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Abstract

An intvoductory survey of the globalyenergy#balance ciimate
wodels is presented with ao emphasia on enalyeical results. A sequence
of increasingly complicated modele dnvolving fce cep and radiative
feadback processes are solved and the eoluzionsland paramster sensl-
tivities are studizd. The model paremeterizations sre examined
crizicslly 4n light of many current uncertainties. A simple seazonsl
model is used to atudy the effects of changes in orbital elements
on the temperature field. A linear stabilicy theovem and a complete
noalinear stabilicy analysis for the models are developed. Analyticel
golutions are also obtained for the linearized models driven hy

stochastic forcing elements. In this context the relation between

natural fluctuation statistics and climate sensitivity is stressed,




Intveduction s

| The theory of climate hae recéivad guch éttamtiom in tha lrét few
years. The evoluricn of high-spesd computers &nd the dtevelopment of

puserical waathey pradiction models have made the simeisatien of
clinate at least ponderabla. The global scale colisctiion and snalysis
of oheervations have provided a base for developing amndl vaerifying
podels. In addition, the extraction of palecclimatic 4nformation
from various sources is beginning to produce a 1@gib1estmcord of
climatic history. Preliminary studies of the earth's zlimate
suggest that the present atate may be a delicate one pessibly vul-
narable to unintentional adverse changes by man's actiwitles. As 1t
demands more and more $rom the earth's dwindling resoumces, the
growing humen population becomes less able to cope with climatic
chunge., As. & result, the forecasting of future climates becomes
increasingly important. Evidently, the time has come %o develop
mathematical models of the climate.

The purpose of this paper is to present an {n¢roductory survey
of aimplie cliwmate modele based upon elenentary heat balance con~-
gidevrarions. The paper {s intended to be pedagogicals introducing
complicnied subjects by way of solvabie exsmples. The paper begins
with the fundamental principles that govem planetary climates and
proceeds Lo develop a theory for one-dimensional climate wodels,

Schneider and Dickinsen (1974) have surveyed many approaches to

climate modeling., Foremost in their discussion is the hierarchy of

climate models. A wide vange of wmodels may be conseructed based upon




the choice end nuwber of degress of freedom to ba included. Genmeral
clrculagion models {(GCMa) can have wp to a willion degrees of freedom
while the simplest models have only s few. Although in principle
GCia could become physically realistic, they are expensive and
cuzbevsoms. The artificisl climates generated by these wodels are
typically as complicatad and inzcrutabdle as the ear;h’n climstea. -
Thedir major advantage {once perfected) will be their controllability;
i.2., the possibility of tescing hypotheses by changing boundary
conditions, & luxury not afforded by the real climate.
Because of the expanse and complicated output of lsrge GCMs, s
variety of simplified initial value models are presently under
construction for use in eensitivity experiments (e.g., Held and
Suarez, 1978; Gates and Schlesinger, 1877). It is hoped that these
models will produce climates and climate change responses similar
to those of their largeyr counterparts,
Since the climate is represented by the long-term averages of
atmosphevic variables, one promising approach is to construct
equations in terws of these averaged quantitizs. Recently, theve
have been many attempts to construct and study such equations. The
resulting models are referred to as "statistical dynamical models"
(SDMs) and ware reviewed by Saltzwman (1978).
Among the SDMs are the few variable models. If only the ver-
tical dimension is retained, one obtains the radiative~convective

models reviewed bv Ramanathan and Coakley (1878). The asdvantage of

these medals 43 that they can be used to compute radiative transfer




in devail and, therefore, any climatic feedback mechenisms associated
with radfation may ba cerefully studied.

1f we charactexise & column of the earth-atmosphere systen by a
single nunber, 8aY¥ the sea level temperature, we develop models with
only horizental dimensione. Zonal averaging such wodels leads us to
the one-dimensional climate modals. Models of this type have been
studied for some years (Rngecrom, 19283 Fritz, 1960; Opik, 1963;
Eriksson, 1968). Renewed interest in these models vas stimulated by
Budyko (1968, 1969, 1972) and Sellers (1969). These two investi~
gators independently derived one~dimensional models based upon the
thermodynamic equation. Each term in the equaiion was written in
terms of the sea-level temperature {ield. In doing so they distilled
the climate problem into a ove-dimensional, steady-state, boundary
value problem that was solved for the temperature field. Although
the equations were nonlinear, solutions could be extracted by either
analytical or reliable numerical procedures. One was then in a
position to vary such Wgiven" parameters as the solar constant to
study the wmodel response.

Budyko and Sellexs arrived at the surface temperature dependence
of the individusl terms in the energv-balance equations through
{ndependent studies of the observed heat fluxes. HNot surprisingly,
the functional forms were rather different from eacl: other, Never-
theless, both wmodels yielded the present climate as solutionS.

Furthermore, both predicted ¢he same high sensitivity to changes in

the solax constant. They predicted that 41f the solar consyan' ware




lowerad.by only a few percent, the polar ice cabs would expand
catagtrophically wntil the globe becams co&pietély covered bybice.
The Budyko-Sellers models form the basla for this review,

A nuber of guestions iwmedintely arise from the ploneering
studies just menticned, Por instance, to what extent are the wodels
equivalent to each other and, for that matter, do they hehave like
more sophisticated models possibly imitating the earth's climate? To
what extent is the extreme climate sensitivicty of these models
dependent upon the parameterizations used to relste the surface
temperature to the heat fluxes? Whﬁt is the nature of the model
climate solutions; for instance, 1= the model solution wilque; is 1t
stable to small perturbations? Are the models congistent with the
history of the solar system? What is the range of space and time
scales for which the models are valid? Can the models muggest new
measurements or data reducticn methods that would further the Jdevelop=
went of a climate theory? Are there any ways to test the validity of
the wodels; for imstance, would they apply to the other planets? Can
the models be extended to include seasonal and regional effects? Can
the models test various theories of the ice~ages? Finaﬁ}y, can the
wodels be used to define rescarch problems for the more womprehensive
models? Some of these questions have teen answered in the last few
years while others remain open.,

One appealing feature of the Budyko-Sellers wodels #s their

simplicity., This simplicity facilitates the use of the mwdels as

teaching tools., It, therefore, seems sppropriate inm thim review
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to uge elementary analyticallmathada wh@ne§er possible. In thils way
we can keep the physicsl mechanisme before us at a2ll times., As a
result, the inevitsble fudgs factors will be explicit., HMore emphasis
will be placed wpon theoretical rather than mumerical results because
the latter &re gubdect to change with new cbservations and new
developments in parameterization theory. Although the theovy of
energy-balance models has had many contributors with varied approaches,
ve have attempted to develop the theory whenever poss:ble in a aimplé
uniform manner, ofter drawing upon the work of others.

The paper is divided into nine rections. After reading Section 2

most of the other sections can be read independently of each other,




2. Intvoduction to heat balsuce wodels

To begin, we introduce the concept of gloﬁal radiative hgat |
balance. For simplicity we assume that the earth emits radiation
like & black body. In radiative equilidrium the vate at which solar
radiation is absorbed matches the rate at which infrered radiation is

emizted. The condition of radiative equilibyium is given by

b 2

” .
4R 0Ty 3,1~ o)) ", | (1)

vhere TR is the effective radiating temperature of the planet; R is

the radius of the planet; Uo is the solar constant, taken in this

gsection to be 1340 W m"Z; 0 is the Stefau~Boltzmanm constant,

0.56687 x 1077 y m-z K“A; a, is the planetiary slbedo defined a3

1
ap - [-1 dx S(x) a(x) , (2)

(Y]

where x = sine of latitude; a(x) is the albedo ¢ latitude x; and S(x)
16 the mean annual distribution of radiation reaching the top of the
atmosphere normalized so thatr the integral of S(x) from 0 to 1 is
unicy. S(x) andwits se~sonal analog S(x,t) may be computed exactly
(Sellers, 1965), but for this discussion we may use the approximate

form (Horth, 1975a; North end Cozkley, 1979)

e

S(x) ¥ 145, Pz(x) ’ (3)

with §, = -0,477, and Pz(x) is the second Legendre pclynomial,

Pz(x) = 1/2(3x2~l). With this approximation, S(x) is a parabola in

X, having zero derivative at the equator‘(x = 0) and falling to a




value of ‘0,523 at the ;mia e 313, &Yﬁ "mvm in pasaiﬁg thz%t b3 ia a
convenient varisble to uae fm zomal average spplicaticns because dx
is proportional to the avea of a latitude strip and therefore the

area averasge of q(x) for the regicn apaonad by Oz is given by
q = f a(x) dx/lx . - | (%)
Ax :

Using a value of 0.30 for ag} {Bl1is sﬁ al., 1978), we compute
TR © 25446 K for the Earth’s radiastive tewperature. Cleariy, this
is much colder than the observed szza level average temperat ure
which (for the whole giobe} %z 287.4 K. The msjor part of this dif~
ference is, of course, due to the sc~ealled greenhouse effect of the
atmosphere to be discussed lzter.

Let vus now compute the fundamental sensitivity parameter, Bo’

defined by
o, 4T, ‘
o " T W, v )

vhere the subscript o on T refers to the global average valius. Bo is
a measure of the change in global average temperature due ts a 12
change in the solar constant. For all climate models 80 i12: the first
quantity to compute becsuse the sensitivity of the model tos any
perturbation 1s voughly proporticmal to Bo (cf. Sections 7 :and 8).

"tk ozp constant the simple model defined by (1) gives:
Eio (black radiator} = rﬁf&{ta = 0.63 K . (6)

This number represents the sensitivity of a system with no fandbacks,

snd it is s etendard for corparison with all climate modela..
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The sensitivity of the actual climate ls {nfluenced by a miriad
of feedback processes (Schneider and Dickinson, 1974y, For examwple,
changes in planetavy temperature might change the emissivity or veflec-
tivity and thereby modify the censitivity. Many of these agents and
linkages have yet to be ideatifiad. 0f the lmown and suspected feed-
backs pany of the detalls remain a mystery. Some of these uncertainties
are dlscussed in Section 4. Heve we introduce some simple models to

{1lustrate the potential impact of known feedbacks ¢n climate.

It 4s well to note here that the value taken for the solar constant
Oy 1340 W m -2 , i8 different from that used in Section 4 (1360 W m ) in
order that we not have to repeat publilshed calculations. In fact, various
modelers have used diffeient values for this parameter in their sensitivity
studies., Cenerally the sensitivity results are not gsensitive to the
present value of the solar constuatt, Errors intrcduced in this way tend
to be partially compensated for in adjusting other unknown parameters to
force the mwodel's unperturbed climate to fit the present climate, &
process sometimes referred to as "euning." Incidentally, the exact value
of the solar ccnstant and its conmstancy in time are the subject of con-
siderable experimental activity both in rocket measurements (Willson
et al., 1980) and satellite measurements (liickey et al., 1980). The best

current val e from the Nimbus 7 satellite is 1376 W mwz.

a. Giobal models with feedback

Feedbacks affect the sensitivity through thelr influence cn the radi=-
ative fluxes absovbed and emitted, Often the net effect oi the feedbacks
is inferred from empirical data. We begin with the flux of infrared
radiation emitted by the earth.

Budyko (1969) suggested that the infrared radiation to space can be

represented 2s a linear function of the surface temperature T (in °C)
I = A+ 3BT , n

where A and B are constants deduced from observations, Based on data
frow the northern hemizphere (North and Coakley, 1979) we find that

o - -
A=203.3W o gnd 5 = 2,08 W °C 1 gives the best fit tetween the
fluxes caleculated using (7) and those observed. The enexgy balance

may be written




A+BT, ~ QL - mp) ’ (8)

where Q is UO/A. Using (1 ~ Gp) = 0,70, we arrive at T = 14,97°C, which
agrees with the northern hemlephere value (14.9°C). The coefficlents
A and B take into account average cloudiness conditions, the effects
of infrared sbaorbing gases end the variatility of water vapor. For
comparison a linear expansion of C(273 + T)a would lead to “black
radiator” coefficients Ab = 314.9 W w2 and B = 4,61 W o 2oc7t,

For constant albedo, the sensitivity of this "“greenhouse model" :

is

A + BT

) £ e °
Bo(greenhouse) 58 i.12°c . ; (9}

We deduce that the presence of an atmosphere increases the sensitivity
of the climate. This effect is referred to as a "positive feedback”
gince 1t increases the sensitivity over that of a black body
radiator,

Let us examine the reasons for this positive feedback. Consider

a planet surrounded by a shield at temperatuvre T We will assume

1.
that this "atmosphere" does not absorb solar radiation, but perfectly
absorbs infrared radiation. We imagine the shield to be in equilibrium

so that it radiates (net up and down) at a rate equal to the rate at

which it absorbs. As a result, Tl is related to T0 by

4

oT = 20T (19)
[o]

Similarly, 1f the surface is in radiative cquilibrium, then TO is

given by




P

10

. . . | | .
o1, = o7y +Q(1-ap) . (11)

From (10) we deduce thet To 18 grester than 21 by 8 factor of 21/5
(¥ 1.19). Vurthermore, by cosbining (10) sund (11), va see that T,
ie the effective radisting tegperature of the planet, PFor Ti e 2348 K
wa compute TQ @ 302 K. Thus a single black shisld spproximstes the
greenhouse correction of the earth's atwosphere. Combining (10) and
(11) and differaatiattng vith respect to Q, keeping the albedo

congtant, we obtain
Bo (black ohield) = TB/&OO > 0.76 % (12)

Although the black shield spproximates the atmosphere's gresenhouse
effect, it fai)r to account for tie increased gsensitiviey vhen the
atmosphere {a present.

The wost prrbable reason for the enhancement {8 the variable
concentration of water vapor. Water vapor is a significant absorber
in the fafraved, On the average, the amount of water vapor in the
atuwogphere increases as the temperature incresses Gianabe aad
Wetherald, 1967). Te allow for this incresse, we should allow the
nuzber of black shizlds to incresse with temperature. The eapiricel
coefficients {n Budyko's formula prowumably take this effect into
acceunt. There are, of course, cther feedbacks that sffect enission
and their influence is also reflected in the coefficients. In the

next dection we shall roturs Lo the Budyke formuls end discuss irs

validity,
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~ Let us now ewsmine the Jcewcap alhédo feedback.  If the Earth

had wo fce or snow but ¢ had %02 cloudiness, the local co-aldbedo
(1 =~ slbedo) would Le sppromimstely af(x) « 0,70; similarly, an
. fea~covered plance would have ce-slbedo ai(a) = 0,38, Using (B) we
compute 1 15.0°C for the fce-free planat and T, = =35.4°C for the 4 -
ice=covered planat. Of cour~e, the eurth lies between these extremes.
Ler us propose s crude modei for the ice cep size. Suppose
that the edge of the ice cap 1a denoted byix ] X . krhen suppose
® = 1forT > 15°, x, = 0 for T, < ~15%, and in between
Ka - 1+ ('I'0 ~ 15)/30. We may theh use ag for 0 < x < L and a,
for x < x <1, From (3) the planetary co~albedo woLld then be ; :

given by

a " 1-a
p

= ai + (af - ai) Exs + % sz(xu - xas)} - “Otxs(To)]' (£3) ; -

The notation Ho for the planetary co-albedo will prove useful later.
Hoixs(fo)) s ropresented by the solid line in Figure 1. To find
golutions for (8) we plct the ou:gaipg IR divided by Q, represented
by the dashed curve,in Figure 1., For the present solav constant, we
obtain three roots, The root lsbeled Y corrvesponds to the present
climate, Hoot Xi.in an intermediate climate with the planct having
about 30¥ of its avea covered by i.e, and Reot 111 is &n ice~covered
planet. Such multiple solutions of zero-dimensions] wmodels vere
noted by Sellers (1974), Crafoord and KB1len {19738) and Fr&eérich
11978). " | |

§ - - o T (Y A 3 ‘:‘l ; \'nv 3 - S < A "
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| I& Phoure vam have a qwakicésiva pleture of che model climatea.
1t ¢ iz decressed, the dashed curve iz scaled uyward'enm Roote XY aﬁ&‘
IIX merge éagath&: and then dispppear, leaving oaly the deep freers,
Root IIX.  If the solar constent is incrsased, Beots IX and IXX .
coalesce and va are left only with en dce~fram ?arth. Woot 1.
Tigure & shovs T e a function of Q. ‘ ‘ . ' -

 The enample Just glven llustrates the rich struczure of even

the simplent ice feedback model. The wult.ple branch structure shown
in Figure 2 persists in wodels with latitude dependence end even

exists in GCMs (Watherald and Manabe, 1973).

be  One-dimensional models nnd transport

After the zevro-diumensional models, the nevwt wmodels to be studied
include latitude dependence. This additional degree of freedom
forces us to consider the horizontal traasport of hear by the geo~
physicax fiuid svstem, In the ttas;msnt of this transzport we will
have to wake drastic idealizations to keep the mathemstics manageable,

In the laticude~dependent wodels we assume that the rate at
which heat entevs each infinitesimal lativude belt during the year is

exactly balanced by the loss rate. The individual tevms consideved
th

are schematically represented for the { strip:

{not horizenesl transpors our,)i 4+ (infrare” cut),

(14
=  (golar mhﬁc;irﬁ)i .

A comon factor, the area of the strip, mav be cancelled througheut

gre that the remaining teves have units! energy per unit srea

per wnie time (¥ %),
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W procecd with the crucial simplifying assumptiont c¢hat esch
term dn (14} wmay be representad 2s a function of the zenally avereged
sea lev i (1001 sb) temperature £iald, T(zxi). {mee ths paramsterisation
forpules for the individual tevms in ()4} ara found, we swnlve the
system of equations veprasented by (14) for all indices £ sipul-
taneously, It ig wsually necesesyy to iwmpose & boundsry condition at
the poles, since mathematical systems like (14) often havwe an
unphysical solution (irregular solution) that diverges az the poles,
By ifmpozing the condition that the flux of horizontal hewt into
the pole vonishes, we systematicaliy eliminate such spurfous model
climates.

