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SUMMARY 

Numerical solutions are presented for three-dimensional laminar and turbulent 

flow in curved ducts of rectangular cross section and significant curvature. The 

analysis is based on a primary-secondary velocity decomposition in a given coordi- 

nate system, and leads to approximate governing equations which correct an a priori 

inviscid solution for viscous effects, secondary flows, total pressure distortion, 

heat transfer, and internal flow blockage and losses. Solution of the correction 

equations is accomplished as an initial-value problem in space using an implicit 

forward-marching technique. The overall solution procedure requires significantly 

less computational effort than Navier-Stokes algorithms. The present solution 

procedure is effective even with the extreme local mesh resolution which is neces- 

sary to resolve near-wall sublayer regions in turbulent flow calculations. Computed 

solutions for both laminar and turbulent flow compare very favorably with available 

analytical and experimental results. The overall method appears very promising as 

an economical procedure for making detailed predictions of viscous primary and 

secondary flows in highly curved passages; 



INTRODUCTION 

An economical method for predicting three-dimensional turbulent subsonic flow 

in curved flow passages is of considerable value in turbomachinery applications. Of 

particular interest here is the flow and heat transfer in curved passages including 

those shaped like the flow passage between adjacent blades of a turbine. In this 

application, the ultimate goal is the detailed prediction of secondary flows, heat 

transfer and aerodynamic losses in turbine blade passages. This problem is of par- 

ticular importance for gas turbine design, since endwall cooling becomes a critical 

problem as turbine inlet temperatures are increased to achieve high cycle efficien- 

cies. It is generally believed that heat transfer to the turbine endwall and endwall 

losses are strongly influenced by the large secondary flows which exist in turbine 

airfoil passages. These secondary flows, which are caused by the turning of the 

primary flow, can remove insulating endwall boundary layer fluid and replace it with 

hot mainstream gases, thereby increasing endwall heat transfer. The secondary flows 

also represent angular momentum not recoverable as thrust and thus are losses which 

are of prime concern to the turbine designer. 

A definitive approach for computation of three-dimensional flow in curved pas- 

sages would be numerical solution of the Navier-Stokes equations. Although feasible, 

in three dimensions this approach requires considerable computational effort and is 

most attractive when no viable alternative exists. The present study considers an 

alternative approach for predicting such flows and is a development of the primary- 

secondary velocity decomposition method of Briley and McDonald [1] for application to 

viscous subsonic flow in smoothly curved geometries. The objective of this approach 

is to introduce approximations which adequately represent essential physical processes 

of interest and yet lead to governing equations which can be solved much more econom- 

ically than the Navier-Stokes equations. In the present treatment of developing 

flows in curved passages, it is presumed necessary to provide an adequate representa- 

tion of primary flows, secondary flows, viscous effects, and their local interactions. 

In the approach taken here, an inviscid flow approximation is first obtained for the 

geometry in question. The inviscid flow may, for example, satisfy an elliptic govern- 

ing equation requiring downstream boundary conditions (e.g. a velocity potential 

equation) and thus include transverse variations in streamwise pressure gradient 

usually associated with flow in curved passages. This a priori inviscid flow is -___ 
then corrected by solution of a set of approximate governing equations and boundary 
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conditions which constitute a well-posed initial-value problem in space. These 

correction equations apply in both viscous and inviscid regions and account for 

secondary flows, viscous effects, heat transfer, total pressure distortion, and 

internal-flow blockage and losses. Solution of the correction equations as an 

initial-value problem provides the desired reduction in computational effort of one 

or more orders of magnitude over Navier-Stokes solution procedures. 

The present development of this approach includes an improved solution algorithm 

which provides for solution of a pair of correction equations (governing vorticity 

and vector potential) as a coupled system, using an iterative linearized block 

implicit (LBI) scheme. This improvement permits implicit specification of no-slip 

boundary conditions for the secondary flow velocities and removes a previous assump- 

tion that flow in the near wall region is collateral. The method is used to compute 

laminar and turbulent flow in curved ducts of rectangular cross section, and these 

results are compared with experimental measurements and other numerical predictions. 



RELATED IJORK 

Secondary Flow Theory 

The concept of dividing the flow into primary and secondary components is 

central to the present formulation of an initial-value correction to an a priori - 
inviscid flow approximation. The presence of strong secondary flows is also of 

particular importance in applications of interest here, and the insight afforded by 

secondary flow theory is thus of considerable value. Excellent reviews of secondary 

flow theory and its applications are given by Hawthorne [2,3] and Horlock and 

Lakshminarayana [4]. A key and relevant feature of many studies based on secondary 

flow theory is that they provided a basis for treatment of strong rotational but 

inviscid secondary flows as an initial-value problem, without the necessity of a 

three-dimensional iteration procedure (cf. Rowe [5]). Previous approaches based on 

secondary flow theory have generally neglected viscous effects, however, and instead 

have introduced a somewhat arbitrary "cut off" velocity to exclude the viscous 

region. Hawthorne [2] has pointed out that ambiguity of the "cut off" velocity can 

have a significant effect on the predictions obtainable from the inviscid theory. 

The present approach includes a detailed representation of viscous effects on both 

primary and secondary flows, and since no distinction between inviscid and viscous 

flow regions is required, there is no need to introduce a "cut off" velocity. This 

is accomplished by introducing approximations into a generalized (exact) expression 

from viscous secondary flow theory given by Lakshminarayana and Horlock [6]. In 

addition to viscous effects, the present treatment also accounts for generation of 

secondary vorticity by inviscid mechanisms such as turning of streamlines, for trans- 

port of secondary vorticity, and for distortion of the primary flow. 

Forward-Marching Algorithms 

In recent years, a variety of numerical methods based on forward marching al- 

gorithms have been devised for approximating three-dimensional viscous flows for 

which one "primary" velocity component does not change sign (separate). These 

methods are often characterized by terminology such as "parabolized Navier-Stokes", 

"parabolic flow", "partially-parabolic flow", etc., because elements of either the 

solution procedure or some of the equations solved or both have "parabolic" or 

"elliptic" qualities. Unfortunately, this terminology does not identify the relevant 
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physical approximations made or their significance, and does not distinguish these 

approximations from properties of the solution algorithm and the differential or 

difference equations. Different methods within the same "category" will in some 

instances give significantly different results. 

Here, methods are identified as either initial-value methods or methods which 

require three-dimensional iteration, and an attempt is made to identify the most 

important assumptions made. Although some type of forward-marching algorithm may be 

used in both the initial value and global iteration approaches, the present distinc- 

tion is intended to emphasize that initial-value methods provide a solution after a 

single forward-marching integration and normally require significantly less computa- 

tional effort than global iteration methods. Global iteration methods on the other 

hand provide a solution to the system of governing equations only upon convergence 

of the iterative process. This distinction between the two categories is important, 

since the approximations made in a proposed method should permit a reduction in com- 

putational effort which justifies their use vis-a-vis solving the Navier-Stokes --- 
equations without approximation. As a comparison familiar to the present authors, 

recently developed split linearized block implicit (LBI) algorithms [7] have achieved 

CDC 7600 run times on the order of 5 minutes per 1000 grid points for the compressible 

Navier-Stokes equations in three dimensions [8]. The initial-value correction method 

employed in the present study requires about 20 seconds per 1000 grid points, a 15:l 

savings. 

Initial Value Methods 

Patankar and Spalding [9] and Caretto, Curr, and Spalding [lo] formulated 

equivalent sets of approximate governing equations for use in treating a class of 

three-dimensional viscous flows without primary flow reversal. They derived these 

governing equations by neglecting streamwise diffusion and assuming that streamwise 

pressure gradients are independent of the transverse coordinates. This assumption 

can be viewed as equivalent to adding a mean correction to pressure gradients from 

an inviscid flow with constant velocity, and is thus appropriate for flow geometries 

without significant curvature. In Refs. [9] and [lo], numerical methods for treating 

these equations were proposed. The numerical method of Patankar and Spalding [9] has 

since been widely used and introduces a further assumption that streamwise increments 
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in computed transverse pressure gradients are proportional to transverse-velocity 

corrections introduced to satisfy continuity. The particular pressure-velocity 

relationship is obtained by neglecting all off-diagonal terms in finite difference 

formulas which approximate the transverse momentum equations. As a consequence, the 

computed transverse pressure distribution does not satisfy a (numerically) consistent 

difference approximation of the transverse momentum equations evaluated with con- 

tinuity-corrected velocities, except for fully-developed flows for which velocity 

and pressure corrections are uniformly zero. 

