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ACOUSTIC EMISSION MONITORING
OF POLYMER COMPOSITE MATERIALS

II. Experimenival Re alts
R. Bardenneier

Composite Materials -- Characteristics and Failure Mechanisms

The designation "composite materials" denotes a class of mate- /101*

rials in which two or more components are mutually "compounded" in

a suitable manner in order to generally improve product properties.

Thus, e.g., fig. 10 clearly shows the reinforcing and strengthening

effects of short glass fibers imbedded in a styrene-acrylnitril co-

polymer matrix (SAN)[24]. It shows the mechanixal behavior of this

composite material during monotonous increase of stress effects

(tom 10 -3 s -1 ) in relation to glass fiber contents. While strength

and the initial tangential modulus increase in comparison to the

corresponding properties of the unreinforced matrix (0%GF), the

deformability as well as the specific deformation energy of the

composite materials decrease. However, in no case can it be de-

duced from the stress-strain curves whether at a specific point of

time the first defects have already occurred and what will their

behavior be under continued exposure to stress effects. All curves

show a degressive progress without indicating points of instability

in damage to the materials. On the other hand, simultaneously con-

ducted SE-measurements have shown energy transformation processes

occurring early in the samples, thus pointing up irreversible damage

to materials (fig. 11). This illustration shows that SE-measurements

can provide overall information regarding the stress state of and the

degree of damage to a composite material. Nevertheless, to achieve

*Numbers in the margin indicate pagination in the foreign text.
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optimization of materials, it is additionally necessary to differ-

entiate between the various failure mechanisms so as to apply ap-

propriate measures against all weak points.

As shown in fig. 12, failure mechanisms in composite materials

are very complex, as fibre fracture 1, matrix fracture and matrix

1^

	

	 crazing 2, as well as fiber pull-out without 3 and with matrix

yielding 4 can occur simultaneously. Each of these mechanisms

contributes its share to overall emission, whereby consideration 	 /102

must also be given to fraction margin frictions. This makes dif-

ferentiation between these various failure mechanisms as well as

the corresponding coordination of SE-signals difficult and costly.

Yet, as will be shown, it is not an impossible task.

Swindlehurst and Enctel 25 developed a theoretical system for

describing SE in composite materials. They start out with the as-
M

sumption that the failure of a brittle component, generally the re-

inforcinct fibers, leads to a recordable emission of elastic stress

waves. At the same time they give in their model due consideration

to interaction among the components. They show that this relaxation

of the fractured fibers is connected to an additional stress, i.e.,

deformation of the matrix. According to their theoretical postu-

lations, occurrence of SE is characterized, among others, also by

the degree of matrix deformation.

Propagation of sound waves conducted in composite materials,

as well as the elastic stress graves (SE), are described by Darker

26	 In his deliberation:, tie takes into consideration a visco-

elastic behavior of the composite entity corresponding to that of

a Maxwell body. Resonance effects are excluded by him.
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tic Emission Measurements on Composite Materials with a Polymer

Monotonous Stress Tncrease

Interpretation of Acoustic Emission Signals

A quantitative relationship between fiber fracture as a failure

phenomenon and the recorded SE is shown by Harris et al [21 for an

aluminum matrix reinforced by adi>>Fted A1 3Ni-whiskers (fig. 13).

(Though they studied a metallic „omposite material, their study

contains an interesting concept for quantitative description of

the SE-characteristic of this material.) They started out with the

assumption that only fiber fractures contribute to the recorded SE,

while the matrix is to be considered as "quiet." In their theoret-

ical model they assume that the amount of energy released in case

of a fiber fracture is proportionate to the square of the fiber

load tension at the point of time when the fracture occurs. The

equation derived by them makes it possible to establish a quanti- /103

tative correlation between the percentual, experimentally determin-

ed number of fiber fractures 0^2) and the sum of pulses (N) of SE

(fig. 13).

E

N = B•^0 d
	

In 
FO	

d,;

B is a proportionality constant and &0 the stress at which the first

emissions are recorded.