To see how the model behaves, let us examine s few emtrene
cages, We adopt the Budyko formula (7) fer infrared radiiastion at
each latitude and we adopt an ice cap parameterization that is also
due to Budyko (1969), numely that the ice cap edge extendis to the

mean annual igotherm
- = -1}
T<xa) Ta 10°C (13)

For simplicity, we take the co-albedo a(x, xs) to be diswontinucus at
the ice cap edge. Hote that X must come somehow from ('15) rather
than from the line-r velation with “1‘0 that was adepted fiv the global
average wodel,

For the case that the horizontal transpore 15 infinive, the

Cplenctary surfsce must be isothermal. This model 23 similar to the

global average model except that the span bepwean =13°C =nd 15° shown

P T i B, B R 1 e R B i A n

P
;
i
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1
3
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in Figure ] i8 compressed ¢o a vertical lina cant&:é& at ~10°C. fhs
asslution braaches arxe easily ahown to he gﬁmn' by the daéhad lines in
Pigure 2. The physical interpretation 1s cbtained by £ollowing a
quasi-gtatic c‘}{aaw in Q dowm Branch I of the solution. When the
dark (isotharmal) plenet's temperature reaches «10°C, the planet
suddenly turna white and ite new equilibrium temperature must be
azbout =34°C,

For the case with no transport the enexr, “alance equation

becomes .

A+ BT(x) = QS0 alx, x) | | as)

at each latitude, We sssume further that at x = xs, the co=-albedo

a(x, xﬂ) bacomes the average of a, and ace

i
Applying (16) at x = Xy and using (15) we obtain

Qx,)) = (A +BT)/S(x)E Qan

with 8 = (ai + af)/2. Expression (17) gives the solar constant Q
needed to maintain the ice line at a particular latitude glven by
L The curved line in Figure 3 is computed using (17)}. The lower
flat line (xB = 0) is obtained by gtarting with complete ice

cover (Q/Qo << 0.8) and raising the solar constant quasi-statically
until the equatoriel tempersture reaches =10°C, which occurs at
Q/Qo m 1,17). Similarly the upper flat portion is obtained by
lowering the solazr constant from Q/Qo *> 2,0 on the 4ce~free planet

unt il the pole reaches ~10°C, The peculisr soclution lines emenating -

S . ~ Tl et 5o ST
AT TN a0 3 et S i Wi i A g et ards
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from the cum in ?igumﬁ are csaled ggﬁ"ﬁa by mathematicians. We
shall geturn to the structure ofvtheaﬁ solutions Jater,

The wmodels discuseed thus far present & paradox, If the sun's
lumdnosity hos zieen from 2 value of 20 to 40% lower than its curzent
level, &o virxtuslly all solar e#oiution theories f{adicece (Hlewman and
Bood, 1977), then why isa't the earth covered with ice? Tha models
indicate that 1f the solar constant is reiced quaai«atgtic;lly from,
say, three-quarters of its present value up to its present value, the
wmodel stays on the lowver branch of tﬁe soiution curve whether the
transport is infinite or zero. Furthermore, we shall seme that this
vesult holds in every model studied in this paper. We are not in a
position to resolve this solar evolution~-climate model contradiction,
but conjectures have been ventured: not enough moisture is available
st the right places to generate total fce cover: other negative
feedbacks are present, perhaps related to cloudiness change (our
calculatlons are bssed on present cloud cover); and the conposition
of the stmosphere was different in the past such that & larger green=-
house effect prevented the ice cover (Sagan and Mullen, 1%72; Owen
et al., 1979; Hare, 1978; Budyko, 1977).

Clearly the no~transport mndel bears little resemblance to the
earth since a sclar constant 707 greater than present im required to
push the ice cap back to x, = 0.95 (its present lecatiom}, With
Q 1.7 times ic¢s present value and B - 0.95, the planetary average
tempersture hecowmes TO = 93°C., Aside from the unrealistic values

ehtatned for TO and Xy {16) suggests that T(x) has a3 discontinuizy
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of the order of S0°C at x = L Transport, of course, tends to
gmooth this discontinuity.
Before proceeding with a finfite transport model, let us look at
the gonel aversge teopevatures obtained for the extreme cases of infinite
and zero transport. For the sbsorption, we take cbserved (nozthern

hexisphere) mean annual velues which are reansonably well-represented by
a(x) = a + azfz(x) . (18)

with a, ™ 0.681, 8, = -0.202 (Worth and Coskley, 1979). The planetary

average tenperatuve is obtained by integrating (16) over =:
1
A+BT = Q I dx S(x) a(x) (19)
o

Uslng the constants specified earlier we cbtain To = 14,97°C. Figure 4
shows T(x) (solid line) for the no-transpert, no-ice~feedback case
computed directly from (16). For comparison, the figure slso shows
the infinite transport case (deshed line) which yields an isothermal
14.97°C planet, and the temperature observed for tha earth., The
transport has the obvious effect of warming the pole and cocling the
equator, It maintains, however, the roughly parabelic shape of the
no-transport case.

Consider the addition of & transport term to the heat balance
equation. The geophysical fiuids transport heat through thelir mesn
and transitory (eddy) motions. If we average the stmospheric
velocity field through, say, & soenth and around a latitude circle, we

”

would sample many statiselcally wncorrelatsd sddy processes. A

A ~ “ .
s A v I b S oS

S ~ P 4
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firse medel for the atmosphere is & g;eaphy§ical fluid having & random
velecicy field, We might taka the heat content as a pagedve scalar
being carried by the fluid. Pqual smownts of fluid arve directed
north and south acress a latitude eircle in any interval. On the
aversge, heat Is carried frow warm aress to cool by an amount pPYopore

tional te the gradient of the temperature:
heat flux « -LV] - xz %ﬁ}' s (20)

vhere C 18 the heat capacity per wmit area, The proportionaiity

coefficient in this simple model would be & diffusion coeificlent.
The amount of heat per unit time per unit area leaviing a strip

is the divergence of the flux which {s proportional to —mefx‘, or in

our notation
-4 o 52y GI(x)
ax D(1 x) dx » (21)

where U may be a function of x and must be thought of as m free parameter
to be adjusted empirically.

Obviously (21) represents a gross oversimplification: of the trange
port process. The most evident omission is the mean circu:lation in both
atmogphere and oceans. We shall consider more general modlels after
first studying the model defined by (21). One advantage oif the form
(21) is that it coriesponds to a physical analogue, namely;, heat con=-
duction and, therefore, physically realizable sclutions awme guaranteed,

With transport the energy balance aquation becomes

8 nld gy ST ey ) ,
> E)(l 1 'zf ) o %A + B?(x) - ,Q S(:\)‘a(x? xs},’s o (22),

¢
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The boundary conditions for symmetric éolut;ions are given by
"D(1~$2)1/2 _g%;(}x_)_ .o . : " 29
z = 0,1 B L
Note that the system iz nonlinear due to the icewlbedo feedback,

The nonlinearity leads to the multiple solutions that we have already

encountered with the simpler models.

Before solving the nonlinear system, let us insers 6béerved valﬁes ‘
of the co~albedo a(x) in (22) and see how the computed immperature
fleld compares with those shown in Figure 4. First tala-ﬁ) to be a
constant independent of %, Since the Legendre polynomiidls are eigen-

functions of the diffusion operator,

a?_ (x)

H —E— e« a@+n e @ , (24)

d
-3 (1-x

and since individually they satisfy the boundary conditims

(23), the even-numbered Pn(x) form a convenient basis s«i for expansions.
Consequently, we expand the surface terperature,

T(x) = z T, P (x) (25)

n
even

end insert the expansion into the energy balance equatiorn (22);
multiply by Pn(x) and integrate over all values of x frow0 to 1.

Making use of the orthogonality relation

1 , 6 : .
f dx P“(x) Pm(x) & amiihee . @0 even (26)

o 2n + 1 ’

we have
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Ln Tn + Gon A = Q Hn
vhere
L, w n{n+1)D+B , (28)
and
1
“n(xa) e (2n + 1) I Pn(x) §{x) a(x, xs) dx . (29)

o
Even though we intend to use the observed a(x), we have retained x
in (29) for later applications. Since the a(x) are given by (18), the

Hn are determined, and as a result, (27) is easily solved:

T, = Q Bn/Ln - Gon A/B . (30)

For n =0 ,

T, = «Q H, - AY/B , (31)

which is equivalent to (19). 4As before, To is the planetary average
temperature. The form of (31) holds not only for the diffusive
transport: (21} but also for any term that is the divergence of a
flux which itself satisiies a zeroc condition at the end points
(equator and pole). Using the coefficlents specified earlier, we
obtain as before, To = 14.97°C,

We turn now to n = 2. From (2.3) and (2.18) we compute
32 = «0.500, In order to compute Tz, wve wmust know D, which was

left as an adjustable pavameter. By taking the observed value for




T2 {(~28.0°C), we compute D = 0.649 W m~2(°6)°l, or in dimensionless
form /B = 0.310. This approximstion iz called the two-mode oy

parabolic approximation to T(x) (&ngstrom, 1928):
T(x) & T + T, Py(x) , ~ (32)

It is plotted as the solid line in Figure 5 along with the obgervations.
Of course, the agreement shown in the figure does not confirm the
model but rather illustrates how well a parabola fits the data.
Let us now consider n = 4, From observations (Ellis @t ales
1978) we obtain H, = 0,022, and using the previously computed value

4

of D, we compute T, = 0,5°C. The observed value is T, = -3,5°C.

4
The model gives a value that is almost an order of magnitude too

small and has the wrong sign. In fact, the higher mode amplitudes in
the model are so small that the two~mode solution is clogse to the
exact solution (North, 1975b). Perhaps the most prominent feature of
the observations that is not reproduced by the model is the flattening
of T(x) into & nearly isothermal band in the tropics. Thim flattening
is probsbly due to mean motions in the troplcal atmosphere {Hudley
cell). The mean motions are more efficlent than random mouions at
suppressing temperature deviations. Lindzen and Farrell (1977) have
discussed methods of allowing for the tropical meen motionm. Their
motivation was based upon results derived from a more comprwshensive
model (Schneider and Lindzen, 1976) in which it was found tihat near
the equator T{o) ~ T{x) = xb. In terms of the Legendre expansion,

temperatures near the equator require contritutions from TEPQCX)‘




§ Xn an ad hnc &ay we' can 1m1ﬁat& the eificiency of thermml conductianf,

in the tyoplcs by allcwiag the diffusion coesficient to d@pend on %}
CoBey DX} = ﬂ + D ?z(x). There are then tWo fzee paromaters, uo
and Dz, that cen be aéjmsted to give the ob@&rvgd valuss of T and
Tb’ In agreemsnt with Lindzen and Farrell, we find D(x) large uear ~
the equator and small near the pole (6. R. North, P, B, Joses end

R. F. Cshalan, smpublished). Although such tricks suffice to correct
the value of T , other procesges, such as varying relative humidity,
1apse rates end cloudiness, that would affect the infrared emission
could also contribute to Té' Further discussion of the limitations of
the diffusive mpﬁraxiaatinn are postponed to Section 4.

vLet us interpret the expansion (25).‘ Each succeeding term inb
(25) contzins information pertaining to smaller and smaller spatial
gcales. The first few terms give us the gross features of the
pl&net#ry climate, To is the planetary average; (3/2) T2 is a rough
measure of the pole-to~equator temperature difference; higher order
terms reveal features at finer spatiai scales. Hence, the spectral
method of solving climate models provides a framework in which
sathematical (or wumerical) technique goes hand in hand with the
concept of a model hierarchy &iscussed eariler.

The two-mode spproximation just discussed was derived for dif~
fusive héat transport with constant coefficient, The form of the
tyansport, however, need not be restricted if (25) is truncated at
n = 2. For example, Budyko i1969) instead of using the diffusive

tern (21) used
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YT - 71 o ) G3)

where Y is an empirical coefficlent similar to D. Budyko's model is
thus given by (22) with (33) replacing the fist term. In the
two~mode approximation the models are identical. By substituting

(32) into (21) we obtain .
6D T2P2(x) = GD[T(x) ~ TO] .

vhich 1s “dentical to (33) with ¥ = 6D. While the two models are

identical in the two~mode approximation, they differ in higher

modes, ; v
Budyko's model can be solved analytically (Ch¥lek and Coakley,

1874) by rcughly the same method we used fcr the no=-transport model,

After some straightforward algebra, we obtain

A+ (B+Y) T§+YA/B
S(xs) ag + Y Ho(xs)/B *

Q(x.) (34)

Note that if Y = 0, (34) becomes the solution for the no~transport

model (17). The solution curve for this version of the Budyko model

is shown 1in Figure 6. The twigs at Q/Qo = 0.99 and 1.13 come about

in the seme way as in the no=-transport model, Figure 3, /
Although there s a closad form solution to Budyku's wodel, (34), it

is instructive to investigate the spectral properties of the model.

Expanding the temperature field as in (25), and inserting the expansion

into the energy balance equation, we obtain again (27), but with

A RN
.....
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L
“ given by

L B

n o~ *B-86Y ¢

Ia the diffusive model Tﬂ ¢ llL“, and thus 4£ D > O,Ithe higlier modes
(n > 2) ave strongly suppressed. In the Budvko model, on the: other
hand, the higherx modes are not suppressed. As & result & dlsecon=-
tinuity in a(x, xs) 1eads to a discontinucus cemperature fileld

in the Budyko model but not in the diffusive model.

The time dependence of these models also differs. 1f wee &8dd
heat storage, COT/2t to the energy balance equation and expamd the
temperature fields, then we obtain (27) with the acditional ferm
Cin on the left=hand side. 1f the solar constant is guddenly switched
off, the individuzl mode amplitudes decay exponentially with time
constant C/Ln. In diffusive models features oOT anomalies thut have
smsll spatial scales decay rapldly, whereas in Budyko=-type madels
small space scale features decay at the rate of the pianetary scale
features (n = 2).

Let us pow consider some generalizatrions of the diffusive model
in the two~mode approximation. Suppose D depends on latitudie,

D) = nw(x)., Then =10 relation, (21) is unaltered and the n = 2
version of (30) is also unaltered provided we replace D'in €£28)

by D;. which for m = 2 1is given by
jl - d 2, ‘dpz(") -
L ot - Pty - ————
D, 50 . ax P2(§<) rodl AT ) w(x)» I . (35)

Gince the integral in (35) is a constant, to be computed once and

for 311; iz may be absorbed duto the phenomsnolcgical conseant e
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The constent 0 1s to da detavmined a8 before, s¢ (that in the two~mcde
spproximation D(x) = nelx) is formslly egulvalen? ¢o constant D
(Worth, 1975b).

This formal equivalence s also vetsined for -other svansport
mndeln, For exanple, Sellers (136Y) included & w%aaﬁ circulstion tery

given by

Uy 2,102 dre=)
'“‘é'{"l (1 - X ) .‘dm * (36)

vhere V(z) 18 an smpirically determined sdvective vvalocity fleld, As
ghove, in the rvormode approzimstion,this term mayr be gbsovbaed dnto

the constant D. Awother form of interest is KVaT(%ﬁ). wiich could oceur
as an added terw in a turbulent (random) atwmospheren nodel (Horth,

1976 Kella, 1976), Because ¥'p_(x) = [n(n + 1D1?" P (x), the forma)
equivalence to constant diffution in the twormode capproximations is

maintained,

h
The formal equivalence of go many different wuodels in the two~

mode spproximation explainsg why various published vondels give the
sawe gualitative resulrvs, Of course, it 18 necess.ary that the two
wodes rvepresent a suitable £{t to obmervationa. Ittt da aiso necessary
that the two-mode solution epproximste the exact saslution whea the
nonlinear {ce-slbed feedback is included. To cbisziu an exact
golution, we mey solve the system (22) analvticallvy., Here we vetailn
the », dependence 1in Rn(x&) (27, Dividing (27) thurough by Ln'

mmltiplying Ly ?n(xsk. sumzing over n and using {195), we obtaio

o T .
A!ﬁt& T, Q"g%; {hﬂi$s}‘?n{§g}fhﬁ} .

L:adited
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Theee selutions bave been glven by Esld end Suarez (M74) and by

Roreh (197%z,b),

Hote that the formal molution (37) also holds e the Budyko
rodal or even a KV&T model 4f ¢che Lu are appropriatelr modified
{since it .s formally corvect for any a(x.xa)). the sclution is not
restricted to k discontinuous aldeds, We could use a snvothed albedo

at the ice-csp edge such ae

n(x,xa) = e * €y tanh [ (x - xs)/u) . (38)

a8 will be discussed later.

Co Ceneralized treatment of LEABSDOPE

To generslize {23), let the energy balance equatim Ye given
by

LTI 4 AG) - QS atrx) @9

vhere L {8 3 linear epersto~ {Cahalan and Worth, 1979). The model is
completed by the ice~line condition (15) and boundsry wmdicions

similar to (23). For constant diffusion
d 2 d
- e - —szrvr {
L = .p T (1 - %) w v B . {(40)

In gereral, however, L might include ather integral or Wifferentinl

OPRTALOYS,
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. ¥a shall aseume that tho Creess fmczimca(m,a"};} for L existe, .

a0 that

LG (mx') = 8{z-x") , - 5 ‘ : _(&J}l)

vhere 8(x - ©') £ the Bivse delte-fumction asd the suscript u on L

indicates that only the % varishle m sffected by L. The soiution,

J(x). to the lnear inhemogensous pusblewm,
LIy = P(x) , (42)
vhere p(x) is a known fmetion 48 mmiquely given by

1 v
J{x) = I Go(x.x‘)p(x’} du® (43)
¢
provided L snd the sssociated doundery conditioms lead o 2 wunique
inverse, {For properties of L mecessary for the existemce and

uniqueness of Go see, for example, frurant and Bilbert, 3953}, The

Green's function for comstunt diffusfon is given by

(2n + 2Y P &) P (x%)
D n Ti
G, {2,x') = ; ) . (44)
®
even

(A closed-form expressica for (44) is derived in Appendix IX.)

