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DATA BASE FOR THE PREDICTION OF AIRFRAME/PROPULSION
SYSTEM INTERFERENCE EFFECTS

by

Oden J. McMillan, Edward W. Perkins, Gary D. Kuhn,
and Stanley C. Perkins, Jr.

Nielsen Engineering & Research, Inc.

SUMMARY

Results are presented from a study to define and evaluate the data

base for predicting certain aerodynamic interference effects associated

with air frame/propulsion system integration. The study was conducted for

supersonic tactical aircraft with highly integrated jet propulsion

systems, although some information is included for supersonic strategic

aircraft and for transport aircraft designed for high-subsonic or low-

supersonic cruise. Primary attention is paid to those interference

effects which impact the external aerodynamics of the aircraft; however,

information on other effects such as inlet internal performance is

collected and organized, but not analyzed.

The study consisted of a literature search, the development of a

framework to organize the data base (which is considered to include

theoretical and empirical prediction methods as well as experimental

data), and the evaluation of the state-of-the-art for three interference

effects: inlet external drag, afterbody drag, and the effects of the

. aijcframe on the ijilet flow, field. Adequacy of prediction methods is

assessed through comparison with experimental data.

*•

1. INTRODUCTION

There continues to be concern in the aircraft industry and the

military services about the difficulty encountered in developing

aircraft that successfully achieve the performance predicted in design

studies, particularly for mixed mission aircraft with highly integrated



jet propulsion systems. Part of the problem is the lack of an adequate

data base for the design studies which often leads to overly optimistic

performance predictions. The broad mission requirements for high per-

formance in the subsonic, transonic, and supersonic speed ranges, at high

and low altitudes, create the need for an extensive body of data for use

in mission performance studies. Of particular concern is the lack of

adequate theoretical or engineering methods for predicting the airframe/

propulsion system interference effects even though a significant body of

performance data for isolated components (wings, fuselage, engines, etc.)

is available.

Multi-mission aircraft configurations characteristically require that

the airframe and propulsion system be closely coupled for both structural

and aerodynamic efficiency. Consequently, there are large flow inter-

ference effects wnich significantly affect both lift and drag and

therefore cannot be ignored in performance predictions. The current

practice is to define these interference effects during development

testing after selection of a basic configuration. Because these inter-

ference effects are large, and in most instances adversely affect

performance, the codifying of methods for predicting interference effects

should help in meeting performance goals and avoiding expensive and time-

consuming redesign processes.

The selection of the "best" engine for a multi-mission aircraft is a

difficult and important task. Because the time required to develop and

qualify an engine is the same order as that for the airframe, it is

essential that the engine selection be made early in the aircraft

development cycle. Selection of the most effective engine cycle

parameters (i.e., compression ratio, turbine inlet temperature, bypass

ratio, etc.) is usually made on the basis of mission analysis studies.

These studies draw heavily upon existing performance data to establish

the best trade-offs for the most effective accomplishment of the desired

mission. Consequently, it is important that an adequate "data bank" of

component performance and related costs be used in these studies.



This report documents a study to define and evaluate the data base

for predicting certain aerodynamic interference effects associated with

airframe/propulsion system integration. Primary attention has been paid

to interference effects which impact in an important way the external

aerodynamics of the aircraft. For the sake of completeness, data for

other effects which must be considered in predicting in-flight net thrust

(e.g., inlet internal performance) have been collected and organized, but

no analysis of this material is attempted. As used herein, the data base

is considered to include theoretical and empirical prediction methods, as

well as experimental data. This study is focused on interference effects

for supersonic tactical aircraft with highly integrated jet propulsion

systems, although some information is included for supersonic strategic

aircraft and for transport aircraft designed for high-subsonic and low-

supersonic cruise. No effort has been made to fully incorporate the

substantial literature available for V/STOL aircraft, and hypersonic

design point aircraft are specifically excluded.

In the first phase of this study, conducted under Contract NAS2-8874,

a search of the classified and unclassified literature was made to

identify the pertinent data. Use was made of the available indexing

services, International Aerospace Abstracts (IAA), Scientific and

Technical Aerospace Abstracts (STAR and CSTAR), the Government Reports

Index (GRI), and the Technical Abstract Bulletin (TAB), as well as the

computerized NASA RECON system. Searches were performed by the Defense

Documentation Center. Additionally, letter and personal contacts were

made with government and aerospace-organizations actively engaged in the

areas of interest. The latest available information pertaining to the

F-14, F-15, and B-l was obtained.

Also in the first phase, a framework to organize the data base was

developed, and the information assembled in the ways described above was

categorized using this framework. A preliminary evaluation of the

suitability for preliminary design purposes of the data bases for two

interference effects was conducted. These effects, inlet external drag



and afterbody drag, are areas which exert a considerable influence on

aircraft performance and where a significant need for correlation exists.

The work conducted under the first phase was reported in reference 8.1.*

In the second phase of the study, conducted under Contract NAS2-9513,

in-depth evaluation of the state-of-the-art was conducted for three

interference effects: inlet external drag, afterbody drag, and the

effects of the airframe on the inlet flow field. The literature search

conducted in the first phase was updated and reports newly acquired were

classified using the framework from the first phase. Additionally,

existing empirically based techniques to predict nozzle/afterbody drag of

single and twin engine installations were developed for implementation

into the aerodynamic prediction computer program being developed by the

NASA/Ames Research Center. This last work, and the evaluation of these

nozzle/afterbody drag prediction techniques using data from the data

base, is separately reported in ref. 8.2. The present report is the

final report for Contract NAS2-9513 and documents the remainder of the

work conducted in the second phase. Because a considerable amount of new

material was generated in this phase, this report supersedes reference

8.1.

In sections 2, 3, and 4, the entire data base is presented and

categorized by the type of interference effect treated and the general

nature of the treatment used in each reference. The effects of interest

are broken down into two main areas: those involving inlet/airframe

integration (section 2.) and those involving afterbody/airframe integra-

tion (section 3). Section 4 deals with some special topics. The

documents cited in this report are categorized according to which of the

areas (inlet or afterbody) is treated and appear in either the inlet/

airframe reference list (Appendix A) or the afterbody/airframe reference

list (Appendix B). The number assigned to a report in either of these

References identified as 8.X are listed in section 8 of this report.
The references comprising the data base appear in Appendices A and B
and are identified as described later.



lists corresponds approximately to the order in which the report became

available to us. A combined cross-index, alphabetized by author name, is

contained in Appendix C. In this report, the list to which a particular

reference number pertains is clear from the context in which it appears.

The remainder of the report consists of the analysis in some depth of

three areas. Section 5 presents the data base for inlet external drag in

more detail and contains an evaluation of its adequacy for preliminary

design. Sections 6 and 7 similarly treat afterbody drag and the effects

of the airframe on the inlet flow field, respectively.



LIST OF SYMBOLS

A area

A/A* contraction ratio required to bring "a reference flow to
sonic velocity isentropically

A inlet capture area - the frontal area of an inlet, pro-
jected in the free-stream velocity vector direction; for
axisymmetric inlets, the area is bounded by the cowl
leading edge, for others it is bounded by the cowl lead-
ing edge, side plate leading edges and initial ramp
leading edge

A area at nozzle exit plane

A maximum fuselage cross-sectional area
m

A^ maximum projected frontal area of inlet

A cross-sectional area at metric-break station
MB

A projected frontal area ,

A total nozzle flow area plus base area at nozzle exit
station (both nozzles)

A area at nozzle throat

A wing reference area

Cn,C boattail pressure drag coefficient, based on A and A ,
respectively [see eq . (27)]

Cn (t) additive drag coefficient, D ,,/q AU «>. c

CD«T bJeed, drag coefficient,, based on A
Jjlj C ' " "

CD boundary-layer-diverter drag coefficient, based on Ac
DLiJJ

CDRP by-pass drag coefficient, based on A

^Dr> Dr cowl drag coefficient based on A and \fT, respectively
V_* (_< / f- • i \ ^ WJ.(see fig. 1)

^•DrAT AP CALAC predicted aft end drag [see eq. (39)]
v-»AJ_iAL<

s\
Op equivalent body pressure drag coefficient, based on A

All drag coefficients, are based on q and the indicated area.



LIST OF SYMBOLS (Continued)

CJJFYT inlet external drag coefficient, based on A (see fig. 1)

CQ inlet external drag coefficient, based on A^

C0T _ inlet interference drag coefficient, based on A

NADC predicted aft end drag [see eq. (39)]

boattail pressure drag coefficient based on A^ and
* , respectively [see eq. (26)]

) side-plate drag coefficient, based on A
& L C

spillage drag coefficient, based on A (see fig. 1)

GO total drag coefficient (pressure, friction and base
drag) on aft end of airplane configuration, based on A^

AC jet-off to jet-on drag coefficient increment, based on
ASQ (fig.' 57)

A(L pressure drag coefficient increment used in ESIP drag
correlation (see figs. 52 and 53)

ACp ,ACo boattail drag increments due to plume shape and entrain-
ment, respectively, based on A

AD drag increment from design to operating pressure ratio
[CALAC subsonic correlation, eq. (26)] or from jet-off
to jet-on operation [CALAC supersonic correlation,
eq. (27)]

C lip suction coefficient, based on A (see fig. 1)

C pressure coefficient, (P - P )/q

C nozzle thrust coefficient, ratio of actual gross thrust
to ideal thrust, F

D fuselage maximum diameter
r cowl lip

additive drag, (P - PM)dA

D maximum fuselage equivalent diameter. /4A /TT
m m

D metric break equivalent diameter, /4A /TT

ER nozzle expansion ratio, A /A



LIST OF SYMBOLS (Continued)

F nozzle ideal gross thrust based on the isentropic expan-
sion of actual mass flow to free-stream pressure

FR boattail fineness ratio, L./D
A ni

H height of nonaxisymmetric nozzle cross section

h nondimensional height above cone surface (see fig. 107)

IMS integral mean slope: area-weighted average of the rate
of change of nondimensional afterbody area distribution,
based on A [see fig. 54(b)]

IMS truncated integral mean slope: IMS which is determined
using a maximum allowable slope which is a function of
Mach number (see fig. 53)

IMSA integral mean slope, based on A [see fig. 5A(a)]

K additive drag correction factor [see eq. (3)]

K drag coefficient parameter used in similarity correla-
tion of jet-off boattail pressure drag [see eq. (26)]

K drag coefficient parameter - increment in drag from
design pressure ratio to operating pressure ratio
[see eq. (26)]

K, drag coefficient parameter - increment in drag from jet-
off to jet-on operations [see eq. (27)]

L length of afterbody
A.

L length of nozzle

LE,TE denotes wing leading"and" trailing "edges, respectively -
(see figs. 112, 113)

M Mach number

M. local Mach number

M free-stream Mach number
CO

MFR mass flow ratio - mass flow entering the inlet ratioed
to free-stream flow through A



LIST OF SYMBOLS (Continued)

NPR nozzle pressure ratio - ratio of nozzle total pressure
to free-stream static pressure at nozzle exit

NSPR nozzle static pressure ratio, p /p

P,p static pressure

P, base pressure

P nozzle exit static pressure

P /P ratio of local to free-stream pitot pressure
P Pco

PTT /Pip ratio of local to free-stream total pressure
L m

P ,p total pressure

q dynamic pressure

R maximum body radius (see fig. 88)

Re Reynolds number

r radial distance from body centerline

Tp radius of the cowl lip leading edge

S/D nozzle spacing ratio - ratio of nozzle centerline to
centerline distance to equivalent diameter of nozzle at
exit station

T temperature

V - - free-stream velocity

— local sidewash velocity (see Table XV)
oo

W width of nonaxisymmetric nozzle cross section

w
— local upwash velocity (see Table XV)

oo

X axial distance along body or afterbody

Y lateral distance from centerline of body (see fig. 97)

Z distance below centerline of body (see fig. 97)



LIST OF SYMBOLS (Continued)

a angle of attack

a.(i=l,ll) covariance coefficients, used in NADC extension of
CALAC afterbody drag method [see eq. (39)]

CL local upwash angle (see Table XV)

3 angle of sideslip; also boattail trailing edge angle

BL local sideslip angle (see Table XV)

j ratio of specific heats

EL local total-flow angle (see fig. 88)

0 boundary-layer momentum thickness, or circumferential
angle (see fig. 88)

6 mean boattail angle - mean angle over a distance
corresponding to one-third of nozzle exit radius

&„„„. maximum nozzle boattail angle
BlM

U " viscosity

p density

<{>» <{>9, <J)R velocity potentials associated with transonic equiva-
lence rule (see fig. 110)

<J>T - local roll angle (see fig. 88)

Subscripts

B referring to a basic configuration

corr pertaining to the corrected value of nozzle pressure
ratio [see eq. (12)]

e referring to the nozzle exit

eff effective

f.e. pertaining to fully expanded flow in a nozzle

j referring to conditions in a jet

10



LIST OF SYMBOLS (Concluded)

L pertains to local conditions

L pertaining to the cowl lip plane

MB referring to the metric break station

ra referring to the maximum cross-sectional-area station

p referring to projected frontal area

ref pertaining to the reference value

t referring to the nozzle throat station

« free stream

11



2. INLET/AIRFRAME INTERACTION EFFECTS

In Table I, reports dealing with interactions of the inlet and air-

frame are categorized by the specific effect they treat and by report

type, as described below.

2.1 Report Types

Review Papers attempt to enhance understanding of a given effect by

analyzing in depth data first presented elsewhere, assessing the

coherence of data from several sources, judging the applicability of

existing prediction methods by drawing comparisons with data, etc. In

short, they attempt to synthesize and analyze previously available infor-

mation. Primary Data Sources are reports presenting detailed experi-

mental data. What is meant by sources of Empirical Prediction Methods

and sources of Theoretical Prediction Methods is clear once the (somewhat

arbitrary) distinction is made between the approaches: empirical methods

are based primarily on correlations of experimental data, and theoretical

methods are taken to be solutions (finite difference, method of character-

istics, integral, etc.), of the appropriate equations of motion.

Theoretical methods may include combinations of several methods modified

by and patched together with empirical considerations when the primary

emphasis is on solution of the governing flow equations.

2.2 Definition of Effects

The inlet/airframe interaction effects appearing in Table I are

defined in the following outline. In general, a reference is categorized

under the lowest subdivision of an effect that is appropriate. If,

however, the information in a reference is not sufficiently detailed, the

reference is classified under a higher order heading. For example, if

drag data were taken for an inlet that had an operating boundary-layer-

control system and the drag associated with this boundary-layer control

was not separated from the drag associated with mass spillage around the

12



inlet, the reference is classified as one dealing with inlet drag, not

with external or boundary-layer control drag.

I. Airframe Effects on Inle't "Free-Stream" Conditions

The flow entering an installed inlet may differ from the free stream

in Mach number, angularity and stagnation pressure. In general, these

differences may be ascribed to:

A. Forebody effects, for close-coupled inlets mounted forward of

the wing, or

B. Forebody-wing effects, for under-wing-mounted inlets in the

wing's compression field. References dealing with combined

forebody-wing effects on an inlet are classified in this

category.

II. Inlet Drag

The drag attributable to an installed inlet operating at an arbi-

trary Mach number and mass flow ratio (MFR) is broken down as follows:

A. External Drag (Cp ) is defined to be the sum of the drag on
EXT

the stagnation streamline, additive drag (CD ), the drag on the

external surfaces of the cowl (Cj)_) and for two-dimensional
\S

inlets, the-drag on the.external surfaces of the side plates

(CD ). CD and CD are usually taken to be integrated pressure
ox L» oir

drag although some investigators include skin friction. The

relationships of these quantities with the commonly used terms

spillage drag and cowl-lip suction are schematically illustrated

in Figure 1 for an axisymmetric inlet (thereby avoiding the

complication of the side-plate drag). Spillage drag (Cp ) is

shown to be the change in external drag as mass flow ratio is

decreased from the reference value appropriate for the Mach

13



number in question. Cowl lip suction (CTC) is the decrease in

cowl drag (C]}r) as the mass flow ratio is decreased from this
\s

reference value. If a reference treats any of these inter-

related terms, it is classified under external drag. Exactly

which drag quantity is presented is described in a later

section.

B. Bypass drag is defined to be that portion of inlet drag associ-

ated with the air passing through the bypass system. A bypass

system provides an alternative to spillage for engine-inlet flow

matching. Bypass drag results from the momentum loss of the by-

passed air and the drag of any external surfaces installed for

purposes of directing the bypassed air's exhaust.

C. Boundary-layer bleed drag is defined analogously to bypass drag

except it is associated with the air removed from the inlet by

porous surfaces or discrete holes or slots for the purpose of

boundary-layer control.

D. Interference drag is the drag increment on airframe surfaces

adjacent to the inlet that is a function of inlet mass flow

ratio.

E. Boundary-layer diverter drag is the drag of the device provided

to prevent the boundary layer developed on upstream surfaces

(forebody or wing) from entering the inlet. . . . - , . . . .

III. Inlet Internal Performance

The inlet exists to provide high-quality airflow to the engine

throughout the flight envelope. This function must be, of course,

accomplished while maintaining acceptable levels of drag and installed

weight. The measures generally used for the quality of the internal

airflow are.

14



A. Total pressure recovery; that is, how much of the free-stream

total pressure is maintained through the diffusion process to

the compressor face. Recovery and the level of distortion

(discussed below) are enhanced by implementation of a boundary-

layer bleed system. However, any improvement must be in the

proper balance with the added complexity, weight and drag such

a system entaiIs .

B. Stable mass flow range. The inlet must be capable of providing

the range of mass flows demanded by the engine. The low-flow

limit for an inlet is set by either an engine maximum-allowable

distortion criterion or the onset of an instability known as

inlet "buzz". The high-flow limit is determined by engine dis-

tortion tolerance for inlet supercritical operation.

C. Distortion. There exists several definitions of terms used to

quantify the nonuniformity (both stationary and dynamic) of the

airflow in the inlet at the compressor face location. This

measure of inlet performance is important because an engine will

typically have limits specified in terms of one or more of these

criteria above which stable operation is impossible. Even below

this level, engine performance may be adversely impacted by some

finite amount of distortion.

IV. Inlet Lift and Moment Effects

The aerodynamic forces acting on an inlet system can result in lift,

pitching, yawing, and rolling moments as well as drag. The effects

considered here are:

A. Inlet lift and moments due to airflow spillage.

B. Inlet lift and moments due to bypassed air.

15



C. Inlet lift and moments due to boundary-layer bleed flow.

D. Interference lift and moments. Analogously to interference

drag, these are the increments on surfaces adjacent to the

inlet and are functions of mass flow ratio.

V. Inlet Weight

While not strictly an interaction, this effect is considered

because it is an important factor to be considered in evaluating inlet

concepts. Sophisticated variable geometry inlets may enjoy benefits

with respect to the previously listed effects, but if the accompanying

weight penalty is too severe there is no net advantage to the inte-

grated airframe/propulsion system.

3. AFTERBODY/AIRFRAME INTERACTION EFFECTS

In Table II, reports dealing with interactions of the afterbody

(including the engine exhaust nozzles) with the airframe are categorized

by the specific effects they treat and by report type in a manner similar

to that of the inlet/airframe interaction effects in Table I.

i
' 3.1 Report Types

The report types are Review Papers, Primary Data Sources and Em-

• pirical. and Theoretical Prediction Methods as in T(able I.

3.2 Definition of Effects

The afterbody/airframe interaction effects appearing in Table II are

defined in the following outline. The references generally fall within

one of two general categories, those applicable to single-engine con-

figurations and those applicable to twin-engine configurations. Within

16



those two categories the references are classified as dealing with the

effects of certain specific parameters. Some parameters such as nozzle

pressure ratio are common to both types of configurations.

I. Single-Engine Configurations

The afterbody effects considered for single-engine configurations are

associated with the effect of various parameters on the flow field around

the afterbody, including the nozzle boattails.

A. Exhaust-plume effects are effects produced by the exhaust jet

plume. The shape of the plume can create upstream disturbances

which affect the flow field over the afterbody. Also, the ve-

locity in the jet being higher than that of the surroundng flow

results in flow entrainment which can also alter boattail flow

fields. The specific effects considered are:

1. Nozzle-pressure-ratio effects are effects produced by the

exhaust jet plume that can be attributed to the nozzle

pressure ratio for a specific nozzle type.

2. Exhaust-temperature effects are effects produced by the

exhaust jet plume that can be attributed to the exhaust jet

temperature.

- 3. Miscellaneous other --parameters or conditions ,may be cap.able

of producing exhaust-plume effects. Included in this

category are various methods of simulating an exhaust plume

using solid stings, normal jet simulators, and other

techniques.

B. Nozzle-type effects are the effects on afterbody drag which are

attributable to the type of nozzle used. Any nozzle which can

provide for efficient expansion of the exhaust gases at high

17



pressure ratio can be designed to give good performance at a

specified design condition. Thus, an optimum nozzle can be

chosen for that design condition. However, the merit of any

particular nozzle type frequently depends upon its ability to

operate efficiently at conditions other than design. This

requires comparison of the relative merits of different nozzles

, with regard to afterbody drag, nozzle weight and complexity and

overall mission requirements. Papers in this category provide

information toward this comparison.

C. Base-flow effects are effects associated with the existance of a

finite base area as may occur with a truncated nozzle plug or

when the afterbody boattail terminates with a cross-sectional

area larger than the nozzle exit area.

D. Empennage interference effects are effects produced by the

alterations of the flow field around an isolated afterbody when

horizontal and/or vertical stabilizer surfaces or other external

supporting structure are installed. An example of such an

effect is the increase in afterbody pressure drag noted in

reference 46 for twin vertical stabilizers on a twin-engine

configuration compared with the drag for a single vertical

stabilizer on the same configuration. The single vertical

stabilizer exerts less influence on the afterbody flow field due

to its location on the plane of symmetry.

•' ..... *, , .„ ,. ,

E. Mach-number effects are the effects of compressibility on the

afterbody flow fields. References in this category are

primarily those which provide specific information about the

effects of compressibility on afterbody drag for complete

configurations. Other references in other categories may also

provide such information with regard to partial configurations.
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F. Angle-of-attack effects are changes in the afterbody drag due to

changes in angle of attack.

G. In this category are listed references which provide information

on the effects of Reynolds number over a wide range of Reynolds

number. Reynolds-number effects are important for scaling wind

tunnel test results to full-scale flight speeds.

H. Boattail shape effects are effects that can be specifically

attributed to the particular shape of a boattail.

II. Twin-Engine Configurations

A. Exhaust-plume effects. References for this effect are those

which apply specifically to twin-engine configurations.

B. Nozzle-type effects. As for single-engine configurations,

references in this category deal with the afterbody-drag effects

which are attributable to the type of nozzle used.

C. Nozzle-spacing effects arise due to the mutual interference

between the two nacelles/nozzles of the twin-engine afterbody.

D. Nozzle-location effects are associated with the location of the

nozzle exit relative to the terminus of the fuselage interfair-

ing on the empennage. . ,

E. Fuselage-interfairing effects are associated with various shapes

of interfairing, and the manner in which they are applied to the

twin nacelle/nozzle combination.

F. Empennage interference effects are associated with horizontal

and/or vertical stabilizing surfaces or other supporting

structures.
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G. Mach-number effects are the effects of compressibility on

twin-engine configurations.

H. Angle-of-attack effects.

I. Reynolds-number effects.

J. Boattail-shape effects.

4. SPECIAL TOPICS

In surveying the literature assembled in the course of this work, a

few topics emerged which are of general interest to those concerned with

the subject of airframe/propulsion system interactions. References which

touched on these topics are identified in this section.

4.1 Thrust-Drag Bookkeeping

To assess the net propulsive force acting on an airplane, it is

necessary to account for each thrust and drag component once and only

once. The failure to comply in a straightforward manner with this

seemingly obvious requirement has, however, resulted in needless con-

fusion in more than one aircraft development program. Several references

are listed in Table III which discuss the necessity of this procedure and

which describe detailed schemes to account for each thrust and drag item.

.Reports from- the reference lists for Inlet/Airframe-Interaction and

Afterbody/Airframe Interaction are included.

4.2 Test Techniques

The development of experimental procedures to allow accurate

measurement of interaction affects is discussed in several references

which also appear in Table III. Sophisticated techniques are required

to allow the separation of the various interaction effects while

20



minimizing the influence of undesirable interference effects brought

about by partial, subscale model testing. Scale effects, simulation

of the exhaust plume in afterbody testing, and modeling viscous effects

are among the topics discussed.

4.3 Wind Tunnel to Flight Comparisons

An important means of assessing the success of test techniques is the

comparison of wind-tunnel data to data obtained from actual flight

vehicles. However, acquisition of accurate data for interference effects

is particularly difficult and expensive in flight, so there are not a

large number of such comparisons. Those comparisons we have uncovered

appear in Table III.

4.4 Boundary Layer Methods

Many of the prediction methods in the data base use a particular

boundary layer calculation method to account for viscous effects. The

boundary layer methods so used are also listed in Table III.