A similar finding was reached also by Rotem and Baruch [28],

who studied an epoxy resin matrix (UD-GF/EP) reinforced by unidi-

rectional oriented glass fibers. While they do not derive any 	
{
i
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analytic relation between fiber fractures and the sum of SE pulses,

they computed the relative incidence of fractured fibers (F(df))

and pointed out a qualitative relationship with the sum of SE

pulses (N) (fig. 14). They formulated the function Fkdf) under the

assumy-tion of a statistic distribution of glass fiber strength.

The viscoelastic behavior of the epoxy resin matrix is included in

the discussion of their studies. They make it responsible for the

steep rise of the pulse sum curve of SE (N) in the terminal stage,

i.e., at a high stress level. Due to relaxation processes in the

matrix, are included to an ever increasing degree in transfer of
force which simultaneously increases the probability of fiber frac-

ture. They do not specify any relationship between SE and some

material characteristic.

Liptai `291 also reports on a relationship between SE pulse

sum measurements and fracture of high-strength glass fibers. He

studied NOL-rin(Ts (Naval Ordnance Laboratory) made of glass fiber/

epoxy resin composites. For the description of fiber fracture he

used the concept theoretically derived by Zweben and Rosen [303

which predicts a cummulative fiber failure in relation to fiber

exposure to stress.

A correlation between fiber fracture and critical surface- or

fracture-enercry (7 -c ) is reported by Fitz-Randolph et al. L31, 321,

who conducted studies on notched epoxy resin samples reinforced by

boron fibers. Due to the selection of a suitable sample configu-

ration they succeeded in producing a steady crack propagation under

monotonously increasing stress effects. c was determined by means

of the "compliance method" described in [33]. At stress applied

4
f



k

w

perpendicularly to the fiber orientation ( fig. 15) they observed

with each load drop, accompani = d by crack propagation, a distinct

SE-burst. By means of simultaneously performed electric resistance

measurements they showed that these bursts were caused by fiber

fractures. As fig. 15 shows, there is a direct relationship be-

tween the sum of SE pulses (N*) and the critical surface energy

P- ) when both of these values are related to the given crack
surface. The dependence of value rc , and thus of N*, on the crack

surface (A) is ascribed by the authors to the varying fiber pull-

out length which decreases with increasing crack length.

While they do not offer an explanation for the variation in

fiber pull-out length, newer studies by Harris and Ankara [34] show

that friction processes occur 13.uring fiber pull-out between the

glass fibers and the matrix, which largely contribute to the total

fracture energy. This caii be used to explain the dependence of

critical surface energy on the fiber pull-out length observed by

Fitz-Randolph et al. [31, 32]. Harris and Ankara carried out their

studies on a polyester cantilever beam (DCB-probe) and were in a

position to differentiate between processes in the matrix and those

in the glass fibers or the boundary surface.

Fiber fractures, however, are not the only failure phenomena in

composite materials. This is graphically represented in fig, 12.

Mehan and Mullin[35]describe experiments with carbon fiber/ and boron /104

fiber/epoxy resin composites which allowed them to use SE-signal

analyses to differentiate between fiber breakdown, matrix breakdown

and boundary surface failure. They also point out the difficulties

connected with the interpretation of the individual signal forms,

as sample size as well as composite makeup affect the frequency

contents of the emitted signals.
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Wolitz et al. 361 show that the signals emitted during fiber

fractures are more intensive by approximately 15 dB than those due

to intermediate fiber fractures. l Fig. 16 and 17 shows pictures

taken by a scanning electron microscope of both failure types co-

ordinated with the time signals of the corresponding SE. In com-

pliance with the theory of Fourier's transformation, it can be de-

duced from the frequency spectrum of the signals that short signal

pulses generated by fiber fractures show a high frequency spectrum

(fig. 16). Delamination processes (intermediat(3 fiber breakdowns)

in the form of long lasting signals show, on the other hand, a

spectrum quickly dying-out to high frequencies (fig. 17).

