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Experiments on metallic materid,? have shown that fatigue crafh rerain 

closed during part of the load cycle under constant- and variable-arplitude 

loading. These experiments have sham that crack closure is a significant 

:actor in causing load-interaction effects (retardation and acceleration) 

on crack-growth rates under variabi-amplitude loading. 

The present paper is concerned with the developmnt and application of an 

analytical model -f cyclic crack growth that includes the effects of crack 

closure. The mdel was based on a concept like the Dugdale wdel, but was 

modified to leave plastically-deformed material in the wake of the advancing 

crack tip. 

The model was used cro correldte crack-grwth rates under constant-amplitude 

loading, and to predict crack growth ucder aircraft spectrum loading on 

2219-T851 aluminum alloy sheet material. The predicted crack-growth lives 

agreed well with experimental data. The ratio of predicted-to-experimenC*l 

lives rmged from 0.66 to 1.48. These predictions were made using data 

from an ASTM E24.06.01 Round Robin. 

INTRODUCTION 

Experiments [I] an metallic materinis have shown that fatigue cracks 

remin cl~sed during pzrt of the load cycle under constant- and variable- 

amplitude loading. ?he crack-closure concept has been used to correlate 
i 

crack-growth rates undcr cons tant-amplitude loading [2]  and is a significant 

factor in causing 1,-a&- i-nteraction effects on crack-growth rates (retardation 



and a c c e i e r a t i o n )  under variable-amplitude loading.  Crack-closure is c a w e d  

by r e s i d u a l  p l a s t i c  deformations remaining i n  t h e  wake o f  a n  advancing crack.  

Neasurements of crack-opening stresses are very d i f f i c u l t  and h a w  been made on 

only a few materials and f o r  a l i m i t e d  number of load ing  v a r i a b l e s .  To develop 

t h e  r a t i o n a l e  f o r  p r e d i c t i n g  c rack  growth under genera l  c y c l i c  loading,  a 

mathematical amdel of c r a c k  c l o s u r e  must be developed and v e r i f i e d  f o r  constant-  

and variable-amplitude loading.  

The crack-closure phenomenon has  been analyzed us ing two-dimensional, 

e l a s t i c - p l a s t i c ,  f in i te-e lement  methods i3-61. The f in i te-e lement  ana lyses  

were shown r2 be q u i t e  accura te ,  but  were very complicated and required l a r g e  

computing f a c i l i t i e s .  There have a l s o  been s e v e r a l  a t t empts  t o  develop s imple  

a n a l y t i c a l  models of crack c l o s u r e  [3,7-11). A l l  of these  models were based 

on a concept l i k e  t h e  Dugdale model [12] o r  s t r i p - y i e l d  model, but  modified 

t o  leave plastically-deformed m a t e r i a l  i n  t h e  wake of t h e  advancing crack.  

Newman 131, Budiansky and Hutchinson [a], and F ihr ing  and Seeger [10,11] 

s t u d i 4  only t h e  crack-closure behavior.  But, D i l l  and Saff  [7] and Hardrath ,  

Newman, Elber and Poe [9] used t h e  crack-opening s t r e s s e s  from t h e  models t o  

p red ic t  crack growth under spectrum loading.  Kowevcr, none of these  s t u d i e s  

:onsidered t h e  in f luence  of three-dimensional c o n s t r a i n t  on the  crack-closure 

be:?avio r . 
The purpose of the  presenc paper is  t o  Ce\.elop and apply an a n a l y t i c a l  

c r a c k - c l o s u ~ ?  model t h a t  s imula tes  p lane-s t ress  and p lane-s t ra in  cond i t ions .  

The present  model was based on t h e  Dugdale model, b u t  was modified t o  leave 

plastically-deformed mate r ia l  along the  crack s u r f a c e s  a s  t h e  crack advances. 

Plane-s t ress  and planc-s t ra in  cond i t ions  were simuiated by us ing a "c.>nstraint" 

f a c t o r  on t e n s i l e  y i e l d i n g  t o  account f o r  three-dimensional e f f e c t s .  

2 



The mdel vao developed f o r  8 central crack In 8 f l n i t d t h  8p.c-n 

that was subjected t o  uniformly appl ied a t r e u .  The rod& ram a n r c i u d  under 

constant-amplitude loadin8 us* varioru applied 8treu leal. and ett8m 
b 

r a t i o s .  The crack-opening s t reeaeu  ca lcu la ted  from the madeluere wed t o  

. ca l cu la t e  Elberes  e f f e c t i v e  s t ress - in tens i ty  f a c t o r  r.ngc [I]. Raper iwnta l  

crack-growth rates f rom2219-T851ddn \1~  a l l o y  sheet material under constant- 

amplitvde loading were corre la ted  with t he  effect iwe s t r e s s - in t ens i ty  f a c t o r  

range f i ) r  a v ide  range of stress levels and stress ra t io s .  The experlmemtal 

da ta  were obtained f r c r  Chang and Stolpestad 1131. An equation r e l a t i n g  

crack-growth rate t o  e f f ec t ive  s t r e s s - in t ens i ty  f a c t o r  range, threehold 

s t ress - in tens i ty  f ac to r  range, and f r ac tu re  toughnees has  been developed f o r  

t h e  complete range of crack-growth ra tes .  The closure r r d e l  was then used 

t o  predict  crack growth i n  2219-T851 aluminum a l loy  mater ial  under a i r c r a f t  

spectrum loading [13]. The predic t ions  were made using t h e  c losure  model 

under nearly plane-strain conditions.  These predict ions were m d e  using 

da ta  from an ASTn E24.06.01 Round Robin. The purpose of the round robin w a s  

t o  compare various methods f o r  pred ic t ing  crack growth i n  2219-T851 aluminum 

a l loy  ceuter-crack tension specimens subjected t o  a i r c r a f t  spectrum loading. 

LIST OF SYMBOIS 

dimensions for partially-loaded crack (k - 1,2) ,  m 

mater ial  crack-growth constants (k - 1.5) 

half-length of crack, a 

half-length of f i n a l  crack, m 

half-length of i n i t i a l  crack, m 

half-length of starter notch, m 



&If-length of  craclr p lu r  teruile p l u t i c  gone, m 

Young'r rodulurr of e l a s t i c i t y ,  MPa 

boundary-correctioa f a c t o r  on stnrur i a t e n r i t y  

s t r e 8 s - i n t e ~ i t y  fac tor ,  ma-m 112 

s t reer r - in turs i ty  f a c t o r  st f a i l u r e ,  HPa-m 1/2 

1/2 m a x l w m  s t reus- in tens i ty  f ac to r ,  ma-m 

e l a s t i c - p l a s t i c  f r a c t u r e  toughness, Wa-Q 1/2 

l ength  of elenrent (1) created by p l a s t i c  defornation, m 

f r ac tu re  toughness paranreter 

number of cyc les  

number of cycles  predicted from ana lys i s  

number of cycles  from test specimen 

t o t a l  number of bar  elements 

stress r a t i o  (Smln/Smx) 

appl ies  stress, NPa 

maximum applied s t r e s s ,  MPa 

minimum applied s t r e s s ,  MPa 

crack-opening s t r e s s ,  MPa 

specimen thickness,  m 

crack-surface displacement, m 

specimen width, m 

half-width of bar element a t  point i, m 

Cartesian coordinates 

coordinate loca t ion  f o r  element i, m 

cons t ra in t  f ac to r ,  a = 1 f o r  plane s t r e s s  and a 3 f o r  plane 

s t r a i n  



Ac* 

hK 

%ff 

Mo 

Mth 

&eff 

rl 

crack-growth incremnt over which So is held  constant  

1 /2  s t rese- In tens i ty  f a c t o r  range, 188-1 

112 e f f e c t i v e  s t r e s s - in t ens i ty  f a c t o r  range, Wa-r 

112 e f f e c t i v e  threehold s t r ea s - in t ens i ty  f a c t o r  range, Wa-m 

threshold s t r e s s - in t ens i ty  f a c t o r  range, ma-m 112 

e f f e c t i v e  stress range, MPa 

mater ia l  constant ,  11 * 0 f o r  plane stress and q = v f o r  plane 

s t r a i n  

Poisson's r a t i o  

length of t e n s i l e  p l a s t i c  zone, rn 

stress on segnrent of crack surface,  HPa 

flow s t r e s s  (average between o and uU), Nka 
Y S  

y i e ld  s t r e s s  (0.2 percent o f f s e t ) ,  MPa 

ul t imate t e n s i l e  s t rength ,  MPa 

length of compressive p l a s t i c  zone, m 

ANALYTICAL CRACX-CLOSURE MODEL 

To ca l cu la t e  crack-closure and crack-opening s t r e s s e s  during crack 

propagation, the e l a s t i c - p l a s t i c  so lu t ion  f o r  s t r e s s e s  and displacements i n  a 

cracked body must be known. The crack-surface displacements, which are used 

t o  ca lcu la te  contact (or closure) s t r e s s e s  during unloading, a r e  influenced 

by p l a s t i c  yielding a t  the crack t i p  and res idua l  deformations l e f t  i n  t he  

wake of the advancing crack. Upon reloading, the applied s t r e s s  l e v e l  a t  

which the crack surfaces become f u l l y  open (no surface contact) is d i r e c t l y  

re la ted  t o  contact s t r e s se s .  This u t r e s s  is ca l l ed  the "crack-opening 

s t ress . "  



Because there are no closed-form so lu t ioaa  f o r  elart ic-plast i c  cracked 

bodies, simple approximations muat be used. Aa pmvtowlp mentioned, the  

present model was based on the  Dugdale model. In the proposed model, 

severe '  assumptionr about t he  p l a s t i c  zone, the mater ia l  c y c l i c  s tn sc l - s t r a in  

behavior, the  res idua l  p l a e t i c  deformations, and crack extension were made. 

