NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE אאבריון מכון מכורליהי

TECHNION Israel Institute of Technology Department of Aerongutical Engineering

* s+CR-103934)ACTIVE CONTROLS FORN-31-17097FLUTIER SUPERESSION AND GUST ALLEVIATION 1.SUPERSONIC AL-CRAFT Final Report (Technion- Israel Inst. Of Tech.)203 gr (SCL +1C So/08 41303)HC A12/RF A01.

ACTIVE CONTROLS FOR FLUTIER SUPPRESSION AND

GUST ALLEVIATION IN SUPERSONIC AIRCRAFT

by

E. NISSIM

RECEIVED MASA STI FACILITY MOCESS DEFT.

FINAL REF'ORT (1977-1980) GRANT NSG-7373

November 1980

ACTIVE CONTROLS FOR FLUTTER SUPPRESSION AND GUST ALLEVIATION IN SUPERSONIC AIRCRAFT

-

E. NISSIM

Department of Aeronautical Engineering Technion - Israel Institute of Technology Haifa, Israel

FINAL REPORT

GRANT NSG 7373 monitored by Mr. I. Abel of NASA, Langley Research Center

General Outline of the Report

Most of the results pertaining to the work performed under the above grant had already been published. The list of these publications is given in the following (copies of which are included in the present report):

- Nissim, E. and Lottati, I.: Active Controls for Flutter Suppression and Gust Alleviation in Supersonic Aircraft. Journal of Guidance and Control, Vol. 3, No. 4, July – Aug. 1980.
- Nissim, E. and Lottati, I.: On Single-Degree-of Freedom Flutter Induced by Active Controls. Journal of Guidance and Control, Vol. 2, No. 4, Sept.-Oct. 1979.
- 3) Nissim, E.: Flutter Suppression and Gust Alleviation Using Active Controls - Review of Developments and Applications Based on the Aerodynamic Energy Concept. Proceedings of the XI Congress of the International Council of the Aeronautical Sciences, Sept. 1978.

There is no intention in the present report to repeat results appearing in the above-mentioned publications

During the course of the grant, its scope had been extended to cover some work done on active controls on the modified YF-17 flutter model. The results of this effort are summarized in two attached reports. The first report relates to the basic derivation of a suitable control law. The second report relates to the discrepencies found between analysis and wind tunnel tests and shows that they originate from the lack of proper implementation of the desired control law. These reports which are attached herein are the following:

Active Controls for Flutter Suppression and Gust Alleviation in Supersonic Aircraft

E. Nissim^{*} and I. Lottati[†] Technion—Israel Institute of Technology, Haifa, Israel

Application is made in the present paper of the recently developed relaxed aerodynamic energy concept and synthesis techniques to the definition of appropriate active control systems for the low-speed flutter model of the B-2707-300 supersonic cruise airplane. The effectiveness of the resulting activated systems is analytically tested for flutter suppression, wing root bending moment alleviation, and ride control (fuscing accelerations). The results obtained indicate that considerable increase in flutter speeds can be obtained by the various control systems, using a single trailing-edge control. In all cases, the flutter suppression control system led to a substantial reduction in both wing root bending moments and in fuscing and wing accelerations.

Introduction

T HEORETICAI analyses and wind tunnel tests of a lowspeed flutter model (1/20 scale) of the B-2707-300 airplane (Fig 1), were conducted under the supersonic transport (SST) Follow-on Program—Phase II.¹ Reference 1 states that "two constraints of the airplane made a flutter-free design unusually difficult: 1) the relatively low payload/total weight ratio made additional structural weight or mass balance particularly distasteful, and 2) any arrangement of lifting surface planforms, thickness, or major mass relocation (e.g., nacelles) degraded the delicate cruise economy or c.g. balance." Because of this flutter dilemma, considerable efforts were directed towards the development of an active flutter suppression system with the objective of improving the flutter speeds of the SST airplane.

Reference 1 shows that the developed flutter suppression system yields only minor improvements in flutter speeds (9.4% increase with activated inboard ailerons, 3.2% increase with activated outboard ailerons, and 11.3% increase with activated inboard and outboard ailerons). The purpose of the present work is to apply the recently developed relaxed energy concept² and synthesis techniques³ to the definition of an appropriate active control system for flutter suppression. The effectiveness of the resulting activated system is then analytically tested for flutter suppression, root bending moment alleviation, and ride control (fuselage and wing accelerations).

Previous analytical applications of the relaxed energy concept for flutter suppression involved the BQM-34E/F drone aircraft^{3,4} (with a research supercritical wing) and the YF-17 fighter aircraft⁵ (suppression of three different configurations of wing store flutter). The present work supplements the applications to include supersonic type cruise aircraft and is also the first one to investigate the effectiveness of the flutter suppression system (as obtained through the use of the relaxed energy concept), not only for flutter suppression but also for gust alleviation and ride control.

Description of SST Model and Mathematical Representation

Description of the SST Model

Figure 1 shows the general layout of the B-2707-300 lowpeed flutter model. As can be seen it is possible to activate

Presented as Paper 79.0792 at the ArAA ASME 20th Structures and Structural Dynamics Conference, St. Louis, Mo., April 4-6, 1979; submitted April 26, 1979; revision received Sept. 5, 1979. Copyright 1980 by E. Nissim. Published by the American Institute of Actonauty's and Astronautics with permission.

Andex categories: Guidance and Control; Structural Design; xeroetashcity and Hydroelasticity.

*Professor, Dept. of Aeronautical Engineering. Member AIAA.

the two trailing-edge (t.e.) ailerons and the horizontal stabilizer. In Ref. 1, activation of the two ailerons was attempted for purpose of flutter suppression and activation of the horizontal stabilizer (with geared elevator) was attempted for purpose of rigid-body stability augmentation. In the present work, activation of the outboard aileron only will be attempted. This follows the results of a previous investigation⁶ which showed that for flutter suppression, the activated system should be located as near the tip of the wing as possible. The outboard aileron measures 13.4% of the wing semi-span and 26% of the wing chord. Its mid-span line is located around 72% of the wing semi-span.

Equations of Motion and Their Solution

The equations of motion are formulated and solved (for both flutter suppression and gust alleviation problems) following identical lines as outlined in Refs. 3-5, 7. The flutter results are presented by root locus type plots taking the dynamic pressure Q_D as a parameter. The gust alleviation and ride control results are obtained from a continuous gust program, using unit rms gust input based on a Von Kármán gust spectrum.

Control Law

The general form of the control law employed in this work was established in Ref. 2 using the relaxed energy approach.

J. GUIDANCE AND CONTROL

Fig. 2 Geometrical description of the active control system.

The control law for the t.e. control surface is given by the following general form:

$$\delta = -1.86(\alpha_l - \alpha_r) + R_r \lfloor 4 \quad 2.8 \rfloor \begin{cases} \frac{h_l - h_r}{b} \\ \alpha_l - \alpha_r \end{cases}$$
(1)

where δ is the deflection of the t.e. control surface (see Fig. 2) and where h_1 , α_1 denote the translation and rotation of the 30% chord point of the control surface mid-span section, respectively (see Fig. 2). The parameters h_r and α_r similarly denote the translation and rotation of a reference point located along the center line of the fuselage and b denotes the semi-chord length at the control surface mid-span section (see Fig. 5). R_T is defined by the following expression (see also Refs. 2, 3):

$$R_{T} = \frac{a_{1}S^{2}}{S^{2} + 2\zeta_{1}\omega_{n_{1}}S + \omega_{n_{1}}^{2}} + \frac{a_{2}S^{2}}{S^{2} + 2\zeta_{2}\omega_{n_{2}}S + \omega_{n_{2}}^{2}}$$
(2)

The parameters α_i , ζ_i , ω_n , are all positive and their values determined by an optimization program based on the gust response of the aircraft under consideration following the method of Ref. 3.

Mathematical Model

The equations of motion, included two rigid-body modes (plunge and pitch) and nine symmetric elastic modes. The generalized aerodynamic forces were computed using the Doublet-Lattice method. The generalized inertia and elastic matrices for the flutter model were supplied by the aircraft manufacturing company together with the mode shapes. The t.e. control was assumed to be mass balanced.

Objectives

The following objectives were set for the present work:

1) To define control systems fo: different values of assumed maximum flight dynamic p essure (with M = 0.2) to determine whether an upper bound exists for flutter speed (while activating a single t.e. control).

2) To check the effectiveness of the resulting flutter suppression systems in reducing the wing root bending moments (b.m.) and in reducing the accelerations of the aircraft due to continuous gust inputs.

3) To spot check the effectiveness for flutter suppression of a control system, as defined in objective 1, above, at a higher Mach number, such as M=0.9.

Presentation and Discussion of Results

The presentation and discussion of results will be grouped under three major headings involving flutter suppression, gust alleviation and ride control characteristics.

Plutter Suppression Systems

The effectiveness of the activated t.e. control system can only be assessed by comparison with the open-loop system. The open-loop root locus plots for M=0.2 and M=0.9 are presented in Figs. 3 and 4. It can be seen that for M = 0.2, two flutter dynamic pressures (Q_{DF}) exist: the first with $Q_{DF} = 32$ psf (for zero structural damping g) and $\omega_F = 89.7$ rad/s, and the second with $Q_{DF} = 82.5 \text{ psf}$ (for g = 0) and $\omega_F = 25.1 \text{ rad/s}$. Similarly, for M=0.9, three flutter speeds exist with the following values (for g=0): $Q_{DF}=33$ psf with $\omega_F=81.8$ rad/s, $Q_{DF} = 74.5$ psf with $\omega_F = 21.8$ rad/s, and $Q_{DF} = 78.5$ psf with $\omega_F = 68.7$ rad/s. Since some of the above flutter branches represent mild flutter instabilities the values of Q_{DF} for the cases where g = 0.015 and g = 0.03 are included in a summarizing table (Table 1). It is interesting to note that the lowest value of Q_{DF} increases from $Q_{DF} = 32$ psf at M = 0.2and g = 0 to $Q_{DF} = 51$ psf at M = 0.2 and g = 0.03. For M = 0.9the corresponding values of Q_{DF} vary from $Q_{DF} = 33$ psf when g=0 to $Q_{DF}=37$ psf when g=0.03, thus indicating the existence of a more violent flutter.

Determination of the Control Law Parameters

The control law parameters are determined through the use of an optimization program which minimizes the root mean square rms deflection rates of the control surface due to a unit rms gust input based on the Von Kármán gust spectrum. This procedure is described in detail in Ref. 3.

The optimization was performed at two different flight dynamic pressures: at $Q_D = 75$ psf and at $Q_D = 89$ psf, while maintaining M = 0.2. The optimization procedure yields the following optimal control laws:

For
$$Q_D = 75 \text{ psf}$$

$$\delta = \left[\lfloor 0 - 1.86 \rfloor + \left(\frac{0.5S^2}{S^2 + 2 \times 1 \times 34.4S + (34.4)^2} + \frac{3.33S^2}{S^2 + 2 \times 0.5 \times 100.6S + (100.6)^2} \right) \lfloor 4 - 2.8 \rfloor \right]$$

$$\cdot \left\{ \frac{h_1 - h_r}{b} \right\}_{\alpha_1 - \alpha_r}$$
(3)

with

$$\delta_{rms} = 14.37 \text{ deg/s/ft/s}$$

 $\delta_{rms} = 0.236 \text{ deg/ft/s}$

I able 1	Summery	of flutter	results.
----------	---------	------------	----------

	Open	loop	Close	Closed loop control law 11	
	M=0.2	M=04	M = 0 2	M = 0.9	M = 0 2
Flutter Q _D , ps1		ngha angga aggan ingga kan kan an tiper sin tanga sa na	n mar alle an anna an an agu gu an agus a' an agus an	a nananan dalam kelalahan dalam d	
x 0	32	33	84 (163%)*	76 (130 %)*	89 (178¥s)*
E = 0 015	42	35	88 (110%) ^a	77 (120%)*	91 (117%)*
r = 0.03	51	37	91 (78%)*	78 (110%)*	94 (84%)4
Max value of orman				•	
			14 37	10.90	23.81
# .0015			11 89	10.54	18 "2
# = 0.015			10 92	10.24	16 17
Max. value ² of δ_{imx} , deg (ft/s		•			
f = 0			0.236	C.262	0 789
e = 0 015			0.200	0.248	0.609
g = 0.03		••••	0.186	0.238	0 515

(4)

the increase in QD due to activation of the outboard t e control

^b Up to dynamic pressure of Q_D optimization.

For $Q_{11} = 89$ pst

 $\delta = \begin{cases} 0.85^{2} \\ S^{2} + 2 \times 0.5 \times 20S + (20)^{2} \end{cases}$

$$+\frac{7.625^{2}}{5^{2}+2\times0.5\times1005+(100)^{2}}\left(4-2.8\right)\left[-\frac{h_{1}+h_{2}}{5}-\frac{h_{2}}{2}+\frac{h_{3}}{2}\right]$$

with

$$\delta_{ims} = 23.81 \text{ deg/s/ft/s}$$
 ORIGINAL PAGE IS
OF POOR QUALITY

The control law given by Eq. (3) will be referred to as control law I, whereas the one given by Eq. (4) will be referred to as control law II. The meaning of the different parameters of the control laws, Eqs. (3) and (4), is explained in Refs. 2 and 3. There is no intention to repeat the various details herein except for the statement that the above results show that for minimum control rates, maximum damping is in troduced around the frequency of 100 rad/s whereas the minimum flutter frequency is around 90 rad/s. A secondary damping concentration is introduced by the above control laws at frequencies which vary with the optimization Q_D . For $Q_D = 75$ psf the frequency is around 34 rad/s whereas for $\overline{Q}_D = 89$ psf the frequency is around 20 rad/s. Both frequencies relating to the secondary damping concentration are in the neighborhood of the frequency relating the second open loop flutter branch located around 25 rad 5.

Closed Loop Performance

The effectiveness of the above control laws in flutter suppression at M = 0.2 is shown in Figs. 5 and 6. As can be seen, the flutter branch relating to $Q_{DF} = 32$ psf and $\omega = 89.7$ rad/s (for the open-loop case) is suppressed and yields no flutter up to the maximum dynamic pressure used for the root locus plots (that is up to $Q_D = 120$ psf). On the other hand, the flutter branch associated with the open-loop values of $Q_{DF} = 82.5$ psf and $\omega = 25.1$ rad/s is only slightly affected by the activated t.e. system. For control law I, the value of Q_{DF} associated with this branch is increased to $Q_{DF} = 84$ psf and

for control law II to $Q_{ijk} = 89$ psf (with g = 0 m both cases). The attempts to increase the values of this flutter branch beyond $Q_{ijk} = 90$ psf were not successful. This result is interesting since the relaxed energy approach does not ensure the suppression of flutter in all cases, due to the fact that it does not turn all the aerodynamic energy eigenvalue positive (in the case of the activated t.e. alone system). For a l.e.-t.e. system the suppression of matter is ensured since all the aerodynamic energy eigenvalues assume positive values. Table 1 supplements the abovementioned results to include the effects of structural damping on the flutter speeds.

If we disregard the increase in flutter speed of each flutter branch and view the overall increase in flutter speed of the SST model, we arrive at the following conclusions: 1) the largest increase in flutter speed is for g = 0, yielding an increase of 67%, whereas the smallest increase in flutter speed is for g = 0.03, yielding an increase of 33%. 2) The variation of the overall flutter speed of the system with the dynamic pressure at which the optimization of the control parameters is performed is very small. This is illustrated in Fig. 7 where it can also be seen that the maximum flutter dynamic pressure is obtained when Q_{DF} is equal to the value of the optimization Q_D (that is around 90 psf). Finally, control law I was tested for flutter at M = 0.9 yielding the value of $Q_{Df} = 76$ psf for g = 0 and $Q_{DF} = 78$ psf for g = 0.03 (see Fig. 8).

Figure 9 shows a comparison between the results obtained in the present work and those reported in Ref. 1. As can be seen, the closed-loop flutter speeds obtained nerein are

E. NISSIM AND I. LOTTATI

Fig. 5 Closed-loop root locus plot at M=0.2, using control law I.

Fig. 6 Closed-loop root locus plot at M = 0.2, using control law II.

Fig. 7 Variation of flutter dynamic pressure with dynamic pressure at which optimization is performed at M = 0.2 (g = 0).

substantially more effective than those reported in Ref. 1 for the same SST flutter model with g = 0.03 and M = 0.2.

Control Surface Activity

The activity of the t.e. control (due to the different control laws) at the various flight dynamic pressures is shown in Figs. 10 and 11 for various values of g. It can be seen that control law II requires about 3.3 times as large rms control deflections as control law I, whereas rms control rates are larger by about 66% compared with control law I. Hence control law I appears to be better especially when considering that the difference between the overall flutter speeds due to those two

Fig. 8 Closed-loop root locus plot at M = 0.9, using control law I.

Fig. 9 Comparison between various results for the SST model at M=0.2.

control laws is small. Figure 12 shows that the control surface activity of control law I at M = 0.9 is smaller than the activity at M = 0.2

Wing Root Bending Moment Alleviation

The quantitative effect of the activated t.e. system on the rms wing root bending moment (b.m.) is meaningful only for flight speeds which are below the open loop flutter speeds. For speeds above the open-loop flutter speed the nonactivated rms wing root b.m. must clearly assume infinite values. Therefore, for flight speeds which lie between the open- and closed-loop flutter speeds the alleviation must therefore be infinite since the closed-loop system clearly yields finite rms values of b.m. The results to be presented herein will therefore relate to a range of dynamic pressures up to 32 psf which represents the open-loop value of Q_{DF} for g = 0 and M = 0.2. No attempt will be made to change the above value of g or the above value of M. Figure 13 shows 'he variation with flight dynamic pressure of the rms bending moment ratio, defined as the ratio between the closed-loop and open-loop rms b.m. [denoted as $(b.m.)/(b.m.)_0$] for the abovementioned two control laws. Figure 14 shows the variation with Q_D of the ratio between the peak open- and closed-loop values of the b.m. as obtained from a PSD plot, an example of which is shown in Fig. 15 (with $Q_D = 26$ psf using control law I). As can be seen, the alleviation in peak bending moments is much larger than the alleviation in rms b.m. at comparable values of Q_p . It is also interesting to note that control law II is more effective in reducing peak values of b.m. and relatively ineffective (that is, yields only minor improvements over the results obtained from control law I) in reducing rms b.m. values. Hence, the increase in the control activity associated with control law II, although ineffective for flutter suppression appears to be effective for peak b.m. alleviation.

JULY-AUGUST 1980

Fig. 12 Variation of control surface activity with dynamic pressure (for various values of structural damping) at M=0.9, using control law II (g=0): a) control surface deflection, b) control surface rate.

É 8 M

Fig. 11 Variation of control surface activity with dynamic pressure (for various values of structural damping) at M=0.2, using control law II (g=0): a) control surface deflection, b) control surface rate.

Fig. 15 PSD representation of normalized wing root bending, moment at M = 0.2 and $Q_D = 26$ psf, using control law 1.

Fig. 16 Variation of rms acceleration ratio at c.g. with flight dynamic pressure at M = 0.2 (g = 0).

Acceleration Alleviation

For reasons similar to those given in the case of the b.m. alleviation, the acceleration alleviation is relevant for flight speeds up to the open-loop flutter speed. Here again, only the case relating to g=0 and M=0.2 will be treated. Figure 16 shows the variation of the rms acceleration ratio (defined as the ratio between the closed-loop and open-loop rms accelerations) at the center of gravity (c.g.) of the SST model. Figure 17 shows the variation of the peak acceleration ratio at c.g. The results here are similar to those obtained for the b.m. ratio, that is, the activated systems are much more effective in reducing peak c.g. acceleration than in reducing rms accelerations at c.g. Similarly, control law II is relatively more effective in reducing peak c.g. accelerations than in reducing rms accelerations (compared with control law I).

The variation with Q_D of the rms acceleration ratio for a point on the wing located at the midchord of the midspan section of the outboard control surface (to be referred to as the wing point) is shown in Fig. 18. The ratio between the peak accelerations at the above point with and without activation of the control surface is shown in Fig. 19 as a function of Q_D . As can be seen, the activated t.e. system is effective in reducing both the rms and the peak values of the accelerations at the above wing point. Here, control law II is substantially more effective than control law I in reducing both the peak acceleration ratio (similar to previously discussed cases) and the rms acceleration ratio (unlike previous cases where the difference was small).

Fig. 17 Variation of peak acceleration ratio at c.g. with flight dynamic pressure at M = 0.2 (g = 0).

Fig. 18 Variation of rms acceleration ratio at wing point with flight dynamic pressure at M = 0.2 (g = 0).

Fig. 19 Variation of peak acceleration ratio at wing point with flight dynamic pressure at M = 0.2 (g = 0).

Conclusions

The application of the relaxed aerodynamic energy method coupled with the previously developed synthesis techniques yields effective flutter suppression systems when applied to the SST flutter model. The effectiveness of the control laws obtained herein substantially exceed the effectiveness of similar systems designed by classical methods as reported in Phase II of the SST Technology Follow-on Program. The application treated in this work follows two successful applications relating to the BQM-34E/F drope aircraft (DAST Program) and to the VF-27 external store flutter suppression program, as mentioned earlier in this paper. The beneficial effects of the flutter suppression system on both gust alleviation and ride control problems are in agreement with a previous work involving combined i.e.-t.e. control systems based on the original formulation of the aerodynamic energy method.

Cases can be envisaged where the effectiveness of the t.e. control system, based on the relaxed energy method, will be of doubtful nature. Such a case was encountered in this work when trying to increase the flutter speed associated with the second flutter branch. It is however felt that when such cases do arise, an alternative location of the activated control surface might prove to overcome this difficulty. Alternatively, a combined 1.e.-t.e. control system might be attempted. Finally, it might be worth noting that the control surface activity as obtained from the derived control laws in the present application is within present-day technology capability.

Acknowledgments

The work reported herein is a part of a study supported by NASA through its Aeroelasticity Branch at the Langley Research Center (under Grant NSG 7373). The numerical data for the 2707-300 airplane was supplied by the Boeing Company.

References

¹Gregory, R.A., Ryneveld, A.D., and imes, R.S., "SST Technolog," Follow-On Program-Phase II-A Low Speed Model Analysis and Demonstration of Active Control Systems for Rigid-Body and Flexible Mode Stability," Boeing Commercial Airplane Company, Seattle, Wash. Rept No. FAA-SS-73-18, June 1974

²Nissem, H., "Recent Advances in Aerodynamic Energy Concept for Flutter Suppression and Cust Alleviation Using Active Controls," NASA TN D-8519, Sept. 1977.

³Nissim, E. and Abel, I., "Development and Application of an Optimization Procedure for Flutter Suppression using the Aerodynamic Energy Concept," NASA TP1137, FBb. 1978.

⁴Nissim, E. "Comparative study Between two Different Active Flutter Suppression Systems," Journal of Aircraft, Vol. 15, Dec. 1978, pp. 843-848

⁵Nissim, E. and Lottati, I., "Active External Store Flutter Suppression in the YF-17 Flutter Model," *Journal of Guidance and Control*, Vol. 2, Sept.-Oct. 1979, pp. 395-401.

⁶Niasum, E., Caspi, A., and Lottati, I., "Application of the Aerodynamic Energy Concept to Flutter Suppression and Cust Alleviation by Use of Active Controls," NASA TN D-8212, June 1976.

⁷Sevart, F.D., "Development of Active Flutter Suppression Wind Tunnel Testing Technology," AFFDL-TR-74-126, 1975.

⁸Pratt, K.G., "Response of Flexible Airplanes to Atmospheric Turbulence. Performance and Dynamics of Aerospace Vehicles," NASA SP-258, March 1971, pp 439-503.

⁹Nissim, E., "Flutter Suppression Using Active Controls Based on the Concept of Aerodynamic Energy," NASA TN D-6199, March 1971.

From the AIAA Progress in Astronautics and Aeronautics Series ...

REMOTE SENSING OF EARTH FROM SPACE: ROLE OF "SMART SENSORS"—v. 67

Edited by Roger A. Breckenridge, NASA Langley Research Center

In technology of remote sensing of Earth from orbiting spacecraft has advanced rapidly from the time two decades ago when the first Earth satellites returned simple radio transmissions and simple photographic information to Earth receivers. The advance has been largely the result of greatly improved detection sensitivity, signal discrimination, and response time of the sensors, as well as the introduction of new and diverse sensors for different physical and chemical functions. But the systems for such remote sensing have until now remained essentially unaltered: raw signals are radioed to ground receivers where the electrical quantities are recorded, converted, zero-adjusted, computed, and tabulated by specially designed electronic apparatus, and large main-frame computers. The recent emergence of efficient detector arrays, microprocessors, integrated electronics, and specialized computer circuitry has sparked a revolution in sensor system technology, the so-called smart sensor. By incorporating many or all of the processing functions within the sensor device itself, a smart sensor can, with greater versatility, extract much more useful information from the received physical signals than a simple sensor, and it can handle a much larger volume of data. Smart sensor systems are expected to find application for remote data collection not only in spacecraft but in terrestrial systems as well, in order to circumvent the cumbersome methods associated with limited on-site sensing.

505 pp., 6 x 9, illus., \$22.00 Mem., \$42.50 List

TO ORDER WRITE . Publications Dept., AIAA, 1290 Avenue of the Americas, New York, N. Y. 10019

On Single-Degree-of-Freedom Flutter Induced by Activated Controls

E. Nissim^{*} and I. Lottati[†] Technion - Israel Institute of Technology, Haija, Israel

It is shown that activation of the trailing-edge control of an airfoil leads to single-degree-of-freedom type instabilities which span over a very wide region of reduced frequencies A, including high values of A (unlike the nonactivated system). These instabilities are shown to be sensitive to changes in pitching axis location, control deflection phase angle, and values of the reduced frequency. These sensitivities of the single-degree-of-freedom system cause the activated airfoil to be potentially sensitive to changes in flight co-bitions, and may be the source of the many difficulties encountered in suppressing classical multi-degree-of-freedom flutter by means of active controls. The results presented herein relate to zero Mach number and to a 20% trailing-edge control surface.

Nomenciature

- *b* = veinchord length
- C = control gain [see Eqs. (1) and (8)]
- h = displacement of the quarter chord point, positive downward
- I forsional moment of inertia per unit span
- Im() the imaginary part of ()
- k reduced frequency $= \omega b \cdot v$
- A structural stiffness
- *I* aerodynamic lift force, positive downward
- M aerodynamic pitching moment, positive nose up
- *I*, *M*, oscillatory lift and moment coefficients due to plunging oscillation
- $I_{12}M_{4}$ oscillatory lift and moment coefficients due to pitching oscillation
- $I_{11}M_{21}$ = oscillatory lift and moment coefficients due to control oscillation
- *R*, cross moment of inertia (between torsional and control rotation degree of freedom)
- a flight velocity
 A b = distance of pitching axis from the midchord point, positive downstream
- angle of attack
- δ = deflection of the trailing edge control surface. positive downward
- $\omega = \delta$ frequency of oscillation
- phase angle between α and δ or h and δ [see Eqs.
 (1) and (8)]
- p = air density

Subscripts

- I imaginary part of the associated parameter

Introduction

THE classical aeroelastic dynamic instability, known as flutter, is a result of the interaction of two or more structural degrees of freedom. Each of the fluttering degrees of freedom is stable in the absence of the remaining degrees of

Received June 23, 1978 revision received Sept. 15, 1978. Copyright &: American Institute of Aeronautics and Astronautics, Inc., 1978. All rights reserved. Reprints of this article may be ordered from AIAA Special Publications, 1290. Asenue of the Americas, New York, N-Y-10019, Order by Article No. at top of page. Member price \$2.00 each, nonmember, \$3.38% each. Remittance must accompany order.

Index category Aeroelasticity and Hydroelasticity.

*Professor Dept of Aeronautical Engineering, Member AIAA *Aeronautical Engineer, Dept, of Aeronautical Engineering. Irredom. Single degree of freedom type flutter in stabilities are normally associated with either nonlinear aerodynamics or separated flows.² There exists, however, a single degree of freedom type of flutter instability which is based on linear aerodynamics.³ and comes about when an artfoll oscillates in pitch around an axis located in the vicinity of its leading edge at very low values of reduced frequency k. This instability is known to originate from a negative aerodynamic damping term caused by the unsteady nature of the oscillating flow. This latter pitching instability is, however, of academic nature only, due to the very low values of reduced frequency srequired for its existence. In all other cases (having somewhat higher value of k), the aerodynamic damping matrices due to structural oscillations, are known to be always of positive definite nature.

Recent technological advances in auromanic control technology have promoted a considerable number of mvestigations regarding the effects of active controls on problems of flutter suppression and gust alleviation 4* An active control system on a lifting surface such as a wing, is designed to actuate a control surface in response to oscillations of the wing in a manner which stabilizes the system. Hence, the activated control surface introduces considerable changes in the accodynamic forces acting on the system. Since the determination of stability boundaries for multi-degree of freedom. Hustering system using active controls can be carried our numerically for specific examples only, and since the results obtained normally lack in generality, it is proposed to incestigate in the present paper the existence of instability boundaries involving activated single-degree-of-freedom systems. Such single-degree-offreedom instability boundaries can serve to indicate the regions of definite instabilities in any activated multi-degreeof freedom system, but they clearly fail to indicate the regions of stability for such systems. These simplifed instability boundaries can, therefore, help to define possible regions of stability in complex systems and promote some physical understanding of a complex problem.

Mathematical Model

The artfoll is assumed to oscillate in pitch around an axis located at $x_A b$ from its midchord point (positive direction of displacements and forces are shown in Fig. 1). The trailing edge control surface deflection is assumed to be driven by a control law of the form:

URIGINAL PAGE IS $\delta = Cue$.

(D

Fig. 1 Description of the two-dimensional oscillating single-degreeof-freedom system.

where C denotes the control gain and ψ the phase angle between α and δ . In the absence of structural damping, the equation of motion in the pitching degree of freedom assumes the form

$$I_{\alpha}^{\alpha} + K_{\alpha} + R_{\mu}^{\delta} = -L(x_{A} + 0.5)b + M$$
(2)

where I, R_{a} , K are inertia, cross-inertia, and stiffness terms, respectively, and L, M are given by²

$$L = \pi \rho b^3 \omega^2 \left[L_h \frac{h}{b} + L_a \alpha + L_b \delta \right]$$
(3a)

$$M = \pi \rho b^4 \omega^2 \left[M_h \frac{h}{b} + M_u \alpha + M_b \delta \right]$$
(3b)

The coordinate h refers to the displacement of the quarterchord point (positive downward). L_h , M_h , L_a , M_a , L_b , and M_b are complex aerodynamic coefficients which depend on k and on the Mach number. For further definition of the notation, see Fig. 1.

Ignoring the inertia coupling with the control surface (R_{α}) , and substituting Eqs. (1) and (3) into Eq. (2) and rearranging, the following equation is obtained using the relation $h/b = -(x+0.50\alpha)$:

$$Id + [K - \pi \rho b^{4} \omega^{2} [(x_{4} + 0.5)^{2} L_{h} - (x_{4} + 0.5) \times (L_{a} + L_{h} C e^{i\phi} + M_{h}) + M_{a} + M_{h} C e^{i\phi}]]\alpha = 0$$
(4)

Remembering that the values of the various aerodynamic derivatives are complex, that I, K are real and positive, and assuming the system to be statically stable, we obtain [from Eq. (4)] the following condition for dynamic instability:

$$\lim [(x_{A} + 0.5)^{2}L_{h} - (x_{A} + 0.5)(L_{a} + L_{b}Ce^{n} + M_{h}) + M_{a} + M_{b}Ce^{n}] > 0$$
(5)

where Im denotes "imaginary part of." It is interesting to note that Eq. (5) contains aerodynamic terms only. For any constant value of Mach number, instability boundaries can therefore be plotted using Eq. (5), for various values of reduced frequency k, of pitching axis locations x_A , of control gains C, and of phase angle ψ .

For the limiting case of pure bending oscillations of an activated control system (with mass balanced control surface), the following equation of motion is obtained:

$$Bh + kh = L \tag{6}$$

where

$$L = \pi \rho b^3 \omega^2 \left(L_b h/b + L_b \delta \right) \tag{7}$$

Fig. 2 Instability boundary for the nonactivated single-degree-offreedom pitching oscillation at M = 0.

Assuming the control law

$$\delta = C(h/b)e^{\alpha}$$
(8)

and substituting Eqs. (7) and (8) into Eq. (6), the following condition for dynamic instability in pure bending is obtained:

$$\operatorname{Im}[L_{h} + L_{k}Ce^{ik}] > 0 \tag{9}$$

In this case, the instability boundaries (Eq. 9) are functions of k, C, and ψ only (for any given constant value of Mach number)

Presentation and Discussion of Results

The instability boundaries for the single-degree-offreedom, nonactivated system will first be presented for purposes of subsequent comparison with the activated system. The pure bending instability boundaries of the activated system will then be presented in the form of C vs 1/k for various values of ψ . Finally, the pitching instability boundaries of the activated system will be presented in a series of graphs. Each graph relates to a constant value of C and the boundaries are presented in the form x_4 vs 1/k for various values of ψ . The Mach number is kept equal to zero throughout this work. The system is assumed to have a 20% chord trailing-edge control surface. The aerodyanmic derivativs are computed using analytical expression following the method of Ref. 7.

Instability Boundary for the Unactivated System

Figure 2 shows the unstable region caused by pitching oscillation as a function of the pitching axis location x_4 and 1/k. It can be seen that instability starts around the value of 1/k>25 or k<0,04. Furthermore, the critical location of the pitching axis is around the leading edge (that is, $x_4 \approx -1$). The instability boundary in Fig. 2 has been known for many years³ and it has little practical value due to the very low values of k associated with this instability.

Ŧ

Instability Boundaries for the Activated, Pure Bending Oscillation

Figure 3 shows the instability boundaries C vs 1/k for various values of phase angle ψ . The unstable region lies above the various curves, whereas the stable region lies below them. The gain C is made to vary between 0 and 2 and the angle ψ is varied between 0 and $\pm 180 \text{ deg}$. For negative values of C (i.e., -2 < C < 0), the instability curves shown in Fig. 3 have the form of their reflection (about the abscissa) with the values of ψ changed to ($\psi + 180 \text{ deg}$). This point will be discussed further in a subsequent section of this paper

It is very interesting to note that:

1) Activated single-degree-of-freedom bending instability occurs over a very wide range of values of k (not necessarily low values of k).

2) Phase angle changes between 0 and -90 deg promote the instability, with $\psi = -90$ deg as the most critical angle. The instability subsides as ψ is further changed toward $\psi =$

180 deg. Positive values of phase angles (0 deg \neq 180 deg) do not show any instabilities within the positive range of values of C, as shown in Fig. 3.

Instability Boundaries for the Activated Pitching Oscillation

Figures 4.11 present the instability boundaries of the activated system. Each figure relates to a different fixed value of gain C and shows the effects of the pitching axis location x_4 and the reduced frequency k on the instability boundaries. A careful study of the figures shows that:

1) The instability boundaries cover a very wide range of k values, including a high value of k.

2) The instability regions increase as the gain C is increased

3) The largest instability regions are obtained for phase angle of $\psi = \pm 90$ deg, with instabilities for both values starting with C=0.5.

4) The least unstable location of the pitching axis lies around the midchord region (i.e., $x_4 \approx 0$)

5) The phase angles ψ which maintain stability throughout the various values of C and x_4 lie in the first quadrant within $0 < \psi < 30$ deg (that is, in the region of $\psi = 15$ deg).

6) A second range of values of ψ which maintains stability, except for large values of C (that is, C > 1.8), lies in the third quadrant around $\psi = -180$ deg. For C = 2 and $\psi = 180$ deg, the region of instability is very narow (around the midchord region).

7) For $0 < \psi < 180$ deg, two distinct regions of instability often occur (see, for example, Figs. 7-11), with one region located at very high values of k (that is, at very low values of 1/k).

8) The shapes of the instability regions vary considerably with the reduced frequency k. Hence, the employment of unsteady aerodynamics is essential for activated flutter analysis.

Fig. 4 Instability boundaries for activated system with control gain value of C = 0.30.

Closed-Form Expressions of the Effects of Control Surface on the Stability Boundaries

It has been shown that in the absence of control surface rotation, single-degree-of-freedom instability can only occur for pitching oscillations provided 1/k > 25 (see Fig. 2). Since the remaining figures presented in this paper (i.e., Figs. 3.11) cover the range of 0 < 1/k < 25, it follows that instability boundaries within this latter region must be brought about by the detrimental effects of control surface rotation. These detrimental effects can be isolated from Eqs. (5) and (9) to yield closed-form expressions. A study of these expressions

Fig. 5 Instability boundaries for activated system with control gain value of C = 0.50.

Fig. 6 Instability boundaries for activated system with control gain value of C = 0.75.

Fig. 7 Instability boundaries for activated system with control gain value of C = 1.00.

₹

Fig. 8 Instability boundaries for activated system with control gain value of C = 5.25.

Fig. 9 Instability boundaries for activa d system with control gain value of $C \approx 1.59$.

Fig. 10 Instability boundaries for activated system with control gain value of C = 1.75.

can shed some additional light on the effects of the different parameters and especially on the role of the phase angle ψ .

Control Surface Effects in Pure Bending Oscillations

Equation (9) shows that control surface rotation is destabilizing when

$$\operatorname{Im}(CL_{a}e^{i}) > 0$$

or, alternatively, when

$$C[L_{ij}\sin\varphi + L_{ji}\cos\varphi] > 0$$
 (10)

Fig. 11 Instability boundaries for activated system with control gain value of C = 2.00.

where the added subscripts R and I denote, respectively, the real and imaginary parts of the associated parameters (i.e., I_{i} , in the preceding case).

The value of L_{bg} is about one order of magnitude larger than L_{bg} over most of the 1/k range c' at is, 1 k>1.5) Hence, instability is largest around $|\psi| = 90$ deg ton the preceding 1% range. Equation (10) also shows how the real and imaginary parts of the control surface lift coefficient are turned into a pure bending damping coefficient through the phase angle ψ and control gain C. It is worth noting that the following identity:

$$C[L_{A_{R}}\sin\psi + L_{A_{1}}\cos\psi]$$

= -C[L_{A_{1}}\sin(\psi + 180 deg) + L_{A_{1}}\cos(\psi + 180 deg)] (11)

implies that instability boundaries with positive gain values may be replaced by identical boundries with negative gain values, provided the corresponding values of the phase angle ψ are increased by 180 deg (as already noted earlier in this work). It may also be observed that the destabilizing effect of the control surface rotation is directly proportional to the control gain C.

Control Surface Effects in Pure Pitching Oscillations

The destabilizing effects of the control surface during pitching oscillations can easily be isolated from Eq. (5) to yield

$$Im[Ce^{i+}[M_{e} - (x_{4} + 0.5)L_{5}]] > 0$$

or, alternatively.

$$C[[M_{\delta_{\mathbf{K}}} - (x_{4} + 0.5)L_{\delta_{\mathbf{K}}}]\sin\psi + [M_{\delta_{1}} - (x_{4} + 0.5)L_{\delta_{2}}]\cos\psi] > 0$$
(12)

Here again the control surface aerodynamic coefficients are transformed into main surface damping coefficients through the phase angle ζ and control gain C. The inequality expressed by Eq. (12) depends not only on the relative values of L_{δ_R} , L_{δ_1} , M_{δ_R} , M_{δ_1} (which vary with k) but also on the pitching axis location x_4 which, in turn, affects the damping of the main surface through the remaining terms in Eq. (5). Hence, the effects of the various parameters on the instability boundaries are of complex nature. Even the dominance of M_{δ_R} over M_{δ_1} is limited to a lower reduced frequency range (1/2) greater than about 4) than the corresponding one associated with the L_{δ} coefficient. Hence, for 1/k > 4, the

widest instability will occur when $|\psi| = 90$ deg. Figure 11, for example, illustrates this point and also shows that at the lower range of 1/k values, the widest instability regions occur with values of $|\psi| \neq 90$ deg.

Some Remarks on Flutter Suppression of Activated Systems

It can be seen that for almost any chosen phase angle, there exists a region of pitching axis locations for which single degree-of-freedom instability exists. This implies that an activated trailing edge control may stabilize a mode whose pitching axis lies outside the unstable region and yet may lead to a severe instability of another mode whose pitching axis falls within the unstable region. Similar sensitivities to changes in phase angles can also be observed (keeping the pitching axis location x_4 constant), especially in the low region of 1 & or high region of & These facts make stabilization both difficult and also very sensitive to modal and phase angle changes. It is well known that activated flutter suppression systems have a tendency to be sensitive to changes in flight conditions and flight contigutations, in addition to their possible adverse effects on initially stable modes. It is, therefore, very possible that this sensitivity essentially originates from the afcrementioned single degree. of freedom instabilities rather than from the more complex multi degree of freedom flutter

It is also well known that the classical bending totsion type of flutter is caused by the skew symmetric components of the real part of the generalized aerodynamic matrix * It can be shown that symmetry in the preceding matrix can be achieved if $C \approx 1.85$ and $\psi = 180$ deg for k = 0.1 or if $C \approx 2$ and $\psi = 180$ deg for k = 0.5. Therefore, classical flutter will not occur for values of C equal to those just specified (dependent on k). Hence, from classical flutter point of view, 4 should lie in the third quadrant, around $\psi = 180$ deg. As already noted, the region of $\psi \approx 180$ deg leads to single-degree-of-freedom type instability for values of C > 1.8 and is interior to the tusi quadrant values from the point of view of the single degree. of freedom type instability. Hence, if C is limited to a value of C<1.8 and ψ 180 deg, no single degree of freedom flutter will occur, but classical flutter may occur. It, on the other hand, C is given the value of 1.85 or larger depending on k, no classical bending-torsion flutter can occur, but a single degree of freedom instability will take place. Hence, a system may exist (having x, around the midchord region), for which stabilization by means of activated trailing edge control. surface is impossible. The stabilization of such systems can only be achieved if modal changes are introduced that cause the pitching axis to shift from the midchord region. These results are in agreement with those obtained by the use of the aerodynamic energy concept.*

Conclusions

It has been shown that activation of the trailing edge control of an airfoil leads to single digree of freedom type instabilities which span over a very wide region of reduced frequencies k, including high values of k (unlike the nonacinvated system). The origin of these instabilities lies in the miroduction by the control surface of negative acrodynamic damping forces. This implies that aerodynamic damping forces must never be neglected while performing flutter analysis of activated control systems (unlike many instances in nonactivated flutter problems). Euthermore, sin c the instability boundaries vary considerably with the reduced frequency & oscillatory aerodynamic coefficients must always be used in active control flutter analysis. The sensitivities of the activated single degree of freedom system to changes in pitching axis location, control deflection phase angle, and values of the reduced frequency cause the activated autoil to be potentially sensitive to changes in thight conditions and may be the source of the many difficulties cocountered in suppressing flutter by means of active controls. Since incompressible flow has been assumed throughout this paper, it is felt that further work is required to determine the possible effects of compressibility on the single degree of freedom instability reported herein

Acknowledgments

This work is part of a study supported by NANA underoriant NSG 7373

References

Rauscher M., "Model Experiments on Eloner at the Massachusers fustitute of Technology," *Information Technology*, *Sciences*, Vol. 9, March 1936, pp. 121–122

- Krywołdocko, M.Z., Minyestigation of the Wood Wood Erequency with Application of the Stroubal Nonder (2014)

Agromaticual Sciences, Vol. 12, Tat. 1945, pp. 51-62.

⁴Runyan, H.L., Cummigham, H.U., and Walsons, C.A., "Theoretical lovestigation of Several Types of Single Degree of Freedom Histor," *Internation Aeronaticical Sciences*, Vol. 19, Jeb. 1952, pp. 101–110.

*Nissen, L., "Harrer Suppression Using Active Conduct Based on the Concept of Aerodynamic Energy," NASA TN D36599, March 1971.

Topp, J. U., "Percentile Performance Gauss by Use of a Fluttersuppression Session", Paper 7 B3, 1971. Joan Automatic Controls southercice, St. Long. Mo., Aug. 1971.

⁶Roger, K.L., Hodges, G.F., and Feb. L., "Active Einter Suppression: A Englit Test Demonstration," ARAA Paper 74:402, Structures, Stationana, Danamic, and Marcuals Conference, Las Vegas, Net. April 1974 (Smile: B. and Wassenbar, T.S., "Application of Three

³ Smile: R. and Wassenhan, J. S., "Application of Three Domensional Fourier Theory of Aneralt Structures," AUTR No. 4798, Material Disc, Co. Sciences, View 9, 1942.

⁸Nixson, F., "Recent Advance on According the gy Concept roy Hitter Suppression and Guss Anecation Using Active Controls," NASA 1N 17 8819, Sept. 1975.

Make Nominations for an AIAA Award

The following award will be presented during the ATAA Gandanice and Control Conference August 11-13, 1980, Darvers, Mass. It you wish to submit a noniniation, please contact Roberta Shapito, Director: Honors and Awards, ATAA, 1290. Avenue of the Americas, N.Y., N.Y., 10019 (212) 581-4300. The deadline date for submission of nominations is January 3, 1980.

Mechanics and Control of Flight Award

They an environment of technical or secondic contribution by an indevidual to the new burnes, goodance, or contributed higher in gate or the annosphere?

FLUTTER SUPPRESSION AND GUST ALLEVIATION USING ACTIVE CONTROLS -REVIEW OF DEVELOPMENTS AND APPLICATIONS BASED ON THE AERODYNAMIC ENERGY CONCEPT

E. Nissim

Department of Aeronautical Engineering Technion - Israel Institute of Technology Haifa, Israel

Abstract

The paper presents the current state-of-the-art of the aerodynamic energy concept. The latest applications of the relaxed energy concept, most of which are as yet unpublished, are also presented in this paper. These applications include the suppression of external-store flutter of three different configurations of the YF-17 flutter model. using single trailing-edge (T.E.) control surface activated by single, fixed gain, control law. Also included are some initia? results regarding the suppression of flutter of the 1/20 scale, low speed wind-tunnel model, of the Boeing 2707-300 supersonic transport, using an activated T.E. control surface. Additional results regarding comparative study between activated leading-edge - T.E. and T.E. alone control systems are also presented together with a review of previously published formulations and applications.

Introduction

The ability of the aerodynamic control surfaces to promote flutter instabilities has been known for many decades. Classical books in the field of Aeroelasticity⁽¹⁾ include considerable material to this effect under such headings as "bending-aileron flutter" or "torsion-sileron flutter". Thuse control surface induced flutter instabilities are traditionally overcome by reducing the deflections of the control surfaces by mass balancing of the control surfaces. It seems therefore reasonable to assume that this ability of the aerodynamic control surfaces to promote flutter could be reversed by appropriate control of their deflection, so as to combat the main lifting surface flutter instability, such as the wing bending-torsion flutter. Indeed, to put it differently, the origin of flutter lies in the nature of the oscillatory aerodynamic forces which permit the transfer of energy from the airstream to the wing. This flow of energy could be controlled, in principle, by modifying the aerodynamic forces through appropriate deflections of the control surfaces. The implementation of this approach requires, therefore, a rapidly responding control system which is actuated by the motion of the main surface and which leads to an appropriate deflection of the control surface.

The introduction of such activated control surfaces is not limited to problems of flutter suppression. Their potential applications span over a wide class of problems related to the improvement of performance of aircraft. The recent technological advances made in the field of control systems and the increased reliability of control system components, brought about by the space program, have paved the way for the incorporation of increasingly sophisticated control systems in aircraft. In his ATAA Von Karman Lecture⁽²⁾, I.E. Garruck states: "A major current trend which will play a dominant role in research, development, and practice during the years shead is the union of modern control technology and seroelasticity; for example, in control configured vehicles (CCV) ... Although seroelasticians and control specialists have in the past usually gone their separate ways and both fields have become quite sophisticated, in the last few years there have been attempts at real cooperation and adaptation to each other's methods so that important information has been published." Among the numerous proposed applications in CCV are: relaxed aerodynamic stability, gust and maneuver load allevation (with fatigue damage reduction through modal suppression), ride quality control, flutter suppression, taxi load alleviation and automatic control of variable geometry. As could be expected some of the proposed applications have recently come to fruition: An active control system has been installed on the B-52 aircraft(3,4) to control the response of the rigid body mode and one elastic mode (first aft body bending) to gust inputs. Flutter suppression by active controls has been demonstrated in flight (5) on the B-52 airplane (the mild flutter instability was induced by an added ballast tank). Other applications relating to the control of the rigid body modes have been incorporated in several military development areas, including the YF-16 aircraft. Applications relating to the suppression of external store flutter are currently under way for the F4 airplane. (6,7) In addition, a number of feasibility studies have been made to assess the merits (in terms of weight saving and of performance increase) of applications of active control technology to air-craft(8-13) Some of these studies were supplemented by comprehensive wind-tunnel validation pro-grams, (14,15)

As can be seen, the use of active controls spans a wide class of problems. However, one of the $m_{5,a,v}$ difficulties which characterizes the introduction of active control systems into elastic structures lies in the tendency of the activated systems to be very sensitive to system changes caused by the different flight conditions (such as flight speed, flight altitude, flight duration and type of mission). This sensitivity implies that a control system which is optimized at one flight condition may either show consierable degradation, or even give rise to adverse effects at other flight conditions.

The aerodynamic energy concept was formulated ⁽¹⁶⁾ in an attempt to define active control systems which do not exhibit such sensitivities to changing flight conditions. There is no intention to present herein a review of the extensive literature in the field of active control of aeroelastic response, nor is there any intention to review the different approaches and methods available for synthesis. Attempt will only be made in the present paper to review the developments of the aerodynamic

ş

energy approach, together with its applications, to problems of flutter suppression and gust alleviation (with emphasis on flutter suppression problems). Whenver possible, comparisons will be made between results obtained by the aerodynamic energy method and those obtained by other methods such as classical or modern control theory.

The Aerodynamic Energy Approach

Basic Concept

The serodynamic energy concept was developed primarily fc. problems of flutter suppression using active controls. It hinges on the idea that since flutter instabilitie originate from the nature of the aerodynamic forces, the roots of their suppression should clearly lie in the ability to modify these forces. The above idea can be implemented provided the following problem can successfully be treated: Given a fluttering system and given a control surface which can be activated, what should be the relationship between the oscillation of the system and the deflection of the control surface (normally referred to as "control law") that will ensure the necessary changes in the aerodynamic forces. This problem has been treated in refs. 16, 17. Major points relating to analysis and results are presented in the following section

The Energy Analysis

Let the n equations

$$\{F\} = - \sum [B + \pi \rho b^4 s (A_p + i A_T)] \{q\} + [E] \{q\}$$
 (1)

represent the equations of motion of n structural modes with r activated controls, where at flutter

 ${F} = 0$

and where ω represents the frequency of oscillation; [B], the mass matrix; [A_R] and [A_I], the real and imaginary parts of the merodynamic matrix, respectively; [E], the stiffness matrix; ρ , the density of the fluid; s, reference length; b, a reference semichord length; and {q}, the response vector. The matrices in equation (1) can be partitioned into square matrices (n x n) relating to the structural modes (subscripted by s) and rectangular matrices (n x r) relating to control surface couplings (subscripted by c). After partitioning the matrices, equation (1) becomes

$$\{\mathbf{F}\} = \left[-\omega^2 \left[[\mathbf{B}_{\mathbf{g}}; \mathbf{B}_{\mathbf{c}}] + \pi_{\mu} \mathbf{b}^{\mu} \mathbf{g} \left\{ [\mathbf{A}_{\mathbf{R}, \mathbf{g}}; \mathbf{A}_{\mathbf{R}, \mathbf{c}}] + \mathbf{i} [\mathbf{A}_{\mathbf{I}, \mathbf{g}}; \mathbf{A}_{\mathbf{I}, \mathbf{c}}] \right] + [\mathbf{E}_{\mathbf{g}}; \mathbf{E}_{\mathbf{c}}] \right] \left\{ \begin{array}{c} \mathbf{q} \\ \mathbf{q}_{\mathbf{c}} \end{array} \right\}$$
(2)

Assume a control law of the form

$$\{q_{q}\} = [T] \{q\}$$
 (3)

where [T] is a $(r \times n)$ matrix representing the transfer functions of the control law, and assume that no elastic couplings exist between structural modes and control deflections, thus causing [E_]=0. It can be shown (16, 17) that the work P done by the system on its surrounding per cycle can be written as

$$\mathbf{P} = \frac{\pi^2 \rho \mathbf{b}^4 \mathbf{s} \omega^2}{2} \left[\mathbf{q}_{\mathbf{R}} - \mathbf{i}_{\mathbf{I}_{\mathbf{I}}} \right] \left[\mathbf{U} \right] \left\{ \mathbf{q}_{\mathbf{R}} + \mathbf{i}_{\mathbf{I}_{\mathbf{I}}} \right\}$$
(4)

where

$$[U] = -\left([A_{I,s}] + [A_{I,s}]^{T} + [A_{I,c}] [T] + [T^{*}]^{T} [A_{I,c}]^{T} \right) +$$

+
$$i \left([A_{R,s}] - [A_{R,s}]^{T} + [A_{R,c}] [T] - [T^{*}]^{T} [A_{R,c}]^{T} + \frac{[B_{c}] [T] - [T^{*}]^{T} [B_{c}]^{T}}{\pi \rho b^{4} s} \right)$$
 (5)

and where

$$\{q\} = f_{i,j} e^{i\omega t} = \{q_R + ia_I\} e^{i\omega t}$$
(6)

The sign of the determines stability, and therefore it is always group to convert equation (4) to a more considerent form. It can be shown (16,17) that P can be reduced to the form

$$\mathbf{P} = \frac{1}{2} \mathbf{x}^2 \rho \mathbf{b}^4 \omega^2 \mathbf{s} \left[\left[\xi_R \right] \left[\lambda_\lambda \right] \left\{ \xi_R \right\} + \left[\xi_I \right] \left[\lambda_\lambda \right] \left\{ \xi_I \right\} \right]$$
(7)

or alternatively

$$P = \frac{1}{2}\pi^{2}\rho b^{4}\omega^{2}_{B} \left[\lambda_{1} \left(\xi_{R,1}^{2} + \xi_{I,1}^{2}\right) + \lambda_{2}\left(\xi_{R,1}^{2} + \xi_{I,2}^{2}\right) + \right]$$

$$+ \ldots + \lambda_n \left(\xi_{R,n}^2 + \xi_{I,n}^2 \right) \right]$$
(8)

where $[\lambda_{\star}]$ is a diagonal matrix of the eigenvalues λ_{\star} necessarily real, of the Hermitian matrix [U] (as given by eqn (5)), and where the vectors $\{\xi_{R}\}$ and $\{\xi_{I}\}$ are defined by the transformation

$$\{q_0\} = [Q_R + iQ_I] \{\xi_R + i\xi_I\}$$
 (9)

The matrix $[Q_R + iQ_T]$ is a square modal matrix of the principal eigenvectors.

Discussion of Energy Concept

The work per cycle ? done by the system on its surroundings has a direct bearing on the stability of the system. If P is positive, the system is dissipative, and therefore stable. If P is negative, the system is unstable because work is done by the surroundings on the system. Equation (8) shows that if all the eigenvalues λ_1 of the system are positive, the system is stable regardless of the motions represented by the generalized energy coordinates ξ . If one or more of the λ eigenvalues is negative, the system is potentially unstable. Its ultimate stability is determined by the relative values of the terms ξ and λ . If the E values make the positive eigenvalues dominate the right-hand side of equation (8), the work P is positive and the system is stable. If, on the other hand, the ξ values make the negative terms dominate eqn. (8), P is negative and the system is unstable. Hence, the requirement for all λ 's to be positive is a sufficient but not a necessary condition for stability.

For mass-balanced control surfaces ([B_]=0, the eigenvalues λ obtained from [U] (Eq. (5)) are dependent only on the aerodynamic properties of the system and the activated control law (matrix [T]). In the case of mass-balanced surfaces, the eigenvalues are referred to as aerodynamic eigenvalues. These latter eigenvalues are, in general, functions of the reduced frequency k and Mach number M. If mass unbalance is a fixed quantity in the system, the eigenvalues λ also depend on the fluid density ρ in addition to their dependence on k and M. Note that instability at zero airspeed can be brought about only through these mass unbalance

terms. All the results presented in this paper relate to mass-balanced control systems only and therefore, surodynamic eigenvalues are obtained from the following [U] matrix

$$[U] \sim -\left[[A_{I,s}] + [A_{I,s}]^{T} + [A_{I,s}] [T] + [T^{*}] [A_{I,c}]^{T} \right]$$

+ $i \left[[A_{R,s}] - [A_{R,s}]^{T} + [A_{R,c}] [T] - [T^{*}]^{T} [A_{R,c}]^{T} \right]$ (10)

It may be recalled that the energy approach, in its original development (16), sought to determine the matrix [T] to render all the aerodynamic eigenvalues (of matrix [U] eq. (10)) large and positive. This requirement regarding the aerodynamic eigenvalues insures both the stability of the system (since P is always positive) and its insensitivity to various flight conditions (which manifest themselves in the form of changing values of λ and changing values of the system responses ξ).

Generalized Model

The energy approach has been formulated for a general n degree of freedom system. Therefore, the energy concept can be applied to any problem. The results of such application, however, will be specific for the system considered since the generalized accodynamic forces depend not only on the system geome ry but also on its structural natural modal responses. If, however, the energy concept is applied to a two dimensional strip, the aerodyname . more those are independent of geometry and resummers i one system. As a result, the aerowhamic ender values are independent of any specific system of an only functions of k, M, and the transfer its dion matrix [T]. Therefore, if [T] is defined using a two-dimensional strip as a model, these [T] values are applicable to any threedimensional wing within the limitations of strip theory; thus, the model is generally applicable. Sketch (a) illustrates the generalized model cons.dered, and the arrows indicate positive displacements and rotations.

Anaivais of the Generalized Model

The motion of the generalized two-dimensional model is defined by two parameters: the displacement h of the 30 per cent chord point and the rotation α about this point. Two control surfaces are assumed to be available for activation: a 20 per cent chord trailing-edge (T.E.) control and a 20 per cent chord leading-edge (L.E.) control. Two aerodynamic eigenvalues, λ_{\min} and λ_{\max} are ob-

tained using this model. The analysis and results which accompanied the original derivation of the energy concept, (16) smployed a transfer function matrix of the form

$$[T] = [C] + i [G]$$
 (11)

The matrices [C] and [G] were assumed to have constant values (in eqn (11)) thus making the subsequent mechanization of the control law difficult. The matrix [T] was determined numerically by an optimization program which required λ_{\min} to be positive and large over a wide range of k values. This was achieved by maximizing the area under the curve λ_{\min} vs 1/k using the C_{ij} and C_{ij} terms as parameters.

It should be stressed at this stage that the generalized two-dimensional model adopted herein serves only to indicate, on the basis of the strip theory, whether energy is dissipated or absorbed by the partial span strip where the activated controls are installed. Therefore, in order to suppress flutter with a minimum number of activated partial span strips, one should aim at dissipating enough energy in the activated strip, so as to compensate for any energy input by the nonactivated portions of the wing. One should therefore attempt not only to turn λ_{\min} positive but also to cause λ_{\min} to assume large (and positive) values.

Results of the Original Formulation of the Energy Concept

Typical results obtained with M=O using the procedure just described(16) are presented in Fig. 1 for the unactivated system, in Fig. 2 for the activated T.E. control and in Fig. 3 for the activated combined L.E.-T.E. control system (for further details see ref. 16). The optimized values of the transfer functions [C] and [G] for these two types of activated systems are given by

a) For the	T.E.	Control	system
------------	------	---------	--------

[C]

$$opt^{=} \begin{bmatrix} 0 & 0 \\ -0.35 & -1.9 \end{bmatrix}; \ [G]_{opt^{=}} \begin{bmatrix} 0 & 0 \\ 0.35 & 0.1 \end{bmatrix}$$
(11a)

b) For the combined L.E.-T.E. Control system

101	0.5	1.0]	· · · · · ·	-0.5	1.0]
[C] _{opt} =	-0.05	-1.7	^{(G]} opt	0.45	0.2
	H	د,		L	(і́іь)

The following points emerging from these figures are worth noting:

- 1) The value of λ_{\min} for the indetivated system (fig. 1) is negative throughout the range of k (0.0128 \leq k \leq 19.5) and the value of λ_{\max} is positive throughout this same range. Furthermore, the absolute values of $|\lambda_{\min}|$ and $|\lambda_{\max}|$ are of the same order of magnitude.
- 2) The values of λ_{\min} for the T.E. system (Fig. 2) is only marginally positive (except at high k values) and is highly sensitive to off-design values. The values of C₂₂ which improve λ_{\min} cause λ_{\max} to deteriorate appreciably.

3) The optimum values of λ_{\min} for the combined L.E.-T.E. control system (Fig. 3) is large and positive over the whole range of 1/k. The off-design sensitivity is greatly reduced as compared with the T.E. control system. Here again, the values of C22 which improve λ_{\min} cause λ_{\max} to deteriorate.

The results presented in ref. 16 indicate the following additional important points:

- Systems having two sensors (to determine both h and α) are superior to any single-sensor system.
- 5) Mach number effects are beneficial for the whole k range for the L.E.-7.E. system (fig. 4) whereas the T.E. system shows minor improvements except for the very low range of k values where some deterioration takes place.
- 6) The values of λ_{\min} (and λ_{\max}) for the L.E.-T.E. control system could be increased considerably by the simultaneous increase of all the Gij terms by a constant factor $\omega/\omega_T > 1$ (see fig. 5). The T.E. control system showed a deterioration in λ_{\min} accompanied by a considerable improvement in λ_{\max} when such an increase in its Gij terms was attempted (see ref. 16). Thus, the control law for the L.E.-T.E. system could be brought to the following convenient form

$$\{\beta\} = [C] \left\{ \frac{h/b}{\alpha} \right\} + \frac{1}{\omega_r} [G] \left\{ \frac{h/b}{\alpha} \right\}$$
(12)

where ω_r is a reference frequency which maintains the non-dimensional nature of eqn. (12). Clearly, the mechanization of this latter control law is much simpler than the one given by eqn. (11).

The above results led to the conclusion that the L.E.-T.E. control system, driven by two sensors, is the most effective system for purposes of flutter suppression. For this reason the L.E.-T.E. system was chosen for testing the effectiveness of active controls in the early splications of the energy method. However, before proceeding to these applications, a few points should be mentioned regarding the physical significance of the optimized control laws (see skatches (b) and (c)). The optimized L.E.-T.E. control law will be chosen for this

Sketch (c)

purpose since it includes the essential features of the two control surfaces employed by the generalized model.

It is interesting to note that the main effect of the in-phase deflections of the control surfaces is to counteract any lift building up; that is, the lift increase due to the angle of attack a is opposed by the forces created by the deflections of the L.E. and T.E. control surfaces. Furthermore, the out-of-phase control deflections increase the damping forces. It can therefore be seen that flutter suppression is achieved by both reducing the energy input into the system and increasing the dissipation of energy.

Early Applications of the Aerodynamic Energy Concept

The first application of the results produced by the aerodynamic energy concept was made using a type wing for which detailed analysis usi SST at least 10 degress of freedom already existed (18). The application was carried out by members of the Boeing Wichita division under contract to the Langley Research Center. The wing configuration is indicated in Fig. 6. Flutter control was achieved using several independent stripwise units each of which consisted of combined L.E.-T.E. control surfaces having 20% chord each and activated by sensors located at 30% and 70% chord locations, (using a control law as given by eqn (11)). The results, employing M=0.9 lifting surface aerodynamics, supplemented by strip theory for the control strips, indicated that the use of T.E. controls alone would increase the flutter speed by only a few per cent (\sim 5%) while the use of the combined L.E.-T.E. systems yielded with outboard segment A alone an 11% increase, with mid segment B alone - 28% increase, and with inboard segment C alone - 21% increase in the flutter speed. The combined use of B and C led to an increase in flutter speed not specifically determined but noted to be in excess of 41% of the original speed. A root !ocus plot corresponding to this case is shown in Fig. 7. A corresponding experimental exploratory study(15) was undertaken in the Langley Transonic Dynamics Tunnel using a simplified version of a proposed supersonic transport wing design (Fig. 8). The active flutter suppression method, based on the aerodynamic energy criterion, was verified experimentally using three different control laws (as defined by eqn (11)). The first two control laws utilized both leading edge and trailing-edge active control surfaces, whereas the third control law required only a single

T.E. control surface. At Mach number 0.9 the experimental results demonstrated increases in flutter dynamic pressure from 12.5 per cent with a L.E.-T.E. active control system to 30 per cent with active T.E. control. The mechanization of the L.E. control has met with great difficulties due to what is now believed to be a control induced instability caused by the mass unbalanced L.E. control. As a result of this instability of the L.E. control (which was present even at zero all speeds) activation of the L.E. control could only be attained at M=0.9. Nevertheless, two important points follow this essentially experimental study (15).

- An active flutter suppression system was demonstrated successfully, using L.F. and T.F. control surfaces, to suppress flutter on a model in a wind tunnel.
- Irrespective of the difficulties encountered in the mechanization of the L.E. control, it is still significant to note that a single L.E. control yielded satisfactory results in suppressing flutter over the entire range of Mach numbers tested.

Scowbor different analytical applications 14,200 datig a somewhat different control law, of the type given by eqn (12), with ω_T with as a some of gardeners the smaller or is, the more some of the nore some of the sources become bec conversion to the set of subsonic different using a distance past approach (20) based on derodynamic strong to is. These aircraft are the twin-boom. owin-carls prop Arava SIM transpost (maximum mass parts by an Fig. 9) and the Westwind, twinjet costones tomoport (maximum mass 9400 Kg) which is a monthing constant of the Rockwell Jer Commander Fig. over the wing on each mircraft was divided into a cqual's spaced strips as shown in Fig. 11: tach scrip could accomposate a pair of active contols what is, 20% chord L.E.-T.E. controls). the status located along the horizontal tail were all were spans equal to one third and one tenth of the no contal tail semispan of the Arava and Westwhit discourt respectively. The best locations ter comple activated system along the span of the sing were determined for bending-moment alle ation, reduction in fuselage accelerations, and traces suppression. Reference 19 deals with stor gust south abereas reference 20 deals with fourshape gost with peak values following the require menus of the federal aviation authorities.

the simultaneous treatment of flutter suppresneed and gust alleviation problems follows as a national consequence of the control law derived by the use of the derodynamic energy which, as already mentioned earlier, acts to reduce the energy input into the system and increase the dissipation of energy.

(20) The main points emerging from this application are bliefly summarized by the following points:

A single activated strip located at the outboard region of the wing promotes negative bending moments (Mb) at the root of the wing during upgust conditions (see Fig. 1.). These negative bending moments are caused by he restraining forces exerted by the acti-

vated strip, at its outboard location, as a result of the upward motion of the airplane caused by the upgust forces. For similar reasons, an activated strip located at the root region of the wing promotes increase in bending moments during upgust conditions (are Fig. 13).

To overcome these difficulties, the control law was modified to activate the control surfaces using the elastic contributions of the motion. In mathematical terms, h and a in the control law were replaced by $(h-h_r)$ and $(a-a_r)$ where the subscript r refers to a reference point around the root of the wing. This reference point is chosen in such a manner so as to "filter out" all the rigid body contributions to the control inputs. The results following the introduction of the above changes into the control law (referred to in ref. 20 as the extended control law) are shown in Fig. 14. As can be noted, the effects of the extended conttol law on the maximum values of the root bending moment are indeed dramatic. The best location of the activated strip for maximum bending-moment reductions is in the tip region of the wing but inboard of the tip strip.