For lsritude-dependent diffusimm
D o . 2 &
L“‘)aagxgnmczux}aw»a , (45)

we use the eigenfuncticons, f‘ﬁ{m}, fefined by

A VR e

o i o
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a £ ()

-3 [ma) (-5 j v HE @ (46)

whare the un ara eigenvaluss., The system (46) forms a Sture-liouville
eyates (Coursnt snd Hilbert, 1853), provided B(x) > 0 and is well=
bahaved, The £u(m) are proportional to Pu(x) for D » constant,

The tn(x) aiso ave orthogonal and can be normalized such thae

1
I; dx f&(x) fn(x) - 6mn . (47)

Furtherwore, the lowest eigenvalue uo = O and iofx) = 1 and for n » &,

un o« nz. The Green's function for the system 1s given by

D(x) - ’
% st = 3 £ et )

where 2“ - u, + 3B

The Green's function Go(x,xo). may be interpreted as the thermal
response of the model to a localized heat source at x = xa. Pigure 7
shows & graph of this function for the constant D diffusion model.
For large D the heet s smeared out; for D tending to zero the response
tends to 2 epike gy ¢ = LI One important feature, to be used later,
iz thae Go(x,xu) is positive definite,

The formal solution of any wodel possessing a Green's function

ta straightforward, Uaing (42) and (43), we convert {3%) to the

intagral equation

T(x) = [ 6 (e,2") {0 s(x") a(x'yx ) - A(x")]ax" (43)

Ae hefore, e gatiafly the fce linﬂ'canditiqn {i%};byvﬁatiing b 4 ".xg

tn (49}, Solving for O we obtain
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1 , :
s ' v ' :
T, + 50 6 (z_.x') Alx') dx |
: (50)
Io Gﬁ(x&,m') 8(z") a(m‘.ga) dn'
Thias solution reduces to the specisl cases (34) end (37) when the

Q=)

P S A SN PR

appropriste subatituticns are mede.

Pigure 8 shows the Q(xs) versus x curve for the constent D

ik BT SR

diffusion model, computed using (37) with terms through w = 6. The

exact solution (Worth, 1975a) differs little from that shown in
Figure 8. The most striking difference between the diffusive model
end the Budyko model iz that the twigs in the Budyke model split
open into two branches in the diffusive sodel. Just below x = 1, E
the slope changes sign, and dxg/dQ tends to zero at the cusp where
the two branches meet (Drazin and Griffel, 1977; Citalan and Worth,
1979). If£ Q 15 increased quasi-statically from Qo’ Figure 8 indi-
cates that the ice cap firatbshrinks to the point wiere the slope
changes sign, and beyond that presumebly a jump to sn ice~free
earth occurs. Let us examine whether this sign chesge and the
aé&ociated cisp ere physically realistic. Lin (1977} -and North
(1975b) noted that because series (25) converges vegidly, models with
nonlinear diffusion coefficient (D « dT/dx) are easily solved. The
two~mode results for the nonlinesr model are virtusily identical with
the linear mcdel.but retention of the higher modes 4n the nonlinear
model yemoves the cusp at X, 1 shown in Figure B. A plcture move
iike Fipure & emerges.

The cusp can also be rewoved by smoothing the albedo at the ice

1ima., Cohalen ond Horth €1979) have ﬂxyerimﬁntac-sﬁth the swmoothed
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form (38) choosing cl end C2 to match the valwss of the corvesponding
step aldbedo but sllwing w, a msasura of the smooching width, to
diffor from zero, 43 the width of the emoothing Incresses, the cusp

disappa&ra and eventuzlly the slope becomss pesitive meay Xy * 1.

Coakley (1979) also menticns this effect. For smooth albedo, the :

twig in the Budyko model at x, = 1.0 18 aleo removed, Cahalan and é !
Horth have shown that such behavior follows generally from (49) and
(50). We mmst cenclude thaet the appearance of the twig or cusp nesr £
%, = 1 in the simple models is probably unphysical and merely an 4

artifact of the mathematicelly convenient but physiecally unrealistic

WA R, T

step~function albedo.

s
4
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3. Secesonal mdam

In extending the one~dimensional. climate model to include
seasonnl cyclas, we wish to peudy the sensitivity of the model to eee
1€ i¢ differs from that of the corresponding meen ennual moedel. Iin
other words, do reaaonai ch&ngéa effect the mesn sanual climate?

There have heen several atteupts at developing seasonal sodels,
notavly the energy balsme. models developed by Adem (1962) and
Sellsrs (1973) and the general circulation models developed by Manade
and his co-workera (Wetherald and Manabe, 1972; Manabe et al., 1979
More recently, there have been studies by Thompson and Schnelder
(1279) who seasonalized the Cal-Chen/Schneider version of the Sellers
model (Schneider and Gal-Chen, 1973; Gal-Chen and Schneider, 1976);
Ramanathan et ale. (1979) who seasonalized the Budyko model; and North
and Coakley (1978, 1979) who seasonalized the simple diffusive mode!
(North, 1975a,b). The model studies so far have similar qualitative
conclusidns so that it will suffice here to study the diffusive model
as an exeauwple.

As before, the mathod of solution (Legendre polynomial expan-
sion), is intimately connected with the philosophy of the model
hierarchy approach., The development of the diffusive seasonal wodel
is similar in spirit to the approach taken some time ago by Fritz
(1960). Our emyhasis here will be on using the model to understand
the main features of the seasonal cycle. As far as possible, we will
use snalytical methods.

We begpin by eyau;ning sca@onal dat& for the zonally averégea

'tmmpﬁraturef;(xﬁt), ‘ghe 1nirarad flux I(x,t), rhe co-albedo a(x,t),
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end tha haat ‘wﬁr énis: ares veaching the tdp éﬁ the ammphebm QS‘(x.t);
North and Coekley (1978, 1979) have chown that a comveafient repre=
sentation of the fields is to first symmetydre Chem so that daca from
only one hemiephere is used; the other henispherve is giwen ghe saue
data, but lagged by 6 moanths., After syumpatyizetion, the data are

fitted to simple formulsae
Pix,t) = Fc + (All cos 2mt + Bllsin 2ﬂt)P1(x) + E}Pz(x) s (51)

where F(x,t) can be any of the four fields. Each field is then
characterized by the four coefficients in (51). Note thiat the mean
annual f£ields are characterized by ?o and Fz while ﬁhe asplitude and
phase of the seasonal cycle may be computed from A11 andl Bll‘ Fits
for the four fields using the symmetrized northern hemisphere (s¥),
symmetrized southern hemisphere (S8) ana global data hawe been per-
forwed by North and Coakley (1976); results for SN are Iisted in
Table 1. Figures 9-12 show examples of the curves for warious
gseasons along with observations., From the curves we ses that (51)
captures the gross features of the fields, but misses the fine
strucrure which is particularly noticeable at low lativades. In
keeping with the approach tsken so far in this veview, we would not
expect simple wodels to work on scales beyond Pz(x) in €51). 1Indeed,
sttempts by Noith and Coakley to go beyond this wode fafled.

As in the mean annual models, we adopt the Budyke Zorm for the

emitted infrared radiative flux,

S I(mt) = A+ BTG ;‘ e I | (52)>
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With A = 203.3 and B = 2,09 W m 2°C"L (Horth end Coakley, 1979), (52)

gives the best fit to the wode aﬁplitudas listed in Table 1 for the

emitted fluxes and temperatures of the northern henisphere. The fit

to observations is shown in Figure 10.

We construct the seasonal model along the lines of previous
sections. In the seasonal model, however, a storage texm, C(x,¢) 9T/ 9,
must be added; C(x,¢) 1s a iatitude and longitude dependen. heat
capacity per unit area. The forcing is given by the four amplitudes
in the mode expansion of S(x,t). The-aeasonal response is repre-
sented by the four amplitudes in the mode expansion of T(x,t)s A
linear climate model would connect these two fields with a four=by=four
response matrix. Linearity is suggested by the absence of higher
harmonics in both the forcing and response field: (North and Coakley,
1979). The most general linear model with four components consists
of a response matrix with 16 independent components. ¥e shall see
that most of these elements may be taken to be zero,

With the storage term added the energy balance model becomes
aT 2
C(x,9) Fri DVr + A + BT = QS(x,t) a(x,t) . (53)

As an idealization of the northern hemisphere, we take a single con-
tinent with coastlines ruaning along meridians and with an area
spanning 40% of each latitude belt. We separate tae continent from
the oceans because C(x,0) is only about (0.16 B) years (CL) over land
end about (4.7 B) years (C ) over the ocean mixed layer (75 m).

If (53) is integrated around & latitude belt, we obtain for

the land maes (after d!viﬁing through by fL, the fraction of 1and azea)
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T, (x,t) - ) ieft
o - Ha-H -2 f
L vight

(56)
+A+ B - QS (x,t) aL(x.t) » ,

vhere TL 18 defined as the average tewmperature over land in a latitude
belt, The gradient term is the difference between land and water
temperature divided by en effective engular distance over which the

temperature change effectively occurs. The whole term may be vfitten

=@ -T), v>0 , | (55)
L

where V is a new adjustable parameter that accounts for the land-sea
interaction.

An equation analogous to (54) can be derived for Tw(x,t), the
temperature over oceans. The zonal average fleld is the welghteu

average given by

T(x,t) = £1, 4 £, * | (56)

This kind of decomposition was first used by Sellers (1973).

If we rubstitute the truncated Fourier-Legendre series (51), for

TL and Tw into the resulting equations, we obtain

A+BT, = G, 57

ar L,w

1. o Lyw |,V em Lpw ook
Lo TR + (2D + B) 7:1 Sl A (11 T, ) = oy (58)
®

c
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where
1 | |
no(c) 3 {230 + a,(t) 8;(¢) Goqy * 825,8ppp + o Y}, (60)
.3 | .
Hp(e) = 5 {agSi(e) Gygp + 8y (8) Gyyg + 8,8, (t) Gpy
+8,(t) 5,6,,, + oo }, _ (61)
- «.5... . {f
B, (t) 5 (838500 + 805,807 * 855,859, 8 ()5, 8)Cy 0+ oo},
(62)
and
| ‘
Gijk = 3 Pi(x) Pj(x) Pk(x) dx . (63)

The relevant coupling coefficients Gijk are 6011 - 2/3,€§522 = 2/5,
0121 = £/15, and 6222 « 4/35., In (60)-~(62) S0 = 1; al(é)and Sl(t)
Tepresent the firat harmonic contridbutions to the coefifidents of Pl(x)
ia the expansions of a(x,t} and S(x,t). For simplicity sehave asaumed
the co-albedos for land and ocean areas to be the same. Slso for sim-
plicity we take Ho and Hz to be independent of time., Wedd so by
replacing al(t)sl(:) by its annual average and by neglectinhg second
harmonic contributions,.

We see that (57) and (59) are just the equations for the two~
mode approximation to the mean snnual model., The only na contri~
butions to these equations are the te:ms proportional toﬂﬁ(t)sl(t).
Thease terms are called "residuals.” In To this term caums a warning
of about 2°C that is not present in the mean annual models The
rvesdidual occurs because the northern hemisphere is more pflective in
winter then in summer (making the seasonal anplitude lérgx) but the

impact of sbsorption in susmer §s greater becsuse the swnis low in
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thé :sky c!uring évinééé. k'rhia’ régmml ‘;ﬁs no;ted' bryk Yetherald aund )
Manebe (1972) in thelr study of the sesscnel cycle with & GUM.

The seasonal mﬁplituée of the zonal average éurﬁace éém@erature ‘
WAy hé chtained by sélvingb(sa) for land and ocean masses and
rccom&tructiﬁg Tl(t) from (57). The amplitude of Tl(t) foi the ' : ' ‘ f
northern hemisphere is 15.5°C; the phase lags the solar heating by :
32 days. Vor veasonable values of the parameters (North snd'6¢ak1e§.
1978, 1979), i.e., D taken from the mean annual model; V very nearly
zero; CL’ Cw cosputed heat capacities for a colvmn of rir and a

columm of ccean mined layer (75 wm); = 0,403 the model yields the

£
L
correct phase and amplitude for the ssasonal mode. (Note that in

this section as 1n North and Coakley, 1979, we have used Q = 340 W mrz,
vhereas in Section 2 we used 335 W mrz.)

Simple experiments with the solutions show that the aumplitude
and phase are vather sensitive to the fraction of land, fL”
instance, 1f fL is reduced to 0.20 (southern hemlsphere), then the

For

seasonal amplitude 18 reduced to sbout 8°C in vough agreemant with
the symeetrized southern hemisphere data.

It is posaible to parameterize a{x,t) in the model in terms of a‘
snow line (or cloud 1line) attached to an isotherm and thereby produce
a se’ f=consistent feedback schame. In order to study climsite change
or gensitivity, North and Coakley (1979) have considered an ice cap
whose edge is at the mean snnual ~i0°C isotherm, end a seasonally
woving snow line on land whose edge is at the instantaneous 0°C

isothern. The resuliing energy balsnce model 4is slightly woniisoesy

o
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end the four coefficients in (51) for T(x,t) are cbtained by iterating
a system similar to (57)~(59). The resslts indicate that this model
has sbout the same sensitivity te golar constant changes ss the
corresponding meen annual model. The emell (few percunt) differences
can be explained in terms of changes in the residusls discussed

earlier.
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@. Sensitivicy and the para@at@rizatidns

In the preceding sections we introduced simple climate models

. end gave & short survey of solvable examples., The primsry rurpose of

these models 1s to guide our understanding of elimate feedback
gechanisms. We must view with skepticism, however, the nurerical
results obtained with the simple models. These results are bound to
be sensitive to the various parumeterizations used to link the eunergy
fluxes to surface temperatures. In this section we discuss the most
commonly used paiameterizations, how they were developed, how reliably
they reproduce the relationships between the fluxes and the surface
terperatures and, finally, how they influence the fundamental sensi-
tivity of the model as given by the gsensitivity parsmeter Bo‘

To understand how the parameterizations affect 50, we note that
the sensitivity for a global model may be derived dirently from the
condition of global energy balancz (Cess, 1976; Lian and Cess,
1977):

I, = QHO(TO) . . (64)

Differentiating (64), we obtain

ar_ I,
B = 03 " @ . (65)

[} o
T - S
o o

Obviously Bo i{s influenced by the sensitivity of the ir.rared radiative
flux to changes in the surface temperature, dIoldTo; it 18 also

{influenced by the sensitivity of the planetary albedo te changes in

» surface temperature, Q dHO/dT0«~the'albﬁdo~tam?ersture feedback.

7]




18

Lets obvious, howvever, 4s the influsnce of the maridionsll tfmssporc
on ﬁa' Tae meridicnsl treaapcrt affects Bo prissrily ﬂmsmégh ite
1aflusnce on the albedo-tempernture feedback. 1#, for emumple, the
surface slbedo 1o taken to be a function of thé lecal uuwface tem~
peratute, then ﬁo will be a function of the latitudinal didseribution
of temperature, which in tutn is goveraed by the wevidiomal trane=
port. As a vesult, the albedo-temperarure feadback le sichiect to
both tha albedo paramsterization and the trsnaport parameterization.
“Note that hare we &xe considering only the uncerteimzy in the
sensitivity due to & small globsl “enge in golar iuput. As we have
seen, for larger changes s critical solar constant is resiuacd beyond
which unly lce-free or jce-rovered ateady states exist. As emphasized
by Uarren and Schneider (1979), uncertainties in Bo lead to large
uncertainties in this critical value. In gimple models waductions
in 60 tend to be assoclated with lower eriticsl points, uu iliustratad
tn Figurer 13 and 14, but even this correlation could be reversed by
neplected noslinear effects. In Section 7 we consider wxzall locel
changes in heating end an associated latitude~dependent aensitivity,
Agﬁiﬁ- any uncerteinty in 30 contributes to a large uncertainty inm
this spatisl nensitivity. In the following wn discuss wncertsinties
in the infrared, co~albedo and transport paremeterizations, and their

gffect on B .
o

T
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8. Infrared pavaseterisation

A sothod of pavemeterination commonly used in emavg: ? balsnce
climate wodellng was f4vet spplied by Budvke (1569) to c%&ﬁa&n th§
enicted flux in t&raé of tha surface temperatuve., Mz hyprothesized that
the way waiactol&gicaz varisbles influence the flux is erhibited in
lacitudinal end seesonal climatological data. To obkain -~ the relationw
ehip he collected mateorological records from a vaviaty csf»aga;ions in
the northemn hemisphere and with these records he calculaated the emitrad
IR flux at the top of the atmosphare., From the vresults oif these cal-

culations he deduced that the emitted flux is given by
I = Al + AN+ (sl + Bzac)f » ‘ (66)

vhare Al’ Az. Bl ard B2

and T is the su: ‘ace temperature. Cess (1976) applied (655} to climato-

are constants; Ac 18 the cloud cowver fraction,

logical records of zonal mean surfsce tempevatures, cloud! cover and

satellite obuerved emitted fluxes. He found that iIndeed /(66) provided

an excellent fit to the climatologicel dsta. For each 10'° latitude

gone, with A1 = 257 W m-z, Az = ~01 W m‘zs Bl .

Bz w -0,11 W m“2°c“1 the parameterization {its the northerrn hemisphere

2 -
= 1,638 @m °CT, end

2

data with a maximum evror of 1.2% of the emitted flux. Wiith Al »262Wn <,

Ay = =81 W m"z, B, Zec™l paa B, = ~0.09 W m‘z*m"l. the param-

eterization fits the southern hemisphere data with a maxfuaum error of

= 1,64 W

2.3%.
teapite the different climates exhibived by the hemiispheres, the
parsmeterization proved successful at fitting the &baarvartienskwith the

constents changing only slightly from ome hemisphere ¢o tihe other. Such

resulte aviue for the unfversality of the poremeterizastien. Host
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rensrkable 1s that hecause Bzhg < By £§r both hgmiapheren. By = dtnldro
is the only perameter, sccovding to {65), that would sffaect Bo end ¢ is
the eame 1,6‘3 e °c"} for both hemispheres., The somewhat larger velus

of Bo 2.09W m“2°c"l used in esrlier soctions for illustrative purposes

srises from spplying I = A 4 BT to the zonal climntalggicni data and

ignoring cleud cover. Also ignoring cloud cover, Oerlemans end Van
den Dool (1978) obtutned 2,23 W = 2¢™l,

Sellers (1969) developed snc.har paramatuvization for the emicted
fluz. It 43 nonlinear in surfs-e tenpevature. Korth (1975b), however,
showved that the pavameterization »ien liaearized resembles the Sudyko
parameterization with constents that atffer only elightly from those
given by Budyko,

That the emitted IR flux $s8 so simply related to surface temperatures
seems miraculous when we consider that the earth's surface and each geg-
ment of the atmosphere contributes to the emitted flux., The contribution
made by & segment of the atwmosphere depends on ita temperature and con=
centration of emitters. Water vapor and clouds are the major emittera.