Some of these  assumptions a r e  discussed i n  the  following sec t ions  and t h e  

o thers ,  along with d e t a i l s ,  a r e  discussed i n  appendix A. 

The model developed herein was f o r  a c e n t r a l  crack i n  a f in i t e -wid th  

p l a t e  subjected t o  uniform applied stress, a s  shown i n  f i gu re  1. The model 

was based on the  Dugdale model, but was amdified t o  leave plastically-deformed 

mater ial  i n  t h e  wake of the advancing crack. The primary advantage i n  using 

t h i s  model is t h a t  the  plastic-zone s i z e  and crack-surface displacements a r e  

obtained by superposition of two e l a s t i c  problems. These two e l a s t i c  problems, 

a crack i n  a finite-width p l a t e  subjected t o  e i t h e r  remote uniform stress, S,  

o r  to a uniform s t r e s s ,  a, applied over a segment of the  crack surface,  

a r e  shown i n  f igure 2. The s t r e s s - in t ens i ty  f ac to r  and crack-surface 

displacement equations f o r  these loading condit ions a r e  given i n  appendix B. 

Figure 3 shows a schematic of the model a t  maximum and dnimum a p ~ l i e d  

s t r e s s .  The model was compos ~i of th ree  regions: (1) a l i n e a r  e l a s t i c  

region containing a f i c t i t i o u s  crack of half-length c + p, (2) a p l a s t i c  

region of length p, and (3) a res idua l  p l a s t i c  deformation region abong the 

crack surfaces.  The physical crack i s  of half-length c. Regi..? 1 was 

t rea ted  a s  an e l a s t i c  continuum, and the crack-surface displacements under 

various loading conditions a re  given i n  appendix B. Regions 2 and 3 were 

composed of r igid-perfect ly  p l a s t i c  (constant s t r e s s )  bar elements with a flow 

s t r e s s ,  
OO * which is  the average between the y ie ld  s t r e s s ,  o and the 

YS' 
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dtlmate tensile rtrength,  %. The a h a d d  n g i o a r  in figure 3(a) and 3(b) 

indicata material which 18 in a p l u t i c  atate. At ury applied rtrerr level, 

the  bar elements am a i t b e r  Intact (In the p l u t i c  .one) o r  broken (rerlduml 
e 

p l u t i c  deformstion). The broken element. carry compreealve loadr only, and 

then only i f  they a re  i n  contact. The element8 I n  contact yield In c o q r e r a i o n  

when the  contact stress reacher 
9%. 

Ihoee e larante  tha t  a r e  not i n  contact 

do not a f fec t  the calculat ion of crack-eurface displacc~wnts.  To account fo r  

the e f fec t s  of state-of-stress on plastic-tone s ize ,  a constraint  f ac to r  a 

was used t o  elevate the t e n s i l e  flow stress f o r  the In tac t  e l e ~ ~ e n t s  i n  the 

p las t i c  zone. The ef fec t ive  flow s t resa  aUo under simulated plane-stress 

conditions was Uo and under sltnulated plane-atrain conditions was W0. 

The constraint fac tor  is a lower bound fo r  plane stress and an approximate 

upper bound for  plane s t ra in .  (Although the h g d a l e  model is not en t i r e ly  

suited for  plane s t r a i n  yielding, the s i z e  of the p l a s t i c  zone a t  the crack 

t i \  and its influence on crack-surface displacements may be adequate.) These 

constraint fac tors  were ver i f ied  using e las t ic-plas t ic  finite-element acalyees 

of cracked bodies under plane-stress [fi] and plane-strain conditions (by 

the  author). The procedure used to  es tabl iah  the constraint factor  (a) is 

discussed l a t e r .  

The analytical  crack-closure model, discussed i n  appendix A, was used 

t o  calculate crack-opening s t resses ,  So, as a function of crack length and 

b 

load history. In turn, the crack-opening s t r e s s  was used to  calculate the 

ef fec t ive  stress-intensi ty factor  range, a s  proposed by Elber, and, conse- 
b 

quently, the crack-growth ra tes .  



Ib. crack-growth equation propoord by Blbu [2] @tat&. that tho crack- 
b 

growth rate i e  a power function of the  ef fec t ive  a tma- ia tena i ty  f a c t o t  r a w  

anly. Later, b r d r a t h ,  Newman, Elber and Poe 191 &bowed tha t  the pomr law 

waa inadequate a t  hj3h grovth r a t e s  approaching fracture.  The reeultr prc- 

seated herein show tha t  it is a l so  inadequate a t  low growth retee approaching 

threshold. To account for  these e f fec t s ,  the  power law was modified t o  

where 

and 

The crack-opening s t resses ,  So, were calcualted from the analyt ica l  closure 

model. Equation (1) gives the "sigmoidal" shape comonly observed when fat igue 

crack-growth r a t e  data are plotted against s tress-intensi ty fac tor  range. In 



the intennodiate rang. of crack-gmth rater, equation (1) 18 buically 15lbet1r 

proposed power law, $ 2  . The conatant. 3 to C5 r a e  determind 

to beat fit eatperiPutnta1 data for conrtant-amplitude loading. 

The coefficients C3 and Cg were determined from threshold data on 

the 2219-T851 aluminum alloy sheet material from reference 1143. The ef fectip. 

threshold strereintensity factor range, AKo, was determined from the thresbo:d 

stress-intensity factor range, uth, aa 

The coefficient C5 is the elastic stress-intensity factor at failure 

or cyclic fracture toughness. The coefficient C, was chosen to be 77 MPa-m 112 - 
(70 h i - i n 2 )  on the basis of the crack-growth tests in reference 1131 

(see appendix C) . 
The coefficients C and C2 were found from constant-amplitude rate 1 

data 1131, after C3, C4 and C5 were determined, by using a least-squares 

regression analysis. The constant-amplitude correlations were made using So 

values computed from the model with various constraint factors. 

It was found that an a of about 2.3 would give a good correlation. A 

summary of the coefficients used to correlate the constant-amplitude data 

under nearly plane-strain conditions (a = 2.3 and rl = 0) are as follows: 



When SI unit. are umd, AKeff .Iid K~~ m glven in MPa-ml'* and dcldN 

is given i n  ./cycle. When U.S. C w t o u r y  a n  uaed, A K f f  and Kmx a m  

given i n  ktai-in1'2 and dc/dN i 8  given i n  in/cyele .  

Figure 4 shows a comparison between experimental growth rates [13] and 

growth rates calculated with equation (1) f o r  t he  2219-T851 aluminum a l loy  

mater ial .  These constant-amplitude data  were f o r  R r a t i o s  between -1 and 

0.7, and maximum-stress-to-yield-stress r a t i o s  of 0.15 t o  0.77. Data generated 

when the  net-section s t r e s s  exceed the  y i e l d  s t r e s e  were not included. Yor 

the 2219-T851 aluminum a l loy  mater ial ,  the y i e ld  stress (a ) was 360 MPa 
Y S  

(52 k s i )  and the  ul t imate t e n s i l e  s t r eng th  (aU) was 455 Wa  (66 k s i ) .  The 

dashed l i n e s  show factor-of-2 bands about t he  per fec t  agreement l i ne .  Most 

of t he  data  were well within these bands. 

Figure 5 shows a p lo t  of AK agains t  d c / d ~  f o r  severa l  R r a t i o s  

f o r  2219-T851 aluminum a l loy  mater ial  t o  i l l u s t r a t e  the  sigmoidal shape of 

equation (1).  The experimental da ta  were obtained from reference [14]. The 

curves were calculated from equation (1). The R = 1 data were obtained from 

a small center-crack tension specimen (W = 76.2 nun) and the other  data  were 

obtained from small compact specimens (W = 50.8 mm). The crack-growth 

coe f f i c i en t s  (C1, Cg,  C3 &,~d C 4 )  used t o  ca l cu la t e  the  curves were 

iden t i ca l  t o  thobe shown i n  equations (6). However, the  coe f f i c i en t  C5 

for  t he  small compact specimens was 38.5 MPa-ml" and f o r  the small center- 

crack specimen was 55 ~pa- rn l '~ .  Ihe coe f f i c i en t s  (C ) were ca lcu ia ted  from 5 

the  Two-Parameter Fracture Cri ter ion [15] using KF = 550 MPa-m and m = 1. 