4.5 Inviscid Flow Methods

Methods of calculating the inviscid flow about various kinds of

bodies are also listed in Table III.
/

. 5.. DATA BASE FOR INLET EXTERNAL-DRAG AND THE EVALUATION,

OF ITS ADEQUACY FOR PRELIMINARY DESIGN

As previously shown in figure 1, inlet external drag* consists of the

sum of integrated cowl pressure drag and additive drag:

CDEXT = cDc + CDA da)

*For a nonaxisymmetric inlet, the drag on surfaces such as sideplates is
sometimes treated independently or alternatively is included as part of
C0 . The latter usage, is adopted here for simplicity.
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This relation can be expressed in a number of alternative ways, including

fref

MFR 3C

£• I »̂ I .-
ref l -'ref

8(MFR)
MFR

FYTtA d(MFR) (Ic)

+ K . . C - C (Id)

by incorporating the definitions for spillage drag

= CD - CDSPIL EXT I UEXT ,
ref

and the K ,, factor
add

DSPIL _ (3)

• The -data 'base -for inlet external drag consists, of experimentally

determined values and theoretical or empirical prediction techniques for

any of the quantities in Eqs. (1-3). In the following sections, we first

present the applicable experimental data and describe methods ("Partial

Prediction Methods") which result in the prediction of a component of
DEXT

CQ (e.g., CT ,, or 'a(MpR-v) . We then present methods which result in

the predicton of the detailed flow field about an inlet ("Flow-field

Methods"), thereby allowing calculation of CO_YT by simple quadrature.
Il< AX

•The requirements placed on the data base for use in preliminary design
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are discussed, and finally, the data base is evaluated with respect to

these requirements.

5.1 Presentation of the Data Base

5.1.1 Experimental data ^

The experimental data base for inlet external drag is presented in

Table IV. The types of inlets and ranges of test conditions are

described for each set of data. The Primary Data Sources from Table I

are included which present detailed experimental data for inlet external

drag or a component (for example, additive drag or cowl drag). Also

included are the data sources which are listed under Inlet Drag in Table

I because the data presented are not further broken down into components.

Each inlet in Table IV is described by a string of characters, some

of them subscripted, which represents the main characteristics of the

inlet. These descriptors, and the characteristics they represent, are

listed in Table V. Absence of a particular descriptor for a given inlet

means that characteristic is not applicable to that inlet, or, as in the

case of the design Mach number, that it was not reported. The items in

Table V are self-explanatory, with the exception of the conventions for

sideplate shape. These are schematically illustrated in the following

sketches of the upstream portion of two-dimensional, external-compression

inlets with two fixed horizontal ramps and a design Mach number of 2.4.

Note that the absence of the descriptors.for a, bypass system and a

boundary-layer-control system implies that these systems do not exist in

these inlets.

E H0,S 2.4
r 2f r
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Other examples of this system are: the string M CU OB BP2.5 which

describes an axisymmetric mixed-compression inlet with three conical

external compression surfaces with two variable, a boundary-layer-

control system consisting of porous elements, an operational bypass

system, and a design Mach number of 2.5; and the string P which

describes a pitot inlet whose capture area is neither circular nor

rectangular.

The column in Table IV after the inlet characterization identifies

the drag component(s) presented for that inletv in the reference in

question. The next column shows the test configuration; that is, whether

the inlet was tested alone or in the presence of a forebody, mounted on

an entire fuselage, etc. Next come a series of columns containing the

ranges of Mach number, unit Reynolds number, angle of attack and angle of

sideslip covered for each inlet. Finally, the remaining columns show

whether sufficient data exist to evaluate the separate effects of cowl



shape, sideplate shape, ramp-angle or capture area variations on the drag

component presented. Special circumstances are identified inr the notes

following Table IV.

5.1.2 Partial prediction methods

These methods, usually largely emprirical, result in predictions for

one or more of the components of CD,-,VT indicated in Eq. (1). Prediction
CA J.

methods of this type have been categorized in Table VI by the inlet type

and the speed range (subsonic, transonic, supersonic) to which they

apply. Inlet type in this table refers to a pitot inlet of either

axisymmetric or two-dimensional shape, or an inlet which is either of

two-dimensional or axisymmetric geometry with an external compression

surface. Application of prediction methods of this class to an inlet

of more complicated shape (e.g., "kidney", "chin", half-axisymmetric)

must be done on an ad hoc basis; the methods are, in general, derived for

the simple inlet shapes just described. In Table VI, if a reference is

listed as predicting C0A or CQp , then only the reference value
L Jref L Jref

of that quantity is predicted by the method in that reference. On the

other hand, if a reference is listed as predicting Cn. , then it is
n.

presumably valid at any mass flow (including the reference value).

A very brief description of some of the major features of each method

shown in Table VI is contained in Table VII. For the convenience of

the reader, the principal author's name is shown in parenthesis after the

reference number. The information presented in Table VII does not, of

course, allow for detailed understanding of the assumptions and limita-

tions associated with each approach; for this purpose, the references

themselves must be consulted. However, the general approach of each

method is described, and important assumptions (such as independence of

cowl lip geometry or a reference mass flow ratio of unity in lip-suction

prediction methods) are shown. This allows essentially similar methods

to be identified, a feature that is utilized in the comparison-to-data

and evaluation processes to follow. For example, it is seen in Table VII
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that a number of references (21, 71, 102, 106) involve the "pitot inlet

analogy", a method based on the observation made in reference 59 that for

pitot inlets, if the additive drag occurring behind the normal shock for

subcritical operation in a supersonic free stream is figured in a

particular way, lip suction is implicitly accounted for and external drag

may be predicted very simply.

It should be noted that the Partial Prediction Methods are in general

derived for use at zero angles of attack and sideslip in a uniform free

stream. Adaptation to more complicated situations is often required, of

course, and schemes for accomplishing this exist (see, for example, ref.

4), but the approximations involved are over and above those fundamental

to the methods themselves. The comparisons to data of predictions using

these methods shown in a later section are largely for the case of a

uniform free stream at zero angles of attack and sideslip because

published comparisons have not been found for the more complicated

situations.

5.1.3 Flow-field methods

A complete description of the flow field in the vicinity of the inlet

is provided by these methods; external drag and its components are

available by straightforward integration of the calculated pressure

distribution. Methods of this type are shown in Table VIII, where in a

fashion similar to Table VI, they are categorized by general approach and

the geometry and speed range to which they apply. Major features of the

methods are listed in Table IX.

A few general comments about these methods are in order. Firstly, we

obviously have not acquired every implementation of each general approach

listed in Table VIII, but it is felt that all the important general

aproaches are represented. Secondly, all of the methods listed as

applicable to 2-D geometries can handle non-zero angle of attack, but

only two of the methods for other geometries (refs. 215 and 405) can do
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so. This is so because only these methods (intended for use with

subsonic design-point inlets) are designed to handle a three-dimensional

flow field. Calculation of three-dimensional inlet flow fields is only

just beginning, and descriptions of this work are very scarce in the open

literature. Finally, all of the methods except that of reference 274 are

inviscid, whereas in reference 274 the inviscid streamtube curvature

method is coupled to a boundary layer analysis. This is obviously an

option available for use with all of the other methods, but this

refinement is a separate problem not discussed in the published accounts

nor in this report. Analysis of the boundary layer methods available for

use in inlet calculations and an evaluation of their success is clearly

beyond the scope of the present work.

5.2 Evaluation of the Adequacy of the Data Base

for Preliminary Design

5.2.1 Requirements

The functional dependence of external drag on geometry and average

local flow conditions can be represented as

C = f(Inlet Geometry, ML , a , 3 , Re , MFR) (4)
DEXT L L L L

where the specification of Inlet Geometry includes such general features

as inlet type (pitot, external- or mixed-compression), inlet shape

(two-dimensional, axisymiaetric, quarter round, etc.), and design Mach

number as well as details such as required capture area, compression

surface angles, and cowl and sideplate (if applicable) external profile

and leading-edge radius. Even this complicated relationship has been

simplified if the inlet is located in a nonuniform flow field (caused by

forebody precompression, for example) by the assumption that the external

drag may be related to the average local conditions.
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In the preliminary design process, external drag must be evaluated

for various candidate inlet concepts, usually not defined in total

detail, to allow the most promising of them to be selected for continued

development in depth. The criterion for selection is some ranking in

terms of overall best performance for a specified mission where drag

level is traded off against internal performance, complexity and weight.

To be useful for preliminary design, a data base must therefore satisfy

three requirements:

1. Breadth. The range of applicability of the data or methods must

be sufficiently wide to allow rational evaluation of a variety

of inlet designs.

2. Ease of application. The time and expense required must be

consistent with consideration of a large number of candidates.

3. Accuracy. The methods or data used must accurately reflect

differences in the candidates considered.

In the following sections, the experimental data and prediction

methods that exist for inlet external drag are evaluated with respect to

these requirements.* First, however, a few additional remarks are in

order about the level of accuracy required. Even at the preliminary

design stage, exact solutions for the various effects would be useful if

they were compatible with allowable levels of cost and effort. This is

essentially never possible, however. The usual situation is that these

constraints force the designer towards the use of methods on the other

end of the scale; that is, methods that barely possess the required

accuracy. It is also true that no simple, general statement of the

accuracy required can be made. That is, it is not possible to say that

the methods or data must be accurate to within _+ X percent or _+ Y drag

counts. This is so because the minimum drag increment that causes a

x'An exception: the accuracy of all the assembled experimental data is
not evaluated. -*•
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meaningful change in airplane performance is very much a function of the

detailed nature of the application (mission) considered.

Some calculations of the sensitivity of airplane performance to inlet

external drag for specific applications exist in the assembled litera-

ture. References 29, 68, 94, 103, 114, and 115 address this question in

different ways for various configurations of a supersonic transport. For

example, in reference 114, for a supersonic transport powered by after-

burning turbojet engines, a change in inlet-external-drag coefficient of

0.01 (~10 percent) results in a change in range of about 41 n.mi. (~1

percent). References 115 assesses this sensitivity for a similar

application in a different way. At Mach 1.2, an increase of 0.06 (33

percent) in Cp decreased the payload capacity of an SST with 3,500
LA J.

n.mi. range by two passengers (~1 percent). This leverage can be

considerably greater for supersonic tactical aircraft flying so-called

"mixed missions" (combinations of supersonic and subsonic portions).

References 2, 8, 10, 27, 29, 365, and 380 address this point. In

reference 8, for example, a 30 percent increase in CD-,.,,,, is shown to
LAI

reduce mission range by about 10 percent if the drag increase occurs in a

transonic portion of the mission. In reference 2, differences in CD..
LAI

for candidate inlet designs for such an aircraft are shown to result in

differences in range of up to 200 n.rai. This magnified sensitivity is

caused by the fact that the inlet drag is a considerable portion of the

total airplane drag under some situations (up to 30 percent at cruise;

reference~27). A similar strong dependence is demonstrated for the B-l

in reference 380. Thus, while no general statement can. be made for the

required accuracy of a preliminary design method, it is clear that i'nlet

external drag exerts a powerful influence on airplane performance. If

differences caused by different inlet configurations are not adequately

represented, proper decisions for further development effort cannot be

made.
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5.2 .2 Experimental data

r

Given the complicated functional dependence of inlet external drag on

the large number of independent variables and parameters represented in

Eq. (4), it is obvious that experimental treatment can never be

"complete" or adequate for design in itself. All of the possible com-

binations of the controlling quantities cannot possibly be experimentally

studied. What is required to fill in the gaps is an interpolative and

extrapolative procedure. This procedure can be a simple curve-fit to

data or it can consist of an assumed Taylor's series representation with

the "partial derivatives" in this series being evaluated from the data.

The notion of such a series expansion is simple enough to be useful only

if the mixed and higher-order derivatives are negligible.

Empirically based Partial Prediction Methods are a means of interpo-

lating in and extrapolating the existing experimental data base and are

discussed in the next section. In this section, the adequacy for

preliminary design of the "Taylor's series" representation is briefly

reviewed. It is shown that external drag is sufficiently configuration

dependent (that is, it depends on geometric detail to such a degree) that

the Taylor's series representation is useful only for very limited

excursions from the original data.

The experimental data base (Table IV) represents a formidable amount

of information, even if those investigations where external drag is not

explicitly available are excluded. However, most of the remaining

investigations represent at most small perturbations around a specific

design point, since they were a part of a particular airplane develop-

ment program or were aimed at the optimization of a specific inlet. That

is, the great majority of the references listed in Table IV report

studies that are too specialized and too unsystematic to be useful as the

basis for a design methodology of any generality. There do exist,

however, a few serious attempts at systematic variations of the controll-

ing quantities of sufficient scope to allow evaluation of the practical-
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ity of the "Taylor's series" approach. The investigations of references

33, 107 and the combined investigation of 52 and 108 as reviewed in 27

are useful in this regard.

The change in Cp as the cowl contour is changed from some
ijA i.

reference shape (with all other variables fixed) is one of the many

"partial derivatives" that would have to be ascertained in the Taylor's

series approach. Figures 2 through 4 are extracted from those references

and show this dependence for the extremely simple case of a one-external-

compression-surface inlet in a uniform free stream at zero angle of

attack and sideslip.

Figure 2 shows the variation of CQ with mass flow ratio for a

, two-dimensional inlet with six different sharp-leading-edge cowls at two

Mach numbers. Similarly, each part of Figure 3 compares external-drag

variations for two members of a family of elliptical cowls with constant

leading-edge radius. These data are from reference 107 and are also for

a single ramp, two-dimensional external-compression inlet. Finally,

Figure 4 shows CQ versus MFR for a conical and an elliptical cowl of

the same leading-edge radius at three different transonic Mach numbers

from reference 27 for an axisymmetric, single-cone external-compression

inlet.

Examination of these figures reveals that the affect of changing cowl

shape on CQ is substantial and that the quantitative effect of going
ijA.L

from one, cowl to another is different in magnitude .(and in .some.cases in

sign) depending on the value of the Mach number and the mass flow ratio.

Effects of other variables (e.g., angle of attack, ramp angle) on the

dependence of Cp on cowl shape are not shown but cannot be assumed

negligible. In short, this dependence is sufficiently complicated that

the simple Taylor's series approach is not useful except for very small

excursions from a known data point. It follows then, that the experi-

mental portion of the data base, taken by itself, is adequate for

preliminary design purposes only if the inlets under consideration are
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substantially the same and are to operate in essentially the same

conditions as those for which data exist.

5.2.3 Partial prediction methods

To synthesize external drag with acceptable accuracy from the parts

utilized in these methods (see Eqs. (l)-(3)), each of the parts must

obviously be predicted accurately (omitting the possibility of compensat-

ing errors from further consideration). While some of the elements of

these methods are straightforward, the critical one is that which deals

with the change in cowl drag with reduced mass flow. This element is

most often treated using C or K ,, factors, or by means of the "pitot

inlet analogy" (see Table VII). The success of these approaches will be

ascertained by examination of comparison of predictions made using these

methods to experimental data. (Some of these comparisons are presented

here for the first time, but for the most part, we must rely on compari-

sons found in the assembled literature.) Additionally, the prediction of

additive drag will be briefly examined.

5.2.3.1 Cowl-lip suction (Ĉ g factors)
=; (

Five of the references accumulated propose empirical correlations for

this effect: 10, 11, 32, 39, and 86. The treatment in reference 86 is

one-dimensional and because it is specified by the author to be inappli-

cable to realistic lip shapes, it is not considered further. Three of

the remaining methods, 10, 11^ and 39, have a reference mass flow ratio

of unity. This presents special problems and these methods will be

discussed together.

Methods with MFR ,. = 1.- Cowl lip suction in these methods is
ref

defined as

CLS - V (MFR = « - CDc* c
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In reference 10, correlations for the quantity CTO/CDA are Presented as a

function of (local) free-stream Mach number, with Cp as a parameter.
A

Two correlations are given, one for two-dimensional inlets, the other for

axisymmetric inlets. The two-dimensional correlation is assumed to

include the effects of suction on the lips of the sideplates. The data

used to generate these correlations are neither identified nor shown.

Implicit in this approach is the idea that inlets exhibiting the same

levels of additive drag at a given Mach number will have the same CJC,.

That is, all the dependence of C, „on detailed geometry is in this method

contained in CQ . A number of investigators, however, have shown that
A

additive drag is in fact relatively insensitive to variations in cowl

geometry, while the variation in cowl drag with mass flow ratio is not.

Based on these considerations, one would not expect particulary good

agreement of this method with data. Nonetheless, it is very convenient

to apply.

This point is investigated in figure 5 by comparing CTC/^DA
 as a

function of CQ for two different Mach numbers from the correlations for
A

two-dimensional inlets in reference 10 with data for two different cowl

designs from reference 33 (uniform free stream, angle of attack = angle

of sideslip = 0). These data were derived from plots of C^ and QQ +

Op using Eqs. (la) and (5). Agreement of the correlation with the data

is seen to be poor in both level and trend. As expected, the effect of

cowl geometry is clearly not adequately represented by its effect on

additive drag.

In the process of reducing the data in reference 33 to the form shown

in figure 5, a major disadvantage of the representation of Eq. (5)

became apparent. That disadvantage is the choice of unity as the

reference mass flow ratio. Because inlets with external compression

surfaces cannot in general achieve MFR = 1, extrapolations of data for Cn

(CQ + CD^P for two-dimensional inlets) are required to allow evaluation

of CLS. The extrapolations required for one of the Mach numbers in

_figure 5 are shown in figure 6. The uncertainties introduced into C,<, by
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this process can be substantial, making comparisons with data extremely

difficult to interpret, or to put it another way, making correlations

formulated in this way inaccurate in principle.

The correlation method of reference 11 is an improvement on that of

reference 10 in that the effects of two geometric quantities are

explicitly included. These quantities (defined in detail in reference

11) are effective cowl lip slope and capture-area ratio. CTS/CDA ^
s

given as a function of these quantities and the (local) free-stream Mach

number. However, because the reference mass flow ratio is unity for this

method, the preceding remarks apply here as well and comparisons with

data become moot. Similar comments apply to the method of reference 39,

where C /Cp is a function of cowl lip angle, camber, leading-edge
IvO A

radius, local free-stream Mach number and CQ .
A

A Method with MFR 5* 1.- The difficulties resulting from the use of
ref

a reference mass flow ratio of unity are avoided by Osmon (ref. 32).

This method is applicable to two-dimensional inlets and employs curve-

fits of the lip-suction data from reference 33. The independent variable

is a parameter depending on mass flow ratio, throat Mach number, capture-

to-throat area ratio and the contraction ratio required to decelerate a

reference flow to sonic velocity isentropically (A/A*). For subsonic

flows, the reference flow is at the free-stream Mach number; for

supersonic flows, A/A* is evaluated at the Mach number to which the flow

is assumed to expand at the end of the cowl area change. The reference

value of the ind.epe.ndent variable (where lip suction is zero) is taken to

be 0.8 for all Mach numbers. For subsonic, isentropic inlet flows, this

implies that the reference state is that for which the throat Mach number

is approximately 0.82. No such simple statement of the reference

condition can be made for supersonic flows.

The dependent variable consists of the cowl lip-suction coefficient

times effective thickness-to-chord ratios for the cowl and the ramp (each

ratio raised to an exponent which is a function of free-stream Mach
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number), times the ratio of capture area to maximum projected inlet area,

also raised to a Mach-number-dependent exponent. The curves relating the

dependent and independent variables are also parametized on Mach number.

Bands are displayed on these mean curves to show the limits within which

about 95 percent of the data from reference 33 fall. This scatter

represents, among other things, the effects of different sideplate

geometry which is not explicitly treated in this approach.

This method is applied to a two-dimensional inlet with three

different cowls and two different sideplate shapes (ref. 107) in figure

7. The comparisons are for a single external ramp (angle =5°) at zero

angle of attack for a free-stream Mach number of 0.8. The cowl drag

measurements shown were derived in a uniform free stream and are

normalized on maximum projected inlet area. The data in figure 7(a) are

for an elliptical cowl with a leading-edge radius which is ~1 percent of

the capture height and with full rectangular sideplates (see ref. 107 for

details). The reference mass flow ratio shown is calculated using the

criterion in reference 32 and is in excellent agreement with the maximum

mass flow ratio from the data. Cowl-drag coefficients were calculated at

two mass flow ratios by the method of reference 32 by applying the lip

suction from that method to the extrapolated experimental cowl-drag

coefficient at the reference mass flow ratio. Note that the extrapola-

tion required by the reference mass flow ratio of this method is of a

much more reasonable extent than for the methods previously mentioned with

MFR , = 1. The predicted cowl drag at the high mass flow ratio is in

excellent agreement .with the data, but this is mostly due to the fact

that a very small amount of lip suction is involved and the experimental

reference cowl drag was used. At the lower mass flow ratio, where there

is more lip suction, the agreement is not as good. A band is shown on

the predicted value, reflecting the bands on the correlation bounding -95

percent of the data from which it was derived. At this low mass flow

ratio, the correlation considerably underpredicts the lip suction.
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A possible contributing factor to this underprediction is the fact

that the data from reference 107 caine from a model with full rectangular

sideplates which would essentially eliminate sidespill, enhancing the

suction effects on the cowl. Although reference 33 includes some data

for full rectangular sideplates, it is not clear if those geometries are

included in the correlation of reference 32 (indeed it is not clear if

the correlated data is for suction on the lips of the cowl or on the lips

of the cowl and sideplates). If the correlation only includes the

triangular sideplate geometries of reference 33, and if it is for lip

suction on the cowl only, an underprediction for lip suction would be

expected for the case of figure 7(a).

A portion of this uncertainty is eliminated for the case of figure

7(b), where the data are for the same cowl as figure 7(a), but where

triangular sideplates were used. Note that the lip suction prediction,

which differs from that for figure 7(a) only by being applied to a

different reference cowl drag, is still less than that measured, although

at the low mass flow ratio the agreement is improved.

Figure 7(c) shows the agreement for a cowl of the same shape as in

figure 7(a), but for an increased leading-edge radius (2 percent of the

capture height). The comparison is again for the full rectangular

sideplates because that is the only case for which data exist in

reference 107. The agreement is essentially the same as in figure 7(a)

and the same comments apply. Figure 7(d) is for a cowl with the same

leading-edge radius as figure 7(c), but of different shape (although it

is still elliptical, the point of tangency with the leading-edge circle

is different). Agreement is improved in figure 7(d). Although the data

show a considerable affect of the detailed cowl shape, the correlation

does not: the lip-suction predictions for the cases of figures 7(c) and

(d) are essentially the same.
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5.2.3.2 The Kadd factor

Another means of accounting for the change in cowl drag with varying

MFR is the K ,, factor. Use of this factor is advantageous if some
cidd

freedom from geometric detail is gained by presentation of spillage drag

data in this form; that is, if K ,< is a correlating parameter which

achieves some "collapse" of the original data into a more generalized

form. Note that such generality of Kacjd would require differences in

spillage drag to be reflected in additive drag, just as in the lip

suction methods discussed in the previous section. If, on the other

hand, a different Ka(jj is required for each inlet geometry, no real

advantage exists for this approach as compared to using the original

spillage drag data. This point is examined using the primary source for

K ,, factors, the previously mentioned systematic investigation of

reference 33.

In this investigation, K ,, was evaluated as in Eq. (3), using

experimentally determined spillage drag and the additive drag increment

as calculated using the theory presented in reference 33. Data are shown

at six Mach numbers for external-compression, two-dimensional, two-ramp

inlets with various combinations of ramp angles, four different sideplate

shapes and six cowl designs, all measured in a uniform free stream at

zero angles of attack and sideslip. Some of the K^^ factors determined

are shown as functions of mass flow ratio in figures 8(a) and (b).

Figure 8(a) is for an inlet with a design Mach number of 3 tested at a

Mach number .of O.7.. The band identified as_being due to variations in

cowl shapes is for identical inlet geometry except for variations in the

cowl external profile. The other K ,, curves reflect changes in second-

ramp angle and sideplate shape. Figure 8(b) shows some of the same

effects at Mach number of 1.3. It is clear from these figures that

independence from geometric detail is not achieved. If a correlation

were to be forced onto these data (e.g. , by using some average KE(J(J to

represent all the geometries), the deviations from this mean must clearly

represent sizable uncertainty in evaluating the effects of inlet drag on
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airplane performance for applications where spillage is at all

significant in comparison to total airfrarae drag.

5.2.3.3 The "Pitot Inlet Analogy"

Still another way of accounting for the change in cowl drag with MFR

is by means of the "pitot inlet analogy". In this analogy, inlet

external drag under spilling conditions for inlets with external com-

pression surfaces is calculated in a manner similar to the simplified

treatment for spilling pitot inlets generally attributed to Fraenkel

(ref. 59). Fraenkel calculated the subcritical external drag of a pitot

inlet in a supersonic free stream by simply multiplying the spillage area

by the pressure rise across the normal shock. This approximation under-

estimates the force on the subsonic deflected streamtube (the additive

drag), but in this way approximates the effect of cowl lip suction. No

allowance is made for details of cowl geometry.

The application of the method of reference 59 to pitot inlets can be

quite successful, as is illustrated in figure 10. This figure is taken

from reference 21 and shows predictions and data at three Mach numbers

from reference 59 for two pitot inlets shown in figure 9. However,

examples can be found where the assumption of independence from cowl

geometrical detail is inadequate. An unfavorable comparison is contained

in reference 376. In this reference, substantial differences in pitot-

inlet cowl lip suction at a given free stream Mach number and mass flow

ratio are shown to exist which are due, to differences .in .detailed cowl -

shape but which obviously cannot be reflected in the analysis.

Fraenkel's analysis has been extended to axisymmetric inlets with

centerbodies in reference 71, and to two-dimensional inlets with external

compression surfaces in references 21, 102, and 106. These extensions

require a means of defining the terminal normal shock location as a

function of the inlet mass flow ratio. This has usually been done in the

manner suggested by Moeckel (ref. 72). Moeckel's method has been applied
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to axisymmetric inlets in references 71 and 364 and to two-dimensional

inlets in references 21, 32, 81, 106, and 364 (see Table VI). In

reference 81, the adequacy of several of these approaches for the estima-

tion of normal shock locations in two-dimensional inlets is examined, and

for successful prediction the need to account for side spillage is

emphasized. The effect of side spillage on terminal normal shock

location is included in the empirical treatment of reference 32; an

approximate analytical treatment is contained in reference 81.

Results of application of the pitot inlet analogy to two-dimensional

inlets are shown in figures 11-15 and to axisymmetric inlets in figure

16-18. The comparisons shown encompass varying free stream Mach number,

compression-surface geometry and details of cowl and sideplate shape.

