Gear 62.1 I 137 

Fuel Tanks 18.1 I 40 

Battery & Virin, 22.7 I SO 

Fl1lht Controla Surface Control • 50.8 I 112 
• Fixed 
Equipment Avionics & 

Instrumentation 33.1 I 73 

Seats & Purni.hin,s 71.7 I 158 

Espty Veight • 10Sl.4 kg (2318 1b) • 
Payload We1lht • 544.3 kg (1200 Ib) 

Fue1 \;,ight • 264.0 k& (S82 Ib) 

Gro.. Weight • 1859.8 kg (4100 Ib) 
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Table C.2. 6PAXIL Draa Brukdowa 

It. Flat plate rl) Wetted 
Ar .. (m2 ) 0 Ar .. (.2) 

\liIla .1315 .00759 28.938 

FuMla.e .0854 .00493 29.381 

Vert. TaU .0123 .00071 l.185 

Hor1a. TaU .0277 .00160 6.202 

• Increment .0710 .00410 o. 

Tota18 .3279 .01894 67.706 

• Accounts for roughness, protuberances, and cooling draa. 

Breakdown is for cruise, gear aDd flaps up. 

Altitude • 7620 m, Speed • 250 kt, Mach • .415 

Reynold. number per meter • 4.59 x 106 • 

Cruise Drag Polar : C • 
2 

D 
.(\189 + .0511 C

L 

C.l.3 Advanced Technology Conventional ~ - 6P~ 

Pre11~inary 8izl~g is analogous to that of 6PAXBL (aee Eq. C.S 

and C.6). The methods of Reference 1;4 ~"!re 1I!~-! '0 account !or 

composite ~tructur£s as outlined below: 

(l) For preliminary sizing, assume that composites result in a 

16% empty weight reduction. 

(2) For component weight esttm8tion. fuselage, wing, and empen-

nage weights are reduced by 25% throueh u~e of composite 

materials. 

488 

, 

• 

• 



I · 
'I ., 
j 

- j 
i 

Api'lytug (1) above aDd Equations C.5 _ C.6 r .. ulted 111 the 

followiD& prel1a1nary welaht breakdowft, 

Wp • 545 Ita 

Wo • 1294 kg 

GASP .s used for f1.Dal su1na .s dlscusseel prev10usly for 

6PAXlL. Tables C.3 and C.4 present the f1Dal welaht aDd draa 

breakdowns for 6PAXAD. 

C.l.4 ~vanced Technology canard Deslgn - ~PAXC 

Due to problema dipcu8sed in Chapter 5, the design of 6P~XC did 

not proceed beyond the prel~1nary 8izing stage. Based on limited 

analysis. the following conclusions were made: 

(1) Wetted area appears to be less than that of 6PAXAD. Benee. 

CD may be expected to be slightly smaller. 
o 

(2) Structural weights are expected to be similar or 8lightly 

le8s than those of 6PAXAD. 

(3) Feasibility (from a trim standpoint) of full span flaps on 

the main wing is unknown. 

(4) In view of items 1 and 2, and assuming full span flaps are 

feasible, the performance and efficiency characteristics of 

6PAKC are expected to be similar to or better than those 

of 6PAXAD. 

C.l.S Tail Sizing Gomputer Program 

A short program was written to aid in horizontal tail sizing. 

The program requires aerodynamic, geometric, and weight inputs to 

compute horizontal tail area and w~ight (for conventional or 
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Table C.3. 'PAIAn weiaht BreakdOVft 

Group It_ Weiaht (ke) I (lb) 

Propulsion Enaine (dry) 92.1 I 203 

IngiDe Installation I 25.9 I 57 

Fuel Syst_ 7.7 I 17 

Propeller 26.3 I 58 

Structures & Ving 62.1 I 137 
Miscellaneous 

Horizontal Tail 12.7 I 28 

Vertical TaU 6.8 I 15 

Fuselage 127.0 I 280 

Landing Gear 43.5 I 96 

Battery & Wiring 22.7 I 50 

Flight Controls Surface Controls 50.8 I 112 
& Fixed 
Equipment Avionics & 

Instrumentation 33.1 I 73 

Seata &Furnishings 71.7 I 158 

Empty Weight • 532.0 kg (1283 Ib) 

Payload Weight - 544.3 kg (1200 Ib) 

Fuel Weight .. 132.5 kg (292 Ib) 

Gross Weight - 1258.7 kg (2775 Ib) 
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Table C.4. 6PAXAD Dra. IreUdova 

It. 
Platplate ~ wetted 
ArM (.2) 0 ArM (.2) 

Win, .0494 .00862 8.883 

ruaela,e .0801 .01397 25.842 

Vert. Tail .0099 .00173 3.347 

Horh. Tail .0156 .00273 3.223 

It 
Increment .0086 • 00150 O • 

Totals .1636 .02856 40.367 

* Accounts for roughness and protuberances. Cooling Drag 11 
assumed negligible for liquid cooled engine. 

