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SUMMARY

Experiments on metallic materiaiz have shown that fatigue cracks remain
closed during part of the load cycle under constant- and variable-amplitude
loading. These experiments have shown that crack closure is a significant
factor in causing load-interaction effects (retardation and acceleration)
on crack-growth rates under variabie-amplitude loading.

The present paper is concerned with the development and application of am
analytical model ~f cyclic crack growth that includes the effecis of crack
closure. The model was based on a concept like the Dugdale model, but was
modified to leave plastically-defnrmed material in the wake of the advancing
crack tip.

The model was used o correlate crack—growth rates under constant-amplitude
loading, and to predict crack growth uiider aircraft spectrum loading on
2219-7851 aluminum alloy sheet material. The predicted crack-growth lives
agreed well with experimental data. The ratio of predicted-to-experimental
lives ranged from 0.66 to 1.48. These predictions were made using data

from an ASTM E25.06.01 Round Robin.

INTRODUCTION
Experiments [1] on metallic materiiis have shown that fatigue cracks
remain clysed during part of the load cvcle under constant- and variable-
amplitude loading. The crack-closure concept has been used to correlate
crack-growth rates under constant-amplitude loading [2] and is a significant

factor in causing l~ag- interaction effects on crack-growth rates (retardation



and acceieration) under variable-amplitude loading. Crack-closure is caused

by residual plastic deformations remaining in the wake of an advancing crack.
Measurements of crack-opening stresses are very difficult and have been made on
only a few materials and for a limited number of loading variables. To develop
the rationale for predicting crack growth under gemeral cyclic loading, a
mathematical model of crack closure must be developed and verified for constant-
and variable-amplitude loading.

The crack-closure phenomenon has been analyzed using two-dimensional,
elastic-plastic, finite-element methods [3—6]. The finite-element analyses
were shown t- be quite accurate, but were very complicated and required large
computing facilities. There have also been several attempts to develop simple
analytical models of crack closure [3,7-11]. All of these models were based
on a concept like the Dugdale model [12] or strip-yield model, but modified
to leave plastically-deformed material in the wake of the advancing crack.
Newman [3], Budiansky and Hutchinson [8], and Fihring and Seeger [10,11]
studied only the crack-closure behavior. But, Dill and Saff [7] and Hardrath,
Newman, Elber and Poe [9] used the crack-opening stresses from the models to
predict crack growth under spectrum loading. However, none of these studies
considered the influence of three-dimensional constraint on the crack-closure
behavior.

The purpose of the presenv paper is to develop and apply an analytical
crack~closura model that simulates plane-stress and plane-strain conditions.
The present model was based on the Dugdale model, but was modified to leave
plastically-deformed material along the crack surfaces as the crack advances.
Plane-stress and plane-strain conditions were simuiated by using a "constraint"
factor on tensile vielding to account for three-dimensional effects.
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The model was developed for s central crack in a finite-width specimen
that was subjected to uniformly applied stress. The model was exercised under
constant-amplitude loading using various applied stress levels and stress
ratios. The crack-opening stresses calculated from tin model were used to
calculate Elber's effective stress—intensity factor range [1]. Experimental
crack-growth rates from 2219-T851 aluminum alloy sheet material under constant-
amplitvde loading were correlated with the effective stress-intensity factor
range for a wide range of stress levels and stress ratios. The experimental
data weve obtained frcm Chang and Stolpestad [13]. An equation relating
crack-growth rate to effective stress-intensity factor range, threshold
stress-intensity factor range, and fracture toughness has been developed for
the complete range of crack-growth rates. The closure model was then used
to predict crack growth in 2219-T851 aluminum alloy material under aircraft
spectrum loading [13]. The predictions were made using the closure model
under nearly plane-strain conditions. These predictions were made using
data from an ASTM E24.06.01 Round Robin. The purpose of the round robin was
to compare various methods for predicting crack growth in 2219-T851 aluminum

alloy ceunter-crack tension specimens subjected to aircraft spectrum loading.

LIST OF SYMBOLS

bk dimensions for partially-loaded crack (k = 1,2), m
Ck material crack-growth constants (k = 1,5)

c half-length of crack, m

s half-length of final crack, m

o half-length of initial crack, m

L half-length of starter notch, m



half-length of crack plus tensile plastic zone, m
Young's modulus of elasticity, MPa
boundary-correction factor on :tress intensity

stress-intensity factor, HP.—-I/Z

stress-intensity factor at failure, MPa-llz

maximum stress—-intensity factor, HPa-nllz

elastic-plastic fracture toughness, HPa—nllz
length of element (i) created by plastic deformation, m
fracture toughness parameter

number of cycles

number of cycles predicted from analysis

number of cycles from test specimen

total number of bar elements

stress ratio (smin/smax)

applies stress, MPa

maximum applied stress, MPa

minimum applied stress, MPa

crack-opening stress, MPa

specimen thickness, m

crack-surface displacement, m

specimen width, m

half-width of bar element at point i, m

Cartesian cocrdinates

coordinate location for element 1i, m

constraint factor, a = 1 for plane stress and a = 3 for plane

strain
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crack-growth increment over which so is held constant
: AK stress-intensity factor range, HPa-lllz
? . Akéff effective stress-intensity factor range, HPa-lllz
Axb effective threshold stress~intensity factor range, HPa-nllz
‘ . Axth threshold stress—intensity factor range, HPa-nllz
Aseff effective stress range, MPa
n material constant, 1 = 0 for plane stress and n = v for plane
strain
v Poisson's ratio
o] length of tensile plastic zone, m
oj stress on segment of crack surface, MPa
0o flow stress (average between U and ou), Mra
oys yield stress (0.2 percent offset), MPa
ou ultimate tensile strength, MPa
w

length of compressive plastic zome, m

ANALYTICAL CRACK-CLOSURE MODEL

To calculate crack-closure and crack-opening stresses during crack
propagation, the elastic-plastic solution for stresses and displacements in a
cracked body must be known. The crack-surface displacements, which are used
to calculate contact (or closure) stresses during unloading, are influenced

by plastic yielding at the crack tip and residual deformations left in the
wake of the advancing crack.

Upon reloading, the applied stress level at
which the crack surfaces become fully open (no surface contact) is directly
related to contact stresses.
stress."

This gtress 1s called the "crack-opening
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Because there are no closed-form solutions for elastic~plastic cracked
bodies, simple approximations must be used. As previously mentioned, the
present model was based on the Dugdale model. In the proposed model,
severa’' assumptions about the plastic zone, the material cyclic stress-strain
behavior, the residual plastic deformations, and crack extension were made.
Some of these assumptions are discussed in the following sections and the
others, along with details, are discussed in appendix A.

