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EXPERIMENTAL INVESTIGATIONS ON THE V/STOL TUNNEL AT 

NASA/LANGLEY RESEARCH CENTER 

By 

P. Stephen Barna 

SUMMARY 

Calibration of the V/STOL tunnel at NASA/Langley Research 

Center (LaRC) with the test section in the open and closed modes 

of operatlon was performed durlng the period from March 1978 to 

June 1980. During thlS perl0d some time was first spent ln 
deslgnlng a serviceable traverse mechanism and finding a suitable 

sensor that could be employed to measure both flow velocities 

and dlrection at any section of the tunnel clrcuit. 

Most of the tests were performed wlth the tunnel operatlng 

at three different speeds. Except for the testing area, traverses 

were taken at all other sections considered to be relevant around 

the tunnel circuit for the dlscovery of the prevailing flow 

conditlons durlng normal tunnel operations. Surveying the test 

Sectlon was considered unnecessary at this time because the flow 

had been previously studied and found satlsfactory except when 

the test area was open. Moreover, the determlnation of flow in 
the testing area did not fall within the scope of the investi

gations, which were aimed at establishing locations of unsatis

factory flow as a basis for future improvements. 

The test results show that the flow around the tunnel circuit 

gradually deteriorated with increasing distance from the testing 

area. At the beginning of the circuit, the flow in the first 

diffuser was stlll satisfactory; at the end of the circuit, the 

flow approachlng the contraction had become entirely unsatisfactory. 

Deterloration of flow was due largely to turning the stream 

around the corners, with the resulting flow distortlon affectlng 
the diffusers downstream. The large end of the diffuser was 

found stalled on one slde, and nearly stalled flow was also found 



at the tip of the fan. Cumulatively these adverse flow charac

teristics were found to reduce the efficiency of the tunnel 

performance. 

INTRODUCTION 

The calibration of full-scale wind tunnels is an accepted 

standard procedure which usually calls for the evaluation of 

flow conditions. A relatively simple evaluation concerns only 

the test section of the tunnel. At times, however, a need also 

ar1ses for prob1ng the flow condit1ons at other sections as well

occasionally even around the entire tunnel circuit. Th1S 1S so 

because it has been found that most of the flow patterns around 
the tunnel C1rcu1t have markedly digressed from the "ideal" 

assumed flow pattern upon which the original design was based. 

Exper1ence teaches us that tunnel flow separation problems 
usually occur in the diffuser after the fan. It is a well-known 

fact that, once the flow separates from the d1ffuser wall, the 

resulting fluctuations downstream become noticeable, affecting 

both the flow in the test section and the tunnel performance. 

Recent studies on d1ffusers indicate that performance 

expressed in pressure recovery depends on the flow "quality" at 
inlet to the d1ffuser 1n additlon to its geometry. Under quality 
comes, first, blockage at inlet, which is closely linked to 

velocity distribution. Effects of v1scosity come second (Reynolds 
number at inlet), and turbulence level comes ~hird. Any other 

type of disturbance, such as a nacelle protruding into the 

diffuser or the diffuser chang1ng cross-sectional configuration, 

adds to the complexity of the flow. 

Since closed-circu1t wind tunnels repeatedly turn around 

approximately the same air quantity, it is then the "history" 

of the flow that needs further consideration. Th1S means that 

each component (corners, diffusers, etc.) of the tunnel through 

which the air passes affects the successive components downstream. 

Therefore, each component's performance, in addition to its deslgn, 

is influenced by the flow conditions upstream. 
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Design and performance data available on components (corners, 

diffusers, etc.) are the results of tests which were most probably 

performed under a variety of flow conditions which were never

theless termed "ideal." For example, published results on the 

flow around a bend assume uniform velocity distribution right 

across the flow upstream. However, the flow even upstream of the 

first corner in a wind tunnel cannot be uniform right across 

because of the buildup of boundary layer along the preceding 

diffuser, which reduces the width of the uniform flow. Since 

the corner has to turn uniform as well as nonuniform flow (near 

the walls), it would be unreasonable to expect a completely 
uniform flow to emerge on the downstream side. Furthermore, if 

the duct downstream from the f1rst corner 1S a diffuser, an 

addit10nal boundary-layer buildup is experienced, and the uni

formity of flow becomes further impaired. Consequer.tly, the 
flow after the corner may altogether become nonuniform. It may 

even become asymmetric as well, owing to the fact that, in the 

process of turning, flows generally develop a pressure gradient 

across the stream, the higher pressure being on the outer side 
to balance centrifugal forces. Downstream from the corner, 
during the process of pressure equalization, parts of the stream 

run ahead, which expla1ns why the flow becomes neither uniform 
nor axisymmetric. Should the fan be located downstream from the 
second corner, it may reasonably be anticipated that the velocity 

distribution in the flow annulus will neither be uniform nor 

symmetric. 

For axial flow fans with fixed blade settings, however, there 
is no provis10n to compensate for asymmetr1c through-flow condi

t1ons, which result in a flow that is asymmetric downstream from 

the fan. 

The large d1ffuser (following the fan) suffers from the 
disadvantage of receiving a turbulent and nonuniform flow from 

the fan, thus preventing the diffuser from performing satis

factorily. In transit through the diffuser the flow profile 
further deter10rates. Since the third and fourth corners are 
considered incapable of restoring uniformity to flow, the con
traction upstream from the test section can 1mprove the flow to 
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a limited extent and only if the contract10n ratio is large. 

It cannot reduce the preva111ng turbulence to the level 

ant1cipated by its geometry because of the nonun1form flow 

d1stribution at entry. As a result, the turbulence level in 

the test section is also higher than the desired level, and so 

the f1rst diffuser downstream from the test section may be 

affected. 

