NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT
CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH
INFORMATION AS POSSIBLE

An Annual Report

NUMERICAL ALGORITHMS FOR FINITE ELEMENT
COMPUTATIONS ON ARRAYS OF MICROPROCESSORS

Submitted to:

Division of Structures and Dynamics
NASA/Langley Research Center
f . Hampton, VA 23665

Attention: Mr. David Loendorf

Submitted by:

J. M. Ortega
t ‘ Professor and Chairman

PR

Report No. UVA/528190/AMCS81/101
March 1981

(NASA-CR-104008) NUMEnICAL ALGORITHNMS FOR Na1=-19794
FINITE ELEMENT COMPUTATIUNS ON ARRAYS OF

MICROPROCESSORS Semiannual Report, 1 Sep.

1980 - 28 Feb. 1981 (Virginia Univ.) 14 p Unclas
HC AQ2/MF A01 CSCL J9B G3/61 4lou4o

SCHOOL OF ENGINEERING AND
APPLIED SCIENCE

DEPARTMENT OF APPLIED MATHEMATICS
AND COMPUTER SCIENCE

UNIVERSITY OF VIRGINIA
| CHARLOTTESVILLE, VIRGINIA 2290l

£
sy 4

An Annual Report

NUMERICAL ALGORITHMS FOR FINITE ELEMENT
COMPUTATIONS ON ARRAYS OF MICROPROCESSORS
Submitted to:

Division of Structures and Dynamics
NASA/Langley Research Center
Hampton, VA 23665

Attention: Mr. David Loendorf

Submitted by:

J. M. Ortega
Professor and Chairman

Department of Applied Mathematics and Computer Science
RESEARCH LABORATORIES FOR THE ENGINEERING SCIENCES
SCHOOL OF ENGINEERING AND APPLIED SCIENCE
UNIVERSITY OF VIRGINIA
CHARLOTTESVILLE, VIRGINIA

Report No. UVA/528190/AMCS81/101 Copy No. 5
March 1981

This report summarizes work performed under NASA Grant NAG1-46 during
the period September 1, 1980 to February 28, 1981 and constitutes the second
semi-annual report. This work has been done under the technical monitorship
of David Loendorf of Langley Research Center.

The primary accomplishment during this period has been the development
of a multi-colored SOR program for the Finite Element Machine. The multi-
colored SOR method, described in detail in the last semi-annual report, uses
a generalization of the classical Red/Black grid point ordering for the SOR
method. These "multi-colored" orderings have the advantage of allowing the
SOR method to be implemented as a Jacobi method, which is ideal for arrays
of processors, but still enjoy the greater rate of convergence of the SOR
method.

The multi-colored SOR program was written in PASCAL and has run success-
fully on the current four processor version of the Finite Element Machine.
The program has been written for a general nxn array of processors, however,
and should be easily convertible to the 36 processor array when that is
operational.

The current program was written to solve a general second order
self-adjoint elliptic problem on a square region with Dirichlet
boundary conditions, discretized by quadratic elements on triangular
regions. This problem is described in more detail in the Appendix to
this report. We note that for this general problem and discretization,
six colors are necessary (and sufficient) for the multi-colored method
to operate efficiently. The specific problem that was solved using the
six-color program was Poisson's equation; for Poisson's equation, three
colors are necessary and sufficient but six may be used.

In general, the number of colors needed will be a function of the
differential equation, the region and boundary conditions, and the
particular finite elements used for the discretization. One of the
rroblems currently being investigated is how to determine in a systematic
way the proper number of colors and the grouping of the unknowns into

-2 -

the processors. Proper processor assignment {s, of course, crucial for
the success of the method. In the Appendix a rough analysis is given of
some of the questions that arise in processor assignment. The six and
threz color orderings may be found in Figures 1 and 2 respectively.

The program has thus far been run on two test problems:

Problem 1: Uxx+ Uyy- 4 in the unit square

2 2

U= x" +y on the boundary

Problem 2: U +u

xx’ Yyy =1 in the unit square

U=20 on the boundary
Problem 1 is a standard mathematical test problem. Problem 2 is a model for
a fixed boundary membrane and was suggested by the project monitor, David

Loendorf. The results on both problems have been viry encouraging.

In addition to the program development, a number of questions relating
to the efficiency of the multi-color method have been investigated.