As a means of treating flow geometries with significant curvature, Briley [ll] 

suggested an alternative formulation in which streamwise pressure gradients are ap- 

proximated as the sum of gradients from a potential flow solution in the curved 

geometry and a mean correction which is independent of transverse coordinates. Here, 
the assumption is that the potential flow is to be corrected and that the mean 

pressure drop computed as part of the initial value correction process does not vary 

across the duct cross-section. In the numerical method of Briley [ll], it is assumed 

that transverse-velocity corrections introduced to satisfy continuity are irrotational; 

however, the transverse momentum equations are re-solved to obtain the transverse 

pressure distribution consistent with the continuity-corrected velocities. 

Ghia and Sokhey [12] have extended the formulation of Patankar and Spalding [9] 

and numerical method of Briley [ll] to treat incompressible flow in straight or cir- 

cular arc ducts with either rectangular or polar cross sections. They were successful 

in obtaining solutions for laminar flow development in circular arc ducts of rectang- 

ular cross section and strong curvature. 

As part of a comprehensive study of developing flow in straight rectangular 

ducts, Rubin and Khosla [13] derived from asymptotic theory a system of governing 

equations based on velocity, vorticity, and a potential and stream function for the 

crossflow. These equations are valid in the "fully viscous" region also addressed by 

the initial-value methods of [g-12]. The Rubin-Khosla governing equations are in- 

dependent of Reynolds number, and are solved numerically as an initial value problem 

without further approximation. 

The present study is a development of the initial-value correction approach of 

Briley and McDonald [1] and provides a general method for treating flows in smoothly 

curved geometries which may have significant streamwise curvature and turning. This 

method is based on a primary-secondary velocity decomposition in a given coordinate 

system. Unlike most previous methods, the primary flow velocity component may or may 

not be aligned with the marching coordinate direction. The primary flow is governed 
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by a momentum equation in which streamwise pressure gradients are approximated from 

an a priori inviscid-flow analysis, computation, or approximation. The secondary - 
flow is uniquely determined, through scalar and vector surface potential calculations, 

from the primary velocity and secondary or streamwise vorticity, the latter of which 

is computed here from an approximation to an exact equation governing viscous secon- 

dary flows. This system of equations corrects an a priori inviscid solution for -~ 
viscous effects, secondary flows, total pressure distortion, heat transfer and in- 

ternal flow blockage. Solution of the correction equations is accomplished as an 

initial-value spatial marching process. The dependent variables (primary velocity, 

secondary vorticity, scalar and vector surface potentials) are analogous to those 

used by Rubin and Khosla [13] in Cartesian coordinates. 

Other developments of this particular initial value correction method have been 

applied to other problems. Shamroth and Briley [14] have obtained predictions for 

the airfoil tip vortex generation process. Kreskovsky, Briley and McDonald [15] have 

obtained predictions for turbofan exhaust lobe mixer flows, which requires treatment 

of turbulent mixing in the curved interface of two flow streams having large dif- 

ferences in stagnation temperature and flow angle, and slight differences in stagna- 

tion pressure. Further results for this problem have been computed by Anderson, 

Povinelli, and Gerstenmaier [16]. The analysis has been reformulated for use with 

constructed coordinate systems by Levy, McDonald, Briley, and Kreskovsky [17] and 

applied to duct and diffuser geometries having curved centerlines and superelliptic 

cross sections. 

Global Iteration Methods -_-- 

Methods within this category neglect streamwise diffusion and employ forward- 

marching algorithms as part of a global iteration process. Although streamwise dif- 

fusion is neglected, the system of governing equations being solved remains elliptic 

(for subsonic flow) and is thus subject to one or more downstream boundary conditions. 

To permit the use of forward-marching algorithms under these circumstances, an im- 

balance is introduced in the system of governing equations during the forward-marching 

process, either in continuity or in the representation of pressure gradients. Cor- 

rections are introduced after each iteration to reduce this imbalance, and the system 

of equations and boundary conditions is satisfied once the global iteration converges. 



The "partially parabolic" method of Pratap and Spalding [18] is a global itera- 

tion which begins with a "guessed" pressure field and performs iterated forward 

marching sweeps of the flow field. During these forward-marching iterations, the 

three momentum equations are solved for velocity, and two-dimensional velocity and 

pressure corrections are determined to remove a local imbalance in continuity. 

Various strategies are then employed to modify the three-dimensional pressure field, 

so as to improve the local continuity balance on subsequent iterations. Noore and 

Moore [19] have proposed a somewhat related global iteration method which, given an 

estimated pressure distribution, computes velocities and a local two-dimensional 

pressure correction by a forward-marching algorithm. After each forward marching 

iteration, a three-dimensional global pressure correction is computed from this local 

two-dimensional pressure correction for use in the next iteration. To provide im- 

proved understanding of the predictions and possibly increase the rate of convergence, 

Moore and Moore [19] suggest converging the global iteration in three separate stages, 

each of which is itself a global iteration. The complexity of the flow model is 

increased in each stage; first is inviscid flow with uniform inflow, second is 

inviscid flow with nonuniform stagnation pressure at inflow, and third is viscous 

flow. Upon convergence such that all pressure and velocity corrections are uniformly 

zero, it appears that the only assumptions made by the global iteration methods of 

Pratap and Spalding [18] and Moore and Moore [19] are the neglect of streamwise dif- 

fusion, the condition of no reversed flow, and approximations introduced through 

boundary conditions and turbulence modeling. 

Dodge [ZO] has suggested a global iteration method which divides the velocity 

vector into rotational and irrotational portions which become defined only upon con- 

vergence of the global iteration and upon selection of a set of boundary conditions 

governing the rotational-irrotational velocity division. A key assumption in Dodge's 

method is that all pressure gradients depend solely on the irrotational component of 

the velocity vector and are independent of the remaining rotational component. In 

view of this assumption, the method of Dodge does not seem suitable for applications 

having regions of rotational but inviscid secondary flow. Dwoyer [21] has also 

pointed out that the boundary conditions defining the velocity division are arbitrary 

and has shown that selection of these boundary conditions is crucial. 
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ANALYSIS 

The governing equations are derived through approximations made relative to a 

curvilinear but not necessarily orthogonal coordinate system fitted to and aligned 

with the flow geometry under consideration (cf. Fig. 1). The coordinate system is 

chosen such that the streamwise or marching coordinate either coincides with or is 

at least approximately aligned with a known inviscid primary flow direction, as deter- 

mined for example by a potential flow for the given geometry. Transverse coordinate 

surfaces must be either perpendicular or nearly perpendicular to solid walls or 

bounding surfaces, since diffusion is permitted only in these transverse coordinate 

surfaces. 

Equations governing a scalar viscous correction uv to a known inviscid primary 

flow velocity UI, and a secondary vorticity R, normal to transverse coordinate sur- 

faces are derived utilizing approximations which permit solution of the correction 

equations as an initial-value problem, provided reversal of the composite streamwise 

velocity does not occur. Terms representing diffusion normal to transverse coordi- 

nate surfaces are neglected. Approximate pressure gradients are derived from the 

inviscid primary flow and imposed in the streamwise momentum equation. These pres- 
sure gradients are the sole means of accounting for the elliptic influence of down- 

stream boundary conditions in curved flow geometries. The secondary vorticity is 

computed as an approximate application of viscous secondary flow theory. Secondary 

flow velocities are determined from scalar and vector surface potential calculations 

in transverse coordinate surfaces, once the primary velocity and secondary vorticity 

are known. 

Primary-Secondary Velocity Decomposition 

In what follows, vectors are denoted by an overbar, and unit vectors by a caret. 

The analysis is based on decomposition of the overall velocity vector field c into a 

primary flow velocity ii 
P 

and a secondary flow velocity is. The overall or composite 

velocity is determined from the superposition 
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The primary flow velocity is represented as 

uP = i$LJ" 
(2) 

where v I is a known inviscid primary flow velocity satisfying slip conditions and 

determined for example from an a priori potential flow solution in the geometry -___ 
under consideration. The (non-dimensional) scalar quantity uv is a viscous velocity 

profile factor which introduces viscous shear layers and may also correct for inter- 

nal flow blockage effects. The viscous velocity correction uv is determined from 

solution of a primary flow momentum equation. The secondary flow velocity is is 

derived from scalar and vector surface potentials denoted I$ and $, respectively. If 
A 
il denotes the unit vector normal to transverse coordinate surfaces (also presumed 

here to be in the direction of the marching coordinate), if p is density, and if p, 

is an arbitrary constant reference density, then fis is defined by 

where V s is the surface gradient operator defined by 

v, E v -1,(7;V, 

(3) 

(4) 
h 

It follows that il * zs lies entirely within transverse coordinate surfaces. 