The level of agreement with experimental data illustrated is variable,

but in general it is surprisingly good considering the simplicity of the

approach. No dependence of the level of agreement on Mach number is

evident, although the poorest agreement shown [fig. 12(b)] is for the

case where the Mach number is so low that the wedge shock is detached.

5.2.3.4 Additive drag

As just explained, the pitot inlet analogy deals with inlet external

drag as an entity. Returning to the approach wherein the cowl and

additive drag components of external drag are predicted separately, the

approximate methods for additive drag listed in Table VI will now be

discussed. The calculation of additive drag by integration of the

pressure along the stagnation streamline is treated in the section on

Flow-field Methods; however, because it is a trivial matter in a

supersonic free stream for geometries that allow all shocks to be

attached, this is the procedure used to calculate CDA in the
O L J. L-

"approximate" methods of this section. Calculation of critical additive

drag in other speed ranges or in geometries with detached shocks, and

calculation of subcritical Cp under all circumstances is typically done
A

by means of a one-dimensional momentum analysis on a control volume
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encompassing the captured airflow extending from free-stream conditions

to the cowl lip plane. Such a control volume is illustrated in- the

sketch below for a two-dimensional inlet operating subcriticaly in a

supersonic free stream. For simplicity, viscous forces have been

neglected and the inlet is shown at zero angle of attack.

Control volume

One-dimensional momentum analysis for this control volume gives

I

\ + { (P-P,Dadd
ramp

+ p A V (Vpcos A - V )
K O 00X

(6)

or in coefficient form,

(Pf-PjA,,cos X r (P-PJ
Cn = — -± + — dA + 2(MFR)
D. q A q A pA » c J ramp nt» c

— cos X - 1 (7)

Calculation of Cp using this approach thus requires estimation of con-

ditions in the cowl lip plane as well as the pressure force on the

external compression surface. As is shown in this sketch, for

subcritical operation of inlets with external compression surfaces in a

supersonic free stream, the contribution of the integrated pressure drag

of the external compression surface depends on the position of the

terminal normal shock. Extimation of this position then becomes the
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critical item, and the methods used are those discussed previously in

connection with the pitot inlet analogy.

The reported comparisons with data of additive drag predicted using

the methods listed in Table VI (all for isolated inlets at zero angles of

attack and sideslip, e.g., references 32, 47, 49, 90, 111, 372) tend to

lead to contradictory conclusions. For example, for pitot inlets*, in

references 49 and 111 it is shown that additive drag is accurately

predicted using the one-dimensional momentum analysis. In reference 372,

however, values calculated in this way are generally lower than the

presumably more accurate values calculated using two-dimensional

incompressible potential flow theory and the Lieblein-Stockman compressi-

bility correction. Comparisons of predictions from these two theoretical

approaches are shown for an axisymmetric pitot inlet over a range of

subsonic free-stream Mach numbers (fig. 19). However, because no

comparison with data for Cn was made in this reference, no definitive
A

conclusions relative to the accuracy of either prediction method can be

drawn.

For axisymmetric inlets with external compression surfaces, figure 20

from reference 49 shows comparisons with data of predictions for several

inlets at two Mach numbers. The agreement is quite variable. These

inlets had the same cowl and cone half angle, but the cone was extended

by different amounts at each Mach number corresponding to three values of

supercritical mass flow ratio (B in this.figure). For the two-dimen-

sional' inlet shown' in figure '21 the version of the momentum analysis

expounded in reference 33 is shown in reference 47 to give very poor

results (fig. 22). Figure 22(a) is for a case in which the ramp shock is

detached; in reference 47 most of the disagreement is shown to be due to

the ramp drag term. Measured ramp pressures are presented in reference

47 indicating a complicated viscous flow which is obviously not well

':In reference 90, an er.pirically derived curve is shown to adequately
predict additive dra^ for sorce pitot inlets. However, no evaluation
of the bounds of applicability of this method was conducted.

41



represented by inviscid one-dimensional theory. On the other hand, in

figure 23, taken from reference 32, a momentum analysis (solid line),

incorporating the normal-shock estimation procedure of reference 32 which

has empirical allowance for the effects of sidespill is shown to give

reasonably accurate predictions for the data from reference 33. The

dashed line in that figure shows additive drag predicted using normal

shock position estimated without allowance for sidespi.ll (ref. 72) and

agreement is degraded. Figure 23 and a comparison presented in reference

32 of measured normal shock position with predictions from the two

methods used in figure 23 show that the sensitivity of additive drag

prediction to normal shock position decreases with increasing Mach

number. In spite of the success shown in figure 23 of the empirically

based shock-location procedure, its applicability to geometries other

than those of reference 33 (from which it was derived) is unknown.

The comparisons with data just discussed are inconclusive relative to

the accuracy of the one-dimensional momentum approach to predicting C~ .
f\

There is, however, an additional consideration which reflects adversely

on the potential accuracy of the method. At a given M and MFR, this

method would predict the same additive drag for an axisymmetric inlet

with conical centerbody of cone half-angle 9 as for a two-dimensional

inlet with the same throat-capture area ratio and a wedge angle of 6

(excluding allowance for sidespill). However, it is well known (e.g.,

refs. 27 or 30) that the additive drag for two-dimensional inlets is

higher than that for axisymmetric ones in this circumstance. This is due

to the higher pressure force on the external compression surface caused

by sharper curvature of the flow in the two-dimensional case. Inclusion

of an allowance for sidespill in the prediction for a two-dimensional

inlet (which lowers the predicted Cp as is shown in figure 23) does not

help the situation.
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5.2.4 Flow-field methods

In Table VIII, these methods have been divided into four classes:

numerical solution of the unsteady Euler equations, finite-difference

solution of the full potential equation, finite-difference solution of

the incompressible potential equation with a compressibility correction,

and the streamtube curvature approach.

By definition these methods provide a detailed description of the

flow in the vicinity of the inlet, thereby allowing evaluation of all of

the inlet drag terms. The price for this level of information is, of

course, a computational cost that is increased substantially over that

for the simple "partial" methods described earlier; in fact, in most

implementations of these methods, the computational requirements are

clearly in excess of what is reasonable for preliminary design purposes.

In this section, a selection of the available comparisons with experi-

mental data is presented to allow evaluation of the accuracy of the

implementations of the basic approaches we have acquired. Also, to take

account of the trade-off with computational costs, computer run times are

given where they were reported. Because the numerical analysis and

computer programming techniques used play a very important role in the

implementation of flow-field methods, the accuracy and the computer cost

demonstrated for a particular implementation may not apply to others of

the same general approach. Thus, the conclusions drawn relative to speed

and accuracy are usually applicable only to the particular implementation

under discussion.

5.2.4.1 Unsteady Euler equations

In the class of flow-field methods consisting of numerical solution

of the unsteady Euler equations, because of the details of the specific

implementation, two of the methods are applicable only to pitot inlets in

a supersonic free-stream (refs. 154, 354). In one of these, reference

154, the particular formulation of the boundary condition used resulted
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in numerical instabilities and insufficient accuracy to calculate

pressure distributions on "thin cowls," although bow shock geometry could

be predicted fairly well. Typical central processor unit (CPU) time for

a converged solution is ~4 minutes on a CDC 7600 machine. In the other

of these pitot-inlet methods, reference 354, fairly good agreement with

an experimental cowl surface pressure distribution is demonstrated for MOT

= 1.14, MFR = 0.98, and for bow-shock standoff distance for range of mass

flow ratios at that Mach number using a relatively coarse computational

grid. No integrated drag data are presented. For this method and grid,

about 8 minutes on an IBM 370/158 is required for a converged solution.

Reference 19 presents an explicit finite-difference method of solu-

tion of the unsteady Euler equations which is valid for two-dimensional

flow fields for two-dimensional or axisymmetric geometries in any speed

range. Tne solution algorithm is briefly described, as is the formula-

tion of the required boundary conditions and methods used to speed

convergence of the solution. Interior points in the required computa-

tional mesh are automatically generated by the program from mesh

coordinates specified on the boundaries. Solutions are presented and

compared with data at two values of MFR for a two-dimensional three-ramp

external-compression inlet at M^ = 0.7. Because the essential features

of the comparison with data in both cases were the same, only one value

of MFR (MFR = 0.5) will be discussed here. The geometry considered is

shown in figure 24. Comparisons of calclated values with measured

pressures on the ramp (fig. 25(a)), on the cowl external surface (fig. -

25(b)), and on the cowl-lip internal surface (fig. 25(c)) are shown.

In these figures, good qualitative agreement is evident, but in

reference 19 it is concluded that pressure level is not satisfactorily

predicted. Drag computed from these pressure distributions would be

considerably in error, particularly on the cowl external surface; the

authors feel that improvement in this area would require a refined mesh

structure. However, for the solutions shown, the full storage capacity

of the available machine (a CDC 6600) was used, and approximately 5.6

44



hours of computer time were spent in the evolution of the flow field from

the prescribed initial free-stream conditions. Although the solutions

shown are not considered to be steady state (an additional 1.5 hours of

computer time was estimated for full convergence), the calculated

pressures are estimated to be near their final values; major improvement

is felt to depend on mesh refinement.

5.2.4.2 Full potential equation

Finite-difference solution of the full potential equation is the

second of the general classes of flow-field methods. These methods are

valid up to free-stream speeds which result in local supersonic regions

terminating in strong shocks. Various implementations of the basic

approach have been made for pitot inlets and axisymmetric and two-dimen-

sional inlets with external compression surfaces. Reference 215 is an

example of an implementation of the general scheme valid for axisymmetric

pitot inlets at angle of attack in a uniform subsonic free stream; note

that this is one of the two flow-field methods we have acquired which can

deal with a three-dimensional flow field. In reference 215, the solution

method is described (including special handling of the circumferential

derivatives), as are the boundary conditions and the initial field.

Comparisons with measured surface Mach number are given for five pitot

inlets operating in low-speed free streams (M < .2) at a variety of

angles of attack and mass flow ratios (throat Mach numbers <_ 0.86: at

0.86, the inlet was observed to be choked). Very good agreement with the

data is demonstrated. .No integrated drags were calculated. Typical run

times for a converged solution are from 12 to 15 minutes on a CDC 6600

computer.

Another implementation of this class of methods is that of reference

37. The same implementation is also described in reference 52. This

version allows solution of two-dimensional flow fields for inlets of

either two-dimensional or axisymmetric geometry with external compression

surfaces. The method is applied to two-dimensional inlets and is com-



pared to data in references 63 and 224. Examples of these comparisons

are given in figure 26 which is reproduced from reference 63. In this

figure, fair agreement is shown for the drag slope but poor agreement is

achieved for drag level. In reference 63, the disagreement is attributed

to the existence of three-dimensional effects and shocks, and to

inadequate grid resolution in the computation in regions of high

gradients. Application of this technique to an axisymmetric inlet is

shown in figure 27, taken from reference 37. Here, the level of CQ
Hn\ J.

has been adjusted by calculating additive drag using momentum analysis on

the entering streamtube and replacing the stream thrusts generated by the

method with one-dimensional values. The approach more typical in

flow-field methods of integrating the pressure distribution on the

stagnation streamline leads to erroneous CQ. in this implementation. The

discrepancy in level of additive drag observed here is claimed not to

exist in the calculation for two-dimensional geometries. However, in the

analysis of two-dimensional inlets, a problem with mass conservation in

the calculation is indicated. This problem is obviously attributable to

this specific implementation of the potential-equation method. That is,

it is not a general characteristic of this class. However, because the

implementation described in references 37 and 52 is the only application

of the full potential equation to inlets with external compression

surfaces we have been able to discover in the published literature, it is

not clear whether the problem with additive drag level described above is

a general one. Computational run times on the order of 15 seconds on a

CDC 6400 computer are claimed.

5.2.4.3 Incompressible potential equation with compressibility

correction

The third general class of method appearing in Table VIII

is the solution of the incompressible potential equation with a

compressibility correction. One implementation of this method we have

acquired is described in reference 52, where the Douglas Neumann

incompressible flow program (refs. 8.4-8.6) is coupled with either the
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Prandtl-Glauert, Karman-Tsein, Laitone, or Krahn compressibility

correccion. The method is applied to two-dimensional and axisymmetric

inlets with centerbodies; in ref. 52, surface pressures on the cowl

and centerbody are compared to data at M = 0.7, 0.9 and several mass

flow ratios for the axisymmetric inlet shown schematically in figure

27. No integrated values of drag are given. The calculated pressure

coefficients agree best using the Laitone correction.

The other implementation of the class of methods shown in Table VIII

is that of reference 405. This is the second of the two Flow-field

Methods we have acquired which can deal with a three-dimensional flow

field. In this approach, the incompressible flow about a pitot inlet

with or without a centerbody is solved using a panel method. Solutions

for unit onset flows parallel to each of the coordinate axes are combined

with a solution for static operation to result in a rigorous incom-

pressible solution for an inlet at arbitrary angles of attack and

yaw with arbitrary mass flow rate. Compressibility is accounted for by

applying the Lieblein-Stockman correction (ref. 8.7). The method is

applicable for subsonic free streams, but local regions of the flow may

be supersonic although they should be shock-free. The geometry may be

three-dimensional but it must exhibit a plane of symmetry. In reference

405, the method is applied to a subsonic-design-point axisymmetric pitot

inlet at 75° angle of attack in a situation where the throat Mach number

is 0.603 (the free stream velocity is not reported). Excellent agreement

with data is shown for pressures on the internal and external cowl

surfaces. Drag is not calculated. It is observed in reference 405 that

panel methods usually require considerably less computer time than

finite-difference methods; the superposition technique and compressi-

bility correction used also lead to computational efficiency. Thus, it

is claimed that the method of reference 405 is faster than a finite-

difference method by two orders of magnitude.
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5.2.4.4 Streamtube curvature analysis

The final general class of methods uses streamtube curvature (STC)

analysis. This approach, as explained in reference 274, basically uses

one-dimensional compressible flow analysis in a number of adjacent

streamtubes; when taken together the entire flow field is simulated.

Streamline positions are refined iteratively; in each iteration the

momentum equation normal to the streamlines is integrated using

calculated values of streamline curvature to obtain velocity, and the

continuity equation is used to define a new streamline position. The

iterative process is continued until streamline movement is less than a

specified amount.

A characteristic of streamtube curvature methods, as discussed in

reference 239, is that the method is extremaly sensitive to input

geometry. As stated therein, "The difference between an aborted run and

a successful run is usually a minute change in the geometric data." This

extreme sensitivity is due to the need to calculate surface curvatures

from input geometry and can make the method very troublesome to use. In

reference 274, the method is applied to the pitot inlet shown in figure

28 for several Mach numbers and mass flow ratios. Calculated results

accounting for viscous effects by means of the integral boundary layer

method of Stratford and Beavers (ref. 8.8) are included. Sample

comparisons with data from three circumferential positions identified in

ref. 274 as "NASA-Langley Data, ATT Nacelle Inlet Test, 16 Foot

Transonic Tunnel" are shown in figure 29. In figure 29(a), a fully

subsonic case is shown and excellent agreement is obtained. At a higher

value of free-stream Mach number, figure 29(b), increasing the number of

grid points in the STC solution led to local oscillations in the inviscid

solution which were claimed to be eliminated in the physical situation by

"viscous effects". At a still higher Mach number, figure 29(c), predic-

tions are included done with the boundary layer analysis (labeled

STC-SAB) and without it (labeled STC). It is seen that neither one is in

agreement with the data; separation over the initial portion of the cowl
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lip was observed experimentally at this condition, and the integral

boundary layer method is inadequate in this situation. Cowl drag forces

integrated from the predictions and data of figures 29(a), (b), and (c)

are in reasonably good agreement (within .01 for CD ), but at least in

the case of figure 29(c), this must be attributable to compensating

errors.

In reference 239, application of the streamtube curvature method to

the B-l external-compression inlet shown in figure 30 is made for

free-stream Mach numbers of 0.7 and 0.85 for values of MFR of 0.55 and

0.75 and several positions of the variable ramps. Sample comparisons

with data are shown in figures 31-33. All of these figures are for the

ramp positions Rg = 7.2°, HL = 27.3 and are for M^ = 0.85. Figure 31

shows the ramp and cowl pressures for MFR = 0.55, while figure 32 is for

MFR = 0.75. Additive drag over a range of mass flow ratios is shown in

figure 33 for this Mach number and geometry. The experimental data were

obtained for an inlet mounted on a fuselage and stub wing assembly.

Allowance for the angularity of the local inlet flow field was made by

running the STC program using various incidence angles and selecting the

incidence at each value of Mro that gave best agreement with the measured

ramp pressures. Reasonable values of flow incidence resulted from this

procedure and the agreement for ramp pressures in figures 31(a) and 32(a)

is fairly good. Calculated cowl pressures agree poorly with the

measurements, as shown in figures 31(b) and 32(b). This poor agreement

is likely due to some combination of inadequate grid resolution and

viscous effects, but further work would be required to ascertain this.

However, additive drag is predicted with reasonable accuracy, as seen in

figure 33; this positive result is possible because of the high degree of

two-dimensionality of the inlet flow field indicated by the transverse

taps in figures 31 and 32.

49



5.2.5 Concluding remarks

An evaluation of the adequacy for preliminary design (based on

completeness, ease of application, and accuracy) of the data base for

inlet external drag has revealed:

1. The sensitivity of airplane .performance to inlet external drag is

a strong function of the airplane's mission. Therefore, the required

accuracy for preliminary design methods cannot be stated in general.

However, for aircraft with mixed missions, inlet external drag exerts a

powerful influence on the aircraft's performance and accurate predictions

are required to allow for rational configuration definition.

2. Although a few systematic studies exist, the experimental data

portion of the data base consists mostly of specialized studies of

particular inlets. Because inlet external drag depends in an important

way on geometrical details, this portion of the data base is adequate for

prediction only for inlets not substantially different than those

previously tested. '

3. Calculation of cowl lip suction by methods with a reference mass

flow ratio of unity are inaccurate because of the large extrapolation of

data usually entailed.

4. Values of lip suction as calculated from the correlation of

reference 32 for inlets reasonably similar to those from which the

correlation was derived are in only fair agreement with data at low mass

flow ratios. Because of its formulation, this method cannot predict

experimentally demonstrated differences in lip suction resulting from

changes in detailed cowl shape.

5. The KaJd factor does not exhibit freedom from geometric detail.

Its use is equivalent to using the original experimental data.

50



6. Use of the "pitot inlet analogy" to predict Cn in a supersonic
il A JL

free stream leads to variable agreement with measurements (figs. 11-18).

In this method, CQ is again assumed to be independent of detailed cowl

lip shape.

7. Prediction of additive drag using a one-dimensional momentum

analysis leads to acceptable agreement with data only for the simplest

possible configuration, i.e., a pitot inlet. Predictions in other

situations are in general poor, although methods containing additional

empiricism (e.g., for normal shock location) can give reasonable

agreement in limited classes of geometries.

. 8. Some of the Flow-field Methods discussed herein can yield

adequate results although the comparisons with data available do not

allow for comprehensive evaluation of their limits of applicability. For

those methods applicable to supersonic design-point inlets, the large

computers and long run times required to achieve satisfactory agreement

result in their being of limited usefulness for preliminary design.

6. DATA BASE FOR AFTERBODY DRAG AND THE EVALUATION OF ITS

ADEQUACY FOR PRELIMINARY DESIGN

In this section, the part of the air frame/propulsion system inter-

action data base that is associated with afterbody drag is evaluated.

Other aerodynamic interference effects associated with the afterbody will

not be considered in detail in this report.

6.1 Requirements for Drag Prediction

The functional dependence of afterbody drag can be represented as

C = f(Afterbody Geometry, M , NPR, Re, a) (8)
AB
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where the specification of Afterbody Geometry includes such features as

number of engines, interfairing type, engine nacelle spacing, empennage

type and nozzle type. This relationship includes complex interaction

effects due to the interference flow fields of the various constituents

of the afterbody/airframe system as well as exhaust plume shape and

entrainment effects. The total afterbody drag of a twin-engine fighter

model can amount to 40 to 45 percent of overall zero-lift vehicle drag

even though the afterbody portion of the vehicle may comprise only

one-third of the total wetted area.

In the preliminary design process, this relationship must be

evaluated for various candidate configurations to allow the most

promising of them to be selected for development. To be useful for

preliminary design, the afterbody/air frame data base must satisfy the

same three requirements as for inlets, namely:

1. Breadth

2. Ease of application

3. Accuracy

In the following sections, the experimental data and prediction methods

that exist for afterbody/drag are evaluated with respect to these

requirements. Empirical prediction methods are generally found to be the

easiest to apply but may be quite limited in the requirements of breadth

and accuracy. Theoretical methods are more difficult to apply, may

require costly computer time, and generally also suffer from lack of

breadth and accuracy.

With regard to the accuracy required, it is clear that in a com-

plex system such as a high performance fighter, the errors associated

with each constituent of the overall system must be kept as small as

possible. The general remarks made previously with regard to inlet

external drag apply to the afterbody drag problem as well. That is, no

simple general statement of the accuracy required can be made. The
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minimum drag increment that can be allowed is a function of the detailed

nature of the mission considered.

Sensitivity of aircraft range to errors in predicted drag has

already been discussed in section 5. The same considerations apply

with regard to afterbodies since the afterbody drag can be a

significant percentage of the total vehicle drag.

6.2 Empirical Prediction Methods

6.2.1 Single-engine configurations

The only comprehensive empirical method for single engine con-

figurations is the Afterbody Drag Approximation Procedure (ADAP) of

Bergman, et al., described in references 6, and 254-256. The method was

adapted for use on a CDC 7600 computer by Kuhn (ref. 307). The ADAP cal-

culates pressure drag for axisymmetric or non-axisymmetric (2-D) after-

body/nozzle configurations. The program is based on data correlations

presented in references 254 and 255 for isolated bodies (no wing, tail,

or 3-D fuselage effects) at subsonic speeds (Mach number less than

approxmately 0.9) and, for purely axisymmetric configurations, at

supersonic speeds (Mach numbers from 1.0 to 1.8). Base drag and friction

drag are not included in the correlations.

6.2.1.1 Input parameters

The process of selecting geometric and flow-field parameters was

described in reference 254. Because the intended use of the parameters

was to relate experimental data, rather than for generating analytical

solutions, they were selected to be somewhat generally descriptive

instead of being extremely precise. Also, the input parameters were

derived to be easily determined for a practical drag prediction procedure

for preliminary design. The procedure applies to pressure drag only.

Friction drag can be predicted separately and added to the pressure drag.
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Geometric parameters.- Fuselage/nozzle afterbody geometry is

described by non-dimensional parameters. The forebody is assumed to be a

constant-area section extending upstream from the afterbody's maximum

area. Afterbody geometry is simplified to the extent that protuberances

such as horizontal and vertical tails are not included. Specifically,

the type of afterbodies considered are those having smoothly contoured

surfaces (no sharp corners) and negligible base areas (nozzle with thin

trailing edges). The geometric parameters used in the ADAP are

illustrated in figure 34. Note that fineness ratio and external area

ratio (closure ratio) are used to define the afterbody rather than a

detailed description of the surface contours. This approach was taken

because it was found that smoothly contoured boattails such as those with

circular arc or parabolic shapes exhibit roughly identical drag

characteristics at subsonic Mach numbers. In contrast, contours having

high slopes at the forebody/afterbody junction, such as conical after-

bodies, usually create abnormally high drag levels and early drag rise.

Such contours are excluded from the afterbodies used in the ADAP correla-

tions.

Another geometric parameter that is related to afterbody drag is the

nozzle expansion ratio. That parameter determines the exit flow Mach

number and has a significant influence on the shape of the exhaust plume.

In summary, the geometric parameters required as input to the ADAP

are as follows:

1. Fineness ratio, L,/Dm = FR£\ rn

2. Nozzle expansion ratio, A /A = ER

3. Boattail closure ratio, A /A
' e m

Flow-field parameters.- In addition to free-stream Mach number and

Reynolds number, a parameter that has been found to be important in

describing nozzle flow fields is the nozzle pressure ratio, defined as

the exhaust-stream total pressure divided by the free stream static
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pressure. Another parameter that is useful in describing plume

conditions is the ratio of exhaust-stream static pressure, at the nozzle

exit, to the free-stream static pressure. This parameter can be derived

from the nozzle pressure ratio, nozzle geometry and free-stream Mach

number, and so is not an independent parameter.

The influence of Reynolds number on boattail drag has not been

completely determined for bodies of the type used in the ADAP correla-

tions. For the data used in the derivation of the ADAP, Reynolds number

was not a significant parameter. Consequently, Reynolds number is not

included in the input.

The flow field parameters required for input are:

1. Free-stream Mach number, M
' 00

2. Nozzle pressure ratio, NPR, Pf./Pm

3. Ratio of specific heats of the exhaust, y

Additional parameters for two-dimensional nozzles.- The effect of

non-axisyiametric nozzles was accounted for by assuming the maximum

cross-sectional area is square and that two-dimensional effects are

important only when the exit plane geometry is not square. The important

parameters for two-dimensional nozzles are then:

1. Height ratio of nozzle, H /H

2. Width ratio of nozzle, W /W

6.2.1.2 Data correlation technique

Afterbody drag can be represented as a basic drag characteristic of

the afterbody itself, plus the effects of exhaust plume interference. A

jet-effects analysis conducted by General Dynamics resulted in the

development of a methodology of dividing jet effects into components of

plume-shape effects and entrainment effects. A more detailed account of
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the jet-effects analysis is found in reference 6. A pictorial descrip-

tion of the drag components is presented in figure 35. Notice, that basic

afterbody drag is defined as the drag which occurs if a semi-infinite

cylinder extends downstream of the nozzle in place of a true plume.