As clouds end water vapor are confired ¢ the troposphere and as tyopo-
gpheric temperatures are suffliclently high, woat of the IR flux emanating
from the atmosphere iz emitted by the tropoaphere; Thus any feedbacks
that link surface temperature to tropospheric temperature profiles,

humidity or cloud cover ave likely to influence th~ sanafrivity of the

outgoing flux to changes in surface temperature.
To iliunstrete how variﬁua faadbacks mipght affect B&_va take dIO/dTo
to be given by (Corkley, 1977)
dZQ al At da at 4T ar ar

e, Qrfiia A A

) o ¢ > e @ e
e B '::-7:1;: Y o s e aremsconn: e o oo s . (6?)
dTﬁ @lﬁ A d?o aTr dla ar dTo‘

& [+
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- In (67) d&cidwb reprosents the rate of cloud smount changs with suxface
temperature chsnge, the cloud smount feedback; ch/dTé the cloud top
temperaturg feedback; dPldTb the tropospheric lapse vate foedback. The

' partial derivatives in (67) are evalvated while keeping the remaining
varisbles fixed.

Faedbacks with the larpgeat potentisl inflvence on dIOIdTo are
thoee related to cloud cover. Cess and Razanathan (1978) report thst

2

9l W~ < BT /A, < =34 W m“z, depending on how the vertical profile

of cloud cover changes as the total emount of cloud cover changes. We

note then that & cloud awount feedback dAc/dTo w 0.02"(2”l

2,

» Would con-
tribute es wuch a8 1.8 W m (.'."'1 to dIoldTO. That is, 1ts contribution
would be s large as the vlue deduced for dIOIdTo from climatological
records. Clearly, cloud amount feedbacks could grestly influence the
sensitivity of the climate.

Another cloud related feedback 13 the cloud top temperature feed-
back. Calculations made with global averaged vertical columm models of
the earth's atmosphere (Ramanathan and Coskley, 1978) indicate that for

2QC"1

fixed cloud top temperatures, aIOIBTO u 2,16 - 1,75 Ac,or 1.29 W m
for Ae « 0,5, while for fixed cloud top altituvde and constant tropospheric

lapne rate {uTcldTO - 1.0) axofaTo + 310/3Tc (ch/dTO) = 2,16 + 0.1% Ac

l ZQC"I

or 2.26 W w ~°c™Y for A, = 0.5. Thus, dI_/dT_ could change by 1.0 W n
if the cloud tops .henge from meintaining constant cioud top tempevatures
to maintaining constant cloud top altitudes. How the clouda might change
durimg & climate change, however, vemains & mystery,

The greé&dimg values for dEUIdTD were conputed ssgsuning that the

atzosphers nafntalng constant profiles of relative hunidity.  Thus as

the tropospheric temperatuve Sucrvesses the concentvstion of water vapor

H'¢‘

4
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ic nssumed to fncressa. The assusption is based on the mbwrvgtien that
the earth’s stnosphere appears to conserve relative hueidizy (Mznaba and
Wetherald, 1967). GClobal circulation models of t.m.earth'a atmosphere
alse seem to conserve relative humidity Q(Qlansbe and Wetherald, 19753
Waotharald and HMaaabs, 1875). I, on éha other hend, the stmosphere

paintsined profiles of constant sbeolute humidity dIOidTo w 3,7 W m"z"c"l

wdar the conditions of fiied cloud top altitvde (Ramsnathm aud Coskley.
1978)., We note then that without the chserved moisture fadback affectis,
the opacity of the atmosphere, the emitted radiscica exhibfe the gensi-
tivity of a blackbody at the eurth's equivalent temperature ?é w 254 K.
Finally, as with the moisture and the cloud cover feedlncks, lapse
rate feedbacks are also expected to influence dIo/d’rO. Rasmathan (1977)
noted that ip the O-2% solar constant change experiments pexformed with a
GCH (Wetherald and Manabe, 1975) AI1/4T with fixed cloud top altitude
ranged frowm 2.4 4+ 1,45 Ac near the equator to 1.7 = 0.81 Ac near the pole.
He attributed the range to differences in lapse vate changen. Near the
equator moiat adiadbatic adiustment governed the lapse rate ofianges vhile
near the pole a mixture of radiative and advective processes governed
the lapse rate changes.
Obviously, the feedbacks wmentioned thus far could have s profound
influence on dIo/'d'I‘o and thereby on 80. How these feedbtacks work and
what other feedbacks might affect the climate sensitivicy.rgwesents the o
foeus of such ongoing resesych., Given the vange of possibficies
{1lustrated thus favr, 1% is d4fficule to specify & probablerange for
dloid%. Barring cloud amount changes, however, we might'ame:?t the

anr

range fyom 1.3 W om ‘5"’&‘“} obtained with fized velastive hunidly, lapse

2@ ""l

rate and cloud top temperature o 3.1 W meec™? ohtained wity fixed
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relative huaidity, cloud top altitude and woist sdisbatic adjustment
exhibited in the tropical vegiom by the G(M,

In accepting this range, we chould pote that contrary-to thé findiﬁg
by Budyko and Cess of a universal constant for Bl’ arperinents with a
G indicate that d1/4T changes with latitude. Oddly enmough, the Budyko
pavsmsterization fits the zonal climatology of the GO sbout as well as
it does tha earth's (Coskley and Wielicki, 1979). The espparvent discrepancy
i resolved when we recognize that the feedbacks thot influence the climate
change exhibited by the GCM are not vevealed by applying (66) to the zonal
fields. In a similar way, we might expect that application of (66) to
the earth's flelds would also miss the feedbacks that could significantly

affect climate change.

b. Albedo parameterization

As the earth cools we expect the extent of permanent ice and snow
cover to increase, thereby increasing the earth's albedo. To simulate this
effect, Budyko (1969) proposed the simple mechanism introduced in Section 2.
Poleward of the -10°C mean annual isotherm the surface is to be covered
with ice; equatorward, it is to be ice~free. The ~-10°C isotherm represents
the boundary of permanent ice and sunow cover for the northern hzaisphere.
Budyko assigned slbedos of 0.62 for ice-~covered regions and 0.32 for ice-
free regions. Hence the slbedo change is 0.3 when the surface changes
from be ing ice~covered to ice-free. As is indicated in Figuves 13 and 14,
such & larpge change in the albedo at the ice line makes the wodel highly
gsensitive to solar constant chenges and causes it o produce the completely
jee~covered solution when the solar constant is8 only slightiy reduced.

Lian snd Cegn (1977) noted, however, that because of the zenith

engla~dependent reflectivities of clouds mnd eurfaces, slbedos of the
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ice~free regions will be high at high latitudes due to large zenith anples

and low at low lativudes. As & reault, the change In albedo gs the
surface changes from ice~free to ice~covered conditions will be large at

low latitudes but zmail st high laticudes where the fce cover changes

take place. Allowing for the zenith engle~dependent reflectivicies referved

to by Lian and Cess, Coakley (1279) finds that the change in albedo at

the ice line 48 reduced to 0.15, for which QdHn/dTo = 0,4 W m—2°c.1 under

the current climatic conditicns,

Instead of an fce-line, Sellers (1969) allowed for the change in
albedo by taking

b+ eT T < 283,16
a4 = 4{T (68)

b - 2,55 ©OT 2 283,16

From albedos and temperatures in the same latitude zones of the two hemi-

gpheres he deduced that ¢ = «-0.00% K“I. He then made b a function of

latitude so that (68) matched ~bserved albedos,

Because of the zenith angle~dependent reflectivities noted by Lian

and Cess, however, we would expect c¢ to be a function of latitule and not

4 constant. From climatolagical observations of zonal albedos and surface

temperatures, they deduce that ¢ ranges from 0.0 K‘l for latitudes equator-

ward of 40°N [near the position of the +10°C isotherm and in agreement

wlth (68)] to ~0,0145 K™’ at 85°N. Using the latitudinal-dependent ¢,

they obtain QdHOIdTO w 0,34 m~2°c*l while using the same model but with

¢ = ~0.009 K™ a¢ a11 laticudes, they obtain QdHo/dTO = 1,0 W 2ec™,
Thie difference more than doubles the sensieivity of the model,
As with the emitted radiation, water vapor atrongly influences the

abéorbwé solay radiatzye fluz., ¥or fived relative humidity, abénrptiqn

by water vapor Increases as the tropospheric temporature incraases,
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Cozkley and Wielick!l (1979) estimnze that for fimed rel&tiva humidity the
chenge in sbsorption by water vapor copeributes 0.2 W m"2°c"1 to QdﬂoléT;.
0f the solar radiation reflected by the earth, clouds reflect between
70 and 80%. We would expect, therefore, that cloud amount feedbacks would
strongly affect the sensitivicy of the absorbed golar vedistive flux to

changes in surface temperature. For global average conditioms (Cess, 1976)
QaﬂofeAc ® Qg = a)) . (69)

where aa w (0,18 i3 the albedo for cloud-fres regions and qc w 0,43 48 the

albedo for cloud-covered regions, Hence, Qaﬂolaﬁcu ~8S%Jur2 and thus

dAc/dT = ().01.°C“l is sufficient to swamp'the feedbacks examined so far,
Clearly, the cloud smount feedback could strongly influence the sen-
sitivity of the albedo to changes in surface temperature just as it could
strongly influence the sensitivity of the emitted IR flux. We note, however,
that the change in the absorbed solar radiative flux caused by-a change in
cloud cover is somewhat compensated for by the change in tﬁe emitted IR
flux. That is the term in the denominator of (65) contributed by a cloud
amount feedback, (BIOIBAC - QBRO/BAc)dAc/dTO is smaller than either
alolaAc(dAc/dTo) ox Qauo/BAc(dAc/dto). It, in fact, may be negligible
(Cega, 1976). Its magnitude, however, is the focus of considerable debate
(Cegs and Ramanathen, 1978; Ohring and Clapp, 1980; Hartmann and Short, 1980).
Barring again cloud amount feedbacks, we might accept a range from

. ~2q =1
QdH_/dT_ = 0.2 W m ~°C

20

for fixed relative humidity and no ice-albedo

feedback to 0.6 Wm C”l for fixed velative humidity with ice-albedo
feedback, The larger values obtained with the Budyko end Sellers param—
eterizations appear unwarranted iIn view of the zenith angle~dependent

veflectivitiy corrections which thev neglect,

oo
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~c. Tramsport

in the two-mode approximation the sensitiviay of simple models was

ghowa in Section 2 to be wnaffected by the model used for the m&ridional
transport., Held and Suarez (1974), North (1975b) esud Lin (1978) have also

ghown that verious diffusion parameterizations that are monlinear in the
weridional temperature gradient, such as that suggested by Stone (1973),
algo have relatively little effect on sensitivity. 1If a third mode is
added, then corrections ﬁo Bo of order TA/TZ ~n 10% are to be expected.
Allowing for a Hadley cell slong the lines sugges’ *d by Lindzen and Yarrell
(1977), for example, might be expected to make such a correction.

Remember that in the simple models the transport only affects Bo
indirectly. The transport enters the energy balance as the divergence
of a heat flux and integrals over the globe to obtain the global energy
budget cause the transport term [-RZDVZT or Y(T-To)] to disappear from
the global energy balance (64), and coasequently because dIold'ro is
usually taken to be constant, the transport can influence the sensitivity
only through its impact on the albedo temperature feedback, QdHo/dTo.
Without albedo temperature feedback, the meridional tramsport could have
no influence on the gensitivity of these simple models.

A realistic model for the transport has yet to be constructed. In
an attempt to check the diffusion mechanism, Lorenz (1979) has recently

made a study of sensible heat transport in the real atmosphere, He finds

that diffusion parameterizations may work for the largest scales (Legendre

index n = 0,1,2) but surely fail for smaller scales (flux and temperature

gradient ave jmproperly correlated),

be%p*te the omipresence of diffusive ttanaport models, the results

of the GCH r&iexred o aarli

independent of aurface tamnerature and regardlesa of axternal forcing

er augﬂﬁwt that its tran sport vemains constant
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(Manabe gng wecberald, 1975, Wetheralg and Manabe, 1975; Stone, 1978),
fl This surprisingly simple rel&tionship,exhibited by the Gy iz, howevet,

This Cancellation
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is &pparently subject to the equilibrium climzee of the mode] (Manabe,
Private comsunication) ang may not hold for draatically altered equilibriynm
Btates. Recept Studies o¢ gy 1ntermediate»aized wodel by Held (1978)
8eem to bear thig out,

With the ranges obtained fop Bw dIo/dTB’ 1.3 <B <31 W m.2°8"1,
end for QaH /ar , 0,2 < UH, /AT, < 0.6 W w~2og, o obtain a range
0.8° < Qo < 3.4°C, Although difficuit ¢o verify, this range probably
bracketsg the actyal sensitivity of the climute, 71¢ encompasses the
sensitiviciag of mogt climate models-—energy balance models (aside from
those with the large albedo-temperature feedbacks), radiative-conveccive
models (Ramanathan and Coakley, 1978) and 8eneral circulation climate
models (Liap and Cesg, 1977y, 1t also ig consistent wiey the short~tern
Fesponse of phe climate ¢o increases in 8tratospherie aerosols ag 4
regsult of volcanic eruptions (Schneider and Masg, 1975; Hassg and Schneider,

1977; Hangen £t al., 1978), 1¢ should bpe remembered, however, that

changes and hov they wi1y influence the changes {1g & subject of current

research,
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5. Sensitivicy :0 changes in orbital parameiers

Over pericds of 10&-105 years, the Earth's orbit about the gsun
changes, Milankoviteh (1941) among othexe argued that these changes
cause variastions in the amount and distribution of gsolar radiation
received by the Earth, thereby influencing the climate. Milankovitch
suggested that the orbital éhanges force the advance and retveat of
Blaciers. Indeed, evidence that the climate 48 so forced has been
found in geological records, By examining sediments taken from deep
vcean cores, Hays et al. (1976) have shown that the principal periods
of climatic variation (100,000, 42,000 and 23,000 years) match those
for changes in the eccentricity (105,000 years), the obliquicy
(41,000 years) and the longitude of perthelion (23,000 and
19,000 years), Many have used simple energy balance models in
efforts to explain the glaclal cycles as the result of orbital
changes,

Bow encrgy balance models respond to orbital perturbaticns is
understood through the effect of the perturbations on the forcing—
the incident solar radiation. To start, we note that fractional
changes in global average m.an annual incident solar radiation are
approximately given by 1/2 Ae2 (Berger, 1978), where e 1s the eccen-
tricity of the earth's orbit. Because the eccentricity has always
been small (e < 8.07), the resulting cheanges in the selay congtant
have always been less than Q.2%. A 0.2% change in solar comstant
causes, according to the energy balance models, about a 0.4°C change

in the global wwan surface temperature. Such a change I8 sn order
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of @mgnicnéa emﬂllet than thaae t&as aeem to have taken place (Hays
et 83., 2976). Owing to their insignific@nt magnitude, changea in
energy balsnce models brought about by vsriatioma in the eccentricity
will ba ﬁ&&ie:te& in mka follawing discussion. _

More fmportent thon changes in the mean annual solay radi&tion,
howewer, sve the varistions in its latitudinal -ad seasonal distri-
buticn., These variations result from changes in the obliqui.y and
longitude of perihelion. The seasonal variations are cleariy repre-
sente. by changes in the incident aolaf radiation for sunmer and
vister calorie balf—years. a8 defined by Milankovitch (1941) (Berger,

1978), ¥Ye may dexive these changes from the expression for S5(x,t),
S(x.t) = So(t) + Sl(t) Pl(x) + Sz(t) Pz(x) (70}

where, to first ordzr in e,
So(t) @« 1+ 2ecos (2ne - 1) ,
Sl(t) = Slﬁcﬂs 21t 4+ 2e gin I sin 27t)

and

32(23 & 52{1 + Ze coa(2mt ~ M1 .

Here, t = 0 at the northern hemisphere's winter solstice; I 1s the
longiude of perihelion weasured from the longitude of the winter
solstice, and in the derivation of § (t), we have neglected the first
harmenic terms proportional to e that arise from the second harmonic,
which results from the sun crossing the equator twlce esch year,

The derivation of the terms in {70} is outlined by Horth and Coakley

SRIENE: P
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(1979). Averaging S(x,t) over the summer and winter half years,

we obtain

- -2 - he
S, 1352+ 8,P, (x) - 8inll {1 + 5,P,(0)] (71)
and

- 2 Le
Sw 143 SlPl(x) + Ssz(x) + == sinll 1+ SZPz(x)] .

Changes in the dncident radiation are thus given by

' 2 &
ASB = - ;-AslPl(x) + ASZPZ(x) - ;-A(e sin M) {1 + SZPz(x)} (72)
and

8s, = %AslPl(x) + 88,2, (x) + -f; Be sin T) [1+ 52,01 .

The above expressions are the three mode representations of the
Milankovitch forcing as it has traditionally been calculated (Miiankovitch,
1941; Vernekar, 1971; Berger, 1978).