These values of KF and a were obtained from the f i n a l  crack lengths and 

maximum s t r e s s  l e v e l s  used i n  the constant-amplitude t e s t s  from reference [13], 



(see appendix C). The calculated curve8 and the experimental data are In 

good agreemnt . 
m 

APPLICATION OF TIE CRACK-CLOSURE MODEL AND RATE EQUATION 

The analytical crack-closure model and crack-growth program (FAST - 
e 

Fatigue Crack Growth Analysis of gructuree) was applied to constant-amplitude - - 
and aircraft-spectrum loading on 2219-T851 aluminum alloy sheet material. 

Under constant-amplitude loading, the model was exercised under simulated 

plane-stress and plane-strain conditions. Some typical examples of crack- 

surface displacements at maximum load and of crack-surface contact stresses 

at minimum load are given. Calculated crack-opening stresses are shown as a 

function of crack length, stress ratio, stress level, and constraint: factor (a). 

The calculated crack-growth lives under various constant-amplitude lo ing are 

compared with experimental data. 

Because most crack-growth life is generated at small crack lengths and 

low stess levels (plastic-zone size is small compared to sheet thickness), 

nearly plane-strain conditions (a = 2.3) were found to give a good correlation 

under constant-amplitude loading. These conditions were also used to predict 

crack-growth life under aircraft spectrum loading. The crack-opening stresses 

were calculated from the model as a function of crack length and load history, 

and the crack-growth rates were predicted from equation (1). The predicted 

lives under various spectrum loadings are compared with experimental data in 

the following sections. 

Constant-Amplitude Loading 

Crack-surface displacements and contact stresses.- The normalized crack- 

surface displacements, EV/Sd, at maximum applied stress under constant-anplitude 
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loading are shown a s  a f u n c t i o n  of coord ina te  l o c a t i o n ,  x/d, i n  f i g u r e  6(a).  

The shaded reg ion  shows t h e  p l a s t i c  and r e s i d u a l  de fonae t ions  a t  mximum 

s t r e s s  a f t e r  s imulated c rack  extenr ion.  The r e s i d u a l  deformations a long t h e  

c rack  s u r f a c e s  are of  n e a r l y  uniform length .  The newly c r e a t e d  c rack- t ip  

element comes i n t o  c o n t a c t  a f t e r  ve ry  s l i g h t  unloading. The normalized c o n t a c t  

streeRea ( a  /ao) a t  minimum app l ied  stress (Smin - 0) are shown i n  f i g u r e  6(b). 
j 

The elements a r e  i n  con tac t  a l l  a long t h e  crack ~ u r f a c e s ,  but  on ly  t h e  elements 

near t h e  crack t i p  c a r r y  s i g n i f i c a n t  l o a i d .  The elements near  t h e  c r a c k  t i p  

y i e l d  i n  compression, whereas those  near  x = d a r e  i n  tension.  For x 

g r e a t e r  than d ,  t h e  stresses (not shown) a r e  i n  t ens ion  bu t  r a p i d l y  drop 

t o  t h e  app l ied  stress, Smin, a s  x inc reases .  

Crack-opening s t r e s s e s . -  The crack-opening s t r e s s e s  a r e  c a l c u l a t e d  from - 
t h e  con tac t  s t r e s s e s  a t  minimum load  a s  shown i n  appendix A. I n  f i g u r e  7 ,  

some t y p i c a l  crack-opening s t r e s s e s  a r e  shown a s  func t ions  of crack l e r g t h .  

Resul ts  a r e  shown f o r  t h r e e  s t r e s s  l e t e i s  used i n  t h e  constant-amplitude 

t e s t s  (R = 0). A t  low s t r e s s  l e v e l s  t h e  crack-opening s t r e s s e s  r a p i d l y  

reach a " s tab i l i zed"  l e v e l ,  However, a t  t h e  h ighes t  stress l e v e l  (276 MPa) 

t h e  crack-opening s t r e s s e d  d i d  not s t a b i l i z e  but d id  o s c i l l a t e  about a mean 

l e v e l  f o r  mos; f t h e  simulated t e s t .  The sharp changes i n  So a t  c e r t a i n  

crack l eng ths  were due t o  the  element "lumping" procedure descr ibed i n  

appendix A .  Bas ica l ly ,  t h i s  procedure lumps ad jacen t  elements toge ther  t o  

form a s i n g l e  element t o  keep t h e  t o t a l  number of elements t o  reasonable  s i z e  

and t o  save computer t i m e .  (The sharp changes i n  So can be e l imina ted  by 

using smal le r  elements.)  These sharp  changes i n  So have less than 1 percent  

e f f e c t  on t h e  e f f e c t i v e  s t r e s s  range. I n  t h e  c o n s t a n t - a m ~ ~ i t u d e  crack-growth 



rate correlatiar (fig. 4). the o t a b i l l u d  crt- a t r ru r r  or the 

meraga (8brwa by the drrb.d lineo) uet. d. 

Tbe variatioa of rt.bilit& (or avera$e) cracbopom- s t t t ~ t l  uitb 

stnu ratio. 1, f o r  S - uo/3 is .bar. in figure 8.  Ihe cumem - 
S b U  bJ sols- ~8d- 86 cO.dlti-8 ~ h -  fm a i l l l l t d  8 t M  

(a - 1) to s h ~ l a t e d  plane str. (a - 3). At a R ratio, tht  SOIS- 

values are lower f o r  higher d u e a  of a. At R - 0, the  c r a c k - 0 ~  

stress was about 0 47 S- f o r  plane stress and ru about 0.25 S- f o r  

plane strain. These results a r e  In good agreement with f in i te-e lerent  

analyses under plune-stress [6] and plaxte-strain conditions (by the author). 

A t  negative B r a t ios ,  SO/S- appears t o  be a linear function of the R 

rat io.  A t  posi t ive R ra t ios ,  So/S- rapidly approaches the dashed 

l ine.  For R r a t i o s  greater  than h u t  0.7. SOIS- equals SJp/S-, 

and the values are also  indepzndent of the constraint  factor .  

The influence of the  rnxirr applied stress level on crack-opening 

stresses are shown i n  f igure 9. A t  t he  ~~r R ratios, the maxhm 

applied stress had a dramatic a f fec t  on crack-openiag stresses, but at an 

R r a t i o  of 0.7 the maxirum applied stress bad no influence. The Influence 

of the maximum applied stress w a s  pore pronounced under plane-stress con- 

di t ions  (dashed curves) than under plane-strain conditions (so l id  curves). 

Crack-growth calculations.- Table 1 s h w s  the experirental  lives (NT) 

end the r a t i o  of calculated t o  elrperi~lental crack-grorth l i v e s  (Np/NT) from 

the i n i t i a l  crack length ci t o  the  f i n a l  crack length c f ,  f o r  the constant- 

amplitude tests on 221ST851 a l d n u m  a l loy  material. The closure model 

wed a = 2.3. The r a t i o  $INT ranged from 0.64 t o  2.09. The lowest and 

highest values of Np/NT were obtained from the tests cotducted a t  the highest 



s t r u  level. The ru value of 5% ru 1.06 and t im s t a n d u d  & v & a t l o ~  

#r 0.34 f o r  all tests rhara in tab le  1, except tha lw st- leve l  (55 ma) 

teat v i t h  R - -0.3. 

Ihe two teats ipdicated, by footuote (b) in table  1, wrs not used in 

o b t a l d q  tbc cnck-grwth comt8nt8 (5 m d  5). 'Iba 55 ma .nd R = -0.3 

crack-lsngth-ag.irut-cyclcb cume did not agree oith tuo other  tests in 

reference 1131 at tbe  s.r stre- level .ad a t n u  ra t io .  Ibe 276 MPa and 

negative R r a t i o  (-0.3) test vrrs a o t  included because, d u r i q  the  a i ru l s t ed  

test, the calculated So values did not s t a b i l i z e  v i t h  igcreaoing crack 

length. 

S p e c t r u  rnd*  

Crack-surface dieplacerents and contact streescs.- The normiltzed crzck- 

surface displacerents at maxlmm applied stre-, and the  normalized contact 

stresses at  rLnirr applied stress under a typical  spectrum loading, arc 

sbovn a s  a function of coordinate location In f igure  10. The displaccrent 

p ro f i l e  is qu i te  sirilar t o  tha t  sbom f o r  constant-agli tude loading (fig. 6(a)), 

but small differences i n  the displacerent p ro f i l e  cause la rge  differences i n  

coatact stresses, as shown i n  f igure 10(b). The calculated crack-openl.ng 

strcsses r e f l e c t  tbe Influence of these i r r egu la r  contact stresses on sub- 

ecqueat crack growth. 

