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FOREWORD

This final report is submitted for the Orbit Transfer Vehicle (OTV)

Advanced Expander Cycle Engine Point Design Study per the requir'.ments of

Contract NAS 8-33574, Data Procurement Document No. 570, Data Requirement No.

MA-05. This work was performed by the Aerojet Liquid Rocket Company (ALRC)

for the NASA/Marshall Space Flight Center.

lha study consisted of the generation of a performance-optimized engine

system design for an Advanced LOX/Hydrogen Expander Cycle Engine. The designs

of the components and engine were prepared in sufficient depth to calculate

engine and component weights and envelopes, turbopump efficiencies and recirc-

ulation leakage rates, and engine performance. Engine control techniques were

established, and new technology requirements were identified.

The NASA/MSFC COR was Mr. D. H. Blount. The ALRC Program Manager was

Mr. L. B. Bassham, and the Study Manager was Mr. J. A. Mellish.

The final report is submitted in two volumes:

Volume I:	 Executive Summary

Volume II: Study Results
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I. SUMMARY

A.	 STUDY OBJECTIVES AND SCOPE

The major objectives of the OTV Advanced Expander Cycle Engine

Point Design Stut-y were to (1) generate a performance-optimized engine system

design for an Advanced LOX/Hydrogen Expander Cycle Engine; (2) provide suffi-

cient design and analysis of the engine and components to produce accurate

engine and component weights and envelopes, turbopump efficiencies and recirc-

ulation leakage rates, and engine performance; (3) establish engine control

techniques; and (4) identify new technology requirements.

Specific study objectives were as follows:

°	 Prepare detailed computer nadels of the engine to predict

both the steady-state and transient operation of the engine

system

°	 Prepare mechanical design layout drawings of the following

components:

-	 Thrust chamber and nozzle

-	 Extendible nozzle actuating mechanism and seal

-	 LOX turbopump

-	 LOX boost pump

-	 Hydrogen turbopump

-	 Hydrogen boost pump

-	 Propellant control valves

°	 Perform the necessary heat transfer, stress, fluid flow,

dynamic, and performance analyses to support the mechanical

design.



I, A, Study Objectives and Scope (cont.)

°

	

	 Determine effective control points and methods t,r control the

engine operation through start and shutdown transients as

well as steady-state operation. These include thrust and

mixture ratio control.

°

	

	 Determine optimum actuation drive methods for engine control

elements.

°	 Define controller requirements.

Prepare an engine configuration layout drawing to show the

spatial arrangement of the various engine components with

consideration of system effectiveness, safety, and the imlact

upon maintainability as well as engine performance.

° Prepare an engine data summary to include the engine and com-

ponent layout drawings, the performance and life predictions,

and the engine and component weights and physical envelopes.

Identify any new technology required to perform detailed

design, construction, and testing of the engine.

°

	

	 Prepare and deliver computer software/documentation for the

steady-state and transient engine models.

° Prepare a final report at the completion of the study which

documents the technical details and programmatic assessments

aesulting from the study. The final report is submitted in

two volumes:

Volume I:	 Executive Summary

Vol lime II: Study Results

k	 2
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I, A, Study Objectives and Scope (cont.)

To accomplish the program objectives, a program consisting of nine

major technical tasks and a reportirig task was conducted. These tasks were as

follows:

°	 Task I:

Task II:

°	 Task III:

°	 Task IV:

°	 Task V:

°	 Task Vi:

°	 Task VII:

°	 Task VIII:

°	 Task IX:

Task X:

Steady-State Computer Model

Heat Transfer, Stress, and Fluid Flow Analysis

Component Mechanical Design and Assembly Drawings

Engine Transient Simulation Computer Model

Engine Control

Engine Configuration Layout

Engine Data Summary

Technolojy Requirements

Computer Software/Documentation

Reporting and Performance Reviews

This report presents the study results, supporting data, assump-

tions, rationale, conclusions, and recommendations. The main body of the

report, Section III: Task Discussions, is separated into the technical task

packages listed above to facilitate reporting.

B.	 STUDY RESULTS AND CONCLUSIONS

The designs and data presented in this report are based upon the

results of vjv,k performed in this Point Design Study as well as the OTV Phase

A Engine Study evaluations and optimizations conducted for Contract NAS

8-32999 (Ref. 1 and 2).

The 02/H2 Advanced Expander Cycle Engine is powered by a

series turbine drive cycle which is shown in Figure 1. The engine uses

hydraulically driven boost pumps, with the flow tapped off the main pump

stages. Fuel flows from the pump discharge to the thrust chamber where 85%

3
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Figure 1. Baseline Advanced Expander Cycle Engine Flow Schematic

4



I, B, Study Results and Conclusions (cont.)

of the hydrogen flow is used to cool the slotted copper chamber in a single

pass from an area ratio of 10.5:1 to the injector head end. Fifteen (15) per-

cent of the hydrogen is used to cool the tube bundle nozzle in two passes from

an area ratio of 10.6:' to the end of the fixed nozzle (f - 172:1) and return.

The coolant flows are merged, and 6% of the total engine hydrogen flow is used

to bypass both turbines to provide cycle power balance margin and thrust con-

trol. The remaining hydrogen flow first drives the fuel pump turbine and then

drives the oxidizer pump turbine. After driving the oxidizer pump turbine, a

small amount of heated hydrogen is tapped off for hydrogen tank pressuriza-

tion. The remaining hydrogen flow is then injected into the combustion

chamber.

At rated thrust operation, oxidizer flows from the main pump dis-

charge directly to the thrust chamber and is injected in a liquid state. A

small amount of oxidizer is tapped off and heated by the hydrogen turbine by-

pass flowrate in a heat exchanger to provide LOX tank pressurization.

The extendible nozzle is radiation-cooled. A lightweight, state-

of-the-art columbium nozzle extension was selected on the basis of experience

gained on the Transtage, Apollo, SPS, and OMS engine programs.

The engine i c also capable of operating in a tank head idle mode

and is adaptable to exte-idea low-thrust operation at a thrust level of 1.5K

1 b.

The purpose of the tank head idle mode is to thermally condition

the engine without non-propulsive dumping of propellants, This is a

pressure-fed mode of operation at a thrust level of approximately 50 lb and a

vacuum !:p-^,.ific impulse estimated at 400 sec. During this mode of operation,

the main fuel and oxygen valves (numbers 1 and 2 on the schematic) are closed.

5



I, 6, Study Results and Conclusions (cont.)

All of the fuel bypasses the turbines through valve number 3 so that the pumps

are not rotating. The heat exchanger in the turbine bypass line gasifies the

oxygen which then flows through valve number 7 to the chamber. Tank pressuri-

zation is not supplied during this operating erode, and valves 5 and 6 remain

closed. The pressurization valves are opened as the engine is brought up to

steady-state, full-thrust operation.

The OTV Point Design Engine .	 laptable to operation at 10% of

rated thrust (i.e., 1.bK 1bF) with minor mudifications. This low-thrust

operating point is a dedicated condition and the engine is not required to

operate at both the 1bK and 1.5K thrust levels on the same mission. To

operate at low thrust, the oxidizer injection elements must be changed to

smaller size ones, and an orifice must be installed in the line downstream of

the chamber coolant jacket. The alternate low-thrust capability is discussed

in Reference 3.

On the basis of the €'hose A OTV Engine Study results, an engine

with the characteristics shown on Table I was baselined to initiate this point

design study. The current baseline characteristics resulting from this study

are also shown in Table I for reasons of comparison. The primary change is a

lower arew ratio which results from accommodating the extendible nozzle trans-

lation mechanism. This causes a reduction in the total engine length with the

nozzle deployed in order to stay within the minimum 60-in. stowed length

requirement. Another difference is in the engine weight. The Phase A weight

number was estimated by scaling historical designs and data, whereas approxi-

mately 75% of the current weight has been estimated from the preliminary

component designs. Further changes in the data can be anticipated as more

design iterations are performed and as the Advanced Expander Cycle Engine

design matures.

6
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TABLE I j

CURRENT VS INITIAL BASELINE ENGINE CHARACTERISTICS

Initial	 (1)

ia
i

Current (2)
BaselineDesign Baseline

I

Vacuum Thrust, lb 15,000

i

15,000

Vacuum Specific Impulse, sec 477.2 475.4

Total Flowrate, lb/sec 31.43 31.56

Mixture Ratio (Nominal) 6.0 6.0

Oxygen Flowrate, lb/sec 26.94 27.05

Hydrogen Flowrate, lb/sec 4.49 4.51

Chamber Pressure, psia 1200 1200

Nozzle Area Ratio 473 435

Nozzle Exit Diameter, in. 60.7 58.2	 l

Engine Length, in.

Extendible Nozzle Stowed 60.0 60.0

Extendible Nozzle Deployed 120.0 109.6

Engine Dry Weight, lb 502 574

(1) Based upon Phase A Study results

(2) Based upon Point Design Study results



I, Q, Study Results and Conclusions (cont.)

The current baseline engine delivered performance at design and

off-design mixture ratio operation is shown in Table II. The table also pre-

sents the vacuum specific impulse at both the rated and low-thrust operating

points. The chamber pressure of 1200 p:ia at the nominal operating point was

selected on the basis of results obtained in the Phase A cycle and thrust

chamber geometry optimization studies (Ref. 2). The series turbine drive

cycle, a chamber length of 18 in., and a contraction ratio of 3.66 were

selected and fixed as baselines in this study. This engine is considered to

be representative of a 1980 technology basel i ne. Technology verification and

advancements plus further optimization studies and tradeoffs are planned in

future work. Some changes in the operating chamber pressure and performance

are anticipated as a result of these forthcoming efforts.

The engine has been designed for 1200 thermal cycles and 10 hours

of accumulated run time. Therefore, the component designs illustrated in

Section III.D of this report are based on the minimum service life requirement

(300 cycles or 10 hours) with a safety factor of 4 applied to lower-bound

data. This service life is not predicted to be reduced when the engine is

operated at mixture ratios between 6.0 and 7.0. Similarly, low-thrust opera-

tion (i.e., 1500 lbF) at mixture ratios between 6.0 and 7.0 is not predicted

to reduce this service life.

The engine performance, weight, envelope, and service life data,

as well as the engine And component layout drawings, were summarized and pre-

sented in the Task VII, Engine Data Sunmiary, report submitted for this

contract (Ref. 4). This information is also presented in Sections III.C,

Component Mechanical Design and Assembly Drawings, and III.G, Engine Data

Summary, of this report.

The engine configuration layout drawing showing the packaging

relationship cf the engine components is shown in Figure 2. With the

8



TABLE II

ADVANCED EXPANDER CYCLE ENGINE PERFORMANCE AT DESIGN AND OFF-DESIGN 0/F

f Da+arl and i nw- Thrije+ nnarati nn l

Thrust, lb Engine
Thrust
Chamber

Engine
Delivered
Vacuum

Flowrates, lb/sec

Mixture Pressure, Specific Fuel OX
Ratio psia Impulse,

sec.

15000 6.0 1200 475.4 4.51 27.05

15000 6.5 1180 474.9 4.21 27.37

15000 7.0 1162 471.0 3.98 27.87

1500 6.0 125 459.7 .466 2.80

1500 7.0 121 451.7 .415 2.91

Notes: (1) Injector elements are modified for the low-thrust condition.

(2) Engine ".ength with extendible nozzle retracted = 60".

9
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I

1, B, Study Results and Conclusions (cont.)

extendible nozzle in the stowed position, the engine is 60 in. long. This

length is measured from the top of the gimbal block to the end of the tube

bundle nozzle. The engine is 109.6 in. long and has an area ratio of 435:1

with the extendible nozzle deployed. Approximately 10.4 in. of potentially

available deployed length is lost in the area of the extendible nozzle

deployment mechanism and attachment plane. Further design refinements could

increase the deployed length up to a maximum of 120 in., with a resulting

area ratio of 473:1 and a performance increase of 1.8 sec (see Table I).

As part of this program, two engine computer models were delivered

to NASA/MSFC. One of the programs is the Task I, Steady-State Computer Model

(Ref. 5), and the second is the Task IV, Engine Transient Simulation Computer

Model (Ref. 6).

Uocumen-atIon suWt tted in these computer models included:

•	
User's Manual

•
	 FORTRAN Program Listing

°	 Program Flow Charts

°	 Sample Inputs and Outputs

At the request of the NASA/COR, a FORTRAN card deck was submitted

for the steady-state model. The transient model was submitted on tape. Both

programs are compatible with a Univac 1108 system.

Section III.N of this report presents supporting research and

technology programs which are recommended for the purpose of filling basic

data gaps and/or providing critical information prior to initiating experi-

mental engine and engine development programs. These technology programs,

submitted to NASA/MSFC in a critical component and Pxperimental plan (Ref. 7),

12



I, B, Study Results and Conclusions (cont.)

are required to verify or improve the engine cycle power balance, reduce the

engine development and operational risk, or increase the engine performance.

The overall recommendations are summarized in Table III.

It should be recognized that all of the designs and data presented

in this report represent the first iteration in the design analysis process.

Schedule and funding limitations did not permit design iterations or incorpor-

ation of improvements that were suggested by this initial effort. The number

of "loose ends" which remain as the result of these limitations are being

documented in this report to facilitate their being addressed in future

efforts.

13



TABLE III

TECHNOLOGY RECOMMENDATION SUMMARY

® Expander Cycle Engine Component Critical Technology Programs

Should Be Initiated To:

Reduce Risk

Verify Power Balance

Verify Performance

° Component Technology Should Address High-and Low-Thrust Operation

° Continue Point Design Studies to Optimize the Advanced Expander

Cycle Engine

Conduct Detailed Design Analysis of a Breadboard Advanced Expander

Cycle Engine

° Fabricate and Test a Breadboard Expander Cycle Engine and its Components

i

i
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II.	 INTRODUCTION

A. BACKGROUND

The Space Transportation System (STS) includes an Orhit Transfer

Vehicle (OTV) that is Qarried into low-Earth orbit by the Space Shuttle. The

primary function of this OTV is to extend the STS operating regime beyond the

Shuttle to include orbit plane changes, higher orbits, geosynchronous orbits

and beyond. The NASA and the DoD have been studying various types of OTV's in

recent years. Data have been accumulated from the analyses of the various

concepts, operating modes, and projected missions. With the nclusion of man

in these transportation scenarios, it becomes necessary to reach for the

safest and most fully optimized propulsion stage.

The purpose of this study was to generate a performance-optimized

engine system design for a man-rated Advanced LOX/Hydrogen Expander Cycle

Engine. This engine concept was originally conceived by ALRC on the OTV Phase

A Engine Study, Contract NAS 8-32999, and recommended to NASA in October 1978.

The recommendation was based upon a thorough evaluation of the engine's per-

formance, envelope, reusability, and man-ratirvg requirements, along with a

desire to reduce the development risk of the 01V engine. Once approved by

NASA, our engine cycle recommendation led to further evaluations of the

advanced expander cycle engine concept, finally culminating in this Point

Design Study effort.

B. ORBIT TRANSFER VEHICLE CHARAC`iERISTICS

The Manned Orbit Transfer Vehicle (MOTV) has, as its goal, the

same basic characteristics as the Space Shuttle, i.e., reusability, opera-

tional flexibility, and payload retrieval, along with high reliability and low

operating cost. This vehicle is planned to be a cryogenic stage, with the

baseline design mission being a four-man, 30-day sortie to geosynchronous

orbit (GEO). The required round trip payload to GEO and return to low-Earth

15



II, B, Orbit Transfer Vehicle Characteristics (cont.)

orbit; (LEO) is 13,000 1 bni. The weight of t. ie OTV, i ncl udi nq propellants and

payload, cannot exceed 91,300 lbm. While an Orbiter of 100,000 lbm payload

capability is assumed, the OTV must be capable of interim operation with the

present 65,000 lbm Orbiter. The cargo bay dimensions of the 100,000 lbm

Orbiter are assumed to be the same as those of the 65,000 lbm Orbiter, i.e., a

cylinder 15 ft in diameter and 6U ft in length. The OTV cannot exceed 34 ft

in length. The OTV is to be Earth-based and designed to return from geosyn-

chronous orbit for rendezvous with the Orbiter in LEO. Both Aeromaneuvering

Orbit Transfer Vehicles (AMOTV) and All-Propulsive Orbit Transfer .hicles

(APOTV) are considered for this mission. These vehicles are described in NASA

Technical Memorandum TMX-13394, "Orbit Transfer Systems with emphasis on

Shuttle Applications - 1986-1991" (see Ref. 3).

C.	 ENGINE REQUIREMENTS

The requirements for the Manned Orbit Transfer Vehicle (MOTV,)

engine were derived from numerous NASA in-house and contracted studies. These

requirements, specified by the Contract Statement of Work (SOW), are listed

below and summarized in Table IV.

1. The engine shall operate as an expander cycle with liquid

hydrogen and liquid oxygen propellants.

2. Engine vacuum thrust shall be 15K lb at an engine 02/H2

weight flowrate mixture ratio of 6.0.

3. Engine length with the two-position extendible nozzle

retracted will be no greater than 60 in.

16



TABLE IV

OTV ENGINE POINT DESIGN REQUIREMENTS

• RATED VACUUM THRUST: 15,000 LE

• PROPELLANTS: HYDROGEN AND OXYGEN

• POWER CYCLE: EXPANDER

• TECHNO I ,OGY BASE: 1980 STATE—OF—THE—ART

• ENGINE MIXTURE RATIO:	 NOMINAL = 6.0	 RANGE = 6.0 TO 7.0

• PROPELLANT INLET CONDITIONS: 	 H2	 02

BOOST PUMP	 NPSH, FT	 15	 2

TEMP., °R	 37.8	 162.7

• SERVICE LIFE BETWEEN OVERHAULS: 300 CYCLES OR 10 HRS

• SERVICE FREE LIFE: 60 CYCLES OR 2 HRS

• ENGINE NOZZLE: CONTOURED BELL WITH EXTENDIBLE/RETRACTABLE SEC,xON

• MAXIMUM ENGINE LENGTH ;;ITH NOZZLE RETRACT ED: 60 IN.L.

• GIMBAL ANGLE:	 +15°, —6° PITCH

±6° YAW

• PROVIDE GASEOUS HYDROGEN & OXYGEN TANK PRESSURIZATION

i MAN—RATED WITH ABORT RETURN CAPABILITY

• MEET ORBITER SAFETY AND ENVIRONMENTAL CRITERIA

• MAX PC DEVIATIONS: ±5% OF STEADY—STATE PRESSURE

• ADAPTABLE TO EXTENDED LOW—THRUST OPERATION (1.5cLBF)

17



II, C, Engine Requirements (cont.)

4. Engine design and materials technology are to w b?rseu on

1980 state- of-the-art criteria.

5. The engine must be capable of accomiodating progranined and/or
canmand variations in mixture ratio over an operating range

of 1a:1 to 7:1 during a given mission. The effects on engine

operation and lifetime must be predictable over the operating

mixture ratio range.

b.	 The propellant inlet temperatures shall be 162.7°R for the

oxygen boost pump and 31.8'R for the hydrogen boost pump.

The boost pump inlet W I SH at full thrust shall be 2 ft for

the oxygen pump and 15 ft for the hydrogen pump.

7. The service-free life of the

start/shutdown cycles or two

and the service life between

300 start/shutdown cycles or

time. The engine shall have

minimum maintenance, and eco

engine cannot be less than 60

hours of accumulated run time,

overhauls cannot be less than

10 hours of accumulated run

provisions for ease of access,

comical overhaul.

^1.	 When operating within the nominal prescribed range of thrust,

mixture: ratio, and propellant inlet conditions, the engine

shall riot incur chamber pressure oscillations, disturbances,

or random spikes greater than + 5 percent of the mean

steady-state chamber pressure during its service life. Devi-

ations to be expected in emergency modes shall be predict-

able.
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II, C, Engine Requirements (Cunt•)

9. The engine nozzle is to be a contoured bell with an

extendible/retractable section.

10. Engine gi!ribal requirements are to be + lb n and -b" in the
pitch plane and + G° in the yaw plane.

11. The engine is to provide gaseous hydrogen and oxygen autogen-
ous pressurization fur the propellant tanks.

12. The engine is to be man-rated and capable of providing abort
return of the vehicle to the Orbiter orbit.

13. The engine design shall meet all of the necessary safety and
environmental criteria of being Carried in the Orbiter pay-
load bay arid operatin g in the vicinity of the manned
Orbiter.

14. The engine must be adaptable to extended low-thrust operation
of approximately l.bk lb vacuum thrust. kitting of the

engine's injectors, turbine flow urea, arid other constraining
cumpunents may be considered, as may the inclusion of a heat
exchanger to gasify the LOX for low-thrust operation. The
engine mixture ratio shall be maintained as high as allowed
for by cooling and grower constraints, but no greater than
7;1.

In addition to the %pecitied requirements, the Phase A OTV Lnuine
Study (Ref. 2) identified design impacts resulting from the man-rating, safety,
arid reliability requirements. These are su!!arrarized in Table V. A multiple-

engine installation is necessary to meet they crew safety requirements.

lu
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TABLE V

MAN-RATING, SAFETY, AND RELIABILITY IMPOSED REQUIREMENTS

° Engine should be Designed for a Multi-Engine Installation

(Preferably Twin Engines)

° Series-Redundant Main Propellant Valves Required

° Redundant Spark Igniter Required

° Dual Coils will be used on all Valves Identified by FMEA

as Single-Point Failures

20
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II, C, Engine Requirements (cont.)

Series-redundant main propellant valves are required to assure that the engine

will shut down and that leakage of propellant through the engine into the

Orbiter's payload bay is inhibited. Redundant spark ignition is required to

assure that the engine will star: on all burns. Dual-coils are required to

assure that the actuator will function and provide sufficient force to open

critical valves.

All of the specified and derived requirements are presented in an

OTV Design Requirements Handbook (Ref. 9) which should be considered a first

cut at an engine specification of this type.

All of the specified and identified requirements were incorporated

in our point design as part of this study.

D.	 PRINCIPAL ASSUMPTIONS PW GUIDELINES

The following principal assumptions and guidelines were provided

by NASA/MSFC and were used to conduct this engine design study.

1. All engine designs and characteristics will be compatible

with the OTV requirements and will be based on 1920

technology.

2. All dimensional allowances will be within Shuttle payload bay

specifications, including dynamic envelope limits. (This

does not preclude extendible nozzles.)

3. Since the engine and OTV will be designed to be returned to

Earth in the Shuttle for subsequent reuse, reusability with

minimum maintenance/cost for both unmanned and manned mis-

sions is a design objective.

21



II, D, Principal Assumptions and Guidelines (cont.)

4.	 The OTV engine shall be designed to meet all of the n.4,;essary

safety and environmental criteria of being carried in the

Shuttle payload bay and operating in the vicinity of the

manned Shuttle.

E.	 STRUCTURAL DESIGN CRITERIA

The following minimum safety and fatigue-life factors were uti-

lized. It is important to note that these factors are only applicable to

designs whose structural integrity and adherence to required parameters has

been verified by comprehensive structural testing in accordance with the fac-

tors specified below. Where structural testing is not feasible, more conserv-

ative design factors will be supplied by the procuring agency.

1. The structures shall not experience gross yielding (total net

section) at 1.1 times the limit loud, nor shall failure be

experienced at 1.4 times the limit load. For pressure-

containing components, failure shall not occur at 1.5 times

the limit pressure.

2. Limit load is the maximum predicted external load, pressure,

or combination thereof expected during the design life.

3. Limit life is the maximum expected usefulness of the struc-

ture expressed in time and/or cycles of loading.

4. The structure shall be capable of withstanding at least four

times the limit life based on lower-bound fatigue property

data.
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II, E, Structural Design Criteria (cont.)

5.	 Pressure-containing components shall be pressure-tested at

1.2 times the limit pressure at the design environment, or

appropriately adjusted to simulate the design environment, as

a quality acceptance criterion for each production component

prior to service use.
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III.	 TASK DISCUSSIONS

This section presents the results, data, designs, and supporting analy-

ses of each technical task performed in the conduct of this program. The work

effort is separated by task and reported by task. It should be noted that

many of the tasks and subtasks were conducted in parallel due to schedule and

funding limitations. Therefore, it was not possible to conduct design itera-

tions, with the result that the results of all tasks and subtasks have not

been entirely incorporated into the engine design and data presented in this

report. However, design and analysis recommendations have been made and docu-

mented so that future efforts can pick up where this initial design effort has

left off. We highly recommend that further design definition be continued in

order to optimize and fully characterize the Advanced Expander Cycle Engine.

A.	 TASK I - STEADY-STATE COMPUTER MODEL

The objective of this task was to provide a computer model of the

engine system steady-state operation.

An existing ALRC computer model was modified to simulate the ALRC

Advanced Expander Cycle Engine. This modified computer model, designated OTV

MOD7, is a FORTRAN computer program which performs the engine cycle power

balance and performance predictions for design and off-design operation of the

engine. The off-design operation encompasses a mixture ratio range from 5 to

10 and thrust levels from the nominal 15,000 1bF to low-thrust operation at

1.5K 1bF. This model was delivered to NASA/MSFC as part of Task IX, and the

User's Manual was issued as a separate report (Ref. 5). This document des-

cribes the program, provides instructions for implementing and executing the

program, describes the inputs and outputs, explains the program subroutines

and their operation, and discusses the program error generated messages. In

addition, a complete FORTRAN program listing, detailed computer generated flow

charts, a sample output, and a card deck were submitted to the NASA/COR.

24
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III, A, Task I - Steady-State Computer Model (cont.)

The computer model is compatible with the Univac 1108 computer and

takes approximately 10 sec to run each case.

A sample program output for the OTV Expander Cycle Engine steady-

state model is presented in Table VI. Engine performance, envelope, and

weight data are displayed on one page, and the engine pressure schedule and

power balance parameters are shown on the second page. This output represents

the baseline parameters that have been updated to reflect the modifications

that resulted from the study. The weight and envelope data shown are fixed

values for the baseline engine and are not calculated in this version of the

computer model. They are displayed for engine data summary purposes and can

be changed to reflect design revisions by changing the program's inputs or

constants.

The current baseline cycle modelled in the program is a fully

regeneratively cooled (with LH 2 ) series turbines expander cycle. The power

balance calculation is done by iterative determination of the fuel circuit

turbine pressure ratio. The iteration is repeated until the resulting chamber

pressure is equal to the specified chamber pressure. The power balance and

the performance can be evaluated at rated and low-thrust operation at design

and off-design mixture ratios. Baseline turbomachinery values are inputs to

the program.

Procedures for calculating the performance of liquid propellant

rocket engines have been formulated and recommended by the JANNAF Performance

Standardization Working Group and are documented in CPIA No. 246 (Ref. 10).

Two basic approaches, based on both "rigorous" and "simplified" procedures,

have been recommended.

25
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III, A, Task I - Steady-State Computer Model (cont.)

The rigorous approach is intended to provide the best currently

available analytical calculation procedure for absolute perforlrnance predic-

tion. It consists of 17 detailed steps, using r(-ference computer programs to

model fundamental fluid and combustion processes. 14hile these reference

computer programs utilize the best available mathematical formulations of the

mechanistic combustion processes, the procedure is costly in terms of both

engineering man-hours and omputer run time.

The simplified approach provides a very cost-effective procedure,

with almost comparable accuracy when properly utilized. This procedure is

described in Section 3 of Reference 10. As depicted schematically in Figure

3, it consists of starting with one-dimensional equilibrium specific impulse

O spOpE ) and correcting the performance downward for contributing component

performance losses. Subtracting the kinetic, divergence, and boundary layer

losses from 1spOpE in Figure 3 provides a hypothetical "perfect injector

performance" that is degraded for the real nozzle losses. This performance is

further degraded by the energy release loss which accounts for the injector-

related performance inefficiencies due to incomplete propellant vaporization

and/or non-uniform gas-phase mixing. When cF,amber pressure becomes too high,

it may become necessary to provide auxiliary cooling from the combustion

gas-side through such means as barrier or zone saixture ratio cooling, film

cooling, or transpiration cooling. This loss is not applicable to the ON

Expander Cycle Engine.

The simplified JANNAF performance prediction methodology relation-

ships have been incorporated into the computer program. This program and

other versions were developed by ALRC in-house efforts during the last two

years. The simplified JANNAF performance methodology predictions have been

calibrated for 02/H2 propellants with high exit area ratio nozzles by

using the expander cycle RL-10 and high-pressure, staged combustion Advanced
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I

III, A, Task I - Steady-State Computer Model (cont.)

Space Engine (ASE) experimental test data. The analysis correlated both the

experimental ASE and RL-10 delivered perfo nmance well witnin ± 1% Isp. Thus,

this model is invaluable in accurately detenmining the delivered performance.

Transient behavior is not included in this model but is evaluated

by the Task IV computer model. In addition, more detailed steady-state evalu-

ations can be conducted with the transient computer model lescribed in Section

III.D. The transient model has more complete anaiyt;cal descriptions and

simulations of all engine components than the simplified steady-state model.

The steady-state condition is a special case in the transient model.

The steady-state power balance model (OTV MOD7) is recommended for

preliminary design studies, while the steady-state case should be evaluated on

the transient model during detailed engine dcsign studies.

B.	 TASK II - HEAT TRANSFER, STRESS, AND FLUID FLOW ANALYSIS

The objective of this task was to provide the analyses required to

define the engine and engine component mechanical design parameters and support

the engine model simulations. This included the heat transfer, materials, stress,

and fluid flow analyses of the thrust chamber and nozzle, oxygen turbopump,

and the hydrogen turbopump. The analyses conducted and the results obtained

are discussed in this section.

I.	 Neat Transfer Analysis

The Phase A and Phase A Extension Studies provided the foun-

dation for the thrust chamber assembly thermal design. The results are sum-

marized herein.
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III, 8, Task 1I - Neat Transfer, Stress, and Fluid Flow Analysis (cont.)

The Advanced Expander Cycle Engine (AEC) coolant flow sche-

matic is shown in Figure 4. This coolant scheme was selected as a result of

k
	

optimization studies conducted for the Phase A and Phase A Extension OTV

l

	

	 Engine Study work (Ref. 1 and 2). Eighty-five (85) percent of the hydrogen

flow is used to cool the chamber in a single pass from an area ratio of 10.6:1

to the injector end. Fifteen (15) percent of tht hydrogen is used to cool the

fixed nozzle in parallel with the chamber in a two-pass tube bundle. The

temperatur.; data on the figure is shown for the design point thrust and mix-

ture ratio of 15,000 lb and 0/F = 6.0. The thermal analysis results are sum-

marized in Table VII for the design and off-design mixture ratio conditions.

I

	

	 Pressure drop data shown pertains •,o the losses in the channels or tubes only

and does not include the manifold losses.

Expander cycle engines depend upon high heat input to the

combustion chamber walls to achieve the system power balance. Thus, the

selection of thrust chamber geometry (contraction ratio and combustor length)

is influenced by engine cycle considerations. Studies show that the total

heat load (coolant temperature rise) is increased as L' increases and contraction

ratio decreases. This increases the turbine inlet temperature but increases

system pressure drops. Optimization studies (Ref. 2) resulted in the selection

of a contraction ratio of 3.66 and a combustor length (L') of 18 inches.

A columbium radiation-cooled nozzle extension was selected

during the Phase A studies and baselined for this study. Analyses, f, : fied

by the most recent experience with the OMS Engine (OMS-E), show that columbium

with an oxidation-resistant coating will meet the engine's service life

requirements. The minimum attachment area ratio for the uesign point thrust

and chamber pressure for the columbium nozzle extension at an attachment point

wall temperature of 2450°F is approximately 100:1. These wall temperature

criteria were for the OMS-E nozzle extension which was designed to meet a
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"i
TABLE VII

AEC THERMAL ANALYSIS DESIGN AND OFF-nESIGN 0/F SUMMARY AT RATED THRUST

Mixture Ratio

6.	 7.0

Combustion Chamber Coolant F'lowrate, lb/sec

Slotted Copper Chamber Area Ratio

Chamber Pressure Drop, Asia

Coolant Inlet Temperature, "R

Chamber Coolant Temperature Rise, "R

Fixed Tube Bundle Nozzle Flowrate, lb/secs

Tube Bundle Nozzle Area Ratio

Tuba Bundle Coolant Pressure Drop, Asia

Tube Bundle Coolant Temperature Rise, "R

Turbine Inlet Temperature, "R

Chamber Length	 18 in.

Contraction Ratio	 :3.66

3.Ai,; 3.358

10.6 10.6

92 76

90 90

407 431

0.674 0.592

172 17'

11 8

661 672

535 557
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III, B, Task II - Heat Transfer, Stress, and Fluid Flow Analysis (cont..)

4 000 cycle life (i.e., 1000 cycles x a safety factor of 4). The Point Design

Engine's nozzle extension attachment point is 172:1. The selection of this

point provides a natural interface between the nozzle tube bundle and extend-

ible nozzle, allows for slightly more coolant heat input, and provides service

life design conservatism.

Thermal analyses were also performed for the low-thrust con-

dition. They show that the chamber life at low-thrust operation is not pena-

lized and is, in fact, better. The tube bundle must be designed for the low-

thrust operating point in order to meet the life requirement. This results in

smaller, higher pressure drop tubes than would have been necessary if the tune

bundle had been designed for the rated thrust condition. However, the higher

pressure drop tubes do not present a problem and do not penalize the engine at

rated thrust because the tube bundle pressure drop, which is in parallel with

the chamber, is on the order of 10 psi compared to a chamber coolant pressure

drop in excess of 90 psi. The coolant jacket pressure drop and exit tempera-

ture data are plotted as a function of thrust on Figures 5 and 6.