1. Wil the iterates produced by the multi-color SOR method converge?

2. MWhat is the rate of convergence of the method, especially as a function
of the overrelaxation factor?

3. How does one choose an optimum (or cood) overrelaxation factor?

The answer to the first question is quite easy if the coefficient matrix
of the system is positive definite. In this case, the multi-color ordering
is just a permutation transformation of this matrix, and the permuted matrix
is also positive definite and SOR will converge.

The other two questions are more difficult. The coefficient matrix does
not have Property A, the classical condition of Young which allows a corre-

-3-

spondence between the efgenvalues of the SOR {teration matrix, and the Jacobi
iteration matrix. Nevertheless, the computer results so far indicate that the
rate of convergence of the multi-color SOR method appiied to either Problem 1

or 2 above behaves, as a function of the relaxation factor, very much like the
SOR method applied to the classical 5-point finite difference discretization of
the Laplace's equation. These experimental results are very encouraging, since
SOR on the 5-point discretization is essentially a best case situatfon. Work

is continuing on attempting to understand why the experimental results are true.

It 1s anticipated that ir. the near future, additional more demanding proble
will be attempted on the Finite Element Machine; in particular, Ms. Adams is
Planning to spend most of the summer of 1981 at Langley Research Center. We
also plan to continue our investigation of certain variants of the conjugate
gradient method, as an alternative to the multi-colored SOR method.

APPENDIX

The general problem considered is the second order self-adjoint

elliptic problem

-£(x,y) in /L., the unit square

g(x,y) on A

I:U(-‘:)Y)
u(x,y)

where

Lu = au ~(buy)y =(cuy)y

where a,b,c are functions of x and y.

MATHEMATICAL SOLUTION (Quadratic Elements on Triangular Regions)
_S (au =(buy)y -(cuy)y) v = _S -fv

A Ju
Using the divergence theorem, the left side becomes:

S (auv + buyv, + cu,v.) = Y(bu.mny + cuyn,) v
A X'x “yy aSJLuXI yn2

where n = nje; + npe, is the normal to ZUL .

Note that for Dirichlet boundary conditions, the natural boundary condition

buyn; + cuyn, will always be zero on Al . Therefore, the equation to be solved

is: ‘{
,S (auv + bu v, + cu,v,) = -fv
N Hxfx y'y -
Now, to solve Poisson's Equation, Uxx + Uyy = f , set a=0, b=c=1 to get,
(1) j (uv. +uv) = J -fv
X X
A Yy A

Discretize the unit square with M points in each row and column including the

I 3a-t
boundary points. Let u =‘£ 2 ui_] ¢1_] g ubp dbp and v = ¢kj

(,"IJ':I
where the /d 's are the basis functions for Galcrkxn s Finite Element Method

and Lho/éfbp's represent those basis functions associated with boundary points.

- With these substitutions and definitions, (1) now becomes the following
(2n-1)x(2n-1) system of linear equations for the solution of the interior

points (values of u at discrete points H/2 units apart in both the x and
y directions).

ar 1) ’ -
Jf;l”-('%, coe jyﬁm.p’#,,...jfgm:“yy‘” a'l F}\"‘;b“ E]’Vé’ V/;,
. n a) .
. ; L '
S i n oo [T S Won ||t || $Hhem=Z e
j 1, e o o0 1’ a["/'“'”.‘" "/ .4 [Iﬂ;ﬂvm. ‘ *
ft s
- - 'u"’”’;""’", L 2 qun bp MHn-1

By using the six basis tunctions for quadratic elements und performing
the integration over a standard triangle, the integrals of the coefficient
matrix can be evaluated. Likewise, by using & numerical technique, the

integrals on the ripht side can be evaluated.

CONNECTIVITY
The nature of the basis functions (’b‘s) will causce the coctficient

mitrix to be sparse. In particular, & ij can be nonzero only on trianpgles

the point ij is on. This implies that .. 1is nonzero on ecither 6 or 2
[triangles. This connectivity is illustrated for ﬁl\ ’ ﬂB , /7(: , and /D
belows

————

. . . .
P st s s v - b
L 4
.
.
-) *
[
. .
v o - .
. . }
2 . . ¢ *
. L . 4 . . 9
= . & - ——sp . —

L) 'B . . 'L .
L) . .I‘ . . . » » . . .

-,

. D -

Note that }tl\ is nonzero on triangles 'l‘l, '1'2, 'l'j, Ta, '1'5, and Tb'

0 . / . . :
Hence, only Jq¢‘\ f¢1 , j% . "¢2 » s+ e« , and /“‘A %8

L A A
need to be evaluated. Thus the iterative equation for the next value of

UA will ounly contain Ul’ UZ' eee » and UIB' From the connectivity of ﬁl}’

pc, and /D 4 similar analysis can be made for the solutions of Uh' U., AND LID.