From (72) we see that the change in the mean annual discribution

of incident radiaiion 1s given by
1
AS (30) 7 (ASs + Asw) ASZPZ(X) . {73)

S2 is easily shown to depend only on the obliquity, 60. Because the
range of obliquities remains small, 22,10° < 60 £ 24.51° {Vernekar,
1971), we amay take NSZ = 0,015 AGC, where Aﬂo is in degrees of arve,
Currerncly, 50 = 23.45°, but 25,000 years ago 50 was about 22.2°.
This change in obliquity caused there to be less radiation incidgnt
at the poles and more Incident at the equator. The change 1s thought

to have spurred the glacial maximum 18,000 years ago. Immertiﬁgvthe
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eltered distribution into a mean annual model, however, gives only a
1-2° equatorward shift in the latitude of the ice line and a warning
in low latitudes (Budyko, 1969; Seliers, 1970; Saltzman and Verneksr,
1971; Coskley, 1979). These results clearly disagree with the ice , é
line shift of approximately 15° and a cooling of several Jegrees at |
all latitudes Geduced for the glacial maximum (CLIMAP, 1976;.
The small changes in the mesn annual distribution of fincident
radiation and the disappointingly emall response of mean annual
models has led soke to suggest that seascval variations need to be
considered when estimating the effect of Milankovitch forring.
Obviously, (72) indicates that variations for each seaéon will be
larger than those for the annual mean. Results of sessonal models
that allow for these variestZ.ns, however, faill to differ gignifi-
cantly from those of the mean annual models (Suarez and Held, 1976,
1979; North and Coakley, 1979). Sl' to first order in e, is easily
showa to depend only on Go’ and thus, like 52, we £ind AS1 = =0.016 AGU.
Because Sl contributes only a small increwn.-.t to To and Tz, AS1
raises the response of a seasonal model only slightly over that of a
mean anrual moc2l. Likewise, by considering as in Section 2 the mean
annual residuals contributed by the terms propor.iuvnal to e in 72,
we find tbat for the last 25,000 yea s these terms contribute at most
variastions of the order of 0.1°C in To and Tz. Also, if we allow
for differences between the annusl mean temperature of the two hemi-
spheres, the terms that couple the seasonal variation of albedo with

changes in the longltude of perihelion contribute at most 0.2°C to




A

¥

Yo e MY
o ¥

2

a2

the sonusl mesn compenent of Tl' Thus, neither maan smnual nor
gen:onal models give responses that would support the Milankovitch
theory,

Of course, &8 mentioned in she two previous sections, simplicity
snd questionable Pavametsrizations msy be the reason that emergy
balance modale f2il to give large vesponses. FPerhaps 4f mors phys-
ical processes were mndeled, wmore feedbacks includad, more realiom
added, the models would become wore sersitlive.

Some additional features have been recently added. Pollard
(1678) added Weertmatn's glacier model (Weertmen, 1975) to & ~ipple
three~mods seasons) model. Because it allows for the ablation of
snow aand ice by incident soler radiation, the glacier model contributes
far wore to the sensitivity of the seasonoal model than ve that of the
mean annual model. The enhanced gemsitivicy is indicated by the
pensitivity of the medel te changes in perihelion «8 chown in
Figure 15, Neverthelezse, 1£‘we scale the results shownm in Figure 15,
ve find that the model, even with enhanced sensiiiviﬁy, would predict
only a 4=~5° shift in the ice line fur the obliquity change connected
with the 18,000 YBP glacisl maximum., The sddfcion of a glacier model
by ftseif hau so far proven insufficlient to obtain the desired
results.

Anothey factor to consider iz the zonal asymmetry of fce age
climates. Mout of rhe models mentioned so far have been zonally
syrmetris. BReconstructions of the lasy alaciél raxivun indicute,

however, that in the aorthern hemfaphere fce sxtended wuch further

REESS




53

equatorward ovar continents than ovar cceand {mnm; 19276}, BHartman
end Shore (1379) hsve srgusd that the glacia)l mamimum and its avident
acymsatry nay have teen the vesponss o @ gonally ssymustvic weve in
the surfpce Comperaitle. Using sn ensrgy balence model that containg
a prescribed asywelvy in tha surfece tmpewsmre.' they obtedn an
ice-age~1ike rvesponse vhen they insert ressonsble asplitudes for the
geynmptric tevYm. Wich this edditional couponent, houswsz, the model
appears to be no wove sensitive to changes in the inctdzat vadiation.
In Figure 16 the plobal meoan temperatuve ia plotted ss » function of
solar constant for d1ffarent amplitudes of the gonally xﬂymmeiric
component. The neacly identical elopee of the cur&es indicate &
coumon sensirivity. ¥rom this result wa expect that altewing for

the asymmetry would not greatly enhance the sensitivicy af the wmodel
to orbital changes. In fact, by allowing temperatures aver continents
to differ from those OVeT .CBANS, Suarez and Held (1376, 1979)
{incorporated a degree of ssvemetry in thely model. The results of
their model, however, are not significantly different from those of
tonally symoetyic models,

Srill, failuves to Gupperl the Milankovitch theory way only
reflect the insdequacties of the modelew, Moast models tiat have been
used to test the theory have included only one foedback that could
amplify the response~-the elbedo-temperature faadhack, FExmperience
with these models, hovever, lzads us to search for addﬁcionai feed~
hecks that aither by chemnelves or working togethar cosid amplify the

responne {Ceas and Wronka, 1979).




6. Stability theory ‘

When a modsl, such a3 those diacuﬂ&éd in Section 2, hesz baen
solved and peveral solutfonm sre found for the same externs)l condi-
tions, we should study the stabilicy of each solution. Schnsider
and Gul-Chen (1973) were the first to study the effsct of varicus pertur-
bations on a Selleve~type mddel at fixed molavr constant. They found
that the present climste was stable, ovut thet 4f & large enou-h cold
perturbation (M20°C) was spplied at all latitudds, the solution
feiled o return to the present climate but insteed plunged to the
ice=covered earth solution., Subsequently, linear stzbility results
were chtained for the Budyko model by Held end Suarez (1974} and Su
and Hsieh (1978); other analvses for diffusive wodels were performed
by Noreh (1675a), Ghil (1976), Fredericksen (1976), and Drazin and
Criffel (1977). The most general linear stability analysis for a
wida class of models was performed by Cshalan and North (1979). An
epproach for a finite amplitude stability snalyeis was suggasted by
Chil (1976) and a complete study along the ssme lines based upon a

variational principle was given by Korth et al. (1979). 1Incorporating

idess taken from &)1 of the sbove-mentioned studies, we shall now
discuss the stability of the model solutions.

In performing & stability snalysis, we study the time-dependent
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responss of the model to perturbations from its eqailibriwm atate,

We shall vestrict the discussion here fo mean annuval moldels, A ¢li~
wmetic state net in equilibriuw wust have s heat storage term added

to the enevgy balsnce equation, € 37(x,t)/3t, vhere C is the heat




capasity per wnit area for a coluzm of the sarth~stmosphere sysiem,

As mentionsd in Section 3, the vast differéuce in € over land and
oceen leada o some error associated with simply taking & zonally
averaged C, but we shall ignore this complication in the present
section. It i@ essily eeen that ¢ mevely scales the tios 1ﬁ our
prasent discussion and since we ars only asking whether or not a
given eolution 1o stable. regardless of t’me scale, e may get C

equal to unity.

&, Linear stabilicy of global wmodels

To {llustrate the concept of stability, consider a model with no

ice cap feedback., Its time behavior may be studied by adding the Ef

storage term to (8):

3T°(t)
ot

+ A+ BTo(t) a Q(1 -~ ap) = QHO . (74)

It is easily shown that any deviation from the equilibrium solution
given by (8) decays back to equilibriim exponentially with a time
constant equal to 1/B (times the heat capacity per unit area C, which
we have set to unity). The cutgoing radiatfon therefore damps the
solution back to equilibrium. For a column of atwosphere only, this
A relaxation time is about 58 days. Larger values of B (increased
negative feedback) lesd to increased damping. With no albedo feed-
back the model is linear, and 1t has caly one solution that is always

statle,
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The next model of intevest sllews Some t@mp@ratﬁre dapendence in
the planatary albedo; 1t is the sero~dimensicnal ice cap model die-

cussed earlier {(cf., Ba, 13). In this cese

aTo(t)

—L w A BT (E) = QH [ (T (73)

and the model may be linearized for small devistions from & ateady

gtate solurion, say Too. Then 1f we let

o
To(t) - Tt 8t(t) (76)

we may write

dai
ST(t) + B 8T(e) = Q-;ﬁ':g 6T(L) an
[+]

where we have made use of the eteady state condition given by
o o
A+ BTO QHO(TQ ) . (78)

Taking a derivative along the curve given by (78), we obtain

pdr ° Qan_\ 4t °
on - H o+ ; “E%_ , (79)
dT_

which #n turn may be used to simplify (77) giving

4t o\~1
. ] o -
STty + "y Q 8T(t) 0o . (80)

Equation (80} establishes a theorer which may be genevralized to a very
large class of climate models: 1If the steady state solution 1s on a

brench with dTOKéQ positive, the solution will be stable; {f this is

not g0, the positive albedo~temperature feedbhack, Qdﬂolaru. iz larger
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than the IR radiative dsmping B and the aclution will be wmstable. |
To swmuarize for the sisplified global model:

¥y

-@3 >0 sy geability

d'.l'o '
-‘*ﬁ“ <0 Gmmeeesd> ingtebility

(81)

b. Potentin) function for plobal models
It 18 slso fairly eassy to exmsmine qualitatively the nmsponse of

the simplified global model to large (nonlinear) perturbaions. We
present the analysis hevre as it will prove useful in the :wore compli-
cated examples to follow. Our method will be to construct a potential
function (sometimes called the Lyapunov function, cf., Nouit et al.,
1979) that will completely describe the model and its behedor away
from ateady state.

Consideyr the function

1,2
F(T) AT+ 5 BT " = QI (T} . (82)
vhere
TO
= | 14
Hr) = L H(T,') dT ' (83)

is deternined from the temperature~dependent co~albedo shom in
Figure 1. A graph of the potential F('Eo) is shown 1a Figum 17.
Hote that the extrema of F (points where dF/dTO = () are given by the
energy belance equation {78); therefore, these extrema comspspond to

the roots %, I¥, and III of Figure 1. WHote slso that In tmms of
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?(To) (75) becomes

To - -dF/dET0 . (84)
Furthermore,

daF _ dF = eyl s

& " df, ‘o TN =0 . (85)

Thus, the time derivative of To is proportional to the slope of F at
To and F alvays decreases with time. The implication is that the
shallow local minimum I (the present climate) is stable, the maximum II
ig unstable, and the {ice-covered planet III is etable. Figure 17
mekes it entirely plausible that a uniform -20°C perturbation applied
to the latitude-dependent models would probably take the solution
“gver the hill" and into the ice-covered planet valley, as was dis-
covered numerically by Schneider and Gal~Chen (1973).

Note that the "slope~stability" theorem {81) and the existence
and qualitative form of a potential function (82) are independent
of the exact parameterizations used for the albedo and IR radiative
flux. As noted in Sections 2, 3 and 4, much remains to be done in
tha area of parameterization theory so that results independent of
detalls or numerical values of constants ave of special Interest.
In the remainder of this section we will 4llustrate how the slope
atability theorem and the potential function may be generalized to
the class of one-dimensional models, We begin with the linear

stability analysis.
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c. Linsar stebildty of one-dimensions) modals

The tivs~dependent energy balance oguation is pivem by

B 2 p@a - f et + It = Q56 alxx)
- (86)

and the ice line coandition by
I(xe.t) - Ia . } (87)

In these equations we have used I = A + BT rather than T as the
dependent varisble. The tims in 3I/3t has been scaled by C/B, where

C is the heat capacity per unit area. Expanding I in terms of the
eigenfunctions of the diffusion operator, fn(x). we may usze the ortho~
gonality condition (47) to determine the coefficients. From (86)

we obtain
I +21 = Qh(x) , (88)
vhere we have defined expaurion coefficients for I,

1
In(t) - jo fn(x) I (x,t) dx (89%)
and for the solar heating,
1
hn(xs) - JO fn(x) S(x) a(x.xs) e (90)
and & =y _+ 121,
n n ‘

To linearize about the present climate let

© : :
,I“(t)‘ = In. + 81 (£) v | (91)

R AT ARG

IR
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and

xa(t) = X + szo(t) . {92)
with the stesdy state given by
o =
R'u In Q hn(xo) * @3

arnd the {ce line condition by

[+
Z 1°f (x) = I, . | (94)

These latter equations define the equilibrium state denoted by (xo,Iﬁo)

vhose stabilicy is to be tested. Linearizing (88) we obtain
- - ¢
5In + iu GIn Q hn (xo) éxo . (95)

The perturbed ice line Gxo csn be related to the (SIn through (94):

-1
Gxo -«(Z £q 512 ) (2; fx'n Imo) . (96)

In (96) and in what follows we suppress the argument X in f“, fr'x’
hn and h;. Substi;uting (96) in (95) leads to an infinite set of
simultanecus, hnmz;é;&neous, linear, first-order differential equations
for the 6In(t). 5}‘ substituting Mn(t) ] GIne"M, we may find the

set of values of A for which the equations are satisfied. This turms

out to be the eigenvalue problen

2. Mn‘zz Mm ® MIn * 9N

o ; o » G . X . . e X : 3
aFaratd e Sl NS J g N i T A N LV SR P
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whaeo e
oh 4 s
e T Tmomm T w0 (98)
gr ]l . -

. (29a)

wo. ivu; ean be differentfated giving a delta function

patulpws e» wdics Lo the pesult
» (99b)
where 0a > 0 18 the drecotitinuily in a(x,xs) at x ™ x_.
She stabilicy wi the system with steady state (xo,Inu) is

’&at&rm&na&'hy»th;.iiga of the eigenvalues A. Because Hnm is real

and eyumetric, all eigenvalues are real and bounded from below. If
the lowest eigenvalue is negative, the system *s unscable; 61 grous
expoﬂentially’with time, I1f the lowest eigenvalue is positive, the

solution is stable; 8% decays expunentially with time., By casting

the eigenvalue problem into a different form, we can determine the

voy oE ohes Inigsl L00C.

To deternine the sign, we rearrange (97. <1d use (98) to obtain
(S’,n - A) GIU m - an zm fm élm . (100)

Dividing this espression by ln - A, multiplying by fn and summing

OV towE o

h o fn '
S T T Qe .
- o s B A * (101)
By %
e
- el R .N;wvfgf..;; G, Dot w5 sretmhommmin werins i e wim o5 S E S e ael m T

Y

D o T e S i B i G

e i~ 4
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This relation is a trancendental equation that 1s satisfied for certain
discrete values of A, the stabilisy eigenvalues. By further rearra~ce-
ment we arrive at the zign of the lowest elgenvalue. With

(882), (101) hecomes

of'
z +Qbs(x) =0,

vhich with (93) becoumes

2
bS(x )£ h£!
2 T 4+ 4 |= 0 . (102)
n 0 n
Since
-—4-——1 o o = .._q.-. Q Z hnfn‘l
dx 8 dx £ 4
[+] [+ n n
h f? h'f¢€
nn _ _1 49 .y h_n
En 2 Q dx Is zn 2 ¢ (103)
n [+] n

(104)

As a function of A the right-hand side of (104) has a zero at A = 0
and a sequence of poles with positive residue at the points XA = Qn
(Rn > 1). This is sufficlent for us to nike the schematic plot shcwn
in Figure 18. If the horizontal line corresponding to the constant

N

dQ/dxo is also plotted on the graph, the roots are at the
intersections of these curves. Clearly 1f dQ/dxo is positive, all
roots ave positive and the solution is stable. If dQ/dxo is negative,

the lowest root becomes negative, end the solution becomes unstable.
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These results'reﬁrea@nt the alope~étability theurém fec the siaple
one-dimensional models,

The proof sketched above can be generalized and mmie rigorous
for all models that have positive Green's functions (cfy Eq. 49)
(Cahalen and North, 1979), Note that the slope-stability theorem
holds only for northescuth symmetric aolutions and for models with
ice~caps that follow isotherus, i.e., the co~albedo maybe written
as a(x’xs)' Models possessing an albedo with the functional form
a(T) may have solutions that are unsymaetrical (Drazin aid Griffel,
1977); in such cases the proof of the theorem fails. Tie proof of
the theorem requires the existence of the eingle index fgtth“t picks
out which of the several solutions one ig examining for a given Q,

It should be noted that the 8lope~stability theorem for the
one-dimensional models differs s8lightly frcm that for the global model
(81). The sign of dTO/dQ and dxo/dQ may differ near a cwp at
which de/dQ = 0. To see how this may hsppen, ve differmitiate

(93) for n = 0, (4 + B To £ Qho) to obtein

BAT_ dh dx_
—0 . 9 o ]
5 h, *+Q & @ (105)

Both ho and dho/dxo are positive, Therefore, dTo/dQ remdts positive
near a cusp where dxoldQ is small end negative. 1In thatcmse the
solution is unstable even though Bo is pcitive, On the cher hand,
near a bifurcation the magnitudes of dxo/dQ end dTO/dQ are large and
of the same sign. So the positivity of So is always necesary for

stability, and if we exclude cusps then it is sufficient a well.

3
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d. Potential functional for eme-~dimensiocanl models

We consider now the finite amplitude stability anslysis of the
one-dimensional a(T) models. Our aim is to construct a potentisal
function analogous to (83). In the zevo-dimer.ional case the
potential (Lyapunov functien), F(To), was & function of omly one
variable; its local extrema gave the stealy state solutions to the
energy balance equation. 1, the solution was perturbed, ?0 changed
in time according to the negative slope of F(To), which ftself
continually decrsased in time until a (steady state) exiremum was
reached. Clearly a local minimum corresporded tc a stable solution
while a local mayximum corresponded to an unstable solution.