Breakdown is for cruise. gear and flaps up. 

Altitude • 9140 m Speed • 250 kt, Mach • .424 
6 

Reynolds number per meter • 3.94 x 10 

Cruise Drag Polar: 2 
CD • .0286 + .0408 ~ 

composite materials) to meet static margin and/or rotation re-

quirements. 

Static margin and rotation requirements are based on the 

methods of References 174 and 180. 

In running the program, the operator has the following 

options: 

(1) 
o Fix mair. gear location or locate main gear 15 (from the 

vertical) aft of the computed center of gravity. 
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(2) RD tall all1D&; coaput. input charact.riatlca. 

(3) Sl •• tail for atatic .. rain r.qulr .... t only. 

(4) S1&e tail for rotatlO11 requir ... t only. 

(5) Si.e ta!l for the critical requirement. 

Generally, a atatic urgin of at leaat .10 (dC./d~ ~ -.10) 

and rotation at or below 120% of the atall speed (Va < 1.2 V ) 
- 8 

were required. 

C.2 COMMUTER pE~ 

TWo aircraft were designed: an advanced technology conven-

tional configuration ~nd an advanced technology canard configu-

ration. Specifications, technologies incorporated into the 

aircraft, and cabin layout (common to both aircraft) are detailed 

in Chapter 5. In addition, a baseline, current technology alr-

craft WES analyzed for comparison with the advanced technology 

aircrait. 

The following par~graphs discuss the parametric trade studies 

and the three commuter aircraft that were synthesized and/or 

analyzed. 

C.2.l Trade Studies 

Two trade studies were performed covering cruise and balanced 

field length performance. The cruise trade studies are not 

covered in this section and the reader is referred to Section C.I 

for their derivation. 
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The Bal Deed Pield Lenatb (In.) trad .. vere cleveloped to 

i11uatrat .. the effects of effective pover loadtaa (n p/W). maxi
p 

1IIDB lift in takeoff configuration (~ ). zero 11ft draa 

1WC.ro 
coefficient (CD ). effective aspect ratio (Ae). and wias loadina 

o 
(W/S) on IPL. The relationship for these factors is presented in 

Equation C.7 and was derived from the approximations of Reference 

214. 

IF • 
.863 

1+13.69+x 
{

Il P 109.3 
W 1 (s x C 

L 
maXoro 

x (~) I c~120 I + 10.7 

DUlX.ro 

( 1 

x 2.7 +l P 
~- 459.9 

~ -W 1 W ("8 x C ) 
L maxTO 

+ 199.6 
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1 

for sea level atandard condition. (ISA) 

concrete runway (~ • .02) 

Wls in H/m2 • 

Tl p/W in kw/ltg. 
p 

BPL in Il. 

Calculations indicated that variations in Ae and en bad 
o 

little effect on BFL. The final plots were constructed with M 

and en held constant. 
o 

C.2.2 Current Technology Configuration - COKBL 

The drag and weight routines of GASP were calibrated to 

known or predicted characteristics of COHBL, an eXisting com.uter 

aircraft. This was done by iterating over a set of input values 

until the desired outcome was obtained. The existing propulsion 

characteristics of the aircraft were also input into the program. 

Table C.S presents the final weight breakdown for COHBL. while 

Table C.6 presents the final drag breakdown for the aircraft. 

C.2.3 Advanced Technology Conventional Configuration -~ 

Development of ADCOM proceeded as outlined for 6PAXAD in 

Section C.l.3, with the exception that only engine sizing was 

allowed in the GASP an8lysis. The final w~ight hreakdown and the 

final drag breakdown appear in Tables C.7 and C.B respectively. 

C.2.4 Advanced Technology Canard Configuration - ADCOMCN 

Because of the canard analysis problems discussed in Chapter 

5, developmental work on ADCOMCN was halted after preliminary 

sizing. The following conclusions can be made based on limited 
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Tabla C.S. CCIIIL v.i&ht IreaWOVIl 
f 

I 
I 
; 

.. Group It_ W81aht (ta) I (lb) 

t Propula10ll lIla1De (dry) 325 I 716 

.... ' lIlaine Installation 116 I 256 

ruel Syat_ 24 I 53 

Propellers 137 / 303 

Structures & Wing 620 /1367 
Miscellaneous 

Horizontal Tail 89 / 196 

Vertical Tail 70 / 154 

Fuselage 685 /1443 

Landing Gear 283 / 623 

Engine Section 186 / 411 

Flight Controls Cockpit Controls 14 / 31 
& Fixed 
Equipment Fixed Wing Controls 65 / 144 

Fixed Equipment 796 /1753 

Empty Weight • 3363 kg (7450 lb) 

Operational Items 
(includes crew) • 311 kg (686 Ib) 

Max Payload Weight - 1994 kg (4395 Ib) 

Max Fuel Weight - 1970 kg (4342 Ib) 

Gross Weight (Design) - 5670 kg (12500 lb) 

Jross Weight (multi-
mission) - 6350 kg (14000 1h) 
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Ta.ble C.6. COMBL Dl'aa Break.dOWll 

It. 
FlatplatQ ~ Area. (m2) 0 

Wing .1971 .00764 

Fuselage .2539 .00985 

Vert. TaU .0325 .00126 

Horiz. Tail .0465 .00181 

Engine NacP.l1es .0768 .00298 

* lncr~.ent • 0410 .00159 

Totals .6478 .02513 

" Accounts for roughness and protuberances. 