Low-thrust operation at 10% of rated thrust was considered

feasible from a cooling standpoint. An orifice downstream of the coolant

jacket is recommended to maintain the coolant jacket exit pressure above the

critical pressure of hydrogen (188 psia). This orifice is required at low

thrust to avoid the problems associated with two-phase coolant flow,

2.	 Thrust Chamber Assembly Design Analysis

Thermodynamic, hydraulic, and stability analyses were also

undertaken to support the mechanical design of the TCA (Thrust Chamber

Assembly) components. These analyses were refinements to the Phase A work.
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III, B, Task II - Neat Transfer, Stress, and Fluid Flow Analysis (cont.)

The recommended configuration is a swirl coaxial injector

with characteristics as shown in Table VIII. Recommended are eighty-four ele-

ments that are arranged in four rows (circles). The oxidizer flows through

the center element which has a diameter of 0.1 inch. The hydrogen flows

through the annulus surrounding the oxidizer element. The resonator cavity

design recommendations are based upon design experience obtained on the ALRC

OMS and ITIP programs. The cavity is designed so that dynamic chamber pres-

sure oscillations do not exceed + 5%.

The recommended chamber geometric parameters are shown in

Table IX and described schematically in Figure 7. The nozzle contour data are

summarized in Table X.

A chug stability margin analysis of the OTV engine point

design was also conducted at 0!F = 5.0. Phis analysis was a more rigorous

refinement, using a standard chug analysis program to confirm the preliminary

estimates of Reference 3. The predicted stability margin is shown in

Figure 8. The marginal chug stability threshold is predicted to occur around

Pc = 570 psia or at approximately 47% thrust. Since this value is in good

agreement with the preliminary estimate made in Reference 3, the previous con-

clusions and recommendations arrived therein are valid. These conclusions are

that an injector "kit" is required to operate the engine at a thrust level

lower than 50% of its rated value and that 10% of rated thrust operation is

feasible. The recommended injector "kits" are smaller diameter oxidizer

coaxial injection elements. These smaller elements are required to increase

the oxidizer pressure drop and to avoid chugging instability.
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TABLE VIII

OTV INJECTOR DESIGN PARAMETERS

Injection Element Type: 	 Swirl Coaxial Element

Coaxial Element Quantity:	 84

No. Rows:	 4 (30 + 24 + 18 + 12 = 84)

Oxidizer Metering Orifice Dia. = .100 (in.)

Oxidizer Swirl Cone Angle	 = 30' half angle

Oxidizer Element Tip	 = .150 (in.)

OD/Fuel Annulus ID

Fuel Annulus OD	 = .200 (in.)

Oxidizer Element Tip Recess	 = .100 (in.)

Resonator

No. of Cavities
	

= 12

Cavity Depth
	

1.0 (in.)

Width
	

0.4 (in.)

Overlap
	

0.125 (in.)
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TABLE IX

OTV CHAMBER GEOMETRY

Chamber Length, L'	 = 18.0 (in.)

Chamber Diameter	 = 5.34 (in.)

Throat Diameter	 = 2.79 (in.)

Upstream Radius r 1.0 RT	 = 1.395 (in.)

Convergent Inlet Radius = 3.0 RT	 = 4.185 (in.)

Alpha-Inlet Angle, Sr i 	 = 200

Downstream Radius	 =	 1.0 RT	 = 1.395

Downstream Throat Tangency Angle, 9t = 410
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TABLE X

RAO NOZZLE CONTOUR DATA

Radius Length Area
In. In. Ratio

1.395 0 1.0

2.280 1.54 2.67

3.501 3.00 6.29

4.444 4.21 10.^

6.444 7.08 21.3

10.379 14.05 55.4

14.798 24.19 112.5

18.430 34.75 174.5

22.228 48.54 253.9

26.254 67.47 354.2

29.166 85.39 437.1

30.343 94.17 473.1
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III, 6, Task II - Heat Transfer, Stress, and Fluid F'luw Analysis (cont.)

3.	 Structural Analysis

This section summarizes the results of stress and low-cycle

fatigue evaluations of the engine and its components.

a.	 Thrust Chamber Structural Analysis

Stress and low-cycle fatigue analysee. were performed to

substantiate the structural adequacy o-^ the baseline chamber design. The

chamber is a slotted configuration. The channel geometries at various loca-

tions throughout the chamber were obtained from thermal analysis and are sum-

marized below.

°	 T h^ odt

Slat Width	 0.04 in.

Slot Depth	 0.1e1 in.
Web (land) Thickness = 0.04 in.

Wall Thickness .. 0.030 in.

C^%lindrical Section

Slot Width A 0.070 in.

Slot Depth W 0.256 in.

Web (land) Thickness d 0.081 in.

Wall Thickness W 0.030 in.

The chamber material is zirconium copper, with pro-

perties conforming to Figure g . Tho chamber outer shell (closeout) material

is electroformed nickel, with prope l* ._s as shown in Figure 10.
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III, B, Task II - Heat Transfer, Stress, and Fluid Flow Analysis (cont.)

The results indicate that the zirconium copper liner is

structurally adequate to sustain the predicted differential pressures. The

electroformed nickel closeout is assumed to carry all pressure hoop membrane

loads, and the required thickness was determined on that basis. Minimum

closeout thickness is 0.035 in. for the throat region, and 0.070 in. for the

cylindrical section.

The low-cycle fatigue prediction is based on an elastic/

plastic iterative plane strain solution of wall sections taken from the throat

and cylindrical regions. The predicted service life (Nf) for the chamber is

based on the maximum effective strain, determined for either s-Nction by using

a factor of 4 on the lower-bound design curve for zirconium copper shown in

Figure 11. Results determined from this investigation are presented in Table

XI. The design was limited to a gas-side wall temperature of 800°F.

It is recommended that an axisymmetric finite e-Cement

model of the chamber, throat, and nozzle be used to conduct this analysis in

support of the next design iteration.

b.	 Main LOX Turbopump Assembly (TPA) Structural Analysis

(1) LOX TPA Impeller and Turbine Rotor Stress Analysis

The main LOX TPA impeller and rotor were analyzed

to determine their respective structural adequacy at the steady-state oper-

ating speed of 34,720 RPM and in their thermal environments. The impeller

steady-state environment is liquid oxygen at -290°F, while the turbine rotor

operates at steady state with gaseous hydrogen at 60°F. Nitronic-50 was

selected as the material for the impeller and rotor for this first analysis

because it is compatible with both the hydrogen and oxygen environments and is

sufficiently strong to withstan+ the design loads.
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'r
TABLE kI

I	 CHAMBER LOW-CYCLE THERMAL FATIGUE RESULTS

TGS TBS EFNI `^T	 Nf NREQ

Location	 °F '°F t IN _(IL Cycles Cycles	 KE

Throat	 615 -219 .035 1.11	 460 300	 1.4

Cylinder	 757 33 .070 1.265	 350 300	 1.87

TGS	 = Gas-Side Temperature

TBS	 = Backside Temperature

EFNI t = Electroformed Nickel Closeout Thickness

eT	 = Total Strain

Nf	= Number of Cycles (Includes factor of 4)

KE	Strain Concentration Factor
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III, G, Task II - Neat Transfer, Stress, and Fluid Flow Analysis (cont.)

A finite element computer pr:,gram was used to ana-

lyze these components. The two-dimensional models for the impeller and rotor

are shown in Figures 12 and 13, respectively.

The results of this analysis show that the

Nitronic-50 impeller and rotor have positive margins of safety under the oper-

ating conditions. The minimum margins of safety were calculated to be 2.53

for the impeller and 0.48 for the turbine rotor. Hence, the designs are

structurally adequate.

A-286 bolts are used to tie down the impeller and

rotor disks. A 260 + 5 in.-lb preload is considered adequate to hold both the

impeller and turbine rotor with positive bolt margins.

(2) LUX TPA Shaft Stress Analysis

The LUX TPA shaft was analyzed in two parts:

(1) the turbine end shaft and (2) the pump impeller shaft. The shaft was

assumed to be made of Nitronic-50 with an A-286 through bolt. (See Figure 27

of Section III,C, ALRC Drawing number 1191999.)

The maximum effective stress found in the turbine

end shaft is 9,650 psi which allows for an ample 7.4 margin of safety. Pre-

dicted fatigue life, using this stress level with appropriate stress concen-

tration factors applied, is greater than the required 8.3 (10) 7 cycles.

Determination of the number of cycles required was based upon the 10-hour ser-

vice life as follows:
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Figure 13. LOX TPA Turbine Rotor Computer Model Geometry
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III, 8, Task II - Heat Transfer, Stress, and Fluid Flow Analysis (cont.)

N - 34720 RPM x 10 HRS x 60 MIN^
x 1_CYCLEHR	 £,

N - 2.08 (107 ) Cycles W/O Factor of 4

NR LQ = 4 (2.08 [10] 7 ) = 8.33 (10) 7 Cycles

A maximum effective stress in the impeller shaft

equal to 44,786 psi was found in the spline runout region. The minimum margin

of safety, based on the yield strength at an operating temperature of -320°F,

is 1.52.

It was concluded that the ON LOX turbopump shaft

is capable of meeting the structural and fatigue-life requirements established

for the component.

(3) LOX TPA Housing Stress Analysis

The LOX TPA housing was analyzed in four major

parts: (1) the turbine inlet manifold torus, (2) the turbine exit manifold

torus, (3) the turbine end spherical dome, and (4) the pump inlet housing

flange. (See Figure 27 of Section III,C.) Nitronic-50 was assumed to be the

housing material. The following results were obtained:

(a) Turbine Inlet Manifold Torus

Maximum hoop membrane stress is 9,268 psi.

The margin of safety for this stress level, based on ultimate strength for

Nitronic-50, is 7.3.
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III, B, Task II - Neat Transfer, Stress, and Fluid Flow Analysis (cont.)

(b) Turbine Exit Manifold Torus

Maximum hoop membrane stress is 12,185 psi.

The margin of safety is 5.4.

(c) Turbine Exit Manifold Spherical Dome

Maximum hoop membrane stress is 12,000 psi.

The margin of safety is 5.4.

A flaw growth analysis indicates that a 0.07-

in. flaw depth, equivalent to 70% of dome wall thickness, will not propagate

to a through-flaw condition during a predicted service of 300 cycles including

a factor of 4.

On the basis of this preliminary evaluation,

the LOX TPA housing was found to be structurally capable of sustaining the

predicted pressure loading.

The following recommendations are made on the

basis of this preliminary stress analysis:

°	 Exit Manifold Flange Bolts

A minimum of 28 1/4 in. - 28 ^ bolts are

required. This requirement is based on the flange dimensional constraints and

on a yield strength allowable bolt load.



1

III, B, Task II - Heat Transfer, Stress, and Fluid flow Analysis (cont.)

Pump Inlet Housing Flange

A minimum of 15 1/4 in. - 28 ^ bolts is

considered adequate.

° In the follow-on design phase, a detailed

two-dimensional finite element analysis of the housings, flanges, and bolts is

essential.

°	 The high-pressure torus must be evaluated

with three-dimensional finite element analyses.

(4) LOX TPA Structural Analysis Summary

A summary of the major components analyzed, al org

with their respective minimum calculated margins of safety, is presented in

Table XII. Nitronic-50 was assumed as the principal material for all com-

ponents.

It should be recognized that this analysis was

intended to provide preliminary stress information for asc^.rtaining the feasi-

bility of the design. In view of this intent, the minor design and load

changes that were made as the design effort progressed were not necessarily

included in these analyses. Nonetheless, the analyses have been conducted in

sufficient depth to allow the LOX TPA to be rated as a good first iteration

design. For the next design phase, in addition to refining geometry and

loads, the following items should be added to the structural analysis effort:
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TABLE XII

MAIN LOX TPA MARGINS SUMMARY

Component
	

Material	 Margin of Safety

I

1. Impeller

2. Turbine Disk

3. Shaft

a. Turbine End Shaft

b. Impeller Shaft

c. Tie Bolt

4. Housings

a. Inlet Torus

b. Exit Torus

c. Exit Closure

d. Bolts

Nitronic 50	 2.53

Nitronic 50	 .48

Nitronic 50	 7.4

Nitronic 50	 1.52

A-286	 0.0

Nitronic 50 7.3

Nitronic 50 5.4

Nitronic 50 5.4

A-286 0.0
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III, B, Task II - Heat Transfer, Stress, and Fluid flow Analysis (cont.)

(a) Impellers

I.	 Determine the vane stresses for speed and

pressure loading by using three-

dimensional finite elements.

2.	 Perform fracture mechanics evaluations.

(b) Turbine Disks

1. Determine the blade stresses.

2. Calculate the disk-bending vibration

modes.

3. Perform fracture mechanics evaluations.

(c) Shafts

1. Evaluate the splines for stress and life.

2. Determine seal deflections.

(d) Housings

1. Calculate detailed two-dimensional

stresses in the bolted flange joints.

2. Perfo nn three-dimensional analyses of the

high-pressure torus housings.
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III, B, Task II - Heat Transfer, Stress, and Fluid Plow Analysis (cont.)

3.	 Perform fracture mechanics evaluations.

(e) Critical Speed

1. Determine the TPA critical speeds to

include the shafts, the TPA housing, and

the method of external support.

2. Consider the effects of gyroscopic

stiffening.

3. Perform rotor dynamic stability analyses

by considering unbalance, fluid damping,

internal friction, and the characteris-

tics of the fluid 111111 within the running

shaft seals.

4. Establish criteria for shaft vibration

limits.

5. Provide detailed bearing stiffness evalu-

ations.

After completion of the above additional

items ) the LOX turbopump assembly would be considered certified by analysis

and ready for production drawings.
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III, B, Task II - Neat Transfer, Stress, and Fluid Flow Analysis (cont.)

c.	 Main Fuel Turbopump Assembly (TPA) Structural Analysis

(1) 02 TPA Impeller Stress Analysis

The main 02 TPA third-stage impeller was ana-

lyzed for rotational stresses to determine its structural adequacy at the

steady-state operating spee of 90,000 RPM and in a hydrogen environment at

-400°F. In view of its f ► ght weight, titanium 5A1 2.5Sn CLT .vas selected as

the construction material,, While titanium will enbrittle in hydrogen at room

temperature, it can be used in the cryogenic environment.

A finite element compdter program was used to ana-

lyze the impeller. The two-dimensional model is shown in Figure 14.

The results of this analysis showed that the maxi-

mum stress equal to 50 ksi Occurred at the impeller bore for the operating

speed of 90,000 RPM. The minimuw margin of safety w..s found to be .43. A

plot of hoop stress distribution is shown in Figure 15.

The third-stage fuel impeller is adequate at the

design speed of 90,000 RPM. The margin of safety is sufficiently high to pre-

dict that when the design of the vanes and the pressure distribution is com-

pleted during the next design phase, the impeller hub should still be ade-

quate.

Based on the third-stage impeller analysis data, it

can be inferred that the first- and second-stage impellers are also adequate

inasmuch as the outer radius portions of the hub are not as heavy as those of

the third-stage impeller.
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III, B, Task II - Heat Transfer, Stress, and Fluid Flow Analysis (cont.)

(2) LH2 TPA Turbine Stress Analysis

The fuel turbine rotors wet.. . • o analyzed to

establish the structural capability at a 90,000 RPM steady-state operating

speed. The hydrogen environment is -350°F at the disk and +75°F at the

blades. The material selected for the analysis was Nitronic-50 which can be

used in this hydrogen environment.

As before, a two-dimensional finite element com-

puter model was used to determine the tangential stresses. This model is

shown in Figure 16.

The results show that the maximum tangential stress

(106,800 psi) occurs aL the disk inner radius (Figure 17). This gives a mar-

gin of safety of +0.17 on yield and 0.30 on ultimate strength.

On the basis of this analysis, the turbine rotors

are deemed structurally adequate as designed.

(3) LH2 TPA Shaft Stress Analysis

The LH2 TPA shaft was analyzed in three parts:

(1) first-stage, (2) second-stage, and (3) third-stage impeller shafts. The

third-stage impeller shaft was found to be the most critical and is discussed

herein. (The design is shown in Figure 30, ALRC Drawing No. 1191997, of

Section III.C.)

A maximum effective stress equal to 51,370 psi

occurs in the spline runout region. A corresponding fatigue-life greater than

the required 2.2 (10) 8 is predicted in using this stress level with the

appropriate stress concentration factors applied. The static margin of safety

61



Figure 16. Fuel Turbine Rotor Computer Model Geometry
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III, B, Task II - Heat Transfer, Stress, and fluid Blow Analysis (cont.)

is 1.11 based on ultimate strength. The number of cycles required was based

upon the 10-hour service life as follows:

60
N - 90000 RPM x 10 HRS x . =Q_.

MIN
3 x 

1
j 
`CYCLE
RE^

N = 5.4 (10) 7 Cycles W/0 Factor of 4

NREQ = 4 (5.4 [10] 7 ) = 2.16 (10) 8 Cycles

Based upon the analysis, the shaft design was found

to be structurally capable of meeting the design requirements with the follow-

ing recommendations:

Tie Bolts

The use of 3/8 in. - 24 threads with a minimum

0.3 in. effective thread engagement is required.

°	 Impeller Retaining Nut

The use of 5/16 in. - 20 threads with a mini-

mum 0.3 in. effective thread engagement is required.

Shaft

Minimum fillet radii greater than 0.05 in. are

recommended.
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III, B, Task II - Heat Transfer, Stress, and Fluid Flow Analysis (cont.)

(4) LH2 TPA Housing Analysis

On the basis of a preliminary evaluation, the LH2

TPA housing appears to be structurally adequate. Nitronic-50 was assumed as

the turbine housing material. Titanium 5A1 2.5Sn ELI was assumed for the pump

housing which is separate from the turbine housing in this design (see Figure

30 of Section III.G). The following results were obtained:

(a) Turbine Inlet Manifold Torus

Maximum hoop membrane stress is 50,2E7 psi.

For this stress level, the margin of safety is 0.54 based on ultimate strength

for Nitronic-50.

(b) Turbine Outlet Manifold Torus

Maximum hoop membrane stress is 27,991 psi.

The margin of safety is 1.76 based on ultimate strength for Nitronic-50.

(c) Turbine Outlet Manifold Spherical Dome

Maximum hoop membrane stress is 14,130 psi.

The margin of safety is 4.5.

The following recommendations are made on the basis

of this preliminary stress analysis:
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III, B, Task II - Heat Transfer, Stress, and Fluid Flow Analysis (cont.)

°	 Turbine Outlet Manifold Flange Bolts

A minimum of lO 1/4 in. - 28 41, bolts are

required. This requirement is based on the flange drawing dimensional

constraints and on bolt tensile yield allowable load.

°	 Bearing Housing Flange

A minimum of 6 1/4 in. = 28 ^ bolts are

recommended.

°	 Turbine inlet Housing Flange

A minimum of 15 1/4 in. = 28 ^ bolts are

recommended.

°	 In the follow-on design phases, a detailed

finite element analysis of the inlet/outlet manifold interface structure is

highly recommended.

(5) LH2 TPA Structural Analysis Summary

The major components analyzed, along with their

respective minimum calculated margins of safety, are summarized in Table XII1.

It should be recognized that this analysis was

intended to provide preliminary stress information for ascertaining the feasi-

bility of the design. In view of 'this intent, minor design and load changes

that were made as the design progressed were not necessarily included in these

analyses. Nonetheless, the analyses were conducted in sufficient depth to
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TABLE XIII

MAIN LH ? TPA MARGINS SUMMARY

com_onent
	

Material
	

Margin of Safety

1. 3rd Stage Impeller

2. Turbine Disks

3. Shafts

a. Main Shaft

b. Tie Bolt

c. Impeller Shafts

4. Housings

a. Turbine Inlet Manifold

b. Turbine Outlet Manifold
Torus

c. Turbine Outlet Manifold
Dome

Titanium
	 .43

Nitronic 50
	

0.17

Titanium
	

4.4

A-286
	

0.0

Titanium
	

1.11

Nitronic 50
	

0.54

1.76

Nitronic 50
	

4.5
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III, Q, Task II - Neat Transfer, Stress, and Fluid Flow Analysis (cont.)

allow the fuel TPA to be rated as a good first iteration design. For the next

design phase, in addition to refining geometry and loads, the following items

should be added to the structural analysis effort.

(a) Impellers

1. Determine the hub stresses for the first-

and second-stage impellers.

2. Determine the vane stresses for speed and

pressure loading by using three-

dimensional finite elements.

3. Perforin fracture mechanics evaluations.

(b) Turbine Disks

1. Determine the blade stresses.

2. Calculu.0 the disk-bending vibration

modes.

3. Calculate the curvic coupling stresses.

4. Perform fracture mechanics evaluations.

(c) Shafts

1.	 Evaluate the splines for stress and life.
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III, B, Task ILI - Heat Transfer, Stress, and Fluid Flow Analysis (cont.)

(d) Housings

I.	 Calculate detailed two-dimensional

stresses in the bolted flange joints.

2. Perform three-dimensional analyses of the

high-pressure torus housings.

3. Perform fracture mechanics evaluations.

(e) Critical Speed

1. Determine the TPA critical speeds to

include the shafts, the TPA housing, and

the method of external support.

2. Consider the effects of gyroscopic

stiffening.

3. Perform rotor dynamic stability analyses

by considering unbalance, fluid damping,

internal friction, and the characteris-

tics of the fluid film within the running

shaft seals.

4. Establish criteria for shaft vibration

limits.

5. Undertake a detailed bearing stiffness

evaluation.
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III, B, Task II - Heat Transfer, Stress, and Fluid Flow Analysis (cont.)

4.	 Pump Hydraulic Design Analysis

a.	 Requirements

(1) L02 Boost Pump Requirements

The boost pump component operates between the suc-

tion line fiaiige and the main pump inlet flange. Its fluid-dynamic interface

is presented in Figure 18. The data of Figure 18 is based on related informa-

tion given in Reference J. The specified values represent the arithmetic

average between data given for the mixture ratios of 6 and 7. It should be

noted that the boost pump discharge conditions and the boost pump drive system

are not specified. It is the designer's choice to select these discharge con-

ditions (which also become the main ump inlet conditions) such that the over-

all pump performance exhibits high efficiency at a low weight.

The low head-rise oxygen boost pump is required to

supply sufficient head to the main oxididzer pump to preclude it from cavi-

tating. In general, the more head that is supplied as NPSH to the main pump,

the higher , the speed at which it can operate and, consequently, the smaller it

becomes. However, the more head the boost pump must supply, the more shaft

horsepower is demanded by the overall system since the boost pump is driven by

fluid tapped off the main pump. This fluid recirculates through the boost

pump drive turbine and then must be "repumped" by the main pump. This rela-

tionship can be seen in the following formula:

[NHS + ; H
BP (`ABP "T - 1)

MP	 D	 550 "MP
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NOTE:	 Data from Reference(9). OTV Design Handbook
data represents arithmetic average of data given
for the mixture ratios 6.0 and 7.0.

Pin = 16.0 psia	 Q - 172.6 GPM

BOOST PUMP/
Tin = 162.7°R	 MAIN PUMP	 Po = 1470 psia

L02	L02

Efficiency Goal: 60.7%
NOTE: OTV Design Handbook specifies 63.6%

inclUding 5% power for boost pump drive

Po - 1450.5 psia

To = 500.90 R	 _......

GH2----"'

MAIN PUMP
TURBINE

N = 34720 RPM

Efficiency Goal: 76.0%

S 
= 1300 psia

W - 3.97 lb/sec

GH2

PUMP:	 Inlet	 -	 Axial

Exit	 -	 Tangential

TURBINE:	 Inlet	 -	 Tangential

Exit	 -	 Tangential

OBJECTIVE:	 Maximize Efficiencies

Minimize Weight

Figure lei. LO  Pumps-Fluid Dynamic Interface
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III, B, Task II - Heat Transfer, Stress, and fluid Flow Analysis (cont.)

SHP - Shaft Horse Power

W = Weight Flow

H = Head Rise

Y, - Cfficiency

SUBSCRIPTS

MP = Main Pump

BP = Boost Pump

T = Boost Pump Hydraulic Turbine

D = Delivered Weight Plow

S = System

The main pump speed is established to provide c, reasonably efficient single-

stage pump. This results in an inlet NPSH requirement of 64 feet for the main

pump. With a 10 psi allowance for line drop, the required boost pump head rise

is 82 ft.

Since two engine operating points are required

(Ref. 9 lists the requirements for both MR = 6 and MR = 7), a calculated

average of the two was used to size the rotating machinery. This means a

slight off-design operation (less than 2%) at each of the engine design

points.

(2) L02 Mai n Pump Requirements

The main oxyjen pump component operates between the

boost pump discharge flange and the «lain dump discharge flange. Its fluid-

dynamic interface is also shown in Figure 18.
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III, B, Task II - Heat Transfer, Stress, and Fluid Flow Analysis (cont.)

The main oxidizer pump delivers the required engine

flowrate against the system pressure drop. The main pump also supplies the

"hydraulic power" to drive the oxidizer boost pump. This power (flow) is

taken off at the pump discharge. The main pump turbine is driven by heated

hydrogen (at approximately 60°F) at a very low pressure ratio.

(3) LH2 Boost Pump Requirements

The purpose of the fuel boost pump is to raise the

relatively low NPSH of the tank to a significantly higher pressure. This

higher pressure is applied to the main stage and allows it to operate at a

higher shaft speed arid, accordingly, perform its function more efficiently

with an associated decrease in size and weight.

The Design Requirements Handbook (Ref. 9) for the

OTV Advanced Expander Cycle Engine (AEC) identified the engine mixture ratio

between 6.0 and 7.0. The more stringent design condition is associated with

the mixture ratio of 6.0. The boost pump component operates between the

suction line flange and the main pump inlet flange. Its fluid-dynamic inter-

face is shown in Figure 19. Again, it is the designer's choice to select

adequate boost pump discharge conditions (which also become the main pump

inlet conditions) such that the overall pump performance exhibits high effi-

ciency at a low weight.

(4) LH 2 Main Pump Requirements

The main hydrogen pump operates between the boost

pump discharge flange and the main pump discharge flange. Its fluid-dynamic

interface is shown in Figure 19. The data given in Figure 19 is based on

related information given in Reference 9. It should be noted that the spe-

cific values given represent the data for the mixture ratio of 6.
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NOTE:	 Data from Reference (9). OTV Design Handbook
data is for mixture ratio of 6.0

Pin	 18.5 psia	 Q = 456 GPM
BOOST PUMP/

Tin = 37.8°R	 MAIN PUMP	 PD = 2473 psia

LH2	LH2

Efficiency Goal: 63.6%
NOTE: OTV Design Handbook specifies 65.5%

including 3% power for boost pump drive

Po = 2286 psia

	

	 W = 4,22 lb/sec,
MAI N P^,:dP

T = 535°R	
TURBINE	 P	 1481 psiaTo

	
N = 90,000 RPM	

s

GH	 GHt

Efficiency Goal. 75.0%

PUMP:	 Iolet - Axial

Exit	 - Tangential

TURBINE:	 Inlet - Tangential

Exit	 - Tangential

OBJECTIVE:	 Maximize Efficiencies

Minimize Weight

Figure 19. LH 2 Pumps-Fluid Dynamic Interface
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III, B. Task II - Heat Transfer, Stress, and Fluid Flow Analysis (cont.)

The main hydrogen pump delivers the required engine

f1lowrate against the system pressure drop. The main pump also supplies the

"hydraulic power" to drive the hydrogen boost pump and to supply the oxygen

main pump with bearing cooling flow. This power (flow) is taken off at the

pump first-stage discharge.

The main pump turbine is driven by heated hydrogen

(at approximately 75°F) at a relatively low pressure ratio.

b.	 Oxygen Pumps Hydraulic Analysis

(1) Oxygen Boost Pump Hydraulic Analysis

The addition of the thermodynamic suppression head

(TSH) supplements the given net positive suction head (NPSH) to a total of

NPSH + TSH = 2 ft + 3.9 (at 162.7°R) = 5.9 ft

The inlet flow velocity, cml, is set by the cavi-

tation parameter NPSH + TSH/cm2/29 = K. The value of K = 5.4 is taken from

cavitation data on similar type pumps. The ir , et flow coefficient is selected

at .091 to be consistent with the inlet blade angle and the incidence-to-

blade-angle ratio. From the cavitation parameters, the inlet eye of 3.06 in.

and the speed of 7398 RPM are calculated.

The discharge head coefficient is taken from data

of existing similar designs covering the range of specific speed. A head

coefficient value of .37 at the mean and a discharge flow coefficient of .19

at the tip are state-of-the-art values.
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III, 8, Task II - Neat Transfer, Stress, and Fluid Flow Analysis (cont.)

Three type of drives are considered: 1) partial

admission tip turbine, 2) full admission hub turbine, and 3) a fluid coupling

or torque converter. The latter has not been demonstrated as a boost pump

drive and, therefore, is not deemed feasible although it has the potential of

giving the highest overall efficiency.

Since more design and test experience has been

developed for the tip turbine, the full admission hub turbine is not selected.

In order to obtain high efficiency, the hub turbine requires the drive flow to

be tapped off at a lower pressure level. Low energy flow can be taken from

the high-speed inducer discharge; however, one problem is that the flowrate is

high (50 GPM) and that the line and manifold size required will result in a

bulky unit.

Since more experience and design development data

are available for it, the partial admission tip turbine drive is chosen even

though its efficiency is low.

Table XIV presents a summary of the boost pump

hydraulic performance.

(2) Oxygen Main Pump Hydraulic Analysis

The hydraulic design summary is shown in Table XV.

The inducer receives the flow directly from the boost pump. The boost pump is

"sized" for 40.6 psi head rise, which is equivalent to a discharge press ure of

56 psia. The main pump inducer is sized for an inlet pressure of 48 psia,

which leaves approximately 8 psi for the line loss. This appears to be ade-

quate since the boost pump is directly attached; however, this 8 psi "pad"

should be preserved in case the boost pump is removely mcunted.
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TABLE XIV

L0 2 BOOST PUMP DESIGN PARAMETERS

Rotor Stator

Shaft Speed, RPM 7410

Head, Ft 82.3

Flow, GPM 173.5

Specific Speed, RPM * GPM I/2 * Ft -3/4 3566

Efficiency, % 66

Inlet Dia,	 Inches 3.06 2.96

Inlet Vane Angle (Tip), Degree 8 40

Inlet Flow Coefficient .091 .19

Discharge Flow Coefficient .19 .19

Discharge Vane Angle (Tip), Degree 39 90

Head Coefficient .29 .26

No. Vanes 3/15 17

TURBINE

Tip Dia, Inches	 3.8

Hub Dia, Inches	 3.4

Flow, GPM	 17

Admission, %	 3

Nozzle Angle, Degree	 15

Specific Diameter, Ft 5/4 * CFS -1/2
	 11.8

Specific Speed, RPM & CFS I12 * Ft -3/4	 4.0

Efficiency, %	 52
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TABLE XV (Sheet 1	 of 2)

L02 MAIN PUMP DESIGN PARAMETERS

Inducer Impeller

Speed, RPM 34,720 34,720

Inlet Pressure, PSIA 48.0 270

Inlet Temperature, °R 164.3 -

NPSH, Ft 66 380

Flow, GPM 196.2 226

Specific Speed, RPM * GPM l/` 4	
+-3'4

5,000 1,500

Suction Specific Speed, RPM 	 GPM1/2 * Ft-3/4	 21,000 6,000

Inlet Diameter,	 'inches 1.77 1.77

Exit Diameter, Inches 1.77 2.85

Inlet Blade Angle, Degree 10 -

Exit Blade Angle, Degree 10 25

Head Coefficient .2 .49

Flow Coefficient Inlet .114 .20

Flow Coefficient Exit .17 .12

No. Vares 4 9

Head Rise, Ft 450 2,390

Efficiency, % 75 71

Delivered Weight Flow, Lb/sec 30.1

Delivered Head, Ft 2,840

Combined Efficiency, % 61.5

Required Horsepower, SHP 252.5

Diffuser

Flow. GPM	 196.2

Inlet b Discharge Width, Inches 	 .165

Throat Height, Inches 	 .224

Exit Height, Inches	 .358

Inlet Angle (Zero Incidence), Degree	 10.2

Base Circle Diameter, Inches	 3.175
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TABLE XV (cont.)	 (Sheet 2 of 2)

Diffuser

Throat Velocity, Ft/sec

Exit Velocity, Ft/sec

No. Vanes

LEAKAGE AND PARASITIC FLOWS

LH2 Flow for Cooling of Turbine End Bearing

LH2 Flow Through Seal (Mixed with Helium)

L02 Flow Through Seal (Mixed with Helium)

Helium Purge Flow at 500 PSIA

170

106

10

5 GPM (supply from hydrogen TPA)

2 GPM (return to hydrogen TPA)

3 GPM

.5 GPM

.l lb/sec
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III, 6, Task II - Neat transfer, Stress, and fluid Flow Analysis (cont.)

The inducer has a 10° inlet angle which results

from the inlet flow coefficient and the incidence-to-blade-angle ratio. Even

with the boost pump, the main pump inducer must operate at a suction specific

speed of 21,000. At this value, the head loss is small. The tip radius is

held constant through the inducer while the hub radius is increased to raise

the flow coefficient from .114 to .17. With a head coefficient of .2, the

inducer will have a constant blade angle from the inlet to the discharge.

Since the bearing and labyrinth flows are returned

between .he inducer discharge and the impeller inlet, the impeller flow

c ,;, efl'icient increases to .2 even though the flow channel remains approximately

the same as the inducer discharge.

With a return flow of approximately 30 GPM, the

impeller specific speed is 1500. At this specific speed, a flow coefficient

of .12 and a head coefficient of .49 are selected. The blade angle at dis-

charge of the impeller is set at '25° with 9 vanes.