Crack-openlng stresses.- The variat ion of crack-opening stress v i t h  crack 

length for  a t)?ical spectrum loading t e s t  is shown i n  f igure  11. The half- 

length of the elox notch (cn) waa 3.2 m. The s p e d P n  was  cycled t~nder 

constant-amplitude loading (S = 69 ma) a t  R = 0 u n t i l  the crack grew max 

t o  a crack half-length (ci) of 3.8 pr. Next, a typical  f igh te r  spectrum was 



applied t o  the rpeciun, l'he rtren ru about 183 lQa rab the m h h m  

atre80 u u  A t  -30 ma. The particular epectnm load. applted crr @wen in 

reference [13] f o r  teat rB1. 'Ibr c.lcul8ted ct.cft-opeahq 8tre8.cr plot ted  

in f lgure  11 .bau only 8 o m l l  f r ac t ion  of  tbe wrkr of values c o g u t e d  from 

the -1. Ibc crack-openSng at- f o l l a r  a very Irregular pattern a l e  

the cyc l i c  loads 8re applied; even so, they t d  t o  oscillate .bout 8 

wan value. ' 

Tbe use of an nequivalent" c r a c k - 0 ~  strew concept would g r u t l p  

reduce! the colputer tires required t o  coglete a s i a r l a t e d  test. Tht use of 

an equivalent stress is j u s t i f i ed ,  because the  crack-opening strestsea 

s t a b i l i z e  under constant-elplitude loading at lou t o  mediur stress levels ,  

and they tend t o  o s c i l l a t e  about a =an value under spec tnm loading. Ihe 
- 

equation used t o  ca lcula te  an equivalent crack-opening stress, So, was  

where the  s u a ~ a t i o n  was performed over the  crack extension increment 

Ci + 5 P- t o  ci + 10 p-. The mximum plastic-zone s i ze ,  &, was 

calculated using the  maximum s t r e s s  i n  the spectrum. For extreoely high 

stress levels  and low R r a t ios ,  where So values do not s t a b i l i z e ,  the  

simulated t e s t  specimen may f a i l  before the equivalent crack-openlng stress 

routine is activated. The dashed l i n e  i n  f igure 11 shows the  calculated 

equivalent crack-opening s t r e s s .  The predicted crack-growth l i f e  using So 

was 3.5 percent l e s s  than the predicted l i f e  using So, but the  computer time 

was only about one-half a s  large (2.6 t o  5.6 minutes). 



Crack-growth ~radictioar.- The crack-gwvth rate, at each load cycle ,  

was computed from equat ion (1). us- the cur ren t  v a l u u  of 
S-. S*, 

and So. Equation (1) predictm re t a rda t ion  (or accelerat ion)  i f  So i, 

l a rge r  (or s ~ l l e r )  than t h e  crack-openiag stress that would hve been pro- 

duced under constant-amplitude loading a t  S max and Slin' TO dewmetrate  

how crack-growth rates were calculated under variable-amplitude loading, an 

example is given. Figure 1 2  s h w s  a t yp ica l  variable-apalitude load h is tory .  

The growth r a t e  was c o q u t e d  from equation (1) using 

where ASeff f s  the e f f ec t ive  s t r e s s  range on the k th  cycle. The growth 
k 

increment per cycle  is 

(Note tha t  So and F a r e  he ld  constant during a small  growth incr-ment Ac*. 

See the sec t ion  i n  appendix A on C r a ~ k  Extension and Approximations.) On 

the f i r s t  and second t e n s i l e  load excursion, 'min t o  S 
k -kg 

where k = 1 o r  2 ,  respectively. This equation was proposed by Elber 121. 

However, on t h e  t h i rd  t e n s i l e  load excursiou, Sdn3 is grea te r  than So, 

therefore the e f f e c t i v e  s t r e s s  range was assumed t o  be 



,bher. k - 3 and C2 is t h e  power on  the growth law. Thus, the s r a r t h  

iu:rcnent,  Ac2 + Ac3, is s l i g h t l y  l a r g e r  than bel, i f  S = S  . The 
'"4 -3 

use of equa t ion  (11) was necessary  because no crack-growth law, when expressed 

In f:e QS of  a power f u n c t i o n  (C 1), would sum t o  t h e  c o r r e c t  g r w t h  increment 2 

under variable-amplitude 1 oading. For ins tance ,  i f  t h e  load excurs ion  S 
-2 

.o S was extremely smal l ,  then t h e  sum o f  growth increments Ac2 and tiin 
3 

' should be  equa l  t o  t h e  growth increment Acl. I f  S 
LC'3 

was less t h a n  
dn3 

S rhc>n the g r w t h  incremrnt Ac3 should be equal  t o  t h e  growth increment 
0 ' 

c . Equation (11) accounts  for  t h e s e  1 imi t inp  Sehavinrs .  Equation (1:) is 

~ry1 . l  i d  only when Sdnt is  g r e a t e r  than So a c ~  c n l v  when the  c u r r e n t  

imum app l ied  stress is  h i g h e r  t h a n  t h e  h i g h e s t  maximum s t r e s s  occur r ing  

s i x ~ c e  3 :;tress e- ,,.rsion c r o s s e d  S . On t h e  f o u r t h  excurs ion,  ASeff was, 
c) 

. ~ ~ , \ i n ,  camputed from equat ion (10). ?ilr e f f e c t i v e  s t r e s s  range on t h e  5 t h  

and i t ,? excurs ion were, aga in ,  coxputcd from equa t ion  (11).  But on t h e  6th .  

8th, and 9 t h  excusion,  

AS.: 6 * S - 5 
- lc maxk m i i i  k 

where k = 6,  8, o r  9 ,  r e s p ~ ~ c t i v t ~ l y .  S ~ ~ t r l  t h a t  S < S . Equation (12) max - 6 max5 
w. a l s o  proposed by %her [ l ' ] .  

l%e ASTM Ci4.06.01 Round kobir~ irivolved f i v e  b a s i c  a i r c r a f t - t y p e  load 

s p e c t r a  :.cp,ied t o  center-crack t t>nsi ,>n specimens. Three of t h e  s p e c t r a  were 



each applied a t  three  d i f f e r e n t  rcale f a c t o r s  (8- shape r p e c t n m  with d i f -  

f e r en t  r c a l i n g  of  t h e  s t r e r s e a ) ,  a d  the o the r  two rpectra were each appl1.d 

a t  tm d i f f e r e n t  s c a l e  fac tom.  There w e n  t h i r t e e n  d i f f e r e n t  spectrum 

loading t e s t a .  "'he test s p e c i r l u  wen precracked (S- = 55 MPa, R = 0) fm 

an i n i t i a l  EIWI notch (cn = 3.18 r) t o  t h e  init ial  crack lengths given i n  

t a b l e  2 before the s p e c t ~  loado were applied. See reference 1131 f o r  more 

de t a i l s .  

Figure 1 3  compares predicted and e x p e r h n t a l  crack-length-against-cpc1es 

curves f o r  a typica l  f i g h t e r  spectrum. The specimens were subjected t o  t he  

same spectrum, but with three  differen'  s c a l e  f a c t o r s  (0.2, 0.3, and 0.4). 

The predicted r e s u l t s  (curves) a r e  i n  good agreemnt  with t h e  experimental 

da ta  (symbols). 

Figure 14 c o q a r e s  experimental and predicted l i v e s  f o r  the  t h i r t e e n  

spectrum loading tests (so l id  symbols). The predicted r e s u l t s  were obtained 

from the closure model with a = 2.3. m.e r a t i o  of  Np/NT ranged from 

0.66 t o  1.48. The mean value of Np/NT was 0.98 and standard deviat ion w a s  

0.28. The r e s u l t s  from the constant-amplitude t e s t s  (open symbols) a r e  a l s o  

shown f o r  comparison. 

Table 2 s h w s  t h a t  the r a t i o  Np/NT is lower f o r  higher s c a l e  f a c t o r  

tests within each spectrum. This behavior was a t t r i b u t e d  t o  the  changing 

cons t ra in t  a t  the  crack t i p .  A l l  p red ic t ions  were made under nearly plane- 

s t r a i n  conditions; however, the  higher s t r e s s e s  a r e  more l i k e l y  t o  produce a 

plane-stress condition (plastic-zone s i z e  is l a rge  compared t o  thickness) ,  

espec ia l ly  during a high o w  rload , and, consequently , cause more re ta rda t ion .  

These r e s u l t s  suggest the need f o r  a var iab le  cons ta in t  f ac to r  which would be 

a function of the plastic-zone-to-thickness r a t i o .  