Equation (3) is a general form permitting both rotational and irrotational secondary 

flows and will lead to governing equations which may be solved as an initial-boundary 

value problem. The overall velocity decomposition (1) can be written 

Surface Potential Equations 

Equations relating @ and J, with uv, p, and the secondary vorticity component 

Rl can be derived using Eq. (5) as follows: From continuity, 

v-pa = 0 = v*pup” + v~pv,+ + p,v.vx l,g 

(5) 

(6) 
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and from the definition of the secondary vorticity, Rl 

f,.vxG z “, = Tpq”, + 1. vx(p,/p)vx:,qj + T,.VXV& 
(7) 

Since the last term in each of Eqs. (6,7) is zero by vector identity, Eqs. (6,7) can 

be written as 

v.pv,+ q -v-pQJ” 

(8) 

1;vx (p,/p)VX~,~ = cl, - P;VXs,“, 

The last term in Eq. (9) is identically zero in a coordinate system for which i 1 and A 
UI have the same direction, and is small if i 

1 
and z I are approximately aligned. 

Further simplification is possible if !I is an incompressible potential flow satisfy- 

ing V - iI = v x u1 = 0, since the last term in each of Eqs. (8) and (9) can then be 
. 

written - V I - VPUv and - i 1 - u1 x vuv, respectively. In any event, given a know- 

ledge of uv, Q, and p, the surface potentials C$ and $ can be determined by a two- 

dimensional elliptic calculation in transverse coordinate surfaces at each streamwise 

location. In turn, fis can be computed from Eq. (3), and the composite velocity c 

will satisfy continuity. Equations for uv and Rl are obtained from the equations 

governing momentum and vorticity, respectively. 

Primary Momentum and Pressure Approximation 

The streamwise momentum equation is given by 

i,-[(cm +(vp)/p] = c,. F 
(10) 

where p is pressure and pF is force due to viscous stress. Terms in F representing 

streamwise diffusion are neglected; however, since the viscous terms are complex for 

compressible flow, the modified viscous force is temporarily denoted F', and further 

consideration of viscous terms is deferred to a later section. 
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The remaining assumption for Eq. (10) concerns the pressure gradient term and 

is designed to permit numerical solution as an initial value problem. The assump- 

tion that the streamwise pressure gradient is independent of transverse coordinates 

is inadequate for curved flow geometries, and instead the streamwise pressure gradi- 

ents are approximated from an inviscid flow obtained by an a priori analysis, com- - 
putation, or approximation, and are corrected for viscous effects by a mean pressure 

gradient term which depends only on the x1 coordinate. An obvious choice for an 

inviscid velocity ;I is the potential flow for the geometry under consideration, 

although other choices for CI may be used. The inviscid flow may satisfy an elliptic 

governing equation requiring downstream boundary conditions (e.g. a velocity poten- 

tial equation) and thus include transverse variations in streamwise pressure gradient 

usually associated with flow in curved passages. 

It is possible to consider the use of pressure gradients from a rotational in- 

viscid flow determined by solution of the Euler equations. It should be pointed out, 

however, that unlike the scalar potential equation, the computational labor of solv- 

ing the Euler equations is commensurate with that required for solution of the full 

Navier-Stokes equations with a similar number of mesh points. Solution of the Euler 

equations may require fewer grid points since thin shear layers are omitted and 

hence do not require resolution by the grid used. On the other hand, omitting the 

shear layers entails further approximation in selecting a "cut-off" criterion 

between inviscid and viscous regions at inflow (cf. Hawthorne [2]), and the predicted 

flow may be sensitive to the criterion chosen. Consequently, in pursuing the goal of 

developing a computationally efficient alternative to solution of the Navier-Stokes 

equations, the potential flow for the geometry in question is presently being used 

as the basic flow to be corrected. Methods for improving or correcting the pressure 

gradients are deferred for a subsequent investigation. 

The implications of this type of pressure approximation may be clarified by 

examination of the inviscid momentum equation written as 

vp + pV(q%) = pil x ri 
(11) 

where q 2 =ij * ii, and vorticity 5 = V x v. In an orthogonal coordinate system, the 

il component of Eq. (11) is 

A 

i - I [VP + pV(q2/2)] = ph*$ - u$, I 
(12) 
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for small transverse vorticity n2, Q3 and small transverse velocities ~2, u3 

(relative to the coordinate system being used), the right-hand side of Eq. (12) is 

of second order and may be neglected. This "small shear" assumption is familiar as 

part of the "secondary flow approximation" (cf. Hawthorne [3]), although it should 

be emphasized that the present analysis accounts for "distortion of Bernoulli 

surfaces" by means of uv. 

If the right side of Eq. (12) is neglected, if pressure gradients are derived 

from the inviscid velocity ilI by setting q2 = iI * iJI, and if a mean viscous pres- 

sure correction p,(x,> is introduced, the pressure approximation can be written as 

7;vp p F,.[vp”(x,)-pv(~,.u,)/2] = f; V(P, +PJ 
(13) 

where p I is the imposed pressure. Typically, for internal flows, p is determined to 
V 

ensure that an integral mass flux condition is satisfied, such as 

I 
? 

A ‘I’P d dA = constant 

For external flows, p, = 0. Arguments favoring this pressure approximation lose some 

validity in strongly curved corner regions, where strong crossflows in the inviscid 

outer region of shear layers are deflected. Nevertheless, the approximation may not 

be seriously in error when considering its overall and somewhat limited role in the 

present context. Finally, this type of pressure approximation is questionable for 

strongly deflected inviscid flows having large transverse vorticity. 

Combining Eqs. (10) and (13) and setting F G F' provides an equation nominally 

governing u : 
V 

1 

i; 1 (U-V)G + (Vp,)/p - V(U,.U,)/2] = 7,. F’ 

where c is to be written as 

u = IpI”” + 7&U” +v,) + TJwp, + w,) 

(15) 

(16) 

where u I' vI' wI are components of cI, and vs, ws are components of Gs. 
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Secondary Vorticity 

An equation governing Ql in compressible flow can be obtained from an approxi- 

mate application of secondary flow theory. The equation governing the growth of 

vorticity Qs along a streamline for incompressible flow with constant viscosity is 

given by Lakshminarayana and Horlock [6] and may be written as 

a % ( ) 
2n, I I I 

a5 ps = --- - 
:-c 

P9R p92 
;.vx-vp +- 

P PS2 
(17) 

A 

where q is velocity magnitude, s is distance along a streamline, Rn is vorticity in 
,. 

the direction of the unit principal normal vector n of the streamline, for which R is 

the principal radius of curvature. These quantities are related by the Frenet for- 
,. A ,. 

mula n/R = as/ s * Vs. In Eq. (17), E : V x F, and the term containing p vanishes 

if p is constant. Since an intrinsic coordinate system formulation as in Eq. (17) 

provides an "inverse" coordinate system if used to compute !, and since intrinsic 

coordinates are degenerate on no-slip surfaces and nonorthogonal for general rota- 

tional flows, intrinsic coordinates are not attractive for numerical computation. 

However, if the coordinate system used for computation is approximately aligned with 

the flow direction, then an approximate 
. ,. 

Eq. (17) by replacing s by i, as in the 

equation governing .Q, can be derived from 

following development: 

1;sl R, = ;,.i =- “I 

I 
(l,.vT,,*sr n,, 

A = 
i; U “IR, 

(18a) 

Wb) 

where u 1 
= uIuv; Rl is the principal radius of curvature of the x1 coordinate, and 

. 
i-2 nl is vorticity in the direction of nl, A the principal normal of the xl coordinate 

. . h 
line. The quantities nl and Rl are defined by the Frenet formula nl/Rl = il . Vii. 

To illustrate, in an orthogonal coordinate system, 

A 
i, dh, 

A 
'3 ahI --++- 

h,h, ax, h,h, dx, I 
(19) 
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r 
-. 

where h 1' h2' h3 denote metric coefficients. If p varies, p is replaced by the 

imposed pressure pI as defined in Eq. (13). Finally, taking q2 Gu 2 _.. 
1 

and s A i 1 in 

the last two terms in Eq. (17), and neglecting streamwise diffusion, Eq. (17) becomes 

RI ( ) 21;2n, I A 
s.v - = -- 

P”, P”,R, PU, 
i;Vx(F) + -$1,-Z’ 

I (20) 

where G' does not contain streamwise diffusion. 

The transverse vorticity Rnl in Eq. (20) contains components which, in orthogonal 

coordinates and assuming an irrotational cI, are given by 

sz, = P2.vxu Jz - "1 5 wI duv --- 
h3 ax3 h, ax, 

- +-++3WsJ 
(21a) 

I a 
+ h,h, ax, 

- - ( h,v,) (21b) 

In the applications contemplated here, the first term on the right-hand side of each 

of Eqs. (21a-b) is expected to dominate, and the remaining terms may be neglected as 

a convenience, if desired. 

An alternative equation governing vorticity can be derived from the general 

vector equation for vorticity in compressible flow: 

(i-V)iz - (II *V)U + Ii(V.ti) + vx $ vp = G 

Strearrwise diffusion is neglected in Eq. (22), and if p varies, p is replaced by pI. 