C

CULORING SCHEME

In order to sulve for any of the points, say UA for example, the values
of all the points tﬁht point A is connected to must be known. These points

must either have becn calculated on a previous iteration or must have been
calculated already on the current iteration.

If processors are to be working in parallel, with each processor calculating
values of a given number of these points, it is desired that the calculation he
ordered so that each processor will nof have to wait for values from other
processors before computation can begin (no starvation in a sense). This
can be accomplished by assigning to éach point a color in such a way ‘that the
point will be & different color from all other points it is connected to. To

illustrate this consider the simple connectivity of the 5-star:

SN

Clearly two colors, red and black, will produce the desired result. This is

iTlustrated belows

KR B LR LB
l A
BoghB LR
N TR
P | T O | B

-

i Note that each R point only needs values from B points, and each B point
\ only needs values from each R point. Hence, all R points are calculated first,
using B values that were available from the last iteration, and then all B

points are calculated by using the R points that were calculated this iteration.

The effect is that two Jacobi sweeps constitute one Gauss-Siedel sweep.

The same basic idea of coloring the points can be applied to the
connectivity desciibed earlier by using six colors. This is illustrated
below and in Figure l. Note from the figure that all the hypotenuse points

| can be the same color, R, because they are not connected. Likewisge, all the
| vertical sides can be the same color, G, and all the horizontal size midponts

] can be the same color, B. Three extra colors are neceded to color the vertices.

L r——_

Py

[Rv—

Py |
oK

Y R

.R

PROCESSOK ASSTGNMENT

One consideration in assipgning poinls to processors is the amount of
work that will be required for each processor. ldeally, ecach processor should
be kept busy at all times; that is, each processor should do the same fraction
of the work. In this case, the above statements say that ideally cach processor

should have the same number of points to calculate.

PRNERES

e

Pe——

Another consideration is the algorithm that will be used by each processot.
If the points can be assigned in such a way that the algorithm in each pfocussnr
will be the same (SIMb), the tnék of programming‘in parallel is greatly reduced,
as well as the guardhtee that each processor will be doing its fraction of the
wotk. |

These considerations pive motivation for assipghing to cach processor
the same color structure. For thg simple connectivity of the 5-star and two

colors and four processors, the assignment could be as followst

'\,.B <R B +R *
b .R B R *

\.B .R nB OR m
\ R B, .B

For the problem under consideration, pleasé note from Figure 1 that
?
the color structure repeats every 6R by 6R square of points. Therefore, if
processors are assigned to every 6R by 6R square, each processor will have
the identical structure and an identical algorithm. This assipnment is

.

iNustrated belowe Note that because of the triangularization of the square

\)
N

&&_bna.-\ “@.\,__w_, J J\ u&__l D

repion, an odd number of points will e in cach row and column,

(2
o
e
L "
er

ce
o
7
by
R
fp
<
r
e’
E——
hrs
F .
L I Y N
~

r ~
. \ It G‘ \
N \ " ¢
\ \b
é\\ " S e “L___J

o

A few words should be said about the boundary ptocéssors. All boundary
processors have values that do not have';o be calculated, values tth need not
be sent to other processors, and values that nged not be received from othet pro-
cessors. In this séhse. the boﬁndary processors could have‘a different algorithm
than the other processors. However, from a programming standpoint, it is
easier Lo test L; sce if a processor is on the boundary and Lake apprqpriutu
action than to write a separate algorithm for the boundiary processur. The
alporithm . ; uses a PASCAL CASE statement to determine
the fype of processor. As written, the alpgorithm is S1MD, but the MIMD

alporithm is easily extracted from the CASE s*itements.