Ult1mately, the operation of the wind tunnel depends on 

the performarrce of 1tS components. 

history of the flow, the starting 

velocity distribut10n 1n the test 

This in turn depends on the 

point for which may be the 

sect10n and poss1bly the 

preva111ng turbulence level therein. 
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SYMBOLS 

pressure coeff1cient defined in text 

11ft coefficient 

drag coeff1cient 

chord of fan blade at locat10n r, m 

frequency, Hz 

gravitational accelerat1on, m/sec 2 

Euler "lift" defined as Ap/pg, m 

11ft/drag rat10 

rotat1onal speed of fan, rpm 

advance rat10 Va/Vt 

stat1c pressure at any p01nt of surface, Pa 

static pressure at side port of yaw tube, Pa 

pressure at the center port, Pa 
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static pressure of approaching flow, Pa 

total pressure rise across the fan, Pa 

Euler pressure rise across fan, Pa 

dynamic pressure ratio defined as 
q /q q = 100 Ib/ f~2 in the test section max' max 

dynamlc head 1/2pV2 , Pa 

defined as P2 - 1/2 (Pl + Pa) 

r radlus along fan blade, m 

R tlP radius of fan, m 

R Reynolds number based on tube diameter, R = Vd/v e e 

t plane of fan rotation 

u veloclty of airstream at y distance from inner wall, 
m/s 

U max 

U 
00 

maxlmum velocity attained at any cross section, m/s 

relative velocity at blade leadlng edge, m/s 

relatlve velocity at blade trailing edge, m/s 

mean relatlve velocity (U
1 

+ U
2
)/2, m/s 

approach veloclty towards cylinder, m/s 

Va aXlal flow through the fan at r location, m/s 

Vt tangentlal speed of fan blade at r locatlon 

V absolute velocity of air downstream from fan, mls o 

Vw whirl veloclty downstream from fan, m/s 

y dlstance from inner wall 

w width of the tunnel 
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a m 

w 

e 

a 

p 

n 

y 

T.S. 

angle of inc~dence of blade element with U , degree m 

-1 
angular rotational speed of fan, sec 

angle of mean relative velocity of flow through fan 
blade, degree 

angle enclosed betwee~ central port and airstream 
(yaw tube) 

angle of airstream downstream from fan enclosed with 
axial d~rection 

radius ratio r/R 

air density, kg/m 3 

blade element eff~clency 

profile setting angle of the blade, degree 

presett~ng angle of yaw tube, degree 

traverse stat~on 

BRIEF DESCRIPTION OF THE V/STOL TUNNEL COMPONENTS 

In order to make recognizable the characteristic features 

of the V/Stol tunnel, the c~rcu~t will be br~efly rev~ewed. 

The various components are noted on figure 1, which shows the 

plan view of the tunnel. Table 1 gives the relevant details 

of these components. 

The test sect~on is followed by the first d~ffuser, which 

is provided with a~r ~ntake flaps that can be operated open, 

closed, or at any sett~ng ~n between. At the end of the f~rst 

diffuser ~s the f~rst corner, prov~ded w~th equally spaced turning 

vanes, which ~s followed by the second diffuser. The flow 

control vanes, placed ~nto the second diffuser, provide better 

speed control at very low test sect~on veloc~ties. A large mesh 
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wire screen is fitted over the ent1re area of the second corner to 

prevent large pieces of debris from getting into the fan. The 

second corner is followed by the third diffuser, designed for 

transit10n from a rectangular cross section to a circular cross 

section. The axial flow fan 1S located in a cylindrical shell 

and is f1tted w1th a nacelle that protrudes into the large fourth 

d1ffuser, which 1S designed for transition from a circular to a 

rectangular cross sect10n. The air exhaust is located at the end 

of the fourth d1ffuser. The third and fourth corners are con

nected w1th a rectangular duct of constant cross sect1on. 

F1nally, the contract1on closes the return circuit. A set of two 

screens 1S fitted over the entire cross section at inlet to the 

contraction. Note that neither the rectangular section of the 

test1ng section nor any of the other components with rectangular 

sect10ns was provided with corner f1llets. 

Table 1. Approximate cross-sectional area of components. 

Inlet Area Outlet Area Area Ratio 
Component m2 ft Z m2 ft 2 Outlet/Inlet 

Contract1on 263.5 2835.75 29.3 315.4 1:8.99 

Test sect10n 29.3 315.4 32.8 353.5 1.12: 1 

First diffuser 32.8 353.5 79.0 850.5 2.41:1 

Second diffuser 79.0 850.5 98.3 1057.86 1. 244 

Th1rd diffuser 98.3 1057.86 115.9 1247.5 1.18 

Fourth d1ffuser 141. 3 1521. 55 254.9 2743.6 1.8 

Fan sect10n 115.9 1247.5 141. 3 1521.55 1.22 

Return duct between 
4th d1ffuser and 
contraction 1.033 
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TEST EQUIPMENT 

Traverse Mechanism 

Initially, feasibility studies were conducted, and subse

quently a traverse mechanism was evolved that proved to be a 

simple serviceable design. This slmple traverse mechanism 

essentially conslsted of a pair of V-shaped pulleys, each 

situated at Opposlte sides of the tunnel wall. One pulley was 

driven by a small electrlc motor while the pulley on the opposite 

tunnel wall was idllng. A thin cable was formed into an endless 

belt to ride under tension ln the pulley grooves, and rE'quired 

tenslon was obtained by uSlng a turnbuckle. The shafts of the 

pulleys were rotatlng in ball bearings housed ln blocks which 

were ]olned to the walls by a bolt going through the channel, 

lron welded to the tunnel walls. This bolt allowed the block 

to be self-allgnlng. When the motor was driving the pulley, 

the cable moved across the tunnel. About 51 cm (20 In.) down

stream from the movlng cable and situated parallel wlth lt, a 

single cable was stretched across the tunnel whlch remained 

stationary during the traverse operatlon. The set of cables -

one movlng, the other statlonary - was capable of supportlng 

as well as moving the sensor across the tunnel. The traverse 

setup lS shown schematlcally in flgure 2. A photograph of the 

moving components of the traverse mechanism near the wall of 

the tunnel lS shown ln flgure 3(a). 