The model developed herein was for a central crack in a finite-width
plate subjected to uniform applied stress, as shown in figure 1. The model
was based on the Dugdale model, but was modified to leave plastically~deformed
materfal in the wake of the advancing crack. The primary advantage in using
this model is that the plastic-~zone size and crack-surface displacements are
obtained by superposition of two elastic problems. These two elastic problems,
a crack in a finite-width plate subjected to either remote uniform stress, S,
or to a uniform stress, O, applied over a segment of the crack surface,
are shown in figure 2. The stress-intensity factor and crack-surface
displacement equations for these loading conditions are given in appendix B.

Figure 3 shows a schematic of the model at maximum and minimum apolied
stress. The model was compos d of three regions: (1) a linear elastic
region containing a fictitious crack of half-length ¢ + p, (2) a plastic
region of length p, and (3) a residual plastic deformation region abong the
crack surfaces. The physical crack is of half-length c. Regi'n 1 was
treated as an elastic continuum, and the crack-surface displacements under
various loading conditions are given in appendix B. Regions 2 and 3 were
composed of rigid-perfectly plastic (constant stress) bar elements with a flow
stress, oo, which is the average between the yield stress, OJ__, and the

ys
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ultimate tensile strength, o, The shaded regions in figure 3(a) and 3(b)
indicate material which is in a plastic state. At any applied stress level,
the bar elements are either intact (in the plastic zone) or broken (residual
plastic deformation). The broken elements carry compressive loads only, and
then only if they are in contact. The elemente in contact yield in compression
vhen the contact stress reaches =0ye Those elements that are not in contact
do not affect the calculation of crack-surface displacements. To account for
the effects of state-of-stress on plastic-zone size, a constraint factor a
was used to elevate the tensile flow stress for the intact elements in the
plastic zone. The effective flow stress ooo under simulated plane-stress
conditions was o, and under simulated plane-strain conditions was 300.
The constraint factor is a lower bound for plane stress and an approximate
upper bound for plane strain. (Although the Dugdale model is not entirely
suited for plane strain yielding, the size of the plastic zone at the crack
ti> and its influence on crack-surface displacements may be adequate.) These
constraint factors were verified using elastic-plastic finite-element aralyses
of cracked bodies under plane-stress [6] and plane-strain conditions (by
the author). The procedure used to establish the constraint factor (a) is
discussed later.

The analytical crack-closure model, discussed in appendix A, was used
to calculate crack-opening stresses, So, as a function of crack length and
load history. In turn, the crack-opening stress was used to calculate the
effective stress-intensity factor range, as proposed by Elber, and, conse-

quently, the crack-growth rates.
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FATIGUE-CRACK GROWTH RATE EQUATION
The crack-growth equation propcesed by Elber [2] states that the crack-
growth rate 18 a power function of the effective ctrecl-intcn;ity factor range
only. Later, Hardrath, Newman, Elber and Poe [9] showed that the power law
was 1lnadequate at hizh growth rates approaching fracture. The results pre-
sented herein show that it is also inadequate at low growth rates approaching

threshold. To account for these effects, the power law was modified to

AR 2
1- °
de o peC2 AKegs "
dN 1 eff K 2
1 - _E)
Cs
where
SO
&k =, 1+, =2 (2)
max
Kmax - smax Ve F 3)
and
BRyge = (oo = Sg) /nc F %)

The crack-opening stresses, So, were calcualted from the analytical closure
model. Equation (1) gives the "sigmoidal" shape commonly observed when fatigue

crack~growth rate data are plotted against stress-intensity factor range. In




the intermediate range of crack-grovth rates, equation (1) is basically Elber's

C
proposed power law, C1 Axhgf‘ The constants c1 to cs wvere determinad

to best fit experimental data for constant-amplitude loading.

The coefficients 03 and c4 were determined from threshold data on
the 2219-T851 aluminum alloy sheet material from reference [14]. The effective
threshold stress-intensity factor range, AKO. was determined from the threshold

stress-intensity factor range, Axth‘ as

1-3

MK = U AR, = —— 28X g

th - T-r K (5)

The coefficient C5 is the elastic stress-intensity factor at failure

or cyclic fracture toughness. The coefficient C. was chosen to be 77 HPa-mllz

(70 ksi-inllz) on the basis of the crack-growth tests in reference [13]

(see appendix C).

The coefficients C1 and C2 were found from constant-amplitude rate
data [13], after Cy» C, and Cg were determined, by using a least-squares
regression analysis. The constant-amplitude correlations were made using So
values computed from the model with various constraint factors.

It was found that an o of about 2.3 would give a good correlation. A

summary of the coefficients used to correlate the constant-amplitude data

under nearly plane-strain conditions (@ = 2.3 and n = 0) are as follows:

1.764 x 10719 (9.378 x 107%)

Cl =

c, = 3.18

¢, = 2.97 Wra-u'/? (2.7 ket-1al/?) ) (6)
c, = 0.8

Cs = 77 Wpa-n'/? (70 ket-1a?/?) )
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When SI units are used, Axeff and Kmnx are given in MPa-m and dc/dN

is given in m/cycle. When U.S. Customary are used, Axeff snd ‘hax are

1/2 and dc/dN 1is given in im/cycle.

given in ksi-in
Figure 4 shows a comparison between experimental growth rates [13] and
growth rates calculated with equation (1) for the 2219-T851 aluminum alloy

material. These constant-amplitude data were for R ratios between -1 and

0.7, and maximum-stress~to-yield~stress ratios of 0.15 to 0.77. Data generated

when the net-section stress exceed the yield stress were not included. For
the 2219-T85! aluminum alloy material, the yield stress (oys) was 360 MPa
(52 ksil) and the ultimate ténsile strength (cu) was 455 MPa (66 ksi). The
dashed lines show factor-of-2 bands about the perfect agreement line. Most
of the data were well within these bands.

Figure 5 shows a plot of AK against dc¢/dN for several R ratios
for 2219-T851 aluminum alloy material to illustrate the sigmoidal shape of

equation (1). The experimental data were obtained from reference [14]. The

curves were calculated from equation (1). The R = -1 data were obtained from

a small center-crack tension specimen (W = 76.2 mm) and the other data were
obtained from small compact specimens (W = 50.8 mm). The crack-growth

coefficlents (Cl’ CZ’ C3 ead CA) used to calculate the curves were

identical to those shown in equations (6). Howeveir, the coefficient C5

1/2

for the small compact specimens was 38.5 MPa-m and for the small center-

1/2

crack specimen was 55 MPa-m The coefficlents (CS) were calcuiated from

1/2

the Two-Parameter Fracture Criterion [15] using KF = 550 MPa-n and m = 1.
These values of KF and w were obtained from the final crack lengths and

maximum stress levels used in the constant-amplitude tests from reference [13],
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(see appendix C). The calculated curves and the experimental data are in

good agreement.