These findings are analogous to the amplitude analysis [201

reported on in L36-401. Depending on the amplitude height of

signals measured by means of a variable discriminator , the cum-

mulative amplitude distribution for discontinuous emissions can be

computed, according to Jax L411, according to the equation

I = I 0 . D-n

wherein I denotes the cummulative amplitude frequency, D the dis-

criminator, and I 0 and n positive constants; in cummulative ampli-

tude distribution, all processes taking place above the selected

discrimination limit are counted. Under these conditions, the

exponent n for failure processes due to delamination and fiber

fracture takes on different values which are outlined for various

composite systems in table 1. As, however, these two failure mech-

anisms do nor occur separately, but overlap, the exponent can be

determined only relatively.

1 As it is difficult in the case of complex composite materials to
differentiate failure mechanisms occurring outside of reinforcement
fibers (fig. 12; process 2, 3 and 4), these are combined under the
term "delamination."
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The amplitude distribution curves are valuable as sources of

information regarding the energy density of SE signals. As a repre-

sentation of the time signal of a fiber fracture shows in fig. 16,

the convertor in this type of failure is excited to oscillations

with a higher number of high signal amplitudes. Cantrarily, the

I I

	

	 time signal of delamination shows only low signal amplitudes (fig. 17).

Both failure mechanisms differ therefore in a characteristic way in

their signal amplitudes. As an example, fig. 18 shows the cummul-

ative amplitude distribution of SE signals 20,367 analyzed during

a burst-pressure test on a GFK-container. Table 1 shows that the

exponent n, and, thus, the slope of the line in fig. 18, decreases

in direct proportion to the energy richness of the SE signal. The

change in the line slope lying between pressure points 450 and 480

indicates the described change of primary damage processes from

delamination to fiber fracture.

To facilitate differentiation between the two in experimental

studies of various failure mechanisms, use is generally made of

unidirectionally reinforced samples which are exposed to stress

perpendicularly as well as parallel to fiber-, i.e., reinforce-

ment-direction. The effects of the matrix- and reinforcement-ma-

terial as well as the fiber orientation on the SE-characteristic

of polymer composites are dealt with by Roeder and Crostack [42].

Their mechanical and SE-studies of epoxy- (EP) and polyester resin

matrixes (UP) reinforced with carbon fibers (CF) and glass fibers

(GF) show that boundary adhesion between the two composite compo-

nei.ts plays an important role. As examples serve the findings for

CF/EP- and CF/UP-composites with fiber orientation perpendicular	 /105

to the direction of stress (fig. 19a, b). While the adhesion

II
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between the two components in the CF/UP composite undergoes quasi

intermittent damaging, in the case :.f CF/EP composites sets in early

a relatively continuous damage process detectable by SE measurements.

The latter in its early stages can be primarily ascribed to forma-

tion of microfractures in the matrix. The SE curve of the CF/EP

composite shows in comparison to the CF/UP composite a "more duc-

tile" material behavior. SE measurements provide information about

the damaging process even in the case of composites exposed to stress

in parallel to the direction of reinforcement. Fig. 19 shows the

stress (o) and the sum of pulses of SE (N) for a CF/UP composite.

The steep rise of the pulse sum curve denotes failure of the carbon

fibers.

Liptai L291 also came to a similar conclusion in regards to the

effects of fiber orientation on the SE characteristic of epoxy resin

samples reinforced with glass fibers unidirectionally. He conducted

pressure tests on cylindrical samples and, in the case of samples

with glass fibers in parallel to the direction of stress, recorded

only a single fracture which occurred only in the matrix without

crossing a single glass fiber. Shortly prior to the failure there

set in a limited SE activity (fig. 20). On the other hand, a pro-

gressive SE characteristic in a fiber orientation transversal to
	 I

the direction of stress gave an early indication of damage processes

which eventually resulted in a breakdown progressing at a plane 45°

below the axis of stress (fig. 20).

