5101-160 Low-Cost Solar Array Project

## **Progress Report 16**

for the Period April to September 1980

# and Proceedings of the 16th Froject Integration Meeting

(NASA-CR-164073) PROCEEDINGS OF THE 16TH PROJECT INTEGRATION MEETING Progress Report, Apr. - Sep. 1980 (Jet Propulsion Lab.) 492 p HC A21/MF A01 CSCL 101

N81-20545

1

Unclas G3/44 41906



Prepared for
U.S. Department of Energy
Through an agreement with
National Aeronautics and Space Administration
by
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

(JPL PUBLICATION 80-100)

## **Progress Report 16**

for the Period April to September 1980

and Proceedings of the 16th Project Integration Meeting

Prepared for
U.S. Department of Energy
Through an agreement with
National Aeronautics and Space Administration
by
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

(JPL PUBLICATION 80-100)

Prepared by the Jet Propulsion Laboratory, California Institute of Technology, for the Department of Energy through an agreement with the National Aeronautics and Space Administration,

The JPL Low-Cost Solar Array Project is sponsored by the Department of Energy (DOE) and forms part of the Photovoltaic Energy Systems Program to initiate a major effort toward the development of low-cost solar arrays,

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

#### ABSTRACT

This report describes progress made by the Low-Cost Solar Array Project during the period April to September 1980. It includes reports on project analysis and integration; technology development in silicon material, large-area silicon sheet and encapsulation; production process and equipment development; engineering, and operations. It includes a report on, and copies of visual presentations made at, the Project Integration Meeting held September 24 and 25, 1980.

### CONTENTS

### PROGRESS REPORT

| PROJE  | CT SUMMARY                                               | 1  |
|--------|----------------------------------------------------------|----|
| PROCE  | EDINGS SUMMARY                                           | 3  |
|        | PROJECT ANALYSIS AND INTEGRATION AREA                    | 3  |
|        | TECHNOLOGY DEVELOPMENT AREA                              | 4  |
|        | Silicon Material Task                                    | 4  |
|        | Large-Area Silicon Sheet Task                            | 11 |
|        | Encapsulation Task                                       | 19 |
|        | PRODUCTION PROCESS AND EQUIPMENT AREA                    | 22 |
|        | ENGINEERING AREA                                         | 27 |
|        | OPERATIONS AREA                                          | 32 |
| W      |                                                          |    |
| Figure |                                                          |    |
|        | 1. Production Process and Equipment Area Phase Breakdown | 23 |
|        | 2. Alternative Production Processes                      |    |
|        | 3. Alternative Process Sequences                         | 24 |
| Table  |                                                          |    |
|        | Silicon Material Task Contractors                        | 5  |
|        | Large-Area Silicon Sheet Task Contractors                |    |
|        | Production Process and Equipment Area Contractors        | 26 |
|        | Engineering Area Contractors                             | 32 |
|        | Block IV Qualification Test Results                      | 33 |

PRECEDING PAGE BLANK NOT FILMED

### PROCEEDINGS

| HIGHLIGHTS                                                         |
|--------------------------------------------------------------------|
| PLENARY SESSION                                                    |
| SILICON RIBBON AND HEM CRITICAL REVIEW                             |
| MODULE DURABILITY AND LIFE TESTING WORKSHOP 61                     |
| Agenda                                                             |
| Summary                                                            |
| Module Durability Goals                                            |
| Module Durability Experience                                       |
| Module Durability Design Techniques                                |
| Module Soiling                                                     |
| Cell Cracking, Hot Spots                                           |
| Interconnect Fatigue                                               |
| Structural Failure and Glass Breakage                              |
| Electrical Degradation                                             |
| Encapsulant Degradation                                            |
| Corrosion                                                          |
| PANEL DISCUSSIONS                                                  |
| PHOTOVOLTAIC HOUSES                                                |
| Experimental Photovoltaic Residence                                |
| Phoenix Photovoltaic System                                        |
| Cds Cell and Module Progress and Prognosis                         |
| PHOTOVOLTAIC MARKETS                                               |
| International PV Village Power Market Assessment                   |
| Assistance in Development of Foreign Markets for Photovoltaics 133 |
| Residential Market Analysis for Photovoltaics                      |
| INDUSTRY'S PERSPECTIVE OF AND ROLE IN MEETING THE DOE PV GOALS 143 |

| TECHNOLOGY DEVELOPMENT AREA                                                            |
|----------------------------------------------------------------------------------------|
| SILICON MATERIAL TASK                                                                  |
| Polycrystalline Silicon (Union Carbide Corp.)                                          |
| Polycrystalline Silicon (Massachusetts Institute of Technology) 160                    |
| Gaseous Melt Replenishment (Energy Materials Corp.)                                    |
| Polycrystalline Silicon (Battelle Columbus Laboratories) 168                           |
| Polycrystalline Silicon (Hemlock Semiconductor Corp.) 173                              |
| Chemical Engineering and Economic Analyses of Polysilicon Processes (Lamar University) |
| Impurity Effects in Silicon (Westinghouse Electric Corp. R&D Center)                   |
| Impurity Effects in Silicon Solar Cells (C.T. Sah Associates) 186                      |
| Silicon Materials Research Laboratory                                                  |
| LARGE-AREA SILICON SHEET TASK                                                          |
| Ingot Growth: Cost Reduction (Kayex Corp.)                                             |
| Ingot Growth: Advanced Czochralski (Kayex Corp.)                                       |
| Continuous Liquid-Feed Cz Growth (Siltec Corp.)                                        |
| Semicrystalline Casting Process Development and Verification (Semix Inc.)              |
| Enhanced ID Slicing (Siltec Corp.)                                                     |
| Ingot Slicing (MBS) (P.R. Hoffman Co.)                                                 |
| Multiwire Slicing (FAST) (Crystal Systems, Inc.)                                       |
| Silicon Ingot Casting: Heat Exchanger Method (Crystal Systems, Inc.)                   |
| Oxygen Partial Pressure (University of Missouri Rolla) 247                             |
| Cell Process Development, Fabrication and Analysis (Applied Solar Energy Corp.)        |
| ENCAPSULATION TASK                                                                     |
| PRODUCTION PROCESS AND EQUIPMENT AREA                                                  |

|       | Solar Cell Junction Processing System (Spire Corp.)                                               | 285 |
|-------|---------------------------------------------------------------------------------------------------|-----|
|       | Laser Annealing (Lockheed Missiles & Space Co., Inc.)                                             | 294 |
|       | Development of All-Metal Thick-Film Cost-Effective Metallization System (Bernd Ross Associates)   | 303 |
|       | Nickel-Solder Metallization (Solarex Corp.)                                                       | 310 |
|       | High-Resolution, Low-Cost Contact Development (Spectrolab, Inc.)                                  | 317 |
|       | Automated Module Assembly Using an Industrial Robot (MBA Associates)                              | 323 |
|       | Silicon Dendrite Web Material Process Development (Westinghouse R&D Center)                       | 325 |
|       | Analysis and Evaluation of Processes and Equipment (University of Pennsylvania)                   | 330 |
|       | Analysis of Panel Design Concepts Using Light Trapping (Science Applications, Inc.)               | 333 |
| ENGIN | EERING AREA AND OPERATIONS AREA                                                                   | 339 |
|       | Environmental Testing                                                                             | 342 |
|       | Real-Time Endurance Testing                                                                       | 348 |
|       | PV Stand-Alone Applications Project: PV Application Experience (NASA Lewis Research Center)       | 356 |
|       | Status of Flat-Plate PV Projects (Sandia Laboratories)                                            | 360 |
|       | Status Report: Mt. Laguna Air Force Station                                                       | 362 |
|       | Module Failures at MIT/LL Test Sites (Massachusetts Institute of Technology Lincoln Laboratories) | 364 |
|       | Problem-Failure Analysis                                                                          | 373 |
|       | Block IV Final Design Review Status                                                               | 381 |
|       | Engineering Area Status (September 1980)                                                          | 382 |
|       | Array Structure Cost Reduction Study                                                              | 383 |
|       | Wind Loads on Flat-Plate PV Array Fields (Boeing Engineering & Construction)                      | 390 |
|       | Photovoltaic/Thermal Module Development at JPL                                                    | 397 |
|       | PV/T Module Design Requirements                                                                   | 403 |

|       | PV Module and Array Safety Study (Underwriters Laboratories, Inc.)  |
|-------|---------------------------------------------------------------------|
|       | Module Hot-Spot Testing Results                                     |
|       | Module Insulation Voltage Breakdown Study                           |
|       | Second-Quadrant Effects in Silicon Solar Cells (Clemson University) |
| PROJE | CT ANALYSIS AND INTEGRATION AREA                                    |
|       | Technical Readiness \$2.80 Wp                                       |
|       | Preliminary Energy Payback Analysis for a PV Manufacturing Industry |
|       | IPEG4: Improved Price Estimation Guidelines                         |

#### NOMENCLATURE

A Angstrom(s)

AM Air Mass (e.g., AMl = unit air mass)

AR Antireflective

BOS Balance of System (non-array elements of a PV system)

BSF Back-surface field

B-T Bias/temperature

B-T-H Bias/temperature/humidity

CFP Continuous-flow pyrolyzer

CLF Continuous liquid feed

CVD Chemical vapor deposition

Cz Czochralski (classical silicon crystal growth method)

DCF Discounted cash flow

DLTS Deep-level transient spectroscopy

DOE Department of Energy

DS/RMS Directionally solidified/refined metallurgical-grade silicon

EB Electron beam

EFG Edge-defined film-fed growth (silicon ribbon growth method)

EPR Ethylene propylene rubber

EPSDU Experimental Process System Development Unit

ESB Electrostatic bonding

EVA Ethylene vinyl acetate

FAST Fixed abrasive slicing technique

FBR Fluidized-bed reactor

FPUP Federal Photovoltaics Utilization Program

GRC Glass-reinforced concrete

HCl Hydrochloric acid

HEM Heat exchanger method (silicon crystal ingot growth method)

HF Hydrofluoric acid

HNO<sub>3</sub> Nitric acid

ID Inner diameter

ILC Intermediate Load Center

IPEG Interim Price Estimation Guidelines

IPEG4 Improved Price Estimation Guidelines

I<sub>sc</sub> Short-circuit current

I-V Current-voltage

LAPSS Large-area pulsed solar simulator

LAR Low-angle ribbon (silicon growth method)

LAS Large-Area Silicon Sheet Task

LCP Lifetime cost and performance

LeRC Lewis Research Center

LSA Low-Cost Solar Array

mgSi Metallurgical-grade silicon

MIT/LL Massachusetts Institute of Technology Lincoln Laboratories

MBS Multiblade sawing

MWS Multiwire sawing

NASA National Aeronautics and Space Administration

NDE Nondestructive evaluation

NOCT Nominal operating cell temperature

PMMA Polymethyl methacrylate

P<sub>max</sub> Maximum power

PnBA Poly-n-butyl acrylate

OTC Optional test conditions

P Individual module output power

PA&I Project Analysis and Integration Area

Pavg Module rated power at SOC, Vno

PDU Process Development Unit

PEBA Pulsed electron beam annealing

P/FR Problem/failure report

PIM Project Integration Meeting

POCl<sub>3</sub> Phosphorus oxychloride

PP&E Production Process and Equipment Area

ppba Parts per billion atomic

ppma Parts per million atomic

PRDA Program Research and Development Announcement

PV Photovoltaic

PVB Polyvinyl butyral

PVC Polyvinyl chloride

RFP Request for proposal

RFQ Request for quotation

RMS Refined metallurgical-grade silicon

RNHT Relative normal hemispherical transmittance

RTR Ribbon-to-ribbon (silicon crystal growth method)

SAMICS Solar Array Manufacturing Industry Costing Standards

SAMIS Standard Assembly-Line Manufacturing Industry Simulation

SCIM Silicon coating by inverted meniscus

SEM Scanning electron microscope

SEMI Semiconductor Equipment Manufacturers Institute

SiCl<sub>4</sub> Silicon tetrachloride

SiF<sub>4</sub> Silicon tetrafluoride

SiHCl<sub>3</sub> Trichlorosilane

SOG Silicon on ceramic (crystal growth method)

SOC Standard operating conditions (module performance)

SOLMET Solar-meteorological

SPG Silicon particle growth

SSMS Spark-source mass spectrometry

STC Standard test conditions (cell performance)

Ti Titanium

UV Ultraviolet radiation

V Vanadium

V<sub>no</sub> Nominal operating voltage

V<sub>oc</sub> Open-circuit voltage

ZnCl<sub>2</sub> Zinc chloride

## PROGRESS REPORT

### **Project Summary**

The principal achievement of the Low-Cost Solar Array Project during the reporting period, April-September 1980, was reflected in the announcement at the 16th Project Integration Meeting that \$2.80/Wp Technical Readiness has been attained in 1980, and that processes and equipment now commercially available can make possible a deliverable product in 1982.

Other important achievements include: demonstration that many of the technical features required for attainment of the  $\$0.70/W_p$  goal are now at hand in the HEM, EFG and web sheet-silicon technologies; automated production process (Phase III) contracts under negotiation with Westinghouse and Solarex will demonstrate Technical Readiness by 1982; sophisticated automatic cell assembly machines are now cost-effective, and, although field results show that typical Blocks I to III module designs do not yet meet 1986 reliability and durability goals, analysis shows that the problems that have been encountered are corrigible or controllable by known techniques and that most have already been corrected.

Hemlock Semiconductor Corp. has demonstrated an increased rate of deposition of silicon, with decreased energy consumption, by using dichlorosilane (DCS) instead of trichlorosilane (TCS) in its production process. This is an important step toward achieving the Program's objective of a silicon product price less than \$21/kg. The silicon deposition rate using DCS was more than twice that of the TCS process.

Union Carbide Corp. has completed preparation of its site for the Experimental Process System Development Unit (EPSDU) and construction of the plant has started. Its free-space reactor was operated successfully at its designed rate of 2.3 kg/h of Si for 12 h. The process design for the 1000 MT/yr plant has been completed.

Low-cost ( 2¢/W) junction formation has been found possible with either ion implantation or polymer dopants.

Recent demonstrations have shown copper to be emerging as a substitute for silver in cell metallization.

A prototype array for intermediate-load applications has been demonstrated using frameless modules. It was proof tested to 40  $1b/ft^2$  loading, and has been priced at  $24/m^2$ , including array fabrication, module installation, shipping to the site and site installation for quantities of 20 MW, by Los Angeles area suppliers.

IPEG4, an interactive computer program with coefficients calculated from Solar Array Manufacturing Industry Simulation (SAMIS), has been released. Its coefficients can be tailored to a specific process or to a sequence of processes, or both; sensitivity cases can be run and plotted interactively.

### PROJECT SUMMARY

SAMIS contains algorithms that will, when a data base of energy content of materials now being compiled is completed, enable each SAMIS run to calculate energy payback time.

### **Proceedings Summary**

### **Area Reports**

### PROJECT ANALYSIS AND INTEGRATION AREA

The objective of the Project Analysis and Integration (PA&I) Area is to support the planning, integration, and decision-making activities of the Project. This is executed by providing coordinated assessments of Project goals and of progress toward the achievement of the goals by the various activities of the Project, the solar array manufacturing industry, and suppliers; by contributing to the generation and development of alternative Project plans through the assessment of possible achievements and economic consequences; by establishing the standards for economic comparisons of items under Project study; by supporting the integration of the tasks within the Project and between the Project and Program elements through development of procedures, and by developing the analytical capabilities and performing or participating in the studies of required trade-offs.

An assessment of Technical Readiness for  $\$2.80/W_p$  photovoltaic module production was presented at the 16th Project Integration Meeting and is shown in the Proceedings of the PIM (p. 447 of this document). The analysis indicated that the  $\$2.80/W_p$  milestone in 1982 is technically achievable even with rather conservative assumptions. The assumptions included only equipment and processes used in production today or that could be ordered today and installed and in operation by 1982. The present price of polysilicon was assumed. Although the module price included a fair after-tax return on equity, the actual market price in 1982 will be determined by the forces at work in the energy marketplace at that time.

The latest addition to the SAMICS family of models, IPEG4, has been released for use. The program can be used in conjunction with SAMIS in a variety of ways, interactively from a computer terminal. IPEG coefficients, tailored for a specific process or sequence, can be generated. These can then be used to obtain quick and inexpensive parametric sensitivities and optimizations. The presentation given at the 16th PIM is shown in the Proceedings section of this document (p. 461).

In cooperation with the Large-Area Sheet Task, a major review of the required-price analysis for ingot technology presented at the 15th PIM in April 1980 has been conducted. The results are being compiled into a document to be published early in 1981. This document will summarize the best available projections for ingot technology in 1986.

The analysis of the trade-off between module efficiency and price goal was presented at the 16th PIM and is summarized in the Proceedings section of this document. The methodology, developed with the Engineering Area, will permit the comparison of the goals for array subsystems in the same application but with different efficiencies. Tax credits, marketing and distribution, insurance, property tax, discount rates and roofing credits (where applicable) are accounted for in the methodology. The selection of appropriate values for these parameters is presently the subject of a spirited discourse.

### PROJECT ANALYSIS AND INTEGRATION AREA

Many requests have recently been received for information regarding the energy payback time for photovoltaic modules. There is an algorithm in SAMIS to calculate it, but the algorithm has not been exercised because the data on energy content of materials has not been sufficiently complete. The necessary data base is now being compiled. A description of this was presented at the 16th PIM and is shown in the Proceedings of the meeting (p. 459 of this document).

### TECHNOLOGY DEVELOPMENT AREA

### Silicon Material Task

### INTRODUCTION

The objective of the Silicon Material Task is to establish by 1986 an installed plant capability of producing silicon (Si) suitable for solar cells at a rate equivalent to  $500~{\rm MW_p/yr}$  of solar arrays at a price less than \$14/kg (1980\$). The program formulated to meet this objective provides for development of processes for producing either semiconductor-grade Si or a less pure but utilizable (i.e., a solar-cell-grade) Si material.

### TECHNICAL GOALS, ORGANIZATION AND COORDINATION

Solar cells are now fabricated from semiconductor-grade Si, which has a market price of about \$65/kg. A sharp reduction in cost of material is necessary to meet the economic objectives of the LSA Project. Efforts are now under way to develop processes that will meet the Task objectives in producing semiconductor-grade Si. Another means of meeting this requirement is to devise a process for producing so-called solar-cell-grade Si material, which is less pure than semiconductor-grade Si. However, the allowance for the cost of Si material in the overall economics of the solar arrays for LSA is dependent on optimization trade-offs, which concomitantly treat the price of Si material and the effects of material properties on the performance of solar cells. Accordingly, the program of the Silicon Material Task is structured to provide information for optimization trade-offs concurrently with the development of high-volume, low-cost processes for producing Si. This structure has been described in detail in previous LSA Progress Reports. Besides the process development mentioned above, the program includes economic analyses of siliconproducing processes and supporting efforts, both contracted and in-house at JPL, to respond to problem-solving needs.

Thirteen contracts are in progress; these are listed in the table below.

#### Silicon Material Task Contractors

#### CONTRACTOR

#### TECHNOLOGY AREA

### SEMICONDUCTOR-GRADE SILICON PROCESSES

Battelle Columbus Laboratories

Columbus OH

JPL Contract No. 954339

Reduction of SiCl4 by Zn in

fluidized-bed reactor

Energy Materials Corp.

Harvard MA

JPL Contract No. 955269 (nearterm cost-reduction contract)

Gaseous melt replenishment

system

Hemlock Semiconductor Corp.

Hemlock MI

JPL Contract No. 955533

Dichlorosilane CVD process

for silicon production

Union Carbide Corp.

Tonawanda NY

JPL Contract No. 954334

Silane/Si process

### SOLAR-CELL-GRADE SILICON PROCESSES

Dow Corning Corp.

Hemlock MI

JPL Contract No. 954559

Electric-arc furnace process

SRI International

Menlo Park CA

JPL Contract No. 954771

Na reduction of SiF4

Westinghouse Electric Corp.

Trafford PA

JPL Contract No. 954589

Reduction of SiCl<sub>4</sub> by Na in

arc heater reactor

### IMPURITY STUDIES

Lawrence Livermore Labs

Livermore CA

NASA Defense Purchase Request

No. WO-8626

Impurity concentration measurements by neutron activation analysis

Sah, C. T., Associates

Urbana IL

JPL Contract No. 954685

Effects of impurities on solar cell performance

#### Silicon Material Task Contractors (Continued)

#### CONTRACTOR

#### TECHNOLOGY AREA

#### IMPURITY STUDIES

Westinghouse R&D Center Pittsburgh PA JPL Contract NO. 954331 Definition of purity requirements

### SUPPORTING STUDIES

AeroChem Research Laboratories

Princeton NJ

JPL Contract No. 955491

Lamar University
Beaumont TX

JPL Contract No. 954343

Massachusetts Institute of Technology

Cambridge MA

JPL Contract No. 955382

Silicon halide/alkali metal

flames

Technology and economic

analyses

Hydrochlorination of

metallurgical-grade silicon

### SUMMARY OF PROGRESS

### Development of Processes for Producing Semiconductor-Grade Silicon

Four processes for producing Si equal to or approaching semiconductorgrade Si in composition or performance are under development by Battelle Columbus Laboratories, Energy Materials Corp., Hemlock Semiconductor Corp., and Union Carbide Corp.

Battelle Columbus Laboratories failed in numerous attempts to operate the Si process development unit (PDU) in runs of eight-hour duration. The difficulties had a variety of causes, prominent among them being condenser plugging and breakage of equipment interconnections. The closest approach to success was a mid-July 47-minute operation, which was terminated by a failure in an ancillary apparatus.

In support studies, Battelle defined and characterized two options for handling residual zinc impurity. One option, post-process heat treatment to drive off the zinc, was found not to be a viable option because of time, temperature, sintering and contamination difficulties. The second option is inprocess control to avoid zinc misting. Battelle reports that, mainly by temperature control, the zinc content can be kept below a 100-ppm level.

According to Battelle, when Si containing zinc in this concentration is melted, the zinc is almost entirely evaporated, presenting no impurity problem for the solar cell and only a minor problem of contamination for a Czochralski crystal puller.

Energy Materials Corp. continued development of a silicon melt replenishment system for Czochralski crystal growth, under a near-term cost-reduction (NTCR) contract. Ten reactor tests were completed, six of which yielded Si deposits.

A silicon deposition rate of 6  $\mu$ m/min and a production rate of 235 g/h at 20% conversion of trichlorosilane to Si were the best test results. A larger reactor, intended to attain the goals of 500 g/h Si production rate at 18% conversion efficiency, was designed and constructed, and the unit is about to undergo testing.

Hemlock Semiconductor Corp. is developing a process to make Si of a quality approaching semiconductor grade from dichlorosilane (SiH2Cl2) using a Siemens-type C-reactor. Correlations between reactor operating parameters and reponses (conversion efficiency, power consumption, and deposition rate) were established by making a series of tests with SiH2Cl2 in an experimental reactor in which the conditions of feed and rod temperature were systematicaly varied.

Experiments were performed in a laboratory-scale rearranger to provide information on the kinetics of trichlorosilane (SiHCl<sub>3</sub>) redistribution to produce SiH<sub>2</sub>Cl<sub>2</sub>, and on catalyst behavior. Kinetic parameters were determined for liquid-phase redistribution at 77°C and were found to be more favorable than originally expected.

Construction of a process development unit (PDU) for investigating the scaled-up redistribution process was delayed pending the results of safety-related tests on SiH<sub>2</sub>Cl<sub>2</sub> by Hazards Research Corp. These data indicate that the hazards of handling SiH<sub>2</sub>Cl<sub>2</sub> are greater than had been expected (e.g., lower autoignition temperature than given in the literature, and capability of SiH<sub>2</sub>Cl<sub>2</sub>/air mixtures in a confined space to detonate). Changes were made in the PDU design to reduce the hazards of handling SiH<sub>2</sub>Cl<sub>2</sub>, and a new site for the PDU was selected, so that construction can now start.

A preliminary economic analysis for a 1000-MT/yr plant was performed, indicating an Si product cost of \$15.47/kg (1980 dollars) and a price of \$19.85 (20% ROI).

The Union Carbide Corp. process consists of the hydrochlorination of metallurgical-grade silicon (mgSi) to SiHCl3 and rearrangement of the latter to silane (SiH4), which is pyrolyzed to Si. Effort continued on the 100 MT/yr-capacity experimental process system development unit (EPSDU). The site preparation was completed and a company was selected to perform the civil installation work. Equipment for the EPSDU is undergoing detailed design and procurement has started.

The free-space reactor (FSR) PDU work entered a new phase to demonstrate operability and product pruity. The reactor-wall temperature profile was modified to eliminate or reduce the occurrence of Si wall deposits, and a quartz

liner was installed. Five consecutive tests each of 2-h duration and one 12-h test were conducted at the design throughput of 2.3 kg Si/h. The latter milestone was achieved one month ahead of schedule. No wall deposits were observed, and the quartz liner remained intact.

Small-scale experiments for melting FSR Si powder and dropping shot were conducted. A prototype melter system, not including the powder feeder, was designed.

A review of the fluidized-bed reactor (FBR) R&D program was held. The design criteria for the FBR are well within the suggested operating range established by JPL testing. The UCC design for a 6-in.-dia FBR was approved. The contractor completed the detailed design of an FBR PDU that will incorporate this FBR.

Based on the EPSDU design, a process design for a 1000 MT/yr Si production plant was completed, including flow sheet, process description, mass balance, facility layout, and equipment functional specifications. This package will provide the basis for an economic assessment.

### Development of Processes for Producing Solar-Cell-Grade Silicon

Three contracts are active in this area; all are in the final-report preparation stage. SRI International's final report on its process for producing Si by the sodium (Na) reduction of silicon tetrafluoride was reviewed by JPL and is soon to be issued by the contractor. Draft final reports from the Dow Corning Corp. on its electric-arc furnace process and from the Westinghouse Electric Corp. on the direct arc reactor process are being reviewed by JPL.

### **Impurity Studies**

C. T. Sah Associates investigated the effects of cell thickness on the efficiency of back-surface-field solar cells with zinc impurity. The efficiency of a back-surface-field cell peaks as the cell thickness decreases due to two opposing dependences:  $I_{\rm SC}$  decreases and  $V_{\rm OC}$  increases with decreasing cell thickness. Computer calculations using zinc as a model recombination center in n+/p/p+ cells showed that there is a broad efficiency peak around 70  $\mu{\rm m}$  cell thickness in high-efficiency cells (base lifetime of 40  $\mu{\rm s}$  to 4  $\mu{\rm s}$  for zinc concentrations of  $10^{12}$  to  $10^{13}$  Zn/cm³) with efficiencies in the range of 14% to 17%. Detailed computer results showed that high-injection-level conditions become important in these high-efficiency cell structures under one sun illumination at AMI. Thus, the analytical ideal low-level theory commonly used by previous workers can no longer give reliable prediction of cell performance. Improvements in cell performance by multiple optical passes with reflecting back surface and higher base doping are expected in thin cells.

Westinghouse R&D Center began its Phase IV effort, which includes five major topics of study: (1) evaluation of experimental silicon materials, (2) investigation of impurity effects in polycrystalline devices, (3) identification of impurity thresholds for high-efficiency cells, (4) assessment of process effects such as ion implanting on impurity-doped devices, and (5) an

#### SILICON MATERIAL TASK

extension of studies to identify long-term impurity effects. The major activities so far have been in the areas of polycrystalline cells, impurity aging effects, and high-efficiency cell modeling.

It was found that the threshold for ingot structural breakdown is lower during polycrystalline silicon growth than when growing single crystals, at least for the impurities iron, titanium, vanadium, chromium, and molybdenum.

At impurity concentrations for which single crystals can be grown, polycrystalline ingots develop metal-rich inclusions. The effect of the inclusions is to shunt solar cells, producing very low efficiencies. When the melt impurity concentration is reduced by 30% to 50%, inclusion incorporation is generally eliminated. Polycrystalline cells doped with lower levels of titanium and vanadium ( $\approx 10^{13}$  cm<sup>-3</sup>) show little indication of impurity segregation to grain boundaries.

Further studies of accelerated aging effects under thermal stress indicated that while solar cells containing titanium and molybdenum would show essentially no performance reduction due to impurities after 20 years, cells doped with chromium and silver degrade much more rapidly, apparently in keeping with their expected high diffusion constants. Niobium-doped cells fall somewhat between these pairs.

The development of a model to depict the functional relationships between cell performance and impurity content for high-efficiency devices including back-surface-field cells was intiated. Qualitatively, the model predicts lower impurity thresholds for performance reduction in high-efficiency cells than in standard devices.

### **Supporting Studies**

The AeroChem contract was extended and reoriented to constitute an effort supporting the silicon process developments in Task 1. The objective of the work is to characterize the kinetics and mechanism of the formation and growth of Si particles from the decomposition of SiH<sub>4</sub> at high temperatures. A high-temperature fast-flow reactor (HTFFR) was modified for this work. The unit consists of a 2.5-cm-dia alumina reactor tube electrically heated to give a zone of uniform temperature into which the SiH<sub>4</sub> wil be injected. A fluidized-bed feed system will be used to inject silicon seed particles. Gaseous species concentration and particle formation and growth will be measured.

Lamar University devoted its major effort in chemical engineering analysis to the Hemlock process. Two changes in the process flow sheet (relocation of the redistribution reactor and addition of a final distillation column) were introduced to increase the yield of SiH<sub>2</sub>Cl<sub>2</sub> by 10% to 20%, to help insure product purity, and to reduce the amount of components in the polysilicon reactor feed material that might produce Si dust by fine-particle nucleation. Hemlock agrees on relocation of the redistribution reactor to increase yield. Also, Lamar identified potential chemical reactions involving boron halides and hydrides and remedies for eliminating boron compounds from the process stream.

#### SILICON MATERIAL TASK

The preliminary process design was completed for that portion of a plant that would produce SiH<sub>2</sub>Cl<sub>2</sub>, and a preliminary cost analysis was made indicating that, for a plant producing 1000-MT Si/yr, the cost of SiH<sub>2</sub>Cl<sub>2</sub> (without profit) is \$1.29/kg.

Analyses of process system properties were continued for important chemical materials involved in the processes under development for production of Si, centering on physical, thermochemical, and transport data for Si. Specific property data were reported for liquid and solid thermal conductivity, vapor presure, heat of vaporization, heat of sublimation, and heat of capacity as functions of temperature, as well as critical constants.

The Massachusetts Institute of Technology is conducting a program, supportive of the UCC SiH4-to-Si process development, to study the hydrochlorination of mg-Ci to SiHCl3, the feedstock for chlorosilane disproportionation to SiH4. Experiments were conducted to study the use of cuprous chloride (CuCl) to catalyze this reaction. It was found that CuCl is an effective catalyst at a concentration as low as 2 wt% of the Si. Its advantage over copper as a catalyst is that with CuCl there is no induction period during which there is little or no catalytic activity.

Tests were made to study the effect of impurities in mgSi on the hydrochlorination reaction rate. A pure Si mass produced from semi-conductor-grade Si had a reaction rate about one order of magnitude slower than that of mgSi. The impurities in mgSi appear to act as a catalyst. Addition of CuCl to the high-purity Si greatly increased the reaction rate, to the same level as that of mgSi with CuCl catalyst added. Thus CuCl provides a convenient means for recycling off-specification Si.

The JPL in-house program included effort on the FBR, FSR, the conversion of SiH<sub>4</sub> to molten Si, and consolidation of sub- $\mu$ m Si powder produced by the FSR.

Tests of the 2-in.-dia FBR were completed. Preliminary parametric results define the operating range to be used in future studies.

Data from the in-house program were presented at a meeting on FBR technology held by JPL's Oregon State University consultants and representatives of the Union Carbide Corp. and JPL. The results were encouraging for the UCC FBR program, the UCC design criteria (i.e., 700°C and 10 mole% SiH4 in hydrogen) appear to be well within the suggested operating zone found by JPL. Low Si dust formation (<6%) was obtained for SiH4 concentration up to 14%.

A 6-in.-dia FBR experimental system was designed and procurement was initiated. The system will be used to complement the UCC FBR program in the areas of heating, particle handling, seed production, process monitoring and fundamental understanding. It was designed for maximum versatility to study alternative processing schemes if needed during the UCC FBR development period.

In the program on conversion of SiH<sub>4</sub> to Si powder in the FSR, the reactor was modified to include a scraper to prevent Si accumulation in the reactor during long-term operation. In tests, the scraper provided a thin, soft uniform coating of fine Si powder in the reactor wall as intended but was unable to prevent accumulation of hard Si deposits.

The design, fabrication, and installation of the SiH<sub>4</sub>-to-Si converter were completed. The newly constructed surface preparatory furnace for the reaction crucibles was successfully operated at 2200°F.

A method is being developed in the Silicon Material Research Laboratory to consolidate the sub- $\mu$ m Si powder produced by the free-space reactor of the UCC process. The method consists of melting the powder on top of a pedestal, followed by unidirectional solidification. A test apparatus was constructed using the high-frequency generator of a Lepel float-zone apparatus as the source of heat that will be applied to produce a stable melt on top of the pedestal. In the area of analysis for impurities in Si by the TSCAP (Thermally Stimulated Capacitance) measurement apparatus, the facilities and equipment required to fabricate Schottky diodes for these measurements were completed, and diodes are being prepared from n-type Si obtained from the Westinghouse R&D Center program on impurity studies.