APPLICATION OF THE CRACK~CLOSURE MODEL AND RATE EQUATION

The analytical crack-closure model and crack-growth program (FAST -
Fatigue Crack Growth Analysis of Structures) was applied to constant-amplitude
and alrcraft-spectrum loading on 2219-T851 aluminum alloy shect material.

Under constant-amplitude loading, the model was exercised under simulated
plane-stress and plane-strain conditions. Some typical examples of crack-
surface displacements at maximum load and of crack-surface contact stresses
at minimum load are given. Calculated crack-opening stresses are shown as a
function of crack length, stress ratio, stress level, and constraint. factor (a).
The calculated crack-growth lives under various constant-amplitude lo ing are
compared with experimental data.

Because most crack-growth life is generated at small crack lengths and
low stess levels (plastic-zone size is small compared to sheet thickness),
nearly plane-strain conditions (a = 2.3) were found to give a good correlation
under constant-amplitude loading. These conditions were also used to predict
crack-growth life under aircraft spectrum loading. The crack-opening stresses
were calculated from the model as a function of crack length and load history,
and the crack-growth rates were predicted from equation (1). The predicted
lives under various spectrum loadings are compared with experimental data in

the following sections.

Constant-Amplitude Loading

Crack-surface displacements and contact =tresses.- The normalized crack-

surface displacements, EV/Sd, at maximum applied stress under constant-amplitude

11
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loading are shown as a function of coordinate location, x/d, in figure 6(a).
The shaded region shows the plastic and residual deformations at maximum
stress after simulated crack extension. The residual deformations along the
crack surfaces are of nearly uniform length. The newly created crack-tip
element comes into contact after very slight unloading. The normalized contact
stresses (oJ/oo) at minimum applied stress (Smin = 0) are shown in figure 6(b).
The elements are in contact all along the crack surfaces, but only the elements
near the crack tip carry significant loacs. The elements near the crack tip
yield in compression, whereas those near x = d are in tension. For x
greater than d, the stresses (not shown) are in tension but rapidly Jrop

to the applied stress, Sm

in® 38 X increases.

Crack-opening stresses.- The crack-opening stresses are calculated from

the contact stresses at minimum load as shown in appendix A. 1In figure 7,
some typical crack-opening stresses are shown as functions of crack lerngth.
Results are shown for three stress levels used in the constant-amplitude
tests (R = 0). At low stress levels the crack-opening stresses rapidly

reach a "stabilized" level. However, at the highest stress level (276 MPa)
the crack-opening stresses did not stabilize but did oscillate about a mean
level for most{ f the simulated test. The sharp changes in So at certain
crack lengths were due to the element "lumping" procedure described in
appendix A. Basically, this procedure lumps adjacent elements together to
form a single element to keep the total number of elements to reasonable slze
and to save computer time. (The sharp changes in So can be eliminated by
using smaller elements.) These sharp changes in So have less than 1 percent

effect on the effective stress range. In the constant-amp.itude crack-growth

12
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rate correlation (fig. 4), the stadbilised crack-opening stresses or the
average values (shown by the dashed lines) were used.

The variation of stabilized (or average) crack-opening stresses with
stress ratio, R, for s-.‘ - d°I3 is shown in figure 8. The curves
show how sols_.x varies as conditions chsage from simulated plane stress
(@ = 1) to simulated plane strain (a = 3). At any R ratio, the S"Is-.x
values are lower for higher values of a. At R = 0, the crack-opening
stress was about 0 47 snax for plane stress and was about 0.25 s_.x for
plane strain. These results are in good agreement with finite-element
analyses under plane-stress [6] and plane~strain conditions (by the author).
At negative R ratios, so/s-nx appears to be a linear function of the R
ratio. At positive R ratios, So/s-ax rapidly approaches the dashed
line. For R ratios greater than abcut 0.7, sols_“ equals s-in,s-ax’
and the values are also independent of the constraint factor.

The influence of the maximum applied stress level om crack-opening
stresses are shown in figure 9. At the lower R ratios, the maximum
applied stress had a dramatic affect on crack-opening stresses, but at an
R ratio of 0.7 the maximum applied stress had no influence. The influence
of the maximum applied stress was wmore pronounced under plane-stress con—

ditions (dashed curves) than under plane-strain conditions (solid curves).

Crack-growth calculations.- Table 1 shows the experimental lives (Ny)

and the ratio of calculated to experimental crack-growth lives (NP,NT) from
the initia? crack length ¢4 to the final crack length Ces for the constant-
amplitude tests on 2219-T851 aluminum alloy material. The closure model

used a = 2.3, The ratio NP/NT ranged from 0.64 to 2.09. The lowest and

highest values of NP/NT were obtained from the tests conducted at the highest

13
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stress level. The mean value of llpllt was 1.06 and the standard deviatiom
wvas 0.34 for all tests shown in table 1, except the low stress level (55 MPa)
test with R = -0.3.

The two tests indicated, by footnote (b) in table 1, were not used in
obtaining the crack-growth coastants (Cl and cz). The 55 MPa and R = -0.3
crack-length-against-cycles curve did not agree with two other tests in
reference [13] at the same stress level and stress ratio. The 276 MPa and
negative R ratio (~0.3) test was not included because, during the simulaled

test, the calculated So values did not stabilize with increasing crack

length.

Spectrum Loading

Crack-surface displacements and contact stresses.-— The normslized ciack-

surface displacements at maximum applied stress, and the normalized contact
stresses at minimum applied stress under a typical spectrum loading, are

shown as a function of coordinate location in figure 10. The displacement
profile is quite similar to that shown for constant-amplitude loading (fig. 6(a)),
but small differences in the displacement profile cause large differences in
contact stresses, as shown in figure 10(b). The calculated crack-opening
stresges reflect the influence of these irregular contact stresses on sub—
sequeat crack growth.