The aualogous procedurs for one-dimensional models is imore
complicated. The potential must be a function of T{x) at each local
point x. That is, it must be a functional, F[T], The nature of this
kind of mathematical object is most easily described by example, We
shall, therefore, present a functional and show that 1t has the desired
properties (North et al., 1979); a similar method was suggested by

Ghil (1976)., We take the functional to be given by

FIT] = [ dx [% p(l = x°) sz + R(T) = QS(x) C(T)] , (106)

where T = dr/dx
T L et
R(T) = J I(T') 4T

and

c(ry = SYarny e .
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It ie relatively straightforward (dorth et al., 1979) to whow that {f
6F 18 to vanish (local extremum) for an arbitrary variatism OT(x) in
the temperature fleld, the corresponding energy talance eq;uation must
be satisfied (steady siate solu-ion). North et al. (1979} :also show
that these solutiuns ere stable if che ert mum 48 a 17:al winimum
and wstable 1f the extremum is eithsr a saddle point or a ilocal
maximum,

Here we shali {llustrate the procedure for the wode? Just used
to prove the slope-stability . heorem. 1THe co~albedo, howevesr, will

be given by

a(ly = a 61 ~ 1)+ a8(I -1 , {109)

where 0{Z) {s the urit step function, 6 = 0 for 2 < 0, and 7 = 1 for
z 2 0. Note that the step function albedo (109) 1is the one::.cas~ where

models having the coalbedo functilonal dependence a(T) and wosdels having

the functional dependence a(x,xs) are identical., It is easiier to visualfize
the functional F[A + BTJ = F{I] in spectral form, I = L Inf“m(x)a Ir

tpectial form F may be thought of as a function of the variuibles 10,12,14,...,

vhere for symmetric wodels we use oaly even indices. An ext:iverwm of
F(Io,Izg...) may be exnressed as aF/EIn « 0 for all n.

Substituting {109) into (106) and using the orthogonaliity con=
dition for the fn (47), we obtain

1 2
F(I_,1,,...) Z P - Ha ., (110)

where

1
M ,Iy5e0 ) = Q [wl S = T5(a 0(X~T ) + a,0(1 =13 Jdu ,(1;1)

Y RN SRS TRR ES
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it 2 understood that Xfu(x)I“ in to be substituted for I in (111),

The condition that the QFfaxn vanish simultanecusiy leads to

n
- th“a’ * , - {113)

where we have used (29). Note that (113) represents the ﬂec@n@aaicicub
of the energy balsunce equation (27).

In the neighborhood of an extremui let the radiation field
corresponding to a pavticular extresum (steady state) be glven by
l(o)(x). or equivalently by Ioco).lzio)..... Nearby (in function
space) wa mav write I(x) = I(O)(x) +§(z), or the deviation may be
written in terms of {ts spectrgl components ®°,¢2..... Expanding

FII] about the local extremum, we cbtain
P, T,0) & F + O |2-) ¢ +1 DE ) oo s
etTaretl o Letal n o 2 31 31 nm °°°
o o i " o

vhese the subscript o denotes evaluation at the extresus, The terms

- Hnear in @r vanish bucause aFIBI“ ~anishes at the extremum. Up to

the terms considerad, F is locally & quadratic in @n. The matrix

?
a'y
LI (az 5 ) (115)
nmio
are the structute constante for the geometerical surtace, F(iO.Iz..,.).
If all eigenvalues of Knm are pesitive, the surface is concave upwards,

1f one or more of the eigenvalues are nepative, the surface is locally

a seddle point, We procesd to ahow tost these elgenvaluss are the

stabilicy eigenvalues studied esrifer.

.7, = QS S 100 (a1 = 1) 43 60" ~ 1) (12 -

s




&7

Pirst note that if the tempurmtu:ﬁ field is allowed to be a function

of time, then by following the approach for the O-dimmsicnsl modela we have

I e =2 (1,10 , o 1e)
an " TE (orlpeeed o
1.8., the tine derivative is glven by the gradieant in this multidicerzional
spave. For inflnitesimal depavtures from steady atate we set [In(t) - Ino

«h .
+ @ne t] tn (116), expand sbout @n « (), and chtain

M, - z(ax 3l ) % v - am

* ‘ ﬁﬁ s. * (118)

The latter equation concludes the proof that the local geometrical stucture

conntants of F(Io.lz,..g) at a steady state solution yield the stability

eigenvalues for that particular rteady state. Equation (118) is the analog

of the siwple equation (80), or in the one-dimensional aase, equation (97).
Finally, a8 & conclusion to this section, consider the time behavior

of the value of F(Io.zz....) wvhen the point (IO.IZ...Jﬁ {8 governed by

the time-~dependont equation (89):

aF M
.

T .“A‘*;I . (119)
- -Z(in)z \ (120)

vhere we have used (116). This latter is the multidimmsional analog of
{85}, It has a corrasponding interpretation: initial diwpartures of
the state (Io‘{g"“) from a local extremum of F lead ‘ev a trajectory
of the point such that F decveases,. The point will corloue down the
gradient of F until & Imtml'extre&um is found. Cleﬁriylaaai max ime
and saddle pdin?q axre &har&bis. |

Tt was shown in q@;tiwn ¢ of this pape. that &« tuﬂ%mxdw *runcntiéh e

of &hﬁ ppectral tepresentation pives e good approximadbe Iin aeay
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ceses. In this case we csn actusliy plot a counteour msn of F in the
Io.Ig plene. This 2s shovn in Figure 19; the emasple is for constant
diffusion so that fn(n) = Pn(a). Hote that the scsle of Io and 12
ere different in the teut eince the Pn(x) are not orthonormal. This
two-dizensional wap 48 to be compared with its one-dimensional anslog
(zervo-dimensional wodel) in Figure 17. The labels I, II end XIX
correspond to the analogous laheling of earlier figures, Physical
interpretation of the figure follows directly from the previous
discussion,

Before leaving this subject, we note that the Lyapunov functional
F{T] gives rise to & variational principle for the Budyke-Sellere
climste models. Although the functional developed here was strictly
a mathematfcal construction, it iz tempting to speculate that there
is an underlving physical principle analogous to extremum conditions
in therwodynamics, If F{T] can be related to the rate at which
entropy 4s dissipasted in the system, then the extremum principle
would be in line with Prigogine’s theory of nonequilibrium thermo-
dynamic states (Prigogine, 1968). Golitsyn and Hokhov (1978) have
shown that the linear climate models (no ice-albedo feedback) can be
formnulnted so that they satisfy Prigegine’'s condition. Unfortunately,
such models have but one stable solution and, therefore, fall to test
the genersl applicability of the extremum condition. Faltvidge
(1975, 1879) has suggested on the bosis of enevgy budget obeervations
that ahé ciimare system iz governed by 8 somevhat different, but
equally simple, extvemum pyinciple. Whether the behavior of such &
complex aysten can be 2o gix ly chavacterized ig 2 tantalizing but

open gquestion,

[
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7. Staticmary perturbstion theory
The sensitivity of climate models to staticnary perturbations has

received considercble attention. Many veceat papers have offered
estimates of the change In surface temperature csused by changea in
the concentrations of various radiatively active trace gases in the
atmosphere, by changes in the surface albedo as a rvesult of man's
activities, by’changea iu the serosol covtent of the atmosphere, by
additicns of vaete heat from energy consumption, and many others,

In this saction we shall derive 8 formula for the infinitesimal

change dn climste as the result of small perturbations added to the

energy balence equation, The formula has little practical utilicy;
nevertheless, it offers insight into the qualitative response of a
large class of models. For simplicity we shall study perturbations
which are sufficiently small that Jinear approximations can be
applied. Analytic solutions to nonlinear systems with large per—-
turbations have been obtained by Salmin (Salmin, 1579; Salmim et al.,
1980).

Consider the class of energy~balance models discussed in Section 2.
There we derived a Green's funcrion, . given in (48), that describes
the response te a ring of heat added at a given latitudse, the jce
line being held fixed, If Go is known, the ice line latfrude is
determined for any Q through (50). 1In turn the tesperature field
given by (49) 1s completely determined, How we shall hold ¢ » Qo '
fixed and add an amount of heat g with some given latitudinal distri~
bution ulx) (ha&d&pbaviqally ayametric, positive and nurm&;izadvtﬁ .

wnit integral). Yo add this heat (39) 48 veplsced by
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LIT) +AG) = QSC) amx) +5ux) o (121)

end the integral eguation smnalogous to (49) becomes

. , ,
T2 = I dy G (x,y) [Q, 8(¥) aly,x)) -~ A(y) + gu()] . (122)
o .

Serting Ts(xa) - Ts in (122) gives an expression which deterwines the
fce line latitude for a given g, By equating this erpression to the
previous Ts expression, (49) evaluated st x = Rye Ve find that the

terms Jnvolving A cancel, giving

(Sa)8 Q(xs) - (Sa)8 Qo + (u)8 g(xs) R (123)
vhere
1
(Sa)8 - I dy G (x_,y) S8(y) a(y,x)) (124)
o
and -
1l .
(U)B = I ay GO(xB,Y) uly) . - (125)
: o

This result allowse us to deternine xs(QO.g) from the unperturbed result
KG(Q.O).

We now assume that g 18 small, so that the temperature field will
be nearly equal to the g = O value., That is,

Tg - To + 6T , (126)
wvhere To is piven by (49) with Q@ = Q0 and 6T is small. Correspondingly,

the dce line latitude {5 given by

x, = = + 6xﬂ. . o 9 Qaz7n
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vhere xo is the uwaperturbed iée lioe and 5’& 1s emall. By expanding
a(ysx ) in (122} and Qx,) i1 (123) to firse order in 8x ., ve may

eliminate To and Qo to obtain

1 | ’
6T(x) = I dy G (x,y) [QO $(y) %ﬂ* (roxy)) 6x + g u(y)]+ 0(5xs‘€) .

o (]
(128)
and

dx,
§x = i

o ) . (129)

According to (129), the shift in the fce line for a given ;¢ is directly
proporticnal to the ice edge sensitivity dxoldq. By substiituting this

shift into (128) we obtain the final result

1
§T(x) = g I dz G(%,2) u(z) + 0(32) N (130)
o
vhere
dxo Q° 1 A
Gx,z) = Go(x.z) +35- Gare I dy G_(x,y) §(y) = (¥sx) Go(xo.z) .
0 lo o
(131)

Setting u(z) = &§{z ~ zo) in (130) shows that G(x,zo) wepresents
the temperature response to & ring of heat added at a givem latitude.
The response includes to first order the effect of the ice line
shift. Since the problem has been linearized, the response: to an
arbitrary distribution is given by the appropriate superposmition of
localized sources, as 45 indicated by (130).

¥We ghould recognize that the first ternm in (131) is the response
vhen there is no ice~albedo feedback. The second term 1is the response

due to the albede feadback. Hote thst the feedback term i multiplied

by dxaldQ. the slope of the ice line solar CONEtant curve. Thuz, for -

i
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small perturbations, the sliope of the ice line curve governs the thermal
response of a climste model to any perturbation, As & result the
fundameutal sensitivity Bo = Q/100 dT /4Q of a wodel 1s an indicater
of its sensitivity to any perturbation, '

For the step function albedo ﬁb and dxoldQ may be related by

differentiating (31):

g = o A4+ BT + Qz ${(x_) Aa Eﬁé - (132)
o 100 B o 0 4Q d

vhere fa 1s the change in albedo at x = Xge (This 1s a particular case
of (105)). As & numerical exasple, congsider the case of a step function

albedo for which the expression for ¢ simplifies to
B - 1.12°

G(x,z) = G_(x,2) + ~95725r5"~* G, (% ) G (x_ ,2) , (133)
where (132) has been used, (Recall from (9) that 1.12°C 1s the sensi-
tivity vhen the albedo remains constant.) Since Go(x,z) peaks at
X = z (see Flgure 7, for example}, the feedback term tends to incresse
the response near the ice lne, = = xo, and this effect ig largest
when the added heat 1s closest to the ice line, z = L Pigure 20
illustrates these features for a tropical source (z = (.4) and a
midlatitude source (z = 0.7), where we have used the diffusive Go’
Bo = 1,6°C and X, = 0.9. For a source which is broadly distributed
only the peak at the ice edge appears. This kind of effect has alss
been observed in detailed wodels having many feedbacks (Manasbe and

Wethevrald, 1975),
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Plots of g(xﬁ) show that the range of g for which the linear
epprostimation is valld tends to be smaller when heat is mdded closer
to X, This vange also depends upon the Q(ns) curve characteristics
(Salwdn, 1979; Salwin et sl., 1980). For a range of large negative g
the sleope, dxa/dg, usually changes sign and it can be showm by arguments
analogous to those in Section 6 that a negative slope iz necessary and

sufficient for instability.
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8, Fluctuations

In previous sections ée have focused ou gquasi-periodic changes
associated with seasonal and orbital effe..s. However, tvpical climatic
time series also exhibit large amounts bf neaperiodic variasbility.
In this section we shall extend the models considered so far by
including this broad distribution of variance having periods that
range from seasons to centuries. The low frequency part of this
range, say periods from decades to centuries, is particularly
difficult to observe because instrumanial records tend to be too
short, and proxy reccrds are difficulé to imterpret. Kevartheless,
such low frequency natural variability may contaz’n information on the
true sensitivity of the climate. That 1s, the effects of possible
future perturbations of the climate due to various exterrsl causes
may be estimated from past responses to natural fluctuatfons associated
with internal degrees of freedom. In Sectiems 2 and 6 thwe stabiliey
of a given steady state was related to the sensitivity. ©One of the

goals in this section is to show hows the natural variabilXecy may be

related to the sensitivity., Such a relationshilp was soggwested by
Leith (1975, 1978) and is known in etatisticz]l mechanics @s the
"fluctuation dissipation theorem."

In long~term climatic records siower fiuctuations gemerally have
larger amplitudes. This feature is slso a charactecistic of Brownian
motion, the random movement of swall particies suspended 3 a liquid.
Over short time perilods only a few molecules collide with a gilven

particle and its displacement from irs original location iz small,

o
s

£ HerA it e
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but over long dericds there 15 some chancae that many céllisions drive
the particle far from its original position. The fluid has two
components: the molecules, which move and change dfrection tapidly;
and the particles, which move slowly. A simiiar scale éeparation

1s expected to exist between the relatively rapid evolution of
gynoptic weather systems and the more aluggish‘climntic components
such as the global average temperature and the pole~to-equator
temperature gradient.

The suggestion that broad-band climatic fluctuations may be a
cumulative effect due to variations on much shorter time scalés was
made by Mitchell (1966) in connection with sea-surface temperature
anomalies. The two~time-scale approximation was given a general
formulation by Hasselmann (1976), who emphasized the role of negative
feedback processes in limiting climatic variability. This approach
was applied to simple ocean modsls by Frankignoul and Hasselmann
(1977) and Frankignoul (1979), to Budyko's energy-balance mcdel by
Lemke (1977), and to a global energy-balance model byAFraedrich
(1978). Bobock (1978) has performed numerical computations of

effects of fluctustions in energy-balance models.

a. Preliminaries

We shall think of the complcte time history of the global
average temﬁerature. for exasmple, as & siugie realization of a random
phenomanqn. 1f we imagine an infinite population of assentially

identical planets in the same ovbit armuﬁd the sun, the collection or -
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ensemble of all the time series of global temperatures constitutes a

stochastlic process, generally defined as any ordered (by time in this

case) set of random variables (Jenkins and Watts, 1968). The proba=
bility that the teuperature ig in a given range may be estizated from

a sample of the pupulation by determining the fraction of piancté within
the sample having temperatures in that range. Such a result generally
depends on when the count is taken, particularly if there ere changes

{in external forcing. We shall assume that such dependence may be
removed by subtracting tﬁe effects of external forcing., In our

- example of an ensemble of planets, this might be done by considering
only the deviations from a time-dependent ensemble average temperature,.
The associated stochastic process is said to be stationary.

Since no such ensemble of planets is available, we are forced to
try to determine the_statistics of any stochastic compcneni® of the
climate from a single realization. This might be possible &f the
values of climatic quantities at a given time are uncorrelated
«w’ th the values at a much later time, so that the complete zecord may
be treated as an ensemble of independent records, We shall sssume
that this is the case, and that any quantity determined by time
averaging over a sufficient length of a single record will equal its
corresponding ensemble average value. “he statiomary stochastic
process is then said to be ergodic.

A general stochastic process, then, is an ensemble of Jimctions
that depend on time. Each function represents a point in = "sample

space" of possible experimental outcomes {different planets in the
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abofébé#éﬁplé)]whicﬁ Qe ey i&ﬁel $§}£ﬁe péféﬁster é.‘VW¢ uﬂé éhei
notation To(t,e) to represent a different function of time for each
value of €. ‘Notevthat Tb(t.c) is also a random variable in € at any
3iven‘time. We will use angular brackets to demote en avargge over
the enaemble. The mean, for‘exémple, is giﬁeﬁ by
< (8)> = 1a %- i'xo(t,e)' ’ | (134)
, e e=1 ,

and the autocovariance fumction 1s given by
: N
<sT_(t) 6T (£ +6)> = lim & 8T (t,€)8T (t + T,€)
o N+ N & o o
(135)

whure GTO is the deviation from the mean. Presuming the effects‘of
external forcing have been subtracted, these quantities will be
stationary, i.e., independent of t.

