NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

An Annual Report
NUMERICAL ALGORITHMS FOR FINITE ELEMENT COMPUTATIONS ON ARRAYS OF MICROPROCESSORS
Submitted to:
Division of Structures and Dynamics NASA/Langley Research Center
Hampton, VA 23665
Attention: Mr. David Loendorf
Submitted by:
J. M. Ortega
Professor and Chairman

Report No. UVA/528190/AMCS81/101
March 1981
(nasa-CR-10400b) numenical algorithas for
Na1-19794
finite element computations un araays of
MICROPROCESSORS Semiannual Report, 1 Sep.
1980-28 Feb. 1981 (Virginia Univ.) 14 p Unclas
HC A $02 / \mathrm{MF}$ AO 1

SCHOOL OF ENGINEERING AND APPLIED SCIENCE

 AND COMPUTER SCIENCE
An Annual Report
 NUMERICAL ALGORITHMS FOR FINITE ELEMENT COMPUTATIONS ON ARRAYS OF MICROPROCESSORS

Submitted to:
Division of Structures and Dynamics NASA/Langley Research Center Hampton, VA 23665
Attention: Mr. David Loendorf
Submitted by:
J. M. Ortega

Professor and Chairman

Department of Applied Mathematics and Computer Science RESEARCH LABORATORIES FOR THE ENGINEERING SCIENCES
SCHOOL OF ENGINEERING AND APPLIED SCIENCE UNIVERSITY OF VIRGINIA CHARLOTTESVILLE, VIRGINIA

This report summarizes work performed under NASA Grant NAG1-46 during the period September 1, 1980 to February 28, 1981 and const1tutes the second semi-annual report. This work has been done under the technical monitorship of David Loendorf of Langley Research Center.

The primary accomplishment during this period has been the development of a multi-colored SOR program for the Finite Element Machine. The multicolored SOR method, described in detail in the last semi-annual report, uses a generalization of the classical Red/Black grid point ordering for the SOR method. These "multi-colored" orderings have the advantage of allowing the SOR method to be implemented as a Jacobi method, which is ideal for arrays of processors, but still enjoy the greater rate of convergence of the SOR method.

The multi-colored SOR program was written in PASCAL and has run successfully on the current four processor version of the Finite Element Machine. The program has been written for a general $n \times n$ array of processors, however, and should be easily convertible to the 36 processor array when that is operational.

The current program was written to solve a general second order self-adjoint elliptic problem on a square region with Dirichlet boundary conditions, discretized by quadratic elements on triangular regions. This problem is described in more detail in the Appendix to this report. We note that for this general problem and discretization, six colors are necessary (and sufficient) for the multi-colored method to operate efficiently. The specific problem that was solved using the six-color program was Poisson's equation; for Poisson's equation, three colors are necessary and sufficient but six may be used.

In general, the number of colors needed will be a function of the differential equation, the region and boundary conditions, and the particular finite elements used for the discretization. One of the r.roblems currently being investigated is how to determine in a systematic way the proper number of colors and the grouping of the unknowns into
the processors. Proper processor assignment is, of course, crucial for the success of the method. In the Appendix a rough analysis is given of some of the questions that arise in processor assignment. The six and thres color orderings may be found in Figures 1 and 2 respectively.

The program has thus far been run on two test problems:
Problem 1: $\quad U_{x x}+U_{y y}=4$ in the unit square $u=x^{2}+y^{2} \quad$ on the boundary

Problem 2: $U_{x x}+U_{y y}=1$ in the unit square

$$
U=0 \quad \text { on the boundary }
$$

Problem 1 is a standard mathematical test problem. Problem 2 is a model for a fixed boundary membrane and was suggested by the project monitor, David Loendorf. The results on both problems have been vary encouraging.

In addition to the program development, a number of questions relating to the efficiency of the multi-color method have been investigated.

1. Will the iterates produced by the multi-color SOR method converge?
2. What is the rate of convergence of the method, especially as a function of the overrelaxation factor?
3. How does one choose an optimum (or oood) overrelaxation factor?

The answer to the first question is quite easy if the coefficient matrix of the system is positive definite. In this case, the multi-color ordering is just a permutation transformation of this matrix, and the permuted matrix is also positive definite and SOR will converge.