- .) The optimum strip location for maximum in crease in the flutterspeed is at the wing tip strip. Furthermore, the effectiveness of the activated strip is greatly increased by the introduction of the extended control law. Flutter speeds could easily be increased by more than 70% of the open loop flutter speeds.
- b) The optimum strip location for maximum reductions in tuselage accelerations is at the root strip location for the ordinary control law (Fig. 15). The extended centrol law vields better results with optimum strip location at the inboard region of the wing (but clearly not on the reference strip, see Fig. 16).

In summarizing the results of the above application (0,0), it may be stated that the extended control law, which is based on the wing elastic deformations only, presents a major step forward in problems of flutter suppression and gust alleviation. It leads to almost complete decoupling between the rigid body responses, elastic responses, and the activated control forces. As a result, major improvements in performance are obtained. For this reason, free flying wind tunnel models might show greatly reduced performance as compared with clamped models unless some form of an extended control law is used.

The above applications have shown that the energy concept produces effective activated systems. There were indications, however, that the derived control laws could be improved and that the mechanization of the L.E. control was more involved than that of the T.E. control. Furthermore, some of the control laws (such as the one defined by eqn (11)) were difficult to realize. This lad to an investigation aimed at avoiding the use of the L.E. control while maintaining the effectiveness of the activated system. The results of this investigation are described in the following section.

Active Flutter Suppression Using Trailing-Edge and Tab Control Surfaces

As already stated earlier in this paper, the L.E. control may present some control problems since it carries relatively large aerodynamic hinge moments. Furthermore, there has been some reluctance to introduce a L.E. control due to its possible detrimental effects on the general serodynamic characteristics of the wing. The actiwated T.E.-tab combination, if effective for flutter suppression, could alleviate the difficulties associated with the L.E.-T.E. system. It is shown (21) that an 82 chord tab should be chosen for a 20% chord T.E. control. The results obtained(21) for the variations of Jmin with 1/k show that the T.E.-tab system activated by both linear and rotational sensors, has a flutter suppression performance comparable to the L.E.-T.E. system. The main advantage of the T.E.-tab system over the L.E.-T.E. system lies in the lower actuator torque requirements, whereas its main disadvantage lies in its relatively higher control surface rotations. Applications pertaining to the T.E.-tab system were not further pursued in view of the progress made regarding the activation of T.E. alone control system. Some details regarding these developments are presented in the following section.

Relaxation of the Energy Concept

Objective and Formulation of Relaxed Conditions The energy approach, in its original develop-

ment(1b), sought to determine the matrix [T] so as to render all the acrodynamic eigenvalues large and positive. This requirement regarding the aerodynamic eigenvalues onsures both the stability of the system (since P will always be positive) and its insensitivity to the various flight conditions. Since the derived control laws are of general nature and do not take into consideration any specific property of the analysed system, it is possible to argue that the limitations concerning the potentials of the T.E. control system to perform effectively as flutter suppressor is inherent in the above formulation of the problem. Assume that other methods of stabilization exist, or can be devised, and that all we wish to ensure is the insensitivity of the stabilized system to changes in flight conditions. The implications of such an approach on the energy concept involve the relaxation of the requirement that all the aerodynamic eigenvalues must be large and positive. Assume, therefore, that such a relaxation is now introduced which permits some of the aerodynamic eigenvalues to be negative. Stability can only be achieved under these conditions by modifying the responses of the system so as to render the responses associated with the positive eigenvalues to be the dominant ones. This latter requirement forms a necessary condition for stability but does not ensure, in itself, the insensitivity of the resulting stabilized system to the various flight conditions. In order to ensure that this relaxed stability requirement yields a system which shows only small sensitivities to the changing flight conditions the absolute values of the negative aerodynamic eigenvalues must always be made much smaller than those eigenvalues associated with the dominant responses of the stabilized system. For the generalized two-dimensional model adopted in this work, two aerodynamic eigenvalues, λ_{\min} and

and λ_{max} are obtained. In the original derivation of the aerodynamic energy concept, λ_{min} was required to be positive and largo. In the relaxed energy approach, (17) λ_{min} is permitted to be negative provided

and provided that these relations are maintained for all flight conditions. The above two requirements regarding λ_{min} and λ_{max} will be referred to as the "relaxed energy requirements". As can be noted, the above relaxation is made possible by abandoning the sufficiency condition for stability in the original formulation while maintaining its insensitivity to changes in flight conditions. It is worth noting that since the dissipation of energy by the activated strip depends both on Amin and on Amax, the importance of Amax should not be overlooked even when λ_{\min} is positive and large. Considerable improvements in the potential performance of the activated control system may result, if changes in the control gains are permitted which lead to small degradations in Amin, provided these degradations ar accompanied by large increases in amax. This implies that while determining the optimum values of the transfer function matrix [T] we seek to optimize not only the area under the Main vs 1/k curve but also the weighted addition of the area under the Amax vs 1/k curve, so as to satisfy eqns (13). Convenient ways of performing the above optimization of the [T] matrix are desecribed in ref. 17.

In addition to the above relaxation of the energy concept, two other major changes were introduced in ref. 17:

- 1) Unlike the original derivation, only realizable transfer functions were considered
- 2) The influence on the target function of the very low frequency portion of the 4 vs 1/k curves was reduced by both an appropriate redefinition of the aerodynamic eigenvalues and the reduction of the k range from

$$0.0128 \le k \le 19.5$$

as used during the original derivation, ⁽¹⁶⁾

$$0.04 \le k \le 3.5$$

The redefinition of the aerodynamic eigenvalues involves the inclusion of the frequency effects into these aerodynamic eigenvalues. Hence, eqn (8) was modified to the form

1

$$P = \frac{1}{2}\pi^{2}\omega b^{2}V^{2} = \left|\tilde{\chi}_{1}(\xi_{R,1}^{2} + \xi_{I,1}^{2}) + \frac{1}{\chi}_{2}(\xi_{R,2}^{2} + \xi_{I,2}^{2}) + \dots + \tilde{\chi}_{n}(\xi_{R,n}^{2} + \xi_{I,n}^{2})\right|$$
(14)

yielding the following relation between the $\lambda^* s$

$$\bar{\lambda}_{i} = k^{2} \lambda_{i}$$
(15)

Hence, at the low range of k values, the newly

defined eigenvalues are smaller than the originally defined eigenvalues by x factor of k^2 . These changes permit the giving of more weight to the intermediate frequencies during the optimization process.

Optimization Results (17):

The variation of the non activated λ^{\dagger} s with 1/k is shown in Fig. 17. It is interesting to compare these λ with their λ counterparts in Fig. 1 and to note the large changes in the shape of the curves.

Two types of optimized transfer functions were derived.⁽¹⁷⁾ The first type is referred to as the damping type transfer function (D.T.T.F.) and it assumes the following optimum values for [T].

$$[T] = \begin{bmatrix} 0. & 0. \\ 0. & -1.86 \end{bmatrix} + ik \begin{bmatrix} a_{\rm L} & 0 \\ 0 & a_{\rm T} \end{bmatrix} \begin{bmatrix} -4. & 4. \\ 4. & 3.2 \end{bmatrix}$$
(16)

where $a_{\rm L}$ and $a_{\rm T}$ are positive free parameters. These free parameters were introduced as a r.sult of the unbounded behaviour of the target function with respect to increase of these parameters. The transfer function for the T.E. alone system is obtained from eqn (16) by letting $a_{\rm L}=0$.

The second type of optimized transfer function is constructed to as the localized damping type transter function (0.D.T.T.F.) and it assumes the following optimum values for [T]

$$\begin{bmatrix} 1 & 0 \\ 0 & -1.80 \end{bmatrix} + 8 \begin{bmatrix} a_{\rm L} & 0 \\ 0 & a_{\rm T} \end{bmatrix} \begin{bmatrix} -4 & 4 \\ 4 & 2.8 \end{bmatrix}$$
(17)

where once again a_L and a_T are positive free parameters (which follow the unbounded nature of the target runsion with increase of these parameters) and $\tilde{\kappa}$ is given by

$$R = \frac{(ik)^2}{(ik)^2 + 2\zeta k_n (ik) + k_n^2}$$
(18)

where both and kn are positive constants. Fig. on so we the correction of Amin vs 1%k and) as very at various Mach numbers using the op-timized D D.T.F., as defined by eqn (16) with $a_L = 0$ that we the only control system) and ar=25. the corrector ding curves using the L.D.T.T.F. detried by equal (17,18) are shown in Fig. 19 using the calues of $a_L=0$, $a_T=1$, z=0.5 and $k_n=0.2$. It an be seen that the results corresponding to the B.T.T.F. (Fig. 18) satisfy the relaxed energy requirements (as expressed by eqn (13)) over the whole range of k's investigated. The L.D.T.T.F. vields results (Fig. 19) which satisfy the relaxed energy requirements only around the peak region of the curves. The location of this peak region (along the 1/k axis) is around $1/k_n$ and the width of the curves (in addition to their height) are controlled by the parameter 5. In addition, stiffness terms are introduced as R varies with k. These terms vanish when k=0 and tharefore do not affect the static behaviour of the system. They, however, can be used to change the response of of the system, if necessary, so as to ensure stabilization. In general, several R values can be used, having different values of kn, z and a's, if greater flexibility in the $\overline{\lambda}$ distributions

(with k) is required while using the L.D.T.T.F. (see ref. 22). For the L.E.-T.E. systems, large improvements in the values of X_{\min} are obtained (see ref. 17) with almost negligible effects on the values of X_{\max} (as compared with the T.E. alone control system).

The working forms of the above transfer functions are simplified to the following forms for purposes of subsequent applications:-

For the D.T.T.F. matrix [T] is given by

$$[T] = \begin{bmatrix} 0 & 0 \\ 0 & -1.86 \end{bmatrix} + \frac{1}{2} \frac{M}{R} \begin{bmatrix} a_{L} \\ a_{T} \end{bmatrix} \begin{bmatrix} -4. & 4. \\ 4. & 3.2 \end{bmatrix}$$
(19)

where ω_R is a reference frequency, normally chosen as the open-loop flutter frequency. For the L.D.T.T.F., matrix [T] is given by

$$[T] = \begin{bmatrix} 0, & 0, \\ 0, & -1, 8 \end{bmatrix} + \\ + \begin{bmatrix} (R_{L,1} & L_{1} + R_{L,2} & L_{1,2}) & 0 \\ 0 & (R_{T,1} & L_{1} + R_{T,2} & R_{T,2}) \end{bmatrix}, \\ \cdot \begin{bmatrix} -4, & 4, \\ 4, & 2, 8 \end{bmatrix}$$
(20)

where

$$R_{j} = \frac{(i\omega)^{2}}{(i\omega)^{2} + 2\zeta_{j}\omega_{n,j}(i\omega) + (\omega_{n,j})^{2}}$$
(21)

It can be seen that both transfer functions include parameters which can only be determined in connection with the system considered. The L.D.T.T.F. has more parameters for determination and has more potential regarding possible changes in the responses of the system. It is generally considered to te preferable to the D.T.T.F. On the other hand, the D.T.T.F. has less such parameters and, therefore, their values are much easier to determine.

Analytical Applications of the Relaxed Energy Approach

An optimization procedure was developed (22) for the determination of the various free parameters (that exist in the above transfer functions) so as to minimize control surface response to continuous gust inputs over a wide range of flight conditions. Most applications relate to T.E. alone control systems in an attempt to determine their effectiveness for flutter suppression. Extended type control laws (driven by the elastic responses of the system) were exclusively employed in all applications.

The first application of the above optimization procedure using the newly defined transfer functions was made to a violent wing flutter case of a drone aircraft⁽²⁹⁾ selected by the National Aeronautics and Space Administration for flight research programs aimed at validating active control

system concepts. A plan view drawing of the flight vehicle-research wing combination is shown in Fig. 20. Guided by previous results⁽²⁰⁾, the T.K. control surface was placed as near to the tip of each wing as was structurally possible (Fig. 21). All the serodynamic forces were computed using unsteady lifting surface doublet lattice method. The design objective of the flutter suppression system was to provide a 20% increase in flutter speed (to be demonstrated in flight) above that of the basic wing. Although detailed results regarding this case appear in ref. 22, preference will be given here to the results appearing in ref. 23 since they include comparisons with results obtained using classical control system synthesis. Table 1 presents a summary of the calculated flutter characteristics. It can be seen that both the classical and the energy methods achieve the objective set for the flutter suppression system (with somewhat higher flutter speed values using the energy method). Figure 22 shows comparisons of control surface rates and displacements. As can be seen, the maximum values for the rates (and displacements) using the energy method are around 20% lower than those produced by the classical method. In their discussion of results the authors state (23): "Two major differences result in the application of these methods. The first difference is in establishing the form, gains, and break frequencies of the shaping filter. In the classical method, this process is a function of previous experience coupled with results of analysis for the particular system being studied and in general cannot be extended to other problems. In the aerodynamic energy method, on the other hand, a fixed form of the shaping filter is given with free parameters available to fit this form to the dynamic characteristics of the system being considered. The second difference is the manner in which the gust analysis is used. In the classical method the gust is used to evaluate rates and deflections of the control system after preliminary design of the shaping filter is complete. If the rates or deflections are beyond the capability of the control system then an iterative process including changes to the shaping filter and possibly the control surface size is begun. This process is continued until both the stability and gust response requirements are met. In the energy method, the fixed form of the shaping filter allows the gust to act as a driver in establishing the free parameters which in turn permits the minimization of control surface activity while maintaining stability."

A second application has recently been made to the YF-17 flutter model $\binom{24}{4}$ with the object of suppressing the external store flutter of three different store configurations using a T.E. alone control surface. The geometrical description of the active control system is shown in Fig. 23. Note that the T.E. control surface spans only 7 per cent of each wing. The description of the three configurations is given in Table 2 and the results of the optimization procedure are given in Table 3. These latter results relate to M=O and V=98 m/s and were obtained using a dynamic pressure Q_D which is twice the value (determined arbitrarily in the absence of a definition of the desired flight envelope) of the minimum flutter dynamic pressure, corresponding to configuration B. A L.D.T.T.F. was employed and its free parameters were determined using configuration B. The resulting control law was maintained fixed during applications to

configurations A and C The significance of these results is threefold:

- A single control law with fixed gains is employed for all configurations
- 2) Very large increases in flutter dynamic pressures are obtained for all configurations
- 3) The effectiveness of the activated control system is maintained over the whole range of flight conditions (thus providing yet another confirmation regarding the potential of the relaxed energy concept).

It may also be worth noting that although the open loop configuration B is most critical from flutter considerations, the largest control surface activity corresponds to configuration C. This activity can be reduced by increasing the span of the control surface $(\sqrt{72})$ employed in this application.

A single application of a L.E.-T.E. control system has recently been made using the previously de-scribed drone aircraft. (25) It is shown that the L.E.-T.E. control system yields a closed loop system with flutter speeds which are higher than those of the T.E. alone system. In addition the activity of each of the control surfaces in the L.E.-T.E. system is much lower than that corresponding to the T.E. alone system. If, however, the performance of the two systems is judged on the basis of the maximum control surface activity (corresponding to the desired 44% increase in the flutter dynamic pressure) rather than on the maximum flutter speed, and if we further require that the performance of a system with two control surfaces be compared only with systems having two control surfaces (in this case a comparison between L.E.-T.E. and T.E.-T.E. systems) one finds that the performance of the L.E.-T.E. control system is comparable to the performance of the T.E. alone system, with slight advantage to the latter system. Although this finding may be of specific nature and need not necessarily hold true for other applications, it is of importance some it shows that a T.E. Blone control syscem can yield results which compare favourably with a L.E.-T.E. control system.

It is not unintentional that we choose to close the circle of applications by returning to the first example which served to test the potentials of the aerodynamic energy method - that is the application relating to the Boeing's supersonic transport. Comparison is now made between the results reported in reference 26, and which forms Phase II of the SST technology follow-on program, and those obtained through the use of the relaxed energy concept (27) These results relate to the full span 1/20 scale low-speed model of the Boeing 2707-300 supersonic transport. Figure 24 shows the general configuration of the model. It can be seen that two T.E. control surfaces are available for activation. The application based on classical control methods (26) attempted the activation of both control surfaces whereas the application based on the energy approach (27) attempted the activation of the outboard aileron only (based on experience gained from previous applications (20)). These results, which were obtained using lifting surface unsteady aerodynamics, are presented in Fig. 25. As can be seen, the energy method yeilds an increme in flutter speed

of 33% using the outboard aileron only (and L.D.T.T.F.) whereas the classical method yields an increase in flutter speed of 11.3% only, using both outboard and inboard ailerons. Furthermore, the energy method yields the following control surface activity of the outboard aileron, at a speed which is 16% above the inactivated flutter speed

> ⁶RHS = 25.3 deg/s/m/s ⁶RHS = 0.33 deg/m/s

These activities are not considered to be excessive. It should be noted that flutter speeds could further be increased by specifying higher flight dynamic pressures when using the gust optimization program.

Remarks on Applications using Hodern Control Theory

The author of this paper is unaware of any major comparative studies between designs based on the aerodynamic energy method and those based on modern control theory. Some use has, however, been made of the aerodvasmic energy control law (equa (11b), (1.3)) as derived for the L.E.-T.E. system in the original fermulation of the energy concept in connection with some work which employed optimal con-trol methods 120 . The above control law was sp-plied (28) to a two dimensional subsonic strip, with specified accustor dynamics included in the analvaise. The results showed that the plunge and pitch modes were stabilized throughout the range of parameter - westigated whereas the leading-edge control mode was unstable throughout this range. Such a condition on arise if one considers the control laws of the form given by eqn (3) to correspond to the constant soffections rather than to the actual definitions. It should therefore be stressed that control surface dynamics should be compensated in all applications employing the energy control laws Ho as to cause the transfer function matrix [T] to relate between the structural oscillations and the actual ontrol surface deflections. It is worst meny oning the results which correspond to the above sentioned two dimensional strip as obtained through the use of optimal control theory (28) The set is a set of the . It will be appropriate, however, to make a brief futr duction to the method used.

the linear optimal control theory requires (29) the equations of mation of the system to be brought to the following form

$${\hat{X}}_{i} = {A}{\hat{X}}_{i} + {B}{\hat{u}}$$
 (22)

where (X) represents the N state variables, |A| bit order N x N) the plant (or system) matrix; |B| (of order N x m) the control distribution matrix; and (u) (of order m) the control input vector. Both the matricas [A] and [B] (sqn 22) ar constant for s given Mach number, given flight velocity and given flight altitude. Optimal control theory requires the minimization of the performance index (PI), with equations (22) used as constraints, where PI is given by

$$PI = \int_{0}^{1} \left\{ \left[x \right] \left[Q \right] \left[x \right] + \left[u \right] \left[P \right] \left[u \right] \right\} dt \qquad (23)$$

and where $\{Q\}$ is either positive definite or positive semidefinite, and [P] is always required to be positive definite. The problem now remains of selecting the weighting matrices [Q] and [P]. For the minimization of {u}, [Q] is chosen as [Q]=0. The resulting optimized control law, which is of the form

$$u = [T] \{X\}$$
 (24)

where the Tij terms are constants, causes all the stable open-loop eigenvilues to remain unchanged while the open-loop unstable eigenvalues are re-flected about the im axis (that is, the sign of the real part of the unstable roots is reversed). This result (see also ref. 31) permits application of the "pole placement" method for the determination of the matrix [T]. Application of the above optimal control method was made to the two dimensional strip example using a T.E. only control system (28) The stabilized closed-loop system was found to become unstable below the open loop flutter speed, thus showing the importance of the sensitivity of the activated system to off-design conditions. The above system with two control surfaces was eventually stabilized by reflecting the unstable flutter eigenvalue about a line parallel to the im axis and crossing the real axis of the root locus plot at a value of 5 rads/sec. Such a reflection is arbitrary and is not, in itself, a result of application of optimal control considerations. It can thus be seen that off-design considerations forces the designet to compromise for a suboptimal system. The sevodynamic energy concept introduces these compromises in a consistent manner whereas other methods deal with this problem in an ad hoc arbitrary fashion.

An additional point which is worth noting relates to the inclusion of the actuator dynamics in the plant equations (22). It is felt that such inclu-sion (28,30) is limiting (ince parameters relating to control surface dynamics can be changed if nucessary so as to reduce control surface activity. The exclusion of control surface dynamics from the energy synthesis considerations should therefore be viewed as promoting efficiency rather than as a limitation. The form of the various R's (eqn (18)) associated with the L.D.T.T.F. have the form of an actuator transfer function. It is therefore possible to view the values of the optimized R's as representing the desired actuator dynamics. These latter values clearly indicate the changes that need to be introa and into the existing actuator.

As a linal remark, it is interesting to note that the determination of the control law using the energy concept meets none of the difficulties which characterize the optimal control approach such as problems associated with serodynamic modeling, state augmentation and eventually, the state vector identification for purposes of implementation of the control law. The use of the continuous gust program for the minimization of the control surface activity using the energy method presents absolutely no serodynamic modeling or state augmentation problems. Similarly, the relationship between the control surface deflection and the response of the wing at a specified location (see eqn (12) as an example) presents no peed for state vector identification (this is similar to the I.L.A.F. concept developed in reference 8).

Concluding Remarks

The paper presents the current state-of-the-art

of the serodynamic energy concept. Namy of the applications relating to the relayid emergy method have not yet been published. It is felt that the relaxed energy method, coupled with the gust response optimization procedure yields effective control systems for the suppression of flutter. These systems may consist of either L.E.-T.E. or T.E. alone control surfaces. These activated systems may also be used for gust load alleviation and ride control (if appropriately located) as shown in one of the early applications. There remains to extend the method to the supersonic flight regime and to test the possible advantages of deriving control laws based on the system's generalized matrices (somewhat along the lines of ref. (31) using the relaxed energy approach) rather than on the generalized two-dimensional strip model.

1

ķ

Further substantiation of results is needed using both wind tunnel models and flight test programs before attempting to incorporate some flutter suppression systems in either existing or future aircraft.

Acknowledgement

All the work performed by the author in the field of active controls was supported by MASA-Langley Research Center, through grants and through NRC Research Associateships. The author wishes to express his sincere thanks and appreciation for this support and for the continued encouragement given by the MASA (Langley) Aeroelasticity Branch throughout the years.

References

- Bisplinghoff, R.L., Ashley, H. and Halfman, R.L.: Aeroelasticity, Addison-Wesley Publishing Co., 1955.
- Garrick, I.E.: Aeroelasticity Frontiers and Beyond. J. Aircraft, September 1976.
- Dempster, J.B. and Roger, K.L.: Evaluation of B-52 Structural Response to Random Turbulence with Stability Augmentation Systems. J. Aircraft, Nov-Dec, 1967.
- Dempster, J.B. and Arnold, J.I.: Flight Test Evaluation of *C*. κdvanced Stability Augmentation System for the B-52 Aircraft. AIAA Paper No. 68-1068, Oct. 1968.
- Roger, K.L. Hodges, G.E. and Felt, L.: Active Flutter Suppression - A Flight Test Demonstration. AIAA Paper No. 74-402, Apr. 1974.
- Perisho, C.H., Triplett, W.E., and Mykytow, W.J.: Design Considerations for an Active Suppression System for Fighter Wing/Store Flutter. AGARD-CP-175, Apr. 1975.
- Honlinger, H., and Lotze, A.: Active Suppression of Aircraft Flutter. 10 be presented at the ICAS Conference, Lisbon, Sept. 1978.
- Wykes, J.H., and Mori, A.S.: Techniques and Results of an Analytical Investigation Into Controlling the Structural Modes of Flexible Aircraft. AIAA Symposium on Structural Dynamics and Aeroelasticity, Aug.-Sept. 1965.

- Wykee, J.H. and Hori, A.S.: An Analysis of Flexible Aircraft Structure Mode Control. APFDL-TR-65-190, Pt. I, U.S. Air Porce, June 1966.
- Topp, L.J.: Potential Performance Gains by Use of a Flutter Suppression System. Paper No. 7-B3, 1971 Joint Automatic Control Conference (St. Louis, Ho.), Aug. 1971.
- Thompson, G.O., and Kass, G.J.: Active Flutter Suppression - An Emerging Technology, J. Aircraft Mar. 1972.
- Many Authors: Impact of Active Control Technology on Airplane Design. AGARD CPT-157, Oct. 1974.
- Heny Authors: Active Control Systems for Load Alleviation, Flutter Suppression, and Rise Control. AGARD AG175, 1974.
- Redd, L.T., Gilman, J., Jr., Cooley. D.E. and Sevart, F.D.: Wind-Tunnel Investigation of a E-52 Model Flutter Suppression System. J. Aircraft, Nov. 1974.
- Sandford, H.C., Abel, I. and Gray, D.L.: Transonic Study of Active Flutter Suppression Sawd on an Energy Concept. MASA TR R450, Dec. 1975.
- 16. Nissim, E.: Flutter Suppression Using Active Controls Based on the Concept of Aerodynamic Energy MASA TN D-6199, Mar. 1971.
- Nissim, E.: Recent Advances in Aerodynamic Energy Concept for Flutter Suppression and Gust Alleviation Using Active Controls. MASA TN D-8519, Sept. 1977.
- Garrick, I.E.: Perspectives in Aeroelasticity. Fifth Theodore von Karman Hemorial Lecture. Israel Journal of Technology, 1972.
- Nissim, E.: Flutter Suppression and Gust Alleviation Using Active Controls. TAE Rep. No. 198 - "echnion, Israel Inst. Technol., 1974 (Available as NASA CR-138658).
- 20. Nissim, F., Caspi, A., and Lottati, I.: Application of the Aerodynamic Energy Concept to Flutter Suppression and Gust Alleviation by Use of Active Controls. NASA TN D-8212.
- Hissim, E.: Active Flutter Suppression Using Trailing-Edge and Tab Control Surfaces. J. AIAA, June, 1976.
- 22. Nissim, E., and Abel, I.: Development and Application of an Optimization Procedure for Flutter Suppression Using Active Controls. NASA TP 1137, Feb. 1978.
- Abel, I., Perry, B. III, and Hurrow, H.N.: Synthesis of Active Controls for Flutter Suppression on a Flight Research Wing. AIAA Paper 77-1062, Guidance and Control Conference, Aug. 1977.
- Nissim, E., and Lottati, I.: Active Controls for the Suppression of External Store Flutter in the YF-17 Flutter Model. Submitted for publication in J. Aircraft.

- Hissim, K.: Comparative Study Between Two Different Flutter Suppression Systems. To be published in J. Aircraft.
- 26. Gregory, R.A., Ryneveld, A.D., and Imes, R.S.: SST Technology Follow-On Program - Phase II: A Low Speed Hodel Analysis and Demonstration of Active Control Systems for Rigid Body and Flexible Hode Stability. Report No. FAA -SS-73-18, June 1974.
- Hissim, K.: Study of Active Control Systems for Application to Supersonic Cruise Aircraft To be published.
- Edward, J.W., Breakwell, J.V. and Bryson, A.E. Jr.: Active Flutter Control Using Generalized Unsteady Aerodynamic Theory. AIAA Paper No. 77-1051 Guidance and Control Conterence, Aug. 1977.

Table i: Summary of Calculated Flutter Charac-

	Baniu	. wing	Closed-loop				
Hartin	1 N - 24	introl)	Classical Er			IFT BY	
under bei bei	Dvis , ar so	Firq	Dyn press	Freq	Dyn press	Yrrq	
	×P κ	Hz	k?a	Hz	kPa	Hz	
υ,	4.1	,0.9	43.4	8.0	46.9	8.3	
a. X .	20.2	18.0	*nf	-	*NF	+	
s - 1 -		19	*NF	-	*NF		

"No flutter to sea level dynamic pressure

 Schultz, D.G. and Helsa, J.L.T State Functions and Linear Control Systems. HeGraw-Hill Book Co., 1967. Ă.

- Turner, H.R.: Active Flutter Suppression. AGARD-CP-175, Apr. 1975.
- Pinnamaneni, R. and Stearman, R.O.: Design and Analysis of Flutter Suppression Systems Through the Use of Active Controls. APOSR-TR-75-0964, Jan. 1975.

Table 2: Description of the Three Wing/Store Configurations of YF-17

Config. Description	in	X	B	c
Tip Launch	1. 1411	Aim-9E(fl#x)	Empty	Empty
W.S.1.543 W.S.1.052	Pylon Pylon	Not instal. Aim-7(rig.)	Aim-7s(rig) Not instal.	Aim-9E(r×g. Not instal
⁻ n1	(HZ)	6.5377	5.1214	7.0099
"n2		11.0111	7.5891	11.9223
'nJ	••	13.3887	14.5104	14.9007
7 n4	**	15.9500	16.2730	25.5323
*n5	**	24.3176	36.8006	38.2069
*n6	88	38.2780	38.5456	41.3348
"n7		44.4797	43.0960	46.9919

wn,i natural frequency of the ith elastic mode. (HZ).

lable 31 Summary of Results: Three wing/store configurations of YF-17 with activated outboard T.E. control using I.D.T.T.F. and V = 98 m/s

------ * * ------

	Basi. W (no con	ing trol)				CLOSE	1 D - LO	0 P			
SIRUCT. DAMPING	g	• 0		g = 0				s = 0.015		g = 0.03	
Config.	Flutter Dyn. Press, kPa	Freq.	Flutter Dyn. Press. kPa	Freq.	Max* RMS Control Rate deg/s/m/s	Max* RMS Control Rotation deg/m/s	Max* RMS Control Rate deg/s/m/s	Max* RMS Control Rotation deg/m/s	Max* MMS Control Rate deg/s/m/s	Max* RMS Contml Rotation deg/m/s	
A	3.64	80	8.91	10	83	2.39	72	2.23	65	2.10	
R	2.63	43	8.95 8.95	10 37	161	4.17	87	2.53	68	2.17	
¢	4.31	65	8.52	10	156	3.15	121	2.69	104	2.49	

* Values relate to flights up to dyn. press. of 5.26 kPa

ł

Fig. 4. λ_{min} vs 1/k at various Mach numbers. Wing strip with L.E.-T.E. controls using eqns (11), (11b).

Fig. 5. λ_{\min} is 1/k for N 4 lows values of ω/ω_r . Wing strip with L.E.-T.E. controls using eqns (11b), (12).

Fig. 6. Effectiveness of L.E.-T.E. system as flutter suppressor for SST type wing with engines.

Fig. 7. Root locus plot comparing the unmodified airplane with modified one for combined case B and C of Fig. 6.

Fig. 8. Experimental wing for flutter suppression shown mounted in the Langley transonic dynamic tunnel.

Fig. 9. Plan view of Arava STOL Transport.

Fig. 11. Strip aliocations along wing and horizontal tail of Araya and Westwind aircraft.

Fig. 12. Variation with time of wing root bending moment. Westwind transport with activated L.E.-T.E. system at strip 4 and with δ_{max}=0.5 rad.

Fig. 13. Variation with time of wing root bending moment. Westwind transport with activated L.E.-T.E. system at strip 10 and with δmax=0.5 rad.

Fig. 14. Variation with time of wing root bending moment. Westwind transport with activated L.E.-T.E. system at strip 4 and with δ_{max}=0. rad. (using extended control law).

Fig. 15. Variation with time of linear acceleration at center of gravity. We with activated I.E.-T.E. system at strip 10 and with $\delta_{max}=0.5$ rad.

Fig. 16. Variation with time of linear acceleration at center of gravity. Westwind transport with activated L.E.-T.E. system at strip 6 and with $\delta_{max}=0.5$ rad. (using extended control law).

.

ĩ

Fig. 18. $\overline{\lambda}_{\min}$ and $\overline{\lambda}_{\max}$ vs 1/k at various Mach numbers. Wing strip with T.E. control using D.T.T.F.

Fig. 17. $\overline{\lambda}_{min}$ and $\overline{\lambda}_{max}$ vs l/k at various Mach numbers. Wing strip with no control surfaces.

Fig. 20. Plan view of drone research vehicle (linear dimensions are in meters).

Fig. 23. Flan view (schematic) of YF-17 flutter model.

Fig. 21. Geometrical description of active control system for the drone vehicle.

Fig. 24. General configuration of the SST model.

Fig. 22. Comparisons of control surface rates and displacements for the drone vahicle.

Fig. 25. Flutter results for the SST model.

ACTIVE EXTERNAL STORE FLUTTER SUPPRESSION IN THE MODIFIED YF-17 FLUTTER MODEL

by

E. Nissim* and I. Lottati**

Department of Aeronautical Engineering, Technion - Israel Institute of Technology, Haifa, Israel

* Professor

.

** Aeronautical Engineer

INTRODUCTION

The investigation reported in this work relates to the suppression of external store flutter in the YF-17 flutter model. Configuration B was specified for the above purpose with the objective of enabling the activated model to be tested in a wind tunnel at Mach number M = 0.8 and at dynamic pressures up to 69% above open loop flutter dynamic pressure. A schematic plan view of the model is shown in Fig. 1. Two control surfaces are available for activation: A leading-edge (L.E.) control and a trailing edge (T.E.) control. Control laws are defined in an attempt to meet the above mentioned objectives. No attempt is made, however, to get into the details associated with the mechanization of the control laws obtained.

Mathematical Model

The dynamic characteristics of the model were supplied by NASA. They included generalized masses, natural frequencies and mode shapes for 10 symmetric structural modes in addition to two rigid body modes. The generalized aerodynamic forces were computed using the Doublet-Lattice method with 126 boxes on each wing and 32 boxes on each half horizontal tail.

The formulation of the equations of motion and synthesis techniques ⁽¹⁾ are based on the relaxed aerodynamic energy approach ⁽²⁾. The general form of the control law employed was established in Ref. (2) and is given by the following expressions

-1-

$$\begin{bmatrix} p \\ -q \end{bmatrix} = \begin{pmatrix} -a & 0 \\ -a & -1 & -86 \end{pmatrix} + \begin{bmatrix} R_{1,-1} & 0 \\ 0 & R_{T,E} \end{bmatrix} \begin{bmatrix} -4 & 4 \\ -4 & 2 & -8 \end{bmatrix} \begin{pmatrix} \frac{h_1 - h_r}{b} \\ \alpha_1 - \alpha_r \end{pmatrix}$$
(1a)

where β and δ are the deflections of the L.E. and T.E. control surfaces, respectively, and where h_1 , a_1 denote the translation and rotation of the 30 per cent chord point at the control surface and span section respectively (see Fig. 1). The parameters h_r and a_r startarly denote the translation and rotation of a reference point located along the center line of the taselage and b denotes the semimord length at the control surface and span section. The K^{*} are given by the following expressions

$$K = \frac{a_1 s^2}{1 \omega_n s + \omega_n^2} + \frac{a_2 s^2}{s^2 + \omega_n^2} = \frac{a_2 s^2}{s + \omega_n^2}$$
(1b)

Š

where s = 10 and where ω represents the frequency of oscillation. The parameters a_1, \cdots_i, a_n are all positive and their values determined by an optimization program based on the gast response of the model following the method of Ref. 1. The parameters in Fi. (1) will be undescribed by either L.E. on F.F. to indicate reference to either where in both control law transies functions, respectively.

Presentation and Discussion of Results

The root locus plot for the open loop system, with the dynamic pressure Q_p acting as a parameter, is shown in Fig. 2. As can be seen the value of the dynamic pressure at flutter (Q_{D_F}) is equal to $Q_{D_F} = 84$ psf. with frequency $\omega = 36.6$ rad/s. Activation of the T.E. alone yielded only marginal results, indicating the need to relocate the control surface (see also Ref. 3). The L.E. alone yielded better results but since these results originate from changes in the responses associated with the energy eigenvectors and not from changes in the energy eigenvalues (as required by the relaxed energy approach), the work based on a L.E. alone system was not pursued. Hence, the work to be reported herein will relate to a combined L.E. - T.E. system (at M = 0.8).

The control laws derived from the energy approach neglected the effectis of control surface mass unbalance in an attempt to obtain generalized results. An activated system with mass-balanced control surfaces was therefore tested first. The synthesis technique yielded the following control law by specifying that the model should fly at a maximum dynamic pressure ($Q_{D_{max}}$) of 143 psf., and by attempting to minimize the control surface rates of the system:-

$$R_{T.E.} = \frac{1.62 \text{ s}^2}{\text{s}^2 + 2 \times 1 \times 4 \times \text{s} + (4)^2} + \frac{15. \text{ s}^2}{\text{s}^2 + 2 \times 0.5 \times 57 \times \text{s} + (57)^2}$$

$$R_{L.E.} = \frac{4.07 \text{ s}^2}{\text{s}^2 + 2 \times 1 \times 41.5 \times \text{s} + (41.5)^2}$$
(2)

with (g = 0., structural damping)
$\dot{\beta}_{rms} = 16.04 \text{ deg/s/ft/s}$ $\beta_{rms} = 0.31 \text{ dec/ft/s}$ $\dot{\delta}_{rms} = 15.21 \text{ deg/s/ft/s}$ $\delta_{rms} = 0.29 \text{ deg/ft/s}$

The optimization was constrained to yield control surfaces with nearly equal values of control rates. The closed loop root locus plot for the above activated system is shown in Fig. 3. As can be seen, flutter has completely been suppressed up to a dynamic pressure of 200 psf (maximum value used in plotting all the root locus plots to be presented herein).

The introduction of control surface mass unbalance has modified the root-locus plot (Fig. 4) to such an extent that instabilities cover most of the flight dynamic pressures. A careful examination of the variation of R with frequency (Fig. 5) and its effects on the flutter speed has shown that the aerodynamic and inertial stability effects are not compatible. The gust optimization program was constrained to yield maximum aerodynamic damping around the flutter frequency only while minimizing the control activity at higher frequencies. This approach yields the following values for the control law parameters:

$$R_{T.E.} = \frac{1.88 \text{ s}^2}{\text{s}^2 + 2 \times 0.16 \times 39.1 \times \text{s} + (39.1)^2}$$

$$R_{L.E.} = \frac{1.26 \text{ s}^2}{\text{s}^2 + 2 \times 0.29 \times 38.8 \times \text{s} + (38.8)^2}$$
(3)

3

with (g = 0., structural damping)

-4-

$$\delta_{rms} = 14.66$$
 deg/s/ft/s
 $\delta_{rms} = 0.44$ deg/ft/s
 $\dot{\beta}_{rms} = 14.26$ deg/s/ft/s
 $\dot{\beta}_{rms} = 0.4$ deg/ft/s

The root locus plot associated with the above control system is shown in Fig. 6. As can be seen, except for a small region of instability at very low values of Q_D (which is counteracted by normal structural damping) no flutter exists up to $Q_D = 200$ psf. The above control law will be referred to as control kw I. The variation of the control surfaces activity with Q_D is shown in Fig. 7 and a sensitivity variation of the T.E. control rate activity (as an example) with the control parameters is shown in Fig. 8. Cancellation of the parameter $C_{21} = -1.86$ (eq. 1a) simplifies the control law and shows no effect on stability (figures not included).

A second alternative control law (to be referred to as control law II) was attempted by trying to match the flutter and inertial stability requirements at the various regions of frequency. This was done by using the synthesis rechnique⁽¹⁾ in the presence of a filter $(\frac{300}{s+300})$ which multiplies the transfer functions shown in Eq. (1a). The results for the control parameters are given by

$$R_{T.E.} = \frac{4 s^2}{s^2 + 2 \times 0.43 \times 57.4 \times s + (57.4)^2}$$

$$R_{L.E.} = \frac{2.07 s^2}{s^4 + 2 \times 0.5 \times 41.5 \times s + (41.5)^2}$$
(4)

with (g = 0, structural damping)

$$\dot{\delta}_{rms} = 21.38$$
 deg/s/ft/s
 $\delta_{rms} = .51$ deg/ft/s
 $\dot{\beta}_{rms} = 19.35$ deg/s/ft/s
 $\beta_{rms} = .52$ deg/ft/s

The closed loop root locus plot is shown in Fig. 9. As can be seen, there is no flutter up to $Q_D = 200$ psf. The variation of the control surface activities with Q_D is shown, for control law II, in Fig. 10. A sensitivity variation of the T.E. control rate (as an example) with the control parameters is shown in Fig. 11. The cancellation of $C_{21} = -1.86$ introduces in this case a flutter instability, at $Q_D = 145$ psf (see Fig. 12). Therefore $C_{21} = -1.86$ has to be retained. This implies that the acceleration signals have to be integrated. Integrations of the form $\frac{1}{s+\epsilon}$ and $\frac{1}{(s+\epsilon)^2}$ had been tested in the region of $0.1 < \epsilon < 1$. and no visible effects could be detected on the root locus plots (figures not included).

The block diagrams for the above two control laws are presented in Figs. 13, 14.

Acknowledgement

The work reported herein is a part of a study supported by NASA through its Aeroelasticity Branch at the Langley Research Center (under Grant NSG 7373).

-6-

REFERENCES

- Nissim, E.; and Abel, I.; "Development and application of an optimization procedure for flutter suppression using the aerodynamic energy concept", NASA TP 1137, Feb. 1978.
- Nissim, E.; "Recent advances in aerodynamic energy concept for flutter suppression and gust alleviation using active controls," NASA TN D-8519, 1977.
- Nissim, E.; and Lottati, I.; "Active external store flutter suppression in the YF-17 flutter model", to be published in J. Guidance and Control, May 1979.

ł

Figure 2: Open loop rout locus plot (M = 0.8)

Closed loop root locus plot using control law obtained with mass balanced control surfaces (M = 0.8) Figure 3:

Figure 4: Closed 1000 root locus plot after introduction of control surfaces mass unbalance (using control law obtained for mass balanced system) at M = 0.6.

ļ

ľ

Figure 7a: T.E. control rate

Variation with Q_D of control surface activity, using control law I with unbalanced control surfaces (M = 0.8) Figure 7:

ŗ

•

ł

Figure 7d: L.E. control deflection

.

.

Figure 8:

Variation of T.E. control rate with control law parameters using control law I with $Q_D = 1+3$ psf (M = 0.2, unbalanced control surfaces)

÷

.

Figure 8c: Variation with $f_{\mathrm{T.E.}}$

-7

3

Figure 9: Closed loop root locus plot using control law II with unbalanced control surfaces (M = 0.8)

Figure 10c: L.E. control rate

à

÷

.

ĭ

5 .

Figure 12: Glosed loop root locus plot using control law II with unblanced control surfaces and with $C_{21} = 0$ (M = 0.8).

•

) , Figure 14: Block diagram representation of control 2.4 75 (with C

Ī

ACTIVE EXTERNAL STORE FLUTTER SUPPRESSION IN THE MODIFIED

YF-17 FLUTTER MODEL:

ANALYSIS VS. WIND TUNNEL TESTS

by

E. Nissim* and I. Lottati**

Department of Aeronautical Engineering Technion - Israel Institute of Techrology, Haifa, Israel

The work reported herein is a part of a study supported by NASA through its Aeroelasticity Branch at the Langley Research Center (under Grant NSG 7373).

T

* Professor

** Lecturer

INTRODUCTION

The investigation reported in this hork relates to the suppression of external store flutter in the YF-17 flutter model. Configuration B was specified for the above purpose with the objective of enabling the activated model to be tested in a wind tunnel at Mach number M = 0.8 and at dynamic pressures up to 69% above the open loop flutter dynamic pressure. Two control laws were derived at an earlier stage of this work¹, and were shown to yield the desired flutter suppression capability through the activation of a combined leading-edge (L.F.) - Trailing-edge (f.E.) control system.

The mechanization of one of the derived control laws was carried out by Northrop and subsequently, the flutter stability augmented YF-17 model was tested in the Langley 16 ft transonic dynamic tunnel. The test results, as reported to the authors of the present work, showed no correlation with the analysis and the tunnel tests were discontinued at a dynamic pressure which was below the open loop flutter dynamic pressure.

The object of the present paper is to present a critical review of the analysis versus the test results and to indicate the sources of the discrepancies obtained. For convenience, some of the major result reported in Reference 1 will be presented herein once again.
ANALYTICAL RESULTS¹ - INITIAL MODEL

Background

The analytical results reported in Ref. 1 were based on a dynamic model supplied by NASA. It included generalized masses, natural frequencies and mode shapes for 10 symmetric structural modes and two rigid body modes. The generalized aerodynamic forces were computed using the Doublet-Lattice method with 126 boxes on each wing and 32 boxes on each half horizontal tail. The box allocation was identical to the one appearing in the Northrop report supplied to the authors of this paper.

2 -

The general form of the control laws is given by the following expression

$$\begin{cases} \beta \\ \delta \end{cases} = \left(\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & C_{22} \end{bmatrix} + \begin{bmatrix} R_{L,E}, & 0 \\ 0 & R_{T,F} \end{bmatrix} \begin{bmatrix} -4 & 4 \\ 4 & 2,8 \end{bmatrix} \right) \left\{ \begin{array}{c} \frac{h_1 - h_r}{b} \\ \alpha_1 - \alpha_r \end{array} \right\}$$
(1)

where β and δ are the deflections of the L.F. and T.E. control surfaces, respectively, and where h_1 , α_1 denote the translation and rotation of the 30 percent chord point at the control surface mid-span section, respectively (see Fig. 1). The parameters h_r and α_r similarly denote the translation and rotation of a reference point located along the center line of the fuse lage and b denotes the semi-chord length at the control surface mid span section. The R's represent transfer functions which are dependent on S where $S = i\omega$.

3

Open Loop Results:

The root locus plot for the open loop system, with the dynamic pressure $Q_{\rm D}$ acting as a parameter, is shown in Fig. 2. As can be seen, the value of the dynamic pressure at flutter $(Q_{\rm DF})$ is equal to $Q_{\rm DF} = 84$ PSF, with frequency $\omega = 30.6$ rad/s.

- 3 -

Closed Loop Results:

Activation of the T.E. alone yielded only marginal improvements in $P_{\rm DF}$, indicating the need to relocate the control surface (see also kefs. 2,3). The L.E. alone yielded better results but since these results originated .om changes in responses associated with the energy eigenvectors and not from changes in the energy eigenvalues (as required by the energy approach), the work based on a L.E. alone system was not persued. Hence, the work reported herein relates to a combined L.E.-T.F. system (at M = 0.8).

Two closed loop L.E.-T.E. control laws were derived and presented in Ref. 1. They are presented once again in the following for sake of completeness.

Control Law 1:

In this control law $C_{22} = 0$ and the R's appearing in Eq.(1) are given by

$$R_{T.t.} = \frac{1.88 \text{ s}^2}{\text{s}^2 + 2 \times 0.16 \times 39.1 \times \text{s} + (39.1)^2}$$
(2)

$$R_{1.E.} = \frac{1.26 \text{ s}^2}{\text{s}^2 + 2 \times 0.29 \times 38.8 \times \text{s} + (38.8)^2}$$

3

(2)

The root locus plot associated with the above control system is shown in Fig. 3, (assuming zero structural damping, g = 0). As can be meen, except for a small region of instability at very low values of $Q_{\rm D}$ (which is counteracted by normal structural damping), no flutter exists up to $Q_{\rm D} = 200$ psf. The maximum control activity (at $Q_{\rm D} = 143$ psf, corresponding to the highest specified $Q_{\rm D}$) is given by (for g=0)

$$\dot{\delta}_{rms} = 14.86 \text{ deg/s/ft/s}$$

 $\delta_{rms} = 0.44 \text{ deg/ft/s}$
 $\dot{\beta}_{rms} = 14.26 \text{ deg/s/ft/s}$
 $\dot{\beta}_{rms} = 0.4 \text{ deg/ft/s}$

The variation of the control activity with $q_{\rm D}$ for various values of g is shown in Fig. 4. The bloch diagram for the control system associated with control law 1 is shown in Fig. 4.

At this stage it may be observed that the R's presented in Eq.(2) represent transfer functions of second order systems. Since actuators often have the form of third order systems, it was decided to increase the order or the R's to yield three poles, so that normal actuators may be compensated through the newly derived control law. This point will be made clear in the following section.

Control Law II:

This control law was derived by using the synthesis technique⁴ in the presence of a filter 300/(S+300) which multiplies the transfer functions shown in Eq.(1). The above value of 300 was determined following a parametric study in conjunction with the synthesis technique mentioned earlier. The values obtained for the R's appearing in Eq.(1) are given by

$$R_{T.E.} = \frac{4S^2}{S^2 + 2 \times 0.43 \times 57.4 \times S + (57.4)^2}$$

$$R_{L.E.} = \frac{2.07S^2}{S^2 + 2 \times 0.5 \times 41.5 \times S + (41.5)^2}$$
(3)

with $C_{22} = -1.86$ and g = 0.

The closed loop root locus plot (with g = 0) is shown in Fig. 6. As can be seen, there is no flutter up to $Q_D = 200$ psf. The maximum control activity (for g = 0) is given at $Q_D = 143$ psf by the following values:

$$\delta_{rms} = 21.38 \text{ deg/s/ft/s}$$

 $\delta_{rms} = 0.51 \text{ deg/ft/s}$
 $\beta_{rms} = 19.35 \text{ deg/s/ft/s}$
 $\beta_{rms} = 0.52 \text{ deg/ft/s}$.

The variation of the control activity with $Q_{||}$ for various values of g is shown in Fig. 7. Since $C_{22} \neq 0$ in this case, (cancellation of C_{22}

leads to flutter at $Q_D = 145 \text{ psf}$, this implies that acceleration signals have to be integrated. Integrations of the form $1/(S+\varepsilon)$ and $1/(S+\varepsilon)^2$ had been tested in the region of $0.1 \le \varepsilon \le 1$ and no visible effects could be detected on the root locus plots.

The block diagram for the above control law is presented in Fi_b . 8. The transfer functions representing third order systems can clearly be seen in Fig. 8. Furthermore, a third order actuator can readily be compensated. This can be illustrated for the T.L. control surface having an actuator transfer function T(S) of the form

$$T(S) = \frac{\omega_n^2 d}{(S^2 + 2 * \zeta * \omega_n \times S + \omega_n^2)(S + d)}$$
(4)

The following compensation procedure (see Fig. 9)

$$\frac{300}{(s+300)(s^{2}+2\times0.43\times57.4\cdot s+(57.4)^{2})} = \frac{300\times(s^{2}+2\times0.43\times57.4\cdot s+(57.4)^{2})}{(s+300)(s^{2}+2\times0.43\times57.4\times s+(57.4)^{2})\times\omega_{n}^{2}}d^{*} T(s)$$

can be seen to yield the same effective control law.

Summary of Analysis:

Two control laws were derived. Control Law I, suitable for second order actuators and Control Law II suitable for third order actuators.

T

CONTROL SYSTEM MECHANIZATION FOR WIND TUNNEL TESTING

1

, ł

ì

Control law II was chosen for the mechanization performed by Northrop. Fig. 9 represents the block diagram of the L.E.-T.E. control system. The control surface actuator transfer functions are denoted by $G_{S,L.E.}$ and $G_{S,T.E.}$ and are defined by the following expressions:

$$G_{S,L,L} = \frac{\left(\frac{S+24}{24}\right)\left(\frac{S+260}{260}\right)}{\left(\frac{S+28}{28}\right)\left(\frac{S+94}{94}\right)\left(\frac{S^2+204S+28,900}{28,900}\right)\left(\frac{S^2+616S+193,600}{193,600}\right)}$$
(5)

THESE EXPRESSIONS WERE SUPPLIED TO THE PRESENT NUTHORS LONG AFTER CONTROL LAWS 5 AND 2 WERE DETERMINED AND PRESENTED AT NASA, As can be seen, the above actuator transfer functions include some

built in filters which were introduced by Northrop. As a result, the effective expressions for the transfer functions in the mechanized system are given by

$$T(S)_{L.E.,EFF.} = \frac{\left(\frac{S+24}{24}\right)\left(\frac{S+260}{260}\right)}{\left(\frac{S+28}{28}\right)\left(\frac{S^2+204S+28,900}{23,900}\right)\left(\frac{S^2+616S+193,600}{193,600}\right)} T(S)_{L.E.}$$
(6)

3

ž,

$$T(S)_{T.E.,EFF.} = \frac{\left(\frac{S+260}{260}\right)}{\left(\frac{S^2+440S+98,596}{98,596}\right)^*} T(S)_{T.E.}$$

where $T(S)_{L,E,r}$, $T(S)_{T,E,r}$ denote the desired transfer functions.

- 7 -

As can be seen, the effective control law had been varied by a considerable factor representing an additional transfer function. As a result, the mechanized control law represents a different control law than the original control law II. Furthermore, the integration in Fig. 10 was performed by 1/(S+5) (instead of 1/(S+c), with $0.1 \le c \le 1$) without checking its possible effects. It is also tacitly assumed that proper account had been taken of the accelerometers and actuators' sensitivities (does not appear in the block diagram in Fig. 9). It is further assumed that the changes between the assumed accelerometer locations and the actual locations are too small to have any significant effects on the gains of control law II.

At this stage, the authors of this paper decided to rederive the control law, in the presence of $G_{S,I.E.}$, $G_{S,T.E.}$ and some additional filters used by Northrop (denoted by H(S)). The results of this latter analysis are presented in Appendix 1, and are based on an updated dynamic model and a refined calculation of the aerodynamic forces. This latter andel was supplied by Northrop, through NASA. It arrived too late to be included in the derivation of control laws I and II.

Infortunately, the results appearing in Appendix 1 arrived Northrop at to late a stage to be incorporated into the tunnel model. Consequently, the tunnel tests were performed using the $T(S)_{L.E.,EFF}$ and $T(S)_{T.E.,EFF}$ (see Eq.(6)), which are different from $T(S)_{L.E.}$ and $T(S)_{T.E.}$ of control law II (based on an older mathematical model).

- 8 -

WIND TUNNEL TEST RESULTS

The wind tunnel test results as reported to the authors of this paper, reveal the following picture:

"Because of high frequency problems associated with the control law, and a lack of knowledge concerning this law, testing could not be continued above a dynamic pressure of 70 psf. This was a condition below passive flutter ($q_F = 75$ psf). Attachments 1, 2, and 3 are included to assist in describing the problems encountered in the tunnel. The first attachment presents zero airspeed transfer functions for the control law using either the leading or trailing edge surface as input. As can be seen, the gains are quite high across the frequency range. This is particularly true for the T.E. surface. Attachment 2 presents peak hold data taken during the test, while attachment 3 provides model response data at the various test points.

Initial tests indicated significant wing response near 30 HZ. Response data for test point 419 with the expanded time scale illustrates the problem which is particularly noticeable in the wing bending response. For test point 414, the control law was turned off while a Northrop leading edge law was activated. This also shows the significant frequency content of the command signals.

Since there was no one available at the test who could offer guidance in modifying the control law, ..., 30 HZ notch filters were incorporated into the control law. With this change, test point 475 still shows some high frequency content and significant L.E. commands. As a result, the

Ĩ

- 9 -

global gain was reduced 25%. While increasing dynamic pressure from 65 to 70 psf, a divergent oscillation was encountered and the control law was deactivated. The frequency of the divergent oscillation was about 14 HZ. Further modifications to the control law were not attempted. All high frequency modifications affect the performance of the overall control law and without guidance it was not practical to compensate for these changes in the flutter frequency range."

Part of the attachment 3, relating to test point 419, is presented herein as Fig. 10.

ANALYSIS OF WIND-TUNNEL TEST RESULTS

It was found impossible even to attempt any correlation between analysis and test results, since the control laws used in each case were widely different. The changes introduced in control law II (see Eq.(6)) include high frequency transfer functions which, as noted in the previous section, "affect the performance of the overall control law." Consequently, it was decided to analyze the control law, as mechanized by Northrop, and compare the analytical results with those obtained during the wind-tunnel tests.

The new analysis reported herein, is based on the updated mathematical model and the refined aerodynamic coefficients. Since the wind tunnel problems reported above relate to high frequency regions, no attempts are

- 10 -

made to investigate the possible effects of the 1/(s+5) integration. The effective control law tested in the wind tunnel is given by the following expressions

ŝ

t

$$\begin{cases} \beta \\ \delta \end{cases} = \frac{300}{\mathbf{S} + 300} \begin{bmatrix} \overline{\mathbf{Q}}_{\text{L.E.}} & \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix} \begin{bmatrix} \overline{\mathbf{0}} & \mathbf{0} \\ \mathbf{0} \end{bmatrix} + \begin{bmatrix} \overline{\mathbf{R}}_{\text{L.E.}} & \mathbf{0} \\ \mathbf{0} \end{bmatrix} \times \begin{bmatrix} \mathbf{0} \\ \mathbf{0}$$

where $Q_{L,E}$, and $Q_{T,E}$, are the transfer functions transforming the original control law 11 into the mechanized control law II, and where $R_{L,E}$, and $R_{T,E}$ are defined in Eq.(3). Using Eq.(6) the following relations can be written

$$Q_{L,E,}(S) = \frac{\left(\frac{S+24}{24}\right)\left(\frac{S+260}{260}\right)}{\left(\frac{S+28}{28}\right)\left(\frac{S^2+204S+28,900}{28,900}\right)\left(\frac{S^2+616S+193,600}{193,600}\right)}$$
(8)

3

$$Q_{T.E.}(S) = \frac{\left(\frac{S+260}{260}\right)}{\left(\frac{S^2+440S+98,596}{98,596}\right)}$$

The control law defined in Eqs.(3), (7), (8), will be referred to as the Northrop modified control law II.

- 11 -

The root locus plot for the closed loop system is shown in Fig. 11 (with g = 0). Similarly, for comparison purposes, the closed loop root locus plot for the original control law II, but with the updated dynamical model and aerodynamics, is shown in Fig. 12. As can be seen, the changes in the mathematical model degrade the root locus plot for the original control law II (Fig. 12). For g = 0 flutter occurs at $Q_{DF} = 128$ psf, whereas for g = 0.015, flutter occurs at $Q_{DF} = 152$ psf. In addition, there is a lower frequency flutter branch yielding $Q_{DF} = 143$ psf (g = 0) with $\omega_F = 16$ rad/s, and a high frequency negative damping mode at around $\omega = 270$ rad/s. This latter high frequency mode becomes stable for values of $g \ge 0.015$. It can be concluded that the updating of the mathematical model, especially the changes introduced in the control surface aerodynamic coefficients, degrades the closed loop performance of control law II (see for comparison Fig. 6) to the extent which warrants its modification.

The root locus plot for the Northrop modified control law II (Fig. 11) shows flutter at $Q_{DF} = 68 \text{ psf}$ (g = 0) or $Q_{DF} = 82 \text{ psf}$ with g = 0.015. The flutter frequency lies around 110-115 rad/s. In addition, some high frequency modes show low damping when compared to the g = 0.015 line shown in Fig. 11. Hence, there is no wonder that the wind tunnel tests could not proceed beyond $Q_D = 70 \text{ psf}$. Furthermore, at $Q_D = 60 \text{ psf}$ (relating to TP 419, see also Fig. 10) low damping modes can be observed at $\omega = 160 \text{ rad/s}$ and around $\omega = 260 \text{ rad/s}$, thus explaining the high . frequency content of the responses of the system and of the control signals.

An example of PSD representation for control surface deflections, using the Northrop modified control law II, is shown in Figs. 13, 14 (with values

3

- 12 -

ĩ

ì

of g as defined by ground resonance tests (GRT)). Fig. 13 shows the PSD representation for β_{out} and δ_{out} (at $Q_D = 60 \text{ psf}$) and Fig. 14 shows a similar representation for β_{in} and δ_{in} (also at $Q_D = 60 \text{ psf}$). These latter figures were computed for comparison purposes with the test recordings, shown in Fig. 10.

Three main points emerge from the above comparison: First -- both Figs. 10, 13, show correlation with respect to the low frequency content (around 15-17 HZ) of the δ_{out} signal, and with respect to the lack of any significant high frequency signal. Second -- both Figs. 10, 14 show that β_{in} has the larger thigh frequency content (around 40-50 HZ). Third -- β_{out} in both Figs. 10, 14 show lower amplitudes in the high frequencies of order 15 and 40 HT can be seen in both figures.

The analytical simulation of the wind tunnel test results relating to the 34 HZ notch filter was found impossible since no data regarding the notch filter was supplied to the authors of this work.

The control surface activity, with values of g as determined by GRT of the model, at various values of Q_D , are shown in Fig. 15 for the Northrop modified control law II. The control activities can be seen to be much larger than those relating to the original control law II (by a factor of about 3) and presented in Fig.7.

- 13 -

CONCLUDING REMARKS

The control law, as mechanized by Northrop and tested in the wind tunnel, bears no analytical resemblance to the original control law II. The main deviation lies in the form of the effective control law used, which does not compensate for the actuator transfer functions (part of them could have easily been compensated). A second, smaller deviation, originates from the fact that control law II was derived using the older mathematical model (the updated model was sent too late to be included in the original analysis). The control surface aerodynamic derivatives in the updated model were computed by Northrop using a more rational box allocation over the control surfaces than in the older model (both computations used the Doublet Lattice method).

The analytical simulation of the flutter suppression performance of the YF-17 model (using control law II, as mechanized by Northrop) shows good correlation with the wind tunnel tests both with respect to flutter dynamic pressure and to the response characteristics of the model.

- 14 -

REFERENCES

- Nissim, E., and Lottati, I., "Active External Store Flutter Suppression In the Modified YF-17 Flutter Model," Report sent to NASA, April 1979.
- Nissim, E., "Recent Advances in the Aerodynamic Energy Concept for Flutter Suppression and Gust Alleviation Using Active Controls," NASA TN-D 8519, 1977.
- Nissim, E., and Lottati, I., "Active External Store Flutter Suppression in the YF-17 Flutter Model," J. Guidance and Control, Sept.-Oct. 1979.
- 4. Nissim, E., and Abel, I., "Development and Application of an Optimization Procedure for Flutter Suppression Using the Aerodynamic Energy Concept," NASA TP-1137, 1978.

APPENDIX 1: OPTIMIZATION OF A CONTROL LAW IN THE PRESENCE OF TRANSFER FUNCTIONS REPRESENTING ACTUATORS AND FILTERS.

ŧ

The control law for the $Y\Gamma$ -17 flutter model has been recomputed using the following data:

(a) The new mode shapes and dynamic data and the new aerodynamic coefficients.

(b) The new sensor locations (at W.S. 51.45 instead of W.S. 44.85 previously used).

(c) Incorporation of the following filters for both the L.E. and T.E. control surfaces, following a specific request.

$$H(S) = \frac{S^2 + 21S + (213)^2}{S^2 + 299S + (213)^2} + \frac{S^2 + (552.6)^2}{S^2 + 552S + (552.6)^2} + \frac{(264)^2}{S^2 + 264S + (264)^2}$$

(d) Incorporation of the following actuator transfer functions taken from Northrop's papers attached to the above mentioned letter:

$$G_{S,T,E} = \frac{S+260}{260} \cdot \frac{124}{S+124} \cdot \frac{(138)^2}{S^2+138S^2} \cdot \frac{(314)^2}{S^2+440S+(314)^2}$$

$$G_{S,L.E.} = \frac{S+24}{24} \cdot \frac{S+260}{260} \cdot \frac{28}{S+28} \cdot \frac{94}{S+94} \cdot \frac{(170)^2}{s^2+204S+(170)^2} \cdot \frac{(440)^2}{s^2+616S+(440)^2}$$

3

The results presented earlier¹ employ an older set of dynamic data and were computed using the doublet lattice box distribution used by Northrop at an earlier stage of the work. None of the filters H(S) and G(S) were

- 16 -

then used, although G(S) could have partially been accounted for by a simple transfer function compensation.

No attempt was made to rederive the previous control laws, using the new information included in the above paragraphs (a) and (b). Instead, the recomputation includes all the new elements mentioned in the above paragraphs (a) through (d).

Before presenting the new results it should be stressed that the constraints imposed by having to use the filters denoted by H(S) and the form of G(S) which appear to include compensation filters, do not seem to be justified. These filters represent an integral part of the control law developed by Northrop and they were required for stabilization of their resulting closed loop system. It is difficult to see the need for their introduction herein since if it is assumed that the mathematical representation is satisfactory, why is it not possible to rely on the control laws previously derived, which stabilize the closed loop system and have to resort to the statement that "based on previous testing experience, Northrop has found it necessary to insert filters in all the feedback signals to prevent system instability?" If, on the other hand, the mathematical model is not satisfactory, then there is no value to the present results and there is very little trust one can put in them.

As already mentioned, the above constraints were adopted in the new computations (some of these constraints were eventually compensated by the introduction of appropriate transfer functions in the control laws).

It was found possible to stabilize the system by using different control laws which yielded reasonably high futter margins. The chosen

3

- 17 -

control law gives the smallest flutter margin but shows the best behaviour at lower values of dynamic pressure and at lower values of structural damping (g). The results include a root locus computer run which includes the values of g defined during GRT of the model. To cut down labour, the results are brought to the form used by Northrop (degrees per g) and their sign convention is used (in this Appendix only).

Finally, before presenting the results, attention should be drawn to the fact that the control law requires that a free flying model (that is, having plunge and pitch degrees of freedom) should be fitted with reference accelerometers located along the center line of the fuselage. or near it In the present results, the location used for these accelerometers is denoted.

- 18 -

RESULTS - YF 17

Sensor Location, Units and Sign Convention:

Four accelerometers are used, a_1 , a_2 , a_{r1} , a_{r2} . The accelereometers a_1, a_2 are located at W.S. 51.45, F.S. 145.18 (25% C) and F.S. 158.00 (76%C) respectively. The accelerometers a_{r1} and a_{r2} are located along the fuselage centerline, at F.S. 131.85 and F.S. 165.5 respectively. The accelerations are positive downwards and the units are assumed to be given in "g" units. The deflection of the control surfaces is given in degrees with positive rotations obtained by deflecting the T.E. control downwards ($\delta_{T.E.}$) and the L.E. control upwards ($\beta_{L.E.}$)

Suggested Control Law:

The suggested control law involves the activation of a combined L.E.-T.E. system. The block diagram for the activation of the L.E.-T.E. control is shown in Fig. A.1 and the expressions for the different transfer functions are given in Table 1.

Flutter Resuts:

Figure A.2 shows a root locus plot using the above control laws with zero structural damping. Fig. A.3 shows a similar root locus plot using the values of structural damping as measured by Northrop. The parameter of variation in the root locus plo^{+e} is the dynamic pressure Q. The spacing between adjacent points along each branch represents a change in Q of 10 psf. The plots were obtained by varying Q between 0 and 200 psf. It can be seen that the flutter dynamic pressure is around 158 psf when structural damping is present and 147 psf with zero structural damping. Figs. A.4-A.7 show the variations of the activities of both L.E. and T.E. control surfaces (due to unit RMS gust input with dynamic pressure Q). It can be seen that both the deflections and the rates are relatively small. Structural damping (Northrop's measurement) was assumed to be present in deriving Figs. A.4-A.7.

