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ABSTRACT

Several recent examples of experiment-theory correlation are
presented to give an indication of the capabilities and limitations of
wing design and analysis for transonic applications by potential-flow
theory. The examples include correlations of experimental pressure
distributions with theoretical results from isolated wing codes and
wing~body codes. Both conservative and non-conservative differencing
as well as body and boundary layer corrections are considered. The
results show that a full potential isolated wing code correlates
well with data from an isolated wing test but may give poor prediction
of the aerodynamic characteristics of some wing-body configurations.
Potential-flow wing body codes were found to improve the correlation
for the wing-body configurations considered.
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ISOLATED WING WIND TUNNEL MODEL

The swept wing shown in Figure 1 was tested in the Ames 12-foot
pressure tunnel at Mach .8 and at Reynolds number of 2 million based
on the M.A.C. (ref. 1). The model was mounted on the tunnel wall and
hence is useful for evaluating isolated wing codes.
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EXPERIMENT-THEORY CORRELATION FOR AN ISOLATED WING

The experiment-theory correlation for the isolated wing is shown
in Fig. 2. The code FLO22NM solves the transonic potential equation
in non-conservative form with an iterated Nash-McDonald boundary layer
correction. The boundary layer subroutine was coupled with FLO22 by
P. A. Henne of Douglas Aircraft Company. The results shown in the
figure indicate that good experiment-theory correlation of wing
pressures can be expected for most isolated wings with 6-series sections
at span stations greater than 1n v .15. The correlation might be expected
to be less satisfactory at span stations closer to the wall due to the
close proximity to the tunnel wall boundary layer.
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VOUGHT A-7 FIGHTER WIND TUNNEL MODEL .

A model of the Vought A-7 fighter was tested in the Ames 1ll-foot
transonic wind tunnel to evaluate the capability of FL0O22 to predict
the surface pressures for a low aspect ratio wing mounted in the high
position on a low fineness ratio body. A sketch of the wind tunnel
model is shown in Figure 3. The wing has an average thickness of

12 percent of the chord.

Figure 3
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EXPERIMENT-THEORY CORRELATION FOR THE A-7 FIGHTER

The experiment-theory correlation for the A-7 fighter at Mach .85
and a Reynolds number of 8.7 million is shown in Figure 4. Note that
FLO22 predicts a shock position which is farther forward than the
The FLO22 calculation includes a
passive boundary layer correction but no body correction.
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EXPERIMENT-THEORY CORRELATION FOR THE A-7 FIGHTER

A comparison of the A-7 wind tunmel data with calculations obtained
from the wing-body code, FLO28, is shown in Figure 5. Note that the
shock position and strength predicted by FLO28 agree well with the
experimental values. The most serious flaw in the FLO28 calculations
is the pressure oscillations on the upper surface at the two inboard
stations. This result indicates the importance of including the body
effect in calculations involving this type of configuration.
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TRANSONIC WING-BODY WIND TUNNEL MODEL

The wind tunnel model shown in Figure 6 was tested in the Ames
l4-foot transonic wind tunnel. This configuration has been included to
show that the results shown previously for the A-7 fighter are not
peculiar to high wing, low aspect ratio fighter airecraft.
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EXPERIMENT-THEORY CORRELATION

FOR A TRANSONIC WING-BODY

A comparison of experimental wing pressures with those predicted
by FLO22 for Mach .8 and a Reynolds number of 2.3 million is shown

in Figure 7 for a tramsonic wing-body

configuration. The calculations

included an iterated boundary layer correction and a twist distribution

determined by a panel code analysis to correct for body effects.

The

poor correlation at the inboard stations indicates an inadquate body

correction.
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EXPERIMENT-THEORY CORRELATION FOR A TRANSONIC WING-BODY

The experimental pressures for the transonic wing-body configuration
are compared with calculations from the wing-body code, FLO30, in Figure 8.
Note that the correlation is substantially improved over that observed
with FLO22 in Figure 7, particularly for the inboard stationms.
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TRANSONIC BIZ-JET WIND TUNNEL MODEL

Tests of the transonic biz-jet configuration shown in Figure 9
permitted an evaluation of the ability of the wing-body code, FLO28,
to predict the effect of body mounted engines on the wing pressure
distribution.
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TRANSONIC BI1IZ-JET MATHEMATICAL MODEL

The mathematical model used to describe the transonic biz-jet
configuration for input to FLO28 is shown in Figure 10. The engine
installation was simulated by a large 'bump'" on the side of the body
with a cross—-sectional area equal to the engine plus pylon minus capture
area.
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EXPERIMENT-THEORY CORRELATION FOR A TRANSONIC BIZ-JET

The experimental and theoretical pressure distributions with
and without the engine installation are shown in Figure 11. The
predicted pressures show the correct trend with engine installation
but the magnitude of the effect is underestimated.
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