Sensor 

The sensor employed was an anemometer conslstlng of a 

small propeller-driven generator housed inside a streamlined 

body frequently called a "blrd" (ref. 1). A tail, extending 

from the rear of the body, allgned the blrd wlth the flow 

directlon when the wlnd was blowing [see flg. 3(a)]. The 

rotation of the propeller was found to be directly proportional 

to the flow velocity, which could be establlshed accurately by 

using a frequency meter. A tYPlcal callbration graph of the 
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sensor ~s shown ~n figure 3(b). During traversing operz'tions, 

location of the sensor across the tunnel was established by a 

potent~onmeter geared to the shaft of the cable dr~ving motor 

through a suitable reduction gear. 

During the tests, the anemometer was positioned on top 

of a short vert~cal axle which was free to turn. The end of the 

axle was supported by a horizontal bar, one end of whLch was 

f~rmly fixed to the movable cable while the other end was fixed 

to a short tube through wh~ch passed the stationary support cable. 

Electr~c w~res carrying the s~gnals were let through a small 

opening in the tunnel wall, while the readout equipnlent was 

operating w~th the tunnel's computer system. 

Yawmeter 

For the determ~nat~on of flow angle and veloc~ty downstream 

from the fan, a spec~al yawmeter was ~nstalled behind the fan. It 

consisted of a tube 5.1 cm (2 ~n.) ~n diameter and 3.66-m (12-ft) 

long, extend~ng vert~cally across the fan annulus as shown ~n 

figure 4. One end of the tube ended on the tunnel floor, the 

other at the nacelle. In this report this tube will be called 

the yaw tube. Seven sets of ports (measuring pressure) were 

d~stributed along the length of the yaw tube, each set consisting 

of a center and two s~de ports drilled at a central angle of 45° 

on each side of the center, as shown ~n figure 5. The 21 ports 

were connected to a sens~t~ve pressure transducer by a pressure 

scanning device, and the pressures were recorded by the tunnel's 

computer-con~rolled data acqu~s~t~on system. 

METHOD OF TESTING 

The wind-tunnel c~rcuit was originally planned to be sur

veyed at specific traverse locat~ons marked on f~gure 1 from 1 
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to 19.* At each location a standard l5.2-cm (6-in.) channel 

iron, about 6l-cm (24-ln.) long, was welded to both sides at 

midhelght of the tunnel. After the pulley blocks were placed 

into their respective positions, the cables were stretched to 

about ll12-N (250-lb) tension. Finally, the sensor was mounted 

and the potentiometer was set to zero posltion. 

All surveys started wlth the sensor located near the lnner 

wall of the tunnel, and lt was activated to travel short 

dlstances. At each stop, while the sensor was stationary, the 

frequency of rotatl0n was recorded several tlmes to obtain a 

tlme average while the location of the sensor was read ~n 

millivolts. The traversing operation was repeated at each station 

for test section dynamic pressures of q = 0.32, 0.58 and 1.00, 
r 

respectively. It was noted that the sensor did not completely 

reach the wall and stopped at a distance that varied from 25 to 

38 cm (10-15 In.) from the wall. 

All veloclty traverses wlth the bird were performed with 

the cables stretched across the tunnel only horizontally, while 

the flow pattern lmmediately downstream from the fan was 

established wlth the yaw tube 1n vertical positlon and at one 

location only. 

EXPERIMENTAL RESULTS 

Introduction 

All velocity distributl0ns presented in this report are 

normalized and u/U lS plotted agalnst y/w, where U = max max 
maxlmum aXlal veloclty attalned, y = dlstance from inner walls, 

and w = wldth of tunnel at the partlcular locat1on under 

discusslon. It lS also noted that all traverses were only 

taken ln the horlzontal plane. Traverses were taken from 

*Only the most important traverse statlons were used in the tests. 
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T.S. 2 to T.S. 9 with the test sectl0n fully closed. Traverses 

were also made at a llmlted number of traverse statlons with the 

test section fully open. Accordlngly, the results are separately 

presented for the closed test section and for the open test 

section starting with T.S. 2 located near the exit from the 

test area. A tabulated gUlde to results is presented in table 2. 

Test Area Closed 

Flrst diffuser. - Wlth the test area closed, the flow along 

the flrst diffuser showed the usual or "normal" deV(~lopment: 

namely, unlform veloclty extendlng between boundary layers and 

a contlnuous boundary-layer growth with reasonable gradlents 

near the walls. The thickness of the boundary layer at T.S. 2 

was about 10 percent, as shown ln flgure 6(a); at T.S. 4 it was 

about 15 percent, as shown in figure 6(b); at T.S. 6 it was 

about 20 percent, as shown in figure 6(c) and at T.S. 8A it was 

about 25 percent, as shown in figure 6(d). One observed, however, 

that near the inner wall the boundary layer appeared thicker by 

about five percent than at the outer wall, and th1S observat1on 

held consistently all the way along the f1rst d1ffuser, an 

ind1cation that the flow at diffuser entry was not completely 

symmetrlcal. 