Utilizing continuity and relationships valid for general orthogonal coordinates, the 

x1 component of Eq. (22) can be written as 

F; RI $Vs2,- 3i.vu, + (51,iI’-up * - - u .vp + I,. vx $vpl =Y.G’ (23) 

I P 
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The last two terms on the left side of Eq. (23) vanish if p is constant. Because of 

insight provided by previous work on secondary flow theory, Eq. (20) was used instead 

of Eq. (23) in the present application to curved flow geometries. 

Energy Equation 

If the flow being considered is nonadiabatic, solution of an equation governing 

energy is required. The energy equation can be written in a variety of forms, one of 

which is 

pc*VE =V.kVT+i.F+# (24) 

where E is total enthalpy, T is temperature, k is thermal conductivity, and I$ is the 

dissipation function. Solution of Eq. (24) by forward marching integration requires 

only that terms representing streamwise conduction of heat and also streamwise viscous 

diffusion in F be neglected. 

Compressibility Relations 

The foregoing analysis can be applied to incompressible flows simply by setting 

P E PO. Compressibility effects are represented by introducing the perfect gas 

equation of state p = pRT in the imposition of streamwise pressure gradients. For 

moderate subsonic Mach numbers, inviscid pressure gradients can be obtained either 

from a compressible potential flow calculation or from an incompressible potential 

flow corrected for compressibility using either the Prandtl-Glauert formula, Laitone's 

variant [22], or the recent suggestion of Lieblein and Stockman [23]. Replacing p 

in Eq. (13) by the state equation and eliminating temperature using the temperature- 

enthalpy relation 

E = C,,T + - 
2 

(25) 

where cp denotes specific heat, the following auxiliary equation relating the imposed 

pressure gradients with density, velocity,and total enthalpy is obtained: 

1, *v[ P, + p, (x,1] = i, .v[ I+p(E+)] (26) 

where y is specific heat ratio. A slight simplification results if fi * i is replaced 
. 

by (il * c)2 in Eq. (26). 
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In many problems of interest, it can be assumed that the total enthalpy is a 

constant Eo. This assumption is reasonable for inviscid flow regions with no heat 

addition and for boundary layers on adiabatic walls provided the Prandtl number is 

unity. To make this assumption, E is replaced by E. in Eq. (26), and it is then 

unnecessary to solve the energy equation, even though the flow is compressible. 

Typically, the treatment of nonconstant total enthalpy is of interest for pre- 

dicting heat transfer levels in wall boundary layers. However, it should be noted 

that the geometrical pattern of streamlines for steady inviscid flow of a perfect 

gas depends only on the total pressure gradient and not on the distribution of total 

enthalpy (cf. Hawthorne [3]). Thus, within an assumption of small transverse total 

pressure gradient in the free stream or core region, it is possible to consider core 

flows with two separate streams having large differences in total enthalpy and veloc- 

ity and hence separated by thermal and viscous shear layers, provided the two streams 

have about the same static and total pressure. This observation was used to advantage 

by Kreskovsky, Briley and McDonald [15] in an application of the present analysis to 

flow in turbofan exhaust lobe mixers. 

Viscous and Heat Conduction Terms 

A variety of techniques for suppressing streamwise diffusion is possible, and 

the particular choice in any given application may depend on the complexity one is 

willing to tolerate in the viscous terms. For example, the complete set of viscous 

terms can be written out and all derivatives in the streamwise direction neglected. 

Alternatively, only second derivatives in the streamwise direction may be neglected. 

Here, attention is restricted to incompressible flow but with variable viscosity. In 

the momentum equation (lo), F ! -V x vV x !, where v is kinematic viscosity. A par- 

ticularly simple expression which neglects contributions from i s is given by 

Alternatively, contributions from il 
S 

may be retained as in the approximation 

(27) 
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Similarly, in the vorticity equation (17), E is defined by E = -V x V x v; and ap- 

proximated by 
A i,.E -1 -1,. vxvx ~,vn, = cc 

(29) 

Streamwise heat conduction in Eq. (24) is suppressed by the approximation 

V- kVT 4 V. k&T (30) 

Governing System of Equations 

A complete system of six coupled equations governing uv, Ql, $, JI, E, and p is 

given by Fqs. (8), (9), (15), (24), (26), and (20) or (23). Ancillary relations are 

given by Eq. (5) for composite velocity, Eq. (14) for mass flux, and Eqs. (21a-b) for 

transverse vorticity, Eq. (26) may be omitted if p is constant, and Eq. (24) may be 

omitted for constant E. In the Appendix, these equations are given in general orthog- 

onal coordinates. 
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Numerical Method 

Since techniques for obtaining the basic potential flow solution are well known 

and numerous, they need not be enumerated or discussed here. Instead, the present 

development concentrates on describing the numerical method used to solve the system 

of correction equations. Streamwise derivative terms in the governing equations have 

a form such as ula( )/ax,, and because the streamwise velocity u 1 is very small in the 

viscous dominated region near no-slip walls, it is essential to use implicit algorithms 

which are not subject to stringent stability restrictions unrelated to accuracy 

requirements. Although it is possible to devise algorithms for solution of the cor- 

rection equations as a fully coupled implicit system, such algorithms would require 

considerable iteration for the system of equations treated here, and this would de- 

tract from the overall efficiency. The present method is semi-implicit and seeks to 

reduce the amount of iteration required and yet avoid the more severe stability re- 

strictions of explicit algorithms. The method partitions the system of correction 

equations into subsystems which govern the primary flow, the secondary flow, and the 

turbulence model. The primary-flow subset of equations contains the streamwise 

momentum and energy equations, the state equation, and the integral mass flux rela- 

tion. The secondary-flow subset of equations contains the secondary vorticity 

equation and the scalar and vector potential equations. The turbulence model in the 

present study includes a turbulence kinetic energy equation and a length scale 

relationship. These subsystems are decoupled using an ad hoc linearization in which -- 
secondary velocity components and turbulent viscosity are lagged, and are solved 

sequentially during each axial step. 

Summary of Algorithm 

The correction equations are replaced by finite-difference approximations. 

Three-point central difference formulas are used for all transverse spatial deriva- 

tives. An analytical coordinate transformation devised by Roberts [24] is employed 

as a means of introducing a nonuniform grid in each transverse coordinate direction, 

as appropriate, to concentrate grid points in the wall boundary layer regions. 

Second-order accuracy for the transverse directions is rigorously maintained. TWO- 

point backward difference approximations are used for streamwise derivatives, although 

this is not essential. 
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To solve the primary flow subsystem of viscous correction equations, scalar AD1 

schemes are used for the momentum and energy equations, and the standard secant itera- 

tion process [25] is used to find the mean pressure drop consistent with the integral 

mass flux relationship and state equation. It is convenient to choose ul Z UI uv as 

the dependent variable for the primary flow momentum equation. 

Given the solution for the primary flow, the secondary flow subsystem can be 

solved. First the scalar potential equation (continuity) is solved using a scalar 

iterative AD1 scheme. Next, the secondary vorticity and vector potential equations 

are written as a fully implicit coupled system and solved using an iterative linearized 

block implicit (LBI) scheme (cf. Briley and McDonald [7]). In selecting boundary 

conditions for the secondary flow subsystem, care must be taken to ensure that the 

final secondary velocity satisfies the no-slip condition accurately. Zero normal 

derivatives of $I are specified in the scalar potential equation, and this boundary 

condition corresponds to zero normal velocity. It is not possible to simultaneously 

specify the tangential velocity, however, and thus the $-contribution to the secondary 

velocity will have a nonzero tangential (slip) component, denoted v t' at solid 

boundaries. In the coupled vorticity-vector-potential equations, both normal and 

tangential velocity components can be specified as boundary conditions, since these 

equations are solved as a coupled system. By choosing (a) zero normal velocity and 

(b) -vt as the $-contribution to the tangential velocity, the slip velocity v t 
arising from the $I calculation is cancelled, and the composite secondary flow 

velocity including both 4 and II, contributions will satisfy the no-slip condition 

exactly. 

Finally, the turbulence model requires solution of the turbulence kinetic energy 

equation, and this is done using a scalar AD1 scheme. 

A summary of the overall algorithm used to advance the solution a single axial 

step follows. It is assumed that the solution is known at the n level xn and is 
n+l desired at x . 

(1) The imposed streamwise pressure gradient distribution is determined 

from an a priori inviscid potential flow. -~ 
n+l (2) A value for the mean viscous pressure drop p, is assumed. Initially, the 

value from the previous step pz is used. 

(3) The momentum equation is solved to determine u n+l 
1 , and if this is the 

first secant iteration for the mean pressure drop, the energy 

equation is also solved for E n+l . 
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(4) The density is determined from the equation of state, using the 
n+l imposed pressure with mean correction added, and using ul and 

En+1 . 