For subsonic free-stream flow, jet-on afterbody drag was found to

approximate basic drag (drag with a cylinder in place of a jet) when the

plume's theoretical (1-D) fully-expanded area is roughly 9% larger

(averaged value) than the nozzle exit area; that is, when nozzle flow is

underexpanded by this amount. Examples of this phenomenon from

references 6 and 46 are shown in figure 36. Therefore, at NPR conditions

producing this amount of underexpansion, plume entrainment effect is

equal in magnitude but opposite in sense to plume shape effect. Also, it

can be assumed that entrainment effects are negligible when the plume

momentum per unit area equals that of the free stream. For example, for

an unheated plume, zero entrainment effect occurs when the NPR equals the

free-stream total-to-static pressure ratio, that is when the Mach numbers

of the jet and the free stream are equal. Although this low-NPR situa-

tion is unlike nozzle operation in flight, nozzle test data are sometimes

taken at this condition.

For supersonic free-stream conditions, reference 256 points out that

the plume underexpansion percentage is a function of afterbody/nozzle

geometry. As a result, basic drag curves for supersonic flows were

derived from a schedule defining the necessary plume expansion (in terms

of nozzle pressure ratio, NPRR) to approximate basic drag for different

boattail geometries (fig. 37).

Basic afterbody drag can be predicted via configurations actually

having long cylinders in place of plumes or by using the average 9

percent expanded-area criteria for subsonic flow or the appropriate

expansion for supersonic flow. Plume entrainment effects were determined

by measuring boattail drag with a solid, plume-shaped extension attached

and then comparing the drag to the drag without the extension, but with
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the actual pressurized exhaust in its place. For supersonic flow, it was

assumed that entrainment occurred at choked flow (NPR = 2, M =1 for a

convergent nozzle) because of subsonic fow in the boundary layer being

accelerated by the supersonic flow in the exhaust jet. Shape effects

were assumed to occur when plume billowing began, that is, at NPR's

greater than that required for fully expanded nozzle flow.

Therefore, given afterbody drag values for various geometry/flow

field conditions, basic drags (CDR) and plume entrainment effects

were determined (refs. 255 and 256). Accordingly, the equation

CDUAB

presented in figure 35, was solved for ACp , having determined the
O

remaining terms. These drag components were then correlated such that

their respective values for fuselage/nozzle geometry in general could be

systematically predicted.

Basic afterbody drag.- The drag of smoothly contoured afterbodies

(e.g., circular arc, parabolic) with cylinders in place of exhaust plumes

was correlated by the use of fineness ratio and boattail closure ratio

parameters. Typical correlations of basic afterbody drag are presented

in figure 38. Reynolds-number effects on pressure drag coefficient are

normally negligible at-free-stream Mach numbers below drag rise (Mach

numbers less than approximately 0.85) for turbulent boundary layers and

smoothly contoured afterbodies—the situation being analyzed. Thus the

drag coefficients presented are applicable to Reynolds numbers associated

with turbulent boundary layer conditions.

Plume shape effect.- The maximum cross-sectional area to which an

exhaust plume expands is a predominant factor influencing the plume

interference effects on afterbody drag. External plume expansion will

vary not only with nozzle pressure ratio, but also with nozzle internal
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area ratio. Unfortunately, the majority of available test data at

subsonic Mach numbers are for afterbodies with convergent nozzles or only

slightly convergent-divergent nozzles (i.e., Ae/At - 1). 'Therefore,

generalized drag predictions for afterbodies with convergent-divergent

nozzles were handled in a unique manner; in particular, the method used

in the ADAP analysis was to transform the afterbodies with convergent-

divergent nozzles into equivalent-drag afterbodies with convergent

nozzles so that relatively abundant convergent nozzle data could be used.

Specifically, an afterbody with a convergent-divergent nozzle is

converted into an afterbody with a convergent nozzle which has an

identical afterbody external shape and an identical plume external

expansion. This approach is illustrated if figure 39. This necessitates

that a "corrected", rather than true, nozzle static pressure ratio, p./p^,

(NSPR) be used when analyzing the afterbody drag with a convergent-

divergent nozzle. Corrected NSPR is that NSPR at which a convergent

nozzle must operate to produce a plume with a maximum free-expansion area

identical to that of the convergent-divergent nozzle in question. Note

That the theoretical full-expansion area (from isentropic flow tables)

is used as a quasi-average representation of the periodic behavior of

the plume. Examples of the transformation from actual NSPR to corrected

NSPR are given in figure 40.

The correlation of plume shape effect is presented in figure 41. As

shown in these curves, a corrected NSPR equal to unity (i.e., no external

expansion of the plume) produces no effect on basic drag. Basic drag can

be described as the drag of an afterbody having a pseudo, cylindrically

shaped nonentraining plume. The plume billows beyond the diameter of

the nozzle exit at values of corrected NSPR greater than 1 and creates a

drag-reducing effect.

Plume entrainment effect.- Plume entrainment, like flow separation,

is a result of viscosity. Entrainment occurs because of the momentum

differential between the plume and the external flow. The exhaust plume,
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having more momentum per unit area than the free stream entrains external

flow.

The majority of subsonic test data used in the correlations pertain

to free-stream Mach number between 0.4 and 0.85. However, more emphasis

was placed on correlating the Mach 0.85 data since this is more repre-

sentative of typical subsonic cruise conditions. The entrainment

correlation is based on a jet momentum ratio given by

e =
(pv2)(

(pv2) (YpM2)
(10)

from which

corr
= NSPR —

corr

Ye'

.V

^refl

L^refJ

2

M-M
i i rer

M fref

ref

/

e
2

rrt

(11)

where M0 = 1 and M = 0.85
eref "ref

Thus,

6 =1.384 NSPR
corr corr

I + (M -1)e

1- (1.176M - 1)
(12)

The correlation of iet entrainment effects via the 6 momentumJ corr
parameter is shown in figure 42. As expected, momentum ratios greater

than unity produce a drag-increasing effect due to viscous pumping.
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6.2.1.3 Calculation procedure for pressure drag on axisyrimetric

bodies

Equations used.- From the input quantities discussed in the previous

section, the computer program calculates two parameters to obtain the

plume shape and entrainment effects. These parameters are NSPR , an

effective nozzle static pressure ratio, and 6, the jet momentum ratio.

NSPR is the nozzle static pressure ratio, as defined previously. NSPR

is that NSPR at which a convergent nozzle must operate to produce a plume

with a theoretical, maximum-free-expansion area, (A.)f identical toj i.e.
that of the convergent-divergent nozzle in question. The momentum ratio,

6, is the jet-moraentura at the exit divided by the free stream momentum.

corr

The calculation of NSPR is done in four steps by the ADAP

procedure:

1.

2.

3.

4.

Knowing NPR, calculate correspondng (A.) /At<

Divide (A ),. /A by the expansion ratio, A /A .
j f.e. t e t

Knowing (A.)f /Ae, which is an area ratio, calculate

corresponding p/p , the reciprocal of which is NPR

Multiply NPR by p/p at M = 1 (convergent nozzle case)
corr t fc-

to obtain NSPR
corr

The user inputs the expansion ratio, the nozzle pressure ratio, and

into the ADAP, and the program internally performs -these steps. _The

first step, from the Mach functions, is

Y+l

(Vf.e. 1

At / f 2 H Y-l 1

2
Y+l

\ Y-ll

NPR Y

2 (Y-l)

(13)

NPR - 1
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When considered relative to the nozzle exit station, this potential

expansion is combined with the internal expansion ratio, thus yielding a

relative expansion ratio defined by

(AJ>f.e. (14)

This parameter implies that a relative or corrected nozzle pressure

o is needed to describe external plume ex]

the p /p that corresponds to the (A.)c /A .

ratio is needed to describe external plume expansion. This NPR iscorr

Mathematically, no closed-form solution exists for calculating a

pressure ratio when given an area ratio. ADAP uses the Newton-Raphson

method to find NPR from the relations
corr

f = -2J

Y+l
Y-l

Y+lJ

2 I
Y-lJ

M
A

e

2
rv[ p .

Hi

r + f 2 1
) Y-l

A . '
J

Ae
(15)

df

Y+l

Y+lJ
-1 fl±l] pt-

I Y HP.
(16)

and the proper value of p._/p is that value which causes f(pt/p) = 0

NSPR is then found from

NSPRcorr

1-Y

(17)
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The momentum ratio, 9, is then calculated from

9 = 1. >> Y
corr' 1.4

1 + (Me - I)2

1 - (1.176 M - I)2

— oo —

(18)

In the above equation, all of the variables, except M , are known.

For ADAP, the exit Mach number is a function of expansion ratio and y.

Since there is no closed-form solution for Mach number given an expansion

(area) ratio, the Newton-Raphson iterative technique is used to find M ,

where:

Y-l

Y+l Y+l e

2(Y-D
M (19)

df
d(Me)

= f = M

3-Y

Y+l

2(Y-l) A^
(20)

When f converges to 0, M is found. The momentum ratio, 9, is then

calculated from Eq. (18).

Method of interpolation.- In the computational technique described in

references 254, 255, 256, and 307, there are 174 parametric .curves that

define values necessary for computing the three drag components (basic

pressure drag and the two corrections for plume shape and entrainment)

of the axisymmetric afterbody/nozzle pressure drag. For the basic after-

body drag curves, for subsonic flows, 20 control points (points from

ref. 354 curves, fig. 38) are used to define each curve. For the super-

sonic basic drag curves, the plume-shape-effect, and the plume-entrain-

inent-effect curves, 6 control points are used for each curve (figs.

38(b), 41, and 42).
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The appropriate data arrays containing control points necessary to

describe specific curves for corresponding NSPR and 9 at given FR are

used during program execution. The 20 or 6 control points (depending on

which curve type is called) are mathematically interpolated (curve-fit)

with-a 3rd-order, continuous-lst-and-2nd-derivative, natural-spline-

function subroutine. When the control points are curve-fit, evaluation

at any coordinate on the curve is available. For the interpolation

between NSPR , FR, and 6 curves, a linear interpolation is used.

An example is shown for illustration. For the case of FR = 2.3, A /Ae m
= .53, NPR = 6, ER = 1.1, and y = 1.4, the plume shape effect is to be

determined. The program would calculate NSPR = 2.6 and obtain theK 6 corr
data arrays containing control points describing NSPR for NSPR

= 2 and 3 at FR = 2 (see fig. 43). Then the spline-functions subroutine

would evaluate ACn at NSPR = 2 and 3 at A /A = .53. The programUS corr e m
would then interpolate the .plume-shape drag increment for NSPR = 2.6

from these two values. The above process would be repeated for the FR =

2.5 points. Once values at both FR's (FR = 2 and FR = 2.5) are

calculated, linear interpolation can be used to produce the plume shape

increment, ACD at FR = 2.3.

To calculate the plume entrainment effect, the program would use the

jntum ratio, 9 as the c<

follow the same procedure.

momentum ratio, 9 as the correlating parameter (instead of NSPR ) and

6.2.1.4 Calculation procedure for subsonic pressure drag on non-

axisymmetric bodies

Only a limited amount of data is presently available with regard to

drag on non-axisymmetric nozzles. Consequently, there is great

difficulty in defining an accurate generalized correlation of 2-D

effects.
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Published and unpublished test data from Pratt and Whitney Aircraft's

isolated parametric 2-D nozzle tests''(ref. 249) were incorporated by

General Dynamics as the primary data source. These data, to be discussed

in the following section, were employed in reference 255 to define

relationships between axisymmetric and nonaxisymmetric nozzles that are

used to calculate the 2-D nozzle pressure drag.

Experimental data.- Experimental data used to develop the correlation

are shown in figure 44. The geometry is representative of single-engine

installation, i.e., square at the forebody's maximum cross-sectional

area. At the exit plane, the width is the same as the width at the

afterbody maximum cross section (no side boattailing). Height at the

exit plane is one-fourth the height at the maximum cross section.

Therefore, the nozzle exit plane forms a 4:1 rectangle. The P&WA data

was originally in the form of drag coefficients referenced to aft-facing

projected area vs terminal boattail angles. The ADAP program calculates

drag coefficients referenced to maximum cross-sectional area and calls

for fineness and area ratios rather than boattail angles as the input

quantities. Therefore, a conversion of CD^ to CD^ > as well as D /D

and boattail trailing edge angle, 8 to A /A and FR was performed using

the following equations

1. A = A - A
p m e

2. A = .25 A since H /H = .25 and W /W = 1
e m e m e m

3. A = .75 A
p m

Therefore

CD - .75 CD
\i Ap
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and

ra - sin B

12

sin B
(21)

Correlation parameter.- A comparison, shown in figure 45, relates the

2-D drags to ADAP-predicted axisymmetric-nozzle drags based on the same

nozzle-pressure and area ratios. The difference between the two drag

levels is an incremental effect which is correlated and manipulated to

convert axisymmetric nozzle predictions into those for 2-D nozzles. It

was also reasoned in reference 255 that 2-D geometry predominantly

affects the basic pressure drag (because of altered flow recompression)

and entrainment drag increments (because of increased plume surface area)

as opposed to affecting plume billowing. Consequently, this relationship

was defined as

ACD2-D

AC,
2-D C_ + AC

°B °E
(22)

ADAP
axi

where the quantity ACn _ / ( C n _ + ACn„) . is a funct ion of fineness ratio
L—D B E axi

and, as shown in figure 46, is stored via 10 control points in the ADAP

program data files.

While the above relationship accounts for the geometric parameters of

fineness ratio and A /A , it does not account for variations in sidewalle m
boattailing; thus, the proportionality sign is employed. The P&WA data

involves a 2-D nozzle having no sidewall boattailing. In order to

investigate 2-D nozzles having some sidewall boattailing, a constant, <{>,

is used to include the effects of sidewall boattailing, so that
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AC
D = *
2-D

ACD
2-D (23)

ADAP

axi

The parameter <}> must be a function of the input 2-D geometry; ADAP

uses the parameters W /W (exit width divided by max. afterbody width)

and H /H (exit height divided by max. afterbody height). For the P&WA

test, W /W = 1 and H /H = .25; however, one must recognize that for an
e m e m

isolated 2-D nozzle the flow field cannot distinguish the "side" of the

nozzle from the "top"; hence, the data would be the same if W /W = .25

and H /H = 1.0. This evaluation is important because it restricts thee m r

possible relationships between $ and the 2-D geometric parameters. By

assuming that for an isolated 2-D afterbody, the maximum cross-sectional

area is square (W /H =1), and then assuming that 2-D effects arem m
significant only when the exit plane 2-D geometry is not square, the

following equation was derived.

(1-

W H
1 — —

W H
m m

(24)

The final equation, therefore, is a function of sidewall boattailing as

well as upper- and lower-surface boattailing, fineness ratio, nozzle

pressure ratio, and Mach number and is defined by the following

relationship:
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AC
D
2-D

r w u HIl-^)r<
2

( W 1

- 1 + <TI >J
W H

e e
W H

m m

f H 1H

r ACD
2-D

axi
ADAP

(25)

6.2.1.5 Comparisons with experimental data

Several example cases were calculated to evaluate the prediction

method. The first two examples, shown in figures 47 and 48, compare the

predictions with data from references 249 and 36. The data were

contained in the data base used by General Dynamics to derive the ADAP

correlations. However, the calculations shown in figures 47 and 48 were

performed using the FORTRAN version of the program developed by Kuhn

(ref. 307). The agreement is excellent.

Other examples are shown in figures 49 and 50 which indicate more

clearly the limitations of the predictive method. In figure 49 is shown

the comparison between predicted drag coefficients and experimental

values as functions of nozzle pressure ratio for various Mach numbers on

several of the circular-arc boattails studied in reference 92. The

values of the parameters covered in these figures are listed in the

following table.
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'igure FR Am/Am

49a

49b

49c

49d

50a

50b

50c

50d

0

1

1

1

0

1

1

1

.8

.0

.768

.5

.8

.0

.768

.5

0

0

- 0

0

0

0

0

0

t= — m.

.25

.25

.25

.49

.25

.25

.25

.49

Pt./P-c,l

1 -

1 -

1 -

1 -

3

3

3

3

l*S

6

6

6

6

M,

0.4 - 1.3

The data from reference 92 for supersonic Mach numbers were included

in the ADAP data base. The subsonic data from reference 92 were not.

Therefore, the subsonic data constitute an independent check of the

prediction method. Also, it is noted that the ADAP correlations include

fineness ratios from 1.0 to 4.0 for subsonic flows and 1.0 to 2.0 for

supersonic flows. Thus, the body with fineness ratio of 0.8 requires

extrapolation from the main data base in order to predict the drag.

Another feature of the data is the existence of an extensive region of

separated flow on the FR = 0.8 and 1.0 afterbodies as indicated by

oil-flow studies discussed in reference 275. The agreement between the

prediction and the data shown in figure 50 is good for the supersonic

case for fineness ratios above 1.0. The predicted drag is generally

somewhat lower than the data for all fineness ratios for the subsonic

cases. •' •• - ...

A better evaluation of the quality of the prediction can be seen in

figure 50, where the drag coefficients are plotted as functions of Mach

number for a single nozzle pressure ratio of 3.0. The first notable fact

that can be observed from this comparison is that the ADAP does not

predict the transonic drag rise. For subsonic flow best agreement for

all the bodies occurs around a Mach number of 0.8. This is to be

expected since the ADAP data correlation emphasized Mm = 0.85 data with
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some data between M = 0.4 and 0.85. It is not clear whether the lack of
00

agreement shown in figure 50(a) for the FR = 0.8 case can be attributed

to the separation observed on that body or simply to the fact that such

data were not included in the data base. Some improvement could probably

be achieved in these predictions if the subsonic and transonic data from

reference 92 were incorporated into the correlations.

6.2.2 Twin-engine configurations

All the remaining methods to be examined employ as a basic corre-

lating parameter a projected-area-weighted average slope of the afterbody

area distribution known as the Integral Mean Slope (IMS). This parameter

has been found to correlate both twin-jet and single-jet parametric drag

data (ref. 118).

The first method to be examined was developed by the Boeing Company

and Pratt & Whitney Aircraft. The method is based on correlation of a

large amount of data. However, it is limited to Mach numbers below 0.95.

The second prediction method was developed by the Lockheed California

Company (Calac) under an extensive program in which 92 aircraft con-

figurations were tested over a wide range of Mach numbers, nozzle

pressure ratios, and configuration variables. The third method,

developed by the Naval Air Development Center, extends the Calac method

to a broader base of experimental data by including all available after-

body drag data for twin-engine "fighter-type" configurations in a data

"base. A statistical method is then applied to develop a correcton for

the Calac correlation.

6.2.2.1 ESIP twin-afterbody drag prediction method

The ESIP prediction method (ref. 24) deals with the pressure drag of

the aft fuselage downstream from the maximum cross-sectional area for

subsonic Mach numbers up to 0.95. The correlation covers configurations

with horizontal interfairings. There is reason'to believe it is also
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applicable to other interfairing concepts or even to single-engine

configurations but data are not now available to verify this. The

correlation accounts for the effects of either a single vertical

stabilizer or twin vertical stabilizers extending radially from nacelle

centerlines.

The correlation treats only the design-pressure-ratio case for which

the nozzle-exit static pressure equals free-stream ambient pressure.

Pratt & Whitney has developed a jet-plume parameter to help handle

off-design conditions (ref. 113).

The ESIP correlation is based on the integral mean slope of an

equivalent body of revolution representing the afterbody. However, in

this correlation, an attempt has been made to account for the effects of

separated flow. In the development of the method, studies indicated that

the aft-end drag coefficient should correlate well with the IMS

parameter. Other data, however, showed that the correlation broke down

for afterbodies whose area plots involved regions of steep slopes. A

modified IMS parameter called IMST was then developed to avoid a

sensitivity to afterbody contours in regions which were likely to have

separated flow. The IMS™ approach is based upon specifying a maximum

slope of the nondimensional area distribution which can be used in the

IMS calculation. The maximum slope is substituted for the real slope at

each step of the IMS calculation for which the real slope exceeds the

maximum slope." The best correlation was"obtained by making'the maximum

slope a function of Mach.number. The resulting correlation is shown in

figure 51. Here C indicates the pressure drag coefficient based on

projected frontal area of the afterbody. The data represent a wide range

of aft-end geometries and nozzle types and both single- and twin-verti-

cal-stabilizer configurations. The correlations for the two tail types

were found to be nearly identical except that the single-vertical-tail

data indicated a lower drag with a level shift of 0.006 in C_. Thus, the
/\

two correlations were combined into a single correlation in terms of C~ +
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AC where A(L = 0 for centered-twin-vertical stabilizer configurations and

0.006 for single-vertical-stabilizer configurations.

Further studies of the correlation indicated that all of the data

varied almost precisely as the IMS™ parameter raised to the 2.77 power.

The IMS dependence was divided out to obtain a drag parameter which was

a function of Mach number only as shown in figure 52.

The overall procedure for using the correlation in a prediction

method for subsonic afterbody drag of twin-engine configurations is

illustrated schematically in figure 53. The first step is to input the

nondimensional afterbody area distribution. The area distribution

together with the maximum slopes are then used to calculate the IMS

values as a function of Mach numbers. The remaining calculations are

then the determination of the drag parameter from the basic correlation

curve and the inclusion of the appropriate drag increment for the tail

type.

The limits of this correlation are as follows: The correlation does

not extend below Mach numbers 0.7 because no data were obtaned there in

the test program. However, extrapolation to Mach zero along a constant

equal to the value of Mach 0.7 appears to be a reasonable approach due to

the lack of a compressibility effect at Mach 0.7. Extrapolation in the

other direction to Mach numbers greater than 0.95 would not be possible.

Similarly, the data base for the correlation includes models with IMST

values as large as about 1.1. The method should not be considered

applicable to models with larger values of IMS™. Finally, the correla-

tions are based on a narrow range of afterbody shapes, with all data

obtained with a wingless forebody. Since data presented in reference 45

indicate a rather significant effect of a wing on total aftend drag,

application of the ESIP correlation to complete configurations should be

done with caution. While the method may not predict the absolute level

of drag accurately for a given configuration, it may be useful for a

preliminary design analysis in comparing the relative meritsvof several

candidate configurations.
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6.2.2.2 Calac twin-nozzle/afterbody drag performance method

The twin-nozzle/afterbody drag performance method is described in

reference 50, which is based on work described in references 44 and 46.

It consists of a computer program for predicting twin-nozzle/afterbody

drag and internal nozzle performance for fighter-type aircraft having

twin buried engines and dual nozzles. The program is a revised version

of that described in reference 45 and is capable of generating the

installed thrust-minus-drag data required for conducting mission analysis

studies of aircraft of this type. The configuration variables which can

be analyzed include:

1. Nozzle type - convergent flap and iris

convergent-divergent with and without

secondary flow

plug, both shrouded and unshrouded

2. Nozzle lateral spacing - narrow (S/D = 1.25)

intermediate (S/D = 1.625)

wide (S/D = 2.0)

3. Interfairing type - horizontal wedge

vertical wedge

4. Vertical stabilizer type - single vertical for narrow,

intermediate, and wide spacings

twin vertical for wide spacing

The performance prediction methods are based almost entirely on

empirical correlations. Correlations used in conjunction with one-

dimensional flow relationships are employed for the prediction of the

nozzle thrust and discharge coefficients, and correlations of wind-tunnel

test data are employed for the effect of nozzle pressure ratio and flow

separation on both internal and external nozzle surfaces. A schematic

diagram of the method ̂ s presented in figure 54.



BoatCail pressure drag.- Subsonic flow: For subsonic external flow,

the prediction method begins with a basic correlation of the pressure

drag on a twin afterbody aft of a certain reference station. For the

wind-tunnel models used in developing the correlation, that station was

the metric break station separating the part of the model on which aero-

dynamic loads were measured from the rest of the model. It is suggested

that the appropriate station to be used for analysis of a new configura-

tion is the axial location of the wing trailing edge. Input data for the

computer program include quantities to account for the drag on the

portion of the afterbody between this reference station and the maximum

cross-sectional area station.

The boattail-drag coefficient referenced to the cross-sectional

area at the metric break station is computed from the following empirical

correlation of data.
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The breakdown of Eq. (26) is as follows: The first term is the drag for

the design pressure ratio, where the nozzle-exit static pressure equals

the free-stream static pressure and a cylindrical exhaust plume is

produced. The second term is the drag increment from the design pressure

ratio to operation at a higher ratio.
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A typical correlation for the design-pressure-ratio drag coefficient

parameter, K , is shown in figure 55. Note that the equivalent base-to-

metric-break area ratio is also a parameter in the correlation. The

basic correlation relates the drag coefficient, the Mach number, and the

integral mean slope IMSA of an equivalent body of revolution with the

same area distribution as the configuration of interest downstream of the

metric break station using a relationship based on transonic similarity

theory. Other parameters which' affect the correlation are the interfair-

ing type, the tail type, and the nozzle type. The correlation shown in

figure 55 'applies for configurations with horizontal interfairings and a

single vertical tail and is independent of nozzle spacing. A linear

interpolation and extrapolation for equivalent base area ratios other

than those presented in the figure is employed.

For convergent and convergent-divergent nozzle installations the drag

parameter, K^, which is the increment in drag from design-pressure-ratio

operation to operation at a higher pressure ratio, is shown in figure 56

as a functon of nozzle underexpansion loss. The drag increment, which is

normalized by the ideal thrust, is dependent upon both the Mach number

and the shroud-exit to metric-break area ratio. This correlation is a

function of nozzle type and of nozzle power setting.

Jet-off boattail drags can be computed using the correlation results

typical of figure 57. In this case, the increment in drag from jet-off

operation to operation at the nozzle design pressure ratio for various

nozzle lateral spacings and for various Mach numbers are presented. The

drag increment is presented in terms of an increment in drag coefficient

referenced to the twin-nozzle shroud exit area and is correlated as a

function of boattail trailing-edge angle B at the nozzle exit.