### Large-Area Silicon Sheet Task

The objective of the Large-Area Silicon Sheet Task is to develop and demonstrate the feasibility of several processes for producing large areas of silicon sheet material suitable for low-cost, high-efficiency solar photovoltaic energy conversion. To meet the objective of the LSA Project, sufficient research and development must be performed on a number of processes to determine the capability of each of producing large areas of crystallized silicon. The final sheet-growth configurations must be suitable for direct incorporation into an automated solar-array processing scheme.

Technical Goals: Current solar-cell technology is based on the use of silicon wafers obtained by slicing large Czochralski (Cz) or float-zone ingots (up to 12.5 cm in diameter), using single-blade inner-diameter (ID) diamond saws. This method of obtaining single-crystalline silicon wafers is tailored to the needs of large-volume semiconductor products (i.e., integrated circuits plus discrete power and control devices other than solar cells). The small market offered by present solar-cell users does not justify the development of the high-volume silicon production techniques that would result in low-cost electrical energy.

Growth of silicon crystalline material in a geometry that does not require cutting to achieve proper thickness is an obvious way to eliminate costly processing and material waste. Growth techniques such as edge-defined film-fed growth (EFG), web-dendritic growth (WEB), silicon on ceramic (SOC), etc., are possible candidates for the growing of solar cell material. The growing of large ingots requiring very little manpower and machinery would also appear plausible.

Research and development on ribbon, sheet, and ingot growth plus multiple-blade, multiple-wire, and inner-diameter (ID) blade cutting, initiated in 1975-76, is in progress.

### ORGANIZATION AND COORDINATION

When the LSA Project was initiated (January 1975) a number of methods potentially suitable for growing silicon crystals for solar cell manufacture

were known. Some of these were under development; others existed only in concept. Development work on the most promising methods is now funded. After a period of accelerated development, these methods will be evaluated and the best will be selected for advanced development. As the growth methods are refined, manufacturing plants will be developed from which the most cost-effective solar cells can be manufactured.

The Large-Area Silicon Sheet Task effort is organized into four phases: research and development of sheet-growth methods (1975-77); advanced development of selected growth methods (1977-80); prototype production development (1981-82); development, fabrication, and operation of production growth plants (1983-86).

### Large-Area Silicon Sheet Contracts

Research and development contracts awarded for growing silicon crystalline material for solar-cell production are shown below. Preferred growth methods for further development have been selected.

Large-Area Silicon Sheet Task Contractors

| CONTRACTOR                                             |               | TECHNOLOGY AREA                    |
|--------------------------------------------------------|---------------|------------------------------------|
|                                                        | SHAPED RIBBON | TECHNOLOGY                         |
| Arco Solar, Inc.<br>Chatsworth CA<br>JPL Contract No.  | 955325        | Vacuum die casting                 |
| Mobil Tyco Solar<br>Waltham MA<br>JPL Contract No.     |               | Edge-defined film-fed growth (EFG) |
| Westinghouse Rese<br>Pittsburgh PA<br>JPL Contract No. |               | Dendritic web process              |

Honeywell Corp.
Bloomington MN
JPL Contract No. 954356

Silicon-on-ceramic substrate

### Large-Area Silicon Sheet Task Contractors (Continued)

#### CONTRACTOR

#### TECHNOLOGY AREA

### INGOT TECHNOLOGY

Crystal Systems, Inc.

Salem MA

JPL Contract No. 954373

Heat-exchanger method (HEM);

cast ingot and multiwire

fixed abrasive slicing (FAST)

Kayex Corp.

Rochester NY

JPL Contract No. 954888

Advanced Cz growth

P. R. Hoffman Co.

Carlisle PA

JPL Contract No. 955563

MBS wafering

Siltec Corp.

Menlo Park CA

JPL Contract No. 955282

ID wafering

Siltec Corp.

Menlo Park CA

JPL Contract No. 954886

Advanced Cz growth

Semix Corp.

Gaithersburg MD 20670

DOE Contract No. DE-FL01-80ET 23197

Ingot casting

### DIE AND CONTAINER MATERIALS STUDIES

University of Missouri Rolla

Columbia MO

JPL Contract No. 955415

Partial pressures of

reactant gases

### MATERIAL EVALUATION

Applied Solar Energy Corp.

City of Industry CA

JPL Contract No. 955089

Cell fabrication and

evaluation

Cornell University

Ithaca NY

JPL Contract No. 954852

Characterization--Si

properties

Large-Area Silicon Sheet Task Contractors (Continued)

CONTRACTOR

#### TECHNOLOGY AREA

### MATERIAL EVALUATION

Charles Evans & Associates San Mateo CA JPL Contract No. LK-694028 Technique for impurity and surface analysis

Spectrolab Sylmar CA

Cell fabrication and

JPL Contract No. 955055

evaluation

UCLA

Material evaluation

Los Angeles CA JPL Contract No. 954902

Materials Research, Inc.

Quantitative analysis of defects and impurity evaluation technique

Centerville UT JPL Contract No. 957977

Shaped-Ribbon Technology--EFG Method: Mobil-Tyco Solar Energy Corp. The EFG technique is based on feeding molten silicon through a slotted die. In this technique, the shape of the ribbon is determined by the contact of molten silicon with the outer edge of the die. The die is constructed from material that is wetted by molten silicon (e.g., graphite). Efforts under this contract are directed toward extending the capacity of the EFG process to a speed of 4.5 cm/min and a width of 10.0 cm. In addition to the development of EFG machines and the growing of ribbons, the program includes economic analysis and characterization of the ribbon, production and analysis of solar cells, and theoretical analysis of thermal and stress conditions.

Shaped-Ribbon Technology: Westinghouse. Dendritic web is a thin, wide ribbon form of single-crystal silicon. "Dendritic" refers to the two wirelike dendrites on each side of the ribbon, and "web" refers to the silicon sheet that results from the freezing of the liquid film supported by the bounding dendrites. Dendritic web is particularly suited for fabrication into photovoltaic converters for a number of reasons, including the high efficiency of the cells in arrays, and the cost-effective conversion of raw silicon into substrates.

Supported-Film Technology: Honeywell. The purpose of this program is to investigate the technical and economic feasibility of producing solar-cellquality sheet silicon by coating inexpensive ceramic substrates with a thin layer of polycrystalline silicon. The coating methods to be developed are directed toward a minimum-cost process for producing solar cells with a terrestrial conversion efficiency of 12% or greater. By applying a graphite coating to one face of a ceramic substrate, molten silicon can be caused to

wet only that graphite-coated face and produce uniform thin layers of large-grain polycrystalline silicon; thus only a minimal quantity of silicon is consumed.

Ingot Technology—Heat Exchanger Method (HEM): Crystal Systems. The Schmid-Vichnicki technique (heat exchanger method) has been developed to grow large single-crystal sapphire. Heat is removed from the crystal by means of a high-temperature heat exchanger. The heat removal is controlled by the flow of helium gas (the cooling medium) through the heat exchanger. This obviates motion of the crystal, crucible, or heat zone. In essence, this method involves directional solidification from the melt where the temperature gradient in the solid might be controlled by the heat exchanger and the gradient in the liquid controlled by the furnace temperature.

The overall goal of this program is to determine if the heat-exchange ingot-casting method can be applied to the growth of large shaped-silicon crystals (12-in.-cube dimensions) in a form suitable for the eventual fabrication of solar cells. This goal is to be accomplished by the transfer of sapphire-growth technology (50-lb ingots have already been grown), and theoretical considerations of seeding, crystallization kinetics, fluid dynamics, and heat flow for silicon.

Ingot Technology--Advanced Cz: Siltec and Kayex. In the advanced Cz contracts, efforts are geared to developing equipment and a process to achieve the cost goals and demonstrate the feasibility of continuous Cz solar-grade crystal production.

Siltec's approach is to develop a furnace with continuous liquid replenishment of the growth crucible accomplished by a meltdown system and a liquid transfer mechanism with associated automatic feedback controls. Kayex has already demonstrated the growth of 150 kg of single-crystal material, using only one crucible, by periodic melt replenishment.

Ingot Technology—Fixed Abrasive Sawing Technique (FAST): Crystal Systems; Inner Diameter (ID) Sawing: Silicon Technology and Siltec. Today most silicon is sliced into wafers with an inside-diameter saw, one wafer at a time being cut from the crystal. Advanced efforts in this area are continuing. The multiwire slicing operation employs reciprocating blade-head motion with a fixed workpiece. Multiwire slicing uses 0.005-in. steel wires surrounded by a 0.0015-in. copper sheet that is impregnated with diamond as an abrasive.

Ingot Technology: Semicrystalline casting process is a proprietary process at Semix yielding a polycrystalline silicon "brick" capable of being processed into cells of up to 16% efficiency at AMI.

Die and Container Materials Studies: University of Missouri Rolla (UMR). In the crystal-growing processes a refractory crucible is required to hold the molten silicon, while in the ribbon processes an additional refractory shaping die is needed. UMR is investigating the effects of partial atmospheric pressures on the reaction at the contact interface between the molten silicon and fused silica.

Material Evaluation: Applied Solar Energy Corp. (ASEC), Materials Research, Inc., Cornell University and Charles Evans & Associates. Proper

assessment of potential low-cost silicon sheet materials requires the fabrication and testing of solar cells, using reproducible and reliable processes, and standardized measurement techniques. Wide variations exist, however, in the capability of sheet-growth organizations to fabricate and evaluate photovoltaic devices. It therefore is logical and essential that the various forms of low-cost silicon sheet be impartially evaluated in solar-cell manufacturing environments with well-established techniques and standards. Applied Solar Energy Corp. has been retained to meet this need.

A small ongoing effort is being supported at the University of California Los Angeles to provide evaluation of silicon sheet by device fabrication and electrical characterization.

Materials Research, Inc. (MRI), is making an expanded effort to survey techniques best capable of providing impurity characterization with desired spatial and chemical impurity resolution. This assessment program will be an extension of the current MRI sheet-defect structure assessment effort, permitting a correlation of impurity distributions with defect structures.

Charles Evans & Associates and Cornell University are doing siliconsheet impurity analysis and structure characterization, respectively.

### SUMMARY OF PROGRESS

Property of the last of the la

Ingot Technology--Crystal Systems (HEM): Three 45-kg ingots have been successfully cast (30 x 30 x 13 cm, 34 x 34 x 17 cm, and 33 x 33 x 20 cm, respectively). The highest average solidification rate observed was 1.25 kg/h. CSI has been having problems in scaling up for demonstration of 30- to 35-kg runs. Cracked crucibles have resulted in numerous molten silicon spills. The goals for the process were reviewed and have now been revised. Previous goals were for 63-kg ingots (30 x 30 x 30 cm), 65-h cycle time. The new goals call for 35-kg ingots (30 x 30 x 15 cm) and a 56-h cycle time. IPEG analysis of these new goals show that the HEM process together with an agressive FAST wafering program can meet its price allocations for  $$0.70/W_p$$  technology.

Crystal Systems (FAST): Three 10-cm ingots were sliced using a single blade electroplated on only one side. Yields were 91%, 70% and 44%. A new 750-blade head was delivered and installed on the saw. This head is intended to reduce vibration, increase capacity and cut faster (blade-head speeds of 500 ft/min were measured). Two runs were made using one electroplated nickel-flashed wire pack on the new 750-blade head. Cutting rates were 4 and 3.8 mils/min; yields were 96% and 48%, respectively. Both cuts were at 19 wafers/cm (goals: 4 mils/min, 95% yield, 5 cuts/wire pack, 25 wafers/cm).

Kayex (Advanced Cz): Three 150-kg (per crucible) growth runs were successful; the last two were controlled for part of the process by a microprocessor controller developed under the NTCR contract. A new conical heat shield also developed under the NTCR effort permitted growth rates up to 4.5 kg/h to be achieved. A cold-crucible recharging method bench test was successful. An experimental sheet-growth unit (ESGU) design package has been submitted to JPL for review. TR goals of 150 kg/crucible, 2.5 kg/throughput, 14% solar cell efficiency, and 15-cm ingot  $\theta$  have been demonstrated.

Siltec (Advanced Cz): The continuous liquid-feed (CLF) crystal-growth system's pull mechanism was extended 60 cm to allow a 50-kg 15-cm- $\theta$  ingot to be pulled above the gate valve. A 65-kg 15-cm- $\theta$ ,  $\approx$ 2-m-long ingot was grown. For this run, 55 kg of silicon was transferred by the CLF mechanism. In another run, 100 kg of silicon comprising three 14-cm- $\theta$  ingots was grown at a throughput rate of 2.1 kg/h from a single crucible (goals: 150 kg, 2.5 kg/h). Siltec is lagging in its schedule of milestone demonstrations.

Siltec (ID Wafering): Blade deflection of only 5 to 8  $\mu$ m has been achieved with the new blade-deflection controllers. In the blade development area, e-beam and laser welding of stainless steel and copper-beryllium cores to diamond inserts were abandoned after repeated failures. The 12-in. blade head was replaced with a 16.625-in. head to eliminate the high-frequency vibrations that had been responsible for excessive wafer breakage. Wafers of 8, 10, and 12 mil have been cut with 10- and 12-mil kerfs with yields up to 70%, and 2.5 cm/min plunge rates on the NTCR program (goal: rotation cutting of 10-cm- $\theta$ , one wafer/min, 25 wafers/cm.

P. R. Hoffman (MBS Wafering): Hoffman's initial efforts showed little difference in the quality of performance between Hoffman, Meyer-Burger, and Varian saws. A follow-on effort is being planned. The results show that state of the art in MBS cannot achieve the goal of 25 wafers/cm for 10-cm-diaingots.

Semix (Semicrystalline Casting): The DOE/Semix cooperative agreement—semicrystalline casting process development and verification—was announced at the 16th PIM. JPL will provide the technical management support to DOE for this work. An appropriate non-disclosure agreement for DOE and JPL is being drafted for adoption before the initial plant visit. The goals of this agreement are to: (1) demonstrate commercial readiness for  $2.80/W_p$  technology; and (2) demonstrate technical readiness for  $0.70/W_p$  technology in three years.

Shaped Ribbon Technology--ARCO Solar (vacuum casting). ARCO Solar and JPL have agreed that the contract be terminated, based on the results of the work.

Mobil Tyco (EFG): 10-cm-wide ribbon 6 to 8 mils thick has been grown at speeds up to 3.8 cm/min in the multiple-ribbon-growth system and 4.2 cm/min in the single-ribbon system (goals 4.5 and 5 cm/min, respectively). Automatic width control was demonstrated for 200 min continuously on a single ribbon machine early in the reporting period and is now in place and operating regularly on the multiple machine. Excessive thermal interaction between the cartridges is indicated as the source of control problems experienced in the multiple runs. This is being investigated. The introduction of a partial pressure of oxygen (2000 ppm CO<sub>2</sub>) to the single-ribbon system resulted in longer lifetimes in the grown ribbon. The effect of the partial pressure of oxygen on ribbon quality is now under intense study at Mobil Tyco.

Westinghouse (Web): An automatic melt-recharging melt-level sensor designed and built at Westinghouse has been demonstrated in the WEB growth system (melt level was maintained +0.1 mm for 8 h during growth). An ESGU design review and the execution of a follow-on contract are planned for November.

Supported Film--Honeywell (SOC): Cells of 10.5% (AM1) efficiency have been obtained using an improved diffusion process on dip-coated films grown at 3.4 cm/min (TR82 goals: 0.25 cm/sec, 100  $\mu$ m thickness, 11% at AM1). Hydrogen passivation of the cells has shown improved lifetimes measured at the grain boundaries. SCIM II profile modifications continue in an effort to avoid substrate warpage and breakage. Coating speeds of up to 30 cm/min, producing films of 1 to 2  $\mu$ m thickness have been obtained on SCIM II (goals: 350 cm<sup>2</sup>/min growth rate on 12-cm-wide substrates, demonstrated 11% cell efficiency).

Material Evaluation—Applied Solar Energy Corp.: Attempts to correlate structure of EFG ribbon as characterized with cell performance were unsuccessful. Contact resistance on EFG cells was improved by a 600°C bake after processing and AR coating. Average efficiencies of 12% AMl and a maximum of 13.5% AMl were obtained. Optimized processing of carefully selected 2 x 2 cm single—crystal HEM samples yielded cells with an average efficiency of 15% AMl and a maximum of 15.7% vs 16% to 16.2% for control cells. Cells (2 x 2 cm) made from a vertical section of a HEM ingot cast from semiconductor—grade silicon showed a surprising spread of values (6.9% to 12.6% AMl (control cells were 12.2%)). Cells from the bottom half of the ingot were generally the best, with low values seen in cells from the center of the ingot and from around the seed. There was no apparent dependence upon crystallinity. Additional measurements on this material will be made.

Cornell University: Cornell is presently operating under a no-cost extension of their original contract. Structural evaluation of EFG ribbon and SOC films continues. Spectrolab: A 2 x 2 cm SOC cell was produced with hand-painted contacts; it gave a  $V_{\rm OC}$  of 400 V and  $I_{\rm SC}$  of 140 mA. Efficiency of 3.5% AMI has been achieved on this material. Work continues on a BSF for EFG ribbon and shallow-junction formation for web.

University of Missouri Rolla (UMR): Attempted melting of silicon on sialon resulted in the encapsulation of the silicon by calcia from the sialon grain boundaries. This prevented the melting of silicon. UMR will measure oxygen partial pressures in the crystal-growth systems of three Task II contractors under the terms of the current contract.

Materials Research, Inc. (MRI): EFG and web samples have been supplied to MRI for characterization. HEM and SOC material are being prepared for evaluation. A hard-disc copy of a silicon defect characterizatrion computer program for use on a QTM-Quantimet has been delivered to JPL. This was a new-technology item developed under this contract.

JPL In-House Activities: A 1.3-m length of EFG ribbon was pulled from a CNTD: SiC coated hot-pressed SiC die at Mobil Tyco. This material looks promising and another test is planned. RF-grown EFG ribbon was analyzed and observed to be asymmetrical; i.e., one side of the ribbon contained more twins and grain boundaries than the other. Thick ribbons were observed to have a central through-the-thickness grain structure.

In support of the MBS wafering program, fatigue properties of -metal ribbons supplied by Allied Chemical were measured and found to be lower than those of 1095 steel. The hardness and ultimate strength of these materials were promising. One corrosion inhibitor solution has been identified as

having great promise for use with a 1095-steel and water-based slurry MBS system. In-machine tests will be run to confirm this.

Directional solidification of both metallurgical and semiconductor grade Si has been accomplished in graphite, mullite, SiC, Si3N4 and SiO2 crucibles.

Additional characterization of HEM material is being pursued. In addition to activities with the support contractors (Charles Evans, Cornell, MRI and ASEC), in-house measurements of other electrical properties of the HEM material (surface photovoltage, diffusion length, spreading resistance and solar cell performance measurements on as-received HEM material and material that has been thermally annealed at low temperatures) has begun.

Continuing activities in the area of crystal growth include more bicrystals grown; initiation of Cz ingot growth with polysilicon obtained from the Battelle process, and evaluation of polysilicon material of different quality by crystal growth and subsequent measurements. Facilities are being prepared for installation of two MBS wafering machines from Varian. These machines will be used in the continuing studies of blade and slurry materials for the MBS technique.

A program is being developed to examine the sensitivity of technical features of the individual technologies using IPEG2. An initial analysis of ID wafering was performed and it was confirmed that capital and labor costs are major cost drivers. This points to a multiple-ingot cutting technique as an attractive alternative. The input data for a Monte Carlo simulation model is being updated. The model has been run only with the non-ingot technologies. The necessary data for ingot technologies is being collected to include them in the analyses.

### **Encapsulation Task**

### INTRODUCTION

The objective of the Encapsulation Task is to develop and qualify one or more solar array module encapsulation systems that have demonstrated high reliabilities and 20-year lifetime expectancies in terrestrial environments, and are compatible with the low-cost objectives of the project.

The scope of the Encapsulation Task includes developing the total system required to protect the optically and electrically active elements of the array from the degrading effects of terrestrial environments. The most difficult technical problem has been the development of high-transparency materials for the array's sunlit side that also meet the LSA Project low-cost and 20-year-life objectives. In addition, technical problems have occurred at interfaces between elements of the encapsulation system, between the encapsulation system and the active array elements, and at points where the encapsulation system is penetrated for external electrical connections.

The encapsulation system also serves other functions in addition to providing the essential environmental protection: e.g., structural integrity, electrical resistance to high voltage, and dissipation of thermal energy.

### **ENCAPSULATION TASK**

The approach being used to achieve the overall objective of the Encapsulation Task includes an appropriate combination of contractor and JPL in-house efforts. These efforts can be divided into two technical areas:

- (1) Materials and Processes Development: This effort includes all of the work necessary to develop, demonstrate, and qualify one or more encapsulation systems to meet the LSA Project cost and performance goals. It includes the testing of off-the-shelf materials, formulation and testing of new and modified materials, development of automated processes to handle these materials during formulation and fabrication of modules, and systems analysis and testing to develop optimal module designs.
- (2) Life Prediction and Material Degradation: This work is directed toward the attainment of the LSA Project 20-year-minimum-life requirement for modules in 1986. It includes the development of a life-prediction method applicable to terrestrial photovoltaic modules and validation by application of the method to specific photovoltaic arrays at demonstration sites. Material degradation studies are being conducted to determine failure modes and mechanisms. This effort supports both the materials and processes development work and the life-prediction method development.

### SUMMARY OF PROGRESS

### Materials and Process Development

A primer developed by Dr. Edwin P. Plueddemann of Dow Corning has been compounded successfully with ethylene vinyl acetate (EVA) pottant by Springborn Laboratories. EVA containing this primer needs no other coupling agent to promote adhesion of EVA to glass and silicon cells. Also, Springborn successfully incorporated a vinyl tinuvin UV screening agent prepared by Dr. Otto Vogl of the University of Massachusetts with a Dow Corning siliconeacrylic UV screening film and with EVA. The technology to mass-produce vinyl tinuvin has been transferred from the University of Massachusetts to Springborn Laboratories.

Small modules with cells electrostatically bonded (ESB) to Type 7070 borosilicate glass are being routinely produced by Spire Corp. Module size is approximately 6 x 8 in. with six rectangular cells producing a packing density of 94%. The module backs are encapsulated with white EVA pottant and an aluminum-Mylar back cover. Four of these small modules are installed in a frame to produce a standard 12 x 16-in. minimodule. Three of a scheduled 10 minimodules have been delivered to JPL; two have been installed at the JPL outdoor weathering site.

Similar six-cell modules using trapped silver-mesh front contacts have been made by the electrostatic-bonding process with I-V curve fill factors of 66%, compared with 72% for the regular-type EBS modules.

The Phase I analytical design studies by Spectrolab-Hughes on performance encapsulation systems (thermal, optical, electrical, and mechanical) were completed and will be reported at the 17th PIM.

### **ENCAPSULATION TASK**

Experimental solar cells with ion-plated front-and-back metallizations are now routinely produced by the Illinois Tool Works. However, diffusion of the ion-plated metallization into the silicon wafer is apparently insufficient to achieve the required ohmic contact. Ion-plating techniques to achieve improved ohmic contact are being explored.

Twenty-four 12 x 16-in. minimodules with advanced encapsulation material systems and 92 two-cell submodules were installed at the JPL outdoor weathering site on July 1, 1980. Similar modules will be installed at sites at Goldstone and Point Vicente, California, in the next few months. The types of modules installed at the JPL site were:

Minimodules (12 x 16 in.):

Applied Solar Energy Corp. -- three types of glass superstrate designs with EVA pottant.

Springborn Corp.-Solar Power Corp.--one glass superstrate design and two substrate designs, all with EVA pottant.

MBAssociates--a glass-fiber-reinforced concrete substrate design with EVA pottant.

General Electric Co.--glass superstrate design with low-cost RTV silicone-rubber pottant.

Spire Corp.--glass superstrate design with cells electrostatically bonded to Type 7070 glass.

Submodules (two cells each):

Springborn-Solar Power--one glass superstrate design and three substrate designs, all with EVA pottant.

Also installed at the JPL weathering site for monitoring the environment were five actinometers, two integrating solar energy detectors, an acid-rain pH meter and a moisture detector.

### Life Prediction and Material Degradation

The test to validate the Battelle accelerated-test plan for predicting the service life of photovoltaic modules in an array at Mead, Nebraska, is under way in-house. Two weeks of exposure to cyclic temperature (-15°C to +95°C), 85% RH (at 30°C), and 1 ppm SO<sub>2</sub> are completed. The test is expected to continue for approximately five months.

Atmospheric corrosion monitors located at the Mead test site show that the RTV silicone pottant continues to provide full corrosion protection after nine months of outdoor exposure. A detailed program plan for broadening the corrosion models developed for the Mead site, to apply to new module designs, material combinations, and other atmospheric conditions, was presented to JPL by the Rockwell Science Center in July.

#### **ENCAPSULATION TASK**

Three areas of work are being investigated in house in the thermomechanical modeling of solar cell modules, with primary emphasis on the solar-cell interfaces. Progress to date for these areas of work is cited below:

Compatability of materials: A finite element model has been coded and checked out, as reported earlier. The model is now being used for parametric studies varying the thickness and modulus of the adhesive-pottant layer.

Failure modes: this work will be divided into three tasks: failure of encapsulation materials, cell cracking, and localized hot spots. No work has yet been done in this area.

Thermoelastic Behavior of Solar Cells: the purpose of this analysis is twofold: to verify the results of the finite element model, and to aid in the simplification of the finite element model to reduce computer costs. This investigation is being conducted at JPL by Professor Harry Williams.

### PRODUCTION PROCESS AND EQUIPMENT AREA

### **AREA OBJECTIVES**

The current Phase II objective is to develop equipment and facilities to demonstrate, in 1982, technical readiness for fabricating finished, crated, solar modules of silicon sheet material within the Project Price Goal Allocation (see Figure 1).

A second objective has been to complete the near-term process development contracts and to begin evaluation of their effectiveness.

### SUMMARY OF PROGRESS

Previous contracts, completed in Phase II, have developed data that allow more than one process sequence which is cost effective (see Figure 2). Costs analyses of these sequences shows metallization and assembly to be the cost drivers at this stage (see Figure 3).

Cost-effective manufacturing of solar modules by several process \*equences was described during the last reporting period. Most of the process development contracts completed their development in this period. Work will continue in the following years to complete the ion implantation and annealing machine and to continue advances on the main cost drivers (metallization and assembly).

Near-term contract development work has been completed. Some contracts are lingering in order to complete reporting of developments. The evaluation of their cost effectiveness in the next few years in industry has started. The results of all the evaluations are scheduled to be presented in the next reporting period.

### PRODUCTION PROCESS AND EQUIPMENT AREA

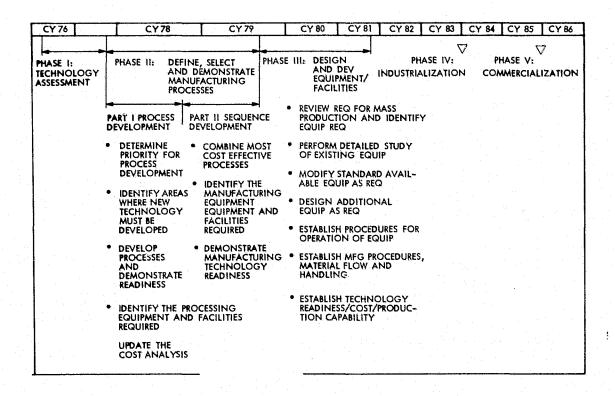



Figure 1. Production Process and Equipment Area Phase Breakdown

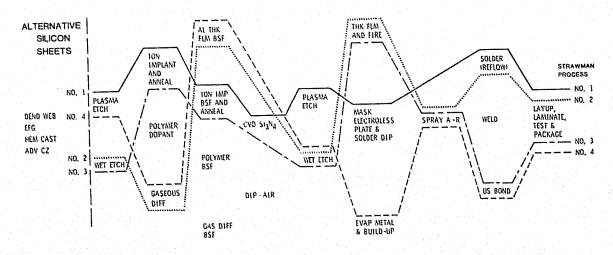



Figure 2. Alternative Production Processes

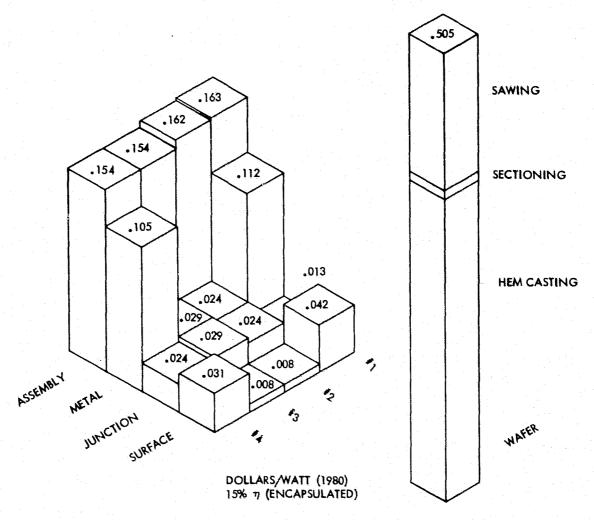



Figure 3. Alternative Process Sequences

### Junction Formation

The pulsed electron beam annealing (PEBA) machine has advanced well into the fabrication phase. Experiments were done to determine the critical beam parameters. A design was completed and a design review conducted. The machine is being constructed.

Ion-implanted cells from a non-mass-analyzed source were found to have efficiencies comparable to those of conventionally ion implanted cells. This is a major development that increases throughput by orders of magnitude while reducing cost by several factors.

### Metallization

The Midfilm metallization technique evaluation was completed. The system appears to be promising, possibly yielding a low-cost fine-grained grid pattern that uses a minimum of silver metal powder. The cell efficiency

increases as the grid pattern fineness improves. An additional contract has been signed with Spectrolab to develop this process further. There is a possibility that the Midfilm process will accommodate some of the Bernd Ross Associates copper-based metallurgy as well.

Sample quantities of Bernd Ross Associates copper-based metal powder systems were ordered from AVX Corp., one of the large suppliers of thick-film inks. When delivered, these inks did not reproduce the desirable characteristics noted originally. The reason is being investigated and if excessive sensitivity to variables is found, the process will be altered to a more stable condition.

Direct nickel-plating-on-silicon efforts at Solarex have met the contract goals, but verification work in the PP&E laboratory has shown the process to be marginal. The nickel will short the cell junction if fired at a time and temperature that will guarantee adhesion. The system appears to have excellent humidity resistance.

Both ASEC and Motorola have been successful in plating copper for cell metallization buildup. The copper is cheaper than dipping in solder and is more tolerant of temperature cycling.

### Assembly

Kulicke & Soffa has successfully completed its contract to develop and build an automated cell assembly machine. The machine was shipped to California for display at the 16th Project Integration Meeting.

ARCO Solar believes that its automatic cell assembly machine still needs improvement. The value of the current machine is yet to be determined. The verification run is currently scheduled for December 1980.

MBAssociates has designed, constructed and demonstrated an end effector (attachment) that allows the robot to pick up an entire array of cells and manipulate it with appropriate speed and directional versatility for automatic lamination. Conceptual designs have been completed and proof of concept models have been constructed and operated to complete the lamination process of cell laydown, PVB or EVA rollout, and glass placement.

### Production Process and Equipment Area Contractors

| ~  |        | •   |   |   |   |    |    |   |   |   |
|----|--------|-----|---|---|---|----|----|---|---|---|
| On | റേ     | า ท | σ | ഹ | m | rr | മറ | • | 8 | • |
| ~  | $\sim$ |     | - | - |   | _  | 4- | • | · | • |

| CONTRACTOR                 | CONTRACT<br>NUMBER | DESCRIPTION                                        |
|----------------------------|--------------------|----------------------------------------------------|
| Spire                      | 955640             | Ion implantation equipment                         |
| Westinghouse               | 955624             | Silicon dendritic web material process development |
| OCLI                       | 955423             | Laboratory services                                |
| University of Pennsylvania | 954796             | Analysis & evaluation of process & equipment       |
| Bernd Ross                 | 955688             | Fritless metal inks                                |
| Lockheed                   | 955696             | Laser anneal                                       |
| MBAssociates               | 955699             | Automated module assembly                          |
| Science Applications       | 955787             | Light-trapping analysis                            |

Contracts involving completed work, awaiting completion of final reports:

| CONTRACTOR        | CONTRACT<br>NUMBER | DESCRIPTION                                              |
|-------------------|--------------------|----------------------------------------------------------|
| Sensor Technology | 954685             | Phase II add-on spray-on & microwave evaluations         |
| Solarex           | 954854             | Phase II add-on metalliza-<br>tion; Ni plating           |
| Spectrolab        | 954853             | Phase II add-on process sequence development             |
| OCLI              | 955217             | Development of high-energy (14%) solar cell array module |
| ARCO Solar        | 955278             | Automated solar panel assembly line                      |

Production Process and Equipment Area Contractors (Continued)

| CONTRACTOR        | CONTRACT<br>NUMBER | DESCRIPTION                                           |
|-------------------|--------------------|-------------------------------------------------------|
| Kulicke & Soffa   | 955287             | Automated solar module as-<br>sembly line             |
| Motorola          | 955324             | Wax patterning                                        |
| Motorola          | 955328             | Thin silicon substrate for solar cells                |
| RCA               | 955341             | Megasonic cleaning                                    |
| Sensor Technology | 955265             | Development of low-cost polysilicon solar cells       |
| Kinetic Coating   | 955079             | Phase II add-on hermetically sealed cells             |
| Motorola          | 954847             | Plasma pattern etching Si <sub>3</sub> N <sub>4</sub> |
| RCA               | 954868             | Phase II add-on process sequence development          |

### **ENGINEERING AREA**

During this reporting period the activities within the Engineering Area were reorganized for improved visibility and increased capability for technology transfer to the photovoltaic community. Emphasis has been placed on array requirements generation, array subsystem development, array component engineering, and performance criteria and standards development. Detailed status of the Engineering Area contracts (listed on p. 36) was reported in the 16th PIM handout.