However, in practice one encounters often multiaxial stress

fields that cannot be taken up by a single unidirectionally rein-

forced layer. Constructively this is countera,ted by multilayer

8



composites consisting of several layers with differing orientation

of fibers. Among others, Roeder et al. [37, 38] show that it is

also possible to specify the total breakdown of these composites

in regards to differing damage mechanisms	 as delamination and/or

fiber fracture -- by the described analytical process. As shown in

M 

	

	
fig. 21, the metrologically simple representation of the sum of SE

pulses (N) is well suited for monitoring the total damaging progress

in multilayer composites. The studies involved a number of compos-

ites with differing reinforcement arrangements with an externally

located nat layer as well as a mat laminate. The ratio of rein- 	 /106

forcement from transverse direction to that of stress was V = 1:1.2

and 1 :2.

Weyhreter and I:orak [43] propose a concept that makes it pos-

sible to estimate the ultimate strength from the suns of SE pulses

at a given stress. They verified and confirmed this concept on

glass fiber/epoxy resin samples and carbon fiber/epoxy resin som-

ponents. In their reasoning they started out with a statistical

distribution of strengths of composite materials expressed by the

SE characteristic; a way of reasoning that has already been the

subject of discussions [28, 301.

Effects of Defects on SE Characteristic

The effects of depressions, defective and weak spots on mechan-

ical behavior and SE characteristic of composite materials has been

described in various studies.

Fuwa et al. [44] studied indented and not-indented epoxy resin

samplers in tensile tests and found a higher SE activity in indented

9



samples than in not indented samples. They ascribed this to the

stress peaks in indentation that caused a premature tangential

stress failure parallel to the fibers.

Speake and Curtis [45] observed in epoxy resins reinforced by

carbon fibers a displacement of the frequency spectrum of the emit-

ted signals of 0-70 f:'iz in the case of non-indented samples and in

the 30-130 kHz range in the case of indented samples. In conform-

ance with this finding, Williams and Lee `46], using a carbon fiber/!

epoxy resin composite provided with artificial defects in its

multiple layers, show that samples with defects reveal proportion-

ate) more failure mechanisms with greater energy release ratesY	 g	 gY

than nondefective samples. According to the data contained in fig.

17 0 17 and 18 1 following the laws of Fourier's transformation 1361,

signal displacement into higher-frequency spectral ranges indicates

occurrence of processes in a constantly decreasing span emitting SE

with increasing amplitudes. Consequently, fiber fractures are to

be regarded as the most probable failure mechanisms.

Becht et al [39] report on bursting stress tests with wound

glass fiber/epoxy resin tubes with interior lining. They observed

that defective pipes showed a distinctly higher SE activity than

tubes without defects (fig. 22). In the case of these composites

consisting of nine individual layers, artificial defects were intro-

duced into the three middle layers, such as fiber fractures or

roving knots. Fig. 22 shows that defective tubes register SE very

early (from approximately 50 bar) whic.-, constantly increase in their

incidence frog, approximately 500 bar. On the other hand, in the case

of defect-free tubes, SE activity does not set in until internal

10



pressure has reached approximately 200 bar and remains at a low

level throughout the duration of the experiment.

Hamstad and Chiao L471 report that while SE measurements are

suitable for indicating defects in containers with multiple-layer

winding, they presuppose that the defect decisively affects the

container strength. According to their investigations, such defects

could be proven by SE measurements in approximately 5070 of failure

tests, while noncritical defects could hardly be detected through SE.

The problem of possible pinpointing of defects in composite

materials is dealt with by Schwalbe r 48]. He shows that lucalized

defects can be detected by means of linear location methods, even

though sound wave propagation in these materials is anisotropic.

He specifies pinpointing accurace at 570. He estimates the type of

defect by means of simultaneously performed pulse sum measurements

of SE.