Supersonic flow: Boattail-drag coefficients based on maximum area

for a supersonic external flow are computed from the following equation
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where the first term is the jet-off drag and the second term is the

increment in drag from jet-off to jet-on operations. The equivalent-body

drag is obtained by entering the method-of-characteristics boattail-drag

correlation curves presented in figure 58 with a Mach number and IMS. A

subsequent correlation such as figure 59 is used to calculate the ratio

of jet-off drag to equivalent body drag as a function of Mach number and

vertical stabilizer type. For jet-on operation, K_, which is the incre-

ment in drag from jet-off operation normalized by the product of the

nozzle shroud external cross-sectional area at the nozzle exit and the

difference between nozzle internal exit pressure and the local boattail

surface pressure (assuming no flow separation) is obtained from another

correlation shown in figure 60 as a function of nozzle mean-boattail

angle. The mean boattail angle used is the mean angle over a distance

equal to one-third the nozzle exit radius measured from the nozzle exit.

This length was selected as being representative of the flow separation

length. The local boattail flow properties are obtained from a method-

of-characteristics solution. Thus, K is the increment in drag from

jet-off operation to operational conditions at which separated flow

occurs due to plume effects. It has been observed that little or no

separation occurs for (p - p )/q < 1.4. Therefore, the correlatione i_i LI
results presented in figure 60 are restricted to pressure coefficients

greater than 1.4.

Boattail friction drag.- The required input for computation of the

boattail friction drag is the boattail length (LgT), the wetted surface

area (A,, ), and either the momentum thickness (9) at the start of the
BT
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boattail or an effective flat plate length (L ff) upstream of the start

of the boattail. With these inputs, an average boattail skin friction

coefficient is computed by use of Sivells-Payne correlation (ref. 161)

which, when combined with the wetted area, yields the friction drag as

discussed below.

With an input momentum thickness at the start of the boattail the

reference-length Reynolds number, R1 , is obtained by iterative solution
el

of the following equation

- (0.044 - 1.5)' (28)

where the primed quantities denote values evaluated at the reference

temperature, T' , which is obtained from the following equation

= TL 1 + 0.035 M + 0.45
aw - 1 (29)

where

T = T, 1.0 + |I |̂(0.89)M2aw 1 [ 2 J o>
(30)

If an effective flat plate length upstream of the boattail is input, the

reference Reynolds number is obtained from the following equation
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'l U°° Leff
(31)

The Local skin friction correlation equation taken from reference 161 is

[o.088 (Log1Q R^ - 2.3686)] T^
C, = ~ ± r d (32)

O R; - i-v Ti

The local skin friction coefficient at the end of the boattail is

computed in a manner similar to that described above except that the

length employed in the computation of the reference-length Reynolds

number is

L2 - Leff + LBT (33)

If the momentum thickness Reynolds number is input, the effective

flat plate length at the start of the boattail is computed as follows:

The skin friction drag coefficient based on maximum area is

1C
i

c
D f 2 A
f m
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Annular base drag.- The annular base pressure for a subsonic external

flow is computed from the following modification (developed in ref. 44)

of the Brazzel-Henderson base pressure correlation (ref. 66):

0.9 + 0.0167(R )
mf

0.94 + 0.06(A /A )so m
(36)

where Rm is the nozzle-exit to free-stream momentum ratio, defined as

Rm.

(mV)(

(mV)
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For a supersonic external flow, the following base pressure correla-

tion developed by Brazzel-Henderson is also employed.
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The first term on the right side of Eq. (26) normalizes the jet

temperature to the jet temperature of a sonic nozzle. The second term

corrects for boattail effects, and the third term is a correlation based

on the ratio of nozzle-exit momentum flux to free-stream momentum flux.

A nozzle-position (relative to the end of the boattail) correction is

obtained by the fourth term.

Comparison with data.- An independent investigation (ref. 41)

indicates that the twin-nozzle afterbody-drag performance method

reasonably predicts the trends and absolute levels of data for a con-
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figuration similar to those used for the original Calac correlation. The

evaluation model was a twin-jet air superiority fighter tested in the

AEDC PWT 16T facility.

One significant difference exists between the model and the model as

defined for the computer program. The model has intermediate spacing of

the nozzles and twin vertical tails, whereas for intermediate nozzle

spacing, the computer model is limited to a single vertical tail. No

accurate assessment has been made of the effects of this difference. It

is known, however, that tail surfaces do significantly affect the

afterbody flow field.

Another difference between the model and the model defined for the

computer program is that the model nozzle lateral spacing falls between

the values for narrow and intermediate spacing. The empirical data

chosen for the calculations were those closest to the model configura-

tion. The empirical correlations are based on data that is limited in

the 0.9 to 1.2 Mach number range. The predicted afterbody drags,

therefore, for this Mach regime should be used with caution. Figure 61

provides a comparison between the measured and predicted values of drag

coefficient for the cruise nozzle at nozzle pressure ratios of 3.3 and

4.9. Excluding the Mach 0.9 to 1.2 range, the predicted values of drag

coefficient are in reasonable agreement with the measured values. A

comparison is made of the measured and predicted drag for the reheat

nozzle at nozzle pressure ratios 4.2, 5.2 and 7.8 in figure 62. The

results are similar, but especially good at a nozzle pressure ratio of

4.2. Tbis is not unexpected since the problem of aft-end closure has

been lessened in the reheat mode. Reference 41 concludes that a need

exists for more test data to fully evaluate this prediction technique and

an extension of the empirical data base to include closely spaced nozzles

with dual vertical tails. This comparison is discussed further in the

next section where the Calac method is compared with an extended version

of the csethod.
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6.2.2.3 NADC prediction technique for twin jet fighter-type

aircraft

Description.- The NADC prediction technique (ref. 143) is an exten-

sion of the Calac technique. The method was developed by expanding the

Calac aft-end drag data base to include data from models of other

existing twin-jet fighter-type aircraft. Parametric investigations were

then conducted to determine if the existing Calac aft-end drag parameters

were all inclusive and could account for the inherent drag variations of

the added fighter-aircraft models. Finally, a new drag parameter

dependency relationship was derived for the important parameters. The

derived relationship is

N
C = C + I cx.X. (39)
NADC CALAC i=l X -1

where a. are coefficients determined by the statistical analysis and X.

are the various parameters including NPR, and various similarity

relations, and combinations of area ratios, Mach number and Reynolds

number listed in Table X. The extended correlation was found to provide

a significant error reduction from the Calac correlation. An asset

specifically designed into the method is that the data base can be

continually expanded to include additional- twin-jet aft-end drag data.

The limitations of the NADC prediction technique are that the method

is dependent on wind-tunnel data quality and, since it is based on the

Calac method it is applicable to the same limited class of configura-

tions. Also, the method does not account for wind-tunnel to full-scale

flight Reynolds number variations.

The Calac data base consisted of data from wind-tunnel models which

.had the horizontal and vertical stabilizers mounted separate from the
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afterbody force balance so that only the tail interference effects on

the afterbody drag were directly measured. Some of the data considered

in the NADC correlation procedure had the tails mounted directly onto the

afterbody so that the measured drag included the total drag of the tails.

Thus, one of the steps in the NADC data-correlation procedure which may

produce some error in the predictions results from the necessity of

subtracting from the experimentally measured afterbody drag an estimated

value of drag of the tails in order to include only the tail interference

effect in the afterbody drag correlation.

Evaluation of the prediction method.- In order to evaluate the

accuracy of the prediction method as a design tool, some afterbody drag

predictions were compared with experimental results for two configura-

tions that were not included in the correlation data base. One of the

configurations (ref. 32) was that analyzed peviously by Everling (ref.

41) who compared the data with predictions made by the Calac version of

the program. That configuration had tails mounted on plates attached to

the forebody, separate from the afterbody force balance. Thus, only the

tail interference effects should be present in the data, and the predic-

tions should be directly comparable. The other configuration (ref. 262)

is more difficult to compare since data are available only for the cases

of tails on or tails off. No data were obtained for afterbody drag in

the presence of the tails but not including their drag for direct

comparison with the prediction. The results of the tests described in

reference 262 provide a qualitative evaluation of the prediction method.

The independent investigation by Everling (ref. 41) of the data of

reference 32 indicated that the Calac twin-nozzle/afterbody drag

performance method reasonably predicted the trends and absolute levels of

data for a configuration similar to those used for the original Calac

correlation. The evaluation model was a twin-jet air-superiority fighter

tested in the AEDC PWT 16T facility.
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As mentioned previously, some of the data used by the NADC in extend-

ing the experimental data base had the tails attached to the afterbody

balance. The tail profile drag for such cases was estimated and sub-

tracted from the measured drag in order to produce afterbody drag data

consistent with that in the Calac data base. The accuracy of such

adjustments is unknown.

Figure 63 shows a comparison between the measured and predicted

values of drag coefficient. Figures 63(a) and (b) show the comparison

for the cruise nozzle at nozzle pressure ratios of 3.3 and 4.9.

Predicted values are shown for both the basic Calac program and the NADC

modified program. The NADC adjustment gives a slightly improved predic-

tion for the mid-transonic range of Mach numbers while the Calac

prediction is better for low and high Mach numbers. Similar results are

achieved for the reheat nozzle as shown in figures 63(c), (d), and (e).

Figure 64 shows the drag coefficients on a wind tunnel model of the

F-18 aircraft, described in reference 262. Those data are similar to the

previous data in the sense that the model has twin tails and narrow-to-

wide nozzle spacing, whereas the Calac data base provides for twin tails

only for the wide nozzle spacing.

One aspect of the tests reported in reference 262 was the investiga-

tion of the effect of removing the tails from the model. This effect is

indicated in figure 64 where the drag with tails removed is seen to be

signficantly lower than with the tails attached to the afterbody (and to

the afterbody balance) for both the cruise nozzle at MOT = .6 and .9 and

the maximum reheat nozzle at M = 1.6 and 2.0. The prediction method,
00

which is based on data that includes, presumably, only the tail inter-

ference effects (and not the drag of the tails themselves), would be

expected to yield a drag value nearer the tails-off value than the

tails-on value. As shown in figure 64 that expectation is met by the

Calac prediction with the exception of the case for M^ = 0.9 for the

cruise nozzle (fig. 64(b)), but the NADC prediction is not so consistent.
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A more exact evaluation of the data to determine the actual interference

effect of the tails on the afterbody drag requires an accurate evaluation

of the tail profile drag and is beyond the scope of the present

investigation.

The comparisons shown in figure 63 indicate that for configurations

that closely resemble those in the Calac data base, the Calac prediction

may be better than the NADC prediction except for low supersonic Mach

numbers. The comparisons shown in figure 64 provide no quantitative

basis for choosing either method. It would be expected that the drag for

configurations that more closely resemble those that were added to the

data base by the NADC would be more accurately predicted by the NADC

version of the program.

6.3 Theoretical Prediction Methods

In general, the interference flow fields associated with installation

of the propulsion system in the airplane are dominated by viscous effects

such as boundary-layer separation and jet-exhaust plume entrainment.

Existing analytical attempts to predict these interference effects are

limited to specific effects for simple configurations such as isolated

axisyrametric nozzles. Generalizations are often made from these simple

shapes to more complex shapes using the concept of an equivalent body of

revolution. This technique is found to be unsatisfactory except for

small deviations from symmetry. In this section, the general problem of

.predicting afterbody flow fields will be described followed by a dis-

cussion of the status of the theoretical prediction technology.

6.3.1 Description of problem

The usual approach for calculating the flow over boattails is to use

the technique of dividing the flow field into a number of analytical

regions. A typical breakdown of these regions is shown in figure 65.

Included are an inviscid external flow (region I), inviscid jet plume
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(region II), and viscous region (region III), which includes boundary

layers on the boattail and inside the nozzle and the mixing layer between

the jet and the external flow. The viscous region may be further divided

into attached boundary layer and separated boundary layer regions.

Several calculative techniques have been developed which show promise as

engineering-type prediction methods. At the pesent time, no generaliza-

tion of analytical prediction methods to non-axisymmetric nozzles, or to

full aircraft configurations has been made.

With regard to the exhaust plume, two physical effects have been

identified by Bergman (ref. 6). The first is a displacement outward of

the external flow streamlines caused by the shape of the plume. Outward

displacement of the streamlines results in stronger flow recompression on

the boattail and has a beneficial effect on the drag, as shown in figure

66. The shape of the exhaust plume is a function of nozzle pressure

ratio for fixed free-stream conditions. The second effect, entrainment,

begins when the exhaust plume velocity is approximately equal to free-

stream velocity. This effect increases boattail drag by increasing the

velocity of the flow over the boattail and effectively lowering the

boattail pressure. The net effect on boattail drag is the sura of the two

effects.

Increasing exhaust jet temperature has been found to decrease the

drag for fixed nozzle pressure ratio. This effect is caused by greater

spreading of the hot plume than the cold plume. The effect of exhaust

plume temperature on entrainment is not known.

It must be noted thai: many of the methods to be discussed in this

section contain certain empirical features, and therefore might be

considered semi-empirical rather than theoretical. The definition of a

theoretical prediction method is considered to include methods wherein

empirical techniques may be used for certain specific features such as

prediction of the separation point location, but the basic calculative

method is a solution of the theoretical governing equations of the flow



field. The term empirical prediction methods is thus reserved for those

methods based primarily on correlation of experimental data.

6.3.2 Status of theoretical prediction technology

A summary of the status of current technology for predicting drag on

axisymmetnc nozzle boattails is presented in Table XI. In that table,

the factors that must be accounted for are listed in the left hand

column, the pertinent reference numbers from the afterbody drag reference

list are listed at the top and an X is placed in the appropriate box

denoting whether the prediction method accounts for that factor. A blank

box in the column for a certain reference means that reference does not

treat the corresponding factor. The table reveals that several methods

exist for accounting for boundary layers, including separated boundary

layers, and several methods exist for accounting for plume shape.

Exhaust-plume entrainment is not accounted for in an adequate manner by

any existing techniques. Those methods listed as accounting for

entrainment are first approximations and have not developed a viable

entrainment model.

The theoretical prediction methods fall naturally into three basic

categories depending on whether the flow conditions are subsonic,

transonic, or supersonic. Within each of those categories another major

subdivision is between those methods which treat only attached flow and

those which also treat separated flows. The individual methods in each

of these categories and subdivisions will be discussed in the following

sections.

First, however, it is noted that a program was initiated by the NASA

Langley Research Center in June 1976 to assess the state-of-the-art for

predicting pressure distributions and drag of boattail nozzles. The

objective of the program was to compare available analytical and

empirical methods with one set of experimental data so the relative

merits of the various methods could be easily assessed. The results were



subsequently distributed to interested parties (ref. 8.10). The pre-

diction methods that were applied to the prescribed data set included

those described in references 136, 200, 210, 211, 212, 217, 227, and 294.

Other investigators have also recently used the same data for comparison

(refs. 264, 300). All of the original groups of methods predicted the

afterbody drag poorly for subsonic and transonic flows for both an

afterbody with no separation and for one with extensive separated flow.

The one method that was applicable to supersonic flows, that of Hoist

(ref. 210), was in good agreement with experimental integrated pressure

drag on an afterbody with extensive separation. The prediction methods

will now be discussed individually in the following sections.

6.3.2.1 Subsonic afterbody drag calculative methods

The most complete theoretical method for subsonic axisymmetric

boattail drag with attached flow is a method produced by the Lockheed

California Company (ref. 48).

The method predicts the drag of arbitrary axisymmetric boattail con-

tours through use of the subsonic potential flow method of Smith and

Pierce (ref. 164) combined with approximate exhaust-plume and integral-

boundary-layer calculative methods. Mutual interaction effects between

the external flow and the exhaust flow and between the external flow and

the boundary layer are treated. The computer program is equipped to

handle convergent, convergent-divergent,_and plug-type nozzles. The_ _ __

method is limited to subsonic free-stream Mach numbers below that for

which supercritical flow would occur over the boattail, and to con-

figurations for which no boundary-layer separation occurs. Jet-plume

mixing is not treated.

Comparisons with data shown in figures 67-69 indicate the method

produces good agreement with the data on the conical afterbody of

reference 134 when the boundary layer is accounted for (fig. 67). For

convergent-divergent and plug-nozzle-boattail configurations (figs. 68

an'd 69), the pressure distribution trends are properly predicted, but the
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absolute pressure levels are not predicted very well, especially in the

recoinpression region near the nozzle-boattail trailing edge.

Another method for calculating the subsonic drag of axisymmetric

boattails is that of Rora and Bober as described in reference 99. That

reference accounts for the boundary layer on the boattail but does not

account for jet plumes. Instead, an approximate method is used to

account for the flow in the base region, corresponding to jet-off condi-

tions. Separation of the boundary layer is assumed to occur only at the

boattail base. Separation on the boattail is not treated.

A calculative method including provision for separation on the boat-

tail was developed by Presz (ref. 253, 80). In that method, the

separated region is modeled as a conical dividing streamline surface

placed between the separation point on the boattail and the point of

reattachment on a solid cylindrical sting. An empirical approach based

on an integral boundary layer method is used to determine the location of

the point of separation and the angle of divergence of the dividing

streamline surface from the boattail surface. In Presz's method, the

subsonic potential flow theory of Smith and Pierce is then used to

calculate the pressure distribution on an equivalent body consisting of

the real body and the conical separation surface. Comparison with data

indicates the approach gives a reasonable approximation for the afterbody

pressure distribution and drag. Typical comparisons between the theory

and data are shown in figures 70 and-71.

An improved version of the method of reference 253 was developed by

Presz (refs. 264, 265) by relaxing the requirement that the separation

surface be conical and using the boundary-layer displacement thickness to

modify the body shape. Before separation and after reattachment, the

modified body shape is the actual body contour plus the displacement

thickness. In the separated region, the shape is determined by adding

the displacement thickness to the dividing streamline determined by a

discrete control volume analysis. A jet-plume entrainment model is also



included to account for changes in the inviscid flow field due to effects

of jet entrainment on the dividing streamline. Comparisons with experi-

mental pressure data on several circular-arc boattails (figs. 72-76)

indicate that the method accurately predicts the pressure distribution

for bodies with stings on which no separation occurs (fig. 72) or for

moderately separated flows (fig. 73). For sting-mounted models with more

extensive separation, the comparison is not so good (fig. 74). For

models with jets and separated flow, the calculative method of reference

264 appears to be unable to predict the constant pressure that occurs in

the separated region (figs. 75 and 76). The errors in the pressure

predictions result in fairly large errors in drag as shown by the

drag-coefficient values listed in figures 72-74.

Presz's results from reference 253 were used by Reubush and Putnam in

reference 136 as a basis for a correlation which gives the divergence

angle of the dividing streamline surface as a function of the Mach number

at the separation point. The conical separation surface is then used as

the solid boundary and an attached boundary layer is calculated for the

entire length of the augmented body plus the sting. The subsonic

potential flow method of Hess and Smith (ref. 162) is used to calculate

the external flow. Comparisons with experimental data indicate good

results can be achieved with this technique if an accurate separation

prediction is used.

Incorporation of exhaust-plume entrainment into subsonic afterbody

flows is discussed in references 297, 298, and 299 where a modular

approach is taken to couple the viscous and inviscid processes. Separa-

tion of the flow over the afterbody is not considered.

6.3.2.2 Transonic afterbody drag calculative methods

The theoretical methods available for transonic speeds fall naturally

into the same two subcategories as for the subsonic methods. Namely,

those in which boundary-layer separation on the boattail is treated and
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those in which it is not. Furthermore, the lack of accurate shock-wave-

boundary-layer interaction theories effectively limits these prediction

methods to subcritical free-stream Mach numbers or to Mach numbers such

that only very weak shocks occur on the body.

Grossman and Melnik (ref. 51) describe a method in which the drag for

arbitrary axisymmetric boattail contours is calculated including mutual

interaction effects between the external flow, the jet plume and

attached-boattail boundary layer. A calculative method like that of

South and Jameson used for the external flow is applicable to both purely

subsonic and transonic flows. However, the computer programs for the jet

plume needed for application of the method are not generally available.

A more readily available method is described in reference 34 by Chow

and Bober, which accounts for the mutual interaction between attached

boundary layers and subsonic or transonic external flow, but approximates

the jet plume as a solid boundary. The full transonic potential equation

is used, including boundary-layer effects, yielding good agreement with

the experimental pressure distribution for the conical boattail of

reference 141. Some examples are shown in figure 77.

The method of references 217 and 252 is similar to that of reference

34 in that the full transonic potential equation is used in conjunction

with a boundary-layer method for attached flows. In addition, a

simplified plume entrainment model is described which yields quali^

tatively satisfactory results.

In reference 43, the Spreiter-Alksne method of local linearization

(ref. 165) is used with a turbulent-boundary-layer method and the method

of characteristics to study plume-shape and afterbody-shape effects. The

method is limited to slender bodies and separation is not accounted for.

Several methods have been developed for transonic flows with separa-

tion. In reference 212, Yaeger describes a method which is a modified
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version of that described by Presz and by Presz and Pitkin (refs. 253,

80). It is applicable to bodies with stings and to slightly super-

critical flows for which no significant shock-wave-boundary-layer

interaction occurs. Some insight into the effects of strong shock-wave-

boundary-layer interactions is provided by an analytical study described

by Wilmoth in references 211 and 274 where the applicability of Press's

method of reference 253 is shown to be limited to free-stream Mach

numbers below about 0.7. Results of that study are shown in figure 78

where the variation of the discriminating streamline separation angle is

found to depend strongly on the local Mach number at separation. This

also would appear to limit Yaeger's method (ref. 212) to the same Mach-

number range since Yaeger employs similar analytical techniques to those

used by Presz and restricts his analysis to flows with negligible shock-

wave-boundary-layer interaction.

In references 27 and 227, another type of approach is used by

Calarese to study the effects of mass and energy injection on boattail

drag. An iterative procedure is used whereby viscous effects are added

to the inviscid solution of the nonlinear small-perturbation equation.

Jet effects are accounted for through empirical correlation and boattail

separation is treated with a Korst (ref. 160) base-flow type of analysis.

The method is shown to provide good agreement with data for attached

flows but only fair agreement for separated flows.

Another different 'approach is described by Cosner in reference 209.

In that approach, separated boundary layers are calculated using an

empirical technique to extend the calculation past separation and

reattachment points. Jet-plume mixing is also handled in an approximate

way. Results presented indicate the method, still in a preliminary state

of developement, is not very accurate for flows with extensive separated

regions.

In the method of references 218, 300, and 301, Kuhn has employed many

of the principles developed in several of the other methods. The full-
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transonic-potential-equation solution method of South and Jameson is used

allowing calculation of flows over non-slender bodies and steep boattail

angles. An integral-boundary-layer approach is used whereby both

attached and reversed flows are calculated for bodies with solid stings.

The separation and reattachment points are calculated as a part of the

interaction between the boundary layer and the inviscid flow. An

entrainment model is included to account for exhaust-jet effect.

Comparisons with data for separated and unseparated flows indicate the

method provides good predictions of the afterbody pressure distribution

and drag (figs. 80 through 87) even into the region of transonic drag

rise, although predicted drags for low-subsonic unseparated flows (fig.

85) are high.

The jet entrainment model used in reference 300 appears to provide

fair agreement with data although the accuracy of the drag prediction

seems to be a function of the free-stream Mach number as well as the

nozzle pressure ratio (figs. 86 and 87).

6.3.2.3 Supersonic afterbody drag calculative methods

Supersonic afterbody drag methods are generally of three types.

First are methods applicable to predicting boattail drag with jet plumes

or solid plume simulators. Next are methods for predicting base drag.

Finally, some methods are available for calculating optimum (minimum-

drag) boattail shapes. The first two types consider viscid-inviscid

interactions while the third type of method considers only inviscid

flows. No comprehensive theoretical method has been found which includes

both boattail and base drag.

For calculating afterbody boattail pressure drag in supersonic flow,

two methods are described in references 49 and 210. In reference 49,

Glasgow, et al., couple the method of characteristics with an attached-

boundary-layer method supplemented by approximate methods of accounting

for either plume or shock-induced separation based on the correlations of
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Bonner and Nixon (ref. 26) and Brazzel and Henderson (ref. 66). Predic-

tions are accurate for cases with no separation, but the approximate

theories do not adequately account for the complex interference effects

accompanying flow separation on the boattail. A computer program for the

CDC 6600 computer is available from AFFDL.

Hoist, in the method of reference 210, employs a more fundamental

approach by solving the compressible Navier-Stokes equations in the

vicinity of the boattail for axisymmetric afterbody-boattail configura-

tions with solid-sting plume simulators. Comparisons with data for

pressure distributions on boattails with extensive separated regions are

good.

Another method employing a solution of the Navier-Stokes equations

was demonstrated by Mikhail, Hankey, and Shang (ref. 267). Their method

was applied to an axisymmetric boattail with jet exhaust. Although the

method is not a fully developed design technique, it demonstrates that

such a complex flow can be computed successfully, and provides a design

engineer with good estimates for the surface pressure distribution and

skin-friction forces. The method was not demonstrated for flows with

separation on the boattail.

A Navier-Stokes solution technique that includes separated flows is

described by Forester in reference 296. Progress is reported on develop-

ment of a computer program with emphasis on computational efficiency and

accuracy.

Many methods exist for calculating base-region flow properties. A

review of various methods, including those of Korst (ref. 160) and Alber

(ref. 184) is presented by Peters and Phares in reference 232 where an

analytical model for planar and axisymmetric supersonic turbulent near-

wake flows is presented. That model couples an integral form of the

boundary-layer equations and the rotational method of characteristics.