#### ARRAY REQUIREMENTS

Activities in the array requirements task consisted principally of monitoring and coordination of the contracts investigating array fire resistance and electrical safety, ILC building codes, and array wind loading levels. Additionally, a second PV circuit design optimization workshop was conducted at JPL on May 19-20 for photovoltaic program participants who had missed the workshop held in conjunction with the 15th PIM.

Underwriters Laboratories, Inc., is under contract to develop array and module safety requirements. As part of this effort, testing of a limited number of modules by the procedures described in Underwriters Laboratories

(UL) Standard 790, "Tests for Fire Resistance of Roof Covering Materials," has been conducted. The results obtained are being factored into a proposed safety standard for photovoltaic modules and panels now in development. Details of these tests were presented at the 16th PIM. UL has also reviewed the 1978 National Electric Code (NEC) with regard to existing specifications that may be applied to photovoltaic arrays. Limited suggestions have been made concerning changes in the NEC that may be considered for photovoltaic arrays. Included in this work is a discussion of connections for proper functioning of ground-fault detection equipment. Sample modules supplied by JPL from Block III and IV have been examined with regard to conformance with UL proposals now under consideration, and the resulting assessment will be included in the contract final report.

Burt Hill Kosar Rittelman Associates continued work on the contract to study code-related design issues for commercial and industrial applications, usually referred to as Intermediate Load Center (ILC) Applications. The design process is analyzed in terms of the building sequence as well as the various agents providing input. Particular detail is provided for through studies of the three model building codes, the National Electric Code, selected city codes and a special look at the legal and moral burden on the design profession regarding approval for new products specified.

Specific standards and associated testing methods are required in many instances for the approval of building-code officials. Investigation to date suggests that standards required will be dependent upon the ultimate placement and utilization of the photovoltaic modules, including building construction type, designated code classification, array mounting configuration, proximity to fire zones, and multiple functions that the module may be expected to serve. The value placed on standards by code officials and design professionals receives special attention due to the length of time necessary to secure standards approval as well as the expense to nationally recognized testing agencies.

Once compliance with the fixed safety requirements of the abovementioned agencies is accomplished, selection of materials and assembly techniques are based primarily on economics. To quantify the dynamic relationship between the photovoltaic power system and the building interface, five building applications selected independently of this report are being analyzed empirically to learn more about cost drivers in system and subsystem design. By analyzing the entire photovoltaic power system and building interface, it will be possible to identify appropriate tradeoffs and predict life-cycle paybacks accurately. We will thereby assist the industry in market targeting.

The observations and conclusions of the report, scheduled for publication February 1981, will provide valuable insights into obstacles and delays peculiar to the building industry in the accelerated development of photovoltaics in commercial and industrial applications.

The Boeing contract to study wind loads on flat-plate photovoltaic array fields was in the wind-tunnel test phase during this reporting period. The loads due to wind on an array and on its support structure strongly influence the design and ultimately the cost of the photovoltaic panels, panel and array support structures, and foundations. This contract consists of an experimental boundary-layer wind-tunnel test, using 1/24-scale models, of the wind forces

on 8-foot-chord flate-plate photovoltaic arrays. Local pressure coefficient distributions and normal force coefficients were obtained on the arrays for a range of various parameters, including tilt angle, array separation, ground clearance, and protective wind barriers. Test data were compared with theoretical results previously reported. The most significant result from the test is the large reduction in the aerodynamic forces on arrays interior to the array field. The array on the outer boundary of the array field protects the interior arrays from the wind. Fences, in turn, can be used to protect the arrays on the outer boundary. Other results showed that the smaller the ground clearance of the arrays, the lower the aerodynamic load. Array spacing had very little effect. Array tilt-angle variation showed larger loads on outer boundary arrays with increasing tilt angle. However, the larger array tilt angles produced smaller aerodynamic loads on the arrays interior to the field. A brief movie of these tests was shown during the contract status presentation at the 16th PIM.

The tests show that aerodynamic loads on the array side edges due to oblique wind are higher by several orders of magnitude than the aerodynamic loads at locations interior from the edges. Attempts to reduce these edge loads by modifying the fence and array edges are being made.

#### ARRAY SUBSYSTEM DEVELOPMENT

Work on optimum ground-mounted arrays continued with present emphasis on detailed design features including module-edge treatment and gasketing, ground-handling provisions, and aesthetics. A status update together with a new full-scale prototype current-technology ground-mounted array 8 feet high by 20 feet long was presented at the PIM. The new array demonstrated the use of the JPL-optimized low-cost structure concept in the context of present intermediate-load-center applications and present-day Block IV modules. Present-day costs are being generated for quantities as small as one or two units and as large as several thousand units. Bids are being obtained for fabricating one of the structural-beam sections using actual high-speed mass-production rolling-mill tooling. The particular section is difficult to fabricate using manual techniques and offers the opportunity of obtaining real mass-production costs for a one-mile-long minimum order.

In the area of residential array designs, LSA Engineering Area personnel completed evaluation of proposals for the integrated residential photovoltaicarray development effort. Contract award is expected in September 1980.

Burt Hill Kosar Rittelmann Assdociates completed the contract to investigate the costs associated with operation and maintenance practices for residential photovoltaic modules, panels and arrays.

Six basic topics related to operation and maintenance of residential photovoltaic arrays were investigated: general (normal) maintenance, cleaning, panel replacement, gasket repair and replacement, wiring repair and replacement, and termination repair and replacement. The effects of the mounting types (rack mount, stand-off mount, direct mount, and integral mount) and the installation and replacement type (sequential, partial erection, and independent) have been identified and described. Recommendations on methods of reducing maintenance costs have also been identified.

Several major conclusions were drawn as a result of this study. The most important conclusion one can draw from the investigation of residential operation and maintenance procedures is the unlikelihood of the residential owner's involvement in any maintenance procedures, preventive or corrective. As a result, the photovoltaic industry must, in its design, ensure a maintenance-free, long-lived photovoltaic device. This includes such simple maintenance procedures as cleaning; the life-cycle-costing analysis indicates that cleaning once a year is not cost-effective. Also, in the event that corrective maintenance procedures are required, the module, panel and array should be designed to facilitate such procedures. For example, the replacement of a module should be a quick and inexpensive process in order to minimize the potentially high materials and labor costs associated with such a process.

It will also be necessary for the photovoltaics industry to develop comprehensive operation and maintenance manuals for those residential owners are are "do-it-yourselfers" and those trained personnel who will be performing the typical day-to-day maintenance procedures on photovoltaic power systems.

The final report was distributed to the photovoltaic community through NTIS as Report No. DOE/JPL 955614-80/1, "Operation and Maintenance Cost Data for Residential Photovoltaic Modules/Panels," July 1980.

### ARRAY COMPONENT ENGINEERING

Array component engineering continued in a number of areas including module electrical insulation, hot-spot testing, array circuit design, cell environmental testing, cell fracture strength testing, encapsulant soiling, module environmental testing, and PV/Thermal module development.

In the area of module electrical insulation, an extensive series of breakdown tests on .48-mil Mylar have been completed; tests have begun on 1.42-mil Mylar. A computer code is being created to compute flaw density vs voltage stress, intrinsic breakdown probability, and module breakdown probability.

Other activities include continued measurement of Block II and III minimodules in an attempt to define a procedure suitable for assessing the voltage breakdown probability statistics for the Block IV modules to be delivered this fall. Past hi-pot testing only provided a go-no go binary measurement.

The series-parallel effort is now focused on developing tests for determining the reverse-bias characteristics of individual cells that are shadowed or cracked in a module that is operating in the short-circuit mode. Selected cells in each module are being subjected to the 100-hour hot-spot endurance test. Preliminary results were described in a 16th PIM presentation. The series-parallel final report is also in preparation.

Work continued at Clemson University on environmental testing of various solar cell types. An important byproduct of the workshop held at Clemson last May is added interest shown by several of the cell manufacturers. One cell manufacturer has now considered engaging Clemson in a special cell-test program on development cells, whereby some costs may be shared by the cell

manufacturer. A document that will contain the proceedings of the Cell Reliability Workshop is presently in preparation at JPL for distribution to LSA and the photvoltaic communities. The current status of the Clemson contract was presented at the 16th PIM.

Design of a proof-test version of the four-point cell-fracture strength test fixture proceeded. When fabricated the fixture will be used to evaluate the feasibility of in-line proof testing of wafers to decrease later yield losses due to poor cell strength.

In the module-soiling task, deployment of material samples at the California exposure sites for the second year of the module-soiling investigations was completed. Samples will be retrieved on 90-day centers. Borosilicate glass (#7809) samples are being added to all sites.

In the area of PV/T module development, several performance test mthods have been identified and iterated with members of the PV/T standards subgroup. A general-purpose test collector has been completed and the PV/T test site at JPL is in operation. Verification testing of the proposed test methods was initiated in August.

DSET Laboratories, Inc., Phoenix, Arizona, continued work during this reporting period on its contract to perform sunlight-aging tests of solar cell modules.

The accelerated aging of minimodules was continued using DSET's Super-Maq Fresnel-concentrating accelerated weathering machine. Through August 24, 1980, the two Block II modules were subjected to 2,770,780 langleys of radiation, and the six Block III modules were subjected 1,352,920 langleys of radiation. The Block II and Block III modules have been exposed to an equivalent of 14.5 and 7 years, respectively, of outdoor weathering in an "average" southwestern environment.

Weekly visual inspections, monthly 35mm slide photos, and monthly I-V measurements are used by DSET in monitoring the physical and electrical characteristics of the modules. Failure modes such as cell cracking, delamination, carbonation, and contact corrosion, as well as P<sub>max</sub> losses, non-ohmic contact, and series resistance changes have been observed during the Super-Maq exposure program. In several cases, early detection of such failures has accurately predicted similar field failures in block series modules deployed in DOE demonstration programs.

A total of 27 new minimodules and subminimodules were shipped to DSET sunlight-aging tests. All of the new modules have been visually inspected and photographed, and initial I-V measurements have been made. Accelerated and real-time exposure testing of these modules will start in October.

#### Performance Criteria and Standards

Comments on the draft version of the Interim Performance Criteria document have been forwarded to SERI. Initial industry comments ranged the full spectrum from "acceptable as is," to constructive critique, to "unacceptable at this time" because it would adversely affect the photovoltaic

industry's ability to reduce cost. This principal issue for the array subsystem is the standard reporting conditions, specifically  $800~\text{W/m}^2$  standard irradiance condition.

The electrical performance subgroup of the Array Subsystem Task Group met at Sandia on July 15-16, 1980. Draft test methods for the I-V and thermal characteristics of actively and passively cooled concentrator modules were reviewed. Several of these proposed methods were reviewed by the task group during the annual meeting of the Performance Criteria and Test Standards Project in Colorado in August.

Engineering Area Contractors

| CONTRACTOR                                           | CONTRACT<br>NUMBER | DESCRIPTION                                       |
|------------------------------------------------------|--------------------|---------------------------------------------------|
| Boeing Co.<br>Seattle WA                             | 954833             | Wind-loading study on module and array structures |
| Burt Hill Kosar<br>Rittelman Associates<br>Butler PA | 955614             | Residential module O&M requirements study         |
| Clemson University<br>Clemson SC                     | 954929             | Solar cell reliability test                       |
| DSET Laboratories, Inc.<br>Phoenix AZ                | 713137             | Spectral radiometric measurements and standards   |
| IIT Research Institute<br>Chicago IL                 | 955720             | Reliability engineering of modules and arrays     |
| Underwriters Laboratories<br>Melville NY             | 955392             | Solar array and module safety requirements        |

## **OPERATIONS AREA**

### LARGE-SCALE PRODUCTION TASK

### Block IV Design and Qualification

Six of eight manufacturers have now delivered prototypes to JPL for test. Photowatt has postponed module fabrication while working on improvements in cell efficiency and yield; ARCO Solar is incorporating a number of design changes mainly directed toward improving voltage isolation. Qualification test results are given in the table below.

## Block IV Qualification Test Results

| endor<br>Code | Construction (from top down)                                                                                                                      | Principal Problems                                                                                                                                                                                                          | Recommended Action                       |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| GR            | Glass, cells bonded with clear silicone, white silicone, weatherproofed card-board. Flex portion: reinforced white Hypalon with foam-rubber core. | Dummy shingles of built-up roof section warped.                                                                                                                                                                             |                                          |
| MS            | Glass, PVB, cells, PVB, Tedlar. Mesh interconnects make contact at cell top center.                                                               | Set 1 (4 mdls): extensive cell cracking, frame seal delam., electrical degradation (1 mdl). Set 2 (3 mdls) with improved processing: 2 cells cracked in 1 mdl, electrical degradation (10%) in another with later recovery. | Test needed with larger sample size      |
| RS            | Glass, PVB, cells, PVB, Tedlar/Al/<br>Tedlar rear cover. Butyl rubber seal<br>to stainless sheet frame.                                           | Sealant extruded, 3 cells cracked, one frame corner broken (1 mdl), hi-pot failures.                                                                                                                                        | Design improvements and retest needed    |
| SS            | Glass, EVA, cells, EVA, ripstop,<br>Mylar/Al backing, backspray.                                                                                  | J-box threads stripped, small blisters on back side (1 mdl).                                                                                                                                                                |                                          |
| YR            | Glass, EVA, cells, EVA, Tedlar, no frame.                                                                                                         | Back side Tedlar delam (4 mdls),<br>one cracked cell, marginal elec-<br>trical degradation.                                                                                                                                 | Retest needed after process improvements |
| YS            | Same as YR, with Al frame.                                                                                                                        | Tedlar delam. (2 mdls), air bubbles.                                                                                                                                                                                        | Retest needed after process improvements |
| ZS            | Polyester top cover, EVA, cell, EVA, scrim, acrylic, EVA, porce-lainized steel pan, steel back structure.                                         | Encapsulant lifting off pan, cracked cells, edge delamination, marginal electrical degradation (1 mdl). Failed hail tests.                                                                                                  | Redesign and retest needed               |

#### **OPERATIONS AREA**

### **Block IV Production**

Purchase orders have been issued for small quantities of modules from five manufacturers. Most of these modules are to be deployed to the 16 JPL field-test sites.

### Block V

The procurement plan has been drafted.

#### MODULE TEST AND EVALUATION

### **Environmental Testing**

Five more types of Block IV modules have completed qualification testing in addition to the two reported in April. Three other types have not yet been received at JPL. Of the seven designs tested to date, none passed without some problems. Modules from the production contracts will be retested to confirm that design changes and process improvements will be effective. A short summary of the principal problems are given in the table below.

Several other modules were tested to the qualification sequence with results as described at the Project Integration Meeting.

Two problems have appeared recently with modules deployed in field applications: hot cells, with cell cracking, and broken interconnects. These problems indicate deficiencies in the qualification tests as now performed. A reverse voltage bias test has been added to the exploratory testing of Block IV modules, and the Block V qualification tests will add this requirement. Several possibilities are under review for the interconnect problem, including greatly extended temperature cycling tests.

A series of controlled laboratory tests for Nominal Operating Cell Temperature (NOCT) have been performed. A simulated wind was supplied by blower and duct to modules situated in the artificial sun of the 25-foot Space Simulator. One interesting finding was that NOCT is more sensitive to winds above 1 m/s than realized. A revised wind-correction factor will be applied to the outdoor data in an effort to reduce data scatter.

#### Performance Measurements

Round-robin electrical measurements have been completed by JPL and Solarex in an effort to resolve observed differences on Block IV modules. One finding was that the spectral response of current Solarex semicrystalline cells did not match that of the reference cells in use. New reference cells have been fabricated, calibrated, and distributed to Solarex, MIT/LL, Sandia, and the JPL Test Group.

Analysis of the JPL field test data is continuing. In the previous progress report, sky shadowing was hypothesized as the cause of observed anomalies in module power output. Data taken through the summer confirm this.

#### **OPERATIONS AREA**

### Field Tests

The primary focus of the field testing activity during this past period was on the collection of electrical performance and physical degradation data from the 12 continental remote sites. All of the sites were visited from May to August for this purpose. Electrical performance data were obtained with the new portable I-V Data Logger. I-V field data were collected and recorded on solid-state IPROM units for later offloading into the field test computer at JPL for printout, plotting, malysis, and archiving. Typically, six I-V curves were acquired on each module over a two-day period. These data were then normalized and compared with the pre-installation data. Modules whose fill factors differed by more than 5% from the pre-installation values were put on the "suspicious" list and their I-V curves carefully scrutinized. From this examination a definitive cataloging of electrical degradation was made. A summary of the electrical performance data was given at the Project Integration Meeting by Peter Jaffe.

All of the modules at Mines Peak were stolen sometime in April and May. Unfortunately, such thievery has been widespread. Twenty-five other modules have been stolen from four sites (nine were subsequently recovered). One of the sites is on a closed NASA facility and another is on a remote Navy island. Innovative devices for ensuring module security are now being considered.

The most difficult and subjective part of endurance testing is the evaluation of the physical condition of modules. Using composite observations from all sites, a list of common or prevalent defects for each design was prepared and then used as a check-list for observations at each site. The prevalent defect list alone is valuable as an index of problems for each module type. Comparisons between sites show how the different environments affect the common problems. Data from the latest surveys are contained in the Project Integration Meeting Proceedings.

### Failure Analysis

Laboratory reverse voltage bias (hot-spot) testing of the 30-watt Mount Laguna modules has been completed, confirming that pressure from substrate outgassing is the cause of the progressive cell cracking on these modules. Similar tests on 30-watt glass superstrate modules from the same manufacturer (to be used in PRDA-38 applications) show no problems of this type.

Modules returned from the village power systems at Upper Volta, Africa, and Schuchuli, Arizona, have been analyzed to determine the cause of open circuits. These 20-watt Block II type modules have a glass-fiber-reinforced polyester substrate with a high coefficient of thermal expansion, which induced plastic yielding and fatigue failures in the cell interconnects as a result of diurnal temperature cycling.

Eleven Block III modules with glass superstrates and stainless-steel backs were returned from Natural Bridges National Monument for failure analysis. Three underlying causes were found: electrical shorts between the cell interconnect foil and the case, on eight modules; poor solder joint between the interconnect foil and the terminal, causing local heating, on two

#### OPERATIONS AREA

modules, and terminal feedthrough insulator damage due to heavy impact, on one module.

Inspection of a second type of glass-superstrate module returned from Natural Bridges National Monument has been made as part of the preliminary investigation of cracked cover glasses, reported to have affected as many as 50 modules in this array. The cracks originate at edge flaws in the annealed glass. Engineering Area personnel are carrying out tests to determine the source of the breaking stress.

A field survey has been completed at the Mt. Laguna 60 kW application to determine present electrical performance of the array. Analysis of the results shows increased degradation of both the 30-watt and 20-watt silicone-encapsulated modules. The 20-watt modules showed a 3.1% increase in failed modules and the 30-watt module showed a 5.75% increase in failures over a five-month period. Analysis of 12 failed modules of the 20-watt design showed 10 open circuits from fractured interconnects and two failures from cracked cells and heating. Analysis of a module returned from the John F. Long residential experiment in Phoenix has been completed. The module, which had an EVA-laminate encapsulation system on a steel substrate, exhibited cell cracking of the type associated with encapsulant outgassing and resultant pressure buildup beneath the affected cells. A similar failure was generated in the laboratory by applying reverse voltage bias to a cell, which produced the heat needed to initiate the failure mechanism.

A summary of the work described above was presented at the 16th Project Integration Meeting.

# **PROCEEDINGS**

Highlights of the 16th Project Integration Meeting, held September 24 and 25, 1980, at the Pasadena Center, Pasadena, California:

The first day of the meeting was devoted to summaries of silicon-sheet technology, a module durability workshop, and to a series of panel discussions on residences with photovoltaic electric supply, on cadmium sulfide cell and module technology, on the commercial market prospects for photovoltaics, and on industry's perspective of and role in meeting the Department of Energy's goals in photovoltaic energy development.

The photovoltaic homes panel discussions included presentations on a partially PV-powered house in Phoenix, Arizona, built by John Long Homes, and on another at the Florida Solar Energy Center at Cape Canaveral. The panel was moderated by John L. Hesse of JPL.

Krishna Koliwad of JPL moderated the panel discussion of the progress of, and prognosis for, cadmium sulfide as a solar cell and PV module material.

Paul Maycock of the Department of Energy was moderator of the panel on photovoltaic market problems and observations, with university and industry representatives participating.

The fourth panel on industry perspectives of PV goals, and industry's role in meeting them, produces a consensus that the goals can be met, but dissenting viewpoints were offered.

Underwriters Laboratories fire-test data indicate that present PV modules meet Class A (the highest) fire rating when directly mounted on a roof structure, but they degrade roof structures' ratings when standoff or rack mounts without fire stops are used. The first draft of the UL flat-plate module and array safety requirements are to be delivered to JPL about the first of October 1980.

Semix Inc. reported on the initiation of its cooperative agreement with the Department of Energy on the development and verification of a semicrystalline coating process.

A life-cycle cost method for array component reliability allocation has been developed, and strawman allocations were presented at a reliability and durability workshop on September 23.

Latest analysis and test procedures for designing around hot-spot, interconnect-fatigue, electrical-breakdown and glass-breakage module failure modes was presented.

## Plenary Session

## SILICON RIBBON AND HEM CRITICAL REVIEW

J. Liu, Chairman

- SUMMARY OF TECHNICAL AND PROGRAMMATIC
   REVIEW OF SHAPED SHEET AND NON-CZOCHRALSKI
   INGOT CONTRACTS
  - CRITICAL ASSESSMENT OF THE CURRENT STATE
     OF TECHNOLOGY DEVELOPMENT
  - EVALUATION OF TODAY'S DEMONSTRATED
     TECHNOLOGY AS REFLECTED IN PROJECTED
     SHEET PRICES.

### TECHNOLOGIES REVIEWED

- HEAT EXCHANGER METHOD (HEM) CRYSTAL SYSTEMS
- EDGE DEFINED FILM-FED GROWTH (EFG) MOBIL TYCO
- WEB DENDRITIC GROWTH (WEB) WESTINGHOUSE
- SILICON ON CERAMIC (SOC) HONEYWELL

PRECEDING PAGE BLANK NOT FILMED

## **HEM Technology Status**

| TECHNICAL FEATU                                                                                                                             | RE                                                       | GOAL                                                            | INDIVIDUAL DEMONSTRATION                                                     | S IMULTA NEOUS<br>DEMONSTRATION                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| YIELDED INGOT MASS INGOT DIMENSIONS CYCLE TIME SILICON GROWTH RATE YIELD CELL EFFICIENCY MACHINES/OPERATOR MACHINE COST MAT'LS & UTIL/CYCLE | (kg)<br>(cm)<br>(hr)<br>(kg/hr)<br>(%)<br>(%AM1)<br>(\$) | 63<br>30x30x30<br>48<br>2.5<br>86<br>15<br>10<br>35, 000<br>159 | 45<br>33x33x17.7<br>VARIES<br>3.1<br>85<br>15.7<br>(5)<br>(60, 000)<br>(300) | 45<br>33x33x17.7<br>66<br>1.25<br>75<br>N.A.<br>(5)<br>(60,000)<br>(300) |
| GROWTH ADD-ON SHEET ADD-ON SHEET ADD-ON                                                                                                     | (\$/kg)<br>(\$/m²)<br>(\$/W <sub>p</sub> )***            | 8.50<br>21.63*<br>0.15                                          |                                                                              | 31.50<br>66.87**<br>0.47                                                 |

<sup>\*</sup> ASSUMES 1 m<sup>2</sup>/kg, \$13.13/m<sup>2</sup> WAFERING ADD-ON \*\* ASSUMES 0.85 m<sup>2</sup>/kg, \$29.81/m<sup>2</sup> WAFERING ADD-ON \*\*\*MODULE EFFICIENCY AT 14.25% AM1

## **HEM Add-On Sheet Price Sensitivity**

| TECHNI CAL FEATURE                        | ORIGINAL<br>GOAL | CHANGED<br>TO: | Δ\$W <sub>p</sub> |
|-------------------------------------------|------------------|----------------|-------------------|
| YIELDED INGOT MASS (kg)                   | 63               | 45             | 0,024             |
| CYCLE TIME (hr)                           | 48               | 96             | 0, 029            |
| EXPENDABLES/RUN (\$)                      | 159              | 300            | 0,019             |
| MACHINES/OPERATOR                         | 10               | 5              | 0,013             |
| MATERIAL UTILIZATION (m <sup>2</sup> /kg) | 1.0              | 0.85           | 0,011             |
| MACHINE COST (\$)                         | 35,000           | 60, 000        | 0,007             |

<sup>( ) -</sup> ESTIMATED

## **EFG Technology Status**

| TECHNICAL FEAT        | JRE                  | GOAL   | INDIVIDUAL DEMONSTRATION | SIMULTA NEOUS<br>DEMONSTRATION |
|-----------------------|----------------------|--------|--------------------------|--------------------------------|
| RIBBON WIDTH          | (cm)                 | 10     | 10                       | 10                             |
| GROWTH RATE           | (cm/min)             | 4      | 4.2                      | 2.8                            |
| RIBBON THICKNESS      | (µm)                 | 150    | 150                      | 300                            |
| RIBBONS/FURNACE       | •                    | 4      | 5 (5 cm width)           | 3                              |
|                       |                      |        | 3 (10 cm width)          |                                |
| FURNACES/OPERATOR     |                      | 3      | 1                        | 1                              |
| CELL EFFICIENCY       | (%AM1)               | 12     | 13.2 (5 cm width)        | 8.5                            |
|                       |                      |        | 10.5 (10 cm width)       |                                |
| EQUIPMENT COST        | (\$)                 | 49,000 | N.A.                     | (60, 000)                      |
| GROWTH PERIOD         | (hr)                 | 160    | 15                       | 7                              |
| DUTY CYCLE            | (%)                  | 90     | 90                       | 60                             |
| MELT REPL. & AUTO CON | NTROL                | YES    | YES                      | YES                            |
| YIELD                 | (%)                  | 90     | 90                       | 55                             |
| IPEG SHEET ADD-ON     | (\$/m <sup>2</sup> ) | 14.41  | _                        | 92.61*                         |
| IPEG SHEET ADD-ON     | (\$/W <sub>D</sub> ) | 0.13** | _                        | 1.15***                        |

<sup>\*</sup> ASSUMES GROWTH PERIOD OF 116 HRS

( )-ESTIMATED

## EFG Add-On Sheet Price Sensitivity

| TECHNI CAL FEATURE   | ORIGINAL<br>GOAL | CHANGED<br>TO: | Δ\$W <sub>p</sub> |
|----------------------|------------------|----------------|-------------------|
| FURNACES/OPERATOR    | 3                | 1              | 0, 068            |
| GROWTH RATE (cm/min) | 4                | 2.8            | 0,054             |
| EXPENDABLES/RUN (\$) | 287              | 574            | 0.008             |
| EQUIPMENT COST (\$)  | 49, 000          | 60, 000        | 0,005             |
| GROWTH PERIOD (hr)   | 160              | 80             | 0.005             |

<sup>\*\*</sup> MODULE EFFICIENCY OF 11.4% AM1

<sup>\*\*\*</sup>MODULE EFFICIENCY OF 8.05% AM1

## Web Technology Status

| TECHNICAL FEATU                                                                                                                                 | RE                                                  | GOAL                                                           | INDIVIDUAL DEMONSTRATION                                    | S IMULTA NEOUS<br>DEMONSTRATION                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------|
| RIBBON WIDTH GROWTH RATE RIBBON THICKNESS FURNACES/OPERATOR CELL EFFICIENCY EQUIPMENT COST GROWTH PERIOD DUTY CYCLE MELT REPL & AUTO CONT YIELD | (cm) (cm²/min) (µm)  (%/AM1) (\$) (hr) (%)  ROL (%) | 5<br>25<br>150<br>18<br>15<br>15, 400<br>72<br>90<br>YES<br>90 | 4<br>27<br>150<br>1<br>15<br>N.A.<br>24<br>71<br>YES (8 hr) | 3<br>15<br>150<br>(2)<br>15<br>(25, 000)<br>8<br>71<br>NO<br>70 |
| IPEG SHEET ADD-ON<br>IPEG SHEET ADD-ON                                                                                                          | (\$/m²)<br>(\$/Wp)**                                | 18.39<br>0.13                                                  |                                                             | 116.60*<br>0.82                                                 |

( ) - ESTIMATED

## Web Add-On Sheet Price Sensitivity

| TECHNICAL FEATURE                  | ORIGINAL<br>GOAL | CHANGED<br>TO: | ∆\$W <sub>p</sub> |
|------------------------------------|------------------|----------------|-------------------|
| GROWTH RATE (cm <sup>2</sup> /min) | 25               | 15             | 0.086             |
| FURNACES/OPERATOR                  | 18               | 9              | 0.038             |
| EQUIPMENT COST (\$)                | 15, 400          | 25,000         | 0.033             |
| GROWTH PERIOD (hr)                 | 72               | 36             | 0.012             |

<sup>\*</sup> ASSUMES GROWTH PERIOD OF 72 HR, MELT. REPL. & AUTO CONTROLS. \*\*MODULE EFFICIENCY OF 14.25%AM1

## **SOC Technology Status**

| TECHNICAL FEATUR                                                                                                                                                         | RE                                                         | GOAL                                                                    | INDIVIDUAL DEMONSTRATION                                          | S IMULTA NEOUS<br>DEMONSTRATION                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------|
| SUBSTRATE WIDTH (cm) GROWTH RATE SUBSTRATES/COATER FILM THICKNESS COATERS/OPERATOR CELL EFFICIENCY EQUIPMENT COST SUBSTRATE COST DUTY CYCLE MELT REPL. & AUTO CONT YIELD | (cm/min) (µm) (%AM1) (\$) (\$/m <sup>2</sup> ) (%) ROL (%) | 12.5<br>14<br>2<br>100<br>12<br>11<br>50,800<br>5.68<br>85<br>YES<br>92 | 10<br>30<br>1<br><100<br>1<br>10.5*<br>N.A.<br>N.A.<br>N.A.<br>NO | 10<br>30<br>1<br><100<br>1<br>N.A.<br>N.A.<br>N.A.<br>N.A.<br>NO |
| IPEG SHEET ADD-ON<br>IPEG SHEET ADD-ON                                                                                                                                   | (\$/m <sup>2</sup> )<br>(\$/Wp)                            | 12.97<br>0.13                                                           | - · · · - · · · · · · · · · · · · · · ·                           | INSUFFICIENT<br>DATA                                             |

<sup>\*</sup>DIP COATING, NO SCIM DATA YET AVAILABLE

( ) - ESTIMATED

## ORIGINAL SHEET ADD-ON PRICE $-\$0.128M_{ m p}$

| TECHNICAL FEATURE                   | ORIGINAL<br>GOAL | CHANGED<br>TO:       | Δ\$W <sub>p</sub> |
|-------------------------------------|------------------|----------------------|-------------------|
| SUBSTRATE COST (\$/m <sup>2</sup> ) | 5, 68            | 11.36                | 0,103             |
| GROWTH RATE (cm/min)                | 14               | 10                   | 0.054             |
| COATERS/OPERATOR                    | 12               | <b>6</b> + 1 + 1 + 1 | 0. 024            |

## Add-On Price Status Summary (\$/Wp)

| TECHNOLOGY | LSA PROJECT<br>ALLOCATION | PROJECTED GOAL<br>ACHIEVEMENT | CURRENT SIMUL.<br>ACHIEVEMENTS |
|------------|---------------------------|-------------------------------|--------------------------------|
| HEM        | 0.256                     | 0.15*                         | 0.47**                         |
| EFG        | 0.205                     | 0.13                          | 1.15                           |
| WEB        | 0.292                     | 0.13                          | 0.82                           |
| SOC        | 0.190                     | 0.13                          | N.A.                           |

<sup>\*</sup>INCLUDES  $$0.09M_{
m p}$$  FOR WAFERING

### Status of Technology Commercialization

- CSI IS CURRENTLY OFFERING HEM INGOTS AND WAFERS FOR SALE.
- MTSEC IS INSTALLING A REVERSE OSMOSIS WATER DESALINATION PLANT POWERED BY 8 kW OF EFG MODULES IN SAUDI ARABIA.
- WESTINGHOUSE IS CONSTRUCTING A 50 kW/yr WEB MODULE PRODUCTION FACILITY. A PORTION OF THE OUTPUT IS SLATED FOR A JOINT WESTINGHOUSE/ ELECTRIC UTILITIES PROJECT.