Crack-opening stresses.- The variation of crack-opening stress with crack

length for a typical spectrum loading test is showm in figure 11. The half-
length of the elox notch (cn) was 3.2 um. The specimen was cycled under
constant-amplitude loading (Smax = 69 MPa) at R = 0 until the crack grew

to a crack half-length (ci) of 3.8 mm. Next, a typical fighter spectrum was

14
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applied to the specimen. The maximum stress was about 183 MPa and the minimm
stress wvas about -30 MPa. The particular spectrum loads applied are given in
reference [13] for test M91. The calculated crack-opening stresses plotted

in figure 11 ghow only a smell fraction of the number of values computed from
the model. The crack-opening stresses follow a very irregular pattern while
the cyclic loads are applied; even so, they tend to oscillate about a

mean value.

The use of an "equivalent" crack-opening stress concept would greatly
reduce the computer times required to complete a simulated test. The use of
an equivalent stress is justified, because the crack-opening stresses
stabilize under constant-amplitude loading at low to medium stress levels,
and they tend to oscillate about a mean value under spectrum loading. The

equation used to calculate an equivalent crack-opening stress, so, was

_ Ds, o)
5 - 22_9__°_5 @
Ay

where the summation was performed over the crack extension increment

<y +5 pmax to g + 10 pmax' The maximum plastic-zone size, pnax’ was
calculated using the maximum stress in the spectrum. For extremely high
stress levels and low R ratios, where So values do not stabilize, the
simulated test specimen may fail before the equivalent crack-opening stress
routine is activated. The dashed line in figure 11 shows the calculated
equivalent crack-opening stress. The predicted crack-growth life using 5;
was 3.5 percent less than the predicted life using So, but the computer time

was only about one-half as large (2.6 to 5.6 minutes).

15
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Crack-growth predictions.- The crack-growth rate, at each load cycle,

wvas computed from equation (1), using the current values of sm. S in®

and So. Equation (1) predicts retardation (or acceleratiom) if So is
larger (or smaller) than the crack-opening stress that would have been pro-
duced under constant-amplitude loading at sm and § ain® To demounstrate
how crack-growth rates were calculatcd under variable-amplitude loading, an
example is given. Figure 12 shows a typical variable-amplitude load history.

The growth rate was coaputed from equation (1) using

&K e = Aseffk Vac F (8)
where Aseff is the effective stress range on the kth cycle. The growth
k
increment per cycle is
dc
A"k (ai)k 9)

(Note that SO and F are held constant during a smail growth incr:ment Ack.

See the section in appendix A on Crack Extension and Approximatioms.) On

the first and second tensile load excursion, Smin to S,
k "

As =S -8 (10)
effk maxk 0

where k = 1 or 2, respectively. This equation was proposed by Elber [2].
However, on the third tensile load excursion, Smin is greater than So’

3
therefore the effective stress range was assumed to be

16




AS -8) (11)

ef fk - max, o nink o

vher. k= 3 and c2 is the power on the growth law. Thus, the growth

iurarent, Ac2 + Ac3. is slightly larger tham Ac,, if S . The

S -

]

1 max, 3 :
use of equation (11) was necessary because no crack-growth law, when expressed :
in te ms of a power function (C2 # 1), would sum to the correct growth increment ¢

under variable-amplitude loading. For instance, if the load excursion snax
2

0 S
nin

3

should be equal to the growth increment Acl. If Slnin was less than
3

S_, then the grovth increment Ac3 should be equal to the growth increment

Qo

was extremely small, then the sum of growth increments Acz and

2o
Z
3

S¢ .  Eguation (11) accounts for these limitime behaviors. Equation (11) is ;

aprlizd only when S is greater than So anr. cnly when the current

uink

ma> imum applied stress is higher than the highest maximum stress occurring
since a stress e _ursion crossed SO. Un the fourth excursion, ASeff was,
again, computed from equation (10). 1nhe effective stress range on the 5th
and it:r excursion were, again, vomputed from equation (11). But on the 6th,

8th, anl 9th excusion,

AS =S - S . (12)
af
. maxk ml llk

where k = 6, 8, or 9, respuectivelv., XNote that § < § . Equation (12)
max, — “maxg

w. also proposed by tlber {2].
The ASTM [:4.06.01 Round Kobin involved five basic aircraft-type load

spectra :cp.ied to center-crack tension specimens. Three of the spectra were

17
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each applied at three different scale factors (same shape spectrum with dif-
ferent scaling of the stresses), and the other two spectra were each applied
at two different scale factors. There were thirteen different spectrum
loading tests. ™he test specimens were precracked (s“x = 55 MPa, R = 0) from
an initial EDM notch (cn = 3.18 mm) to the initial crack lengths given in
table 2 before the spectrum loads were applied. See reference [13] for more
details.

Figure 13 compares predicted and experimental crack-length—-against-cycles
curves for a typical fighter spectrum. The specimens were subjected to the
same spectrum, but with three differen* scale factors (0.2, 0.3, and 0.4).
The predicted results (curves) are in good agreement with the experimental
data (symbols).

Figure 14 compares experimental and predicted lives for the thirteen
spectrum loading tests (solid symbols). The predicted results were obtained
from the closure model with & = 2.3. The ratio of NP/NT ranged from
0.66 to 1.48. The mean value of NP/NT was 0.98 and standard deviation was
0.28. The results from the constant-amplitude tests (open symbols) are also
shown for comparison.

Table 2 shows that the ratio NP/NT is lower for higher scale factor
tests within each spectrum. This behavior was attributed to the changing
constraint at the crack tip. All predictions were made under nearly plane-
strain conditions; however, the higher stresses are more likely to produce a
plane-stress condition (plastic-zone size is large compared to thickness),
especially during a high overload, and, comsequently, cause morec retardation.
These results suggest the need for a variable constaint factor which would be
a function of the plastic-zone-to-thickness ratio.

18
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Table 2 also presents the crack-growth predictions submitted to the
ASTM E24.06.01 Round Robin [16]. These predictions were made using the
analytical closure wodel but under nearly plane-stress conditions. In the
original model, the bar elements were agsumed to yield in compression at -ag ,
instead of -oo as 1s in the present model. This assumption strongly
influenced the calculated crack-opening stresses. The crack-grawth rate
equation was also different from that used herein. The rate equation used in
the original model is given in reference [9]. Crack-growth predictions
under simulated plane-stress conditions gave higher crack-opening stresses
than those under simulated plane-strain conditions (see figs. 8 and 9) and,
consequently, retardation effects are much stronger. This may account for the
large NP/NT ratios obtained on test MB88 and M89, where retardation effects
dominated.