The base pressure is obtained by an iterative procedure. The method is
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designed to handle base bleed of a gas different from the outer-stream

gas but the calculative technique has only been developed for single gas

flows. The model is shown to adequately predict the effect of free-

stream Mach number and initial boundary layer on the planar base

pressure. Axisymmetric base pressure and flow-field structure are

reasonably well predicted for free-stream Mach numbers greater than 2.0,

but the turbulent transport model used yields only fair results for Mach

numbers less than 1.7. The effect of base bleed on the axisymmetric base

pressure is well predicted.

Another base flow analysis is presented in reference 117. In that

method, Dixon, et al., extend Korst's theory (ref. 160) to treat base

flow on an axisymmetric afterbody with a single operating exhaust nozzle.

The flow around the afterbody and in the jet is supersonic with turbulent

axisymmetric mixing occurring along the separated flow boundaries.

Initial boundary layers are neglected and an empirical spread-rate param-

eter is used. A complete description of the base flow is obtained from

the analysis permitting the prediction of base pressure and other flow

parameters of interest. Results obtained from a parametric study

illustrate the influence on the base drag of free-stream Mach number,

exhaust-jet total pressure, and base, boattail and nozzle geometry.

Another more advanced application of Korst's method is presented in

reference 220, where Bauer and Fox apply Korst's method to estimate the

bulk base flow properties of nozzle-afterbody configurations with a

supersonic jet and supersonic free-stream separated by a finite area

base. Initial boundary layers are included as well as dissimilar

thermodynamic properties of the two streams and a third base-bleed gas.

The inviscid flows are computed by the method of characteristics. The

turbulent-mixing analysis uses the turbulent-kinetic-energy method.

Comparisons with data indicate the method tends to overpredict the base

pressure due to use of too small a mixing rate.
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Methods for determining optimum body shapes are described in

references 231, 106, 129, 146, 223, and 284. Reference 231 is a survey

of the variational problems relative to wings, fuselages, wing-fuselage

combinations and nozzles in supersonic, hypersonic, and free-molecular

flows. Within this broad scope of applications, it is an important

reference on the calculus of variations as applied to the kind of

variational problems associated with optimizing afterbody shapes.

6.4 Experimental Data

In Table XII the parameters associated with each Primary Data Source

of the afterbody/air frame interaction data base are listed. This table

provides a means for selecting particular references from a group of

references which have been chosen for an effect from Table II. Numbers

appearing in columns 2 and 3 of Table XII refer to Notes to Table XII

following the table. These Notes explain the various types of configura-

tions and data presented in the Primary Data Sources. The Notes are very

general with respect to test model and data presented, since a detailed

list could entail an almost endless list of configurations and types of

data. For example, a reference which is indicated as having tested a

twin-engine aircraft configuration may have tested this configuration

with tails metric, tails nonmetric, or tails removed. The more specific

types of configurations tested are not indicated in Table XII, or in the

Notes to Table XII, but could be found by further investigation of the

particular reference. In the same manner, the types of data presented in

the Notes are general, and-the list is not intended,to be all-inclusive.

The types of data presented for each reference are those types which

would be most helpful to someone investigating afterbody/airframe drag.

Other types of data which are not directly associated with this subject

are not included in the Notes. With respect to the afterbody/boattail/

nozzle drag coefficient and pressure coefficient distribution, a special

note should be made. This data category is used to indicate that data is

presented for either the entire afterbody/boattail/nozzle section or for

a single element of this section, such as the nozzle. Also, the drag

94 \



coefficients were obtained using drag balance measurements or by

integrating pressures, and may or may not include base drag or friction

drag.

It should also be noted that the afterbody section of the models

tested was that part of the configuration either aft of the maximum area

station or aft of the metric-break station. A dictionary of the short-

hand configuration classification scheme used in columns 8 through 12 of

Table XII is presented in Table XIII.

The usefulness of the experimental data base lies in the degree to

which it can be used to extend the range of applicability of prediction

methods, both theoretical and empirical. Much of the data listed has

been included in one or more of the correlations discussed in section

6.2. The remaining data may be useful for estimating effects not

included in the prediction methods. Two areas in which such extensions

are particularly needed are discussed in the following sections. These

are Reynolds-number effects and problems of scaling from wind-tunnel data

to full-scale flight. The adequacy of the data base for prediction of

these effects is discussed.

6.4.1 Reynolds-number effects on afterbody drag

No clear and definite conclusion can be drawn from the existing

literature about the effect of scaling from wind-tunnel to full-scale

flight Reynolds numbers. Tests conducted by NASA and by AEDC over a wide

range of Reynolds numbers indicate that for isolated afterbodies (no

interfering surfaces such as wings, tails, etc.) large effects are

produced on pressure distributions over boattailed afterbodies but the

compensating effect of increased expansion over one part of the body and

increased compression over the rest of the body combine to result in

little, if any, change in the net afterbody pressure drag. The high

sensitivity of the calculated pressure drag to errors in the measured
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pressure does not appear to be a problem since great care has been taken

in the experiments to minimize such errors.

The difficulty in evaluating Reynolds-number effects, or more

specifically wind-tunnel to full-scale-flight^scaling effects seems to be

in interpreting apparently conflicting results. To date, several

experiments have been performed in wind tunnels covering a wide range of

Reynolds number from values characteristic of wind-tunnel models to

values characteristic of full-scale flight. Those tests indicate no

Reynolds-number effect or very slight effects for isolated axisymmetric

afterbodies and for the same bodies with wings added. On the other side

some tests in which measurements were made both on models in a wind

tunnel and on a full-scale model in flight indicate very significant

Reynolds-number effects (ref. 127) while other tests indicate wind-tunnel

and flight data have similar levels of afterbody/nozzle drag for Mach

numbers below the nacelle drag-divergence Mach number (ref. 268). For

higher Mach numbers, the drag was found in reference 268 to be lower for

flight conditions for wind-tunnel conditions.

The problem lies in isolating the effects of Reynolds number from

those due to many other factors, such as: accurate geometrical

duplication between wind-tunnel and flight-test models, surface

conditions, attitude, control deflections, instrumentation accuracy,

model support and tunnel-wall interference, turbulence, propulsion

simulation, heat transfer, and possibly noise.

To date, no reliable wind-tunnel-to-flight correlations have been

made for real configurations of the type of interest herein. The few

tests that have been performed have produced inconclusive results due to
I

unanswered questions. For example, Martens (refs. 68 and 215) described

wind-tunnel and flight-test results for the F-15. The data are incon-

clusive with regard to Reynolds number effects due to the inclusion of

ventral fins on the wind-tunnel model but not in flight. Also, the

question of hot-jet simulation by cold-gas jets was not considered in the

tests.
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6.5 Concluding Remarks

Evaluation of the adequacy of the data base for the prediction of

afterbody drag leads to the following conclusions:

1. Although a number of systematic studies resulting in the

development of empirical methods have been reported, there remain a

number of unanswered questions. Perhaps the most important is that of

the applicability of the results to flight Reynolds numbers. The

experimental data on which the empirical methods are based were gathered

at the relatively low Reynolds numbers provided in wind tunnels and

therefore may not adequately reflect the viscous effects at flight

conditions. Since conflicting results have been published regarding the

effects of Reynolds number, this problem needs attention.

2. Although the number of configuration variables that have been

tested is sizable, very little data are available for two-dimensonal

exhaust systems. Moreover, most of the available experimental results

cover only a small angle-of-attack range, not large enough to encompass

the flight envelope of interest.

3. The application of modern theoretical methods to the prediction

of afterbody drag has only recently been undertaken. Methods to account

for boundary-layer separation and jet entrainment effects for the

simplest of afterbody configurations are only now being developed.

Methods to account for the complex interactions for real aircraft con-

figurations with multiple exhaust systems have not been developed. In

any event, the large computers and long run times required at this stage

of development make them unsuitable for use in preliminary design

studies.
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7. DATA BASE FOR AIRFRAME EFFECTS ON INLET "FREE-STREAM"

CONDITIONS AND THE EVALUATION OF ITS ADEQUACY FOR

PRELIMINARY DESIGN

The performance of an air induction system can be signficantly

influenced by the effects of flow produced by (or resulting from) other

elements of the configuration, such as fuselage forebody, canards, etc.

If the local flow ahead of the inlet differs significantly from a uniform

flow at the free-stream Mach number, then the performance of the

installed air induction system would be expected to differ from that

which would exist with uniform inlet flow conditions. As part of the

development of a rational method of predicting these effects, a knowledge

of the flow field produced by forebody fuselage, canards, etc., is

needed. The following is directed toward this first step, that is,

development of a data base for forebody and forebody-wing effects on

local flow conditions in the vicinity of wing-body configurations.

The data base for airframe effects on inlet "free-stream" conditions

consists of experimentally determined values and theoretical and

empirical methods for predicting local flow quantities in the vicinity of

fuselage-alone or wing-body configurations. In the following sections,

applicable experimental data are presented and methods for predicting

local flow fields about fuselage-alone or wing-body configurations are

described. The data base is then evaluated with respect to the

requirements placed on the data base.

7.1 Presentation of Data Base

7.1.1 Experimental data

Table XIV describes the Primary Data Sources from Table I which

present experimental data for airframe effects on inlet "free-stream"

conditions. Tnis table identifies the configuration about which
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flow-field data was obtained, the range of free-stream parameters, and

the types of effects studied.

Column one of this table identifies the reference number of the data

report. Columns two, three, and four identify the test configuration,

flow-field probe position and type of data obtained, respectively.

Definitions of the symbols used in these columns are .given in Table XV.

A distinction has been made in these tables between a body of revolution

and a fuselage with a canopy, so that an evaluation of the experimental

data base with respect to "real" versus "simplified" configuration

effects can be made. The probe-position column describes the locations

at which data was taken. For example, F indicates that data wasr s,a
obtained near the side of the fuselage and ahead of the wing, while W ,

indicates that data were taken under the wing at positions aft of the

wing leading edge. It is noted here that data obtained at positions

which are more than a body diameter away from the fuselage surface are

indicated with W or W , . The definitions in Table XV of the type of
3. s n

data obtained are self-explanatory.

Columns five through eight of Table XIV identify the ranges of Mach

number, unit Reynolds number, angle of attack and angle of sideslip

covered for each experimental investigation. The remaining columns

indicate various effects for which parametric studies may have been

carried out experimentally. A check (/) in any one of these columns

indicates that data was taken to determine the effect of that parameter

on one or more flow-field quantities. With respect to these effects, a

few comments are made here. First, a check in the General Configuration

Data column indicates that a large amount of data, or in some cases, all

of the data, was taken for a particular configuration. Second, a check

in the Protuberance column indicates that data showing the effects of

strakes, canards, or missile components on flow-field quantities were

presented. The effects can be due to the addition of these components to

a given configuration or to a parametric change of one or more of these

components.
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7.1.2 Prediction methods

Empirical and theoretical methods from Table I which predict flow

fields in the vicinity of body-alone or wing-body configurations are

grouped in Table XVI according to the type of flow equations solved

(unsteady Euler equations; linearized, compressible, steady potential

flow equations; etc.) or the type of method used (transonic equivalence

rule, far-field matching, etc.). Each method is then further categorized

by the type of flow field for which the method is applicable (axisym-

metric or three-dimensional), and the speed range (subsonic, transonic,

supersonic) for which the method applies. With respect to the "type of

flow field" category, two-dimensional methods, per se, were not included

in the data base. However, several methods listed are applicable to both

2-D and axisymmetric configurations (refs. 312, 314, 324), and a few 3-D

methods involve solving 2-D equations after assumptions are made about

the flow (refs. 34, 292).

Table XVII presents the major features of each method shown in Table

XVI. This table is arranged by groups in the same manner as was done in

Table XVI. This allows one to compare methods within the same group with

respect to the basic assumptions, numerical techniques, body modeling

techniques, etc. Details concerning particular aspects of methods whose

main features are similar or identical (refs. 151 and 306, or 152 and

305, for example) are not presented in this report, since such a task is

beyond the scope of the present work. The last name of the first author

of a reference is also included after each reference number in Table
* r i

XVII.

It should be noted at this point that while a large number of methods

for predicting forebody and forebody-wing effects are listed in Tables

XVI and XVII, these tables surely do not include all methods for predict-

ing such effects. An attempt has been made to include representative

examples for each of several groups of methods, and to include the "best

known" and most up-to-date methods within each group. Also, as was noted
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in section 5.1.3, an analysis of various boundary-layer methods is not

presented in this report, although some methods include boundary-layer

techniques (e.g., refs. 292, 312, 314, 374, 383, 393) as a part of their

solution.

7.2 Evaluation of Data Base

7.2.1 Requirements

The local flow field entering an installed inlet is dependent on an

array of parameters. These parameters include nose and fuselage geometry

(shape and length), wing geometry (leading edge sweep, flap deflection

and thickness), canopy size and shape, protuberances (strakes, canards,

and missile components), inlet position (side mounted, fuselage-shielded,

or wing-shielded), and free-stream Mach number, angle of attack and angle

of sideslip. In the preliminary design process, studies of the effects

of several geometric parameters on the flow field generated by each

configuration are made over a range of free-stream parameters correspond-

ing to various aircraft missions. The main thrust of these studies is

usually to define the configuration for which forebody or forebody-wing

effects on local inlet flow-field quantities are most favorable, thereby

resulting in high inlet total pressure recovery and low inlet distortion,

for a variety of missions or a specified mission. Therefore, as previ-

ously discussed in section 5.2.1 with respect to inlet external drag, the

data base for forebody and forebody-wing effects on inlet "free-stream"

conditions must also satisfy the requirements of breadth, ease of

application, and accuracy.

In the following sections, the experimental-data and prediction-

methods data base for forebody and forebody-wing effects on inlet

"free-stream" conditions is evaluated with respect to these requirements.

As previously mentioned in the discussion of the inlet and afterbody drag

data bases, the accuracy of all the assembled experimental data has not

been evaluated.
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7.2.2 Experimental data

The manner in which forebody and forebody-wing effects are often

studied experimentally is by starting with a "basic" configuration and

perturbing about this configuration over a specified range of free-stream

Mach number, angle of attack and angle of sideslip. The "basic" con-

figuration is arrived at through configuration definition studies for

which certain mission requirements must be met.

A good example of this kind of study is presented in reference 10

(Project Tailor-Mate). After initial configuration-selection studies

were made based on specific mission requirements, five "basic" con-

figurations were chosen for further study. These configurations included

two fuselage side-mounted inlet designs (two-dimensional, inlets) , and two

under-wing inlet designs (two-dimensional and axisymmetric inlets).

Flow-field data, which consisted of local Kach number, angle of attack,

angle of sideslip, and total pressure ratio, were obtained at several

candidate inlet axial positions for each basic configuration, after which

parametric studies were carried out at the most promising inlet station

for each configuration. Final results indicated that for the desired

mission requirements, shielded-inlet locations offered better flow-field

characteristics than fuselage side-mounted inlet locations. References

22, 34, 280 and 322 contain similar systematic studies of the type

described in reference 10.

.The remainder of the experimental data base is made up of less

comprehensive studies. Thus, there exist experimental data only for a

few of the many interesting combinations of the governing parameters.

Indeed, considering the large number of geometric and free-stream param-

eters that affect the nature of the flow in the vicinity of a forebody

and forebody-wing configuration, it is obvious that an experimental data

base could never be complete for design in itself.

102



However, the experimental data base can be useful as a preliminary

design tool as follows. As a part of a preliminary design process for

determining candidate inlet positions for a particular configuration, it

is necessary to determine regions of reasonably uniform local flow about

the configuration. Experimental flow-field data showing the effect of

various configuration parameters, such as fuselage shape, canopies, etc.,

on local flow-field gradients in various regions of interest are found in

the experimental data base. Since parametric studies are carried out in

a number of experimental programs for several types of wing-body con-

figurations, general trends can be discerned, such as, the presence of

high local-flow gradients in the vicinity of sharp corners. The experi-

mental data base can be used in such a fashion, that is, to determine

general trends in flow-field quantities and gradients due to various

configuration parameters. The experimental data base is, however, of

limited usefulness when it is applied to configurations for which the

geometry is markedly different from that of any of the configurations

represented in the existing data base.

7.2.3 Prediction methods

A wide variety of methods for predicting flow fields in the vicinity

of a forebody or forebody-wing configuration are available. An attempt

at evaluating the data base with respect to the methods listed in Table

XVI is presented in this section through the use of available data

comparisons. For the most part, data comparisons of forebody or fore-

body-wing flow fields are not given. Rather, comparisons are usually of

surface pressure distributions. This gives rise to some difficulty in

evaluating some prediction methods, since although a method may predict

surface pressures accurately, there is no assurance that adequate

prediction of flow fields in the candidate locations of an inlet system

follows. For the most part, however, some conclusions can be drawn about

methods for which surface pressure data comparisons alone are given.
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Empirical methods for predicting forebody and forebody-wing flow

fields are given in references 4, 11 and 398. References 4 and 11 both

use a combination of theoretical methods and experimental data to obtain

angle-of-attack effects on local flow-field quantities at under-wing and

under-fuselage positions. As would be expected, these methods will be

most successful when applied to configurations which are similar to those

from which the data were obtained. Flow-field data comparisons using

these two methods, however, could not be found. The method given in

reference 398, which utilizes two empirical correlating parameters in

conjunction with techniques of potential flow, Prandtl-Meyer expansions

and conical shocks, predicts local Mach number, total flow angle, and

roll angle (see fig. 88). Due to the assumptions and correlations made

in developing this method, it is suggested by the author that its

application be limited to axial locations at least one diameter down-

stream of the nose. Flow-field predictions were made for a 3.0/1 von

Karman ogive at a position 6 diameters downstream of the nose and 1.8

radii from the body centerline and are compared with data from references

399 and 400 in figure 89. Data comparisons for local Mach number, shown

in figure 89(a), range from very good (M^ = 4.0, ex = 10°) to poor (Mra =

2.0, a = 20°). Comparisons with local total-angle data at M^ = 3.0 show

good agreement over the angle-of-attack range, as do the predicted local

roll angle, which is assumed to be independent of M and a.

The prediction methods listed in the second group in Table XVI are

those which solve the incompressible potential flow equations. All of

these methods model the body as a distribution of surface singularity

panels (i.e., sources, sinks, or vortex quadrilaterals). The panels are

represented by plane quadrilaterals (refs. 300, 301, 315, 346), curved "

quadrilaterals (ref. 302), plane triangles (ref. 315), or conic

frustrums (ref. 340), and the singularity strengths either are constant

(refs. 300, 301, 315, 346) or vary in some fashion (refs. 302, 340).

The best-known of these methods is that of Hess and Smith (refs. 300,

301, 302) which has been developed into a computer program commonly

referred to as the Douglas-Neumann Program. Comparisons of predicted and
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experimental surface pressure distributions on wings of wing-body

combinations show excellent agreement using this method. Predicted

results of surface pressure distribution on an ogive cylinder were

recently obtained by Nielsen Engineering & Research, Inc. using the NSRDC

version of the Douglas-Neumann code, and were in good agreement with data

over most of the ogive-cylinder. With respect to computer time,

reference 301 estimates that a configuration consisting of 950 panels

takes about 30 CPU minutes to run on an IBM 360/165, while for the NSRDC

program described in reference 397, it is estimated that a 500-panel

configuration will take about 5 CPU minutes on the CDC 6600. Flow-field

data comparisons could not be located for this method or for any of the

other methods in this group. The usefulness of these methods is

obviously limited, however, since they are applicable only to incom-

pressible flows.

Group 3 of Table XVI contains those methods which solve the

linearized, steady, compressible potential flow equations. Of these,

only the method of reference 303 requires that the fuselage shape be

axisymmetric. With the exception of reference 318, all of these methods

employ singularities to model a wing-body configuration. Flow-field data

comparisons were available using the methods of references 303, 304, and

347, and therefore these methods are emphasized in this section.

References 303 and 304 utilize 3-D point sources and sinks along the

body centerline and 2-D doublets in the crossflow plane to model circular

cross sections. Noncircular cross sections are modeled in reference 304

through the use of polar harmonics in the crossflow plane. A distri-

bution of constant-u-velocity-type panels to model wing loading and a

distribution of constant-source-type panels to model wing thickness were

used in reference 303, while reference 304 uses three-dimensional source

panels to model wing thickness and a vortex-lattice model with imaging to

account for wing-body interference.
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Wing-body configurations for which flow-field data comparisons were

obtained in reference 303 are shown in figure 90. Data comparisons of

local upwash and sidewash velocities under the wing of WB1 are presented

in figures 91 through 94. Comparisons for WB2 are shown in figures 95

and 96. The trends and magnitudes of the data are, for the most part,

predicted well, although the predicted upwash and sidewash in the region

of the shock compare poorly with data in some cases.

Predictions of flow fields in the vicinity of a body-alone and a

wing-body configuration (see fig. 90(a)) were obtained for Mro = 0.40

using the method of reference 304. A noncircular addition was attached

to the fuselage of the body-alone and wing-body configuration. Crossflow

velocity vector plots were obtained for each of these models (see fig*

97). Predicted results agree well with data except in the region of the

sharp corner. Data comparisons of local upwash velocity for the body-

alone and wing-body configuration with and without noncircular additions

are presented in figures 98 and 99. Predicted results agree well with

data for the body-alone configuration at both 0° and 6° angle of attack.

For the wing-body configuration, the trends of the changes due to the

noncircular addition, although not all of the magnitudes of the changes,

are predicted using this method.

With respect to computer time, a flow-field traverse of the kind

presented in figures 91 through 94 for a simple wing-body configuration

can be obtained in approximately 30 CPU seconds on the CDC 6600, using

the method of reference 303. Using the method of reference 304, it takes

about the same amount of time to calculate cross-flow velocities for

twenty cross sections along a wing-body configuration of the kind shown

in figure 97(b) .

Using the method of reference 347, predicted local upwash and (

sidewash angles in the vicinity of a fighter-type fuselage and fuselage-

wing configuration were compared with data from the Tailor-Mate program

(ref. 10). Comparisons are presented in figures 100 and 101 for M^ = .9
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and show good agreement between theory and data at the given survey

locations. A drawback in using this method is in setting up the geometry

for a complicated configuration. This task involves a great deal of

time, since the corner points of each surface panel must be input to the

program.

Data comparisons using the other methods of group 3 include surface

pressure distributions on body-alone and wing-body configurations.

Predicted results are usually in good agreement with data for configura-

tions in which viscous effects are small. A disadvantage of several of

these methods is the long computer run times needed to obtain pressure

distributions on a complete configuration. For example, the finite-

element method of reference 318 requires approximately 775 seconds and

1715 seconds on the IBM 360/50 for typical subsonic (200 elements) and

supersonic (556 elements) wing-body configurations, respectively. A

typical wing-body configuration consisting of 180 wing panels and 72

fuselage panels requires 15 to 20 minutes on the CDC 6600 using the

method of reference 309. Also, the method of reference 350, which is

presently being incorporated with the method of reference 348 into a

program called PAN AIR (Panel Aerodynamics), has recently been exercised

on a light-weight supercruiser configuration (ref. 403). Calculations

for this wing-body model required 254 CPU seconds on a CDC 7600 using a

sparse panel layout (380 panels) and 914 seconds using a dense panel

layout (810 panels).

' Group 4 in Table XVI presents the only method found which solves the

unsteady, compressible, linearized potential flow equations. This

finite-element method, which is presented in reference 319, is an exten-

sion of a previously derived method for steady flow (ref. 318). The

method is applicable to complex wing-body configurations, but data

comparisons using this method could not be found.

References 215 and 290, presented in group 5 of Table XVI, contain

methods which predict three-dimensional and axisymmetric flow fields,
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respectively, about axisyrnmetric bodies. Both methods employ finite-

difference relaxation methods which include mixed-differencing in

obtaining solutions to the transonic full potential flow equation

(compressible, inviscid, steady). A mixed-difference scheme uses central

differencing for locally subsonic flow and upwind differencing for

locally supersonic flow. While both of these methods were developed for

use in the transonic flow-field range, reference 215 can only be used for

subsonic free-stream flows.

Once again, data comparisons are only in terms of surface pressure

distributions. Both methods are applicable to blunt and pointed bodies,

and comparisons with data indicate that predictions compare well with

data except in regions where separation occurs. With respect to computer

time, reference 215 indicates that a standard run (5 fine mesh 6 =

constant planes, 70 z = constant planes, and 40 r = constant surfaces,

where 6 is the circumferential angle) requires 12 to 15 minutes on the

CDC 600. Reference 290 states that a typical subsonic free-stream case

runs at about 3300 grid points per second on the CDC 6600 (RUN compiler),

while a supersonic free-stream case runs at about 2500 points per second,

with the number of iteration cycles required for convergence varying from

50 to 100. As an example for the reference 290 method, a staged missile

configuration with a fine grid (9457 mesh points) and a coarse grid (2425

mesh points) required about 6 minutes and 2 minutes, respectively, to

obtain a converged solution.

Group 6 presents methods for solving inviscid steady supersonic flow.

Most of these methods were developed as a means of solving the blunt-body

problem, i.e., a flow condition in which the bow shock is detached.

However, these methods are also capable of solving attached bow-shock

problems. With the exception of reference 324, all of these methods

predict three-dimensional flow fields about general configurations at

angle of attack.
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Of special interest in this group are the shock-fitting (refs. 152,

289, 305) and shock-capturing (refs. 151, 153, 293, 306) methods. The

shock-fitting methods model shocks (bow and embedded) as sharp

discontinuities across which the Rankine-Hugeniot equations are applied,

while the shock-capturing methods are inherently capable of predicting

the location and strength of all shocks. Shock-capturing methods must

employ a fine mesh in the vicinity of shocks, due to numerical

instabilities near a shock wave. Shock-fitting methods can employ a

coarser mesh in the region of a shock, although they are more difficult

to program. As can be seen, various tradeoffs exist betwen these two

types of methods .