C.	 Hydrogen Pumps Hydraulic Analyses

(1) Design Approach

The function of the fuel pui+iping system is to

accept the fuel (liquid hydrogen) frcNn the tank and raise the pressure to a

magnitude consistent with the engine operating cycle. This is accomplished by

a boost pump and a gas-turbine-driven multistage centrifugal pump. The AEC

engine design requirements handbook (Ret. g ) identifies the total inlet pres-

sure to the boost pump as 113.5 psia and the total discharge pressure of the

turbopump as 2473 psia. For this study, it is assumed that a pumping system

operating between these two pressures and supplying the required flow of 456

GPM is consistent with the engine cycle requirements,
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III, B, Task II - Heat Transfer, Stress, and Fluid flow Analysis (cont.)

Impellers for the pumping system are separated into

three elements: a boost impeller, an inducer, and multistage centrifugal

impellers. The boost pump impeller's purpose is to increase the inlet pres-

sure for the following main stage. Its design is based on the available NfSH

from the tank. The inducer's purpose is to provide a sufficiently high pres-

sure at the inlet to the following centrifugal stages. Without this increased

pressure, flow recirculating back to the inlet of the first centrifugal stage

Will flash to a vapor and choke the inlet. Choking seriously degrades pump

performance. The centrifugal stages perform the bulk of the effort in terms

of generating the required pressure for the engine cycle. However, the effi-

ciency of the centrifugal stages is lower than those of the axial flow boost

{rump and inducer. Accordingly, the pressure generation schedule (i.e., the

pressure rise of each element of the system) directly affects the overall

efficiency of the pumping system. Also, since the two axial elements exhibit

greater efficiency than the centrifugal stages, the pressure generation

requirements imposed on the axial elements in an optimized system will be as

high as practical.

(p) Hydrogen Boost p ump Hydraulic Analysis

Two hydraulic designs are prepared for the fuel

boost pump. The first is the baseline design which reflects the da'.a and

information contained in the Design Requirements Handbook. This baseline

hydraulic design is the one used in completing the mechanical design. The

subsequent design departs from the handbook requirements in terms of the

pressure generated by each element of the pumping system, except for the inlet

NPSH and main sta ge discharge pressure. This improved design represents a

more optimized and efficient configuration.
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III, B, Task II - Neat Transfer, Stress, and Fluid Flow Analysis (cont.)

Hydraulic performance for the baseline and improved

design fuel boost pump is depicted in Table XVI. The baseline design param-

eters shown in the table reflect a boost pump employing a hydraulic tip tur-

bine to drive the impeller. Hydrogen flow to drive this turbine is extracted

from the discharage of the first (;entrifugal stage of the main pump. The

hydrogen leaving the tip turbine is mixed with the boost pump through-flow and

then enters the main hydrogen pump.

With a flow of 94 GPM, the head differential

between tip turbine inlet and outlet is 22809 ft and yields an efficiency of

51%.

The improved design is a hub-mounted hydraulic tur-

bine yielding an efficiency of 66ro with a head change of 7136 ft at a flow of

129 GPM. The flow for driving this hu4) turbine is extracted from the main

stage inducer.

The suction specific speed of the boost pump

impeller for both designs is approximately 40,000. This value is conservative

and does not fully utlize the thermodynamic suppression head (TSH) available

from liquid hydrogen. Utilization of thu available TSH can be accomplished by

increasing the speed of the impeller. However, as boost pump shaft speed

approaches main turbopump shaft speed, the need for a boost pump diminishes.

Accordingly, a turbopump design which doeb iiot include a boost pump seems

feasible and is recommended f,.)r analysis in a future study addressing this

subject.
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TABLE XVI

LH 2 BOOST PUMP DESIGN PARAMETERS

Impeller Baseline Im roved

Fluw, GPM 456 456

Inlet Pressure, PSIA 18.5 18.5

Discharge Pressure, PSIA 60.0 49.9

Inlet NPSH, Ft. 15 15

Shaft Speed, RPM 26647 29647

Specific Speed, RPM * GPM l/2 * Ft. -3/4 2552 3500

Suction Specific Speed, 	
1/2	 3/4

RPM * GPM	 * Ft.- 40326 43076

Horsepiwer, HP 15.1 10.7

Efficiency, " 73 78

Head Coeff i cient .287 .246

Inlet Flow Coefficient .08 .075

Discharge Tip Diameter, Inches 3.350 2.83

Hydraulic= Turbine

Configuration Tip Hub

Head Change, FT. 22809 7136

Flow, GPM 94 129

Efficiency, 51 66

Power, HP 29.6 16.2

Admission, 6 29

Tip Diameter,	 Inches 4.35 1.30

W,
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III, B, Task II - Heat Transfer, Stress, and Fluid flow Analysis (cont.)

(3) hydrogen Main hump Hydraulic Analysis

The main fuel pump raises the LHG pressure from

51 Asia to 2473 Asia and delivers a flowrate of 4.49 lb/sec (456 GPM). The

pump consists of three centrifugal pump stages and an axial flow inducer

driven by a two-stage, warm-gas hydrogen turbine. The design point speed is

90,000 RPM. The three main stages provide an Ns value near 1,000 which

results in high efficiency without excess complexity. The high-speed inducer

provides a high static inlet pressure to avoid vapor generation at the cen-

trifugal stage inlet caused by the high enthalpy fluid returning to the

inlet.

Similar to the boost pump hydraulic design, a

baseline and improved version of the main fuel turbopump hydraulic design are

analyzed. Table XVII summarizes the relevant values aJsociated with each

design.

In both the baseline and iiiiproved design, the over-

all head rise (including the boost pump) is identical. However, the head rise

of corresponding component:; of the two designs varies. The baseline design is

char^J'Lc^i'ized by equal head rise for each of the trree centrifugal impellers.

The improved design reflects constant specific speed y Ns, for the centrifu-

gal components. The efficiency of the hydrogen main pump iiiay be further

increased through a modification of the pressure- generatiny schedule. It

seems feasible to obtain higher efficiency by increasing the head rise asso-

ciated with the inducer stage and lowering the 'hod i rise per stage of the

three centrifugal stages.

A compari son of the overall turbopumt) perforniance is

shown at the bottom of Table XVII. The important difference between the
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TABLE XVII

LH 2 MAIN PUMP DESIGN PARAMETERS

Inducer	 Baseline	 Improved

Head Rise, FT	 3,000	 5,076
Plow, GPM	 547	 582
Efficiency, %	

1/2	 -3/4	 80	 82
Specific Speed, RPM * GPM	 * FT	 5,202	 3,500
Suction Specific Speed, RPM * GPM I/ 2 * FT 

_3/4	
11,238	 11,861

Tip Diameter, Inches	 1.90	 1.88
Power, HP	 36.5	 64.2
Head Coefficient	 .17	 .30
glades	 4	 4

Sta c j

Head Rise, FT 25,302 26,873
Flow, GPM 572 572
Efficiency, %	

1/2-3/4
66.5 71.0

Specifir Sneed, RPM * GPM	 * FT 1,072 1,025
Tip Diameter, inches 373.v 3,19

Power, HP 374 386
Head Coefficient .464 .550
Glades 10 10

State_ I_I j_y_I I
Head Rise,FT	 25,302	 23,842
Flow,ow, GPM	 478	 A78

Efficiency, N	 65.0	 71.0
Specific Speed, RPM * GPM11 " * F 

_3/4	
981	 1,025

Tip Diameter, Inches 	 3.37	 3.01
Power, H1`	 331	 286
g dead Coefficient	 .4G4	 .550

1 Ides	 10	 10

Overall

Head Rise, FT 78,910 79,633
Flow, GPM 456 456
Efficiency, 59.8 63.3

Power, HP 1,072 1,022
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III, B, Task II - Neat Transfer, Stress, and H uid i1ow Analysis (cont.)

two designs lies in the rc-quired shaft horsepower and the efficiency. The

improved design exhibits an efficiency gain of wore than 3" over the baseline

design. It should be noted that the boost, puiiipr is hydraulically driven by

LN- from the first-stage centrifugal iii,joeller. Accordingly, the horsepower

values reported include the effects of driving the boost pum l). The efficiency

values are based on the assumption that 1A of er:gine flow (i.e., 68.4 GPM) is
associated with recirculating flow for lubricating, cooling, and thrust-

balancing. In addition, the inducer and first centrifugal Stage are supplying

the boost pump turbine with a flow of 94 611M.

5.	 Material-. Analysis

The purpose) , of this stibtask was to provide the structural

analysts with tensile dnd thermal mater- 1A property data for use in the stress

analyses.

The selection of aitaterials for the OTV engine requires con-

sideration of their reactivity with the hydrogen and oxygen propellants, their

cryogenic properties, fabricabil ity, r;echanical properties, and density.

The waterial candidates discussed hoxein are to be compatible

with temperatures and propollonts to which Choy i-oll be vxposed in each

c(xo)p,nonent application. Selection of a preferred i,iatemal for each component

is (rased on fabricability, weiipht considerations, ,end the structural require-

ments.

Thendal ano tensile property data for zirconium copper,

A-286, Nitronic-50, C p t p:S 304L, olo trofori fed niuke l , arid titanium 5A1 2.5Sn LLI

was prepared and suNis i tted to 141A^M al ont3 with the edfV p :n^ji ne Design Require-

ments Handbook (Ret. g ). So,oie of the factors which iitust be considered in

selecting materials for this engino application are discussed herein.

k
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III, B, Task II - Heat Transfer,	 ress, and fluid Flow Analysis (cont.)

Aluminum, titanium, stainless steel, and nickel base alloys

are the primary candidates. The aluminum and titanium alloys are generally

preferred due to their relativel y Tow density; however, the aluminum alloys

are also relatively low in strength and the titanium alloys are incompatible

,,	 and warm hydrogen in the hot-gas system. The stainless steels are

s'.	 ^ grid generally compatible with the oxygen and hydrogen environments, but

they do have a lower strength-to-weight ratio. The nickel base alloys are

stronger yet, but they are more difficult to fabricate and are embrittled by

room temperature hydrogen. A more detailed description of the advantages,

disadvantager,, and limitations of the main candidate alloys is presented in

the paragraphs which follow.

a.	 Aluminum Alloys

Aluminum alloys offer the obvious advantage of low den-

sity, which is of vital importance to the ON engine design. Complex config-

urations such as impellers, stators, and housings can be readily cast using

A-355 aluminum. Simpler configurations can be machined from wrought 6061

aluminum stock. Both of these alloys are weldable for ease of fabrication.

Aluminum alloys have demonstrated good service in cryogenic applications and

have frequently been used in LOX environments. Hydrogen embrittlement data is

less complete. However, there are no reported embrittlement effects in 1100,

6061, and 7075 wrought aluminum alloys, and none are anticipated for A-356.

One area of caution in using wrought aluminum alloys is the thermal contrac-

tion of aluminum when cooled from room temperature to -420°F. The thermal

expansion coefficient for aluminum is significantly greater than that of

stainless steels, titanium, and nickel base alloys. Any design using aluminum

should take this into account when establishing clearances and interference

fits.
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111, B, Task II - Heat Transfer, Stress, and Fluid Flow Analysis (cont.)

The major drawback of aluminum alloys is their rela-

tively low strength. Aluminum is only applicable to low stressed components

not exposed to temperatures significantly above room temperature since heat-

treatable alumimum alloys rapidly weaken above 200°F.

The aluminum alloys should find greatest application in
the pump housings and, possibly, the pump impellers and turbine housings,

depending on the stresses and temperatures experienced by these components.

b.	 Titanium Alloys

Titanium alloys have tensile properties comparable to

high-strength stainless steels but with half the density. Titanium alloys can
be cast in complex configurations, such as impellers, and are machinable and
weldable in either the cast or wrought form. Titanium performs well in cyro-

genic env ironments and has a thernial exp.ineion o.Ne%ffic,nnt similar to AAO v

stainless steel (a carnmon bearing alloy). The mismatch in expansion coeffi-

cients of titanium and austenitic stainless steels is less severe than with

aluminum, but it still should be taken into account in the design.

All titanium alloys are completely incompatible with LOX

in that titanium can be explosively detonated by i`.pact in a LUX environment.

Titanium is compatible with cryogenic hydrogen but will begin to form titanium

hydrides slightly above roan temperature which will seriously degrade the

titanium alloy mechanical properties.

The major applications for considering titanium alloys

(primarily MAI 2.5Sn ELI,which has been extensively used in cryogenic

applications) are LH 2 pump impellers, housings, shafts, valves, and lines.

-Areas to avoid in using titanium alloys are all LUX components and the H2

urbi nes.
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III, B, Task II - Heat Transfer, Stress, and Fluid Flow Analysis (cont.)

C *	 Austen 4 '"ic Stainless Steels

Austenitic stainless steels offer a range of tensile

strength (30 ksi to 90 ksi yield strength) and are completely compatible with

the oxygen and hydrogen environments at all temperatures. A-286 is the

highest-strength alloy, but it is only available in the wrought form and is

difficult to weld and braze. 22-13-5 (Armco Nitronic-50) is a moderate-

strength stainless steel which is readily brazed or GTA-welded, but which is

also only available in the wrought form. The 300 series stainlesses (347,

321, 316, 30 , . etc.) are the lowest-strength steels, but they are readily

castable, wettable, and brazable. All of the austeniti:: stainless steels have

very good cryogenic properties and could safely be used exclusively in the OTV

engine if the weight penalty of these relatively dense alloys were acceptable.

Austenitic stainless steels can be considered for any

OTV component where the stresses are too high for aluminum or where the

environment is incompatible with titanium.

d.	 Martensitic Stainless Steels

Martensitic stainless steels in general have poor cryo-

genic fracture toughness and resistance to hydrogen embrittlement; however,

there are two specific applications where they can be used. 400 C stainless

is the standard bearing alloy commonly used in cryogenic applications and has

been demonstrated to perform well in both LOX and LH2 pumps. The other

application for consideration of a martensitic alloy is the LOX pump shaft.

15-5 FAH H1150-M is a precipitation hardenable martensitic alloy which has

shown good cryogenic toughness and is compatible with thermal expansion

coefficients with 440 C. which simplifies the interference fits between the
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440 C bearings and the LOX pump shaft. Since the embrittling effects of

hydrogen on this alloy have not been established, they should not be con-

sidered for use in the H2 system.

e. Nickel Base Alloys

All nickel base alloys are embrittled to some extent by

hydrogen and consequently are not normally considered for hydrogen. However,

the hydrogen embrittlementi effect is reduced at ^ryogenic temperatures, and

INCO 718 has the highest usable tensile strength of all the candidate alloys

within these environmental limits. INCO 718 has good cryogenic properties and

is compatible with LOX. It is castable, but difficult to braze.

INCO 718 can be considered for any of the highly

stressed components, with the exception of the H2 turbine housing or disk,

both of which operate at too high a temperature in hydrogen.

f. Copper Base Alloys

The copper base alloys are compatible with oxygen and

hydrogen and have good cryogenic properties, but they do not offer any signi-

ficant mechanical advantage over the austenitic stainless steels. However,

the copper alloys generally have excellent thermal conductivity, which is

important in regeneratively cooled components.

Zirconium-strenythened copper (Zr-Cu or Zirc-copper)

offers Excellent thermal conductivity, good strength up to 1000°F, and is
compatible with the hydrogen used as the coolant. Consequently, it is the

preferred choice for the combustion chamber.
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III, Task Discussions (cont.)

C.	 TASK III - COMPONENT MECHANICAL DESIGN AND ASSEMBLY DRAWINGS

The ;primary objective of this task was to provide mechanical

design a,id assembly drawings of the major engine components. The component

designs were prepared in only sufficient depth to reveal manufacturing diffi-

culties, allow leakage and cooling flows to be assessed, calculate weights,

and determine technology requirements. Therefore, the resulting designs are

not firm, and further iterations in the designs and data can be expected as

the advanced expander cycle engine design matures.

I.	 Igniter/Injector Assembly

The OTV ignition system employs redundant igniters (shown

mounted on the OTV injector in Figure 20) to meet the man-rating requirement.

Each igniter is a small thruster which can accept either liquidous, two-phase,

or gaseous propellants. These are i gnited by using a very low energy spark.

The igniter produces a hot-gas torch of sufficient energy to provide reliable,

rapid main-stage ignition.

The igniter design conc->pt was developed on the Ignition Sys-

tem for Space Shuttle Auxiliary Propulsion System (Contract NAS 3-14338). The

igniter has been used successfully on a number of rocket engines, including

the Extended Temperature Range ACPS Thruster Investigation (Contract NAS

3-16775), the Hydrogen-Oxygen Auxiliary Propulsion for the Space Shuttle Pro-

gram (Contract NAS 3-14354), and the Integrated Thruster Assembly Investiga-

tion Program (Contract NAS 3-15850).

The ignition system consists of 5 major components: (1) a

GLA spark plug; (2) Model 427200-4871 Valcor coaxial type poppet valves; (3) a

stainless steel/nickel body which forms or contains all manifolding and seals,
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propellant metering and injection orifices, a platform for mounting the spark

plug and valves, plus all necessary instrumentation ports and a flange for

attachment to the injector; (4) a hydrogen-cooled chamber; and (5) a high-

voltage GLA capacitance discharge power supply.

The capacitance discharge power supply is integral with the

spark plug. The igniter assembly is located in the injector oxidizer manifold

cover plate directly below the gimbal mount surface. The igniter propellant

valves are locat e=d lei close proximity to the igniter/injector adjacent to the

ignition power supply.

A 10% core fuel flow is injected via 24 radial inflow rec-

tangular orifices which are formed by a bonded photoetched nickel-plate. The

bulk of the fuel (90p bypassing the core) flows through a stainless steel

metering platelet into an annulus surrounding the igniter injector from which

it flows towards the forward end of the igniter chamber to distribute into 12

slotted coolant passages surrounding the barrel section of the igniter

chamber. The passay- dimensions and flow are selected to provide the neces-

sary cooling of the chamber which contains the oxidizer-rich hot gas.

The oxygen flows from the valve through a balancing crifice

into a low-volume manifold and is injected via 6 like-on-like (LOL) doublet

elements which produce 6 axial fans flowing radially inward to the center

electrode. The 12 oxia)zer orifices are formed by a single photoetched nickel

platelet bonded to the lower face of the igniter body. All of the oxygen

flows through the annular spark gap formed between the central electrode and

the igniter chamber wall and provides the required electrode cooling.

The igniter flows during steady-state operation to keep the

plenum cool.
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Spark rates at selected energy levels for the igniter were

measured on the Extended Temperature Range Thruster Program. The power supply

employed was a GLA MOdel 48136 variable energy system. The unit was cali-

brated at a 0.127-cm (0.050-in.) spark gap to give the following energy levels

and spark rates:

10 mJ 500 sparks/sec

25 mJ 500 sparks/sec

50 W 300 sparks/sec

100 W 150 sparks!sec

A layout of the injector configuration is also shown on

Figure 20. The injector uses coaxial elements because this element type has

an extensive history of operation with GH2/LO2 propellants over a broad

range of thrust and chamber pressure conditions. The injection pattern is a

four-row array of 84 elements uniformly distributed over the injector face.

Because the hydrogen is injected as a gas (at 90'F) and

because the cryogenic LOX immediately flashes into a gas upon injection into

the hot combustion chamber, combustion is expected to occur very close to the

injector face. This results in the need for injector face cooling to ensure

that the low temperatures required for high-cycle life are maintained. Regen-

erative cooling of the injector face, coupled with uiscrete face fuel film

cooling, provides the most reliable method of ensuring face integrity over a

range of operating conditions. Thus, the injector faceplate material is a

laminate of photoetched copper-faced platelets brazed to a structural steel

backup plate. The extremely accurate photoetched flow control passages assure

uniform flow across the entire injector face. The photoetched face ,platelet

concept also permits the incorporation of a filter screen into the platelet

stack. This faceplate concept precludes problems associated with flow
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III, C, Task III - Component Mechanical Design and Assembly Drawings (cont.)

control and flow distribution encountered with Rigimesh, a commercially avail-

able porous sintered stainless steel wire material used on a variety of rocket

engines with varied success.

The injector faceplate is designed to be electron-beam-welded

at its outer periphery and near the center of the injector body. A prelimi-

nary injector stress analysis indicates that the injector face will not have

to be physically attached to each injector element oxidizer post. In the

event of a subsequent, more detailed stress analysis revealing that the

injector face requires additional support, it may be brazed to the injector

element oxidizer posts.

The fuel inlet torus surrounding the injector body is

designed for constant flow velocity to assure uniform fuel distribution into

the injector fuel manifold through 30 equally spaced holes. These 30 holes

are spaced (circumferentially) midway between the 30 coaxial elements in the

outer row of the injector pattern. The fuel manifold, which is located

directly behind the injector faceplate, is designed of sufficient size to

assure uniform fuel distribution to all 84 injection elements. The oxidizer

manifold is located forward of the fuel manifold directly below the redundant

torch igniters.

The oxidizer tubes are recessed approximately one tube diam-

eter into the faceplate. They are held concentrically within the fuel dis-

charge orifice by four small tabs integral with the faceplate. The oxidizer

tubes are designed to be integral to the injector body or to be brazed into

the injector body. Both design features have been used in the past and will

be studied in depth before a final selection is made for detailed design. The

LOX enters the oxidizer tubes tangentially so as to form a hollow cone spray

as it ejects from the tube into the surrounding GH2. The tangential
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III, C, Task III - Component Mechanical Design and Assembly Drawings (cont.)

oxidizer flow is esta')lished by means of flow passages located in a stack of

photoetched and bonded platelets which are located immediately upstream of the

tube inlet. To preclude the possibility of contamination reaching one of

these tangential flow control passages, the platelet stack incorporates a

filter platelet similar to that designed for the fuel circuit. The injector

oxidizer manifold is created by electron-beam-welding the outside diameter of

the closure plate to the injector body and by brazing the central portion of

the closure plate which, :ontains, in its center, the cooled igniter chamber.

The fuel manifold is created by machining the manifold cavity

from the injector face side ,f the oxidizer tubes are to be brazed into the

injector body. If the oxidizer tubes are integral with the injector body, the

fuel manifold will be machined by the electrical-discharge method. The fuel

enters the fuel manifold through 30 radially drilled feed holes. The number

of holes corresponds to the number of injection elements in the outermost row

to provide uniform fuel distribution across the back of the injector face.

The fuel inlet manifold which surrounds the 30 feed holes also serves as a

main structural component of the injector.

Although combustion instability problems are not expected, a

resonator cavity is provided around the injector periphery. The cavity is

designed so that dynamic pressure oscillations do not exceed ± 5%. The reson-

ator cavity is created when the forward end of the combustion chamber is

electron-beam-welded to the injector body.

2.	 Combustion Chamber Design

The design of the combustion chamber required considerutioi,

of man-rating requirements as well as its usage in an advanced expander cycle

engine. These requirements resulted in the selection of a milled slot design

concept. The reasons for its selection are listed below.
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III, C, Task III - Component Mechanical Design and Assembly Drawings (cont.)

°	 The high-conductivi ty liner w;th its integral fins pro-

vides heat trw..—I`or enhancement which minimizes liqui^

side flux. This rt-suIV, .n less required coolant velo-

city, in turn resulting in reduced jacket pressure drop,

which is important to the expander cycle efficiency.

°	 The -itilization of high conductivity material (zirconium

copper) with the lot type thrust chamber reduces wall

temperature gradients to enhance cycle-life and facili-

tates conformance with structural criteria.

The use of tube-walled construction involves numerous

fabrication variables, exce ,,live component quantity and

complexity, and the requirement for large quantities of

high-pressure brazed interfaces.

The selection of thrust chamber geometry (contraction

ratio and combustor length) is influenced by engine

cycie considerations. Studies show that the total heat

load (coolant temperature rise) is increased as L' increases

and contraction ratio decreases. While this increases the

turbine inlet temperature, it increases system pressure

drops. Optimization studies performed during the Phase

A work effort resulted in the selection of a contraction

ratio of 3.66 and a combustor length L' of 18 inches.

The combustion chamber design is illustrated in Figures 21

and 22. The chamber ID, which is 5.34 in., is cylindrical for 13.54 in. and

then converges at a 30° half-angle to a throat diameter of 2.79 inches.
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III, C, Task III - Component Mechanical Design and Assembly Drawings (cont.)

The thrust chamber gas-side wall contains 113 coolant slots which are equally

spaced in a zirconium copper liner. The coolant slots are closed out with

electroformed nickel. The coolant enters the chamber at an area ratio of

10.6. The inlet manifold is located 4.20 in. below the throat. The coolant

flows axially for a distance of 22.20 in. toward the forward end of the

chamber. The coolant is collected in a manifold outboard of the resonator

cavities and exits radially into the chamber's coolant outlet manifold.

Twelve resonator cavities are located at the forward end of

the thrust chamber and are bounded by the injector body OD and chamber ID.

The resonator entrance width is 0.300 and remains constant for a depth of one

inch. The cavities are tuned to match the first tangential (1T) acoustic

mode. The injector face outside-radius-to-chamber-inside-radius overlap is

0.125 inch. The coolant passages that are in line with the 12 partitions

between the resonator cavities will extend partial'.-! through the partition to

regeneratively cool it.

Zirconium copper has been selected as the gas-side wall

material. The inlet manifold and the exit manifold flange are made of CRES

304L and are designed to be brazed to the zirconium copper chamber prior to

C osing the chambers coolant slots with electroformed nickel. A conical sup-

port structure surrounds the entire chamber to provide a load path for

gimbal-induced loads from the nozzle extension in addition to providing a

means of attachment for engine components. The support structure is designed

to be secured by electron-beam-welding it to the forward and aft end CRES 304L

Flanges of the chamber. The conical support structure has a circumferential

channel located at its inside diameter approximately midway along its length

to provide additional structural rigidity. Openings in the cone will provide

access for mounting components and routing propellant and service lines.
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Both the chamber inlet and outlet manifolds are designed for 	 j

constant flow velocity to assure proper coolant distribution within the

chamber. The chamber inlet manifold is integral with the inlet manifold of 	 j

the regeneratively cooled nozzle. This feature permits the regeneratively	
i

cooled nozzle tubes to be brazed directly into the zirconium copper chamber

wall. This eliminates 1) the need for a separate manifold feeding the nozzle,

2) a bolted flanged interface, including a hot-gas seal, and 3) the adverse

reliability inherent in a flanged interface. This design feature requires

that the brazing of the tube bundle be performed prior to electroforming the

closeout of the chamber coolant slots in order to avoid potential blistering

of the electroformed nickel. The design of the cooled nozzle is discussed in

the following section.

3.	 Re generativelyneratively Cooled Nozzle Design

The regeneratively cooled nozzle design is physically

attached to the chamber as shown in Figures 22 and 23. Rather than extending

the slotted chamber configuration to minimize weight, a two-pa.. 'ube bundle

configuration was selected for the nozzle. Because the nozzle gas-side pres-

sure is extremely low (i.e., 17.55 psi at the forward end to 0.52 psi at,the

aft end) whereas the chamber must operate at 1200 psi, gas-side braze joints

are acceptable for the man-rated OTV system.

The forward end of the nozzle is located at an area ratio of

10.6:1, 4.35 in. below the chamber throat at a contour ID of 9.100 in., and

ends at an area ratio of 172:1, 34.35 in. below the throat at a contour ID of

35.46 inches.

A total of 326 coolant tubes are spaced equally around the

nozzle contour. The tubes taper from an 0.089-in. OD with a wall thickness of
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III, C, Task III - Component Mechanical Design and Assembly Drawings (cont.)

0.007 in. at the forward end to an 0.361-in. 00 with a wall thickness of 0.010

in. at the aft end. The tube wall materials under consideration for the

nozzle include 347 CRES, Armco Nitronic 40, and A-286. The first structural

analysis iteration indicates that 347 CRES is a satisfactory material for the

man-rated system. All three materials have been brazed successfully at ALRC,

although the A-286 materia' t, lald require special processing and preparation

to assure reliable braze	 The greate.t amount of experience has been

with 347 CRES. The forwarw _.ids of the tubes are brazed into the aft end of

the zirconium copper chamber. The aft ends of the tubes are brazed into a 347

CRES turnaround manifold.

To provide tube bundle rigidity, four circumferential ring

stiffeners are brazed to the exterior of the tube bundle. To assure that the

deployable radiation-cooled nozzle will properly align, center itself, and

seal with the regeneratively cooled nozzle, a stainless steel flange has been

designed to be brazed to the tube bundle approximately 8 in. from the aft end.

This flange accommodates the bushings for the extension/retraction mechanism

screw, a gasket seal gland, and one of two spring-loaded alignment rings. The

second alignment ring is located in the outer periphery of the copper

turnaround manifold.

4.	 Radiation-Cnoled Nozzle Extension and Deployment Mechanism

The radiation- pooled nozzle extension assembly is shown as

part of the engine assembly layout in Figure 24. It consists of a contoured

radiation-cooled nozzle, an extension/retraction mechanism, and a mechanical

drive system.

In the extended position, the radiation-wooled nozzle is

located 34.35 in. below the throat at a contour ID of 35.46 in. and extends
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III, C, Task III - Component Mechanical Design and Assembly Drawings (cont.)

an additional 50.3 in. to an exit area ratio of 435:1. The retracted position

of the nozzle is such that its exit plane is at the same axial station a3 that

of the regeneratively cooled nozzle (172:1) which is 34.35 in. below the

throat.

The 50.3-in. length of the radiation-cooled nozzle is based

upon the following design criteria:

°	 Component penetration above the gimbal plane is limited

to 6.5 inches. This distance is required to redirect the

axially oriented propellant inlet lines to the horizontal

and into the gimbal plane.

An integral part of the nozzle is a thin-wall cylindri-

cal ring assembly, approximately 9.3 in. long, which

contains the nozzle attachment flange. The ring

assembly is not exposed to the hot products of

combustion as it extends axially up the outside of the

regeneratively cooled nozzle. Its function is to permit

extension of the nozzle flange up to the deployment ring

where it is bolted to the extension/retraction

mechanism. Its cylindrical length is controlled by the

maximum distance down the external contoured surface of

the regeneratively cooled nozzle so that the deployment

ring can be lozated without exceeding the 35.46 ID of

the radiation-cooled nozzle. This axial distance is

approximately 9.3 inches.

Design of the radiation-cooled nozzle is based upon the

highly successful nozzle used on the OMS engine. The primary candidate
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material is C-103 columbium alloy. An oxidation-resistant coating such as

aluminide or silicide slurry is required on all . surfaces of the nozzle. The

thickness of the nozzle is increased at the exit end where a U-shaped stif-

fening ring approximately .080 in. thick is located. Vibration tests with the

OMS nozzle defined the need for a stiffening ring of this type.

The radiation-cooled nozzle incorporates a bolt-on flange and

is designed to be removed and replaced from the aft end. If required, it can

be manually removed from the engine while in orbit.

Redundant seals are emplo yed between the extendible nozzle

and the regeneratively cooled nozzle to prevent hot-qas leakage. Preliminary

studies indicate that the low temperatures on the backside tip of the regen-

eratively cooled nozzle will permit the use of an elastomeric-type diametric

seal. The nozzle joint is also sealed by an elastomeric gasket-type face seal

made of silIC -Vne rubber. The gasket seals between the nozzle mounting ring
and the support ring which is brazed to the tube bundle "V" band and also

between the extendible nozzle flange and the nozzle mounting ring. A positive

seal is assured by serrations machined in the surfaces of all part ­ that

contact the seal. The amount of gasket "crush" between the mating parts is

controlled by interlocking lips. The seal is located in a cool area well

removed from the heat input to the extendible nozzle, but more complete

thermal analysis must be performed to verify that this region does not reach a

steady-state temperature in excess of the capabilities of elastomers. The

sealing concept described is both positive and insensitive to machining

tolerances. It does require that the seal be held in compression during the

engine firing mode. Leakage rates of specific seals and seal interface

designs must be evaluated by testing.

Nozzle alignment is concerned primarily with the angular

difference between a theoretical centerline through the nozzle throat and
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injector end of the thrust chamber and a theoretical centerline through the

throat and the exit plane of the nozzle. Misalignment tolerances are usually

quite small, on the order of 0.25° or less, because the engine is usually

r)ounted to the vehicle using the thrust chamber centerline as the mounting

guide and generally placing it parallel with the vehicle centerline. For

single engine/nozzle vehicles, these centerlines are also coincident.

Because the ON engine is not fixed but, rather, gimballed, a

slight movement of the gimbal actuators can compensate for small amounts of

misalignment. This action reduces total gimbal movement in thac direction by

a like amount.

For an engine with an extendible nozzle, it can be assumed

that misalignment in the fixed portion of the engine is small and can be held

to conventional tolerances by conventional methods. This is not true of the

extendible radiation-cooled nozzle nozzle extension. The nozzle is supported

by the extension/retraction mechanism and proved into its extended position by

the mechanical drive system. It must be carefully designed to reduce the mis-

alignment between it and the fixed portion of the nozzle. Misalignment of the

extendible nozzle would occur within the divergent portion of the nozzle, at

the joint attachment, and at a high area ratio of 172:1. Consequently, a

severe misalignment at this point could result in the following:

Loss of performance.

°	 One side of the nozzle may protrude into the hot-gas

exhaust stream and become overheated.

°	 Seal surfaces may not mate properly, resulting in an

inability to effect an adequate seal.

°	 All or any part of the above may simultaneously occur.
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In view of these potential problems, it is important to keep

misalignment between fixed and moving portions of the extendible nozzle

assembly to a minimum. This probably would require meeting a tolerance com-

parable to that allowed for conventional nozzles.

The radiation-cooled nozzle can be aligned with the fixed

portion of the nozzle in two ways: (1) through the screw shafts and support

system or (2) directly to -the fixed nozzle. The use of the screw shafts and

support system to accomplish alignment is a poor choice because the screw

shafts and supports must first be aligned with the fixed part of the nozzle

before the extendible nozzle can be aligned with the screw shafts. Alignment

of the screw shafts to the fixed portion of the nozzle is very difficult, no

matter how many screw shafts are employed. Alignment would most likely be

accomplished by line-boring the bearing holders in relation to the extendible

nozzle centerline.