Table 2 also presents crack-growth predictions using linear-cumulative
damage (LCD), that is, no load-interaction effects. The predictions were
obtained from Johnson [17]. The predictions are quite good and indicate that
retardation and acceleration effects nearly cancel each other for most of the
spectra. Only test M88 and M89 had a sufficiently high overload such that
retardation effects would dominate the life. Test M93 and M94 were dominated
by crack-growth acceleration as is evident from the large NP/NT ratios for

linear-cumulative damage.

CONCLUDING REMARKS
An analytical fatigue crack-closure model was developed and used in a
crack-growth analysis program (FAST) to predict crack growth under constant-

amplitude and aircraft spectrum loading. The model was based on the Dugdale
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model, but modified to leave plastically-deformed material in the wake of the
aq ‘ancing crack tip. The model was used to calculate the crack-opening
stresses ¢8 a function of crack length and load history under simulated plane-
stress and plane-strain conditions.

A crack-growth rate equation was developed in terms of Elber's effective "
stress-intensity factor range, threshold stress-intensity factor range, and
fracture toughness, to give the "sigmoidal" shape commonly observed in fatigue
crack-growth rate data plotted against stress-intensity factor range. The
five crack~growth constants in this equation were determined from consta't-
amplitude data on 2219-1851 aluminum alloy sheet material. The equation
correlated the constant-amplitude data over a wide range of stress ratios
and stress levels quite well.

The analytical closure model, under nearly plane-stirain conditions,
and the rate equation were used to predict crack growth under aircraft
spectrum loading on the 2219-T851 aluminum alloy material. The model predicts
the effects of load interaction, such as retardation and acceleration. The
ratio of predicted-to-experimental crack-growth lives ranged from 0.66 to 1.48
in thirteen spectrum load tests. However, many of the spectra were not
suitable discrimirators among load-interaction models because a linear-
cumulative de.mage model made equally good predictions. But these tests did
verity whether the models cculd adequately balance retardation and acceleration
effue ts. The only exceptions to this behavior were tests MB8 and M89 where
retardation eftects dominated, and tests M93 and M94 where acceleration effects
dominated. The analvtical crack-closure model and the proposed crack-growth

law predicted crack growth in all spectrum load tests quite well.
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GOVERNING EQUATIONS FOR ANALYTICAL CRACK-CLOSURE MODEL

The following sections give the governing equations for the stress and
deformation characteristics of the analytical crack-closure model. The
sections include a discussion on crack-surface displacements, plastic-zone
size, residual plastic deformations, contact stresses, crack-opening stresses,
and crack extension.

A schematic of the closure model at maximum and minimum applied stress
is shown in figure 3. Because of symmetry, only one quarter of the plate was
analyzed. A breakdown on the components of the model and the coordinate
system used are shown in figure 15. The plate had a fictitious crack of half-
length d and was subjected to a uniform stress S. The rigid-plastic bar

element connected to point 3 was subjected to a compressive stress ¢ This

j°

element is in coutact when the length of the element L, 1is larger than the

3

current crack-surface displacement V,. The stress ¢

3 3

V., = L,. The equations which govern the response of the complete system were

3 h|
obtained by requiring that compatibility be met between the elastic plate and

is applied to make

all of the bar elements along the crack surface and plastic-zone boundary.

The displacement at point 1 1is

n
ZRERICRIED AR TCHN (13)
i=1

where f(xi) and g(xi,xj are influence functions given by
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2
£(x,) -1@—;—9-)- ‘/(a2 - xiz) sec M

W

s(xi.xj) = G(xi.xj) + G(-xi.xj)

2
2 d -b, x
.20 -n9 - -1 2%
G(xi,xj) — (b2 xi) cosh 3 bz -,

2

d -b, x
-1 171
- (b, - x4) cosh
1 i d 'b‘. - xil

where

for k=1 or 2,

22
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bl = xj - wj and bz - xj + “j' Appendix B explains how these equations were
developed. The bar element at point i (not showm in fig. 6) has a length
(or residual deformation) of Li' The couwpatability equation (Vi - Li)

is expressed as

n

ZGj g(xi,xj) = § f(xi) - Li for i=1ton (18)
j=1

subject to various constraints. One type of constraint is caused by tensile or
compressive yielding of the bar elements and the other is caused by element
separation (V, > L,) along the crack surface. The method used to solve

equations (18) subject to the constraints is described in appendix D.

Plastic-Zone Size and Approximations
The plastic~zone size, p, for a crack in a finite-width specimen, was
determined by requiring that the finiteness condition of Dugdale be satisfied.
This condition states that the stress-intensity factor at the tip of the plastic

zone 1is zero and is given bty
(K)g + (K) =0 (19)

0

where

®, =S ‘/ﬁd sec ‘lw—‘i> (20)
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«id

. "

? 2 -1 W md
(K), = -0, {1-3ein 3 ‘/ Td sec i——w ’ (21)
o sin —"w

Equations (20) and (21) are discussed in appendix B. Solving equation (19)

for d, and noting that p = d ~ ¢, gives

ms
W -1 mTc max
p=c "csin sin(w)sec -1 (22)

For a =1, equation (22) reduces to the expression derived by Rice [18].

In the model, the plastic zone was arbitrarily divided into ten graduated
bar elements. The aspect ratios, Zwi/p, were 0.01, 0.01, 0.02, 0.04, 0.06,
0.09, 0.12, 0.15, 0.2, and 0.3. The smallest elements were located near the
crack tip (x = ¢). Doubling the number of elements in the plastic zone had
less than a 1 percent effect on claculated crack-opening stresses. At the
maximum applied stress, the plastic-zone size was calculated from equation (22).

The length, Li’ of the bar elements in the plastic zone were calculated

from equation (13) as

- 10

L=V, =5 fx) - 2 a0 g(xi,xj) (23)
jil
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vhere f(xi) and g(xi.xj) are given by equations (14) and (15), respectively.
The bar elemen.s act as rigid wedges. The plastic deformation (Li) changes

only when an element yields in tenmsion (0j 3_&00) or compression (aj 5_-00).

The constraint factor was assumed to apply only during temsile loading.
Figure 3(a) shows a schematic of the model at the maximum applied stress.

Here the crack surfaces are fully open and the residual deformati-ns do not

affect the crack-surface displacements.

The division of the plastic zone into a number of finite elcn
would allow for the eventual use of a nonlinear stress~strain curve with

kinematic hardening instead of the rigid-perfectly plastic assumptions used

herein. This may give a more realistic crack-closure behavior. The models

developed in references [7], [8], [10], and [11] are not well suited for

incorporating a nonlinear stress-strain curve.