In some tests the effect of changing the opening of the air 

breather (si1:uated between T.S. 4 and 5) was manlpulated, and the 

effect of the open1ng on the flow was stud1ed. The results are 

shown in figures 7, 8, and 9. It appears that, in the 1mmediate 

v1c1n1ty of the breather, the effects on the flow d1stribution 

were hardly not1ceable, as shown in f1gures 7 and 8 where the 

extent of uniform flow is about the same with the breather closed, 

half open, or fully open. 

The effect of the a1r breather at the eX1t sect10n (T.S. 8A) 

1S noticeable, however. When comparing f1gure 6(a) w1th figures 

9(a) and 9(b), one finds the change 1n the width of the uniform 

flow slightly increaslng and the gradients near the walls also 
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Tunnel 
Component 

Table 2. Tabulated guide to results. 

Traverse 
Statl.on (T.S.) 

Figure 
Number 

Air 
Breather 

I. Velocl.ty distrl.butl.on wl.th test section closed 

First 
Dl.ffuser Normal 2 6 (a) 

4 6(b) " 
6 6 (c) " 
8A 6(d) " 
4 7 Fully closed 

Second 
Diffuser 

Third 
Diffuser 

Fourth 
Diffuser 

Contractl.on 
upstream 
at l.nlet 
near eXl.t 

5 
5 
5 
8A 
8A 
8A 

9A 
9B 

lOA 

11 
12 
13 

14 
15 
16 

17 
19 
20 

8 (a) 
8(b) 
8 (c) 
9 (a) 
9(b) 
9(c) 

10(a) 
lOeb) 
10 (c) 

ll(a) 
ll(b) 
ll(c) 

12 (a) 
12(b) 
12 (c) 

13(a) 
13 (b) 
14 

and open 
Closed 
~ open 
Fully open 
~ open 
Fully open 
Comparison 

Normal 

Normal 

Normal 

Normal 

II. Velocl.ty distrl.butl.on wl.th test sectl.on open 

Fl.rst 
Diffuser 2 

4 
6 
8A 

15 (a) 
15(b) 
15(c) 
15(d) 
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Table 2. (Continued). 

Tunnel Traverse Figure Air 
Component Station (T. S. ) Number Breather 

Second 
Diffuser lOA l5(e) Normal 

Third 
Diffuser 12 15 (f) 

13 15 (g) 

Fourth 
Diffuser 

Contraction 
upstream 17 15 (h) 
at inlet 
near exit 20 15 (i) 

III. Fan tests 

Total pressure rise 16 

Axial velocity distribution 17 

Yaw angle distribution 18 

Pressure coefficient 
(around yaw tube) 19 

Pressure differential 20 

Velocity vector diagram 21 
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improving. Figure 9(c} shows the curves from figures 6(a} and 

9(b} superimposed for comparison - one representing the fully 

open air breather. 

Flow through the first corner and second diffuser. - A tra

verse taken diagonally just downstream from the first corner 

turning vanes at T.S. 9A showed a definite change in the flow 

pattern from that at T.S. 8A. The velocity distribution [figure 

10(a}] developed a defect in the vicinity of the center and 

the profile also shifted. This manifested itself in the high

velocity region's moving nearer to the inner wall while receding 

from the outer wall. Downstream from the flow control vanes at 

T.S. 9B, the defect became larger at low tunnel dynamic pressures 

(qr = 0.32), and the velocity increased near the outer wall while 
decreasing near the inner wall. There appeared to be a rearrange

ment in the velocity distribution largely due to the presence of 

the flow control vanes, which allowed the flow to enter the 
second diffuser, with a more uniform flow. 

Further downstream at T.S. lOA, the effect of the diffuser 
on the flow became marked [fig. 10(c}]. The dip in the vicinity 

of the center increased from 5 to about 7.5 percent, and a rapid 

boundary-layer buildup narrowed down the uniform velocity region 

to less than half of the tunnel width. The velocity distribution 
indeed looked like a slightly dented "sugarloaf." 

Flow through the third diffuser. - At the inlet to the third 
diffuser (T.S. 11, downstream from the second corner) the profile 

flattened [fig. ll(a)] and thus improved to some extent due to 

the presence of the rather coarse screen* stretched across the 

corner vanes. However, the dip near the center 
to almost 10 percent, as shown in figure ll(a). 

stream and towards the fan the velocity profile 

had now increased 
In going down-

at T.S. 12 rapidly 

deteriorated at the outer wall, while at the inner wall the profile 
remained more or less unchanged, as shown in figure ll(b}. 

Just ahead of the fan at T.S. 13, however, the changes were 

quite dramatic. The flow became asymmetric about the centerline; 
and, while the profile near the inner wall could be considered 

acceptable, the outer wall profile became distorted and rather 

*Screen mesh of 1.27 cm (2 per in.), 0.254 ern (.1 in.) wire diameter. 
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sensitive to viscous effects, as shown in figure ll(c). The 

large dip in the center region was now due to the presence of 

the fan hub. (The flow through the fan will be discussed in a 
later section of this report). 

Flow in the fourth diffuser. - The flow in the fourth diffuser 
was found unsatisfactory, as shown in figure 12. Near the down

stream end of the nacelle (T.S. 14) the velocity distribution 
was found asymmetric [fig. l2(a)] with two unequal velocity peaks. 