<sup>\*\*</sup>INCLUDES \$0.21Mp FOR WAFERING

### **Conclusions**

- TECHNICAL FEATURES REQUIRED FOR ACHIEVEMENT OF \$0.70/W<sub>p</sub> GOAL HAVE BEEN DEMONSTRATED BY THE EFG AND WEB TECHNOLOGIES.
- ADDITIONAL DEVELOPMENT IS REQUIRED FOR THE HEM AND
   SOC TECHNOLOGIES TO DEMONSTRATE ALL TECHNICAL FEATURES.
- ◆ VERIFICATION OF PRODUCTION TECHNICAL FEATURES (i.e., YIELD, GROWTH CYCLE, DUTY CYCLE, MACHINES/OPERATOR) REQUIRES EXPERIMENTAL SHEET GROWTH UNITS (ESGU) AND WILL BE ACCOMPLISHED IN THE UPCOMING ESGU DEVELOPMENT PHASE.
- ENCOURAGING PROGRESS IS OBSERVED IN INDUSTRY'S
   COMMERCIALIZATION EFFORTS FOR THESE TECHNOLOGIES.

### **REPORTS**

Crystal Systems, Inc.: Heat Exchanger Method (HEM) -- The size of silicon ingot cast by HEM has been increased to 34 x 34 x 20 cm weighing 45 kg, the largest silicon ingot to be cast. The first ingot, of 34 x 34 cm cross section, was 10 cm high and weighed 20 kg. Solidification rates of 3 kg/h were achieved; there was no problem with crucible attachment or ingot cracking. This achievement was followed by the casting of a 26-kg ingot and, later, two 45 kg ingots.

One of the problems encountered in ingot casting has been cracking of the crucible. Cracking occurred during heat treatment, done to develop a graded structure, or while loading. Reducing the gradients eliminated cracking during heat treatment and minimized cracking under load. The crucible needs to be annealed to minimize stresses before loading, and to be supported to provide uniform loading conditions.

Mobil Tyco Solar Energy Corp.: Edge-Defined Film Growth (EFG) -- Achievability of solar cell efficiencies greater than 13% was demonstrated, using resistance machine-produced EFG material at small (6 cm<sup>2</sup>) areas. Additionally, in non-continuous growth of single 10-cm-wide ribbons, growth speeds of up to 4.5 cm/min were attained with this ribbon.

Ribbons 10 cm wide were grown over 8 to 9 h at speeds of about 3.5 cm/min under fully automatic control, using single continuously melt-replenished cartidges. All automatic control systems for the multiple-ribbon

equipment were built, assembled and tested well before the planned completion date.

Although in all four full-scale multiple runs significant lengths of ribbon were grown from some of the cartridges, the duration of stable full-width ribbon growth from all cartridges was much too short. It must be concluded that a 4-in. multiple furnace needs significant further engineering development and some redesign before conclusions can be drawn on the detailed design features of a future full-scale production unit.

Westinghouse: Web Dendrite Growth (Web) -- The melt-level control system developed for this program consists of a three-component control loop comprising: a) a melt-replenishment system, b) a melt-level sensing system, and c) a circuit that closes the loop with components a) and b). During the previous reporting period, long-term manually controlled melt replenishment was demonstrated for 17 h which constitutes the growth period for a 24-h growth cycle. In the same period a melt-level sensing system was installed and operated successfully. Closing of the loop provided fully automatic control of melt replenishment and, in so doing, provided semi-automatic control of web growth. The semi-automatic growth mode is cost-effective because operator action is greatly reduced and the permissible duration of growth run is extended to the desired order of three days or greater.

Evaluation of the economics of dendrite recycling was completed. The economic significance of three options for dendrite recycling was reported. The assumed high quality of web grown from melts containing recycled dendrites has now been verified, thus confirming the economic projection that recycling of dendrites provides a small but significant cost saving.

Honeywell: Silicon-on-Geramic (SOC) -- SCIM coating of wide substrates (10 x 100 cm) has been investigated over a range of substrate speeds (4 to 30 cm/min). At high speeds the coating process works very well, but the layers have been too thin (<50  $\mu$ m). At the speeds required for adequate thickness (3 to 5 cm/min) there have been problems with substrate buckling and breakage due to thermal strees developed on cooling. Attainment of the desired linear longitudinal temperature profile in the cooling zone has been slow due to difficulties in measuring the temperature of moving substrates. Thermal modeling has been helpful in quantitative design and in qualitative understanding of the various temperature readings.

Cell efficiencies have been significantly increased by using a slow cooldown after the phosphorus diffusion. The best SOC cell had a total area conversion efficiency of 10.5%, (AMI, AR) for a cell area of 5 cm<sup>2</sup>. For 29 recent cells, the average efficiency was 9.9% with a standard deviation of 0.3%.

Cornell University: Characterization of Silicon Sheet.

#### Web material

Observations on the web material agree with previous published findings, which report that:

(1) The major structural defect in the web material is a single or

multiple twin in the central plane of the ribbon.

- (2) The dislocation density varies over the cross section but is generally relatively low ( $\approx 10^5$  cm<sup>-2</sup>).
- (3) The dislocations have Buerger vectors  $\langle 110 \rangle$  and line directions  $[\overline{211}]$  and  $\langle 110 \rangle$ .

New features, not previously reported, are:

- (1) The central twinning region may be a microtwin or twins.
- (2) Dislocations with Buerger vectors of the (211) type accommodate small tilt components between the twin planes.
- (3) Hexagonal partial dislocations arrays accommodate small twist components between the twin planes.

### EFG material

The new findings are:

- (1) The electrical activity of twin boundaries exhibiting dotted EBIG contact is associated with the presence of partial dislocations in the boundary.
- (2) A significant fraction of the straight twin boundaries present are secondary twins of the (111)-(115) type. These secondary twins contain a high density of dislocations and are strongly active electrically.

The latter finding is particularly interesting, since it was previously assumed by all investigators of EFG material that the straight twin boundaries are all of the same type, i.e., coherent twins.

Applied Solar Energy Corp.: Cell Fabrication and Analysis -- Solar cells were fabricated using a baseline process. Performance of other process variations, such as formation of shallow junction, fine grid lines, BSF, better AR coating and application of gettering, etc., was evaluated under both AMO and and AMI illumination conditions. Comparison was made with conventional Cz silicon slices processed with the sheets. In addition, back-up measurements were made of minority carrier diffusion length, spectral response, dark diode I-V characteristics and small light-spot scanning. Good agreement was found between these back-up measurements and the cell performance. In particular, minority carrier diffusion length was still seen to be a dominant factor in determining cell efficiency.

## Directional Solidification by HEM

| TECHNOLOGY                                                                                                                                                | REPORT DATE                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| INGOT CASTING                                                                                                                                             | - 08/25/80                                                                                      |
| APPROACH  DIRECTIONAL SOLIDIFICATION BY THE  HEAT EXCHANGER METHOD (HEM)                                                                                  | • 34 cm x 34 cm x 20 cm ingot (45 kg)  • 15% cell efficiency demonstrated  • 90% single crystal |
| CONTRACTOR  CRYSTAL SYSTEMS, INC.                                                                                                                         | • 12.3 % CELL EFFICIENCY DEMONSTRATED WITH UMG SILICON                                          |
| GOALS  • 30 cm cube ingots (63 kg)  • ≥ 15% cell efficiency  • ≥ 90% single crystal  • ≤ 65 hours cycle time  • Technical features demonstration 12/15/80 | • FLAT PLATE CRUCIBLES DEMONSTRATED  • 3,1 KG/HR GROWTH RATE DEMONSTRATED  * NEW ACHIEVEMENT    |
| • Technology readiness 10/01/82                                                                                                                           |                                                                                                 |

### HEM

|      | AVERA   | GE CELL PA                | RAMETERS ( | AM1)  |                 |       |
|------|---------|---------------------------|------------|-------|-----------------|-------|
|      | Voc. mV | Jsc<br>mA/cm <sup>2</sup> | CFF.%      | η , 3 | PROCESS USED    | N., % |
| 1    | 564     | 25.9                      | 73         | 10 .8 | BL (1,S)        | 11,5  |
| 2    | 560     | 26.0                      | 74         | 10.8  | BL (1,P)        | 11.5  |
| 3    | 580     | 25.3                      | 73         | 10.8  | BL (11,5)       | 12.1  |
| 4    | 580     | 23.7                      | 63         | 8.7   | BL (II,P)       | 10.7  |
| 5    | 591     | 27.7                      | 71         | .11.7 | GET+BL (II,S)   | 13.5  |
| 6    | 583     | 26.3                      | 72         | 11.2  | GET+BL (II,P)   | 12.8  |
| 7    | 550     | 23.9                      | 74         | 9.8   | BL (III,SP)     | 12.6  |
| 8    | 557     | 24.9                      | 73         | 10.2  | GET+BL(III,SP)  | 12.1  |
| 9    | 597     | 32.5                      | 78         | 15.0  | GET+SJ+BSF+MLAR | 15,7  |
| 10   | 550     | 23.5                      | 75         | 9,8   | BL (III,SP)     | 12.8  |
| CONT | 588     | 28.1                      | 76         | 12.6  | BL              | 13.8  |

NOTE: 1. #7, 8, and 9 from a cube (4"x 4"x4", Crystal System #41-07)

 <sup>#10</sup> from a vertically cut wafer (a whole ingot, Crystal system #41-24)

### Multiple-Ribbon EFG Growth

| TECHNOLOGY<br>RIBBON GROWTH                                                                                                                                                                                                                                                       | REPORT DATE<br>8/25/80                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| APPROACH MULTIPLE RIBBON EDGE-DEFINED FILM-FED GROWTH  CONTRACTOR MOBIL TYCO SOLAR ENERGY CORPORATION                                                                                                                                                                             | STATUS  TECHNICAL FEATURES DEMON 4 ATTEMPTS. THREE RIBBONS 10 CM WIDE AT 2.8 - 3.5 CM/MIN; MAXIMUM LENGTH OF A SINGLE RIBBON (NOT REPRODUCIBLE): 16 M WITH TOTALLY AUTOMATIC CONTROL FOR 9 HOURS;                                                                                                                                                                                          |
| GOALS  LONG RANGE:  • 10 CM WIDE RIBBON AT 4.5 CM/MIN.  • MULTIPLE GROWTH, 12 RIBBONS/OPERATOR.  • CELL EFFICIENCY (50 CM <sup>2</sup> AREA) ≥ 12%.  SHORT RANGE:  • CONVERSION EFFICIENCY ON A SMALL CELL (MIN. 4 CM <sup>2</sup> ): ≥ 12.75%  • TECHNICAL FEATURES DEMSTRATION. | 10 MIL THICKNESS, CONVERSION EFFICIENCIES UP TO 9%.  • SINGLE CARTRIDGE GROWTH; 10 CM WIDE RIBBON AT 4.2 CM/MIN WITH CELL EFFICIENCIES ON 50 CM <sup>2</sup> CELLS OF 10.5%; 8 MILS THICK. 5 CM WIDE RIBBON WITH SOLAR CELL EFFI- CIENCIES BETWEEN 11% AND 12.5% WHEN CO <sub>2</sub> IS ADDED TO THE CARTRIDGE INERT GAS. PEAK EFFICIENCIES ON SMALL CELLS (6 CM <sup>2</sup> ) OVER 13%. |

## Cost Projections (1980 \$) SAMICS-IPEG

#### ASSUMPTIONS:

- GROWTH OF 12 RIBBONS, 10 CM WIDE AT 4 CM/MIN, USING ONE OPERATOR AT \$6/HOUR.
- TOTAL EQUIPMENT CAPITAL COST: \$147,000.
- DUTY RATE OF EQUIPMENT: 90% FOR 20 SHIFTS/ WEEK, 48 WEEKS/YEAR,
- 6 MIL THICK RIBBONS,

- PROJECTION
   \$14.41/M<sup>2</sup> ADDED VALUE.
   \$22.31/M<sup>2</sup> TOTAL SHEET COST (SILICON 30% BURDENED).
- AT AN ASSUMED 11.4% PANEL EFFICIENCY AND YIELDED BY 0.95 x 0.995 FOR CELL AND PANEL YIELDS:
  - \$.13/WATT ADDED VALUE.
  - \$.21/WATT TOTAL SHEET COST.

### Technical Features Demonstration, July 1980: Goals

Ribbon Width:

10 cm

Run length:

8 hours

Growth rate:

4.5 cm/minute

Machine duty rate:

85%

Solar cell efficiency:

10.2% (mean of a 10% random sample)

Automatic controls:

operational

Number of ribbons growing:

### Run 16-215

Run duration (minutes): 572
Time percentage of simultaneous three-ribbon growth: 12.7

|                                  | Cartridge No. 1 | Cartridge No. 2 | Cartridge No. 3 | Total |
|----------------------------------|-----------------|-----------------|-----------------|-------|
| Length of ribbon growth (m)      | 6.64            | 4.08*           | 10,75           | 21,47 |
| Length ≥ 10 cm wide ribbon (m)   | 3.89            | 1.14            | 7.01            | 12.04 |
| Percentage ≥ 10 cm wide ribbon   | 58.6            | •27.9           | 65.2            | 56.1  |
| Growth time total (minutes)      | 221             | 201             | 419             |       |
| Longest growth time (minutes)    | 92              | 128             | 273             |       |
| Number of freezes                | 11              | 5               | 6               |       |
| Average growth rate (cm/minute)  | 3.00            | 2.03*           | 2.56            |       |
| Percentage of run time operating | 38.6            | 35.1            | 73.3            |       |

It appears that the very low ribbon output from this cartridge is in error, due to not recording, some broken segments.

Theoretical possible length of ribbon (572 minutes x 2.8 cm/minute x 3) = 48.05 m

Duty rate based on total length actually grown =  $\frac{21.47 \text{ m}}{48.05 \text{ m}}$  = .447

Duty rate based on total length of 10 cm wide ribbon =  $\frac{12.04 \text{ m}}{48.05 \text{ m}}$  = .251

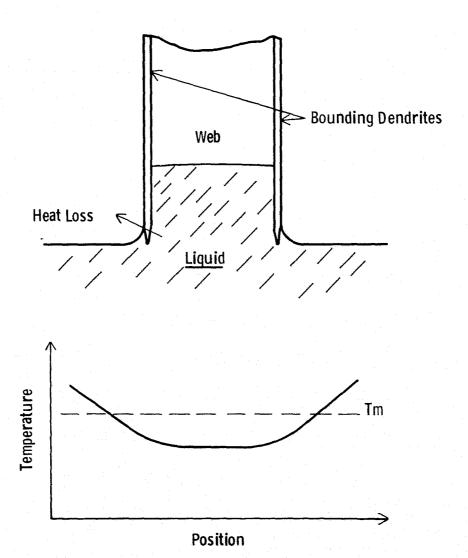
## 5-cm-Wide Ribbons

Multiple-Ribbon Throughput Data for 15.5-Hour Growth Demonstration Run 16-187, May 21, 1979

| Cartridge No.                                             | 1    | 2    | 3    | 4    | 5    |
|-----------------------------------------------------------|------|------|------|------|------|
| Total quantity (meters)                                   | 30.4 | 29.6 | 29.9 | 31,1 | 27.7 |
| Total duration of growth (minutes)                        | 910  | 890  | 825  | 919  | 829  |
| Percentage of 15.5-hour<br>run period actually<br>growing | 97.8 | 95.7 | 88.7 | 98.8 | 89.1 |
| Number of freezes                                         | 3    | 5    | 6    | 3    | 4    |
| Longest duration of continuous growth (minutes)           | 692  | 331  | 505  | 490  | 508  |
| Average growth rate (cm/minute)                           | 3,34 | 3.33 | 3.62 | 3.38 | 3.34 |
| Overall duty rate (%)                                     |      |      | 94.7 |      |      |

## Earlier EFG (RH)

|       | AVERAGE CELL PARAMETERS |               |        | RS       | ************************************** |       |
|-------|-------------------------|---------------|--------|----------|----------------------------------------|-------|
|       | Voc. mV                 | Jsc<br>m//cm2 | CFF, % | ↑(AM1),% | PROCESS USED                           | (AMI) |
| 1     | 500                     | 18.5          | 73     | 6.7      | BL                                     | 7.2   |
| 2     | 509                     | 19.5          | 66     | 6.6      | SE + BL                                | 7.2   |
| 3     | 514                     | 18,4          | 70     | 6.6      | ST + BL                                | 7.1   |
| 4     | 532                     | 21.8          | 73     | 8.5      | GBP + BL                               | 9.3   |
| 5     | 523                     | 22.9          | 68     | 8.1      | GET + BL                               | 8.4   |
| 6     | 527                     | 22,0          | 71     | 8,2      | BL + BSF                               | 9.0   |
| 7     | 533                     | 22.5          | 75     | 9,0      | SJ + MLAR                              | 10.2  |
| CONT. | 588                     | 28.1          | 76     | 12.6     | BL                                     | 13,8  |


## New EFG (RH)

|    | AVERAGE CELL PARAMETERS |                           |        |                     | <b>N</b>        |                              |
|----|-------------------------|---------------------------|--------|---------------------|-----------------|------------------------------|
|    | Voc, mV                 | Jsc<br>mA/cm <sup>2</sup> | CFF, % | <b>ሻ</b><br>(AM1) ኤ | PROCESS USED    | η <sub>в</sub><br>(AM1)<br>% |
| 8  | 524                     | 21.4                      | 71     | 8.1                 | BL              | 8.7                          |
| 9  | 568                     | 24.3                      | 75     | 10.3                | BL              | 11.1                         |
| 10 | 565                     | 28.4                      | 76     | 12.1                | SJ + BSR + MLAR | 13.6                         |

## Silicon Web Process

| Technology Single crystal ribbon growth                                                                                                                                                                                                                              | Report Date 09/23/80                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| Approach  Silicon dendritic web growth  Contractor  Westinghouse Electric Corp. Research & Development Center  Goals  • Area rate of growth 25 cm²/minute • Continuous melt replenishment • Cell efficiency ≥ 15% AM1 • Semi-automatic growth • Thickness 100-200 μm | Status                                                           |
| • Dislocation density < 104/cm <sup>2</sup>                                                                                                                                                                                                                          | 100-200 μm • Dislocation density routinely < 104/cm <sup>2</sup> |

## Web Growth vs Temperature Profile at Melt Surface



## **Progress Highlights**

|                                                               | <b>April 1977</b> | April 1978      | April 1979   | July 1980           |
|---------------------------------------------------------------|-------------------|-----------------|--------------|---------------------|
| Maximum Demonstrated<br>Area Growth Rate, cm <sup>2</sup> /mm | 2.3               | 8               | 23           | 27                  |
| Maximum Demonstrated Width, cm                                | 2.4               | 3.5             | 4.0          | 4.7                 |
| Maximum Demonstrated Cell Efficiency, AM1%                    | ~13               | ~14             | ~15          | ~15.5               |
| Continuous Melt<br>Replenishment                              | * <del>*</del>    | Concept<br>Only | Demonstrated | Long<br>Term        |
| Semi-Automatic<br>Growth                                      |                   | •               | Concept      | <b>Demonstrated</b> |

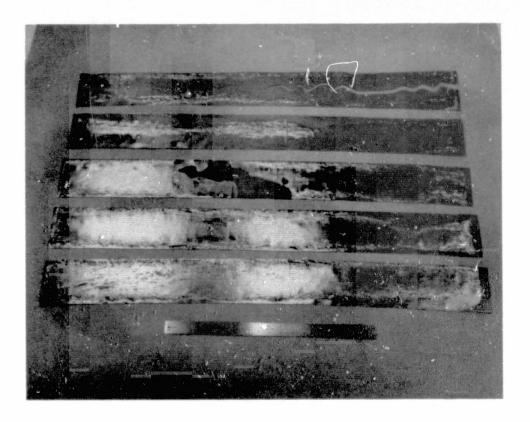
## Dendritic Web

|      |         | AVERAGE CE                |       |              |                 |                               |
|------|---------|---------------------------|-------|--------------|-----------------|-------------------------------|
|      | Voc، mV | Jsc<br>mA/cm <sup>2</sup> | CFF,% | η<br>(AM1) % | PROCESS USED    | ກຸ <sub>B</sub><br>:AM1)<br>% |
| 1    | 543     | 27.7                      | 76    | 11.5         | BL              | 12.1                          |
| 2    | 582     | 32.8                      | 75    | 14.3         | SJ+BSF+BSR+MLAR | 15.5                          |
| CONT | 583     | 27.9                      | 77    | 12.5         | BL              | 12.7                          |

### 1986 Cost Projections (1980 \$) SAMICS-IPEG

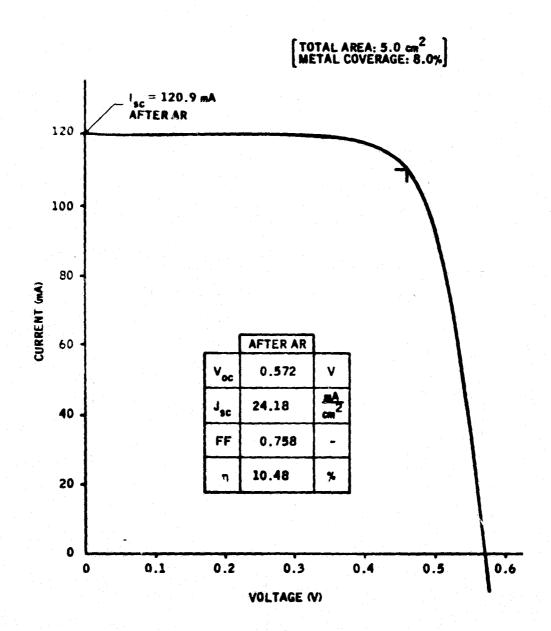
### **Assumptions:**

Area throughput rate 25 cm $^2$ /minute Cell efficiency 15% AM1 Continuously melt-replenished 3 day growth cycle Semi-automated growth Solar grade polysilicon price \$14/kg Thickness 150  $\mu$ m


## Projected Cost, \$/Wpk

| Value-Added Wafer Cost | .134 |
|------------------------|------|
| Polysilicon Cost       | .039 |
| Total Wafer Cost       | .173 |
| DOE/JPL 1986 Goal      | .224 |

### Overview of Approach


- Program rationale combines key developments necessary to equal or exceed DOE/JPL 1986 cost goal.
   Developments identified on basis of experiment, thermal modeling and economic analysis
- Key developments are:
  - Area throughput rate 25 cm<sup>2</sup>/min (> 18 cm<sup>2</sup>/min)
  - Cell efficiency 15% AM1
  - Melt replenished growth 3 day cycle (~2 day cycle)\*
  - Semi-automated growth
- Key assumptions:
  - Polysilicon price \$14/kg in 1980 dollars (< \$35/kg)\*</li>
  - Solar grade polysilicon acceptable to process
  - \* Any one of these can be a minimum requirement if all other requirements are satisfied

### Silicon on Ceramic



Top down: 6 cm/min, 9 cm/min, 12 cm/min, 20 cm/min, 30 cm/min

ORIGINAL PAGE IS OF POOR QUALITY



### SOC

|   |              | AVERAGE CE                | LL PARAMET |              |              |               |
|---|--------------|---------------------------|------------|--------------|--------------|---------------|
|   | Voc. mV      | Jsc<br>mA/cm <sup>2</sup> | CFF, %     | (AM1),%      | PROCESS USED | ↑B<br>(AMI)%  |
| 0 | 532          | 19.3                      | 66         | 6.9          | PHASE I      | 7,9           |
| 1 | 524          | 22.6                      | 65         | 7.6          | STD          | 8,3           |
| 2 | 523          | 23.5                      | 64         | 7.8          | SJ+STD       | 8,2           |
| 3 | 529          | 23.7                      | 67         | 8,4          | SJ+MLAR      | 8.9           |
| 4 | 555          | 24.1                      | 69         | 19.3         | SJ+MLAR      | 9,6           |
| 5 | 564<br>(574) | 23.0<br>(23.5)            | 73<br>(74) | 9.5<br>(9,9) | HONEYWELL    | 9.8<br>(10.2) |

### **STD Process**

- 1. EVAPORATION OF ALON THE BACK.
- 2. STD DIFFUSION
- 3. BACK CONTACT EVAPORATION (TI-Pd-Ag) AND SINTER
- 4. FRONT CONTACT (TI-Pd-Ag) BY PHOTORESIST TECHNIQUES.
- 5. MESA FORMATION
- 6. AR COATING BY EVAPORATION (S10)
- 7. INDIUM-TIN SOLDER FILL IN THE BACK SLOTS,

## Cost Projections (1980 \$) SAMICS-IPEG

### ASSUMPTIONS:

\$5.78/m<sup>2</sup> CERAMIC COST

\$50,800 PER SCIM-COATER

2 PANELS/SCIM-COATER

0.25 cm/sec PULL SPEED

1 OPERATOR/12 COATERS

6 MACHINES/STACK

85% DUTY CYCLE

92% SHEET YIELD

95% CELL YIELD

99.5% MODULE YIELD

11% ENCAPSULATED CELL EFFICIENCY

### PROJECTIONS:

\$12.97/m<sup>2</sup> ADDED VALUE

\$17.23/m2 TOTAL SHEET VALUE

\$13.1¢/Wp ADDED VALUE

\$17.4¢/Wp TOTAL SHEET VALUE

# C.D. Coulbert, Chairman

# **AGENDA**

| TIME  | SPEAKER                                       | SUBJECT                                                                                       |
|-------|-----------------------------------------------|-----------------------------------------------------------------------------------------------|
| 8:00  | C. Coulbert                                   | INTRODUCTION                                                                                  |
|       |                                               | Objective, scope of workshop, definitions                                                     |
| 8:30  | R. Ross                                       | MODULE DURABILITY GOALS                                                                       |
|       |                                               | Quantification of durability<br>Allowable failure levels                                      |
| 9:15  | L. Dumas                                      | MODULES DURABILITY EXPERIENCE                                                                 |
|       |                                               | Field exposure/application sites<br>Failure experience versus goals<br>Key failure mechanisms |
|       | MODULE DURA                                   | BILITY DESIGN TECHNIQUES                                                                      |
| 10:15 | C. Coulbert                                   | INTRODUCTION                                                                                  |
| 10:30 | J. Arnett                                     | Soiling<br>Cell cracking/hot spots                                                            |
| 11:45 | D. Moore                                      | Interconnect fatigue                                                                          |
|       |                                               | LUNCH                                                                                         |
| 12:45 | D. Moore                                      | Structural failure and glass breakage                                                         |
| 1:10  | G. Mon                                        | Electrical termination failure<br>Electrical insulation breakdown                             |
| 1:40  | A. Gupta                                      | Encapsulant thermal degradation<br>Encapsulant photodegradation<br>Delamination               |
| 2:40  | D. Kaelble                                    | Corrosion                                                                                     |
| 3:15  | APPROACHES TO INDUSTRY PANEL R. Ross, Moderat | MPROVED RELIABILITY AND LIFE:                                                                 |

### SUMMARY

A one-day workshop was conducted at JPL on Tuesday, September 23, to present and review with the photovoltaic community the status of field-test experience and module-design technology available for the achievement and assessment of module reliability and durability.

The economic impact of specific failure and degradation rates was defined quantitatively, along with tentative limits required if the LSA Project overall cost, performance, and life goals are to be met. Field-test experience was reviewed in terms of the kinds of module failure and failure rates encountered expressed in terms comparable to the tentative goals. The status of understanding the causes, consequences and possible cures for 10 specific module failure modes was reviewed in detail with application to present and future module designs.

A two-hour panel discussion with six industrial representatives considered the problems and approaches to commercial implementation of appropriate measures to achieve module reliability and durability.

Key problems defined during the discussion included the following:

- (1) Present module acceptance and qualification tests do not assure reliability or long life.
- (2) Module life-predictive test methods and design analysis tools are not yet available for most potential failure modes.
- (3) Current high-visibility field application experiments may lead to a wrong public perception of the reliability of solar power unless such experiments are properly planned, monitored, and publicized.

Key conclusions and recommendations included the following:

- (1) There is no substitute for well-planned and analyzed real-time field application experience to assess module reliability and durability.
- (2) There is a need for an objective independent organization to provide test standards, conduct tests and make the results available to the user community.
- (3) There is a need to make available in the most useful and concise format the results of photovoltaic field testing, analytical design studies and the results of failure analyses. (Design manual?)
- (4) Automation holds promise for impoved reliability if appropriate quality-assurance programs are established by industry to achieve process control, reproducibility, and feedback.

It was agreed by all that the present user community is more concerned with module reliability than with price and efficiency, The emphasis within the photovoltaic industry may shift more toward the achievement of reliability now that the price and efficiency goals are in sight.

A summary of these workshop presentations and panel discussion was presented at the 16th PIM plenary session on Wednesday morning. A brief discussion of the workshop presentations is presented below with selected figures that convey the scope of the technical material presented. It may be noted that more detailed presentations of various ongoing failure investigations were presented at of PIM sessions and specific technical reports will be available for such subjects as module circuit design, soiling, interconnect failures, and glass-design criteria.

### **Module Durability Goals**

An approach to the quantification of the LSA module life goals was presented, in terms of equivalent life cycle energy costs, by Ron Ross. If life-cycle energy cost is calculated for 70¢/watt modules with 10% efficiency and a 20-year service life, then a series of module preformance values and degradation characteristics can be defined that will give equivalent life-cycle energy costs.

Four general module performance-loss characteristics that result from the typical degradation mechanisms observed in the field were defined:

- (1) Array efficiency fixed loss (constant average power loss).
- (2) Array efficiency loss increasing with time (without module replacement).
- (3) Constant module replacement rate due to inoperative or unsafe conditions.
- (4) Rapid module wearout at end of life.

Accompanying figures presented the economic impact of various failure mechanisms in terms of failure levels causing a 10% increase in life-cycle energy cost. Based on the observation that various combined degradation modes will occur and affect array performance over the life to the modules, a strawman degradation allocation was presented for which the life-cycle energy cost would be equivalent to the original LSA goals. This allocation allowed for reasonable values of soiling, yellowing, cell failure, hail damage, electrical insulation bereakdown, interconnect fatigue and corrosion.

# Module Durability Experience

A summary of module durability experience with Block I, II, III, IV, and other developmental and commercial modules was presented by Larry Dumas. The deployment sites, times of exposure, and the types and frequency of failures were described. One chart was presented on which the strawman degradation allocations could be compared with the observed ranges of degradation

experience in the various field and application test sites. A great diversity of failure experience is noted for a relatively short exposure time. It is believed that most of the failures observed can be corrected by design changes of quality-control measures and are not inherently life-limiting.

### Module Durability Design Techniques

In this session, 10 module failure and degradation mechanisms were presented in terms of their causes, effects, and possible cures. The general approach in the investigation of failure mechanisms indentified during field and laboratory testing was described. In most instances, failure mechanisms were simulated in controlled tests to link the failures with specific environmental exposure stresses. Where possible, a quantitative relationship was established between the failure probability, failure rate or performance degradation rate and the environmental parameters. The three basic approaches to possible cures were:

- (1) Minimizing the effect by fault tolerant design.
- (2) Eliminating by design and material selection.
- (3) Assuring quality of hardware with appropriate standards, inspections, and tests.

The following brief comments on failure or degradation mechanisms express some of the highlights of ongoing investigations, which are covered in greater detail elsewhere.

### Soiling

Module surface-soil accumulation is one of the most significant causes of performance degradation. Power losses greater than 40% may be incurred in a few weeks in industrial locations. Soil retention in the presence of rain washing varies greatly between glass and polymeric encapsulant surfaces. Glass is best, but current studies are developing criteria for reduced soil retention on both glass and polymeric-film module covers.

### Cell Cracking and Hot Spots

Cell cracking due to pre-existing cell-edge flaws and various loads during manufacture, handling and environmental exposure is an obtrusive fact of life. It is currently coped with by a fault-tolerant design approach, e.g., multiple-cell contacts and appropriate circuit design with series-parallel and diode optimization.

### Interconnect Fatigue

Fatigue failure of copper-ribbon interconnects between cells in modules with glass fiber-polyester substrates has been observed as a field-test wearout failure mode. Analysis of the stress on the copper ribbon due to thermal expansion differences between the cells and substrate reveals that

plastic strain occurs and that fatigue failures can be predicted for the design in question. Design criteria for interconnect materials and stress-relief configurations to eliminate this failure mode can be derived.

#### Structural Failure and Glass Breakage

The glass used for module covers and superstrates must withstand at least three common loading conditions: hail impact, wind, and thermal-stress gradients. Field failures have been attributed to both hail and thermal stress; wind stresses are generally much lower than design-allowable. Quality criteria and recommendations are available for glass type, thickness, heat treatment and edge finish.

#### **Electrical Termination Failure**

Visible deterioration of electrical termination hardware in the field has occurred, but this has not been a serious cause of module power loss. An LSA contractor report by Motorola Inc./ITT Cannon (DOE/JPL 955367-80/1) sets forth termination design and selection criteria and ranks various avilable hardware approaches. This area is the subject of ongoing studies.

#### **Electrical Insulation Breakdown**

Electrical insulation breakdown of modules has been attributed primary to manufacturing flaws rather than to exceeding the intrinsic dielectric strength of the layers of encapsulant materials. Flaws have included voids, sharp edges, contaminants and projections. The most promising design approach appears to be the use of multiple-layer insulation films and elimination of flaws by design and process control.

# Encapsulant Thermal Degradation and Photodegradation

These two polymer degradation modes may occur separately or as a combined effect. They are identified separately because they have been identified with different field failure modes. Thermal degradation associated with high cell temperatures during back-bias cell heating has caused polymer decomposition and gas-bubble formation with cell bulging and encapsulant scorching. The possible cures are the selection of the most thermally stable polymers and the adoption of a circuit design that limits the power dissipation in a back-bias situation. The thermal stability of all candidate encapsulants is being assessed along with solar ultraviolet stability. Materials being characterized include silicones, EVA, PVB, acrylics, Tedlar, PnBA, polyurethane, and candidate UV screening films.