Contact Stresses at Minimum Load
When the analytical closure model is unloaded to the minimum load
(fig. 3(b)), tke bar elements in the plastic zone unlcad until some of the

elements near the crack tip yield in compression (oj 5_-00). The compressive

plastic zone, w, is shown as the shaded region at the crack tip. Depending

upon the amount of closure and constraint factor, w varies from one-tenth

to one-half of the plastic zone p. The original cyclic Dugdale model (no

closure) [18] predicts that w equals 0.25 p at R=0 and a = 1. Thus,

crack closure greatly affects the size of the compressive plastic zone. The

elements along the crack surfaces, which store the residual deformations, may

come into contact and carry compressive stresses. Some of these elements may

25

T IR AT Nt Bshog ez e



e
eI S E ST

I

-t

APPENDIX A

also yield in compression (0, < -oo). The stresges in the plastic zone and

3

the contact streases along the crack surfaces are calculated from equations (18)

with § = Sm For elements that yield in compression, G, 1is set equal to

in*® i

=0, and the lengths of the elements are set equal ro the final displacements

at those points. That is,

"

n
Li = Vi - Smin f(xi) - E Gj g(xi,xj) (24)
i=1

For elements not in contact (Li < Vi), Ui = {),

e e e o -

(rack-Opening Stresses
The applied stress level at which the cracl surfaces are fully open (no
surface contact) denoted as So' was calculated from the contact stresses at

S To have no surface contact, the stress-intensity factor due to an

min’®

applied stress increment (S0 - Smin) is set equal to the stress-intensity

factor due to the contact stresses. Solving for So gives

B,] (25)

where \,

26




for k=1 or 2, (26)

and c_ is the current crack length minus Ac*. The increment Ac* is

the width of el sent n, and its significance ig discussed in t*2 next section.
If aj =0 for =11 to n-~ 1 at the minimm applied stress, then the
crack is already fully open, and So camnot be determined from equation (25).
The stress Oj at the crack tip changer from compression to tensicva when

the applied stress level reaches so.

Crack Extension and Approximations
The analytical clo:ire model provides no information about the amount
of craca growth per cycle. Crack growth is simulated by extending the crack an
incremental value at the momert of mraximym applied stress. The amount of

crack extension, Ac®, was arbitrarily defined as

Ac* = Q.05 Ppax (27)

where Opax is the plastic-zore size caused by the maximum applied stress

occurring during the Ac* growth increment. The number of load cycles, AN,
required to grow the crack an increment Ac* was calculated from equation (1)
and the cyclic ioad history. Typical values of Ac* ranged between 0.004 um

to 0.1 wm, depending upon the applied c.cess level and crack length. The
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coefficient (0.05) was selected after a systematic study was made on the effects
of the size of Ac* om crack-opening stresses and cn computer time. Swaller
values of Ac* incresse the computer time. The choice of the coefficient
in this range did not adversely affect the crack opening stresses under
congtant-amplitude loading but some sequence effects were lost under variable-
amplitude loading.

The resulting computer times were considered reasonable. Under constant-
amplitude loading, a simulated fatigue-crack growth iest, from the initial
crack length to failure, required 0.5 to 5 minutes on a CDC-6600 computer.
Under spectrum loading, a simulated test to fallure required from 2 to
15 minutes. The computer storage requirements for the analytical closure
model and crack-growth program was low (less than 70K). The larger computer
times occurred on tests that were conducted at low stress levels and high R
ratios. But these computer times could be drastically reduced if an "equivalent”
crack-opening stress were used in the latter stage of a simulated test. The
use of an equivalent crack-opening stress is justified because cr. ~k-opening
stresses stabilize very quickly under low stress levels and high R ratios.
The equlvalent crack-opening stress is discussed in the section on
"Application of the Crack-Closure Mcodel and Rate Equation.”

The simulated crack extension Ac* creates a new bar elemcnt at the
crack tip. The length of the new element is equal to the displacement at the
crack tip before the crack exteunds.

The calculated crack-opening stresses and the boundary-correction factors
were held constant while the crack was grown under cyclic loading (cycle-by-

cycle) over the length Ac*. The number of load cycles, AN, required to grow
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the crack an increment Ac* was calculated from equation (1) and the cyclic
load bistory. When the sum of tw crack growth increments (4c) equalled or
exceeded Ac*, the analytical closure model was exercised. If AN r:.ached
300 cycles, the model wvas exercised whether or mot Ac* was reached. This
limits the number 2f cycles that can be applied before the model is exercised.
The increment Ac* was set equal to summation of Ac's. Thus, Ac* was
less than or equal to that computed from equation (27) and the number of
cycles ranged from 1 te 300. During the cyclic growth computations, the
cyclic stress history was monitored to find the lowest applied stress before

(s ) and after (smi ) the highest applied stress level (S ). The

mio, o, mx,
application of the analytical closure model consisted of:

1. Applying minimum stress Sninb at crack length c.

2. Applying maximum stress sna at crack length c.

3. Extending crack an increment Ac*.

4. Applying minimum stress S at crack length c¢ + Ac%.

mina
5. Calculating new crack-opening stress So from equation (25).
6. Contiruing cyclic load history.
7. Calculating new Ac* from equation (27).
8. Repeating process when crack extension reaches new Ac* or AN
reaches 300 cycles.
Steps 1 through 4 require solving equations (18) for the c-tact stresses
and the stresses in the plastic zone. The overall procedure is repeated unti]

the desired crack length is reached or the specimen fails. The failure

criterion used to terminate the simulated test is discussed in appendix C.
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To keep the number of eslements to a reasonable size (20 to 30), a
“lumping” procedure was used. The lumping procedure combines adjacent
elements (1 and 1 + 1) together to form a single element if
+ Ace (28)

2(w‘+v )<c-x

i+l i+l

Thus, elements near the crack tip are not as likely to be lumped together as
those that are away from the crach tip. In the lumping procedure, the width
of the lumped element was the sum of the widths for the two adjacent elements

and the length was the weighted average of the two:

MM Y b Yia (29)
¥t Y Yin
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EQUAT1ONS FOR STRESS-INTENSITY FACTORS AND
CRACK~SURFACE DISPLACEMENTS
The equations for stress-iatensity factors and crack-surface displace~
ments for a crack in an infinite plate were obtained from the literature [19].
These equations are muwiified herein for firnire plates. Some of the approximate
equations tor {inite plates were verified with boundary-collouvatis

analyses ( 29].