ANALYSIS OF PROCESSOR ASSIGNMENT

First of all, since cach processor is doing its fraction of the work,
the best speedup over a uniprocessor one can hope to obtain is .O(NP), where
NP = (K+1)2. the number of processors. In practice, however, this will not be
realized since speedup will be slowed down by the processor inner COmyunicatiuus
(that is, data transmissions), An analytical expression for T(K), the
nuimber of local data transmissions nceded whcn'a K by K grid of 6%R by 6%R
processors is used, is derived below but
A
K == # of rectangles
0 == width of cach rectangle
M == # of points in cach row M = 2n + 1 = interior plus
boundary
R o-= determines the 6 by 6K topolopy

B=A == width ot oripinal squate (1 tor this example)

K == # of 6R by O# processors in a row (see picture)

M/OK = K +(0R*1)/6R or M = OPK + OKR + 1} ()

Bt M-= 2(B=A)/H + 1} (2)

1

Combine (1) and (2) to get
R = (B-A)/H(XK + 3) = RIGK + 3
Since K is odd, 3K + 3 is even. This implies thct a'must be chosen to be
even and divisible By 3K + 3, At first this aﬁpears to be a rescriction, but
it is not really since, if a specified Q‘is not divisible by 3K + 3, it may
be increased until it is, thereby improving the accuracy of the solution (Note

that ? increasing means ﬂ is decrgasing).

It is an easy task to add up the transmissions that occur between
processors (two-way) to get for the K by K topology the following:

2 _ 6K + 12KR 3)

T(K) = 6K
Also, it is casy to get an expression for the number of tranusinission liuks
(lines) needed: .

LK) = 4(2k% + K)

Of these links, almost %,

It is interesting to
topology is bounded above

for a 12R by 12R topolopy

nanely AKZ, will have either 1 or 2 transmissions only.

note that the number of transmissions for the 6R Ly CR
and below by 3 and 2 times the number of transmis:hions

respectively:

2T(K) <€ T(2K+1)K3T(K)

21

Also,

1JR x L2R < “.K X GOf

or ")

< Migmox 1w

ALR) € LK) € 5L(K)

al.

(1)

tad

, <
12k x 12k S Yo x ok = ly2r x 128

Equation (5) is encouraging, since reducing the blocks from 12R by 12R 1+

6R Ly 6K gives a potential speedup of 4 in computation time Lut only Tequire:

[RE—

between 2 and 3 times as many data trgnsmissions. If the architecture of tli-
parallel computer is “such Lhat data Lransmissién_is rapid, a polential savimg:.
should oceur. Also, if the architecture permits transmissions (sends and receiven)
to occur simultancously wilh computation, the coloring of the points suggests that
many of tirese data transmissions can occur while coﬁputation is being carricd ont,
In other words, the amount of slowdown due to the Lfansmissions is'very

architecture dependent and should be determined experimentally as well.

DATA STRUCTURE USED FOR EACH PROCESSOR

It was discovered that writing the algorithm became fairly easy once
* . .
- the “correct” data struclure was discovered. Al first, it was beiieved that
’
cach pracessor should only store its color structure. However , Lthis idra

wan quickly abandoned when il was real ized that cach processor mist receive

values from other processors, and these values were used to perhaps caleulat

mote than one point in the (rulu;‘ structure. 14 was decided Lo use a '61(+3 by olit}
array - store Lhe 6R h); 6R color structure, one column of receives from the vest
processor, Lwo columns ol receives from the east processor, one row of receive:s
Lrom the sonth processor, amd two rows ol n'(w'iv.(-s from the novith processor.

Below is an illusteation ol the data structure used. (R=1 in the illustration).

. L] L] L] . L] . L] L]
. * . L] . . L] . L]
-? [T s e —m me——
., . . . L] L] L L] - *
i . - . . . L] L] L] L]
CeLeRr
. . L] . . L] . . .

STRUCTURC

.
. » . . .

i » . .

;

V . . L)] . . [4 . .

———-———"

10

Note that this data structure applies to the boundary processors as well. The
boundary values can be thought of as receives that are stored only once. Hence,

the same data structure can be used in all the processors.

-~

(rbosocoL 2x9)
T 2061y

‘o, @ o @

I XL
S—p 0@ 0T
o e O o H o “ s/. t
v e 0 — -0+ Q-!;i-.i ‘
~ * //’/ ‘. e , ’ / +
‘ o N / ;/T 4

.:i?,:-.it — L

» & . @ /

,I ————

o » o .. @ p
~ .

- o Ja.l.Tl¢ I_

® o \.\.‘\,

\/\ - o

7o LV S o }]

A<

L 42

SA4

Sy
SN
SN S

SAx

	1981011267.pdf
	0003A02.TIF
	0003A03.TIF
	0003A04.TIF
	0003A05.TIF
	0003A06.TIF
	0003A07.TIF
	0003A08.TIF
	0003A09.TIF
	0003A10.TIF
	0003A11.TIF
	0003A12.TIF
	0003A13.TIF
	0003A14.TIF
	0003B01.TIF
	0003B02.TIF
	0003B03.TIF
	0003B04.TIF