Ţ

ACTIVATING THE SUGGESTED L.E.-T.E. SYSTEM

$$H(S) = \frac{S^2 + 21S + (213)^2}{S^2 + 299S + (213)^2} \cdot \frac{S^2 + (552.6)^2}{S^2 + 552S + (552.6)^2} \cdot \frac{(264)^2}{S^2 + 264S + (264)^2}$$

 $G_{S,T.E.}(S) = \frac{S+260}{260} \cdot \frac{124}{S+124} \cdot \frac{(138)^2}{S^2+138S+(138)^2} \cdot \frac{(314)^2}{S^2+440S+(314)^2}$

 $G_{S,L.E.}(S) = \frac{S+260}{260} \cdot \frac{94}{S+94} \cdot \frac{S+24}{24} \cdot \frac{28}{S+28} \cdot \frac{(170)^2}{s^2+204S+(170)^2} \cdot \frac{(440)^2}{s^2+616S+(440)^2}$

$$T_{T.E.}(S) = R(S) \cdot \frac{S+124}{124} \cdot \frac{S^2 + 138S + (138)^2}{(138)^2} \cdot K_{T.E.}(S)$$

$$R(S) = \frac{S^2 + 264S + (264)^2}{(264)^2} \cdot \frac{260}{S + 260} \cdot \frac{S + 60}{60} \cdot \frac{225}{S + 225} \cdot \frac{(347.9)^2}{S^2 + 492S + (347.9)^2}$$

$$T_{L.E.}(S) = R(S) \cdot \frac{S+94}{94} \cdot \frac{S+28}{28} \cdot \frac{24}{S+24} \cdot \frac{S^2 + 204S + (170)^2}{(170)^2} \cdot K_{L.E.}(S)$$

$$K_{T.E.}(S) = 3.09 \cdot \frac{[S^2 + 43.3S + (94.3)^2]}{[S^2 + 21.6S + (45)^2][S^2 + 88.3S + (152.3)^2]}$$

$$K_{L.E.}(S) = 1.874 \qquad \frac{[S^2 + 291.1S + (168.6)^2]}{[S^2 + 39.8S + (41.5)^2][S^2 + 400S + (200)^2]}$$

3

-

ORIGINAL PAGE IS OF POOR QUALITY

Figure 4a: L.E. control deflection

Figure 4: Variation with QD of control surface activity, using control law I with umbalanced control surfaces (M = 0.8)

100 000 000

Figure 4b: T.E. control deflection

ŧ

- 1

P

C

.

Ĩ,

Martin Property of the second second

, ,

-1

Figure 7: Variantion with Q_D of control surface activity, using control law II with unbalanced control surfaces (M = 0.8).

4

١

Figure 7b: T.E. control deflection

Figure 8: Block Diagram Representation of Control Law F

3 .

......

---34

1 10 C 10 C

.

Mechanization of Control Law II

ŧ

BLO, IN (50 ml/divi

BLE, DUT (200 INI / div)

, revenue proportion was survey a a more revenue of the survey of the su

STE, OUT (200 MNV/20)

TAIL BENDING (20 m1/dir)

WING TORSION (10 mV/dir)

- whether of the of the and the property of the stand of

WING BENDING (10 mv/ dur)

Figure 10:

Wind Tunnel Signal Responses of the Model at M = 0.8and $Q_D = 60.6$ psp (TP 419)

ORIGINAL PAGE IS OF POOR QUALITY

Mechanized Control Law II (with g = 0, M = 0.8)

3

H = 0.8)

3

Figure 13. PSD of Control Surface Responses β_{LEovr} , δ_{TEovr} at M = 0.8, Q = 60 psf, Using Northrop Mechanization of Control Law II (using GRT values of g)

5

Ŧ

-

.

Mechanization of Control Law II (using GRT values of g)

ť,

Figure 14b: PSD of Control Surface Response 8 TE in

3 .

-2-5

Figure 15: Variation with Q_D of rms Contol Surface Deflections due to Unit rms Gust Input, Using Northrop Mechanization of Control Law II (with GRT values of g, M = 0.8)

يد ج

31

L.E.-T.E. Control System

3,

New York

3 .

Ŧ

.

3

** *

FLUTTER AND CONTINUOUS GUST COMPUTATIONS

WITH MULTI-ACTIVE CONTROLS

CONTENTS

PAGE	
------	--

T

-1

1.	The Equations of motion for Flutter Analysis with	
	Multi-Active Controls	1
2.	The Equations of Motion for Gust Optimization/Gust Sensitivity	
	Analysis with Multi-Active Controls	12
3.	Appendix A: - Operation Instructions for the Flutter Program	15
4.	Appendix B: - Operation Instructions for the Gust Optimization/	
	Gust Sensitivity Program	25
5.	Appendix C: - Subroutine CONTRL - Details on the Common	
	Parameters	38
6.	Apperdix D: - Eigenvalue Subroutines - Details on the COMMON	
	Parameters	40
7.	Appendix E: - Input/Output Example for Flutter Program	44
8.	Appendix F: - Input/Output Example for Gust Optimization	
	Program	95
9.	Appendix G: - Input/Output Example for Gust Sensitivity	
	Program	138

1. THE EQUATIONS OF MOTION FOR FLUTTER ANALYSIS WITH MULTI-ACTIVE CONTROLS

A simplified method of formulation of the equations of motion for flutter analysis with any number of active control systems is presented in this work. The suggested method combines computational economy and programming simplicity with generality of formulation. It enables the treatment of multi-active control systems with no limitations on the form of the activated control laws. By way of introduction, two current methods of analysis will first be described and their limitations will be discussed. Following the presentation of these current methods, the new proposed method will be presented and its special features will be described.

The Equations of Motion

Let the n_e equations

$$\left([M]s^{2} + \frac{1}{2} \rho V^{2} [A] + [K] \right) \overline{q} = 0$$
 (1)

represent the equations of motion of n_s structural modes (including rigid body modes) with n_c activated controls where [M] represents the mass matrix; [A], the complex aerodynamic matrix; [K], the stiffness matrix; ρ , the density of the surrounding fluid; V, the velocity of the fluid; and \overline{q} , the response vector. All the matrices in equation (1) are of size $n_s \times (n_s + n_c)$, that is, n_s structural modes + n_c active controls. The response vector \overline{q} can be expressed in terms of n_s structural responses and n_c control deflections, that is,

$$\overline{q} = \begin{cases} q_s \\ q_c \end{cases}$$
 (2)

Equation (1) can therefore be written as

$$\left(\left[M_{s} \ M_{c}\right]s^{2} + \frac{1}{2}\rho V^{2}\left[A_{s} \ A_{c}\right] + \left[K_{s} \ K_{c}\right]\right) \begin{cases} q_{s} \\ q_{c} \end{cases} = 0$$
(3)

where subscript s denotes a structural quantity and c, a control. quantity. Assume now a control law of the form

$$q_{c} = [T] \quad q_{s} \tag{4}$$

where [T] is a $n_c \times n_s$ matrix representing the transfer functions of the control law. Substitution of equation (4) into equation (3) yields

$$([M_{s}] + [M_{c}][T])s^{2} + \frac{\rho V^{2}}{2}([A_{s}] + [A_{c}][T]) + [K_{s}] + [K_{c}][T]) \quad q_{s} = 0$$
(5)

Typically, the elements of the aerodynamics matrices A_s and A_c are available as functions of the reduced frequency k and the Mach number M whereas the transfer function matrix [T] is a function of the Laplace variable s, normally expressed in terms of rational polynomials in s. FLUTTER ANALYSIS BASED ON THE COMMON DENOMINATOR METHOD (CDM)

This method of analysis is described in ref. 1. It is based on the representation of the matrix [T] by

$$[T] = \frac{1}{Q(s)} [T_N]$$
(6)

where Q(s) is a scalar polynomial representing the common denominator of <u>all</u> the T_{ij} terms and where $[T_N]$ is a matrix involving the resulting numerators (as a function of s).

The variation with s of the aerodynamic matrix $\begin{bmatrix} A \\ S \end{bmatrix}$ can be approximated by the following Pade representation

$$[A] = [A_0] + [A_1](\frac{b}{v})s + [A_2](\frac{b}{v})^2 s^2 + \sum_{j=1}^r \frac{[A_{(2+j)}]s}{s + \frac{v}{b} \beta_j}$$
(7)

where all the matrix coefficients and the s_j values are real and constants and where r normally varies between $1 \le r \le 4$. Substitution of equations (6) and (7) into equation (5) yields a rational matrix equation in s. The common denominator of the equation of motion is given by the scalar D(s) defined by

$$D(s) = Q(s) \prod_{j=1}^{r} [s + \frac{V}{b} s_j]$$
 (8)

To solve the above rational equation of motion, it is multiplied by D(s) where D(s) is assumed to be of order $s^{(p-2)}$. Hence equation (5) which is of order s^2 turns to be of order s^p and assumes the form of a matrix polynomial expression

$$([F_0] + [F_1]s + [F_2]s^2 + \dots + [F_p]s^p) q_s = 0$$
 (9)

where the matrix coefficients $[F_j]$ are functions of M, V, and dynamic pressure $q_p(=\frac{1}{2^p}V^2)$. Equation (9) can be reduced to the following **•**canonical form for eigenvalue solution

$$\mathbf{S} \mathbf{X} = \begin{bmatrix} \mathbf{U} \end{bmatrix} \mathbf{X} \tag{10}$$

where [U] is of size (p x n_s) x (p x n_s) defined by

$$\begin{bmatrix} U \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} -F_{p}^{-1}F_{p-1} \end{bmatrix} & \begin{bmatrix} -F_{p}^{-1}F_{p-2} \end{bmatrix} & \cdots & \begin{bmatrix} -F_{p}^{-1}F_{1} \end{bmatrix} & \begin{bmatrix} -F_{p}^{-1}F_{0} \end{bmatrix} \\ \begin{bmatrix} I \end{bmatrix} & 0 & \cdots & 0 & 0 \\ 0 & \begin{bmatrix} I \end{bmatrix} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \begin{bmatrix} I \end{bmatrix} & 0 \end{bmatrix}$$
(11)

and X is given by

$$X = \begin{pmatrix} s^{(p-1)} & q_{s} \\ s^{(p-2)} & q_{s} \\ \vdots & \vdots \\ s & q_{s} \\ s^{0} & q_{s} \end{pmatrix}$$
(12)

It can thus be seen that the original n_s structural equations of motion end up with (p x n_s) equations which need to be solved for their eigenvalues.

The main disadvantage of this method lies in the very rapid expansion with control law transfer function of the order of the eigenvalue problem. For illustration purposes, consider a 10 degree of freedom flutter problem ($n_s=10$) with aerodynamics approximated using 4 lag terms (r=4) and with two active control surfaces driven by control laws having four poles each. Hence Q(S) will be of order S⁸ and D(S) of order S¹² (see eq. (8)). The value of p will therefore be equal to p=14. It can therefore be seen that the original 10 degree of freedom flutter problem turns into an eigenvalue problem of order (14 x 10), that is, of order 140.

FLUTTER ANALYSIS BASED ON OPTIMAL CONTROL FORM OF TRANSFER FUNCTIONS (OCF) (Ref.2)

Consider equation (3), substitute equation (7) and multiply by the common denominator of the lag terms to obtain a matrix polynomial equation of the form

$$([F_{o_{s}}F_{o_{c}}] + [F_{1_{s}}F_{1_{c}}]s + [F_{2_{s}}F_{2_{c}}]s^{2} + \dots + [F_{(r+2)_{s}}F_{(r+2)_{c}}]s^{(r+2)}) \begin{cases} q_{s} \\ q_{c} \end{cases} = 0$$
(13)

where r represents the number of lag terms in equation (7) and where the matrix coefficients $[F_j]$ are functions of M, V and q_D . As in the previous case treated above, equation (13) can be brought to the form

$$s X_{s} = [\overline{A}_{s}] X_{s} + [\overline{B}_{c}] X_{c}$$
(14)

3

à

where

-4-

$$X_{g} = \begin{cases} s^{(r+1)} & q_{g} \\ s^{r} & q_{g} \\ \vdots & \vdots \\ s^{0} & q_{g} \\ s^{0} & q_{g} \end{cases}$$

$$X_{c} = \begin{cases} s^{(r+2)} & q_{c} \\ s^{(r+1)} & q_{c} \\ \vdots & \vdots \\ s^{0} & q_{c} \\ \vdots & \vdots \\ s^{0} & q_{c} \\ \end{cases}$$
(15)
(15)
(16)

$$[\overline{A}_{s}] = \begin{bmatrix} [G_{s} \overline{F}_{(r+1)_{s}}] [G_{s} \overline{F}_{r_{s}}] \cdot \cdot \cdot [G_{s} \overline{F}_{1_{s}}] [B_{s} \overline{F}_{0_{s}}] \\ [I] & 0 & . & 0 & 0 \\ 0 & [I] & \cdot \cdot \cdot & 0 & 0 \\ \vdots & \vdots & & \\ 0 & 0 & . & \cdot \cdot & [I] & 0 \end{bmatrix}$$
(17)

where

$$[G_{s}] - [\overline{F}_{(r+2)_{s}}]^{-1}$$
(18)

and where

- 1

$$[\overline{B}_{c}] = \begin{bmatrix} [G_{s} \ \overline{F}_{(r+2)_{c}}] \ [G_{s} \ \overline{F}_{(r+1)_{c}}] & \cdot & \cdot \ [G_{s} \ \overline{F}_{1_{c}}] \ [G_{s} \ \overline{F}_{0_{c}}] \\ 0 & 0 & \cdot & \cdot & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdot & \cdot & 0 & 0 \end{bmatrix}$$
(19)

To include the effects of actuator dynamics using optimal control form of transfer functions, the actuator model is described in state-space form. For simplicity of illustration, consider the case of a single actuator that is, when q_c is a scalar rational polynomial quantity. Assume the following form for the actuator transfer function

$$\frac{q_{c}(s)}{q_{c,I}(s)} = \frac{b_{0}}{s^{n} + a_{n-1}s^{n-1} + \dots a_{0}}$$
(20)

where $q_{c,I}(s)$ represents the input signal to the actuator.

Equation (12) can be brought to the form

$$(s^{n} + a_{n-1}s^{n-1} + \dots + a_{0})q_{c} = b_{0}q_{c,1}$$
 (21)

which, in turn, can be represented by

$$x_{a,c} = [A_{a,c}] \dot{x}_{a,c} + [B_{a,c}] u_{a,c}$$
 (22)

where

$$X_{a,c} = \begin{cases} s^{n-1} & q_c \\ s^{n-2} & q_c \\ \vdots & \vdots \\ s & q_c \\ s^0 & q_c \end{cases}$$
(23)

$$u_{a,c} = q_{c,I}$$
 (24)

$$\begin{bmatrix} A_{a,c} \end{bmatrix} = \begin{bmatrix} -a_{n-1} & -a_{n-2} & \cdots & -a_1 & -a_0 \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{bmatrix}$$
(25)
$$\begin{bmatrix} B_{a,c} \end{bmatrix} = \begin{bmatrix} b_0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$
(26)

For a number of control surfaces, an equation similar to equation (22) is obtained.

Denote by \overline{X}_{c} the longest of the vectors X_{c} and $X_{a,c}$ and modify either $[A_{a,c}]$ or $[B_{c}]$ accordingly (denoted by adding an additional bar to these matrices. In so doing, it is possible to merge equations (14) and (22) into a single equation of the form

3

-6-

$$\mathbf{s} \begin{pmatrix} \mathbf{X}_{\mathbf{s}} \\ \mathbf{X}_{\mathbf{c}} \end{pmatrix} = \begin{bmatrix} \overline{\mathbf{A}}_{\mathbf{s}} & \overline{\mathbf{B}}_{\mathbf{c}} \\ 0 & \overline{\mathbf{A}}_{\mathbf{s},\mathbf{c}} \end{bmatrix} \begin{pmatrix} \mathbf{X}_{\mathbf{s}} \end{pmatrix} + \begin{bmatrix} 0 \\ \overline{\mathbf{X}}_{\mathbf{c}} \end{bmatrix} + \begin{bmatrix} 0 \\ \overline{\mathbf{B}}_{\mathbf{a},\mathbf{c}} \end{bmatrix} \quad \mathbf{u}_{\mathbf{a},\mathbf{c}}$$
(27)

The matrix A_s is of order $[n_s x(r+2)]x[n_s x(r+2)]$; whereas $[\overline{A}_{a,c}]$ is of order $n_{a,c} \times n_{a,c}$ where

$$n_{a,c} = \max \left[\sum_{i=1}^{n_c} n_i; (r+3) \times n_c\right]$$
 (28)

where n_i denotes the value of n for the ith control.

Optimal control analysis yields control laws of the following form

$$u_{a,c} = [E] \begin{cases} X_{s} \\ \overline{X}_{c} \end{cases}$$
(29)

where [E] is a matrix of constants. Substitution of equation (29) into eq. (27) yields the following eigenvalue equation which forms the basic equation for fluiter analysis

$$s \begin{pmatrix} X_{s} \\ \overline{X}_{c} \end{pmatrix} = \left(\begin{bmatrix} \overline{A}_{s} & \overline{B}_{c} \\ 0 & \overline{A}_{a,c} \end{bmatrix} + \begin{bmatrix} 0 \\ \overline{B}_{a,c} \end{bmatrix} \begin{bmatrix} E \end{bmatrix} \begin{pmatrix} X_{s} \\ \overline{X}_{c} \end{pmatrix}$$
(30)

The order of this eigenvalue equation is therefore $[n_s x(r+2)+n_{a,c}]x[n_s x(r+2)+n_{a,c}]$.

For comparison purposes, consider the example treated earlier, that is, the case where

 $n_s = 10$, $n_c = 2$, r = 4, n = 4 (for each contru.)

Hence, the order of the eigernvalue equation (30) will be, in this case,

 $10 \times (4+2) + 7 \times 2 = 74$

-1

which is almost half the order obtained by using the CDM method (= 140).

The main disadvantage of this method involves the limitation brought about by the use of a control law defined by equation (29). In this latter equation, the control law transfer function is linear with X_s

and is therefore limited to derivatives of q_s not exceeding the order of (r+1) whereas a general transfer function may employ any order of q_s derivatives provided it is smaller than the order of its denominator.

In the following section, a different method is presented which is very similar to the method just described but which avoids the use of the limiting forms of control laws, such as the one described by equation (29).

THE PRUPOSED METHOU

Consider equations (3) and (4) and represent the matrix [T] in equation (4) by

$$[T] = \left[\frac{1}{\Pi(s)}\right] [P(s)] \tag{31}$$

where $\left[\frac{1}{Q(s)}\right]$ is a diagonal matrix consisting of the common denominators of each of the rows of matrix [T] and where [P(s)] represents the remaining numerator polynomial (in s) of matrix [T]. Substituting equation (31) into equation (4) and combining it with equation (3) we obtain

$$\begin{bmatrix} \left[\frac{[M_{s}]}{1} - \frac{M_{c}}{1} \right]^{s^{2}} + \frac{q_{o}[A_{s}]}{1} - \frac{A_{c}}{1} + \frac{[K_{s}]}{1} - \frac{K_{c}}{1} \end{bmatrix} \begin{bmatrix} q_{s} \\ q_{c} \end{bmatrix} = 0$$
(32)

or, after some rearrangement

$$\begin{bmatrix} [M_{s} & M_{c}]s^{2} + q_{0}[A_{s} & A_{c}] + [K_{s} & K_{c}] \\ \hline -F(s) & Q(s) \end{bmatrix} = \begin{bmatrix} K_{s} & K_{c} \end{bmatrix} \begin{bmatrix} q_{s} \\ q_{c} \end{bmatrix} = 0$$
(33)

Substitute equation (7) into equation (33) and multiply the structural equations by the common denominator of the lag terms to obtain after some rearrangements

$$\begin{bmatrix} E(s) & G(s) \\ -P(s) & Q(s) \end{bmatrix} \begin{cases} q_s \\ q_c \end{cases} = 0$$
(34)

3

where E(s) and G(s) are matrix polynomials of order $s^{(r+2)}$.

-8-

Define the following matrices

$$R(s) = \begin{bmatrix} E(s) \\ - & - \\ - & - \end{bmatrix}$$
(35)
$$D(s) = \begin{bmatrix} G(s) \\ - & - \\ Q(s) \end{bmatrix}$$
(36)

where R(s) and D(s) can be written in the following matrix polynomial form.

$$R(s) = R_0 + R_1 s + R_2 s^2 + \dots + R_m s^{H}$$
(37)

$$D(s) = D_0 + D_1 s + D_2 s^2 + ... D_n s^n$$
 (38)

The value of m is (r+2) unless the order of the numerators P(s) is larger than (r+2). In this latter case, m assumes the maximum value of the power (in s) of the numerators. Similarly, the value of n is equal to the largest value of the powers of Q(s) (which represents the denominators of the control laws transfer functions), provided it is larger than (r+2). Otherwise, m will assume the value of (r+2).

It should be stated at this stage that the representation of D(s) by equation (38) is convenient for mathematical representation and for programming, but is somewhat wasteful regarding the final order of the eigenvalue problem. However, these changes in the order of the eigenvalue problem are generally small, and do not, therefore, warrant a different, more cumbersome formulation. It should also be observed that the highest powers in s of both E(s) and G(s) are of order (r+2) and that the highest powers in s of P(s) are either equal or smaller than the highest powers in s of Q(s) (since P(s) appears in the numerator of the transfer functions whereas Q(s) appears in the denominator). Hence it can be stated that

$$m \leq r_i$$

(39)

3

-9-

substituting equations (35) - (38) into equation (34) and rearranging yields the following equation

$$\begin{bmatrix} [R_{m} & D_{n}] & [R_{m-1} & D_{n-1}] \\ R_{m-2} & D_{n-2} \end{bmatrix} \cdots \begin{bmatrix} R_{0} & D_{n-m} \end{bmatrix} \begin{bmatrix} D_{n-m-1} \end{bmatrix} \cdots \\ \cdots \begin{bmatrix} D_{0} \end{bmatrix} \begin{bmatrix} Z \\ Y \end{bmatrix} = 0$$
(40)

where

ļ

١

1.00

1

$$Y = \begin{pmatrix} s^{m-1} & q_{s} \\ s^{n-1} & q_{c} \\ s^{m-2} & q_{s} \\ s^{n-2} & q_{c} \\ \vdots \\ s^{0} & q_{s} \\ n-m & c \\ s^{n-m-1} & q_{c} \\ \vdots \\ s^{0} & q_{c} \end{pmatrix} ; Z = \begin{cases} s^{m-1} & q_{s} \\ s^{n-1} & q_{c} \\ \vdots \\ s^{n-1} & q_{c} \end{cases}$$
(41)

For the case where n=m, all the terms appearing in equations (40), (41) which involve powers or indices smaller than (n-m), should be omitted from the equations.

Premultiplying equation (4) by $[R_m D_n]^{-1}$ and defining $[\overline{R_j} \overline{D_i}] = -[R_m D_n]^{-1} [R_j D_i]$ (42)

we obtain the following equation

$$\begin{bmatrix} [I]s [\overline{R}_{m-1} \quad \overline{D}_{n-1}] [\overline{R}_{m-2} \quad \overline{D}_{n-2}] \dots [\overline{R}_{o} \quad \overline{D}_{n-m}] [\overline{D}_{n-m-1}] \dots [\overline{D}_{o}] \end{bmatrix} \begin{pmatrix} Z \\ Y \end{pmatrix} = 0$$
(43)

Finally, equation (43) can be written in the form

$$s Y = \begin{bmatrix} \overline{R}_{m-1} & \overline{D}_{n-1} \end{bmatrix} [\overline{R}_{m-2} & \overline{D}_{n-2}] \cdots [\overline{R}_1 & \overline{D}_{n-m-1}] [\overline{R}_0 & \overline{D}_{n-m}] [\overline{D}_{n-m-1}] \cdots [\overline{D}_1] [\overline{D}_0] \\ \begin{bmatrix} I \end{bmatrix} & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & [I] & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & [I] & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots \\ 0 & 0 & \cdots & 0 & [0 & I^*] & 0 & \cdots & 0 & 0 \\ \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 & \cdots & [I^*] & 0 \end{bmatrix} Y$$

$$(44)$$

where [1] is a unit matrix of order (n_s+n_c) and [I*] is a unit matrix of order n_c . Equation (44) represents therefore an eigenvalue problem of order $(m \times n_s+n \times n_c)$.

For illustration purposes, consider the example treated earlier in this work, that is

 $n_{c} = 10$, $n_{c} = 2$, r = 4

with control surfaces transfer function with 4 poles each. In this case

m = 6; n = 6

or

Hence, the order of the eigenvalue equation will be

 $6 \times 10 + 6 \times 2 = 72$

This is about the same order as the OCF method (= 74) and is of considerably smaller order than the CDM method (= 140). Hence, the method proposed herein, enjoys the compactness of the OCF method while maintaining the utmost generality in the form of the control law used for activation. It should be mentioned at this stage that care must be exercised while setting up equation (40) so as to ensure that the matrix $[R_m \quad D_n]$ is non-singular (since it needs to be inverted). This point is important while programming equation (40).

-11-

(45)

T

2. THE EQUATIONS OF MOTION FOR GUST RESPONSE OPTIMIZATION ANALYSIS WITH MULTI-ACTIVE CONTROLS

The n_s equations of motion represented by eq. (1) now assume the following form

$$([M]s^{2} + \frac{1}{2}\rho V^{2}[A] + [K]) \overline{q} = F_{G}$$
 (46)

where F_{G} represents the gust force acting on the system due to a sinusoidal gust velocity of unit amplitude at a specified Mach number and a specified dynamic pressure. Following identical steps represented by eqs (2-4), the following equivalent form of eq. (5) is obtained

$$[([M_s] + [M_c] [T])s^2 + \frac{\rho V^2}{2}([A_s] + [A_c][T]) + ([K_s] + [K_c][T])]q_s = F_G$$
(47)

Eq. (47) yields

$$q_{s} = [B] F_{G}$$
(48)

where

$$[B] = [([M_s]+[M_c][T])s^2 + \frac{\rho V^2}{2}([A_s]+[A_c][T])+([K_s]+[K_c][T])]^{-1}$$
(49)

Using eqs. (4), (48), the control response can be computed

$$q_{c} = [T][B] F_{G}$$
(50)

The control rates can similarly be represented by

$$\dot{q}_{c} = s[T][B] F_{G}$$
(51)

The ith root-mean-square (rms) control deflection or the ith rms control surface rate per unit rms gust input is then computed using the following relations for the ith control surface

$$(q_{c_{i}})_{rms} = (\int_{\omega_{1}}^{\omega_{2}} q_{c_{i}}^{2} \phi(\omega) d\omega)^{1/2}$$
(52)

r

$$(\dot{q}_{c_{i}})_{rms} = (\int_{\omega_{1}}^{\omega_{2}} \dot{q}_{c_{i}}^{2} \phi(\omega) d\omega)^{1/2}$$
 (53)

where $\phi(\omega)$ represents the Von-Karman gust spectrum.

or

ş

.

The gust optimization program seeks to minimize a target function consisting of weighted rms responses or weighted rms response rates of the control surfaces by varying the various specified control gains available in matrix [T]. For the optimization results to yield sensible values it is absolutely necessary that the initial values of [T] (for the specified flight dynamic pressure and the specified Mach number) be such as to yield a stable system. Under this condition, stability is maintained during the optimization process while the control surface rms responses are reduced.

Further details regarding the gust optimization method for flutter suppression are presented in ref. 1.

3

-13-

REFERENCES

- Nissim, E., Abel, I.: Development and Application of an Optimization Procedure for Flutter Suppression Using the Aerodynamic Energy Concept. NASA TP 1137, Feb. 1978.
- Newsom, J.R.: A Method for Obtaining Practical Flutter-Suppression Control Laws Using Results of Optimal Control Theory. NASA TP 1471, Aug. 1979.
- Nissim, E.: Recent Advances in Aerodynamic Energy Concept for Flutter Suppression and Gust Alleviation Using Active Controls. NASA TN D-8519, Sept. 1977.

3. APPENDIX A

OPERATION INSTRUCTIONS FOR THE FLUTTER PROGRAM

The program computes the eigenvalues of the flutter equations of motion with active controls. The dimensions assigned to the different arrays permit the simultaneous activation of up to 6 controls (of leading-edge (L.E.), and/or trailing edge (T.E.) types) with resulting augmented eigenvalue problem of up to 100 values (the basic unaugmented system is limited to 15 modes, including rigid body modes). The input data is organized on file 5, with the aerodynamic data (defined by array AERO(I,J,K)) located on file 2. The printed output is located on file 6. The control law transfer function matrix is computed in subroutine CONTRL. The program includes two versions for CONTRL based on the concept of aerodynamic energy. It is imperative to extract one of these two versions of CONTRL before running the program. For other types of control laws, subroutine CONTRL needs to be reprogrammed. To ease this task, details relating to subroutine CONTRL are given in Appendix C.

The output of the program consists of the input data together with the system's eigenvalues over a selected range of dynamic pressures. The package includes all the subroutines used by the program except for the plotting subroutines (which are installation oriented) and the eigenvalue routines (IMSL routines). To ease the substitution of these eigenvalue routines by other ones (should the IMSL library be unavailable) a full description of the COMMON parameters of these routines is given in Appendix D. A root-locus plot (with dynamic pressure as variable) may form a part of the output when desired.

The program is written in FORTRAN and was developed on an IBM 370/168 computer. Double precision is used throughout the program due to the

-15-

shorter IBM word length relative to the CDC computers. For CDC installations, it is recommended to convert the program to a single precision version. An example of an input and an output is included herein.

INPUT OF DATA

In the following, the data required for the operation of the flutter program is described. For sake of clarity and brevity READ statements are reproduced here together with the specified FORMAT and with the full explanation of the various parameters.

READ (FORMAT (15A4)), (HDR(I), I=1,15)

HDR an alphanumeric header for the job (up to 60 characters, including spaces).

READ (5, CASE)

where 5 designates the input file and CASE is a namelist defind by NAMELIST/CASE/NM, NC, NAER, B, NG, NL

where

NM Integer specifying the number of modes (<15)

NC Integer specifying the number of controls (<6)

NAER - 1 Input aerodynamics will be introduced by means of PADE interpolation coefficients

 Input aerodynamics will be introduced by means of aerodynamic coefficients at different values of reduced frequency k.

B Array of values of lag terms to be used during the PADE interpolation (<4)</p>

- NG 1 If gust aerodynamic coefficients are included in the aerodynamic data.
 - If gust aerodynamic coefficients are not included in the aerodynamic data.
- NL Integer specifying the number of lag terms to be used during the PADE interpolation (<4)

The aerodynamic data is then introduced as follows:

- If NAER = 1 then
- DO 1 I = 1, NM
- DO 1 J = 1, (NM+NC)

READ (FORMAT (6X, 7E10.4)), AO(I,J), A1(I,J), A2(I,J), A3(I,J), A4(I,J), A5(I,J), A6(I,J)

1 CONTINUE

where the aerodynamic matrix A (see eq. (1)) is assumed to be expressed by

$$[A] = [A0] + [A1](ik) + [A2](ik)^{2} + \sum_{L=1}^{NL} \frac{[AL](ik)}{ik + B(L)}$$

and k denotes the reduced frequency. The aerodynamic matrix [A] should be arranged so that control coefficients are located in the last columns with the gust coefficients at the very last column. If NAER = 0 then REAU (5, FT) D0 1 K = 1, NK D0 1 J = 1, (NM + NC + NG) D0 1 I = 1, NM

3

READ (2, FORMAT (2E15.5)) AERO (I,J,K)

1 CONTINUE

where FT is a namelist defined by

NAMELIST/FT/NK, AK, MAXNK, NPRINT, NPUNCH, IRIGID, JRIGID and where 2 designates the file in which the aerodynamic data is located. The various parameters are defined as follows:

- NK Number of reduced frequencies k used for the interpolation of the aerodynamic coefficients.
- AK Array (≤ 20) containing the values of k corresponding to the aerodynamic coefficients. The first value of k must be zero. The order of the frequency values must correspond to the order of the aero coefficients AERO (I,J,K) - see below.

MAXNK Maximum value of NK (= 20 in present program).

NPRINT - 0 No printed output from the Pade interpolation routine (named subroutine FIT).

- 1 Printed output is available.

NPUNCH - 0 No punched output from subroutine FIT.

IRIGID, JRIGID

Interpolation coefficients for the aerodynamic coefficients (PADE representation) of the first IRIGID rows and first JRIDIG columns are determined using the first few values of reduced frequency k (assumed to be the lowest) without resorting to a least squares procedure. In this case the rigid body modes must be located so as to be the first modes. This is done in order to increase the accuracy of the aerodynamic coefficients at low k values where steady state stiffness and damping terms are zero (the least square routine may render them negative).

3

-18-

AERO(I,J,K) Array containing the values of the aerodynamic matrix A (see eq. (1)) - that is, the (I,J)th coefficient at the Kth reduced frequency. The order at which the different K values are arranged must correspond to the AK values The first k value must correspond to k=0. For order of columns in [A] see remark for case NAER≠0.

The program proceeds to the construction of the equations of motion (in subroutine FLUTCA) in first order form, as explained in the theoretical section of this work. The data required for this purpose is the following:

READ (5, FLUT)

where FLUT is a namelist defined by

NAMELIST /FLUT/MASS, OMEGAN, QBEGIN, QEND, NQ, VEL, BTRAN, CTRAN, CREF, ZW, ZREF, IPLOT, CLF, CTR, NCACT.

and the parameters are as follows:

MASS MASS matrix ($< (15 \times 15)$)

OMEGAN Array containing the values of the natural frequencies (in HZ). Stiffness is computed from MASS and OMEGAN and is therefore correct for diagonal mass matrices only. For nondiagonal mass matrices the stiffness computation in cards 331-333 (in FLUTCA) must be replaced by an appropriate READ statement.

OBEGIN, QEND, NQ

The flutter eignevalue equations are solved for (NQ + 1)values of uynamic pressure Q, starting with the value of Q=QBEGIN and enuing with the value of Q=QEND.

3

VEL Flight velocity.

- BTRAM Array of semichord lengths of wing (and/or tail) sections where the different controls are located (at mid-span of control sections). - (<6)
- CTRAN Array of distances between the two transducers at each control surface mid-section (used to compute the angle of deformation) (≤ 6).
- CREF Reference semi-chord length (normally wing root semi-chord length) - should be consistent with the reference length used in computing te reduced frequency k (in aero program).
- Zw Matrik where ZW (I,J) indicates the displacement (positive down) of the Ith transducer due to the Jth mode. For each section, two transducers are allowed. The fore transducer should be placed (in the data) ahead of the aft transducer. The present subroutines CONIRL assume the fore transducer to be located at 30 chord from leading edge (L.E.) and these sets of transducers should be arranged in the same order as the controls - (\leq (12 x 15)). For other types of subroutines CONTRL see Appendix C.
- ZREF Values like Zw of reference transducers are used to detect the rigid body motion of the aircraft. They are used in this program to determine the elastic deformation of the wing. If not needed, use zero values for ZREF = $(< (2 \times 15)).$

3

4

IPLOT - 1 A root locus plot will be made.

- 0 No plotted output.

-20-

CLR Array of X distances (positive aft) between the fore reference transducer and the fore control transducer - (< 6).

CTR - Distance between the two transducers at the reference section.

NCACT - Number of active controls starting from control No. 1. No intermediate controls can be assumed to be inactive (control gains can, in this case, be made equal to zero).

<u>Remark</u>: The transducer data as indicated above is tailored fit to the control laws employed using the aerodynamic energy concept. The form of control law assumed is as follows:

$$q_{c} = \begin{pmatrix} \delta_{1} \\ \delta_{2} \\ \vdots \\ \delta_{NC} \end{pmatrix} = \begin{bmatrix} \overline{0_{1}} (s) & & \\ & \overline{1} \\ & &$$

where the vector $[h_1, h_2 \dots h_{NA}]^T$ denotes relative uisplacements and/or relative rotations. The aerodynamic energy control law assume that s_1 is driven by h_1 and h_2 , that s_2 is driven by h_3 and h_4 and so forth, so that NA = 2*NC. The matrices $\left[-\frac{1}{Q(s)}\right]$ and $[\overline{P}(s)]$ are computed in subroutine CONTRL (see Appendix C). The above form, however, is very general and can be readily used for other types of control laws which are driven by any number of either relative or absolute (or both) displacements (and/or rotations) at any chordwise location. The cards 473-482 in FLUTCA process the transformations matrix [H] (or order NA*NM) connecting the vector $[h_1, h_2 \dots h_{NA}]^T$ with the generalized coordinates

$$\begin{pmatrix} h_1 \\ h_2 \\ \vdots \\ h_{NA} \end{pmatrix} = [H] q_s$$
 (A.2)

3

-21-

. and computes the product P(s) (see eq. (31)) denoted by PH in the program), that is $[P(s)] = [\overline{P}(s)][H]$ (A3) where [P(s)] is of order (NC * NM). In summary, subroutine CNTRL provides the matrices $\left[\frac{1}{O(s)}\right]$ and $\left[\overline{P(s)}\right]$ whereas the matrix (P(s)] is computed in cards 473-482 (in FLUTCA). If and only if the parameter IPLOT -1 the program then reads the namelist PLOTPA READ (5, PLOTPA) defined by NAMELIST /PLUTPA/XZ, YZ, XSCALE, YSCALE, XL, YL, ISYM, IENTRY where XZ. Left hand limit of real part of root locus. YZ = 0 Abscissa scale (value per inch). XSCALE Ordinate scale (value per inch). YSCALE Length of abscissa in inches. XL. YL. Length of ordinate in inches. ISYM Integer defining symbol during root locus plot (=3 is recommended). IENTRY - 1 The program then reads the namelist MXSIZE READ (5, MXSIZE) defined by NAMELIST/MXSIZE/MAXC, MAXNM, MAXK, MAXT where Maximum number of controls (6 in this program). MAXC

Maximum number of modes (15 in this program).

MAXNM

-22-

MAXK Maximum number of polynomial terms per element in the transfer function numerator and denominator matrices (= 10 herein).

MAXT Maximum order of final matrix [U] (where d Y /dt = [U] Y- - - assigned the value 100 in this program.

If, and only if, NCACT # 0 the program reads the namelist CONC READ (5, CONC)

defined by

NAMELIST/CONC/WR,NTE, X

where

WR

Reference frequency (rad/sec) used only for the D.T.T.F. control law (aerodynamic energy) - the value chosen is normally around the value of the flutter frequency.

NTE Integer array (following the order of the controls) which identifies between L.E. and T.E. controls.

- 1, T.E. control

= 0, L.E. control.

Note that whenever a control is not active, put NTE = 0 when using aerouynamic energy versions for CONTRL.

Array of gains. There are 6 gains per control surface for the L.D.T.T.F. and 1 gain per control surface for the D.T.T.F. (\leq 36). The values of X(I) for the L.D.T.T.F. should be used considering the following basic form for the Ith control surface transfer function

$$F_{I} = \frac{\chi(1+6^{*}(1-1))^{*}s^{2}}{s^{2} + 2^{*}\chi(2+6^{*}(1-1))^{*}\chi(3+6^{*}(1-1))^{*}s + (\chi(2+6^{*}(1-1))^{2})^{*}} + \frac{\chi(4+6^{*}(1-1))^{*}s^{2}}{s^{2} + 2^{*}\chi(5+6^{*}(1-1))^{*}\chi(6+6^{*}(1-1))^{*}s + (\chi(5+6^{*}(1-1))^{2})^{*}}$$

T

For L.E. control

r

$$\delta_{I} = F_{I} L - 4 4 \int_{\alpha} \begin{cases} (h/b) & 0.3C \\ \alpha & 0 \end{cases}$$

For T.E. control

ì

$$\delta_{I} = F_{I}L 4 = 2.8 \int_{a}^{(h/b)} 0.3C = 1.8a$$

Ţ

Å

For further details see Ref. 3.

-24-

4. APPENDIX B

OPERATION INSTRUCTIONS FOR THE GUST OPTIMIZATION/GUST SENSITIVITY PROGRAM

The gust package permits the computation of the spectral responses of an aircraft due to a continuous gust environment. The effects of active controls (up to 6 controls) on the gust response can be accounted for. Furthermore, the basic gust program is coupled, in the present package, with an optimization routine which enables the determination of the various control gains which minimize the control responses to gust. Sensitivity studies (with plotted output) around the given or optimal control gains can also be made.

The input data is organized on file 5, with aerodynamic data (defined by array AERO (I,J,K)) located on file 2. Most of the printed output is located on file 6 with some additional output (arising from the optimization stage) located on file 4. File 13 is used by the package for labelling of plots and needs to be declared by the programmer.

The control law transfer function is computed in subroutined CONTRL. The program includes two versions for CONTRL based on the concept of aerodynamic energy. It is imperative to extract one of these two versions of CONTRL before running the program. For other types of control laws, subroutine control needs to be reprogrammed. To ease this task, details relating to subroutine CONTRL are given in Appendix C.

The output of the program consists of the input data together with the optimal control gains and the power spectral density (PSD) plots of the control responses, when used in its gust optimization version. When used all a control gain sensitivity program, the output is supplemented by sensitivity plots showing the variation of the rms control responses with the various control law gains. The backage includes all the subroutines

-25-
used by the program except for the plotting subroutines (which are installation oriented).

The program is written in FORTRAN and was developed on an IBM 370/168 "computer. Double precision is used throughout the program oue to the shorter IBM word length relative to the CDC computers. For CDC installations, it is recommended to convert the program to a single precision version. Input/output examples are included herein.

When using the program in its gust optimization version it is advisable to extract subroutines GUSPLT and PLT from the package. The input data for the gust optimization version will first be presented. The changes required in the data and in the program when running the program in its gust sensitivity version will then be presented.

INPUT OF DATA - GUST OPTIMIZATION VERSION

In the following, the data required for the operation of the gust optimization program is described. Here again READ statements will be reproduced together with the specified FURMAT and with the full explanation of the various parameters

READ (FURMAT (15A4)), (HDR(I), I=1,15)

HDR An alphanumeric header for the job (up to 60 characters, including spaces).

READ (5, CASE)

where 5 designates the input file and CASE is a namelist defined by NAMELIST/CASE/NM, NC, NAER, B NG, NL

where

NM Integer specifying the number of modes (<15).

NC Integer specifying the number of controls (<6).

NAER - 1 Input aerodynamics will be introduced by means of PADE interpolation coefficients.

₹

-26-

- -- 0 Input aerodynamics will be introduced by means of aerodynamic coefficients at different values of reduced frequency k.
- B Array of values of lag terms to be used during the PADE interpolation (<4).</p>

- If gust aerodynamic coefficients are not included in the aerodynamic data.
- NL Integer specifying the number of lag terms to be used during the PADE interpolation (≤ 4).

The aerodynamic data is then introduced as follows:

If NAER \neq 0 then

DO 1 I = 1, NM

DO 1 J = 1, (NM + NC + NG)

READ (FORMAT(6X,7E10.4)), AO(I,J), A1(I,J), A2(I,J), A3(I,J), A4(I,J), A5(I,J), A6(I,J)

1 CONTINUE

7.

Where the aerodynamic matrix A is assumed to be expressed by

$$A = AO + A1(ik) + A2(ik)^2 + \sum_{L=1}^{NL} \frac{AL(ik)}{ik+B(L)}$$

and k denotes the reduced frequency. The aerodynamic matrix [A] should be arranged so that control coefficients are located in the last columns with the gust coefficients at the very last column. The program proceeds to read the namelist GST defined by NAMELIST/GST/RMASS, OMEGAN, VEL, BTRAN, CTEAN, CREF, ZW, ZREF, Q, CLR, CTR, WR, NTE, NCACT where

3

RMASS Mass matrix ($\leq 15 \times 15$)

OMEGAN Array containing the values of the natural frequencies (in HZ). Stiffness is computed from RMASS and OMEGAN and is therefore correct for diagonal mass matrices only. For non-diagonal mass matrices the stiffness computation in card 437 (in subroutine SOLGST) should be replaced by an appropriate READ statement. It is important to note that 1.5 structural damping is assumed in the program. Modify card 438 if other values are desired.

VEL Flight velocity.

T.

- BTRAN Array of semichord lengths of wing (and/or tail) sections where the different controls are located (at mid-span of control sections) -(<6).
- CIRAN Array of distances between the two transducers at each control surface mid-section (used to compute the angle of deformation - (<6)).</pre>
- CREF Reference semichord length (normally wing root semichord length) - should be consistent with the reference length used in computing the reduced frequency k (in aero program).
- ZW Matrix where ZW (I,J) indicates the displacement (positive down) of the Ith transducer due to the Jth mode. For each section, two transducers are allowed – the fore transducer should be placed (in the data) ahead of the aft transducer. The present subroutines CONTRL assume the fore transducer to be located at 30 chord from leading- edge (L.E.) and these sets of transducers should be arranged in the same order as the controls – $(\leq(12 \times 15))$. For other types of subroutines CONTRL see Appendix C.

3

-28-

ZREF Values like ZW of reference transducers used to detect the rigid body motion of the aircraft. Used in this program to determine the elastic deformation of the wing. If not needed, use zero values for ZREF - (\leq (2 x 15)).

Q Flight dynamic pressure

- CLR Array of X distances (positive aft) between the fore reference transducer and the fore control transducer – (<6).
- CTR Distance between the two transducers at the reference section.
- WR Reference frequency (rad/sec), used only for the D.T.T.F. control laws (aerodynamic energy) - the value chosen is normally around the value of the flutter frequency.
- NTE Integer array following the order of the controls which identifies between L.E. and T.E. controls.
 - = 1 T.E. control
 - = 0 L.E. control

NCACT Number of active controls

Note that whenever a control is not active, put NTE = 0 when using aerodynamic energy versions for CONTRL.

<u>Remark</u>: The transducer data as indicated above is tailored fit to the control laws employed using the aerodynamic energy concept. The form of control law asumed is as follows:

$$q_{c} = \begin{pmatrix} \delta_{1} \\ \delta_{2} \\ \vdots \\ \delta_{NC} \end{pmatrix} = \begin{bmatrix} \frac{1}{Q_{1}(s)} & & & \\ & \frac{1}{Q_{2}(s)} & & \\ & & \frac{1}{Q_{NC}(s)} \end{bmatrix} \begin{bmatrix} \overline{P}_{1,1}(s) \cdot \cdot \cdot \overline{P}_{1,NA}(s) & n_{1} \\ \vdots & & \\ & & \frac{h_{2}}{2} \\ \vdots & & \vdots \\ & & P_{NC,1}(s) & \overline{P}_{NC,NA}(s) & n_{NA} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{Q_{1}(s)} & & & \\ & & \frac{1}{Q_{2}(s)} \end{bmatrix} \begin{bmatrix} \overline{P}_{1,1}(s) \cdot \cdot \cdot \overline{P}_{1,NA}(s) & n_{1} \\ \vdots & & \vdots \\ & & P_{NC,1}(s) & \overline{P}_{NC,NA}(s) & n_{NA} \end{bmatrix}$$

where the vector $[h_1, h_2 \dots h_{NA}]^T$ denotes relative displacements and/or relative rotations. The aerodynamic energy control laws assume that a_1 is driven by h_1 and h_2 , that a_2 is driven by h_3 and h_4 and so forth so that NA = 2*NC. The matrices $\left[\frac{1}{Q}, \frac{1}{(s)}\right]$ and $\left[\overline{P}(s)\right]$ are computed in subroutine CONTRL (See Appendix C). The above form, however, is very general and can be readily used for other types of control laws which are driven by any number of either relative or absolute (or both) dsplacements (and/or rotations) at any chordwise locations. The cards 282-288 in the main program process the transformation matrix [H] (of order NA x NM) connecting the vector $[h_1 \quad h_2 \quad \dots \quad h_{NA}]^T$ with the generalized coordinates

$$\begin{cases} h_1 \\ h_2 \\ \vdots \\ h_{NA} \end{cases} = [H] q_s$$
(B2)

S

so that the matrix [P(s)] in eq. 31 can be computed by $[P(s)] = [\overline{P}(s)][H] \qquad (B3)$ In summary, subroutine CONTRL provides the matrices $[\frac{1}{Q(s)}]$ and $[\overline{P}(s)]$ whereas the matrix [H] is computed in cards 282-288 (in MAIN).

If NAER = 0 then

READ (5,FT)

DO 1 K = 1, NK

DO 1 J = 1, (NM + NC + NG)

DO 1 I = 1, NM

READ (2, FORMAT(2E15.5)) AERO (I,J,K)

1 CONTINUE

where FT is a namelist defined by

NAMELIST/FT/NK, AK, MAXNK, MPRINT, MPUNCH, IRIGID, JRIGID and where 2 designates the file in which the aerodynamic data is located. The various parameters are defined as follows:

NK Number of reduced frequencies k used for the interpolation of the aerodynamic coefficients.

AK Array (<20) containing the values of k corresponding to the aerclynamic coefficients. The first value of k must be zero. The order of the frequency value must correspond to the order of the aerodynamic coefficients. AERO (I,J,K) - see below.

MAXNK Maximum value of NK (= 20 in present program).

NPRINT - O No printed output from the PADE interpolation routine (called FIT).

- 1 Printed output is available.

NPUNCH = 0 No punched output from subroutine FIT.

- 1 Interpolation coefficients are punched.

IRIGID, JRIGID

Interpolation coefficients for the aerodynamic coefficients (PADE representation) for the first IRIGID rows and first JRIGID are determined using the first few values of reduced frequency k (assumed to be the lowest) without resorting to a least squares procedure. In this case the rigid body modes must be located so as to be the first modes. This is done in order to increase the accuracy of the aero-coefficients at low k values where steady state stiffness and damping terms are zero (the least square routine may render them negative).

3

ž

AERO(I,J,K) Array containing the values of the aerodynamic matrix A (see eq. (1)) - that is, the $(I,J)^{th}$ coefficient at the Kth reduced frequency. The order at which the different K values are arranged must correspond to the AK values. The first k value must correspond to k=0. For order of columns in [A] see the remark above for case NAER \neq 0.

READ (FORMAT (4E10.0)), ETA1, PHI

- ETAl Accuracy of computer relative to 1 (on I.B.M. double precision = 5.E-13). Absolute accuracy = X*ETA1 (value unimportant for gust sensitivity-version).
- PHI Relative size of "suction zone" within which the optimized parameter is "sucked" to the constraint in order to avoid false convergence. Absolute size of zone = X1(I)*PHI or X2(I)*PHI depending on whether near lower or upper constraints (value unimportant for gust sensitivity version).

READ (FORMAT (515), NV, NPR, NDR

NV Number of independent control gains in the control laws (< 36).

NPR = 0

- NDR 0 Optimization is based on the minimization of the RMS responses of controls.
 - 1 Optimization is based on the minimization of the RMS response rates of controls.

READ (FORMAT (515), NONACT

NONACT Number of non-active optimization parameters (that is, number of control gains kept fixed during optimization).

READ (FORMAT (515), (HA(I), I = 1, HOHACT)

NA Integer Array containing the location of the non-active parameters in the X array (see below). If NONACT = 0, a blank card should be placed here.

READ (FORMAT (4E10.0), WL, WT

ML, WT Two weights for emphasizing the contributions of any of the control responses in the target function expression (defined as FUNCTN in subroutine SOLGST, cards 461 and 467). More details regarding the target function FUNCTN will be given below at the end of the data description.

DO 200 I = 1, NV

READ (FURMAT (4E10.0)), X1(I), X(I), X2(I), EPS(I)

200 CONTINUE

For

- X1(1) Value of the lowest bound of the Ith control parameter (during optimization).
- X(1) Initial value of the Ith control parameter (at the onset of the optimization process). There are 6 gains per control surface for the L.D.T.T.F. and 1 gain per control surface for the D.T.T.F. (\leq 36). The values of X(I) for the L.D.T.T.F. should be used considering the following basic form for the Ith control surface transfer function

$$F_{I} = \frac{x(1+6*(I-1))*s^{2}}{s^{2} + 2*x(2+6*(I-1))*x(3+6*(I-1))*s + (x(2+6*(I-1))^{2})} + \frac{x(4+6*(I-1))*s^{2}}{s^{2} + 2*x(5+6*(I-1))*x(6+6*(I-1))*s + (x(5+6*(I-1))^{2})}$$

3

L.E. control

$$s_{I} = F_{I} L - 4 4 \int_{\alpha}^{(h/b)} 0.3C$$

-33-

For T.E. control

$$\hat{s}_{1} = F_{1}L 4 = 2.8 j \begin{cases} (h/b) & 0.3C \\ \alpha & \end{array} = 1.8 \alpha$$

-34--

For further details see Ref. 3.

- X2(I) Value of the upper bound of the Ith control parameter (during optimization).
- EPS(I) The desired absolute accuracy of the optimal final X(I) value.

READ (FORMAT (4E10.0)), FMIN, ETA

- FMIN Parameter containing an approximate value to the minimum of the target function FUNCTN (see remark at the end of this section). If unknown, use FMIN = 0.
- ETA Parameter containing an estimate of the relative accuracy of the rms response computations. Used to determine the type of difference approximation to the gradient (value unimportant for the gust sensitivity version).

RFAD (FORMAT (515)), ITMAX, IW

- ITMAX An input/output integer. On input, ITMAX contains the maximum allowable number of optimization iterations. On output, ITMAX contains the number of iterations used (value unimportant for the gust sensitivity version).
- IW An integer code for printing during computation (value unimportant for the gust sensitivity version).

- 0 No printing.

- 1 Print gradient vector, direction of each linear minimesation and function value before and after each linear minimization.
- 2 In addition to the above, print function values
 calculated during the course of linear minimizations.

3 In addition to the above, print function values
 calculated in evaluating the gradients.

READ (FORMAT (110, 2010.0)), NF FBEGIN, FEND

- NF Number of frequency intervals used in computing the spectral response (Total number of frequencies used = NFT = NF+1, should be < 100).</p>
- FBEGIN Lower value of frequency (in HZ) in computing the spectral response.
- FEND Upper value of frequency (in HZ) in computing the spectral response.

READ (FORMAT (4E10.0)), LENGTH

LENGIH Gust scale length. Used to determine the Von Karman gust spectrum.

READ (FORMAT (4E10.0)), EM

EM Flight Mach number.

<u>Remark</u>: The definition of the target function FUNCTN (in subroutine SOLGST, card 461 for function based on rms control deflections and rard 467 for function based on rms rates of control deflections) is left open to the user. It can be defined for example as a weighted sum of the rms responses, that is

$$FUNCTN = \sum_{i=1}^{NC} W_i (q_c)_{rms}$$

or

$$FUNCTN = \sum_{i=1}^{NC} W_i (\dot{q}_{c_i})_{rms}$$

where W_i represents the ith weight.

In some cases it may be of interest to keep the various rms control responses equal and a penalty function may be introduced into the

-35-

target function. Note the following equivalence relations between the notations used in eqs. (52), (53) and those used in the program:

> $(q_{c_i})_{rms} \equiv DRMS(I)$ $(\bar{q}_{c_i})_{rms} \equiv DRRMS(I)$

<u>Important</u>: Do not forget to check whether the definition of FUNCTN in the program (cards 461, 467) is applicable.

INPUT OF DATA - GUST SENSITIVITY VERSION

As already mentioned earlier, the gust sensitivity version of this program yields plots showing the sensitivity of the rms responses of the controls with respect to variations of the various X(1) gain parameters. To accomplish this, the following moifications should be made to the program:

- Replace cards 299-309 by the following
 IFINAL = 1*
 CALL GUSPLT (XX, XIACT, X2ACT, EPSACT, QQ, EM)
- 2) Delete cards 320-321.
- 3) Delete cards 472-526.
- Delete one of the two subroutines CUNTRL present in the package or replace both of them by a new one.

Une should make sure that both subroutines (GUSPLT and PLT) are included in the source program.

The data required is identical to the one outlined in the above gust optimization version except for the following change in the meaning of the following data:

102001 = 1, NV

READ (FORMAT (4E10.0)), X1(I), X(I), X2(I), EPS(I)

200 CONTINUE

- X1(1) Value of the lowest bound of the Ith control parameter (during sensitivity variations of this parameter).
- X(1) Initial value of the Ith control parameter (at the onset of the sensitivity variation).
- X2(I) Value of the upper bound of the Ith control parameter (during sensitivity variations of this parameter).
- EPS(1) The step size used in moving from X(1) to both X1(1) and X2(1).

Furthermore, some of the data needed for the gust optimization version is still read but the values are irrelevant for the gust-sensitivity version since they are not used. These parameters had been indicated while explaining their meaning in the gust optimization version of the program.

5. APPENDIX C

SUBROUTINE CONTRL

DETAILS ON THE COMMON PARAMETERS

Subroutine CONTRL computes the control laws used for either the flutter package or the gust package (including gust optimization program, or control response sensitivity to control law parameter variation program). The subroutines included in the above packages relate to aerodynamic energy control laws of the D.T.T.F and of the L.D.T.T.F. Whenever other types of control laws are required, subroutine CONTRL has to be reprogrammed (the same subroutine CONTRL can be used for both packages mentioned above). In the following, some explanations regarding the COMMON prameters employed by subroutine CONTRL, will be given in order to facilitate the reprogramming of subroutine CONTRL whenever deemed necessary. The subroutine is defined by

SUBROUTINE CONTRL (NP, P, ND, QD, NC, WR, NTE, X)

where

NP Two-dimensional integer output array. NP(I,J) contains the number of polynomial terms (as function of s, starting from s[•]) in the numerator control law element (I,J) of matrix $[\overline{P}(s)]$ (see eqs. (31), (B3) above) -(I ≤ 6).

Ρ

Three-dimensional output array representing the numerator control law matrix $[\overline{P}(s)]$. P(I,J,K) represents the coefficient of $s^{(k-1)}$ in the numerator polynomial located at position (I,J) in $[\overline{P}(s)]$.

-38-

ND

QD

WR

Х

One-dimensional integer output array. ND(I) represents the number of polynomial terms (as function of s, starting from s°) in the denominator of the Ith element in the diagonal matrix $\left[\frac{1}{Q(s)}\right]$ which forms a part of the control law transfer function matrix [T.] Two-dimensional output array representing the denominator

control law diagonal matrix $\left[\frac{1}{Q(s)}\right]$. QD(I,K) represents the coefficient of $s^{(k-1)}$ in the denominator of the Ith element in the diagonal matrix $\left[\frac{1}{Q(s)}\right]$.

NC Number of controls.

An input parameter. Used in present program for the aerodynamic energy control law of the D.T.T.F. to represent reference frequency (rad/sec). The value chosen is normally around the value of the flutter frequency.

NTE One dimensional input array used to distinguish between L.E. and T.E. control surfaces.

= 1, T.E. control.

= 0, L.E. control.

One-dimensional input array of control gains used for computing both $[\overline{P}(s)]$ and $[\frac{1}{Q(s)}]$. Note that matrix [P(s)] (see eq. (31)) is not computed in subroutine CONTRL ($[P(s)] = [\overline{P}(s)] * [H]$ where [H] is the modal matrix connecting the deflection at the different sensor locations with the generalized coordinates of the

₹

system, (see also eq. (B3)).

5- <u>1</u>

APPENDIX D

EIGENVALUE SUBROUTINES

DETAILS ON THE COMMON PARAMETERS

The subroutines described in the following pages belong to the IMSL library. They can easily be used in installations enjoying access to the IMSL library. Their replacement by other routines, if necessary, involves little effort and can be easily accomplished using the information included herein.

3

Ţ

			41	
c c	SUBROUTINE	L EBALAF	(A.N. LA.D.K.)	EBALUOIO EBALOOZO
C-6	BALAF	-0	-LIBRARY laamaanaanaanaanaanaanaanaanaanaanaanaana	-EHALOOJO
C				EBAL,0/340
č	FUNCTION		- HALANCE A REAL MATRIX A.	EBALCOSO
Ċ	USAGE		- CALL EBALAF (A.N. IA. D.K.L)	EBAL 0060
Ċ	PARAME TERS		- THE N X N MATRIX GIVING THE ELEMENTS OF THE	EBAL0070
ē			WATHIN TO BE BALANCED. THE INPUT A IS	EBALOOSO
Ċ			REPLACED BY THE BALANCED MATRIX.	EBALOOSO
Ċ		N	- THE CRUER OF THE MATRIX A AND THE LENGTH OF D	EHALOIOO
С		LA	- HOW DIMENSION OF A IN CALLING PREGRAM	EMALOIIO
C		J	- THE CUTPUT ARKAY OF LENGTH N WHICH CONTAINS	EBALU120
С			INFORMATION DETERMINING THE PERMUTATIONS	EUAL0130
С			USED AND THE SCALING FACTURS	EBAL0140
c		ĸ	- K AND L ARE THU BUTPUT INTEGERS SUCH THAT	EGAL0150
C			A41.J) = 0. 1+	EBAL0160
C			(1) I IS GREATER THAN J AND	EBALUI70
C			(2) J = 1++++K-1 CR	EBAL0180
C			1 = L+1++++K	EBAL0190
С		L	- SEE ABUVE. IF L .EU. O THE URIGINAL MATRIX A	EBAL 0200
C			IS IN HESSENBERG FERM.	EBAL0210
c	PRECISION		- SINGLE/DEUBLE	EBAL0220
C	LANGUAGE		- FLKTHAN	EBAL0230
C			• • • • • • • • • • • • • • • • • • •	-EBAL024C

С	SUBREUTINE	LHESSF	(A,K,L,N,IA,D)	EHES0010
C				EHES0020
С-в	Enessf		-LIUKARY 1	-EHESOU30
C				EHES0040
C	FUNCTION		- REDUCE A NUNSYMMETRIC MATRIX TO UPPER	EHES0050
C			HESSENDERG FURM BY GRTHOGUNAL	EHES0000
C			TRANSHERMATIENS	EHE 50070
С	USAGE		- CALL EHESSE (A.K.L.N.1A.D)	EHESOUSU
C	PARAMETERS	A	- N BY N NEWSYMMETRIC MATRIX TO BE REDUCED TO	EHESOUSC
C			UPPER HESSENBURG FLRM. (INPUT)	EHESU100
C			EN OUTPUT, A CONTAINS THE UPPER HESSENBERG	EHESU110
C			MATRIX.	EHE50120
Ç		к	- THE REUTINE REDUCES CNLY THE SUB-MATRIX OF	EHESO130
С			GRDER L-R+1, WHERE K IS GREATER THAN OR	EHESU140
C			EQUAL TO I AND LESS THAN UR EQUAL TO L. K	EFESU150
С			IS THE ROW AND COLUMN INDEX OF THE STARTING	EHES0160
С			ELEMENT. (INPUI)	EHESU170
C		L	- THE RUN AND CULUMN INDEX OF THE LAST ELEMENT.	EHES0180
С			L IS LESS THAN OR EQUAL TO N. (INPUT)	EFESU190
C		N	- GROER OF A AND THE LENGTH OF D.(INPUT)	EHE50200
C		1 A	- RUW DIMENSION OF A IN CALLING PREGRAM. (INPUT)	EHES0210
С		J	- OUTPUT VECTOR OF LENGTH N CONTAINING THE	EHESU220
C			UETAILS OF THE TRANSFERNATION	EHESU230
C	PRELISION		- SINGLE/DUUBLE	EHES0240
C	LANGUAGE		- FERTRAN	EHES0250
c		• ••• ••• ••• ••• ••• •••		-EHES0250

с с

<u>.</u>

The second s

.

SUBRUUTINE EQRHSF (H.N. H.K.L.WR.WI.Z.IZ.IER)

EGRNOO10 Egrnoo20

C-E	0xhjt	·v	-L [BHAHY]	EORN0030
C				EGRNOO40
C	FUNCTION		- FIND THE EIGENVALUES AND (OPTIONALLY) EIGEN-	LQRN0050
C			VECTORS OF A REAL UPPER HESSENBERG MATRIX.	EQRNO060
Ċ	USAGE		- LALL EGHHJF (HoNolHoKoLowRowlozolzoler)	EGRN0070
c	PARANETERS	м	- CN INPUT, H CUNTAINS THE UPPER HESSENWERG	EQRNOOSO
ĉ			HATRIX. THE REMAINING TRIANGLE UNDER H MAY	EURN0090
č			CONTAIN INFURNATION FHOM THE HESSENBERG	EGRNOIOO
ř			REDUCTION PROGRAM EMESSES ON DUTPUT H IS	LGRNOIIO
ř			DESTACYED.	EURNO120
~		A .1	- A IS THE BROES HE THE H MATHEXA	EQHNOIJO
C C			- A LE THE GROER OF THE A CREATER THE	EGRNOLAO
C .		10	- IN 13 IFC RUN DIMENDIQUE DE LE INCLUZ	FORNOISO
C			CALLING PROGRAFS	EQUINCIAN
C		ĸ	- K AND L ARE PRODUCED BY THE DALANCING	CORNOI VO
C		L	RUUTINE FUALAR. IF EDALAF HAS NUT BLEN USED.	EURNUITU -
C			SET K#1, L=N.	EGRNUISU
C		**	- UN ULTPUT, THE VECTORS WR AND WI UF LENGTH N	EGRNOIGO
c		n 1	CUNTAIN THE REAL AND IMAGINARY PARTS OF THE	EGRN0200
c			LIGENVALUES, PESPECTIVELY.	EGHN0210
c			THE EIGENVALUES ARE UNDEDERED	EGRN0220
č			EXCEPT THAT CUMPLEX CUNJUGATE PAIRS OF	EORNO230
č			VALUES APPEAR CLASECUTIVELY WITH THE EIGEN-	EOHNO240
č			VALUE HAVING THE POSITIVE INAGINARY PART	EORNOZEC
č			FILST. IF AN FRIDE FXIT IS NADE. THE	EGRN0200
с.			A LACKMANNES SHOW A HE COMPET FOR INDICES	EUEN0270
C.				F 11110 28 0
C		_	JTISSSIN WHENE JFIERSSEDS	ENGLASS
¢		Z	- UN INFUTA Z CUNIAINS THE IDENTITY MATRIX	EQRN0290
C			OF CREEK N IF THE LIGENVECTORS OF THE UPPER	EGRNUSUU
C			HELSENBLIG NATHIX ARE DESINED.	EGHNOJIO
C			IF THE EIGENVELTURS OF A REAL GENERAL MATRIX	EGRN0320
C			ARE LESIRED, THEN ON INPUTS Z CONTAINS THE	DEFONNOS
с			INANSFERMATION MATRIX PRÉDUCEU IN ÉHESSF	EURNUJ40
c			WHICH REDUCED THE GENERAL MATRIX TU	EGRN0350
č			HESSENDERS FURME THIS MATRIX CAN BE	EURNU36C
č			UNTAINED BY SEITING 2 TO THE N BY N IDENTITY	EURNU370
c			MATHER AND CALLING FHECKE HEFERE CALLING	EGRNOLBO
L.				FORNO340
۲. ۲			LUMENT OF OUR AND A DATALEY 7 CONTAINS THE	EDHNOADD
C			UN GUIPUI INC N DI N MAININ 2 CONTAIND INC	ENENDALD
C			REAL AND IMAGINARY PARTS OF THE CIGEN-	EURINUTIO
C			VELICHS. THE I-TH CULUMN OF 2 IS A REAL	CURNU420
Ç			EIGENVECTUR IF THE I-TH EIGENVALUE IS REAL.	EGRNU430
С			IF THE I-TH EIGENVALUE IS CLMPLEX WITH	EGRN0440
ι			PUSITIVE EMAGENARY PART. THE 147H AND	EURN0450
С			(1+1)-TH LOLUMNS OF Z CONTAIN THE REAL	EQRN0460
с			AND IMAGENARY PARTS OF ITS EIGENVECTOR.	EURN0470
c			IF THE I-TH EIGENVALUE IS CUMPLEX WITH NEGA-	EUKN0480
ć			TIVE INAUINARY PARTS THE (1-1)-TH CULUMN GF	EGRNU490
č			2 CENTAINS THE REAL PART OF ITS EIGENVELTOR	EGRN0500
~			AND THE INTELLING OF 2 CONTAINS MINUS THE	EURNOSIO
c c			THAN IN ANY DALT OF ITS FIGHNARD THAT	EQRN0520
L A			A MARTINE TART OF THE LEVENCEUNE The THE CAMES THE ALCOLOGICAL TRANSPORTED FOR THE AM	FURNOSIO
C			THE ELUENVELIURD ARE UNNUMPRIALIZED OF AN	
C			ERRUR EXIT IS MADL, NUNE UP THE EIGENVECTURS	
C			HAVE BEEN FUUND.	EURNU33U
C		12	- 12 IS THE HOW DIMENSION LF 2 IN THE	EGRN0560
С			CALLING PROGRAM. IF IZ IS LESS THAN N. THE	EQHNU570
C.			LICENVECTURS ARE NOT CUMPUTED. IN THIS	EGRN0580
С			LASE Z IS NUT USED.	EGRNU590
č		IER	- EKRUH PAHAMLTEN	EGRNUGOO
č			TERMINAL EKROR	EGRNOGIO
č			IFR # 128 + J. INUICATES THAT EQRHAF FAILED	E 0RN0620
с с			THE CONTRACT OF THE TARGET AND TARGET AND THE TARGE	FORNOA30
L.			IF CRUATERCE AL FIGHAVEOR OF FIGHAVEORD	

c			J+1.J+2N HAVE DE	EEN	CGMP	UTED	CORN	ECTLY.	EQRN0640
č			LIGENVALULS I J A	RC	3 H T	TL Z	ERU.	1 F 1Z	EGRNUSSO
c			IS GREATER THAN UP EQ	AU AL	TG	N. E	IGENV	ECTORS	EORNU660
Ċ			ARE SET TO ZERG.						EQRN0670
¢	PRECISION		 SINGLE/OLUBLE						EGHNOGHO
С	REQU. INSL	HULTINES	 JERTAT						EQRN0690
C	LANGUACE		 GRINAN						EGRN0700
L									EQRN0710

3.5

APPENDIX E

-44-

SOURCE LISTING AND INPUT/OUTPUT EXAMPLE FOR FLUTTER PROGRAM

The first part of the Appendix consists of the source listing of the program and is followed by an input/output example. The example chosen relates to the DAST configuration at M=0.9 with one active T.E. control surface based on the L.D.T.T.F. The output of the computer run includes a root-locus plot together with all the data rquired by the program. The aerodynamic coefficients AERO (1,J,K) used by the program are listed for convenience (this aerodynamic data is retrieved by the program from file 2).