There are two related techniques for determining the statistical
properties of a stochastic process, namely the Fokker~Planck and the
Langevin methods., The Pokker-Planck method deals directly with the
probabilities of various events, and characterizes the type of process
through relations between these Trobabilities. The Langevin method
begins with a deterministic equation for the mean motion, adds a

stochastic foreing with assumed statistical properties, and uses the

resulting stochastic equation to derive the statistical properties of
the motion. We shall employ the Langevin method since it rvequires

only a simple extension of our models for the mean climate,
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be Global climare model with stochastic foreing

To the extent that the various model parameters fluctuate 6n
time scales typical of Yweather," i.e., well~geparated from climatic
response times, we will assume that thelr collective effact is that
of a random forcing, ‘Of course, the statistics of such forcing
should be determined from detailed models such as general circulation
models (GCMs) or from meteorolegical data. As a firse guess, however,
we will take the amplitudes of the forcing to be distributed according
to a Gaussian distribution,

The stochastic version of the simple global model discussed in
Sections 2 and 6 has the form

dar

C 5’:’2 TA+BI = QH(T) + GH(t,e) , (136)

where OH represents the random forcing, measured relative to the mean
forcing, so that <@H> = 0. The expression (13u) represents a different
equation for each member of the ensemble, i.e., for sach €., The
ensemble average of all these equations gives an expression for
<To>, and we shall assume that <To> is one of the stable steady
states considered in preceding sections,

If the fluctuations in To are sufficiently small, we may linearize

(136) about a steady state. Upon linearizing (136) we obtain

d .
ca?éro+.\o 6T, = SH(t,e) , ; o (137)

where §1 = T = <T >, and X . is given by
o o o o
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B with fixed albedo
Ao = QHO/BO - dHo (138)
B~Q rr with albedo feedback ’
o .

where Bo zqQ dTo/dQ is the sensitivity. According to Section 6, Ao
way be interpreted as the stabllity eigenvalue of the mean climate
<3L>. It 1s given by the curvature at the asgoclated minimum of the

global model potential shown in Figure 17. The formal selution to

(137) is given by

GTO(t,e) Im de! go(t - t') SHt',e) , 139)

where
-X 1/C

8 (D = L6(D) e ° (140)
is the retarded Green's function for the linearized equation., The
unit step function 6(T) in (140) vanishes when T < 0. As 2 result
the response at time ¢ depends only on the forcing at earlier times
t' <,

Note that the linearization requires only that GTo.rfmain small,
The forcing can be quite general, Thus, we may apply (139} to
determine the response to deterministic changes in external heat
sources, as well as the response to flurtuating inteinal heat sources.
For example, substituting a Dirac delta function for 6H shows that
go(T) may be interpreted as the effect of a heat impulse at time t¢'
on the temperature at time t' + 1. For & constant change in heating
beginning at t' = 0, the temperatuyre response at time ¢ is ghe

"~ dntegral over go(f) for 7T -3 t. This integral grows to a final value




proportional to ko"l A ﬁo after o cheracteristic response time given
by

¢ ¢
L ol
Q Q

(141)

So the response tise as well as the ahift #n the mean tewperature are
both determined by the sensitivity.
The atatistical properties of vandon varisbles may be determined

either by specifying their probability distribution or by specifying

their moments (sve, for exswple, Papoulds, 1965, Section $-4). If &H

assuzes a Causctan distribution, its odd momerts will he zero,
and its even moments will be given by a sun of secend wmoment products,

<@H(tl) 6“(&2)...6H(£2n)> o ;g; <5H(t1) éﬂ(tj)> <5R(tk) 5ﬂ(tﬁ)>...
pairs (143)

Ac 8 vesult, the stetistics of Gt are completely described by the second
goment, or autocovarianne, which we dencte by ?H. We ghall assume that
~he asutocorrelation time of the forciug may “e neglected reletive to

the responsg time of the temperature 60 that ve may write
Mery 2 <hi(n) e~ 1> = ¥ 8D, (146)

where ¥ s a constant, Thix is called white noise in analegy to ligit

becouse whe corvesronding spectrum, which e given by

N Jm ’,’;, ’ . R :
ey 3 }, ar & M - v, | (145)
e el PRI IR : o : L

{g independont of &, the angulor froguenty.
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Uaing the linear expression (139’ and vemepbaring thmt so can be
factoved from any ensesble avarsge, ong can show that the: soments
of 6To also satisfy (242) and (143), Thus, 6?0 18 also Gausclan,
and 1ts statintics are described by 1ts autocovarisnce, whiich we
denote by Pgoro Applying €139) gives YOOT 25 & double integral
over FB. Using (144) we obtain

IT (1) = <6T (1) 6T {t + 1)> = (y/2) ©) @‘30[7'/6: . (146)

oo o 0 o
Néte that the characteristic decay tise of the autocovariamce, which
is the mutocorvelatfon time Tc' is 1danti§al to the response time for

a step change in forzing,

T C/J\0 “ T (147

R L]
The autocorrelatton time is thus also determined by the semsitivity,

The relation (147) 4is a specisl case of the more general fiuctuation-

disyipation relation given by
Tt @) = ¢ (0 >0 | (148)
oo oo o * *

The lefy side of (148) is potentislly measurable from climatic vecords,
Through {139) the resulting knowledge of g, vould allow the estimation
of glebal temperature vhanges thatu might result from any contemplated
change 1. global heating provided we could estimate the thevaal inertia
Co Far g step change *n heating wve have seen that the vesponse
approsches the Integral of g¢ aver Q;I T gnég ggng@;bmgh giden of»

(148) sre exponentinls in T, ch@'iﬂt&gfél éf_(l&ﬁ} reduces to (147},
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We refer to (14B) as the "sﬁrona“ form of‘thé f)uc:uatxﬁénvdiasip&:i&u
rvelation, It determines the response at any time T tor any glven
forcing. We rvefer to the integrazed version [equality: of the integral
of left and right-hand aides of (148)) &s the "weak" fiorm. It deter-
mines the vesponpe at large c#mea to a atep function iin fovcing., The
weak form may remain a good approximation in fovced diizsipative systems
even if the strong form does not hold at all T (Bell, 1979).

Figuve 21 provides an {llustration of the flﬁctua{tion-dissipation
relation. Shown in Figure 21a is a typical time seriets of To. The
time series could be either measured or model-generatedd. It containg
both spontancous fluctuations and a shift in the mean at t = O,

Figure 21b shows the mean temperature, The mean may bes extracted

by time avetraging segments of the record shown in Figurre 2la, If

the record were model-generated, the tean would be ohtsdine@ by
averaging un ensewmble of model runs. In time TR the mozan temperature
responds to a change in mean heating. Subtracting Figmure 21b from
21a produces s stationary time series for 6T0 “ T, =~ <T?o> that has
zero mean and an autocovariance with exponential form.szs is showm in
Figure 2lc. Ag suggested by the fiuctuation~dinsipatioon relation,
the autocorrelation time (indicated in the figure by 1ié) is identical
to the response time TR'

The shove results may be re-expressed in the frequsency domain by

Fourier transforming, Transforming (140) gives

_ L |
5,60 TEAT o IR I $ 1))

. o .
e bl e BB ac 30 B LR s
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and transforming (146) givea the variance spectrum for the global
temperature

ST (W) = lao(w)lz‘r - m S aso

. ‘ ]
Again w is the angular frequency, Thisrapectrum is schematically
illustrated in Figure 22. “he figure exhibite a featura common to
many climatic time seriis, namely the variance increases as the
frequency decreases. This concentration of varisnce at low free
Quencies {5 tevmed “ved necise." According to the linearized feed~
back models, the spectrum grows as ufz and flattens below a frequency
proportional to Tcnl - XO/C. Note that this frequency is inversely
proportional to the gensitivity,

The uncertainties In climate sensitivity discussed in Section &
{mply uncertainties in the sutocorvelation time of .the global tet~
perature and in the corresponding frequeﬁcy dependence of the teg
perature spectrum. According to (138) and (147), T, would be equal
to the radiative relaxation time C/B if albede feedback were negligible.
If this were the case, the spectrum of the global temperature would
increase as W down to frequencies mnear B/C-—~& few tenths of a cycle
per year. On the other hand, {f albedo feedback {s large, the
stability parameter Ao becomes small, If the present climate is only
marginally stab.e (such as the state labeled I in Figure 1, corres~
ponding to the shallow minimum in Figure 17), then the sutocorrelation
time may be much longer thsn C/B and the W - behavior may persist to

mich lover frequencies. According te (150) our ability to reducs

oy
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uncertainties in climate sensitivity will depend on our sbility to '

estimate climate spectra at low frequencies.

¢e Zonal climate models with stochastic forcing

As for.tha simple global mean model, fluctuation dssipation
relations can also be derived for zonal wodels. In zonal models, we
expect the response to fall off over some characteristic distance, &8
{1lustrated for the diffusive model in FPigure 20, According to the
fluctuation-dissipation relation, this distance approximately equals the
correlation length derived from the spatlal cross covariance. Regions
geparated by more than this charscteristic distance represent independent
climates, As a result we could, for example, apply the esame global~type
model to two such independent reglons.

We shall restrict ourselvs, here to zunal average m.dels with
constant C. To study the zonal average models we will follow the
approach of Section 6. For a basis set we will use the eigenfunctions
of the linearized energy balance equation. With this expansion, the
potentisl curvature of the global model, Ao' will be replaced by the
eigenvalues of the linearized equation, An' As in Section 6, the Xn
are the curvature paraneters of a generalized potential, The auto~
correlation times for each wmode, " C/An, decrease as n increases.

Consider the class of onewdimensional stochastic models obtained

b ooding rendow forciag &t to the time~dependent version of (39):
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c-;;f +LIT] = H+ &8 . ' o (151)

4s before, we assume §H to have zevo mean and to be normally distributed,

We will also take the spatial cross~covariance to be given by
<EH(x,t) CH(y,c + T)> = ¥(x,y) 8(v) , (152)

where sa before the brackets indicate an ensemble average.

Linearizing (151) adout a stable steady state gives

c%—; &T + L{&T] = H'[6T] + 6H . Casy

vhere the term H' {s evaluated for the state in question.

In order to relate the fluctuations to the sensitivity as we
did for the global model, we assume that L - H' has a discrete spectrun
ln, as pictured in Figure 18, and expand 6T in terms of the corres-

ponding eigenfunctions &n(x) as follows:

§7(x,t) = Zﬁfnm vo(x . (154)
n
With a similar expansicn for 0H, the individual modes will fluctuate

according to

4_

C ot

£Tn + Xn\éT“ - GHn s (155)

and these are coupled through

<SH_(t) &R (¢ + L9 S 51} (156)

vhere

5 S ¢
B et v Vg




RS Y SNSRI S ST S S

86

1 1
Yo * I dx[ dy wﬂm '&'m(y) Y(x,y) (157)

0 0

Since (155) 18 analogous to the global form (137), the autocovarisace

end spectrum of the 6Th are analogous to (146) and (150): e o %
T T <g
Pmn(T) = <6rm(t) Grn(g + 17)> ‘
' -A t/C A t/c
- [Ymn/(lm + An)C] [e 0(t) + e 8(-1)] , (158)
and
S (@ = = (159)
m G+ ) (-1 + 4y

Modes with successively higher values of An (emaller spatial scales)
have less variance, shorter autocorrelation times and spectra which
tend to be flat at frequencies such that SZQ ~ m-z.

As with the simple globai model, (153) may be solved through the

use of a retarded Green's function. The Green's function satisfies
(€ 3= +1 =) Glex's t=t') = 8(xex') 6(t-t’) . (160)

In terms of the Green's function the temperature fluctuations are

given by

8T(x,t,e) = [ dx' fdt' G(x,x"; t=t*) SH(x',t',€) . (161)

By usfing (161) and (152) to evaluate the spatial cross~covariance, and

by performing one of the time integrals, we obtain

PT(x,y;T) w  fax' fdy' f4o? Gx,x';t") G(y,yf;n'lé T)'y(ﬁ’,y') AR
LT L e 162
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This formal result is independent of the basis funcitiong, Note that
the modal expression given by (158) may be recovered from (162) by

setting

ORI R RO RCRERC
n

vhere

-\ T/C '
g (1) = %'e e . (163)

From the orthonormality of the Wn'e, 4t can be shown that

Gly,y'; t' + 1) = C /[ dz G(z,y";t') G(z,¥y5 T) (164)
As a result, (162) becomes

Tx,yst) = € F dz Th(x,230) G(z,y31) | (165)

1f ve define the inverse of the zero-lag cross~covariance, [Yl]-l,

such that fdz{TTI'I(x,z;O)FT(z,y;O) = 8(z~y), then (165) gives
T,~% T
Jdz{T ) (2300 T (2, y5T) = CG(2,¥:T). (166)

The expression (166) is a generalization of the global fluctuation=
dissipation relation (148) and it is thev“strong" form since it applies
for each T. It gives a direct connection between the unpredictable
natural variability of the steady-state climate, as moasured by YT, and
the potentially predictable response of the mesn climate to an
impulsive external perturbation. According to this "fluctuation-

dissipation relation," 1if the thexrmal inertia of the system C is knowm,

‘an estimate of F?‘fraﬁ the climatic recarﬁ-deigrmiﬁgs.ﬁ.»sting Gy
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the wmran response to any perturhation, the addifion of waste hest,

a change in salbado, etc., is obtained at any glven latitude and tima

by convoluting the proposed change with G, as in (161). Consider,

for example, & conatsnﬁ change in heating added at x' = y and beginning
at ¢' = 0., Prom (161) this change produces a response at x and at

time ¢ given by the integral over G(x,y;T) for 0 £ T S ¢, For large t
this integral approaches the stationary response function, G(x,y)
discussed in Section 7, and illustrated for a particular model in
Figure 20. According to (166), the stationary response of the true
climate to & perturbation could be estimated from the ingegral of
PT(x.y;T) over all positive T. As for the global model, low frequencies

dominate, and in terms of the spatial cross spectrum we obtain

/ dz[l“TI'l (%,2;0) %—Re ST(z.y;O) + ‘Tl; r—‘% L ST(z.y;w)]
[»}

= CG(x,y) . (167)

In our terminology (167) is referred to as the "weak" form of the zonal
fluctuation-dissipation relation. It generalizes the global version
(147). The zonal version not only relates the time scales of natural
fluctuations and responses to perturbations, but thelr spatial distri-
butions as well. According to (167), the sp»atial response may be
estinated from the low frequency cross~covariance divided by the total
cross~covariance,

In closing this mection we should recall our original assumption
that the system can be divided into slow and fast components,‘i,e..
that the autocorrelation time of "weather" is much shorter than climatic

resyriate viro 5, Seme Justification for Mitchell's original stochastic
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treatment of sea surface temperature anomalies is provided by ﬁ&e
relatively long radiative relaxation time of on ocean columm cowpared
to that of the atmospheric column that provides the forcing. In
Budyko~Sellers models the ice~albedo feedback results in long response
times at least for the largest spatial-scales, but one must aslso
isolate the effects of the mean forcing in each mode. The stochastic
treatment is less tenasble for the higher modes since, as we have seen;
the response times tend to be shorter and the mean forcing less

vell~undexstood.

i
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9. Discuséion

1t 1s remarkable that the zonally averaged sea level temperature
for the northern hemisphere can be fitted to the simple parabolic
form

T(x,t) & T_+ T cos(2mt - ¢)P,(x) + T,P, () ~ (168)

with an rms error of only 2°C. The paramefers To’ Tl' QT and T2 thus
give a reasonable representation of thié hemispheric climate variable.
An obvious goal in global climate theory is €o construct models that
generate these four parameters in agreement with observations and pre-
dict how the parameters change when external conditions change,

Since (168) involves only the largest space scales and the annual
time scale and since the solar heating 1s also describable by these
same scales, we are encouraged to try simple heat balance models that
connect the two. This review has surveyed and appraised recent progress
toward achieving the connection.

In Section 2 a sequence of mean annual models was introduced.

It was shown that the mean annual global temperature To can be esti~
mated using the most elementary radiation balance considerations

provided an empirical formula for the terrestrial outgoing radiation
is used. This latter includes corrections for the greenhouse effect
due to the presence of infrared absorbing gases, clouds and even the
change of absolute humidity with te- eratﬁre. Provided the observed
present slbedo is used, this estimate of To is independent of trans-
port mechanisms. The sensiﬁivi;y of the cligate Bo was showvlto

x‘,b& &hent‘twica an large for the empirical‘aarthkmodgl;as“ferranv»r*A N




ideal infrared emdttins planet. The enhsncement ‘ean be accounted for
by the change 1n abaolute humidity with temperatute.

Iu order to estimate Ti, which is a measure of the maan annual

. polewto»equator temperature gradient. one muat introduce assumptiona

 > about how heac is redistributed on the earth'a eurface by the geo«

physical fluid system. Because diffusive terms lead naturally to the

parabolic component P (x) in the enexgy balance equation, 1t 1s naturalx

to take the transport to be proportional to the gradient of tempet-‘
ature. For simple diffusive models, the diffusion cqefficient may

- be adjusted so that the correcﬁ amplitude T2 is obtained, . In order _
to estimate the sensitivity of the reéulting two-mode modei.'horé |
assumptions must be introduced. For example, if the earth is cooled,
the iée caps expand, the planet becomes more reflective to solar
radiation, Tovallow for such changes, ieedbacka such as cloudiness
changes, changes in the tran#port mbdel and changes in the infrare&
formula due, for example, to lapse rate changes ought to bhe included.
As such feedbacks remain largély unknown, they were not treated

) extgnsively in this paper. They, of course, merit further attenfion

as more empirical and theoretical information accrue,

In.Section 2 it was shown that the simple ice~cép rodels are non-
linear and have soiutions that exhibit a rich structure. ¥n particular
there are at least three solutions for the bresent value of the solar
constant, If the sun's lﬁminosity 1s lowered by about 10Z, the wmodel

climates experience a cacastrophir transitiou to an ice-govvred earth,

: This featuve apwgars to Pxisf even in ch; revults nroauc#ﬁ wdth',”]v‘a o

”’-muma”ion? hﬂﬂff&l ﬁiPculatian clima;e ﬂmdelh.zi' )
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By introducing a heat storage term C3T/9t to the energy balance A . A
. ) ". v-:‘]’l“. v,
equation and sllowing the solar absorption to vary with the seasonal - . i R
. : Ferly
- Je Ao
cycle, we showed in Section 3 thet Tl and ¢T could be estimated. It L
- . i2%
. appears that reasonable values for these parameters caen only be obtained F;MVW ch
. - T [ . e RO
. , . , S _ SN E
1f the value of the thermal inertia C is taken to be much smsller over o ,,:Nb!‘»3
. b -
land than over ocean. As a test of the simple seasonal wodel con- : %
: ) : : ‘ ‘;‘ e
struction, the four parameters T , T., ¢. and T, were computed for the Y
[¢] 1l T 2 _ : ”'"‘/7/\
southern hemisphere by changing only the aslbedo and the land fraction. : ‘5;,'f_
R 2 £( ‘E;
The test proved satisfactory enough to suggest that the mais feed- f :"j
backs which operate on a seasonal time scale had been included. : : RS S
. . . ‘ o 'V'"“,_‘.}",
Section 4 concentrated upon the relationship between the quality o ;}“’i?jf
-3
of the parameterization f rmulae and their effect upon estimites of ’
the sensitivity to solar constant changes. Each empirical formula ; i N £
was criticized and the need for further work in parameterizstions was 1 f}f
. ¥ e
emphasized. _ , 17
Even with the reservations of Section 4, we think that some ik
problems of practical interest can be examined with the simple models.
In Section 5 we used the seasonal wodel with ice-cap feedback to ' EERNE A : . ;
estimate the effects of changes in the earth's orbital elemeats. We _ RN S
found that the climate response to orbital changes was about an order P
of magnitude less than the paleoclimatic data seem to indicare, We
suspect that this is a large enocugh discrepancy to rule out the simple
¥ instantaneously responding ice-cap feedback as a prime cause qf the
ice ages.  We amphasizelthat‘many‘lowerffrequehcy.feedbécks téﬁnmtJbe,
“vdigcgver dgbylx‘ ‘
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can be done on this probiem and the éimplebmodelsvﬁilﬁvproﬁiéé & #saful
framework for future discussions.