A much better way is the selected method of aligning the

extendible nozzle directly to the fixed nozzle. Because ooth parts are con-

centric and turned on a lathe or spun, it is more natural to interface the two

parts and accomplish alignment with the interface.

A spring-loaded nozzle centering device, consisting of a one-

piece spring positioned in a groove on the lower support ring for the

extension/retraction mechanism, is used. The spring is fabricated from a

single piece of sheet stock, formed to the desired cross-sectional shape and

diameter, and slotted at approximately 0.4 in. intervals to create discrete,

radially oriented springs. A second centering spring is positioned just

upstream of the diametric seal located on the tip of the regeneratively cooled

nozzle. This spring assures final centering of the nozzle and a more uniform

loading on the seal. This type of centering spring holds the nozzle in as
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perfect an alignment as possible within the machining tolerances of the two

parts; moreover, it establishes a moment arm to resist lateral forces imposed

on the extendible nozzle due to gimballing and other vehicle-imposed loads.

The function of the guide and support system is delineated by

its definition: i.e., to guide and support the nozzle extension as it travels

between its stowed and extended position. The concept consists of three tubu-

ler steel screw shafts located 120 0 apart around the fixed portion of the

nozzle. Each scr%w shaft is an axially oriented threaded tubular shaft

approximately 1 in. in diameter by 53 in. long. Each shaft is mounted in an

elastomeric supported sleeve bearing located in the brazed flange fixed to the

lower tube bundle "V" band support. This permits the final alignment to be

accomplished by engagement of mating parts at the end of travel. Thus, the

need for close tolerances in the palcement of the screw shafts is greatly

reduced. The other end of the threaded shaft is mounted in a bearing in the

gearbox which is riy"iuiy attached to the upper support ring: The gearbox

houses a set of bevel gears which translate the rotational power from the

horizontally oriented flexible drive shaft to the axially oriented screw

shaft. A threaded lug or nut on each screw shaft is rigidly attached to the

nozzle attachment ring which, in turn, is bolted to the nozzle. Screw shalt

rotation within each lug results in an axial displacement of the extendible

nozzle. Consequently, the nozzle extension is guided, supported, and trans-

lated by the threaded shaft.

A small reversible 28-volt DC drive motor, suitable for

vacuum operation and having integral spur reduction gear sets and provisions

for three separate power takeoffs, is mounted on the engine structure just

below the gimbal plane. A flexible drive shaft transmits power to each screw

shaft. Since nozcie deployment or retraction time is not an important factor,

the electric driti,e motor does not require a high power output. The motor
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contains a mechanical lock that is automatically activated to prevent movement

of the drive train components whenever the nozzle is in the extended or

retracted position. When in the extended and locked position, a constant pre-

determined compression load exists on the extended nozzle face seal (between

the extended nozzle and regeneratively cooled fixed nozzle), thereby assuring

an effective seal. The motor also contains a tool attachment for manually

extending or retracting the nozzle, if necessary. The fitting is designed to

accept a standard or board-type tool available to the crew.

Three flexible drive shafts that have been designed for

reversible rotation are used between the drive motor and screw shafts. They

are of equal length to maintain screw shaft synchronization during operation.

The upper support ring is a thin-wall, hollow ring assembly having a

rectangular cross section. It supports the upper end of the screw shafts and,

in turn, is supported by the primary structural supports for the extension!

retraction mechanism. These supports are configured to be 1-in. diameter

thin-wall tubes. There are 3 sets, 3.20° apart, each containing 3 struts. One

strut is radially oriented and attached to the forward end of the chamber

structural support, while the other two struts are attached to the chamber

structural support in the throat region in a tangential manner, with one on

each side.

5.	 Gimbal Assembly

The gimbal assembly shown in Figure 25 consists of two sub-

assemblies: (1) thrust mount and (2) monoball, thrust lug and bolt assembly,

and antirotation tie rod assembly. The structure provides the monoball gim-

balling capability avid the attach points for the hydraulic actuators and TCA.

Thrust is transmitted from the back of the injector flange through the struts

of the thrust mount and monoball assembly to the propellant tank bottom

flange.
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III, C, Task III - Component Mechanical Design and Assembly Drawings (cont.)

6.	 Oxygen Turbopump Design

a.	 Oxygen Boust Bump Mechanical Design

A cross section showing the details of the mechanical

design and the function of the LOX boost pump is presented in Figure 26.

Because of their small size, the impellers for both the

inducer and the transition stage can be machin(J integral with the shaft. The

shaft is carried on a roller bearing and a ball thrust bearing or two ball

bearings, with one restrained axially. The axial thrust is controlled by

placing a labyrinth at the impeller discharge at the largest possible radius.

The leakage flow through the labyrinth feeds the bearings and returns to

suction through the spinner. If it is determined that the hard particle

content in the oxygen exceeds the bearing allowable, the flow must be

filtered.

Because the hydraulic turbine is velocity-compounded,

there is very little differential pressure from side to side. The axial

thrust from this type of turbine is small. Another advantage with a

velocity-compounded turbine is the small leakage through the turbine laby-

rinth. The turbine is attached to the tandLin stage of the inducer by brazing

a ring to the vane tips. Since the vanes have a small angle, they have the

ability to carry torque without high bending stress.

The flow from the turbine is mixed with the delivered

flow at the guide vanes. The velocity of the two streams is matched so that

mixing losses are minimized.
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III, C, Task III - Component Mechanical Design and Assembly Drawings (cont.)

The bearing housing loads are carried to the external

housing through the guiae vanes. These vanes are approximately 1/4 in. thick

at the maximum point for about 25% flow blockage. These vanes are only used

to support the bearings, not to turn the flow.

The stator vanes which turn the flow are in an inserted

section. This allows them -to be machined from the OD for better control of

shape anu thickness. A cast blade will most likely be thicker than desired

without the required surface finish.

b.	 Oxygen Main Pump Mechanical Design

As shown in Figure 27, the main pump is made up of two

pumping elements, an inducer and an impeller, which are directly connected

together. The inducer, which can run at a relatively ,igh speed without cavi-

tating, provides sufficient head to the impeller to keep it from cavitating.

The head split is approximately 15% to 85%.

The inducer has a cylindrical tip to make it less sensi-

tive to axial displacement. The impeller has front and back shrouds with

cylindrical labyrinths. Flow from the bearing package is returned between the

inducer and the impeller where the pressure is high enough to prevent flashing

of the liquid oxygen due to the heat removed from the bearings.

A major mechanical design consideration is inter-

propellant sealing. With the turbine driven by warm H2 gas (41 0F), a posi-

tive separation must take place between the turbine and pump. There are two

basic options. First, the turbine end bearing(s) can be lubricated with

liquid oxygen. This method requires that the interpropellant seal package be

located between the turbine bearing and the turbine which results ill a rela-

tively short bearing-to-bearing span and a long span between turbine bearing
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III, C, Task III - Component Mechanical Design and Assembly Drawings (cont.)

and turbine. Because the turbine is the largest (heaviest) component on the

shaft, the shaft diameter must be increased to avoid operation above the first

critical speed. The second method is to lubricate the turbine end bearing(s)

with liquid hydrogen. This is the selected concept and has the advantage of

placing the turbine in close proximity to the bearing and also giving a rea-

sonable bearing-to-bearing span. The liquid hydrogen is tapped off the second

stage of the main hydrogen pump, flowed through the bearings, and returned to

the inlet of the main hydrogen pump second stage. Although some of this

liquid hydrogen leaks into the warm H2-gas driven turbine, this should not

cause any problems. The leakage rate is small since the differential pressure

across the seal is very small.

The pump end bearings take their flow from the impeller

backside labyrinth leakage flow through the bearings and are returned to a

manifold which feeds the flow between the pump inducer and pump impeller.

The interpropellant seal package shown in the design

consists of five circumferential-type shaft seals. Helium is introduced

between the second and third seal (counting from the pump end bearings) at a

pressure sufficiently high for helium to leak under both seals and mix with

oxygen on the pump-side seal and hydrogen on the turbine-side seal. These

mixtures can either be returned to their respective tanks where the propellant

is condensed and the helium gas is used to pressurize the tank or they can be

dumped overboard at a location where mixing can be avoided.

An alternative to this interpropellant seal concept is

to use a burn-off seal. This seal has the potential for reducing system

complexity by eliminating the need for both the helium supply and the hydrogen

supply from the main hydrogen pump. However, until such time as this alterna-

tive approach has been fully developed, the more conventional sealing method

is recommended.
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III, C, Task III - Ccmponent Mechanical Design and Assembly Drawings (cont.)

The selected bearings are a pair of back-to-back sets of

deep-groove angular contact bearings which are located at each end. These

could possibly be replaced with single four-point contact bearings which have

a split inner race. The back-to-back bearing sets are preloaded axially v. th

springs so that there is no radial looseness. The turbine end pair are 35M

bearings which are locked in the housing so that one will carry axial thrust

in one direction and the other in the opposite direction. The pump .end pair

a;^e 25mm bearings which are allowed to move axially in the housing and carry

only radial load.

Initially, it was thought that the turbine could be

velocity-compounded with very small wheel differential pressure and that the

axial thrust would be unaffected by the flow direction through the turbine.

However, due to increased power requirements, it became necessary to design

the turbine for some reaction. The pressure difference across the wheel is

significant inasmuch as the flow direction in the turbine muss be away from

the pump to reduce the axial thrust to an acceptable ievei. With this con-

cept, the labyrinth on the backside of the impeller can be set so the calcu-

lated value of axial thrust is zero. In realit-y there are variations in the

pressure schedules. This results in some axial thrust. If it is assumed that

these variations do not exceed + 10% of the design thrust forces, then the

worst-case axial thrust value is + 600 lb and the RMS value is + 300 lb. At

the RMS value, the bearing 
a10 

life is slightly greater than 1000 hours.

It should be noted that the bearing flow is not fil-

tered. If the propellants exhibit hard contamination exceeding the bearing

capability, then a filtering scheme must be incorporated.

A lumped mass model of the rotating components was

analyzed for critical speed. With a bearing radial stiffness greater than
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III, C, Task III - Component Mechanical Design and Assembly Drawings (cont.)

2.5 x 105 lb/in., the first critical speed exceeds the operating speed by

25x• At normal bearing stiffnesses, the first critical speed is 2.5 times the
4

operating speed.

1

Essentially, the entire main oxidizer pump, turbine,

manifolds, inducer, impeller, shaft, and housing are made of Nitronic 50.

Only the bearings and possibly the bearing housings are fabricated from steel.

The seal housings are made of titanium, while the springs are stainless steel

and the segmented rings are made of carbon.

With the materials as described above, little, if any,

problem with differential thermal growths is anticipated. However, if the

shaft is made of steel, the splines have to be designed for a female in the

shaft so that both the expansion and the centrifugal loading tend to increase

the interference fits of the pilots. The splines are sized for a maximum of

30,00uu" psi shear and 10,000 psi bearing stress.

All static seals except the three exterior seals are of

the piston ring type. A very small leakage through the overlapped piston ring

seal is tolerated. The piston ring seals, which seal axial leakage flow, are

used because they require only a small envelope. The th 2e outside seals,

which seal against internal pressure, are of the conno-seal type (AS 4061).

c.	 Oxygen Main TPA Gas Turbine Design

(1) Requirements and General Considerations

The Advanced Expander Cycle Engine turbopump

assemblies require low-pressure-ratio turbines driven by a warm hydrogen gas.

The turbines are coupled fluid-dynamically, i.e., the LOX turbine is in series

(downstream) with the LH2 turbine.
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III, C, Task III - Ccxnponent Mechanical Design and Assembly Drawings (cont.)

Previous studies (OTV Phase A, Contract NAS

8-32999) indicate that in order to meet the engine performance prediction, the

hydrogen TPA requires a two-stage axial flow turbine and the oxygen TPA

requires a single-stage axial flow turbine. These studies indicate further

that the reaction blading must be applied, requiring tight leakage control.

Also, because of the low pressure ratios, the turbine performance is sensitive

to the manifold losses. This requires well-designed large inlet and exhaust

systems.

(2) Selected Concepts

The OTV engine cycle operates the turbines with low

temperature hydrogen gas (75°F) at low pressure ratios. These conditions per-

mit the utilization of the same materials for the rotor blades and the disks;

consequently, the blades and the disks can be machined from the same forging.

Shrouds are necessary to periidt reduction of tip leakage which can have con-

siderable effect on the efficiency of the low aspect ratio reaction blading.

Due to the low aspect ratio and the hub-to-tip ratio, untwisted blading can be

used without an appreciable loss in efficiency.

The objective in manifold design is to minimize the

pressure loss and provide a uniform radial and circumferential velocity dis-

tribution at the inlet to the nozzles. Similarly, the exhaust collector is

designed for as low a pressure drop as possible. Ultimately, manifolds and

exhaust collectors are designed with emphasis not only on turbine performance,

but also on the minimization of the duct losses and the overall system pack-

aging.

For the LOX and LH 2 turbine inlet manifolds, a

rollover scroll having tangential inlet is selected as best suited to system
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III, C, Task III - Component Mechanical Design and Assembly Drawings (cont.)

packaging. A set of vanes is used to channel the flow into the nozzles and

also serves as a structural support for the manifold.

The gas exit for both oxygen and hydrogen TPA tur-

bines is accomplished with a scroll having a tangential outlet.

(3) Fluid-Dynamic Design Method

In order to realistically predict the turbine effi-
ciency and flow passage geometry, it is necessary to conduct a loss analysis

which takes into consideration the effect of significant fluid-dynamic param-

eters. In this analysis, the losses are divided into the following three

groups:

a=	 inlet Manifold Loss

b,	 Blading Loss
co	 Exhaust Collector Loss

The scroll-type manifold with tangential inlet is

expected to have a pressure loss coefficient no higher than 1.0 (Ref. 11).

The pressure loss coefficient, Y i , is defined as follows:

_ Poi	 Poe

Y1	 Poi - pi

where:

	

Poi	 Total pressure at the scroll inlet

	

P0 e	 Total pressure at the scroll exit

	

Pi	 Static pressure at the scroll inlet

Blade loss analysis is based upon the method of Ainley and Mathieson (Ref. 12

and 13). The losses are divided into the following:
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III, C, Task III - Component Mechanical Design and Assembly Drawings (cont.)

a. Primary Loss

b. Secondary Loss

C * 	 Tip Clearance Loss

In addition to these losses, disk friction is also taken into account.

The estimated exhaust collector loss coefficient

based on exit dynamic head is 1.5.

Using the loss analysis iteratively, turbine flow

passage is calculated and turbine performance is predicted via the computer

program reported in Reference 13.

The following design point specifications are based

on the conditions which are predicted downstream from the hydrogen TPA gas

turbine. They represent a refinement of the information given in Figure 18

and were taken from a later cycle power balance.

a. Total	 Inlet Pressure, Po = 1494 psia

b. Total	 Inlet Temperature, To = 487°R

C. Static Exit Pressure, P2 = 1323 psia

d. Rotational Speed, N = 34720 RPM

e. Flowrate, W = 4.22 lb/sec

The final total pressure loss coefficients used in

the analysis are as follows:
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III, C, Task III - Component Mechanical Design and Assembly Drawings (cont.)

Blade

Stage,	Row	 Total Loss Coefficient

1	 Manifold 0.79

Stator 0.115

Rotor 0.186

Collector 1.5

The results of the analysis are summarized in Table

XVIII. Figure 28 shows the meridional flow passage of the turbine.

(4) Oxygen TPA Turbine Conclusions

Design point analysis is conducted to determine the

flow passage geometry and performance of the oxygen TPA turbine. The results

are as follows -

0	 Single-stage reaction turbine

°	 Pitch diameter = 5.545 inches

°	 Overall velocity ratio = 0.483

°	 Estimated static efficiency - 66.7%

These results are based on a detailed blade loss analysis which can be used

for blade profile design. However, only an approximate study was made of the

manifold losses. In the design of inlet and exhaust manifolds, considerations

are given not only to the turbine performance but also to the engine system

requirements. Cold-flow testing will be necessary to develop the most effec-

tive turbine inlet and exhaust configurations.
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1

TABLE XVIII

LO  TPA GAS TURBINE DESIGN POINT PERFORMANCE 	 1
I

Overall Turbine,
Parameter Stage Including Manifolds

Work, BTU/lb 40.8 40.8

Flowrate, lb/sec 4.15 4.15

Static Pressure Ratio 1.105 1.130

Stage Loading Factor 0.60 -

Stage Flow Coefficient 0.328 -

Velocity Ratio 0.533 0.483

Static Efficiency, w 82.3 67.7

The estimated disk friction loss is 3.86 HP. When this loss is included, the

overall turbine efficiency is 66.7".
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III, C, Task III - Component Mechanical Design and Assembly Drawings (cont.)

d.	 Recommendations for Future Study, Oxygen TPA's

As a result of limited time and resources available to

conduct this TPA design, certain items could only be addressed superficially

and re+,.iaining problems could only be identified but not totally resolved. As

a minimum, further design iterations are required in the following areas:

(1) Reevaluate material selections for boost and main

pumps.

(2) Confirm that the pressure schedules of the purge

system, the oxygen and the hydrogen pumps are compatible at all modes of anti-

cipated engine operation (startup, shutdown, idle, transient, full power) to

ensure successful and safe per foriiianCe of trie I rtter pr oNel iai'it seal

(3) Determine if the bearing coolants require

fiIteriny.

(4) Establish solutions to problems which could arise

at engine shutdown as propellant backflows into the bearings.

(5) Conduct a turbine design iteration incorporating

recommended study modifications.

(G) Reevaluate the boost pump configuration to deter-

mine the poss'bility of standardizing the hydrogen and oxygen boost pumps and

the feasibility of a two-.tape hub turbine boost pump with high-speed inducer

tap-off as a more effective design approach.
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(7) Finalize turbine inlet and exit manifold geometry

in more detail, emphasizing the performance of the two turbines in a series

system.

(H) Conduct a literature search for small-size tur-

bines, emphasizing small blade size and tip clearance leakage control.

e.	 Oxygen TPA's Technology Areas

The oxygen TPA preliminary design, as baselined in this

report, consciously utilizes only design features which are within the present

state of the art. Certain performance improvements and design simplifications

could result if some of the following design features were to pass their tech-

nology status and could then be implemented in the final design. The most

significant technology areas to be considered are as follows:

(1) Development of a burn-off seal to replace the spa-

cious and heavy purge seal.

This concept allows leakages from pump and turbine

to mix. It is particularly attractive for the LOX pump of the ON engine

because the temperature of the hydrogen in the turbine is relatively low and

because no spontaneous reaction of the resulting potentially explosive

02-H2 mixture in the seal area of the tUrbopump is to be expected. The

mixture will not burn or explode without being ignited.

It seems feasible to transport the mixture

collected in the seal cavity by means of a jet pump (eductor) to a catalyst

bed where oxygen and hydrogen recombine to water (steam).
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III, C, Task III - Component Mechanical Design and Assambly Drawings (cont.)

By keeping the pressure in the interseal cavity

low, the quantity and, therefore, the energy content of the mixture present in

the turbopump that could be liberated in case of an accidental ignition (e.g.,

by metallic rub) is greatly reduced.

The driving jet flow could conceivably be supplied

by the vent flow tapped off downstream of the first seal element (pressure

breakdown seal) of the high-pressure turbine seal package.

Added safety features could be provided through the

utilization of flame arrestors in order to avoid backfiring and ignition of

the mixture in the lines or in the bearing cavity.

(?) Development of a drive system for the 000st rnumn

which would have a higher efficiency than the present concept. Fluid

coupling, torque converter, or friction drive systems may be considered.

(3) Structure a development program which is geared

towards the minimization of gas turbine inlet and outlet manifold pressure

losses. An optimal manifold design will increase overall turbine efficiency

without excessive increase in envelope size ant, weight.

7.	 Hydrogen Turbopumps Design

a.	 Hydrogen Boost Pump Mechanical Design

The LH2 boost pump is illustrated in Figure 29. Ic is

driver by a partial admission hydraulic tip turbine. The turbine, in turn, is

driven by hydrogen flow obtained from the first stage of the main hydrogen

turbopump. The hydrogen that leaves the tip turbine is mixed with the boost
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III, C, Task III - Component Mechanical Design and Assembly Drawings (cont.)

pump through-flow after which it reenters the main hydrogen pump. The boost

pump discharge flow i axial to facilitate close coupling of the boost and

main turbopump assemblies in the engine package.

The hydraulic turbine is hub-mounted. With a flow of

129 OPM, it yields an efficiency of 66% with a head change of 7136 ft.

The boost pump operates at an NPSH of 15 ft, delivers a

discharge pressure of 50 psia, and is HI efficient.

b.	 Main 1. 1 1,2 Pump Mechanical Design

The main high-speed hydrogen turbopump baseline design

is shown on Figures 30 and 31. The pump is a three-stage machine that is

driven by a two-stage turbine. The pump uperates at a speed of 90,000 RPM,

With a pressure of 21531 Asia. The turbine inlet temperature of 535°R provides

a benign operating environment considered desirable for this :man-rated appli-

cation.

Layouts were prepared for two design options. The base-

line design shown in Figures 30 and 31 incorporates a separate pump and tur-

bine housing. This per7mits the use of lightweight titanium for the pump

housing and a material that is compatible with room temperature hydrogen for

the turbine housing. The preliminarily selected material is Nitronic-50. The

alternate design incorporates a one-piece housing which is shown in Figure 32.

for this design, the housing must be compatihle with roan temperature hydrogen

throughout to avoid embrittlement. Consequently, this one-piece housing is

made of Nitronic-50 with flange joints at both the pump inlet and turbine

exhaust girds. The discussion which follows is generally applicable to both

design concepts.
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III, C, Task III - Component Mechanical Design and Assembly Drawings (cont.)

The basic design philosophy and design practices used in

this effort are in agreement with the guidelines provided in References, 14,

15, 16, 17, 18, 19, and 20.

The main fuel turbopump consists of an axial flow

inducer followed by three shrouded centrifugal pump stages driven by a two-

stage axial-flow warm hydrogen gas turbine. The fuel pump impellers are

shrouded to aid tolerance and axial thrust control. Each front shroud has a

wear ring seal just over the impeller inlet to control return leakage from the

impeller exit to the impeller inlet. The present configuration shows a

straight labyrinth, which is the simplest and most reliable application. A

stepped labyrinth can reduce flow but has less predictable thrust, while a

hydrostatic seal has about one third the flow and predictable thrust but is

more sophisticated.

There is an interstage shaft seal between each centri-

fugal impeller. This seal controls flowrate from the impeller inlet to the

previous impeller exit. Diffuser vanes and crossover passages are encased in

removable disks. The rotating assembly is a built-up construction with an

elastic tie bolt to maintain structural integrity. The rotating assembly is

supported on a set of angular contact bearings between the inducer and first

impeller and between the third impeller and the first turbine disk. The pump

end bearing set supports radial loads but permits axial motion. The turbine

bearing set provides radial support and axial restraint. Since the potential

thrust variations are much higher than the rolling elements' bearing capacity,

a hydraulic thrust balancer is located on the backside of the third impeller.

Pressure from the third-stage impeller operates the balancer, returning the

exit flow to the second impeller inlet. To prevent turbine gas from entering

the bearing cavity, a high-pressure turbine seal controls leakage to the

turbine and an adjacent seal controls flow to the bearings.
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III, C, Task III - Component Mechanical Design and Assembly Drawings (cont.)

Rolling element bearings are restricted in DN values in

high-speed machines. When operating near the upper limit of about two

million, the load capacity is reduced in order to maintain an acceptable

fatigue-life. The ball centrifugal loading caused by high angular shaft speed

uses a large percentage of the available load capacity. The high speed also

imposes high loads on the bearing cages. The cage must present a low profile

to allow the proper amount of lubricant through the bearing. Accordingly, the

life of rolling contact bearings is limited at high speed. Radial loads are

minimized by having symmetrical impeller discharges and very accurate mechan-

ical balance. Critical speeds are located at least ± 25% away from the oper-

ating speed to avoid dynamic amplification. The selected bearing design is a

pair of angular contact bearings, preloaded back-to-back to maintain a minimum

stiffness and to avoid skidding of the rolling elements. The pump end

bearings are 10nn inside diameter, selected for hydraulic passage clearance.

The turbine end bearings are 20mm inside diameter and are not restricted'at

the outside diameter but are maximized at the base to transmit the torque and

provide for a high stiffness shaft. The pump end bearings provide radial

support but are free to move axially in the retainer. The turbine end

bearings provide radial support and share the axial load with the hydraulic

thrust balancer.

High pressures on the impeller and turbine disk faces

generate axial shaft loads several orders of magnitude higher than the bearing

capacity. Consequently, an axial thrust balancer is required. The design and

location of this balancer are largely influenced by the configuration of the

pumps. Ideally, the axial thrust should be balanced at each rotating element:

i.e., impeller, turbine, running rings, etc., as close as possible with the

residual carried by a thrust balancer or thrust bearing. The thrust balancer

should have a capacity on the order of + 5% of the shaft axial force. In this

pump design, the impellers are shrouded with straight labyrinths at the front

shroud impeller inlet and on the shaft between each impeller. With this

design, each impeller has a net thrust of approximately 850 lb towards the

inlet. The front of all three impellers is identical. The back of the

third-stage impeller differs from the back of the first and second-stage ones
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,I

by the axial thrust balancer. The turbine pressure forces result in a net

force towards the pump inlet due to the large exposed area on the downstream

side of the second-stage turbine disk. The net force on all disk faces is

2600 lb at the design point, excluding the thrust balancer face. The normal

operating force for the thrust balancer compensates the 2600 lb force and pro-

vides a variable force of + 3600 lb. A diagram of the axial thrust balance is

shown in Figure 33.

The axial thrust balancer is located on the backside of

the third-stage impeller and uses its discharge pressure for axial balancing

purposes. The working differential pressure is created by returning the

thrust balancer , exit flow to the inlet of the second-stage impeller. In order

to compensate for variable axial loads, it is necessary to have the thrust

balancing system sensitive to axial motion. The method selected for this con-

cept is a series flow system, with a fixed geometry flow restrictor in series

with a variable flow restrictor. This is referred to as a single-acting

balancer since the variable pressure acts on only one disk face. Three series

flow thrust balancers were evaluated: (1) the straight labyrinth in series

with the exit land; (2) the impeller tip land in series with the exit land;

and (3) the hydrostatic face seal in series with the exit land. The perform-

ance of these balancers is shown in Figures 34, 35, and 36. The tip seal has

a flowrate similar to the labyrinth seal type but has a higher axial

stiffness. The hydrostatic seal type has stiffness similar to the tip seal

type but has a much lower flow. Since per',ormance optimization is a design

goal, the hydrostatic seal design (as shown on the preliminary design drawing)

was selected.

Wear ring seals are required at the impeller front

shrouds, and shaft interstage seals and turbine seals are required between

`sigh and low pressure zones to minimize leakages and provide axial thrust

balance control. At the turbine, a double seal is used to control liquid
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III, C, Task III - Component Mechan:-;a1 Design and Assembly Drawings (cunt.)

hydrogen leakage into the gaseous hydrogen of the turbine and liquid hydrogen

leakage to the bearing. To keep a positive flow to the turbine and prevent

backflow of turbine gases, the seals are pressurized from the third-stage

impeller. Figure 37 shows three seal types considered for utilization as a

double-seal application. The floating ring seal is reflected in the baseline

design. It is characterized by low leakage and low start torque. Alternate

seal concepts are hydrostatic face seals and regenerated shaft riding seals.

Both of these have higher starting torques. The turbine-side seal has a

pressure drop of 500 psi and seals a liquid and gas zone. Flow to the

bearings is controlled by this seal and must function with a pressure drop of

1500 psi. This is a liquid-to-liquid seal. Supply pressure to the seal ring

is directly from the third-stage impeller discharge and provides a

high-pressure liquid barrier between the warm gas turbine and the 02

bearings. Flow goes to both the turbine and the bearings. The sealin4i

element is a floating ring seal design that follows shaft motions by the

hydrostatic forces supplied by the seal pressure drop. The axial pressure-

balanced design allows radial tracking of' the rotor with minimal force. These

journal seals exhibit lower starting torques than face seals which have a

spring load to overcome. The surface velocity of these seals is about 430

ft/sec. Since this is above rubbing contact seal speed, controlled gap seals

are required. The flowrate to the turbine is approximately 0.1 lb/sec and

about 0.2 lb/sec to the bearing.

Bump impeller wear ring seals are used on the

shrouded impeller designs to minimize the return flow and balance axial thrust

by controlling pressure area forces. The advantage of the wear ring seals is

the freedom of axial motion without rubs. The return leakage represents an

efficiency penalty which m+rst be minimized by controlling the leakage. Laby-

rinths are normally uses'	 this application due to their simple construc-

tion; however, hydrostatic seals may be used to operate at a minimum con-

trolled gap (Ref. 2). Table XIX shows the perfu nnance and geometry for
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III, C, Task IId - Component Mechanical De^.ign and Assembly Drawings (%.Vm-/

labyrinth seals used on the impellers and shafts. Another advantage of the

hydrostatic seal is the predictability of the seal load. Straight and stepped

labyrinth designs are subject to tolerances which may cause axial and radial

rotor loads. Typical sources of radial load on the rotor from the labyrinth

seal are schematicalry shown in Figures 38 and 39.

The overall system flow schematic, including boost and

main pump, is shown in Figure 40. Through-flows, impeller wear ring flows,

thrust balances flows, bearing flows, turbine seal leakage flow, and hydraulic

turbine flow are identified by flow range. Table XX defines flow magnitude at

selected stations as indicated in Figure 40. It should be noted that for some

of the flows called out in Table XX, two values are given. The higher value

corresponds to the flows resulting from the utilization of conventional laby-

rinth seals, a series-flow double-band thrust balancer, and a hydraulically

driven boost pump. The lower values correspond to a more advanced hydrostatic

seal design, an articulated hydrostatic thrust balancer, and a traction-

drive-powered boost {pump.

c.	 Main U12 TPA Critical Speed

It is an advantage to have all rotor bearing assembly

critical speeds above "^e operating speed, especially if any engine throttling

is required. Operation near a critical speed amplifies bearing loads, absorbs

energy, and results in large relative deflections between the rotating and

stationary members unless special designs are used. Critical speeds can gen-

erally be raised above operating speeds by using bearings with high stiffness.

Another reason for having stiff bearings is to resist the steady unsymmetrical

pressure loads that may result from the high pump pressure. A critical speed

analysis was performed for the baseline three-stage hydrogen turbopump as a

function of bearing stiffness. The results of this analysis, which represents
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(e =a)

THEORETICAL DESIGN CONDITIONS,
NO DEFLECTIONS, MISALIGNMENTS,
OR TOLERANCES, RADIAL FORCES ZERO.

OUTER TOOTH LESS CLEARANCE,
HYDROSTATIC RESTORING FORCE.

INNER TOOTH LESS CLEARANCE,
HYDROSTATIC FORCE TENDING TO
CAUSE GREATER ECCENTRICITY

r ^^

. 4- -.

^v

-, a

RUBBING ECCENTRIC LABYRINTH,
HYDROSTATIC FORCE TENDING TO
CAUSE GREATER ECCENTRICITY AND
A TANGENTIAL FRICTION FORCE CAUSING
A BEARING FORCE NORMAL TO RUB
RESULTING IN TENDENCY FOR BACKWARD
PRECESSION•

. --t— .

Figure 3A. Labyrinth Seal Extreme Operating Positions
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TABLE XX

LH2 MAIN TPA, SUMMARY OF rLOWRATE ANALYSIS

STA
P

LB/IN2
T
*R

P
WIN

Q
GPM

W
LB/SEC %

2 61. 37.8 - 470. 4.62 103%

3 61. - 558.6 5.5 123%

4 51. - 558.6 5.5 123%

5 143. - 596. 5.87 130%

6 764.6 - 605. 5.96 133%

7 764.6 622. 35.7 .374 7.9%

8 764.6 35. 101. 1.0 23%

9 730. - 91. .9 20%

10 81. - 91. .9 20%

11 920. - 5. .05 1%

12 920. - 532.-678. 5.27-6.72 1.17-150%*

13 920. 155. 8.6 .091 2%

14 1541.6. - 524.-666. 5.36-6.81 1.19-152%

15 1541.6 622. 35.2 .38 7.8%

16 163E. - 5+ .05+ 1%

17 1636. - 520.-671. 5.32-6.86 1.18-153%*

18 1636. 155. 8.6 .091 2%

19 2317. - 505.-651. 5.32-6.86 1.18-153%*

20 2317. 622. 34.6 .386 7.7%
21 2473 - 456. 4.49 100%

22 2317. 1367. 14.2-152. .15-1.6 3.3-35.6%*

23 950. - 33.-170. .35-1.8 7.7-403

24 2250. - 29. .3 6.6%

25 2250. 350. 75. .1 2.2%

26 2286 535. - 3156. 4.2? 94%

27 1900. - 3231. 4.32 96%

28 1840. - 3231. 4.32 96%

29 1840. 278. 42. .056 1.2%

30 1562. - 3231. 4.32 96%

31 1481. - 3231. 4.32 96%

32 2250. 1300. 18. .2 4.4%

33 950. 30. 31.-161. .35-1.8 7.7-40%

* This value depends on type of thrust balancer used

High Value: labyrinth seal/series flow double land thrust balancer/hydraulic
turbine boost pump

Low Value:	 hydrostatic seal/traction drive boost pump/articulated hydrostatic
thrust balancer
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III, C, Task III - Component Mechanical Design and Assembly Drawings (cont.)

the first three critical speeds as a function of bearing stiffness, are shown

in Figures 41 and 42. The third critical speed at low bearing stiffness is

the free-free beam node and is above the design operating speed. A single

20mm bearing stiffness is approximately .25 x 10 6 lb/in., depending on loads

and internal geometry, and since there is a set of bearings at each end of the

rotor, the stiffness i5 on the order of .5 x 106 lb/in. (see Ref. 21 and
22). At this stiffness., the first and second critical speeds are very close

to the operating speed. Generally, a margin of 25% is selected to avoid

damaging amplifications of load at the operating speed. To achieve this mar-

gin, a support stiffness of .15 x 106 at the bearings is required with the

mass-elastic properties of the shaft, turbine, and impeller. This represents

a solution for a single-speed (90,000 RPM) design but does not accommodate

engine throttling. Operating on or through a critical speed is possible with

the proper balancing and damping, but due to the low viscosity of LH2,

available damping is extremely small. It would be desirable to adjust the
mass-elastic system to avoid critical speeds within the operating range.

d.	 Hydrogen Main TPA Gas Turbine Design

The design prc,;ess for the LOX TPA turbine was described

in Section III,C,6,c.