It is recommended to use the plotting symbol '+' in the root locus plot. The symbol used in the present example is a result of some transient difficulties encountered using a new plotter.

1. No.

IMPLICIT REAL +8(A-H,0-Z) 00000001 C C0000003 FLUTTER SUPRESSION PACKAGE (WIT: OR WITHOUT ACTIVE CONTROLS) C C00008004 С USING RULT LICUS TECHNIQUES. THE FOLLOWING INPUT DATA IS REQUIREDCODODODS С C00000006 С C00000007 HDR - HEADER (FORMAT 1844) C C0000008 С NAMELIST/CASE -C000000009 C NM - NUMBER OF 400ES(15 MAX) C0000010 С C00000011 С NC - NUMBER UF CUNTROLS(6 MAX) C0000012 С C0000013 С NAER - I INPUT AERO IN TERMS OF INTERPOLATION COEFFICIENTS OF K C0000014 С - J INPUT AERO FOR DIFFERENT VALUES OF K - INTRPOLATION C00000015 С CUERVICIENTS TO BE COMPUTED IN SUBROUTINE FIT. C0000016 С C00000017 С B - ARRAY OF LAG TERMS USED DURING INTERPOLATION(4 HAX) C00000018 C C00000019 С NG - 1 IF GUST AERO IS SUPPLIED C0000020 С - O IF GUST AERO IS NOT SUPPLIED. C00000021 С C00000022 NL - NUMBER OF LAG TERMS TO BE USED DURING INTERPOLATION. C C0000023 С C0000024 1F NAER=1 THEN AERO COEFFICIENTS ARE READ (FURMAT 6X.7E10.4) С C00000025 IF NAER=0 NEXT INPUTS ARE READ IN SUBRUUTINE FIT. С C00000026 SUBSEQUENT INPUTS ARE READ IN SUBROUTINE FLUTCA. С C00000027 С C00000028 00000030 LXTERNAL OREAL, DAIMAG CUMMON/AERF/A0(15,22),A1(15,22),A2(15,22),A3(15,22),A4(15,22), 00000031 *A5(15,22),A6(15,22) 0000032 00000033 COMMON/ICASE/B(4)+NM+NC+NG+NL DIMENSION HDR(15) 00000034 0000035 NAMEL IST/CASE/NM,NC.NAER.B.NG.NL 0000036 READ 100, (HDR(1), 1×1,15) 00000037 PRINT 131, (HDR(1), 1=1,15) 00000038 READ(5,CASE) WRITE(6.CASE) 0000039 NMNC =NM+NC 00000040 00000041 IF (NAER.EQ.J) CALL FIT 0000042 IF (NAER.EQ.0) GO TU LO 0000043 DO 1 11=1.NM DO 1 JJ#1.NMNC 00000044 READ 200+A0(11+JJ)+A1(11+JJ)+A2(11+JJ)+A3(11+JJ)+A4(11+JJ)+ 00000045

1

f

;"

	+A5([[,,]])&A,([[,,]])	00000044
1	CUNTINUE	00000047
10	CONTINUE	00000048
	CALL FLUTCA	00000049
	STOP	00000050
100	FORMAT(1544)	00000051
101	FIDMAT(IN .IRAA)	00000052
200		00000043
		00000054
	CHARMITTAN (NATRI (NA.D.NI.C.WD.NTE.K)	00000055
cccci		CC0000086
r		C000000.67
	I D T T E ZONTUM JAK ENG ANY MIMBER JE ZONTODI BIOBACES, ZAN	C00000000
	LEDITATION CONTROL LAW FOR ANY WINDLE OF CONTROL BURFACESS CAN	C00000030
C C	DE USED FUR DUTH FLUTIER AND USET PRUGRAMS. THE DASIC GAINS	C00000054
	USED PERTIN ART APPROPRIATE FUR 20 PERCENT L.E. AND 20 PERCENT	C000000000
C	THE CONTROL STSTEMS WITH THE FURE SENSUR LOCATED AT THE 30	(00000001
C A	PERCENT CHORD LUCATION - JIMENSIONS ARE LIMITED TO B CONTROLS.	
		00000003
CCCCC		CC0000064
	IMPLICIT REALFBRANN, UNZ 2	00000065
	DIMENSION NP(0,1), P(0,12,1), G3(10,1), P(2,2), NTE(B), X(30), CN(3),	00000066
	*CDI(3)+CD2(3)+(EMPI(5)+TEMP2(5)+ND(C)	00000067
	f(1,1)=-4,D)	00000068
	E(1,2)=4,30	00000069
	F(2+1) = 4+00	00000070
	E(2,2)=2.400	0000071
	С21=-1.800	00000072
	NC2=2+NL	00000073
		20000074
	DO 1 J=1+NC?	00000075
	NH(1+1)=1	00000076
	DU 1 K-1,10	00000077
	P(I,J+K)=0.00	00000078
1	CONTINUE	00000079
	DU 2 I=1+NC	00000080
C		00000081
c c	ASE OF TOPO CUNTROL	00000082
¢		00000083
	EH=E(2,1)	00000084
	EA=E(2,2)	00000085
	IF (NTE (I) • EQ • 1) JC TO 3	0000086
С		00000087
с с	ASE OF LOED CONTROL	00000088
С		00000089
	EH=E(£,))	00000090
	EA=E(1,2)	00000091
3	CONTINUE	00000092
С		00000093
С	DETERMINATION OF THE DENUMINATOR POLYNOMIAL FOR EACH CONTROL SUR	F.00000094
С		00000095
	CN(1)=3,D0	00000096
	CN(2)=0.D0	00000097
	CD1(1)=X(0+1-4)++2	00000098
	CD1(2)=2+90+X(6+1-4)+X(c+1-3)	00000099
	CD1(3)=1.00	00000100
	CD2(1)=X(6+1-1)++2	00000101
	CD2(2)=2+00*X(6*I+1)*X(6*1)	00000102
	CD2(3)=1+D0	00000103
	CALL PROPUL (CD1, 3+CD2+3+Q2(1+1)+ND(1))	00000104

С 00000105 C DETERMINATION OF THE NUMERATOR POLYNOMIAL FOR EACH CUNTROL SURFACE00000106 С 00000107 00000100 CN(3)#X(6+1-5) CALL PROPOL (CD2+3+CN+3+TEMPL+N) 00000109 CN(3)=X(6+1-2) 00000110 CALL PROPOL(CD1.3.UN, 3. TEMP2.N) 00000111 00 4 K#1.N 00000112 P(1,2+1-1,K)=EH+(TEMP1(K)+TEMP2(K)) 00000113 P(1.2+1.K)=EA+(TEMP1(K)+TEMP2(K))+C21+(4TE(1)+GU(K.1) 00000114 00000115 4 CONTINUE NP([,2+1-1)=N 00000116 NP(1.2+1)=N 00000117 2 CUNTINUE 00000118 RETURN 00000119 END 00000120 SUBROUTINE CONTRL (NP.P.ND.QU.NC.WR.NTE.X) 00000121 C00000123 Ć D.T.T.F. CONTROL LAW FUR ANY NUMBER OF CONTROL SURFACES. CAN С C00000124 С BE USED FOR BUTH FLUTTER AND GUST PROGRAMS. THE BASIC GAINS C00000125 С USED HEREIN ARE APPRIPRIATE FUR 20 PERCENT L.E. AND 20 PERCENT C00000126 T.E. CONTROL SYSTEMS WITH THE FURE DENSOR LOCATED AT THE 30 С C00000127 С PERCENT CHURD LUCATION - DIMENSIONS ARE LIMITED TO & CONTROLS. C00000128 С C00000129 IMPLICIT REAL+3(A-H+U-Z) 0/ 000131 DIMENSION NP(6+1)+P(0+12+1)+QD(10+1)+E(2+2)+NTE(0)+X(36)+ND(6) 0000132 E(1.1)=-4.00 00000133 E(1.2)=4.00 00000134 E(2.1)=4.00 00000135 E(2,2)=3.20) 00000136 C21=-1.86DU 00000137 A=10000.J0 00000138 NC2=2+NC 00000139 DG 1 I=1,NC 00000140 00 1 J=1.NC2 00000141 NP(1,J)*1 00000142 DO 1 K=112 00000143 P(1.J.K)=0.DU 00000144 1 CUNTINUE 00000145 70 2 1=1.NC 00000146 ?(I+2+1-1,1)=0.00 00000147 P(1,2#1,1) = A + C21 = NTE(1) 00000148 С 00000149 CASE OF T.E. CUNTRUL 00000150 C 00000151 С EH*E(2+1) 00000152 EA=E(2.2) 00000153 , IF (NTE (I).EQ.1) GO TO 00000154 3 С 00000155 С CASE OF L.E. CUNTRUL 00000156 С 00000157 EH=E(1,1) 00000158 EA=E(1+2) 00000159 **J CONTINUE** 00000160 С 00000161 DETERMINATION OF THE NUMERATOR POLYNCHIAL FOR EACH CONTROL SURFACE00000162 С С 00000163

.

Ē

46

3

<u>×</u>

00000164 P(1,2+1-1,d)+A+1 H+X(1)/AH 886666145 P([,#+[+2]+A+LA+X([}/WP 00000166 С DETERMINATION OF THE FENDMINATIN PULYNUMIAL FOR EACH CONTROL SURF.00000167 C 00000144 C 0000169 QD(1.1)+A 00000178 QD(2.1) 1.00 NH (L . 2+1-1) #2 00000171 00000172 NP(1,2+1)=2 00000173 ND(L)=2 2 CONTINUE 00000174 RETURN 00000175 00000176 END SUHROUTINE FLUICA 00000177 . IMPLICIT REAL +H(A-H, H-Z) 00000178 C00000180 С С THE EQUATIONS OF MOTION ARE INDUCHT IN THIS SUBRUUTINE TO A 200000181 CUNVENTENT FIRST URDER FURM DYZDTEUY AND SULVED FOR A SIVEN C0000182 C VELOCITY AND MACH NUMBER AS A FUNCTION OF THE DYNAMS PRESSURE Q COODOOLS C (WHICH IS VARIED WITHIN A PRESCRIBED RANGE). UP TO SIX ACTIVE C00000184 C C CONTROLS CAN BE USED IN THIS SUBRUITING. RESULTS ARE SUITABLE C00000185 C FOR ROOT LUCUS PLUTS. C00000186 C C00000187 C00000188 C NAMEL ISTZELUT C MASS - MASS MATHER (1) X 15 MAX) C0000189 C00000190 C UMEGAN - NATURAL FUEDUENCIES ARRAYCEN HZE - (15 MAX) - NUTE-C00000191 С STIFFRESS IS CEMERTED FROM MADS AND EMEGAN AND IS THEREFORE C00000192 C C CURRECT FOR DIAGONAL MASS MATEEX UNLY. C00000193 C C00000194 С UBEGIN - INITIAL VALUE OF OTHAMIC PRESSURE & C00000195 С C00000196 C UEND - FINAL VALUE IF DYNAMIC PRESSURE OF C00000197 С C00000198 NO - NUMBER OF EQUAL INTERVALS DIVIDING THE Q PANGE INUMBER OF С C0000194 С VALUES OF U=NO+1). 00000200 С C00000201 C00000202 С VEL - ELIGHT VELUCITY С C00000203 С BTRAN - ARRAY OF SEMICHURD LENGTHS OF WING OR TAIL) SECTIONS C00000204 С WHERE THE DIFFERENT CUNTRILS AFF LOCATED (AT MID CUNTROL SPAN C00000205 C SECTIONS) - (6 MAX) C00000206 C C00000207 CTRAN - ARRAY OF DISTANCES BETALEN THE TWO TRANSDUCERS AT EACH С C00000208 CONTRUL SURFACE MID SECTION (USED TO COMPUTE THE ANGLE OF C00000209 С С C00000210 DEFORMATION) - (r MAX). С C00000211 С CREF - REFERENCE SEMI CHURD LUNSTH (NURMALLY WING RUGT SEMI C00000212 С CHORD) - SHOULD DE CONSISTENT WITH THE REFERENCE LENGTH USED IN C00000213 С CUMPUTING THE REDUCED FREQUENCY K. C00000214 С C00000215 С ZW - MATRIX WHERE ZW(I,J) INJICATES THE DISPLACEMENT(PUSITIVE C00000216 DOWN) OF THE I-TH TRANSDUCER UJE TO THE J-TH MUDE. FOR EACH ¢ C00000217 С SECTION THERE ARE TWO TRANSDUCERS -- THE FORE TRANSDUCER SHUULD C00000218 HE LUCATED AHEAD OF THE AFT THANSDUCER(AT 3) PERCENT CHORD FROM С C00000219 L.E.). THESE SETS OF TRANSDUCEPS SHOULD BE ARRANGED IN THE SAME C00000220 С ORDER AS THE CONTROLS - (12 X 15 MAX). C00000221 С C00000222 С

47

.

THE RIGID BUDY MOTION OF THE ALKCRAFT - (2 X 15 MAX).	C00000
	C00000
THE THE ROUT LOUDS FLUT WILL BE MADE	C00000
- VNU PLUI WILL DZ MADE	C00000
A DE ANNAL DE M OFFENCER ANDERTINE ARTS BRUNREN THE ROUR	(00000
GER - ARRAY UP & DISTANCES (PUBLITE AFT) DETWEEN THE FURE	C00000
REFERENCE TRANSDUCER AND THE FURE CUNTRUL TRANSDUCER - (DHAA)	C00000
ATTO A CONTRACT OFFICE ON THE TWO THE THE ACCOUNTRALS AT THE DESCRIPTION	C00000
CIR - DISTANCE BETWEEN THE TWO TRANSDUCERS AT THE REFERENCE	C00000
SECTION.	C00000
	C00000
NCACI - NUMBER OF ACTIVE CONTROLS FOLLOWING THE ORDER OF THE	C00000
	C00000
	C00000
NAMELIST/PLUTPA	C00000
XZ - LEFT HAND LIMIT LF REAL PART OF ROUT LOCUS	C00000
	C00000
¥Z=0.	C00000
	C00000
XSCALE – AHSCISSA SCALE(VALUE PER INCH)	C00000
	C00000
YSCALE - URDINATE SCALE(VALUE PER INCH)	C00000
	C00000
XL - LENGTH OF AUSCISSA IN INCHES	C00000
	C00000
YL - LENGTH DE GROINATE IN INCHES	C00000
	C00000
ISYM - INTEGER DEFINING SYMBOL DURING RUCT LOCUS PLUT(=3 IS	C00000
RECOMMENDE).	C00000
	C00000
IENTRY - 1	C00000
	C00000
NAMFI 1517485176	C00000
MAXE - MAXIMUM NUMBER OF CONTROLS(#6.1N THIS PROGRAM)	C00000
	C00000
MAYNM - MAYTMUM NUMBER OF MUDEC/-15 IN THIS DOM/DAMY	C00000
ANA MALINOM NOMELLA DI MODESI-IS IN THIS (ABORAN)	C00000
MAYKE MAYTMINE NUMBED OF DOLYN, MEAL TEDMS DED ELEMENT IN THE	C 0 0 0 0 0
HAART HAAIMON NOMBER SI FOLINOMINAL ILEMS FER LELMENT IN INC Toangles fingtion nimedatol and affining matrix feriting begen	C00000
TRANSFER FONCTION NOVEPATOR AND DENOMINATOR MATRICEST-TO TERCINE	C00000
MANT - ANYTHING (GOED OF STAAL MATDLY AREADE DY/DITUN	C00000
MAAL - MAALMOM GRUER OF FINAL MAIRIA ALWHERE DIVDI-GI	
IN THIS PRUGRAM!	
NAMELIGIZUNG Note that it te neressand to nerete one de the two commonstations	C00000
NULE INAL IT IS NEULSSANT TO DELL'IE UNE UP THE TWO SUBROUTINES	
NAMED LUNIKL ALCUKDING FU THE DESIKED CUNTRUL LAWA	
n an	
WR - REFERENCE FREQUENCY (FAD/SEC) OUSED UNLY FUR THE DOTOTO	C00000
CUNTRUL LAWSVALUE CHUSEN IS NURMALLY AROUND THE FLUTTER	00000
FREQUENCY VALUE.	C0000(
_	C00000
NTE - INTEGER ARRAY FULLOWING THE URDER OF THE CONTROLS AND	C00000
IDENTIFYING BETWEEN L.E. AND T.E. CONTROLS.	C00000
=1, T.E. CONTROL	C00000
=0, L.E. CUNTRUL	C00000
IT IS IMPORTANT TO NOTE THAT WHENEVER A CONTROL IS NOT ACTIVE	C00000
PUT NTE=J	C0000
	C00000

48

.

.

.

.

3.

```
С
      X - ARRAY OF GAINS. THERE ARE 6 GAINS PER CONTROL SURFACE FOR
                                                                        C00000282
                                                                        C00000283
С
      THE L.D.T.T.F. AND 1 GAIN PER CONTROL SURFACE FOR THE D.T.T.F.
                                                                        C00000284
С
      (#36 MAX)
                                                                        C0000285
С
      X(1)+5++2/(5++2+2+X(2)+X(3)+5+X(2)++2) +
                                                                        C00000286
С
                    X(4)+5++2/(5++2+2+X(5)+X(6)+5+X(5)++2)
С
                                                                        C00000287
00000289
      REAL #4 X2, YZ, XSCALE, YSCALE, XL, YL, BUF(100)
      COMMON/AERF/AU(15,22),A1(15,22),A2(15,22),A3(15,22),A4(15,22),
                                                                         00000290
                                                                         00000291
     *A5(15,22),A6(15,22)
                                                                         00000292
      CUMMON/ICASE/B(4), NM, NC, NG, NL
      DIMENSION DMEGAN(15), H(12, 15), AOC(15, 6), AIC(15, 6), A2C(15, 6),
                                                                         00000293
     #A3C(15,6),A4C(15,6),A5C(15,6),A6C(15,6),ZW(12,15),ZREF(2,15),
                                                                         00000294
     *BTRAN(6),CTRAN(6),ACL(15,6,4),AL(15,15,4),FCT(5,5),D(3),
                                                                         00000295
     *D1(15),CM(15,15,7),CA(15,15,7),CAC(15,6,7),NP(6,12),NPIMX(6),
                                                                         00000296
     *ND(6).QU(10.6).RM(21.15.10).DM(21.6.13).P(6.12.10).PH(6.15.13).
                                                                         00000297
     *C(5),RDMN(21,21),FR(189),EI(189),PV(189),CLR(6),NPC(6),
                                                                         00000298
     #NTE(6) + X ( 36 ) +
                                                                         00000299
     *T(100.100)
                                                                         00000300
      REAL #8 MASS(15,15),KBAR(15,15)
                                                                         00000301
      NAMELISTZELUTZMASS.UMEGAN.QHEGIN.QEND.NQ.VEL.BTRAN.CTRAN.CREF.2W. 00000302
                                                                         00000303
     #ZREF . IPLUT . CLR . CTR . NCACT
      NAMEL [ ST/PLOTPA/XZ+YZ+XSCALE+YSCALE+XL+YL+15YM+IENTKY
                                                                         00000304
      NAMEL IST/MXSIZE/MAXC.MAXNM.MAXK.MAXT
                                                                         00000305
                                                                         00000306
      NAMEL IST/CUNC/WR .NTE .X
                                                                         00000307
      READ(5.FLUT)
                                                                         00000308
      WRITE(6,FLUI:
С
                                                                         00000309
                                                                         00000310
С
                                                                         00000311
С
                                                                         00000312
      PRINT
             500
                                                                         00000313
      DQ=(QEND-JUEJIN)/NJ
                                                                         00000314
      NQT=NQ+1
      P1=3.141592654D0
                                                                         00000315
      CALL - PLUTS(BUF, 100, 0, 10.0)
                                                                         00000316
      CALL PLUT(1++1++-3)
                                                                         00000317
      IF(IPLUT+EQ+1) READ(5,PLUTPA)
                                                                         00000318
                      WRITE(6,PLUTPA)
                                                                         00000319
      IF(IPLOV.Lu.1)
                                                                         00000320
      READ(5,MXSIZE)
                                                                         00000321
      WRITE(6, AXSIZE)
                                                                         00000322
      IF (NCACT .NE .0) READ (S, CUNC)
      IF (NCACT .NE . J)
                     WRITE(6+CENC)
                                                                         00000323
                                                                         00000324
      NC =NCACT
      MAX=MAXC+JAXNM
                                                                         00000325
С
                                                                         00000326
      COMPUTATION OF THE STIFFNESS MATRIX KHAR
                                                                         00000327
С
С
                                                                         00000328
      DG I I=1+NM
                                                                         00000329
      UMEGAN(I)=2.D3+PI+DMEGAN(I)
                                                                         00000330
      DO L J=1.NM
                                                                         00000331
      KBAR(I,J)=MASS(I,J)*UMEGAN(I)**2
                                                                         00000332
                                                                         EEE00000
    1 CONTINUE
                                                                         00000334
С
      FORMATION OF THE VARIOUS AERO MATRICES
                                                                         00000335
С
С
                                                                         00000336
      VEL1=CREF/VEL
                                                                         00000337
      VEL2=VEL1*VEL1
                                                                         00000338
      IF(NC.EQ.)) GU
                     TC 63
                                                                         00000339
                                                                         00000340
      DU 2 I=1.NM
```

- É

49

3

00000341 DO 2 J=1+NC 00000342 AOC(1,J)=AO(1,NM+J)00000343 A1C(1.J)=A1(1.NM+J) A2C(I,J)=A2(I,NM+J)00000344 ACL (I.J.1)=A3(I.NM+J) 00000345 IF (NL.LT.2) 60 TO 2 00000346 ACL(1.J.2)=A4(1.NM+J) 00000347 1F(NL.LT.3) GU TO 2 00000344 ACL(1, J, J)=A5(1, NH+J) 00000349 IF (NL.LT.4) GD TU 2 00000350 ACL(I,J,4)=A6(I,NM+J) 00000351 2 CUNTINUE 00000352 60 CUNTINUE 00000353 DD 3 1=1+NM DG 3 J=1+NM 00000354 00000355 00000356 AL(1,J,1)=A3(1,J)00000357 IF (NL.LT.2) GD TO 3 AL(1,J,2)=A4(1,J) 00000358 IF (NL .LT . 3) JU TO J 00000359 00000360 AL(I,J,S)=A5(I,J) 00000361 IF(NL.LT.4) GU TU 3 00000362 AL(1,J,4)=A6(1,J) 3 CUNTINUE 00000363 DO 4 I=1.NL 00000364 8(1)=8(1)/VEL1 00000365 00000366 4 CONTINUE 00000367 REDUCTION OF THE FOUNTIONS OF MUTION TO A COMMON DENUMINATOR -00000368 IN THE FOLLOWING TWO STAGES :-00000369 (1) THE MM STRUCTURAL EQUATIONS WITHOUT THE CONTROL CUNTRIBUTION00000370 00000371 CALL FACTR (FCT.H.NL.LP.LF) 00000372 00000373 LSMX=LF+2 00000374 D0 6 K#1+LF 00000375 C(K)=FCT(K+LF) 6 CUNTINUE 00000376 DO 5 I=1+NM 00000377 DU 5 J=1+NM 00000378 D(1)=KBAR(1.J) 00000379 D(2) = 0.0000000380 D(3) = MASS(1, J)00000381 CALL PROPOL(C,LF,D, 3,D1,LS) 00)00382 DU 7 K=1.LS 00000383 00000384 CM(I, J,K)=D1(K) 7 CONTINUE 00000385 D(1) = AO(1, J)00000386 D(2)=A1(I.J)*VEL1 00000387 D(3)=A2(I+J)+VEL200000388 CALL PRUPUL(C+LF+D+3+D1+LS) 00000389 DU 8 K=1.LS 00000390 CA(1.J.K)=D1(K) 00000391 00000392 **B** CUNTINUE 00 9 K-1+NL 0000039 D(1)=0.00 00000394 00000395 $D(2)=AL(I_+J_+K)$ CALL PROPOL(FCT(1,K)+LP+0+2+01+L5) 00000396 DU 10 #4=1+LS 00000397 CA(I+J+KK)=CA(I+J+KK)+D1(KK) 00000398 IN CONTINUE 00000399

50

C С С

С

С

ı.

ŧ

ł.

1

ł

1

t

Ŧ

1

00000400 J CONTINUE 00000401 5 CONTINUE 90000492 NRR =L SMX 00000403 NRD#LSHX 00000404 NMT=NM+NC 00000405 NH1 =NH+1 NC2=2+NC 00000406 00000407 MAXC2=2*MAXC 00000408 IF (NC.FQ.0) GU TO 48 00000409 С (2) ADDITIONS TO THE NM STRUCTURAL EQUATIONS DUE TO THE NC 00000410 С 00000411 С CONTROL SURFACES 00000412 С 00000413 DO 11 I=1.NM 00000414 DL 11 J=1+NC 00000415 D(1)=AOC(1,J) 00000416 D(2)=A1C(1..)*VEL1 00000417 D(3)=A2((1,J)+VEL2 00000418 CALL PROPOL(C+LF+C+J+D1+LS) 00000419 DU 12 K=1.LS 00000420 CAC(1, J+K)=D1(K) 00000421 12 CUNTINUE 00000422 DU: 13 K=1+NL 00000423 0(1)=0.00 00000424 D(2) = ACL(I + J + K)00000425 CALL PROPUL (FCT(1+K)+LP+U+2+01+LS) 00000426 00 14 KK=1.LS 00000427 CAC(I,J,KK) = CAC(I,J,KK) + D1(KK)14 CUNTINUE 00000428 13 CONTINUE 00000429 11 CUNTINUE 00000430 00000431 00 33 I=1,NC 00000432 DΟ 33 J=1,NC2 00000433 33 K=1.MAXK f M i P(1,J,K)=0.00 00000434 00000435 33 CONTINUE С 00000436 FORMATION OF THE VC CONTROL SURFACE EQUATIONS THROUGH THE USE С 00000437 00000438 С OF THE CONTROL LAW 000004.39 С 00000440 CALL CUNTRE (NP+P+NJ+UD+NC+WF+NTE+X) 00000441 С 00000442 C 00000443 С 00000444 С 00000445 ¢ 00000446 ¢ 00000447 С 00000448 С 00000449 NCMX=000000450 NPMX=0 00000451 DU 45 1-1+NC 00000452 NPIMX(1)=NP(1,1)IF (ND(1) +GT + NCHX) NCHX=ND(1) 00000453 DU 45 J=1+NC2 00000454 IF(NP(I,J),GI,NPIMX(I)) = NPIMX(I)=NP(I,J)00000455 IF (NP(1, J) . GT . NPMX) NPMX=NP(1, J) 00000456 00000457 45 CUNTINUE IF (NPMX + UT +L SMX) NRR=NPMX 00000458

	IF (NCMX+GT+LSMX) NHD=NCMX	00000459
48	CONTINUE	00000460
	DU 46 I=1+NMT	00000461
	DO 46 J+1+NM	00000462
		00000463
	RM(I.J.K)=0.00	00000464
46	CONTINUE	00000465
		00000466
	DO 47 IIIANMT	00000467
		00000468
		00000469
		00000470
. 7		00000471
-		00000472
		00000472
		00000475
		00000474
		00000475
	$\mathbf{H} \left\{ \mathbf{J} \right\} = \left\{ \mathbf{Z} \mathbf{W} \left[1 \cdot \mathbf{J} \right] + \left\{ \mathbf{C} \mathbf{U} \right\} \left\{ \mathbf{I} \mathbf{N} \right\} \right\} \subset \left\{ \mathbf{I} \mathbf{N} \right\} \subset \left\{ \mathbf{I} \mathbf{N}$	00000478
1	2REF(2,J))/81RAN(INC)	00000477
	H(1+1, J) = (2W(1+1, J) - /W(1, J))/(TKAN(1NC) - (2REF(2, J) - 2REF(1, J))/(TRAN(1NC) - (2REF(2, J)))/(TRAN(1NC) - (2REF(2, J))))/(TRAN(1NC) - (2REF(2, J)))))/(TRAN(1NC) - (2REF(2, J))))))))))))))))))))))))))))))))))))	00000478
31	CONTINUE	00000479
		00000480
	CALL MXPROD(P(1+1+K)+H+PH(1+1+K)+NC+NC2+NM+MAXC+MAXC2+MAXC)	00000481
30	CONTINUE	00000482
	DJ 17 I=1.NC	00000483
	NN = ND (1)	00000484
	NPC(1) = NEJ - ND(1)	00000485
	$D_{ij} = 17 K = 1 \cdot NN$	00000486
	DM(NM+1+1+NRD-K+1)=+)(NN-K+1+1)	00000487
17	CONTINUE	00000488
	Du 18 I≐1+NC	00000489
	NN=NPIMX(1)	00000490
	NR=NPC([)+NPLMx(1)	00000491
	NP LMX(I)=NK	00000492
	DO IH J=I+NM	00000493
	DJ 18 K=1,NN	00000494
	RM(NM+I+J+NK-K+1)=-PH([+J+NN-K+1)	00000495
13	CONTINUE	00000496
	NNPMX=0	00000497
	DU 52 I=1-NC	00000498
	IF(NPIMX(I).gt.NNPMX) NNPMX=NPIMX(I)	00000499
52	CONTINUE	00000500
	IF (NNPMX.JT.NKF) NKR=NNPMX	00000501
51	CONTINUE	00000502
		00000503
		00000504
		00000505
		00000506
		00000500
		00000507
		00000500
	- 1913	00000509
	LER FLAT - LA OFF & BURCY & U/W 1	00000010
	T MANAGER TANK THE THIS SUBJECT OF THE TO SHOW THE THE THE THE TANK THE TANK	00000511
	FURMATION OF THE EXPANSED FIRST ORDER DIFFERENTIAL EQUATIONS	00000512
	UP MUTIUN (SUITABLE FUR LIGENVALUE SOLUTION OF THE T MATRIX) -	00000513
	REPEATED IN A LUDP FUR THE VARIOUS VALUES OF DYNAMIC PRESSURE Q	00000514
		00000515
	DU IUJU ICASE=1.NUT	00000516
	DO 32 [=1.NT	00000517

с с <u>с с</u> с

.

.

DO 32 J=1.NT 00000518 00000519 T(1.J)=0.00 00000520 32 CONTINUE 00000521 Q=QBEGIN+(ICASE-1)+DQ 00000522 С PRINT 100.0 00000523 00000524 DO 15 I=1.NM 00 15 J=1.NM 00000525 00000526 DO 15 K#1.LSMX RM(1.J.NRR-K+1)=CM(1.J.LSMX-K+1)+Q+CA(1.J.LSMX-K+1) 00000527 15 CONTINUE 00000528 00000529 [F(NC.EQ.0) GO TU 49 DO 16 I=1.NM 00000530 DO 16 J=1.NC 00000531 00000532 00 16 K#1.LSMX 00000533 DM(1,J,NRR-K+1)=Q+CAC(1,J+LSHX-K+1)16 CONTINUE 00000534 49 CONTINUE 00000535 00000536 DO 19 I=1.NMT DO 20 J=1.NM 00000537 RDMN(I,J)=-RM(I,J,NRR) 00000538 00000539 20 CUNTINUE 00000540 IF (NC.EQ.0) GO TO 19 00000541 DU 21 J=1.NC 00000542 $RDMN(I_J+NM) = -DM(I_J+NRD)$ 00000543 21 CONTINUE 00000544 19 CUNTINUE 00000545 CALL MXINVR(NMT+)+MAX+HDMN) DU 22 K=1,NRPM1 00000546 00000547 NJ=NMT+(K-1)+100000548 KK=NRR-K CALL MXPRUD(RDMN.RM(1.1.KK),T(1.HJ).NMT.NMT.NM.MAX.MAX.MAX.MAXT) 00000549 00000550 22 CUNTINUE 00000551 IF(NC.EQ.) 60 TO 53 00000552 DO 23 N=1.NRDM1 00000553 KK=NRD-K IF(K.LE.NRRM1) NJ*NMT*K-NC+1 00000554 IF(K.GT.NRRM1) NJ=NMT+NRRM1+NC+(K-NRRM1-1)+1 00000555 CALL MXPRUD(RDMN,DM(1.1.KK),1(1.NJ),NMT,NMT,NC,MAX,MAX,MAXT) 00000556 23 CONTINUE 00000557 00000558 50 CONTINUE DU 24 1=1.NTS 00000559 T(NMT+I.I)=1.D0 00000560 24 CONTINUE 00000561 00000562 IF (NTSS.EQ.O) GU TU 20 00000563 DO 25 I=1+NTSC 00000564 $T(NTSI+I \cdot NTSI-NC+I) = I \cdot D$ 25 CUNTINUE 00000565 26 CONTINUE 00000566 00000567 С EIGENVALUE SOLUTION OF THE FINAL T MATRIX С 00000568 00000569 C CALL EBALAF(T.NT.MAXT.PV.INK.INL) 00000570 00000571 CALL EHESSF(T, INK, INL, NT, MAXT, PV) CALL EURHJF(T.NT.MAXT.INK, INL.FR.E1.ZZ.O, IERR) 00000572 PRINT 600, IERR 00000573 00 82 I=1.NT 00000574 00000575 PRINT 200, FR(I), E1(I) 00000576 82 CONTINUE

I.

.

.

53

IF(IPLUT.EQ.I) CALL PLTDAT(NT.ER.EI.XZ.YZ.XSCALE.YSCALE.XL.VL. 00000577 00000578 +ISYM, LENTRY) 1000 CONTINUE 00000579 CALL PLOT(0..0.,999) 00000580 100 FURMAT(//10X* DYNAMIC PRESSURE =**F10.3*/) 00000581 200 FORMAT(10X.615.4.* +1 *.815.4) 00000582 500 FORMAT (//10X+ ROOT LUCUS - CLUSED LUOP -REAL ACTUATORS !//) 00000583 00000584 600 FORMAT(10X* IERR = *[4) 00000565 900 FORMAT(7613.6) 00000586 901 FORMAT(515) 00000587 902 FORMAT(9613.5) 00000588 903 FORMAT(4X.E14.6) 00000589 RETURN 00000590 END SUBROUTINE FACTR(FCT.B.NL.LP.LF) 00000591 C00000593 С THIS SUBRUUTINE CUMPUTES THE VARIOUS FACTORS WHICH ARE NECESSARY C00000594 С SD AS TO BRING THE ARRO PADE APPRUXIMANTS TO A COMMON DENUMINATORCO0000595 С FCT(I,J) IS THE FACTOR WHICH MULTIPLIES THE J-TH LAG AERD TERM - C00000596 С IN TERMS OF POLYNOMIAL FCT(1.J)+FCT(2.J)*S+FCT(J.J)*S+#2+..... C00000597 C C00000598 С 00000600 REAL+8 FCT(5.5).8(4) 00000601 IF (NL .NE .1) GO TO 1 00000602 LP=1 00000603 LF=200000604 FCT(1+1)=1+00 FCT(1+2)=B(1) 00000605 00000606 FCT(2.2)=1.00 00000607 **RE TURN** 1 IF(NL.NE.2) GO TO 2 00000608 00000609 LP=2 00000610 1 6 8 3 00000611 FCT(1,1)=8(2) 00000612 FCT(2.1)=1.D0 00000613 FCT(1.2)=8(1) 00000614 FCT(2.2)=1.00 00000615 FCT(1,3)=B(1)+B(2) 00000616 FC1(2,3)=B(1)+B(2)00000617 FCT(3.3)=1.00 00000618 RETURN 2 IF (NL.NE.3) GO TC 3 00000619 00000620 LP=300000621 LF=4 00000622 FCT(1,1)=8(2)*8(3) 00000623 FCT(2.1)=B(2)+B(3) 00000624 FCT(3:1)=1.D0 00000625 FCT(1,2)=B(1)+B(3)00000626 FCT(2,2)=B(1)+B(3)00000627 FCT(3,2)=1.D0 FCT(1,3)=B(1)+B(2) 00000628 00000629 FCT(2,3)=B(1)+B(2) 00000630 FCT(3.3)=1.D0 00000631 FCT(1+4)=8(1)+8(2)+8(3) FCT(2,4)=8(1)+8(2)+8(1)+8(3)+8(2)+8(3) 00000632 00000633 FCT(3,4)=B(1)+B(2)+B(3)00000634 FCT(4,4)=1.D0 00000635 RETURN

7	IEAN NEAL ON TO A	00000636
		00000638
		00000637
		00000638
		00000039
	FCI(2:1)=0(2)+0(3)+0(2)+0(3)+0(3)+0(4)	00000640
	PCT(3,1)=B(2)+B(3)+B(4)	00000641
		00000642
	PCT(1,2)=8(1)+8(3)+8(4)	00000643
	FCT(2+2)=8(1)+8(3)+8(1)+8(4)+8(3)+8(4)	00000644
	FCT(3,2)=B(1)+B(3)+B(4)	00000645
	FCT(4+2)=1+D0	00000646
	FCT(1+3)=8(1)+8(2)+8(4)	00000647
	#CT(2,3)=8(1)+8(2)+8(1)+8(4)+8(4)+8(4)	00000648
	FCT(3,3)=B(1)+0(2)+U(4)	00000645
	FCT(4+3)=1+D0	00000650
	FCT(1+4)=8(1)+8(2)+8(3)	00000651
	FCT(2.4)=6(1)+6(2)+6(1)+8(3)+6(2)+6(3)	00000652
	FCT(3+4)=d(1)+8(2)+8(3)	00000653
	FCT(4,4)=1.DO	00000654
	FCT(1+5)=8(1)+8(2)+8(3)+8(4)	00000655
	FCT(2,5)=8(1)+8(2)+8(3)+8(1)+8(2)+8(1)+8(3)+8(4)+8(2)+8(3)+	00000656
	+8(4)	00000657
	FCT(3+5)=8(1)+8(2)+8(1)+8(3)+8(1)+8(4)+8(2)+8(3)+8(3)+	00000658
	*8(4)	00000659
	FCT(4,5)=8(1)+8(2)+8(3)+8(4)	00000660
	FCT(5,5)=1.DU	00000661
	RETURN	00000662
4	PRINT 100	00000663
too	FORMATISX NUMBER OF AFRIDYNAMIC LAG TERMS EXCEEDS THE MAXIMUM OF	00000664
	FOUR TERMS 1-2)	00000665
	STOP	00000666
	END	00000667
		00000668
		00000669
cccc		C00000670
<i>c</i>		C00000670
č	FITS THE APPLICACEFERIENTS IN TERMS OF DADE ADDONLAANTS HEING	C00000071
c c	THE THE ALRO CLEFTICIENTS IN TERMS OF PAUL APPROXIMANTS JEING	C00000672
ć	LEAST SUDART TECHNIQUE.	C00000673
		C00000074
	NAMELIJIZTI Na sumado de dedato edegaries y user son interdou iten	C00000075
C C	NK - NUMBER UF REDUCED FREQUENCIES & USED FUR INTERPOLATION	C00000078
~	AN . ADDAM CONTATATATAC THE P VALUECTION MANY - SELECT DENVICE M	C00000677
	AR - ARRAY CUNIAINING THE R VALUES(20 MAR) - TRINST REDUCED R	C00000678
C c	MUST BE EQUAL TO ZERCJ	C00000679
c c		00000680
C	MAXNK - MAX VALUE OF NKIMAA NK=20 IN PRESENT PROGRAMJ	C00000681
C c		C00000682
C C	NPRINT - 0 NO PRINTED EUTPOT FROM SUBRUUTINE FIT.	00000683
L.	- I PRINTED DUTPUT IS A "ALLABLE (FOR DEBUGGING PURPUSES)	00000684
C C		C00000685
L A	NPUNCH - U NU PUNCHED DUTPUT FRUM SUBKDUTINE FIT	C00000686
C	I PUNCHED DUTPUT(INTERPOLATION COEFFICIENTS).	C00000687
C		C00000688
C	INIGID. JRIGID - CURVE FITTING (WITH NU LEAST SQUARES TECHNIQUE)	C0000689
C	UF THE FIRST IRIGID RUWS AND JRIGID COLUMNS OF AERO MATRIX -	C00000690
C	ASSUMED TO CONTAIN RIGID BUDY AERO - TO IMPROVE RESULTS.	C00000691
C		C00000692
C	READ(2+) AERC(I+J+K) FORMAT(2E15+5)	C00000693
с		C00000694

55

- Strategy

•

٠

.

•

,

4

di-

ccc	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	CC0000695
	COMMON/AERF/A0(16,22),A1(15,22),A2(15,22),A3(15,22),A4(15,22),	000000096
	*A5(15,22),A6(15,22)	00000697
	COMMON/ICASE/B(4) + NM + NC + NG + NL	0001)698
	COMPLEX*16 AERO(15,22,20) + CCEF	00000699
	DIMENSION AK(20).AK2(20).X(40.6).XT(6.40).Y(40).XTX(6.6).	00000700
	*XTY(6), S(6), CLH(4,20), CLI(4,20)	00000701
	NAMEL IST/FT/NK.AK.MAXNK.NPRINT.NPUNCH.IRIGID.JRIGID	00000702
	READ(5.FT)	00000703
	WRITE(6.FT)	00000704
	MAXNK2=2+MAXNK	00000705
	NMNC=NM+NC+NG	00000706
		00000707
	AK2(K)=AK(K)*AK(K)	00000708
	DO 1 J=1.NMNC	00000709
	00 L I=1.NM	00000710
	READ(2,201) AERU(1,J.K)	00000711
	1 CUNTINUF	00000712
	00 5 1=1,NL	00000713
	B2=H(I)+d(I)	00000714
	DU 5 K=1+NK	00000715
	CLR(1,K)=AK2(K)/(H2+AK2(K))	00000716
	CLI(I+K)#H(I)+AK(K)/(32+AK2(K))	00000717
	5 CONTINUE	00000718
	IF (AK(1).NE.J.DJ) PRINT 130	00000719
	IF(AK(1)+NE+0+D0) STUP	00000720
С		00000721
C	DETERMINATION OF THE INTRPOLATION LEAST SQUAPE MATRIX XIX AND	00000722
С	THE KNOWN AFRU VECTOR XTY	00000723
С		00000724
	DU 2 I=1.NM	00000725
	DD 2 J = i NMNC	00000726
	IF(1+GT+IRIGID+UR+J+GT+JHIGID) SU TO /	00000727
	NK T=NK	00000728
	NK=(3+NL)/2+1	00000729
	7 CUNTINUE	00000730
	DD 3 K=2+NK	00000731
	X(2+K-3,1)=0.D0	00000732
	X(2+K-2,1)=AK(K)	00000733
	X(2*K-3,2)=-AK2(K)	00000734
	X(2+K-2,2)=J.DO	00000735
	Y(2*K-3)=DREAL(AERU(1,J,K)-AFFU(1,J,1))	00000736
	Y(2+K-2)=DAIMAG(AERO(1+J,K))	00000737
	DD = 3 L = 1 + NL	00000738
	X(2*K-3,2+L)=CLR(L,K)	00000739
	X(2+K-2,2+L)=CLI(L,K)	00000740
	3 CONTINUE	00000741
	NROWS=2*(NK-1)	00000742
	NCOL S=2+NL	00000743
	IF (NRUWS-LT-NCULS) PRINT 110	00000744
		00000745
	DU 4 IR#1+NRUWS	00000746
	DU 4 JRZIINCULS	00000747
	ΑΙΣ JK¢IK}™Α(IK¢JK) Α. CONTINUE	00000748
		00000749
	CALL MARKUULATIKATAINUULDINKUHDINUULDIDIMAANKZIOJ Call Myndoollyt viyty Nodes Nodes (Maykutai)	
~	CALL MAMKUUIAIIIIAIIIIANGULDINKUNDIIIOIMAANKZIDI	
č	SULTITIN FUR THE UNKNOWN INTERDOMATICS COFFENCIENTS	00000752
~	COLUMNESS FOR THE CONTRACT FOREIN COUTER COLUMN FOR THE COLUMN	

С

С

С

С

С

С

```
00000754
      CALL
           MXINVR(NCGLS.0.6.XTX)
                                                                        00000755
      CALL
           MXPROD(XTX+XTY+S+NCOLS+NCOLS+1+6+6+6)
                                                                        00000756
      A0(I.J.)=AERO(I.J.1)
                                                                        00000757
      A1([,J]=S(1)
                                                                        00000758
      A2(1,J)=5(2)
                                                                        00000759
      A3(1+J)=5(3)
                                                                        00000760
      [F(NL .LT.2)
                  GO
                       TO
                          10
                                                                        00000761
      A4([,J)=5(4)
                                                                        00000762
      IF(NL+LT+3) GU
                       TO
                           13
                                                                        00000763
      A5(1+J)#S(5)
                                                                        00000764
      IF(NL+LT+4) GO
                       r o
                          10
                                                                        00000765
      A6(1,J)=5(6)
                                                                        00000766
                                                                        00000767
   10 CONTINUE
      IF(I+LE+IRIGID+AND+J+LE+JRIGID) NK=NKT
                                                                        00000768
C
                                                                        00000769
С
      PRINTED AND/OR PUNCHED OUTPUTS
                                                                        00000770
С
                                                                        00000771
      IF (NPRINT.NE.1.AND.NPUNCH.NE.I) GC TU 2
                                                                        00000772
      IF (NPUNCH. NE . 1) GO TU .
                                                                        00000773
      PUNCH 609, 1, J, A0(1, J), (S(JJ), JJ=1, NCOLS)
                                                                        00000774
    9 CONTINUE
                                                                        00000775
      IF (NPRINT+NE+1) UJ TJ 2
                                                                        00000776
                                                                        00000777
      PRINT
            700. [.J
      PRINT
             200+A3(1+J)+(S(JJ)+JJ#1+NC0LS)
                                                                        00000778
            IK=1+NK
      00 8
                                                                        00000779
      COEF = DCMPL \times (0.00, 0.00)
                                                                        00000780
      DD & II=I+NL
                                                                        00000781
      CUEF=CUEF+S(2+1I)+OCMPLX(CLH(II+IK)+CLI(II+IK))
                                                                        00000782
    6 CONTINUE
                                                                        00000783
      CDEF=CUEF+AERU(1,J,1)+5(1)+9CMPLX(0,D0,AK(IK))-5(2)+AK2(IK)
                                                                        00000784
      QUOTR=DREAL (AER )(1, J, IK))
                                                                        00000785
      QUOT I=DAINAG(AERC(I+J+IK))
                                                                        00000786
      IF(QUOTR.FU.J.DO) QUUTR=1.0-20
                                                                        00000787
      IF (QUDII+EQ+0+D0) QUUTI=1+D-20
                                                                        00000788
      ERR=DREAL (AERO(I.J.IK)-CCEF)*1)).00/000TR
                                                                        00000789
      ERI=DAIMAG(AFRD(I,J,IK)~COFF)=100.D0/0UUTI
                                                                        00000790
      PRINT 210, I.J. IK, AK(IK), AEFU(I.J.IK), COEF.ERR.ERI
                                                                        00000791
    8 CONTINUE
                                                                        00000792
    2 CONTINUE
                                                                        00000793
  200 FORMAT(10X* CUEFF = *8E12.4)
                                                                        00000794
  21) FURMAT(2x, 315, 4x, 7612.4)
                                                                        00000795
  600 FURMAT (2X+212+2X+7E13+4)
                                                                        00000796
  700 FORMAT(20x1 AERC( DEF MCDE = 1,12,1 PRES MGDE = 112, 1)1/)
                                                                        00000797
      RETURN
                                                                        00000798
 100 FURMAT(' FIRST REDUCED FREQUENCY MUST BE EQUAL TO ZERD'/) 00000799
  110 FURMAT( + THERE ARE LESS EQUATIONS THAN UNKNUWNS +./)
                                                                        00000800
  201 FURMAT(2215.5)
                                                                        00000801
      END
                                                                        00000802
      SUBRUUTINE PLTDAT(N.FLK.ELI,XZ.YZ.XSCALF.YSCALE.XL.YL.ISYM, IENTRY 00000803
                                                                        00000804
     +)
     REAL#8 ELR(1) +ELI(1)
                                                                        00000805
С
                                                                       C00000807
        RODT LUCUS PLUT - FUR FLUTTER PROGRAM
                                                                       C00000808
                                                                       C00000809
        NUM = 4*NUMBER OF MODES
                                                                       C00000810
                                                                      C00000811
         XZ = LEFT HAND LIMIT OF REAL PART
                                                                      C00000812
```

C00000813 C 1 C00000814 C YZ = 0. С C0000815 ¢ XSCALE = ABSCISSA SCALE C00000816 C C00000817 С YSCALE = URDINATE SCALE C00000818 C C00000819 C XL = LENGTH OF PLUT IN INCHES OF PAPER C00000820 С C00000821 С YE . HEIGHT OF PLCT IN INCHES OF PAPER C00000822 C C00008823 DIMENSION ER(150), ET(150), EX(150), EY(150) 00000825 00000826 M=0 00000827 DU 1 [=1+N ER(1)=ELK(1) 00000828 EI(I) = ELI(I)00000829 RGHTLM=XZ+XSCALE=XL 00000830 UPLMT=YZ+YL +YSCALF 00000831 IF(ER(I).LT.XZ) GU TU I 00000832 00000833 IF (EI(I)+LT+J+) GU TO 1 00000834 IF (FR(I).GT.HGHTLM) GU TO 1 00000835 IF (EI(I) + UT + UPL MT) GO TU I 00000836 IF (ABS(ER(1)) + LT+)+ 5) + AND+ AMS(EI(1)) + LT+ 0+ 50) UG TO 1 00000837 M = M + 100000838 EX(M) = ER(1)EY(M) = EI(1)00000839 00000840 1 CUNTINUE 00000841 FX(M+1)=XZ 30000842 EY(M+1)=YZ 00000843 EX(M+2)=XSCALE 00000844 EY (M+2) -YSCALE 00000845 GU TU (2+3)+LENTRY 00000846 2 CONTINUE YAXISU=AUS1.7/XSCALE) 00000847 CALL AXISTO... O... "REAL PART .- 9.XL.J. XZ.XSCALE) 84600000 CALL AXIS(YAXISO, 0., FREQ! - 4, YL . 90., YZ, YSCALE) 00000849 00000850 IENTRY #2 00000851 3 CUNTINUE 00000852 CALL PLUT(] + 0 + + 3) 00000853 CALL LINE (EX+FY+M+1+-1+13YM) RETURN 00000854 00000855 END 00000856 FUNCTION DREAL (Z) THIS SUBROUTINE CAN HE USED WITH EITHER THE SLOW OR FAST. IBM. 00000857 C С DUUBLE PRECISION , CUMPRESSIBLE ALRUDYNAMIC CUEFFICIENTS PROGRAM .00000858 IMPLICIT REAL+S(D) 00000859 00000860 REAL *H Z(2) DREAL =Z(1) 00000861 00000862 RETURN 00000863 ENTRY DAIMAG(Z) 00000864 DAIMAG=Z(2) **RETURN** 00000865 END 00000866 00000867 SUBROUTINE PROPOL(A+N+3+M+C+L) IMPLICIT REAL+8(A-H+U-Z) 80800000 C00000870 С C A ROUTINE FOR MULTIPLYING POLYNOMIALS C#A+B WHERE A+B+C ARE C00000871

Í

```
C
     POL NONTALS OF THE FURM
                                                                     C00000472
C
     A=A{1}+A{2}=X+A{3}+X++2+A{4}+X++3+....A{N}+X++{N-1}-
                                                                     C00000873
С
     西田田(1)+山(2)+X+台(3)+X++2+月(4)+X++3+。。。。。。。。。。((M)+X++(M-1))
                                                                     C00000874
С
     C=C(1)+C(2)+X+C(3)+X++2+C(4)+X++3+....C(N+H-1)+X++(N+M ?)
                                                                     C00000875
С
      AND WHERE
                                                                     C00000876
                    C
                                                                     03000877
DIMENSION C(1).A(1).B(1)
                                                                      00000879
      NM=N+M-1
                                                                      00000880
     DU 1 1=1.NM
                                                                      12200000
    1 ((1)=0.00
                                                                      00000882
     DU 2 1=1.N
                                                                      00000883
      DO 2 J=1.4
                                                                      00000884
    2 C(I+J-1)=A(I)+B(J)+C(I+J-1)
                                                                      00000885
     L=NM
                                                                      00000886
                                                                      00000887
      RE TURN
     END
                                                                      00000888
С
        SUBRUUTINE MAINVE
                            DUUBLE PRECISION
                                                                      00000889
      SUBRUUTINE MXINVR(N.M.MAX.A)
                                                                      00000890
С
                                                                      00000891
С
        REAL MATHIX INVERSION WITH SULUTION OF LINFAR EQUATIONS
                                                                      00000892
С
                                                                      00000893
С
        CAVM = DABS(A(MAX)), CAVA = DABS(A(I+J))
                                                                      00000894
C
        CADM = DABS(DETERM). CAPV = DABS(PIVCT)
                                                                      00000895
С
                                                                      00000896
      IMPLICIT REAL#3(A-H:0-2)
                                                                      00000897
     DIMENSION A(MAX,1) + b(153,1) + IPIV(153) + INUX(153,2)
                                                                      00000898
      IF (M.NE.U) GU 10 1
                                                                      00000899
     00 2 1=1+N
                                                                      00000000
                                                                      00000901
    2 8(1+1)=0.00
                                                                      00000902
      GO TO 10
    1 PHINT 1000
                                                                      E0000003
 1000 FURMATICE NU SULUTIUN OF LINEAR EQUATIONS IS ALLOWED FOR IN 00000904
     + THIS VERSION OF MAINVR!)
                                                                      00000905
      STCP
                                                                      00000906
   10 CUNTINUL
                                                                      00000907
С
                                                                      00000908
С
        CUNSTANTS, INITIALIZATION
                                                                      00000909
С
                                                                      00000910
                                                                      00000911
     (3=3.03
                                                                      00000912
      C1=1.00
     DFT = C1
                                                                      00000913
      CADM=1.JD)
                                                                      00000914
      00 20 J=1,N
                                                                      00000915
   0 = (L) VI qI 05
                                                                      00000916
     DU 500 I=1.N
                                                                      00000917
С
                                                                      00000918
        SEARCH FOR PIVOT ELEMENT
                                                                      00000919
C
                                                                      00000920
С
                                                                      00000921
      CAVM=0.303
     DU 105 J=1.N
                                                                      00000922
      IF (IPIV(J) .EQ. 1) SE TE 105
                                                                      00000923
     DU 100 K=1.N
                                                                      00000924
      IF (IPIV(K) - 1) 50,100,750
                                                                      00000925
                                                                      00000926
   50 CUNTINUE
     CAVA=DAHS(A(J+K))
                                                                      00000927
     IF (CAVM .GE. CAVA) GU TU 100
                                                                      00000928
     IRUW = J
                                                                      00000929
      ICOL = K
                                                                      00000930
```

ORIGINAL PAGE 1: OF POOR OF A DIM

59

i

```
00000931
      CAVH = CAVA
  100 CONTINUE
                                                                            00000932
  105 CONTINUE
                                                                            00000933
      IF (CAVM.EQ.0.000) GU TJ 720
                                                                            00000934
      IPIV(ICOL) = IPIV(ICUL) + I
                                                                            00000935
С
                                                                            00000936
С
          INTERCHANJE HUWS TO PUT PIVUT ELEMENT UN DIAGUNAL
                                                                            00000937
C
                                                                            00000938
      IF (INUN .EQ. ILLE) OF TE 230
                                                                            00000939
                                                                            00000940
      DET = -JLT
      DU 200 / =1+N
                                                                            00000941
      SWAP = A(IROW.L)
                                                                            00000942
      A(IRUW_{I}) = A(ICOL_{I})
                                                                            00000943
      ALICULALI = SWAP
                                                                            00000944
  200 CONTINUE
                                                                            00000945
      1F (M +LL+ 0) GG TU 233
                                                                            00000946
      DU 220 L=1.M
                                                                            00000947
      SWAP = H(IHL++L)
                                                                            00000948
      H(INLA,L) = H(ICUL+L)
                                                                            00000949
      HEICOLALD = SWAP
                                                                            00000950
  220 CUNTINUE
                                                                            00000951
  230 CONTINUE
                                                                            00000952
      INUX[1:1] - INUA
                                                                            00000953
      INDX(1+2) = ICUL
                                                                           00000954
      PIV = ALICELICEL
                                                                            00000955
      CAPV=DAISS(PEV)
                                                                            00000956
      IF (CAPY+E ++ )+ JD )) GE TO 720
                                                                            00000957
                                                                            00000958
L
         DIVIDE PIVOT FUN RY PIVOT ELEMENT
C
                                                                            00000959
С
                                                                            00000960
                                                                            0000961
      ACTOR FIGHT = CT
      PIVH=1.00/PIV
                                                                            00000962
      00 350 L-1+N
                                                                            00000963
  350 ALICULIL) - ALICULIL)*PIVH
                                                                            00000964
      IF (M .LE. 0) GO TO 340
                                                                            00000965
                                                                            300000966
      00 370 L=1+M
  370 B(ICOL+L) = E(ICOL+L)+PIVH
                                                                           00000967
С
                                                                            00000965
С
         REDUCE NON-PIVUT RUWS
                                                                            00000969
С
                                                                           00000970
                                                                            00000971
  380 CUNTINUL
                                                                           00000972
      00 500 L1-1.N
      IF (L1 .E4. ICUL) SC TC 500
                                                                            00600973
                                                                            00000974
      SWAP = A(L1+ICUL)
      A(LI+ICUL) = CO
                                                                            00000975
                                                                            00000976
      DU 400 L=1.N
  400 A(L1+L) = A(L1+L) - A(ICLL+1)+ JHAP
                                                                           00000977
      IF (M .LE. 0) 60 10 500
                                                                            00000978
      DU 450 L=1+M
                                                                            00000979
  453 H(L1+L) = H(L1+L) - H(I(LL+L)*SAAP
                                                                            00000980
  500 CONTINUE
                                                                            00000981
C
                                                                            00000982
С
         INTERCHANGE CELUMNS
                                                                           00000983
С
                                                                           48600000
      DD 700 I=1.N
                                                                            00000985
      L = N + 1 - 1
                                                                            00000986
      IF (INDX(L,1) .EQ. INJX(L,2))30 TO 700
                                                                           00000987
      IFOW = INDX(L+1)
                                                                           88600000
      ICUL = INDX(L+2)
                                                                            00000989
```

~ . .
	UU 690 K=1.N	00000990
	SWAP = A(K, IFUW)	00000491
	$A(K_{1}KO_{2}) = A(K_{1}COL)$	0000092
	A(K, [CUL) = SHAP	00000493
690	CUNTINUE	00000994
733	CONTINUE	00000435
	GC TC 750	00000996
723	DET = CI	00000497
	ISCALE # J	00000498
7'50	HETURN	00000999
	FNU	00001000
	SUBREUTINE MXPELD(A.H.C.NIA.NIE.NJJ.MAXA.MAXH.MAXC) 30031331
	HEAL #S A. J. C.D	00001002
	JIMERSION A(MAXA, I), H(MAXE, I), C(MAXC, I), D(150)	00001003
	UU INO ININKA	00001004
	00 200 J#1+NJH	00001005
	0(J)=0.00	0001006
	DC 200 KKELINID	00031037
	U(J)=>(J)+A(I,KK)+H(KK,J)	00001008
200	CUNTINUE	00001009
	00 300 J=1+NJ 1	00001313
300	((l,J)=U(J)	00001011
100	CUNTINUE	03001012
	AE TURN	00001013
	FNU	00031014
	SUBROUTINE - 4XAUDIA.J.C. NTA.NJ.WAXA.MAXC.WAXC)	00001015
	HEAL #13 A+13+C	00001016
	DIMENSIUN A(MAXA,1),U(MAXB,1),C(MAXC,1)	00001017
	DU 133 I=1.NIA	00001018
	OC 100 J=LONJ	00001019
100	$C(I \bullet J) = A(I \bullet J) + t!(I \bullet J)$	00001020
	HETUNY	00001021
	ŧ.ND	00001022
	SUDEL UTIME HXSUSEANSECONTAINUS HAXAOMAXICOMAXES	00001023
	FFALTE ANDAL	2511000
	DIMENSIUM ALMAXA. 1). 1 44X0.1). C (MAXC. 1)	00001025
	DU 100 1=1+NIA	00001026
	JL 1J) J=1 NJ	00001020
100	((1, J) = A(1, J) = (1, J)	00001028
	HE TURN.	00001029
		30331340
	SUPAU JI INF MXSCALLANTAC ANTALAWASANAXAAWAXRAWAXCA	00001030
	HEAL #3 A.H.C	00001031
	11 MENS1	00001032
	00 1)) L=1.NIH	00001044
		00001034
1(.)		00001035
-	HT TURN	0001030
	END	00001037
		00001036

ENN	L.F	JE(G).	CUNDITION CODE WAS	.)
E N	1.1	1111A	CUNDELL'IN CLUE AAS	.)

\$

•

.

.

•

-

•

-

61

NM# 9+NC#		2 + NAER#	0.8	= 0.100000000		00.
0.200000000000000000000000000000000000	٠	u.3000000000000000000000000000000000000	•	0.400303003030	00000	+NG#
LEND						
6F T						
NK= 10+4K= 04	• U	• Us	447	9535,495559390-	-31.	
0.10000000000000000	60.	0-4040603034394900	,	0.3000000000000000000000000000000000000	00066	•
う。そのうの ののつつつつ つつつつつ	•	ປະຈຳປັບປີບັບປະການ ບໍ່ມີບັບປະ		J.600036333386	00000	•
0.7000000000000000000000000000000000000	•	9-90000000000000		0.0		•
0.0		Ú • G	•	J.0		
0.0		υ. υ		J . J		,
0.0		0.0		U.O		. MAXNK
20 • NPR114 =		0.NHUNCH#		9+1H1919=	2.	JKIGID=
1						
SEND						
SFLUI						
MA22# 3.01110000000000	0000	• 0 ± 0		• J• J		•
0.0	•	0.0	•	J . J		•
0.0	•	U • O		J.0		•
0.0	•	G • J		3.0		•
0.0	+	U • J	,	2 • O		•
0 + 0	٠	190000000000000000000000000000000000000	•	3.0		•
0.0	•	0 • C	•	J•J		
0.0	•	1•J	•	U•0		•
0.J	•	U ∎ U	•	1.3		
0.0	,	0.0	•	0 • J		•
0.0	•	ن . ل	,	-9=500F100000000	00000-0	
Q • C	•	J • U	•	G • O		•
0 • 0		0.0		ان م اب		•
U n O	•	G • O	•	0.0		•
4 . J	٠	(د ل		3.3		•
0.0	٠	J • U	•	J ↓ U		•
-0・1131111111111111111111111111111111111	01.	J • J		J.0		•
v.*O		0.0	,	J e U		•
0.0	•	0.0	•	3.0		•
0.0	•	U . U	,	0.0		•
0.0	*	C.C.		0.0		•
J.O		0.5462959999999999990-	ŭ I 🖡	3.0		•
0.0	٠	0.0		0.0		•
0.0	٠	0.0	,	0.0		
0 • 0	٠	0.0	٠	J + D		•
0.0	*	U •)	,	J • 0		•
1•0	•	U • O	+	しつりつりょうろう ううろうろ	99990-0	2.
0.0	٠	ن . ن	٠	0.0		
0.0	•	J • U		3.0		•
0.0	•	0.0		J•0		•
J • 0	•	0.0	+	J • 0		•
0.0	•	0.0		0.0		•
0.120500000000000000	ú£∎.	ũ • O	,	0.0		•
0.0		υ. υ	•	J = 0		•
0.0	•	0.0	٠	J.0		•
0.0	•	J.U		0.0		•
0.0	,	0.0	,	0.0		•
0.0		0.16310000000000000000	.10	0.0		y
0.0	•	U • O		U.J.		,
0.0	3	0.0		0.0		•
0.0		0.0	•	0.0		•
0.0		0.0	,	J.0		•
() e ()		0.0		0.15520000000	uccon-a	-
			-	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		

r

0 • 0	. 0.0	. 0.0	•
0.0	. 0.0	• U • O	٠
0.0	. 0.0	. 0.0	•
0.0	. 0.0	, 0.0	•
0.0	• 0•0	• 0.0	•
0.0	• 0 • 0	. 0.0	•
	• 0•0	• 0•0	•
0.0	• 0•J	• 0•0	۲
0.0	• 0•0	• 0•0	٠
	• 0•0		٠
0.0	• 0•0	• 0•0	
0.0	• • • • •	• 0•0	٠
0.0			•
0.0	• 0•0	• 0•0	•
de O	. 0.0	• () • ()	•
0.0	• 0•0	. 9.0	
0.0	. 0.0	• 0•0	
0.0	. 0.0	• 0.0	
0.0	. 0.0	ن بر بر بر ان بر بر بر	
U - U	. 0.0	• U • J	
0.0	. 0.0	• U • Ū	
0.0	. u.J	• U.J	•
U • 0	• U.J	• J.J.	•
0.0	. 0.0	• U•U	
' U • O	. 0.0	• U • Q	•
0.0	. 0.0	ن ان ب ان ان ا	•
U • 0	* U.J	. U.O	
0.0	+ J+J	• J•U	
0=0	. 0.0	· U.J	•
0.0	. 0.0	+ U+O	
0.0	• 0.0	• G • O	•
LMEGAN- COU	y C.y.G	y - ∀410000000	0000
21.52200000000	a 34. strood	000000 + 50°524000000000	•
84.30R0J0L00U0000	 LExebloudo 	JAJAAJJ • 151•2400000960000	٠
0.0	. 0.0	• () • O	٠
0.0	• U•J	• U • U	٠
GHEGIN= U.U	+Gt NU=	.;•00000000000 *Mg≖	4.
VEL= 11446+00000000000000	ATTRAN=	e-1y/ccaddaaddaa ,	
8.13302722272272	• 0.0	• 0.0	٠
	* 0 * J	• CIKAN= 6.55700000000	000
	• 0• 0		•
The Control of the Science Sci	• J•U		00
	• Teanana		٠
	+ U+U - 1)- 1	• U • U	•
0.0		9 U a U .1 (1	•
			,
an	• • • • • • • • • • • • • • • • • • •		*
	• • • • • •	• 0•0	•
0.0	• 0•0		•
0.640306.000000.000	• ••••	100.00	•
n • 1# 7000000000000000	• U.J		•
0.0	• J • J	. 3.3	
्र. जेक्स	1 Jai)	. J. J.	
	. ປ.2 10ປີບພິປປະ	1111110 •••]•46949799999999999999	
C - 100 100 000 000 00	• U.J.	• Jaj	
0.0	•]•]	• J.	
J = U	• ال • ال	• J•J	
-]*211000000000	. 0.230000000		•
しゅぎだいし し じょうし うしし うしし	. 0.0	• 0.0	•

.