#### Delamination

Delamination of the encapsulant layers from module substrates of metal and plastic has been a common visible field degradation mode. Usually this has not been the proximate cause of a module failure. Delaminations at terminals and module edges is attributed mainly to inadequate surface

preparation and priming. Delamination of silicone from substrates can also be caused by UV degradation of the plastic substrate; hydroxyl formation in silicones at the interface between silicone and a substrate also leads to spontaneous delamination. Delamination over a cell results directly in an optical transmission loss. Delaminations also allow the accumulation of condensed water and would be expected to lead to cell corrosion. In general, surfaces with well-bonded organic coatings will not allow condensed water accumulation and corrosion would not occur at their interfaces.

#### Corrosion

Corrosion of exposed module and array structure hardware is a visible degradation mode. Its long-term effect on module power has not yet been quantified. One corrosion mechanism that is being investigated experimentally as having long-term degrading implications is the corrosion current generated across the thickness of cracked cells due to the cells' front-to-back potential and the opportunity for moisture condensation in cell cracks. The seriousness of the problem and possible cures have yet to be determined.

### Workshop Objective

PRESENT AND REVIEW AVAILABLE CRITERIA AND APPROACHES FOR THE IMPROVEMENT OF MODULE RELIABILITY AND SERVICE LIFE

### Workshop Scope

- 1. QUANTIFYING MODULE DURABILITY GOALS
  - BASED ON LIFE-CYCLE ENERGY COST
  - EFFECT OF FAILURE AND DEGRADATION RATES ON COST
  - ALLOWABLE FAILURE LEVELS
- 2. MODULE DURABILITY EXPERIENCE
  - SCOPE OF TESTING EXPERIENCE
  - FAILURE EXPERIENCE AT VARIOUS SITES
  - KEY FAILURE AND DEGRADATION MODES
- 3. STATUS OF DETECTION, ANALYSIS, AND PREVENTION OF TEN POTENTIAL LIFE-LIMITING FAILURE MECHANISMS
- 4. INDUSTRY PANEL DISCUSSION OF PRACTICAL APPROACHES TO IMPROVED RELIABILITY AND SERVICE LIFE

# LSA Activities Related to Durability But Not Detailed in Workshop

#### CONTRACTS:

SPECTROLAB - MODULE DESIGN, ANALYSIS, AND TEST VERIFICATION

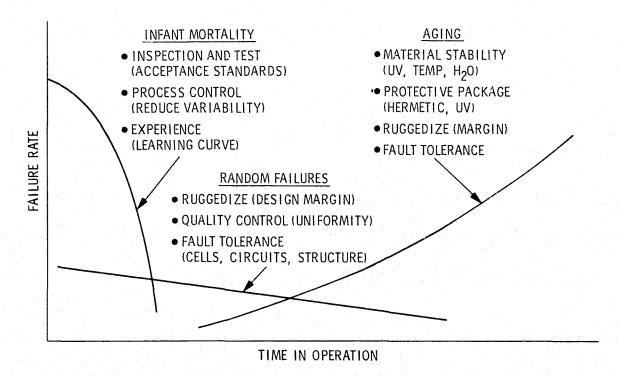
IIT RESEARCH INSTITUTE - RELIABILITY ENGINEERING AND TECHNICAL SUPPORT

CLEMSON UNIVERSITY - SOLAR CELL RELIABILITY TESTING

JPL IN-HOUSE: (WITH CONTRACTOR SUPPORT)

**OUALITY ASSURANCE** 

CODES AND STANDARDS DEVELOPMENT


ACCELERATED OUTDOOR EXPOSURE, DSET

OUTDOOR EXPOSURE OF ADVANCED ENCAPSULANT SYSTEMS

DIAGNOSTIC AND MONITORING TECHNOLOGY FOR MODULE TESTING

QUALIFICATION TEST DEVELOPMENT

# Approaches to Module Reliability Reduce Each Failure Rate Curve



#### Failure Classification

#### INFANT MORTALITY

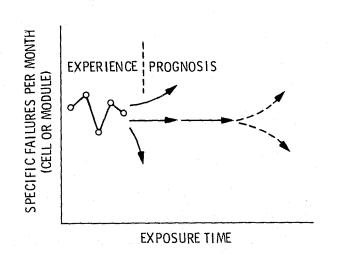
FAILURES AT NORMAL EXPOSURE AND USE CONDITIONS DUE TO FLAWS INTRODUCED INTO THE HARDWARE DURING MANUFACTURE AND NOT DETECTED BY APPLICABLE INSPECTIONS AND ACCEPTANCE TESTS

#### RANDOM FLAW/STRESS FAILURES

FAILURES DUE TO THE STATISTICAL INTERACTION OF EXCESSIVE RANDOM LOADS WITH INHERENT MATERIAL FLAWS OR LOCALIZED DESIGN WEAKNESSES

#### WEAROUT FAILURES

FAILURES DUE TO MATERIAL AGING, WEAR, CORROSION, FATIGUE AND DAMAGE ACCUMULATION. WEAROUT FAILURE ASSUMES SOME NONREVERSIBLE PREFAILURE CHANGE IN THE CHEMICAL OR PHYSICAL CHARACTERISTICS OF THE MODULE OR MODULE MATERIALS


### Reliability Definition

THE PROBABILITY OF PERFORMING ACCEPTABLY DURING A SPECIFIC DURATION, WITHIN A SPECIFIC ENVIRONMENT, UNDER SPECIFIC OPERATING CONDITIONS

#### APPLICATION NOTES

- TARGET VALUES VARY AMONG SOLAR ARRAY ELEMENTS (e.g., CELLS, MODULES, BRANCH CIRCUITS)
- NEED TO DEFINE: ACCEPTABLE PERFORMANCE (ALLOWABLE DEGRADATION)
   SPECIFIC DURATION (SERVICE LIFE)
   SPECIFIC ENVIRONMENT (GEOGRAPHIC AND APPLICATION)
   SPECIFIC CONDITIONS (APPLICATION)

# Failure Analysis



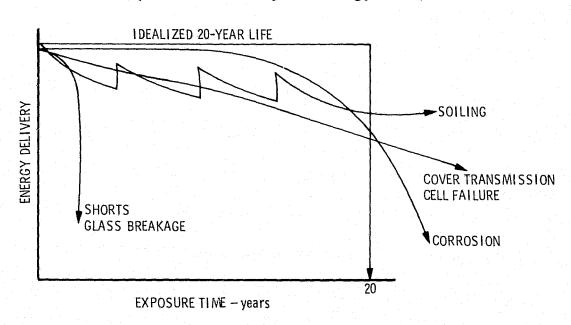
#### FAILURE ANALYSIS

#### WHAT FAILED?

- WHICH COMPONENT
- CONSEQUENCES

#### WHY/MECHANISM?

- DESIGN WEAKNESS
- RANDOM FLAW
- WORKMANSHIP
- RANDOM OVERSTRESS


#### PROGNOSIS?

- WILL IT CONTINUE?
- WILL IT DECREASE?
- WILL IT INCREASE?

#### CURE?

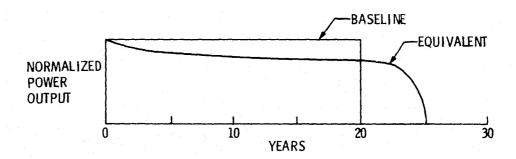
- DESIGN
- MATERIALS
- FABRICATION CONTROLS
- QC STANDARDS

# Effect of Failures on Array Performance (Basis of Life-Cycle Energy Cost)



# MODULE DURABILITY GOALS

R. G. Ross Jr.


# Array Reliability & Durability Goals

#### BASELINE PROJECT GOALS:

PRICE: 70¢/WATT (1980\$)
EFFICIENCY: ≥ 10 PERCENT
LIFETIME: 20 YEARS

#### GENERALIZED RELIABILITY/DURABILITY GOAL:

 LIFE-CYCLE ECONOMIC PERFORMANCE SHALL BE EQUIVALENT TO 70 ¢/WATT, 10 PERCENT EFFICIENCY, NO DEGRADATION FOR 20 YEARS.



# Life-Cycle Energy Cost Expression

AND DEFINING

$$\sum_{n=1}^{L} \epsilon_{n}(1+k)^{-n} = \sum_{n=1}^{L} \left(\frac{\text{POWER IN YEAR } n}{\text{INITIAL POWER}}\right) (1+k)^{-n} = \left(\frac{\text{LIFE-CYCLE}}{\text{ENERGY}}\right) \epsilon_{LC}$$

• GIVES

# **Economic Impact of Degradation Types**

| TYPE OF DEGRADATION         | UNITS                |        | AUSING 10%*<br>INCREASE<br>  k = 10 |
|-----------------------------|----------------------|--------|-------------------------------------|
| FIXED DROP IN POWER         | FRACTION             | 0.10   | 0.10                                |
| LINEAR DROP IN POWER        | FRACTION<br>PER YEAR | 0.010  | 0.014                               |
| FIXED CELL FAILURE RATE**   | FRACTION<br>PER YEAR | 0,0006 | 0.0008                              |
| FIXED MODULE FAILURE RATE   | FRACTION<br>PER YEAR | 0.007  | 0.016                               |
| DROP IN MODULE WEAROUT LIFE | YEARS                | 2.0    | 4, 75                               |

<sup>\*10%</sup> INCREASE IN LIFECYCLE ENERGY COST, k = DISCOUNT RATE

<sup>\*\*</sup>BRANCH CIRCUIT = 12 PARALLEL x 100 SERIES BLOCKS WITH DIODES

# Strawman Degradation Allocations (Equivalent to 20-Year Life)

| TYPE OF DEGRADATION       | INCLUDED<br>MECHANISMS                  | UNITS                   | DEGRADATION<br>ALLOCATION |
|---------------------------|-----------------------------------------|-------------------------|---------------------------|
| FIXED DROP IN POWER       | SOILING                                 | FRACTION                | 0.05                      |
| LINEAR DROP IN POWER      | YELLOWING,<br>AR COATING,<br>CELL DEGR. | FRACTION<br>PER<br>YEAR | 0.01                      |
| FIXED CELL FAILURE RATE   | CELL<br>CRACKING                        | FRACTION<br>PER YEAR    | 0.0001                    |
| FIXED MODULE FAILURE RATE | STRUCT. FAILURE,<br>INSUL. BREAK        | FRACTION<br>PER YEAR    | 0.005                     |
| MODULE WEAROUT LIFE       | FATIGUE,<br>CORROSION                   | YEARS                   | 25                        |

# MODULE DURABILITY EXPERIENCE

Larry Dumas

# Scope of Field Surveillance

|                               | kW  | ARRAY<br>FAILURE | MODULE<br>FAILURE                       | MOD, ELECT<br>DEGR, ( 25%) | PHYSICAL<br>INSPECTION     |
|-------------------------------|-----|------------------|-----------------------------------------|----------------------------|----------------------------|
| APPLICATIONS EXPERIMENTS      |     |                  |                                         |                            |                            |
| NASA LeRC                     |     |                  |                                         |                            |                            |
| SCHUCHULI INDIAN VILLAGE      | 3.5 | V.               | V <sup>e</sup>                          |                            |                            |
| UPPER VOLTA VILLAGE (GSA BUY) | 1.8 | v                | v'                                      |                            |                            |
| REMOTE STAND-ALONE            | 2.5 | V                |                                         |                            |                            |
| • MIT/LL                      |     |                  |                                         |                            |                            |
| NATURAL BRIDGES, UTAH         | 100 | v.               | <b>F</b> <sup>3</sup>                   |                            |                            |
| MEAD, NEBRASKA                | 28  | √.               | V                                       |                            | $\mathbf{v}^{\varepsilon}$ |
| BRYAN, OHIO                   | 15  | V                | √ď                                      |                            | v                          |
| RESIDENTIAL                   | 22  | v′               | · V                                     |                            | ν.                         |
| CHICAGO MUSEUM                | 2   | V                | <b>V</b> <sup>E</sup>                   |                            | r <sub>in</sub> .          |
| • DOD                         |     |                  | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                            |                            |
| MOUNT LAGUNA, CALIFORNIA      | 60  | V                |                                         | ¥                          | V*                         |
| MILITARY APPLICATIONS         | 12  | V                |                                         |                            |                            |
| FIELD TEST SITES              |     |                  |                                         |                            |                            |
| • NASA LeRC                   | 33  | V.               | V <sup>#</sup>                          |                            | , v                        |
| • MIT LL                      | 9   | V.               | V.                                      | V                          | *                          |
| • JPL                         | 9   | V                | V.                                      | V                          | ' V                        |
| • SANDIA                      | 4   | V                | V                                       |                            |                            |

# Field Test & Applications P/FR Summary

| BLOCK | INTERCONNECT<br>FRACTURES | UNSOLDERED<br>INTERCONNECTS | CRACKED<br>CELLS | WIRE AND<br>TERMINAL<br>CORROSION | GROUNDED<br>CELL<br>STRING | EXPOSED<br>INTERCONNECTS | ENCAPSULANT<br>DELAMINATION |
|-------|---------------------------|-----------------------------|------------------|-----------------------------------|----------------------------|--------------------------|-----------------------------|
| 1     | 24                        | 11                          | 22               | ý                                 | 2                          | 4                        | 27                          |
| 11    | 26                        | 15                          | 71               | 7                                 | 18                         | 4                        | 29                          |
| u     | 14                        | 4                           | 24               | 5                                 | 11                         | 0                        | 21                          |
| TOTAL | 64                        | 30                          | 113              | 21                                | 31                         | 8                        | 77                          |

# **Application Experiments Module Failures**

| FIELD<br>CENTER | INSTALLATION                                 | # OF<br>MODULES             | # OF<br>FAILURES     | % MODULES<br>FAILED       | OPERATING<br>TIME                               |
|-----------------|----------------------------------------------|-----------------------------|----------------------|---------------------------|-------------------------------------------------|
| NASA<br>LeRC    | SCHUCHULI<br>UPPER VOLTA<br>ALL OTHERS       | 192<br>100<br>289           | 34<br>20<br>33       | 17.7<br>20.0<br>11.4      | 1 1/2 YEARS<br>14 MONTHS<br>1 1/2 - 3 1/2 YEARS |
| MIT/LL          | NATURAL BRIDGES<br>MEAD<br>UTA<br>ALL OTHERS | 5216<br>2080<br>240<br>2050 | 54<br>48<br>63<br>33 | 1.0<br>2.3<br>26.5<br>1.6 | 3 MONTHS 2 1/2 YEARS 14 MONTHS 1 - 2 1/2 YEARS  |
| JPL             | MT, LAGUNA                                   | 2366                        | 179                  | 7.6                       | 14 MONTHS                                       |
|                 | TOTAL                                        | 12,536                      | 464                  | 3,7                       |                                                 |

# A Sampling of Current Experience

| TYPE OF DEGRADATION       | INCLUDED<br>MECHANISMS                  | UNITS                | DEGRADATION<br>ALLOCATION | RANGE OF<br>OBSERVED<br>DEGRADATION | SOURCE                      |
|---------------------------|-----------------------------------------|----------------------|---------------------------|-------------------------------------|-----------------------------|
| FIXED DROP IN POWER       | \$OILING                                | FRACTION             | 0.05                      | 0 - 0.13                            | GLASS;<br>VARIOUS SITES     |
| LINEAR DROP IN POWER      | YELLOWING,<br>AR COATING,<br>CELL DEGR, | FRACTION<br>PER YEAR | 0.01                      | NOT<br>AVAILABLE                    |                             |
| FIXED CELL FAILURE RATE   | CELL CRACKING                           | FRACTION<br>PER YEAR | 0.0001                    | 0.0002 - 0.001                      | MEAD; MT, LAGUNA            |
| FIXED MODULE FAILURE RATE | STRUCT, FAILURE<br>INSUL, BREAK         | FRACTION<br>PER YEAR | 0,005                     | 0,005 - 0,02                        | BLOCK 1-11                  |
| MODULE WEAKOUT LIFE       | FATIGUE<br>CORROSION                    | YEARS                | 25                        | 2 - ?                               | UPPER VOLTA;<br>OTHER SITES |

# MODULE DURABILITY DESIGN TECHNIQUES

#### C. D. Coulbert

# Key Elements in Achieving Life Goals

- 1. IDENTIFY LIFE-LIMITING FAILURE AND DEGRADATION MODES
- 2. RELATE FAILURE RATES AND DEGRADATION RATES TO LIFE-CYCLE COSTS
- 3. SIMULATE FAILURES TO LINK MECHANISMS TO EXPOSURE STRESSES
- 4. MEASURE CHANGE IN PERFORMANCE AND PROPERTIES VERSUS STRESS

  FIELD TESTS AND APPLICATION EXPERIMENTS

  LABORATORY ACCELERATED AND NORMAL STRESSES
- 5. FORMULATE QUANTITATIVE (EMPIRICAL OR THEORETICAL) MODELS

  DIRECT: PERFORMANCE LOSS VERSUS STRESS

INTERMEDIATE: PERFORMANCE VERSUS PROPERTY VERSUS STRESS

6. INTEGRATION EFFORT:

VARIOUS FAILURE MODES

VARIOUS SITE AND APPLICATION STRESSES

VARIOUS DESIGNS AND CONFIGURATIONS

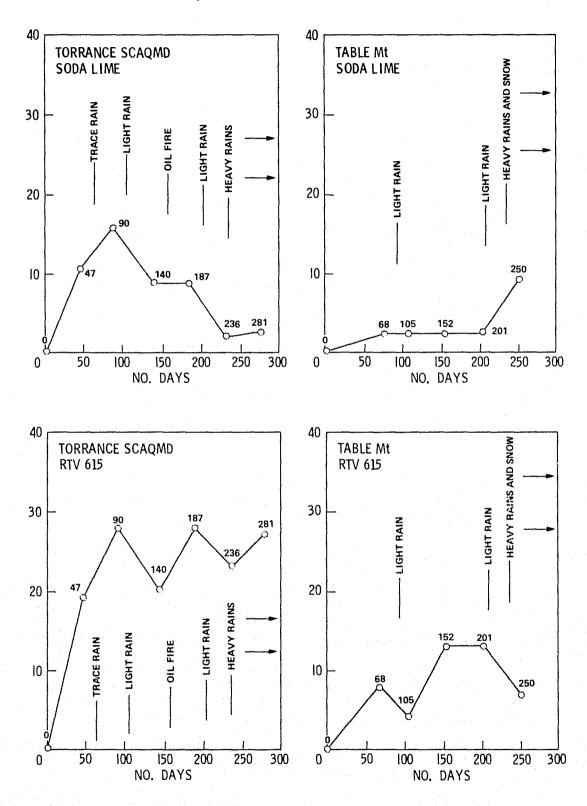
VARIOUS LIFE-CYCLE AND ENERGY COST PARAMETERS

- 7. MINIMIZE EFFECTS BY FAULT TOLERANT DESIGN
- 8. ELIMINATE DEGRADATION BY DESIGN AND MATERIAL SELECTIONS
- 9. ASSURE QUALITY BY APPROPRIATE STANDARDS, INSPECTIONS AND TESTS

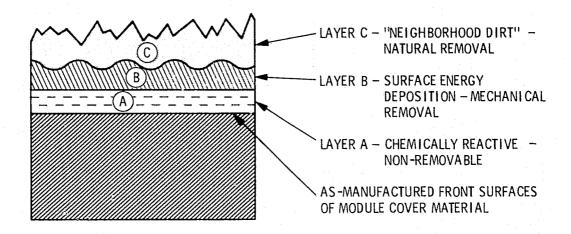
# Failure and Degradation Mechanisms Studied

- SOILING
- CELL CRACKING/HOT SPOTS
- INTERCONNECT FATIGUE
- STRUCTURAL FAILURE/GLASS BREAKAGE
- ELECTRICAL TERMINAL FAILURE

- ELECTRICAL INSULATION BREAKPOWN
- ENCAPSULANT THERMAL DEGRADATION
- ENCAPSULANT PHOTODEGRADATION
- DELAMINATION
- CORROSION


# **MODULE SOILING**

J. C. Arnett


# Example of Module Soiling Data

|                                                            |                                    |                   | CHANGE II          | N I <sub>sc</sub> (%) |
|------------------------------------------------------------|------------------------------------|-------------------|--------------------|-----------------------|
| MODULE DESCRIPTION AND LOCATION                            | TILT<br>ANGLE                      | EXPOSURE DURATION | BEFORE<br>CLEANING | AFTER<br>CLEANING     |
| OUTER COVER: RTV615 - CLEVELAND, OHIO - NYC, NEW YORK      | 40 <sup>0</sup><br>45 <sup>0</sup> | 83d<br>6mo        | -14<br>-47         | -7<br>-8              |
| OUTER COVER: GLASS - CLEVELAND, OHIO - NYC, NEW YORK       | 40 <sup>0</sup><br>45 <sup>0</sup> | 83d<br>6mo        | -3<br>-II          | +3                    |
| OUTER COVER: SYLGARD 184 - CLEVELAND, OHIO - NYC, NEW YORK | 40 <sup>0</sup><br>45 <sup>0</sup> | 90d<br>6mo        | -26<br>-69         | -5<br>-l5             |

# Percentage Loss in RNHT for Materials Exposed at Two Locations



### Three-Layer Soiling Mechanism



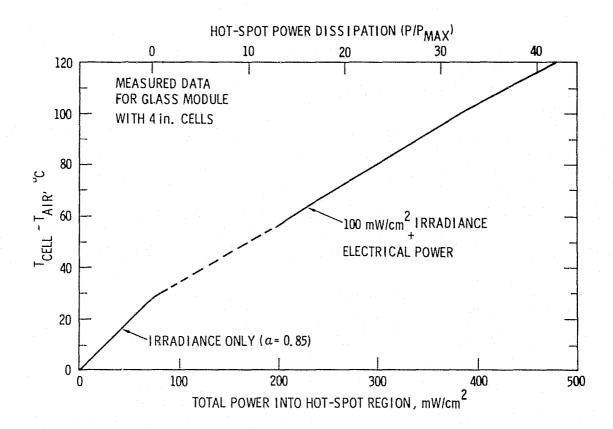
# Summary and Observations

- A THREE-LAYER SOILING MECHANISM THAT HAS SIGNIFICANT EFFECT ON TOTAL DEGRADATION AND CLEANABILITY HAS BEEN POSTULATED
- PROPER DESIGN OF MATERIAL SURFACE FINISHES MAY CONTROL FORMATION OF NON-REMOVABLE BASE CONTAMINANTS TO IMPROVE NATURAL REMOVAL PROCESSES
- UNTIL THEN, GLASS IS BEST!

# CELL CRACKING, HOT SPOTS

J. C. Arnett

# Cracked Cells in Modules at Final Inspection


| MODULE TYPE | TOTAL CELLS<br>IN BUY | FRACTION<br>CRACKED |
|-------------|-----------------------|---------------------|
| BLOCK II    | 252, 070              | 0,0004 - 0,02       |
| BLOCK III   | 158, 048              | 0.0009 - 0.02       |

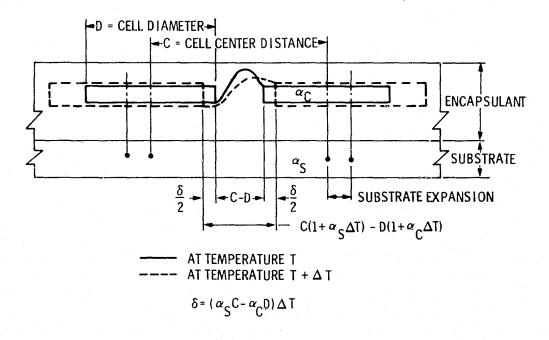
# Cracked and Failed Cells Due to Field Exposure

| SITE                 | TOTAL<br>NUMBER<br>OF CELLS<br>IN FIELD | FRACTION CRACKED PER YEAR | FRACTION<br>FAILED<br>PER YEAR |
|----------------------|-----------------------------------------|---------------------------|--------------------------------|
| MEAD<br>NEBRASKA     | 90, 168                                 | 0.010                     | 0. 00021                       |
| MT. LAGUNA<br>CALIF. | 96, 236                                 | 0, 025                    | 0. 0010                        |

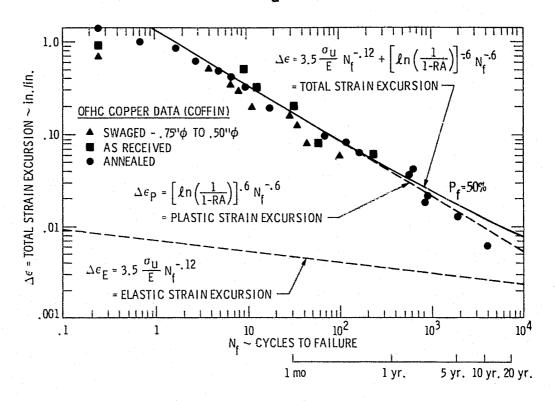
<sup>\*30</sup> TO 50% DUE TO HAIL IMPACT

# Typical Hot-Spot Heating Level for Flat-Plate Module




### **Recommendations and Conclusions**

- MULTIPLE CELL CONTACTS CONSIDERABLY REDUCE RISK OF FAILURE DUE TO CELL CRACKING
- USE OF BYPASS DIODES BEST CIRCUIT DESIGN TOOL TO REDUCE POWER LOSS AND HOT SPOT PROBLEMS
- PARALLELING OF CELL STRINGS WITHIN MODULES EFFECTIVE FOR REDUCING CELL MISMATCH AND MODULE YIELD LOSS
- USE OF INCREASED NUMBER OF SERIES BLOCKS CAN EXACERBATE HOT SPOT PROBLEM - SHOULD BE ACCOMPANIED BY USE OF BYPASS DIODES
- DETERMINATION OF POTENTIAL HOT SPOT PROBLEMS SHOULD BE ACCOMPLISHED BY TESTING MODULES HAVING ARTIFICIALLY INDUCED HOT SPOTS
- NUMBER OF PARALLEL CELLS PER MODULE CAN BE CHOSEN TO GIVE PROPER POWER PER BRANCH CIRCUIT


# INTERCONNECT FATIGUE

D. M. Moore


# Relative Cell Motion Due to Differential Thermal Expansion



Construct Fatigue Curve (Annealed Copper:  $\sigma_H = 34,000$  psi, RA = .80



Failure Prediction (Annealed Copper:  $\sigma_{\rm U}$ =34,000 psi, RA = .80)



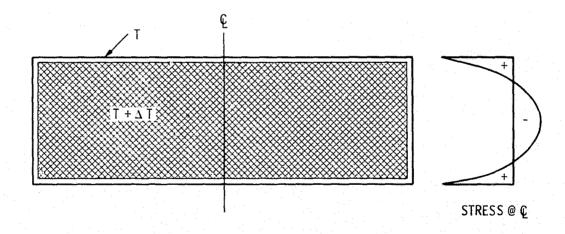
# STRUCTURAL FAILURE AND GLASS BREAKAGE

D. M. Moore

# Hail Impact Resistance

REF: PHOTOVOLTAIC SOLAR PANEL RESISTANCE TO HAIL LSA TASK REPORT 5101-62, DOE/JPL-1012-78/6




# Glass Thickness Recommendations (in Inches)

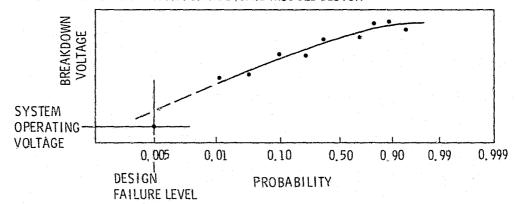
| MODULE SIZE<br>(ft)<br>GLASS TYPE | 2 X 2             | 2 X 4             | 4 X 4             | 4 X 8             |
|-----------------------------------|-------------------|-------------------|-------------------|-------------------|
| ANNEALED                          | 0.12              | Ó. 21             | <b>⊗</b> 0. 27 ⊗  | 0.48              |
| SEMI-TEMPERED                     | 0. 12<br>(0. 035) | 0. 12<br>(0. 062) | 0, 12<br>(0, 092) | 0. 15             |
| TEMPERED                          | 0.12              | 0.12              | ©, 12<br>(0. 046) | 0. 12<br>(Q. 078) |

#### NOTES:

- 1. DESIGNS ABOVE HEAVY LINE ARE PRESSURE LOAD CRITICAL (50 lb/ft², 1000 min. DURATION,  $P_f$  = 0.01)
- 2. FIGURES IN PARENTHESES ARE GLASS THICKNESS REQUIRED FOR PRESSURE LOADING
- 3. DESIGNS BELOW HEAVY LINE ARE DICTATED BY
  - HAIL WITHSTAND REQUIREMENT OR
  - MINIMUM THICKNESS FOR TEMPERING
- 4. ANNEALED GLASS (SHADED AREA) NOT CURRENTLY RECOMMENDED CRACKING DUE TO THERMAL EDGE STRESSES NOT YET RESOLVED

# Stress Due to Cold Edges




# **ELECTRICAL DEGRADATION**

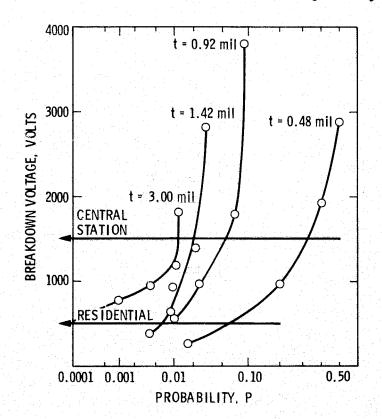
G. R. Mon

### **Electrical Insulation Design Approach**

#### **PROBLEM**

 MODULE BREAKDOWN IS A STATISTICAL PHENOMENON REQUIRING QUANTIFICATION FOR ADEQUATE MODULE DESIGN




#### **APPROACH**

- GATHER QUANTITATIVE DATA CHARACTERIZING INSULATION BREAKDOWN VOLTAGE STATISTICS
- COMPARE PROJECTED BREAKDOWN VOLTAGE AT DESIGN FAILURE LEVEL WITH SYSTEM OPERATING VOLTAGE

# Typical Module Electrical Flaws

- DEFECTS PRODUCING STRESS INTENSIFICATION
  - 1. SHARP EDGES/CORNERS ON ELECTRIFIED PARTS
  - 2. PROJECTIONS
    - a. METALLIZATION ON CELLS
    - b. SOLDER JUNCTIONS
  - 3. CONTAMINANT PARTICLES IN ENCAPSULANT
- VOIDS IN ENCAPSULANT
- DEFECTIVE THROUGH-PORTS (TERMINATIONS)

# Voltage Breakdown Probability of Mylar — Experimental



4 FT x 8 FT MODULE — LAYERS OF MYLAR REQUIRED

|        | NO. LAYERS         |             |  |  |  |
|--------|--------------------|-------------|--|--|--|
| (mils) | CENTRAL<br>STATION | RESIDENTIAL |  |  |  |
| 3.00   | 4                  | 2           |  |  |  |
| 1.42   | 4                  | 3           |  |  |  |
| 0.92   | 5                  | 3           |  |  |  |
| 0.48   | >>5                | 5           |  |  |  |

#### **Conclusions**

- DEFECT DESIGN APPROACH TO ELECTRICAL
   ISOLATION PROBLEM REQUIRES MULTI-LAYER
   THIN POLYMER INSULATION FILMS
- BASED UPON DEFECT DESIGN CONSIDERATIONS
   TEDLAR PERFORMS BETTER THAN MYLAR; BASED
   UPON INTRINSIC STRENGTH, MYLAR IS THE
   PREFERRED MATERIAL
- COST CONSIDERATIONS WILL DICTATE ULTIMATE
   CHOICES OF MATERIALS AND THICKNESSES
- DESIGN TO MINIMIZE LOCAL VOLTAGE STRESS ENHANCEMENT SITES
- OF THE MATERIALS CONSIDERED, THE FOLLOWING OFFER THE BETTER HOPE FOR LOW COST DESIGN:

EVA TEDLAR MYLAR

# **ENCAPSULANT DEGRADATION**

#### A. Gupta

# **Photothermal Ranking Studies**

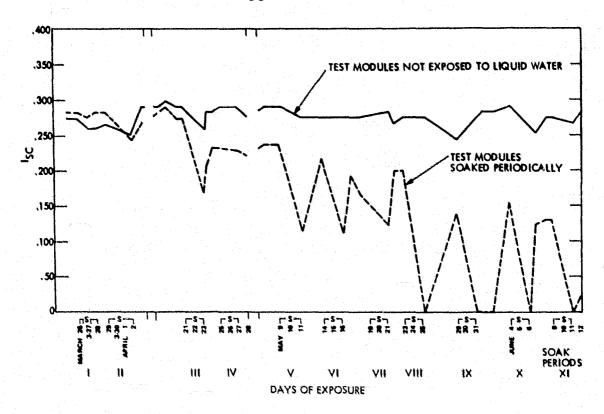
- MATERIALS
  - EVA, PVB, PU, POTTANT, RTV
  - •• 3M PMMA, TEDLAR, KORAD, PMMA TINUVIN COPOLYMER
- STRESSES
  - •• UV (30 SUN LEVEL AT 295 360 NM)
  - •• TEMP 0 C(300, 700, 850, 1050)
  - •• 0<sub>2</sub> LEVEL (FULL ACCESS, 2 IN SQ. SAMPLES IN BETWEEN TWO SHEETS OF GLASS, NO EDGE SEAL)