The following design point conditions were established

for cycle power balance data:

1. Total Inlet Pressure, Po = 2286 psia

2. Total Inlet Temperature, To = 535°R

3. Static Exit Pressure, P2 = 1481 psia

4. Rotational Speed, N = 90,000 RPM

5. Flowrate, W = 4.22 lb/sec
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III, C, Task III - Component Mechanical Design and Assembly Drawings (cont.)

The hydrogen gas properties are as follows:

1. Specific Heat at Constant Pressure - 3.652
BTU/lb/°R

2. Specific Heat Ratio = 1.395

3. Gas Constant = 804.91 ft/"R

4. Absolute Viscosity = 0.6 x 10-5 lb/ft-sec

The final total pressure loss coefficients resulting

from the iteration procedure at the design point are as follows:

Stage	 Blade Row Total Loss Coefficient

1	 Manifold 0.79

Stator 0.168

Rotor 0.241

2	 Stator 0.175

Rotor 0.213

Collector 1.5

The results of the design point analysis are sunxnarized in Table XXI.

A design point analysis was conducted to determine the

flow passage geometry and performance of the hydroyen TPA turbine. The

results are as follows:

°	 Two-stage Reaction Turbine

°	 Pitch Diameter = 3.31 in.

°	 Overall Velocity Ratio = 0.387

°	 Estimated Static Efficiency = 76.8%
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TABLE XXI

LH2 TPA GAS TURBINE DESIGN POINT PERFORMANCE

Overall,
First Second Both Including

Parameter Stage Stage S tages Manifold s

Work, BTU/lb 87.7 87.7 175.4 175.4

Flowrate, lb/sec 4.08 4.08 4.08 4.08

Static Pressure Ratio 1.241 1.236 1.505 1.543

Stage Loading Factor 0.7 0.7 - -

Stage Flow Coefficient 0.308 0.308 - -

Velocity Ratio 0.555 0.557 0.398 0.387

Static Efficiency, 
ti

80. 80.7 82.2 77.7

The estimated disc friction loss is 11.3 HP. When this loss is included, the

overall turbine efficiency is 76.8,".,
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III, C, Task III - Component Mechanical Design and Assembly Drawings (cont.)

The meridional flow passage for the turbine is shown

conceptually in Figure 43. These results are based on a detailed blade loss
1

analysis which can be used for blade profile design. However, only an approx-

imate study was made of the manifold losses. In the design of the inlet and

exhaust manifolds, consideration must tie given not only to the turbine per-

formance, but also to the engine system requirements. Cold-flow testing will

be necessary to develop the most eftective turbine inlet and exhaust configur-

ations.

e.	 Recommendations for Future Study, Hydrogen TPA's

As a result of limited time and resources available to

conduct this TPA design, certain issues could only be addressed preliminarily,

and remaining problems could only be identified but not totally resolved. As

a minimum, further design iterations are required in the following areas:

1 1) Reevaluate material selection for boost and main

pumps.

(2) Determine if the hydrogen propellants which are

used for bearing cooling require filtering.

(3) Lvaluate the pros and cons of the following;

(a) Two-stage main pump, with high-head inducer

(b) Three-stage main pump, increased head rise in
inducer stage

(c) Four-stage main pump, no boost pump
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III, C, Task III - Component Mechanical Design and Assembly Drawings (cont.)

(4) Evaluate a main pump design with fluid film

bearings.

(b) Evaluate the structural loads of a TPA design with

a solid steel shaft driving the impellors through splines.

(6) Reev , l uate the Pilot and drive arrangement for the

turbine to avoid loosening up under speed.

(7) Adjust thu mass-elastic system to avoid critical

s peads withinn the operating range.

(3) Analyze the turbine inlet and exit manifold

geometry in more detail, emphasizing the perforce„,ice of the two-turbine-in-

series system.

(9) Conduct a literature search for small-size tur-

bines, opphasizing nNal1 blade size and On clearance leakage control.

f .	 Hydrogen TPA's, Technology Areas

The hydrogen boost and main pump preliminary designs as

basolined in this report consciously utilize only design features which are

within the present state of the art. The one exception is the thrust bal-

ancer. The analysis addresses two state-of-the-art concepts: (1) the

straight labyrinth in series with the exit land and (2) the impeller tip land

on series with the exit lend. Furthermore, it addresses one advanced concept:

the hydrostatic face seal in series with the exit land. It is this latter

advanced design which is shown in the baseline design drawing.
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III, C, Task III - Component Mechanical Design and Assembly Drawings (cont.)

Certain performance improvements and design simplifica-

tions could result if some of the following design features were to pass their

technology status and could then be implemented in the design. The most sig-

nificent technology areas to be considered are as follows:

(1) Development of a hydrostatic thrust balancer and

journal bearings with satisfactory performance during startup, steady-state,

and shutdown phases.

(2) The development of floating hydrostatic ring jour-

nal seals for application as interstage shaft seals and impeller wear ring

seals. These seals can provide a considerable reduction in leakage flowrate

and, due to their floating design, have a low radial load on the rotating

assembly.

(3) Development of a planetary tra:tion boost pump

drive which is mechanically coupled with the main pump shaft (see Figure 44).

Such a drive system would have an efficiency of about 95% and would reduce

boost pump outside dimensions and eliminate external high-pressure hydrogen

lines. Since planetary drives are compact, the loads in this application are

low. Bearing coolant supplied from the main pump may be provided at suffi-

cient pressure to balance impeller thrust and reduce bearing loads while

cooling the bearings and planetary set. Another advantage of this design over

the hydraulic turbine drive concept is its inherent avoidance of mixing

higher-temperature turbine shroud seal leakage flow with lower-temperature,

low-pressure flow at the boost pump inlet.

8.	 Propellant Valves

The basic approach used in selecting the valve and actuator

designs for this application was maximum utilization of past experience,
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III, C, Task III - Component Mechanical Design and Assembly Drawings (cont.)

coupled with use of a minimum number of valve types. As a result, two basic

valve types are considered as adequate for all of the main control elements

(excluding the auxiliary systems a 	 le actuator control valves). The two

basic designs are: (1) a pneumatically .aerated on-off ball valve for propel-

lant flow control and (2) an electric-motor-driven modulating poppet valve for

turbine speed control.

The valve locations analyzed were shown on the engine cycle

schematic (Figure 1). The turbine flow control valve should be relocated to

bypass the oxygen pump turbine. This study result was obtained too late to be

incorporated into the design.

Two versions of the ball valve are used in the engine.

Single valves are used for the fuel and oxidizer start bypass valves, and

series-redundant versions are used for the main fuel and oxidizer propellant

shutoff valves. Both versions use common parts wherever practical. Series-

reciunda nt main shutoff valves were recommended as a result of safety and reli-

ability analyses conducted for the Phase A stL,dies. They are redundant to

assure that the engine will shut down.

The modulating valve has only one configuration and will be

used for the turbine bypass valve and for' the turbine flow control valve.

a.	 Propellant Flow Control Valve

A ball valve was selected for this application because

of its high flow capacity at low pressure differentials and for its tight

sealing capabilities. The foryner is especially critical during tank head

startup; the latter for cargo bay storage and orbital coast. The valve design

shown in Figure 45 evolved directly from, and includes many features of, the

series-redundant bipropellant valve used on the Space Shuttle's OMS engine.
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III, C, Task III - Component Mechanical Design and Assembly Drawings (cont.)

The basic propellant flow control valve is a normally

closed, two-way, two-position ball valve operated by a single-acting, spring-

closed, pneumatic piston-type actuator by means of a rack and pinion drive.

Operation of the actuator is controlled by a normally closed, spring-loaded,

three-way, two-position, dual-coil solenoid valve.

The solenoid signal is supplied by the engine con-

troller, and the actuation fluid (GN2) is supplied (and regulated) by the

engine's self-contained pneumatic pack. Ball valve response time is con-

trolled by orifices installed in the GN2 supply and vent lines.

Design features of the basic propellant flow control

ball valve (which constitutes one-half of the series-redundant valve shown in

Figure 45) are described in the following paragraphs.

(1) Shutoff Seal Assembly

The keystone of any shutoff valve design is the

main shutoff seal. The spring-loaded seal cartridge design has proved to be a

very reliable leak-tight seal in past programs. The cartridge concept incor-

porates several features consistent with good sealing: i.e., self-centering

capability (ball in a cone), freedom to follow ball support deflections, pre-

`

	

	 dictable seal loading, good seal support and containment (for cold-flow, con-

trol), plus ease of maintenance and installation. These features, combined

with proper ball and seal surface preparation and quality control, result in a

shutoff seal that will ineet an assumed leakage requirement of 1 x 10- 4 scc/sec,

`	 which is based upon past experience.

When the propellant flow control valves are closed,

pump discharge pressure drops off rapidly and a pressure relief valve vents

any pressure buildup (due to warming of the fluid trapped between the balls)



III, C, Task III - Component Mechanical Design and Assembly Drawings (cont.)

back to the propellant tanks. Consequently, the valves seal against tank head

pressure only when stored in the cargo bay or when coasting in orbit. As a

result, a relatively low seal loading force (force pushing the seal against

the ball) is needed. If, for example, twenty pounds per circumferential inch

of seal loading is used, the resultant estimated leakage is 10 scc/hr helium at

room temperature and less than 10 scc/sec helium at liquid hydrogen temperature.

Due to the low seal loading required, the seal car-

tridge can be designed to minimize pressure loading effects on the shutoff

seal. This is accomplished by selecting a cartridge balance seal with a

seal-groove inner diameter that is the same as the mean contact diameter of

the shutoff seal. By sizing the balance seals in this manner, any differen-

tial area between the main shutoff seal and the balance seal will be small,

and the pressure force component of the shutoff sealing force will be mini-

mized, resulting in a relatively constant seal force. The cartridge balance

seals are shown conceptually as two pressure-loaded radial seals; however, a

bellows type or any other type of seal could be substituted as well. The

final balance seal configuration will be selected during the detail design

phase after more extended analyses.

'The low sealing force results in another feature

that simplifies the valve; i.e., the seal can be designed to be in contact

throughout the full 90' of ball travel. This is in contrast to the OMS ball

valve which is lifted off the seal during the first 10 0 of motion by means of

an eccentric built into the ball. Elimination of the eccentric on the present

design permits the use of smaller actuator springs since the springs do not

have to overcome the to^'*que produced by the inlet pressure acting on the

shutoff seal area (force) times the eccentric (lever arm).
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III, C, Task III - Component Mechanical Design and Assembly Drawings (cont.)

Several cartridge seal/ball design concepts were

identified as possible backups should further analyses uncover unforeseen

problems. These designs are slightly more complex and have not been investi-

gated in any depth. Possible backup designs include: (1) a cam-actuated seal

lift off, allowing for higher seal loads; (2) an eccentric ball valve with

downstream seal (the eccentric tends to help the springs close the valve and

would also allow for higher seal loads); and (3) an eccentric ball valve simi-

lar to the OMS valve, which would result in a larger actuator.

(2) Flow Control Ll ement

Flow through any ball valve is controlled by the

relative position of the bore through the ball and the shutoff seal. Flow

control as applied here refers to on-off control.

The ball is fabricated from hardened stainless

steel for wear and scratch resistance. A cylindrical flow bore and two squire

shaft bores are machined through the ball. This ball configuration is shown

for its simplicity. During the detail design phase, an effort would be made

to reduce the weight of the ball either by contouring the outer surface of the

ball or by using a hollow sphere.

(3) Valve Shaft Assembly

The valve shaft arrangement has been used in the

OMS bipropellant valve. While this arrangement may allow larger ball-shaft

displacements than some other arrangements, the split shaft provides signifi-

cant size, weight, and assembly advantages. The increased ball movement can

be ccxapensated for by prcper design, i.e., bearing placement as near the ball

as possible, use of a cartridge shutoff sea. design to allow the seal to

follow the ball, and a sufficient shaft-bearing length-to-diameter ratio to

provide adequate support.
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III, C, Task III - Component Mechanical Design and Assembly Drawings (cont.)

Use of the separate cylindrical sleeve in he valve

flow bore permits assembly of the short stub shaft through the ball, thereby

eliminating the need for a seal on the stub shaft. The sleeve holds 'the stub

shaft in position and is, in turn, held in position by the pinion sha=t.

The longer pinion shaft, in addition to helping

support the ball, also transmits torque from theactuator to the ball. It is

supported by a standard roller bearing near the ball at one end and a duplex

hall bearing at the other end. An integral stub gear and a dynamic shaft seal

are located between the two bearings. This arrangement results in the least

amount of deflection for the year and seal.

A single-shaft seal between the valve and actuator

is considered adequate since any leakage into the actuator spring cavity can

be vented back to the tank, and the ;haft seal, combined with the static

actuator seals, provides dual seals between the propellant and the exterior.

The shaft seal tentatively selected is a Delta Seal, manufactured by the

Rudolph L. Kruger Co., Newport Beach, CA. It consists of a filled TFC seal

ring that is squeezed between the bottom of the actuator housing, the valve

shaft, and a spring-loaded seal retainer. Bast experience has shown good

results with this seal at extreme temperatures and high pressures.

b.	 Modulating Valve

Tne operating requirements for the modulating valve are

somewhat unique in that downstream valve pressure is independent of the flow-

rate through the valve. Since the modulating valve, in parallel with the tur-

bine(s), can bypass a maximum of lUw of the total gas flow (for turbine speed

control), the larger flow through the turbines rather than through the valve

determines the relative pressure. This feature simplifies the design of the
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III, C, Task III - Components Mechanical Design and Assembly Drawings (cont.)

valve in that the differential pressure is relatively high and is constant for

a given turbine flow.

The modulating valve configuration selected for this

application is shown in Figure 46. It is an in-line, pressure-balanced poppet

valve with independent, redundant electric motor actuation. Each motor is

powered through an electrical harness which is independent of the other

motor's harness so that damage to one harness will not affect the functioning

of the valve.

The modulating valve is part of a closed loop control

system which includes the electronic controller. Valve position is set by the

controller, and the output is verified by the various engine parameters moni-

tored by the controller. By trimming the turbine speeds relative to each

other and to the total flow requirements, the engine maintains the required

mixture ratio.

The design features of the modulating valve are des-

cribed in the following paragraphs.

(1) Flow Metering

Flow through the modulating valve is metered by the

annular orifice formed between the valve seat's inner diameter and the flow

plug's outer diameter. The flow plug can be shaped to give (within reason)

whatever flow versus valve position characteristics are needed to obtain

optimum turbine control.
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III, C, Task III - Component Mechanical Posign arid 	 Drawings (cunt.)

(2) Shaft Seals

The modulating valve has two sets of dual shaft

seals. Both seal sets consist of a Delta Seal (manufactured by the Rudolph L.

Kruger Co. of Newport Beach, CA.) nearest the high-pressure side and an ALRC-

design lipseal on the low-pressure side. The cavity between the two seals is

vented, either overboard or back to the propellant tank. This dual seal (with

vent) arrangement has proven to be very reliable in past ALRC testing under

high pressures and extreme temperatures.

Use of dual seals on the balance piston does add

frictional loads; however, these loads are much lower than the pressure loads

that would exist without the balance piston.

(3) Shutoff Seal

The turbine bypass valve must provide a propellant

shutoff seal, whereas the turbine flow control valve does not. For the sake

of simplicity, however, both valves will have the same configuration. Prelim-

inary selection of a shutoff seal type consists of a ball in a cone. Seal

loading is provided by the pressure-balancing piston combined ; pith the motor

stopping force.

Another shutoff seal concept for this application

is a flat-on-flat type which would be insensitive to both wear and tempera-

ture. Additional analyses will be re j uired during the subsequent design phase

to select a final seal configuration.
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III, Task Discussions (cont.)

D.	 TASK IV - LNGINE. TRANSILNT SIMULATION COMPUTER MODEL

The primary objective of this task was to formulate a computer

program to simulate the transient behavior of the cryogenic OL) /Ei 2 Expander

Cycle Lngine.

Existing models for this application were evaluated to determine

the feasibility of tailoring an existing model to simulate the OTV Advanced

S,xErander Cycle Lngine. All existing models were found to have serious short-

coidings. (lased upon this evaluation, a new model was developed. A descrip-

tion of this model, along with a user's manual, are provided in a separate

Task IV report for this contract (Ref. o). Since the input and output

examples described in Reference 6 are too lengthy to be included herein, the

program is described briefly in subsequent paragraphs.

The user's manual transmitted to NASA/MSFC describes the program,

provides instructions for implementing and executing the program, describes

the inputs and outputs, explains the program subroutines and their operation,

and discusses the program ► error generated messages. A complete FORTRAN pro-

^jram listing is also included in the user's manual.

A magnetic tape of the program was transmitted as part of the Task

IX, Co;q, uter Software/Documentation, requirements.

The program ha, been designated as version number three of the

Liquid Engine Transient simulation program (LLTS-3). The steady-state condi-

tion is also a special case of this transient model. The computer program is

flexible but rather c(Nnplex.	 It is intended (or use in detailed design and

development efforts.
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III, u, Task IV - Engine Transient Simulation Computer Model (cont.)

The program solves the transient and steady-state equations des-

cribing the combustion, florid flow, and heat transfer associated with cryo-

genic 02/H2 rocket engine systems, including the chill-down phase. This

program can be used to simulate the effect of engine system component location

and characteristics in addition to defining engine system start and steady-

state requirements (i.e., valve location and sequencing for safe operation,

steady-state operating point, power balance, and system pressure schedule).

The program has been designed with a iaaximrum of flexibility to

facilitate mo deling of a variety of engine systems, including both pump- and

pressure-fed types. The entire engine system, including tankage, can be

modeled. The computer program is structured so that engine system descrip-

tions and changes are made through input. No program changes are required to

achieve modeling of any of a variety of engine systems. Engine system simula-

tion flexibility is accomplished by linking together a library of component

subroutines which include lines, pumps, valves, turbines, combustors, etc.

Component linkage is accomplished entirely through input. The component

subroutines contain equations and lo(lic for simulating their transient and

steady-state behavior. All program subroutines are written in FORTRAN IV

language.

Each operation requires that start and shutdown transients occur

in a safe anti predictable manner. Operation in modes or regimes which could

cause damage must be avoided. Typical rocket engine start problems are

delayed ignition, which may result in extremely high-presure spikes; manifold

contamination caused by the backflow of a propellant; low frequency chugging,

producing high thermal and mechanical loads; excessive pressure overshoot;

unstable fuel flow in the regeneratively cooled thrust chamber circuit; flow

variation due to injector thermal effects, pump cavitation, and pump stall.

Typical shutdown problems are high thermal loads resulting from off-mixture
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III, 0, Task IV - L,nqine TrcnWent Qwulat;un Co+,mputer Model (cont.)

ratio operation, chugginq, and kmnifold contamination. These transient prob-

1eas are solved by the selection of appropriate valve locations, valve

sequences, control methods, provision of an effective iUnition system, and the

use of adequate purges. This computer progrE ►sus will enable these selections to

	

be node during the design phase o the 	 devel opmeot.

The LLTS-3 computer program has been developed to operate on the

Univac 1108 computer. Cor y ooquirements for the program are as follows:

I [lank	 [l Ilank	 Total

1Li,r?00	 41,000	 ()0,200

Both printed and plotted outputs are available.

G.	 TASK V - 1:NGINL CONTROL

The major objectives of this task were to (1) determine effective

control point and methods to achieve thrust and mixture ratio control; (2)

determine suitable actuation systems; and (3) define controller requirements.

Engine operation is described in Section III,O of this report.

The location of the valves is shown on the cycle schematic of Figure 47.

Two basic configurations were selecte6 for the main propellant

valves as described in Section III,C & (1) a pneumatically operated on-off

ball valve for propellant Ow control and (2) an electric motor-driven

modulating poppet valve for turbine speed control.

The primary functions of the fuel shutoff valve are to terminate

fuel flow at engine shutdown and to prevent flow through the turuines during
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III, E, Task V - Lngine Control (coat.)

the tank head idle mode. To provide thew functions, the valve is a normally

closed on-off valve. To provide high shutoff and leakage reliability, the

valve is series-redundant and is fail-safe to the closed position in the event

of electrical power loss. This valve is located downstream of the turbine

by'^w.SS and 611 2 start bypass lines to provide the shutoff function during

tank head idle.

The main purpose of the oxidizer shutoff valve is to terminate

oxidizer flow at engine shutdown. The valve is located as close to the injec-

tor as possible to minimise they residual oxidizer in the system downstream of

t.he valve at engine shutdown. This valve is a normally closed on-off valve

and will be fail-safe to the closed position in the event of electrical power

loss. To provide high reliability in the shutoff mode, the valve is series-

redundant.

Two valves are required in the turbine bypass circuit. The GH2

start bypass valve is an on-off valve that bypasses all the hydrogen flow

during tank head idle mode operation. The turbine bypass valve is used to

control the amount of flow bypassing the turbine during steady-state operation

and to control the engine thrust. Nominally, h% of the hydrogen flow bypasses

the pump turbines.

The main function of the GU S' start bypass valve is to control

the flaw of gaseous oxygen Iran the heat exchanger to the injector during the

tank head idle mode. The valve is also required to remain closed at engine

shutdown to prevent bypassing oxidizer flow around the L02 shutoff valve.

The turbine flow control valve is used to provide the engine mix-

tures ratio control. Analysis conducted during the course of this study has

sh-^,- that the turbine flow control valve should be placed in a line bypassing

they oxygen Frump turbine rather than the fuel pump turbine (see Figure 47).
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III, F, Task V - Lngine Control (cant.)

Schedule and funding limitations did riot permit another design iteration to

incorporate: this feature. Approximately twice as much oxygen turbine bypass

flow is required to obtain the same mixture ratio variation as when bypassing

the fuel pump turbine. However, the effect upon the engine cycle power bal-

ance is only about one-half as much because the oxidizer pump horsepower

requirement is approximately one-fourth.

The mot+ alating valves are part of el closed loop control system

which includes the electronic controller. Valve position is set by the con-

troller, and the output is verified by the various engine parameters (flows,

turbine speeds, chamber pressure, valve positions, etc.) mmnitored by the

controller, . By trimming the turbine speeds relative to each other and to the

total flow requirements, the engine maintains the required mixture ratio and

thrust level.

Valve operation is described in the following paragraphs. A valve

design for the propellant flow control valve and for the nxrdulating valve were

shown in Figures 0 and 46, respectively.

1.	 Propellant F low Control Valve tlperation

Upun receipt of an elect.ric,:l signal from the engine con-

troller, a solenoid-operated valve opens and permits pressurized GN2 to flow

into the actuator. The resultant torte created by the pressurized piston

(which has been sized to provide twice the force needed to overcome the fric-

tional forces and one and onto-halt times the force needed to overcome the

mechanical, pressure, and tlow-induced forces) moves the ,actuator piston away

frm the end cap and simultaneously compresses the springs and rotates the

pinion. Torque and ri.otion are trarrsiOtted by the pinion through the pinion

_haft to the ball.
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III, L, Task V - kngine Control (cont.)

As the ball rotates, the flow bore through the ball is

uncovered and the propellant flow starts. Flow steadily increases with ball

rotation until the fully open position (90 0 rotation) is reached. The ball

valve remains in this position as long as sufficient pressure is applied to

the pi ,ton.

For shutdown, the electrical signal to the solenoid valve is

removed and the actuation control valve is returned to its closed position by

means of a spring. In this position, the pressure on the piston is vented

overboard. As the pressure in the actuator decays, the actuator springs move

the piston back toward the end cap. The pinion, and thereby the ball, rotates

because of the piston motion. As the ball rotates closed, propellant flow is

choked off and is stopped completely when the valve reaches its fully closed

position.

2.	 Modulating Valve 9lieration

A cross-sectional view of this valve is shown in Figure 48.

Each modulating valve has dual rare-earth (Samarium Cobalt) motors similar to

those used on the QMS gimbal actuator. Upon receipt of a signal from the

engine controller, the motor(s) applies torque and angular motion to the large

spur gear through small drive gears linked to each motor. Spur gear rotation

turns the ball screw nut attached to it, and the ball screw - which is pre-

vented from rotating - is moved in or out with respect to the valve seat. As

the tall Screw shaft E^ositiun is changed, the flow area through the annular

orifice is -banged. This change continues until the desired output is

reached; then valve shaft motion stops. The valve remains in this position

until a new signal is received. flow modulation continues throughout the

engine run.

1,11 3
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III, f, Task V - Fngine Control (cont.)

3.	 Actuation Systems

Four basic energy supply systems - pneumatic, propellant,

hydraulic, and electric (and various combinations thereof) - were evaluated

for application to the valves previously discussed.

The actuator trade s'.udy was conducted to determine reliabil-

ity, c anplexity, weight, safeL , -antrc,l precision, and state-of-the-art

parameters. [lased upon the results, the pnouriatically actuated shutoff valves

and electric motor modulatircl valve actuation were selected. Table XXII sum-

marizes the results of the s y stem, study and gives a brief discussion of the

pros and cons of each design.

The pneumatic actuation system selected for the shutoff

valvos consists of gaseous nitrogen pressurization to provide the opening

force and of a spring for the closing force. This system was selected for the

following reasons:

°	 The high-pressure system minimizes the actuator size.

U	
The valve will fail to the closed position.

The system is state-of-the-art and is being used on the
JMS engine.

0	
No materials compatibility problems emerged.

No additional propellant leak paths are provided.

Electric motor actuation w,rs selected for the modulating

valves because the system is a straightforward, simple state-of-the-art design

tot, a system requiring continuous actuation capability.

175



TABLE XXII
	

Sheet 1 of 4

ACTUATION SYSTEM STUDY SUMMARY

Actuation bystem uescripnon

1. Single-acting, pressurized open,
spring returned. Pressure supplied
by an on-board helium bottle, Act-
uator position controlled by a 3-
Hay, 2-position solenoid valve that
applies pressure to the actuator
piston to cpen and vents the act-
uator pist^-t overboard tr, close.

J
.. Same as above <scept use smaller

gas bottlear.d -recharge the bottle
after each ace with high pressure
gaseous fuel (during engine burn).
Originalbottle charge could be
isolated by a squ€b valve to fac-
ilitate storage.

3. Same as lten 2 above except charge
(or recharge) the gas bottle with
liquid hydrogen which is then
vaporized by an electrical heater
to provide actuation pressure,

4. Double acting, pressurized open
and closed, dual gas source for
fail safe closed operation. [heck

' valves in supply t ines to prevent
backflow.	 I

:nergy	 urce Fro

Pneumatic • Nigh pressure nitrogen minimizes the
actuator piston size

• Actuator design is 'State of the art'
and has been used successfully on the
Apollo and Space Shuttle's Otis engines

° No materials cocpatability problems
° No propellant leak pathi

Pneumatic • Recharge fluid readily available
° Explosive valve would give zero
leakage during ground storage

r

s

Propellant • Actuation fluid readily available.
{E Electrical) • Certain valves.'e.g., tb. G02 start

valve and the tank prez4rization
valves could be operated directly
by rising nu p discharge pressure,

Pneumatic ° Elimination of spring reduces act-
(dual source) uation force requirements by ap-

proximately 80%,
• Positive position control

° Actuator return spring
greatly increases the force
output required from the
piston.

• Sealing of high pressure
nitrogen.	 Excessive leak
rate could deplete the ni-
trcgen source and result in +
nen-operation of the engine.

° Added cost. weight, complex-
ity and packaging problems
associated with the GN2
:uppiy system,

° Gas N-Itle could leak to
propellant tank during coast
and prevent restart.

° Additional valves needed on
gas bottle inlet and outlet
to control pressure.

• Electrical energy is required Electric heater only needed for
to vaporize propellant, first,start and for any restart

• Special accumulator (gas after: a long coast period
bottle) design required.

• Adds additional propellant
leak paths.

• Bleed system required to as-
sure that there would be
sufficient liquid hydrogen in r
the accumulator.

• Valve respcnse variable due
to fluid density fluctuations

• A more complex pneumatic con- If one pneumatic source is deemed

trol valve required. adequate could use two three-way
• Added system co:rplexity, e.g. pilot valves to pressurize act-

two independent pneumatic uator.	 +
sources



TABLE XXII (cont.)-	 Sheet 2 of 4

act- uation system uescription

. Same as item 4 above except gas
source used only for start. Dur-
ing engine burn and shutdown
actuation pressures supplied by
the warned fuel.

6. Same as Item 1 except uses a singly:
gas source. Auxillary "Energy Pac"
(battle with squib valve) available

Pneumatic/
Propellant

Pneumatic

Pneumatic

Pneumatic/
Propellant

Pneumatic

Hydraulic Oil

' Smaller gas supply source needed
° Could use servo valye since null leak-
age would only be. back to propellant,
tank

° Secondary gas supply relatively
small

° Squib valve would provide reliable
gas seal insuring that gis would
always be available for shutdown.

° System is truely redundant except
for cocoon rack.

° Recharge gas is plentiful.

° Simplest system studied.
° Series redundant shut-oflr valves
with Independent actuators ensures
propellant shutoff.

High pressure system mintmizes
actuator piston size and therby the
hydraulic oil flow rate.

° Existing on-board system (if assump,
Lien is valid).

' Better lubricity (therefore longer
life) than propellant and/or gas.

° Good control. valve force is a small
portion of the total actuator force.

• With continuous pump flmt could use
servo valves for flow control, if
required.

Possible switching problems if
shutdown signal occurs during i
the engine start transient. 	 1

° Combining two pressure sources ,I
could be difficult.	 t
Response may vary due to dif-
ferences in gas densities at dif'
ferent tines in the engine operalt-
ing cycle.

° Use of explosive actuation.
Still requires two gas sup-
plies even if one is smaller

° Squib valve only good for one
actuation.

° Added weight, cost and com-
plexity.

° Although each side theoretic-
ally would need only 1/2 the
total volume and be smaller in
size the weight would not
necessarily be 1/2.

° Need to seal accumulator
during storage, lanch. and
coast.

° Prejudice against fail in-{dace
actuation systems

° Not used extensively In Aero-
space applications.

• Hain valves at low to cryo-
genic temperatures. oil may
freeze.

• Leakage (high pressant.), how-
ever should be less than gas.
Compatibility of leakage with
LOX.

° High spring load
° If thermal barrier is needed if
to keep oil from freezing it 	 s
will add weight and complexity
to the design..

° Interaction of gimbal actuator
movement and valve movement on
hydraulic oil availability.

for er,,2rgency shutdown,

y . Two completely separate systems
(gas supply, actuators, electric
harness, etc.) interconnected and
synchronized by a camrion rack.

a , Duai acting piston on each side.
VV

1 8. Double acting, pressure operated
piston type acutation.	 Gas pres-
sure supplied by a. G112 precharged,
fuel recharged accumulator.

^9. Single, double-acting, pressure
operated piston with single source
of gas supply.	 Valve to fail in
place.

10. Single-acting, pressurized open,
sprint;closed. 	 Pr.°:sure supplied,
by tap-off from gimbal actuator
which is assumed to be hydraulic.
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11.	 Saate as Item 10 above except that Hydraulic Oil ' System pressure uneffected by other

hydraulic Supply system Is part of engine subsystems
the actuation system only and is Internal actuator leakage sot a

not used arywheie else on the problem.
engine Can use	 -	 vo valve for po-itioning

12.	 Single-acting, pressurized open and Propellant Actuation fluid readily available
spring closed using fuel	 as	 the
actuation	 fluid.	 P-opellant
teppeA off of :rain enyine line.

13. Same as	 item 12 except actuator

1

Propellant Actuatioo fluid readily available
pressure is supplied by a pre-
charged accw.ulator (with pro-
pellant) and the accumulator is

_	 recharged d . iring use.

v
co

14.	 Sa%e as It^w Ii rxecpt has an Propellant/ ' Energy pac ensures engine shutdown
au n illiary "Energy Pac"	 to	 insure Pneumatic even if all of the accumulator
adequate pres s ure	 in case o f in fluid leaked out.
twwrgency shutdown. Satisfies redundancy requirements

1S. Motor drive open and closed with Electric Straight forward,	 state of the art
Electric auxiliary spring 	 for fall- design
safe closure in case of power
failure.

! 6. Motor driven spur gear to ball Electric State of the art design-SiaAlar to
screw drive with auxiliary s pring	 1 OW gimbal actuator (sans spring)
to close valve in case of a power Hall	 screw reduces gear train ratio
failure. required.

- -	
Cca--

' Requires motor, pump, reservior
valves and other components
associated with a hydraulic

system.

• Cryogenic temnerature
' Possibi'rty of two-phase fiow
• Tiring variations due to fluid

density changes
No pressure available for
engine start.

• Cryogen:c temperature
• Vaporization of fluid in accum
ulator during storage with sub-
segatnt pressure rise.