Damage Assessment with a View to Tiiae Effects
	

/107

Effects of creep rate on 'OF behavior'of composite materials

were studied by Rotem L49; in a range of two decimal powers. He

shows that unidirectionally ieinforced carbon fiber/epoxy resin

composites give no indication of dependence of SE activity on the

creep rate, while the opposite is true of unidirectionally rein-

forced glass fiber/epoxy resin composites. As an explanation Rotem

offers the differences in the elasticity modulus of both reinforce-

ment materials. On the basis of varying E-moduli (table 2), same

external stress produces a stronger stress elevation in proximity

of glass fibers rather than carbon fibers. The matrix responds to

11



this additional stress by formation of microcracks, leading to

additional SE [251. In the case of glass fiber/epoxy resin com-

posites Rotem observed increase in SE activity with decreasing

creep rate.

Studies by Rotem and Baruch [281 as well as Hahn and Kim [501

show that SE measurements can also be successfully used in time

lapse experiments for monitoring the damage progress in unidirect-

ionally reinforced GFK-samples exposed to constant stress. Mono-

tonously increasing stress application produces a progressively

increasing SE activity shown in fig. 23 in the form of pulse rate

representation of SE (N) over the stress exposure time (t). As

pointed out in ^28], these SE are due to fiber fractures. As soon

as the load is kept constant, the pulse rate does immediately abate,

but never disappears completely. As possible explanation for this

phenomenon Rotem and Baruch 28 offer the viscoelastic properties

of the matrix. Due to high exposure to stress (a = 758 N/mm2 =

= 0.85 - erB), the epoxy resin matrix is exposed to a high stress

concentration in its fiber range, which it tries to counter by

formation of microcracks as well as by stress relaxation. This

produces additional stress on glass fibers so that isolated fiber

fractures occur even though the load is kept constant. The impending

material failure manifests itself then immediately prior to breakdown

by intensive SE activity.

The time span tests conducted by Goettlicher L5 
iF 
I on SAN-copoly-

mers reinforces: with short glass fibers coincide with the above ob-

servations. At a stress level of 0.9 - arB the median test duration

is 11 hours. Over a time span of approximately 2 hours an increasing-

ly intensive SE activity indicates sample failure.

12



Effects of ageing processes on the mechanical properties of

glass fiber/polyester resin and glass fiber/epoxy resin composites

were studied by Crostack and Roeder L52]. SE measurements made

simultaneously on aged and non-aged samples showed this method to

be very sensitive, as it could detect and explain not only varying

5:

	

	
damage mechanism differences, but also their strength-diminishing

effects.

i It is further demonstated on the basis of examples L39, 501

that defective and defectfree samples differ in a characteristic

way in their SE characteristics also in time lapse tests. Both

the time interval as well as the intensity of SE registered prior

to failure were higher in the case of defective composite materials.
i

Damage Assessment in Cyclic Stress Exposure

In comparison to studies dealing with monotonously increasing

stress, there are only few studies examining the suitability of SE

measurements for dynamic stress exposure. This is partly due to

metrological difficulties encountered in this type of stress exposure

(interference noise attenuation, transformer coupling).

Using glass-fiber reinforced NOL-rings, Liptai [291 shows that

SE pulse sum increases with increasing load ctrequency, which indi-

cates continuously progressing damage mechanisms. This finding is

confirmed also by Williams and Reifsnider 1531 who studied boron

fibers/epoxy resin composites. Though they do not deal with SE on

i
	 the basis of modelling of formation and propagation of defects, they

show that there is a proportional relationship between SE pulse sum

and the change in dynamic compliance L31-331.

i
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Becht et al. L39, 401 observed in indented three-point bending

samples made of GFK (UP-resin/roving tissue) in stress-controlled

bending limit tests a relatively strong damage to samples occurring

in the first stree cycle (fig. 24) substantiated by SE measurements.

An analysis of the signals according to intensity and amplitude 	 /108

distribution identified these damages as delaminations. With con-

tinuing load cycles the glass fibers were subjected in the proximity

of indentations to an ever increasing stress till they finally broke.

Following fiber fracture the SE activity diminished till additional

fiber fractures were precipitated by the cummulative effect of the

interaction of continuing delaminations. This process repeated it-

self till final failure of the material. SE was registered only in

momentary maximum loads. The authors point out that SE pulse sum

is a simply determined value for assessment of potential damage to

samples of GFK-laminates exposed to vibration stress. Independent

of the position of indentations to fiber orientation (different

type of damage) and break-load cycles the pulse sum during an im-

pending break amounts to approximately 10 6 counts.