# **UV** Testing Technology

#### COMBINED ENVIRONMENTAL REACTOR

- UV FLUX: 6 SUNS (295-370 nm)
- UV ACCELERATION: 30 SUNS (")
- TEMPERATURE 30°-90°C
- 02/H20(V)/POLLUTANTS/N2

# **Monitoring of Environment**


- ACTINOMETERS (UNIV. TORONTO AND IN HOUSE)
- CORROSTON MONITORS (ROCKWELL SCIENCE CENTER)
- SUN SENSORS
- pH OF CONDENSED MOISTURE
- CONDUCTIVITY OF CONDENSED MOISTURE
- CONDENSED MOISTURE ON TEST SURFACE

# Indoor Life Testing at Springborn Laboratories

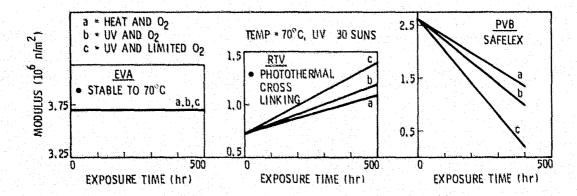
| MATERIAL                              | TIME-TO-<br>DEGRADE | ACCUMULATED TIME W/O DEGRADATION |
|---------------------------------------|---------------------|----------------------------------|
| POLYPROPYLENE CONTROL <sup>(1)</sup>  | 100 HOURS           |                                  |
| PROTECTED POLYPROPYLENE (UV SCREEN)   |                     | 18,000 HOURS                     |
| • KORAD 212 <sup>(2)</sup>            | 500 HOURS           |                                  |
| POLY VINYL DUTY RAL (PVB)             | 350 HOURS           |                                  |
| • ELVAX 150 EVA                       | 1000 HOURS          |                                  |
| • CURED, COMPOUNDED ELVAX 150 EVA (3) |                     | 12,600 HOURS                     |
| • ETHYLENE METHACRYLATE CONTROL       |                     | 2,000 HOURS                      |
| CURED, COMPOUNDED EMA                 |                     | 2,000 HOURS                      |
| • TEDLAR                              |                     | 3, 000 HOURS                     |

- (1) OUTDOOR DEGRADATION OCCURS IN ABOUT 6 MONTHS
- (2) OUTDOOR DEGRADATION OBSERVED BETWEEN 9 MONTHS TO 1 YEAR
- (3) SPRINGBORN FORMULATION, A-9918

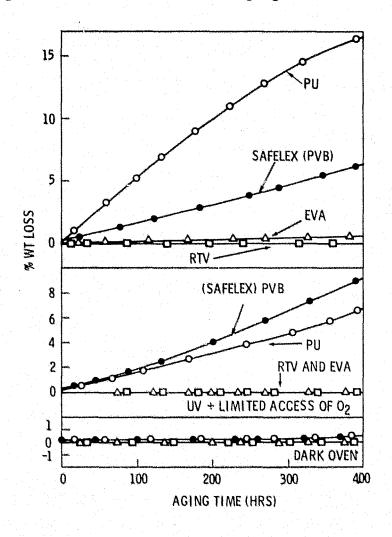
Plot of I<sub>SC</sub> vs Period of Aging



# Mechanical Property Changes of Candidate Pottant Materials on Photothermal Aging


#### OBJECTIVE:

DETERMINE PHOTOTHERMAL AND OXYGEN EFFECTS ON MECHANICAL PROPERTIES OF POTTANT MATERIALS


#### APPROACH:

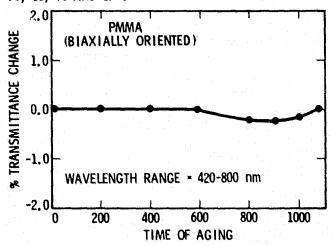
MEASURE MECHANICAL PROPERTIES OF FILMS EXPOSED TO

- UV (450 WATT MEDIUM PRESSURE Hg LAMP)
- OXYGEN CONCENTRATION
- TEMPERATURE (30-105")



# Weight Loss in Photothermal Aging of Pottants at 70°C




# Outer Cover Development and Testing

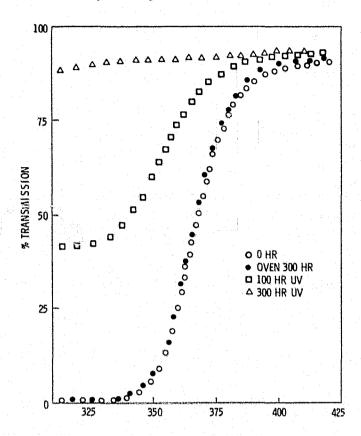
# LONG-TERM OPTICAL CLARITY AND DIMENSIONAL STABILITY OF BIAXIALLY-ORIENTED POLYMETHYLMETHACRYLATE FILMS

#### OBJECTIVE:

DETERMINE LONG-TERM OPTICAL CLARITY AND DIMENSIONAL STABILITY OF THE BIAXIALLY-ORIENTED PMMA USED AS TOP COVER

TRANSMITTANCE AND DIMENSIONAL CHANGES OF FILMS UP TO 1100 hrs AT 50, 60, 70 AND 85°C




#### RESULT

- GOOD LONG-TERM OPTICAL CLARITY (EXCLUDE SOILING EFFECT)
- NO MEASURABLE DIMENSIONAL CHANGE (EXCLUDE MOISTURE EFFECT)

#### POINTS OF CONCERN

SURFACE CRAZING

# Photothermal Degradation of UV Screening Capability of Korad at 80°C



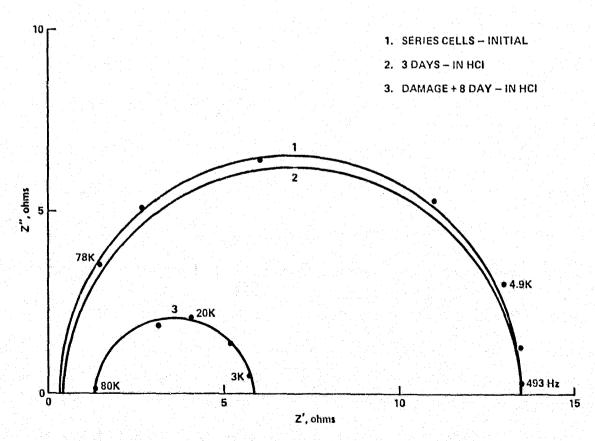
### **Panel Discussion Members**

- DICK ADDIS SOLAR POWER CORP.
- STEVE FORMAN MIT/LINCOLN LAB
- RICHARD PETERSON AMP, INC.
- GENE RALPH SPECTROLAB
- ELMER STREED NBS
- TOM WINGERT ARCO SOLAR

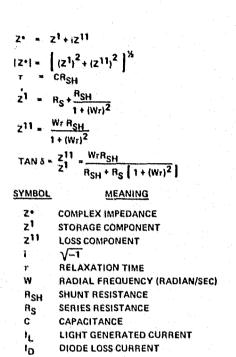
#### Questions and Issues

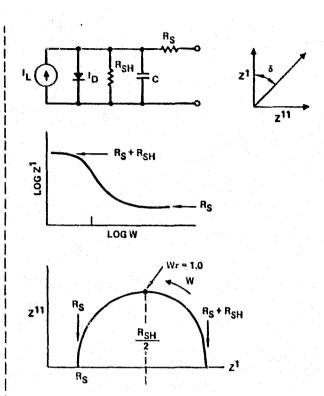
- 1. HOW SHOULD FIELD TEST DATA BE VIEWED AND USED TO ACHIEVE MODULE RELIABILITY AND LIFE?
- 2. WHAT INCENTIVES AND METHODS ARE NEEDED TO ENCOURAGE AND FACILITATE INDUSTRIAL ADOPTION OF ADEQUATE QUALITY ASSURANCE MEASURES?
- 3. WHAT IS THE PRIMARY CONCERN OF POTENTIAL PV MODULE CUSTOMERS IN SELECTING MODULE HARDWARE FOR DEMONSTRATION SYSTEM OR COMMERCIAL APPLICATIONS?
- 4. WHAT SHOULD THE ROLES OF GOVERNMENT & INDUSTRY BE IN ACHIEVING RELIABILITY & LIFE GOALS (I.E., R&D, STANDARDS, TESTING, CERTIFICATION, WARRANTIES, ETC.)?

#### **Problems Defined**


- 1. PREDICTING FAILURES AND DEGRADATION RATES APPLICABLE TO 20-YEAR LIFE
- 2. CURRENT QUALIFICATION AND ACCEPTANCE TESTS DO NOT ASSURE RELIABLE MODULE PERFORMANCE
- 3. HIGH VISIBILITY APPLICATION EXPERIMENTS USING DEVELOPMENT HARDWARE MAY LEAD TO MISINTERPRETATION OF DURABILITY PROBLEMS ENCOUNTERED
- 4. MAKING SUFFICIENT FIELD TEST MEASUREMENTS IN TERMS OF KINDS OF DATA ON LARGE NUMBERS AND VARIETIES OF DEPLOYED MODULES IS EXPENSIVE

#### Conclusions and Recommendations


- 1. NO SUBSTITUTE FOR REAL-TIME FIELD-APPLICATION EXPERIENCE TO ASSESS RELIABILITY & DURABILITY IF EXPERIMENTS ARE PROPERLY PLANNED, MONITORED, AND INTERPRETED
- 2. NEED FOR OBJECTIVE INDEPENDENT ORGANIZATIONS TO PROVIDE TEST STANDARDS, CONDUCT TESTS, MONITOR DEPLOYED HARDWARE AND PROVIDE DATA TO USER COMMUNITY
- 3. DATA FROM CURRENT FIELD & APPLICATION TESTING, RESULTS OF ANALYTICAL STUDIES, AND FAILURE MECHANISM STUDIES SHOULD BE AVAILABLE IN MOST USEFUL & CONCISE FORM (REPORTS?)
- 4. AUTOMATION HOLDS PROMISE FOR IMPROVED RELIABILITY THROUGH PROCESS CONTROL, REPRODUCIBILITY, AND FEEDBACK

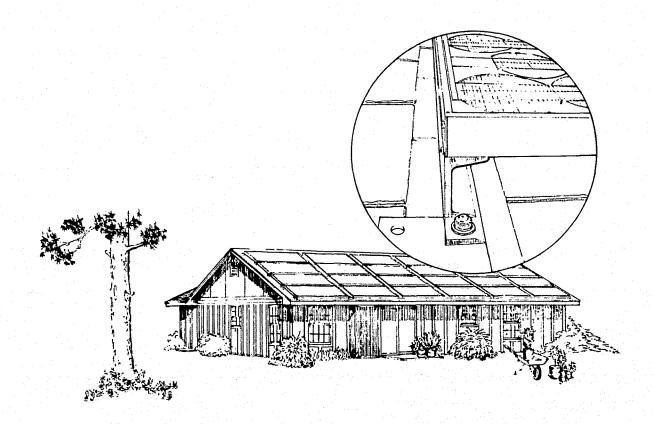

### CORROSION

# ROCKWELL INTERNATIONAL SCIENCE CENTER M. Kendig



# Single-Cell AC Impedance Relations When $I_L = I_D = 0$






## **Panel Discussions**

## PHOTOVOLTAIC HOUSES John Hesse, Moderator

#### **EXPERIMENTAL PHOTOVOLTAIC RESIDENCE**

FLORIDA SOLAR ENERGY CENTER Arthur H. Litka



## **PV Residence Specifications**

- o 5,000 WP (NOCT)
- o 62.5 M<sup>2</sup> OF STAND-OFF MOUNTED ARRAYS (ARCO 16 - 2000 MODULES)
- o GRID CONNECTED INVERTERS (2 - 4 KW GEMINI UNITS)
- o 8,000 TO 10,000 KWH ANNUAL OUTPUT EXPECTED
- o 1,309 FT<sup>2</sup> ENERGY EFFICIENT
  "PANELIZED" WOOD FRAME RESIDENCE
  (3 BR/2 BATH)
- o SPACE CONDITIONING: HEAT PUMP (EER = 7.7, COP = 2.6)
- o WATER HEATING: DEDICATED HEAT PUMP (COP = 2.5)

## Objectives of Experimental PV Residence

#### TECHNICAL/ECONOMIC:

- Performance Monitoring/Performance Model Verification
- System Dynamics/Projected Economic Benefit Under Various Utility Pricing and Credit Strategies
- DEVELOPMENT OF SIMPLIFIED DESIGN TECHNIQUES
- Power Quality Studies/Utility Interface
- INTEGRATION WITH A FULL SIZE RESIDENTIAL STRUCTURE
- DETECTION/CORRECTION OF OPERATIONAL PROBLEMS
- PRODUCT DEVELOPMENT SUPPORT
- DEVELOPMENT OF LOW ENERGY BUILDING DESIGN TECHNIQUES COMPATIBLE WITH PV IN A SOUTHEAST CLIMATE

#### PANEL DISCUSSIONS: PHOTOVOLTAIC HOUSES

#### LEGAL/INSTITUTIONAL:

- SUNRIGHTS ISSUES
- UTILITY FEEDBACK
- Codes, Ordinances, Trade Jurisdiction and Skills Studies
- FINANCING ISSUES
- INSURANCE REQUIREMENTS STUDIES
- High Public Visibility/Feedback

## Florida Power & Light (FPL) Involvement

PROVIDING 1 KW OF PHOTOVOLTAIC MODULES

PROVIDING A DC TO AC INVERTER

PROVIDING INSTRUMENTATION

PROVIDING TECHNICAL CONSULTATION

PROVIDING RESIDENTIAL LOAD PROFILE DATA

## Experimental Results Useful to FPL

SYSTEM PERFORMANCE FOR SEVERAL YEARS

INSTALLATION, OPERATIONAL, AND MAINTENANCE TIME AND COST

UTILITY INTERFACE INFORMATION

SYSTEM COSTS

#### Potential Benefits From PV Residents

FUEL SAVING
DEFERRAL OF NEW T&D CONSTRUCTION
REDUCTION IN TRANSMISSION LOSSES

#### PANEL DISCUSSIONS: PHOTOVOLTAIC HOUSES

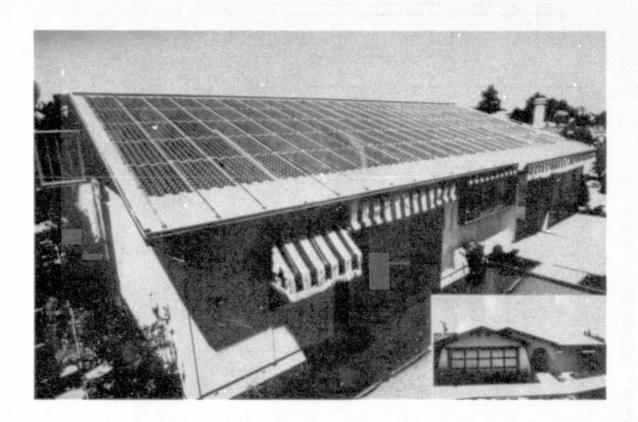
## Three-Day Preliminary Performance Record

| DATE | TIME INTERVAL | SYSTEM OUTPUT | TOTAL INTEGRATED INSOLATION KWH/M <sup>2</sup> | NET SYSTEM*<br>EFFICIENCY |
|------|---------------|---------------|------------------------------------------------|---------------------------|
| 9/16 | 12-5          | 11.20         | 3,35                                           | .064                      |
| 9/17 | 8-5           | 19.70         | 6.03                                           | .063                      |
| 9/18 | 8-5           | 22.50         | 6.50                                           | .066                      |
| 9/19 | 8-12          | 7.20          | 2.43                                           | .058                      |

N OVERALL = .063

OVERALL OUTPUT (12 p.m. 9/16 to 12 p.m. 9/19): 61.9 KWH

AVERAGE DAILY OUTPUT: 20.6 KWH

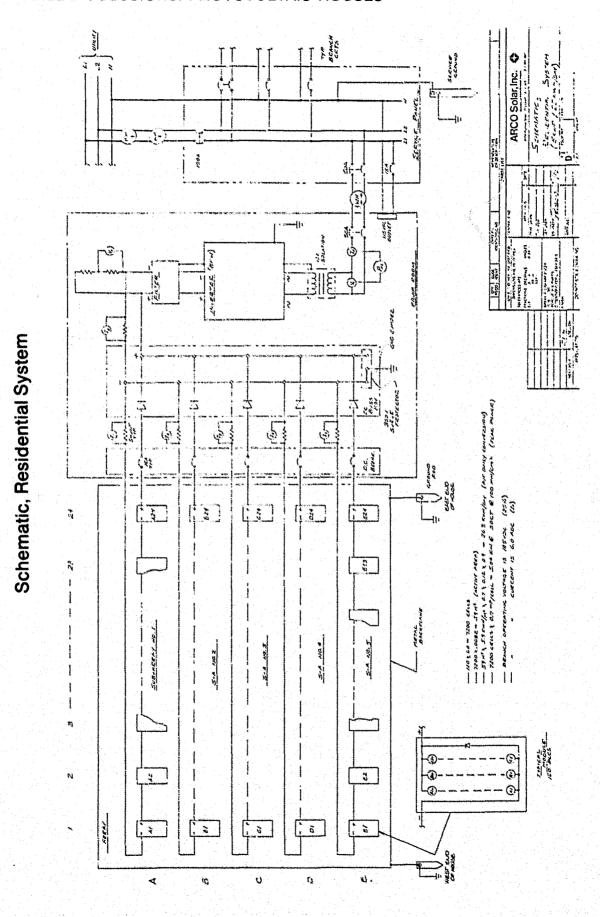

PREDICTED AVERAGE DAILY OUTPUT FOR SEPTEMBER\*\*: 19.3 KWH

<sup>\*52.1</sup> M2 ARRAY AREA

<sup>\*\*(</sup>From Historical Insolation Data and a Simple Performance Calculation Methodology)

## PHOENIX PHOTOVOLTAIC SYSTEM

ARCO SOLAR, INC. Jack Kelly




PHOENIX, ARIZONA: Site of the first demonstration of an architecturally integrated solar electric roof. Manufactured by ARCO Solar, Inc., the solar system incorporates photovoltaic cells onto standard batten and seam roofing material. It produces approximately 6 kilowatts per peak hour or 11,000 to 13,000 kilowatt hours per year. The demonstration is located on a model home built by John H. Long Homes, Inc.



The PV power system for the Phoenix house was developed, designed and supplied by ARCO Solar under a contract with John F. Long Homes, Inc., owner of the house. It consists of a rooftop array of 120 experimental modules, power conditioning including a Gemini 30-amp inverter, and a metered two-way link to the utility, Salt River Project.

Following a two-week test of the first 24-module subarray, the rest of the array was installed using standard batten-seam roofing techniques by roofers and electricians in two days during the last week of May 1980. Operation and demonstration began in the first week of June. The module used



102

in this system is mechanically compatible with sheet-steel batten seam roofing: it is a 24-guage galvanized steel sheet with upturned long edges, about 21" x 48", overlapping in shingle fashion and joined at the upturned sides by steel battens and clips. Each module contains sixty 4-inch cells in three parallel strings of 20, with EVA pottant and Korad encapsulation layers both on the steel and on the top. Module interconnects and all wiring are in the channel space between vertical rows of modules, covered by the standard inverted-V battens and clips. The steel pans and battens are grounded.

Two types of short-circuit failure were exhibited. During installation, in some cases, battens or clips overran the intended positions, broke through the encapsulation and contacted cells within the module. This required procedural correction.

A more serious failure occurred at the module interconnects. Insulation failure due to damage during connector clip installation permitted shorting between bus ribbon and the steel module substrate. This was corrected by a design change using "pigtail" wires and wire nuts for interconnects as shown in Figure 1. Minor difficulties also occurred with the inverter, and these continue to be studied.

The Phoenix rooftop-array shorts were identified by JPL using an infrared scanner. This permitted rapid identification and correction of local problems.

During four weeks in August, service meters indicated that the photovoltaic system delivered 650 kWh; 460 kWh were taken from the utility, and 480 kWh went back to the utility.

Discussion of a cogenerating system or QF (Qualifying Facility) first requires basic understanding of a utility distribution system.

Figure 2 is a single-line schematic of a representative system served by a utility substation. A single-phase lateral may serve over 600 customers. Distribution transformers serve an average of seven customers each.

The three-phase system is provided with overcurrent protection at the substation. Either a fault or an excessive imbalance in the load will disconnect all three phases. The utility's vulnerability to a large number of cogenerating customers on a common single-phase lateral can therefore be cause for concern. On the other hand, a few isolated and scattered residential cogenerating customers should not create problems in this respect.

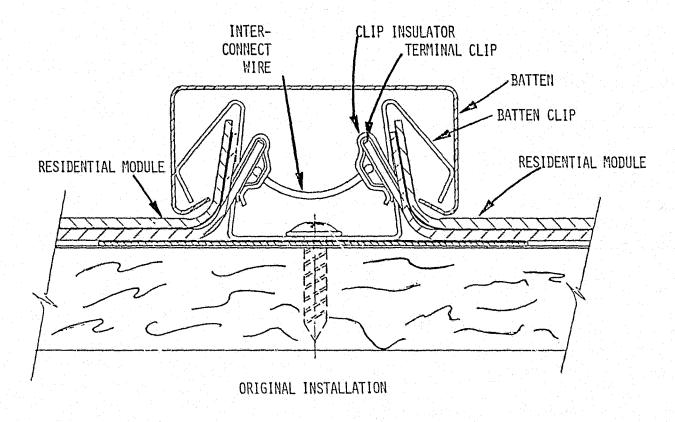

The John F. Long connection is illustrated. This consists of two model homes served by a 37.5 kVa distribution transformer. One of the homes is equipped with a photovoltaic system.

Figure 3 illustrates a typical residential service equipped with a single watt-hour meter.

When a qualifying cogenerating facility is connected to the utility system it may be represented as illustrated in Figure 4. Note the disconnect switch, which must be under utility control and capable of being locked in the

#### PANEL DISCUSSIONS: PHOTOVOLTAIC HOUSES

Figure I



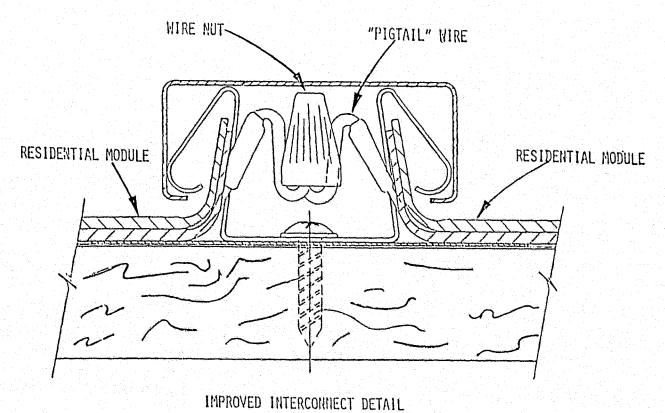



Figure 2

# UTILITY DISTRIBUTION SYSTEM EXAMPLE TOTAL 309,700 RESIDENTIAL CUSTOMERS

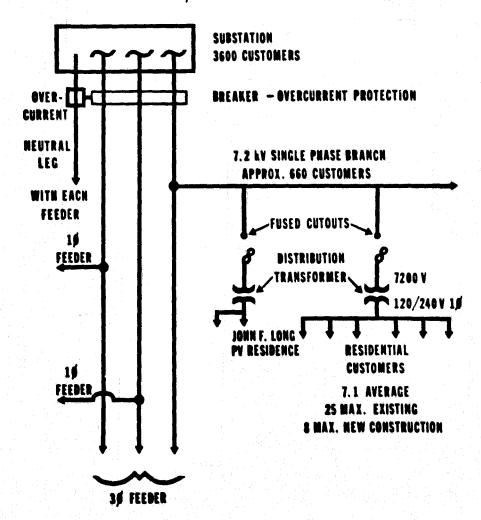



Figure 3

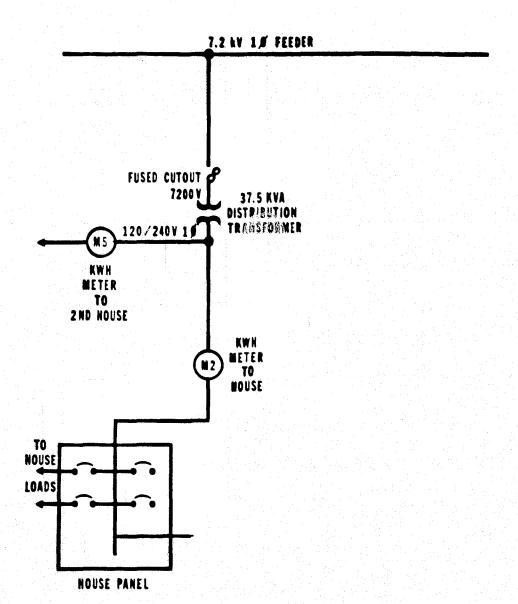
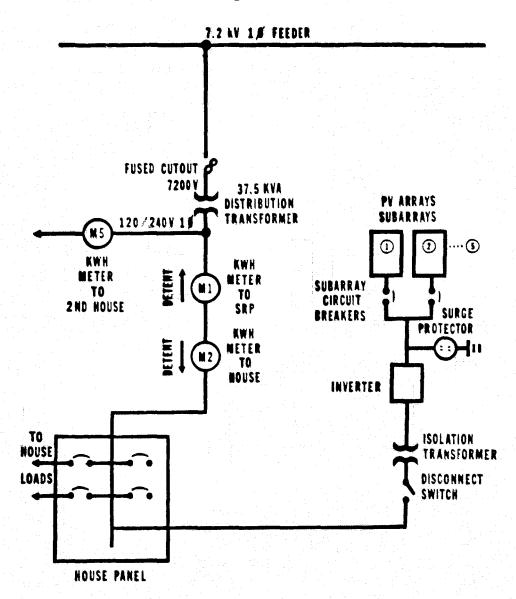
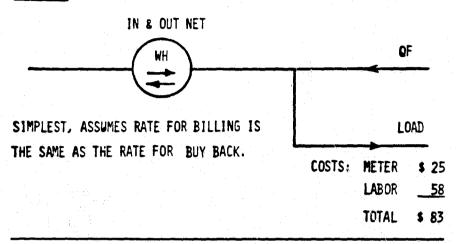




Figure 4



open position. This provides the means to prevent backfeeding when maintenance is required on the utility side of the system. It also makes it possible to provide maintenance on the photovoltaic side of the system without interrupting power to the residence.

There is variety of metering options; this illustrates one of them. In this case a second meter is added; both meters are provided with detents to prevent reverse metering. This example may be used when the power factor is acceptable but the rates for power supplied and power returned are different. A few other metering options are illustrated by Figures 5 and 6.


The John F. Long system is equipped with an additional watt-hour meter M3, a VAR-hour meter M6 and a magnetic tape recorder for test purposes. A current transformer and a power transformer are also provided on the 7200-volt

#### PANEL DISCUSSIONS: PHOTOVOLTAIC HOUSES

Figure 5

#### METERING OPTIONS

#### OPTION 1



#### OPTION 2

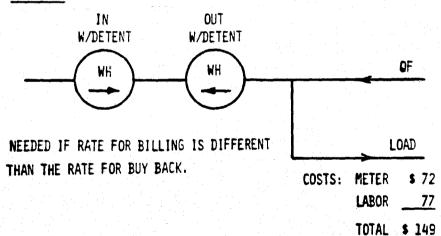
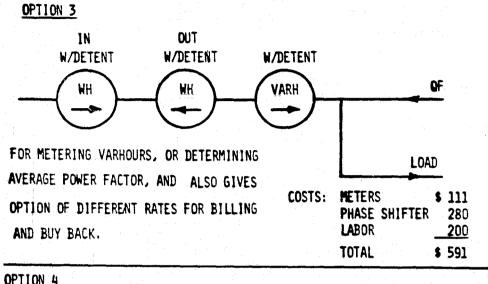
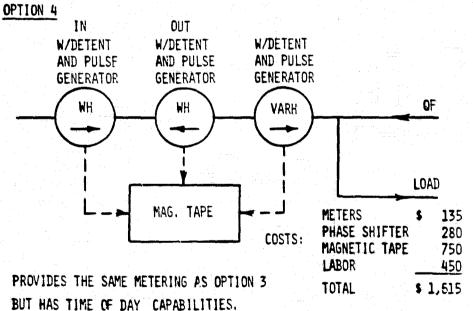
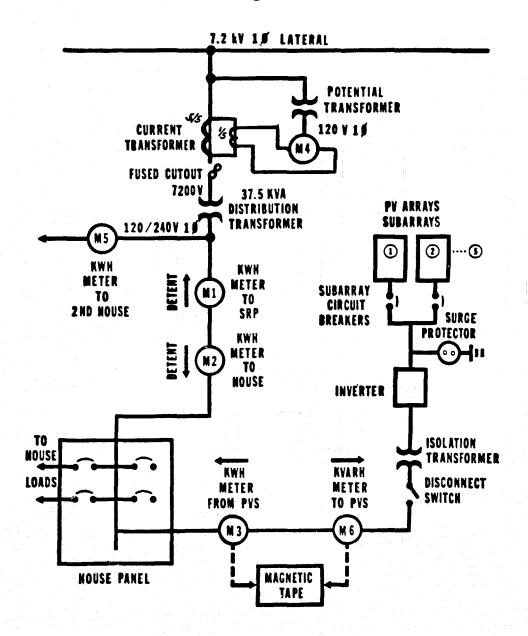





Figure 6

#### METERING OPTIONS






side of the distribution transformer to facilitate the measurement of harmonics.

Instruments used included a spectrum analyzer and plotter, oscilloscope and camera, phase angle meter, ammeter and voltmeter. (See Figure 7.)

Table 1 is a tabulation of the watt-hour and VAR-hour meter readings. The VAR-hour meter M6 was installed on July 16 and both it and the watt-hour meter M3 were zeroed at that time. Note that the average daily power readings and the average daily house loads have not varied significantly for the three periods of time indicated in the date column. The calculated power factor is running less than 40%.

Figure 7



JOHN F. LONG PHOTOVOLTAIC PROJECT
WATT-HOUR & VAR-HOUR METERING

Table 1

MAY 23, 1980 TO SEPTEMBER 17, 1980 (117 DAYS)

| DATE      | ME  | TER      |       |       | DAILY<br>AVERAGE | CA<br>TOTAL | LC LOAD<br>AV | CALC                                  |
|-----------|-----|----------|-------|-------|------------------|-------------|---------------|---------------------------------------|
| FROM TO   | NO. | FUNCTION | UNITS | TOTAL | KWH              | KMH         | KWH/DAY       | PF                                    |
| 5/23 9/17 | 3   | FROM PVS | KWH   | 2377  | 20.3             |             |               |                                       |
| TOTAL     | 1   | TO SRP   | KWH   | 1659  | 14.2             |             |               |                                       |
| 117 DAYS  | 2   | FROM SRP | KWH   | 1738  | 14.9             |             |               |                                       |
|           |     | I •      | · .   |       |                  | 2456        | 21.0          | · · · · · · · · · · · · · · · · · · · |
| 7/16 9/17 | 3   | FROM PVS | KWH   | 1217  | 19.3             |             |               |                                       |
| LAST      | 1   | TO SRP   | KWH   | 879   | 14.0             |             |               |                                       |
| 63 DAYS   | 2   | FROM SRP | KWH   | 958   | 15.2             |             |               |                                       |
|           | 6   | TO PVS   | KVARH | 3086  | 49.0             |             |               |                                       |
|           |     |          |       |       |                  | 1296        | 20.6          | 0.37                                  |
| 9/4 9/17  | 3   | FROM PVS | KWH   | 286   | 22.0             |             |               |                                       |
| LAST      | 1   | TO SRP   | KWH   | 224   | 17.2             |             |               |                                       |
| 13 DAYS   | 2   | FROM SRP | KWH   | 186   | 14.3             |             |               |                                       |
|           | 6   | TO PVS   | KVARH | 704   | 54.2             |             |               |                                       |
|           |     |          |       |       |                  | 248         | 19.1          | 0.38                                  |

It should be pointed out that periodic service and refinements of the photovoltaic system and changes in the cooling system have caused several interruptions in the system operation.

The loads are not representative of an occupied residence and the water heater and range are not connected. In-depth testing, planned for October, will include the imposition of more representative loads. Also, the tapes of 15-minute-interval readings of the inverter kWh and VARH meters will provide hourly profile of these readings.

Initial tests for wave form, harmonics and power factor have underlined the need for more in-depth investigation of these variables. They also point up the need for more precise reference measurements on existing residential distribution systems.

The preliminary tests made at the John Long photovoltaic system interconnection revealed power factors in the range of 0.2 to 0.6 on the 7.2 kV side against 0.92 with the photovoltaic system disconnected.

#### PANEL DISCUSSIONS: PHOTOVOLTAIC HOUSES

Total harmonics were measured up to 36% on the 7.2 kV side against approximately 5% with the photovoltaic system disconnected. The effect of harmonics on appliances, telephone systems and adjacent customers is not clearly understood and bears further investigation. It is also uncertain how far back into the distribution system these harmonics can be seen.

In summary, some of the utility concerns include:

- (1) Power factor, metering and buy-back rate structure.
- (2) Effect of harmonics and adjacent customers, touch-tone telephone systems, TV and radio interference, etc.
- (3) Imbalance of the three-phase load with multiple cogenerating system on a single-phase lateral.
- (4) Voltage regulation and frequency matching.
- (5) Voltage flicker.
- (6) Dynamic response (clouds, etc.)
- (7) Safety, system protection and utility operation and maintenance procedures.
- (8) Delineation of responsibility and liability.