Flow-field data comparisons were presented for many of these methods,

although several of the comparisons were made for Mach numbers above the

range of interest for supersonic aircraft. Figure 102 presents data

comparisons of local Mach number, upwash angle, and sidewash angle in the

vicinity of a fuselage configuration using the method of reference 34.

This is a reference-plane-type method in which flow properties are

calculated for several planes around the periphery of the body, with each

plane emanating from the centerline. Two-dimensional, conical or axisym-

metric methods are used to obtain flow solutions for each plane, and

transverse effects between adjacent planes are accounted for using a

wave-interference calculation. Prandtl-Meyer expansions are used to

model the effects of a canopy or a fuselage corner. Comparisons of

predicted results and data range from good for the local Mach number to

poor for the local angle of sidewash.

Data comparisons of shock shape about a blunt-nose space shuttle

vehicle using the methods of references 151 and 297 are shown in figure

103. Reference 151 is a shock-capturing method, while reference 297 is a

semi-characteristic method. Although the Mach number at which

comparisons are made is rather high, some comments can be made with

respect to the accuracy of these methods. As can be seen in figure 103,

the shock-capturing method shock shapes agree very well with data for
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both Che bow and canopy shocks. The predicted location of the canopy

shock is displaced from the experimentally determined location due to

slight differences between the actual geometry and the analytical

approximation used in the calculations. The semi-characteristic method's

predicted bow-shock shape agrees well with data only up to X/L-.3, and

fails to predict the canopy shock for reasons that are discussed in

detail in reference 404. Computation time comparisons using an IBM

360/67 computer were made in reference 404 for a pointed nose configura-

tion at M =5 and a = 5°. The comparisons show that while the shock

capturing method (SCT) code is about four times faster than the method of

characteristics (HOC) code on a point-for-point basis, the SCT code

required approximately 2-1/2 times the total time used by the HOC code to

calculate the flow field to a distance one half the body length. This is

due to the fact that the SCT code used nearly three times as many radial

points and twice as many radial planes as the HOC code.

Data comparisons of local Mach number and local-to-free-stream static

pressure ratio in the vicinity of a fuselage configuration using the

shock-fitting method of reference 152 are shown in figure 104. Predicted

values agree well with data from reference 280 at the axial position of

interest. As an example of computation time requirements, surface-

pressure distributions were obtained for a complete fighter-type aircraft

flying at a = 6° and M = 2.5. This calculation was obtained in 63 CPU

minutes on an IBM 370/165 using a 24 x 29 mesh in each cross-sectional

plane with a total of 1200 marching steps.

Another method for which flow-field data comparisons exist is that of

reference 337. Predicted values of local flow-field quantities are

compared with Tailor-Mate data (ref. 10) in figure 105. Comparisons of

local Mach number, upwash angle and sidewash angle show good agreement

between theory and data, while the experimental results show a wider
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spread of total pressures than the predicted results. The flow field

about the entire Tailor-Mate fuselage was computed in about 5 minutes on

a CDC 6600. Flow-field calculations for a simpler fuselage model at an

angle of attack of 3.8° and M = 2.0 were reported to have required about
CO

3 minutes.

A few other flow-field data comparisons were available using other

methods of group 6, but these comparisons were made for extremely high

Mach numbers. These comparisons sh6w good agreement between theory and

data for bow-shock static pressure ratio (sphere-cone, ref. 306) and for

bow-shock shape (blunt cone, ref. 289). Methods for which only

surface-pressure-distribution data comparisons were available, but for

which computation time examples were available, are presented in

references 153 and 305. A flow-field calculation up to the inlet face of

the B-l aircraft flying at M = 2.2 and a = 3° required 55 minutes on a

CDC 7600 using the method of reference 153. Using the shock-fitting

method of reference 305, calculation of axial surface pressure distri-

butions at several circumferential positions around a blunt-nose space

shuttle required 20 minutes on a CDC 6600 computer. This calculation was

carried out using 25 mesh points between the body and shock, 20 points

around the body, and 1000 points along the body.

Group 7 in Table XVI contains methods for solving the unsteady Euler

equations. Of the four methods shown in this group, only reference 312

does not handle angle-of-attack cases.

Data comparisons utilizing the methods of reference 291 and 373 could

not be found, and therefore no conclusions can be drawn about the

accuracy of these methods. However, reference 373 does state that a

typical blunt-body case, for which calculations can be carried out

approximately two nose radii downstream, requires approximately 50

minutes on a CDC 3600.
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References 311 and 312 are both shock-capturing methods which utilize

an implicit approximate factorization finite-difference scheme to solve

the flow equations. Although the method of reference 311 was derived to

handle complicated aerodynamic shapes, data comparisons to date have been

only for simple axisyminetric shapes. Predicted surface pressure distri-

butions from reference 311 on a parabolic-arc body and a hemisphere-

cylinder at transonic Mach numbers and several angles of attack are good

agreement with data. Surface pressure distributions on mildly and

severely indented bodies at zero angle of attack and high supersonic Mach

numbers indicate good agreement between experiment and predicted values

from reference 312. With respect to computation time, reference 311

indicates that flow-field calculations about a simple configuration

typically require about one hour on a CDC 7600. A comparison of computer

times presented in reference 312 shows it to be less than half as fast on

a per-point basis as the method of reference 373 for a sphere at M^ =

4.9. However, the step size of reference 312 was nearly five times that

of reference 373, thereby resulting in a faster convergence to the steady

state .

Methods for solving the incompressible and compressible unsteady

Navier-Stokes equation are presented in groups 8 and 9, respectively,

Reference 316, which proposes two methods of solution for the incom-

pressible case, does not contain data comparisons and therefore will not

be discussed further here.

All of the references presented in group 9 can be used to solve for

laminar or turbulent flows. The methods presented in references 311 and

312, which have been previously discussed in group 7, make use of the

"thin layer" approximation, whereby all viscous terms containing

derivatives whose direction is along the body are dropped. This approxi-

mation is valid only for high Reynolds number flows. Data comparisons

are for surface pressure distributions over a hemisphere cylinder at

transonic Mach numbers (ref. 311) and for mildly and severely indented

bodies at high supersonic Mach numbers (ref. 312). Predicted values are
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in good agreement with data in all cases. With respect to computation

tune, reference 311 reports that for free-stream Mach numbers near unity,

a viscous solution for a simple body shape is typically obtained in 2-3

hours on a CDC 7600.

Data comparisons using the method of reference 314 could not be

found. However, Kutler (ref. 312) compares his predicted shock shape and

surface pressure distribution on a sphere-cylinder with that obtained

using the method of reference 314, and the results are in excellent

agreement for the case presented. One might make the assumption that

since Kutler's results agree well with data for a more complicated

configuration (indented body), then most likely his and Viviand's method

(ref. 314) agree well with data for a simple sphere-cylinder model.

Data comparisons using the method of reference 383 are available in

terms of shock shapes and pitot-pressure profiles. Figure 106 shows good

agreement between predicted and experimental results for the outermost

shock shape and fair agreement for the inner shock shape for a sharp 10°

half-angle cone at Mro = 7.95 and a = 24°. Figure 107 shows predicted and

experimental pitot-pressure profiles for a 5° sharp cone at M^ = 1.8 and

a = 0°. The results were obtained for a turbulent boundary layer at two

circumferential positions. Reference 383 attributes the poor agreement

at $ = 152° to flow reattachment and the resulting complicated flow.

Methods which can be used to solve steady, compressible, viscous,

supersonic flow are listed in group 10 of Table XVI. All of these

methods solve some form of the Navier-Stokes equations.

References 292 and 374 both make use of Hayes' Equivalence Principle,

which relates the steady-state flow field over a slender body to an

equivalent time-dependent flow field in one less space dimension. In

reference 292, steady, three-dimensional flow is reduced to two-dimen-

sional, time-dependent flow, while reference 374 makes use of the

equivalence principle to reduce steady, axisymmetric flow to time-
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dependent one-dimensional flow. In both references, the axial flow is

assumed inviscid. However, axial effects are neglected in reference 292,

whereas they are included in reference 374.

Data comparisons from reference 292 of local flow-field quantities

for a fuselage configuration at M = 2.5 and a = 15° are shown in figure

108. Local sidewash angle contours indicate that the method gives fairly

good results in the lower quadrant, while the predicted location of the

canopy shock and the predicted sidewash in the upper quadrant do not

agree with the data. The incorrect position of the canopy shock is

believed to be due to the equivalence principle approximation of neglect-

ing the velocity perturbation along the free-stream flow direction. The

poor agreement between experimental and predicted local Mach number and

local upwash angle contours are also attributed to this assumption.

Other errors associated with this method are those due to discretization,

which has to do with substituting a discrete set of points for the

space-time continum, and neglecting axial viscous effects.

Examples of computation time requirements were also given in this

reference. Flow-field calculations for an ogive cylinder at a Mach

number of 1.98 and an angle of attack of 10 required 3406 time steps and

10 hours on the UNIVAC 1108. Calculations for the previously mentioned

fuselage configuration at M = 2.5 and a = 15° required 2079 time steps

and 6 hours on the same machine.

/The method of reference 374, which solves for the axisysnmetric flow

field by iteration, presents data comparisons of shock shapes for a

cone-cylinder flare configuration at M = 4.54. Results are presented in

figure 109 for the zeroth iterate (inviscid solution) and the first

viscous iterate. Each successive iterate after the zeroth requires

numerical data from the previous iterate and includes viscous effects.

Based on a finite-difference mesh of 50 points, the zeroth iterate

results were obtained using 2500 timesteps, while the first iterate

required 7000 time steps. These cases required 5 minutes and 40 minutes
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on the UNIVAC 1108, respectively. As can be seen in figure 109, the

first iterate solution cone and flare shock shapes agree well with data,

while the method does not predict a separation shock for this iterate.

More iterations would be required to determine separation in this region.

Reference 393 uses the parabolic Navier-Stokes marching finite-

difference method, in which the streamwise viscous derivatives are

neglected. This assumption rules out streamwise separation but allows

crossflow separation. Laminar or turbulent boundary layer codes can be

incorporated into this method. Predicted surface pressure distributions

on an ogive-cylinder at M =3 and a = 42 ° are in good agreement with

data. Flow-field data comparisons of shock shapes for an ogive-cylinder

«7ith the method of reference 297 show good agreement between the two

methods. The ogive-cylinder calculations were obtained using 20 cir-

cumferential planes and 46 points between the body and shock and required

about 1 second per marching step on a CDC 7600.

The method of reference 395 also employs the parabolic Navier-Stokes

equations, but uses the "thin-layer" approximation (see discussion in

group 9 section) to model viscous effects. Data comparisons of surface

pressure distributions on a hemisphere-cylinder at M^, =1,4 and a = 5°

indicate good agreement between predicted and experimental results.

Groups 11, 12, and 13 contain methods for predicting flows in the

transonic Mach number regime. These methods make use of transonic

small-disturbance theory (group 11), the transonic equivalence rule

(group 12) and a far-field matching method (group 13).

The methods of references 296,298, and 299 were developed using the

transonic small-disturbance equation and are applicable to slender body,

thin wing configurations under the assumptions •£ small flow deflections

and M near one. These methods incorporate mixed-difference schemes

(see group 5 discussion) and a numerical method based on the relaxation

method of Murman and Cole. Reference 298 outlines the basic method and
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includes results for which both fully conservative and nonconservative

differencing was used. Reference 296 uses the inviscid method of

reference 298 coupled with a boundary-layer method which accounts for

viscous effects on the wing. Reference 299 presents a modified transonic

small-disturbance equation which can be used to improve the calculation

of shocks due to the wing. Of these references, only reference 298

contains pressure distributions on wing-body combinations. The predicted

results, which were obtained for a rectangular-wing-body and a swept-

wing-body configuration, varied from fair to good when compared to

experimental data. With respect to computation time, only reference 296

contained any useful information. It reported that calculations for a

supercritical-wing aircraft at M = .90 and a = 3.56° required about 10
CO

minutes on a CDC 7600.

Reference 341 presents a method which utilizes the well-known

transonic equivalence rule, which is summarized schematically in

figure 110. As this figure shows, the total solution is composed of

the inner solution, the outer limit of the inner solution, and the

outer solution. The inner solution accounts for the near-field lift

and thickness effects of the aircraft configuration. The outer

solution calculates the flow about an equivalent axisynmetric body to

obtain far-field effects. Details of the solutions of the inner and

outer fields are found in Table XVII.

Data comparisons of flow-field pressures in the vicinity of a "bumpy"

axisymmetric body are shown in figure 111 and upwash and sidewash com-

parisons for a scaled F-16 wing-body configuration are presented in

figures 112 and 113. Predicted values of pressure for the bumpy body are

in very good agreement with data at all survey locations. Figures 112

and 113 indicate good agreement between predicted and experimental side-

wash and upwash except in the region of the wing trailing edge. These

discrepancies are associated with discontinuities in the axial area

distribution which are not accounted for in the prediction method. Flow-
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field calculations for wing-body configurations usually require under 30

seconds on a CDC 7600.

Tne last group in Table XVI presents a far-field matching method for

solving transonic flows. A schematic of the method is presented in figure

114 which illustrates the decomposition of the flow field into near-

field, mid-field and far-field regions. The method of reference 317 uses

the transonic small-disturbance equation in the near-field and middle-

field regions. However, the only restrictions made on the inner-field

flow equations is that they must reduce to the subsonic Prandtl-Glauert

equations in the far-field. Other details of the method can be found in

Table XVII. No data comparisons were included in this reference, but

some information concerning computation time requirements was included.

Calculations of the flow field in the vicinity of a nonlifting

rectangular wing of aspect ratio 6 at M = .82 required 232 CPU seconds.

The type of machine used was not given.

Data comparisons of flow fields were also given in reference 10 using

a combination of a method of characteristics (HOC) and linear theory.

The HOC method, which is restricted to axisymmetric body cases, is

supplemented by the linear theory method to calculate the effects of

forebody camber and the canopy. Also, a perturbation method is used in

conjunction with the a = 0° HOC solution to obtain angle-of-attack

effects. The linear theory, which is used exclusively at subsonic

speeds, is the method of reference 308, and has been previously

discussed.

Flow field data comparisons for a cambered nose fuselage con-

figuration at Mach numbers .90 and 2.5 are presented in figures 115 and

116, respectively. The fuselage cross-sectional shape in the region of

interest is also included in these figures. For the subsonic case the

total pressure ratio was assumed to be equal to 1.0 for prediction

purposes. The subsonic prediction results show the general angle-of-

attack trends of the data with respect to local upwash and sidewash
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angles, although the proper levels and gradients are not always in good

agreement. Figure 116(a) indicates fairly good agreement between

predicted and experimental total-pressure ratio, while the predicted

results show a region of much higher Mach numbers and much lower sidewash

angles in the upper part of the grid than those seen in the data.

Figures 116(b) and (c) also indicate that the general angle-of-attack and

angle-of-sideslip trends seem to be predicted reasonably well.

Figures 117 and 118 present flow-field data comparisons for a wing-

fuselage configuration at Mach nurrbers of .90 and 2.5, respectively.

The fuselage, which has a strake attached to it in the region wtiere data

was obtained, was represented as a wing with varying leading-edge sweep

and with dihedral and camber. Since the linear method did not allow

calculation of yawed wings, a special means of obtaining sideslip effects

was also devised. Figure 117 shows predicted upwash and sidewash angles

to be in rather poor agreement with data, while the predicted local Mach

number comparisons are somewhat better. Figure 118 also shows rather

poor agreement between experimental and predicted flow-field distri-

butions. The consistent trends in the predicted total-pressure ratios

are not seen in the data, and the predicted bow shock is not suggested by

the test results. The predicted results also show a region of higher

upwash angle on the inboard portion of the grid than those seen in the

data.

7.2.4 Concluding remarks

The experimental data and prediction method data base for forebody

and forebody-wing effects on inlet "free-stream" conditions has been

presented. An evaluation of this data base with respect to completeness,

ease of application, and accuracy has led to the following conclusions:

1. Although a few systematic studies for fuselage or wing-fuselage

configurations exist (e.g., references 10, 22, 34, 280), the experimental

data portion of the data base consists mostly of studies of body-of-
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revolution configurations or simple wing-body configurations. Because of

this, this portion of the data base is adequate for preliminary

prediction only for configurations which are similar to those previously

tested. Since the experimental data base for "real" fuselage shapes is

very small, the usefulness of this portion of the data base is quite

limited.

2. Empirical flow-field methods, as one might expect, are usually

only useful for configurations similar to those used in obtaining the

method. Also, the empirical methods presented are for bodies of

revolution and simple wing-body configurations.

3. As the type of flow and configuration becomes more complicated,

the cost of obtaining accurate predictions of flow fields increases. In

other words, as the flow equations become more complicated to solve, such

as the incompressible, steady, potential flow equations versus the

unsteady Euler equations, and as the geometry becomes more complicated,

such as a body of revolution versus a fighter-type wing-fuselage

configuration, the cost of the computerized prediction methods and the

complexity of the associated geometry package will increase. In terms of

preliminary design, therefore, a tradeoff exists between cheaper methods

which calculate flow fields for simplified configurations and more

expensive methods which can be used for complicated geometries. The

accuracy gained by using methods capable of handling complicated

geometries may indeed be offset by increased costs due to long computer

run times.
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TABLE III.- REFERENCES ON SPECIAL TOPICS

Reference List

Topic

Inlet/Airframe
Interaction
(Appendix A)

Afterbody/Airframe
Interaction
(Appendix B)

Thrust-Drag
Bookkeeping

Test Techniques

Kind Tunnel to Flight
Comparisons

Boundary Layer Methods

Inviscid Flow Methods

2,4,5,7,13,15,38,62,128,
138,355,356,392

7,9,12,13,15,20,25,26,27,
29,31,35,38,44,63,77,84,
114,116,128,176,180,187,
189,190,236,247,248,249,
355,357,366,387

53,61,65,143,159,176,177,
100,187,191,355,356,357,
358,366

3,18,100,116,139,140,198

3,7,17,26,29,31,32,33,36,
38,44,53,54,59,61,64,65,
72,79,83,85,92,96,97,100,
119,124,126,139,140,152,
182,186,199,204,205,208,
229 ,236 ,237 ,247 ,248 ,263

68,100,121,126,127,154,
155,187,199,268,270

156,157,158,161,218,219

105,159,162,163,164,165,
218,294
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NOTES TO TABLE IV

1. Sum of external drag, drag due to the boundary-layer control
system, drag of the partial fuselage and stub wing, measured
relative to a "propulsion reference inlet"

2. Partial fuselage and stub wing included

3. Sum of external drag and drag of partial fuselage and stub
wing, measured relative to a "propulsion reference inlet"

4. I denotes isolated inlet test

5. N.R. denotes quantity not reported

6. Inlet tested in isolated configuration and with non-metric
wing simulator

7. Inlet tested in isolated configuration and with non-metric
forebody

8. Sum of external drag, drag due to the bypass and boundary-
layer control systems, and drag of partial fuselage and wing
stub

9. Sum of external and forebody drag

10. Tested with metric forebody

11. Full aircraft model with full aircraft on one force balance,
one inlet on another

12. Quarter-round inlet of F-lll type

13. Reynolds number range given based on cowl height; cowl height
not reported

14. Sum of external drag, drag due to the bypass and boundary-
layer control systems, and the drag of the partial fuselage and
wing stub, measured relative to a "propulsion reference inlet"

15. Drag of entire airplane model

16. Model of entire F-15

17. Sum of external drag, boundary-layer control drag, forebody
and external-store drag

18. Tested with forebody, with and without various external stores

19. Additive drag plus pressure and friction drag of entire model
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NOTES TO TABLE IV (Concluded)

20. Flight test of rocket models having common afterbodies

21. Sum of external drag and bleed bypass system drag

22. External drag does not include drag on lower cowl

23. Full B-l aircraft model with balance installed in one inlet.
Metric portion included nozzles and part of wing. Inlet con-
figurations included are: flow through anlet, faired-over
inlet w/BLC and bypass, flow through inlet w/ramps installed.

24. Inlet cowl and ramp integrated pressure-area chord force
coefficient

25. Inlets mounted at the rear of an uncambered slender gothzc wing

26. Sum of external drag and drag on wing

27. Drag increment; drag of wing-and-inlet configuration (minus
base drag and inlet internal drag) minus drag of wing-alone
configuration

28. Sum of external drag and bleed drag

29. Sum of spillage and interference drag

30. Reynolds number range given based on inlet radius; inlet radius
not reported

31. External drag on a nacelle configuration

32. Nacelle configuration

33. Type of configuration tested with inlet is not known.

34. Sum of additive and bleed drag

35. Inlet design includes auxiliary airflow system

36. Sum of external drag, drag due to boundary-layer control system,
and drag of the partial fuselage and stub wing

37. Numbers in parenthesis indicate percentage of external/internal
contraction
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TABLE VII.- MAJOR FEATURES OF THE PARTIAL PREDICTION METHODS

Reference Major Features

4,5,7
(Ball)

Kadd'

one-dimensional momentum method.
At critical mass flow, external
compression surface contribution
taken from data correlations. For
subcritical mass flows in a super-
sonic free stream, the method of
ref. 33 is used for 2-D inlets, and
another method (referenced in 4) is
used for axisymmetric inlets.

K ,, factors for a number of inletsadd
are shown.

10
(Cawthon)

'LS'

pressure integration along inlet
capture streamline. For subcritical
mass flows, the methods of refs. 32,
72, and 364 are used.

correlations are given for 2-D and
axisymmetric inlets (MFR f = 1).
No provision for effects of details
of cowl geometry.

11
(Crosthwait)

•LS'

one-dimensional momentum analysis.
Curves given for compression sur-
face contribution. Uses aproach
of ref. 72 for normal shock loca-
tion.

curves given for calculation of
CTs depending on detailed cowl
geometry ( M F R _ = 1).

21
(Kamman)

"Pitot-Inlet Analogy"

CD : pressure integration along stagna-
crit tion streamline.

crit

EXT
8(MFR)

method not specified.

: uses methods of refs. 59,71,72,102,
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TABLE VII.- (Continued)

Reference Major Features

29
(Mount)

32
(Osmon)

V
Cadd:

CD '

one-dimensional momentum method.

for cowls of varying bluntness and
external contours.

extends method of ref. 72 for
locating terminal normal shock
empirically for sidespill; one-
dimensional momentum method used for

'LS'
correlations of data from ref. 33
in terms of detailed cowl geometry
(MFR ref 1) .

33
(Petersen) A

one-dimensional momentum method. In
supersonic flow at subcritical mass
flow ratios, a model for supersonic
sidespill is included, subsonic and
supersonic spillage over the cowl is
allowed. No normal shock movement
in model. Correlation presented for
ramp drag at critical mass flows.

curves given for two ramp inlets
with varying ramp angles, cowl and
sideplate geometry.

39
(Smith) 'LS' curves given for calculation of CT„

depending on detailed cowl geometry
(MFR ref = 1).

48
(Mascitti)

-DflAcrit
exact solution for right circular
cones at zero angle of attack.

49
(Sibulkin)

one-dimensional momentum method.
For subcritical mass flows, the
method of ref. 72 is used. For
inlets with centerbodies, at critical
or supercritical conditions conical
flow theory is used.
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TABLE VII.- (Continued)

Reference Major Features

59
(Fraenkel)

cD crit

3 (MFR)

linear theory, references given in
ref. 59.

analysis ignores details of cowl
shape, result is linear variation
of CDEXT with MFR.

71
(Goldsmith)

"Pitot-Inlet Analogy"

CD» : pressure integration along stagna-
crit tion streamline in conical flow

solution.

CD : linear theory.
Lcrit
3CD'EXT
3(MFR)

: extends method of refs. 59 and 72.

72
(Moeckel)

"Continuity" method for location of terminal
normal shock.

73
(Love)

Extension of method of ref. 72 to hypersonic Mach
numbers

81
(Schulte)

Prediction of location of terminal normal shock in
2-D inlets allowing for sidespill.

86
(Moeckel)

: one-dimensional analysis for un-
cambered cowls (MFR ,. = 1) , no
dependence on detailed cowl geometry.

90
(Crosthwait)

C_ : empirical relations. No dependence
A on details of geometry.

92
(Mascitti)

CD. : approximate solution for right
crit circular cones at zero angle of

attack.
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TABLE VII.- (Continued)

Reference Major Features

102
(Dutton)

"Pitot-Inlet Analogy"

crit

CDf
'crit

3CDEXT
3 (MPR) '

pressure integration along stagna-
tion streamline for 2-D inlets in
supersonic flow with wedge shocks
attached; with detached wedge shocks,
uses method of ref. 59.

for wedge cowls, and for elliptical
contours by Prandtl-Meyer expansion
theory.

extends method of ref. 71 to two-
dimensional geometry.

106
(Sharp)

In supersonic 1rlow, uses "Pitot-Inlet Analogy"

"crit

:DC
 :

ucrit

8CDEXT.
3(MFR)'

pressure integration along stagna-
tion streamline; supersonic side-
spill and sideplate contraction
allowed for.

wave drag calculated using Prandtl-
Meyer theory; contributions due to
lip bluntness, sideplates accounted
for.

extends analysis of refs. 71 and 102
to multi-ramp 2-D inlets.

In transonic flow, 2-D inlets are treated:
CQ- is calculated from one-dimensional

crit
momentum analysis with experimental data correla-

3CDA
tion,used for ramp contribution, •—,„•„„-• is3(MFR)
determined as a function of free-stream Mach

number from a correlation of data.

364
(Savage)

Method of locating terminal normal shock from
ref. 32 for 2-D inlet; modified version of ref.
72 for axisymmetric inlet.