,

0.0 0.0 0.0 1.0 0.0 0.3600000000000000000000000000000000000	0.0	• J.J	0 م ت و	•
-0.3600000000000000000000000000000000000	0.0	• U•0	• J•0	•
-0.45499999999999999999999999999999999999	-0.36000000000000000	0.4455959999	AAAAAAAD-01*-3*20000000000000	. 000
0.0 0.0 0.0 0.0 0.500000000000000000000000000000000000	-0.4459995999999999999	-01. 0.0	. 0.0	•
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 </td <td>0.0</td> <td>. 0.0</td> <td>• U•Q</td> <td>•</td>	0.0	. 0.0	• U•Q	•
0.38000.0000000000000000000000000000000	0.0	. 0.0	. 0.0	•
0.100000000000000000000000000000000000	0.36000000000000000	. 0.100000000	0000000 00. 0.36000000000000000000000000	1000
3.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.2 0.0 0.0 0.2 0.0 0.0 0.2 0.0 0.0 0.2 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.1000000000000000000000000000000000000	00.000	. 0.0	
0.0 0.0 0.0 0.0 0.200000000000000000000000000000000000	3-0		. 0.0	•
0.2010000000000000000000000000000000000	010 0 - 0			•
0.220000000000000000000000000000000000		-01-0-240000000		10000-01
0.222000000000000000000000000000000000				0000-01+
0.0 0.0 0.0 0.0 0.0 0			• 0•0	•
0.00 0.00	0.0	. 0.0	• 0•0	*
		• 0•0	• 0•0	•
	-0.00000000000000	· C2 • - 0 • 22 00 0 C 0 0 0	0101000 *-0*3433333333333	899D-C2.
0.0 0.0 0.0 0.0 0.0 0	-0.220000000000000000		• U • U	•
0.0 .0.0 .0.0 .0.0 0.0 .0.0 .0.0	0.0	• •••	÷ 0+0	٠
0.0 . 0.0 . 0.0 . 0.0 0.0 . 0.0 . 0.0 . 0.0 0.0 . 0.0 . 0.0 . 0.0 0.0 . 0.0 . 0.0 . 0.0 0.0 . 0.0 . 0.0 . 0.0 0.0 . 0.0 . 0.0 . 0.0 0.0 . 0.0 . 0.0 . 0.0 0.0 . 0.0 . 0.0 . 0.0 0.0 . 0.0 . 0.0 . 0.0 0.0 . 0.0 . 0.0 . 0.0 0.0 . 0.0 . 0.0 . 0.0 0.0 . 0.0 . 0.0 . 0.0 0.0 . 0.0 . 0.0 . 0.0 0.0 . 0.0 . 0.0 . 0.0 0.0 . 0.0 . 0.0 . 0.0 0.0 . 0.0 . 0.0 . 0.0 0.0 . 0.0 . 0.0 . 0.0 0.0 . 0.0 . 0.0 . 0.0 0.0 . 0.0 . 0.0 . 0.0 0.0 . 0.0 . 0.0 . 0.0	0.0	• 0•0	• J•J	•
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0	• 0•0	• J • J	•
0.0 0.0 0.0 0.0 0.0 0	υ * 0	• U • U	• U • U	•
0.0 0.0 0.0 0.0 0.0 0	0.0	• J•J	• 0.0	•
0.0 . 0.0 . 0.0 . 0.0 0.0 . 0.0 . 0.0 . 0.0 0.0 . 0.0 . 0.0 . 0.0 0.0 . 0.0 . 0.0 . 0.0 0.0 . 0.0 . 0.0 . 0.0 0.0 . 0.0 . 0.0 . 0.0 0.0 . 0.0 . 0.0 . 0.0 0.0 . 0.0 . 0.0 . 0.0 0.0 . 0.0 . 0.0 . 0.0 0.0 . 0.0 . 0.0 . 0.0 0.0 . 0.0 . 0.0 . 0.0 0.0 . 0.0 . 0.0 . 0.0 0.0 . 0.0 . 0.0 . 0.0 0.0 . 0.0 . 0.0 . 0.0 0.0 . 0.0 . 0.0 . 0.0 0.0 . 0.0 . 0.0 . 0.0 0.0 . 0.0 . 0.0 . 0.0 0.0 . 0.0 . 0.0 . 0.0 0.0 . 0.0 . 0.0 . 0.0 0.0 . 0.0 . 0.0 . 0.0	U • O	. 0.0	• 0•0	•
0.0 . 0.0 . 0.0 . 0.0 0.0 . 0.0 . 0.0 . 0.0 0.0 . 0.0 . 0.0 . 0.0 0.0 . 0.0 . 0.0 . 0.0 0.0 . 0.0 . 0.0 . 0.0 0.0 . 0.0 . 0.0 . 0.0 0.0 . 0.0 . 0.0 . 0.0 0.0 . 0.0 . 0.0 . 0.0 0.0 . 0.0 . 0.0 . 0.0 0.0 . 0.0 . 0.0 . 0.0 0.0 . 0.0 . 0.0 . 0.0 0.0 . 0.0 . 0.0 . 0.0 0.0 . 0.0 . 0.0 . 0.0 0.0 . 0.0 . 0.0 . 0.0 0.0 . 0.0 . 0.0 . 0.0 0.0 . 0.0 . 0.0 . 0.0 0.0 . 0.0 . 0.0 . 0.0 0.0 . 0.0 . 0.0 . 0.0 0.0 . 0.0 . 0.0 . 0.0 0.0 . 0.0 . 0.0 . 0.0	J.0	فاسفات و	• U • J	•
J+0 , J+d , J+0 , J+0 J+0 , J+0 , J+0 , J+0 0+0 , 0+0 , J+0 , J+0 0+0 , 0+0 , 0+0 , J+0 0+0 , 0+0 , 0+0 , 0+0 0+0 , 0+0 , 0+0 , 0+0 0+0 , 0+0 , 0+0 , 0+0 0+0 , 0+0 , 0+0 , 0+0 0+0 , 0+0 , 0+0 , 0+0 0+0 , 0+0 , 0+0 , 0+0 0+0 , 0+0 , 0+0 , 0+0 0+0 , 0+0 , 0+0 , 0+0 0+0 , 0+0 , 0+0 , 0+0 0+0 , 0+0 , 0+0 , 0+0 0+0 , 0+0 , 0+0 , 0+0 0+0 , 0+0 , 0+0 , 0+0 0+0 , 0+0 , 0+0 , 0+0 0+0 , 0+0 , 0+0 , 0+0 0+0 , 0+0 , 0+0 , 0+0 0+0 , 0+0 , 0+0 , 0+0	0.0	• ت•ت	ن د ان د	•
3.40 5.40	3.0	ຸ ມ	• J . J	•
U.0 . U.0 . J.0 . J.0 0.0 . U.0 . J.0 . J.0 J.0 . U.1 . J.0 . J.0 J.0 . U.0 . J.0 . J.0 U.0 . U.0 . J.0 . J.0 U.0 . U.0 . J.0 . J.0 J.0 . U.0 . J.0 . J.0 U.0 . U.0 . J.0 . J.0 J.0 . U.0 . U.0 . J.0 U.0 . U.0 . U.0 . J.0	J•J	* J*J	(د د و	
0.0 0	U • O	. 0.0		
0.0 .0.0	0.0	. 4.3	• 3•3	
0.0	0.0			
0.0 .0.0	4.0			
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0	- 0-0		•
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0			•
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0		• 0•5	• 0•0	•
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0		• 0• J	• 0.0	•
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0		. 0.0		•
0.0 .0.1 .0.3 .0.3 .0.3 0.0 .0.3 .0.3 .0.3 .0.3 0.0 .0.3 .0.3 .0.3 .0.3 0.0 .0.3 .0.3 .0.3 .0.3 0.0 .0.3 .0.3 .0.3 .0.3 0.0 .0.3 .0.3 .0.3 .0.3 0.0 .0.3 .0.3 .0.3 .0.3 0.0 .0.3 .0.3 .0.3 .0.3 0.0 .0.3 .0.3 .0.3 .0.4 0.0 .0.3 .0.3 .0.3 .0.4 0.0 .0.3 .0.3 .0.4 .0.4 0.0 .0.3 .0.3 .0.4 .0.4 0.0 .0.3 .0.4 .0.4 .0.4 0.0 .0.3 .0.3 .0.4 .0.4 0.0 .0.4 .0.4 .0.4 .0.4 0.0 .0.4 .0.4 .0.4 .0.4 0.0 .0.4 .0.4 .0.3 .0.4 0.0	J. 0			•
J.0 . J.J . J.J . J.J . J.J . J.J U.U . J.J . J.J . J.J . J.J . J.J U.J . J.J . J.J . J.J . J.J . J.J U.J . J.J . J.J . J.J . J.J . J.J U.J . J.J . J.J . J.J . J.J . J.J U.J . J.J . J.J . J.J . ZREF= I.J.J . J.J . J.J . ZREF= . J.J . J.J . ZREF= I.J.J . J.J . J.J . J.J . ZREF= . J.J . J.J . ZREF= . J.J . J.J . ZREF= . J.J .	0.0	• 0• 5	• • • •	•
0.0 .0.0	3.3	*]•]	s 0 = 0	•
0.0 .0.0	0.0	د.ول و	ل و ل و	•
0.0 0	0.0	• J•J		1
0+0 0+0 1+0 2REf= 1+000000000000000000000000000000000000	0,0	ليول و	لي بعال و	1
0+0 + 0+0 + 1+0 • 2REf = 1+000000-000000 + + + + + + + + + + + + + + + + + + +	0.0	• Ù•Ù	• J•J	•
1.000000000000000000000000000000000000	U . U	+ 1 +7	ال جال ج	• ZREF =
-1.2200000000000000000000000000000000000	1.0000000000000000000000000000000000000	 #***00000000 	000000000000000000000000000000000000000	000 .
0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + + +	-1-53000000000000	• U•J	ن د ن و	•
0+0 + J+J + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 +	0 . J	€ J.J.	►) • 0	,
0.0 • 0.0 • 0.0 • 0.0 • 0.0 • 0.0 • 0.0 • • 0.0 • 0.0 • 0.0 • • 0.0 • 0.0 • 0.0 • • 0.0 • 0.0 • 0.0 • • 0.0 • 0.0 • 0.0 • • 0.0 • 0.0 • 0.0 • • 0.0 • 0.0 • 0.0 • • 0.0 • 0.0 • 0.0 • • 0.0 • 0.0 • 0.0 • • 0.0 • 0.0 • 0.0 • • 0.0 • 0.0 • 0.0 • • 0.0 • 0.0 • 0.0 • • 0.0 • 0.0 • 0.0 • • •	0.0	• J.• J	• • • • •	•
0+0 , 0+0 , 0+0 , 0+0 0+0 , 0+0 , 0+0 , 0+0 0+0 , 0+0 , 0+0 , 0+0 0+0 , 0+0 , 0+0 , 0+0 0+0 , 0+0 , 0+0 , 0+0 1+CLK= 77+9200000000000000000000000000000000000	0.0	• 1•0	ب () ب ()	,
0+0 + 0+0 + 0+0 + 0+0 + 0+0 + + 0+0 + 0+0 + + 0+0 + 0+0 + + 0+0 + 0+0 + + 1+CLK= 77+9200000000000000000000000000000000000	0 • U	. 0.0	ن ب ل	•
J+3 + J+3 + J+3 + J+3 J+0 + J+0 + J+0 + J+0 J+0 + J+3 + J+2 + J+2 J+0 + J+2 + J+2 + J+2 J+0 + J+2 + J+2 + J+2 J+0 + J+3 + J+2 + J+2 J+0 + J+2 + J+2 + J+2 J+1 + J+2 + J+2 + J+2 J+2 + J+2 + J+2 + J+2	0.0	. 0.0	- من م د من م	•
0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 0+0 + 1+CLK= 77+9200000000000000000000000000000000000	J + J	• 0.0	• U • J	•
0+0 , 0+0 , 0+0 , 0+0 , 0+0 , 1PLGT 1+CLK= 77+9200000000000000000000000000000000000	0.0	• 0•0	• 11 • 0	-
1+CLK= 77+9200000000000000000000000000000000000	0.0	- U-U		. 101 (1
0+0 + 0+0 + 0+000000000000000000000000	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	• • • • • • • • • • • • • • • • • • •	- 77.010 - 77.010.000000	117601
0+0 +010 +010 +010 +010 + 0+0 +016= 1 +0100000000 +NLACT= 1		- 0.0	- 0 3	
		1 UBU .(115		•
		101K- 3C+310		

RUNE LUCUS - CLUSED LUCP -REAL ACTUATORS

3

*

1

ć

•

.

÷

- 4

.

4PL01 XZ= - 20(FPA -100.00000 D.00000 1	•¥Z= •XL=	= 0.0 7.0303	•) 000 •YL=	(SCALE= 2 5.000000	0.0000JU 0 ,157M=	+YSCALE=	J. IENT	'RY=
ALNU	176								
MAXLA	L 4 6 L	O MAXNI	wi an	15.MAX8		LO.MAYTE	100		
LEND		•••			•	1019801-			
ACUNG	Ľ								
WR#	100.00000	0000000	J	NTE=	1.	G.	0.		0
	·) •		J.X≖	3.63000000	000000	, 50.0000	0000000000	•	-
0.75	50600000000	0000	. 0.0)	+	J.0		,	
0.0			. 0.0)	,	0.0			
0.0			. 0.0)	•	0.0		•	
0.0			. 0.0)	•	0.0		,	
0.0			. 0.0)	•	0.0		,	
0.0			. 0.0)	•	0.0			
0.0			. 0.0)	•	0.0		,	
0.0			. J.J)	•	ა. ა			
υ.ο			. 0.0)	•	0.0		,	
0.0			• 0 ∎ 0)	•	5.0		•	
0.0			• U•U	1	•	ن ₊ ن		•	
0.0									
BENJ									
7	7 10								

•

•

.

•

JANANIC BRESSU	HL =	الاربو ال
11 H H = 0		
J.J	+1	0
0.0	+1	U = 0
J.O	+1	0.)
J . J	+1	J.∎ J
J.J	+1	0
U. 0	+1	0.0
0.0	+1	0.0
0.0	+1	J . J
-0.08210-12	+1	0+30410 03
-0.08210-12	+ I	-0.304LD 03
-0.18760-11	+1	Ა•₹5280 03
-0.18760-11	+ L	-0.1528D 03
-0.13460-11	+1	0.52970 03
-3.13400-11	+ F	-0.52970 03
-0.15950-11	+ I	0.31290 03
-0.15950-11	+1	-0.1153D J3
-0.14100-11	+1	ED (15+1.0
-0.14100-11	+ I	ED UEBEI+D-
-3.15240-11	+ E	0.21900 63
-0.15240-11	+1	-0.21400 03
-3.3/530 42	+1	0.33070 02
-0.37530 02	+ 1	-0-33070 J2
-0.10690-11	+ I	0.62460 02
-0.10690-11	+1	- J. 02460 02
-0.33950 33	+1	0.35830-10
-0.33950 03	+[-0.9583D-10
-J.33950 03	+1	0.0
-0.33950 03	+1	0.22000-11
-0.33950 03	+1	-0.22030-11
-0+33950 03	+1	J = (J
-0.33950 03	+ i	0+15790-11

-0.1450 01	+1	-1.15740-11
-0.33450 03	+1	0.0
-0-25470 01	• 1	0.10270-04
-0.25470 03	- L + 1	-0.10270-09
	• L	
	* 4	0.0
-0.25470 03	* 1	0.0
-0.254/0 03	+1	0.0
-0.25470 33	+1	0.31470-11
-J+2547D J3	+ L	-0.31470-11
-0.25470 UJ	+1	0.0
-J•2547U UJ	+1	Jau
-J.16980 JJ	+1	0.25030-10
LU CIBRIDIO	+1	- 4 4- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-
-0.16500 03	+1	0.0
	- I	3.1
	V 1	
-1.1930 03	+1	-0.033310-11
-1.19490 13	+1	J.# J
-0.10990 03	+1	3 • ·)
-0+12739 03	+1	3.3
- しゃらもおろい ひち	+1	J.1220J-12
−ປະປ483ປີ ປີ2	+1	-3+15500-15
- 34 34 330 32	+1	0-99500-12
-1.84390 12	+1	-3.99990-12
- 3434340 02	+1	0.1.18.0-11
-1. 8484. 13	+ I	-3-12000-11
	· ·	
-0+84830 02	T A	9.13690-12
-3.84896 02	+1	-3.73290-12
-3.84890 62	+1	0.0
NARAMIER BILLA - CIA.	-	
OTNAMIC PRESSUR	·L -	() (c . (
STNAMIC PRESSUR	·L -	() ((((((((((((((((((
JINAMIC PRESSUR	• £ −	(، ز د _• ل
JINAMIC PRESSUR ILKA - J JeJ	+L	(، د د م ل ر، م ز
JINAMIC PRESSUR ILKES J JIU -JIU-VSU JI	•£ - +↓ +↓	1 • 4 14 20 - 03 1 • 0 1 • 2 10
JINAMIC PRESSUR ILKES J J.J. -J. JEVIJ JI -J. JEVIJ JI	+L - +L +L +1	در درده ۱۰ ۲۰۱ ۲۰۱ ۲۰۱
СТИАМІС РЕССОЙ Іска – О – О.96930 01 – О.96930 01 – О.96930 01 – О.96930 01	+L - +L +L +L +I +I	ل د د د د د ۲ د ۱۰ ۲ د ۲ د ۲ د ۲ د ۲ ۲ د ۲ د ۲ د ۲ د ۲ ۲ - ۲ - ۲ - ۲ - ۲ ۲ - ۲ - ۲ - ۲ - ۲ -
JYNAMIC PRESSUR ILRE 2 J - J.95930 J1 - J.95930 J1 - J.92120 J0 - J.92120 J0	+ L - + L + L + L + L + L + L	لاد و ل ک ک ک ک ک ک ک ک ک ک ک ک ک ک ک ک ک ک ک
JYNAMIC PRESSUR ILRE 2 J - J.90930 J1 - J.92120 J0 - J.92120 J0 - J.92120 J0 - J.92120 J0 - J.92120 J0	+ L - + I + I + I + I + I + I + I	JJ. JJ. JJ. JJ. JJ. JJ. JJ. JJ. JJ. JJ. JJ. JJ. J.
JYNAMIC PRESSUR ILK() J -J.90930 01 -J.90930 01 -J.92120 JU -J.92120 JU -J.92120 JU -J.92120 JU -J.92120 JU -J.93590 01	+ L - + I + I + I + I + I + I + I + I	JJ.) J J J J J J J
JYNAMIC PRESSUR ILRE 2 J -J.90930 JI -J.92120 JU -J.92120 JU -J.92120 JU -J.92120 JU -J.92120 JU -J.92120 JU -J.93590 JI -J.35590 JI -J.13950 JI	+ L - + L + L + L + L + L + L + L	JJ.) J J J J J J J
JYNAMIC PRESSUR ILRE 2 J -J.90930 JI -J.92120 JU -J.92120 JU -J.92120 JU -J.92120 JU -J.92120 JU -J.92120 JU -J.93590 JI -J.35590 JI -J.13950 JI -J.13950 JI	+ L - + L + L + L + L + L + L + L + L	J. 5 J.) J. 6 J. 4 J. J. J. J. 6 J. 4 J. J. J. J. 7 5 J. 4 J. J. J. 5 2 4 4 J. J. J. 5 2 4 4 J. J. J. 5 2 4 4 J. J. J. 5 1 6 7 J. J. J. 5 1 6 7 J. J. J. 6 J. 6 J. 6 7 J. 7 J. 7 J. J. 6 J. 6 J. 6 7 J. 7 J. 7 J. 7 J. 7 J.
 JYNAMIL PRESSUR エメ・リーン・リーン・リーン・リーン・リーン・リーン・リーン・リーン・リーン・リーン	+ L - + I + I + I + I + I + I + I + I + I + I	JJ. JJJ. JJ
JYNAMIC PRESSUR ILRE 2 J -J.90930 JI -J.92420 JU -J.92420 JU -J.92420 JU -J.92420 JU -J.92420 JU -J.42120 JU -J.42590 JI -J.435590 JI -J.13950 JI -J.71540 JU -J.71540 JU	+ L - + L + L + L + L + L + L + L + L + L + L	J.J.J. J.J.J. J.H.J.J.J.J.J.J. J.H.J.J.J.J
JYNAMIC PRESSUR 11 R 4 2 J - J.90930 J1 - J.92420 J0 - J.92420 J0 - J.92420 J0 - J.92420 J0 - J.92420 J0 - J.92420 J0 - J.35590 J1 - J.13950 J1 - J.71540 J0 - J.71540 J0 - J.71540 J0	+ L - + L + L + L + L + L + L + L + L	$J_{+} J_{+} J_{+$
JYNAMIC PRESSUR 1084 5 0 -3.90930 01 -3.90930 01 -3.92120 00 -0.95590 01 -0.13950 01 -0.13950 01 -0.13950 01 -0.71540 00 -0.71540 01	+ L + L + L + L + L + L + L + L + L + L	J. 5 J.) J. 0 J.
JYNAMIC PRESSUR 1084 5 0 -3.90930 01 -3.90930 01 -3.92120 00 -0.935590 01 -0.13950 01 -0.13950 01 -0.13950 01 -0.13950 01 -0.71540 00 -0.71540 00 -0.13610 01 -0.13610 01	+ L + L + L + L + L + L + L + L + L + L	J = 3 J J $J = 0$
JYNAMIC PRESSUR 1084 5 J -J.90930 J1 -J.90930 J1 -J.92120 J0 -J.92120 J0 -J.92120 J0 -J.92590 J1 -J.35590 J1 -J.13950 J1 -J.13950 J1 -J.13950 J1 -J.13910 J0 -J.1340 J0 -J.13410 J1 -J.13410 J1 -J.13	+ L + L + I + I + I + I + I + I + I + I + I + I	J. 5 J.) J. 4 J 4 3 J J. J. 4 J 4 3 J J. J. 4 J 4 3 J J. J. 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
JYNAMIC PRESSUR 1084 5 0 -3.90930 01 -3.90930 01 -3.92120 00 -0.92120 00 -0.92590 01 -0.35590 01 -0.13950 01 -0.13950 01 -0.71540 00 -0.71540 00 -0.13810 01 -0.13810 01 -0.13810 02 -0.21510 02 -0.23510 02	+ L + L + I + I + I + I + I + I + I + I + I + I	J. 5 J.) J. 4 J 4 5 J J. J. 4 J 4 5 J J. J. 7 5 3 J J. J. 7 5 4 4 J J.
JYNAMIC PRESSUR 10 × 4 5 0 - 3.90930 01 - 3.90930 01 - 3.92120 00 - 0.92120 00 - 0.92590 01 - 0.35590 01 - 0.13950 01 - 0.13950 01 - 0.13950 01 - 0.71540 00 - 0.71540 00 - 0.13810 01 - 0.13810 01 - 0.13810 02 - 0.23540 03	+ L + L + I + I + I + I + I + I + I + I + I + I	J. 5 J.) J. 4 J 4 3 J J. J. 4 J 4 3 J J. J. 4 J 4 3 J J. J. 7 5 3 J J. J. J. 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
JYNAMIC PRESSUR 1084 5 0 -3.90930 01 -3.90930 01 -3.92120 00 -0.92120 00 -0.92590 01 -0.35590 01 -0.13950 01 -0.13950 01 -0.13950 01 -0.71540 00 -0.71540 00 -0.13810 01 -0.13810 01 -0.13810 01 -0.13810 01 -0.21510 02 -0.23540 03 -0.23540 03	+ L + L + I + I + I + I + I + I + I + I + I + I	J. 5 J.) J. 4 J 4 30 J.3 - (
JYNAMIC PRESSUR 10 × 4 5 0 - 3.90930 01 - 3.90930 01 - 3.92120 00 - 0.92120 00 - 0.92120 00 - 0.92590 01 - 0.35590 01 - 0.13950 01 - 0.13950 01 - 0.13950 01 - 0.13950 01 - 0.13950 00 - 0.21510 02 - 0.23540 03 - 0.235540 03 - 0.23540 03 - 0.23550 - 0.23550 - 0.25550 -	+ L + L + I + I + I + I + I + I + I + I + I + I	J. 5 J.) J. 6 J. 4 JU UJ J. 6 J. 4 JU UJ J. 7 J. 3 JU UJ J. 5 2 3 4 U UJ J. 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ L - + L + I + I + I + I + I + I + I + I + I + I	J = 5 J i i $J = 0 J$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ L - + L + I + I + I + I + I + I + I + I + I + I	J = 5 J i i $J = 0 J$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ L + L + I + I + I + I + I + I + I + I + I + I	J + 5 J i i $J + 0 J + 4 J - 0 J - 4 J - 4 J - 0 J - 4 J - 4 J - 0 J - 3 J - 4 J - 4 J - 2 J - 4 J$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ L + L + I + I + I + I + I + I + I + I + I + I	J. 5 J.) J. 6 J 4 3D J. J. 6 J 4 3D J. J. 7 5 3D J.5 J. 5 2 34D J.5 J. 5 3 1 1 J.5 J. 5 3 1 J.5 J.5 J.5 3 J.5 J.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ L + L + I + I + I + I + I + I + I + I + I + I	$J_{+3}J_{+}J_{+}J_{+}J_{+}J_{+}J_{+}J_{+}J_{+$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ L - + L + I + I + I + I + I + I + I + I + I + I	$J_{+,0}$ J_{+
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ L - + L + I + I + I + I + I + I + I + I	J + 5 J i i $J + 6 J + 6 J i i j i i i i i i i i i i i i i i i i$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1	$J + 5 J i \\$ $J + 6 J $
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1	J + 5 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3

MARKAL PARE TO

3

.

1

.

- 1

-0.15770 00 +1	-C-23430 01
3-12590 00 +1	0.0
0.24540-01 +1	0.110-0.00
-0.91830-01 41	0.54510-01
-0.91830-01 +1	-0.39210-01
-J.33950 03 +1	0.0
-0.26050 03 +1	0.03170 01
-0.2605D 03 +I	-0.65170 01
-0.2518D 03 +1	0.0
-U.2539D 03 +1	0.0
-0.23300 03 +1	00
-1-25421 03 +1	0
	0.0
	0.0
-0.10330 03 +1	0.0
-0.1053D 03 +1	0.13430 01
-0.1650D 03 +1	-J.1340D 01
-3-17100 03 +1	0 • U
-J+17010 JJ +1	ປະປ
-V.10540 0.5 +1	C.O
-0.16990 0: +1	1) a 1]
	3-0
	320
	0.0
-9.60/40 02 +1	U • 3
-0+80210 02 +1	0.0
-0.84030 02 +1	J + 0
-0-84950 C2 +I	0=72740-01
-0.8+950 0z +1	-4.82840-01
-J+84956 02 +1	0 • U
	U = C
-U+O4O9U U2 T1	~
-0.84300 02 +1 -0.84300 02 +1	0 + U
-0.84390 32 41 -0.84380 62 41 -3.84880 32 41	U + U 1 + J
-0.84890 02 +1 -0.84880 02 +1 -0.84880 02 +1	U • U U • J
-0.84890 02 +1 -0.84380 02 +1 -J.84880 02 +1	ປີ ຄ.ປ ປີ ຄ.ປ
-0.84390 02 +1 -0.84390 02 +1 -J.84880 02 +1	
-0.84890 02 41 -0.84880 02 41 -0.84880 02 41	1.000
-0.84890 02 41 -0.84880 02 41 -0.84880 02 41	1.000
-0.84890 02 41 -0.84880 02 41 -0.84880 02 41 0YNAMIC PRESSURE -	1.000
-0.84890 02 41 -0.84880 02 41 -0.84880 02 41 0YNAMIC PRESSURE - 10KH =) 0.0 +1	0.0 0.0 1.0000 0.0
-0.84890 02 41 -0.84880 02 41 -0.84880 02 41 0YNAMIC PRESSURE - IERR =) 0.0 41 -0.14300 02 41	ປ.∪ ປ.J ↓.Ου∪ ປ.∪ 0.804(J) υ.J
-0.84890 02 41 -0.84880 02 41 -0.84880 02 41 0YNAMIC PRESSURE - IERE =) 0.0 41 -0.14300 02 41 -0.14300 02 41	U.U U.U U.U 0.804(J) U.J ~0.804(J) U.J
-0.84890 02 +1 -0.84880 02 +1 -0.84880 02 +1 0YNAMIC PRESSURE - IERE =) 0.0 +1 -0.1930 02 +1 -0.1930 02 +1 -0.1930 02 +1 -0.1930 02 +1	U+U U+U U+U 0+804(J) ∪3 ~0+8∪4(J) J3 0+752(J) 03
-0.84890 02 +1 -0.84880 02 +1 -0.84880 02 +1 0YNAMIC PRESSURE - IERE =) 0.0 +1 -0.1930 02 +1 -0.1930 02 +1 -0.1930 02 +1 -0.18570 01 +1 -0.18570 01 +1	U+U U+U U+U 0+804(J) ∪3 ~0+804(J) ∪3 (0+753(J) 03 ~0+753(J) 03
-0.84890 02 +1 -0.84880 02 +1 -0.84880 02 +1 0YNAMIC PRESSURE - IERE =) 0.0 +1 -0.1930 02 +1 -0.1930 02 +1 -0.1930 02 +1 -0.18570 01 +1 -0.18570 01 +1 -0.18570 01 +1	0.0 0.0 0.0 0.804(0.0 0.804(0.0 0.804(0.0 0.750(0.03 0.750(0.03 0.522(0.03)
-0.84390 02 41 -0.84380 02 41 -0.84880 02 41 0YNAMIC PRESSURE - IERE = 0.0 41 -0.1930 02 41 -0.1930 02 41 -0.1930 02 41 -0.16570 01 41 -0.16570 01 41 -0.71560 01 41	U + U U + U + U + U
-0.84390 02 41 -0.84380 02 41 -0.84880 02 41 -0.84880 02 41 0YNAMIC PRESSURE - 10.0 41 -0.14350 02 41 -0.14350 02 41 -0.16570 01 41 -0.16570 01 41 -0.71560 01 41	U + U U + U + U + U
-0.84390 02 41 -0.84380 02 41 -0.84880 02 41 -0.84880 02 41 0YNAMIC PRESSURE - IERF =) 0.0 41 -0.14350 02 41 -0.14350 02 41 -0.16570 01 41 -0.71560 01 41 -0.71560 01 41 -0.71560 01 41 -0.71560 01 41	U • U U • U
-0.84390 02 41 -0.84380 02 41 -0.84880 02 41 -0.84880 02 41 0YNAMIC PRESSURE - 1ERF =) 0.0 41 -0.14300 02 41 -0.14300 02 41 -0.1930 02 41 -0.1930 02 41 -0.19570 01 41 -0.71560 01 41 -0.27230 01 41 -0.27230 01 41	U • U U • U
-0.84390 02 41 -0.84380 02 41 -0.84880 02 41 0YNAMIC PRESSURE = 1EKF =) 0.0 41 -0.14300 02 41 -0.14300 02 41 -0.1930 02 41 -0.1930 02 41 -0.1930 02 41 -0.11570 01 41 -0.27230 01 41 -0.11350 01 41	U • U U • U
-0.84390 02 +1 -0.84380 02 +1 -0.84880 02 +1 -0.84880 02 +1 -0.84880 02 +1 -0.14300 02 +1 -0.14300 02 +1 -0.14300 02 +1 -0.16570 01 +1 -0.71560 01 +1 -0.27230 01 +1 -0.11350 01 +1 -0.11350 01 +1	U • U U · U
-0.84890 02 +1 -0.84880 02 +1 -0.84880 02 +1 -0.84880 02 +1 -0.84880 02 +1 -0.14300 02 +1 -0.14300 02 +1 -0.14300 02 +1 -0.16570 01 +1 -0.71560 01 +1 -0.27230 01 +1 -0.11350 01 +1 -0.11350 01 +1 -0.48650 01 +1	U.U U.U U.U 0.804(J) 0.804(J) 0.804(J) 0.3 0.752(J) 0.7538(J) 0.52710 0.3 0.52710 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.
-0.84890 02 +1 -0.84880 02 +1 -0.84880 02 +1 -0.84880 02 +1 -0.84880 02 +1 -0.14300 02 +1 -0.14300 02 +1 -0.14300 02 +1 -0.1930 02 +1 -0.16570 01 +1 -0.71560 01 +1 -0.27230 01 +1 -0.11350 01 +1 -0.11350 01 +1 -0.48650 01 +1	U.U U.U U.U U.U U.U U.U U.U U.U
$\begin{array}{c} -0.84890 \ 0.2 \ +1 \\ -0.84800 \ 0.2 \ +1 \\ -0.84800 \ 0.2 \ +1 \\ -0.84800 \ 0.2 \ +1 \\ -0.84800 \ 0.2 \ +1 \\ -0.1930 \ 0.2 \ +1 \\ -0.1930 \ 0.2 \ +1 \\ -0.1930 \ 0.2 \ +1 \\ -0.10570 \ 0.1 \ +1 \\ -0.10570 \ 0.1 \ +1 \\ -0.71500 \ 0.1 \ +1 \\ -0.71500 \ 0.1 \ +1 \\ -0.27230 \ 0.1 \ +1 \\ -0.11350 \ 0.1 \ +1 \\ -0.11350 \ 0.1 \ +1 \\ -0.48050 \ 0.1 \ +1 \ +1 \\ -0.48050 \ 0.1 \ +1 \ +1 \\ -0.48050 \ 0.1 \ +1 \ +1 \ +1 \\ -0.48050 \ 0.1 \ +1 \ +1 \ +1 \ +1 \ +1 \ +1 \ +1 \ $	U.U U.U U.U U.U U.U U.U U.U U.U
$\begin{array}{c} -0.84890 \ 0.2 \ +1 \\ -0.84860 \ 0.2 \ +1 \\ -0.84860 \ 0.2 \ +1 \\ -0.84860 \ 0.2 \ +1 \\ -0.84860 \ 0.2 \ +1 \\ -0.1930 \ 0.2 \ +1 \\ -0.1930 \ 0.2 \ +1 \\ -0.1930 \ 0.2 \ +1 \\ -0.1930 \ 0.2 \ +1 \\ -0.16570 \ 0.1 \ +1 \\ -0.16570 \ 0.1 \ +1 \\ -0.71560 \ 0.1 \ +1 \\ -0.27230 \ 0.1 \ +1 \\ -0.27230 \ 0.1 \ +1 \\ -0.11350 \ 0.1 \ +1 \\ -0.11350 \ 0.1 \ +1 \\ -0.48650 \ 0.1 \ +1 \ +1 \\ -0.48650 \ 0.1 \ +1 \ +1 \\ -0.48650 \ 0.1 \ +1 \ +1 \ +1 \\ -0.48650 \ 0.1 \ +1 \ +1 \ +1 \ +1 \ +1 \ +1 \ +1 \ $	U • U U • Z • Z • Z · U U · U U • U U · U · U · U · · · · · · · · · · · · · · · · · · ·
-0.84830 02 +1 $-0.84800 02 +1$ $-0.84800 02 +1$ $-0.84800 02 +1$ $-0.1930 02 +1$ $-0.1930 02 +1$ $-0.1930 02 +1$ $-0.19570 01 +1$ $-0.18570 01 +1$ $-0.71500 01 +1$ $-0.71500 01 +1$ $-0.27230 01 +1$ $-0.11350 01 +1$ $-0.11350 01 +1$ $-0.48050 01 +1$ $-0.48050 01 +1$ $-0.48050 01 +1$ $-0.48050 01 +1$ $-0.48050 01 +1$ $-0.48050 01 +1$ $-0.48050 01 +1$	U • U U · U · U · U · U · U · U · U · U · U · U
-0.84890 02 41 $-0.84800 02 41$ $-0.84800 02 41$ $-0.84800 02 41$ $0YNAMIC PRESSURE =$ $IURF = 0 +11$ $-0.1930 02 41$ $-0.1930 02 41$ $-0.1930 02 41$ $-0.19570 01 41$ $-0.18570 01 41$ $-0.71500 01 41$ $-0.71500 01 41$ $-0.11350 01 41$ $-0.11350 01 41$ $-0.48050 01 41$ $-0.48050 01 41$ $-0.48050 01 41$ $-0.48050 01 41$ $-0.48050 01 41$ $-0.48050 01 41$ $-0.48050 01 41$ $-0.48050 01 41$ $-0.48050 01 41$ $-0.48050 01 41$ $-0.48050 01 41$	U • U U · U · U · U
-0.34330 02 41 -0.34330 02 41 -0.34330 02 41 -0.54860 02 41 -0.54860 02 41 -0.14300 02 41 -0.14300 02 41 -0.14300 02 41 -0.16570 01 41 -0.16570 01 41 -0.71560 01 41 -0.27230 01 41 -0.11350 01 41 -0.11350 01 41 -0.48650 01	U • U U · U · U · U
-0.34330 02 11 -0.34300 02 11 -0.34300 02 11 -0.54860 02 11 -0.54860 02 12 10.0 11 -0.1300 02 11 -0.1300 02 11 -0.16570 01 11 -0.16570 01 11 -0.7100 01 11 -0.7100 01 11 -0.27230 01 11 -0.11300 01 11 -0.11300 01 11 -0.48050 01 11 -0.48050 01 11 -0.48050 01 11 -0.2410 02 11 -0.2410 02 11 -0.2440 02 11 -0.24400 03 11 -0.34400 03 11 -0.34400 03 11	$\begin{array}{c} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 804 \\ 0 & 0 \\ 0 & 804 \\ 0 & 0 \\ 0 & 804 \\ 0 & 0 \\ 0 & 15 \\ 0 & 15 \\ 0 & 15 \\ 0 & 15 \\ 0 & 15 \\ 0 & 15 \\ 0 & 19 \\ 0 \\ 0 & 19 \\ 0 \\ 0 \\ 0 & 19 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $
-0.34430 0.2 +1 $-0.34300 02 +1$ $-0.34300 02 +1$ $-0.54800 02 +1$ $-0.14300 02 +1$ $-0.14300 02 +1$ $-0.14300 02 +1$ $-0.16570 01 +1$ $-0.16570 01 +1$ $-0.71500 01 +1$ $-0.71500 01 +1$ $-0.27230 01 +1$ $-0.11350 01 +1$ $-0.48050 01 +1$ $-0.48050 01 +1$ $-0.48050 01 +1$ $-0.48050 01 +1$ $-0.48050 01 +1$ $-0.48050 01 +1$ $-0.48050 01 +1$ $-0.48050 01 +1$ $-0.48050 01 +1$ $-0.24110 02 +1$ $-0.29490 03 +1$ $-0.34400 03 +1$ $-0.34400 03 +1$	$\begin{array}{c} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 804 \\ 0 & 0 \\ 0 & 804 \\ 0 & 0 \\ 0 & 804 \\ 0 & 0 \\ 0 & 152 \\ 0 & 0 \\ 0 & 752 \\ 0 & 0 \\ 0 & 752 \\ 0 & 0 \\ 0 \\ 0 & 752 \\ 0 \\ 0 \\ 0 & 752 \\ 0 \\ 0 \\ 0 \\ 0 & 752 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $
-0.34430 0.2 +1 $-0.34300 02 +1$ $-0.34300 02 +1$ $-0.354800 02 +1$ $-0.14300 02 +1$ $-0.14300 02 +1$ $-0.14300 02 +1$ $-0.14570 01 +1$ $-0.16570 01 +1$ $-0.16570 01 +1$ $-0.71500 01 +1$ $-0.71500 01 +1$ $-0.11350 01 +1$ $-0.11350 01 +1$ $-0.48050 01 +1$ $-0.48050 01 +1$ $-0.48050 01 +1$ $-0.48050 01 +1$ $-0.48050 01 +1$ $-0.48050 01 +1$ $-0.48050 01 +1$ $-0.48050 01 +1$ $-0.24110 02 +1$ $-0.29490 03 +1$ $-0.34400 03 +1$ $-0.33050 03 +1$	$\begin{array}{c} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 \\$
-0.34430 0.2 +1 $-0.34300 02 +1$ $-0.34300 02 +1$ $-0.54800 02 +1$ $-0.14300 02 +1$ $-0.14300 02 +1$ $-0.14300 02 +1$ $-0.14570 01 +1$ $-0.16570 01 +1$ $-0.16570 01 +1$ $-0.71500 01 +1$ $-0.71500 01 +1$ $-0.11350 01 +1$ $-0.11350 01 +1$ $-0.48050 01 +1$ $-0.48050 01 +1$ $-0.48050 01 +1$ $-0.48050 01 +1$ $-0.48050 01 +1$ $-0.48050 01 +1$ $-0.48050 01 +1$ $-0.24110 02 +1$ $-0.29490 03 +1$ $-0.34400 03 +1$ $-0.33050 03 +1$ $-0.33050 03 +1$ $-0.33050 03 +1$	$\begin{array}{c} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 \\$
-0.34430 0.2 +1 $-0.34300 02 +1$ $-0.34300 02 +1$ $-0.54800 02 +1$ $-0.14300 02 +1$ $-0.14300 02 +1$ $-0.1930 02 +1$ $-0.10570 01 +1$ $-0.10570 01 +1$ $-0.10570 01 +1$ $-0.71500 01 +1$ $-0.27230 01 +1$ $-0.11350 01 +1$ $-0.11350 01 +1$ $-0.48050 01 +1$ -0.4	$\begin{array}{c} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 \\$

.

.

-J+JJ480 JJ +I	0.0
-U-JJY50 UJ +1	0.0
-U.2663D 03 +L	0.1.0.0 02
-0.20030 03 +1	-0.120.0 02
-0-10340 02 +1	0-25210 02
-0+10340 05 +1	-0.25/00 02
-0.3J800 00 +1	U.414 10 UI
-0.30800 00 +1	-0.414.50 01
1+ 00 01062+0	0.17540 00
J.23010 SU +1	-9-17540 00
- 0.47760-01 +1	0.25900 00
-0.97700-01 +1	-0.25560 00
-0.20/00 00 +1	U.U
-0.24840 03 +1	0.0
-0-2540 43 +1	4.0
-0.25310 01 +1	4.0
- 4.25364 43 +1	J-0
-0-25460 03 +1	0.0
	0.0
	- 14 E 4 3 0 J UL
	0.0
	0.0
	0.0
	0.5
	0.0
	U.U
	-0+160 0 UI
-0.85010 0. +1	
-0.04890 02 11	0.0
-0.84860 J. +1	3 . 3
- 1.84888 02 +1	0.0
DYNAMIC PRESSURE	1.000
• • •	
W+O + L	0.0
-01/08/00 02 +1	ປ≱8334 ∌ທີ່ບໍລ
-3+13096 0.7 +1	-0.40490 63
- 3+ 6 32 30 31 +1	0.7.4420 03
- じゃとうとうい じょ 十王	-3.73423 63
-0-13790 02 +1	0.25200 03
-0.10790 02 +1	-0.52500.03
-0.39910 01 +1	ປະວາດສບ ປງ

-0.11380 03

J.21580 C3

-0.21580 03

J.18540 43

-0.1359D 03

C.13830 03

-0.13830 03

0.15020 02

-0.75320 02

J. 38130 JI

10 01166.0-

٠.

-3.34910 01 +1

-0.15000 01 +1

-3.15300 01 +1

-0.47740 01 +1

-0. 27790 01 +1

-0.22670 02 +1

-0.22670 02 +1

-0+54540 03 +1

-0++3530 03 +1

-0.04610 03 +1

-J.34010 J3 +L

The state of the second second second

-0.32560 03 +1	0.46930 01
-J.J2560 JJ +1	-3.46430 01
-0.34000 JJ +1	0.0
-0.33920 03 +1	0.0
-0.33990 (3 +1	0.0
-3.27200 03 +1	0.14010 02
-0.27200 03 +1	-0.19610 02
-0+87580 JI +1	0+552900 05
-J.d7580 JI +1	-0•≮238D 02
-0.45390 CU +1	C.5045D 01
-0.45040 30 41	-0.50450 01
-0+24300 30 +1	6.13030 00
-0-24300 20 +1	-0.13060 00
1.45040-01 +1	J. 27(101) 00
(1 + Gin + Gin + I)	
0.50450 00 41	0.0
-J+24580 J3 +1	U # U
-1-22220 11 +1	0.0
-0+25570 03 +1	3.3
-0+25340 03 +1	G . J
-0+25400 Jo +L	J . J
-0=23470 03 +1	3.3
-J.15140 Js +i	v • 1)
-3.10030 03 +1	يد دي. د.د
	-1.1.1.1.1.1.1.1
- 3 - 1 7 3 3 3 - 4 1	1.)
	0 # 0 1 1
- J+10991 J3 +1	ن و ا
-J.10950 J. +1	J 🖕 J
-J+はアビアローリン +I	0.21412 01
ーヨービアンアン コピーキモ	-3+27+10 31
-0,44100 J. +1	J # }
-J.J.UVU U2 FL	3.231.3 33
- J. 450% J. +1	+0.23120 00
-0.0070 J2 +1	3.3
	ال م ا
0.000 02 41	
	•
シア はみりまし ことやれ ことやらし シー	2 + 2 3 3
$\mathbf{L} \in \mathcal{M} \setminus \mathcal{L} \to \mathcal{L}$	
J + U + 1	ل م ل
-J+332) J+1	ای ان ۲۰۰٬۵۰۰ وال
-1.33-13 3. +1	الاي الاي الديول -
-J#JJ240 01 +1	2+7 3+13 US
1+ 10 0440 - C+	-1+1-1460 03
-)+14470 32 +1	321 443 33
-3+14475 32 +1	- 3 = 3 2 + 4 3 4 3
- 1+ 2- 340 31 +1	ال ليويلا ب
-3-12/04/1 .11 +1	······································
	a a a a sinte a dig

-3.32040 01 +1 -J+13373 J= +1

-3.13370 31 +1

-0+1+280 02 +1

-0.19250 02 +1

-3.10067 32 41

-0.100m) 02 +1

60 GUELS.0

-0.21500 03

5.C Greet . 0

-0.13310 US

3+L:1:10 03

-0.15150 03

69

Ţ

-

-

,

.

.

-0.24060 03	+1	0.34030 02
-3.44000 03	+1	-3.84030 02
-0.34810 03	+1	3.4/5/0 01
-0.34810 03	+ I	-0.47,70 01
-0-32120 33	+ 1	1. 31140 01
-0.02120 03	+ 1	-0.0179D 01
-3.34090 03	+1	3.0
+0.33410 01	+1	3.3
-3.34010 33	+1	J • J
-0.33950 03	+1	່ວຸບ
-0.21710 03	+1	20 0217120 02
-3-27710 03	+1	-0.21320 02
-0.14920 01	+ 1	J. 262130 02
-1.14420 01	+ 1	5-21-30 JZ
-3.33580 30	+1	0.57-10 01
-0.50500 00	+1	-0+3//10 01
-0.21040 03	+1	د. • د
- 1.05500-01	+ 4	3.1.100 30
-0.05002-01	+ 1	-1.1/100 00
J.16493 UU	+ 1	0.1.030 00
J. 10440 JJ	÷ .	-0.12059 00
- 0 + 24 Child - 0 1	+1	الريمة ال
- JALLENS C.	ŧ i	. . .
- Carlos and Carlos	+ 1	ال. چ ب
- J+ L 38 1.2 J	+ 1	J • -
Marcing	* 1	•
- 1421 420 C.	+ 1	· · · ·
-1+14213	+ 1	· B
ور بالام، ومان-	* 1	3 . 3 3 1
mula Eta ana ing si	+ 1	- Lase 130 al
- J+1 Z* 4	* 1	د م د
-1+1/11	+ 1	د 🖬 (
- 2.11 - 2.1	+ 1	
-6-12640 - 1	+ 1	ر . ب
-3-11300 11	+1	· • • • · · ·
- 2. Le + 30. 133	+ 1	د .
	+ 1	1. 17. 41
- 2 1	+1	
-4+13-1911 1.	+1	• J
-u. 00170 J.	+1	1. 11/30 LU
+ 10 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+1	- U. 11/30 UU
	+ 1	J.)
ياب مال واجا جال -	+1	
يها الدفائة مراج	+ 1	υ φ]
- U. 194019 U.	+ 1	

	<u>ى</u> .
0	0.
0	0.
•	
0.	U •
đ.	0.
U •	0.
U .	υ.
0.	ა.
0.	υ.
1-256736+34	.
2.401721405	
-3+298225+03	J+
-x.c7916L+UJ) •
3.1000/E+V2	U .
-1.759946+33	J.
-6.045376+32	J.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	J.
6-114531+31	
	<b>J</b> •
1+610841+01	0.
-2-125036+01	J.
-1.829202401	J.
1.044636-01	<b>U</b> •
-2.404102+00	J.
きょはとはてきにキンン	1.
-1.314100+31	. J
4 - 10 1 + 1 + 1 -	ي ال
1.10412C+J.	J .
-1.10c39c+32	J.
-1+04001L+3 ⁻	J.
しょうしん ひんしょうしょう	J.
4.10120L+JU	J.
~d.10980_+JJ	3.
-5.010Jdc+Jl	J.
J.77306L+J2	<b>U</b> .
1.156551.1.1.	
	3.
-1.14/192+3:	
-0+075401+03	J.
3-412216400	0.
-9.075212+33	<b>U</b> •
-5.dod24t+01	J.
2.799885+32	J.
6.097120+03	J.
7.445701 + 11	
-9.114.514.11	1.
-1+399445+11	0.
A4905755401	<b>J</b> •
-1.810335441	0 <b>•</b>
-1+386556+01	ა.
-2.27128L+01	J.
4.015216+02	J.
0.18082F+31	J.
2220000000000	.) -
-1-012011+02	<b>.</b>
-1+257645+02	U .
4 . 752918+01	J +
-9.18109E+J1	<b>U</b> •

	20	A	0	n	a	n	1
		ž	ž	ž	ž	ž	-
	9	U	V	Ų	U	U	2
	00	Ø	J	0	0	0	3
	00	0	U	0	0	0	4
(	00	0	٥	0	0	٥	Ħ
	10	ñ	ū	ō	a	ñ	
		ž		~	ž	ž	-
		ÿ	0	U 	2	ų	1
(	00	0	0	U	C	à	8
(	)0	U	0	V	0	0	ç
(	) 0	0	0	0	0	1	C
6	00	0	J	0	Ø	1	1
(	141		A	ñ	ñ	1	5
		~	~	~	ž		-
, c	JC	ů	U -	U	0		3
	10	0	0	U	Q	L	4
L.	0	J	υ	Q	0	L	5
C	00	0	0	٥	0	1	E
Ĺ	ιo	٥	J	۵	0	ı	7
,	20	õ	õ	õ	ñ	ī	,
		~	بر در		ч ~	* *	ں ،
(	10	U 	0	U 	V		7
,	10	0	0	0	0	2	G
	0 (	0	U	U	0	Ľ	L
	0	U.	0	0	ο.	2	2
c	00	0	a	å	0	2	
	50		ñ.	ň	<u> </u>	2	
	. ~			2	2	~	2
<u>د</u>	10	0	U	U	0.	2	2
ť.	0	U.	0	0	0	Ż	Ĺ
ų l	0	0	0	V	υ.	2	7
C	0	Ų I	u	υ	0	2	8
G	0	0	0	0	o:	2	ç
	'n	<u>_</u>		n	n.	4	ō
						-	
0	0	0			0	٤	L
U.	u u	0	0	0	0.	3,	2
C	0	0	U,	J	J.	J.	3
ن ن	0	0	J,	υ	0	Ŀ	4
0	0	J	υ,	3	۵.	3	5
	n.	<u>.</u>	<u>а</u> ,	ā.	<u>_</u>		~
			~		0	,,	
u						4	C
C C	10	0	0	U	0	3	Ľ.
a	0	0	U	U	0	3	Ç,
0	0	0	0 4	0	0.	4	C
0	0	ο.	,	3	0		1
			a	- -	-		5
		~			~	•	
U U	0				04	• •	3
J	0	0	0	)	0	ţ	•
Ø	0	0	J	0	0	4 !	5
0	0	01	0 (	0	04	4 (	£
0	0	d i	<b>.</b>	۵.	0	4	7
	0	<u> </u>		- -	<u> </u>		6
		~			~	• •	
Ű	0	0			0	<b>9</b> '	5
U	U	U (	)(	) (	0:	5 (	J
a	2	0(	0,	3	0 9	Ę	l
a	0	00	0	2	0 9	5;	2
1	0	0	5	9	0 1	5.	3
1	0	n/	2	2	0	5,	4
- U		0 1 0 -	بانت میں	ا می 		י נ. קיים	•
Q		-		ا <b>د</b>			-
J	0	0:	)(	)(	0 !	51	É
U	U	U	)(	) (	0:	5	7
a	0	υ.	J	0	0 !	5 (	8
٥	0	0	0 4	0	0	5 •	5
~		а ч	- '  -	<u>,</u>		- -	ñ
0				u 1		انن د	
0	U	υ (	) (	31	Uł	ά.	

ORIGINAL PAGE IS OF POOR QUALITY

.

-1.2/4406+01	د
-1-243276+00	ຍ.
-1-14.1928+02	0.
3.760146404	2
	0.
1.032216.00	0.
2.37331E+01	<b>9</b> •
1.200436+31	J•
-1.26908E+U1	0.
4.24687E+01	U .
2.707506+31	J.
-0.7J426E+01	U .
5-031546+01	J.
-4.714636+03	U.
-1.47155E+01	0.
-3-44207++0.3	<u>ي</u>
	U.
	0. 
	0.
-3.309686.431	U.
-1.771312+01	J.
8+033346+01	J.
2+637196+0.	<b>ب</b> ل
Lodudgettu4	ປ <b>.</b>
1=021duL+02	J .
1.984756+31	Je
J.357800+11	J.
-0.373451+00	J.
4-244036+31	J.
4.088351+91	3.
-7-04-1-1-11	
	0.
	<b>.</b>
-5+43123L400	
4.007441+J1	J.
4.771911.+31	<b>U</b> •
1.504898.+01	Q.
1.71941:+J1	J.
*:*500211+00	U .
2+83787878+30	0.
えゃえっとアントキャイ	U.
2.401726403	J.
2.223486+03	J.
-3+248566433	<b>U</b> .
3.106671+32	
-1.754931+31	
	0.
5-31039F+30	4+253645+01
-1.25961L+J2	4-532315+05
9.002496-31	7.805181+00
-1-429431+00	-1.167128+01
-1.281+5E+JJ	-2+42+23F+33
-2.49837E-01	1+233826+30
-0.067071-01	-0+243226+30
3.34557E-01	-2-304998+30
2+80370L+33	-1.14212E+01
1.239521+14	1. J3646E+03
2-563271 +05	1. 300000 +05
2-1464-524	
	LUJULIELIEL
-9*IA900F407	9+2CJ43L+01
-2+287296+ 3	1+140676+02

		_		_			_
0 	0	0	0 0	0	0	6	2
ō	0	ŏ	õ	0	ă	6	4
Ĵ	0	U	0	U	U	6	5
0	0	0	U	0	0	ĉ	¢
0	0	0	0	0	0	6	7
ن در	0	0	0	3	0	e •	8
a	0	0	a	U U	a	8 7	0
ō	ū	ð	ō	ū	ō	7	ī
0	0	0	0	٥	Q	7	2
0	U	ა	J	υ	υ	7	3
0	0	0	0	U A	0	7	<b>4</b>
0 0	0 A	о a	0 0	0 11	0 0	7	г А
ō	õ	õ	ō	õ	a	7	7
0	U	J	J	J	0	1	ų
U	0	0	0	J	0	1	ç
0	0	0	0	0	0	8	0
0 -0	0	0	0	0	0	8 	1
0	0	a a	0 3	u a	0	ю н	۲ ۲
Ű	Ū	Ĵ	ũ	ũ	ō	8	4
υ	υ	ο	υ	0	0	8	5
0	0	0	U	0	0	U	6
0	0	<b>0</b>	J v	U V	0	8	7
ο 0	о О	о a	ა ი	u n	ы а	е я	e c
ŭ	ŭ	õ	ŭ	ŭ	υ υ	ğ	á
0	0	O	0	0	0	y	ı
0	0	ა	0	0	0	Y	2
U	0	U N	3	J	J	9	3
0 0	0	0	0 0	0	0	9	4
u u	υ υ	U U	٥ ٥	υ υ	u u	9	ວ 6
ō	0	J	Ĵ	0	ō	ÿ	7
υ	0	υ	U	υ	υ	9	8
ა	0	0	0	0	C	5	5
U	0	<b>U</b>	0	0	1	0	C
. თ. თ.	ი ი	0 0	0 0	0 A	E E	u n	2
ິບ	J	ა ა	o	ő	ī	õ	3
J	0	J	Ū	0	1	0	4
0	0	0	0	0	1	J	5
J	U	Ċ	0	0	1	0	0
0	0 0	ე ი	0 0	0 0	1	0 0	7 8
ິວ	õ	õ	õ	J.	1	õ	ç
Ű	U	0	0	ΰ	L	1	0
0	0	0	0	0	1	l	1
U	0	0	<b>ں</b>	0	1	1	2
0	0	ປ ດ	0	0 0	1	1	3
ີ ບ	0	0	υ υ	0	# 1	ь 1	5
ō	ō	o	õ	ō	ī	ī	6
0	0	0	U	0	1	1	7
ა	U	0	0	U	1	1	ß
0	0	0	0	0	1	1	9
ט נו	0 A		0 0	0 0	1	2 د	0
ц	0	0 0	ő	0	1	2	2
-		-	-	~	-	-	-

.

62100000
00000124
00000125
00000127
00000128
00000125
10000130
00000131
00000113
00000134
00000135
00000136
00000137
00000139
00000140
00000141
00000142
00000143
00000145
0000014e
00030147
00000148
00000149
00000151
00000152
00000153
00000154
00000155
00000156
00000158
00000159
30000160
0000161
00000163
00000164
00000165
00000166
00000167
00000168
00000170
30000171
00000172
00000173
00000174
00000176
00000177
00000178
00000179
00000180
00000182
J0000183

3-284196+02	1.484116+02
-1.709358+33	1.297005+02
-0.340d1E+J2	-3.20751E+J2
-J.19405E+JJ	-2-391326+03
5-965116+31	1.577466+00
1.730246444	1. 1100 36 4:12
	1.420772400
-2.0/90/E+JI	-0.1120AE-01
-1.786d1C+01	-7.345968-01
4•242c2c-J2	-1.44001E-01
-2.00043E+00	1.204131+00
-1-85976E+00	1.0J783E-01
-1.063166+01	2.20770E-U1
1.23876E+02	-3.952978+01
1.005838+04	-1.027186+03
1-157501+02	-4-83-156-430
-1-144041+113	1-AAA19F401
	1. 3
	1+280000 +01
	0. Jez / /t. = JI
0.003722+33	4-411910+00
-7.025126+33	ビッコイロンドレナリウ
-4.472/45+91	1+364146+01
3.010826+02	-4.06398L+01
1.142741+04	-1+3=+370+33
1.0302331.+32	-4.747452+33
-1.26210L+J2	1.504005+01
-1.108001+02	1.343476+31
-0.101306+33	8-413348-31
1.1.4101+31	State Zhand, Add
	1 . 7.44.5.5.51
- 3 + 7 5 9 9 7 L + J L	
2 . 7 . 8421. + J.	-1. 40113L+J1
6 . 100 YEL + 33	1.772061+31
7+247102+31	-3.331916+00
-8-80111-431	8-18425L+30
·7 • 5 40 3 5 + 9 1	7.715366+30
'y • y J 0 4 v t + J U	2+310276+43
-1.00356 03	2+46500C+00
-1.3908+.1	-2+520388-31
-2.506151.+01	-4.210312-01
4.003121+02	-4. 327JUL+01
0.102141+03	2.567446+02
7.047361401	-0++24216+30
-1-556/81+02	1.41.0.1041.401
-1 -2 34641 +02	1-451451411
A . 7016/16 A.11	
-0+C0294E+G1	
-3-342472+01	-1.09_JUE+00
-1.42645E+JI	-2+01433E+30
-1.1400LL+42	
2 . J6427L+03	-1.010010+03
2+320096+30	3.773056+30
2 . 24573L+01	-3.77407E+30
1+340836+31	-3+72486E+30
-1.305821+01	-2.03045E+33
4-1-7731+01	-2.704948466
2.794186+01	5.938106+30
	2. And 4.15 4.1
	-10133266401
-+ + 30017E+03	*1+JTZ - 1+UL
-1.52447E+J1	-2+043616+30

Ì

-2.51444E+00	3. 371795+00
5.004U7E-01	2.613948+30
2 - 464 705+00	d. 240H1E-01
-3.804926701	4.753502.400
-1-820246+01	-2.012942+00
7.365282+01	1.740468+33
2-520928+02	-2.48718E+J1
	-1.075445401
1.001835+04	~4,953336+00
S-31941F+01	8.72722E+JU
3.63341E+01	7.91076t+JJ
	しゃしえょうドールし
	7 080 - 55 - 51
4.430355.401	1.03920E-01
4-145756+01	2+10331E+00
-1.445462+31	1.421366+01
-2.95678E+U1	2.01403E+30
	3.310/02+01
-5+256751+00	-1.295A81-71
4.379258.+01	-2.46240E-J1
4.749236+31	-0.704065-02
1.506818401	5-404765-41
1	
TEGARCHTAN	-1.373032400
2+159941,400	-4.231095-01
2.07653E+33	-1+402442+30
1.188610+34	-2.252936+03
2-254(6++15	-7-452501 +04
2.090281.+03	-4.191936402
-3.103976+33	5+75858E+J≵
-2-210205+03	5+71805r+0e
3-112342+02	-1.101010+01
-1-0500-1+43	5143531402
	1.167106403
-3.180942402	
-2.072792403	1.110025+03
5+75121.400	d+/3500E+01
-4-325496+42	2.9∠346E+03
2.03013(+))	1.453826+31
	-2.16540F+11
-3.9323764 10	-1.142912+01
-9.414236-31	2.563316+34
-2.517025+33	-1.171776+01
1.240301+33	-2. 1957276+10
4-3J443E+JJ	-2-055351+41
1.236100.401	
1.223191.404	2.4410721.403
×+>>>>255+U3	5+921331+32
1-99701:+33	8.14154E+J1
-3-0173-6+03	2.395541.401
-2-431336+33	3-34324L+31
1.5.7255 4.12	3. 46 AH (E A 13
-1.04/356+03	1.783136+32
-7+269576+32	-0.095495+95
-4.01744L+JJ	-4.312296+03
5.71945+ + 11	5.369876+30
1.745645403	2,2355011 402
キャナウロンサビア U J キーアコビントロンスキン	
1 . / 071264 31	49 37 3 3 45 400
-2.014096+31	-5.310106400
-1.73617E+J1	-5.034345+30
3 . 73224E - 02	-3.23930E-01
	2 . J 10 4 4F + 10
	A . 373 3~1 - 01
-1+04TADG+00	** 3/020C ** VI
~1.12601±+J1	1.3825516+00
2-982146+32	-0.005831.+01

00000184
00000185
00000186
00000187
00000188
000001#5
00000190
00000191
00000193
00000194
00010195
00000196
03000197
00000198
0000199
00000200
00000201
00000202
00000204
10100502
20200206
00000207
0000208
00000209
00000210
00000211
00000212
00000213
00000215
00000216
00000217
00300518
00000219
00000220
00000221
00000222
00000223
00000225
00000226
00000227
00000228
00000229
00000230
00000231
J0000232
00000233
00000234
00000235
30000237
00000238
00000239
00030240
00000241
00000242
00000243
30000244

9.497852+03	ー ぬ。 ひょうちゅぎ ナジョ
1.110022+32	-5.941492+30
-1.074292+32	2.300712+01
-9.473362+01	2-0704 11+31
-0.10213E+03	1.346925+30
1.125635+01	1.54.1368+31
-A. 21)26 At 4.)1	4. 271761401
1.3524464.11	
	203/2225+31
-1.040212402	2.190242401
-0.551392.00	1.123916+00
1.000581.+01	1.540792+31
-7.139992+00	5.334152+00
-4.900342+01	3+413536+31
2+54052E+32	-5.093378+31
0-217008+03	-1+093026+02
0+70J17E+01	-3.750000+30
-8+27118E+31	1-20-202+01
-0.849491.101	1+170086+31
9.42404E+J0	4.900302+30
-1.3416JE+J1	9+459752+00
-1.400031.+01	-2.520368-41
-2.808541.+31	2.184110+30
4.380941+02	-7-111346+01
7+056751+03	3. 100312+01
7-159895-001	-1.150041+01
-1.45 (55) - 3.2	2-05040++01
	2. 245416401
	0.0+60.0+60.
-1+186032+02	-3.757412+00
1+315172+03	-2.820341+13
4.474226+06	C.IJIJCE+JC
1+423125+01	
1.117501+01	-5.70461+30
-1.39/332+01	-4-91157E+0G
4+1J164E+J1	-4-095738+30
3+02361E+01	1.05d34E+01
-J.94579E+C1	4.92277E+01
5.501212+01	-2.Jd2/4E+J1
-3.344138+03	-3.490002+42
-1.675a5E+01	-4+98000 <u>0</u> +00
-1.J8517E+0J	5+3341JE+JU
£+04909E+00	4 • 4 4 3 4 7 5 + 3 4
3.7359CE+U0	1.350222+00
- J.7843CE+01	5.362856+30
-2.07517E+01	-4+4=501E+J0
5+4619CE+U1	9+925050+00
2.346576+02	-3+22211E+01
1.131428+04	-1.90347E+03
1+5754CE+U2	-7.UC/57E+36
2+77543E+01	1-265176+01
4.00912F+01	1.150165401
- 7 - 4 ] 4 F	7.465125-01
4 - 4 1 1 0 4 4 4 4 4	***************************************
TADILUCETU:	- 1 + UT 7 / YE + UU
キャコビキ ひつと キいよ	2*217725490

•

٩

1

.