• Requires bleeding system to
obtain liquid in accumulator

Same as Item i) pAr

' Added weight (= 1.1 lbs. per
Pic)

' Use of 'Energy Pic' would
probably be a ont-shut shut-
down with no sub<rquent start-
up

• Actuator would be large and
heavy

' Motor torque required to Bold
valve open would be high.

' Multi p le gear sets required,
i.e., large pear reduction
required

• High backlash, not ideal for
precise valve control.

' Temperature effects on gear
box.

' Spring drive of ball screw
(closing) i, very inefficient
due to low linear to rotary
torque conversion.

• fairly large envelope with
attendant weight problem.

Could isolate accumulator
prior to start-up with a
squib valve to minimize
leakage

./
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17. Redundant motor drive with single
valve drive. Motor independently
barnessed and controlled. valve
drive utilizes a worm gear to
provide mzchanicai advantage.
Ifitors sized so that one motor
acting alone is sufficient to meet
the response requirements of the
valve.

18, Same as Item 17 abave except that
the ^mrm year is replaced by a ball

v	 screw.

tD

19. Sane as Item 18 except that the
second motor is replaced by a
gas driven trrbine.

Electric

Electric

I

Electric/
Pneumatic

fi

• Simplicity of design.
• Less temperature sensitive.
• Able to provide right angled drive

needed for valve rotation.
• Second motor provides redundancy
and replaces spring

• Pelatively small envelope and low
weight.

• Lcw friction, ball screw effl6ency
approximately 90%

• Because of the railtiple balls the
ttrust capacity of the ball screw
is high.

° Relatively small envelope and low
weight.

° Low backlash, large rotor moveivnt
for scrall valve notion provide good
valve position control.

° Sirpler controller required.
° The harness to the second xator

(turbine) would be simpler since it
would only need to fire squib valve(s).
Would be slightly lighter than 2
electrical motors.

• High worm gear friction
• High gear tooth loading
• Trade off between sealler
actuator and more harnessing
and additional controller
capacity.

° Unknown temperature effects
° Wculd need a crank mechanism
for the ball valve.

• Gas distribution system need-
ed (or 'Eager Pac" at each
valve".)

' Eager Pac drive suitable for
only one-shot therefore could
only be used for emergency
shutdown.

Two motors and speed reducers
weigh approximately 7,5 lbs.



III, L, Task V - Lngine Control (cont.)

The selected systems are discussed in more detail in the

following paragraphs.

a.	 On-Off Ball Valve

The valve actuation systeiiis study resulted in the selec-

tion of a single-acting, pnerimaticuily opened/spring-closed actuator with a

rack and pinion output drive for the on-off ball valve. This type of actuator

provides fast response, a fail-closed cioability upon loss of power or control

signal, actuation pressure that isindependent of propellant pressure (needed
for engine start), and relative insensitivity to cryogenic temperature. This

tyre of system needs a regulated pressure source with adequate capacity, flow,

and pressure to meet the duty cycle of the ongine. The integral pneumatic

Kuck is designed to supply a pressure that is adequate to overcome twice the
anticipaced friction forces plus one and once-tialf tiii ►es the combined mechani-

cal, spring, flow, and pressure forces acting on the actuation system at any

valve position. This philosophy assures that the actuators provide their

function for this titan-rated appl ication.

The actuator shown in figure 45 is essentially the same

actuator as the one used on the OMS bipropoilant, valve, but with two major

differences: (1) The OMS actuator had an actuator piston cavity and a spring

cavity joined by a small shaft bore. Durinq fabrication it was found that

maintaining the needed tolerances and form controls with this arrangement was

difficult; as a result, the OTV actuator has a Ftraight-through bore. (2) The

OMS actuator was for a bipropellant valve and was designed to open two

parallel valves cimultaneousl ,y. The ITV actuator has to open only one valve,

so the actuator piston, ra(.k, and spring guide have been combined into one

part. This allows location of the actuator centerline nearer to the valve

more axis (the rack is offset with respect to the actuator centerline) and at

the same time provides the rack with improved support from the two filled TFE

bearings which have an excellent (2.0) length-to-diameter ratio.
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III, L, Task V - Lngine Control (cont.)

for drawing convenience, the valve and actuators in
Figure 4b were shown in the same or in parallel planes. In actual use on the

engine, this may or may not be the case. If required, the relative position,

of the actuators with respect to the valve can be changed by rotating the

actuators about the valve bore axis or about the pinion shaft exis. The

solenoid-operated control valves can also be rotated (or moved) to accalunodate
the final engine configuration.

b.	 Modulating Valve

The actuator study resulted in selection of electric
actuation for the modulating valve. Hydraulic actuation was eliminated in

view of the absence of an oxistinq hydraulic system on the engine and because

of the problems associated with its use in, or near, components subjected to

cryogenic temperatures. Although a pneumatic source (the pneumatic pack) is

available, the capacity for continuous flow throudrh a control valve needed for

a dual-acting pneumatic piston, coupled with the compressibility of the gas,
W(Akes ,! pneumatic ai ► broach unaccel)table. hlectric •Actuation has the advantage

of being readily available, easily routed, and relatively immune to tempera-
tore fluctuations.

Drive train friction ha, been reduced to a minimum by
(4W of ball bearings. The drive ,crew nut support duplex bearings also

counteract the thrust loads imposed on the valve shaft by fricticl, pressure,
kit, flow.

The electric motor snlected for the modulating valve is

a rare-earth (Sdmdrium Cobalt) motor siiiiilar to the motors used on the OM5

gimbal actuator. Llecti-onic coMiuutation of the DC power supply (three-phase

inverter) by the engine controller permits operation as a brushless DC motor,
)ut In a smaller package.
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III, L, Task V - Lngine Control (cont.)

[Disadvantages of the electric :rotor drive system, as

compared to a hydraulic or pneumatic system, include the inability to package

as much power within a given volume anti the development of windage and elec-

trical losses. Selection of a drive train that ►►inimi zes these disadvantages,

wherever possible, is important to the overall size and weight of the modu-

lating valve.

Several design features in the drive train (shown on

Figure 48) tend to reduce the power requirements. These include (1) addition

of a pressure-balancing piston (the bullet-shaped shaft section in Figure 48);

(2) use of a ball screw to provide a mechanical advantage in moving the shaft,

plus utilization of as large a year ratio between the ball screw nut drive

gear and the motor output gear as practical.

The pressure-balancing piston eliminates the downstream

pressure force tending to open the valve and minimizes whatever flow forces

there might be.

The holl s(-row pruvides a mechanical advantage of

approximately seven to one due to the wedge action of the screw thread. One

feature of the arrangewent (shown in Vigure 4't^) is that the seal friction is

first reduced by the ball screw's ► + ►echanical advantage and then by the year

ratio, resulting in use of a smaller, taster iw tor.

4.	 Auxiliary Valve k^e^u^re ►► ^ent5

A prelii ►► inary ettort to define the basic OTV auxiliary valve

requi re ► t►eats was also undertaken. i 1 neuiiwt1 ,, supply syster ► components, such as

the regulator and relief valve, fill valve, and 11neuuaatic supply tank, were

not considered and will need to be includod in subsequent studies.

1k>'
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111, l:, Task V - Engine Control (cont.)

The funct ions to be performed by the OTV auxiliary valves

which were considered include the following categories: (1) purge valves to

provide a Gr e purge f or the IQ flow pasY-ges and a GN, purr,e for the 02

flow massages; (2) vent and/or relief valves to prevent excessive pressure

buildup following engine shutdown; and (3) pilot valves to control the flow of

GN p or lade for the purpose of actuating the engine system valves.

A	 Purge bystow

In defining the purge system, the following assumptions

were made:

(1) The purge system will be required to remove i:ioi s-

ture and condensible eases from the engine on the ground prior to engine test
or prior to flight. This system will also be utilized to purge the engine

system of propellants following online aground test. It is assumed that an

iof1ight purge will not be required prior to or following engine operation

because of the aspirating effect of space vacuum on the system. If it is

later determined that an infiiKght imurge is necessary, the ground purge valves,

co;iibined with some additional voluwo in the pnewmmatic supply system, could be

utilized to satisfy the requi rentint.

(m) On the ground, GHP will be used to purge the H2

systew and GN2 will be used to purge the 01 system. The tradeeff is the

cost of Me against the possibility of mixing the gases. The purge gas will

he supplied by a m ilt. source. If an SWUMUM pur gge is required, it is assumed

that only the oxidizer system will need to he purged, using GN,9 to prevent

the formmwtion of a combustible mixture.

1 `i"l



III, E, Task V - Engine Control (cont.)

(3) Based on consultation with the pump designer, the

purge flowrate should not exceed 0.01 lb/sec and the :AP across the turbines

should not exceed til psid to prevent rotating the pumps and possibly damaging

t-he dry shaft seals. Therefore, sufficient flow can be provided by using

'/4-in. direct-actuated solenoid valves. The purge lines are connected to the

fine system just upstream of the boost pump inlets, as shown on the sche-

mdtic of Figure 45. The ocher end of the fuel purge line is attached to a GHe

disconnect at the engine interface panel. The oxidizer purge line is con-

nected to a purge valve located on the pneumatic pack assembly. For redun-

dancy, check valves (valves #9 and #10) are installed in the purge system and

located at the interface between the purge sy!.tem and the engine system.

(4) It is assumed that the purge method will be a con-

tinuous purge (duration TBD). On the fuel side, GHe is applied at the engine

interface panel, and valves #8, 3, 1, and 4 w i ll he alternately opened and

closed for specified durations to ensure a complete purge. On the oxidizer

side, the pneumatic pack GN2 purge valve is opened, and valves #7 and 2 are

alternately opened and closed to assure purging. The igniter valves are also

cycled to ensure purging of the ignition system. Another possible method of

purging is to alternately pressurize and depressurize the system. This method

is effective in augmenting gas mixing.

(5) Additional purge distribution lines may be required

for components (e.g., the control valve electric-motor actuators). These

requirements will become evident as the engine design matures.

b.	 Relief System

The sections of the engine where pressure can build up

following engine shutdown are between the vehicle pre-valves and downstream
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Figure 49. Engine Puree and Relief System Schematic
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N1, L, Task V - Lngine Control (cont.)

valves #1, 3, and 8 on the fuel side and 6, 7, and 2 on the oxidizer side

(Figure 49).

At the present time, the GN2 start bypass valve (valve

#8) and the GOX start bypass valve (valve #7) are programmed to open when the

vehicle pre-valves are closed to prevent pressure buildup. If passive relief

is required, pressure-actuated relief valves would have to be added to the

system. The best location fr~ these valves (#11 and 12) is in the low-

pressure side of the propellant feed system between the vehicle pre-valves and

the boost pumps. Since the fuel system will contain liquid from the pre-valve

to the thrust chamber, and GN2 from the chamber jacket to the LN2 shutoff

valve, a relief valve may not be required on the fuel side because of the

accumulator effect of tho gas present in the system at engine shutdown. This

will be a function of the relative gas and liquid volumes, initial and final

pressures and temperatures, and the maximum allowable pressure in the low-

pressure side of the system.

It is more likely that a relief will be required in the

oxidizer system because that system will be primarily liquid, with a small

amount of gas in the heat exchanger at engine shutdown.

Some of the tradeoffs between an active and passive

relief system are as follows:

For an active system, control functions will need to be

incorporated into the controller to hold the turbine and GOX start bypass

valves in an open position until the liquid propellants have gassed off. A

passive system will automatically vent an overpressure condition. Another

advantage of using passive relief valves is that propellants can be vented

back to the propellant tanks and are not lost overboard. This is the case

when turbine and GOX start bypass valves are used to vent the system.
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III, E, Task V - Engine Control (cont.)

However, a passive system will require the addition of two more valves with

potential leak paths and pussible failure-to-close modes.

In any event, additional definition of the engine system

is required. For this initial design iteration, it is assumed that an active

system will satisfy the relief requirements. If later studies show that a

passive reli.;4 system is more advantageous, then the additional relief valve

locations and envelopes will be as shown on the engine schematic (valves #11

and 12 on Figure 49) and on Table XXIII.

co	 Pilot Valves

For this study, it was assumed that the LH 2 and L02

shutoff valves and the GH2 and GOX start bypass valves are actuated by using

GN2 supplie
d
 fr^r 

the 
er"igi ne pni:Uiiiatic pack. Each shutoff valve has two

actuators, whereas the bypass valves have one actuator each. Assuming one

pilot valve for each actuator, a total of six pilot valves is required,

Because the engine valve response will be controlled by

timing orifices, a 1/4-in. line size for the pilot valves and isolation valve

should be adequate based on engine valve size and past experience. Valve

envelope, operating pressure, and weight is listed on Table XXIII.

S.	 Engine Controller Requirements

A conceptual design for the ON engine controller was identi-

fied on the basis of a digital processor and associated input/output elec-

tronics. A power-density study determined the controller size, weight, and

power requirements, and a preliminary engine control logic flow chart was

developed to support the engine transient simulation model to determine suit-

able control points/methods for thrust and mixture ratio control.
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III, E, Task V - Engine Control (cont.)

A microprocessor-based controller design including input/

output signal conditioning, multiplexing, analog/digital conversion, inter-

facing, and output power drivers appears to be a feasible application for the

engine controller function. The engine conceptual control schematic shown in

Figure 50 depicts the controller elements and engine interface developed

during the engine design definition phase.

The power, physical size, and weight requirements for the

controller, as summarized in Figure 51 and Table XXIV, reflect valve, valve

actuator, and igniter electrical loads estimated from the engine control

components study. Note that the weight does not include the power supply. If

the power supply weight were charged to the engine, it could double the values

shown.

The controller power-density requirements are based upon both

the SSME controller design as well as the more recent electronic controller

designed for the OMS-E gimbal actuator. The power-density factors used were

for the latter since the microprocessor-based system architecture is more

closely represented.

The engine control logic flow chart of Figure 52 defines the

preliminary engine start/shutdown sequence and thrust/mixture ratio control

point selection for use with the engine transient simulation model. The

desired objectives of this task included determination of engine conditioning

at each of the operating modes (i.e., tank head idle, pumped idle, and full

thrust), effectiveness of the pumped idle step control point, and the initi-

ation point for thrust and mixture ratio closed loop control. Planned varia-

tions to the logic flow path included isolation of the thrust or mixture ratio

control loop from the main program v:a hardware (separate microprocessor) to

better evaluate control loop update time as well as the interactive effects
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8"

10"

16.8"

Weight: 34 lb

Power	 287 watts
Output:

0.78 Ft3
Volume: 

The vehicle power supply weight/volume is not
included as part of this accessment.

Controller is assumed to operate direct from
vehicle power supply without need for power
conversion equipment.

Notes: 1.

2.

Figure 51. OTV Engine Controller Size Estimate
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TABLE XXIV

OVT DIGITAL CONTROLLER POWER DENSITY DETERMINATION

Input Electronics

Digital Interface

Digital Computer

Output (Power) Electronics

Totals

Lbs. Watts Ft3

4.5 36.7 0.1

4.3 36.8 0.1

4.2 36.9 0.1

20.6 176.6 0.48

33.6 287.0 0.78

Notes:

1. Basis is the OME Gimbal Actuator Controller in which both

output (power) electronics and digital/analog MST circuitry

are utilized. In compari son, the LSI circuitry of the ITV

controller would weigh less, whereas the output electronics

would be almost identical.

2. Gimbal Actuator Controller power design, based upon continuous

operation at altitude: 8.5 watts/lb and 43 lbs/ft3.

3. The above breakdown for the OTV controller is based upon

the electronic elements shown in the OTV Control Schematic

and presented with above power density factors applied.
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Figure 52. OTV Engine Control Logic (Sheet 1 of 2)
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Figure 52. OTV Engine Control Logic (Sheet 2 of 2)
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III, E. Task V - E.ngine Control (cunt.)

between thrust and mixture ratio control upon engine performance. Diffi-

culties were encountered with the engine transient simula-cion model and

the planned iterati.`r! could not be conducted within this study program's

schedule and funding constraints. This precluded verification of the logic

floe path shown on Figure J'e'. Further flow chart definition is required in

future design studies to baseline software design and computer memory require-

ments.

6.	 Areas Requiringg Further Study

Wherever possible, the designs for the OTV Point Design

engine controls have incorporated the best features of past ALRC designs.

These proven design features, plus application of design analysis methods

developed in the past use of these designs, have resulted in the valve con-

figurations presented herein. Limitations lirlposed on this phase of the design

has reduced overall analysis to the basics, i.e., flow, pressure loss, esti-

mated leakage, predicted wear, rough weights, and preliminary motor sizes.

During the detail design phase, these analyses must be refined and combined

with additional analyses for heat t., ,ansfer, stress and deflection magnitudes,

and valve effects on engine performance.

The efficiency of the Advanced Expander Cycle Engine improves

as the amount of heat used to warm the fuel is increased. Additional heat

also results in a higher operating temperature for the components that are

used in the fuel system. If the fuel temperature appraoches 1000°R through

use of advanced cooling concepts and schemes, consideration will have to be

given to the effects of high temperature on the valve designs. While valves

designed to withstand very low or very high temperatures are common, valves

that can withstand both are not. While the design of valves for use at tem-

peratures from 100°R to 1000°R is not beyond the state of the art, it would

involve increased analyses and verification testing.
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III, E, Task V - Engine Control (cunt.)

If engine analysis determines thaw higher system temperatures

are feasible and desirable, an effort should be made to verify the design

, ntegrity of specific valve elements (e.g., shutoff seals, shaft seals,

bellows, if used, and ball screws) under the proposed operating conditions and

in a configuration as close to actual use as possible.

In addition to the areas for expanded analyses discussed

previously, the items listed below should be studied in greater detail to

determine whether they should be incorporated into any future designs. Items

for more study include, but may not be limited to, the following:

°	 Study the possibility of using a downstream shutoff seal

cartridge with an eccentric ball for the propellant shutoff valve. This

arrangemen^ could result in smaller actuator springs and thus a smaller

actuator.

°	 Investigate possible weight reductions resulting from

material substitutions and/or improved analysis.

°	 Determine weight penalties (if any) imposed on designs

for use at higher temperatures and/or those that require similar thermal

expansion characteristics to accommodate large temperature ranges.

°	 Determine the optimum valve characteristics needed for

maximum engine efficiency for each application and incorporate these features

into the valve designs whenever practical.

°	 Determine thermal effects (both high, 1000°R, and low,

100 0R) on seal designs, especially those fabricated from non-metallic

materials.
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III, Task Discussions (cont.)

F.	 TASK VI - LNGINL CONK DURATION LAYOUT

The primary objective of this task was to provide an engine con-

figuration layout drawing showing the packaging relationship of the primary

engine: components.

1.	 Engine Assembly

The engine assembly layout drawing showing the packaging of

the components is presented in Fiqure 53. The engine is GO in. long with the

extendible nozzle in the stowed position. This length is measured from the

top of the gimbal block to the end of the tube bundle nozzle. With the exten-

dible nozzle deployed, the engine is 109.E in. long and has an area ratio of

435:1. Approximately 10.4 in. of potentially available deployed length is

lost in the area of the extendible nozzle deployment mechanism and attachment

plane. Further design refinements could increase the deployed length to a

maximum of 120 in., with a resulting area ratio of 473:1 and a performance

increase of 1.8 sec over the baseline value of 475.4.

The seven-digit numbers next to the component callouts on the

engine layout refer to ALRC drawing numbers for those components.

The main and boost pumps are in-line and close-coupled to

reduce system pressure drops and to shorten the hydraulic turbine supply line

to the boost pumps. The turbopumps are mounted on the same side of the

engine to provide a short warm-gas line between the main pump turbines. This

reduces the crossover duct pressure losses between turbines. A protective

bulkhead is placed between the turbopumps to semi-isolate them from each

other. This was done to prevent a failure and fire in one TPA causing a fire

in the other. The en gine controller is packaged on the other side of the

engine from the TPA. The controller is wrapped around the engine rather than
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III, F, Task VI - Lngine Conf %urdtion Layout (cont.)

in the box shape shown in Section III,L,5. This wrap-aru!ind configuration is

feasible.

. .	 N

.r	 y

The radiation-cooled nozzle, in the extended position is

located 34.35 in. below the throat and extends an additional 50.3 in. to an

exit area ratio of 435:1. The retracted position of the nozzle is such that

its exit plane is at the same axial station as that of the regeneratively

cooled nozzle (172:1) which is 34.35 in. below the throat.

The length of the radiation-cooled nozzle (50.3 in.) is based

upon the following design criteria:

°	 Component penetration above the gimbal plane is limited

to 6.5 inches. This distance is required to redirect

the axially oriented propellant inlet limes to the

horizontal and into the gimbal plane.

° A thin-wall cylindrical ring dssembl,v, approximately 9.3

in. long, which contains the nozzle attachment flange is

an integral part of the nozzle. The ring assembly is not

exposed to the hot products of combustion since it

extends axially up the outside of the regeneratively

cooler' nozzle as shown in the figure.

All major components are readily accessible for ease of main-

tenance or replacement on the line. The radiation-cooled nozzle incorporates

a bolt-on flange and is designed to be removed and replaced. If necessary,

removal could be accomplished in orbit if the nozzle could not be retracted

prior to the OTV returning to the Orbiter's payload bay.
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III, F, Task VI - Engine Configuration Layout (cont.)

The third sheet of Figure 53 also shows the propellant flow

paths; the number., listed refer to the valves shown on the engine schematic

(Figure 47).

2.	 Engine System Structural Analysis

Preliminary stress and dynamic (modal survey) analyses were

conducted for the purpose of establishing loads and stresses for the OTV

engine assembly. The engine assembly and lines were modeled as a series of

beam elements and lumped masses for analysis with the "SPAR" Finite Element

Computer Program.	 Since the loading as well as component definitions are

very preliminary in nature, this analysis should be updated as the engine

design is improved.

The purpose of this analysis was to provide an initial survey

of the loads and stresses in the chamber, the lines, and the nozzle deployment

system. The loading cases include steady-state and startup 'Chermal, flight

"g" loading, actuation, and thrust.

This preliminary investigation shows that the maximum stress

l ,;vels occur in the ON thrust chamber system and are due to the start

transient and steady- ,state thermal environments. A maximum steady-state

thermal stress equal to -50,000 psi occurs in the thrust chamber region. This

stress is caused by constraints imposed by the chamber throat bridge. The

corresponding mechanical stress in the bridge is 16,300 psi. The actuating

system rods are subjected to a 21,700 psi bending stress due to steady-state

thermal expansion of the thrust chamber and nozzle.

The maximum thermal stress (-18,000 psi) in the propellant

lines occurs in the LH2/LOX turbine inlet line.

202



III, E, Task VI - Engine Configuration Layout (cont.)

Mechanical stress levels in the lines, struts, and actuating

rods due to gimballing (15° pitch, 6° yaw), inertia (1g) side loads, and

thrust loads are well within the material allowable stress.

Table XXV lists the significant stresses for the various

components that make up the OTV engine system.

Table XXVI lists the significant stress levels for the com-

bined inertia loading [29 (x) + 1.5g (y) + 4.2g (z)] when the nozzle extension

is in the stowed position.

The following conclusions were drawn from an evaluation of

the preliminary analysis results:

°	 The design is an acceptable first iteration.

°

	

	 The propellant lines, chamber, chamber struts, stif-

fening cylinder, and actuating rods have loads and

stresses of acceptable levels. When the loading com-

binations are made and the design is refined in the next

design phase, the system can be made structurally ade-

quate.

°	 Thermal stress levels are somewhat high in the

chamber throat and barrel section, due, in part, to the

axial constraint imposed by the stiffening cylinder.

This can be alleviated by a refinement of the stif-

fening cylinder design.
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TABLE XXV

ENGINE SYSTEM STRESS SUMMARY, THERMAL AND MECHANICAL LOADING

W

STRESS LOADING
TYPE 	 MAGNITUDE (PSI) CONDITION

Thermal 320 Steady-State
Mechanical 2878 Gimbal-150 Pitch
Mechanical 1600 Gimbal-60 Yaw

Thermal 7889 Steady-State
Thermal -18585 Start Transient
Mechanical -1600 Gimbal-150 Pitch

Thermal -5309 Steady-State
Thermal -23670 Start Transient
Mechanical 890 Gimbal-15° Pitch

Thermal -2668 Steady-State
Thermal -11917 Start Transient
u__L	 ...s_..1'Iecha n lc al 7h7-GJLV n4.»1. 7 _ 1 to	 04+^k

G^ mba 1- 1 5	 f 1 VVIt

Thermal 6124 Steady-Stage
Thermal -12142 Start Transient

Mechanical 1398 Gimbal-150 Pitch

Thermal -23184 Steady-State
Thermal 9451 Start Transient
Mechanical -1219 Gimbal-150 Pitch

Thermal 16299 Steady-State
Thermal -5309 Start Transient
Mechanical -2340 Thrust

Thermal -50129 Steady-State
Thermal 16731 Start Transient
Mechanical -5031 Thrust

Thermal -16326 Steady-State
Thermal 8057 Start Transient
Mechanical 255 Thrust

Thermal 21763 Steady-State
Bending

Thermal -10421 Start Transient
Mechaniial -177 Thrust

COMPONENT,

Inlet Line LH 2 & LOX

LH2/LOX Turbine Inlet

Fuel Turbine Inlet

Chamber Coolant Jacket
Inlet

Pump Discharge

Oxidizer Injector
Inlet

Stiffening Cylinder

Thrust Chamber

Chamber Struts

Rods
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TABLE XXVI

ENGINE SYSTEM STRESS SUMMARY,COMBINED INERTIA LOADING

C2g (x) + 1.5g ( y ) + 4.2 (z)] .^

(NOZZLE EXTENSION STOWED)

JOINT DIRT- BENDING
COMPONENT NO. SZ	 PSI SZ1	 PSI	 SZ2	 PSI

Fuel Pump Inlet 13 -28 -274 2,187

LH2/LOX Turbine Inlet 17 27 -2,207 926

Fuel Turbine Inlet Line 22 -39 -1,042 -189

Chamber Coolant Jacket 63 -254 -3,815 109
Inlet r

LOX Inlet 43 -29 668 -743

Fuel	 Injector Inlet 49 -27 1,620 87

Oxidizer Injector Inlet 60 122 2,134 2,046

Chamber Struts 70 -337 -468 -874

TCA Stiffening Cylinder 89 60 49 159
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III, F, Task VI - Engine Configuration Layout (cont.)

i

The following recommendations are based on an evaluation of

the analysis results:

°	 Further design refinement of the stiffening cylinder is

required. To accomplish this, the transient thermal

conditions and the thrust start transient loads must be

defined and incorporated in the analysis. With this

information, a system finite-element model can be used

to evaluate the stresses parametrically with the vehicle

stiffness. This analysis is a must for obtaining a good

design.

°	 An axisymmetric finite-element model of the thrust

chamber and nozzle should be accomplished in a future

design refinement effort.

3.	 System Effectiveness and Safety

The purpose of this evaluation, was to provide some insight

into the inherent reliability and crew safety potential of the OTV point

design engine. This section of the report discusses the following subjects:

°	 Quantitative Evaluation

°	 System Failure Modes, Failure Rate Distributions and
Mission Effects

Propellant Leakage

°	 Maintenance

°	 Conclusions and Recommendations

206



T

III, F, Task VI - Engine Configuration Layout (cont.)

a.	 Quantitative Evaluation

A rocket engine system, when used in conjunction with a

man-rated vehicle, is considered to be "man-rated" if the probability of

mission success is "satisfactory" and there is only a emote probability of

crew "loss" due to engine-system-induced effects. It is a design philosophy

which analyzes the influence of potential single-point failures which could

jeopardize the safe return of the crew and/or mission success. Therefore,

man-rating is quantified both in terms of engine reliability (R) and crew

risk (CR).

Previous OTV man-rating evaluations established

acceptable mission reliability and crew risk goals and determined the number

of engines required to meet these goals (Ref. 1 and 23).

A "satisfactory" probability of mission success, as

traditionally judged by aerospace experience, was established as .99 minimum.

A crew risk goal of 2.5 x 10-4 was established by evaluating the "Shuttle

Payload Safety Requirement" (NHB 1100.7) and the "Manned Spacecraft Criteria

and Standards" (JSC M8080) documents and comparing the high-risk profession

of astronauts to other hazardous career mortality rates. The acceptable crew

risk value is comparable to that of an airline pilot.

Four engine system configurations were evaluated in

these past studies: a single 20K engine, twin 10K engines, three 10K engines,

and three 7K engines. A mission duty cycle of 5 burns per mission and

quantifiable reliability parameters for catastrophic failure rate, fail-safe

rate, and fail operational failure rate were used in the safety/reliability

model.
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III, F, Task VI - Engine Configuration Layout (cont.)

Table XXVII summarizes the single-engine reliabilities

required to meet the mission reliability and safety requirements. As the

engine-out capability of an engine system increases, the total system failure

rate decreases and the system reliability increases. The inconsistency of the

three 7K engine system is due to the disadvantage of having three times the

chance of catastrophic failures overriding the partial engine-out

capabilities. The three 10K engine system has complete engine-out capability

(i.e., one redundant engine).

The Advanced Expander Cycle engine was also evaluated

for its capability to meet the crew risk requirement with and without

redundant components (internal redundancy) for the various engine systems.

Adding redundant igniters, series-redundant shutoff valves, and dual-coil

valve actuators decreases the single-engine failure rate by 33%. The results

of the analysis are summarized in Figure 54. The figure shows the calculated

total mission losses for each engine system as well as those resulting in the

loss of the vehicle and crc*,.

The following conclusions were derived from the figure:

A single-engine installation is impractical for

meeting the crew risk requirement.

°	 Internal engine redundancy can significantly reduce

crew risk.

°	 The three 7K engine system has no advantages in

terms of mission reliability and crew risk because

of the increased catastrophic failures.
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AISLE XXVII

ENGINE RELIABILITY REQUIREMENTS

NUMBER ENGINES NUMBER OF SINGLE ENGINE SYSTEM
IN SYSTEM ENGINES REQUIRED RELIABILITY RELIABILITY

DURING MISSION

1 1 ALL BURNS 0.9996 0.9996

2OK

2 2 FIRST BURN 0.9993 0.9997
10K 1 SUBSEQUENT

0.999753 2 FIRST BURN 0.9983
10K 1 SUBSEQUENT

3 3 FIRST BURN 0.9995 0.99965

7K 2 SUBSEQUENT

ASSUMPTIONS: 5 BURNS PER MISSION

5", OF THE SINGLE ENGINE A DUE TO CATASTROPHIC FAILURE

60" OF THE SINGLE ENGINE .X WILL STRAND CREW

35" OF THE SINGLE ENGINE a WILL NOT ENDANGER CREW LIFE
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III, F, Task VI - Engine Configuration Layout ( conc.)

°	 The three 10K engine installation reduces crew risk

because one engine is completly redundant. (The

sys;te+n weight and cost is also significantly

i ncr.^ased.

°	 The twin-engine installation, with component

redundancy, meets the crew risk requirement. (This

is the best choice when engine system cost and

weight are factored into the trades.)

Other conclusions resulting from the studies (Ref. 23)

were as follows:

° For all multi-engine systems, a single engine must

have a proven reliability of at least .998 ' 1 meet

crew risk requirements.

° The engine should carry instrumentation that could

detect impending failures and shut down the engine

before castastrophic failures can occur.

°	 A crew override should be provided to correct a

failure in the hazard control system. If a good

engine is shut down, the crew should have the final

decision on whether to restart it. The crew should

be provided with an option in situations where the

risk is judged to be acceptable.

Combining all factors, i.e., internal redundancy,

simplicity, hazard control system, crew override, and external redundancy, the

high reliability and crew risk goals can be met.
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III, F, Task VI - Engine Configuration Layout (cant.)

If these concepts are used in cunjunctiun with effective

testing during DDT&E, potential mistakes can be designed out inexpensively on

paper rather than during production. An example of reachiig higher

reliabilities faster is shown in Figure 55. The ALRC philosophy on the OMS-C

program concentrated on "making the engine right the first time." A

single-engine reliability of .9992 was reached after only 476 tests. In

comparison with the Apollo program, OMS-L achieved an order of magnitude

advancement in the reliability with the same amount of testing. It is

believed that we can do at least this well with the expander cycle OTV engine.

b.	 System Failure Modes and Effects Analysis

Through evaluation and comparison of the ALRC Point

Design OTV Engine concept with historical engine failure data, a "top down"

Failure Modes and Effects Analysis was conducted. This analysis shows the

overall effect of an engine failure during a typical AMON fire-burn

LEO-to-GEO-and-return mission. The crew safety and mission reliability

analyses that were summarized in the preceding section show that a twin-engine

concept is the best choice for meeting the man-rating, mission reliability,

and payload requirements. Therefore, this study assumes that "failure" refers to
the failure of one engine in this twin-engine installation.

Table XXVIII shows the percent failure rate distribution,

the resulting failure rate contributed by a single engine, and the mission

phase effects. Low performance accounts for the largest percentage of engine

failures, although it is very unlikely to cause mission failure. Failure to

start, failure to shut down, catastrophic failures, and failure to extend the

nozzle are modes that would most likely jeopardize completion of the mission

and could place the crew in danger. Further analysis is required to reveal

the single-point failures within these particular failure modes.
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TABLE X."",VIII

FAILURE RATE DISTRIBUTION OF TWIN-ENGINE SYSTEM

Failure Rate
Engine Failure Mode % Failure Rate Gased on Mission Phase Effected

Distribution Man-Rating
a ug irsments

Fails to Start 20% 140 ppm LEQ De arture	 2 burns): 1st burn;
T-5	 of mission.	 Fail safe and burn;
return to LEO on remaining engine.

GEO Departure:

-

complete mis+ion on
remaining engine.

Premature Shutdown 110% 140 ppm LEO Departure: 1st burn; loss of missiun,
return to LEO.	 Fail safe 2nd burn;
continue mission.

GEO Departure: cont a rue mission with
remaining engine.