Stress-Intensity Factors for a Crack
in an Infinite Plate
The stress-intensity factors for the configurations shown in figure 2,
with W equal to infinity, were obtained from reference [19].

Remote uniform stress.- The stress-intensity factor for a crack in a

infinite plate is

K =S vnd (30)

Partially-loaded crack.- The stress-intensity factor for the con-

figuration shown in figure 2(b) is

b b
K= %g /rd {%1n‘l (T%) - sin } (T}E] (31)
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Crack-Surface Displacements
for a Crack in an Infinite Plate
The crack-surface displacements for the configurations shown in figure &,
again, with W equal to infinity were obtained from Westergaard stress
functions given in reference [19]. The following sections give the dis-
placement equations for remote uniform stress and the partially-loaded
crack.

Remote uniform stress.- The crack-opening displacements for the con-

figuration shown in figure 2(a) with W = » {is

2 —_—
v -2_51__;‘._"1_)_§ “d‘ - x2 (32)

00

for |x| < d, where n =V for plane strain and n = 0 for plane stress.

Partially-loaded crack.- The crack-opening displacements for the con-

figuration shown in figure 2(b) with W = » ig
V_ = V(x) + V(-x) (33)

where

2 2
v(x) = .2_41_.:__&_2.. [(b - x) cosh‘l (d - bx )

TE d'b - xI
b-b2
+ sz - x? s} (%)J (34)
b=b, for |x| < d.
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Finice-Width Corrections
The equations given in the preceding sections for the stress-intensity
factors and crack-surface displacements (eqs. (30) to (34)) were for a crack
in an infinite plate. But these quantities are influenced by the finite
width of the plate. Because there are no closed form solutions for finite-
width specimens, approximate equations are developed herein. The stress-

intensity factor for a crack in a finite-width plate is
K=K F (35)

where F 1is the finite-width correction for the particular loading condition.
Noting that the elastic crack-surface displacements in the region of the
crack tip are directly related to the stress—intensity factor, it is proposed

that the same correction factor be used for displacements:

Vv, (-RK—) =V _F (36)

where V 1is the displacement for a crack in a finite-width plate subjected
to the particular loading condition. Equation (36) gives very accurate
crack~-surface displacements in the region near the crack tip, as expected.

Remote uniform stress.- The approximate boundary-correction factor for

a central crack in a finite-width plate subjected to uniform stress [19,21]

as shown in figure 2(a) is

33
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F = 4f/sec _‘_'Q (37)

The crack-surface displacements, V, given by equations (32), (36), and (37)
were compared with calculated displacements from reference [20], which used
the boundary-collocation method, and the results were found to be within
2 percent of each other for any value of x for 2d/W < 0.7. The crack-
surface displacements near the crack tip were very accurate, as expected.

Partially-loaded crack.- The approximate boundary-correction factor for

a central crack in a finite-width plate subjected to partial loading on the
crack surface (fig. 2(b)) was obtained from the infinite periodic array of
cracks solution [19] and was modified herein by replacing the term

W/nd tan (nd/W) by sec (md/W). It was shown in reference [21] that the
"secent' term gave more accurate results for stress intensity than the

"tangent' term. The resulting boundary-correction factor was

(38)
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where

39)

When b, =0 and b, = d (uniformly-stressed crack surface), equation (38)

1 2
reduces to equation (37), as expected.
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FAILURE CRITERION

The failure criterion used to terminate the simulated fatigue-crack
growth tests was the Two-Parameter Fracture Criterion (TPFC) [15]. The
criterion involves two fracture parameters, KF and m, that are determined
from the fracture data. Because no fracture data were reported in
reference [13], the final crack lengths (recorded) and the maximum stress
levels in the fatigue~crack growth tests (constant-amplitude, variable-
amplitude and spectrum loading) were used to estimate the fracture parameters,
KF and m. Figure 16 shows a plot of the elastic stress-intensity factors
at failure, KIe’ against the maximum applied fatigue stress level. At a
given stress level, the large amount of variation was attributed to the final
crack lengths reported being less than the critical values and the maximum
stress levels in the variable-amplitude and spectrum loading tests were
larger than the actual failure stresses. The fracture parameter, m, was
taken as unity because fracture data on 2219-T851 aluminum alloy in
reference [15] showed that m was unity for specimen thicknesses less than
25 mm. The specimen thickness in reference [13] was 6.35 mm. The elastic-

1/2

plastic fracture toughness, KF‘ was chosen to be 550 MPa-m to fit the
upper bound for most of the test data. The solid curve in figure 16 shows
the calculated KIe values at failure from the TPFC for the center-crack
tension specimens (W = 152.4 mm) used in reference [13]. These results

indic.te that specimens tested at low stress levels fail at lower stress-

intensity factors than those tested at higher stress levels.
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The maximum value of KIe from the solid curve was about 77 MPa-m

This is the value of the coefficient Cs used in equation (1).

1/2,
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GAUSS-SEIDEL ITERATIVE METHOD WITH CONSTRAINTS
The method used to solve the linear system of equations (eqs. (18))
is the Gauss-Seidel iterative method [22] with constraints added. This
method was chosen because the number of equations to be solved were variable
(10 to 40). The constraints are of two types. One type is caused by
yielding (tensile or compressive) of the bar elements; the other is caused
by element separation along the crack surface. The equations, which govern

the deformations along the crack surface and in the plastic zone, are

n
2 oy B(xx)) = S £(xy) - Ly (40)
j=1

where S 1is the current applied stress, Li is the residual plastic deforma-
tion for element i, n 1is the number of elements, and oj are the contact
stresses along the crack surfaces and the stresses in the plastic zone.

Equations (40) are solved with the following constraints:

For elements in the plastic~zone region (x, > ¢),

3

if o, > a0 set oj = o0 (41)
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€ - =
if oj oo set oj -co

These constraints are for temsile a.d compressive vielding, respectively.

elements along the crack surfaces (x, < c),

3

if g, >0 et 0, = 0

if < - - -
Oj 00 set Uj co

These constraints are for element separation and compressive yielding,
respectively.