The larger peak (u/U = 1) was found nearer to the outer wall max 
(at y/w = 0.65), while the smaller peak (u/U = 0.85) was found max 
nearer to the inner wall (at y/w = 0.4). While a rather insigni-

ficant difference appeared in the near-wall regions (y/w <0.1 

or >0.9), a sign1ficant d1fference between the velocity gradients 
appeared further inboard. Aroung y/w = 0.2, a zone of "hesitation" 
appeared where the gradient was practically zero. On the opposite 
side, around y/w = 0.8, the gradient was large. The center defect 
was naturally due to the presence of the nacelle. This velocity 
distribution may be considered critical in the development of the 
flow downstream. 

Halfway along the fourth diffuser at T.S. 15, the flow 
appeared to be separated from the outer wall and the velocity 
peaked at a distance y /w = 0.6 for all speeds. The velocity 
distribution [fig. l2{b)] appeared to be sensitive to viscous 

(Reynolds number) effects and thus sensitive to tunnel q, 

resulting in a wide scatter of the observed values, The center 

velocity defect decreased with increasing distance from the 
nacelle, as may be anticipated, and the remaining defect was 
between 9 and 16 percent. The wide scatter was also probably 
due to an increased level of turbulence, which was visually 
noticeable when the sensor (bird) rotated period~cally' and changed 
direction erratically, thus indicating large and sudden changes 
in flow velocity and direction. 

Finally, at exit from the fourth diffuser at T.S. 16, the flow 
[fig. l2(c)] appeared to be totally separated from the outer wall 
over 1'6 percent of the tunnel width. The velocity peaked at a 
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a distance of y/w = 0.33, in contrast to the distribution 

observed at T.S. 15. This indicated that a marked crossflow 

along the diffuser was also experienced. The defect near the 

center became noticeable at this station. Near the inner wall 

the flow appeared to be attached, while a velocity "level" was 

found between y/w = 0.07 and 0.18, a rather unusual occurrence 

in a flow. 

Flow approaching the contraction and test section. - The 

flow between the third and fourth corner at T.S. 17 [fig. 13(a)] 

remained essentially of the same character as it was upstream 

from the third corner. It appeared to be fully separated from 

the outer wall, and the peak narrowed down to a ridge at a loca

tion of y/w ~ 0.3 with the velocity rapidly falling off each 

side of the ridge. Thus the third corner had virtually no effect 

on the velocity distribution. 

Downstream from the fourth corner at T.S. 19 [fig. 13(b)]. 

flow improved to some extent after passing through the two sets 

of screens. The velocity peak slightly shifted outward but still 

remained too narrow to be considered an appropriate flow into a 

tunnel contraction. Scatter in the measurements was due to 

fluctuating flow and to the low velocities where the response of 

the sensor was least reliable. The velocity defect at y/w = 0.5 

shown by the solid triangle symbol was found due to an oil slick 

on the screen - a warning to clean dirt periodically from screens! 

Inside the contraction at T.S. 20, the flow distribution 

was found markedly different from the conditions prevailing 

upstream at entry to the contraction. It appears from f~gure 14 

that the flow was much more uniform with two velocity peaks 

present, each in the vicinity of the walls. Between these peaks 
a "dished ~n" distribution was found, with a maximum defect of 

4.5 percent at the center. It has been shown, based on previous 

measurements, that the flow distribution is uniform at inlet to 

the test section. 
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Test Section Open 

With the test area open the maximum tunnel speed was limited 

to qr = 0.58 because of the large velocity fluctuations experienced. 

While marked changes in the distribution appeared along the first 

diffuser, only small changes were observed at other sections. 

Results of selected traverses taken around the tunnel circuit are 

shown in figure 15. 

With the test section open, after the flow enters the first 

diffuser, at T.S .. 2, a boundary layer about 30 percent thick is 

experienced on each side, as shown in figure l5(a). Also, large 

velocity fluctuations were experienced near the wall, especially 

near the inner wall between y/w = 0.2 and 0.5. Further downstream, 

at T.S. 4, the boundary layer appeared to be 35 percent thick, 

and the velocity distribution showed considerable sensitivity to 

Reynolds number effects, as shown in figure l5(b). Some peculiar

ities could also be observed. For example, for tunnel q = 0.20, 
r 

the flow distribution was more favorable than for qr = 0.32, and 

the shapes of the curves also differed to some extent. Further 

downstream at T.S. 6, the curve representing the flow distribution 

for qr = 0.20 had the shape of a bell, as shown in figure l5(c), 
while for q = 0.32 and 0.58 the curves in figure l5(b) show a 

r 
"sugar-loaf" distribution. The difference near the walls between 

the curves in figure l5{b) is even more marked than in figure l5{a), 
further indicating high sensitivity to Reynolds number effects. 

Finally, at the end of the first diffuser, at T.S. 8A, the bell 
shape curve previously observed at T.S. 6 for q = 0.20 changed 

r 
and developed a dip near the center, while the "sugar-loaf" for 

qr = 0.32 and 0.58 appeared almost parabolic, as shown in figure 

l5{d). In summary, as far as the first diffuser was concerned, 
with the test section open, the flow at q = 0.20 "filled" the 

r 
diffuser more readily than that at other dynamic pressures. 

Downstream from the first corner at T.S. lOA, the flow 

pattern again assumed about the same distribution as upstream 

at T.S. 8A as shown in figure l5{e). For tunnel qr = 0.20, the 

defect ramained about the same as upstream while the "sugar-loaf" 
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pattern changed to a parabolic shape for q = 0.32 and 0.58, 
r 

suggesting the presence of a thicker boundary layer for a higher 

q. This was a surprising result which could not be readily 

explained from the theory of boundary layers. There must have 

been some interference from the open test section that influenced 

the inflow to the first diffuser at higher tunnel speeds, which, 

incidentally, needs further study. 