Comparable findings were arrived at also by Roeder et al.(37,

381 who conducted experiments with multilayer systems exposed to

iynamic stress. Already after the first load cycle they recorded

a higher SE pulse sur: than they observed in tests of short duration.

They showed by means of an amplitude analysis that damage mechanisms

with a higher enercry release rate progress in samples exposed to

dynamic stress.

14



Kaiser Effect

The so-called Kaiser effect is based in irreversibility of SE.

As Kaiser proved in his __:-eriments [54], mechanical tension waves

are emitted in exposure of a material to repeated stresses only

after the initial stress level has been exceeded.

While the existence of the Kaiser effect for a large number of

metallic materials in undisputed, some authors question its validity

for polymer composite systems [55-57]. Stone and Dingwall 58 car-

ried out experiments using identical conditions and materials as

described in [55, 56]and found confirmation for the Kaiser effect.

The divergent findings reported in [55, 561 were ascribed by them

to inadequacies in the conduct of the experiment.

Rotem and Baruch [28] also confirm with their experiments the

existence of the KaisF.L effect. Nevertheless, they do point out

that the effect is not "clearly" ob-erved at high stress ranges.

They ascribe this to the viscoelastic properties of the matrix.

`Elie Kaiser effect is shown in fig. 25 L50]. Following an init-

ially monotonous load increase up to a maximum, the SE activity is

spontaneously reduced by load. drop (contrary to the experiment shown

in fic7. 23, in which the load is kept at a maximum). In the sub-

sequent phase of constant load no further einission: are recorded.

Only a renewed load increase, which finally leads to failure, strongly

activates 5E. As can be seen from the arrow in fia. 25, the emissions

set in only shortly prior to reachin g the level of initial stress

exposure.

15



Liptai C291 as well as Becht et al. [391 observed the Kaiser

effect on GFK-wound containers which they exposed to repeated

interior pressure cycles.

Williams and Lee L46] point out on the basis of their experi-

ments with carbon fiber/epoxy resin composites that while there

was no clear indication of a Kaiser effect due to varying damage

mechanisms and their complex interaction, SE activity did gradually

decrease with repeated loading and relaxation cycles. They termed

this observation as "acoustic emission shakedown."

In evaluation of Kaiser effect experiments consideration must

also be given to the fact that SE can also occur as the result of

friction processes in damaged fiber/matrix. These emissions can

be observed under certain circumstances during loading as well as

relaxation processes, but are not in contradiction with explanation

of the Kaiser effect.

Summary

SE monitoring is suited for indication of energy conversion

processes in polymer ccmposite materials caused, e.q., by crack

formation and crack propagation, under real-time conditions. While

Pulse sums and pulse rates of 5E offer the possibility to monitor

the entire progress of damage processes, it is posFible to differ-

entiate between the various failure mechanisms by means of corres-

pondinq sicmal analysis of SE. The monitoring process is suited

for indication of potential defects in component parts as well as

defective materials in testing or inspection of component parts.
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Summing up the studies contained in technical literature,

there is a wealth of experimental findings and observations which,

however, aside from a few exceptions, are seldom quantitatively

followed up. SE characteristics are often only tokenly compared

with mechanical properties; correlations are not checked. More

studies will be required in this area in the future.

It must be further stated that the data regarding experimental

parameters of SE monitoring are in part incomplete, so that further

interpretation or reproduction of the experiments is not possible.

If these studies are to contribute to a common fund of knowledge,

such data must be viewed as having a wider significance. Only

when there is complete availability of such data can SE experiments

be correctly assessed. The checklist proposed by Williams and Lee

1461 (table 3) is well suited for documentation of SE experimental

conditions and experimental parameters.

Author's address: Reinhard Bardenheier, Deutsches Kunststoff-In-
stitut (DKI), Schlossgartenstrasse 6 R, 6100
Darmstadt
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