The other two questions are more difficult. The coefficient matrix does not have Property A, the classical condition of Young which allows a corre-
spondence between the eigenvalues of the SOR iteration matrix, and the Jacobi iteration matrix. Nevertheless, the computer results so far indicate that the rate of convergence of the multi-color SOR method applied to either Problem 1 or 2 above behaves, as a function of the relaxation factor, very much like the SOR method applied to the classical 5-point finite difference discretization of the Laplace's equation. These experimental results are very encouraging, since SOR on the 5 -point discretization is essentially a best case situation. Work is continuing on attempting to understand why the experimental results are true.

It is anticipated that ir the near future, additional more demanding proble will be attempted on the Finite Element Machine; in particular, Ms. Adams is planning to spend most of the summer of 1981 at Langley Research Center. We also plan to continue our investigation of certain variants of the conjugate gradient method, as an alternative to the multi-colored SOR method.

APPENDIX

The general problem considered is the second order self-adjoint elliptic problem

$$
\begin{aligned}
\dot{L u}(x, y)=-f(x, y) & \text { in } \Omega, \text { the unit square } \\
u(x, y)=g(x, y) & \text { on } \partial \Omega
\end{aligned}
$$

where

$$
L u=a u-\left(b u_{x}\right)_{x}-\left(c u_{y}\right)_{y}
$$

where a, b, c are functions of x and y.

MATHEMATICAL SOLUTION (Quadratic Elements on Triangular Regions)

$$
\int_{\Omega}\left(a u-\left(b u_{x}\right)_{x}-\left(c u_{y}\right)_{y}\right) v=\int_{\Omega}-f v
$$

Using the divergence theorem, the left side becomes:

$$
\int_{\Omega}\left(a u v+b u_{x} v_{x}+c u_{y} v_{y}\right)-\int_{\partial \Omega}\left(b u_{x} n_{l}+c u_{y} n_{2}\right) v
$$

where $n=n_{1} e_{1}+n_{2} e_{2}$ is the normal to $\partial \Omega$.
Note that for Dirichlet boundary conditions, the natural boundary condition bu $_{x} n_{1}+\mathrm{cu}_{y^{n}} n_{2}$ will always be zero on $\partial \Omega$. Therefore, the equation to be solved is:

$$
\int_{\Omega}\left(a u v+b u_{x} v_{x}+c u_{y} v_{y}\right)=\int_{\Omega}-f v
$$

Now, to solve Poisson's Equation, $U_{x x}+U_{y y}=f$, set $a=0, b=c=1$ to get,

$$
\begin{equation*}
\int_{\Omega}\left(u_{x} v_{x}+u_{y} v_{y}\right)=\int_{\Omega}-1 v \tag{1}
\end{equation*}
$$

Discrotize the unit square with M points in each row and column including the boundary points. Let $u=\sum_{i=1}^{2 n-1} \sum_{j=1}^{2 n-1} u_{i j} \phi_{i j}+\sum_{b_{p}} u_{b p} \phi_{b p} \quad$ and $v=\phi_{k j}$ where the \mathcal{O} 's are the basis functions for Galerkin's Finite Element Method and the $\mathcal{O}_{b p}$'s represent those basis functions associated with boundary points.

With these substitutions and definitions, (1) now becomes the following ($2 n-1) \times(2 n-1)$ system of 1 linear equations for the solution of the interior points (values of u at discrete points $H / 2$ units apart in both the x and y directions).

By using the six basis functions for quadratic elements and performing the integration over a standard triangle; the integrals of the coefficient matrix can be evaluated. Likewise, by using a numerical technique, the intrigal:; on the right side can be evaluated.

connectivity

The nature of the basis functions (ϕ 's) will cause the coefficient matrix to be spare e. In particular, $\phi_{i j}$ can be nonzero only on triangles the point if is on. This implies that $\phi_{i j}$ is nonzero on either 6 or 2 triamples. This connectivity is illustrated for $\phi_{A}, \phi_{B}, \theta_{C}$, and $\mathscr{\theta}_{D}$ trelows

ϕ_{n}
$\phi_{B}: \cdot \cdot \cdot \phi_{C}$

- •B • • .C .
$\phi_{1,}$.