Breakdown is for cruise, gear and flaps up. 

Altitude· 3050 m, Speed • 250 kt, 

Reynolds number per meter • 7.034 x 106 

Cruise Drag Polar: 2 
CD • .0251 + .0511 CL 

preliminary analysis of the configuration: 

Wetted 
Area (.-2) 

43.114 

80.530 

10.025 

12.843 

18.729 

O • 

165.241 

Mach • .4 

(1) Wetted area is approximately the same as ADCOM, and therefore 

the drag characteristics are anticipated to be approximately 

the same. 

(2) Both configurations are characterized by essentially identi-

cal weights. Wing sweep and landing gear location cause the 

basic structural weight differences. 
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Table C.7. ADCOM We1aht .rukdowD 

Group It. Weiaht <ta) I (lb) 

Propulsion _inea (dry) 278 I 613 

BDaine lnatal1at1oDa1 63 I 139 

fuel Syat_ 143 I 315 

Propellers 189 I 417 

Structures & Wing 284 I 627 
Miscellaneous 

Horizontal Tail 36 I 80 

Vey:tica1 Tail 16 I 35 

Fuselage 854 I 1883 

Landing Geay: 308 I 679 

Systems 2 210 I 463 

Flight Controls Flight ContTols 135 I 298 
& Fixed 
Equipment Cockpit Accomodations 136 I 300 

Fixed Equipment 

Empty~eight 

Operational Items 
(includes crew) 

Max Payload Weight 

Max Fuel Weight 

Gross Weight 

3 405 I 893 

• 3058 kg (6742 lb) 

• 273 kg (601 lb) 

• 1723 kg (3800 lb) 

• 908 kg (2002 lb) 

• 5706 kg (12580 lb) 

1. includes engine mount and accessories. 
2. includes hydraulic, electrical, and airconditioning 

systems. 
3. includes cabin furnishings and emergency equipment. 
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Tabla C. 8 • 4DCCII Dra. IreakdOWll 

It. 
llatplate ~ Wetted 
Ar .. (.2) 0 Ar .. (.2) 

Winl .1525 .00887 28.726 

Fu.e1~le .2075 .01207 91.856 

Vert. TaU .0314 .00183 9.415 

Bortz. TaU .0172 .00154 6.488 

* Increment .0431 .00251 o. 

Total .4610 .02682 136.485 

* Accounts for roughness and protuberances. 

Breakdown ia for cruise, gear and flaps up. 

Altitude • 3050 m, Speed • 250 kt, Mach • .4 

Reynolds number per meter • 7.034 x 106 • 

Cruise Drag Polar: ~. .0268 + .0376 CL 
2 

(3) Trim problems with full span flap deflection may exist. This 

1s an area that merits more research. 

C.3 ~ FACTOR PARAMETRIC ANALYSIS ... 
The Range Factor (RF) gives a useful measure of an airplane's 

cruise efficiency and utility in terms of kilogram (payload) kilo-

meters per liter. 

Equations C.5 and C.6 frlJ1ll SecUon C.l can be combined to 

give an expression for fuel weight required as given by Equation C.8. 
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\ J ~ 

x 
e - 1 

Wf • W { P W 
1 - (..!) eX 

We 

where X 
IIp r(~) } 

• 198.10 (~) 

for R. in DDl 

W in kg 
p 

sfe in klJ/kw/hr 

Wf in kg 

} (C.8) 

Next, an expression for LID is obtained a. given by Equa-

tion C.9: 

L - . 
D 

.0085 w P V2 (Ae) (~) 
S 

.0418 n p2 V4 (Ae)Cn + .0017 (~)2 
a 

for p in kg sec 2/m4 

V in m/s 

w/s in N/m2 

(C.9) 

RF is def:ned by Equation C.lO and is expressed in terms of 

airplane and mission parameters by combining Equations C.8 and 

C.9 as given by [r;'Iation C.ll. 
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IF • W I ( .705 ) 
p W

f 
(C.l0) 

• 

for IF in ka-na/l1ter , 
lin .. 

RF • .70S I 

V f_l-_( w_:) e_X } 

l eX - 1 

(C.ll) 

where 
1.6934 

for RF in kg-nm/liter 

V 1n mls 

R 1n nil 

vIs 1n N/m2 

p in kg sec:2 /m4 

sfc 1n kg/kw!hr 

Note: (1) valid for cruise flight only 

(2) R 1s usually expressed as a fixed range (R
f
) plus 45 

minutes reserve: R • Rf + .75 V 
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