222



TABLE VII.- (Concluded)

Reference Major Features

364 CDA: pressure integration along stagna-
(cont.) tion streamline; for subcritical

flow, subsonic contribution cal-
culated by multiplying relevant
spillage area by average of pressure
behind normal shock and pressure at
cowl lip.
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TABLE IX.- MAJOR FEATURES OF THE FLOW-FIELD
S PREDICTION METHODS

Numerical solution of the unsteady Euler equations

Reference Major Features

19
(Hawkins)

Explicit finite-difference solution of unsteady
Euler equations (Godunov method, ref. 8.3).
Boundary condition at inlet duct subsonic-out-
flow boundary (critical or subcritical flow)
fixes axial velocity at one-dimensional ideal
value, extrapolates pressure and density. Initial
conditions used include free stream, "best guess",
and terminal flow fields from previous calcula-
tions. Automatic mesh generation is used.
Calculations require large computer storage, long
run times.

154
(Bansod)

Explicit finite-difference solution of unsteady
Euler equations for two-dimensional and axisym-
metric blunt-lipped pitot inlets in a uniform
supersonic free stream. Upstream boundary is
the bow shock. Boundary condition at inlet duct
subsonic-outflow boundary is specially treated to
enable mass flow ratio and/or the axial velocity
component to be specified. Initial conditions
used include estimates from previous calculations
and/or empirical methods. Stability and accuracy
problems encountered for thin lip shapes were
stated to be due to treatment of boundary condi-
tions.

354
(Rizzi)

Finite-volume solution of unsteady Euler equations
written in integral conservation-law form for a
pitot inlet in a supersonic free stream. The body
and bow shock fitted mesh adjusts in time to the
motion of the captured bow shock. The inlet duct
subsonic-outflow boundary condition is a specified
static pressure.

Finite-difference solution of full potential equation

37
(Rochow)

Subsonic, compressible, steady potential flow
field is solved using iterative finite-difference
technique. Supersonic "bubbles" allowed in solu-
tion but strong shock waves invalidate potential
analysis.
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TABLE IX.- (Continued)

Reference Major Features

52 Another description of the method given in ref.
(KcVey) 37.

149 Finite-difference solution of steady potential
(Caughey) equation. Type-dependent differencing used in

rectangular computational domain obtained by
"nearly conformal" mapping procedure. Accelerated
convergence of iteration solution obtained using
several schemes.

150 Similar to ref. 149 but uses different mapping
(Arlinger) scheme to achieve computational domain and

accelerated convergence schemes not included.

215 Line relaxation finite-difference solution of
(Reyhner) full potential equation in cylindrical coordinate

system. Body must be axisymmetric, flow field
three-dimensional (with plane of symmetry). Free
stream must be subsonic, local flow may be super-
sonic.

Finite-difference solution of incompressible potential equation
with compressibility correction

-52 The incompressible "Douglas Neumann Potential
(McVey) Flow Program" (refs. 8.4-8.6) which uses surface

source distributions is used and corrected for
compressibility effects using the Prandtl-Glauert,
Karman-Tsein, Laitone, or Krahn methods. The
Laitone correction is felt to yield best agreement
to data. - ' -

405 Panel method applicable to three-dimensional pitot
(Hess) inlets (with or without centerbodies) in a sub-

sonic free stream. Geometry must have plane of
symmetry. Exact inviscid incompressible solution
obtained by linear superposition of solutions for
axial flow, simple pitch and yaw, and static
operation. Compressibility effects accounted for
through Lieblein-Stockman correction (ref. 8.7).
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TABLE IX.- (Concluded)

Streamtube curvature

Reference Major Features

274 The inviscid Streamtube curvature technique is
(Keith) coupled via displacement thickness effects with

the compressible turbulent boundary layer integral
method of Stratford and Beavers (ref. 8.8).
Turbulent separation is included via the Stratford
criterion (ref. 8.9). The inviscid procedure
utilizes automatic grid refinement and a matrix
relaxation technique for use in a uniform free
stream.
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TABLE X.- PARAMETERS USED IN NADC CORRECTION OF
CALAC DRAG PREDICTION

Parameter
Number

lMSTA

Expression

5/3

r[(Y + Di

•BTA /[ 2 _ , I I
•MAX Y I" L' I j

LBTA
DM^VX

- 1)
,2/3

Definition

Similarity relation;
pressure

R
Pressure spreading
estimator

AEXN-
ATHR

Nozzle expansion ratio

ATHR
AMB

Ratio of internal flow
area (nozzle throat) to
fuselage area (area at
metric break station)

[IMSTA~~~

.21
1/3

LBTA /,,
DM/^X Y l ' 1

M2 - 1

Similarity relation;
pressure drag estimator

[(Y + 1) liKTAJ M21
2/3
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TABLE X.- (Continued)

Parameter
Number Expression Definition

If 1ST A Integral-mean-slope of
aftbody

R

_M
3/2

Boundary layer parameter;
estimator of skin fric-
tion

lMST/05/3

~T~"J

[(Y + i) >2] 1/3

Similarity relation/-
pressure drag estimator

(MT - 1)

(Y + 1)]
2/3

(IMSTAj~~~
5/3

[(Y + 1) M2]
1/3

Similarity relation;
pressure drag estimator

- 1

,. [IIISTA] , 2]
' I —2— n J

2/3

10

5/6 [(Y ^ 1) H
1/3

Similarity relation;
estimator of effect of
boundary layer on external
pressure field (displace-
ment effect)

(M2 -

[(Y
,2/3

Reproduced from
best available copy.
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230

TABLE X.- (Continued)

Parameter
N u'a Expression Definition

11
3/2

Boxmdary layer parameter;
estimator of skin fric-
tion

12

2

1} M
,1/3

Similarity relation;
pressure drag estimator

LBJTA
D'lAX

3 3 flMST/vl
l~2~J

5/3

,1/3

Similarity relation;
pressure drag estimator

14 flMSTA]
L~~T~"J

5/3

1/3

Similarity relation;
pressure drag estimator

M2 - 1
2/3



TABLE X.- (Concluded)

Parcinetor
Number Expression Definition

15 MPR Nozzle pressure rat-io

16 CDCALAC Aftend drag; predicted
value from CALAC "Twin
Jet Aftend Drag and
Nozzle Internal Per-
formance Computer Deck"

17 ACC
AMB

Ratio of aftend pio-
jected areas

18
TMSTA 573

[(Y
• 1/3

Similarity relation;
pressure drag estimator

19 AKXN
ACC"

Ratio of nozzle projected
areas
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NOTES TO TABLE XII

1. Afterbody/Boattail/Nozzle pressure coefficient distribution

2. Afterbody/Boattail/Nozzle drag coefficient

3. Thrust-minus-drag coefficient, indicates thrust-minus-total
drag or thrust-minus-nozzle drag

4. Thrust coefficient

5. Porebody pressure coefficient distribution

6. Porebody drag coefficient

7. Total configuration pressure coefficient distribution

8. Total configuration drag coefficient

9. Base pressure coefficient distribution

10. Base drag coefficient

11. Pressure or drag coefficient increment due to parametric
changes - parameters include nozzle pressure ratio, empennage,
area distribution on the afterbody, etc.

12. Aerodynamic characteristics - lift or pitching-moment coef-
ficients and increments of lift or pitching-iroment coefficients
due to parametric changes

13. Boundary-layer data - includes Mach number profiles and
stagnation pressure profiles

14. Interference pressure coefficient distribution - based on the
pressure coefficient distribution of a reference model

15. Nozzle exhaust flow-field data - includes local Mach number
and flow angle

16. Isolated boatLail or single engine configuration - no
empennage

17. Isolated twin-engine configuration - no empennage

18. Single engine aircraft configuration

19. Twin engine fighter-type aircraft configuration - includes
isolated twin-engine afterbody configuration with empennage

20. Other configurations - includes twin-engine aircraft configura-
tion with single engine under each wing, isolated boattail
configuration with attached delta wing, etc.
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NOTES TO TABLE XII (Concluded)

21. Any quantities not recorded for confidential reports indicates
those quantities are confidential information

22. Sum of afterbody, nozzle, and tail drag coefficient

23. Tail drag coefficient

24. Interference coefficients (drag, lift, pitching-moment) based
on drag, lift, or pitching-moment coefficients of a reference
model

25. Determines shapes of boattail bodies of revolution for Cnr,wmin
26. Aft-nacelle integrated pressure-area chord force coefficient

27. Axial-force coefficient

28. Isolated boattail with empennage

29. Reynolds number range given based on maximum diameter of body;
maximum diameter of body not reported

30. Based on cruise nozzle diameter

31. Horizontal tails attached to single vertical tail

FS: Refers to full-scale configuration

N.R.: Quantity not reported
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TABLE XIII.- AFTERBODY CONFIGURATION
CLASSIFICATION SCHEME

Configuration
Element

Interfairing

Jet Simulation

Empennage

Empennage Subscripts

Nozzle

Symbols

HW

O

CG

HG

NJS

S

H

V

6

1

2

C

CD

E

P

2D

Definition of Symbols

Horizontal wedge

Other

Cold gas

Hot gas

Normal Jet Simulation

Solid Plume Simulator

Horizontal stabilizer

Vertical stabilizer

Deflected

Single vertical tail

Twin vertical tail

Convergent

Convergent-divergent

Ejector

Plug

Two dimensional
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TABLE XVII.- MAJOR FEATURES OF METHODS FOR PREDICTING
FOREBODY AND FOREBODY-WING EFFECTS

ON INLET FLOW FIELD

Group 1.- Empirical Methods

Reference
Number Features of Prediction Method

4
(Bail)

under-wing configuration - empirical relations
based on Prandtl-Meyer relations for a shock under
a 2-D wing used to determine effects of angle of
attack (supersonic free stream only)

under-fuselage configuration - effects of angle
of attack based on expermental data (subsonic
and supersonic free stream)

side-mounted configurations - angle-of-attack
effects assumed negligible based on data

11 •
(Crosthwait)

398
(Mahoney)

Fuselage Effects:

• superpose potential flow solution of Laitone
(axial flow) and incompressible slender-body
cross-flow theory solution for subsonic flows

• combined supersonic/hypersonic similarity rule
for supersonic flov/s (Mm 2. 2)

Wing Effects:

• experimental results on a limited number of
wings mounted on a circular fuselage are used to
determine angle-of-attack effects for subsonic
and supersonic flov/s

• forebody represented by suitable tangent cone

• two correlating parameters, used in conjunction
with a conical shock and 2-D Prandtl-Meyer expan-
sions, are employed to determine flow angles at
body surface points

• potential flow theory used to determine flow
angles at off-body points
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TABLE XVII.- (Continued)

Group 2.- Incompressible Potential Flow Equations

Reference
Number

300,301
(Hess)

Features of Theoretical
Prediction Method

singularity method

non-lifting surfaces modeled using constant-
strength source panels on surface (ref. 300)

lifting surfaces modeled using constant-strength
source panels and doublet panels on the surface
and trailing vorticity (ref. 301)

panels are plane quadrilaterals

302
(Hess)

replaces plane surface panels having constant
source strengths (ref. 300) with curved surface
panels having variable singularity strengths

315
(Asfar)

singularity method

body is modeled using constant-strength source
panels on the surface and surface distributions
of vorticity (vortex lattice)

panels are plane quadrilaterals and triangles

340
(Geissler)

singularity method

body modeled using surface distribution of sources,
sinks, and vortices

surface of a body of revolution divided into conic
frustrums of small axial extension

bodies of revolution only

weighting factors, which are functions of body
geometry, are used to combine the singularities

346
(Maskew)

singularity method

body modeled using surface distribution of quadri-
lateral vortex rings of constant strength
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TABLE XVII.- (Continued)

Group 3.- Linearized, Steady, Compressible Potential
Flow Equations

Reference
Number

303
(Dillenius)

Features of Theoretical
Prediction Method

• singularity method

• axisyminetric cross section modeled using 3-D
point sources and sinks along body centerline
and 2-D doublets in cross-flow plane

« wing modeled using constant u-velocity-type
panels and constant source-type panels

• position of wing leading-edge shock determined
using nonlinear correction to linear solution
based on wing thickness

304
(Dillenius)

• singularity method

• axisymrnetric cross section modeled same as that
for reference 303

• noncircular cross section modeled using 3-D point
sources and sinks along centerline of equivalent
body and polar harmonics and 2-D sources in cross-
flow plane

• wing-fuselage interference modeled using vortex-
lattice model with imaging

• wing modeled using 3-D source panels on wing
surface

309
(Woodward)

• singularity method

• constant source distribution on body panels

• linearly varying vortex distribution on wing
panels

308
(Woodward)

,• singularity method

• wing modeled using a surface distribution of
vorticity and sources
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TABLE XVII.- (Continued)

Group 3.- (Continued)

Reference
Number

308
(cont.)

Features of Theoretical
Prediction Method

fuselage modeled using line sources and doublets
distributed along body centerline

wing-body-interference modeled using a surface
distribution of vorticity on the body in the
region of- influence of wing-body intersection

318
(Morino)

• finite-element method

• surface of body divided into small hyperboloidal
elements

• potential and normal derivative of potential
within each element are constant at the element
centroid

349,350
(Ehlers)

• singularity method

• planar source and doublet panels

• source distribution varies linearly, doublet
distribution varies quadratically

• in reference 349/ there is a single quadratic
distribution of doublet strength over each quadri-
lateral panel

• in reference 350, each quadrilateral panel is
divided into eight triangular subpanels in such a
way that all panel edges are contiguous with
ad3acent panels; separate quadratic distributions
over each triangular subpanel are prescribed

347
(AEDC)

• singularity method

• configuration modeled using surface distribution
of vorticity and sources

348
(Johnson)

• singularity method

• curved source and doublet panels

• singularity strengths vary as polynomials
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TABLE XVII.- (Continued)

Group 4«- Unsteady, Compressible, Linearized Potential
Flow Equations

Reference
Number

319
(Morino)

Features of Theoretical
Prediction Method

• finite-element method

Group 5.- Full Compressible Potential Flow Equations

Reference
Number

215
(Reyhner)

Features of Theoretical
Prediction Method

• finite-difference relaxation method

• mixed-difference scheme

• subsonic free stream only (within transonic range)

290
(South)

• finite-difference relaxation method

• modified mixed-difference scheme: difference
scheme simulates differencing along and normal
to local velocity vector

• subsonic and supersonic free stream (within
transonic range)
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TABLE XVII.- (Continued)

Group 6.- Steady Euler Equations

Reference
Number

34
(Prokop)

Features of Theoretical
Prediction Method

• reference plane-type method (flow properties
calculated for several planes around periphery
of body, each emanating from centerline)

• two-dimensional shock-expansion method; conical
method of Ferri, two-dimensional m.o.c. or axisym-
metric m.o.c. used to obtain flow solutions for
each plane

• transverse flow effects between adjacent planes
accounted for using a wave-interference calcula-
tion which modifies static pressure and streamline
direction at each point of interest

• effects of canopy and fuselage corner modeled using
Prandtl-Meyer expansions

151
(Kutler),
306
(Solomon)

152
(Marconi),
305
(Moretti)

• shock-capturing technique

• MacCormack's second-order predictor-corrector
method

• conservative form of equations of motion

• embedded shocks

• shock-fitting technique

• MacCormack's second-order predictor-corrector
method

• non-conservative form of equations of motion

• embedded shocks

153
(D'Attorre)

• shock-capturing technique

• Lax-Wendroff finite-difference method

• conservative form of equations of motion

• embedded shocks
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Reference
Number

289
(Thomas)

TABLE XVII.- (Continued)

Group 6.- (Continued)

Features of Theoretical
Prediction Method

shock-fitting technique

MacCormack's second-order predictor-corrector
method

non-conservative form of equations of motion

no embedded shocks

293
(Walkden)

• shock-capturing technique

• pseudo method of characteristics method

• non-conservative form of equations of motion

• embedded shocks

297
(Rakich)

• method of characteristics (reference plane, or
semi-characteristic, method)

• MacCormack's second-order predictor-corrector
used to obtain cross derivatives

• embedded shocks

324
(Inouye)

• inverse, integral method (shock shape assumed and
equations of motion integrated numerically by
finite-difference method to determine corresponding
body shape)

• predictor-corrector scheme for subsonic and tran-
sonic regions

• method of characteristics used in supersonic
region

• iterative process used for embedded shocks

337
(Chu)

• method of characteristics
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TABLE XVII.- (Continued)

Group 6.- (Concluded)

Reference Features of Theoretical
Number Prediction Method

337 • bicharacteristic, inverse redundant method
(cont.) (employ governing differential equations along

generators of Mach cone through a point in flow)

• embedded shocks

375 • semi-implicit finite-difference scheme
(Babenko)

• non-conservative form of equations of motion
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TABLE XVII.- (Continued)

Group 7.- Unsteady Euler Equations

Reference
Number

291
(Li)

Features of Theoretical
Prediction Method

• Euler equations are linearized, then reduced to
one equation throught the use of a potential
function

• boundary conditions satisfied at body, then
solution worked outward toward infinity

311
(Pulliam),
312
(Kutler)

• shock-capturing technique

• conservative form of equations of motion

• embedded shocks

• implicit approximate factorization finite-difference
technique

373
(Moretti)

four-dimensional method of characteristics used
to determine quantities at shock points and body
points

time-dependent explicit Lax-Wendroff type numerical
scheme used to determine quantities within shock
layer
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TABLE XVII.- (Continued)

Group 8.- Unsteady, Incompressible Navier-Stokes Equations

Reference Features of Theoretical
Number Prediction Method

316 • two partially implicit finite-difference formu-
(Mastin) lations of Navier-Stokes equations developed

1. one-step first-order time differencing
scheme

viscous and pressure terms treated
implicitly

successive overrelaxation method used

2. two-step projection method

pressure equation uncoupled from momentum
equation

successive overrelaxation method used

• body-fitted curvilinear coordinate system used
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TABLE XVII.- (Continued)

Group 9.- Unsteady, Compressible Navier-Stokes Equations

Reference
Number

311
(Pulliara) ,
312
(Kutler)

314
(Viviand)

383
(McRae)

Features of Theoretical
Prediction Method

• shock-capturing technique

• conservative form of equations of motion

• embedded shocks

• implicit approximate factorization finite-dif-
ference technique (noniterative, alternating
direction implicit)

• "thin-layer" approximation used to handle viscous
effects

• high Reynolds number flows only

• shock-fitting technique

• MacCormack's second-order predictor-corrector
method

• non-conservative form of equations of motion

• no embedded shocks

• conical symmetry assumption applied to full
Navier-Stokes equations

• shock-capturing technique

• MacCormack's second-order predictor-corrector
method

• weak conservation form of equations of motion

• embedded shocks

For refs. 314 and 383: laminar or turbulent boundary layer can be
used.

237



Reference
Number

292
(Walitt)

TABLE XVII.- (Continued)

Group 10.- Steady, Compressible, Viscous Flow

Features of Theoretical
Prediction Method

• Hayes1 Equivalence Principle used to relate the
time-dependent 2-D flow to a steady 3-D flow

• Navier-Stokes equation solved in cross-flow
plane using finite-difference method

• simultaneous solution of laminar boundary layer
and inviscid flow field

• inviscid axial flow, axial effects neglected

• laminar boundary layer (2-D)

374
(Walitt)

393
(Rakich)

• steady-state axisymmetric flow field made analo-
gous to time-dependent 1-D flow using Hayes1

Equivalence Principle

• "full" Navier-Stokes equations for axisymmetric
flow solved by iteration

• inviscid axial flow, axial effects included

• turbulent or laminar boundary layer (1-D, corrected
for axial symmetry)

. parabolized Nav:er-Stokes equations (streamwise
viscous derivatives neglected; rules out stream-
wise separation but allows crossflow separation)

. laminar and turbulent boundary layers

• implicit factorization method of Beam & Warming
used

. conservative form of equations of motion

395
(Schiff)

• parabolized Navier-Stokes equation

• "thin-layer" approximation used to handle viscous
effects

• high Reynolds number flows only

• conservative form of equations of motion
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TABLE XVII.- (Continued)

Group 11.- 3-D Transonic Small-Disturbance Theory

Reference Features of Theoretical
Number Prediction Method

298 • equations derived from transonic small distur-
(Bailey) bance theory under assumptions of small flow

deflections and free-stream Mach number near
unity

• finite-difference method based on relaxation
method of Murman & Cole

• shock-capturing technique

• mixed-difference scheme

• handles subsonic upstream/supersonic downstream
and supersonic upstream/subsonic downstream
conditions

• can use fully conservative or nonconservative
differencing

296
(Mason)

• inviscid method is that of references 298,299

• viscous effects on the wing also included

299
(Ballhaus)

several modified 3-D transonic small-disturbance
equations introduced to improve prediction of
shocks

other techniques mentioned for reference 298 also
apply
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TABLE XVII.- (Continued)

Group 12.- Transonic Equivalence Rule

Reference
Number

341
(Stahara)

Features of Theoretical
Prediction Method

total solution made up of inner solution, far-
field behavior of inner solution, and outer solu-
tion

inner solution:

- superposition of solutions to thickness and
lift problems obtained from 2-D Laplace equa-
tion in cross flow plane at each x-station

- thickness solution obtained using method of
distributed singularities developed by Stocker

- lift solution obtained using analytic conformal
mapping solution determined by Spreiter for
circular body with mid-mounted zero-thickness
wings

outer solution:

- 3-D nonlinear transonic differential equation is
solved

- wing-body combination is modeled using a line
distribution along body axis of a combination of
sources (related to total cross-sectional area,
axial lift distribution, and spanwise wing
loading) and doublets (related to axial lift
distribution)

- in thickness-dominated domain, basic nonlinear
outer flow determined principally by line source
distribution. For this case, governing PDE is
nonlinear axisymmetric transonic small-disturbance
equation which is solved using a finite-difference
successive line over-relaxation procedure which
uses Murman-Cole type-dependent difference opera-
tors

- in lift-dominated domain, nonlinear outer flow
determined by line source and line doublet dis-
tribution
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TABLE XVII.- (Concluded)

Group 13.- Far-Field Matching Method

Reference Features of Theoretical
Number Prediction Method

317 • computational field divided into near-field, mid-
(Lee) field, and far-field regions

• near-field equations must reduce to subsonic
linearized potential flow equations (Prandtl-
Glauert) in far-field region

• far-field solution is a linear combination of
source distributions at the far-fleld/mid-field
boundary and (for lifting flows), a vortex centered
somewhere in the near field

• near-field is solved using finite-difference
methods

• mid-field is solved using finite-element methods

• present method solves transonic small-disturbance
equation in mid-field and near-field
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(a) Experimental configurations.

Figure 2.- External drag for various cowls from
reference 33 (2-D inlet).
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Figure 2.- Continued.

264



0. 40

0. 36

0.32

0.28

EXT

0. 24

0. 20

0. 16

0. 12

1 I I I

Cowls Cl through
Co as numbered

0 V 0.4
I

0.5 0.6

MFR

(c) M = 1.29.oc

Figure 2.- Concluded.

0.7 0.8

265



Sideplate Interchangeable lip

Model assembly. Rectangular sideplate shown.
Alternate sideplate leading edge is swept from
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(a) Experimental configurations.

Figure 3.- External drag for various cowls from
reference 107 (2-D inlet).
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(a) Experimental configurations.

Figure 4.- External drag for two cowls from
reference 27 (axisymmetric inlet).
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Figure 4.- Concluded.
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Figure 5.- Comparison of the lip suction correlation
of reference 10 with data from reference 33.
See figure 2(a) for experimental geometry.
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experimental geometry.
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Figure 7.- Comparison of lip suction from the method
of reference 32 with the data of reference 107;

a = 0, M^ = 0.8. See figure 3(a) for
experimental geometry.
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Figure 9.- Experimental configurations (ref. 59) for
comparison of experimental and theoretical inlet drag

shown in figure 10.
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Figure 30.- B-l external compression inlet geometry from
reference 239. Comparisons in following figures use

RB = 7.2' HL = 27.3.
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Figure 100,- Flow field at the side of a fighter-type
fuselage, M^ = 0.9, a 25°.
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Figure 101.- Flow field under the wing of a fighter-type
wing-fuselage configuration, M, = 0.9, a = 10°.
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ĈO

I

CD
i-l

•H
Cn

406



C
H -
CJ (N
H .
> <N

01 II
JS

01
H

M-l

I

•*'
O

3
CP

407



Relative
inlet area
at F.S. 345 Fuselage

cross-section

50 100 150 200 250 300

(a) Tailor-Mate fuselage configuration.
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(b) Contour plots of flow properties
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Figure 105.- Flow field in the vicinity of the
Tailor-Mate fuselage configuration,

M = 2.5, a = 15°
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Figure 107.- Comparison of predicted and experimental
o „.pitot-pressure profiles for a sharp 5 cone,

= 1.8, Q = 12.5°.
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O Experiment, reference 342

Prediction method,
reference 341

(a) Local sidewash angle, Y = 2.0 in.

10 12 13 17 1814 15

X, in.

(b) Local sidewash angle, Y = 5.5 in.

Figure 112.- Flow field under the wing of a scaled F-16
wing-body configuration, M = 0.925, a = 0°, Z = -1.0 in.
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O Experiment, reference 342

Prediction method, reference 341

(c) Local upwash angle, Y = 2.0 in.

T

18 19

(d) Local upwash angle, Y=5.5 in.

Figure 112.- Concluded.
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O Experimental, reference 342

Prediction method,
reference 341

(a) Local upwash angle, a = 0 .

Local sidewash angle, a = 0

Figure 113.- Flow fields under the wing of a scaled F-16
wing-body configuration, M =0.975, Z =-1 in., Y =4 in.
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(d) Local sidewash angle, a = 5 .

Figure 113.- Concluded.
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