We welcome the opportunity to seek these answers in the interest of moving toward the successful integration of cogenerating customers into our system. By March of 1981 we and other utilities will have developed technical requirements and rates to accommodate such systems. But we believe that there are many unanswered questions that may be answered by research installations such as John Long's and the Florida residence. It is too soon to place these systems on the commercial market and into the hands of customers in any number until the critical questions have been answered and safety for the customer and utility personnel can be assured.

#### PANEL DISCUSSIONS: PHOTOVOLTAIC HOUSES

#### JOHN F. LONG HOMES

John F. Long Homes has built over 33,000 homes in the Phoenix area since 1947. R. (Casey) Kayes has been with John F. Long Homes for 23 years and has found the construction of homes has become even more exciting with the advent of photovoltaics.

Kayes did not believe that his company encountered many problems during the building of these unique photovoltaic homes. He believes this is partly because of their experience in home construction; by using their knowledge, they were able to resolve potential problems before they could cause work stoppages.

Since this was the first group of homes ever built using photovoltaics, John F. Long Homes went to the Phoenix Building and Safety Department to discuss any potential problems. If they had had to go to a variance board with code problems during construction it would have caused at least a 90-day work stoppage. After they met with the Building and Safety Department at the onset of construction, the City Director and other city officials became interested in the project and pledged their cooperation to keep the job moving in case code problems should surface. Because of the good reputation of John F. Long Homes, the city was willing to expedite it regulatory functions.

Some problems could have arisen with the labor unions. Since the panels were married to roofing materials, the roofers' union might have claimed the right to install them; since these panels are electrical, the electricians could have claimed jurisdiction. Again, because of the vast experience of the company and the reputation within the city, they were able to resolve these issues early.

Kayes urged potential photovoltaic manufacturers to contact reputable construction companies before any installation is begun, to anticipate potential problems.

## CdS CELL AND MODULE PROGRESS AND PROGNOSIS

K.M. Koliwad, Moderator

#### SPRAYED CdS BACKWALL CELLS AND PANELS

PHOTON POWER, INC. G.A. Roderick

#### Summary

This paper summarizes Photon Power's current status in the research, development and manufacture of  $CdS/Cu_X$  cells, panels and modules. It also discusses briefly the company's proposed activities for the immediate future.

#### Introduction

Photon Power has some 70 employees at present, of whom 13 are in the research division, with most of the remainder in the development and manufacturing activity and a small administration and marketing section (12).

Apart from research into our  $CdS/Cu_XS$  sprayed cell and its configuration we are in the process of installing the equipment for our 5 MW factory. This factory is designed to process between 1 million and 2 million ft<sup>2</sup> of glass per year on a continuous basis (8000 h/yr) by coating 2 x 2-ft sheets of glass at up to 24 in./min line speed.

#### Research

In our research department we have divided our work into three areas:

- 1. Materials selection and evaluation.
- 2. Device development.
- 3. Process development.

Our results to date include 1 cm<sup>2</sup> cells with efficiencies greater than 7% made by a new junction forming process.

Cells of almost 7% made with dipped films, and pilot line cells of almost 6% (all laboratory cells are of 1 cm<sup>2</sup> area).

In addition to this we have achieved currents of 26.3 mA/cm<sup>2</sup>, voltages of 0.535 and fill factors of 75%, all of which, we believe, will lead to an 8% cell this year.

We are also looking at Cd/Zn sulfides and have open circuit voltage of 750 mV with such films (although with poor currents so far).

We are actively looking at both different chemicals and different techniques for crystal growth.

#### **Development**

We have two development lines, one a railway-based line that processes glass sheets 20 x 24 in. at some 2 in./min. This is the line which has produced  $1-cm^2$  cells of almost 6%, and panels with an active area of 2300 cm<sup>2</sup> at almost 3%. Smaller areas (1150 cm<sup>2</sup>) have achieved higher efficiencies (3.1%) and single cells (39 cm<sup>2</sup>) are at 3.5%, roughly.

The second line, which utilizes a belt conveyor, can handle  $24 \times 24$  in. glass and has run at 6 in./min for filming the glass.

In addition to the hot line process development we have two areas of work on the panels -- (1) Subdivision of the sprayed panels into 60 series connected cells. This is done on a machine tool -- we are currently developing the fourth generation model! (2) The framing of our panels (once made) into what we call a module. This is a treated wooden frame containing eight panels, wired in any reasonable manner, suitable for direct field installations.

#### Manufacture

We have now moved into our new factory building  $(62,000 \text{ ft}^2)$  and are in the process of installing and commissioning the equipment. As of this date 80% of the equipment is installed and we have tested the glass washer, the tin oxide line and all our services. This line, which is designed to run from 12 to 24 in./min with 24 x 24-in. glass, should be fully commissioned by Christmas.

The basis for the design is the achievement of a 70% yield of 3% panels in 1981 and a maximum of 75% yield of 5% panels by 1983/4.

The factory will employ about 120 people by next April.

#### Life

We are in the midst of a major test program to evaluate:

- (1) Device stability.
- (2) Product behavior in the environment.

As far as we can tell the device is stable. Degradation is temperature related and output reaches a constant level for any given operating temperature. In our tests we have tried both constant illumination and dark

oxygen has no measurable effect. In particular we experience no current loss at all, only a decline in fill factor when degradation does occur.

As regards the product we are working on both the series connection (which does in some cases degrade) and the encapsulant.

We began to install modules outside 2 years ago. Our first module (8 panels) was only 1% efficient and in 2 years has degraded 18% due to one panel dropping from 2 Watts to 0.4 Watts; the remainder of the panels being within 10% of the original output.

Other modules have been exposed for 18 months and our first sales modules have been installed this year.

#### Outlook

We hope to achieve 8% research cells (1 cm<sup>2</sup>) this year and will continue to aim for a 10% goal in 1981.

In the factory we hope to run the line for some 6,000 hours next year and will be aiming at sales of about 1 MW  $\pm$  250 kW during 1981. We shall be looking for some larger applications (50 kW and above) among what we hope will be a large number of 1 kW-10 kW sales. A few smaller (50 W) sales are also anticipated.

One incidental note: we shall also be selling tin oxide-coated glass for various uses with maximum sheet size of 24" x 24" and  $\Omega$  ranging from 5 to 200. Glass thickness of 1/8" (3 mm), 1/16 and possibly thinner will be available.

Taking all this into account, we hope for a break-even in 1981 with sales and costs in the \$5 million to \$7 million range.

#### SOLAR ENERGY SYSTEMS, INC. Steve DiZio

#### U.S. Government Participation

ASSUMING OBJECTIVE IS TO MAKE CdS/Cu<sub>2</sub>S TECHNOLOGY A VIABLE ALTERNATIVE TO SILICON:

- SUPPORT SYSTEMATIC DETERMINATION OF FUNDAMENTALS (MATERIALS AND DEVICE PARAMETERS) WHICH IMPACT EFFICIENCY AND LIFETIME, BOTH INDIVIDUALLY AND INTERACTIVELY.
- FORM "PARTNERSHIP(S)" WITH COMPANIES TO CARRY OUT INTEGRATED PRODUCT AND PRODUCTION DEVELOPMENT. PROPRIETARY POSITION (AND PATENT RIGHTS) OF COMPANIES IS KEY ISSUE.
- RESEARCH FUNDED FOR "PROOF OF TECHNOLOGY" WITH RESPECT TO EFFICIENCY

#### MAJOR PROBLEMS

- FEW LABORATORIES AVAILABLE WITH TECHNICAL EXPERTISE AND EQUIPMENT WILLING TO FOCUS ON FUNDAMENTAL RESEARCH WORK.
- TECHNOLOGY DOES NOT LEND ITSELF TO BREAKDOWN OF PROCESSES INTO INDIVIDUAL PROBLEM AREAS.
- FEW, IF ANY, COMPANIES CAPABLE OF DOING PROCESS AND EQUIPMENT DEVELOPMENT.
- COMPANIES PAYING HIGH "ENTRY FEE" UNLIKELY TO GIVE UP PROPRIETARY ADVANTAGE.

#### CONCLUSION

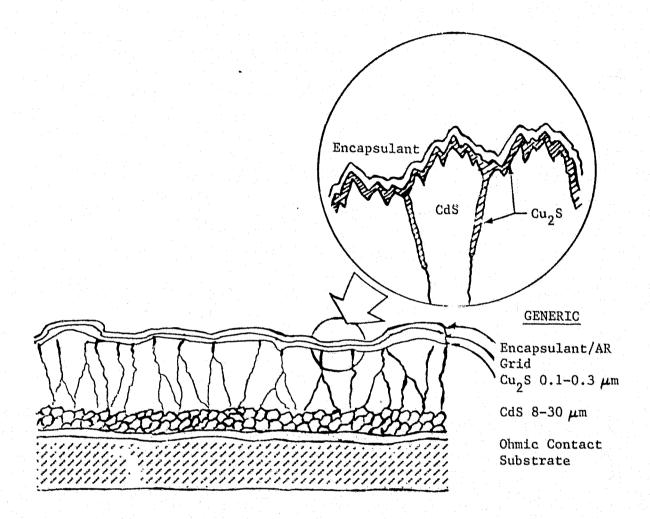
- PRESENT GOVERNMENT POLICIES AS USED IN SILICON DEVELOPMENT EFFORT ARE NOT LIKELY TO BE SUCCESSFUL WITH Cds/Cu<sub>2</sub>s.

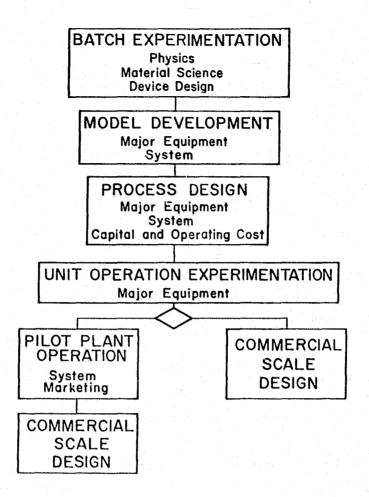
## **Industrial Participation**

- ONE COMPANY IN "MARKET ENTRY PHASE"
- ONE COMPANY IN "PRODUCTION STARTUP/PRODUCT DEFINITION PHASE"
- ONE COMPANY IN "FORMATION PHASE"
- SEVERAL COMPANIES IN "CONCEPTUAL TECHNOLOGY PHASE"

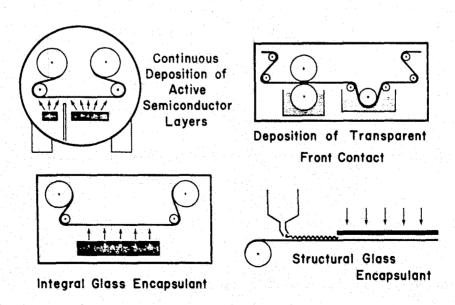
#### MAJOR PROBLEMS

- PROOF OF TECHNOLOGY UNAVAILABLE AND EXPENSIVE TO DEVELOP.
- PROCESS AND EQUIPMENT DEVELOPMENT COSTS (AND TIME) FAR EXCEED TECHNOLOGY DEVELOPMENT COST.
- REQUIRED TECHNOLOGICAL "TEAMS" DO NOT EXIST.
- PHOTOVOLTAICS POOR MATCH FOR EXISTING COMPANIES "BUSINESS REQUIREMENTS."


## Summary, CdS-Cu<sub>2</sub>S Technology


- EFFICIENCY
  - 7% TO 10% PROVED
  - 10% TO 12% PROBABLE
  - 12% to 15% POSSIBLE
- LIFE EXPECTANCY (MEAN TIME TO 80% OF START VALUE)
  - 5 TO 10 YEARS PROVED
  - 10 TO 20 YEARS PROBABLE
  - GREATER THAN 20 YEARS POSSIBLE
- ECONOMICS (BURDENED MANUFACTURING COSTS 1980 \$)
  - 50¢ TO \$1/WATT PROVED
  - 25¢ TO 50¢/WATT PROBABLE
  - LESS THAN 25¢/WATT POSSIBLE

INFORMATION IN "PUBLIC DOMAIN"


INFORMATION "PROPRIETARY"

## UNIVERSITY OF DELAWARE Fraser Russell





## **Key Unit Operations**



| RAW MATERIAL                                          | QUANTITY<br>(1b/yr)                       | COST<br>(\$/watt) |
|-------------------------------------------------------|-------------------------------------------|-------------------|
| Plate Glass Encapsulant                               | 1.25 x 10 <sup>7</sup> m <sup>2</sup> /yr | .039075           |
| Gold Grid (<1000Å, 10% Area)                          | $5.3 \times 10^3$                         | 0034              |
| One Mil Brass Substrate<br>(Five Mil Brass Substrate) | $6 \times 10^{6}$ 30 × 10                 | .029<br>.064      |
| Cadmium Sulfide (10 Micron, 60% Util)                 | 1.8 × 10 <sup>6</sup>                     | .020              |
| Integral Glass Encapsulant                            | $370 \times 10^3$                         | .004              |
| PVB Binder                                            | 5.5 × 10 <sup>6</sup>                     | .003              |
| Buss Insulator (TPA-85)                               | $22 \times 10^3$                          | .001              |
| Cu (Grid Lines, Buss)                                 | 172 × 10 <sup>3</sup>                     | .0005             |
| CuC1                                                  | 24 × 10 <sup>3</sup>                      | .0002             |
| Miscellaneous                                         |                                           | .001              |

|                                 | BATCH           | CONTINUOUS |                 |        |
|---------------------------------|-----------------|------------|-----------------|--------|
| UNIT OPERATION                  | COST*           | LABORT     | COST*           | LABOR+ |
| Substrate Preparation           | 805 - 1,130     | 11         | 455 - 620       | 5      |
| CdS Evaporation                 | 47,000 - 70,500 | 40         | 19,000 - 25,000 | 10     |
| CuCl Evaporation/Rxn            | 47,605 - 59,490 | 45         | 19,580 - 25,730 | 13     |
| Grid Print/Plate                | 1,090 - 1,390   | 8          | 890 - 1,140     | 4      |
| Integral Encapsulant Evap.      | 47,000 - 58,750 | 40         | 19,000 - 25,000 | 10     |
| Plate Glass Installation        | 110 - 140       | 7          | 190 - 240       | 7      |
| Misc. Scrubbers & Precipitators | 80 - 100        | 1          | 80 - 100        | 1      |

|     |                         |         | 100 MEG | AWATT | 1000 MEGAWATT |       |  |
|-----|-------------------------|---------|---------|-------|---------------|-------|--|
|     |                         |         | В       | С     | 8             | C     |  |
| 1.  | TOTAL MANUFACTURING COS | TS .45  | 68      | .2639 | .3757         | .2234 |  |
|     | A. COST OF CAPITAL      | .10     | 14      | .0406 | .0811         | .0305 |  |
|     | B. RAW MATERIAL         | .10     | 20      | .1017 | .1020         | .1017 |  |
|     | C. UTILITIES            | .06     | 10      | .0306 | .0610         | .0305 |  |
|     | D. PRODUCTION LABOR     | . 10    | 12      | .05   | .0708         | .03   |  |
|     | E. OVERHEAD & MISC.     | .09     | 12      | .0405 | .0608         | .0304 |  |
| 11. | TOTAL NON-FRODUCTION CO | STS .10 | 25      | .0614 | .0720         | .0412 |  |
|     | TOTAL PRODUCT COST      | .55     | 93      | .3253 | .4477         | .2646 |  |

## Capital Requirements

|                                          | MILLIONS \$ (1979) |            |  |  |  |
|------------------------------------------|--------------------|------------|--|--|--|
| PLANT SIZE                               | BATCH              | CONTINUOUS |  |  |  |
| $10^5 \text{ m}^2/\text{YR}$ . (10 MW)   | 12 - 18            | 10 - 15    |  |  |  |
| $10^6 \text{ m}^2/\text{YR}$ . (100 mw)  | 80 - 107           | 34 - 46    |  |  |  |
| $10^7 \text{ m}^2/\text{YR}$ . (1000 mw) | 636 - 854          | 263 - 347  |  |  |  |

## **Labor Requirements**

## PERSON-YEARS

| PLANT SIZE                                   | BATCH | CONTINUOUS |
|----------------------------------------------|-------|------------|
| $10^5 \text{ m}^2/\text{YR}$ . (10 MW)       | 68    | 56         |
| $10^6 \text{ m}^2/\text{YR}$ . (100 mw)      | 168   | 80         |
| $10^{7} \text{ m}^{2}/\text{YR}$ . (1000 mw) | 600   | 200        |

## **PHOTOVOLTAIC MARKETS**

## STRATEGIES UNLIMITED B. Murray

#### The Photovoltaic Market

| Year     | Shipments (kWp) | ASP (\$/Wp) | Dollars (\$M) |
|----------|-----------------|-------------|---------------|
| 1976     | 240             | 28.50       | 6.8           |
| 1977     | 450             | 19.00       | 8.6           |
| 1978     | 950             | 14.70       | 14.0          |
| 1979     | 1,450           | 13.50       | 19.6          |
| 1980*    | 3,250           | 12.00       | 39.0          |
| (* Estim | ated)           |             |               |

Demand Trends:

- U.S. Government: Variable, 25% 40%.
   Foreign Commercial: Growing, 50%
- (1979).

## Photovoltaic Applications, 1979

| CLASS                    | TYPE                                                                | % MARKET |
|--------------------------|---------------------------------------------------------------------|----------|
| Developed<br>Commercial  | Communications Cathodic Protection Navaids Railroads Consumer Other | 63%      |
| Developing<br>Commercial | Water Pumping<br>Village Power<br>Other                             | 16%      |
| Government               | Miscellaneous                                                       | 21%      |

Residential Facility Still to come: Industrial Facility

Utility

## PANEL DISCUSSIONS: PHOTOVOLTAIC MARKETS

## **Photovoltaic Competition**

| Total: | Active   | Organizations | - | 385 |
|--------|----------|---------------|---|-----|
|        | ,,,,,,,, |               |   |     |

| Subtotals: | System | Integrators    | _   | 10% |
|------------|--------|----------------|-----|-----|
|            | Module | Manufacturers  | -   | 7%  |
|            | Module | Researchers    |     | 26% |
|            | Materi | al Researchers | - , | 12% |
|            | BOS Su | ppliers        | _   | 3%  |
|            | Univer | sities         | _   | 25% |
|            | Utilit | ies            | -   | 6%  |
|            | Other  |                | -   | 11% |

## Photovoltaic Technology

| Generation | Туре                              | <u>Lifetime *</u> |
|------------|-----------------------------------|-------------------|
| lst        | Single Crystal Cz                 | 1971 ?            |
| 2nd        | Advanced Cz<br>Polycrystalline Cz | 1983 ?            |
| 3rd        | Thick Film                        | 1985 ?            |
| 4th        | Thin Film                         | 1990(?) ?         |
|            | (*For Major Market Impac          | : <b>t)</b>       |

MARKET DARKHORSE - CdS

## PANEL DISCUSSION: PHOTOVOLTAIC MARKETS

## Photovoltaic Economics

| Competitive Technology                      | PV Breakeven (\$/Wp) |
|---------------------------------------------|----------------------|
| Primary Batteries                           | \$35-25/\p           |
| Thermoelectric Generators                   | \$20-15/Wp           |
| Small Diesel Engine Generators 1            | \$12-7/Wp            |
| Large Diesel Engine Generators <sup>2</sup> | \$ 7-4/Wp .          |
| Grio Extensions                             | \$10-3/Wp            |
| Primary Grid                                | \$ 3-1/Wp            |

(1 - Less than 10 kW; 2 - Less than 100 kW)

## Photovoltaic Marketing

| CHARACTERISTIC        | REQUIREMENT                                                                                                                               |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Infant Technology     | User Basic Education<br>Direct Sales or<br>"Advanced" Distributor<br>Proven Quality and Reliability                                       |
| System Business       | Optimized Systems Designs Flexible Component Capabilities In-Depth Applications Support Developed BOS Capabilities Full Service Follow-up |
| Worldwide Market Base | Extensive Geographic Coverage<br>Export/Import Expertise<br>Socioeconomic Knowledge<br>Local Trained Follow-up                            |
| Variable Economics    | Selected Applications Emphasis Market Sector Selection Finance and Trade Expertise Competitive Technology Expertise Financing Flexibility |
| Long Term Market      | Patience and Perseverance                                                                                                                 |

#### Photovoltaic Market

"Unproven" Technology
Lagging Systems Development
Short Term "Hands On" Experience
Limited Market Knowledge
Limited Market Infrastructure
Localized Economics
Varying Government Energy Plans
Changing Basic Technology
Stiff Foreign Competition
Political Instability
Institutional Issues Unsettled
Limited Available Financing

- The Positive Side 
Competent Personnel

Demonstrable Technical Progress

Demonstrable Economics

Developing Market Relationships

Significant Industry Investment

Continuing Energy Demand

Escalating Energy Costs

Increasing User Support

Worldwide Government Recognition

"Photovoltaics" is Pronouncable

# INTERNATIONAL PV VILLAGE POWER MARKET ASSESSMENT

MOTOROLA SEMICONDUCTOR PRODUCTS, INC.

Clyde Ragsdale

A "GRASS ROOTS" EVALUATION OF THE MARKET POTENTIAL FOR PHOTOVOLTAIC APPLICATIONS IN REMOTE VILLAGES IN THE U.S. AND ITS TERRITORIES PROVIDES AN ESTIMATE OF ALMOST 14 MW AVAILABLE FOR CONVERSION FROM A POTENTIAL TO A REAL MARKET.

THIS TOTAL POWER POTENTIAL IS BASED ON THE ENERGY NEEDS OF ALMOST 400 SITES REPORTED BY FEDERAL AGENCIES AND INPUTS FROM OVER 100 INDIAN TRIBES. THIS POTENTIAL CONSISTS OF THE FOLLOWING:

U.S. GOVERNMENT AGENCIES
INDIAN VILLAGES
ALASKAN VILLAGES
TERRITORIES
U.S. COMMERCIAL
TOTAL
3,000 KWp
10,000 KWp
10,000 KWp
10,000 KWp
11,000 KWp
11,000 KWp
11,000 KWp
11,000 KWp

## The Developing Country Dilemma

#### THE SITUATION

ENERGY, ESPECIALLY ELECTRICITY, IS THE KEY TO INCREASING ECONOMIC DEVELOPMENT.

LESS THAN 30 PERCENT OF THE PEOPLE IN DEVELOPING COUNTRIES HAVE ACCESS TO ELECTRICITY.

MUCH OF THE NEED FOR ELECTRICITY IS FOR SMALL, REMOTE, DECENTRALIZED LOADS.

OIL FIRED GENERATING PLANTS ARE NO LONGER A SUITABLE OPTION FOR SMALL DECENTRALIZED LOADS DUE TO:

UNCERTAIN AVAILABILITY OF OIL.

**ESCALATING COST OF OIL.** 

DIFFICULTY OF DELIVERY AND STORAGE OF OIL.

MAINTENANCE AND REPAIR CAPABILITY AND SPARE PARTS AVAILABILITY ARE A PROBLEM IN DEVELOPING COUNTRIES AND ARE PRACTICALLY NONEXISTENT IN REMOTE VILLAGES.

EVEN OIL-RICH DEVELOPING COUNTRIES WANT TO CONSERVE OIL FOR FUTURE NEEDS AND AS A SOURCE OF FOREIGN EXCHANGE.

MOST DEVELOPING CCUNTRIES HAVE LIMITED SOURCES FOR FOREIGN EXCHANGE.

#### PANEL DISCUSSION: PHOTOVOLTAIC MARKETS

#### THE NEED

WHAT THE DEVELOPING COUNTRIES NEED THEN IS A SOURCE OF GENERATION OF ELECTRICITY WHICH HAS THE FOLLOWING CHARACTERISTICS:

ADEQUATE AVAILABILITY OF FUEL.

REASONABLE COST OF FUEL.

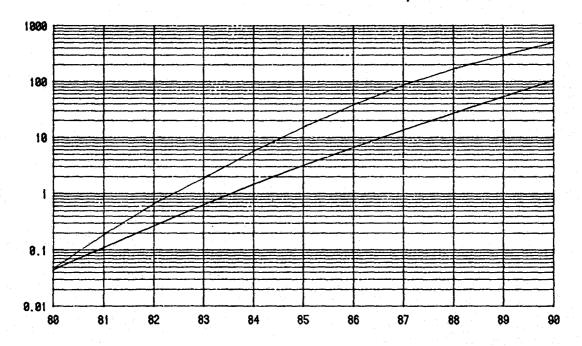
FUEL EASY TO DELIVER AND STORE.

MODULAR AND SCALEABLE IN SIZE.

**EQUIPMENT RELIABLE AND RELATIVELY MAINTENANCE-FREE.** 

MAXIMUM LOCAL CONTENT.

MINIMUM CAPITAL INVESTMENT.


#### Market Potential

| REMOTE VILLAGES HAVING NO ELECTRICITY            | 3.2 MILLION |
|--------------------------------------------------|-------------|
| AVERAGE VILLAGE SIZE                             | 500 PEOPLE  |
| ELECTRICITY REQUIRED FOR BASIC NEEDS PER VILLAGE | 10 KWP      |
| TOTAL POTENTIAL                                  | 32.000 MWP  |
| NEAR-TERM (10 YEAR) PENETRATION RATE             | 3 PERCENT   |
| NEAR-TERM MARKET                                 | 1000 MWP    |

## Impediments to Market Development

LIMITED FINANCIAL RESOURCES OF MOST DEVELOPING COUNTRIES
HIGHER PRIORITY PROGRAMS THAN VILLAGE ELECTRIFICATION
LACK OF AWARENESS OF AND CONFIDENCE IN PV
HIGH INITIAL COST OF PV
POLITICAL INSTABILITY OF MANY DEVELOPING COUNTRIES

## Village Power Market, MWp



#### Recommendations

#### I. INITIATE EDUCATIONAL/PROMOTIONAL PROGRAM

- A. U.S. OVERSEAS PERSONNEL
  - 1. COMMERCIAL ATTACHES
  - 2. AID PERSONNEL
- **B. LOCAL GOVERNMENT OFFICIALS** 
  - 1. ENERGY
  - 2. RURAL DEVELOPMENT
  - 3. EDUCATION
  - 4. AGRICULTURE
  - 5. UTILITY
  - 6. COMMUNICATIONS
- C. METHOD
  - 1. IN-COUNTRY SEMINARS
  - 2. REGULAR MAILINGS
  - 3. INVITATION TO U.S. CONFERENCES/EXHIBITIONS

#### II. CONTINUE DEMONSTRATION PROGRAM

- A. MAJOR DEMONSTRATIONS IN EACH REGION (AFRICA, LATIN AMERICA, S.E. ASIA)
- **B. DEMONSTRATIONS IN ALL KEY COUNTRIES**
- C. U.S. GOVERNMENT COST SHARE WITH HOST GOVERNMENT
- D. MAKE MAXIMUM USE OF INTEGRATION INTO EXISTING PROGRAMS (AID, ETC.)

#### PANEL DISCUSSION: PHOTOVOLTAIC MARKETS

#### III. COMMERCIALIZATION

- A. ESTABLISH MECHANISM WHEREBY IN THE EARLY STAGES OF MARKET DEVELOPMENT INDUSTRY CAN BRING POTENTIAL U.S./FOREIGN COUNTRY PROGRAMS TO U.S. GOVERNMENT FOR ASSISTANCE (FINANCIAL OR OTHERWISE)
- B. PROVIDE MECHANISM BY WHICH FOREIGN COUNTRY INTEREST AND/ OR LEADS CAN BE FUNNELED BACK TO INDUSTRY; ALSO COMPETING COUNTRY ACTIVITIES IN PV
- C. PUBLICIZE SUCCESSES THROUGH EMBASSIES AND OTHER INTER-GOVERNMENTAL CHANNELS
- D. ESTABLISH ACCELERATED WEATHER DATA GATHERING AND DISSEMINATION PROGRAM

#### Summary

SALE OF PHOTOVOLTAIC SYSTEMS AND COMPONENTS TO DEVELOPING COUNTRIES REPRESENTS AN UNUSUAL OPPORTUNITY WITH POTENTIAL BENEFITS TO ALL PARTIES CONCERNED:

INDUSTRY: INCREASES EXPORT SALES

**INCREASES VOLUME PRODUCTION** 

HOST COUNTRY: IMPROVES ECONOMIC DEVELOPMENT

IMPROVES STANDARD OF LIVING

TAKES ANOTHER STEP TO ENERGY INDEPENDENCE

U.S. GOVERNMENT: IMPROVES BALANCE OF TRADE

IMPROVES 3D WORLD RELATIONS

ACCELERATES PV HAVING AN ENERGY IMPACT

IN THE U.S.

# ASSISTANCE IN THE DEVELOPMENT OF FOREIGN MARKETS FOR PHOTOVOLTAICS

#### SOLAR POWER CORP.

Gerald F. Hein

### Government Support of Photovoltaic Technology

- PHOTOVOLTAIC TECHNOLOGY DEVELOPMENT GREATLY ASSISTED BY BLOCK PURCHASES AND RESEARCH PROGRAMS
- PRDA'S AND FPUP CONTINUED TECHNICAL ASSISTANCE
- COMMUNICATION PROGRAMS HAVE BEEN EXCELLENT
- INDUSTRY PARTICIPATION IS SUPPORTED BY GOVERNMENT
- INDUSTRY ATTENTION IS HIGHLY FOCUSED ON SEVERAL ORGANIZATIONS

BOTTOM LINE: GOVERNMENT HAS ASSISTED TECHNOLOGY DEVELOPMENT

PROGRAM FOR PHOTOVOLTAICS

## Government Support of Photovoltaic Marketing

- THERE IS NO DIRECT SUPPORT OF THE INDUSTRY IN MARKETING
- MARKET STUDIES ARE TYPICALLY NOT DONE BY THE INDUSTRY AND STUDY TIME LAGS ARE ON THE ORDER OF TWO YEARS
- COMMUNICATION PROGRAMS ARE NOT TIMELY IF EXISTENT AT ALL
- GOVERNMENT SOMETIMES IMPEDES FOREIGN MARKETS THROUGH ITS MISSIONARY WORK
- INDUSTRY ATTENTION IS VERY DIFFUSE
- GOVERNMENT PROGRAMS ARE SOMETIMES CUMBERSOME AND INEFFICIENT WHEN COMPARED TO FOREIGN GOVERNMENT PROGRAMS

BOTTOM LINE: THERE IS LITTLE FINANCIAL OR TECHNICAL ASSISTANCE FOR A DIFFICULT AND EXPENSIVE TASK, ESPECIALLY FOR THE SMALLER COMPANIES

### Possible Government Support for Photovoltaic Marketing

- INDUSTRY NEEDS AN ADVOCATE IN THE WORLD MARKETPLACE
- INDUSTRY COULD USE BLOCK GRANT ASSISTANCE IN MARKETING
- INDUSTRY NEEDS AN EFFECTIVE PROGRAM OF COMMUNICATION WITH THE GOVERNMENT
- INDUSTRY NEEDS ADVANCE NOTICE OF FOREIGN MISSIONS AND THE OPPORTUNITY TO PARTICIPATE
- INDUSTRY NEEDS BETTER COORDINATION AMONG DOE, STATE, EXPORT-IMPORT BANK, COMMERCE
- INDUSTRY DOES NOT NEED A DISCUSSION OF PRICES WHEN THEY ARE CONSTRUED AS COSTS
- INDUSTRY DOES NOT NEED A TRANSFER OF MANUFACTURING TECHNOLOGY

## RESIDENTIAL MARKET ANALYSIS FOR PHOTOVOLTAICS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY ENERGY LABORATORY

Gary L. Lilien

- CONCEPTS
- APPROACH
- PRELIMINARY FIELD RESULTS

### What Do Demonstration Programs Do?

THEY EXPOSE LARGE NUMBERS OF PEOPLE TO PRODUCTS AND CONCEPTS.

PRODUCT: SPECIFIC HARDWARE

CONCEPT: SOLAR ENERGY, IN GENERAL

SOLAR ELECTRICITY IN PARTICULAR

DEMONSTRATION PROGRAMS IMPACT:

RATE OF PENETRATION IN THE AREA AND (PERHAPS) THE RATE OF PENE-TRATION OF SIMILAR TECHNOLOGIES.

TO MAKE FULLEST USE OF THE INFORMATION EXCHANGE OCCURRING AT DEMONSTRATION SITES, THAT INFORMATION MUST BE CAPTURED SYSTEMATICALLY, AND ANALYZED SCIENTIFICALLY.

### Objectives of PV Market Monitoring Program:

- (A) TO MEASURE CHANGES IN THE LEVEL OF PV AWARENESS
  AND ATTITUDES TOWARD PV SPECIFICALLY. AND SOLAR
  AWARENESS AND CONSIDERATION MORE GENERALLY IN
  THE GEOGRAPHIC AREA.
- (B) TO DETERMINE EXPECTED SALES ACCELERATION, USING INTENT-TO-PURCHASE MEASURES, IN THE AREA, AS LEADING INDICATORS FOR (1) LONG-TERM PV SALES AND (2) SHORTER-TERM SALES OF OTHER SOLAR SYSTEMS.
- (c) TO ACT AS AN EXPERIMENTAL UNIT TO DETERMINE THE SPHERE-OF-INFLUENCE OF THE DEMONSTRATION PROGRAM.