$$
\cdot \quad \therefore .
$$

Note that f_{A} is nonzero on triangles $T_{1}, T_{2}, T_{3}, T_{4}, T_{5}$, and T_{6}. Hence, only $\int_{\Omega} P \phi_{1} \cdot \int \phi_{1}, \int_{\Omega} \phi \cdot \delta \phi_{2}, \cdots$, and $\int_{\Omega} \phi \phi_{A} \cdot \phi \|_{18}$ nerd to be evaluated. Thus the iterative equation for the next value of U_{A} will only contain U_{1}, U_{2}, \ldots, and U_{18}. from the connectivity of $\varnothing_{B^{\prime}}$, ϕ_{C}, and ϕ_{V} a similar analysis can be made for the solutions of U_{B}, U_{C}, AND b_{i},

COLORING SCHEME

In order to sulve for any of the points, say U_{A} for example, the values of all the points that point A is connected to must be known. These points must either have been calculated on a previous iteration or must have been calculated already on the current iteration.

If processors are to be working in paralled, with each processor calculitimp, values of a given number of these points, it is desired that the calculation be ordered so that each processor will not have to wait for values from other processors before computation can begin (no starvation in a sense). This can be accomplished by assigning to each point a color in such a way that thr point will be a different color from all other points it is connected to. To illustrate this consider the simple connectivity of the 5 -star:
. . A.

Clarly $t w a$ colors, rod and black, will produce the dosired result. This is i llusitraloul b.luw:

.K	,	. 1	. 1
		. 1	
	,	.	
	. k	. 11	

Note that each R point only needs values from B points, and each B point only needs values from each R point. Hence, all R points are calculated first, using B values that were available from the last iteration, and then all B points are calculated by using the R points that were calculated this iteration. The effect is that two Jacobi sweeps constitute one Gause-Siedel sweep. The same basic idea of coloxing the points can be applied to the connectivity described earlier by using $s i x$ colors. This is illustrated below and in Figure 1. Note from the figure that all the hypotenuse points can be the same color, R, because they are not connected. Likewise, all the vertical sides can be the same color, G, and all the horizontal size midponts can be the same color, B. Three extra colors are needed to color the vertices.

IROCESSOR ASSICNMINT

 work thit will be ropuired for each processor. ldeally, each processur should be krpt busy at all time:i: that is, each processor should do the same fraction of the wirk. In this rase, the above statements say that ideally each processor should hove the same number of points to calculate.

Another consideration is the alporithm that will be used by each processot. If the points can be assigned in such a way that the algorithm in each procesoot will be the same (SIMD), the task of programing in parallel is greatly reducrd, as well as the guarantee that each processor will be doing its iraction of llu: work.

These considerations pive motivation for assigninf; to each processor the same color structure. For the simple connectivity of the 5-star and two colors and four processors, the assignment could be as follows:

For the probiem under consideration, please note from figure 1 that the color structure repeats every $6 R$ by $6 R$ square of points. Therefore, if procossors are assigned to evory GR by $6 R$ square, each processor will have the indolicial structure and an identical alporithme this assignoment is illustralod brlow. Notr that bocause of the triatigularization of the squara. repion, an sde number of points will iw in cach row and columan.

A few words should be said about the boundary processors．All boundary processors have values that do not have to be calculated，values that need not be sent to other processors，and values that need not be received from other pro－ cessors．In this sense，the boundary processors could have a different algorilhm than the other processors．However，from a programming standpoint，it is Casier to test to see if a processor is on the boundary and lake appropriate action than to write a separate algorithm for the boundiry processur．The alporithm uses a iASCAL CASE statement to determine the type of processor．As written，the alporithm is SIND，but the MIMD aldorithm is easily extracted from the CASE sratements．

analisis of prociessor assicnment

First of all，since cach processor is doine its fraction of the work， the best spredup over a uniprocessor one can hope to obtain is $0\left(\mathrm{Nl}^{\prime}\right)$ ，wher $N l^{\prime}=(K+1)^{2}$ ，the number of processors．In practice，however，this will not be radized since speedup will be slowed down by the processor inner communications （Lhat is，data transmissions）．An analytical expression for $T(K)$ ，the number of local data transmissions needed when a K by K erid of $6 * R$ by $6 * K$ procoss：ors is usod，is derived bolow but