18 



Table 2 al8o preoentr the crack-8-h pmdic t i aa r  8ubJtt.d t o  tha 

ASM B24.06.01 Road Robin [li] . Thurr predictlono n m  m d e  wing th. 

analyt ica l  clorure w d e l  but under nearly p1.w-rtreer conditioar. In the 
1: 

or ig inal  model, the  bar elementr were arrumed t o  f i e ld  i n  comprerrion at +so, . 
inrtead of 4, a s  i r  i n  the present model. Z h b  asrtmptlon atrongly 

influenced the calculated crack-opening rtrereea. The crack-grawth r a t e  

equation was a l so  d i f fe ren t  from that  used herein. The r a t e  equation ueed i n  

the or ig inal  model is given i n  reference 191. Crack-growth predictlone 

under simulated plane-stress conditions gave higher crack-opening stresses 

than those under simulated plane-strain conditions (see f igs .  8 and 9) and, 

consequently, retardation e f f e c t s  are  much stronger. This m y  account f o r  the  

large Np/NT r a t i o s  obtained on t e s t  M88 and 1189, where retardation e f fec t s  

dominated . 
Table 2 a l so  presents crack-growth predictions using linear-cumulative 

damage (LCD) , tha t  is, no load-interaction ef fec ts .  The predictions w e r e  

obtained from Johnson [17]. The predictions a re  qui te  good and indicate tha t  

retardation and acceleration e f fec t s  nearly cancel each other  f o r  post of the 

spectra. Only test H88 and H89 had a su f f i c ien t ly  high overload such tha t  

retardation e f fec t s  would dominate the l i f e .  Test M93 and n94 were dominated 

by crack-growth acceleration a s  is evident from the  large N p / ~ =  r a t i o s  fo r  

linear-cumulative damage. 

CONCLUDING REMARKS 

An analytical  fat igue crack-closure model was developed and used i n  a 

crack-growth analysis program (FAST) to  predict  crack growth under constant- 

amplitude and a i r c r a f t  spectrum loading. The model was based on the Dugdale 



model, but  modified t o  l eave  plas t ica l ly-deformed material i n  t h e  wake of t h e  

aa .ancing c rack  t i p .  The m d e l  was w e d  t o  calculate t h e  crrck-opentng 

stresses is a func t ion  o f  c rack  l e n g t h  and load  h i s t o r y  under s imulated plane- 

stress a ~ d  plane-s t ra in  condi t ions .  

A crack-growth rate equat ion was developed i n  terms of E lber ' s  e f f e c t i v z  

s t r e s s - i n t e n s i t y  f a c t o r  range, th resho ld  s t r e s s - i n t e n s i t y  f a c t o r  range,  and 

f r a c t u r e  toughness, t o  g ive  t h e  " s i p i d a l "  shape commonly observed i n  f a t i g u e  

crack-growth r a t e  d a t a  p l o t t e d  a g a i n s t  s t r e s s - i n t e n s i t y  f a c t o r  range. The 

f i v e  crack-growth cons tan t s  i n  t h i s  equa t ion  were determined from ~~~~~~~~t- 

amplitude d a t a  on 2219-T851 aluminum a l l o y  s h e e t  mate r ia l .  The equat ion 

c o r r e l a t e d  t h e  constant-amplitude d a t a  over  a wide range of stress r a t i o s  

and s t r e s s  Levels q u i t e  wel l .  

The a n a l y t i c a l  c losure  model, under near ly  p lane-s t ra in  cond i t ions ,  

and the r a t e  equat ion were used t o  p r e d i c t  crack growth under a i r c r a f t  

spectrum loading on the  2219-TS51 aluminum a l l o y  mate r ia l .  ?'he model p r e d i c t s  

t h e  e f f e c t s  of load interaction, such a s  r e t a r d a t i o n  and a c c e l e r a t i o n .  The 

r , l t i c~  of predicted- to-experimntal  crack-growth l i v e s  ranged from 0.66 t o  1.48 

i n  t h i r t e e n  spectrum load t e s t s .  However, many of the  s p e c t r a  were not 

sui t , ib le  d i s c r i m i ~ a t o r s  among load- in te rac t ion  models because a l i n e a r -  

c m u l  'ttive J,.m;ige model made equal ly  good prsd ic  t i n n s .  But these  t e s t s  d i d  

v e r i f y  wttetller t h o  ntotiels c o u l d  adequately b i i l ~ n c e  r e t a r d a t i o n  and a c c e l e r a t i o n  

e f f c l t s .  The n n l v  ~ s ~ e p t i o n s  t o  t h i s  h e l ~ a v i ~ l r  sere  t e s t s  3188 and M89 where 

r e t a r d a t i o n  e f t e c t s  ctominuted, and t e s t s  ?I93 and N94 where a c c e l e r a t i o n  e i f e c t s  

dominated. The an'llyti z , ~ l  crack-closure model ~ n d  the  proposed crack-growth 

law predic ted crack growtti i n  .111 spectrum load t e s t s  q u i t e  well .  



GOVERNING EQUATIONS FOR ANALYTICAL CRACK-CIASURE llODBL 

The following sec t ions  give the governing equations f o r  the  streer .ad 

deformation cha rac te r i s t i c s  of the  ana ly t i ca l  crack-closure aodel. The 

sect ions include a discussion on crack-surface displac~;lrents, plastic-xone 

s i ze ,  residual  p l a s t i c  deformations, contact stresses, crack-opening stresses, 

and crack extension. 

A schematic of the closure model a t  maximum and minimum applied stress 

is  shown i n  f igure 3. Because of symetry ,  only one quarter  of the  p l a t e  was 

analyzed. A breakdown on the components of the  model and the  coordinate 

system used are  shown i n  figure 15. T h e  p l a t e  had a f i c t i t i o u s  crack of half- 

length d and was subjected t o  a uniform stress S. The r ig id-plas t ic  bar  

element connected t o  point j was subjected t o  a compressive stress . This 
Cj 

element i s  i n  contact when the  length of the  element L is larger  than the  
j 

current crack-surface displacement V The stress a is applied t o  make 
j ' 1 

V = L The equations which govern the  response of the  complete system were 
j j' 

obtained by requiring tha t  compatibility be met between the  e l a s t i c  p l a t e  and 

a l l  of the  bar elements along the crack surface and plastic-zone boundary. 

The displacement a t  point i is 

where f (xi) and g(xi.xj) a re  influence functions given by 



- 1 
B2 - sin -1 

where 

Bk = for k r  1 or 2 ,  
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bl = x j  - wj and b2 - 5 + 5 . Appendix B explains how these equations were 

developed. The bar element at point i (not shown in fig. 6) has a length 

(or residual deformation) of Li. The eompatability equation (Vi - Li) 
is expressed as 

x u j  g(xi,xj) = S f(xi) - Li for i - 1 to n 
j -1 

subject to various constraints. One type of constraint is caused by tensile or 

compressive yielding of the bar elements and the other is caused by element 

separation (Vi 2 Li) along the crack surface. l'he method used to solve 

equations (18) subject to the constraints is described in appendix D. 

Plastic-Zone Size and Approximations 

The plastic-zone size, p ,  for a crack in a finite-width specimen, was 

determined by requiring that the finiteness condition of Dugdale be satisfied. 

This condition states that the stress-intensity factor at the tip of the plastic 

zone is zero and is given by 

where 

wS I smax f i d  sec 



e i n  w lin ql 
Equatione (20) and (21) a r e  discussed i n  appendix B. Solving equation (19) 

f o r  d, and noting t h a t  p = d - c,  gives 

For a = 1, equation (22) reduces t o  t he  expression derived by Rice [18]. 

In  the model, the p l a s t i c  zone was a r b i t r a r i l y  divided i n t o  ten graduated 

bar elements. The aspect r a t i o s ,  2wi/p, were 0.01, 0.01, 0.02, 0.04, 0.06, 

0.09, 0.12, 0.15, 0.2, and 0.3. The smallest  elements were located near the 

crack t i p  (x c ) .  Doubling the  number of elements i n  the  p l a s t i c  zone had 

l e s s  than a 1 percent e f f e c t  on claculated crack-opening s t r e s se s .  A t  t he  

maximum applied s t r e s s ,  the  plastic-zone s i z e  was calculated from equation (22). 

The length, Li, of the  bar  elements i n  the p l a s t i c  zone were ca lcu la ted  

from equation (13) a s  

p - c  

L ~ - V  i = S  max f ( ~ ~ 1 - C  mog(xi ,x , )  

- sin-' 
ll C i .in (y) sec  (4 - li 
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where f (xi) and g(xi,xj) are l i v e n  by equat iolu (14) and (IS), n8pect ively.  

The bar  e l e u n c a  act u r i e i d  wedgee. The p l a a t l c  deformation (Li) changem 

only when an element y i e lds  i n  t u v i o n  (U > Wo) o r  compree~~ion (aj 5 g).  
j - 

The cons t ra in t  f a c t o r  was aoeumed t o  apply only during t e n s i l e  loadiag. 

Figure 3(a) shows a schematic of the model at the  maximum applied e t reee .  

Here the crack sur faces  a r e  f u l l y  open and the  res idua l  deforrnat!sza 30 not  

a f f e c t  the crack-surface displacements. 

The d iv is ion  of the p l a s t i c  zone i n t o  a number of f i n i t e  elct 

would allow f o r  the  eventual use of a nonlinear s t r e s s - s t r a i n  curve with 

kinematic hardening instead of the r igid-perfect ly  p l a s t i c  assumptions used 

herein. This may give a more r e a l i s t i c  crack-closure behavior. The w d e l c  

developed i n  references [7],  [8], [lo], and [ll] a r e  not wel l  su i t ed  f o r  

i n c ~ r p o r a t i n ~  a nonlinear st r e s s - s t r a i  n curve. 