Low Performance 38% 225 ppm LEO De parture: 1st burn; extend burn or
abort mission.	 2nd burn; extend burn

GEO Departure: extend burn.

Catastrophic E% 70 ppm LEO, Departure 6 GEO Departure

Loss of mission
Loss of vehicle
Loss of :rew

Fails to shut dawn 4% 28 ppm LE:: Departure: loss of miss%:n, 	 vehicle
and crew stranded.

GEO Departure: possiblx loss of mission and
stranded crew.

Loss of Gimballing 4% 28 ppm LEO Departure: shut down problem engine;
use remaining to return to LEO or complete
mission.

GEO Departure: shut down problem engine;
use remaining engine to return to LEO or
complete mission.

High/Low Tank Pressure it 7 ppm Within specified limits, the engine
controller will compensate.

Fail Extension of Nozzle 4% 28 ppm Deployment to LEO:
Loss of mission; fail	 safe, EVA.

Fail Retraction of Nozzle 4% 28 ppm Rendezvous and Capture:
EVA required.

LEO Departure	 = Orbit Transfer Injection Burn and GEO Insertion Burn

GEO Departure	 = LEO Transfer Burn, Phasing Orbit Trim Burn and Shuttle Rendezvous Burn
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III; F, Task VI - Engine Configuration Layout (cont.)

c.	 Propellant Leakage

Propellant leakage is usually divided into two cate-

gories: (1) "gross" leakage resulting from structural failures such as rup-

tures of bellows, lines, housings, manifolds, weld cracks, flange deforma-

tions, and fractured flange, bolts and (2) "minor" leakage due to flange

deflections, bolt torque relaxation, seal physical property degradation, seal

installation damage, and damaged flange surfaces.

Because all propellant ducting components will be

designed, stress-analyzed, and tested to withstand maximum expected engine

operating pressures and loads with safety factors applied, it is reasonable to

conclude that gross structural failures will not occur unless components are

subjected to an overstress condition resulting from a failure of another part

of the propulsion system.

Excluding leakage resulting from gross structural fail-

ures, the remaining task is to assess the effect of "minor" leakage at joints

for the failure mechanisms denoted in the first paragraph. Considering the

closed loop control afforded by the engine controller and the rigorous pre-

flight leak checks conducted to detect any out-of-specification leakage, A is

judged that engine performance will not be degraded below mission acceptable

values by this degree of leakage. Similarly, the extent of damage to engine

components caused by loss of coolant from external leakage is not considered

sufficient to degrade engine performance for a specific mission though it may

reduce component life.

The only other effect which must be considered is the

possible safety hazard resulting from a fire and/or explosion hazard resulting

from propellant external leakage. Our current conclusion is that elimination

of fire and/or explosion hazards can be assured both on the ground and
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III, F, Task VI - Engine Configuration Layout (cont.)

throughout the flight regime with design goal leakage rates. Based on the

assumption that an inflight purge will not be required prior to or following

engine operation because of the aspirating effect of space vacuum on the

system, the only special precautions which should be taken are the following

ones:

a	
°	 Purge the engine system on the ground prior to

engine test or prior to flight to remove any

moisture or condensible gases.

°	 Purge the engine system of propellants following

engine ground test or flight.

°	 Eliminate, if possible, ignition sources having

energies equal to or greater than the minimum

propellant ignition energies.

If it is determined later that an inflight purge is

necessary, the ground purge valves, combined with some additional volume in

the pneumatic supply system, could be used to satisfy the requirement.

Leakage into the Orbiter's payload bay is inhibited by

the series-redundant main propellant shutoff valves. These valves, in

conjunction with the vehicle pre-valves, satisfy the Space Transpoation System

(STS) environmental and safety criteria as stated in "The Safety Policy and

Requirements for Payloads Using the Space Transportation System" (Ref. 24):
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III, F, Task VI - Engine Configuration Layout (cont.)

"The premature firing of a liquid propellant propulsion

system is a catastrophic hazard. Each propellant

delivery system must contain three mechanically inde-

pendent propellant flow control devices in series that

remain closed during all ground and flight phases

(except 9,ound servicing) until the deployed payload has

reached a safe distance from the Orbiter."

d.	 Engine Maintenance

The primary objective of the OTV engine maintenance

concept is to maximize mission reliability and crew safety while minimizing

the cost of meeting the OTV's operational requirements. To meet this

objective, ALRC's maintenance concept emphasizes controlled preventive

maintenance with short turnaround times and minimum life-cycle costs.

To implement such a program, it is necessary to provide

adequate on-board information on engine performance and to follow specific

guidelines. Correct engine operation must be confirmed by a performance

monitor, and diagnostic data must be provided whenever either a malfunction or

a discrepancy occurs.

In simple terms, a malfunction is defined as a hardware

failure resulting in an actual mission loss; a discrepancy, on the other hand,

is defined as a "specification" failure whose actual mission effect is

unknown.

The diagnostic information supplied must be timely so

that engine/component restoration can be safely accomplished within specified

time constraints, yet it must not unbalance the ON or flight and/or ground

crews with superflous weight or time-consuming activities. The engine
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III, F, Task VI - Engine Configuration Layout (cont.)

on-board information system must utilize a logical process that will save

weight, time and money without impairing the probability of mission success or

crew survival.

According to an Aerospace Industries Association study,

20% of any vehicle subsystems will account for 80% of the total vehicle

maintenance cost. Propulsion systems such as the OTV engine are in this 20%

"high cost burner" bracket. Ir recognition of this fact, ALRC's approach to

achieving optimum 3TV engine reusability and a low operating cost has been to

make maintenance a key parameter of engine system design.

ALRC recognizes that if short turnaround times are to be

an ON engine requirement, then maintenance and safety will require special

accommodation in the basic engine design to allow for rapid assessment of

engine condition in all respects and easy correction of deficiencies.

A logical way for implementing maintenance as a key

parameter in engine design is to use component "failure rates", "failure

indications," and "failure node" data. By using these data, the expected

maintenance action is identified specifically.

While the OTV engine design and maintenance concept is

not fully developed at this time, it is apparent that some of the problems

#	 associated with the engine can be identified now. These basic problems are

summarized as follows:

(1) Engine Durability

T

	

	 Since the OTV engine will be subjected to many

cycles of high thermal and/or mechanical stresses during its service life, the

question of fatigue and wear threat is a serious issue. The engine components
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III, F, Task VI - Engine Configuration Layout (cont.)

have been designed to meet a service life between overhaul requirement of 300

start and shutdown cycles and 10 hours of accumulated run time. Design

criteria are based upon available data. However, the limited service

experience with reusable hydrogen/oxygen engines requires a heavy reliance on

thorough inspection by nondestructive testing techniques.	 Engine and

component designs must incorporate features of accessibility which make such

inspections a relatively easy matter. 	 Accessibility was considered in the

preparation of the preliminary engine layout, and provisions for component

inspections must be incorporated in the detailed deign phases.

(2) Turbopump Bearings

The bearings of the propellant turbopumps and more

particularly, those of the hydrogen pumps are vulnerable to failure within

their extended service life. A major disassembly effort would be required to

permit periodic visual inspection of these bearings. Therefore, it appears

that a heavy reliance must be placed on acoustical methods for assessing

bearing health.

Disassembly of the pumps can be awkward and

time-consuming. Therefore, pump repair will probably entail removal and

replacement of the entire engine in the early operational phases. When

component data has been accumulated, consideration can then be given to making

the pumps Line Replaceable Units (LRU). Replacement of the engine (or pumps)

can be based upon the application of acoustic disgnostic techniques. It is then

mandatory that the turbopumps be designed to accomodate acoustic pickups which

can be attached to the pump housings adjacent to the bearings to assess actual

bearing conditions resulting fran cumulative mission operations.
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III, F, Task VI - Engine Configuration Layout (cont.)

(3) Turbine Life

The expander cycle engine turbines operate in warm

	

hydrogen gas which is a relatively benign environment. 	 However, turbine life

will be limited by blade life which, in turn, is limited by stress rupture

through long-life mission application of tensile loads, and by low-cycle

thermal fatigue.

Inspection of the turbine at frequent intervals

should be practiced, particularly during the first few missions. For this

reason, it is essential that a nondestructive testing technique providing an

estimate of the remaining blade life be implemented. It is absolutely

essential that this nondestructive testing technique be identified early in

the next design phase of this program and that the pump be designed to

accommodate the device to be used.

e.	 Conclusions and Recommendations

The following conclusions and recommendations are made

on the basis of the safety and reliability analyses and a review of the engine

and component designs.

(1) Maximum mission reliability and crew safety with

minimum cost can be achieved by selected engine component redundancy combined

with a twin-engine configuration.

(2) Man-rating requires a thorough hazard analysis

followed by engine design changes to eliminate the hazards or provide

protection, or escape in an emergency. In some cases, the presence of

man may increase safety by providing for manual override, repair or corrective

action. Extra-vehicular activity (EVA) may be a last resort, but it should

still be factored into future design iterations.
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III, F, Task VI - Engine Configuration Layout (cont.)

(3) A Component Failure Mode and Effects Analysis

(FMEA) should be undertaken in the next design phase.

(4) The current purge subsystem concept uses check

valves which are located at the interface hetween the purge system and the

engine system. Replacement of the check valves with solenoid valves would

improve redundancy verification. If a purge system is required for flight,

solenoid valves would improve failure detection and engine controller

corrective action in the event of a valve failure.

(6) The TPA "shrapnel barrier" is used to preclude a

single TPA internal structural failure from causing a failure of both pumps

and engines. Consideration should be given to designing the TPA housings so

that they can withstand and contain the "Shrapnel Effects" of an internal

structural failure. Materials able to absorb the explosive effects should be

considered for the pump housings.

(6) the oxidizer pump impeller clearances must be sized

to preclude rubbing during all modes of operation and to permit passage of

contamination to minimize the probability of explosions due to rubbing.

(7) The effectiveness of using TPA shaft displacement

sensors (for real-time engine controller action or for between-flight

maintenance actions) to detect incipient oxidizer pump rubbing as the cause of

a potential catastrophic failure should be evaluated.

s
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III, F, Task VI - Engine Configuration Layout ( cont.)

(8) The nozzle extension, deployment, and retraction

mechanism is a critical mission subsystem even though its failure would not

directly jeopardize the crew. While a hand crank is included in the design, a

"jamming" mechanism of failure in the current design will negate the hand

crank mechanical redundancy option. The nozzle then has to be removed in

orbit. It is mandatory that this subsystem be designed by considering all

possible mechanisms of failure and to provide sufficient redundancy to mini-

mize single-failure points, recognize the constraints of EVA, and minimize

crew risk by reducing the possibi'ities of EVA.

G.	 TASK VII - ENGINE: DATA SUMMARY

The primary objective of this task was to prepare a document which

summarized the engine performance, weight, envelope, and service life data and

presented the engine and compo nent layout drawi n^;s. This document was sl,:h^-

mitted as a Task VII, Engine Data Summary, report for this contract (Ref. 4).

The component and engine designs were presented in Sections III,C

and III,F, respectively. The baseline engine data is presented .n this

section.

1.	 Engine Operating Characteristics

Based upon the results of design analyses, engine sensitivi-

ties, cycle optimization, and thrust chamber geometry optimization conducted

in conjunction with both this Point Design Study and the OTV Phase A Engine

Study, an engine with the characterisitcs summarized in Table XXIX was

selected as a representative 198U technology baseline. The data is presented

for both nominal mixture ratio (6.0) and off-design mixture ratio (7.0)

operation. The engine length with the extendible nozzle in the stowed
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TABLE XXIX Sheet 1 of 4

ADVANCED EXPANDER CYCLE ENGINE OPERATING SPECIFICATION

SERIES TURBINE DRIVE CYCLI

Rated Vacuum Thrust = 15,000 lb
Stowed Len gth x 60 in.

Engine Mixture Ratio

6.0 7.0
En^i rye

Vacuum Thrust, lb 15,000 15,000

Vacuum Specific Impwlse, sec. 475.4 471.0

Tot;-,l Flowrate,	 lb/sec 31.56 31.85

Mixture Ratio 6.0 7.0

Oxygen	 Flowrate, lb/se: 27.05 27.87

Hydrogen	 Flowrate, lb/sec 4.51 3.98

Thrust Chamber

Vacuum Thrust, lh 15,000 15,000

Vacuum Specific Im,nulse,	 sec 475.4 471.0

Chamber Pressure, psia 1;200 10:62

Nozzle Area Ratio 435 435

Mixture Ratio 6.0 7.0

Throat Diameter,	 in. 2.79 2.79

Chamber Diameter,	 in. 5.34 5.34

Chamber Length, in. 18.0 18.0

Chamber Contraction Ratio 3.66 3.66

Nozzle Exit Diameter, 	 in. 58.2 58.2

Percent Bell Nozzle 	 Length 81.8 81.8

Nozzle Le vjth, in. 84.4 84.4

Combustion Chamber Coolant	 Flowrate, lb/sec 3.834 3.383

Slotted Copper Chamber Area Ratio 10.6 10.6

Chamber Pressure Drop, psia  92 76

Coolant Inlet Temperate° •e,	 'R 90 90

Chamber Coolant Temperature Rise. 	 'R 411 431

Fixed Tube Bundle Nozzle Flowrate,	 lb./sec 0.677 0.597

Tube Bundle Nozzle Area Ratio 172 172

Tube Bundle Coolant pressure Drop, psia 10 8

Tube Bundle Coolant einper,atus,e Rise,	 "R 640 672
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TABLE XXIX (ccnt.? 	 Sheet 2 of 4

ENGINE MIXTURE RATIO ENGINE MIXTURE RATIO

6.0 7.0
Boost Pumos

LOX LH2 LOX LH2

Inlet Flow, GPM "	 456 175 401

Inlet Pressure, psis 16 18.5 16 18.5

Vapor Pressure, psis 15.2 18 15.2 18

Inlet Temperature, °R 167.2 37.8 162.: 37.8

NPSH, ft (not including TSH) 2 15 2 15

Discharge Pressure, Asia 57 50 57 50

Head Rise, ft 82.3 1026 82.3 1026

Speed, RPM 7400 29650 7400 29650

Suction Specific Speed,

(RPM;(GPM)l/2/ft3/4
25560 43080 25860 40400

Specific Speed,

(RPM)(GPM) 1/2/ft3/4 3540 3500 3580 3275

Efficiency, % 66 73 66 77

Boost Pump hydraulic Turbines,

Flog (GPM) 16.7 129 17.3 116

Efficiency, % 52 66 52 E6

Horsepower 6.1 10.% 6.3 9.6
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TABLE XXIX Wont.) 	 Sheet 3 of 4

Main Pumps

Inducer

Flow, GPM

Head Rise, ft

Efficiency,%

Horsepower

Inlet Pressure, psia

NPSH, ft

Suction Specific Speed,

(RPM)(GPM)l /2/ft3/4

Specific Speed,

(RPM)kGPM)
1/2ft/3/4

t- - al

Flow, GPM

Head Rise, ft

Efficiency,

Horsepower

Specific Speed,

(RPM)(GPM) 1/2
 
/ft 3/`}

i Stages 2 & 3

Flow, GPM

Head Rise, ft

Efficiency,

Horsepower

Specific Speed,

(RPM)(GPM) 1/2
 
/ft 3/4

ENGINE MIXTURE RATIO ENGINE MIXTURE RATIO
_.__.	

6.0	 _	 7.0

	

LOX	 LH2	 LOX	 LH2

	

194	 547	 199	 481

	

460	 5080	 450	 4645

	

75	 82	 75	 81

	

34	 64.2	 34	 49.4

	

48	 49	 48	 49

	

66	 997	 66	 997

	

20880	 11860	 21000	 11100

	

4870	 3500	 4980	 3500

223 572 229 503

2450 26870 2410 24640

71 71 71 70

219 386 221 317

1490 1025 1520 1024

	

478
	

421

	

23840
	

21940

	

71
	

70

	

286
	

236

	

1025
	

1022
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TABLE XXIX (cont.)
	

Sheet 4 of 4

ENGINE MIXTURE RATIO	 ENGINE MIXTURE RATIO

_	 6.0	 7.0

LOX	 I	 LH.,	 LOX	 I LH,
OveraI l

Head Rise, ft	 2910 79630 2860 73165

Efficiency, %	 61.5 63.3 61.5 62.3

Horsepower	 253 1030 255 838

Speed, RPM	 34720 90000 34470 89800

Main Pump Turbines

Inlet Pressure, psia	 1512 2344 1469 2176

Inlet Temperaturp, °R	 489 535 514.6 557

Flowrate lb/see	 4.22 4.22 3.71 3.71

Gas Properties

Cp, Specific Heat at Constant

Pressure, BTU/lb-°R	 I	 3.652 3.652 3.652 3.652

Y, Ratio of Specific Heats	 1.395 1.395 1.395 1.395

Shaft Horsepower	 253 1030 255 838

Pressure Ratio (Total to

Static)	 1.14 1.540 1.153 1.471

Static Exit Pressure, psia 	 1326 1522 1274 1479

Static Exit Temperature,R° 	 471.6 473.5 494.3 499.3

Efficiency, %	 66.7 76.8 65.7 75.8

Turbine Bypass Flowrate lb/sec 	 0.27 `	 0.27 0.24 0.24
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III, G, Task VII - Lngine Data Summary (cont.)

position is 60 inches. With the extendible nozzle deployed, the engine length

is 109.6 inches. The chamber pressure of 1200 psia was selected on the basis

of cycle optimization and trade-off studies which evaluated specific impulse

and weight changes with chamber pressure. Further optimization and tradeoffs

are planned in future work, and some changes in operating chamber pressure and

performance are anticipated.

The 02j11 expander cycle engine uses a series turbine

drive cycle which is shown on Figure 56. The engine uses hydraulically driven

boost pumps, with the flow tapped off the main pump stages. Fuel flows from

the pump discharge to the thrust chamber where 85% of the hydrogen flow is

used to cool the slotted copper chamber in a single pass from an area ratio

of 10.6:1 to the injector head .and. fifteen (15) percent of the hydrogen is

used to cool the tube bundle nozzle in two passes from an area ratio of 10.6:1

to the end of the fixed nozzle (i e 172:1) and return. The coolant flows are

merged, and 6% of the total engine hydrogen flow is used to bypass both

turbines to provide cycle power balance margin and thrust control. The

remaining hydrogen flow first, drives the fuel pump turbine and then drives the

oxidizer pump turbine. After driving the oxidizer pump turbine, a small

amount of heated hydrogen is ta pped off for hydrogen tank pressurization. The

remaining hydrogen flow is then injected into the combustion chamber.

At rated thrust operation, oxidizer flows from the main pump

discharge directly to the thrust chamber and is injected in a liquid state. A

small amount of oxidizer is tapped cuff and heated by the hydrogen turbine

bypass fluwrate in a heat exchanger to provide LOX tank pressurization.

The engine is also capable of operating in a tank head idle

mode and is adaptable to extended low-thrust operation at a thrust level of

1.5K 1b.
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III, G, Task VII - Engine Data Suminary (cont.)

The purpose of the tank head idle mode is to thermally

condition the engine without non-propulsive dumping of propellants. This is a

pressure-fed mode of operation at a thrust level of approximately 50 lb and a

vacuum specific impulse estimated to be 400 sec. During this mode of opera-

tion, the main fuel and oxygen valves (numbers 1 and 2 on the schematic) are

closed. All of the fuel bypasses the turbines through valve number 8 so that

the pumps are not rotating. The heat exchanger in the turbine bypass line

gasifies the oxygen which then flows through valve number 7 to the chamber.

Tank pressurization is not supplied during this operating mode, and valves 5

and 6 remain closed. The pressurization valves are opened as the engine is

brought up to steady-state, full-thrust operation.

The OTV point design engine is adaptable to operation at 10%

of rated thrust (i.e., 1.5K 1bF) with minor modifications. This low-thrust

operating point is a dedicated condition, and the engine is not required to

operate at both the 15K and 1.5K thrust levels on the same mission. To oper-

ate at low thrust, the oxidizer injection elements must be changed to one of

smaller size, and an orifice must be installed in the line downstream of the

chamber coolant jacket.

The engine pressure schedule at rated thrust operation is

shown on Table XXX for both the nominal and off-design mixture ratio condi-

tions.
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TABLE XXX

ADVANCED EXPANDER CYCLE ENGINE PRESSURE SCHEDULE

SERIES TURBINES DRIVE CYCLE

F R 15,000 lb

ENGINE MIXTURE RATIO ENGINE MIXTURE RATIO

6.0 7.0

LOX 2 LOX LK2

Pressure, psia(1)

Boost Pump Inlet 16 18.5 16 18.5

Boost Pump Discharge 56 50 56 50

Main Pump Inlet 48 49 48 49

Main Pump Discharge 1487 2531 1463 2328

AP Line 25 10 26 8

Main Shutoff Valve Inlet 1462 2521 1437 2320

AP Shutoff Valve 15 25 16 19

Shutoff Valve Outlet 1447 2496 1421 2301

AP Line 15 30 16 23

Coolant Jacket Inlet --- 2466 --- 2278

oP tor111
L er Coolant Jac lW06-- 92 --- I

Coolant Jacket Outlet --- 2374 --- 2202

oP Line --- 30 --- 26

Fuel Turbine Inlet --- 2344 --- 2176

Fuel Turbine Pressure Ratio
(Total/Static) --- 1.540 --- 1.471

Fuel Turbine Static E74it --- 1522 --- 1479

Fuel Turbine Total Exit --- 1560 --- 1516

AP Warm Gas Duct --- 48 --- 47

O.X	 Turbine Inlet --- 1512 --- 1469

OX	 Turbine Pressure Ratio

(Total/Static) --- 1.14 --- 1.153

OX	 Turbine Static Exit --- 1326 --- 1274

OX	 Turbine Total Exit --- 1360 --- 1307

AP Warm Gas Duct --- 34 --- 33

Injector Inlet 1434 1326 1405 1274

AP Injector 215 109 227 96

Injector Face 1217 1217 1178 1178

Chamber 1200 1200 1162 1162

(1) All pressures are total pressure except where noted.
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III, G, Task VII - Engine Data Summary (cont.)

2.	 Engine Performance

Engine system delivered specific impulse for design and

off-design operation is presented in Tables XXXI and XXXII, respectively.

Table XXXII also shows the various performance efficiencies associated with

design operation of the Advanced Expander Cycle Engine. These efficiencies

have been calculated by using simplified techniques and were verified by the

JANNAF rigorous performance prediction methodology (Ref. 10). In addition,

the experimental RL-10 and ASE performance data were analyzed and correlated

by using both the rigorous and simplified JANNAF performance methodologies.

The rigorous method used both the Two-Dimensional Kinetic (TDK) with enthalpy

addition and the BLIMP (Cebeci-Smith) boundary layer solution. The simplified

model used ODK (One-Dimensional Kinetic) at propellant tank enthalpy with

TBL-Chart/adiabatic wall conditions. While there were significant differences

between the IspTDK and the boundary layer perfori:lance losses (A IspBL)

between the two approaches, there was only 0.6 sec difference in the predicted

specific impulse between the simplified and the TDK/BLIMP (Cebeci-Smith)

results over a wide range of propellant mixture ratios, chamber pressures,

area ratios, and wall temperature to total temperature ratios. Also, either

approach predicted overall specific impulses which were within approximately

3.0% of the experimental value. A discussion of the performance and loss

calculations follows.

As discussed in Section III,A, a modified simplified JANNAF

performance precedure was used to calculate the performance of the engine at

all of its operating points.

a.	 One-Dimensional Equilibrium (ODE) Performance

The first step is to determine the ODE: performance at

various operating conditions. This is accomplished by inputting the reactant
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TABLE XXXI

ADVANCED EXPANDER CYCLE ENGINE BASELINE PERFORMANCE

I. Thrust (1bF) 15000.00

2. Chamber Pressure (psis) 1200.00

S. Mixture Ratio 6.00

4. Total	 Flowrate (lbm/sec) 31.56

5. LOX Flowrate (lbm/sec) 27.05

6. Fuel Flowrate (lbm/sec) 4.51

7. I sp ODE (seconds) 486.11

B. Nozzle Efficiency .9929

9. Energy Release Efficiency 1.0000

10. Kinetic Efficiency .997

11. Boundary Layer Loss (lb) 164.16

12.1 s Delivered (seconds) 	 475.4

Note: Based upon Modified Simplified JANNAF procedures using Tank

Propellant Conditions.
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TABLE XXXII

ADVANCED EXPANDER CYCLE ENGINE
PERFORMANCE AT DESIGN AND

OFF-DESIGN 0/F

RATED AND LOW-THRUST OPERATION

THRUST, LB ENGINE
MIXTURE
RATIO

THRUST
CHAMBER
PRESSURE,
PSIA

ENGINE
DELIVERED
VACUUM
SPECIFIC

FLOWRATES, LB/SEC

IMPULSE, Fuel OX
SEC.

15000 6.0 1200 475.4 4.51 27.05

15000 6.5 1180 474.9 4.21 27.37

15000 7.0 1162 471.0 3.98 27.87

1500 6.0 125 459.7 .466 2.80

1500 7.0 121 451,.' ,415 2.91

Note: Injector elements are modified for the low-thrust condition.
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III, G, Task VII - Engine Data Summary (cont.)

propellant enthalpies and specifying the operating conditions of Pc, 0/F, and

nozzle expansion ratio. Two computer programs are currently available to

determine ODE performance. They are described in References 25 and 26,

respectively. Reference 26 (TRAN 72) was utilized because TRAN 72 also

provides thermal transport properties which are used in the thermal analysis.

These performance data are installed as tables in the engine model.

b. Kinetic Loss

The kinetic loss (KL) consists of the difference between

the ODE and ODK Isp`s. The ODK Isp is calculated from Reference 25. Kinetic

loss is a function of chamber pressure and nozzle expansion ratio for given

engine thrust and engine mixture ratio. Kinetic loss progressively increases

at higher nozzle expansion ratios, resulting in somewhat less gain in IspODK

with a than predicted for IspODE. Kinetic loss diminishes at higher Pc and

more nearly approaches equilibrium performance. One-dimensional kinetic

specific impulse data are also installed as tables in the engine model.

c. Nozzle Divergence Efficiencies

The nozzle divergence performance loss is closely

approximated with the simplified technique, either by using the TDK-Ideal Gas

option in Reference 25 or from such previously correlated graphical solutions

as are available from Reference 27. Graphical techniques are sufficiently

accurate and were used in the engine performance evaluations.

d. Nozzle Boundary Layer Loss

The boundary layer loss (BLL) is adequately approximated

by using the TBL-Chart method described in Appendix B of CPIA No. 178 (Ref.
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III, G, Task VII - Engine Data Surrmnary (cont.)

27). This methodology has repeatedly proven its validity on engine

development programs at ALRC. The BLL is affected most importantly by the

operating chamber pressure and wall temperature, nozzle exit area rat'o and

contour, and combustion gas transport properties.

e. Injector Energy Release Efficiency (ERE)

The Energy Release Loss (ERL) accounts for

injectur-related perfo nnance inefficiencies due to incomplete propellant

vaporization and/or non-unifo nn gas-phase mixing. Performance analysis

conducted for the Phase A studies showed that a chamber length of

approximately 11 in. would be adequate to achieve an ERE goal of 99.5X•

Therefore an ERE closer to 100% can be expected with the 18 in. design chamber

length.

f. Enthalphy Pumping Effects

Neat loss (or addition) efficiency accounts for the

performance effect of heat that is either transferred to the combustion

chamoer/nozzle or injector upst, ,eam of the boundary layer attachment point or

added from "free" outside sources of energy. It also accounts for heat being

transferred from the boundary layer to the regenerative coolant and

subsequently being added back into the combustion chamber in the form of

higher propellant enthalpy. In regeneratively cooled engines, the gain in

overall specific impulse due to higher propellant enthalpy resulting from heat

addition to the regenerative coolant slightly exceeds the thermal QLL

contribution due to heat extraction from the boundary layer. This leaves a

small (< 1% Isp) net gain for a regeneratively cooled engine as opposed to an

engine with an adiabatic wall.. This increase is known as the "enthalpy

pumping effect."
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III, G, Task 1iII - Engine Data Swanary (cont.)

Enthalpy pumping is more significant in low Pc (low e)

engines where the gas temperature increase due to higher propellant enthalpy

has a noticeable effect upon combustion gas sonic velocity, resulting in

higher exhaust velocity in regenerat i vely cooled engines than in an adiabatic

system. For very large pressure ratios (high expansion ratio), this gain is

diminished berause *he ►,egenerative-to-adiabatic exhaust velocity ratio

approaches unity. Sample calculat'ons show that the enthalpy pumping gain in

performance is reduced from +0.14% Isp to +0.03% Isp as nozzle area ratio is

increased from ^, r 10 to r- 1000. When a large amount of heat is

transfer.ed, such that the combustion gas temperature is significantly changed

(>5%), then a secondary impact resulting in higher kinetic losses due to

increased thermal dissociation becomes important. This diminishes the

enthalpy pumping gain even further.

Consequently, performance analysis of a regeneratively

cooled Engine is simplified by calculating the ODE and ODK Isp for propellants

at tank enthalpy conditions (thus neglecting the heat transfer to the

propellant in the regenerative circuit) and the boundary layer loss for an

adiabatic wall (i.e., zero heat transfer) condition. In this manner, the same

energy balance as in the regeneratively cooled case is achieved, but with the

difference that the need to calculate the heat transfer and its corresponding

effect on the boundary layer loss and ODE/ODK Isp is eliminated.

To further check this assertion, the experimental aL-10

and ASE performance data were analyzed and correlated by using both the

rigorous and simplified JANNAF performance methodologies. The rigorous method

used both the Two-Dimensional Kinetic (l°DK) with enthalpy addition and the

BLIMP (Cebeci-Smith) boundary layer solution. The simplified model used ODK

at propellant tank enthalpy with TBL-Chart/adiabatic wall conditions.
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III, G, Task VII - Engine Data Summary (cont.)

Table XXXIII presents a comparison of the simplified

model results with those of both the standard rigorous procedure and the

experimental data for an Advanced Space Engine (ASE;) configuration as reported

in References 25 and 29. It should be noted that while there are significant

differences between the IspTDK and the boundary layer performance losses

(AlspgL) between the two approaches there is only a 0.6 sec difference in

the predicted specific impulse, with this difference probably being the result

of a small performance loss due to heat transfer to the uncooled nozzle skirt

(c - 175 to 400) which was included in the standard procedure but not in the

tank/adiabatic procedure. Also, either procedure is within approximately 0.3%

of the experimental value.

The calibrated ALRC simplified performance model using

the shortcut tank/adiabatic method was also used to calculate the performance

of both the ASE and RL-10 Derivative II baseline engine as a final check of

its prediction capabilities. Ti,e results are shown in Table XXXIV. Also

included in Table XXXIV is a similar prediction of the attainable specific

impulse for the ALRC ON Point Design Engine whose design characteristics in

terms of propellants, thrust chamber pressure, and mixture ratio are bracketed

by these existing engines. As shown, the simplified model provided calculated

-,pecific impulse values within 0.3% of the reported experimental values for

both H2/02 engine systems. The same model predicts an attainable specific

impulse of approximately 477 sec for the ALRC OTV Point Design Engine at

nominal operating conditions and an area ratio of 473:1.

— i.
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TABLE XXXIII

COMPARISON OF THE STANDARD AND "SHORTCUT" PROCEDURE FOR
CALCULATING THE PERFORMANCE OF THE REGENERATiVELY COOLED ASE

Modeling Approach

Conf;guration Area Ratio

Chamber Pressure (psis)

Mixture Ratio (O/F)

Equvalent Tank Enthalpy (Cal/Mode)

02

H2

Turbulent Model

E Q BLIMP (Btu/sec)

oh to H2 (Cal/Mole)

Ho for H2 to TDK (Cal/Mole)

t^	

r^
.L tj TDK (.^iev)

AFBL 
BLIMP (1bF)

eIspBL (sec)

IspPredicted (sec)

IspExperimental (sec)

EIspPred - IsPExp1 (sec)

Standard	 Tank/Adiabatic

400	 400

2287	 2287

6.378	 6.378

-2948 ,.2948

-197/ -1971

Cebeci-Smith Ceheci-Smith

7580 0

1325 0

-652.3 -1977

488.5 481.4

574.2 202.5

12.1 4.4

476.4 477.0

477.9 477.9

-1.5 -0.9
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TABLE XXXIV

COMPARISON OF SIMPLIFIED MODEL PREDICTIONS TO
EPERIMENIAL SPECIFIC IMPULSE FOR H 2/02 ENGINE SYSTEMS

Engine System ASE RL-10 OTV

Thrust Level	 (lbF) 22K 15K 15K

Chamber Pressure (psia) 2287 400 1200

Mixture Ratio (0/F) 6.378 6.4 6.0

Area Ratio (A E/AT ) 405 263 473

Chamber Enthalpy (Btu/lbm) -382.7 -411.5 -411.5

IspODE
485.2 479.3 487.0

nK
.9975 .990 .9955

nTD
.9944 .988 .9946

nERE
1.000 .9941* 1.000

nHL 1.000 1.000 1.000

AFBL 215 262 165

1"Predicted (sec)
476.8 457.8 476.9

IspExperimental	
(sec) 477.9

r
459.2* TBD

*Reported in "Design Study of R1.-10 Derivatives," Final Report P&W FR-6011,
Contract NAS 8-28909, 15 December 1973.
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III, G, Task VII - Lng ne Data Summary (cont.)

3. Engine Life

The engine has been designed for 1200 thermal cycles and 10

hours of accumulated run time. Therefore, all of the component designs

(illustrated in Section III,C) are based on the minimum service life require-

ment (300 cycles or 10 hours) with a safety factor of 4 applied to lower-bound

data. The structural analyses conducted in support of the life prediction

shows a predicted chamber life of 350 cycles (see Section 111,8,3).