Sectlon 4 covers the stability of the simple models.  In partiéy
cular, it was éhown that the linear stabiliey qf a solucion éan be
deduced from the zign of the iocal alope,éf ﬁhe jce line Qersus sc1af
constant curve. This glope~stability theorem appears‘to hold for a
broad class of models independent of numerical inputé. An analysis
is also given for the finite amplitude time behavior of a class of
models. A potential function can be constructed that ylelds quaii-
tative information about the behavior of the system far from s;eady
states. The votential function can also be thought of as a vari-
ational principle fer the climate.

Section 7 presents a simple aﬁalysis of sca“lonary perturbations
to the heat balanc.:. The analysis shows that the seﬁsitivity for any
perturbation is related to the sensitivity for solar constant changes.
The relationship is shown to hold for a broad class of mndels,

Section 8 concludes the review with an introduction to stochastic
climate models. The siw.le models of previous sections were linearized
and allowed to have a stochastic white noise forcing. Analytical
solutions are easily found fer the various climate statistics. Exampie
proofs of the fluctuation-dissipation theorem were given., Through
this theorem, it was shown that inforwation about ciimate sensitlvity
can be derived from data bnynﬂtural fluctuations,

Many of the résults of‘this reviéw‘are éxpected to hola for ﬁorq

- comprehensive climate wodels. The simpl ‘models form an intuitive

!
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basa from which we can study the larger buc lesa scrutable models.
For ewample, when a vesult falls o carry over to a larger model,

wa immsdistely face the problem of discovering why. Future experi-
mants with the large snd small models moy lead to valid parsmeteri-
zations that can be wed in the eimple modela. If this turne out to
be true, the simple models may be able to combine the pavs.eterization
formulae found with empirical dats in such a way as to pley a sig-

niffcant vole in the sssessment of climate chaonge-

A
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APPENDIX I: MNotation and Humerical Values of Parsmaters Used
Equation numbers given refer to the first use of tha symbol

in an equation or to equations nearest the first occurvence of the

eymdol in the text. In some csses & pumerical value fa listed which

¢oincides with that used in the text. These numbers are likely to

change with lmproved measurements snd wodels,
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A fntercept in tha Budyko rudistion formula (7). 203.3 W w2
for norchern hemlaphere.

af=x) albedo at letitude designated by % (2). Cf., Téble 1 for

, northern hendsphere.

up plangtary albedo (2). 0.30,

ai,uf ebsoxrption Iracticn (cowalbedo) of earth-atmosphare system
over ice and ice-free surfaces (13). 0.38, 0.70.

a sverage co-albedo at ice~cap edge (18). 0.54.

8 8, Lagendre coefficients of co~albedo (19)., 0.681, -0,202,

a(x.xa) co~albedo as function of latitude and ice~cap edge.

al(:) tire-dependent coefficient of Pl(x) {61). Cf. Table i,

5 linecar coefficient in Budyke radiztion formula (7)1
2.09 W 2(c)" L. |

Bo sensitdvity (5). Value wodel dependent, as discussed
in Section 4.

c effective heat capacity per unit area of eattﬁ-atmoapbere
syaten (78).

CL’CH C for ideal land end ocesnfic mixed layer. 0.16 B yrs,,
4.7 B yrs,

D thermel diffusion coeffictent (22), (33). 0.649 W m 2¢°c)~}

or D/B = 0.310.

DE effective D for leritude dependent diffusion In two~mode
gpproxtmation (36),

bLa change in coalbedo at the fce cap wdge (99b).

¢ gccentricity of earth's nvbit (73} - 0.017 (present value).
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fn(x)

£ ,f

L''w

F(T,),
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orthonoreal aigenfunctions of the diffusicn operatbr 7).
fraction of land and water in a latitude bele fuv the
stoplified zessonal model (54).

Potential function for the zero and one~dimensional sodels

P(Io.lz..) (66), (135).

FI7)
¢

n

Lyapunov functional for the texperature field (107).
infiniteaimn) departure from a local extrasomum in F(Io.Iz,..)
7115).

global average value of the stationary heat perturbation
(121).

temperature impulse~response functions for che global
average or higher modes (139), (163).

Green's function for the linear transport operator in the
energv balance equation (42).

Green's function for the transport combined with linearized
ice~albedo feedback,

mode coupling coefficients (64),

G(x,xogc—t')creen'a function for the linearized time-dependent energy=-

Y(x,y}

balance equation.

Budyko transport coefficient (34); also the atvength of
global white noise forcing in {(144),

spatial cross-covariance of the white nofse forcing in

(152},
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expansion coafficients of y(x,y) in the wn besis
autocovariance of glebal white noise furcimg at lag T.
sutocovariance of global temperature fluctuations st lag
time T.

spatial crogs~covariance of zonsl temperature fiuctuations
at lag tims T.

expansion coefficients of PT(x.y;T) ih the w“ basis,
Legendre polynomial smplitude of solar heat sbhaorbed (29),
sxplitude of sclar heat absorbed with respect to the
eigenfunctions fn(x) (91d).

infraved radiation to space (¥ m 2), (7), also Table 1.

1 evaluated at x = X_ (50) .

Legendre or fn(x) amplitude for I (90).

a linear operator (40).

eigenvalues of the linear operator in en energy balance
equation (29}, (49).

stability eigenvalue (98).

an empirical transfer coefficient coupling 1znd and water
areas in the seasonal wodel (56).

orthonormal eigenfunctions of the linearized steady-state
energy-balance equation, with efgenvalues given by the
stability parameter A. In the absence of ice-albedo
feedback, wn = £ and kn o ﬁn.

Legendre polynomial,
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T, T(x),

T-TC,T

u(x)
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golar conatant divided by four (8). Subscript denotes

present value (335 W m~2

in Sectdon 2, 360 W w2 4n
Section 3),

radius of earth (1),

Stefan-Boltzmann constant (1) 0.5669 x 10”7 ® nfzx'bm
solar constant, sea Q.Qo (1.

Thecretical distribution of solar heat gnergy reaching
top of the atmosphere (2), (3), Table 1, (74).
Legendre wode amplitude for S(x,t) (3), (61}, Table 1,
(74).

spectrum of random forcing.

spectrum of global temperature fluctuations..

cross spectrum of temperature fluctuations fm wodes m
and n,

Zonally averaged 1000 mb level temperature fiteld. When t
does not appear, annual averaging is implied, Table 1.
planetary radiative temperature (1).

Legendre mode amplitude for T(x) or T(x,t). To is the
planetary average temperature,

temperature at ice-cap edge (16). Budyko's mule:

Ts = ~10°C.

lag time, climatic sutocorrelation time, climatic response

time (values depend on 80).

normalized distribution of added heat flux (1:21).,
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gine of latitude (%),
aine of latitude at lce=cap edge (13).

CIimt@g xs = 0,95,

For the present

o e 7 eyt e
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APPENDIX II: Closed Form Grezn's Function

In this sppendiz we present & brief derivation of the Gresn's
function for a diffusive climate model. Instead of the form (2.45),
which converges slowly, we seek & closed form expression. We follow.
s notation used by North (1975a) in a slightly different context.

Consider the differential equation

-2 Lo Fo,tux) o xux') = 8- x .1)

and subject to the usual vanishing gradient boundary condition at the
pole and equator. For x > x' the equation is homogeneous and is known

to have the solution (Kamke, 1959)
Gp(x,x') = Ava(x) + AZQv(x) , X>x' (4.2)

where Pv(x) and Qv(x) are the Legendre functions and

_ 4By 1/2
D ’

o=

v = - +..52L(1 (A.3)

which in general may be complex. The czoefficient Az must vanish

since Qv(x) diverges at the pole. Similarly, below the heat source,

x € %' we find (Kamke, 1959)
] - L)
G (x,x") A, £,,0x) + Ao (x'Y (A.8)

The functions Pv(x), flv(x) and fzv(x) may all be related to hyper-

geometxic functioms (Kamke, 19593 Exd€lyi, 1953):

erm i o KA, e AL e



103

1 2

f® = Fe3v, 3430, 1,

11 1,3 .2
fz\’(x) KF(E“ 2 V, 1+ P Vs 39 R) .

Power series representations may be used to evaluate any of *hese

functions in the domain of interest. If we make use of the property

E% F(z.b,c,z) = 2% Flad1, b+ L e+1,2) , (A.6)
and
F(a,b,c,0) = 1 A7)

it can be shown that Ak must vanish to satisfy the equatorial boundary

condition. Now continuity requires
Gp(x',x') = GE(x',x') (A.8)
which leads to
= ¢ ]
A3 A1 Pv(x )/flv(x ) . (A.9)

Now by integrating (A.1) over an infinitesimal interval about x = x'

we obtain another condition:

x+
-2 - 8o -1, (A.10)
B dx
b ad
vhich leads to the unique solution for ﬁl’ A3. The Green's function

Bay now be written
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P(x) /R xSy
G (x,x') = (a.11)
PE(R/Q esxSx , |
vhere
Q = -(1~x'?) (' - PE) DS, (A.12)

where the argument x' and the indices v,1 have been suppressed and

the prime on P and £ indicates derivative.



Figure 1

Figure 2

Figure 3

Figure 4
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FIGURE CAPTIONS
Solid line depicts the fraction of solar radiation absorbed,
Ho(xs(To))’ Eq. (13), for the zero~dimensional global climate
model with variable ice cap, The dashed line shows the
outgoing infrared energy per unit area per unit time
divided by the present solar comstant (44). Intersections
of these curves are reots corresponding to ateady state
climates: Root I 18 th= present climate; Root II is a
large iceécap solution; Root III 15 a totally ice~covered
planet,
Srild 1line depicts the steady-gtate temperatures corres=—
ronding to the climate solutions for the zero=-dimensional
climate wodel with variable {ice cap as a function of
solar constant in units of its present value. The Roots I,
II and III correspond to those in Tigure 1. The dastied
cufve shows the solution that would be obtained in the
case of infinite horizontal heat transport in which the
planet 1s fsothermal.
Sine of steady state ice-cap edge latitude xg versus solar
constant in units of its present value for a one~dimensional
c¢limate model with no horizontal heat transports, cf.
Eq. 17,
Temperature (°C) versus sine of latitude for the cases no

transport, infinite transport and eavth (schematic),
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Figure 5 Mean annual northern hemisphera zonally=avereged tewperature
2 {*C) vcraus aine of latitude for the two-modie approximation

to the diffusive model (solid line), the ohmemyrvations

(circled dots) and a fit including F,(x) (dwshed lines)
from North (1975b). Cf. Eq. (32) f£.

Figure 6 Sine of steudy-state ice edge latitude xﬂ versus &olar
constant {1 units of its present value for rhe Budyko
zodel; 1.e., divergeuce of iiorizental heat fimx 78 given
by (33)s The «olution 13 given b (34),

Figure 7 The Grean's function Go(x,xo), defined by (403, (41) and
(44), for the constant diffusion model versus sine of
latitude x and for which a heat source is loczted at sine
of latftude x,» Note that smaller values of diffusion
coefficient D lead to a more localized response.

Figure 8 Same as Figures 3, 5 and 6 except that the model employs
diffusive heat transport, The model is defined by (15),
(22) and (23) with the analytical solution given by (37).

Figure 9 oObserved surface tempersture of the symmetrized northern
hemisphere (dots) and the representation of the surface
temperatures obtained with the 00, 11 ard 20 modes listed
in Table 1 (solid curve). The surface temmeratures are
for northern hemisphere winter and spring,_but becauyse the

- temperature fields have been syametrized, the temperatures

for summer and fall are obtcined by reversing the abscissas

(Horth and Coakley, 1979),
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Figura 10

Flgure 11

Figure 12

Figure 13

Figure 14

Figure 15

5o e, I ORATR IR B T PRI N s W SR K

Observed infrared fluwes ewitted by symmetrized northern
hemlsphere (dota) snd the representation obtained with

the 00. 11 and 20 wodes iisted in Table 1 (solid curve).
The ézshed curves ghous tha £it obtained by using the 00,

11 and 20 wodea of the tesperature £ield (Table 2; 4in (53)
(North end Coakley, 1979).

Obeerved albedo of the symmetrized northern hemlsphera (dots)
and the representation of the slbedo cbtained with the 00,
11 and 20 modes lfoted in Table 1 (solid curve) (Horth and
Coaklay, 1979).

Distribution of incident solar radiacion (dotz) and the
representation of the distribution cbtained wish the 00,

11 and 20 modes listed in Table 1 (North snd Coakley, 1979).
Toopleths of decrzase in global average temperacure calcu-
lated for 1Z decrease in golar constant (Coakley, 1979).
Equilibrium positica of ice line {~10°C isothern} as 2
function of solar constsnt. Results obtained with radiation
paraunsterizations adopted by North (1975b) (solid curve) und
by Coakley (1979} (dashed curve). For compavison ~10°C
isothern of lowest CCH level from cslculstions pevformed

by Hetherald and Manabe (1975) are represented by points
(Coskley, 1979).

Stability of northemn hemisphere ice sheat a2z a function of
its latituding) extent for various combinations of bhliquity,
eccentricity and precessfon {longitude of pesthelion

mossured from the posizion of the northeran hemiaphinre
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Figure 14a

Figure 16b

Figure 17

Figure 18

Figure 19
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winter solastice). To the right of the “gero~ragine” axis
mear. ac.umulation exceeds sblation gnd the dce sheet gyvovwal
to the laft sblation dominste: snd the ice sheat shrinka,

8 .enotes a stable equilibriumi U an unstabla equilibrium
tn, Pollard, Neturs, 272, 233, 1978. Copyrighted by
Hacmillan Journals Ltd., Reprinted by peraizaion).

Clobnl average tempayature &8 A function of solar constant
for 5 values of ronally asymmetvic foreing (W n‘z).

Sine of the latitude of the ~10°C isothera &a s function
of longitude for the 5 values of zeywmatric foreing

(D, Hertman and D. A. mwrt..‘ Jy Atz as Sclee 36, 319,

1976, Copyrighted by Amsrican Heteorological Society.
Reprinted by permisaion).

The petential function for the finfte amplitmde atability
analysis of the gero-dimensional climate model defined by
Eqs. (B), (13), (73) gnd (82). The extrema &re labeled
the same as in Figures 1 and 2.

Schematic graph of the right-hand eide of E%L.(105)
(denoted €{1) in the figure) versus the sra%ility parameter
X. Intersections with the (fiar) dQ/dx  graph indicate
dincrete eigenvaluss k(j) of the svstem, Nivte that if
dQ/dxo {8 negative, the lowest eigenvalue maut be negative,
implying instability.

Contours of the potential function (111} fow a two-mode
ene~dimensional climate wodel ave plotted im the 10.12

plane, the two-mode emplitudes, the states 1, 11 ang 111

correapond to the previous figuves. From Worth gt al. (1979).

R



Figure 20

Figure 21
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Laticude~derendent sensitivicy (i.e., stationary renponse
runction) G(x,y) computed with diffusive tranapore,
Budyko's tufrsred vule and én feothernal ice~cep edge

&t . ® %9 The two cases ehiown are for perturbations

at 23.5° laticude (y » 0,4) and ar 45° latitude {y « 0.7),
In both case~ addirional hear s absorbed in the fce edge
region, and the affect dncreases with the global temperature
sensitivity (here 80 * 1.6°C per 1% change in eolar con-
stant) as weil as with the proxinmity of the perturbstion

to the ice edge.

Schemstic fllustration of the fluctuation dissipation theorem
in the wedk form,

(a) a typical time series of global temeprature with a shift
in the mean due to & step change in forcing at ¢ = (.

(3) an average of many senple functions eimilar to that

1n (e). Aversging eliminates the fluetuvationa, leaving only
the mean, which changes frum one stationary value to snother
during a time Tqr the climatic response tina, proportionai ‘
to the seneitiviey Bo.

(c) Autocovariance of GTO =T, - <To>. Thiz function
decredces gver g characteristic lag time Ter the autow
correlation time for fluctuations in To' If the fluctuation

dissipation theorem holds, Tc - TR.
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Figure 22 The spactiu® of f£luctustions in To’ given by the Fourder

cransforn of the autocovariance function ehown in Figure 2lc.
Mo,t of the variznce occurs below a frequency & the order
of TC”I which, according to the fluctustion»ﬁizaipatian

theorem, is smallest when the semsitivity Bo s largest.
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; Tabla 1. Expansion coefficienta for equstion (52) fbt the symmatviaed.

Northern Hemisphere fields: T(x,t), sea lavel tewperatura (°C);

I(x,t), infrared radiation to epace (W m-z);

a(x,t), albedo (%),
Also ghown ig S(x,t), the rormalized calculated aolar energy

reaching the top of the atmosphere, Brma is the ms error '

. essociaced with the £it (North and Cozkley, 1979).

Field Fy Al Byy : Fy. Eyug
T(x,t) 16.9 -13l2 - a-l ‘28-0 2.0
I(x,2) 234.4 -33.7 -17.7 ~55.6 9.5
als,t) 31.9 7.2 5.4 2002 - 2,6
S{x,t} 1.000 =~ 0.796 0.006 - 0.477 0.056
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