Downstream from the second corner, the flow was found erratic 

at T.S. 12. A large defect appeared in the center at qr = 0.20 
and a somewhat smaller defect appeared for q = 0.32 and 0.58, as 

r 
shown in figure 15(f). This defect was diso found when the test 
section was closed due to the presence of the fan. At the con

clusion of these tests, it was found that the tunnel q was 

probably too low for the flow sensor. However, just upstream 

from the fan at T.S. 13, the flow distribution as shown in figure 

15(g) was found almost identical with the distribution when the 

test section was closed [see figure 12(c) for comparison]. 

Between the third and fourth corner, the open test section 

did not appreciably affect the flow, which peaked at a distance 

y/w = 0.4 from the inner wall and fully separated at the outer 

wall as shown in figure 15(h). When comparing figure 14(a) with 

flgure 15(h), one flnds the latter has a more rounded peak and 

the former a sharper peak. However, the difference is small and 

may be due to an experimental error. 

The flow pattern inside the contraction at T.S. 20 was 

remarkably similar to that obtained with the closed test area 

as shown in figure 15(i). 

Comparison Between Closed and Open Test Section 

When comparing results between the closed and open test 

section, one finds that in the first diffuser (adjoining the 

test section) the flow markedly changed characteristics. While 

with the test section closed the blockage at the diffuser entry 
was small, with the test area open the blockage was considerably 
larger. In other words, with the test section closed, the velocity 
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distribution at inlet was uniform almost all the way across the 

stream (except for a small region near the wall), while with the 

test section open the uniform portion of the distribution was 

much narrower. It would be interesting to take a vertical traverse 
at this traverse station (T.S. 2). 

In following the flow along the first diffuser, by the time 

the exit was reached (T.S. 8A), the velocity distribution was 

almost parabolic in shape for the higher tunnel q with no 

uniform portion present. Upstream from the fan (T.S. 12) the 

flow distribution results were found to be unsatisfactory. Scatter 

of the experimental data could be attributed to large velocity 

fluctuations ln the flow, leading to some erratic r,esults. The 

influence of the test section (being open or closed) was totally 

absent in the flow sections located between the third and fourth 

corner and also inside the contraction (T.S. 17 and 20). 

FAN PERFORMANCE RESULTS 

The tests were performed at 3 fan speeds: 143, 192, and 

253 rpm, corresponding to tunnel qr = 0.32, 0.58, and 1.00. Prior 

to testing the yaw tube was aligned with the tunnel axis using a 

simple sighting technique that employed a transit-telescope. At 

zero yaw angle the central tube faced the airstream. Prior to 

testing, the tube was rotated to a preset yaw angle 0 and each 

test run (during which all pressures were recorded) was repeated 
in turn for angles of 25°, 35°, and 45°,respectively, while the 

speed of the fan was kept constant. This was necessary because 

the limit of linearity of the yaw tube calibration was ± 10° 

(see Appendix A), and the flow angles downstream from the fan 

varied between 25° and 45°. 

Test results were evaluated from the measured values of 
For the determination of yaw, the pressure dlfferentials. 

differential PI - P3 was employed, while Pz - ~(PI + P3) was 
used to determine q. 
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The total pressure rise across the fan is shown in figure 

16. In going form the hub towards the tip, a gradual fall in 

total pressure rise was experienced. This is undesirable because 

it causes vorticity to be shed into the flow. However, the fall 

was not very large in comparison to the sudden rise near the tip, 

which points to stall, or at least near stall, conditions. In 

reality the rise may not be as large as shown owing to the decrease 
in lift-drag ratio when the blade tip was operating near stall 

conditions. This decrease has not been taken into consideration 

when calculating the pressure rise. (See Appendix B.) 

In figure 17, the axial velocity distribution Va is plotted 

against normalized radial distance r/R for three tunnel q-s, 

where the axial velocity was calculated from the relation 
V = V cos $). It appears from figure 17 that the axial velocity 

a 0 
varied across the fan annulus. While the variation was relatively 

small between r/R = 0.5 and 0.9, near the hub (0.4 to 0.5) and 

near the tip (0.9 to 1) the variation was rather large. Near the 

tip the fall-off in Va signifies the near-stall conditions owing 

to large buildup in the boundary layer ahead of the fan, while 

"run-ahead" conditions existing near the hub signify the effects 

of the fairing around which large accelerations take place. The 

assumed velocity distribution at a test section qr = 1.0 upon 

which the fan design is based is shown as a dashed line in figure \ 

17 and it agrees remarkably well with the experimentally obtained 
values between r/R = 0.8 and 0.9. However, discrepancies between 

assumption and results appear at other radial locations. The 

experimental data curves seem to have about the same shape for 

all three speeds. 

The yaw angles measured at high fan speed (253 rpm) are shown 

in figure 18, which shows the range of yaw angles lying roughly 

between 25° and 40° except near the tip, where the sudden rise due 

to tip stall was experienced. The fall-off in Va is also due 
to the increase in $ at the tip. Low axial velocity resulted 

in a low advance ratio, which in turn led to low blade element 

efficiency. In addition, low axial velocity also caused high lift 

at the tip, which brought the tip region to near-stall condition 
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and also caused high drag. These effects resulted in increased 

blockage of inflow to the fourth diffuser and made it unable to 

perform satisfactorily. 