(5) Since for internal ,flows, the integral mass flux relation (14) 

will generally not be satisfied, return to step (2) and repeat 

this process iteratively using the standard secant method [25] 

to find the value of p n+l which leads to u n+l 

integral mass flux relztion (14). 
1 and on+1 satisfying the 

The secant method was found in 

practice to converge to five figures on the third iteration. 

(6) Using values now available for o n+l and uy+l, the scalar potential 

equation (8) is solved using an iterative scalar AU1 scheme, to 

obtain $I n+l . This ensures that the continuity equation is 

satisfied. 

(7) The equations for vorticity (20) and vector potential (9) form 

a coupled system for R n+l n+l 
1 and J, which is solved as a coupled 

system using an iterative LB1 scheme. 

(8) Values for the transverse velocities v and w 
S 

s are computed 

from Eq. (3). 

(9) The turbulence kinetic energy equation is solved using a scalar 

AD1 scheme. Updated values of ut are then computed from k n+l 

and the specified length scale. The turbulence model used here is 

given in the Appendix. 
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axial steps. In Fig. 6, computed results for a typical fully developed radial veloc- 

ity profile are compared with the calculated results of Ghia and Sokhey [123, which 

were made under slightly different similarity assumptions for fully developed flow. 

For fully developed flow, the only difference in the theories are found in the equa- 

tions governing the secondary flows. The present analysis utilizes a streamwise 

vorticity equation derived from viscous secondary flow theory, whereas the secondary 

flow in the results of Ghia and Sokhey is governed by components of the momentum equa- 

tion in the directions of a polar-cylindrical coordinate system. Nevertheless, Fig. 6 

shows that the two predictions are in reasonable agreement. It should be recalled 

that the present analysis permits optional use of the streamwise component of the 

vector vorticity equation in place of the vorticity equation derived from secondary 

flow theory. Use of this equation would presumably reproduce the fully-developed 

results of Ghia and Sokhey. However, both approaches involve coordinate-related 

approximations, and it is not clear at this point which option would provide better 

flow predictions for developing flows. The differences observed in Fig. 6 are small 

and may be attributable in large part to differences in numerical truncation error, 

since different mesh distributions and grid points were used. In Fig. 7, an addi- 

tional comparison is shown for the fully-developed primary flow velocity profile at 

the symmetry line midway between the two endwalls. Again, only minor differences 

between the present solution and that of Ghia and Sokhey are present. These dif- 

ferences presumably reflect the aforementioned differences in secondary flow velocity. 

Also shown in Fig. 7 are the experimental measurements of Mori, Uchida and Ukon [29], 

which do not agree well with either of the computed predictions. The disagreement 

between these measurements and various calculations for fully developed flow has not 

as yet been explained. Figures 8 and 9 contain the present predictions for primary 

and secondary velocity in the fully developed flow region. 

Turbulent Duct Flow Comparison 

The final test case consists of developing turbulent flow in the curved section 

of a 90" bend with straight extensions at the inlet and exit. This case was computed 
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for comparison with the recent experimental measurements of Taylor, Whitelaw, and 

Yianneskis [30] and has a curvature ratio R/H = 2.3, a Reynolds number ReH of 40,000 

and a Dean number of 26,370. The potential flow is not a free vortex for this 

geometry, because of the straight sections at the inlet and exit, although a free- 

vortex condition does occur near the center of the bend. For convenience in the 

present calculations, the potential flow pressure gradients were approximated by a 

streamwise distribution of free vortex flows with a variable centerline radius which 

is chosen such that the radial pressure difference between inner and outer radii of 

the bend matches that of an available potential flow calculation for this geometry 

(Humphrey, Taylor and Whitelaw [31]), and it is evident that the present approximation 

closely matches the transverse variation in streamwise pressure gradient present in 

the computed potential flow for this geometry. 

The present calculation was initiated at the start of the bend with boundary 

layer thickness 6 = 0.25H, chosen to match the experimental flow. Because the flow 

begins to turn upstream of the start of the bend, there is secondary flow present at 

the start of the calculation. This secondary flow was estimated from the Squire- 

Winter theory and corrected for no-slip conditions and continuity, as in the previous 

calculation at the Horlock, et al laminar flow. The transverse grid was locally 

refined near walls and consisted of 30 radial points and 20 points for the region 

between the endwall and symmetry plane. To reach the 77.5 degree position at which 

the last measurements in the curved duct were taken, 25 equally spaced axial steps 

were computed, and this required about 4 minutes of CDC 7600 run time. 

Figures 11, 12 and 13 show comparisons at the 30", 60" and 77.5" positions, 

respectively, of the predicted primary and secondary flow velocities and the measure- 

ments of Taylor, Whitelaw, and Yianneskis [30]. In general, the computed and measured 

velocity profiles are in very good agreement, except as noted below. The radial 

velocity profiles seem to be predicted extremely well, considering the difficulty 

of predicting strong turbulent secondary flows. It should be noted that the velocity n 
profiles nearest both the pressure and suction surfaces (r = 0.1 and 0.9, respectively) 

are located well within the boundary layers on these surfaces, and are thus very 

sensitive to radial position. The only significant disagreement between the com- 

puted and measured velocity profiles occurs in the profiles nearest the suction side 

of the duct at the 60" and particularly the 77.5" locations (Figs. 12 and 13). In 

this region, there is considerable distortion of the primary flow as a result of the 

strong vertical secondary flow. The computed secondary flow structure consists of 

very strong radial flow within the endwall boundary layer and toward the inner wall 
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or suction surface of the duct, with radial velocity about 43 percent of the mean 

primary flow velocity. Upon reaching the suction surface, the secondary flow pro- 

ceeds up the suction surface with peak velocity about 30 percent of the primary flow, 

and then near the symmetry plane is deflected away from the suction surface and back 

into the primary flow, forming a vortex structure. The radial flow near the 

symmetry plane is less concentrated than that near the walls and has a peak velocity 

of about 18 percent of the primary flow. 

Since the primary flow is convected by the secondary flow, one effect of the 

strong secondary flow is to distort the primary flow, particularly near the suction 

surface. In Figs. 12 and 13, evidence of this primary flow distortion near the 

suction surface can be seen in both the present solution and in the experimental 

measurements, although agreement between the two is at best qualitative. The present 

computation predicts less distortion of the primary velocity near the suction surface 

than is present in the experimental measurements, particularly in Fig. 13a after 

77.5 degrees of turning. This discrepancy may be due to approximations made in the 

analysis such as the treatment of streamwise pressure gradients or may represent a 

limitation of the turbulence model. Another possible explanation worthy of mention 

is numerical truncation error due to a large axial step size. The step size used in 

this calculation corresponds to a distance of 0.125H along the duct centerline and 

covers about 3 degrees of turning. Since the numerical algorithm employs a first- 

order backward difference formulation with "lagged" secondary velocities for the 

primary momentum and secondary vorticity equations, it may be expected that the 

computed solution would develop more slowly than the actual solution due to the 

first-order "lagging" truncation error. The computed results in Fig. 13a are 

consistent with this behavior, as was verified by comparing the computed primary 

flow velocity profile at r = 0.9 and 6 = 77.5 degrees (Fig. 13a) with the correspond- 

ing measurements at 8 = 60 degrees (Fig. 12a). If the average free stream velocity 

is adjusted to reflect the difference in local static pressure, then the computed 

velocity profile for 77.5 degrees is in excellent agreement with the measured profile 

for 60 degrees. Further study including mesh refinement tests would be required to 

determine whether truncation error has significantly influenced the present compari- 

sons - it is hoped that this mesh refinement study will be performed in the near 

future. Finally, in Fig. 14, the computed primary velocity profiles in the symmetry 

plane midway between the endwall surfaces are compared with the corresponding measure- 

ments. The level of agreement is the same as that present in Figs. 11-13. 
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SLJMMARY AND CONCLUSIONS 

(1) The present study includes further development and evaluation of the primary- 

secondary velocity decomposition approach suggested by Briley and McDonald [l] 

for application to viscous subsonic flow in smoothly curved geometries. 

(2) 

(3) 

An improved solution algorithm was developed here which provides for solution 

of the equations governing secondary vorticity and vector potential as a 

coupled system, using an iterative linearized block implicit (LBI) scheme. 

This permits implicit specification of no-slip boundary conditions for the 

secondary flow velocities and removes a previous assumption that flow in 

the near wall region is collateral. The present solution procedure is 

effective even with the extreme local mesh resolution which is necessary 

to resolve near-wall sublayer regions in turbulent flow calculations. 