First, rewriting equations (4) in the form

n
Zojgij-Sfi-Li
i=1

and solving for 0i glives

(42)

For

(43)

(44)

(45)
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n
I=1
Jf1

for 1 =1,2,...,n. The matrix, is diagonally dominant, that is,

gij

each diagonal coefficient is larger, in absolute value, than the

i1
magnitudes of other entries in row 1 and column 1. Next, make initial
guesses tor o, and insert these into the right-hand side of equations (46).
If the initial guesses tor O, are zero, the resulting new approximations

i

are

(0, =[s £ -1 Vg,

(00, = [s £, - L, - (0)); 8,185, (47)
n

(On)l =[s fn - Ln - 2 (Oj)l gnj]/grm
i=1
j¥n

The additional subscript on oi denotes the iteration number. The stresses

(o are checkec against the constraint equations (41) through (44), as

1)1

soon as they are computed, and are updated, if necessary. Note that the

40
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newly-computed vajues of o, are alvays used in the right-hand sides as

P soon as they are obtaimid. Resubstituting (o into the right-hand

1
sides of equations (46), subject to the constraint equations, gives o, for
the next iteration. This process is repeated until the changes in ¢ g are

less than some small preset value (0.02 Go). The recurrence equation is

i-1
@)y = [SE -1~ 2 (o)) 854
i=1
n
- D) Oy sy 48)

j=i+l

where I is the current iteraticn number. Typically, the number of elements

(n) ranged from 10 to 35 and the iterations ranged from 2 to 15.
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TABLE 1.- COMPARISON OF EXPERIMENTAL AND PREDICEBD CRACK

GROWTH LIVES UNDER CONSTANT-AMPLITUDE LOADING

'S , c., Ce, Test Closure Model
max R i £ NT NP
MPa mm mm cycles ﬁ; (a = 2.3)
' ss -1.0 4.89 | 24.6 | 129,239 1.42
b ss -0.3 3.87 | 17.6 | 144,000 1.71(a/b)
b ss -0.1 3.91 | 18.7 | 175,000 1.49
- ! ss 0.0 3.55 | 52.4 | 352,406 0.98
i 55 0.3 3.87 6.9 | 245,000 0.84
138 -0.3 4.13 | 45.7 9,950 1.04
' 138 -0.1 3.85 43.0 12,706 0.96
: 138 0.01 3.87 | 50.0 13,300 0.98
138 0.91 | 4.00- | 42.0 12,180 1.03
, 138 0.0L | 6.67 | 38.3 7,856 0.93
138 0.2 *| 4.57 | 4s.0 11,175 1.19
[ 138 0.3 4.06 | 43.6 22,950 0.80
; 138 0.7 3.94 12.1 | 158,700 0.87
¥ 276 -0.3 | 4.06 | 21.9 251 2.09 P
276 -0.1 3.94 | 21.4 469 1.12
Y276 0.01 3.83 14.9 846 0.83
' 276 0.3 .| 3.94 12.9 1,693 0.64
* 276 0.7 3.94 | 23.5 14,870 0.89

(a)This test is suspect based on other tests in reference 13.

(b)

These tests were not used in obtaining crack-growth constants.
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TABLE 2.- COMPARISON OF EXPERIMENTAL AND PREDICTED CRACK GROWTH
LIVES UNDER SPECTRUM LOADING

Closure Model

1%/

Test Lc[?; '
SPECTRUM SCALE c., Cgy N a= 2.3 (a) .
TYPE FACTOR | SPECIMEN i mﬁ Cyc'fe . Np N, Bn
NT NT "
NN 0.2 M81 4.06 | 13.0 115,700 | 1.20 1.00 | .20
Q;rh§° Alr 0.3 M82 3.81 | 35.4 58,585 0.71 0.67 3.4
ghter 0.4 M83 3.81 | 23.3 18,612 0.66 0.64 0.29
L 0.2 M84 4.00 | 55.9 268,908 1.48 1.47 1.09
Qifhtgrcr°““d 0.3 M85 3.66 | 44.1 95,642 0.96 0.89 0.8
g 0.4 M86 3.87 | 32.8 36,397 0.72 0.65 0.70
Navigation 0.3 M88 3.81 | 45.8 380,443 1.47 2.52 0.73
Fighter 0.4 M89 3.81 | 38.4 164,738 1.06 1.47 0.62
Composite 0.2 M90 3.87 | 51.6 218,151 1.14 1.17 1.09
Mission 0.3 M91 3.81 | 36.1 65,627 0.85 0.78 0.87
Fighter 0.4 M92 3.81 | 29.5 22,187 0.74 0.69 0.88
S?m9951te 0.2 M93 6.35 | 13.6 | 1,354,024 1.02 0.76 3.00
1ssion 0.3 M94 5.54 9.5 279,000 0.76 1.25 1.81
Transport
Mean 0.98 1.12 1.12
std Dev 0.28 0.50 0.63

(a)
(b)

Predictions submitted in ASTM E24.06.01 Round Robin.

Linear-cumulative damage (no retardation and no acceleration) predictions from
reference 17.
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FIG. 1 - Center-crack tension specimen with Dugdale plastic zones
and residual plastic deformations.
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10°%  2219-7851 (Ref, 13)

/
t - 6.35 "m / /
L -1=<R=0.7 RoSd
LS
0.15 < Spqx/Oyg = 0.77 7/
1076F 7
(dc) y // /
dN/exp A
L (©) e
m/cycle dN/ca Y
» :‘/
-8l /e dc 5 (dcC
10 : UL = 2({%
/."-}/ (dN)col (dN)exo
577
! 57 i
LS
a4
-10L S A
10 e
7/
/ 1 1 i 1 1 1 J
10‘10 10-8 10"6 lO'u

FIG. 4 - Comparison of experimental and calculated crack-growth
rates for 2219-T851 aluminum alloy.
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m/cycle
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1 1
5 5 50

aAK , MPa-ml/2

FIG. 5 - Comparison of experimental crack-growth rates and rate
equation for 2219-T851 aluminum alloy at various R ratios.
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(b) Contact stresses at minimum load

FIG. 6 - Crack-surface displacements and contact stresses under
constant-amplitude loading (R = 0).
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FIG. 7 - Calculated crack-opening stresses as a function of crack length under
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constant-amplitude loading (R = 0).
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FIG. 9 - Normalized crack-opening stresses as a functior of stress
level for several R ratios.
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(a) Displacement profile at a high load
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(b) Contact stresses at a low load

FIG. 10 - Crack-surface displacements and contact stresses under
typical aircraft spectrum loading.
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FIG. 13 - Comparison of experimental and predicted crack~length-against-cycles
curves for spectrum loading.
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FIG. 14 - Comparison of experimental (Np) and predicted (Np) cycles
to failure for 2219-T851 aluminum alloy material under
constant-amplitude and spectrum loading.
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09

FIG. 15 - Schematic of loading and coordinate system used in the analytical
closure model.
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FIG. 16 - Comparison of experimental and calculated stress-intensity factors
at failure under cyclic loading.
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