DISCUSSION 

It appears from the experimental results that the flow 
deteriorates as it moves around the tunnel circuit. Starting 

the analysis of the results from the inlet to the first diffuser 
(T.S. 2), one finds a satisfactory velocity distribution that 
closely follows the familiar, full developed, turbulent "flow-

1n-pipe" parabolic pattern. Therefore, one can anticipate that 

at exit from the first diffuser (T.S. 8A) the flow will be 

acceptable in so far as a thick boundary-layer growth observed 

on both sides is considered a normal feature of diffusers. All 

the way along the first diffuser the maximum velocity, extending 

between boundary layers, remained constant across the rest of 

the cross section. The small defect near the center was probably 

caused by the turning vanes, and may therefore be ignored. 

The problems started downstream from the first corner at T.S. 

9A where the velocity distribution near the outer wall showed a 

marked difference as compared with the inner wall, inasmuch as the 
velocity fell below that experienced near the inner wall. The 

first reason for this is probably due to streamline curvature. 

Since the radius of the streamlines must become larger in turning 

near the outer wall, the flow cannot fully extend to the wall 

without an appreciable decrease in the velocity gradient. The 

second reason is due to the thick boundary layers upstream from 
the corner, which decreased the flow near the walls and thus made 
turning in and outboard less effective. Generally, design data 

for turning vanes assume "wall-to-wall" uniform flow upstream, 

which, being an ideal assumption, may not be read11y app11ed in 

wind tunnels of the closed-circuit design. 

Additional diffusion in the second diffuser further increased 
the boundary-layer thickness, thus making the profile more peaked 

as shown at T.S. lOA, where a more marked velocity defect also 
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became noticeable. At entry to the third diffuser, at T.S. 11, 

some improvement in the profile could be observed which was due 

to the presence of a coarse screen applied across the second 

corner. However, while the defect became narrower, at the same 

time it increased its depth. The flow markedly deteriorated 

between T.S. 11 and T.S. 12. Indeed, at T.S. 12 the outer velocity 

profile already began to show some signs of an imminent separation. 

at T.S. 13 the defect widened and deepened because the presence of 

the fan hub was propagated by the flow upstream. Therefore, it 

may be assumed that the defects found further upstream could also 

have been caused by the fan hub. While a large "dip" between two 
velocity peaks immediately ahead of the fan could be expected from 

flow through the annulus around the nacelle, it was disturbing 

that the velocity gradients near the opposite walls appeared unequal. 
This added to the complexity of flow through the fan, because 
normally one expects an axial flow fan to operate with an axially 
symmetrical velocity distribution approaching the fan annulus. 

The flow's being unsymmetrical suggests that the rotating fan 

blades must experience different angles of attack on opposite sides, 

thus producing different lift and different pressure rise. As a 

result, the flow downstream must also become different on opposite 

sides, as shown at T.S. 14, where velocity peaked at about y/w = 0.65, 
which was consistent with the lower axial velocity in this region 

shown at T.S. 13. 

In the fourth diffuser the flow distribution at T.S. 15 and 

T. S. 16 clearly indicated stalled regions on the outer wall. 

Wlthin 16 percent of the outer region the velocity fell to zero 
intermittently. Inside this stalled region it was observed that 

the sensor (bird) behaved erratically. Periodically it stopped 
and started rotation, and once in a while it also abruptly changed 
direction, thus indicating intermittent flow known as "transitory 
stall." 

A remarkable change in flow direction was also experienced 

in the fourth diffuser. In going from T.S. 15 to 16, the peak 
velocity shifted from the outer wall towards the inner wall, 

changing position from y/w = 0.6 to 0.34. This clearly indicated 

a cross flow that may have been caused by the flow approaching 

the third corner. 
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The effects of the third and fourth corners on the flow 

and the equalizlng effects of the screens upstream from the con

traction only helped to round the velocity profile to a minor 

extent. The profile remained excessively peaked as shown graphi

cally at T.S. 19, and thus must be considered unsatisfactory even 

if the flow at exit from the contraction was found to be uniform. 

CONCLUSIONS AND RECOMMENDATIONS 

An investigation into the flow characteristics of the V/STOL 

tunnel located at NASA/LaRC has been conducted. The results of 

the investigations show an interaction between tunnel components, 

each component adversely affecting other components downstream 

and, to some extent, upstream. The components which appeared to 
have the largest influence on the flow were the corners. This 

in turn caused other components, like the diffusers and the fan, 

to perform unsatisfactorily. The following recommendations are 

made: 

1. The flow downstream from the first diffuser needs to 

be corrected so that the flow into the second corner becomes more 

uniform. The same suggestion applies to the second corner. 

2. The flow approaching the fan needs improving. 

3. The flow patterns inside the large diffuser following 
the fan are a matter of considerable concern. The transitory 

stall on the outer side needs to be eliminated by correcting the 

flow distribution at entry to the diffuser. 

4. Flow into the contraction was found to have been non
tlnlform, and the installation of additional screens may become 

necessary if the flow upstream cannot be satisfactorily corrected. 

5. Effects of the open test section on the flow into the 

first diffuser need to be further studied, and the large fluctu

ations experienced in the test section need to be controlled. 
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APPENDIX A 

CALIBRATION CURVES FOR THE YAW TUBE 

The calibration curves obtained on the yaw tube setup in 

the wind tunnel were compared with results of pressure distri

bution around a circular cylinder (ref. 2). Even though small 

variations in port location were observed among the seven sets 

of pressure ports, the calibration results compare favorably 
with the results obtained when using the pressure distribution 

data for a circular cylinder at an appropriate Reynolds number. 

Hence for the fan performance measurements a calibration based 

on pressure distribution data was employed. 

Introducing the nondimensional pressure coefficient Cp= p/q' 

one obtains from the distribution curve shown in figure 19, 

where Cp is plotted against 6, the difference between 

static ports 1 and 3 

C - C 
PI P3 

(AI) 

The values of C
p1 

and C
p3 

are obtained by simply taking for angle 

61 the angle 6 + 45 and for angle 83 the angle 45 - 6. (Note 

62 = 6 and that here q = 1/2pU!, where U
oo 

is the approach veloclty 

far upstream). 