Laminar flow calculations were made for specialized flow cases which would 

permit comparison with other experimental and analytical results. Secondary 

flows predicted by the present method were in good agreement with experimental 

measurements and a boundary layer similarity solution for a laminar flow in a 

strongly curved duct with thin boundary layers. This is a significant com- 

parison and provides an indication that the present analysis adequately 

represents strong cross flows in thin boundary layers when they occur as a 

separate region of the flow distinct from corner flow regions. 

(4) Although fully developed flows have little relevance in applications of 

interest here, the present prediction of a laminar fully developed flow agreed 

well with other fully developed solutions. This provides some validation of 

the approximations used in deriving the equation for secondary vorticity as an 

approximation of secondary flow theory. 

(5) Predictions for turbulent flow in a strongly curved duct with moderate boundary 

layer thickness were compared with measured values of primary and secondary 

velocity. These flow conditions are typical of those occurring in turbo- 

machinery applications of interest here. Considering the complexity of 
this flow, the agreement between predicted and measured velocity is very good 

except near the suction surface after considerable turning. In this region 

there is a strong corner vortex which results in considerable distortion of the 

primary flow. Although the corner vortex and primary flow distortion were 
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predicted in qualitative terms, further evaluation is necessary to 

determine the reason or reasons for the quantitative disagreement in 

this region. 

(6) Overall, the presen,t evaluation suggests that the initial value correction 

method used here does provide a reasonable description of the development 

of thin shear layers and secondary flows in strongly curved ducts. The 

method appears very promising as an economical procedure for making 

detailed predictions for this category of flow problems. 
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APPENDIX A: 

GOVERNING EQUATIONS IN ORTHOGONAL COORDINATES 

Velocity Decomposition 

G = l,UI”” + P2(Vl”” + v,) + i3hyJv+ ws) 

I a+ I avJ v s .--++- 
h, ax2 hlh3 dX3 

I a+ ’ ah,+ 
Ws=h---- 3 ax3 h,h, ax2 

Scalar Surface Potential $ 

Eq. (8) is 

a v, a+ a h,h, a+ --+- ____ 
dx, p h, ax, ax, P h, ax, 

: - ; ( h2h3puIuV) + 
I 

+ ; (h,h,pw,u,) 
3 1 

Vector Surface Potential $ 

Assuming V x iI = 0, Eq. (9) is 

a PO h, ah,$ a p. ", ah,'/' 
dx, 7 h,h, ax, +dx, 7 h,h, dx, I 

au” wI 8% y+>---- 
3 ax, h2 8x2 

(A-1) 

(A-2) 

(A-31 

(A-4) 

(A-5) 
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x1 Momentum 

dhz 
2 ax, 1 

A- L 
ah,u, 

+ h,h, T -’ 
dh, 

3 ax, 1 

I 
-I-- 

dpvh,) I a qIe 
--- - 

h,P dx, ( > h, ax, 2 

Second Vorticity 

uI a u2 a u3 a 
h,dx, ) 

R, 
+ h, ax, + h,dx, p~, 

2 
= - - 

( 

R, ah, L-l, ah, 

PUI h,h,dx,+ h,h,dx, ) 

a~, ap ap, ap --_-- 
dX, dX, dX, dX, 

[ 
h3 --- ah, (P+tL$-& + d h, wP++tLT)fll 

h,h2p ax2 I ax3 [ 
Jh3P ax3 0 

The transverse vorticity components are given by 

R2=12.VXij = y$L wI 
au 

v 
3 3 h, ax, - & &(h3Ws) 

sz, = i3- vx~=2L!!h + vI auv + ’ a 
h, ax, h, ax, 

- - (hSvs) 
h,h2 axI 

(A-6) 

(A-7) 

(A-8 > 

(A-9) 
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Pressure Gradient Relation 

Eq. (26) is given by 

where 

1. [ VP1 + pV(q,e/2)] = 0 

(A-10) 

(A-11) 

Energy Equation 

To simplify the energy equation, assumptions are made which are appropriate for 

boundary layer flow on walls aligned with either an xl - x2 surface or an x1 - x3 

surface. Eq. (24) can then be approximated by 

(A-12) 

where the Prandtl number Pr is defined by Pr = cpu/k, and Prt is the turbulent 

Prandtl number. 
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APPENDIX B: 

TURRUTENCE MODEL 

In turbulent flow applications, the stress terms F' and G' in Eqs. (15), (20), 

and (22) contain turbulent shear stresses in the form of fluctuating velocity and 

velocity-temperature correlations. In the present application to flow in curved 

ducts, these turbulent stresses are modeled by introduction of an effective turbulent 

eddy viscosity whose distribution is determined by solution of turbulence-model 

equations. The present treatment employs the one-equation turbulence model developed 

by Shamroth and Gibeling [32]. This model is based upon the turbulence energy partial 

differential equation, an algebraic length scale equation and a relation between dis- 

sipation, turbulence energy, and the length scale of the form E = C 314 k3i2,1? 
lJ 

where C is a turbulence structural coefficient. 
P 

To calculate low Reynolds number or 

transitional flows, Cu is made a function of the turbulent Reynolds number. The 

length scale is determined from a mixing length distribution appropriate for the 

flow under consideration. This turbulence model is related to two-equation models as 

discussed by Launder and Spalding [33], since both models solve a form of the tur- 

bulence kinetic energy equation. The major difference is that the one-equation model 

replaces assumptions necessary to solve the turbulence dissipation equation with 

assumptions regarding the length scale formulation. In the present application, the 

length scale is determined from solution of a momentum integral equation which serves 

to model the streamwise development of a freestream length scale, and from a prescribed 

length scale distribution in cross-sectional planes. 

Using Cartesian tensor notation and overbars to indicate time averaging the 

turbulence kinetic energy is defined as 

k = $- t~‘~ u’~ 

and the turbulence dissipation is 

(B-1) 

du’i ai czv - I 
dx j axj 

(B-2) 

32 



The low Reynolds number form of the transport equation for the turbulence kinetic 

energy is given [33] as 

pu ‘Vk= v$.L+pT/crk) Vk +P - ~LVK”~ l VK”2 _ PE 
(B-3) 

where P is the turbulent production. The constant, ok is taken as 1.0 as recommended 

by Launder and Spalding [33]. By hypotheses, Prandtl and Kolmogorov has suggested 

that the effective viscosity is proportional to the local density and the product of 

a characteristic turbulent velocity and length scale. The characteristic velocity 

is assumed equal to the square root of the local value of turbulence kinetic energy, 

thus 

,uT = Cpl K”2 
(B-4) 

where c is a constant of proportionality. Through dimensional arguments, the length 

scale may be related to the turbulent kinetic energy and dissipation as 

(B-5) 

Based on an examination of a large amount of experimental data Launder [33] has 

recommended that c 4 = 0.09 E c 
u' 

and under these conditions the length scale may be 

thought of as the conventional mixing length. Using Eq. (5) the turbulence kinetic 

energy equation may be expressed as 

pu.Vk=V.(t~+t~~/a~)Vk+P -2jdK”‘. VK”2- P$~‘~,.(~‘~/J 
(B-6) 

For near wall and low Reynolds number flows, c 
?J 

is modified by a damping factor. 

Following Shamroth and Gibeling [32], a turbulence function is defined such that 

5 = 4a,2 
(B-7) 

where a 1 is a function of a turbulent Reynolds number originally derived by McDonald 

and Fish [34] for transitional boundary layer flows, 

(B-8) 

In Eq. (B-8), a0 is taken as 0.0115 Rr is the turbulent Reynolds number, and the 

function f(RT) is given as [34] 
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f( R,) = 100. RTo’= R, I I 

(B-9) 
f( R,) = 68 I R, + 614.3 R, 240 

Between the limits of l<Rr<40 a cubic is used to join the two functional forms given 

by Eq. (B-9). In [34], the turbulent Reynolds number, R T' was defined as an integral 

average across the boundary layer. Here, the low Reynolds number variation of a 1 
relates to the near wall region rather than to transition from laminar to turbulent 

flow, and RT is thus taken as the local ratio of turbulent to laminar viscosity, 

h 
Rr = -F- (B-10) 

Use of the one-equation turbulence model requires specification of a length 

scale distribution appropriate for the problem under consideration. The duct flows 

of interest here are presumed to have moderately thin shear layers on the boundary 

walls, and the length scale distribution is thus adapted from previous turbulence 

models for turbulent boundary layers. The mixing length distribution of McDonald and 

Fish [34] is one which has proven effective for a wide range of two-dimensional 

turbulent boundary layers and is easily adapted for present use. This distribution is 

given by 

$ = k!!k&tanh ( K d/,k?J 
(B-11) 

where II is mixing length, llm is a free stream mixing length, d is distance from the 

wall, k is the von Karman constant (taken as 0.43), and> is a sublayer damping 

function given by 

d9 = P”2 [ (d+ - 23)/8] 
(B-12) 

Here, P is the normal probability function and d+ is defined by d + 
= d (+/p)1'2,'v, 

where T is shear stress. Forequilibrium boundary layers, II 00 is about 0.09 6, where 

6 is the boundary layer thickness. 