Contact S t resses  a t  Minimum Load 

When the ana ly t i ca l  c losure model is unloaded t o  the  minimum load 

( f ig .  3(b)) ,  tke bar  elements i n  the p l a s t i c  zone unlaxd u n t i l  some of the  

elements near the  crack t i p  y i e ld  i n  compression (a < -0,). The compressive 
1 - 

p l a s t i c  zone, w, i s  shown a s  the  shaded region a t  the crack t i p .  Depending 

upon the amount of c losure and cons t ra in t  f ac to r ,  w va r i e s  from one-tenth 

t o  one-half of the p l a s t i c  zone p. The o r i g i n a l  cyc l i c  Dugdale node1 (no 

closure)  [18] pred ic t s  t h a t  w equals 0.25 p a t  R = 0 and a = 1. Thus, 

crack closure grea t ly  a f f e c t s  the s i z e  of the compressive p l a s t i c  zone. The 

elements along the crack surfaces,  which s t o r e  the res idua l  deformations, may 

come in to  contact and carry compressive s t r e s se s .  Some of these elements may 
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a l so  y i e ld  i n  compreerion (a < -uo). The r t r e s s e e  i n  t h e  p l a s t i c  tone and 
j - 

the contact s t r eeees  along the  crack sur faces  a r e  ca lcu la ted  from equations (18) 

with S = Smin. For elements t h a t  y i e ld  i n  compression, ai is set equal  to  

-a and the lengths of the  elements a r e  set equal t o  the  f i n a l  displacements 
0 

a t  those points.  That is, 

For elements not i n  contact  (Li < Vi), ui = 0. 

Crack-Opening St resses  

The applied s t r e s s  l e v s l  a t  whi,.h the  crscl surfaces a r e  f u l l y  open (no 

surf  ace contact)  denoted as So, was calculated from the contact  s t r e s s e s  a t  

'min , To have no surface contact ,  the  s t r e s s - in t ens i ty  f ac to r  due t o  an 

applied s t r e s s  increment (Sc - Smin ) is s e t  equal t o  the  s t r e s s - in t ens i ty  

f ac to r  due t o  the contact s t r e s se s .  Solving f o r  S gives 
0 

1 1  2a 
n - +j- [sin-' n2 - s i n  .- 1 

'0 'min B1l 

where 



for k - 1  or 2, 

and cO is the  cu r r en t  crack length  minus k*. ixk-nt Ac* I s  

the width of el r u t  n, and its d g n i f i c m c e  ia discussed in tLa next ec t ion .  

If u = 0 f o r  j = 11 to 1 - 1 at the  d l d u m  applied strtss, theu tht 
j 

crack is already f u l l y  open, and So camt be determined from eqrv t fon  (25). 

The stress a at  the  crack t i p  changer from c o q r e s s i o n  to teaclim when 1 
the applied stress l e v e l  reaches 

So. 

Crack Extension and Approxirations 

The ana ly t i ca l  cloc.ire model provides no information about t he  amount 

of c r a r r  grovth per  cycle. Crack growth is simulated by extending the  crack an 

incremental value a t  the  PMlent of ~axirtlnr applied stress. The amount of  

crack extension, Ac*, w a s  a r b i t r a r i l y  defined as 

Ac* = 0.05 p- 

where omax is the plastic-zone s i z e  caused by t h e  maximum applied stress 

occurring during the  Oc* growth increment. The number of load cycles ,  AN, 

required t o  grow the  crack an increment Ac* was ca lcu la tzd  from equation (1) 

and the cyc l i c  load his tory.  Typical values of A *  ranged between 0.004  me^ 

t o  0.1 mm, depending upon the  appl ied c ~ c e s s  l e v e l  and crack length. The 
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coef f i c i c a c  (0.05) u u  ae lec ted  at tar  a a y r t a ~ t l c  at* vu n d e  on the effactr 

of the mire of Ac* on crack-ogaaing m t r a -  and oa -tat tira. W l e t  

v d w o  of Ac* i n e r t a s e  t he  corputer t h e .  The choice of the coefflti-t 

fn t b l a  rclagc did not adversely a f f e c t  the crack openlag etrsues under 

constant-amplitude loading but sc#e oequence e f f e c t s  w e n  l o s t  uader vrr iable-  

amplitude loading. 

The re su l t i ng  c o q u t e r  tima were conaidered reatsoruble. Under conatant- 

amplitude loading, a a i cu l a t ed  f a t i g u e c r a c k  grovth zes t ,  from the  i n i t i a l  

crack length  t o  f a i l u r e ,  required 0.5 to  5 mlnutes on a CDC-6600 computer. 

Under spectrum l o a d i ~ ,  a e i r u l a t e d  test t o  f a i l u r e  required from 2 t o  

15  minutes. The computer s torage  requirements f o r  the ana ly t i ca l  c losure 

m d e l  and crack-grwtb program was lou ( l e s s  than 70K). The l a rge r  computer 

times occurred on t e s t s  chat were conducted a t  low stress l e v e l s  and high R 

r a t i o s .  But these computer tiares could be d r a s t i c a l l y  rebuced i f  an "equivalent" 

crack-opening s t r e s s  were used In the l a t t e r  s tage  of a simulated t e s t .  The 

use of an equivalent crack-opening s t r e s s  Is j u s t i f i e d  because cr-.:k-opening 

s t r t s s e s  s t a b i l i z e  very quickly under low s t r e s s  l e v e l s  and high R r a t i o s .  

The equivalent crack-opening s t r e s s  Is discussed i n  the sec t ion  on 

"Application of the Crack-Closure Model and Rate Equation." 

The simulated crack extension Ac* c rea t e s  a new bar  eleccnt a t  the  

crack t i p .  The length of the new element is equal t o  the displacement a t  the 

crack t i p  before tho crack extends. 

The calculated crack-opening s t r e s s e s  and the boundary-correction fac tore  

were held constant while the crack was grown under cyc l i c  loading (cycle-by- 

cycle) over the length Ac*. The number of load cycles ,  AN, required to grow 
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the crack an increlocnt bc* uar ca lcu la ted  from equat ion (1) and tk cyclic 

load b is tory .  Men the UIR of the crack grovtb inct#cnta <be) equalled or 

exceeded Ac*, the  a n a l y t i c a l  c l o m r e  model w u  exercised. If AN riacited 

300 cycles ,  t he  model was exercised whether or not Ac* uu, reached. This 

limits the  number 9f cycles  tbat can be appl ied before the model is exercised. 

The increment Ac* was set equal to  s m t i o n  of Ac's. Thus, Ac* was 

less than o r  equal  t o  t h a t  c a q u t e d  from equat ion (27) and the umber of  

cycles  ranged from 1 t@ 300. bring the c y c l i c  growth coqutatloas, the 

cyc l i c  stress h i s to ry  w a s  modtored t o  f i n d  t h e  lawest applied stress before 

and a f t e r  the  highest  appl ied stress level The 

appl ica t ion  of the ana ly t i ca l  c losure model consis ted of :  

1. Applying ainimum stress S 
d'b 

at  crack length c. 

2. Applying m a x i m  s t r e s s  S a t  crack length c. 
-3, 

3. Extending crack an increment Ac*. 

4. Applying minimum s t r a s s  S a t  crack l e n s t h  c + Ac*. 
dna 

5 Calculating new crack-opening s t r e s s  So from equation (25) . 
6. Continuing cyc l i c  load h is tory .  

7. Calculating new Ac* from equacion (27). 

8. Repeating process vhzn crack extension reaches new Ac* o r  AN 

reaches 300 cycles.  

Steps 1 through 4 require  solving equations (18) f o r  the  c - ? t a c t  stresses 

and the  s t r e s s e s  i n  the p l a s t i c  zone. The ove ra l l  procedure is  repeated u n t i l  

the desired crack length is reached o r  the  specimen f a i l s .  The f a i l u r e  

c r i t e r i o n  w e d  t o  terminate the  simulated test is discussed i n  appendix C. 
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TO keep the number of e lamtr  to 8 reuonable rim (20 to 30). 

nlurpiug'e procedure w u  urcrd. Tbr 1-iu procedun c & i m  adJac.at 

e l m n t r  ( i  and i + 1) tog.t&t t o  form 8 8-a el-t i f  

2(ws + wi+l) 5 c - '&+l + Ac* 

Thus, eleaents rear tha crack tip are not cu, l ikely t o  be luqecd togcther u 

those that are away from the crack t ip .  In the l u r p i ~ ~  procedure, the vidth 

of the l m e d  element was the sum of the widths for the tuo adjacent elareate 

and the length was the weighted aver- of the two: 



EQUAl'lONS FOR STRESS-IHTEXSITY FACTOBS M D  

CRACK-SURFACB DISPLURSMTS 

The equatioua for stnse-intearity factor* and crack-aurface displace- 

ments for a crack i n  an infinite plate were obtained from the literature [19]. 

These equatiori are ~udified herein for f ibl*e plates. So- of the approximate 

equations for Finite plates were werif ied with boundary-collw::ttl3r; 

analysc r i 2'31. 