By defining Qp = P2 - 1/2(Pl + pg) one obtains 

~ = C - 1/2(C + C ) q P2 PI Pg 

(~p) (~) 
C - C 

hence ~p = = PI Pa (A2) Qp C ~172(C 
- C ) q Q + 

P P2 PI Pg 

angle 

In figure 20 both ~p and ~p are plotted against yaw 
q Qp 

6. It appears that both curves are linear between tlO°, 

and inside this linear region one finds that 
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~p 
~ 

e 
q 10.333 (A3) 

and 

~p - . e 
~ 

Qp 14.333 (A4) 

From the experimentally obtained values of ~p and Q
p

' the 

dynamic head q, and hence the flow velocity and its direction can 
be calculated. Substitution of ~p from equation (A3) into 

equation (A4) leads to Q /q = 14.333/10.333 = 1.387. With p = 0.00227 
p 

one obtains from the relation q = 1/2pV2 * 
o 

(AS) 

The yaw angle can be determined by solving equation (A4) 
for e 

e = 14.333 ~p (A6) 
p 

Flnally, if the yaw tube is positioned wlth a preset angle 0 

enclosed with the tunnel centerline, one obtains the yaw angle 

~ = 0 + e (A7) 

*Note, that Vo is the approach velocity to the yaw tube and is 
the absolute velocity downstream from the fan blades. 
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APPENDIX B 

NOTES ON FAN PERFORMANCE 

Introduction 

In commercial practice, a fan's performance is generally 

judged by the overall pressure rise and efficiency it produces. 
These values can be simply obtained from weighted average 

measurements for which the methods are specified in standard fan 

codes (ref. 3). In the case of axial flow fans, average measure

ments of performance have limited usefulness; they generally 

suffer from lack of information on the radial distribution of 
such variables as the local values of pressure rise, of blade 

element efficiency, of through-flow velocity, etc., which can 
indeed vary a great deal along the blade. Detailed distribution 

measurements of the relevant variables facilitate analysis of 

performance, and the information obtained may be employed to locate 

areas of unsatisfactory performance. Ultimately, the weighted 

average values can be calculated by simple summation methods. 

Requirements for high efficiency demand that all blades 

be operated at or near the maximum lift-drag ratio of the particular 

airfoil profile employed in the design with the flow maintaining 
a suitable advance ratio J. The desirable range for J falls 

between 0.2 and 1.0; below 0.2 the efficiency falls off rapidly 

with decreasing J (ref. 4). 

In order to analyze a given axial flow fan's performance, lt 

is necessary to first measure at various radial locations the 
magnitude {Vol and direction (~) of the absolute velocity leaving 

the fan blade. Resolving Vo into tangential and azial direction, 

one obtains the components Vw and Va' respectively, and with 

these components the velocity vector diagrams can be established 
for both the leading and the trailing edge (ref. 4). By vectorially 

adding Va to the blade speed Vt ' one obtains the relative 

velocity Ul at the leading edge, while U2 at the trailing edge 

is obtained by adding Vo to V
t 

as shown in figures 2l(a} and 

2l{b). Upon superimposing figures 2l{a) and 2l{b), one obtains 

figure 2l(c), where the mean of Ul and U2 is shown as Urn 
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(drawn by a dashed line) which intersects the plane of rotation 

t with an angle of Sm' At a radial location r, the blade profile 

inclines with the angle y to the plane of rotation; thus the mean 

blade incidence angle am becomes the difference y - Sm' 

The procedure followed in the present analysis was to first 

assume a reasonable fixed value for the lift-drag ratio needed 

for the calculation of the blade element efficiency. The local 

total pressure rise across the fan was calculated from the relation

ship 

Calculation of Pressure Rise Across the Fan 

The theoretical pressure rise in fans is given by the well

known formula for Euler lift (ref. 5): 

where Vt = wr is the tangential speed of the rotating blade at 

radius rand Vw is the whirl velocity of the stream leaving 

the blade (assuming zero whirl at blade leading edge). Since 

REg = 6PE/P we may write 

Due to viscous effects the actual pressure rise is somewhat less 

and this is accounted for by introducing the blade element 

efficiency nb . Thus 

Further, by introduc~ng a = r/R the tangential speed becomes 

Since the radius of the fan at tip R = 6.1 m (20 ft), one obtains 
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Since the whirl velocity 

substitution for V from equation (AS) leads to 
o 

V = 2S.~rc! sin ~ 
wV~p 

(B2) 

(B3) 

(B4) 

Substituting equations (B2) and (B4) into equation (Bl) yields 

the pressure rise 

During the tests the density was found to be p = 0.00227 lb/ft 3 

and with the conversion factor 1 inch W.G. = 5.2 lblft, one obtains 

~Pt = 0.023na~ sin ~ nb (inches of W.G.) 

In order to complete the calculation it is necessary to 
estimate the value of the blade efficiency. 

For relatively low whirl velocities experienced in axial 

flow fans the blade element efficiency 

J(K-J} 
nb~ I + J K 

where K = CL/CD and J = Va/Vt . Since the axial velocity 

Va = V cos ~ 

substition for V from equation (AS) leads to 

(BS) 

(B6) 

(B7) 

(B8) 
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Upon dividing equation (B9) by equation (B2), one obtains for 
the advance ratio 

J = 12.03 VQP cos ~ 
cr (B9) 

For the calculation of the value of K was assumed to be 25. 
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