$$
\begin{aligned}
& \hat{k} \text {-- \# of rectangles } \\
& \text { II - width of cach rectanglo } \\
& \text { M-- al points in cach row } M=2 n+1=\text { interior plus } \\
& \text { boundary }
\end{aligned}
$$

$$
\begin{align*}
& \text { リーム -- widlli of orifillal squate (lar llis example) } \\
& \text { K - - at bll by (ik processors in a row (noe picturo) } \\
& N / 6 K=K+(6 K+1) / 6 K \text { or } M=61 K K+6 K+1 \\
& \text { (1) } \\
& \text { Hut } M=2(B-A) / H+2 \tag{2}
\end{align*}
$$

Combine (1) and (2) to get

$$
R=(B-A) / H(3 K+3)=\hat{R} /(3 K+3)
$$

Since K is odd, $3 K+3$ is even. This implies thet \hat{R} must be chosen to be even and divisible by $3 K+3$. At first this appears to be a rescriction, but it is not really since, if a specified \hat{R} is not divisible by $3 K+3$, it may be increased until it is, thereby improving the accuracy of the solution (Note: that \hat{K} increasing means H is decreasing).

It is an easy task to add up the transmissions that occur between processors (two-way) to get for the K by K topology the following:

$$
\begin{equation*}
T(K)=6 K^{2}-G K+12 K R \tag{3}
\end{equation*}
$$

Also, it is casy to get an expression for the number of transinission links (lines) needed:

$$
L(K)=4\left(2 K^{2}+K\right)
$$

Of these links, almost $\frac{1}{2}$, namely $4 \mathrm{~K}^{2}$, will have either 1 or 2 transmissions only.

It is interesting to note that the number of transmissions for the $6 R$ liy fis Lopolopy is bounded above and below by 3 and 2 times the number of $t r a n s i n i s:$ ioms for a 12 K by 12 R topolofy respectively:

$$
\begin{align*}
2 \mathrm{~T}(\mathrm{~K}) & <\mathrm{T}(2 \mathrm{k}+1)<3 \mathrm{~T}(\mathrm{~K}) \\
\mathrm{oH}_{12 \mathrm{~K}} \times 12 \mathrm{~K} & \left.<\mathrm{T}_{(1 K \times 6,}<3\right]_{12 \mathrm{~K}} \times 12 \mathrm{k} \tag{5}
\end{align*}
$$

Al: 1 ,

$$
.41 .(k)<1 .(. k+1) \leq 51 .(k)
$$

1.1

$$
4 L_{12 \mathrm{~K} \times 12 \mathrm{~K}}<\mathrm{L}_{6 \mathrm{~K} \times 6 \mathrm{~K}} \leq \mathrm{LL}_{12 \mathrm{~K} \times 12 \mathrm{~K}}
$$

Equation (5) is encouraging, since reducing the blocks [rom 12 R ig $12 \mathrm{~K} 1 \cdot$ 6K by $6 k$ fives a potential specdup of 4 in computation time but only requira: Unlween 2 and 3 times as many data transmissions. If the architecture of 11 . pa!allel computer is "such that data transmission is rapid, a polential savin!.: should occur. Also, if the architecture permits transmissions (sends and rive ive:) to occe: simultancously wilh computation, the coloring or the points suggest: thit many of Liese data transmissions can occur while computation is being carrirl whl. In other words, the amount of slowdown due to the transmissions is very architecture dependent and should be delermined experimentally as well.

DATA STRUCOTURE USED FOR I:ACI IROCESSOR

It was discovered Lhat writing the alporithm became fairly easy once Lhe "correct" data structule was discovered. Al'first, it wats beifeved thal r.sh procossor should only slote its color structure. llowner, this idsa

 metr than one point in the color structure 14 , was docided to use a GR+3 by wl:13
 processsor, two columns of receives from the east processor, ond row of receive:

Note that this data strurlure applies to the boundary processors as well. The boundary values can be thought of as receives that are stored only once. Hence, the same data structure can be used in all the processors.

7×6
A $\theta=$
$\lambda m j$
$411<$
C
6×6

7×6

7×6

2