The length distribution of Eq. (B-11) is adapted for present use by taking d as 

distance to the nearest wall and by assigning llm a representative value at each 

streamwise location in the duct, taken as 0.09 he where Ae is a representative boundary 

layer thickness. The only remaining difficulty is to determine a suitable value of 

6 e' Since shear layers occur on all surfaces and in corner regions, and since the 

34 



free stream primary flow is subject to considerable distortion, it does not appear 

feasible to determine a mean boundary layer thickness from the cross-sectional 

variation of the primary flow velocity. Instead, at the starting location, an 

"effective" boundary layer thickness is defined as 

8 = xi’i’i 
e 

Ci Ri 
(B-13) 

where 6 i is the initial boundary layer thickness on "i"th wall, and R. is the 1 
length of the "jt'th wall of the duct. The boundary layer thickness is then assumed 

to grow in accordance with the momentum integral equation for a two-dimensional 

boundary layer. Assuming a l/7 power law velocity profile and a pipe flow skin 

friction law consistent with the l/7 power velocity profile (cf. Schlichting [35]), 

the momentum integral equation can be written as 

7 
__ 3 + 23 6e e!LG 

i/4 
I 

72 dx 72 dx 
(3 

’ 
0225 

uco 

(B-14) 

The free stream velocity gradient dum /dx in Eq. (B-14) is determined from the mean 

pressure drop predicted as the forward-marching calculation proceeds. Eq. (B-14) is 

then solved to obtain de, and the free stream mixing length is taken as RoJ = 0.09 

&e' With the length distribution then available from Eq. (B-11), the turbulence 

kinetic energy equation (B-6) is solved, and the turbulent viscosity is determined 

from Eq. (B-4). 

35 



REFERENCES 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

Briley, W. R. and McDonald, H.: Analysis and Computation of Viscous Subsonic 
Primary and Secondary Flows. AIAA Paper No. 79-1453, July, 1979. 

Hawthorne, W. R.: The Applicability of Secondary Flow Analyses to the Solution 
of Internal Flow Problems", Fluid Mechanics of Internal Flow, ed. G. Sovran, 
(Elsevier), 1967, p. 263. 

Hawthorne, W. R.: "Research Frontiers in Fluid Dynamics", eds. R. J. Seeger and 
G. Temple, (Interscience), 1965, p. 1. 

Horlock, J. H. and Lakshminarayana, B.: "Secondary Flows; Theory, Experiment 
and Application in Turbomachinery Aerodynamics", Annual Rev. Fluid Mech., Vol. 5, 
1973, p. 247. 

Rowe, M.: "Measurements and Computations of Flow in Pipes", J. Fluid Mech., 
Vol. 43, 1970, p. 771. 

Lakshminarayana, B. and Horlock, J. H.: "Generalized Expressions for Secondary 
Vorticity Using Intrinsic Coordinates", J. Fluid Mech., Vol. 59, 1973, p. 97. 

Briley, W. R. and McDonald, H.: "On the Structure and Use of Linearized Block 
AD1 and Related Schemes", J. Comp. Phys., Vol. 34, 1980, p. 54. 

Briley, W. R. and McDonald, H.: "Computation of Three-Dimensional Horseshoe 
Vortex Flow Using the Navier-Stokes Equations", Seventh International Conference 
on Numerical Methods in Fluid Dynamics, Stanford Univ. and NASA/Ames, June, 1980. 

Patankar, S. V. and Spalding, D. B.: "A Calculation Procedure for Heat, Mass, and 
Momentum Transfer in Three-dimensional Parabolic Flows", Int. J. Heat and Mass 
Transfer, Vol. 15, 1972, p. 1787. 

Caretto, L. S., Curr, R. M., Spalding, D. B.: "Two Numerical Methods for Three- 
Dimensional Boundary Layers", Comp. Methods in Appl. Mech. and Engr., Vol. 1, 
1973, p. 39. 

Briley, W. R.: "Numerical Method for Predicting Three-dimensional Steady Viscous 
Flow in Ducts", J. Comp. Phys., Vol. 14, 1974, p. 8. 

Ghia, K. N. and Sokhey, J. S.: "Laminar Incompressible Viscous Flow in Curved 
Ducts of Rectangular Cross-Sections", J. Fluids Engr., Vol. 99, 1977, p. 640. 

Rubin, S. C. and Khosla, P. K.: "Laminar Flow in Rectangular Channels, Part II - 
Numerical Solution for a Square Channel", Computer Methods in Fluid Mech., ASME, 
1976, p. 29. 

Shamroth, S. J. and Briley, W. R.: "A Viscous Flow Analysis of the Tip Vortex 
Generation Process", AIAA Paper No. 79-1546, 1979. 

36 



15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

Kreskovsky, J. P., Briley, W. R. and McDonald, H.: "Development of a Method for 
Computing Three-Dimensional Subsonic Viscous Flows in Turbofan Lobe Mixers", 
SRA Report R78-300002-12, Nov., 1978. 

Anderson, B. H., Povinelli, L. A. and Gerstenmaier, W.: "Influence of Pressure 
Driven Secondary Flows on the Behavior of Turbofan Forced Mixers", AIAA Paper 
80-1198, 1980. 

Levy, R., McDonald, H., Briley, W. R. and Kreskovsky, 3. P..: "A Three-Dimensional 
Turbulent Compressible Subsonic Duct Flow Analysis for Use with Constructed 
Coordinate Systems", AIAA Paper 80-1398, 1980. 

Pratap, V. S. and Spalding, D. B.: "Fluid Flow and Heat Transfer in Three- 
Dimensional Duct Flows", Int. J. Heat & Mass Transfer, Vol. 19, 1976, p. 1183. 

Moore, J. and Moore, J. G.: "A Calculation Procedure for Three-Dimensional 
Viscous, Compressible Duct Flow. Parts I and II", J. of Fluid Engr., Vol. 101, 
1979, p. 415. 

Dodge, P. R.: "A Numerical Method for 2-D and 3-D Viscous Flows", AIAA Paper NO. 
76-425, 1976. 

Dwoyer, D. L.: "Application of a Velocity-Split Navier-Stokes Solution 
Technique to External Flow Problems", AIAA Paper 79-1449, 1979. 

Shapiro, A. H.: "The Dynamics and Thermodynamics of Compressible Fluid Flow", 
Vol. I, (Ronald Press), 1955. 

Lieblein, S. and Stockman, N. 0.: "Compressibility Correction for Internal 
flow Solutions", J. Aircraft, Vol. 9, 1971, p. 312. 

Roberts, G. 0.: "Computational Meshes for Boundary Layer Problems", Proc. 2nd 
It_-- Conf. Num. Meth. Fluid Dynamics, (Springer-Verlag), 1971, p. 171. -___ 

Ralston, A: "A First Course in Numerical Analysis", (McGraw-Hill), 1965, p. 323. 

Horlock, J. H., Lewkowicz, A. K. and Wordsworth, J.: "Three-Dimensional Laminar 
Boundary Layers in Crosswise Pressure Gradients", J. Fluid Mech., Vol. 66, 1974, 
p. 641. 

Horlock, J. H. and Wordsworth, J.: "The Three-Dimensional Laminar Boundary 
Layer on a Rotating Helical Blade", J. Fluid Mech., Vol. 23, 1965, p. 305. 

Squire, H. B. and Winter, K. G.: "The Secondary Flow in a Cascade of Airfoils 
in a Non-Uniform Stream", J. Aero. Sci., Vol. 18, 1951, p. 271. 

Mori, Y., Uchida, Y. and Ukon, T.: "Forced Convective Heat Transfer in a 
Curved Channel with a Square Cross Section", Int. J. Heat and Mass Transfer, 
Vol. 14, 1971, p. 1782. 

37 



30. Taylor, A. M. K. P., Whitelaw, J. H. and Yianncskis, M.: "Measurements of 
Laminar and Turbulent Flow in a Curved Duct with Thin Inlet Boundary Layers", 
Report FS/80/29, ME Dept. Imperial College of Science and Technology, '1980. 

31. Humphrey, J. A. C., Taylor, A. M. K. and Whitelaw, J. H.: "Laminar Flow in a 
Square Duct of Strong Curvature", J. Fluid Mech., Vol. 83, 1977, p. 509. 

32. Shamroth, S. J. and Gibeling, H. J.: "The Prediction of the Turbulent Flow 
Field about an Isolated Airfoil", AIAA Paper 79-1543, 1979. 

33. Launder, B. E. and Spalding, D. B.: "The Numerical Computation of Turbulent 
Flows", Computer Methods in Applied Mechanics and Engineering, Vol. 3, 1974, .-- 
p. 269. 