This service life is not predicted to be reduced when the

engine is operated at mixture ratios between 6.0 and7.0. Similarly, low-thrust

operation (i.e., 1500 1bF) at mixture ratios between 6.0 and 7.0 is not

predicted to reduce this service life and may in fact, be better. Cooling the

chamber and tube bundle nozzle was an area of concern, especially for low-

thrust operation of the engine, but thermal analysis has shown that both of

these components can be designed to meet the service life requirement at both

thrust levels without compromising the basic engine.

4. Lngine System and Com p onent Weights

The Advanced °xpander Cycle Engine weight breakdown is shown

in Table XXXV. This table shows both "estimated" and "calculated" component

weights. Lstimated weights are based on known component weights from existing

engines and estimated component weights from "study" engines, with appropriate

weight scaling relationships applied to both sets of data. Calculated com-

ponent weights are based upon the c miponent weight as derived from the com-

ponent layout preliminary design drawing. Thus, calculated component weights

are considered more realistic. A calculated weight for the engine controller

is unavailable because a preliminary design has not been completed. In this

case, the estimated engine controller weight was used in determining the total

engine system weight.
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TABLE XXXV

ADVANCED EXPANDER CYCLE ENGINE WEIGHT DATA

INITIAL
ESTIMATED CURRENT WEIGHT

COMPONENT WEIGHT, LB WEIGHT, LB BASIS

1. Gimbal 12.5 3.3 Calculated

2. Injector 16.2 30.6 Calculated

3. Chamber 48.1 47.3 Calculated

4. Copper Nozzle 20.5 27.0 Calculated

5. Tube Bundle Nozzle 46.7 38.4 Calculated

6. Radiation Nozzle 62.1 80.0 Calculated

7. Nozzle Deployment System 47.1 72.0 Calculated

8. Valves and Actuators 59.1 72.7 Calculated

9. LOX Boost Pump 8.8 5.6 Calculated

10. LH2 Boost Pump 3.2 8.5 Calculated

11. LOX TPA (HI SPD) 23.7 26.9 Calculated

12. L11 2 TPA (HI SPEED) 33.4 26.3 Calculated

13. Misc.	 Valves & Pneumatic Pack 5.2 12.6 Estimated

14. Lines 28.6 37.0 Estimated

15. Ignition System 11.0 9.2 Calculated

16. Engine Controller 35.0 35.0 Estimated

17. Miscellaneous 36.1 37.0(1) Estimated

18. Heat Exchanger 4.8 5.0 Estimated

Total Engine Weight	 502.1	 574.4

(1) Miscellaneous includes: Electrical harness, 12.5 lbs; service lines,
6.5 lbs; TPA protective bulkhead, 0.4 lbs; attachment hardware, 15.0 lbs;
and instrumentation, 2.6 lbs.
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III, G, Task VII - Engine Data Summary (cont.)

The present component designs will be reviewed and improved

in subsequent studies. Other components, such as the engine controller, still

need preliminary design definition. Both of these activities will result in

refined component and total engine system weights as the expander 4ycle engine

design matures.

a.	 Envelope Data

The engine envelope data are listed in Table XXXVI.

The gimbal and injector lengths are taken from the component

drawings presented in Section III,C. The chamber length of 18 in. is an opti-

mized value based on energy release efficiency, turbine inlet temperature,

pressure drop, weight, and delivered engine performance. Finally, nozzle

length (and exit diameter) result from the required engine stowed length (60

in.).

The nozzle area ratio is the highest value possible within

the constraints of engine stowed length and the selected chamber pressure.

The copper nozzle and tube bundle area ratios are primarily determined by

heat transfer considerations. The primary thermal consideration is to limit

the maximum temperatures and temperature gradients experienced by these two

components to meet the design life.

The percent bell nozzle is the result of an optimization

process in which specific impulse and nozzle weight have been traded off to

maximize the performance and minimize the weight within the fixed available

envelope of 60 in. with the extendible nozzle in the stowed position.
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TABLE XXXVI

ADVANCED EXPANDER CYCLE ENGINE ENVELOPE DATA

1. Gimbal	 Length, in. 2.4

2. Injector Length, in. 4.8

3. Chamber Length, in. 18.0

4. Total Nozzle Length, in. 84.4

5. Radiation-Cooled Nozzle Length, in. 49.6

6. Engine Stowed Length, in. 60.0

7. Engine Deployed Length, in. 109.6

8. Exit Diameter, in. 58.2

9. Throat Radius, in. 1.395

10. Area Ratio 434.6

11. Cu. Area Ratio 10.6

12. Tube Bundle Area Ratio 172.

13. Percent Bell 81.8

14. Nozzle Length/Throat Radius 60.6

15, Percent Rao 108.2
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III, Task Discussions (cont.)

H.	 TASK VIII - TECHNOLOGY REQUIREMENTS

The objective of this task was to identify any new technology

required to perform the detailed design, construction, and testing of the

Advanced Expander Cycle Engine.

A list of critical technology requirements for this engine was

prepared as a result of this study, the Phase A Engine Study, and ALRC

in-house efforts. We first recommended this point design study and a thrust

chamber technology program in October 1973. Both of these recommendations

have been pursued by NASA. We also submitted an Advanced Expander Cycle

Engine Critical Component Technology and Experimental Engine Plan to NASA/MSFC

in February 1980 (Ref. 7). The component technology information is presented

in this section.

The three desit drivers which the technology activities should

address are as follows:

°	 Engine Turbopump Drive Power (P)

°	 Development and Operational Risk Reduction (R)

°	 Engine Performance, Impulse (I)

Power technology activities (P) are aimed at assuring or

increasing the power available to the turbopump. The results of these pro-

grams are used to verify that the engine will operate at the selected design

point chamber pressure, has the capability of operating at a higher pressure

and performance level, or can accept greater component performance margins or

tolerances. As a result, overall program economies are achieved by guar-

anteeing that the engine operating design point can be reached or exceeded

(growth). This saves development dollars because large variations in costs

result from parallel resolution of small instant problems.
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III, H, Task VIII - Technology Requirements (cont.)

Risk reduction technologies (R) allow the solution of design defi-

ciencies at the technology level prior to committing tr a design specification

and entering the engine development program. Making decisions at this point

provides for design iterations and decisions to be made at the low expenditure

level of the overall program. Risk reduction solutions provide for higher

confidence in the engine operation, which is consistent with a man-rating

design philosophy.

Performance technology programs (I) are geared to guarantee the

performance level of the engine prior to a commitment to the specification.

These programs provide a high confidence in the performance position so that

payloads can be firmed up at reasonable levels prior to DDT&E. The level of

performance growth is also determined by these programs.

Twentv-four technology programs were identified; these are sum-

marized on Figure 57. These programs support the following key decision

points and/or engine design and development logic which are also displayed on

the figure.

(1) Engine Power Balance

(t) Throttling Power Balance

(3) Cycle Optimization

(4) Perfonnance Optimization

(5) Nozzle Extension Decision

(6) Experimental Engine Design Decision

(7) Experimental Engine Fabrication and Test

The twenty-four suggested programs, along with a priority desig-

nation, are also listed in Table XXXVII. The programs designated as priority

"A" are those which have a major impact on the expander cycle engine design.

As a minimum, the critical technology activity should address these items.

. 1
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TABLE XXXVII

COMPONENT TECHNOLOGY PROGRAM PRIORITIES

..	 1

PROGRAM
	

CATEGORY
	

PRIORITY

1.	 Controlled Compatibility P A
Injector Elements

2.	 High Heat Load Regenerative P A
Chamber

3.	 Oxidizer Turbopump R A

Bipropellant Seal

4.	 Low NPSH Boost Pumps R A

5.	 Axial Thrust Balancer R A

6^	 Fluid Control Valve Sealing R A

7.	 Turbopump Bearing Technology R A

8.	 Turbopump Seal Technology R A

9.	 Igniter Development R B

10.	 Regenerator Development P B

11.	 Fracture Toughness Testing of R B
Structural Alloys in Gaseous
Hydrogen

12.	 Predictive Analysis of R B
Low-Cycle Fatigue Life for
OTV Alloys of Construction

13.	 High Area Ratio Nozzle Performance I B

14.	 Extendible Nozzle Systems I B

15.	 Carbon-Carbon Nozzle Extensions I

16.	 Ring Gate Valve Turbopump P C
Throttling

17.	 Low-Thrust Injector Kit P C

18.	 Start Transient Heat Transfer R C
Coefficient Investigation

19.	 Sensors and Harnessing R C

20.	 Hydrogen Embrittlement Study of R C

Columbium Alloys in OTV Radiation-
Cooled Nozzle Environment

21.	 High-Speed Dynamic Balancing R C

22.	 Combustior Chamber R C
Manufacturing Processes

23.	 Tubular Nozzle Manufacturing R C
Process

24.	 Radiation-Cooled Nozzle R C
Welding
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III, H, Task VIII - Technology Requirements (cont.)

We recommended grouping programs 1, 2, and 9 into a single )rogram. NASA/MSFC

is currently evaluating proposals on an kxpander Cycle Thru c ^ Chamber Verifi-

cation Program which has objectives similar tc those of our suggested tech-

nologies (i.e., verify experimentally the analytically determined design and

operating characteristics of an expander cycle thrust chamber). Program 10

could also be an added option to complete the evaluation of the expander cycle

engine power balance.

Programs designated as priority "B" are those which have a

definite bearing on the cost effectiveness of the OTV engine development

program.

Priority "C" programs represent either expansion of the applica-

tion of the expander cycle engine or activities which directly influence the

production aspects of the engine program.

The various recommended component technology programs are dis-

cussed in the following paragraphs. The programs are grouped index the three

major technology areas. The program numbers refer back to the figure and

table listings.

1.	 Engine Turbopump Drive Power Technologies

a.	 Controlled Compatibility Injector Elements (Program 1)

(1) Objectives

The objectives of this program are to develop and

verify an injector that would maximize the combustion chamber hydrogen coolant

outlet temperature.
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III, H, Task VIII - Technology Requirements (cont.)

(2) Justification

Expander cycle engines depend on high heat input to

combustion chamber walls to achieve system power balance. Injector elements

which can be designed to produce a high but predictable and controllable heat

flux will allow engine optimization in terms of total heat input, chamber

life, and coolant pressure drop.

b.	 High Heat Load Regenerative Chamber (Program 2)

(1) Objective

The objective of this program is to develop a

regeneratively cooled combustion chamber that maximized the hydrogen coolant

outlet temperature.

(2) Justification

High total flux, low AP, high AT, and good cycle

life are essential for the expander cycle regenerative chamber. A demonstra-

tion program which considers fabricability along with the operational charac-

teristics is required to establish a firm technology base for this critical

component. This program will provide confidence in the thermal predictions

and provide early data for the combustion chamber cycle life predictions.

C.	 Regenerator Development (Program 10)

(1) Objectives

The objectives of this program are to optimize,

develop, and verify a regenerator for use in the expander cycle engine.
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III, H, Task VIII - Technology Requirements (cont.)

(2) Justification

Increasing the combustion chamber coolant inlet

temperature can increase the coolant outlet (turbine inlet) temperature with a

small penalty in system pressure drops. To accomplish this, high-efficiency,

lightweight, low ©P regenerators are beneficial. An analytic and experimental

comparison of tube-type and flat plate (platelet) concepts would identify the

best approach to this component and also verify the performance capability and

weight of this unit.

d.	 Ring-Gate Valve Turbopump Throttling (Program 16)

(1) Objectives

The objectives of this progra:n are to design and

demonstrate a throttling valve that is internal to the turbopump assembly.

(2) Justification

Studies which have been conducted for future engine

systems have shown that deep thrust throttling of the main propulsion to

achieve orbit adjustment and space rendezvous maneuvers can eliminate the need

for auxiliary thrusters and the weight associated with these thrusters. In

addition, operation of an ON engine at low thrust may permit a single engine

to perform both the MOTV and COW missions.

The incorporation of a throttling valve, internal

to the turbopump assembly and located at the discharge of the impeller, pro-

vides a throttling capability throughout the entire engine operating range

without pump hydraulic instability. A pump with ring-gate valve concept has

the capability of achieving stable HQ pump performance characteristics over a
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III, H, Task VIII - Technology Requirements (cont.)

wide thrcttlin^ range with either a radial vaned impeller or a backswept

vaned impeller while maintaining high overall efficiency. Location of this

throttling valve within the turbopump assembly offers an advantage in weight

savings and eliminates an extra system valve which would be required if a

portion of the discharge flow were recirculated to the pump inlet to maintain

pump operation outside of the stall region during transient conditions.

e.	 Low-Thrust Injector Kit (Program 17)

(1) Objective

Develop and demonstrate combustor throttling capa-

bility and low-thrust "kit" capability.

(2) Justification

One possible means of reducing future liquid pro-

pulsion engine development costs is through utilization of the commonality of

certain design components between the Manned (MOTV) and Cargo (COTV) Orbit

Transfer Vehicle engines. Throttling of a MOTV engine designed for a thrust

of 15K lb to the 1K to 2K thrust level required fur COTV applications is

desirable. One of the components which limits the low-thrust capability is

the injector. A program to identify the injector modifications and to verify

the stability and performance of the injector at low thrust is required.

251



III, H, Task VIII - Technology Requirements (cont.)

2.	 Development And Operational Risk Reduction Technologies

a.	 Oxidizer Turbopump 3ipropellant Seal (Program 3)

(1) Objectives

The major objectives of this program are to iden-

tify and experimentally evaluate candidate approacries to the seal between the

warm hydrogen turbine drive gas and the liquid oxygen bearing coolant for the

L02 pump.

(2) Justification

The warm hydrogen turbine drive gas for the oxi-

dizer pump turbine creates a bipropellant seal probieni when the oxidizer pump

bearings are cooled with oxygen and the turbine is on the same shaft as the.

pump (i.e., when there is no gearbox). This is the preferred configuration

fur a long-life, lightweight, minimum-maintenance reusable turbopump. The

purpose of this activity is to 4ddress this obvious propellant incompatibility

problem.

(3) Discussion

One approach to this problem is to develop a burn-

off seal to replace the purge seal. The burn-off seal concept allows leakages

from pump and turbine to mix. It is particularly attractive for the LOX pump

of the ON engine because the temperature of the hydrogen in the turbine is

relatively low and no spontaneous reaction of the resulting potentially explo-

sive 02-H2 mixture in the seal area of the turbopump is to be expected.

The mixture will not burn or explode without being ignited.
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III, H, Task VIII - Technology Requirements (cont.)

it seems feasible to transport the mixture col-

lected in the seal cavity by means of a jet pump (eductor) to a catalyst bed

where oxygen and hydv-ogen recombine to water (steam;. By keeping the pressure

in the interseal cavity low, the quantity and, therefore, the energy content

of the mixture present in the turbopump that might be liberated in case of an

accidental ignition (e.g., by metallic rub) is greatly reduced.

b.	 Low NPSH Boost Pumps (Program 4)

(1) Objective

The objectives of this program are to demonstrate

the feasibility of both the fuel and oxidizer boost pumps and to provide the

necessary cool-down and start transient operation as well full power NPSH for

the main 'Tuel and oxygen TPA's.

(L) Justification

Because of the low tank head associated with the

OTV, the expander cycle engine start transient presents a potential technical

risk area. It is expected to be slow and thus may be unpredictable. This

program is required to establish minimum NPSH and chill-down requirements for

these components. By demonstrating this capability early, the risks asso-

ciated with the engine start transients in the engine demonstration program

will be greatly reduced.

(3) Discussion

The program should also have an initial phase in which

a detailed evaluation of various boost pump candidates for further engine opti-

mization is conducted. If the OTV engine need date is such that, advanced con-
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III, H, Task VIII - Technology Requirements (cont.)

cepts can be considered, then concepts such as a fluid coupling, torque con-

verter, or friction drive should be evaluated. These systems have a higher

efficiency potential than the baseline design but are as yet unproven.

Co	 Axial Thrust Balancer (Program 5)

(1) Objectives

The major objectives of this program are to design

and demonstrate a unique axial thrust balancer that is self-compensating.

(2) Jusfification

One of the components which limits the design of

high-speed, high-pressure turbopumps is the axial thrust balancer. Present

axial thrust balancers are limited in capacity and stability and require a

large flowrate of high-pressure fluid.

Large forces are inherent in high-pressure turbo-

pumps because of the high unit load fir posed on the various rotating surfaces.

Theoretically, these forces can be balanced by opposing pressurized surfaces

so that the net rotor load is zero. In actual practice, asymmetry, tolerances,

and off-design operation cause variations in the radial pressure gradients as

well as differences in pressure level, with the result that the net axial

force will vary over the operating range and from one assembly to another.

Oven though the percentage change may be small, the high pressure levels will

create relatively large force variations which, in turn, require a thrust

absorbing device outside the capability of mechanical bearings.
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III, ti, Task VIII - Technology Requirements (Cont.)

The life and reliability of h , speed, high-

head-rise turbopumps can be improved by using an articulateu thrust balancer.

d.	 fluid Control Valve Sealing (Program 6)

(1) Objectives

The objectives of this program are to select,

design, and experimentally evaluate valve seals for operation in the OTV

engine cryogenic environments.

(2) Justification

Most cryogenic engine valve experience has been

with applications that did not require very low valve seal leak rates. Typi-

cal leak criteria were 10 scc/sec or 10 scc/sec/inch of seal. With the manned

application and cargo bay location for the MON , leak rates in the range of 10

to several hundred scc /hr may be required. Another area of concern is that an

effective low-pressure cryogenic seal may not be effective at high pressure

and vice versa. A typical solution to many of the sealing problems is to use

metal barrier seals such as bellows. however, for high-pressure, high cycle-

life applications, bellows also have disadvantages with regard to size,

weight, cost, maintainability, and design flexibility.
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e.	 Turbopump Rearing Technology (Program 1)

(1) Objectives

The objectives of this program are to establish

propellant lubricated rolling contact bearing life/load characteristics and to

evaluate the use of hydrostatic bearings in large high-speed, high-pressure

turbomachinery.

(2) Justification

The design and life of high-speed, high-pressure

turbopumps is limited by the conventional rolling contact bearings. The data

base in the anticipated operating environments for these bearings is small.

Life;1oad char=acteristics of these rolling contact bearings should be estab-

lished to reduce development risk.

Another design approach is the use of unconven-

tional hydrostatic bearings. The hydrostatic journal bearing presents a solu-

tion to the design deficiencies of the rolling element bearings. Hydrostatic

fluid film bearings supplied from pump discharge pressure can provide very

large radial load capacity consistent with design criteria for axial thrust

balancers. By design, the radial stiffness would be very high and allow

t 1 irbopump operation below critical speed ranges. Since these hydrostatic

bearings are not speed- or diameter-limited ([l N), they would allow design

fle,J bility for stiffer shafts, higher speed, and inboard bearing locations,

if desired. Higher speeds and shorter turbopumps result in ligrter weights.

A design data base for these bearings shoulc; be established.
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f.	 Turbopump Seal Technology (Program 8)

(1) Objectives

The objectives of this program are to establish

turbopump seal wear and life data.

(2) Justification

Turbopump sealing is a basic design problem in all

advanced engines. The data base for the life and load capability for TPA

seals required in the OTV engine is very small and needs to be expanded to

reduce the development risk and improve the life of these components.

Another design approach is the use of unconven-

tional floating hydrostatic ring journal seals for application as interstage

shaft seals and impeller wear ring seals. These seals can provide a consider-

able reduction in leakage flowrate and, due to their floating design, impose

a low radial load on the rotating assembly.

g.	 Igniter Development (Program 9)

(1) Objective

The objective of this program is to conduct vacuum

i gnition tests to determine igniter tank head start and high altitude ignition

restart capability.
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(2) Justification

The life capability of the ceramic coating on the

igniter spark plug has been an area of continual concern. In addition, the

ignition mixture ratio range needs to be defined for an ignition system having

the OTV pressure/diameter requirements.

h.	 Fracture Toughness Testing of Structural Alloys in
Gaseous Hydrogen (Program 7)

(1) Objective

To obtain (A K O ) threshold and low AK cycle crack

growth data for various structural alloys in gaseous hydrogen.

(2) Justification

An extensive literature survey of hydrogen

embrittlement references was unable to uncover any cycliL crack growth

threshold findings for rocket engine applicable structural alloys in gaseous

hydrogen. One reference reported an increase in crack growth rates of Inconel

718 below the steady stress crack growth threshold (KTt1) in hydrogen;

however, the confirming data was not provided. Therefore, this critical

design property must be established for use in high technology engines fueled

by hydrogen, such as the OTV, COTV, and others.

Nortnally, cyclic crack growth threshold, AK 03,

testing is very difficult, expensive, and time-comsuming, and testing in a

high-pressure hydrogen environment further accentuates these difficulties.

However, Aerojet has been using a new, simplified constant AK test tech-

nique through which this data can be rapidly and inexpensively obtained.
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'This new technique, which obtains one crack growth rate for a selected AK

level, does not depend on direct crack length measurements requiring a complex

test apparatus. This allows the use of a simple three-point loading fatigue

machine connected to a load cell, which has already been used for hydrogen

environment fatigue testing.

By utilizing this new technique, the proposed test

program would conveniently obtain AKo and low AK crack growth rate data for

several structural alloys such as Inconel 718, A-286, EFNi, T15A1 2.5Sn, and

Ti6Al4V in a high-pressure hydrogen environment. The A-286 and titanium

alloys are generally judged to be free of hydrogen embrittlement below room

temperature; however, this test program is designed to reveal any subtle

effects of hydrogen on these alloys which could affect long-life data pre-

dictions.

i.	 Predictive Analysis of Low Cycle Fatigue Life for
ON Alloys of Construction (Program 12)

(1) Objective

To verify the applicability of the ductility-

normalized strain-range partitioning low-cycle fatigue predictive technique to

columbium and copper components.

(2) Justification

Existing cycle life prediction techniques and data

needs to be updated if confidence in being able to meet the OTV engine life

goals is to be established. To accomplish this, the program discussed in the

following paragraphs should be conducted.
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The partition strain LCF life curves (Ac pp,

Aepc, Aecc vs. cycle life) for FS-85 Cb and Zr-Cu will be estimated from

creep ductility and plastic ductility data utilizing the ductility normalized

strain range partitioning (DN-SRP) technique proposed by Manson, et al.

These curves will also be determined experimentally

for comparison with the estimated curves. Using the DN-SRP technique to

determine if better predictive accuracy is possible, the new ductility data

obtained in these tests will then be used to reestimate the curves.

After establishing the partitioned LCF design

curves, several complex thermal stress cycle hysteresis loops will be gen-

erated which will represent possible life cycles for radiation-cooled nozzles

and regeneratively cooled combustion chambers. In addition, the hysteresis

loop associated with the thermal stress cycle used in obtaining previous LCF

data on FS-85 Cb will also be generated.

These hysteresis loops will be partitioned into

their component strains, and LCF lives will be predicted on the basis of the

established LCF design curves. Comparison of the predicted l ife of FS-85

undergoing the previous test program thermal cycle with the actual lives of

the specimens tested in that program will give an indication of the total

accuracy of the SRP technique. This, in turn, can be related to confidence in

LCF lives based on other thermal stress cycles which would then be the basis

of LCF design allowable curves.
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j.

	

	 Start Transient Heat Transfer Coefficient Investigation
(Program 18)

(1) Objectives

To conduct literature searches and testing to eval-

uate heat transfer characteristics in the critical pressure and temperature

and two-phase flow regions.

(2) Justification

Heat transfer correlations for both the fuel and

oxidizer in the critical pressure and temperature region are not well defined

in the literature. Existing oxygen correlations are presented for tempera-

tures and pressures in excess of 180°R and 730 psia. However, during the OTV

engine start transient oxygen temperatures will be as low as 165 0R and well

into the lower pressure two-phase region. Heat transfer correlations

,uggested in the literature for two-phase flow are not supported with test

results.

k.	 Sensors and Harnessing (Program 19)

(1) Objectives

The objectives of this program are to identify

sensor and harness requirements and to select candidates for test evaluation.

(2) Justification

The MOTV engine, with several closed-loop controls,

sensors, EMI shielding, and redundancy and maintainability requirements,
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represents a significant change from most prior engine experience. The

of more commonly used sensors, electrical interconnects, and harness bun

may not be amenable to packaging within the constraints of the MOTV appl

tion. Also, pressure sensors (both stabilized and gradients) are sub

to inaccuracy as a function of temperature.

1.	 Hydrogen Embrittlement Study of Columbium Alloys in OTV
Radiation-Cooled Nozzle Environment (Program 20)

(1) Objective

To determine the susceptibility of columbium

alloys to hydrogen embrittlement in the OTV radiation-cooled nozzle

environment.

(2) Justification

Previous investigations of hydrogen embrittlement

of uncoated columbium alloys have indicated that, in pure hydrogen, embrittle-

ment occurs under conditions of rapid heating, exposure at 3000°F, and rapid

cooling. However, when tested in an inert gas or vacuum, the same exposure

conditions do not result in embrittlement of columbium at temperatures ab-), 3e

1500°F. This possibly may be due to the presence of a protective oxide layer

during heating and to the low solubility of hydrogen in columbium at tempera-

tures above 1500°F. The latter exposure closely approximates the thermal

cycle of a radiation-cooled nozzle. Considering the less severe exposure of

the OTV nozzle (i.e., low partial pressure hydrogen coated columbium, and the

satisfactory performance of radiation-cooled nozzles of storable engines with

hydrogen potentizls for shorter time and cycles), it is anticipated that the

proposed OTV nozzle will perform satisfactorily. However, to definitely

establish the adequacy of coated columbium for the longer OTV service life
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and cycles, it is proposed that uncoated and R5112E-coated FS-85 and C-103

columbium alloys be exposed to multiple cycles of rapid heating holding at

elevated temperature to simulate OTV times and temperatures, and cooling in

vacuum or inert gas.

m.	 High-Speed Dynamic Balancing (Program 21)

(1) Objectives

The objectives of this program are to research and

evaluate dynamic balancing capabilities and requirements for the OTV engine

turbomachinery.

(2) Justification

High-speed balancing of turbomachinery operating at

speeds as high as 100,000 RPM is required for the ON engine. Accurate

balancing is required to avoid problems during the engine development phase,

such as, for example, the subsynchronous whirl encountered on the SSME

program.

n.	 Combustion Chamber Manufacturing Processes
(Program 22)

(1) Objectives

The objectives of this program are to establish

manufacturing processes, procedures, and techniques involved in fabricating a

very small zirconium copper slotted chamber with an electroformed nickel

closeout.
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(2) Justification

°	 Contour and Slot Machining

Although AUG has extensive experience in

machining slotted chambers, most of this experience has been in CRFS alloys.

Development experience is required with the change of materials from CRFS to

zirconium copper. Simple slotting experiments should be performed to

determine cutter speeds, feeds, tool pressure, and resultant distortion to

narrow lands, tolerances, etc.

°	 El ectrofoniii ng

The electrofonii process is used to form a

jacket around the slotted combustion chamber by electro-depositing a thin

layer of copper followed by a heavier layer of nickel. This process has been

successfully demonstrated on combustion chambers for the OMS engines and

several other technology programs. Problems, have been experienced in

adhesion, obtaining strength requirements, and porosity. If property

requirements are not achieved, it is possible to remove the electroformed

jacket by chemical stripping and have the jacket redeposited; however, this

causes a time loss which adds to costs and puts schedules in jeopardy.

Further development is required to review the problems and causes and to

refine process parameters to assure repeatability.

°	 Welding to Elec -aformed Materials

It is advantageous to weld brackets, clips,

manifolds, etc., to the electroformed jacket. In the past, there has been a

difference between the electroformed materials supplied by two vendors,

inasmuch as one type has been weldable while the other has been sensitive to

264



III, 11, Task VIII - Technology Requirements (cont.)

weld cracking. Further development is required to establish parameters for

weldable materials.

o.	 Tubular Nozzle Manufacturing Process (Program 23)

(1) Objectives

°	 To braze sample tube bundle sections under

vacuum and vacuum partial pressure conditions

using various material candidates.

°	 Inspect brazed parts for braze alloy wetabil-

ity, flowability, diffusion, and under-

cutting.

°	 Establish heat profiles and atmospheric condi-

tions.

(2) Justification

ALRC has been fabricating tubular chambers for

years. These chambers have been brazed in a retort furnace using a hydrogen

atmosphere. Over the years, the cost of rare gases for atmosphere use and the

cost of maintaining this type of furnace have risen to where the process has

ceased to be economical. In April of 1980, ALRC has installed a vacuum,

partial pressure furnace to replace the hydrogen retort furnace. This furnace

will have the flexibility of using vacuum or a combination of vacuum and

parital pressure gases for atmosphere use, which has a major impact on

reducing operating costs. Candidate materials for the OTV tubular chamber

include A-286, Armco Nitronic 40, and CRES 347. For successful brazing, the

atmosphere (vacuum, or vacuum partial pressure) must be capable of reducing

metal oxides present on the surface of the base metal. These oxides vary with

the different base materials.
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p.	 Radiation-Cooled Nozzle Welding (Progran; 24)

(1) Objectives

Develop weld-joint configurations and establish

weld procedu res for both TIG and EV processes for both FS-85 and C-103

columbium alloys.

(2) Justification

Primary candidate materials are fS-85 and C-103

columbium alloys. both of these materials have been used in the past to

fabricate similar nozzles. Most fabrication problems have been related to

welding. The FS-85 alloy appears to be moro susceptible to weld cracking.

However, when heated, both alloys are readily contaminated if proper

atmospheres are not maintained.

3.	 Engine Performance Technologies

a.	 High Area Ratio Nozzle Performance (Program 13)

(1) Objective

The objective of this program is to verify that

very high (n= 400:1 and greater) area ratio nozzles do provide the additional

performance predicted by the thee,,

(2) Justification

The OTV engines, as currently conceived, include

two-position nozzles based on the improved performance predicted at area
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ratios of 400:1 and greater. The largest area ratio nozzle tested to date is

400 . 1, and the test data is very limited. The gain to be made by using very

high area ratios should be verified by test before committing the OTV engine

to the two-position nozzle.

b.	 Extendible Nozzle Systems (Program 14)

(1) Objectives

The objectives of this program are to design and

d entonstrate an extendiblc/retractable nozzle mechanism.

(2) Justification

Nigh performance within a small overall engine

length is required of the OTV engine. The use of extend•.ble/retractable

nozzles provide a means for meeting these requirements. The design problems

associated with the extension, retraction, and sealing of the nozzle extension

forward flange joint must be addressed.

Co	 Carbon-Carbon Nozzle Extensions (Program 15)

(1) Objective

The objective of this program is to evaluate the

potential of carbon-carbon material for the nozzle extension.

(2) Justification

Nozzle weight and the handling of very thin-walled

metallic nozzle extensions can pose problems for the OTV engine.
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free-standing carbon-carbon nozzles may prove to be lighter in weight than

metallic nuzzles for high area ratio application. They may also prove to be

less susceptible to handling damage as they are planned to be reused, offering

a potential for reducing maintenance cost.

I.	 TASK IX - COMPUTER SO1JWAR1./DOCUM1_NTATION

As part of this program, two engine computer models were delivered

to NASA/MSFC. One of the programs is the Task I, Steady-State Computer Model

(Ref. 5), and second is the Task IV, Engine Transient Simulation Computer

Model (Ref. fi).

Documentation submitted for these computer models included:

°	 User's Manual

°	 FORTRAN Program Listing

°	 Program Flow Charts

Sample Inputs and Outputs

At the request of the NASA/COR, a FORTRAN card deck was submitted

for the steady-stave model. The transient model was submitted on tape. Both

programs are compatible with a Univac 1108 system.
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IV.	 CONCLUSIONS AND RECOMMENDATIONS

A.	 CONCLUSIONS

The following conclusions were d©rived from this and related study

efforts.

°	 A new engine is required to meet the OTV performance,

man-rating, and life requirements.

°	 A 1980 state-of-the-art expander cycle engine can meet the

OTV requirements.

°	 The advanced expander cycle engine is a high performance,

low-risk, low-cost option.

°	 The benign turbine operating environment of an expander cycle

reduces engine development risk and cost.

°	 Further design definition of the expander cycle engine and

its components is required.

°	 The main fuel turbopump and the injector/chamber are the most

critical expander cycle components.

°	 The performance of the expander cycle engine can be increased

by removing tre 1990 state-of-the-art requirement.

°	 Engine operation at 10% of rated thrust is feasible through

engine °kitting."

°	 Experimental verification of low-thrust operation is

required.
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IV, Conclusions and Recommendations (cont.)

Q.	 RECOMMENDATIONS

The recommendations for further study and advanced technology

efforts that were identified during the course of this point design program

are summarized herein.

°	 The point design studies should be continued to optimize the

expander cycle engine and provide more design definition of

its components. These studies should include the following

criteria:

(1) Technology advancements to increase component and engine

performance.

(t) Reevaluation of the boost pump/main pump designs to

optimize the configurations and the system efficiency.

(3) Incorporation of all recommended design modifications

from the first iteration.

(4) Conducting a component FMEA.

(5) updating of the structural analyses and materials

selection.

(6) Definition of the engine/vehicle interface and

optimization of the engine configuration to maximize performance in a given

engine stowed length.

(7) Provision of further engine controller definition.
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IV, B, Recommendations (cont.)

(B) Establishment of purge and relief system requirements

and preliminary design definitions.

°	 Expander cycle engine component critical technology programs

should be initiated to accomplish the following:

-Reduce risk

-	 Verify power balance

-	 Verify performance

°	 Component technology should address both high- and and

low-thrust operation.

°	 Component technology programs should be followed by a

detailed design of a breadboard expander cycle engine.

°	 Major breadboard engine components should be fabricated and

tested.

°	 Breadboard engine components should be assembled into an

engine configuration and tested.

c
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