٠

5 7

ORIGINAL PAGE IS

000004250
0000-281
00000232
00000253
00000254
00000255
00000256
00000257
00000258
00000254
00000260
00000200
00000261
00000262
00000263
00000264
200005562
00000200
00000267
00000268
00000265
00000270
20000271
00000272
J0000273
00000274
00000275
30000276
00000277
00000278
00000275
00000280
00000281
00000282
00000243
00000284
00000285
00000286
00000200
00000287
00000288
0000289
00000290
00000291
00000292
00000293
00000294
00000295
00000296
00000297
00000298
00000299
00000300
00006301
00000302
E0E00000
00000304
0000305
20000000

ŗ

00000245 00000246 J0000247 0000J248 00000249

00000J /6
00000307
00000308
00000304
01600000
00000311
00000312
00000314
00000315
00000316
00000317
00000318
00000319
00000320
00000351
00000322
00000323
00000324
00000325
00000320
00000328
00000329
00000330
1EEQUUUO
00000332
00000333
00000334
00000335
36800000
00000337
00000338
00000339
10100141
00000542
00000343
00000344
00000345
00000346
00000347
00000346
00000345
00000350
00000351
00000352
00000353
30000354
00000356
00000357
00000358
00006359
60000360
00000361
00000362
00000363
00000364
00000365
00000366

ŧ

10.00

-6.31376E+01	2.584646+01
-2.64350E+U1	2.76534E+00
-5.08025E+02	1+243J#E+0#
-4.9*247E+00	-1.78J40E+JC
4.528746+01	-1.122CJL-U1
4.71032E+31	1.860876-01
1.508296+01	8.17104L-01
1.613896+01	-2.dt340[+00
1.975256+00	-1.502196+00
1.80335E+00	-3+25/671.+03
1.956716+04	-J. 794.5E+0.4
N + 14 751 + 444	-1.455155+01
	-7. DAN / / + 44
1.0551+0.	1.149000+0:
-2.2.2.16 (1.4(1))	- 474431 402
	-1-673436401
14129071431	1.702030 +02
-Y+2/002L +V2	3+UC#030+U2
D+74918L+JJ	2.5134JL+01
-1.0/4831+01	-3.865771+01
-1.000371+01	-3.JU5//L+U1
-J.024991+00	0+18151E+0G
-7.094521+00	-2-125051+01
3.481222+00	-1+2214CE+01
1.912201+01	-7.535228+01
1.206896+04	4 . 9349 CE + U3
4.0568et +05	4 - 754 446 + 35
1.77341L+0J	4 • 4J542E+02
-2.00827L+03	-2.80nJ7L+C2
-2.206556405	-l.Jzodil+Uz
4・338いんん+いど	4.911076+02
-1.593861+00	2•477JJE+02
-9.724846+02	-1.013120+03
-0.196092+03	-1.094476+03
5=303446+01	1.479752+01
1+100846+03	3.d1075E+v2
1+696356+01	9.02140E+30
-1.558216+01	-0.052072+00
-1.707082+01	-5.316366400
-3.27876E-31	-0.55097L-J1
-1.908952+00	3.05730E+00
-1.70536E+00	9.57542E-01
-1.0537CE+01	4.403002+30
2.570166+32	-0.58529E+v1
7.01861E+03	-2.057026+03
1.06335E+J2	-3.526156+30
-9.72916E+01	3.222068+01
-8.628566401	3.01966E+J1
-6.93875E+00	3. 383 -76+30
1.742476401	2.10044401
-2.28251L+00	6.342111+10
-1.353126+31	4. 465051+01
2.5074.5E+32	-6.20204E+01
E. 778611.40.4	-2.00632[+03
1.20.32*+ +.32	-1-856175400
-1.074881402	
	4.0C103#401
-:+030012+00	#*GTT715#JJ

3

<

~

76

00000367
00000300
00000370
00000371
00000372
00000373
00000J74
00000378
00000377
00000378
00000379
00000380
00000381
00000383
48600000
00000388
00000386
00000387
00000389
00000350
00000391
00000385
00000393
20000344
00000396
00000397
846.00000
00000344
00000401
00000402
00000403
00000404
00000405
00000407
00000408
00000405
00000410
30000411
00000413
00000414
00000415
00000416
00000417
00000419
00000420
00000421
00000422
00000425
00000426
00000427

2.2411JL+01	8.13335E+01
-2-513960+00	8.73807E+JG
-1.906641+01	4.720132+01
2.296231+02	-2.216482+01
8.445645403	-3.048402+02
6.414418+01	-0-254576-41
- 2 H A-15 (1)	L. LANIALAUL
A . BO% % AF +00	4.065416400
-9.29216E+00	1.220078+01
-1.330866+01	-3.570dJl-91
-2.78210L+u1	1.153426+01
3-81507E+0+	-8.063876+01
7.308222+33	-1.u5142L+03
0.U5182E+01	-2.32/356+00
-1.283206+02	2.743646+01
- 4 . 75 44 ZE +01	4-030936+01
natile the bul	1.233196+01
-3.38463[ +0]	-3*414315-01
- 3+400571+31	I L P JL I VY C . L
-1-214476+02	-2.195492+30
-1.407528+03	-3.020076+03
8.073266+40	/ ☆ ♂ ご ふ い し キ い い
1.459061+01	-5+587726+00
0.414732+30	-5.464008+00
-1.630208401	-7.473546+00
Jatibel wat tol	-1.7155-6+00
	Labunbat + G1
1.1/1M 124 AU14	10.00000000000000000000000000000000000
- 3+12 J//E + J#	-3.020/46+03
-1.903221+01	-0.792031+00
1./24686430	2.529036+30
2+30153F+00	5.054076+00
0.142335+01	0.J4760E-01
-3.700116+01	1.042556+01
-2.6/4452+01	-3.546222+33
Jeroliuk+uu	0.JA2J4E+U1
20204176+02	-3.410416+01
1.004526+04	-1.86713E+03
1.59.30.31 +9.	-9-74-546+44
1.204771401	1.274.15+01
-8.105200.00	3.063816440
4.40/VOL TUL	-0.033/01 +00
4.50271E+01	2+310046+00
-4.408358+01	2+35120E+01
-2.154286401	-5+124026+30
-2.011016+02	0+210036+01
-4.799336+00	-4150L+00
4+47203L+01	1.1.32636+00
4.07844E+31	L.425/12+00
1.53744E+01	1.548941+00
1.516301+01	-4.JU225E+JU
7.86.28.55 - 01	- 3 - 7 304E + 00
	- 4, 1J-701 A.M.
1+14824t +U3	-4*00004F403
0.074476+04	UA 748L +UC
1+396605+03	-1.142046+03
-2.024076403	1.555356+03

00000428
03000429
00000430
00000431
SEP00000
00000433
00000435
00000436
00000437
00000438
00000439
00000440
00000441
00000442
00000443
00000444
00000445
00000440
00000448
00000445
0000450
00000451
00000452
00000453
00000454
00000455
00000456
00000457
00000455
00000460
00000461
00000462
00000463
00000464
<b>JJJJOJ465</b>
00000466
00000467
00000468
00000469
00000470
00000472
00000473
00000474
00000475
00000476
00000477
00000478
00000479
00000480
00000481
00000495
00000484
00000485
00000486
00000487
00000488

-1.01114E+03	1+331022+03
2.705781+02	1.J9113E+01
-1-141206403	3+18441E+0%
-2.871192+02	x.50d51E+02
	2.5 IN 285 103
JI STOLUE TOR	**220536403
2.443246+01	2.527596+02
	M. A BOL ME A 114
- GIEIVEVEVUEVUE	01069136403
7+14037E+00	J.J8054E+U1
	-5-170476+01
-1-57979E+01	-4.017098+01
-5-117341+03	1.067475+01
-1-184046+01	-5-20056401
3.39545E+00	-2-129246+01
1 1.0 1.1	
1.200315400	-1.JC4J4LYV2
1 3 3 3 2 9 E + 0 4	0.520650+03
A 771 44.5 A.114	مترجع فالأخبية أتحد والمتركب والمترا
44171302103	31002402402
1+603256+03	3.70441E+02
-2-1999111-193	-0-231321+02
-2+125221+03	-J.0UJ21E+U2
4.043442+02	0.242112+32
-1+204410403	3+1270TF 445
-1.161501+0.3	-1.14680E+03
-7-6-34144 - () 1	مع المع الم المع المع المع المع المع الم
I HOVOICLAND	- U+ JEVI FEVUJ
4.444276+01	2 • 47347L+31
I and with the state	5-021331+32
1+021451.+01	1+200466+01
-1.979076401	-9-819716403
1 7	
-1+1051AC+AT	~3+447242400
-8.78220E-J1	-0.703296-01
	a 11.1ma1.4.10
-1-479716400	4.1.70046.400
-1+443106+30	1.420051.400
	7. 32 30 46 4.30
04320130.400	
5+737516+05	-0.00073F+01
6. 40161 433	-2-21 221 222 - + 13 3
1.031861.402	5+255086-01
-4.008C5L+01	3.920076401
	6. 7. 1. 1. 1. A. 1. 1
-0*04010E401	3.100206.491
-6+474396+30	じょう10コラビキンロ
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.723356+01
2.83021E-01	2*861036+23
7+3778/c+30	4-431316+01
فالعامة فحمد ف	-5 2611415 401
	- JACTUJYE TUL
7+4531dL+03	-2+100076+03
1.172041.+02	3.077021.+30
1 0 1 3 1 4 4 1 1 1	
-1.030536+35	2*300015+01
-9+92545+401	3+853091+01
-7-505086 400	4.42546141.)
-1400001.400	0.423922400
2.717716+01	2+04423E+U1
2-720521-01	6-17-025+30
1+405201+00	4.377256401
2+112746+32	-1.112036+01
5 Kasta 4 4 4	
Jesudderyd	J#117205 TU2
0+100425+01	4=000736+30
- 7.01 - 71 + 01	1. 75851 +01
	10001351401
4+013641.+00	1-440472+01
- I - C - S - S - Mar - Maria	التلقارين بيرين
FEULLOLTUV	A B CH H SCHETUL
-1+243476+01	-4-4/183t-31
~2 a 2 3 4 5 12 ± 13 1	2 . 1 1
313984IE+04	-1.013035+01
0.204965+03	-2. JASONE+J.3

000004 <b>89</b> 00000490
00000491
00000493
00000494
00000495
00000498
00000498
00000499
00000501
00000502
00000503
00000505
00000506
00000507
00000508
00000510
00000511
00000512
00000514
00000515
00000516
00000518
00000515
00000520
00000522
00000523
00000524
00000526
00000527
00000528
00000530
00000531
00000532
00000534
00000535
00000536
00000538
00000539
00000540
00000542
00000543
00000544
00000546
00000547
00000548
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

5-50+57E+01	-9-705346-01
-1-199806+02	
-9.005241+01	5+35400E+01
5 • 00659E +01	2.5330yE+01
-0.47714E+01	5.642002+01
	6.1217#F-11
-#.209/82+01	0.444435401
-1.10493F+05	1.25248E+00
-2.752052+03	-1.657782+03
1.11713E+01	4124729E+30
1-147326+01	
3.999735+00	~ 14 /2/LUE+00
-1.735298+01	-0•79882E+00
3.788846+01	-V./5580E+00
3-8343228+01	1.751216+01
4 71 75 00 4.03	2 105.654.45
3411/391.401	2.303092701
6.43434L+UI	-9.377246+01
1.03794E+UJ	-/+47/216+03
-2.10/001+01	-6.761578+33
3-275235+00	7.55.146.+00
0.044300.000	4.032402400
1+52110-400	-l+42078E+JU
-3+05048E+01	1.404346+01
-2.94031E+01	1+125480+00
-2-554351+01	1+4/0028+02
2.148756403	
A.SINCCT+02	-1-330AIF+03
1+510636+02	-1-211096+01
3+886610+01	2.175816+01
2*J3T00F+0T	2.24480L+J1
-1-941231 +00	6-12378F+30
4 - 182541 4.11	-1-000775+01
4.524236701	1.193052400
-3+144988+03	1.99315E+01
-2.21555E+UI	-6.63069E+00
-1=036476+32	-5-854025405
-5.090122+00	-6.717076+06
4.49d64L+U1	1.986208+00
A . 709211 +.11	2-24-14-14-14
1.538612.401	2.040932400
1.420296+01	-C+14701E+30
10-386-01	-3.854416+30
-4-029902+00	9.44808E-01
5.4/667E+03	-4.60029E+03
-2-878701+04	-1-402AHE+03
-1.413422+03	1.082302+03
-1.08786E+03	1.45542E+U3
2•826J7E+U2	5.561910+01
-9-16147E+02	5-462746+42
-1.JO231E+02	1.00463E+02
1.006866403	
-+++++CDE+VI	3.200346402
2.478902+03	1+11269E+04
6 - 7 3 8 6 4 1 + 0 J	4.19369E+01
-2.303570+31	-0.32070E+01
-2.14025E+01	-4+863688+91
-6.85627E+JD	1.472516+41
-2.301745401	
2.224325-01	-2.81574E+U1
-4.93921E+U1	-1.73461E+02

00000550
00000551
00000652
00000562
00000555
00000556
00000557
00000558
00000559
00000560
00000561
000000562
00000565
00000565
00000566
00000567
00000568
00000569
00000570
00000571
00000572
00000574
00000575
00000576
00003577
00000578
00000579
00000580
00000581
000000082
00000584
00000585
00000586
00000587
00000588
00000589
00000590
00000591
00000592
00000594
00000595
00000596
00000597
00000598
00000599
00000600
00000001
00000603
00000604
00000605
00000606
00000607
00000608
00000609
00000610

1.24920E+04	7.05925E+03
4.443236+05	6,00J14E+05
1.478282+03	1.J1706E+0J
-2-013436+03	-9-393058+02
-2-044766+0.1	
A 3100 XE AU /	7 4 4 4 4 4 5 4 1 9
41219936 402	/ • 3 3 3 4 4 E + 0 2
-1.4983JE+03	5.J405JE+02
-1.1372dL+03	-1.270456+03
-7.068036+43	-8.647856+33
4-508236+01	3-533648+41
1.235352404	H-110 (16EA12
1.531/12+01	2.027252401
-2.0216dE+J1	-1.333806+01
-148503SE+01	-1.14419E+01
-1.05047E+00	-4.07528E-01
-2-15209E+03	5.23724F+00
-1-004861+00	1 - 25-31 4= +00
-4.545382.400	4.00 JI IE +00
2.19735E+02	-4+82210E+01
5.0415£+U3	-1.51308E+03
1.024486+42	4.353316+00
-d.56215F+01	4 . 479446+01
-7.554.351 +11)	A A JUNAF 4UI
	4 42 7642 101
-5.281401400	4=34101E+00
5+21272F+01	3+172018+01
1.687J1E+UJ	4+539456+30
1.454021+01	3.525246+01
2.446840+02	-3-579508+01
0-070681 +03	-1-223141+03
1 1656ar A/17	J 172065 A0C
1.155040.402	
-9.533020.401	4.405111+01
-d.4431dt+01	4+479251+01
-0.700021+00	1.199816+01
3.046611+01	3.J4747E+U1
1.007276+30	4.453286+34
1-47-1271+01	3.410H7F+01
4.91.2712.7.23	-2.930355402
6.0506dE+01	8.395211430
-6.71997E+01	1.173656+01
-5.507898+01	1.032972+01
8-09428E+00	1.444086+01
-5.72057E+00	1.787546+01
-1-094266+01	-9-452101-01
	3 3/3742401
-1.134282401	2.808732401
3+ 397271+02	-5.741401+01
4.022226+33	-3+45115E+03
5.350505+01	6.UGJ64E+JU
-1.100101+02	2.21/708+31
-8./30441+31	2+522716+01
5-186661 4.11	4. 3622AF+31
-5.9/3371431	
	0 003442401
-3+11917E+01	-48027E-01
0.3123965439	9•43421E+01
-1.0739cE+02	4.310506+00
-2.755690+03	-1.7800dE+01
1.183586+01	5. JUDD11+00
1.127936+01	-4-50701F-01
3_558616100	
-1.4/2/04E+Ul	-I.01884F+01
3.706466+01	-1.23054E+J1

ŧ

00000611 00000612
00000613
00000615
00000616
00000618
00000619
000000021
00000622
00000623
00000625
00000626
00000728
00000629
000000031
00000632
00000033
30000635
00000636
00000038
2600000
00000640
00000642
00000643
00000045
00000646
00000647
00000649
00000650
00000052
00000653
00000655
J0000650
00000657 00000658
00000059
00000660
00000661
E000000
00000664 00000665
00000666
00000667
00000669
00000670
00000671

3.7545UE+01	1.8223/6+01
3.83020E+01	-1.457262+01
5-904155+41	-1.3307/E+02
1.338665404	
-2-198705401	
	* 30167675
2 . 110AIC . 70	7.001002400
0.02IGYE+JU	7.404445+20
7.JU742E+UJ	-3.13100E+00
-3.05744£+01	1-405105+01
-2.980202+01	5.06148L+JC
-3.145810+01	ちゃっちょうほうしょうち
1.90409E+02	
8.74JOLE+JJ	-1.45470.+33
1.47440r+02	-1.260386+01
4-327198+01	2.310545+01
5-463415+31	2.402041+01
-7-11266(+0)	8-821635430
A. (32064) 4(1)	
4.433102102	
-2.34527E+UI	1.23/101+01
-5+159095+31	-1-107976+01
-1.784106+32	-5.143026+02
-3.490300+00	-3.740246+30
# 1487235+31	2.632040+00
4 . 701 J1E +U1	2.400005433
1.54050E+01	2.542476+30
1.275342+01	-0.342396+33
-0-052401-01	-4.3/3/4245433
- 3-921181+30	3-01370-+13
3-880A7(+3)3	
0 + 004 J LE + U/:	······································
-9.30799640.	1+040000+00
-6.594002+02	1.430341.433
3-541000+05	8.75259E+J1
-7.808-12+01	4.817882+02
-7.60711c.+J1	ビーゴンタダンビキジ 1
1=0325565+43	1.JP7527F+33
7+127276+01	J+01403E+02
5-293740+33	1.04.301+34
4 + 785371.+30	5.01773E+01
-2.849516+01	-7.250412+01
-2+6041JE+01	-5.004041 +01
- 4+271716+10	1.752428+01
-J.J07241+J1	-3.790116+01
-2-940096400	-3-314846+01
-1-071425+02	-1-632328+32
1.1.1.2476 +.14	6.1.2405FA(.)
	5 7 4 2 0 5 4 2 0 5 4 C
	1.100301403
LU+15001C+1	-1.205218403
-2.00998E+03	~8+424346+02
3+000612+02	d.70d41E+02
-1.J41382+0J	し。ひとふちみたキウス
-9+219876+02	-1+41820E+03
-4.64012E+05	-8-334595+93
4.010776+01	4.034156+31
9-15965E+02	1.120066+03
1+41606L+01	2.339056+01
-2.400702+01	-1.07317E+31
-1+920550+01	-1.42127E+01

00000672
0000673
00000874
00004676
00000877
00000678
00000674
00000680
00000681
00000000
00000684
00000685
00000686
30000687
00000688
00000094
00000651
2020004%
00000043
33000694
00000645
00000696
00000000
00000644
00000700
0009 /01
0000702
00000704
00000706
00000707
00000708
00000705
00000710
00000711
00000712
00000714
00000715
00000716
00000717
00000718
04000719
00000721
00000722
00000723
00000724
00000725
00000726
00000728
00000724
00000730
00000731
00000732

-2.001070+00	-4.73701[-01
-2.060376+00	6.40.1248+30
	1.021886410
-01401010-01	
A*A38205-01	9+12/44E+00
2.151772+02	-3-024098+01
5-321225+445	-A. 41634F132
	-01-11-042-102
1.025376.+32	0.854UJL+JQ
-0.22176L+01	5.011901+01
-7	5
	1040020101
-3-313146+03	1.520705431
2. v15d7L+u1	3.047471.+31
2 - IVI TOT + JJ	1.52.1.25+33
2 + 52 V 3 Ct. + V 1	5+22538E+01
え。432056+02	-2.117732+31
6.315211+01	- 1.218906+02
10133276475	1*4125.10401
-4+15444t+01	4。されひつどにナル1
-8.00851 401	5
	· · · · · · · · · · · · · · · · · · ·
= J & J F J F J J J J	12561041731
10+11+01	いちゅうていりにもうて
2+005206+03	3 - 3 3 5 - 3 6 + 3 9
4 4 1 1 FC 01 FC 1	E + 4 0 J 7 + L 4 0 F
1.043156+3.	
4-135431 +0.5	
4 () .)	1 . E 11 A
-6+517771+J1	1+363826431
~5+412224+24	1.733456+01
1-305181 +34	1
-4+0000771+00	2 • 0 6 4 3 dL + 0 L
-4.02064(+00	- しゅ アようはにも 30
2 - 4 - 5 - 7 - 4 - 1 - 3 - 5	140 TOLEN TOLEN
· · · · · · · · · · · · · ·	- 3 + 3 L L J D L + J L
***31356+93	-3+347468+03
5+341441+31	1+243861 +31
-1.1.5.39.41.4.3.	Mersten a . + . 3 3
=0+01~77L +U1	2.004100431
5.355A6E+J1	オキちゃうてつにキゴチ
-5+250076+01	8.07577.+01
- Julia Prairie	
	- 1 . 2
3 - 799 - 31. + 71	びゃむよいと ない キロス
-94247312+01	ひゃりゃうまうじょうり
-1.157801+0.5	1
1.11.27514.11	キャタをつってにキウウ
1.004561.01	2+100541-31
3.552771+00	-1+22+802+30
- 1 41414 4.14 4.14	- t - 1 t tot A t t
1+000301 +01	-1+101040401
3+203011+31	-1-01-01
3-432201+01	さんぶい ちょうしし キロネ
اند بمارسان ج	
1.000004(101	40010011 401
2+2259496401	-1+030331+35
ちゃちゅう ひちょうち	-1+577466+34
-2+157-11+31	- t++++7711+30
2 . 41 1 tait a.s.s	2. 7 Miles. 21 - 2. 341
てきまた ひづく キリチ	0 • 7 COU TL + 3 G
2=12410+90	4+054776+33
7-085546+30	- 4.143202+00
- 3-0.31 4.11 +.11	الديفة المالية ومعاري مراج
	and we can be be all a first of the state of
-2+015(31+)1	4+104151+90
- どっふっとういと チリト	しゅうていらてもういん
1-414041 +422	-2.0001041401
N . 5 (. 1 . 1 1	
0 e 0 J U U U U U T J J	~1+U4FLOE4UJ
1+455511+0.	-1.274392+41

ł

00003733
00000735
00000736
00000737
00000738
00000739
00000740
00000741
00000743
03000744
00000745
00000746
00000747
00000748
00000744
00000751
00000752
00000753
00000754
00000755
00000750
00000758
00000759
00000760
0000761
JUJJU762
00000783
00000764
00000765
00000767
0000768
00003765
00000770
00000771
00000772
00003774
00000775
00000776
0000777
0.000776
00000779
00000781
00000782
00000783
00003784
00000785
00000786
00000788
JJJ000785
30000790
0000791
00000792
00000793

4 . D 3 4 4 4 L + V 1	2.521 40E+01
5.81620L+JI	2.737056+01
-6.0/1286+33	1.043006+01
3-835635+01	-1
A 421 055 401	
4.371982401	20343776430
-5.583775+11	3 • 20407E+30
-2.192046+01	-1.508076+01
-2-553291+32	-4-443151+02
-3.47 J462 4 JU	-I.IIIU8EVUI
4-47235(+01	シャップリッゴビナリリ
4.700412+01	4.146491+30
1 - 20 7 7 31 + 11	64571326 +113
Lecolet. Vul	-/+044/12730
-1.198436+33	-4.94334[+30
-1.700576+00	4.144.402+30
2 . 3 . 3 . 11 + 0 5	-2-14241451403
- the Paul Mark A has	
	-94017136404
5+*5A05F+05	-1//+86+03
-5-540131402	しょううちまんしょうう
-1-18120 +33	La Contra and C
3.90007140.	5+717510+51
-1.233076+32	キャッチンクドキンジ
-8.404711+01	ール・リンクロスモーリン
	1 - 13 - 2 - 3 - 2 - 4 - 3 - 2
0.913221431	3.703741434
ひゃんてごうパーキンジ	きゅうし オチズッキ ひろ
1.599020+9)	ちょうちひつまにキウま
- 3- 222 - 21 - 21	- 2 - 1 - 2 - 2 - 2 - 2
-3+138371+31	-/1+131/11+31
-1-37777:+31	しゅうちしょうしょうし
الرجالة والأراج مرجا	-3-432171+31
-laddscite + JC	-11724041405
9+146118 + 23	4 ل + 1 بانەسەند. 1 + 14
1.14.324 + 3.5	ちゅうそ コンピニチョン
1	1
-2+430981+33	-1+01+136.403
-2+661248 +03	-1+07041+03
1.454406+07	すいりにはまだとうる
-1.14.17.11 + 15	14223476432
	-1+204026405
-1+459021403	-1.14/311+04
3+533271,+91	2095959491401
3 . 7 7	まっつつ ビチチレチンゴ
1 7	So the rate 23
-2.101/01+01	-1+123346+01
-2+0411JL+J1	-1+072116+01
-3.549376+03	-11.27125L-J1
- 1-0474/(+.).)	7. 187231 + 13
-0.39700(-3.	1.474016430
4 • 571 úét + 0 u	7.514dc(+))
₹ • 102001 + 0×	-2.022316+J1
5-334471+33	1.240141+31
1	1 . tup
-1-232211431	ひゃつひらえたにもうす
-0+d7151L+J1	5+645636+31
-4.52717L-01	1+47051L+J1
A . 24/1 11 + 11	4. Hourself + 11
1 + 3 + U / 3 E + J U	2. JUI Y2L+JU
2+0+37-1+31	1+04J31E+J1
2+417362+02	-7.37165E+JJ

÷

) () (0	0	() 0	77	9 0	4
00	0	o	ō	7	ÿ	6
	0	G	Ø	7	y	7
)0 \^	0	0 13.	0	7 7	9 8	6 L
)0	0	0	0	:	, 0	0
50	U	0	٥	8	0	Ì
00	0	0	0		0	×
) ()) ()		U n	U Cl	ð A	0 n	3 •
10	0	0	U	8	ů	5
10	0	0	0	8	J	¢
10	0	0	0	8	0	7
ט נ ג נ	0		0 0	ő r	ს ა	6 C
50	Ű	Ű,	õ	2	ĩ	0
00	U	3	0	8	1	1
))	0	0	U O	8	I	2
) ()) ()	o a	0 	u	4	1	3 ▲
0	Ü	0	ő	8	1	5
00	0	U.	0	8	1	C
0	U	3	J	8	L	7
))))	0	U n	0 ೧	ð A	1	d c
)))	U	ō	õ	8	2	v
10	0	O	0	8	2	L
) (U	0	0	8	2	2
) ()) ()	0	0	0 0	8 8	2 ر	ر. ا
20	U.	o	0	8	2	5
0	0	ø	J	8	2	ć
) ()) ()	0	U	ວ ລ	7	2	7
) ()) ()		0	о a	о А	لا 2	5 4
່ງງ	5	Ŭ	õ	8	3	ċ
10	0	٥	υ	8	£	1
20	0	0	0	8	3	2
)))		ი ი	ม ถ	ø	د ۱	لة. الا
20	o	õ	ō	ă	j	ć
10	U	υ	U	8	3	t
20	U	0	0	8	3	7
) () (0	и a	.კ ი	в н	د ٦	0 4
00	0	ō	ა	8	4	0
30	0	0	0	8	4	1
) (0	ა	0	8	4	2
ງ ງດ		o o	U O	ю А	4	ວ ▲
00	0	ō	J	8	4	5
00	υ	0	0	ម	4	ć
10	0	0	U 	8	4	7
ას ეს	0	U O	о 0	д Н	4	g g
00	0	0	0	5	5	ú
00	J	υ	υ	8	5	1
01	0	0	0	8	5	2
u C a c	0 10	0 0	0 0	b بر	ວິ ຂ	ل م
		~	-	9	-	-

ORIGINAL PAGE IS OF POOR QUALITY

0.219#4L+03	5-275036+02
1.16.1916+0.4	1.460762+01
-8-#37#38+01	5.364216401
-7-722505+01	5.687255401
	1-616666401
	2 8 7 M 1 K A O I
J 400 900[. FV]	3.0/0012.001
3.28/92E+UJ	2.03/34E+JU
2.403#8L+01	1.533378+01
1 • 72832E+02	10+35556+01
3.244456+03	6.45165E+01
6.06947L+01	1-81A14E+01
-0-331456+01	1+0331AE+01
-5.276946+01	1.80374E+01
5.88164E+UJ	3.014572+01
-J.40426E+0)	2.334416+31
-6-782235+04	-3.085251+30
1-899015+01	2.543.326E+441
2.731 ALLAD	
1.232836403	-2.500772403
5.425112+01	1.747992+01
-1-118136+32	2+00742E+31
-8.334241+01	2.730925+01
2.24434F+01	3+11449E+U1
-4.54310L+01	A*18APAE+01
-2.480656+01	-4.17217E+UU
7.089106+01	8.945998+01
-7.22622L+U1	6-139352-01
-1-444061+01	1.96/352+33
1.141.354.4.31	5-359271 + 10
	2.030012.400
3.3.32852+00	-8.421020-01
-1.576928+01	-1.430292+01
3 # 3 5 3 4 3 E + 0 1	-1.7538aE+31
2.92917E+01	2+360336+31
-1+051216+01	-5+90013E+01
4.087058+01	-1.877736+02
-8.00751L+00	-1.J2955E+04
-2.Jdo87E+01	-7.800902+00
1.710536+00	1.025065+01
5-0-19771+03	A.H.H.ZE+JG
6-931561400	-A-50624F+J0
-1-530615401	2.847286401
- 2 54 44 SEA()1	E. SCARCEAST
1.003341+02	-2.441302+01
8.409422+03	-8.063812+02
1.433000+02	-1.34102E+01
5.04218E+01	2.635068+01
6+22293E+0"	2.90781E+01
-5+320602+00	1+591216+01
3.543538+01	-1.54103E+01
4-297228+01	3.01735E+30
-2.38175E+01	-2.64297E+30
-2.25291E+01	-1.920428+01
-2.63632E+02	-8.24124E+02
-0.455447+30	-1-389142+01
4.54443+401	3_3G6.34F4.33
4 . 776 265 x 11	5, 1616 1620A
4 4 F F D D D C F V L	
1 . 145/8E+01	-4*111125+30
-1.522626+00	-2.29310E+J3

ŧ ,

Į

ŗ

÷

G.,

-1 • 491 302 + U U	4 • % A B B A E + 1 A
2.16764E+03	-2.19462+93
-8.967868+04	-5.C95.J9E+04
	-1-145725+01
-2.000062702	1.3/4402403
-5.36926E+01	1.190496+03
4-620346+02	5-160232+01
	5-434772+42
-1.405746404	
-11493712402	-1.444032402
1.27377E+03	-4•34646E+J2
2.653742+31	3.85307E+J2
3.78021E+03	4.91968E+03
-2-514215 4 10	(
-3.33384E+01	-0.02J48E+VI
-J.42982E+31	-C.62041E+01
-2.13527£+01	2.149556+01
-4-817602+01	- 5-237821+01
6.0000 1. + 10	
	-20349012401
	-3.13/52E+01
7•46353£+03	1.44J85E+04
-3+146512+04	1.05130E+06
1+173376+31	2.65541F+J=
- 3 4666 56 403	
-2:300032:403	-11990032903
-2.0725-2+03	-1+319366+03
2.762298400	1+321262+33
-9.021066+02	7-13103++32
-3-400411+0.	-2.135451+03
1.549205434	
1.330192.793	-1. JU42 32 704
24931926+01	7+270031.+01
2+510751+02	2+072076+03
1.11481t + J1	3.041876+01
-2.24.51 st + 31	- c . c + + 5 . E + + 1
- 2 - 14 5 4 5 - 4 - 4	
-21103092701	-1. 90/4/2401
-4.0141_L+JJ	-1,419926-31
-3:70312E+00	8•78884E+00
3.453781-01	1.75410E+JU
8.684856+30	4.255016+90
2.2116/11 + 3/	
3+388696 +03	81.71702402
1+05735E+02	1.077132+31
-7+702288+01	0.07517E+J1
-6.572671+01	6+221402+01
1.323741+33	1-661145+01
3-616526401	
	T E STOLTUL
2.020192.400	1.54228E+JU
2+456JEE+01	7.34c31E+00
2+437768+02	5.024482+00
6.300912+03	1.388246+03
1.181545407	2.428026401
	2.470020.001
-0:07429C+JL	5+424052 +91
-7-41033E+01	6+21451E+01
-1.852910+00	2.050222+01
3.97499E+J1	4.24212E+J1
3+563370+00	1 . 516745 +11.1
2.2.5.5.6.7.C.F.90	5. JA1A3CA/M
1.023946+02	2+20203E+51
2+338425+03	9+23224E+02
6.14446E+UL	2+251646+01
-6.15423E+01	4.60545E+10
-5-148621401	1.663.167.01
4.040036+00	てきしてのみににします

00000855
00000386
00000455
00000855
00000860
00000462
00000863
00000#64
00000265
00000847
00000868
00000869
00000870
00000872
00000873
00000874
00000875
00000877
00000878
000000075
00000881
00000882
00000883
00000884
00000895
00000887
6660000
00000890
00000841
00000892
00000893
00000895
000003446
00000897
00000898
000000900
00000401
00000902
00000000
00000905
00000406
00000907
00000408
00000910
00000911
00000512
00000914
00000915

00000916
00000917
00000018
000009912
00000420 00000420
00000422
00000923
00000924
00000425
00000426
00000527
00000428
00000625
00000030
00000931
00000637
00000434
00000435
00000436
00000435
00003438
00001238
30036940
00000941
0.0000942
000000444
00003445
00000446
00000947
00000415
00000449
00000420
00000951
00000952
00000953
03003955
00000956
00000457
00000458
00000459
00000760
00000201
0000002
00000963
00000984
00000905
00000967
00003968
00000465
00000970
00000471
00000972
00000473
00003974
00000975
00000410

-2.10velt+uu	2+3/3#JE+U1
	-2.500055+00
10+59292+01	1+94#11E+01
2-020496+02	2.200346+01
-1.129576+02	-#+J6011E+02
5.579250+01	2.215788+01
-1-103002+02	1.443462+01
-4-16072E+01	2.83957E+01
5-914185+01	5-96.1.17F +01
	1 016035405
	I . UIDUSL +UL
-2.211802+01	-8.0/32/L+UG
9 • #70 i j£ +01	6.6EJ10E+01
-4 • 42 4 8 5 E + 0 1	-1-224348+01
2.111442+03	1.675306+03
1.104376+01	5.480788+00
8.454302+00	2.091452+00
2-74-441 +00	-5.668258-41
-1	-1-734005+01
	-1.402022+01
2.31242L+U1	2.300158401
-4.805961+01	-2+015916+01
3.341401+01	-2+J2041++J2
-1.001596+03	-2.101506+04
-2.018576+01	-4.194586+00
1.513116+03	1.155786741
4-755396+00	5-101-421+10
7.05 3041.500	- 4 - 2 · 7 · 9 · · · · ·
	1. 1. A. F. 6. A. 1
-3.381032401	
-2.200040.701	1.00241.401
1+1575Jc+JI	4 + 3 40 7 45 + 02
1,30396-+32	-2+140JJE+J1
8+48935C+03	-5+776596+02
1.4115JL+UZ	-1.J24412+01
2.314516+01	2+04038E+01
0.528046+01	3-317735+01
-3+002136+34	1.457478+41
8.2H1A6F +111	-1-567766 +11
-2.5/2491+01	-0.044136400
-2.372411+01	-L+2/923E+01
- 3 + 1 3 U + 2 +, + U 2	-9.002366+32
-1.023741 +03	-1.01341E+U1
4+574458.+01	5.537311+00
4,808146+01	5+703002+30
1.543446+31	J.UIJ05E+JŰ
1.010800+01	
-2-147041+03	-6.144246433
-1-48603F+43	5.2.15.15+3.1
1 71 4004 4 14	
I . I I J 405 40 J	-1+342376403
-0.910301.404	-3.364342444
-2+181146+02	-1+334335+03
-5.170102+31	1-155532+03
1.421225+02	1.010896+03
5.125010+02	-1+53472E+01
-0+509906+02	3.591076+02
-2.291446+02	-2.43581L+UZ
1.51703F+02	-7-14354F+02
-5.66743/441	A. [AL.376 A.1.3
	3+194995 TU3
-1+41420/400	7:347876+01
• • • • • • • • • • • •	

-3.626306+01	-7.113305+01
-1.171702+01	2.601226+01
- ANABICAUL	
8.10464E+UI	-2.35400E+1E
6.24455E+UU	1*550946+31
6.41832E+03	1.741448+04
	1 13.147.414
-1.420845403	LIJEVETETUE
1.072072+03	2.074106+03
-2.J51212+03	-2. 3000 +US
	-1 - 5 4 m 1 7 F 4 1 1
-1.001382+02	1.04446403
-8,304766+02	0.52#02E+U2
-1.770326602	-2.035100+03
1. 1.01.024.04	-1
3,510142403	
2.80499L+JI	8.72597E+01
-2.50411L+01	★・099432+03
4.244778430	4.20546E+01
-4.33163E +UI	-21343202401
-2.304906+31	-2.121976+31
-5-094041+00	4.127132-01
	1. 1007.1.4.11
- WAWF & FOLTOU	
2*3A200F-21	1+439496+98
1.150070+31	-S.Jeujje-ul
2022236+32	-1.091028+01
4 1 4 3 5 4 1 4	1
0+143436403	11447942703
1+085436+05	2.039376+31
-7.508096+01	C+01178L+U1
	c.ZudiaL+01
4.430806401	1 # / 97 / 10 4 9 4
3.475456+41	4.77571E+J1
1-317226+33	0.73442E-J1
1.023411 01	
2 + 4 7 5 4 2 L + J =	1.75704.441
0+038372+03	ピッペタイクスF + ウス
1 . どうらいふに キリご	2.151400+31
	A
	01290041.FUI
-7+13094L+u1	8.77509L+U1
2./1242E-VI	2-312751+01
#.28012E+J1	4.549712+01
	1 1 1 1 1 1 1 1 1 1
3.301412430	1.122216-01
2+141376+01	-4.263106+30
1.550286+02	d.40415E+01
1.054596+0.5	えっ ぐぐりいちし ナシス
17.57.5AL 4.11	4 451505401
0.272342401	2.001392401
-0.001816+01	9 • 40402E+JJ
-5.02018L+01	2+124986+01
3-443446+03	4.190816401
	2. (
-1.025042705	2.703402701
-2.107546+00	-3.409002+00
4 . Y8704t. +U1	1.452842+10
2.014342432	5-72501-+01
5+77011E+01	-+010J0E+J1
-1.043226+02	1.050288+01
-7.981146+01	3. JZZ JUE + 41
6 12061 E 1.11	5.76JH154/11
U.JE UDYE FUI	
-3.223301+01	1+055742+02
-2.053042+01	-1.470236401
1.1227-24-442	2.774526+41
-4+002231+01	- J+J+F1367 + VA
4.053442.+03	2.7/UBIE+UZ

,

ŝ

...

¢.

i.T

₹

D

00001	038
00001	039
00001	040
00001	042
00001	043
00001	044
00001	045
00001	04e
00001	047
00001	040
00001	450
00901	051
00001	052
00001	053
00001	055
00001	056
00001	657
00001	058
00001	u 54
00031	360
00001	001
00001	063
00001	064
00001	005
00001	000
00001	067
00001	008 086
00001	070
00001	0/1
00001	072
00001	075
00001	074
00001	U75
00001	017
00001	078
00001	074
00001	080
00001	081
00001	083
00001	084
00001	005
00001	38 0
00001	087
00001	000
00001	393
00001	091
00001	042
00001	E 60
00001	054
00001	044 940
00001	097
00001	820

ł

1-071432+01	6.34431E+30
7.717#9E+00	J. 74246E+00
00+361810.5	6. JOUDL-02
-1-41438E+01	-2-100228+01
2.75607E+01	-2.00400E+01
1.697455+01	J. DOZADE +UI
-8-367638+41	
2.845428431	-2-07773++02
-1.6123#1+01	-J. 2.1427E+04
-1.46444848401	-1-371641441
1.121015+00	1.221448+01
	A. 2244 H A.J.3
7.7086 45 400	- 8. 45.3475 + 14
	- 38 3 3 0 37 1 4 3 0
	31403186401
E . EJYEEL FUI	
5+5/38CL+03	-4./3/212402
T PARAT	- injjjjetui
10+ 166466 • C	2+57771L+J1
0+106401	3+134056401
-2.2/5011+30	1.5.1237.401
3.063101+11	-1+012012+01
4+131418+01	5+220138+30
-2.974145.401	-1.123221+01
-5+439585+01	-2:00000000000
-3+405861+05	-1+1473Jt+UU
-7+040152+00	-1.83478L+01
4-5476JE+J1	u.b1005E+uù
4.0J701t+01	0+74731L+UU
1+031936+01	5 + 76 305E + 3 3
9=53x 341 +UU	-1.005031.401
-**108501+00	-6.411496730
-1+203581+00	5+813352+30
1+307746+03	-1.013771+02
-4 +770221+04	-2+450826+04
-4=4.357eL+02	-8+22451L+UL
1 + JEZULE +U.	1.013361+03
2+175936+02	8+31702E+32
5+361645+02	-1.030326+02
- 6 330. 2 + 04	4.057715+02
-3.000546+0.0	-2+530076+02
2.540361+02	-0+897411+J2
-2.551238+32	0.02008E+02
-1+002501+04	1-157058+04
-1.709JJL+J1	1.0165JE+02
-2+040461 +01	-1.151968+02
-3.907701+01	-6.J4149E+01
-5. 358 30E+U1	4.07158L+01
-5+224HYE+01	-2+77544+01
5.74614L+JI	-5+03717E+01
2.50-3376+02	-1.191372+uz
6.23428L+03	2+37257E+04
-1.84076E+05	1.19112E+30
8.588291+02	3.967538+0.4
-2-437661+03	-3.01/276+02
-2.263741+0.3	-1. y2222E+03
-1.543731+02	2.094531+33
-7.545151+02	5.004042+02
-1.8984 11 +02	-3.455441+33
#_141611111	- 2 . f. G. A. 3 . 3 . 3 A
-4131-11-10-3	

1. NA 74 78 A.S.	1 1 2 M 0 1 A 11 1
1.843432401	1.170002402
-2+80373E+02	4.J0301E+03
5.159372+00	5.3755JE+01
-2.554265401	- 1-131135+01
-2.000102401	-2.4000/L+V1
-7•73432E+00	2.079036+30
-6.44725E+U0	1.48560E+U1
5.20551F-011	5-67774E-01
1.000805+01	-1.235326+01
∡ • 50 546E +∪∠	-8.434922+00
7.86796E+UJ	2.045555+03
1.15420540.	2. A 2 5 2 2 E A 13 1
	L
· / · I / UCBE +UI	/+08545t+U1
-5.7J2716+U1	7 • 5 5 5 0 7 E + 0 L
1.189408+01	1.901506+01
A-626666401	5. 100185401
	5.500102.401
-1.4/932L+00	1.J2352E-J1
- 206361+00	-0.0V022E+00
2.70843E+02	3.364516+01
N. 10 1454 401 5	1
00100402100	51488452483
1.2/5192+02	3+763686+31
-7+505886+01	7.23215L+01
-6.57778E+u1	7.030656+01
N. [HG ()F 4/3/3	3.00/0464.31
4.817995+01	5.04511L+01
∠+U5941E+UU	-1.JU225F+JU
2.070276+00	-1.771/26+01
1	1.46.30 = 4.03
1.004802402	1.342082402
1+428635+03	5+530552+03
6+01003L+01	ふ。ふりんぶてにキリ1
-5./84/21+01	Z. 1. () + 40
	-+36043F+01
よりようみよいに きいり	5.400098.401
-3.823441-01	3.052948+01
-9-005986-01	-1.55313145431
A.71	
4.110311401	-4103433E401
2+96964E+02	1.196092+32
1.000/02+03	0.20787E+03
6-24-221-+01	3.20/602+31
	1 7. 4 75 4 11
-1.090070.002	1.703072.401
-/.715UBE+U1	3.J0508E+01
7.4042UE+01	5421528E+01
-2.209211+01	1.22203E+02
-2.6051014.11	
	-2.00/092/01
(+1/316E+01	-4.0299UE+01
-1.73957E+01	-1.013y7E+02
5.17571E+03	-4.79501E+03
5-544 40F 400	7-745 101 + 10
90944JOL 490	1.143002400
(+022365年00)	0+025475+16
1+59553E+00	2.093/76+00
-1.53717E+UX	~2.90803E+01
2-450555+01	-1-341720401
9+00414L+00	3+72207L+01
-1.004746+02	4. /05J5E+J1
4+805336+01	-1.97350E+02
3+00548++02	-2.183611+04
_1.07067.4.11	
-1+0/05/2+01	-I.4UDIZETUL
-8.962192-01	1.206736+01
3.77048E+00	0.41020E+00
1.143686401	-5.21425F-01
	3.09/312+01

....

.

•

;

ĺ

-

;

Į

I

00001099
00001100
00001102
00001103
00001104
00001106
00001107
00001108
00001110
00001111
00001112
00001113
00001115
00001116
00001117
00001119
00001150
00001121
00001122
00001124
00001125
00001126
00001128
00001129
0001130
00001132
00001133
00001134
00001135
00001137
00001138
00001139
00001141
00001142
00001143
00001145
00031146
00001147
00001149
00001150
00001151
00001152
00001154
00001155
00001156
00001158
00001159

Ŧ

-

000	001	140
000	101	161
000	901	195
000	101	103
000	001	165
000	01	100
000	01	107
000	01	199
000	01	109
000	001	170
000	101	171
000	01	173
000	101	174
000	10	175
000	01	170
000	01	177
000	001	178
000	101	179
000		191
1000	01	182
000	101	183
000	131	184
000	101	182
000	01	195
000	01	187
000		108
000	01	104
U U	1	140
000	เงเ	142
000	101	143
000	01	194
000	SI	' ¥5
000	101	196
200	-91 	197
000	01	140
000	51	200
000	001	201
000	101	202
000	01	503
000	101	204
000	01	205
0.00	i U L L	よいじ
000	101 101	£ΨΓ 20₽
000) U 1	209
000) c I	210
000	001	211
000	001	515
000	01	213
000	100	214
0.00	101	210
000	201	217
000	001	216
000	001	219
000	01	220

-2.000GBE+01	-2.25056E+40
-1.86737E+01	4.322406+02
1.82608E+02	-1-942076+01
8-64822EE+03	-5.14255E+J2
1.354MQL+02	-1.334706+01
6.04941E+U1	2.794405+41
7.16 1645.01	4.31.0056401
3.140/12-01	I + BUVDVE +UI
2.01332E+01	-1.50JJ26+01
4.003585+01	8+14751E+0C
-3.382585+01	-1+30573(+31
-2.743732+01	-3-201056401
-4.95251E+02	-1.52734E+03
-9.814246+30	-2.345476+01
4.752982+01	8.05251E+00
4.498172+01	4-003536+00
1.702011411	7.125686433
7. 646 77. 40.00	
-3.254841.00	·/.24064E+00
-21890521-05	7.643211+00
7+43168F+02	-4.42900E+02
-2+0211ec+04	ービーダアいふむとそびも
ージョリゴリサウドキッジ	-4+15001[+02
2.705041+02	1+5510E+02
3-495398+02	4.74336E+02
4.8445-1+0.	- at MENDER + Mat
	A
- <u>++</u> 1/4/(+J2	-1. 3C477L+02
-3.057201+3.	9+113471+02
ーよってよびらったそうも	3+04173E+04
-2-055411+01	よっごじひようしゃいぶ
-3+122701+31	-1.413488+02
-4-611936+01	- ++ 645346+01
-6.JU768t+J1	7.071346+01
-0.350341+31	-3.2/3408+31
8.3343.1+01	
	2.078341+04
	C+UECZZE+UD
6 # I I # 7 1 L + U 2	4+825351443
-2+520C51 U.S	- 3- + 30475 + 93
-2.412Uattus	-∡•140dlt+03
-3,220231+02	2+4+2348+33
-7.5150EL+0.	c+02325E+02
-2+047346+02	-3.713136+33
4.31971(133	-3.013451+34
1.584581401	1-45-346+02
	5.1/1/66+01
	5 - 5 CO 201 + 31
-2.920401101	-2. 74104L401
-4.457541+30	3+999952+00
-4*0*0955+00	1.010402+01
-2-235,055-01	5+20010E-01
1.1207ci +00	-1+850302+01
2=417946+0+	-2+204436+01
4+43245E+03	1+320338+03
1+229561+02	2+08585E+01
-0.020051+01	8.764716+01
-5.157 to +1	8.000201401
a w k la k la kis in w k	01000202101

۲.

,

1

Ĺ

90

*

00001221
00001322
00001223
00001224
00001226
00001227
00001228
00001558
00001230
00001231
00001537
00001234
00001235
00001230
00001237
00001238
00001239
00001241
00001242
00001243
00001244
00001245
00001242
03031248
00001249
00001250
00001251
00001252
00001203
00001254
00001250
00001207
00001258
00001254
00001260
00001261
00001262
00001204
00001265
00001266
00001267
00001208
00001269
00001270
00001272
00001273
00001274
00001275
00001276
00001277
00001279
00001280
00001281

1.4003/35+01	1*151485+01
5.242006+01	5.7041d£+u1
	2. JL LAUSAUU
+torougetou	
-4-40032E+01	1+08140E+01
2.900171+32	3+364JJE+41
H-MARSE ANL	C. M. Caracacaca, J. S.
++++++++++++++++++++++++++++++++++++++	31 41 0002 403
1.354066+02	4.200346+31
-7.005992+01	8-189316401
	N. JA(114, 54) 1
GOULEUNETUL	8+34010E+01
1.054805+01	え・ロックインドキンド
5.266926+01	3.400076+31
m 1 . 71 1 66.6 m () 1	-1
	-31303085-01
-2+220156+01	-1.031296+01
1.869476+02	えってとえビスレナリス
A . 741.2 () + 1	2. a. 41 (5.7 F a.) 3
	11401012100
1 - 022305 + 01	3.919955401
-5+040521+01	0.541742+30
-4.034.4.1	الدام الافراد فرجان والرفر
≪ • 71704L+90	0.00907£401
-2.105291+20	10432328401
-4.132621+00	الدخائق معاديهم الم
- 1. no 1. 15	
- 3+041071-01	-1+3788764441
ちゃんつ しょうじょうしょう	£ د د £ د. + L + L + L + L + L + L + L + L + L +
7.511646+33	ヒキロシレイルヒナルゴ
A. A. 4. 33 6 6	
O + O O + FILL FUL	Jeers CL + UI
-1.1105 1+05	しゅうとうようとチロー
-7.454938401	3.453496401
M. M. (1435-A. 1)	1. 1. 5 7 (h. h.) 1
O + CL OUVE TOI	4. JC3738 401
-1+56744L+vI	Lasquiturture
-3.7810/1+01	- 1-024001 +01
	-441 (0001 401
··›*/#>1/E+01	~1・4 むいいれ キンム
1.1404.4170	- saic sout tu t
4.177. 1.A.L.	3
	11033121401
A*CAT9*F+17	1 + + 17 3 +L + 0 1
まっかいしょうしょしょ	3+625786+33
والمراجعة المواجعة المراجعة	- 4
2+C4UO12 + J1	-1.774026401
1+292376+01	1.01/416+31
-2.17811+31	1. 31. 7 3. 31 + 40
1 1.1.1.1.1	
Lee Je Sil + UL	
と ●0525236+03	ービッドロシントレキレキ
-1+29951.+31	-1.00/231+01
-0.471070 +	1 7
1+42001(+33	ちょてんようししょうし
2+658651++1	3+1.0213E-31
-3.731 942 +31	Jarre water + 13.1
-3+111241401	
-1+5100-1+44	ちょうちじょうじゃしょ
1.777.71.71.402	-2-051-441-4-01
1	meneration and the second second
0+340346403	-0.0011001405
1+322596+02	-1=7:3236401
0.4480ct+01	~ + 7C 411E+01
7 . 7 . 1	1. 116 77
1 8 FO & FUL TU &	JALAVIILTUI
1 +577871, tuu	1+97-016+01
2+262441+01	-1.44%286+01
الإيران الالامرياء الحادية	الا د. ها فت اوراد و ال ال
- 34474445+03	-1+278588+01
- 3+201241+35	-4+21447E+U1
-7-148444433	
= 1 + 2' ba' Q 8L + 2 1	-2.792,08+01

4 • 8844#3E+J1	9.3545xE+J0	00001282
5.13241E+U1	V.27CH0E+00	00001283
1.745402+41	8.440.86.430	00001244
6.42028E+30	-1.237266+01	00001285
-4.30558L+JU	-7.91010E+00	00001286
1.758116+03	8.025072+00	00001287
1.043256+02	-2.03412E+00	00001288
-1.863276+44	-3+244782+04	00001284
		00001290
3. C57 80E +0.	3. 315Cz+02	00001291
3.70684E+U2	1.740148+02	00001292
3.20344E+02	-A.JIU3E+U2	00001293
-3+24040E+U2	4.840376+02	00001294
-4.470501+02	~1.147846+02	00001245
-1.47831L+J1	3.462752+02	00001296

Q	1
7	6

* i

4-884#3E+01

.

•

ł

APPENDIX F SOURCE LISTING AND INPUT/OUTPUT EXAMPLE FOR GUST OPTIMIZATION PROGRAM

The first part of the Appendix consists of the source listing of the program which is used for both gust optimization and gust sensitivity purposes. The operating instructions indicate which subroutines and which cards need be deleted or replaced.

The example chosen relates to the same DAST configuration (M=0.9) chosen for the flutter example with one active T.E. control surface, (using L.D.T.T.F.). Therefore, the aerodynamic data AERO (I,J,K) which resides on file 2) is not listed again in this Appendix. All the data required by the program appears in the output. The two PSD plots for the control surface deflection and for the control surface rate of deflection are supplemented by a tabulation of these plots. These appear in four tables as follows:

The first table shows $XF(I)(=\omega rad/sec)$, $DEFLN(I)(=\delta_{i,PSD})$ and PSD(I)(= the Von Karman gust spectrum).

The second table is similar to the first but shows $DEFNR(I)(= \delta_{i,PSD})$. The third table shows $DEFLN2(I)(=\delta_{i,PSD}^2)$

The fourth. table similarly shows DEFLNR2(I)(= $\delta_{i,PSD}^2$).

Note that all the control defections are given in degrees per unit gust velocity.

The last table summarizes the optimization iterations and is very important in studying the progress of the minimization process. The notation used is as follows:

PRECEDING PAGE BLANK NOT FILMED

3

-95-

.

ITERNS Iteration number.

- FOPT. Value of the target function FUNCTN during the present iteration.
- GMAX The absolute value of the maximum gradient component during the present iteration.
- IGMAX The active control law variable number to which GMAX relates.
- DELMAX The maximum absolute value of the optimum direction component during the present iteration.
- IDMAX The active control law variable number to which DELMAX relates.

E(LOWEST) The step size to the minimum along the optimum direction.

The output also includes the initial values of the gradients G(I)(with respect to the control variables) and the final values of the gradients G(I) (after completing the minimization process) together with the optimum values for the control variables X(I) and the minimum value of the target function FUNCTN.

Note also that when a control variable resides on a constraint and its gradient leads to the violation of that constraint, the gradient is artificially changed to assume zero value.

Note that the plotted output shows labels which appear to be displaced. These displacements reflect transient difficulties encountered while using a new plotter and they do not originate from the programs used.

	INPLICIT KEAL+8(A-H+0-2)	00000001
ccccc		CC00000002
c		C0000003
c	GUST RESPONSE PACKAGE WHICH PERMITS THE CUMPUTATION OF THE	C00000004
C	SPECTRAL RESPONSE OF ALRCRAFT DUE TO CONTINUOUS GUST ENVIRONMENT	.00000005
c	THE EFFECTS OF ACTIVE CONTROLS ON THE RESPONSE CAN BE ACCOUNTED	60000006
с	FUR. FURTHERMORE, THE BASIC GUST PROGRAM IS COUPLED IN THE	C00000007
с	PRESENT PACKAGE WITH AN OPTIMIZATION ROUTINE WHICH ENABLES THE	C00000008
с	DETERMINATION OF THE VARIOUS CUNTRUL GAINS SU AS TO MINIMIZE THE	C00000009
С	AIRCRAFT RESPONSE TO JUST. SUNSITIVITY STUDIES AROUND THE	C00000010
c	GIVEN (UR OPTIMAL) CUNTHUL GAINS CAN ALSO DE MADE. THE	C0000011
С	FOLLOWING DATA IS REQUIRED :	C00000012
c		C0000013
c	HDR - HEADER (FURHAT 1544)	C00000014
c		C00000015
c	NAMFLIST/CASE -	C00000016
С	NM - NUMBER OF MURES(15 MAX)	C00000017
с		C0000018
C	NC - NUMBER UP CUNTRULS(1 MAX)	C0000019
c		C00000020
c	NAER - 1 INPUT ALRU IN TERMS OF INTERPOLATION CUEFFICIENTS OF K	C0000021
C	- O INPUT AERU FUR DIFFERENT VALUES OF K - INTRPOLATION	C0000022
С	CHEFFICIENTS TO BE COMPUTED IN SUBROUTINE FIT.	C0000023
c		C0000024
c	B - ARRAY OF LAG TERMS USED DURING INTERPOLATION(4 MAX)	C00000025
С		C0000026
С	NG - I IF GUST AFRU 15 SUPPLIED	C00000027
C	- O IF SUST AERU IS NOT SUPPLIED.	C00000028
c		C00000029
с	NE - NUMBER OF LAG TERMS TO BE USED DURING INTERPOLATION.	C0000030
c		C0000031
C	IF NAER=1 THEN AERO COEFFICIENTS ARE READ(FORMAT 6X,7810.4)	C00000032
С		C00000033

-

•

.
C00000034 C NAMEL IST/GST С HMASS - MASS MATRIX(15+15 MAX) C00000036 С C0000036 OMEGAN - NATURAL FREQUENCIES ARRAY(IN HZ) - (IS MAX) - NOTE-Ç C0000037 STIFFNESS IS COMPUTED FROM MASS AND DWEGAN AND IS THEREFORE С C0000038 С CORRECT FOR DIAGONAL MASS MATRIX ONLY. C0000030 C C00000040 VEL - FLIGHT VELOCITY C0000041 С С C0000042 С UTRAN - ARRAY OF SEMICHORD LENGTHS OF WING(OR TAIL) SECTIONS C00000043 ¢ WHERE THE DIFFERENT CUNTROLS ARE LOCATED (AT MID CONTROL SPAN C00008044 SECTIONS) - (6 MAX) С C00000045 С C00000046 С CTRAN - ARKAY OF DISTANCES HETWEEN THE THO TRANSDUCERS AT EACH C0000047 CONTROL SURFACE MID SECTION (USFD TO COMPUTE THE ANGLE OF С C0000048 С DEFORMATION) - (6 MAX). C0000049 С C00000050 С CREF - REFERENCE SEMI CHURD LENGTH (NORMALLY WING ROUT SEMI C0000051 С CHORD) - SHOULD BE CONSISTENT WITH THE REFERENCE LENGTH USED IN C00000052 С CUMPUTING THE REDUCED FREQUENCY K. C00000053 ¢ C00000054 2W - MATRIX WHERE ZW(1, J) INDICATES THE DISPLACEMENT(PUSITIVE С C00000055 DOWN) OF THE I-TH TRANSQUER DUE TO THE J-TH MODE. FOR EACH С C00000056 С SECTION THERE ARE TWO TRANSDUCERS -- THE FORE TRANSDUCER SHOULD C00000057 BE LUCATED AHEAD OF THE AFT TRANSDUCER (AT 30 PERCENT CHORD FROM С C00000058 С L.E.). THESE SETS OF TRANSDUCERS SHOULD BE ARRANGED IN THE SAME C00000059 С ORDER AS THE CONTROLS - (12 X 15 MAX). C00000060 С C0000061 ZREF - VALUES LIKE ZW OF REFERENCE TRANSDUCERS USED TO DETECT С C00000062 THE RIGID BODY MOTION OF THE AIRCRAFT - (2 X 15 MAX). C00000063 C C0000064 С Q - FLIGHT DYNAMIC PRESSURE С C00000065 660000066 Ċ CLR - ARRAY OF X DISTANCES (POSITIVE AFT) BETWEEN THE FORE С C00000067 REFERENCE TRANSDUCER AND THE FORE CONTROL TRANSDUCER - (6MAX) С C0000068 C0000069 C CTR - DISTANCE BETWEEN THE TWO TRANSDUCERS AT THE REFERENCE С C00000070 SECTION. C00000071 С С C0000072 С WR - REFERENCE FREQUENCY (RAD/SEC) - USED ONLY FOR THE D.T.T.F. C0000073 C CONTROL LAWS -- VALUE CHOSEN IS NORMALLY AROUND THE FLUTTER C00000074 С FREQUENCY VALUE. C0000075 С C00000076 NTE - INTEGER ARRAY FOLLOWING THE UNDER OF THE CONTROLS AND С C00000077 С IDENTIFYING BETWEEN L.E. AND T.E. CONTROLS. C00000078 С =1. T.F. CONTROL C00000079 С =0. L.E. CONTROL C0000080 С IT IS IMPURTANT TO NOTE THAT WHENEVER A CONTROL IS NOT ACTIVE C0000081 С C0000082 PUT NTE=U С C0000083 С NCACT - NUMBER OF ACTIVE CUNTRULS C0000084 С C0000085 C0000086 С С 11-NAER=0 NEXT INPUTS ARE READ IN SUBROUTINE FIT. C00000087 C0000088 С ETAL-PHI - ETAL - ACCURACY OF COMPUTER RELATIVE TO 1 (ON 1-8-M. C0000089 С C DUUBLE PRECISION=5.F-13) ABSOLUTE ACCURACY=X*ETA1. C0000090 С - PHI - RELATIVE SIZE OF SUCTION ZONES WITHIN WHICH C00000091 С THE OPTIMIZED PARAMETER IS SUCKED TO THE CUSTRAINT C0000092

ŗ

IN ORDER TO AVOID FALSE CONVERGENCE. ABSOLUTE SIZE C8000093 OF ZUNEWXI(I)+PHI OR XE(I)+PHI DEPENDING WHETHER NEAR COROGODA LOWER ON UPPER CONSTRAINTS(FORMAT 4E10.0) C0000098 C00000094 NV, NPR. NDR - NV - AN INPUT INTEGER (36 HAX) CONTAINING THE C00000097 NUMBER OF INDEPENDENT CONTROL GAINS IN THE SYSTEM C0000098 - NPR -) C0000099 - NOR - 3 OPTIMIZATION BASED ON MINIMIZATION OF RMS C00000100 RESPONSE OF CUNTROLS. C00000101 - 1 UPTIMIZATION BASED ON MINIMIZATION OF RMS C00000102 HESPONSE RATES OF CONTROLS. (FORMAT 515) C00000103 C0000010A NUNACT - NUMBER OF NON ACTIVE OPTIMIZATION PARAMETERS(FORMAT 515)C00000105 C00000166 NA - INTEGER INPUT ARRAY CONTAINING THE LOCATION OF THE NON C00000107 ACTIVE PARAMETERS IN THE X APPAY(SEE BELOW) - (FORMAT SIS). C00000108 IF NUNACTED, A HLANK CARD SHOULD BE PLACED HERE. C00000109 C00000110 M., WT - THU WEIGHTS FOR EMPASIZING THE RAS CONTROL RESPONSE C00000111 (OR RATE) OF ANY DESIRED SPECIFIC CONTROL SURFACE. THIS IS USED C00000112 IN CONJUNCTION WITH THE DEFINITION OF THE TARGET FUNCTION C00000113 FUNCTNE . (FURMAT 4E10.0). C00000114 C00000115 X1(1),X(1),X2(1),EP5(1) - THERE ARE NV SUCH CARDS(FORMAT 4610.0) C00000116 X1(1) - DENUTES THE LOWEST BUUAD UP THE 1 - TH CONTROL C00000117 GAIN PARAMETER. C00000118 X(I) - DENOTES THE INITIAL VALUE OF THE I - TH CONTROL C00000119 GAIN PAHAMETER. C00000120 X2(1) - DENOTES THE UPPER BUUND OF THE I - TH CONTROL C00000121 C00000122 GAIN PARAMETER. CPS(1) - THE DESIRED AUSGLUTE ACCURACY OF THE OPTIMAL 00000123 FINAL X(I) VALUE(IN CASE MINIMIZATION IS MADED.IN C00000124 CASE OF CONTROL GAIN SENSITIVITY STUDY EPS(1) DENOTES THE C00000125 INCREMENTAL VARIATION OF X(I) WITHIN THE REGION XI(I)--X2(I). C00000126 MAX. NUMBER OF INCREMENTS=34. MAX. SIZE OF APPAYS=30. C00000127 C00000128 FMIN, ETA - FMIN - INPUT PARAMETER CUNTAINING AN APPROXIMATION C00000129 TO THE MINIMUM AMS RESPONSE VALUE. IF UNKNOWN CO0000130 C 300001 31 USE EMINED. ETA - INPUT PARAMETER CONTAINING AN ESTIMATE OF THE C00000132 RELATIVE ACCURACY OF THE RMS RESPONSE EVALUAT-C00000133 IONS WHICH ARE USED TO DETERMINE THE TYPE OF C00000134 DIFFERENCE APPROXIMATION TO THE GRADIENT. C00000135 C00000136 (FURMAT 4E10.0). C00000137 ITMAX. [W - ITMAX - AN INPUT/DJTPUT INTEGER. UN INPUT. ITMAX C00000138 CUNTAINS THE MAXIMUM ALLUHABLE NUMBER OF C00000139 UPTIMIZATION ITERATIONS. UN OUTPUT. ITMAX C00000140 CONTAINS THE NUMPER OF ITERATIONS USED. C00000141 C00000142 IN - AN INPUT INTEGER CODE FUR PRINTING OURING C00000143 CUMPUTATION. C00000144 - J ND PRINTING - I PRINT GRADIENT VECTOR.DIRECTION OF FACH LINEAR CO0000145 MINIMIZATION, AND FUNCTION VALUE BEFORE AND AFTER CO0000146 C00000147 EACH LINEAR MINIMIZATION. - 2 IN ADDITION TO THE ABOVE, PRINT FUNCTION VALUES C00000148 CALCULATED DURING THE COURSE OF LINEAR MINIMIZAT.CO0000149 - 3 IN ADDITION TO THE ABOVE+PRINT FUNCTION VALUES C00000150 CALCULATED IN FVALUATING THE GRADIENT(FURMAT 515)C0000151

99

С

¢

C

¢

C

с ¢

C

с с

C

C

С

С

C

С

С

С

Ç

¢

C

C

С

С

С

С

С

C

С

¢

С

С

С

С

С

С

С

¢

C

c c

С

С

С

С

¢

c c

С

С

С

С

c

С

С

С

С

С

C

÷

í.