Stress-Intensity Factors for a Crack 

in an Infinite Plate 

The stress-Intensity factors for the configurations shown in figure 2, 

with W equal to infinity, were obtainei from reference [19]. 

Remote uniform stress.- The stress-intensity factor for a crack in ar 

infinite plate is 

Partially-loaded crack.- The stress-intensity factor for the con- 

figuration shown in figure 2(b) is 



Crack-Surface Dirplacemnto 

f o r  a Crack in an I n f i n i t e  P la te  

The crack-surface displacements f o r  the conflguratioua shown in f igure  4, 

again, with W equal t o  I n f i n i t y  wen obtained from Wentergaard 8tnsr 

functions given i n  reference [19]. The followlag sectionrr give the dla- 

p l a c e e a t  equations f o r  remte d f o r m  stress and the  partially-loaded 

crack. 

Remote uniform stress.- The crack-opening displacerents  f o r  the  con- 

f igurat ion shown i n  f igure  2(a) with W - - is 

fo r  1x1 5 d, where q = V fo r  plane s t r a i n  and TI = 0 f o r  plane s t r e s s .  

Partially-loaded crack.- The crack-openiag displacements f o r  the  con- 

f igurat ion shown i n  f igure 2(b) with W = JD is 

where 
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Finite-Width Correctlono 

The equations given i n  the  preceding rec t ionr  f o r  tha rrtrerr-lntenrity 

f ac to r s  and crack-surface d l a p l a c a u n t r  (eqr. (30) t o  (34)) were f o r  a crack 

i n  an i n f i n i t e  plate.  But theoe quan t i t i e r  are influancad by the  f i n i t e  

width of the  plate.  Because there a r e  no c lomd form rolutione f o r  finite- 

width specimens, approximate equation@ a n  developed herein. The streso- 

in tens i ty  fac tor  fo r  a crack i n  a finite-width p l a t e  ie 

where F is the  finite-width correction fo r  the  pa r t i cu la r  loading condition. 

Noting t h a t  the e l a s t i c  crack-surface dieplaceraents i n  the  region of the 

crack t i p  are  d i rec t ly  related t o  the  s t ress- in tens i ty  fac tor ,  i t  is proposed 

tha t  the same correction fac tor  be used fo r  displacements: 

where V is  the displacement for  a crack i n  a finite-width p la te  subjec.ted 

to  the  par t icular  loading condition. Equation (36) gives wry accurate 

crack-surface displacements i n  the region near the crack t i p ,  a9 expected. 

Remote uniform stress.-  The approximate boundary-correction fac tor  fo r  

a cent ra l  crack i n  a finite-width p la te  suhjected t o  uniform s t r e s s  [19,21] 

ae shown i n  figure 2(a) is 
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The crack-surface displacemnte, V, given by equation8 (32), (36). urd (37) 

were compared with calculated dirrplacerentr from reference [20], m c h  wed 

the boundary-collocation ~ e t h o d ,  and the  results were found t o  be within 

2 percent of each other for  any value of x f o r  2d/W( 0.7. The crack- 

surface displacements near the crack t i p  were very accurate, a s  elrpected. 

Partially-loaded crack.- The approximate boundary-correction fac tor  fo r  

a central  crack i n  a finite-width p la te  subjected t o  p a r t i a l  loading on the  

crack surface (f ig.  2(b)) was obtained from the  i n f i n i t e  periodic array of 

cracks solut ion [19J and was modified herein by replacing the term 

Wlnd tan (nd/W) by sec (rd/W). It was shown i n  reference [21] tha t  the  

"secentO term gave more accurate resu l t s  for  s t r e s s  in tens i ty  than the 

"tangent" term. The result ing boundary-correction fac tor  was 



where 

When b1 - 0 and b2 = d (uniformly-stresrd crack surface). equation (38) 

reduces to  equation (37). as expected. 
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FAILURE CRITERION 

The f a i l u r e  c r i t e r i o n  uoed t o  terrainate the airmilatad fatigue-crack 

growth t e a t s  was the  Two-Parameter Fracture Cr i ter ion  (TPPC) [IS]. The 

c r i t e r i o n  involves two f rac ture  parepreters, Kp and m, t h a t  a r e  determined 

from the f rac ture  data. Because no f rac ture  data were reported i n  

reference [13], the  f i n a l  crack lengths (recorded) and the  meld- stress 

levels  i n  the fatigue-crack growth t e s t s  (constant-amplitude, variable- 

amplitude and spectrum loading) were used t o  estimate the  f rac ture  p a r m t e r a ,  

I$ and m. Figure 16 shows a p lo t  of the e l a s t i c  s tress-intensi ty fac tors  

a t  f a i lu re ,  KZe, against the maximum applied fat igue stress level .  A t  a 

given stress level ,  the la rge  amount of var ia t ion  was a t t r ibu ted  t o  the  f i n a l  

crack lengths reported being l e s s  than the  c r i t i c a l  values and the  maximum 

stress l eve l s  i n  the  variable-amplitude and spectrum loading tests were 

larger  than the  actual  f a i l u r e  s t resses .  The f rac ture  parameter, m, was 

taken as  unity because fracture data on 2219-T851 aluminum al loy  i n  

reference [15] showed tha t  m was unity f o r  specimen thicknesses less than 

25 mm. The specimen thickness i n  reference 113) was 6.35 mm. The e las t i c -  

p las t i c  f rac ture  toughness, $, was chosen t o  be 550 ~ a - m ' ' ~  t o  f i t  the  

upper bound fo r  most of the  t e s t  data. The so l id  curve i n  f igure 16 shows 

the calculated KIe 
values a t  f a i l u r e  from the TPFC f o r  the  center-crack 

tension specimens (W 152.4 mm) used i n  reference [13]. These re su l t s  

indic-te that  specimens tested a t  low s t r e s s  l eve l s  f a i l  a t  lower s t r e s s -  

intensi ty fac tors  than those tested a t  higher s t r e s s  levels .  
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1/2 The d l l n  value of from the mlid curve WM about 77 Wa-m 

This is the value of the coefficient C5 wed in equation (1). 



GAUSS-SBIDKL ITERATIVE METBOD WITH CONSTRUNTS 

The method used t o  rolve the  linear ryetaP of aquatioar (eqa. (18)) 

ir the  Gauss-Seidel i t e r a t i v e  method [22] with conrtralnta added. Thir 

pethod was chosen because the  number of equations t o  be solved ven var iable  

(10 t o  40) .  The constraints  are of two types. One type 18 caused by 

yielding ( t ens i l e  o r  compreesive) of the  bar eleaaente; the  other  is caused 

by element separation along the  crack surface. The equations, which govern 

the  deformations along the crack surface and i n  the  p l a s t i c  zone, a re  

where S is the  current applied s t r e s s ,  Li is the  residual  p l a s t i c  deforma- 

t ion  fo r  element i, n i s  the  number of elements, and a a re  the contact f 
s t resses  along the crack surfaces and the s t r e s ses  i n  the  p l a s t i c  zone. 

Equations (40) are solved with the  f ollow,Lng constraints : 

For elements i n  the plastic-zone region (xj > c). 
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set 

These constraints are for tensile a d  compreesive yielding, respectively. For 

elements along the crack surfacee (xj 2 4, 

U < -a0 set 
J 

These constraints are for element separation and compressive yielding, 

respectively. 

First, rewriting equations (4) in the form 

and solving for Ui gives 



f o r  i = 1 , 2  ,..., n. The matr ix ,  is diagona l ly  dominant, t h a t  is, 

each dia&onal c o e f f i c i e n t  gii is l a r g e r ,  i n  a b s o l u t e  value ,  than t h e  

magnitudes of o t h e r  e n t r i e s  i n  row i and column i. Next, make i n i t i a l  

guesses t o r  Oi and i n s e r t  t h e s e  i n t o  t h e  right-hand s i d e  of equa t ions  (46). 

If t h e  i n i t i a l  guesses r o r  
U 

are zero,  t h e  r e s u l t i n g  new approximations 

a r e  

l h e  a d d i t i o n a l  s u b s c r i p t  on L denotes t h e  i t e r a t i o n  number. The stresses i 

( u ~ ) ~  
a r e  checkec a g a i n s t  the  c o n s t r a i n t  equat ions  (41) through ( 4 4 ) ,  a s  

soon a s  they are computed, and a r e  updated, i f  necessary.  Note t h a t  t h e  



8-n a8 they are obtained. L.ub8tltutbk8 Into the l g h t - b d  

sides of equatiow (46), 8ubject to the constraint equations, glve8 ul for 

the next iteration. I h i s  pr0c.u i 8  repeated until the cbn8ee in ul are 

lees thn e a e  a l l  preaet d u e  (0.02 Uo) . Ihc recurrence equation i. 

where I is the current iteraticn number. Typically, the number of elements 

(a) ranged from 10 to 35 and the iterations ranged from 2 to  15. 