34. McDonald H. and Fish, R. Id.: "Practical Calculations of Transitional 
Boundary Layers", Int. J. Heat and Mass Transfer, Vol. 16, 1979, p. 1729. 

35. Schlichting, H.: "Boundary Layer Theory", (McGraw-Hill), New York, 1960. 

38 



Transverse Coordinate 
n r 

Transverse Coordinate 
Surface 

T Marching Coordinate Marching Coordinate 
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END WALL 

a. Primary Flow Velocity Contours 

END WALL 

b. Secondary Flow Velocity Vectors 

Fig. 3 - Computed Results for Circular Arc Duct, Re=104, 
R/H=3.5 at Measuring Station of Horlock et al. 
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Fig. 5 - Flow in Surfaces One Grid Point Away from Sidewalls 
("unwrapped" to lie in a plane). 
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R/H=14, Re=205, K=55. 
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Fig. 8 - Primary Flow Velocity Contours for Fully Developed 
Circular Arc Duct, Re=205, R/H=14, K=55. 
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Fig. 9 - Secondary Velocity for Fully Developed Circular 
Arc Duct Re=205, R/H=14, K=55. 

47 

I III I I 



.5 

.4 

.3 

.2 

c\l 
s-l 

=)* 
.l 

Q . 
% 0.0 
II 

a u -.l 
c% 

u E -. 2 
4 
c) 
4 2 -.j 

: 
u -. 4 
E 
3 
3 -.5 

E -.6 

-.7 

Present Potential Flow Approximation 

- -- Potential Flow Calculation 1311 

Pressure Side 

Suction Side 
I I I I I I I I 

0 10 20 30 40 50 60 70 80 90 

Angular Position in Duct 

Fig. 10 - Comparison of Approximate Potential 
Flow Pressure Distribution with 
Computed Solution. 

48 



Pressure 
.5 0 = 30° 

.9 - Prediction 
Measurements of Taylor, Whitelaw, and Yianneskis 

.3 

Suction 
Side 3 

0 
3 
0 

0 
0 

0 .2 .4 .6 .8 1.0 1.2 
.9 Primary Flow Velocity, u/U 

Fig. lla - Primary Flow Velocity Profiles After 30 Degrees of Turning in a Circular 
Arc Duct of Square Crossection, R/H=2.3, Re=40000, k=26370. 



0 = 30" 

- Prediction 
0 Measurements of Taylor, Whitelaw, and Yianneskis 

Pressure 
A Side 
r = (r-ro)/ri-ro)=.l .3 .5 

0 

0 

I! 

0 

0 

C 

. 7 

0 

0 

0 

0 

0 

0 

0 

\ 
0 

0 

\1. 

Suction 
Side 

.9 
C 

C 

C 

C 

0 

0 

0 

C 

Radial Flow Velocity, v/U 

Fig.llb - Radial Flow Velocity Profiles After 30 Degrees of Turning in a Circular Arc Duct of 
Square Crossection, R/H=2.3, Re=40000, k=26370. 



.5 r Pressure 
Side 

0 = 60" 

.4 

.3 

- Prediction 
0 Measurements of Taylor, Whitelaw, and Yianneskis 

0 .2 .4 .6 .8 1.0 1.2 

0 
0 
0 
0 
0 
0 
0 
0 
I r 

0 
0 
0 
0 Suction 
0 Side 
0 
0 0 

.9 Primary Flow Velocity, u/U 

Fig.12a - Primary Flow Velocity Profiles After 60 Degrees of Turning in 
a Circular Arc Duct of Square Crossection, R/l-+2.3, Re=40000, 
k=26370. 



Pressure 
A Side 
r = (r-ro>/(ri-ro)=.l .3 

0 

#I 

0 

0 

( 

f 

I I I J 

3 

3 

0 

0 

0 

0 

ff, 

0 = 60” 

- Prediction 
0 Measurements of Taylor, Whitelaw, and Yianneskis 

.5 

0 

3 

3 

0 

0 

b&b- 0 

.7 

0 

ll& O0 

Suction 
Side 

.9 

0 

0 

0 

0 

\ 
O( 

0 

0 

LL 0 

%I 73 

0 .l .2 .3 0 .l .2 .3 0 .1 .2 .3 0 .l .2 .3 .4 

Radial Flow Velocity, v/U 

Fig. 12b- Radial Flow Velocity Profiles After 60 Degrees of Turning in a Circular Arc Duct of 
Square Crossection, R/H=2.3, Re=40000, k=26370. 



u W 

8= 7.75" 

- Prediction 

0 Measurements of Taylor, Whitelaw, and Yianneskis 

Suction 
Side 

0 
0 

0 

0 .2 .4 .6 .8 1.0 1.2 

Primary Flow Velocity, u/U 

Fig. 13a - Primary Flow Velocity Profiles After 77.5 Degrees of Turning in a Circular 
Arc Duct of Square Crossection, R/H=2.3, Re=40000, K=26370. 



0= 77.5" 

- Prediction 

0 Measurements of Taylor, Whitelaw, and Yianneskis 

Pressure Side 
G = (r-ro>/(ri-ro> = .l .9 

Suction Side 

L 
\ 

C 

i i 

1 
1 0 

I” 
0 

0 

0 

0 

C 

0 

O 

LA- b 
-.2 -.l 0 .l .2 .3 0 .l .2 .3 0 .l .2 .3 0 .l .2 .3 0 .l .2 .3 .4 

Radial Flow Velocity, v/U 

Fig. 13b - Radial Flow Velocity Profiles After 77.5 Degrees of Turning in a Circular Arc 
Duct of Square Crossection, R/K=2.3, Re=40000, K=26370. 



I 

li 

11 

1C 

9 

e 

7 

6 

5 
D . 
I 4 
h 4-l ?I 
0" 

3 

';j 3 2 
5 
2 1 

2 
.$ .O 

!k 
.2 

.1 

0 

.2 

-1, 

01 

Prediction 

0 A Measurements of Taylor, Whitelaw, and Yianneskis 

1.0 .8 .6 .4 .2 0. 
Radial Distance at Symmetry Line, r=(r-ro)/(ri-ro) 

Fig. 14 - Primary Flow Velocity Profiles at 30 and 
60 Degrees in a Circular Arc Duct of 
Square Crossection, R/%2.3, Re=40000, 
K=26370. 

55 



1. Report No. 

NASA CR-3388 

4. Title and Subtitle 

PREDICTION OF LAMINAR AND TURBULENT PRIMARY 
AND SECONDARY FLOWS IN STRONGLY CURVED DUCTS 

7. Author(s) 6. Performing Organization Report No. 

J. P. Kreskovsky, W. R. Briley, and H. McDonald R80-90000’7-12 
10. Work Unit No. 

9. Performing Organization Name and Address 

Scientific Research Associates, Inc. 
Box 498 

11. Contract or Grant No. 

NAS3-22014 
Glastonbury, Connecticut 06033 

13. Type of Report and Period Covered 

12. Sponsoring Agency Name and Address Contractor Report 
National Aeronautics and Space Administration 

14. Sponsoring Agency Code 
Washington, D. C. 20546 532-06-12 

15. Supplementary Notes 

Final report. Project Manger, Eric R. McFarland, Fluid Mechanics and Acoustics Division, 
NASA Lewis Research Center, Cleveland, Ohio 44135. 

16. Abstract 

Numerical solutions are presented for three-dimensional laminar and turbulent flow in curved 
ducts of rectangular cross section and significant curvature. The analysis is based on a 
primary-secondary velocity decomposition in a given coordinate system, and leads to approxi- 
mate governing equations which correct an a priori inviscid solution for viscous effects, sec- -- 
ondary flows, total pressure distortion, heat transfer, and internal flow blockage and losses. 
Solution of the correction equations is accomplished as an initial-value problem in space using 
an implicit forward-marching technique. The overall solution procedure requires significantly 
less computational effort than Navier-Stokes algorithms. The present solution procedure is 
effective even with the extreme local mesh resolution which is necessary to solve near-wall 
sublayer regions in turbulent flow calculations. Computed solutions for both laminar and tur- 
bulent flow compare very favorably with available analytical and experimental results. The 
overall method appears very promising as an economical procedure for making detailed pre- 
dictions of viscous primary and secondary flows in highly curved passages. 

7. Key Words (Suggested by Author(s)) 

Subsonic flow analysis; Secondary flows; 
Turbulent flow; Curved ducts; Three-dimen- 
sional flow computation 

18. Distribution Statement 
Unclassified - unlimited 
STAR Category 02 

9. Security Classif. (of this report) 

Unclassified 
20. Security Classif. (of this page) 

Unclassified 

* For sale by the National Technical Information Service, Springfield, Virginia 22161 
NASA-Langley, 1981 