.

C	·	C00000152
C	NF, FBEGIN, FEND - NUMBER OF FREQUENCY INTERVALS USED IN COMPUTING	C00000153
C	THE SPECTRAL RESPONSE. LOWER VALUE OF FREQUENCY	C00000184
c	(IN HZ).RESPECTIVELY(FORMAT II0.2E10.0). TOTAL	C0000155
č	NUMBER OF FREQUENCIES USED NFT=NF+1	C00000156
ē		C00000157
ē	LENGTH - GUST SCALF LENGTH, USED TO DETERMINE THE VON	C00000158
ē.	KARMAN GUST SPECTRUM(FORMAT AFIO.0)	C00000159
ř		C00000140
~	RM _ FLICHT MACH WINNER (REGNAT ARIA.A).	C00000101
~	EN - / Eloni Mach Hondra (Furnal Allosofie	C40000101
~	NUTE THAT THE MAIN DOWNDAM WHITEE AND DEADS FROM A TEMPODARY	C00040161
C.	AUTE THAT THE MAIN PRIVARE BELLES AND READS FROM A TERPORARY	C00000195
	PILE 13.(SHUCH OF DUPINED AS NEW PASSIS FILES IS ONLY TO COPPUT	C00000145
C A	UPTIMIZATION RESULTS AND SHOULD BE DEFINED AS EQUAL TO DUTPUT.	C00000165
C.		C0000100
C	NOTE ALSO THAT PLOTS SHOWING THE SENSITIVITY OF ANY CONTROL	C0000107
C	LAW WITH RESPECT TO THE VARIOUS X(1) PARAMETERS CAN BE MADE	C0000168
C	USING THIS PACKAGE. TO ACCOMPLISH THIS, THE CALL TO SUBROUTINE	C00000169
C	SOFP SHOULD BE REPLACED WITH A CALL TO SUBROUTINE GUSPLT. WHEN	C00000170
C	SENSITIVITY PLOTS ARE NOT REQUIRED IT IS POSSIBLE TO DELETE THE	C00000171
C	SUBROUTINES GUSPLT AND PLT(WHICH IS CALLED BY GUSPLT). THE	C00000172
C	SENSITIVITY RANGE IS HOUND HETWEEN XI(I) AND X2(I) IN STEPS OF	C00000173
C	EPS(I), STARTING #ITH X(I).	C00000174
C		C00000175
C	NOTE ALSO THAT TWO GENERALIZED CONTROL LAWS ARE INCLUDED IN	C00000176
C	THIS PACKAGE:-THE LODOTOFOF AND THE DOTOTOFO CONTROL LAWSO	C00000177
C	MAKE SURE TO DELETE THE SUPERFLUOUS CONTROL LAW.	C00000178
c		C00000179
cccc		00000160
	HEAL *4 XH • Y	00000181
	EXTERNAL SULGST.DREAL.JAIMAG	00000182
	COMMEN/CUSTFN/X(30),P53(101),CREF,XF(103),G,VEL,H(12,15),	00000183
	**MAS5(15,15),0MEGAN(15),WL,WT,XK(103),Y(103),WR,0RMS(6),0RRMS(6)	00000184
	CUMMUN/CUSTEN/NET.NVACT.IFINAL.NDR.NA(3/).NV.LABELX(15.6).NMNC.	00000185
	+NCACT +N TE (O)	00000186
	COMMON/ACRE/A0(15.22).A1(15.22).A2(15.22).A3(15.22).A4(15.22)	00000187
	++A5(15+24)+Ab(15+22)	00000188
	COMMON/ICASE/8(4) • NM • NG • NG • NL	00000189
	DIMENSION HD6(14)+2#(12+15)+2#FF(2+15)+FP5(36)+XX(36)+EPSACT(36)	.00000190
	*DRV(36) *DKVACT(36) *X1(30) *X1A(T(36) *X2(36) *X2A(T(36) *BTRAN(6) *	00000191
	$\mathbf{x} \in \mathbf{TPAN}(\mathbf{A}) : \mathcal{L}(\mathbf{A} \in \mathbf{A})$	00000192
		00000143
	NAMELICTING ZUMAGGA MEGAN, VELANTDAN, CTDAN, CUFF, ZW, ZDEF, D, CLU, CTL	00000194
	- WRINGE SUIVIUSTVININGUSSUINIUNINS VESUININSETRINISETRINISERET SUSEESETSUSE SUUDINTEINEAET	00000194
	TTHOTOTOTOTOTOTOTOTOTO NAMELTCT/CASE/NM-NC - NALD-SL-NL-NL	00000193
~	THE LATE CADE THE FILE FILE & THE FILE	
с -		00000197
C	INPUT/BUTPUT OF BATA	00000198
C		00000199
	RLAD 133, (HDR(1),1#1,15)	00000200
	PRINT 131+(HDR(1)+[=1+15)	00000201
	READ(5,CASE)	00000202
	WRITE(6,CASE)	00000203
	NMNC=NM+NC+Nu	00000204
	IF (NAER+EJ+0) GU TO 10	00000205
	DU 1 II=1,NM	00000206
	DU 1 JJ=1,NMNC	00000207
	READ 132+AJ(11+JJ)+A1(11+JJ)+A2(11+JJ)+A3(11+JJ)+A4(11+JJ)	00000208
	+,A5(11,JJ)+A6(11,JJ)	00000209
1	1 CONTINUE	00000210

ł

```
11200066
   10 CUNTINUE
                                                                         8888881212
      READ(S.GST)
                                                                         00000213
      WRITE(6.6ST)
                                                                         00000214
      IF (NAER.EQ.0) CALL FIT
                                                                         00200215
      NMMC =NM + NC + NG
  105 FORMAT( NF=+.13. FHEGINE .EL3.6. FEND++.EL3.6./)
                                                                         00000216
     NC2#2*NC
                                                                         00000217
     READ 100.ETAL.PHI
                                                                         00000218
      101=6
                                                                         00000219
C
                                                                         00000220
C
                                                                         12200000
     P1=3.14159265409
                                                                         00000222
     READ 103.NV. HPR. NDR
                                                                         00000223
                                                                         00000224
     READ 103.NONACT
                                                                         00000225
     READ 103, (NA(1), 1=1, NUNACT)
     NVACT=NV-NUNACT
                                                                         00000226
     READ LOD. WL . WT
                                                                         00000227
      WRITE(IUL.115)
                                                                         00000228
      WRITE(IU1.108)
                                                                         00000229
     DU 203 I=1.NV
                                                                         00000230
     READ 100, X1(1), X(1), X2(1), EPS(1)
                                                                         00000231
  200 WHITE(IUL.102) X1(I).X(I).X2(I).EPS(I)
                                                                         00000232
                                                                         00000233
      DU 235 1=1.NV
      DRV(1)=0.0001D0
                                                                         00000234
  205 CONTINUE
                                                                         00000235
                                                                         00000236
      READ 100, FMIN, FTA
      READ 103. ITMAX. IN
                                                                         00000237
     READ 123.NF.FOFGIN.FEND
                                                                         00000238
     READ 100.LENGTH
                                                                         00000239
      PRINT 131-LENGTH
                                                                         00000240
     CF=(FFNO-FUEGIN)/NF
                                                                         00000241
     PRINT 105.NF .FBEGIN.FEND
                                                                         00000242
     NF THNF +1
                                                                         00000243
                                                                         00000244
     READ LOU.EM
                                                                         00000245
     PRINT 135.EM
С
                                                                         00000246
c
                                                                         0000247
С
     ENCODING THE PLOT LABELS
                                                                         00000248
c
                                                                         00000249
     DU 206 I=1.NC
                                                                         00000250
     REWIND 13
                                                                         00000251
      WRITE(13,133) EM.Q.I
                                                                         00000252
      RE#IND 13
                                                                         00000253
  206 READ(13+140) (LABELX(J+1)+J=1+9)
                                                                         00000254
¢
                                                                         00000255
C
     COMPUTATION OF THE VON KARMAN JUST PSD.
                                                                         00000256
¢
                                                                         00000257
                                                                         00000258
     00 220 1=1,NFT
                                                                         00000259
      XF(1)=(FHEG1N+DF*(1-1))+2+0 )+P1
                                                                         00000260
     XR(I) = XF(I)/(2.00+PI)
                                                                         00000261
     F = XF(I)
     +(1.D0+(1.33900*LENGTH*F/VEL)**2)**1.833333300
                                                                         00000263
                                                                         00000264
  220 CONTINUE
                                                                         00000265
     PRINT 104+NV+NPR+NDR
                                                                         00000266
     PRINT 116, ETAL, PHI
                                                                         00000267
     PRINT 119, NONACT, NVACT
     PRINT 123
                                                                         00000268
                                                                         00000269
     PRINT 103, (NA(I), I=1, NUNACT)
```

.

ţ

é

ŝ

```
PRINT 106.WL.WT
                                                                           00000270
      WRITE(101.107)
                                                                           00000271
      WRITE(101.102) (DRV(J).J=1.NV)
                                                                           00000273
      PRINT 109. PMIN. CTA
                                                                           00000274
      PRINT 110, ITMAX, IW
                                                                           80088275
      INC=0
                                                                           88888578
C
      CUMPUTATION OF THE TRANSFORMATION MATHIX H WHICH EXPRESSES
                                                                           00000277
¢
C
      THE DEFLECTION AND THIST OF THE 30 PERCENT CHORD POINT FOR THE
                                                                           00000278
      VARIOUS NED SPAN SECTIONS OF THE CONTROLS, INTERMS OF THE
C
                                                                           00000279
¢
                                                                           00000240
      GENERALIZED COORDINATES.
C
                                                                           00000281
      DD 240 1+1.NC2.2
                                                                           00000282
      INC # INC + 1
                                                                           60000283
      DU 240 J=1.NM
                                                                           00000284
      H([+J)=(Z#(]+J)+(CL+(INC)/CT++1+00)+ZRFF(]+J)+CLR(INC)/CTR+
                                                                           00000285
     #ZREF(2.J))/STRAN(INC)
                                                                           00000286
      H([+1.J)=(2#([+1.J)-2#([.J))/CTHAN(INC)-(2KFF(?.J)-2RFF(1.J))/CTR 0000287
                                                                           00000288
  240 CONTINUE
                                                                           00000229
С
С
      FURMATIUN OF NEW ARRAYS WHERE ALL THELR ELEMENTS RELATE TO
                                                                           00000290
                                                                           30000291
C
      ACTIVE PARAMETERS UNLY.
                                                                           00000292
C
                                                                           00000293
      CALL X2XX(NV+NVACT+X+XX+NA)
                                                                           00000294
      CALL X2XX(NV+NVACT+EPS+EPSACT+NA)
                                                                           00000295
      CALL X2XX (NV+NVALT+UHV+DHVACT+NA)
                                                                           00000246
      CALL X2XX(NV,NVACT,XI,XIACT,NA)
      CALL X2XX(NV+NVACT+X2+X2ACT+NA)
                                                                           00000297
                                                                           00000298
      IF (NVACT.E4.0) GUTO 241
      IF INAL = )
                                                                           00000299
                                                                           00000300
С
      THE FULLOWING OPTIMIZATION SUDMOUTINE CALL SHUULD BE REPLACED
c
                                                                           00000301
      BY A CALL TO GUSPET WHEN SENSITIVITY PLOTS ARE REQUIRED.
С
                                                                           00000302
                                                                           00000303
C
      CALL SOFPENVACT, STACT, XX, XZACT, FMIN, EPSACT, ETA, ETAL, PHI, DEVACT,
                                                                           00000304
                                                                           00000305
     + LTMAX + I W+ FUNCTN + SCL GST + IFRF+NV+NA)
                                                                           00000306
c
      CALL XX2X[NV,NVACT,X,XX,NA]
                                                                           00000307
      PRINT LIA, ICHR, ITMAX
                                                                           00003308
      PRINT 111, FUNCTN
                                                                           00000309
c
                                                                           00000310
      PPINTUUT OF OPTIMAL CUNTHUL GAINS.
                                                                           00000311
C
c
                                                                           00000312
                                                                           00000313
      PRINT 112
      PRINT 102.(X(J).J=1.NV)
                                                                           00000314
      PRINT 115
                                                                           00000315
  241 CUNTINUE
                                                                           00000316
С
                                                                           00000317
      PRINTOUT OF OPTIMAL GUST RESPONSE OF CONTROLS.
                                                                           00000318
C
                                                                           00000319
С
                                                                           00000320
      IFINAL =1
      CALL SULUST(XX+FUNCTN)
                                                                           00000321
                                                                           00000322
      STOP
  100 FURMAT(AF10.0)
                                                                           00000323
  101 FURMAT(1P+* LENGTH=*+E13+C)
                                                                           00000324
  132 FORMAT(1P,4E14.6)
                                                                           00030325
  103 FURMAT(515)
                                                                           00000326
  104 FORMAT(/,1H +*NV=*,12,* NPH=*+12+* NDF=*+12+/)
                                                                           00000327
  1)0 FURMAT(10+ + WL=++E13+0+ + WT=++E13+0+/)
                                                                           00000328
```

```
00000329
  107 FURMAT(' INITIAL (INPUT) VECTOR DRV(I)',/)
 108 FORMATCH ...
                                                X2(1)
                                                             EPS([)*./)0000330
                   X1(I)
                                   X(1)
  100 FORMAT(1P./. + FMIN=+,E13.6. + ETA=+,E13.6./)
                                                                      00000331
  110 FORMAT(' ITMAX#'.13.' IW='.12./)
                                                                      00000332
  111 FORMAT(1P. * FUNCTH# +.013.6./)
                                                                      CKK00000
  ILE FORMATCH FOPTIMUM VECTOR X(1)+J/)
                                                                      42200000
  114 FORMATCH .*
                    IERR= . 12. . ITERA'IONS PERFORMED# . 13. /)
                                                                      00000335
                                                                      00000330
  115 FORMAT(//)
  116 FURMAT(1P. * ETA1='.C13.6. * PHI='.E13.6./)
                                                                      71200000
  119 FORMAT(' NUNACT=',12.' NVACT=',12./)
                                                                      0000338
  120 FORMAT( + THE NON ACTIVE PARAMETERS NA(1) + ./)
                                                                      00000330
  123 FORMAT(110.2E10.0)
                                                                      00000 3A0
  130 FURMAT(1544)
                                                                      00000341
  131 FORMAT(1H _15A4)
                                                                      00000342
  132 FORMAT(6X.7E10.4)
                                                                      00000343
  133 FORMAT(* DAST .N=*+F4+2+*9=*+F5+1+*CONTROL N0+*+[2+*-
                                                          HZ+)
                                                                      00000344
  135 FORMAT(1H, * H= ', F4.2./)
                                                                      00000345
  140 FORMAT(15A4)
                                                                      00000346
                                                                      00000347
     END
      SUBRUUTINE SULGST(XX+FUNCTN)
                                                                      00000348
      EMPLICIT REAL+8(A-H+U-Z)
                                                                      00000349
C00000351
      THE RMS RESPONSE OF THE CONTROL DEFLECTIONS AND/OR RATES ARE
                                                                     C00000352
C
     CALCULATED IN THIS SUBROUTINE USING THE VON KARMAN GUST SPECTRUM COODOO353
C
                                                                     C00000354
CUMMON/CUSTFN/X(30), PSD(131), CRLF, XE(133), Q, VEL, H(12, 15),
                                                                      00000356
     *RMA55(15,15).UMCGAN(15).AL.WT,XR(103).Y(103).AX.DRM5(6).DRRM5(6)
                                                                      00000357
     CUMMON/CUSTEN/NET.NVACT.IFINAL.NDR.NA(36).NV.LABELX(15.6).NMNC.
                                                                      00000358
     INCACTINTELS)
                                                                      00000359
     REAL +4 XR. Y.FPN
                                                                      00000360
     COMMON/AERF/A0(15,22)+A1(15+22)+A2(15+22)+A3(15+22)+A4(15+22)
                                                                      00000361
                                                                      00000362
     +,A5(15,22),A6(15,22)
                                                                      00000363
      CUMMER /ICASE/B(A) .NM .NC .NU .NL
     DIMENSION XX(1),00(10.6),P(c+12+13)+DEF(101.6),DFFH(131.6),
                                                                      00000364
     *DEF2(101+6) +DEF42(101+6) +8UF(10))
                                                                      00000365
     #+IWK(15+2)+IPIVUT(15)+NP(6+12)+NO(6)
                                                                      44700000
     CUMPLEX#10 F+HD(6)+HN(6+12)+LM(6+15)+FC(15+15)+FG(15)+T(15+15)+
                                                                      00000367
     +H(6) +AK+DETERM+ZEHU
                                                                      00000368
                                                                      00000369
     +, AKB1, AKH2, AKH3, AKH4, FNC(15,6)
                                                                      00000370
     P1#3.14159265400
     F20=180.00/PI
                                                                      00000371
     CALL XX2X(NV+NVACT+X+XX+NA)
                                                                      00000372
                                                                      00000373
     NC 2 # 2 # NC
                                                                      00000374
С
                                                                      00000375
     CALL CONTRUCTOR P. NO. QD . NC. WR. NTE . X)
С
                                                                      00000376
C
     THE EQUATIONS OF MUTICN ARE CONSTRUILED AND JULVED FOR INFT
                                                                      00000377
C
     VALUES OF FREQUENCIES.
                                                                      00000378
C
                                                                      00000379
     DC 200 JF=1.NFT
                                                                      00000380
     AK=DCMPLX(0.30.XF(JF)+CRCF/VEL)
                                                                      00000381
     F=DCMPLX(0.D0,XF(JF))
                                                                      00000382
     2ERO=DCMPLX(0.00,0.00)
                                                                      00000383
     F2:F#F
                                                                      00000384
      AK 2 = AK + AK
                                                                      00000385
     AKB1=AK/(AK+B(1))
                                                                      00000386
     AKB2=AK/(AK+B(2))
                                                                      00000387
```

```
00000388
      AK83#AK/{AK+8(3)}
      AKB4-AK/(AK+B(4))
                                                                           88000389
С
                                                                           0000390
      THE TRANSFORMATION MATRIX BETWEEN GENERALIZED COORDINATES AND
С
                                                                           00000391
С
      CONTROL RUTATIONS IS CONSTRUCTED NEXT.
                                                                           00000392
С
                                                                           00000393
                                                                           00000.394
      DO 300 1=1.NC
      NN=ND(I)
                                                                           00000395
      HD(()=ZERO
                                                                           00000396
      DD 250 K=1.NN
                                                                           00000397
  250 BD(I) = BD(I) + QD(K \cdot I) + F + + (K-1)
                                                                           00000398
         300 J=1.NC2
                                                                           00000399
      DU
      BN(I,J)=ZEKO
                                                                           00000400
      N(V=NP([,J)
                                                                           00000401
      D.) 320 K=1.NN
                                                                           00000402
      IF(P(I,J,K).EQ.0.DJ) GO TC 323
                                                                           00000403
                                                                           00000404
      BN(1,J)=NN(1,J)+P(1,J,K)+F++(K-1)
  320 CONTINUE
                                                                           00000405
                                                                           00000406
  300 BN(I,J)=BN(I,J)/HD(I)
      00 340 I=L+NC
                                                                           00000407
         340
              J=1+NM
                                                                           00000408
      DU
      CM(I.J)=ZERU
                                                                           00000409
      DO 340 K#1.NC2
                                                                           00000410
  340 CM(I.J)=CA(I.J)+HN(I.K)+H(K.J)
                                                                           00000411
С
                                                                           00000412
      CONSTRUCTION AND SULUTION OF THE EQUATIONS OF MOTION
                                                                           00000413
С
С
                                                                           00000414
              I=1.NM
                                                                           00000415
      DU
          360
      00 360
               J=L+NC
                                                                           00000416
      NMJ=NM+J
                                                                           00000417
      FNC(I,J)=(AO(I,NMJ)+A1(I,NMJ)+AK+A2(I,NMJ)+AK2+A3(I,NMJ)+AK3I+
                                                                           00000418
     #A4(I,NMJ)#AK82#A5(I,NMJ)#AK83#A6(I,NMJ)#AK84)#Q
                                                                           00000419
                                                                           00000420
  360 CONTINUE
                                                                           00000421
      nn
         361
               1=1.NM
          361 J=1.NM
                                                                           00000422
      DO
      FC([,J)=ZERO
                                                                           00000423
      DO 361 K=1.NC
                                                                           00000424
  361 FC(1.J)=FC(1.J)+FNC(1.K)+CM(K.J)
                                                                           00000425
      DO 380 I=1.NM
                                                                           00000426
      FG(I)=-Q+(1./VFL)+(A0(I.NMNC)+A1(I.NMNC)+AK+A2(I.NMNC)+AK2+
                                                                           00000427
     +A3(I.NMNC)+AKBI+A4(I.NMNC)+AKH2+
                                                                           00000428
     +A5(I.NMNC)+AKB3+A6(I.NMNC)+AKB+)
                                                                           00000429
  380 CONTINUE
                                                                           00000430
      DU 400 I=1.NM
                                                                           00000431
      DU 395 J=1.NM
                                                                           00000432
      T([,J)=RMA55([,J)*F2+Q*(A0[1,J)+AL([,J)*AK+A2([,J)*AK2+
                                                                           00000433
     +A3(I,J)+AKUL+A4(I,J)+AKU2+A5(I,J)+AKU3+A6(I,J)
                                                                           00000434
     +*AK84)+FC([,J)
                                                                           00000435
  395 CONTINUE
                                                                           00000436
       T(1,1)=T(1,1)+RMA55(1,1)+OMEGAN(1)+OMEGAN(1)*4.00*P1*P1
                                                                           00000437
     +*DCMPLX(1.00.0.01503)
                                                                           00000438
  400 CONTINUE
                                                                           00000439
      CALL CXINVR(T,NM,FG,1,DETERM,IPIVOT,IWK,15,ISCALE)
                                                                           00000440
      DO 420 I=1.NC
                                                                           00000441
      R(1)=ZERG
                                                                           00000442
      DU 420 J=1.NM
                                                                           00000443
                                                                           00000444
  420 R(I)=R(I)+CM(I,J)*FG(J)
      IF (NDR.EQ.1.AND.IF INAL.EQ.0) GO TO 430
                                                                           00000445
                                                                           00000446
      DO 421 I=1.NC
```

1

Let Martin

F

3

Â

DEF(JF,1)=CDABS(R(1))+R2D 88898447 A21 DEF2(JF,1)=DEF(JF,1)+DEF(JF,1) 00008448 00000449 430 IF (NDR. EQ. 0. AND. IF INAL. EQ. 0) GO TU 200 00000450 DD 422 [=1.NC DEFR(JF, I)=CDABS(R(I)+F)+R2D 00000451 00000452 422 DEFR2(JF.1)=DEFR(JF.1)+DEFR(JF.1) 00000453 200 CONTINUE IF (NDR.EQ.1.AND.IF INAL.EQ.0) GO TO 440 00000454 00000455 С CUMPUTATION OF RMS RESPONSE OF CONTROL SURPACES 00000456 С 00000457 С DO 423 I=1.NC 00000458 0000489 CALL INTGES(NFT, XF, DEF2(1,1), AREA, PSD) 423 DRMS(I)=DSQRT(AREA) 00000460 00000461 FUNCTN=DRMS(1) 00000462 IF(IFINAL.EQ.0) GO TO 480 00000463 440 CONTINUE 00000464 DU 424 I=1.NC CALL INTGLS(NFT.XF.DEFR2(1.1).AREA.PSD) 00000465 00000466 424 DRRMS(1)=DSQRT(AREA) FUNCTN=DRRM5(1) 00000467 00000468 IF(IFINAL .EQ.O) GC TC 480 00000469 С PRINT AND PLOT GUTPUTS 00000470 С С 00000471 PRINT 100 00000472 00000473 DO 425 1#1,NFT 00000474 PRINT 110+(XF(1)+(DEF(1+J)+J=1+NC)+PSD(1)) 00000475 425 CONTINUE 00000476 PRINT 123.(DRMS(1).[=1.NC) PRINT 127 00000477 PRINT 101 00000478 DO 426 [#1.NFT 00000479 PRINT 110, (XF(I), (DEFR(I,J), J=1,NC), PSD(I)) 00000480 426 CONTINUE 00000481 PRINT 121. (DRRMS(I).1=1.NC) 00000482 PRINT 127 00000483 PRINT 125 00000484 00000485 DU 470 I=1.NFT 00000486 DO 471 J=1+NC DEF2(1,J)=DEF2(1,J)=PSD(1) 00000487 471 DEFR2(1,J)=DEFR2(1,J)+PSD(1) 00000488 PRINT 110.(XF(I).(DEF2(1.J).J=1.NC).PSD(I)) 00000489 00000490 470 CONTINUE 00000491 PRINT 120.(DRMS(1).I=1.NC) 00000492 PRINT 127 00000493 PRINT 126 DO 427 1=1.NFT 00000494 PRINT 113.(XF(1).(DEFR2(1,J).J=1.NC).PSD(1)) 00000495 427 CUNTINUE 00000496 PRINT 121.(DRRMS(I),I=1.NC) 00000497 CALL PLUTS(BUF, 100.6,10.) 00000498 CALL SCALE(XR. 5., NFT.1) 00000499 CALL PLOT(10.,2.5,-3) 00000500 DU 900 IP=1,NC 00000501 900 IR=1,2 00000502 DO IF (IR. EQ. 1. AND. DRMS(IP). EQ. 0. D0) G0 T0 900 00000503 IF(IR.EQ.2.AND.DRRMS(IP).EQ.0.D3) GU TC 93) 00000504 IF(IR.EQ.2) GD TO 910 00000505

105

ь.

L.

ł

ł

bri,

		00 931	I [P=	I NFT					00000506
	901	Y(LIP)=DE	F2(1)	(P.1P)					00000507
		FPNNDRMS(10)						00000608
			80						00000509
	.		50						00000000
	AT 0	CONTINUE							00000810
		DO 911	116#1	I NF I					00000811
	911	Y(IIP)=DE	FR2([[6+[5]					0000051Z
		FPN=DRHMS	(10)						00000513
	950	CUNTINUE							00000514
		CALL AXI	5(0	0. LAUE	LX(1,1P),-36,7	X	R(NFT+1)	,XR(NFT+2))	00000815
		CALL SCAL	ELYAS	5 NF T. 1)				00000516
		1#110.FO.	11 6	ALL AXIS	LO. O. FDEELN	PS0 .	10.590		00000617
		11 C SIC DE 40	.,						00000518
			-				0801 14		1.00000000
		IF CIN+EU+	2) ()	ALL AXIS	(U U "DEPEN	RAIL	M20.110	• D • • 40 • • • • • • • • • •	1.00000514
	•	Y(NF1+2))							00000820
		CALL LINE	(XF.*,	Y . NF 1 . 1 .	5.1)				00000821
		CALL SYNU	UL (5	.5.4.75.	3.15.1.3.,-1]				00000522
		CALL NUMB	ER (5	.75.4.67	5.0.15.FPN.0	c)			00000523
		CALL PLUT	(15.	03)					00000524
	900	CUNTINUE							00000525
		CALL PLOT	()						00000526
	A G .)	DETHON							00000527
	100	FURNAT/A			ALLINGT N		060/111		00000027
	100	CURMAT(*				• •			00000023
	LUI	PURMALLY	AFU		UEFLNKLEJ		PSULLI	• • • • • •	00000529
	110	FURMAT (IP	, dET	3.6)					00000830
	150	FORMAT (1P	•• DI	<m5(1)≠ *<="" td=""><td>, DE 13.0./)</td><td></td><td></td><td></td><td>00000531</td></m5(1)≠>	, DE 13.0./)				00000531
	121	FURMAT(LP	• • Df	<fm5(1)=< td=""><td>••6E13•0•/)</td><td></td><td></td><td></td><td>00000532</td></fm5(1)=<>	••6E13•0•/)				00000532
	125	FURMAT (*	XF (DEFLN2(1)		PS0(1)	* • / / }	00000533
	126	FORMATC	XF ()	1)	DEFLNR2(1)		P50(1	>++//>	00000534
	127	FORMAT(//)						00000535
		END	•						00000536
		SHADOM TTK	s c.,			ALLE MA			00000537
			1.1.4.4						000000538
		IMPLICIT	RLAI				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	co concercert	00000538
	ccc		cccu						CC00000539
C									C00000540
C		THIS SUBR	JUTU	NE LO NE	CLSSARY UNLY W	HEN SE	NSITIVIT	Y PLOTS ARE	C0000541
C		REQUIRED	ARUUI	ND GIVEN	X(1) CUNTRUL	GAINS	AND VARI	ED BETWEEN	C00000542
C.		XI(I) AND	×2([] IN 5T	EPS OF EPS(1).	THIS	SUBRUUT	NE REPLACES THE	C00000543
¢		CALL TU S	JFP :	JUBROUTI	NE. THE FOLLOW	LNG SU	BRCUT INE	CALLS	C00000544
С		SUBROUTIN	E PI	т. в	UTH OF THESE SO	UDRCUT	INES HAV	E NL CARD	C00000545
c		DATA INPU	IS.	THE PLUT	UUTPUT IS ALS	PRIN	TED IN S	UUROUTINE PLT.	C00000546
Ē		UNLY ACTI	VE X	LE GAEN	ARE PLOTTED.	MAXIN	IUM OF 34	INTERVAL	C00000547
ř		VALIATIN	SIF		ALL CALLS FOR				C00000548
~		100 Fold Fold	5	AIIIIIIIIIIIII					C00000540
~ ~		ceces ines						recepter contraction of	CC00000099
	ιιι								
		CUMMUNZCU	STEN	X(36) .P	SULIDITICREFIX	(103)	AU AVEL AP	(12,15),	00000551
	1	RMASS(15)	15),(JMEGANCI	S) WE WE XR(IU	3) • Y (1	031+#K		00000552
	1	+URM5(6);	DRWW	5(6)					00000553
		CUMMON/CU	STEN	NFT+NVA	CT . IF INAL . NOR . I	NA (36)	+NV+LABE	LX(15,6),NMNC,	00000554
	1	NCACT+NTE	(6)						00000555
		DIMENSION	xxe	[]] • × × L (1) . XX2(1) . DELX	(1).0(36+01+04	(30.6).XP(30)	00000556
		REAL +4 D	DR .	KP • XR • Y					00000557
		ISTART=0	•						00000558
		NC ENCACT							00000559
			- 1	JAC T					000000000
			- 1 * N'						000000000
		151AR1=15	IARI	F L					00000561
		NP = 0							00000562
		XT = XX(I)							00000563
		XM = XX(I)							00000564

.

DO 150 K=1.34 00000565 IF(XM.LT.XX1(I)) ഹ TO 160 00000566 XM=XM-DELX(1) 00000567 150 CONTINUE 00000563 XX(I)=XH 00000569 DO 250 K=1.34 00000570 XX(I) = XX(I) + DELX(I)00000571 1F(XX(1).GT.XX2(1).UR.XX(1). T.XX1(1)) GO TO 250 00000572 00000573 NP=NP+1 XP(NP)=XX([) 00000574 CALL SULGST(XX.FUNCTN) 00000575 DO 300 1C=1.NC 00000576 00000577 D(NP.IC) =DRMS(IC) 00000578 300 DH(NP,IC)=DRHMS(IC) 00000579 250 CONTINUE XX(I) = XI00000580 DO 251 IC=1.NC 00000581 CALL PLT(NV,NVACT,NA,XP,D(1,IC),NP,I,1,U,EM,IC+1STAHT,NC) 00000582 00000583 ISTART#ISTART+1 CALL PLT(NV+NVACT+NA+XP+DR(1+IC)+NP+I+2+Q+EM+{C+ISTART+NC} 00000584 00000585 251 CONTINUE 260 CONTINUE 00000586 00000587 CALL PLUT(10.0.0.,997) 00000588 RE TURN 00000589 END SUBROUTINE PLT (NV+NVACT+NA+X+Y+NP+1PLT+K+QDP+EMDP+IC+ISTART+NC) 00600590 REAL +8 UDP . EMDP 00000591 С C00000593 С THIS SUBRUUTINE IS CALLED BY SUBRUUTINE GUSPLT AND IT DOES THE C00000594 с ACTUAL PLUTTING AND PRINTING. FUR FURTHER DETAILS SEE SUBROUTINE CO0000595 GUSPL T. C00000596 С C00000597 С DIMENSION NA(1),X(1),Y(1),LABELX(15),LABELY(3),BUF(100) 00000599 IF(ISTART.EQ.1) CALL PLOTS(HUF,103.6.10.3) 00000600 Q=QDP 00000601 00000602 FM#EMDP YMX=Y(1) 00000603 00 15 1=2.NP 00000604 15 IF (Y(I).GT.YMX) 00000605 Y H X = Y (I)IF(YMX.EQ.0.U0) 00000606 RETURN 00000607 NY=12 00000608 NX# 36 IF (NV.EQ.NVACT) INDEX= IPL T 00000609 IF(NV.EQ.NVACT) GO TO 3 00000610 11=1 00000611 INDNAC=0 00000612 DG 10 1=1,NV 00000613 IF(I.NE.NA(II)) τu GL 2 00000614 INONAC=INONAC+1 00000615 IF (INDNAC+LT+(NV-NVACT)) 11=11+1 00000616 2 IACTIV=I-INUNAC 00000617 IF(IACTIV.EQ.IPLT) INDFX=I 00000618 IF(IACTIV.FQ.IPLT) GE TO 3 00000619 10 CONTINUE 00000620 **3 CUNTINUE** 00000621 REWIND 13 00000622 WRITE(13,100) INDEX,EM,Q 00000623

107

<u>ار:</u>

1

à.

ł,

ž

```
4200006
     IF (K.EQ.1)
                WRITE(13,121) IC
                WRITE(13.123) IC
                                                                    00000625
     IF (K.EQ.2)
                                                                    00000626
     REWIND 13
     READ(13,120) (LABELX(J), J=1,9)
                                                                    00000627
                                                                    00000628
     READ(13.12) LABELY
                                                                    00000629
     NNX =-NX
                                                                    00000630
     IF(1START.EQ.1) CALL PLOT(10..2.5.-3)
                                                                    00000631
     CALL SCALE (X.5. NP.1)
                                                                    00000632
     CALL SCALE(Y. 5. NP.1)
     CALL AXIS(0..0..LABELX,NNX.7..0..X(NP+1).X(NP+2))
                                                                    00000633
     PRINT 120,LABELX
                                                                    00000634
           102.(X(J).J=1.NP)
                                                                    00000635
     PRINT
     PRINT 120, LABELY
                                                                    00000636
     PRINT 102.(Y(J).J=1.NP)
                                                                    00000637
     CALL AXIS(0.,0.,LABELY,NY,5.,90.,Y(NP+1),Y(NP+2))
                                                                    00000638
                                                                    00000639
     CALL LINE(X+Y+NP+1,1+1)
                                                                    00000640
     CALL PLUT(15..0..-3)
                                                                    00000641
     RETURN
  100 FURMAT( +VAR. X( +, 12, + ), DAST M=++F4.2.+DYN.PRE55=++F5.1)
                                                                    00000642
                                                                    00000643
С
  121 FORMAT( + ORMS( + , 11, +) PSO+)
                                                                    00000644
  123 FORMAT('DRRM5(', 11, ') PSD')
                                                                    00000645
                                                                    00000646
  102 FURMAT(4E14.0)
  120 FORMAT(1544)
                                                                    00000647
                                                                    00000648
     END
      SUBROUTINE CONTAL(NP.P.ND.QD.NC.WR.NTE.X)
                                                                    00000649
C00000651
С
     L.D. T.T.F. CONTROL LAW FUR ANY NUMBER OF CONTROL SURFACES. CAN
                                                                   C00000652
С
     BE USED FOR BUTH FLUTTER AND GUST PRUGRAMS. THE BASIC GAINS
                                                                   C00000653
С
     USED HEREIN ARE APPRUPRIATE FUR 20 PERCENT L.E. AND 20 PERCENT
                                                                   C00000654
С
     T.E. CONTROL SYSTEMS WITH THE FORF SENSUR LOCATED AT THE 30
                                                                   C00000655
С
С
     PERCENT CHURD LUCATION - DIMENSIONS ARE LIMITED TO 6 CONTROLS.
                                                                   C00000656
                                                                   C00000657
C
IMPLICIT REAL+8(A-H.u-Z)
                                                                    00000659
     DIMENSION NP(6+1)+P(6+12+1)+GD(10+1)+E(2+2)+NTE(6)+X(36)+CN(3)+
                                                                    00000660
                                                                    00000661
     *CD1(3),CD2(3),TEMPL(5),TEMP2(5),ND(6)
     E(1,1)=-4.D0
                                                                    00000662
     E(1+2)=4+DJ
                                                                    00000663
     E(2.1)=4.D0
                                                                    00000664
                                                                    00000665
     E(2.2)=2.000
     C21=-1.3600
                                                                    00000666
                                                                    00000667
     NC2=2#NC
                                                                    0000668
     DG 1 1=1.NC
     DO
         1
           J=1.NC2
                                                                    0000669
                                                                    00000670
     NP(I,J)=1
     DO 1 K=1.10
                                                                    00000671
     P(I.J.K)=J.D0
                                                                    20000672
    1 CONTINUE
                                                                    0000673
     DU 2 I=1,NC
                                                                    00000674
                                                                    00000675
С
    CASE OF T.E. CONTROL
                                                                    00000676
С
                                                                    00000677
С
     EH=E(2.1)
                                                                    00000678
     EA=E(2,2)
                                                                    00000679
     IF(NTE(I).EQ.1) GU
                        TO
                            3
                                                                    00000680
С
                                                                    00000681
C
   CASE OF L.E. CUNTROL
                                                                    00000682
```

.

ŝ

	•	109	
с			00000683
•	(EH====================================	00000644
		EA=E(1,2)	00000685
	3	CONTINUE	00000686
		CN(1)=0.D0	00000687
		CN(2)=0.D0	00000488
C			00000689
С	I	DETERMINATION OF THE DENOMINATOR POLYNOMIAL FOR EACH CONTROL SUB	F.00000690
С			00000691
	1	CD1(1)=X(6+I-4)++2	00000692
	I	CD1(2)=2.00+X(6+1-4)+X(6+1-3)	00000693
		CD1(3)=1.D0	00000694
		CD2(1)=X(0+1-1)++2	00000695
		CD2(2)=2.00=X(6=I-I)=X(6=I)	00000696
	1		00000697
~			000000098
		DETECNIALTION OF THE MINEDATOR DOLVADATAL SUD FACH CONTRIN CHDEA	000000099
č		DETERMINATION OF THE NOMERATOR POLINOMIAL FOR EACH CONTROL SORTA	00000700
		(NE3)=X[N=1-5]	00000702
		CALL PROPOL(CD2.3.CN.S.TENPL.N)	00000703
		CN(3) = X(6+1-2)	00000704
		CALL PRUPOL (CD1+3+CN+3+TEMP2+N)	00000705
		DO 4 K#1+N	00000706
		P(1,2*I-1,K)=EH+(1EMP1(K)+TEMP2(K))	00000707
		₩(I•2*I•K)=CA*(TEMP1(K)+TEMP2(K))+C21#NTE(I)*UD(K•I)	00000708
	4	CONTINUE	00000709
		NP(1,2*1-1)=N	00000710
		NP(1,2*I)=N	00000711
	2	CONTINUE	00000712
	•	RE TURN	00000713
		END	00000714
		SUBRUUTINE CUNTRL (NP+P+HD+QD+NC+WR+NTE+X)	00000715
ccc	CLL		CC00000716
c			C00000717
C C		DELETE CONTRUL LAW FUR ANT NUMBER OF CUNTRUL SURFACESE CAN Delete Sub-Moth Elected And Cust Dudgeame. The darge cathe	C00000718
C C	1	DE USED FUR DUIT FLUITER AND GUST PROUKAMS. THE DASIC GAINS Heed wedetn add audul udlate fow 34 dedcent 1.5. and 34 dedcent	C00000719
Ċ		USED HERCENT ARE APPRUARIATE FOR 20 PERCENT COLO AND 20 PERCENT. T.E. CONTROL SYSTEMS ATTA THE FURP SENSOR LUCATED AT THE 30	C00000720
č		PERCENT CHORD LOCATION - DIMENSIONS ARE LIMITED TO 6 CONTROLS.	C00000722
c			C03000723
ccc	εεε		CC00000724
		IMPLICIT REAL+B(A-H.G-Z)	00000725
	I	DIMENSIUN NP(6,1),P(6,12,1),QU(1,3,1),E(2,2),NTE(6),X(36),ND(6)	00000726
		E(1,1)=-4.DU	00000727
		E(1+2)=4-D0	00000728
	(E(2,1)=4.D0	00000729
		E(2,2)=J.2D0	00000730
		L21=-1.86D0	00000731
		A=1000J+D)	00000732
	i	NC2=2*NC	00000733
	1		00000734
	1	DU I J#I;NC2	00000735
	l	NMLIGJJFI DO 1 Mail 3	00000736
	1	DU & Nº4144 D(1. 1. K)+0. D0	
	1 4	TARRANDE TARRAND	00000730
		$D(1 \ge 1 \pm 1 \cdot NC)$	00000739
	1	P(1,2*1-1,1)=0.00	00000741

:

```
00000742
     P(1.2+1.1)=A+C21+NTE(1)
С
                                                                    00000743
С
   CASE OF T.E. CONTROL
                                                                    00080744
                                                                    00000745
С
                                                                    00000744
     LH#E(2.1)
                                                                    00000747
     EA=E(2,2)
                                                                    00000748
     IF (NTE(1).EQ.1)
                     GU
                          TU
                             3
                                                                    00000749
С
                                                                    00090750
С
   CASE OF L.E. CUNTRUL
С
                                                                    00000751
     EH#E(1,1)
                                                                    00000752
                                                                    00000753
     EA=E(1,2)
                                                                    00000754
    3 CONTINUE
                                                                    00000765
С
     DETERMINATION OF THE NUMERATOR POLYNOMIAL FOR EACH CUNTROL SURFACE00000756
С
                                                                    00000767
С
     P(1.2+1-1.2)=A+FH+X(1)/WR
                                                                     00000758
                                                                    00000759
     P(1+2+1+2)=A#EA+X(1)/#R
                                                                     00000760
С
     DETERMINATION OF THE DENUMINATUR PULYNOMIAL FUR EACH CUNTRUL SURF.00000761
С
С
                                                                    00000762
                                                                     00000763
     QD(1.1)=A
                                                                     00000764
     QD(2,1)=1.00
     NP(1+2+1-1)=2
                                                                     00000765
     NP(1+2+1)=2
                                                                     00000766
                                                                    00000767
     ND(1)=2
                                                                    00000768
    2 CONTINUE
                                                                    00000769
     RETURN
                                                                     00000770
     END
     SUBROUTINE FIT
                                                                    00000771
                                                                    00000772
     IMPLICIT REAL+S(A-H,U-Z)
C00000774
С
     FITS THE AERU COEFFICIENTS IN TERMS OF PADE APPROXIMANTS USING
                                                                   C00000775
С
                                                                    C00000776
С
     LEAST SQUARE TECHNIQUE.
С
                                                                    C00000777
C
                                                                    C00000778
     NAMEL IST/FT
     NK - NUMBER OF REDUCED FREQUENCIES & USED FOR INTERPOLATION
                                                                   C00000779
С
С
                                                                    C00000780
                                                                    C00000781
С
     AK - ARRAY CONTAINING THE K VALUES(20 MAX) - (FIRST REDUCED K
                                                                    C00000782
C
     MUST BE EQUAL TO ZERO)
                                                                    C00000783
С
     MAXNK - MAX VALUE OF NK(MAX NK=20 IN PRESENT PROGRAM)
                                                                    C00000784
С
                                                                    C00000785
С
                                                                   C00000786
     NPRINT - O NU PRINTED OUTPUT FROM SUBRUUTINE FIT.
С
            - 1 PRINTED GUTPUT IS AVAILABLE (FOR DEBUGGING PURPOSES)
                                                                   C00000787
С
                                                                    C00000788
С
     NPUNCH - O NU PUNCHED JUTPUT FROM SUBRUUTINE FIT
                                                                   C00000789
С
            - I PUNCHED OUTPUT(INTERPOLATION COEFFICIENTS).
                                                                    C00000790
C
С
                                                                    C00000791
     IRIGID, JRIGID - CURVE FITTING (WITH NU LEAST SQUARES TECHNIQUE)
                                                                   C00000792
C
     OF THE FIRST IRIGID RUNS AND JRIGID COLUMNS OF AERU MATRIX -
                                                                    C00000793
С
С
     ASSUMED TO CONTAIN RIGID BUDY AERU - TO IMPROVE RESULTS.
                                                                    C00000794
С
                                                                    C00000795
С
             ) AEHULIJAK)
                              ECEMAT(2615.5)
                                                                    C00000796
     READ(2.
C
                                                                    C00000797
COMMUNZAEREZA3(15,22),A1(15,22),A2(15,22),A3(15,22),A4(15,22),
                                                                     00000799
                                                                     00000800
     #A5(15,22),A6(15,22)
```

OF FAME MALINY

110

1

1

1

1

•

•

1

.

٩

ŀ,

1

```
111
                                                                      00000801
 CONHON/ICASE/B(4) .NH .NC . NG . NL
                                                                      20800000
 CUMPLEX#16 AFF0(15+22+20)+CGEF
 DIMENSION AN(20), AK2(2), X(40,0), XT(6.40), Y(40), XTX(6.6),
                                                                      00000803
                                                                      0000804
*XTY(6),S(6),CLR(4-20),CLI(4,2))
                                                                      00000805
 NAMEL IST/FT/NK, AK, MAXN'S, NPRINT, NPUNCH, IRIGID, JRIGID
                                                                      00000806
 READ(5,FT)
                                                                      00000807
 WRITE(U.FT)
                                                                      00000808
 MAXNK2=2+MAXNK
                                                                      00000809
 NMNC=NM+/NC+NG
                                                                      01800000
 DO 1 1#1.NK
                                                                      00000811
 AK2(K)=AK(K)+AK(K)
                                                                      00000812
 DG 1 J=1+NMNC
                                                                      00000813
 DO I I#1,NM
 READ(2.201) AERC(1.J.K)
                                                                      00000814
1 CONTINUE
                                                                      00000815
                                                                      00000816
 DO 5 I=1.NL
                                                                      00000817
 B2=8(1)+8(1)
                                                                      00000818
 DU 5 K=1.NK
 CLR([+K)=AK2(K)/(02+AK2(K))
                                                                      00000519
                                                                      00000820
 CL1(1.K)=8(1)+AK(K)/(82+AK2(K))
                                                                      00000821
5 CONTINUE
                                                                      00000822
 IF (AK(1) .NE. 0.DO) PRINT 100
                                                                      00000823
  IF (AK(1) . NE . 0.00) STUP
                                                                     C00000824
 DETERMINATION OF THE INTROLLATION LEAST SQUARE MATRIX XTX AND
                                                                      00000825
 THE KNOWN ALRG VECTOR XTY
                                                                      00000826
                                                                      00000827
                                                                      00000828
 DU 2 1=1+NM
                                                                      00000829
 DO 2 J=1.NMNC
                                                                      00000830
 IF (1.GT.IKIGID. JR.J.GT.JRIGID) JD TO 7
                                                                      00000831
 NK T = NK
                                                                      00000832
 NK=(3+NL)/2+1
7 CUNTINUE
                                                                      00000833
                                                                      00000834
 DU 3 K=2+NK
                                                                      00009835
 X(2*K-J+1)=0+00
                                                                      00000836
 X(2+K-2+1)=AK(K)
                                                                      00000837
 X(2*K-3,2)=-AK2(K)
                                                                      00000838
 X(2+K-2.2)=0.00
 Y(2*K-3)=0REAL(AERG(1+J+K)-AERO(1+J+1))
                                                                      00000839
                                                                      00000840
 Y(2*K-2)=UAIMAG(AERC(1,J,K))
                                                                      14800000
 DU 3 L=1,NL
                                                                      00000842
 X(2*K-3+2+L)=CLR(L+K)
                                                                      00000843
  X(2*K-2,2+L)=CLI(L,K)
                                                                      00000844
3 CUNTINUE
                                                                      00000845
 NRUMS=2*(NK-1)
                                                                      30000846
 NCUL S=2+NL
                                                                      00000847
  IF (NROWS.LI.NCULS)
                     PRINT 110
                                                                      00000848
                      STUP
  IF (NROWS .LT .NCULS)
                                                                      00000849
 DL
     4
        IR=1,NROWS
         JR=1,NCOLS
                                                                      00000850
 00
     4
                                                                      00000851
 XT(JR+IR)=X(IR+JR)
                                                                      00000852
4 CONTINUE
                                                                      00000853
  CALL MXPRUD(XT+X+XTX+NCLLS+NRU%S+NCOLS+6+MAXNK2+6)
  CALL MXPRUD(XT, Y, XTY, NCOLS, NEUWS, 1,6, MAXNK2,6)
                                                                      00000854
                                                                      00000855
  SOLUTION FOR THE UNKNOWN INTERPOLATION CUEFFICIENTS
                                                                      00000856
                                                                      00000857
                                                                      00000858
 CALL MXINVR(NCULS,0,6,XTX)
                                                                      00000859
 CALL MXPROD(X1X+XTY+3+NCOL5+NCOL5+1+0+6+6)
```

Ţ

С С С С

.

ł

С С

4

Ï

1

<u>.</u>

ŗ

.,

-

R I

С

```
A0(1,J)=AERO(1,J,1)
                                                                     00000860
      AL(I,J)=S(1)
                                                                     00000861
      A2([,J)=S(2)
                                                                     00000862
      A3(1.J)=5(3)
                                                                     00000843
      IF (NL.LT.2) GO
                      TO
                          10
                                                                     00000864
      A4(1.J)=$(4)
                                                                     00088865
      IF(NL-LT-3) GD
                      10
                          10
                                                                     00000866
      A5([.J)=5(5)
                                                                     00000867
      IF (NL.LT.4) GU
                      TC
                          10
                                                                     8080000
      A6(1.J)=5(6)
                                                                     00000869
   10 CONTINUE
                                                                     00000870
      IF(I+LE+IRIGID+AND-J+LE+JRIGID) NK=NKT
                                                                     00000871
С
                                                                     00000872
С
      PRINTED AND/UR PUNCHED CUTPUTS
                                                                     00000873
С
                                                                     00000874
      IF (NPRINT .NE . I . AND . NPUNCH . NE . I) GU TC 2
                                                                     00000875
      IF (NPUNCH.NE.1) GU TO 9
                                                                     00000876
      PUNCH 603, I.J.AO(I.J).(S(JJ).JJ=1.NCOLS)
                                                                     00000877
    9 CUNTINUE
                                                                     00000878
      IF(NPRINT+NE+1) GO TU 2
                                                                     00000879
     PRINT 700.1.J
                                                                     00000880
     PRINT 201, A0(1, J), (5(JJ), JJ=1, NCULS)
                                                                     00000881
     DO 8 IK=1.NK
                                                                     00000882
     CLEF=DCMPLX(0.00,0.00)
                                                                     68800000
     00 6 11=1.NL
                                                                     00000884
     CUEF=CUEF+S(2+11)+DCMPLX(CLK(11+1K)+CL1(11+1K))
                                                                     00000885
    6 CONTINUE
                                                                     00000586
     CDEF = CUEF + AERC([, J, 1]) + S(1) + UCMPLX() + DJ, AK([K]) - J(2) + AK2([K])
                                                                     00000887
     QUOTR=DREAL (AERU(1,J,IK))
                                                                     00000888
     QUUTI=DAIMAG(ALRC(I,J,IK))
                                                                     00000889
     IF (QUUTR+EQ+0+D0) QUUTR=1+D-23
                                                                     00000890
     IF (QUUTI-EQ.0.00) QUOTI=1.0-20
                                                                     00000891
     ERR=DREAL (AERU(1,J,IK)-CLEE)+101, JU/UUDTR
                                                                     00000892
     LR I=DAIMAG(AERU(I,J,IK)-COFF)#193.00/QUCTI
                                                                     00000893
     PRINT 213.1.J.IK.AK(IK).AEHU(I.J.IK).CUEF.ERK.FRI
                                                                     00000894
    8 CONTINUE
                                                                     00000895
    2 CUNTINUE
                                                                     00000896
  200 FORMAT(10X+ CUEFF = +8E12.4)
                                                                     00000897
  210 FURMAT(2X,315,4X,7E12.4)
                                                                     00000898
  600 FURMAT(2X,212,2X,7E10.4)
                                                                     20000899
  700 FORMAT(2)X' AERU( DEF MODE = ',12,' PRES MODE = '12, ')'/)
                                                                     000000900
     PETURN
                                                                     00000901
  100 FURMAT(* FIRST REDUCED FREquENCY MUST HE EQUAL TO ZERO*/) 00000902
  110 FORMAT( ! THERE ARE LESS EQUATIONS THAN UNKNOWNS!, /)
                                                                     00000903
  201 FURMAT(2015.5)
                                                                     00000904
     END
                                                                     00000905
     SUBRUUTINE X2XX(NV+NVACT+X+XX+NA)
                                                                     00000906
     IMPLICIT REAL+8 (A-H,U-Z)
                                                                     00000907
C00000909
     THIS SUBRUUTINE REDUCES THE A(I) ARRAY INTO AN XX(I) ARRAY
                                                                    200000910
     WHERE THE NUN ACTIVE PARAMETERS (NV-NVACT) HAVE BEEN ELIMINATED, CO0000911
     THE PUSITION OF THESE NON ACTIVE PARAMETERS ALONG THE X ARRAY
                                                                    C00000912
     IS GIVEN BY THE NA(I) AFRAY.
                                                                    C00000913
                                                                    C00000914
DIMENSION X(1), XX(1), NA(1)
                                                                     00000916
     NUNACT=NV-NVACT
                                                                     00000917
     NC OUN T=0
                                                                     00000918
```

.

C

С

С

С

С

С

1

00000919 DO 100 [=1.NV IFENONALT.EQ. NOUNTE GU TU 115 00000920 00000921 DO 110 J=1.NONACT 00000922 IF(I.NE.NA(J)) GC TG 110 00000923 NCOUNT=NCOUNT+1 00000924 GO TO 100 00000925 110 CONTINUE 115 XX(I-NCOUNT)=X(1) 00000926 100 CONTINUE 80000927 00000738 RETURN 00000429 END 00000430 SUBROUTINE XX2X(NV+NVACT+X+XX+NA) 00000931 IMPLICIT REAL+8 (A-H.U-Z) C0000033 С THIS SUBROUTINE RESTORES THE X(1) ANKAY USING THE REDUCED XX(1) C00000934 С ARRAY AND THE INITIAL VALUES OF THOSE X(1) S THAT ARE NOT C00000935 C C00000936 ACTIVE. THIS IS THE INVERSE PROCESS OF SUBROUTINE X2XX. С C00000937 С 00000939 DIMENSION X(1) + XX(1) + NA(1) 00000940 NONACT=NV-NVACT 00000941 NCOUNT=0 00000942 DU 100 1=1.NV 00000943 IF (NONACT.EQ. NOUNT) GU TO 115 00000944 DU 110 J=1.NUNACT IF (I.NE.NA(J)) GD TO 110 00000945 00000946 NCOUNT=NCOUNT+1 00000947 GO TO 100 00000948 110 CUNTINUE 00000949 115 X(I)=XX(I-NCUUNT) 00000950 100 CUNTINUE 00000951 RETURN 00000952 END 00000953 SUBRUUTINE CHAPPOLC.A.B.NIA.NJA.NJJ) 00000954 IMPLICIT REAL +8 (A-H+0-Z) C00000956 С C=A+H C00000957 C COMPLEX MATRIX PRODUCT C00000958 C 00000960 COMPLEX#16 A(NIA,NJA)+H(NJA+NJH)+L(NIA+NJB) 00000961 DO 100 I=1.NIA 00000962 DU 100 J=1.NJH 00000963 00000964 DO 100 K#1.NJA 00000965 100 C(I+J)=C(I+J)+A(I+K)+U(K+J) 00000966 RE TURN 00000967 END 00000968 SUBRUUTINE CMXADU(C+A+B+NI+HJ) 00000969 IMPLICIT REAL#8 (A-H+0-Z) C00000971 C C00000972 COMPLEX MATRIX ADDITION C#A+d С C00000973 C 00000975 COMPLEX#16 A(NI+NJ)+6(NI+NJ)+C(NI+NJ) 00000976 DO 100 1=1.NI 00000977 LO 100 J=1,NJ

T

113

.

É

S.

ŝ

. ...

đ

100 C(1,J)=A(1,J)+B(1,J) 00000978 RETURN 00000979 END 00000980 SUGROUTINE INTGLS(NN.X.Y.A.W) 0000981 INPLICIT REAL +8 (A-H, 0-Z) 23600000 Ĉ C000000004 С INTEGRATION OF YOW VS. X CURVE USING THE TRAPEZOIDAL RULE. C00000986 C Y.W AND X ARE ARRAYS WITH N ELEMENTS. THE AREA IS DENOTED BY A C90000986 Ċ C000000007 DIMENSIUN X(1).Y(1).W(1) 00000989 A=0.D0 8088898 N=NN-1 00000991 DU 1 1=1+N 00000992 1 A=A+(Y(1)+h(1)+Y(1+1)+w(1+1))+(X(1+1)-X(1)) 00000993 A#0.503#A 00000994 RETURN 00000995 END 00000996 SUBROUTINE SUFP(N:X1:X0:X7:FMIN:EPS:ETA:ETA1:PH1:DRV;ITMAX;IW.FO 00000997 +.EVAL . IEKH .NV .NA) 00000998 IMPLICIT REAL +8 (A-H, D-Z) 00000999 C C00001001 С MINIMIZATION SUBROUTINE BASED ON THE STEWART'S ADAPTATION OF C00001002 С THE DAVIDUN-FLETCHER-POWELL ALGURITHM. A VARIATION HAD BEEN C00001003 INCORPORATED HEREIN TO PERMIT THE CONSTRAINT OF THE INDEPENDENT С C00001004 С VARIABLES WITHIN A SPECIFIED LUWER AND UPPER BOUNDS. C00001005 С C00001006 С N - NUMBER OF INDEPENDENT VARIABLES. C00001007 C C00001008 XI(I) - DENOTES THE LOWEST BOUND OF THE I-TH INDEPENDENT VARIABLEC00001009 С С C00001010 С XU(1) - DENUTES THE INITIAL VALUE OF THE I-TH INDEPENDENT VARIABLE00001011 С C00001012 X2(I) - DENUTES THE UPPER BOUND OF THE I-TH INDEPENDENT VARIABLE CO0001013 С С C00001014 С FMIN - INPUT APPROXIMATION TO THE FUNCTION MINIMUM. C00001015 С C00001016 С EPS(I) - INPUT ARRAY CONTAINING THE DESIRED AUSOLUTE ACCURACY C00001017 С OF THE INDEPENDENT VARIABLES. C00001018 С C00001019 С ETA - INPUT PARAMETER CONTAINING AN ESTIMATE OF THE RELATIVE C00001020 С ACCURACY OF THE FUNCTION EVALUATIONS WHICH ARE USED TO DETERMINE CO0001021 С THE TYPE OF DIFFERENCE APPROXIMATION TO THE GRADIENT (ABSOLUTE C00001022 С ACCURACY=FUNCTION+ETA) C00001023 С C00001024 С ETAL - RELATIVE ACCURACY OF COMPUTER (UN 1.8.M. DOUBLE PRECISION C00001025 С =5.E-13). ABSOLUTE ACCURACY=X+ETA1. C00001026 С C00001027 С PHI - RELATIVE SIZE OF 'SUCTION ZUNE' WITHIN WHICH THE UPTIMIZED CO0001028 С FREE PARAMETER IS SUCKED TO THE CONSTRAINT TO AVOID FALSE C00001029 С CONVERGENCE. ABSOLUTE SIZE OF ZUNE=X1(1)+PHI OR X2(1)+PHI C00001030 С DEPENDING ON WHETHER NEAR LOWER OR UPPER CONSTRAINTS. C00001031 С C00001032 С

DRV — A DNE DIMENSIONAL INPUT ARRAY OF AT LEAST LENGTH N COODIO32 CONTAINING INITIAL STEP SIZES FOR DIFFERENCE APPROXIMATIONS COODO1034 TO THE GRADIENT. COODO1035 COODO1035

ŕ

ŝ,

×.

į.

ę

1

С

С

C

114

C ITMAX - AN INPUT/DUTPUT INTEGER. ON INPUT.ITMAX CONTAINS THE C00001037 C00001038 С MAXIMUM ALLOWABLE NUMBER OF OPTIMIZATION ITERATIONS. ON OUTPUT. C ITMAX CONTAINS THE NUMBER OF ITERATIONS USED. C00001039 ¢ C00001040 C IN - AN INPUT INTEGER CODE FOR PRINTING DURING COMPUTATION. C00001041 C - O NO PRINTENS EXCEPT FOR SELECTED RESULTS DURING EACH ITERATHCOGOGIGS C - I PRINT GRADIENT VECTOR .AND FUNCTION VALUE BEFORE AND AFTER C00001043 C EACH LINEAR MINIMIZATION. C00001044 C - 2 IN ADDITION TO THE ABOVE, PRINT FUNCTION VALUES CALCULATED C00001045 C DURING THE COURSE OF LINEAR MINIMIZATION. C00001046 С C00001047 - 3 IN ADDITION TO THE ABOVE PRINT FUNCTION VALUES CALCULATED С IN EVALUATING THE GRADIENT. C00001048 С C00001049 С FC - FUNCTION MINIMUM ON OUTPUT. C00001050 С C00001051 С EVAL - THE NAME OF A USER CODED SUBROUTINE WHICH EVALUATES THE C00001052 С FUNCTION BEING MINIMIZED . THIS NAME MUST APPEAR IN AN EXTERNAL COODU:753 С STATEMENT OF THE CALLING PROGHAM. C00001064 С C00001055 С IERR - UUTPUT ERHOR CUDE. C00001056 С - -1 DISTANCE TO THE MINIMUM IS UPPOSITE THE DIRECTION C00001057 С INDICATED BY THE GRADIENT OF THE FUNCTION. OPTIMUM HAS C00001058 С PROBABLY BEEN REACHED. C00001059 С - 0 NORMAL CONVERGENCE. 00001060 С - I DERIVATIVE OF FUNCTION ALONG THE DIRECTION OF LINEAR C00001061 С MINIMIZATION WAS NOT NEGATIVE. USER SHOULD TRY SMALLER C00001062 С VALUES IN THE DRV ARRAY. C00001063 С - 2 NO PROGRESS IN THE LINEAR MINIMIZATION. THE FUNCTION C00001064 С MINIMUM HAS PROHABLY BEEN REACHED. USER SHOULD TRY DIFFERENTCO0001065 C INITIAL CONDITIONS FUR XU. C00001066 - 3 THE LINEAR MINIMIZATION FAILED TO CHANGE THE FUNCTION С C00001067 С VALUE. THE FUNCTION MINIMUM HAS PROBABLY BEEN REACHED ON A C00001068 С FLAT SURFACE-USER SHOULD TRY DIFFERENT INITIAL CONDITIONS C00001049 С FOR XO AND SEE IF THE SAME MINIMUM IS REACHED. C00001070 С - 4 FAILURE TO CONVERGE WITHIN ITMAX ITERATIONS. C00001071 С C00001072 NV - TOTAL NUMBER OF PARAMETERS NELESSARY FOR THE DETERMINATION C00001073 С OF THE FUNCTION IN SUBROUTINE EVAL.SUME OF THESE PARAMETERS CAN C00001074 С С BE MADE INACTIVE DURING UPTIMIZATION AND THUS LEAD TO A VALUE C00001075 С OF N WHICH IS SMALLER THAN NV. C00001076 C00001037 С С NA - INTEGER INPUT ARKAY CONTAINING THE LOCATIONS OF THE NON C00001078 ACTIVE PARAMETERS IN THE EXPANDED XO ARRAY. С C00001079 С C00001080 NOTE - THE ABUVE TWO PARAMETERS ARE USED IN SUBROUTINE EVAL-С C00001081 С THROUGH THE USE OF SUBROUTINE X2XX AND XX2X. CC0001082 С C00001083 DIMENSIUN XU(1), FPS(1), DRV(1), H(60, 60), X(60), G(60), Y(60), DEL(60), 00001085 00001086 1C(60).E(4).EE(4).F(4) 00001087 2.61(60) 3.X1(1),X2(1),TST(00),GEX(60),X1PHI(60),X2PHI(60),X1ETA(60), 00001068 00001089 +X2ETA(40) DIMENSION NA(1) 00001090 LOGICAL IDENT 00001091 С 00001092 C UPTIONAL OUTPUT FORMATS 00001093 С 00001094 2000 FORMAT(1H0. FUNCTION VALUE = + 20.10/ VARIABLES X(1) = + 20.10/ 00001095

115

٠

ľ.

,

00001096 1(17X,K20.10)) 2001 FORMAT(1H0, "COMPUTE GHADIENT") 00001097 2002 FORMAT(1H0. 'GRADIENT ='. 6X.(220.10/(17X.E20.10)) 00001098 2003 FORMAT(1H0, 'DIRECTION OF MINIMIZATIONS'/(4x, ER0, 10)) 00001090 2004 FORMAT(1H0, LINEAR MINIMIZATION - FUNCTION VALUE =* . E20.10) 00001100 2005 FORMAT(1H0. MININUM FUNCTION EVALUATION =", E20.10} 00001104 2006 PORMAT(1HO. 'END OF ITERATION '.13//) 00001102 2007 FORMAT(1P+2X+13,3X+E14+6+1X+E14+6+1X+13+2X+E14+6+1X+13+2X+E14+6) 00001108 2008 FORMAT(! ITERNS FUPT IGMX DELMAX 00001104 GALAX E(LOWEST) * ./) + LOMX 00001105 2009 FURMAT(4814.6) 00001106 2010 FORMAT(' INITIAL GRADIENTS VECTOR G(1)',/) 00001107 00001105 2011 FORMAT(' FINAL GRADIENTS VECTOR G(1) './) 2012 FORMAT(* +++++*) 00001109 MXTRIS=25 00001110 00001111 IU1=4 00001112 102=4 00001113 DO 2 [=1.N XIETA(I)=-DA88(XI(I)+ETAL) 00001114 00001115 IF (DA85(X1(1)).LT.1.) X1ETA(1)=-ETA1 X2ETALS)=DABS(X2(1)+ETA1) 00001116 IF(DAd8(X2([)).LT.1.) X2CTA([)=ETAL 00001117 X1PH((I)=DABS(X1(I)+PHI) 00001118 If (DABS(X1PHI(I)).LE.DABS(EPS(I))) X1PHI(I)=DABS(1.1+EPS(I)) 00001119 00001120 X2PHI(I) = -DABS(X2(I) + PHI)1#(DA88(X2PH1(1)).LE.DA85(EPS(1))) X2PH1(1)=-DA85(1.1+EP8(1)) 00001121 2 CONTINUE 00001122 C2110000 C 00001124 EM=.10-13 FM#FHIN 00001125 00001126 ILIN = 100001127 LOWEST=1 00001128 CALL EVAL(X0,FO) 00001129 С COMPUTE GRADIENT 00001130 С 00001131 С 00001132 4 IF (IW.GT.2) WRITE(IU2.2001) 00001133 DO 10 [=1.N (1) OX=(1)X 00001134 00001135 5 XO(1)=X(1)+DRV(1) 00001136 CALL EVAL(X0.FG) (IW.GT.2) WFITE(IU2,2000) FG.(XU(J).J=1.N) 00001137 IF 00001138 7 G(1)=(FG-F0)/ DRV(1) 00001139 $10 \times C(I) = \times (I)$ CALL XX2X(NV.N. JEX.G.NA) 00001140 PRINT 2010 00601141 00001142 PRINT 2009, (GEX(J), J=1.NV) 00001143 WRITE(101,2008) 00001144 20 IDENT= .TRUE . 00001145 DO 30 I=1.N 00001146 DO 25 J=1.N 00001147 25 H(I,J)=0.00 H(I.1)=1.00 00001148 30 C(()=1.00 00001149 00001150 IF (IW.GT.0) WRITE(IU2.2002) (G(I).I=1.N) 00001151 С DETERMINE DIRECTION AND DIRECTIONAL DERIVATIVE 00001152 С 00001153 C 50 D=0.D0 00001154

.