1. Blber, W.: Fatigue Crack Cloeure Under l j c l ic  Tearion, mlmrbg 
Frac tum ~ c b . n i c a ,  Vol. 2, No. 1, July  1970, pp. 37-43. 

2. Elbet,  W.: The Signif icance o f  P a t i g w  Crack Cloaure, ASIW STP-486, 
Amricaa  Society f o r  Ter t ing  .ad Yaterialr, 1971, pp. 2-242. 

3. Nawun, J. C., Jr.: F in i t e rB l s l an t  A ~ l y u i a  of  Fati- Crack Propagation - 
Including t h e  E f f ec t s  of Crack Clorure,  Ph.D. Theair, VPI&SU, Blackmburg, 
VA, May 1974. 

6. Newman, J. C., Jr.; and A m n ,  Harry, Jr.: Elas t ic -P las t ic  Analyair of  
a Propagating Crack Under Cyclic Loading, A I M  Journal ,  Vol. 13, No. 8, 
August 1975, pp. 1017-1023. 

5. Obji, K.; Ogura, K.; and Ohkubo, Y.: Cyclic Analysis of a Propagating 
Crack and Its Corre la t ion  wi th  Fatigue Crack Grouth, E n g i a ~ ~ r i n g  
Fracture Mechanics J. ,  Vol. 7, 1375, pp. 657-664. 

6 Newmen, J .  C., Jr.: A Finite-Element Analysis of Fatigue-Crack Closure, 
Mechanics of Crack Growth, ASRl  STP-590, American Society f o r  Test ing 
and Mater ia ls ,  1976, pp. 281-301. 

7. D i l l ,  H. D.; and Saf f ,  C. R.: Spectrum Crack Growth Pred ic t ion  k t h o d  
Based on Crack Surface Displacement and Contact Analyses, Fatigue 
Crack Growth Under Spectrum Loads, ASTM STP-595, American Society f o r  
Testing and Hater ia i s ,  1976, pp. 306-319. 

8, Budiansky, 8.; and Hutchinson, J. W.: Analysis of Closure i n  Fatigue 
Crack p-owth, Division of Applied Science, DAS X-1, Harvard University,  
June 1977. 

9. Hardrath, H. F.; Newman, J .  C., Jr.; Elber, W.; and Poe, C. C.,  Jr.: 
Recent Developments i n  Aealysis of Crack Propagation and Fracture  of 
P rac t i ca l  Mater ia ls ,  Fracture Hechanics, ed i ted  by N. Perrone, 
University Press  of Virginia ,  1978. 

10. Fiihring, H.;  and Seeger, T.: Dugdale Crack Closure Analysis of Fatigue 
Cracks Under Constant Amplitude Loading, Engineering Fracture  k c h a n i c e  
J., Vol. 11, 1979, pp. 99-122. 

11. &hring, c.  ; and Seeger, T.: S t ruc tu ra l  Memory of Cracked Componrnts 
Under I r r egu la r  Loading, Fracture Mechanics, ASTH STP-677, C. W. Smith, 
Ed., Amerlcan Soclety f o r  Test ing and Mater ia ls ,  1979, pp. 166-167. 

12. Dugdale, D. S.: Yielding of S t ee l  Sheets Containing S l i t s ,  Journal 
Mech. Phys. Sol'ds, Vol. 8 ,  1960. 



15. Lhang, J .  0.  ; and Sttjl:?ctetad, J. E. : Improved Methods f o r  Predicting 
Spectrum Loading E r ~ e c t s  - Pbue I Rewrt, AFFDL-TI1-79-3036, Vol- 11, 
March 1978. 

14. Eudak, S. J.; Saxena, A.; Bucci, R. J.; and Malcolm, R. C.: Deve%opmnt 
of Standard Nethod8 of  Testing and Analpring Fatigue Crack h.ovth 
Rate Data, Am-TR-7-0, Hay 1978. 

15. Newran, J. C., Jr.: Fracture b l y e i r  of Varioum Cracked Coafiguratioru 
i n  Sheet and P la te  Materials, Propert lee Redated t o  R a c t u r e  Tougbe88, 
A S M  STP-605, Arerican Society f o r  Teatine and Mnterials, 1976, 
pp. 104-123. 

16. Chang, J. B.: Round Robin Crack Grwth Predictions on Ceater Crack 
Tension S p e c i ~ e n s  Under Random Spectrum Loading, tkthods and Wele  
f o r  Predicting Crack Growth Under Random Loading, ASRl STP, 
1981. 

17. Johnson, W. S.: M t i - P a r a r e t e r  Yield Zone Hodel fo r  Predicting S p e c t n a  
Crack Growth. Methods and Models f o r  Predicting Fatigue Crack Growth ' 
Under Random Loading, ASTX STP, 1981. 

18. Rice, J. R.: The Xechanlcs of Crack Tip Deformetions and Extension by 
Fatigue, Brown University Tech. Report, NSF CK-28613, May 1966. 

19. Tada, H.; Paris ,  P. C.; and Inr in ,  G. R.: The Streas Analysis of Crack6 
Handbook, D e l  Research Corporation, 1973. 

20. Newman, J. C., Jr.: Crack-Opening Displacements i n  Center-Crack, 
Compact, and Crack-Line Wedge-Loaded Specimens, NASA TN D-8268, 1976. 

21. Brown, W. F., Jr.; and Srauley, J. D.: Plane S t ra in  Crack Toughness 
Testing of High Strength Metallic Materials, ASRI  STP-410, American 
Society fo r  Testing and Materials, 1969, p. 79. 

22. Carnahan, B.; Luther, A. H.; and Wilkes, J. 3.: Applied Numerical 
Methods, John Wiley and Sons, New York, 1969. 



TABLE 1.- COMPARISON OF EXPERIMENTAL AND PREDI- CRACK 
GROWTH LIVES UNDER CONSTANT-AMPLITUDE LOADING 

( a ) ~ h i s  test i s  s u s p e c t  based o n  o t h e r  t e a t s  i n  r e f e r e n c e  13. 

(b )These  tests were n o t  used i n  o b t a i n i n g  crack-growth c o n s t a n t s .  
i 
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276 
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3.87 
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3.87 
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6.67 

4.57 
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3.94 
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3.94 
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3.94 

3.94 

T e s t  

N~ 
Cycles 

129,239 

111,000 

175,000 

352,406 

245,000 

9,950 

12,706 

13,300 

12,180 

7,856 

11,175 

22,950 

158,700 

251 

469 

846 

1,693 

14,870 

Closure Model 

5 (a = 2.3) 
N~ 

1.42 

1.71(a8b) 

1.49 

0.98 

0.84 

1.04 

0.96 

0.98 

1.03 

0.93 

1.19 

0.80 

0.87 

2.09 (b) 

1.12 

0.83 

0.64 

0.89 



TABLE 2.- COMPARISON OF EXPERIMENTAL AND PREDICTED CRACK GROWTH 
LIVES UNDER SPECTRUM LOADING 

6 

("predictions submitted in ASTM E24.06.01 Round Robin. 

r 

SPECTRUM 
TYPE 

Air-to-Air 
Fighter 

Air-to-Ground 
Fighter 

Navigation 
Fighter 

Composite 
Mission 
Fighter 

Composite 
Mission 
Transport 

(b)~inear-cumulative damage (no retardation and no acceleration) prediction, from 
reference 17. 

SCALE 
FACTOR 

0.2 
0.3 
0.4 
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FIG. 1 - Center-crack tens ion specimen with  Dugdale p l a s t i c  zones 
and res idua l  p l a s t i c  deformations. 
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FIG. 4 - Comparison of experimental and calculated crack-growth 
rates for 2219-T851 aluminum alloy. 
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FIG. 5 - Comparison of experimental crack-growth rates and rate 
equation for 2219-T851 aluminum alloy at various R ratios. 



(a) Dls~lacement profile at maxlmum load 

( b )  Contact st resses at minimum load 

FIG. 6 - Crack-surface displacements and contact stresses under 
constant-amplitude loading (R = 0). 



smax = 276 MPa 

FIG. 7 - Calculated crack-opening stresses as a function of crack length under 
constant-amplitude loading (R = 0). 
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FIG. 9 - Normalized crack-opening stresses as  a functioc of stress 
level for several R ratios. 



(a) Displacement prof i le  a t  a high load 

S = 18 MPa 

c = 6.8 

(b) Contact stresses at a low load 

FIG. 10 - Crack-surface displacements and contact stresses under 
typical aircraft spectrum loading. 







FIG. 

N x 10-4, cycles 

1 3  - Comparison of exper imental  and p r e d i c t e d  crack-length-against-cycles 
curves  for spectrum loading. 
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Spectrum 
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FIG. 14 - Comparison of experimental (NT) and predicted (Np) cycles 
to failure for 2219-T851 aluminum alloy material under 
constant-amplitude and spectrim loading. 



FIG. 15 - Schematic of loading and coordinate system used in the analytical 
closure model. 



- 'PFC 
KF = 550 MPa-rn 1/2 

FIG. 16 - Comparison of experimental and calculated strers-intensity factors 
at failure under cyclic loading. 
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