.

EP=1.00 00 60 1=1.N DEL([)=0.00 DU 55 J#1.N \$5 DEL(1) = OFL(1) = H(1.J) + 4(J) IF CONSTRAINTS ARE VIGLATED SET DEL(1)=0.00 IF(X0(1).EQ.X2(1).AND.DEL(1).GT.0.00) DEL(1)=0.D0 IF(X0(1).E0.X1(1).AND.0EL(1).LT.0.D0) DEL(1)=0.00 IF (DEL(1).EQ.0.00) GU TU 60 EP#DMIN1(EP.DABS(EPS(1)/DEL(1))) D=D+G(1)+UEL(1)60 CONTINUE EP=EP+.0500 IF(D.LT. J.DJ) GU TO 73 IF (.NOT . IDENT) GU TU 20 IERR # 1 GO TO 500 70 IF (FU.GT.FM) GU TU 71 72 1F(FG)73.74.75 73 FM=2.00+FU GO TO 71 74 FM#-1.00 GO TO 71 75 FM= .500+FU 71 CONTINUE F(2)=UMIN1(1.D+0.2.D0+(FM-FL)/U) (I#+GT+)) #FITE(102+2003) (OFL(1)+1=1+N) 16 IF (IW.GT.0) WRITE(IU2.2000) FU.(XU(I).I=1.N) F(1)=FO E(1)=0.00 NIT=0 CALL MX(N.J.GMAX.IGMAX) CALL MX(N.DEL.DELMAX.IDMAX) PROCEED WITH LINEAR MINIMIZATION KKK=J 103 IF (DABS(E(2)) .LE .EP) E(2) *E(2) +1.100*EP NTRIES=0 DU 105 1=1.N CALL EVAL(X.F(2)) (IW.uT.1) WRITE(1J2.2034) + (2) 1. [F(F(2).NE.F(1))GU TU 107 GU TU 103 DENOM=D+E(2)+F(1)-F(2) IF (DABS(DENUM) .LT. 1.0-20) UL TO 501 ED= .500+0+F(2)++2/DENUM IF(ED+LE.J.D0)ED=2.J0+E(2)

00001155

00001156

88881187

00001158

00001150

00001160

00001161

00301162

00001163

90001164

00001165

00001166

00001191

00001192

00001193

00001194

00001195

00001196

00001197

00001198

00001199

00001200

00001201

00001202

00001203

00001204

00001205 00001206

```
С
С
С
```

ŕ

5

÷.

С C

C

٠

÷

FOPTHEO

```
105 X(1)=X0(1)+E(2)=DEL(1)
501 E(2)=2.D0+E(2)
107 CUNTINUE
    IF(F(2).LT.F(1))00 TC 120
```

KKK#KKK+1

F(3)=F(2)

IF(KKK+LT+8+AND+DABS(LD)+GT+EP) E(2)=E0

IF (KKK+LT+8+AND+DABS(ED)+GT+EP) GO TO 103

```
00001207
00001208
00001209
00001210
00001211
00001212
00001213
```

	F(2)=+U	00001214
	E(3)=E(2)	00001215
	E(2)=0.0 ²	00001216
	f (1) =-E(3)	00031217
	DD 113 I=1.N	00001218
110	X (1)# X() (1) + F (1) + (1)	00001214
		00001220
		00001221
		00001229
		00001222
		00001223
		00001224
	$f(\mathbf{I}) = f(\mathbf{J})$	00001225
	f (1)=f (3)	00001226
	F(3)=CTT1	0001227
	f(3)=+ TT1	00001558
	GO 10 193	00001229
120	LOWEST-2	00001230
	1F (FD+GT+34D)+E(2))+D=(+D0+F(2))	00001231
	16 (048-(1-(2)-E())+L++++++++++++++++++++++++++++++++++	00001232
	IF (DAH)("(/)-ED)+LT++0)553+DAUS(L(2))) ED-1+3103+E(2)	02031233
	DC = 1 + 2 + 1 + 1 + 1 + 1	00001234
130		0 20 21 2 35
		00001236
		00001237
		00001237
	$(\langle \mathbf{K} \rangle)^{-1} \rangle$	00001230
		00001239
		00001240
		00001241
		00001242
140	f { 3 } - 1 / 1 }	00001243
		00001244
	IF (IW+uT+L) 46171(LU2+2334) + (3)	30001245
150	CALL 151134(E++++++)	00001246
1.00	LlWEST=1	00001247
	NTRIFS-NTRIESF1	00001248
	$D_{ij} = 1 + 3$	00001249
	IF (F(I) + IT + F(IUNF+T))IIV+ STI	00001250
165	CONTINUE	00001251
	1:=2.00+051GN(1.0+0.1.(2))	00001252
	IF (A+t+-2)IE =A-IE	00001253
	IF (AALEA)ADDALMA DANS(E. C.))A MA DAMS(3+C3+CE)))EL(2)=540) JEF(1	00001254
		00001255
		00001256
	16 () A () () () () () () () () (00001200
	AF COMPANY FOR THE SUCCESSION OF A FEED OF THE STATE OF	00001258
		00001250
	IF AN INTER A MARTINE AND INTERVIEW AND A STREET	00001259
		00001260
		00001201
	IF (IL = F] = 4) GU I () 1 () 1 ()	00001262
	DU 170 LL=it,3	00001263
		00001264
	E(L+1)=F(L)	03001265
170	F(L+1)=F(L)	00001266
190	E(IE)=EFE UP P(E) E	00001267
	00 190 1=1+N	00001268
190	X(I)=XU(I)+E E#OFL(I)	00001269
	CALL EVAL(X.F(IE))	00001270
	IF (1W. UT.1) AFITE(102,2004) F(1E)	00001271
	1F(1E+EQ+1)00 TO 150	00001272

Ť.

.

-

.

00001273 KKK#1 00801274 IF (IE . EQ. 4) GU TO 220 00001275 IF(F(1).GT.F(4))GO TO 200 00001276 CALL INTIPH(E,F,EE,A,0) IF(E(2)+EE(2).LT.E(4).AND. A.GT.0.D0)G0 T0 160 80081277 00001278 60 TO 210 00001279 200 KKK=2 CALL INTIPH(E.F.EE.A.I) 00001280 IF(E(3)+EE(2).GT.E(1).AND. A.GT.J.DJ)GO TO 220 00001281 00001282 210 KKK#1 IF(F(2).LT.F(1).AND. F(2).LF.F(3).DR.F(2).LE.F(1).AND.F(2).LT. F(300001283 1))GO TO 150 90001284 00001285 220 00 230 1=1.3 E(I)=E(1+1) 00001286 230 F([)=F([+1) 00001287 GO TO (150.160).KKK 00001288 250 IF (IW.GT.O) WRITE(IU2.2005) F(LOWEST) 00001289 NIT=NIT+1 00001290 00001291 С 00001292 C END OF MINIMIZATION ALJNG DEL 00001293 С IF THERE WAS NO MOTION RETURN 30001294 С С 00001295 IF (EILUWEST) .NE . 0.0) GU TC 260 00001296 IF(.NUT.IDENT) WRITE(IUI.2007) ILIN.FUPT.GMAX.IGMAX.DELMAX.IDMAX. 00001297 +E(LOWEST) 00001298 00001299 IF(.NUT.IDENT) GU TC 20 00001300 IERR = 2GO TO 500 00001301 00001302 260 IF (F(LUWEST) .NE .FO) GU TO 270 00001303 IERR = 3GO TU 500 00001304 С 00001305 С CHANGE E (LOWEST) IF NECESSARY SU AS NOT TU VIJLATE CONSTRAINTS 00001306 С 00001307 270 IF (E(LOWEST) .GE.0.DO) GO TO 271 00001308 WRITE(IU1.2007)ILIN,FOPT.GMAX.IGMAX.DELMAX.IDMAX.E(LOWEST) 00001309 IF (.NOT . IDENT) GE TG 20 00001310 00001311 IERR=-1 00001312 ITMAX=[LIN GU TU 650 00001313 271 FO=F(LUWEST) 00001314 00001315 DO 262 I=1.N 00001316 XT = XO(I) + E(LUWEST) + DEL(I)00001317 TST(1)=0.00 TST(1)=X1-X2(1) 00001318 IF(XT-X2(1).GT.X2ETA(1)) IF (XT-X1(1).LT.X1ETA(1)) TST(1)=X1(1)-XT 00001319 262 CUNTINUE 00001320 00001321 CALL MX(N.TST.TSTMX.IMX) IF (TSTMX.EQ.0.D0) GC TO 272 00001322 00001323 DELAM=TSTMX/DEL(IMX) 00001324 E(LOWEST)=E(LOWEST)-DABS(DELAM) 00001325 272 CONTINUE WRITE([U1,2007)ILIN,FUPT,GMAX,IGMAX,DELMAX,IDMAX,E(LOWEST) 00001326 00001327 С CHECK FOR CONVERGENCE AND CREATE A SUCTION ZONE NEAR CONSTRAINTS C 00001328 С OF THICKNESS X1(I)+PHI OF X2(I)+PHI 00001329 00001330 С 00001331 IERK = 0

.

.

•

.

h.

	ETERT-DAUR/ F/I DWFET)	00001332
		00001333
		00001333
		00001334
		00001335
	IR3=10	00001336
	IF(DABS(ETEST+DEL(I)).LE.DABS(EPS(I))) IR1=0	00001337
	IF(XU(I).EQ.X2(I).AND.DEL(I).GT.X2PHI(I)) IR2=J	00001338
	IF(XU(I).EQ.X1(I).AND.DEL(I).LT.X1PHI(I)) IR2=0	00001339
	IF(IR1.EQ.0.0R.IR2.EQ.0) IR3=7	00001340
	IF(IR3.NE.O) IEHRH10	00001341
	X(1)=XO(1)+E(LOWEST)+DEL(1)	00001342
	I#(X(I)-X2(I).GT.X2PHI(I)) X(I)=X2(I)	00001343
	1F(X(I)-X1(I).LT.X10HI(I)) X(I).X1(I)	00001344
280	CONTINUE	00001345
	CALL FVAL(X.FIST)	00001346
	IF IF ISTAL FAR NOT AND AN ITAGIA21 GU TO 274	00001 347
		00001348
		00001340
		00001344
		00001350
		00001351
	KKK=0	00001352
	GU TU 193	00001353
274	CONTINUE	00001354
	DU 276 [-1,N	00001355
	DEL(I)=X(I)=X0(I)	00001356
	XO([)=×([)	00001357
270	5 G1(I)=G(I)	00001358
	FO=F1ST	00001359
	IF (IEKROCUDDANDOLDENT) GU TU 500	00001360
с		00001361
č	IF TOU MANY ITERATIONS RETURN	00001362
- C		00001363
~	16 (10-51-61) WRITE(1.12-2006) 111N	00001364
		00001365
		00001365
	$\mathbf{LEKK} = \mathbf{w}$	00001360
-	IF(ILIN.GI.IIMAX) GU IU 300	00001367
C		00001368
C	CALCULATE NEW GRADIENT	00001369
C		00001370
281	L IF (IW-GT-2) #RITE(LU2,2001)	00001371
	DD 300 [=1,N	00001372
	X (1) = X() (1)	00001373
	lf(FU.F4.0.D0)40 TJ 285	00001374
	IF(G(I).EQ.0.D0) GO TC 285	00001375
	IF (IDENT) GD 10 285	00001376
	ETAN=DMAX1(ETA.DABS(EM+G(I)+XJ(I)/FJ))	00001377
	IF (G(1)++2+GT+C(1)+DABS(FU)+ETAM)=0 TO 282	00001378
	$DPV(1) = 2 + 0.0 \pm (DAHS(FL) + 0.0 HS(U(1) - 1.0 \pm 0.0 HS((1) + 2.0 \pm 3.3333333330))$	00001379
	DDV(T) = DDV(T) = DA(T) = DA	1100001380
	*)	00001381
		00001331
		0001302
¥ 84	C DRV(I)FC:DUFD3GRI(CIAMFDAD3(CU)/CII) DRV(I)=DRV(I)-4(C)-00.C(I)+DDU(I)-4(C)-04+CII+A(C)-0(I)-5(A(A(A(A(A(A(A(A(A(A(A(A(A(A(A(A(A(A(A	110001303
		//0001384
	+)	00001385
28.	3 DRV(1) = OS[GN(DRV(1),G(1))]	00001386
	IF(.5DG#DAB5(C(1)#DRV(1)/u(1))+u1++001D0)GD TU 295	00001387
28:	5 XO(1)=X(1)+DRV(1)	00001388
	CALL EVAL (XO,FG)	00001389
	$iF = (IW_{*}GT_{*}2) WRITF(IU2_{*}2000) FG_{*}(XU(J)_{*}J=1_{*}N)$	00001390

.,

L

```
290 G(1)=(#G-#0)/DRV(1)
                                                                            00001391
                                                                            00001392
      60 TO 300
                                                                            00001393
      DY=100.D0+DAWS(FC+ETA4/G(1))
 296
      DRV(I)=-DABB(G(I))+DBQRT(G(I)++2+200-D0+DABB(FD)+C(I)+ETAN)
                                                                            00001394
                                                                            00001395
      DRV(I)=DRV(I)/C(I)
                                                                            00001396
      DRV(1)=DMIN1(DRV(1),DY)
                                                                            00001397
      XO(1)=X(1)+DRV(())
                                                                            00001398
      CALL EVAL (X0, FP)
           (1W.GT.2) WRITE(1U2.2000) FP.(XU(J).J=1.N)
                                                                            00001399
      IF
                                                                            00001408
      XO(I) = X(I) - DRV(I)
                                                                            00001401
      CALL EVAL(X0.FMI)
           (IW.GT.2) WRITE(1J2.2000) FMI.(XC(J).J=1.N)
                                                                            00001402
      15
      G(1)=.5D0+(FP-FH1)/ DRV(1)
                                                                            00001403
                                                                            00001404
  300 XO(1)=X(1)
                                                                            00001405
С
                                                                            00001406
С
      IF ON CONSTRAINTS .SET G(I)=0.DJ
                                                                            00001407
С
      DU 305 1=1.N
                                                                            00001408
      IF (XU(1).EQ. X2(1).AND.G(1).LT.0.D0) G(1)=0.D0
                                                                            00001409
      IF (XO(I).EQ.X1(I).AND.G(I).GT.0.D0) G(I)=0.D0
                                                                            00001410
                                                                            00001411
  305 CUNTINUE
                                                                            00001412
С
                                                                            00001413
      IF MIN ALUNG -DEL SET H= C(INV)
С
                                                                            00001414
С
                                                                            00001415
  301 IF (E (LOWEST) .LT.0.D0) 40 TO 20
                                                                            00001416
      IF (IFKR+L2+0) 40 TU 23
                                                                            00001417
С
      MODIFY H AND REITERATE
                                                                            00001418
С
                                                                            00001419
c
      IDENT= .FALSE .
                                                                            00001420
                                                                            00001421
      A=0.D0
                                                                            00001422
      DO 310 I=1.N
                                                                            00001423
      Y(1) = G(1) - G1(1)
                                                                            00001424
  310 A=A+Y(1)+DEL(1)
           (IW.GT.0) WRITE (102.2002) (G(I).1=1.N)
                                                                            00001425
      IF
                                                                            00001426
      AA=A/E(LUNEST)
      C1=1.00/A- 0/AA++2
                                                                            00001427
      C2=2.D0/AA
                                                                            00001428
                                                                            20001429
      8=0.D0
                                                                            00001430
      DO 333 1=1.N
                                                                            00001431
      C(I)=C(I)+CI+Y(I)++2 +C2+Y(I)+u((I)
                                                                            00001432
      X(1) = 0.00
                                                                            00001433
      DO 323 J=1.N
  320 X(1)=X(1)+H(1,J)+Y(J)
                                                                            00001434
                                                                            00001435
  330 B=B-X(1)+Y(1)
                                                                            00001436
      DU 343 I=1.N
                                                                            00001437
      IF(C(I).LE.O.DU)GU TU 20
                                                                            00001438
      DO 340 J=1.N
      H(I,J)=H(I,J)+DEL(I)+DEL(J)/A +x(I)+X(J)/B
                                                                            00001439
                                                                            00001440
  340 H(J,I) = H(I,J)
                                                                            0001441
      GO TO 50
                                                                            00001442
С
      RETURN TO CALLING PROGRAM
                                                                            00001443
С
                                                                            00001444
С
           (IW.GT.0) WRITE(IU2.2000) FU.(XG(J).J=1.N)
                                                                             00001445
  500 IF
      ITMAX = ILIN
                                                                             00001446
      IF( IERR.EQ. D. DR. IERR.EQ. 4) GU TU 600
                                                                            00001447
                                                                            00001448
      IF (IERR-2)610+620+620
                                                                             00001449
  600 ITERNS=ILIN
```

.•

•

Ľ

R J

3

	TRAINE CARA TRANSMILIANA	00001460
	IT LEAKSLUGUT ITEANDELLANT	00001451
	TRITELIULIEJU/JIIERNSIFU	00001401
		00001463
010	WRITE (LUI)2007) (LIN)T UMI) (MAX) LUMAX) UCLMAX) LUMAA	00001403
		00001494
620	WRITE(101,2007)(LIN+FUP1+GMAA)(GMAA)DELMAA)(UMAA)E(LUWED)/	00001495
	ITERNS#ILIN+1	00001450
	WRITE(IUI,2007) (TENNS, F(LLWEST)	00001457
020	PRINT 2011	
	CALL XXXXINVINIGEX,GINAJ	00001454
	PRINT 2009;(GEX(J);J=1;NV)	00001460
	RETURN	00001461
	END	00001462
	SUBRUUTINE INTIPM(E.F.LE.A.I)	00001463
	IMPLICIT REAL #8 (A-H, U-Z)	00001464
CCCCC		C 00001465
C		C00001466
Ç	THIS SUBROUTINE FITS A PARAHOLA THROUGH THREE STEFERENT VALUES	00001487
c	OF THE FUNCTION F(THAT IS THROUGH F(I+1),F(I+1),F(I+3)) THE	C00001468
c	ABSCISSAS OF WHICH ARE GIVEN BY E(1+1), E(1+2), E(1+3). IT THEN	00001489
C	PROCEEDS TO COMPUTE THE ABSCISSA FM CORPESPONDING TO THE MINIMUM	C00001470
С	VALUE OF THE FUNCTION F.	C00001471
C		C00001472
C	NOTE - AFCOEFFICIENT OF HIGHEST POWER OF PARABOLA.	C00001473
c	EE(2)=EM-C(2)	C00001474
С		C00001475
ccccc	<u>ͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺ</u>	C 00031476
	DIMPNSION E(1),F(1),EE(1)	00001477
	Et(3)= C(1+3)-E(1+2)	00001478
	EE(1)= E(1+1)-F(1+2)	00001479
	$DF_{1=LE(1)*(F(1+3)-F(1+2))}$	00001480
	DF3=FF(3)+(F(1+1)-F(1+2))	00001481
	T = 0, $5 = 0$ + (F(1) + 0F(1 - (F(3) + 0F(3)))	00001482
		00001483
		00001484
	EDE = //ABC/E/IA3/ADARG/E/IA2/AAEDM	00001485
		00001486
		00001487
		00001488
		00001488
	IF (ERF23-LI-2-DUFACURCY) ERF73=2-DUFACURCY	00001489
	IF (ERF12.L1.2.DUFACURCY) ERF12=2.DUFACURCY	00001490
	ERDF1=ERE1=DABS(F(1+3)=F(1+2))+ERF23=DABS(FE(1))	00001491
	ERDF $3 = ERE 3 = DABS(F(1+1) - F(1+2)) + ERF(2 = DAHS(EE(3)))$	00001492
	ERDF1#ERDF1+ERE1#ERH 23	00001493
	ERDF3#ERDF3+ERE3#ERF12	00001494
	ERB#ERDF1+ERDF3	00001495
	_ERT=(FRE1#JABS(DF1)#EROF1#UAHS(EE(1))#ERE3#DAB3(OF3)#ERDF3#DABS(EE00001496
	+(3)))+0.500+DABS(T)+ERM	00001497
	ERI=ERT+0.5D0#(ERFI#ERDFI+ERE3#ERJF3)	00001498
	ERE13=DAUS(EE(1))=ERE3+DAUS(FF(3))=ERE1+ERE1=ERE3	00001499
	D#ERE13*0ABS(#E(1)-EE(3))+DABS(FE(1)*EE(3))+(EHF1+ERC3)+ERE13*(E	RE00001500
	+ 1 +ERE3)	00001501
	DA=EE(1)+LE(3)+(EE(1)-EE(3))	00001502
	D=10+D0+D	00001503
	B=10.00*EHB	00001504
	C=10.DJ*ERT	00001505
	IF (DABS(DF1-DF3).LE.H.UR.DABS(T).LF.C.OR.DABS(DA).LE.D) GU TO 1	00001506
	EE(2) = T/(DF1-DF)	00001507
	A=(UF 3-UF 1)/DA	00001508

RETURN 00001509 CONTINUE 00001510 EE(2)=0.00 00001511 1F(F(1+3).LT.F(1+2)) &E(2)=8E(3) 00001812 A=1.00 00001513 **RETURN** 00001514 END 00001515 SUBROUTINE HX(NV.Y.YMAX.IMAX) 00001516 IMPLICIT REAL+8 (A-H,U-Z) 00001517 C C00001519 С SUBROUTINE WHICH DETERMINES THE MAXIMUM ABSOLUTE VALUE ANONG C00001 520 С MEMBERS OF ARRAY Y (DENUTED AS YMAX), TUGETHER WITH THE MEMBER C00001521 С LOCATION (DENOTED AS IMAX). C00001522 C C00001623 DIMENSION Y(1) 00001525 YMAX=DABS(Y(1)) 00001526 IMAX=1 00001527 IF (NV.EQ.L) RETURN 00001528 DU 100 1=2.NV 00001529 IF (DABS(Y(1)).LE.YMAX) GO TO 100 00001530 00001531 YMAX=DAUS(Y(1)) IMAX=I 00001532 100 CUNTINUE 00001533 RETURN 00001534 С 00001535 C+ END OF QUADRATIC CONVERGENCE PACKAGE(WITHOUT PENALTY FUNCTIONS). 00001537 С 00001539 END 00001540 FUNCTION DREAL (2) 00001541 THIS SUBROUTINE CAN BE USED WITH EITHER THE SLUW OR FAST. IBM. С 00001542 С DOUBLE PRECISION . CUMPRESSIBLE AFRODYNAMIC CUEFFICIENTS PROGRAM .00001543 IMPLICIT REAL+8(D) 00001544 REAL#8 Z(2) 00001545 DREAL=Z(1) 00001546 RETURN 00001547 ENTRY DAIMAG(Z) 00001548 DAIMAG=Z(2) 00001549 RETURN 00001550 END 00001551 SUBROUTINE PROPUL(A.N.B.M.C.L) 00001552 IMPLICIT REAL+8(A-H.C-2) 00001553 C C00001555 С A ROUTINE FOR MULTIPLYING POLYNUMIALS CHARB WHERE A.B.C ARE C00001556 С POLYNOMIALS OF THE FURM C00001557 С A=A(1)+A(2)+X+A(3)+X++2+A(4)+X++3+...A(N)+X++(N-1)C00001558 C C00001559 С C=C(1)+C(2)+X+C(3)+X++2+C(4)+X++3+....C(N+M-1)+X++(N+M-2) C00001560 С AND WHERE L=N+M-1 C00001561 C C00001562 DIMENSION C(1), A(1), B(1)00001564 NM=N+M-1 00001565 DU 1 1=1,NM 00001566 1 C(1)=0.D0 00001567

F

1

÷.

t.e

3

00001568 DO 2 1=1.N 00001569 DU 2 J=1.M 00001570 2 - C(1+J-1) = A(1) + B(J) + C(1+J-1)00001871 L = NM 00001572 HETURN 00001573 END 00001574 SUBROUTINE CXINVR(A.N.B.M.DET.IPIV.INDX.MAX.ISCALE) C00001576 С THIS SUBROUTINE IS IDENTICAL TO SUBROUTINE CXINV EXCEPT FOR C00001577 С MINOR NODIFICATIONS THAT CAUSE IT TO BE FASTER(FOR EXAMPLE. C00001678 С THE PIVOT IS DETERMINED BY AVLIDING THE USE OF CABS() BY USING C00001579 С DABS(REAL)+DABS(IMAG)). FOR DETAILS REGARDING UMAGE SEE C00001580 С C00001581 С SUBROUTINE CXINV. C00001582 С 00001384 С 00001585 INPLICIT REAL +8(A-H+C-Z) COMPLEX#16 A(MAX.N).B(MAX.M).SWAP.DET.PIV.PIVI.CO.CI.PIVR 00001586 00001587 DIMENSION (PIV(N), INDX(MAL.2) 00001588 C 00001589 CONSTANTS, INITIALIZATION С 00001590 С 00001591 C)=DCMPLX(3.303.3.303) 00001592 C1=DCMPLX(1.000.0.000) 00001593 DET = C100001594 CADM=1.JDJ 00001595 DO 20 J=1.N 00001596 20 IPIV(J) = 000001597 DU 500 1=1.N 00001598 С 00001599 SEARCH FUR PIVOT ELEMENT С 00001600 С 00001601 CAVM= 3. JOJ 00001602 DO 105 J=1.N 00001603 IF (IPIV(J) .EQ. 1) GO TO 105 00001604 00 130 K=1.N 00001605 IF (IPIV(K) - 1) 50,100,750 00001606 50 CONTINUE 00001607 DR=DREAL (A(J,K)) 00001608 DI=DAIMAG(A(J+K)) 00001609 CAVA=DABS(DR)+DAB5(01) 00001610 IF (CAVM .GE. CAVA) GD TC 100 00001611 IRUW = J00001612 ICOL = K 00001613 CAVM = CAVA 00001614 100 CONTINUE 00001615 105 CONTINUE 00001616 IF (CAVM.EQ.0.0DJ) GG TG 720 00001617 IPIV(ICOL) = IPIV(ICOL) + 100001618 С INTERCHANGE NEWS TO PUT PIVOT ELEMENT ON DIAGONAL 00001619 С 00001620 С 00001621 IF (IROW .EQ. ICUL) GU TE 230 00001622 DET = -DET00001623 00 200 L=1+N 00001624 SWAP = A(IRUW.L) 00001625 A(IROW+L) = A(ICOL+L)00001626 A(ICUL+L) = SWAP

.

į

1

ŝ,

.

3

```
200 CUNTINUE
      IF (N .LE. 0) GU EU 253
      00 220 L=1.M
      SWAP = U(IROW,L)
      B(IHOW_{1}L) = H(ICOL_{1}L)
      B(ICOL.L) = SHAP
  220 CONTINUE
  230 CONTINUE
      INDX(1.1) = 180%
      INDX(I+2) = ICOL
      PIV = ALICOL+ICOL)
      CAPV=CDAB5(PIV)
      IF (CAPV.E4.0.300) 60 TO 720
С
С
         DIVIDE FIVOT HOW BY PIVCT FLEMENT
С
      A(ICUL+ICUL) = CI
      PIVR=1.00/PIV
      00 350 L=1+N
  350 ALLCOLIL) - ALLCULILIAPIVE
      IF (M .Lt. 3) 60 TO 3.33
      DU 370 L-1+4
  373 B(ICUL+L) = H(ICUL+L)+PIVH
С
С
         REDUCE NUN-PIVOI RUNS
C
  380 CUNTINUE
      DO 500 L1-1+N
      IF (LI MEDA ICOL) OF 10 500
      SWAP = A(L1, ICUL)
      A(L1+ICOL) = CO
      DE 400 L:1.N
  400 A(LI+L) = A(LI+L) - A(ICUL+L)+5+AP
      IF (M +LE+ OF GO TO SUD
      DU 450 L-L.M.
  450 B(LINE) = B(LINE) - B(ICLENE)+SWAP
  500 CUNTINUE
С
C
         INTERCHANGE COLUMNS
С
      DU 700 I=1.N
      L = N+1-1
      IF (INDX(L+1) +FQ+ INDX(L+2))GU TU 700
      IRUW = INJX(L+1)
      ICUL = INOX(L+2)
      DG 690 K=1.N
      SHAP = ACK, INCH ]
      A(K_{+}|R_{\cup}W) = A(K_{+}|C_{\cup}L)
      ACKAICHLE = SWAP
  640 CUNTINUE
  700 CONTINUE
      GU TU 750
  720 DET = CO
      ISCALE = J
  750 RETURN
      END
C
        SUBRIUTINE MAINVR _ DUUBLE PRECISION
      SUBROUTINE MAINVHEN, MAX, AJ
```

.

٠

C

3

•

00001685

T

REAL MATRIX INVERSION WITH SOLUTION OF LINEAR EQUATIONS 00001686 С C 00001667 00001688 C CAVM = DABS(A(MAX)), CAVA = DABJ(A(I,J))C 00001000 CADH = DABS(DETERH), CAPV = DABS(PIVOT) С 88861688 00001691 IMPLICIT REAL #8(A-H.u-Z) DIMENSION A(MAX,1), +(150,1), IPIV(150), INDX(150,2) 00001402 00001693 1F(M.NE.0) GO TO 1 00001494 D0 2 1=1+N 2 8(1.1)=0.00 00001695 60 TU 10 00001696 1 PHINT 1000 00001697 1000 FORMATCE NO SULUTION OF LINEAR EQUATIONS IS ALLOWED FOR IN 00001698 + THIS VEHSION OF MAINVR!) 00001699 00001700 STOP 10 CONTINUE 00001701 00001702 С C CUNSTANTS, INITIALIZATION 00001703 C 00001704 C0=0+00 00001705 00001706 C1=1.00 00001707 DET = CI 00001708 CADM=1.JUJ 00 20 J=1.N 00001709 00001718 C = (L)VI4ICS00001711 DU 500 1=1.N ¢ 00001712 SEARCH FUR PIVOT ELEMENT 00001713 С C 00001714 CAVM=0.000 00001715 DU 105 J=1.N 00001716 00001717 TH (THIV(J) .EQ. IT GO TO 105 00001718 DU 100 K=1+N IF (IPIV(K) - 1) 53+100+750 00001719 50 CONTINUE 00001720 CAVA=DABS(A(J+K)) 00001721 IF (CAVM .JE. CAVA) GU TU 100 00001722 IRON # J 00001723 ICUL = K 00001724 CAVM = CAVA 00001725 100 CUNTINUE 00001726 135 CONTINUE 00001727 IF (CAVN.EU.U.ODO) GL TU 720 00001728 00001729 IPIV(ICOL) = IPIV(ICOL) + 1 С 00001730 С INTERCHANGE HUNS TO PUT PIVOT ELEMENT UN DIAGUNAL 00001731 С 00001732 IF (IROW .EQ. LULL) GC TO 232 00001733 OET = -DET00001734 DU 200 L=1+N 00001735 SWAP = ALIKUNILI 00001736 A(IKUW+L) = A(ICOL+L)00001737 A(ICUL+L) = 5WAP00001738 200 CONTINUE 00001739 IF (M .LE. J) GO TJ 230 00001740 DU 220 L=1.M 00001741 SWAP = B(IROWAL) 00001742 00001743 $B(IROW_{+}L) = B(ICOL_{+}L)$ 00001744 B(ICUL+L) = SHAP

126

.

.

٩

í.

1 1

A STATE AND

```
220 CONTINUE
  230 CONTINUE
      INDX(1+1) = IROw
      IHDX(1+2) = ICUL
      PIV = A(ICUL+ICOL)
      CAPV=DAdS(PIV)
      IF (CAPV.EQ.0.0DQ) 40 TU 723
         DIAIDE HIATL MOR RA HIARL FFEMENI
      A(ICOL + ICOL) = CI
      PIVH=1.D0/PIY
      DO 350 L=1.N
  350 A(ICUL+L) = A(ICUL+L)+PIVH
      IF (M .LE. U) GU TU 380
      00 370 L=1.H
  370 B(ICUL,L) = B(ICLL,L)+PIVR
c
         REDUCE NUN-PIVUT HUWS
  383 CONTINUE
      DU 500 L1=1+N
      IF (LI +LA+ ICCL) SC TG SOO
      SWAP = A(L1, ICOL)
      A(L1+ICOL) = CO
      DO 400 L=1.N
  400 A(L1+L) = A(L1+L) - A(ILL+L)++#AP
      IF (M .LE. 0) 66 18 530
      DO 453 L=1.4
  450 B(L1+L) = B(L1+L) - B(ICCL+L)+SWAP
  500 CUNTINUE
С
С
         INTERCHANGE CULUMNS
C
      DU 703 1=1.N
      L = N+1-1
      IF (INDX(L+1) .FQ. INOX(L+2))60 TO 700
      IROW = INUX(L,1)
      ICOL = INDX(L+2)
      DU 690 K=1.N
      SWAP = A(K, IROW)
      A(K+1RO+) = A(K+1COL)
      A(K+ICOL) = SHAP
  690 CUNTINUE
  700 CUNTINUE
      GU TU 750
  720 DET = CO
      ISCALF = J
  750 RETURN
      END
      SUBROUTINE MXPROD(A, 3, C, NIA, NIU, NJH, MAXA, MAXH, MAXC)
      REAL +3 A.B.C.D
      DIMENSION A(MAXA.1), ((MAXU.1).((MAXC.1).)(100)
      DU 130 I=1.NIA
      DU 200 J=1,NJH
      C(+0=(L)C
```

00001803

127

С

С

C

C

С

.

ţ

ř.

2:4

DU 203 KK=1+NIH

200 CUNTINUE

D(J)=D(J)+A(1,KK)+3(KK,J)

	NLN+1+NJN	00001804
300	C(1,J)=D(J)	00001805
100	CGNTINJE	00001800
	NETLIRN	00001807
	END	00001808
	SUBROUTINE MAADDEA.B.C.NIA.NJ.MAXA.MAXB.MAXC)	00001809
	REAL +8 Asts C	00001810
	DIMENSIUN A(MAXA, 1)+H(MAXB, 1)+C(MAXC, 1)	00001511
	00 100 I=1.NIA	00001412
	DO 10) J≖I+NJ	00001813
100	C(1,J)=A(1,J)+B(1,J)	00001814
	RETURN	00001815
	END	00001816
	SUBPLUTINE MXSUB(A.H.C.NIA.NJ,NAXA,NAXH,NAXC)	00001817
	REAL #U A.H.C	00001818
	DIMENSION A(MAXA.1).U(MAXU.1).C(MAXC.1)	20031819
	DU IJJ I=1,NIA	00001820
	DU 103 J=1,NJ	00001821
100	C(I+J)-A(I+J)+(I+J)	00001822
	HE TURN	00001823
	END	00001824
	SUBROUTINE MASCAL (A, 11+ C, NIH, NJH, NAXA, MAXH, MAKC)	00001825
	REAL+d A, B,C	00031826
	DIMENSIUN H(4AXP+1)+C(4AXC+1)	00001627
	DU 130 L=1+N1B	00001828
	DU 100 J=1+NJH	00001824
100	C(I,J)=A+H(I,J)	00001830
	RETURN	00001831
	END	00001832
END U	F JOB. CONDITION CODE WAS 0	

Nillen	9. NC=	2.NAER= 0.8=	.10000000000000000000000000000000000000
. 1 999	9999999999999 7 ,	.3063000000000000003	* * 37000999999999999
AEND	1 + HL.=	•	
		•	
WAAAA	3.01450000000000000000	•••	
• 0	•		
•9	•	• 9	
• 0	•		
• 0	•	.0	
.0	•	• •	
• •	•	•0	
	•	.0	
• •	•	.0	
••	•	.0	
		- 0	0
		-0	
••	•	-0	
. 0	•		9
-0	•	• 0	0
- 0	•	. 33899999999999999960-0	10
- 0			0
-0		-0	0
-0		•9	0
•0		• 9	0
-0		• 0	.5462999999999999970-01.
.0		•0	
•0		• 0	0
.0	•	•0	0
•0	•	.0	• •0 •
.0	•	• 0	••••
.9080	00000000000000000-02.	• 0	* *0 *
.0	•	• 0	• • • • •
•0	•	• 0	• •0 •
.0	•	•0	• •0 •
• 0	•	• 0	•••0 •
• 0	•	.12049999999999999990-0	1
• 0	•	• 0	• •0 •
• 0	•	• 0	• •0 •
• 0	•	• 0	• •0 •
• 0	•	• 0	• •0
• 0	•	•0	• • • • • • • • • • • • • • • • • • • •
•0	•	•0	• • • • • • •
•0	•	•0	* *0
•0	•	•0	••••
•0	•	•0	• • • • • •
•0	*	•0	
•1001	<u>aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa</u>	•0	0
.0	•	-0	0
•0	•	-0	0
-0	•	-0	• •0
-0	•	• 9	• •0
-0	•	• 0	0
-0	•	• 0	• •0
+0		• 0	0
.0	•	• 0	• •0
.0		• 0	• •0
	•		

١

١

۱.

١

ŧ

١

۱

1

t

1

ŧ

t

ï

t

ł

;

ť

, ř

••	• • 0	• • •	٠
•0	0	• • • •	
			•
• •	• • • • •		•
	0		
- 0			
-0			
	0	0	
.0	0	0	
. 9	• • • •	• • 0	
.0	0	* •0	
.0	• •0	• • 0	
• 0	• •0	, .0	
• 0	0	• • • •	٠
• 0	0	• • • •	٠
• 0	0	• •0	٠
. 0	• • • •	, .0	٠
• 0	• •0	• •0	۲
• 0	• CMEGAN= +D	•	
•0		• 31•330999999999999	*
34.451000000000005			
114.804444444444		0	
•0	0	a ev _VFisi	,
11496-000000000000		0006	
8.1970000000000000	• • • •	0	÷
-0	0	+CTRA'I-	•
6.556999499999999994	6.5569999999999999	()	
.0	• •0	• • •	
CREF= 13.542999999999999	99 .ZW= 1.0000000000	• 00000	
1.000000000000000000	. 1.0000000000000000	 1.000000000000000000000000000000000000	٠
• 0	0	* •0	٠
• 0	• •0	• •0	٠
• 0	• • 0	, 39.7199999999999989	
46.250000000000011	, 39,7199999999999989	• •6-280000000000011	
• 0	• •0	• •0	*
•0	• •0	• •0	
•0	• • 0	039999999999999999	
.7400000000000000	• • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•
• U • O	0	+ + V n = 0	*
- 0	+ + · · · · · · · · · · · · · · · · · ·	- 4 7999999999999999999	
22999999999999999999		229999999999999999	
- (t	0	• • 0	•
• 0	• •0	• • 0	
• 0	• • O	,5079999999999999995	
.2799999999999999999999	, -, 509999999999999995	• • 2 799999999999999999	
• 0	• •0	* • 0	
• 0	• • 0	· · 0	٠
•0	• •0	36000000000000000	. *
4500000000000000000000000000000000000	13600000000000000000	• -•4500000000000000001D-0	1
• 0	* •0	• •0	•
•0	• •0		•
•U	1 4U		•
-0	* • 300000000000000000000000000000000000	+ • • • • • • • • • • • • • • • • • • •	
-0	0	* *0	
.0	• • 0	.2000000000000000000000000000000000000	1.

١

ŧ

ť

ŧ

t

ŧ

i

ġ

I

• 0	•	• 0	0
• 0	٠	• •	, .0
• 0	٠	• •	19909000000000000000000000000000000000
- . 22 00 00 00 00 00 0 0 00 0 0 0 0 0 0 0		10000000000000000000000000000	01 #2000000000000000000
• 🛛		• 0	9
• 0	•	. 0	• • 0
• •		• 0	0
• •	٠	• 0 +	9
• 0	٠	.0	· · · ·
. 0		.0	0
• 0		• 0	0
. 0	•	• 0	0
6 0		.0	0
. 0		• 0	0
• 0		• 0	0
• 0		• 0	9
• 0	٠	• 0	0
• 0	•	• 0	• 0
• 0	٠	• 0	• • 0
• 0	•	• 0	, .0
• 0		• 0	0
• 0		• 0	0
• 0	•	• 0	• •0
•0		• 0	0
• 0		• 0	• • • • •
• 0		• 0	0
• 0	٠	• 0	0
• 0		• 0	• • 0
• 0		• 0	∗ ∗ 0
• 0		• 0	• • • •
• 0		• 0	* ZREF =
1.0000000000000000000	•	1.0000000000000000000000000000000000000	, - 38,199999999999 9993
-1.2299999999999999998	•	• 0	0
• 0	٠	• 0	• • 0
• 0	٠	• 0	0
• 0	•	• 0	• •0
• 0		• 0	0

• 0				• 0					•	• 0	
.0				.0					•	.0	
• 0				.0						.0	
• 0				.0						.0	
• 0			,	• 0						• 0	
• 0				• 0					•	• 0	
0= 5.0	000000000000000000000000000000000000000	0000		+CL	K=	77.920	00000	000000	017		•
77.92	0000000000000	17	,	+ 0						* 0	
.0			•	• 0					•C	(R=	
36.96	99999999999999	39	. W	R=	10	0.10000	00000	000010		• N1	1 F =
	0,	Ο,				0.		0,			0.
4END											
4FT											
NHC at	10. AK=	- 0						.5000	000	000	1000

4FT							
NK#	10.AK= .0		• • 50	0000	00000000000020-01.		
.100000	00000000000		.199999999999999999997	٠	.3000000000000000003	,	J
. 399999	9999999999994		.50000000000000000000		+600000300030000006	,	,
• 6999 9 9	9999999999997		.80000000000000003		• 0	,	,
• 0		•	• 0	•	• 0	,	,
• 0			• 0	•	• 0		
.0			• 0	,	• 0		,
MAXNK=	20 .NPRIN	ľ =	0 + NPUNCH=		0.IRIGID= 2	! •	
JRIGID=	1						

AEND

.

٠

,

5

8

,

,

,

,

ŧ.

-

Ĩ

۱.

ļ

. 259999 99999999999

. 0 .0 • 0

.0 .0 .0 .0 .0 .0 ٠

. 2599999999999999999

e

.

.

٠

.

.

.

.

٠

1

1.

NCACT=

X1(I) X(I) X2(E) EPS(1) 0.0 4.5000000+00 5.0000000+00 1.0000000-05 6.0000000+01 7.000000D+01 1.5000000+02 1.0000000-05 5.0000000-01 9.000000-01 1.0000000+00 1.0000000-05 0.0 9.1000000-01 5.0000000+00 1.000000-05 6.000000+01 1.5000000+02 1.0000000-05 1.2000000+02 5.000000D-01 1.0000000-05 6.000000-01 1.0000000+00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.0 0.0 C.O 0.0 0.0 0.0 0.0 0.0 LENGTH= 3.0000000+04 NF= 30 FREGIN= 0.5000000+00 FEND= 0.4000000+02 - Mar 0 - 90 NV=12 NPR= 0 NDR= 1 ETA1= 5.000000D-13 PHI= 1.000000D-04 NONACT= 6 NVACT= 6 THE NON ACTIVE PARAMETERS NA(1) 7 8 Q 10 11 12 WL= 1.0000000+00 WT= 1.00000000+00 INITIAL (INPUT) VECTOR DRV(I) 1.000000D-04 1.000000D-04 1.000000D-04 1.000000D-04 1.000000D-04 1.000000D-04 1.000000D-04 1.000000D-04 1.0000000-04 1.0000000-04 1.0000000-04 1.0000000-04 FMIN= 5.4000000+00 ETA= 1.0000000-09 ITMAX= 8 IW= 0 **INITIAL GRADIENTS VECTOR G(I)** -0.762475D-01 0.245235D-01 0.564522D-01 0.670478D-01 0.6802020-03 -0.1099300+00 0.0 0.0 0.0 0.0 0.0 0.0 FINAL GRADIENTS VECTOR G(I) 0-1258330-01 0.2287790-01 -0.54 97 700+00 0.0 0-292766D-12 0.2905090-12 0.0 0.0 0.0 0.0 0.0 0.0 IERR= 4 ITERATIONS PERFORMED= 9 FUNCTN= 6.371400D+00 OPTIMUM VECTOR X(I) 5+000000D+00 6+000000D+01 6+845296D-01 0.0 1.199568D+02 1.000000D+00 0.0 0.0

.

0.0			133	
	0.0	0.0	0.0	
X#(I)	DEFLN([)	•••	PSD(1)	
3.1415930+00	1-2854640-03	8 0.0	4.03634	
1.1414450+01	2-5162820-0		4.75311	
2.7960170+01	5-5377890-01	0.0	1.06865	
3.623304D+01	6.1609910-01	0.0	6.93831	
4.450590D+01 5.2778760+01	5+3479930-01		4.92507	
6.105162D+01	4.728004D-01	0.0	2.90821	
6.932448D+01	4 • 76 77 06 D-0	0.0	2.35313	
7.759734D+01	4.969049D-01	0.0	1.95006	
8.58/0200+01	5+3105430-01 5-7713540-01		1.04711	
1.0241590+02	6-178831D-01	0.0	1.22796	
1.1068880+02	6.1852980-01	0.0	1.07884	
1.189616D+02	5.527550D-01	0.0	9.56723	
1.2723450+02			7.70064	
1.4378020+02	2.721794D-01	0.0	6.97643	
1.5205310+02	2-1409770-01	0.0	6.35536	
1.6032590+02	1.707177D-0	0.0	5.81826	
1.0809880+02	2 1.1180570-01		2.33020	
1.8514450+02	9.090681D-02	2 0.0	4.57736	
1.934174D+02	7 • 329973D-02	2 0.0	4.25573	
2.016902D+02	5.738629D-02	2 0.0	3.96879	
2.182360D+02	5.602714D-02	2 0.0	3.4800	
2.265088D+02	3.98792 D-02	2 0.0	3.2708	
2.347817D+02	3.24335.0-02	2 0.0	3.08101	
2.430546D+02	3.021280D-02	2 0.0	2.90822	
DRMS(I)= 1.0	84848D-01 0.0)	2013043	
XF (1)	DEFLNR(I)		PSD(1)	
3-1415930+00	A. 04 78290-03	3 0 . 0	4-0363/	
1.1414450+01	1 . 322278D+00	0.0	4.75311	
1.9687310+01	4.9538830+0	0.0	1.91730	
2.796017D+01	1.548375D+01	0.0	1.06869	
4.4505900+01	2.3801720+01	0.0	0+9383) 4-92503	
5.2778760+01	2.5802570+0	0.0	3.7069	
6.105162D+01	2.886523D+01	0.0	2.90821	
6.932448D+01	3.305188D+01	0.0	2.35313	
8.5870200+01	4.5653260+01	0.0	1.64711	
9.414306D+01	5.433330D+01	0.0	1.41302	
1.0241590+02	6.328107D+01	0.9	1.22796	
1.1068880+02	6.846431D+01	0.0	1.07884	
***03010040Z	0.01000404040		70012	

ŧ

Ĵ

 Ŧ
1.355074D+02 1.437802D+02 1.520531D+02 1.603259D+02 1.625988D+02 1.768717D+02	4.742486D+01 3.913402D+01 3.255422D+01 2.737047D+91 2.3211100+01 1.977527D+01	0.0 0.0 0.0 0.0 0.0	7.7006480-05 6.9764390-05 6.3653670-05 5.8182610-05 5.3502690-05 4.9397250-05
1+8514480+02 1-9341740+02 2+0169020+02 2-0996310+02	1.6830900+01 1.4177440+01 1.1574250+01 1.2662360+01	0.0 0.0 0.0	4.577362D-05 4.255733D-05 3.968796D-05 3.711608D-05
2.162360D+02 2.265086D+02 2.347617D+02 2.430546D+02	1.222714D+01 9.033005D+00 7.614798D+00 7.343357D+00	0.0 0.0 0.0 0.0	3.480086D-05 3.270835D-05 3.081013D-05 2.908223D-05
2.5132740+02 DRPMS(I)= 6.3	8.320211D+00 371400D+00 0.0	0.0	2.7504330-05
XF(1)	DEFL N2 (I) • • • •	••• PSD(1	•
3+141593D+00	6+700890D-08	0.0	4.0363420-02
1.1414450+01	6.3784320-05	0.0	4.7531160-03
1.968731D+01	1.213973D-04	0.0	1.9173010-03
2.6233040401	3+2112390-04	0.0	1.03831en-04
3.0233040401		0.0	0+9303160-04
〒●〒ついつダリレキリ1 町。クプデタデポバムパミ	10400220-04	0.0	3.7060KAD-04
6-1051620+01	6.5010180~05	0.0	2-9082100-04
5.9324ARD+01	5. 34 891 20-05	0.0	2.3531330-04
7.7597340+01	4-8149830-05	0.0	1.9500610-04
8-5870200+01	4.6556720-05	0.0	1.647114D-04
9-414306D+01	4.7065650-05	0.0	1.4130210-04
1.0241590+02	4.688100D-05	0.0	1-2279600-04
1.1068880+02	4-1274250-05	0.0	1.0788420-04
1.189616D+02	2.9231540-05	0.0	9.5672330-05
1.2723450+02	1.7228730-05	0.0	8-5531000-05
1.355074D+02	9-4322140-06	0.0	7+700648D-05
1-437802D+02	5.1682600-06	0.0	6.976439D-05
1.5205310+02	2.913162D-06	0.0	6.355367D-05
1.6032590+02	1.695705D-06	0.0	5.8182610-05
1.685988D+02	1.0140470-06	0.0	5.3502690-05
1.768717D+02	6.174916D-07	7.0	4.9397250-05
1.0341740402	J. 7827540-07	0.0	4.5//302D-05
1.9341740+02	2+2805410-07	U # U 0 0	
2.0006710402	1 3400120-07	0.0	3.7116000-05
2.1423400+02	1.0024130-07		3.4800840-05
2.2650990402	1+U72+130-07 5.2017020-09	0-0	3.2708350-05
2.3478170402	3.2410220-08	0.0	3,0810130-05
2.4315461402	2.6546640-09	0-0	2.9082230-05
2.513274D+02	3.0143240-08	0.0	2.7504330~05

.

.

¥.

ţ

XF(I)	DEFLNR2(1)	PSD(I)
-------	------------	--------

3.141593D+00 6.613514D-07 0.0

4.0363420-02

1.1414450+01	8.3104430-03	0.0	4.7531160-03
1.9687310+01	4.7052410-02	0.0	1.9173010-03
2.7960170+01	2.562052D-01	0.0	1.0686500-03
3.6233040+01	3.4575210-01	0.0	6.9383180-04
4.4505900+01	2.7901630-01	0.0	4.9250750-04
5.778760+01	2.4679910-01	0.0	3.7969580-04
6-1051620+01	2.4231240-01	0.0	2.9082100-04
6.9324480+01	2-5706250-01	0.0	2.3531330-04
7.7597340+01	2.899269D-01	0.0	1.9500610-04
5.557020D+01	3.4329490-01	0.0	1.6471140-04
9.4143060+01	4.171358D-01	0.0	1.4130210-04
1.0241590+02	4.9173580-01	0.0	1.2279600-04
1.1968889+02	5.0569240-01	0.0	1.0788420-04
1.1896160+02	4-136810D-01	0.0	9.5672330-05
1+2723450+02	2.789094D-01	0.0	8.5531000-05
1.3550740+02	1-7319660-01	0.0	7.7004460-35
1.4378020+02	1.0684220-01	0.0	6.9764390-35
1.5205310+02	6.735272D-02	0.0	6,3553670-05
1.6032590+02	4.3587080-02	0.0	5.8182610-05
1+6859880+02	2+8824840-02	0.0	5.3502690-05
1.7647170+02	1+9317350-02	0.0	4.9397250-05
1-8514450+02	1.2966710-02	0.0	4.5773620-05
1.9341747+92	8-5540170-03	0.0	4+2557330-05
2+0169020+02	5.3167340-03	0.0	1.9687960-05
2+0996310+02	5.9510190-03	2.0	3.7116020-05
2-1823600+02	5-2028290-03	0.0	3.4800860-05
2+2650880+02	2+6689440-21	2.2	3+2708350-05
2.3478170+02	1+7865300-03	∩ •0	3.0810130-75
2+4305467+22	1+5682570-31).0	2.9382230-35
2+5132740+32	1-9040120-03	3.0	2.7504330-05
ORRMS([)= 6.3	714000+00 0.0)	

•

٠

,

TERNS	FOPT	GMAX	IGMX	DELMAX	IDMX	F(LOWEST)
1	6.6364450+00	1.0992970-01	6	1.0992970-01	6	2.097215D+00
2	6.6086250+00	2.4730270-01	3	9.7695780-02	6	1.7345050+00
3	6.5805600+00	1.4222960-01	3	1.5392020-01	L	1.4792360+00
4	6.5541900+00	3.7807550-02	4	1.4933440-01	4	3.0223190+00
5	6.537558D+00	1.5792430-01	3	2.4716850-02	3	3.1958000+00
6	6-5311530+90	4-1763700-02	4	6.2297360-02	4	2.4924770-01
7	6.530256D+00	2.3449890-02	2	2.5778520-02	2	1.7050480+02
8	6.4712050+00	5.4977020-01	3	3.3526840-02	2	1.3908400+02
9	6-3714000+00					

ŧ

G.

Ţ

APPENDIX G

-138-

INPUT/OUTPUT EXAMPLE FOR GUST SENSITIVITY PROGRAM

The source listing of the program is identical to that of the gust optimization program. The operating instructions given in Appendix B indicate which cards need be deleted or replaced together with the required changes in the data.

The example chosen relates to the same DAST configuration (M=0.9) chosen for the gust optimization example. All the data required (except for the aerodynamic coefficients which are identical to the ones used in the previous examples) appears in the output. The control law used is based on the L.D.T.T.F. and it employs only three control variables. The sensitivity of these 3 variables is tested herein. Note that the array NA(I) involves 9 control variables.

The variation of $i_{RMS}(I)$ (= $\delta_{i,rmS}$) and DRRMS(I) (= $\delta_{i,rmS}$) with the control variables is printed in the output and is supplemented by plots illustrating this variation.

- It is important to note the following points:
- Reference to X(I) in the plotted output implies reference to the active X(I) array.
- 2) In studying the sensitivity of the resonse to the various control parameters, one should remember the constraints imposed on the control variables during optimization. This is important since a control variable lying on a constraint will not necessarily exhibit a minimum type variation during the sensitivity studies.

Note that all the control deflections are given in degrees per unit gust velocity. The plotted output shows labels which appear to be

displaced. These displacements reflect transient difficulties encountered using a new plotter and they do not originate from the programs used.

NH=	9. hC=		2. NAER= 0.8=	•1		
++777777 h4=		•	· · · · · · · · · · · · · · · · · · ·	•	• 3 3 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	•
AFNE			-			
4651						
REASS 3.	0195000000000000	007	9		•	
.0	•••••••••••••		• • • • • • • • • • • • • • • • • • • •	•	• 0	•
.0			•0		•0	
.0		•	• 0	•	• 0	
.0			. 6		.0	•
•0		•	• 0		13595.000000000000	
.0		•	•0	٠	• 0	٠
• 0		•	• 6	•	• 0	
•0		٠	• 6	•	•0	•
• 0			•0		•9	
• 0		•	• 0	٠	• 0	٠
.2060995	999599999980-0	1.	• G	٠	• 0	٠
• 0		۲	• 0	٠	• 0	
• 0		•	• 0	٠	•0	9
• 0		٠	• 0	٠	•0	۲
•0		٠	•0	•	•0	•
• 0		٠	• 33899999999999999960-0)1	•0	۲
• 0		٠	• 0	٠	•0	٠
•0		٠	•0	•	•0	٠
•0		*	•0	٠	•9	
• •		٠	• 0	٠		•
•0		•	•0	•	• 249533333333333333333	
• •		•	••	•	.0	•
• •		•	••	•	•0	•
••			••		• •	
-0					•0	
-9080000	000000000000000000000000000000000000000	19.	• 9		•9	
-9			•9		•9	
• 0			•0		•0	
.0		•	• 0		•0	
• 0			• 0	•	• 0	
• 0		•	.1204999999999999990-0	11.	•0	
• 0		•	• 0	•	• 0	
• 0			•C .	•	• 0	٠
• 0			•0		•0	
• 0		•	• 0	•	• 0	٠
• 0			• C	•	• 16309999999999999998D-0	1.
• 0		٠	• 0		• 0	٠
• 0		٠	• 0	•	• 0	٠
• 0		٠	• C		• 0	٠
• 0		٠	•0	٠	• 0	
• G		•	•0	٠	•0	
.1551999	9555555555550-0	1.	• 0	٠	•0	٠
• 0		٠	•0	٠	•0	•
• 0		۲	•0		• 0	٠
• U		٠	• 0	٠	••	٠
• 0		٠	• 4	•	• U	
• •		•	• 0	٠	•0	٠
••		•	• v	•	• U - 0	
- 0		•	-0	•	- 0	•
• •		•	•v	•	• V - C	•
- U - C		•			- 0	
• •		٠	••	٠	+ v	٠

	0		
. 0	0	0	
. 0	0	6	
	A A A		
			•
• •	• • • •	• • • •	
• 0	0	• • • •	٠
• 9	• • 0	* *0	
. C	s +0		
. 0	0	0	
. 6		0	
. 6	6	0	
- 0	0		
			•
• •	• • •	• •0	
• 0		• • 0	•
. 0	• • 6	• •0	
• 0	0	• • 0	
. 0	• • C	0	
• 0	0	• • 0	
• 0	• • • •		
. 0	OMEGANE -0		•
		• • • • • • • • • • • • • • • • • • • •	
	, 9.9410000000000000	• 71+220+44+444444444	+
34.981000000000005	. 50.254000000000CCIJ	• 84•7018448484888	
115.80955555555959999	. 127.980000000000000	• •0	٠
- O	0	v • Q	
• 0	0	• VEL =	
11496.0000000000000	.BINAN- 8.197000000000)))) 6 .	
5-1970000000C00C00C	0	0	
-0		-C IRANE	
A . BRACOCCCCCCCCCCCCC		0	
		* ••	•
•0			
CFEF= 13.542999999999999	9999 • Zw= 1•00000000000		
1.0000000000000000000000000000000000000	• 1.000000000000000000000000000000000000	• 1•00000000000000000	
• 0	• • C	• •0	•
• 0	0	0	
•0	0	. 39.7199999999999989	
46-2800000000000011	36.716600006606680	• 46-28000000000000011	
-0		0	
			•
• 0			•
• 0	• • 0	• • • • • • • • • • • • • • • • • • • •	•
•740000000000000005	• • €39559999999999999	• • 74000000000000000005	٠
• 0	0	• • 0	•
• 0	0	0	
• 0	• • C	479999999999999 9990	,
. 2299999999999999999		2299999999999999996	
-0	0)	
			•
• •		J IV	•
• C	• • 0	• -• 202222222222222	
.275555555559955999	• ••	• •2799999499999999999	•
• 0	• •C	• •0	
. 0	• •C	• •0	,
• 0	• •0	36000000000000000000000000000000000000	
45000000000000000000000000000000000000	-01 36000000000000000000		01.
-0	0	• • • •	
- 0	0	0	
• U		7 •V 76000000000000000000000000000000000000	•
• U		• • 30000000000000000000000000000000000	*
.10000000000000000006	360000000000000000	• • 1000000000000000000	
• 0	• •0	• • 0	
• 0	• •0	• •J	•
• 0	• • 0	20000000000000000000	01.
			-

. 2 5 5 5 5 5 5 5 5 5 5 9 9 9 9 5 5	200	000000000000000000000000000000000000000	004 D-01 .	. 259999999	999999995	
. (6		•	• 0		
.0	• •0		•	.0		•
.0	0			100000000	0000000000-01	
220000000000000000000000000000000000	10		0.050-01	220000000	000000000000000000000000000000000000000	
					~~~~	
- <b>A</b>	0		•			
	• • • •		•	•0		۰
••	• • •		•	• 0		•
• 0	• •C		•	• 0		ŧ
• 0	0		•	• 0		
• 0	C		•	• 0	-	
.0	0		•	• 0		
.0	0			• 0		
.9	• • C			.0		Ì
- 0	0			.0		Ľ
. 0	0		•			•
	• ••		•	••		٠
••	• • •		•	• 0	1	•
• 0	• • C		•	• 0		9
• 0	• •0		•	• 0		
• 0	• • 0		•	• 0		•
. 0	0			• 0		
•0	0		•	• 0		
• 0	0			• 0		
• 0	0			.0		
.0	0			- 0		
• 0	0		•	.0	·	•
. 0			•	••		•
••			•	•0	4	9
•0	• •0		٠	• 0		۲
• 9	• •O		*	• 9	:	ŧ
- 0	0		•	• 0	1	
• 0	• •G		•	• 0		
•0	0		•	ZREF =		
1.00000000000000000	. 1.00	000000000000000	. 000	-38.1999999	99999993	
-1.2299955595555556	C			• 0		
• 0	0			• 0		
• 0	0			-1)		
- 0	0		•			•
- 0			•	••	•	•
••	•••		•	•0	1	*
••	+ •0		•	•0		,
• 0	0		•	+ Q	1	
• 0	• •0		•	• 0	,	٠
• 0	0		•	• 0	•	•
G= 5.0000000000000000	•CLF#	77.9203000	000000017	7 .		
77.920000000000017	0		,	.0		•
• 0	0			18=		
36.56555666666666688	and a l	00-00000000	000000	.NTF=	1.	
0. 0.	• • • •	0.	0.	0-56461		
AENC				~ ¥ 11 % / %	• •	
4F1						
			E		~~ ~ ·	
		1				
	• •159	**********	321 1		10000003	•
• 3777777777777777777777777777777777777	200	00000000000000	660 .	-0000000000	00000006	
.655959999595995957	600	000000000000000000000000000000000000000	003 .	• 0	•	•
• 0	0		•	•0	•	
• 0	• •0		•	• 0		
. 0	0			• 0		•
NAXNK# 20+NPRENE		0.NPUNCH	•	0.IRIGIC=	2.	
JAIGIC* I					÷ 7	

AENC

.

Ť

÷.

.

```
XICCO
                   X(1)
                                X2(1)
                                            LPS(1)
 3.0000000+00 $,000000+00 6.600000+00 $.000000-01
 5.0000000+01 6.000000+01 7.0000000+01 5.000000+00
 7.000000-01 5.000000-01
                              1.0000000+00 5.000000-02
 0.6
                0.0
                              6.0
                                            0.0
 4.809090D+01 1.200000D+02 1.500000D+02 1.000900-05
 8.000000-01 6.000000-01
                              1.000000+00 1.0000400-05
 0.0
                6.0
                                            0.0
                              C.C
                                            0.0
 0.0
                0.0
                              0.0
                0.0
                                            0.0
 0.0
                              6.0
 0.0
                0.0
                                            0.0
                              0.0
 0.0
                0.0
                              0.0
                                            0.0
                                            0.0
 0.0
                0.0
                              0.0
 LENGTH= 3.00000000+04
NF= 30 FBEGIN= 0.5000000+00 FEND= 0.4000000+02
.M#0.50
NWE12 NEFE O NORE 1
ETA1= 5.0000000-13 PHI= 1.0000000-04
NCNACT= 5 NVACT= 3
 THE NUN ACTIVE PARAMETERS NA(1)
                  7
        £
              ŧ
                        8
    4
    G
       10
            11
                 12
  NL= 1.0000000+00 NT= 1.0000000+00
  INITIAL (INPUT) VECTOR DAV(1)
  1.000000D-04 1.000000D-04 1.000000D-04 1.000000D-04
1.000000D-04 1.000000D-04 1.000000D-04 1.000000D-04
  1.000000D-04 1.000000D-04 1.000000D-04 1.000000D-04
FNIN= 5.4000000+00 ETA= 1.0000000-09
ITMAN & IN O
VEN.X( 1),DAST N=0.900YN.PRESS= 5.0
  C.300000E+01 0.350000E+01 C.4J0000E+01 0.45000JE+01
  0.500000E+C1 C.2500C0E+C1 C.60C000E+01
DEPS(1) FED
  0.810798E-01 0.649950E-01 0.891183E-01 0.932783E-01
  0.574055E-01 0.101469E+C0 C.105451E+00
VAR.X( 1).CAST M=0.90DYN.PRESS= 5.0
  0.300000E+01 0.350000E+01 0.400000E+01 0.45000JE+01
  0.5000C0E+01 0.550000E+01 C.600000E+01
CARMS(1) FSD
  0.653673E+C1 0.642680E+01 0.636840E+01 0.633686E+01
  0.6320628+01 0.6313636+01 0.6312396+01
VAR.X( 2).CAST N=0.90DYN.PRESS= 5.0
  0.500000E+02 0.550000E+02 0.600000E+02 0.650000E+02
  C.7000C0E+02
DRAS(1) FSD
 0.102940E+00 0.597592E-01 0.974055E-01 0.556903E-01
  C.544555E-01
```

.

.

¥.

. .

VAR.XC 23.DAST	M-0.90DYN.PRES	i= 5.0	
0.50000000+02	6. 1960004+02	0.60000E+02	0.650000E+32
6.7900602+01			
DRANS(1) PSD			
0.613022#+Ci	0.6822112+01	0.4320622+01	0.6426522+01
C.6540432+01			
VAR.X( 3).DAST	H-0.900YN.PRES	5- 5.0	
0.7500COE+00	0.200002+00	0.850000 #+00	0.5000002+30
6.5506662+00	6.100000E+01		
DANSEL) PRD			
0.104474F+00	0.1018348+00	0.994928E-01	0-9740558-01
0.9223256-01	0.5382388-01		

ann anns ann a' airthean a' Allana, an annachan aige i Colaiste e airtean an taga i Allana an taga i Colaiste i

VAR.X( J).CAST N=0.90CYN.PRESS= 5.0 0.7500C0E+00 0.800000E+00 0.850000E+00 0.900000E+00 C.950000E+00 0.100000E+01 DRRMS(1) FSD 0.634409E+01 0.633059E+01 0.632344E+01 0.632062E+01 0.632154E+01 0.632689E+01 IERR= 0 ITERATIONS PERFURMED= 8

GFTINUM VECTLR X(1)

٠

.

.

Ł

Ł

Ĩ

E.000000C+0C	6.0000000+01	5.C00000D-01	0.0
1.200000C+02	6.0000000-01	C.O	0.0
C • 0	0.0	0.0	0.0

' A

- service service and a service service residence the service service









ORIGINAL PAGE IS OF POOR QUALITY

148



•

£

149



ORIGINAL PAGE IS OF POOR QUALITY

Z