  (HOW FAR FROM THE UNIT IS AWARENESS STILL RISING?)
- (D) TO PROVIDE DATA FOR THE DESIGN OF FURTHER GOVERN-MENT SUPPORT PROGRAMS (WHAT WOULD PRICE AND OTHER INCENTIVES HAVE TO BE TO ALLOW THE SYSTEM TO BE BOUGHT?), AND FOR INPUT INTO TECHNOLOGY DIFFUSION ANALYSES.
- (E) TO ACT AS AN IDENTIFIER OF EARLY POTENTIAL ADOPTERS OF PV.
- (F) TO PROVIDE DESIGN FEEDBACK FROM FUTURE POTENTIAL BUYERS SO THAT SYSTEM READINESS EXPERIMENTS CAN PROCEED MORE RAPIDLY.

#### PV Field Data Collection

- PRE-TEST OF MEASUREMENT INSTRUMENTS
- ANALYSIS OVERVIEW
- Some suggestive hypotheses

#### **Procedure**

#### A TELEPHONE SCREENER

- HOME OWNER
- NOT ELECTRIC HEAT USER
- IN WESTERN BOSTON OR SOUTHERN BOSTON SUBURB

#### COLLECT:

- GENERAL SOLAR AWARENESS, ATTITUDES, INTENT TO PURCHASE ACTIVE SOLAR
- PV AWARENESS, ATTITUDES
- DEMOGRAPHICS AND LIFE-STYLE VARIABLES

#### Mail Questionnaire:

- TECHNICAL DESCRIPTION OF PV
- FINANCIAL DISCUSSION OF PV (FUTURE SCENARIO)
- LIKELIHOOD OF PV INSTALLATION AT BASE PRICE AND VARIED PRICES/SAVINGS
- GENERAL QUESTIONS ABOUT PV
- PERSONAL INNOVATIVENESS AND ATTITUDES
  TOWARD INFLATION

### Pilot Study Data

254 VALID CASES RETURNED

RESPONSE RATE = 59%

### Sample Description

50% Western Boston Suburbs

50% Southern Boston Suburbs

1.2% USES A SOLAR ENERGY SYSTEM NOW (HALF FOR WATER HEATING,
HALF FOR SPACE HEATING)

72% HAVE SEEN A HOME WITH SOLAR COLLECTORS.

28% KNOW SOMEONE WITH SOLAR COLLECTORS.

20% HAVE ACTIVELY SOUGHT SOLAR INFORMATION.

### **PV Perceptions**

| 34% | HAVE | HEARD  | 0F | P۷ | POWER | SYSTEMS | TO | GENERATE | ELECTRICITY |
|-----|------|--------|----|----|-------|---------|----|----------|-------------|
|     | IN T | HE HOM | Ε. |    |       |         |    |          |             |

- 15% BELIEVE THEY CAN BUY IT IN THEIR AREA. (NATIONAL SURVEY GIVES 26% BELIEVING AVAILABILITY)
- 37% KNOW OF FEDERAL INCENTIVES FOR PV INSTALLERS.

|                                                                                          | % WHO STRONGLY OF AGREE WITH THE F | · · · · · · · · · · · · · · · · · · · |
|------------------------------------------------------------------------------------------|------------------------------------|---------------------------------------|
|                                                                                          | Pre                                | Post                                  |
| • I UNDERSTAND HOW PV POWER SYSTEMS WORK.                                                | 63.5%                              | 81.7%                                 |
|                                                                                          |                                    |                                       |
| • I UNDERSTAND THE FINANCIAL MERITS OF PV.                                               | 35.7%                              | 73.5%                                 |
|                                                                                          |                                    |                                       |
| PV POWER SYSTEMS FOR HOME USE<br>CAN PROVIDE RELIABLE AND<br>DEPENDABLE POWER.           | 28,2%                              | 27.8%                                 |
|                                                                                          |                                    |                                       |
| • I CURRENTLY CAN OBTAIN A PV<br>POWER SYSTEM THAT MAKES<br>ECONOMIC SENSE FOR HOME USE. | 16.5%                              | 27.0%                                 |
|                                                                                          |                                    |                                       |
| • PV POWER SYSTEMS WILL BE WIDELY USED IN FIVE YEARS.                                    | 21.2%                              | 16.3%                                 |

### Likelihood of PV Purchase in Next Year

ASSUMING 5-2 YEAR PAYBACK --

I.E., 1986 COST PROJECTION IS:

2.8% HAVE GREATER THAN 80% LIKELIHOOD

13.7% HAVE GREATER THAN 50% LIKELIHOOD

#### Stated Likelihood of PV Installation in Next 5 Years:

16.7% ARE VERY OR SOMEWHAT LIKELY
TO INSTALL

COMPARES TO 35% FOR ACTIVE SOLAR SPACE AND WATER HEATING SYSTEMS.

(ASSUMES 1986 COST GOALS MET.)

### Pilot Results in Explaining Intent to Purchase PV

#### MOST IMPORTANT VARIABLES

PV ECONOMIC IMPORTANCE
SAVINGS/PRICE
SOLAR INFORMATION SEARCH
INTENT-TO-PURCHASE ACTIVE SOLAR
PV INSTALLATION LIKELY SIZE

#### NEXT MOST IMPORTANT VARIABLES

BELIEF IN PV RELIABILITY/DEPENDABILITY
PRICE

#### OF LESSER IMPORTANCE

PV RISK
ECONOMIC INVESTMENT CRITERIA
ECONOMIC UNDERSTANDING
PV BELIEVABILITY/AESTHETICS

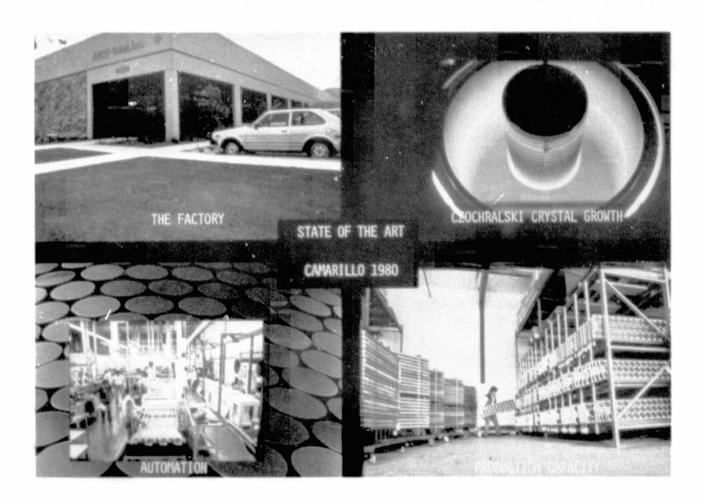
- \* 1/3 VARIANCE IN STATED INTENT-TO-PURCHASE EXPLAINED BY EQUATIONS.
- \*\* ALL VARIABLES SIGNIFICANT AT .05 LEVEL.

### Some Variables That Were Not Important

- EDUCATION
- SEX
- AGE
- FAMILY SIZE
- WORKING STATUS
- PV TECHNICAL COMPREHENSION

#### Some Preliminary Hypotheses & Conclusions

- MEASUREMENT EFFORT IS CAPTURING A SIGNIFICANT AMOUNT OF INFORMATION ABOUT CONSUMER'S PURCHASE INTENTIONS.
- RE-WORKING OF FINANCIAL PRICE/SAVINGS SEEMS NECESSARY.
- GENERAL OVER-STATEMENT ABOUT PV KNOWLEDGE -- SHOULD BE TRACKED. CONFUSION WITH OTHER SOLAR TECHNOLOGIES.
- FOLLOW-UP REQUIRED FOR ACTIVE SOLAR INTENTIONS.
- UNLIKELY TO FIND EARLY PV ADOPTERS BY DEMOGRAPHICS.
  - THE EARLY PV ADOPTER
    - HAS PV SAVINGS/ELECTRIC COSTS IMPORTANT TO HIM.
    - HAS SOUGHT OTHER SOLAR INFORMATION AND INTENDS TO PURCHASE ACTIVE SOLAR.
    - HAS LARGE ELECTRICITY NEEDS.
    - FINDS SAVINGS/PRICE KEY.
    - BELIEVES PV IS RELIABLE.
  - THE MOST SIGNIFICANT INCREASE IN PV ACCEPTABILITY WOULD COME IF IT COULD PROVIDE HEATING AND COOLING.


### Field Study Status Report

|    |                                                         | COMPLETION DATE   |
|----|---------------------------------------------------------|-------------------|
| 1. | DESIGN OF PROTOTYPE MEASUREMENT INSTRUMENTS.            | 15 JUNE 1980      |
| 2. | FOCUS GROUP INTERVIEW CONCEPT TEST.                     | 1 July 1980       |
| 3, | PRE-TEST OF MEASUREMENT INSTRUMENTS/<br>PILOT ANALYSIS. | 10 August 1980    |
| 4. | MEASUREMENT INSTRUMENT REDESIGN.                        | 15 September 1980 |
| 5. | PROPOSAL/PACKAGE TO OMB/BUREAU OF CENSUS.               | 15 Остовек 1980   |
| 6. | FIRST WAVE FIELD IMPLEMENTATION/                        | Spring 1981       |

# INDUSTRY'S PERSPECTIVE OF AND ROLE IN MEETING THE DOE PV GOALS

ARCO SOLAR, INC. C. F. Gay

The DOE knows it is making progress toward its goal of cost reduction and market penetration when private industry begins to spend its own money. ARCO Solar, Inc. (ASI) has started to do so in Camarillo, CA.



The factory, shown above left in the photo, will manufacture more than I million watts of photovoltaic modules in 1980. Czochralski silicon technology was selected for use here because of its reliability and ability to readily allow cost reductions in a direct, evolutionary fashion. Many of the automated processes and materials used by ARCO Solar have evolved from JPL inititatives.

#### PANEL DISCUSSIONS: INDUSTRY PERSPECTIVE

The last element of the photo -- the warehouse -- demonstrates three things:

- 1. The factory is designed so that production capacity can always exceed demand.
- 2. The photovoltaics industry is rapidly becoming involved in the materials handling aspects of business. Parts movement in being aided by automation but product transport needs simplification.
- 3. The major portion of the business has evolved only to the stage of module manufacture.

We are just beginning to address the issues of customer acceptance, institutional interactions, and education. Although low-cost materials and automation are important, people are the key ingredient in the manufacturing of our product and certainly in accepting this thing called a photovoltaic electric generator.

# TECHNOLOGY DEVELOPMENT AREA Silicon Material Task

#### TECHNOLOGY SESSION

Ralph Lutwack, Chairman

Progress in developing silicon (Si) production processes, in impurity studies and support activities was reported by eight contractors and by JPL.

Union Carbide Corp. reported on progress in designing and building a 100-MT/yr Experimental Process System Development Unit for producing Si and in conducting supporting R&D. Site preparation for the EPSDU was completed and purchase orders were issued for most of the equipment. MIT described its work in converting metallurgical-grade Si to trichlorosilane, which is used in the UCC process (it is rearranged to form silane, from which Si is made by pyrolysis).

Energy Materials Corp. operated its experimental system for making Si from SiHCl3, obtaining 20% conversion efficiency (exceeding their goal). Battelle Columbus Laboratories reported on their tests of a process development unit (PDU) consisting of the four full-sized items needed for a 50-MT/yr EPSDU using their Si production process (zinc reduction of silicon tetrachloride). Difficulties prevented accomplishment of the planned eight-hour-duration runs, but operation for 30 minutes and 47 minutes was achieved in tests made at half the design flow rate before problems caused test terminations.

Hemlock Semiconductor Corp. continued development of its process based on chemical vapor deposition of Si from dichlorosilane (SiH<sub>2</sub>Cl<sub>2</sub>). Reactor problems that might have been expected because of the increased reactivity of SiH<sub>2</sub>Cl<sub>2</sub>, such as Si deposition on inside surfaces of the bell jar or production of Si fines, were not encountered. Construction of a PDU for SiH<sub>2</sub>Cl<sub>2</sub> production was delayed because safety-related tests of SiH<sub>2</sub>Cl<sub>2</sub> indicated a lower autoignition temperature than that cited in the literature, and the SiH<sub>2</sub>Cl<sub>2</sub>-air reaction was more violent than expected. Design was changed to reduce the danger.

In the area of impurity studies, Westinghouse R&D Center reported on the effects of impurities on Si ingot structural breakdown, lowered solar cell performance, and age-related performance decreases. A presentation by C.T. Sah Associates covered their development of a computer model based on the fundamental parameters of solar cells for determining the effects of impurities and defects on the performance of Si solar cells.

In the area of supporting studies, Lamar University presented results of its analysis of that portion of the Hemlock process involved in making SiH<sub>2</sub>Cl<sub>2</sub>, and JPL reviewed work that is being done in the Silicon Materials Research Laboratory.

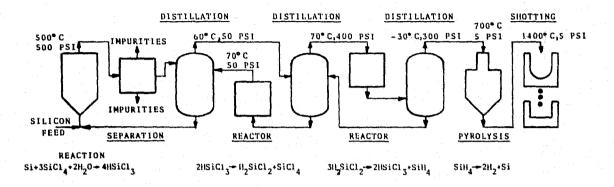
### POLYCRYSTALLINE SILICON

#### UNION CARBIDE CORP.

| TECHNOLOGY  POLYCRYSTALLINE SILICON                                                                                                                                                                                             | <b>REPORT DATE</b> 09/25/80                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| APPROACH HIGH-PURITY SILANE PRODUCTION FROM METALLURGICAL-GRADE SILICON; AND SILANE PYROLYSIS AND CONSOLIDATION TO FORM SEMICONDUCTOR-GRADE POLYCRYSTALLINE SILICON  CONTRACTOR UNION CARBIDE CORPORATION                       | STATUS  DESIGN & ENGINEERING WORK ON THE EPSDU  PURCHASE ORDERS ISSUED FOR MAJORITY OF EQUIPMENT  SITE PREPARATION WORK COMPLETED CIVIL INSTALLATION WORK JUST UNDERWAY MECHANICAL & ELECTRICAL INSTALLATION DESIGN IN PROGRESS.  SILANE PYROLYSIS R & D SUCCESSFUL LONG-DURATION RUN        |
| • DEMONSTRATE PROCESS FEASIBILITY AND ENGINEERING PRACTICALITY.  • ESTABLISH TECHNOLOGY READINESS USING "EPSDU" SIZED TO 100 MT/YR.  • SILICON PRICE OF LESS THAN \$14/KG FOR HIGH VOLUME PROCESS.  • DEFINE PROCESS ECONOMICS. | DEMONSTRATED WITH THE FREE-SPACE PDU.  NO UNDESTRABLE HARD DEPOSIT OBSERVED IN THE LINER OF THE PDU.  FABRICATION OF SI POWDEN MELTING/SHOTTING SYSTEM STARTED BY KAYEX.  FABRICATION OF FLUID-BED PYROLYSIS SYSTEM 50% COMPLETE.  SLIM-ROD AND EPITAXY REACTORS FOR EPSDU Q.C. OPERATIONAL. |

#### Problems and Concerns

#### EPSDU ENGINEERING & CONSTRUCTION


- COMPLETION OF P & I DIAGRAMS, MECHANICAL DESIGN, AND ELECTRICAL DESIGN MAY BE DELAYED. THE EPSDU START-UP DATE SHOULD NOT BE AFFECTED.
- MECHANICAL DESIGN HAS NOT BEEN THOROUGHLY EXAMINED FROM THE STANDPOINT OF PERSONNEL SAFETY AND OPERABILITY.

#### SILANE PYROLYSIS R & D

- RELIABLE Si POWDER REMOVAL FROM THE FREE-SPACE REACTOR HAS NOT BEEN DEMONSTRATED.
- . SI POWDER PURITY HAS NOT BEEN ADEQUATELY MEASURED.
- LONG-DURATION OPERABILITY OF SILICON MELTING/SHOTTING SYSTEM NEEDS TO BE DEMONSTRATED.

#### Silane-Silicon Process

- •METALLURGICAL SILICON IS PURIFIED BY CONVERTING IT TO VOLATILE CHLOROSILANE INTERMEDIATES
- •CATALITIC REDISTRIBUTION YIELDS SILANE, WHICH IS PYROLIZED TO HIGH PURITY SILICON
- THE SILICON IS CONVERTED TO POLYCRYSTALLINE SHOT, READY FOR PROSESSING TO SHEET FORM, FOR SOLAR CELLS



### **EPSDU** Design and Engineering

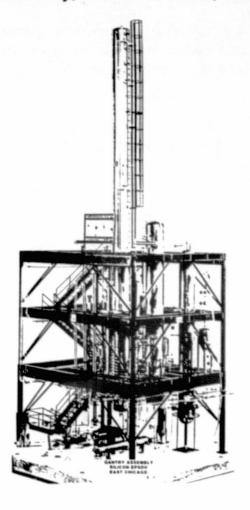
1. ESDU - DESIGN/PROCUREMENT

#### PROCESS DESIGN:

- THE WASTE TREATMENT SYSTEM DESIGN WAS COMPLETED.
- . THE PYROLYSIS PROCESS DESIGN HAS STARTED.

#### FACILITY DESIGN:

- . THE FACILITY DESIGN WAS COMPLETED.
- . THE GANTRY SCALE MODEL IS 70% COMPLETE.
- WORK ON PERSONNEL SAFETY AND PLANT OPERABILITY IS BEING ADDRESSED.


#### EQUIPMENT DESIGN & SPECIFICATION:

- . WORK WAS COMPLETED ON ALL PROCESS EQUIPMENT.
- WORK OH INSTRUMENTATION COMPONENTS IS THE PROGRESS BUT IS BEHIND SCHEDULE.
- WORK ON ALL MISCELLANEOUS OR SPECIALTY ITEMS IS ALMOST COMPLETE.

#### INSTALLATION DESIGN SPECIFICATION. SUBCOMIRACT:

- EQUIPMENT LAYOUT PROBLEMS HAVE BEEN IDENTIFIED AND ARE BEING RECTIFIED.
- MECHANICAL A'1D ELECTRICAL INSTALLATION DLSIGN WORK IS ON SCHEDULE NOW, BUT IS EXPECTED TO SLIP BY AS MUCH AS TWO TO THREE MONTHS DUE TO A HIGHER THAN ANTICIPATED WORK LOAD IN THE COMING MONTHS.

### Gantry Assembly, Silicon EPSDU, East Chicago



### EPSDU Design and Engineering (Cont.)

#### II. EQUIPMENT FABRICATION/DELIVERY

- PURCHASE ORDERS WERE ISSUED FOR MOST OF THE EPSDU EQUIPMENT.
- MANY VENDOR DRAWINGS HAVE BEEN RECEIVED AND REVIEWED.
- ALL PIECES OF EQUIPMENT SHOULD BE FABRICATED AND DELIVERED ON SCHEDULE.

#### III. INSTALLATION & CHECKOUT

- · SITE PREPARATION WAS COMPLETED.
- CIVIL INSTALLATION SUBCONTRACT WAS AWARDED AND WORK HAS BEGUN.

### **EPSDU Quality Control Laboratory**

#### I. SLIM ROD REACTOR

#### PROGRAM PLAN:

- ESTABLISH INITIAL GROWTH PARAMETERS OF SILANE FEED RATE ROD TEMPERATURE
- GROW UNDOPED RODS TO ESTABLISH BASELINE PURITY LEVEL
- GROW PHOPHOROUS (PH<sub>3</sub>) DOPED RODS OF SEVERAL CONTROLLED CONCENTRATIONS
- GROW BORON (B<sub>2</sub>H<sub>6</sub>) DOPED RODS OF SEVERAL CONTROLLED CONCENTRATIONS
- GROW RODS OF MIXED COMPOSITION
- ZONE REFINE ALL RODS (1 PASS ARGON, 6 PASSES IN VACUUM)
- MEASURE RESISTIVITY PROFILE

#### STATUS:

 WE ARE ABOUT TO START GROWING UNDOPED RODS TO ESTABLISH BASELINE PURITY LEVEL.

#### II. EPITAXY REACTOR

#### PROGRAM PLAN:

- ESTABLISH BASELINE GROWTH PARAMETERS
- DETERMINE BASELINE PURITY (RESISTIVITY) OF SILANE STANDARD
- GROW CONTROLLED DOPANT (B $_2$ H $_6$  AND PH $_3$ ) FILMS INDIVIDUALLY AND MIXED
- DETERMINE IMPURITY CAPTURE EFFICIENCY AND SYSTEM MEMORY

#### STATUS:

• EPITAXIAL FILMS ARE BEING GROWN ON SILICON WAFERS FOR BASELINE PURITY DETERMINATION.

### Silane Pyrolysis R&D

#### I. FREE-SPACE REACTOR

#### PURPOSE:

- TO MAKE A LONG-DURATION RUN AT A HIGH IHROUGHPUT

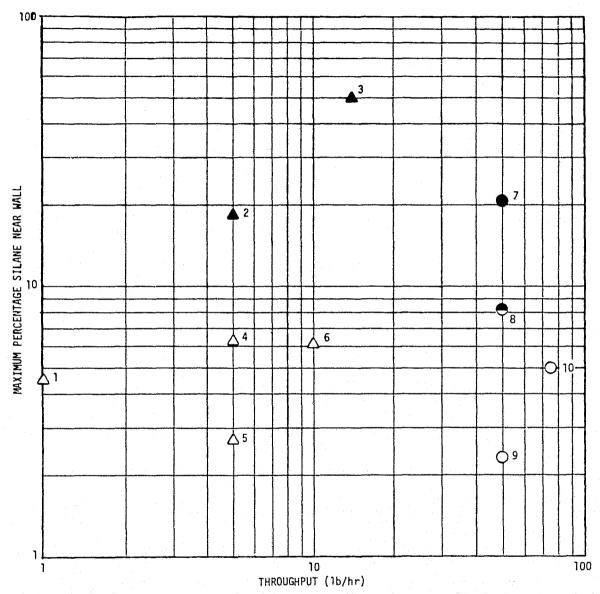
  ...(5 LB/HR) WITHOUT HARD WALL-DEPOSIT FORMATION.
- TO DESIGN A DURABLE POWDER SCRAPER SYSTEM.
- TO DESIGN A RELIABLE POWDER WITHDRAWAL SYSTEM.
- TO DEMONSTRATE ADEQUATE POWDER PURITY.
- TO DESIGN A FSR FOR EPSDU.

#### STAIUS:

- A LONG-DURATION RUN OF 12 HOURS WAS SUCCESSFUL.
   NO HARD WALL-DEPOSITS WERL OBSERVED.
- AN IMPROVED QUARTZ LINER HOLDER AND POWDER HITHDRAWAL SYSTEM ARE BEING INSTALLED.

#### PROBLEMS/CONCERNS:

- UP TO NOW, POWDER CANNOT BE WITHDRAWN WITHOUT BEING EXPOSED TO THE ATMOSPHERE.
- ACCEPTABLE POWDER PURITY HAS NOT BEEN PROVEIL.


#### **FSR Run Summaries**

| RUN NO.      | DATE    | DURATION | SILANE<br>FLOW           | MAX WALL TEMPERATURE | PRESSURE | HARD<br>DEPOSITS | BULK<br>DENSITY                         |
|--------------|---------|----------|--------------------------|----------------------|----------|------------------|-----------------------------------------|
| · <b>8</b> , | 7/ 9/80 | 2.0 hrs  | 2.3 kg/hr                | 870°C                | 138 Kpa  | No               | 0.137 g/cm <sup>3</sup>                 |
| 9            | 7/22/80 | 2.0 hrs  | 2.3 kg/hr                | 940 <sup>0</sup> C   | 138 Kpa  | No               | 0.077 g/cm <sup>3</sup>                 |
| 10           | 7/25/80 | 2.25 hrs | 2.4 kg/hr                | 915 <sup>0</sup> C   | 276 Kpa  | No               | 0.113 g/cm <sup>3</sup>                 |
| 11           | 8/14/80 | 2.0 hrs  | 3.1 kg/hr<br>(6.8 1b/hr) | 950°C(1)             |          | No               | 0.085 gm/cm <sup>3</sup>                |
| 12           | 8/18/80 | 3.1 hrs  | 2.8 kg/hr<br>(6.1 1b/hr) | 960°C                |          | No               | 0.078 gm/cm <sup>3</sup>                |
| 13           | 8/26/80 | 12.0 hrs | 2.2 kg/hr<br>(4.8 1b/hr) | 950 <sup>0</sup> C   |          | No               | 0.036 gm/cm <sup>3</sup> <sup>(2)</sup> |

NOTES: (1) Run terminated when lower reactor wall temperature exceeded  $1030^{\circ}\text{C}$ 

<sup>(2)</sup> Skimmed from top of powder bed in hopper. Average density was approximately 50% higher, or 0.054 gm/cm $^3$  (3.4 lb/ft $^3$ ). Average wall temperatures higher in run 13 than in run 12, although the maximum wall temperature was slightly lower.

### Silane Concentration vs Hard Wall Deposit Formation



#### **EXPERIMENT**

- △ NO HARD WALL DEPOSITS
- ▲ HARD WALL DEPOSITS OBSERVED
- 1 PARMA EXPERIMENT
- 2 TONAWANDA 2nd 24 HOUR RUN
- 3 TONAWANDA CAPACITY RUN
- 4 TONAWANDA OLD COIL MOVED UP
- 5 TONAWANDA OLD COIL MOVED UP
- 6 TONAWANDA NEW COIL

#### COMPUTER PREDICTION

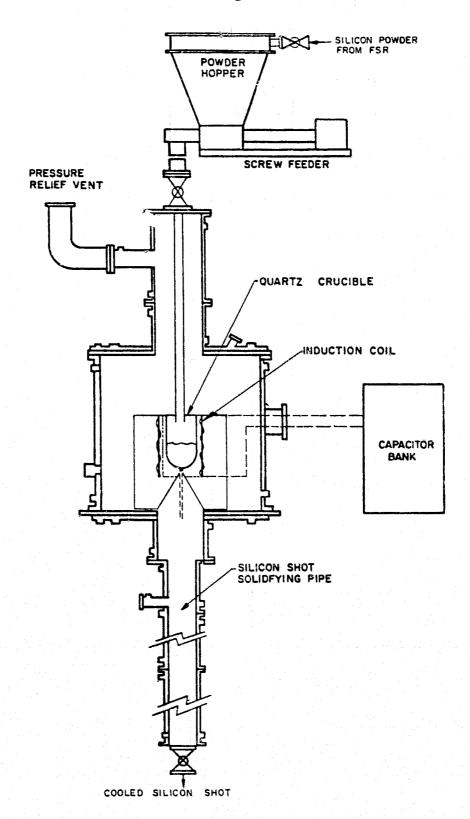
- O NO HARD WALL DEPOSITS PREDICTED
- HARD WALL DEPOSITS PREDICTED
- 7 PREDICTION 12" DIAMETER REACTOR
- 8 PREDICTION 15" DIAMETER REACTOR
- 9 PREDICTION 18" DIAMETER REACTOR
- 10 PREDICTION 18" DIAMETER REACTOR

### Silane Pyrolysis R&D (Cont.)

#### II. MELIING/SHOTTING SYSTEM

#### PURPOSE:

- TU DESIGN, FABRICATE, AND TEST A POWDER MELTING/ SHOTTING SYSTEM.
- TO DEMONSTRATE LONG-DURATION OPERABILITY.
- TO DEMONSTRATE PRODUCT PURITY.


#### STATUS:

- BENCH-SCALE TESTS WERE COMPLETED AND WERE VALUABLE DURING DESIGN.
- THE DESIGN WAS COMPLETED AND FABRICATION HAS JUST BEGUN.

#### PROBLEMS/CONCERNS:

• LONG-DURATION OPERABILITY IS A CONCERN, PARTICULARLY IN THE AREAS OF POWDER FEEDING AND OF SHOTTING APERTURE STABILITY.

### Silicon Powder Melting and Shotting System

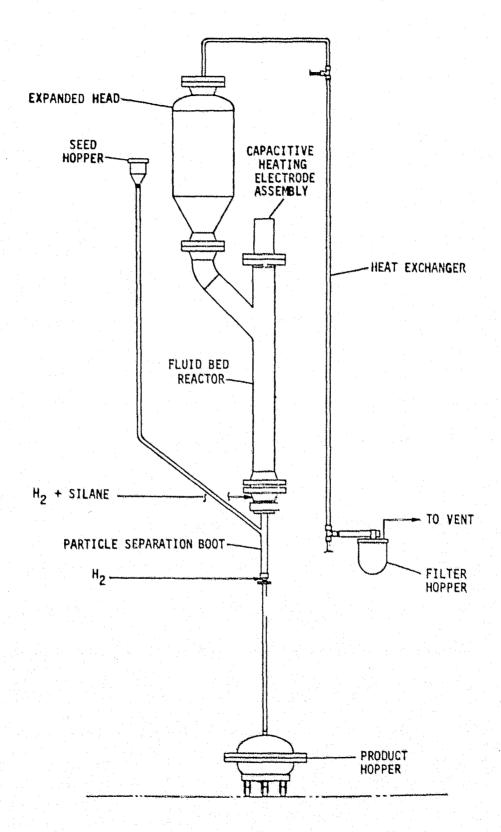


### Silane Pyrolysis R&D (Cont.)

#### III. FLUIDIZED-BED PYROLYSIS

#### PURPOSE:

 TO DEVELOP AN INEXPENSIVE METHOD OF PYROLYZING SILANE INTO HIGH-PURITY POLYCRYSTALLINE SILICON.


#### STATUS:

- FIXED-BED TESTS AND COLD FLUIDIZED-BED IESIS WERE COMPLETED FOR ESTABLISHING DESIGN BASIS.
- THE REACTOR SYSTEM DESIGN WAS COMPLETED AND FABRICATION IS UNDERWAY.

#### PROBLEMS/CONCERNS:

- SINTERING OF BED PARTICLES MAY PREVENT FLUIDIZATION.
- MORPHOLOGY OF DEPOSIIS MAY BE POOR AND THE BED MIGHT PRODUCE EXCESSIVE FINES.

### Fluid Bed Reactor Assembly



### Summary of Particle Separation Tests in 1.5-in.-Dia Boot Bench Tester With Narrow Size Distribution

|                | 800T<br>U/V <sub>m</sub> r | X SAMPLE CONCENTRATION RATIO |         |        |      |      |       |
|----------------|----------------------------|------------------------------|---------|--------|------|------|-------|
| REACTOR        | U/Umf                      | 323.5µ                       | 273.5): | 213,5µ | 163µ | 127μ | 96.5µ |
| 1000<br>GM     | 5                          | 1.10                         | 1.10    | 0.88   | 0.55 | 0.04 | 0.03  |
| 21 " 1688      | 3                          | 1.10                         | 1.12    | 0.88   | 0.50 | 0.03 | 0.02  |
| 2 28           | 4                          | 1.13                         | 1.11    | 0.82   | 0.50 | 0.04 | 0.02  |
| 2              | 2.9                        | 1.12                         | 1.15    | 0.77   | 0.80 | 0.11 | 0.02  |
|                | 3.4                        | 1.04                         | 1.12    | 0.86   | 1.35 | 0.33 | 0.05  |
| 34" 2000<br>GM | 5.5                        | 1.07                         | 1.11    | 0.81   | 1.35 | 0.39 | 0.08  |
|                |                            |                              |         |        |      |      |       |
|                |                            |                              |         |        |      |      |       |

#### Conclusion

#### EPSDU ENGINEERING

- THE PROCESS DESIGN AND FACILITY DESIGN HAVE BELN COMPLETED.
- PURCHASE ORDERS FOR THE BULK OF THE EQUIPMENT HAVE BEEN PLACED.
- THE P & I, MECHANICAL INSTALLATION DESIGN, AND ELECTRICAL INSTALLATION DESIGN ARE BEHIND SCHEDULE.
- THE SITE PREPARATION WORK WAS COMPLETED AS SCHEDULED.
- THE CIVIL INSTALLATION WORK HAS BEGUN ON SCHEDULE.
- START-UP IN THE FOURTH QUARTER OF 1981 IS STILL VALID.

#### SILANE PYROLYSIS R & D

- A LONG-DURATION RUN WITH A FREE-SPACE REACIOR PDU WAS SUCCESSFUL.
- THE PDU IS BEING MODIFIED BY INSTALLING A MEW QUAPTZ LINER HOLDER AND A NEW COWDER WITHDRAWAL SYSTEM.
- THE POWDER MELTER/SHOITER SYSTEM WAS DESIGNED AND IS BEING FABRICATED. THIS WORK IS BEING PERFORMED BY KAYEX.

### POLYCRYSTALLINE SILICON

#### MASSACHUSETTS INSTITUTE OF TECHNOLOGY

| TECHNOLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                           | REPORT DATE                                                                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| POLYCRYSTALLINE SILICON                                                                                                                                                                                                                                                                                                                                                                                                                              | SEPTEMBER 25, 1980 16TH PIM                                                                                                                                                                                                                       |
| APPROACH HYDROCHLORINATION OF METALLURGICAL GRADE SILICON TOGETHER WITH SILICON TETRACHLORIDE AND HYDROGEN TO FORM TRICHLOROSILANE FOR PRODUCING SILICON  CONTRACTOR MASSACHUSETTS INSTITUTE OF TECHNOLOGY  GOALS TO SUPPORT THE UNION CARBIDE SILANE-TO- SILICON PROCESS BY CONDUCTING EXPERIMENTAL AND THEORETICAL STUDIES,  ESTABLISH FUNDAMENTAL UNDERSTANDING OF HYDROCHLORINATION OF METALLURGICAL GRADE SILICON IN TERMS OF REACTION KINETICS | PRESSURE  H2/SIC14 FEED RATIO CU SIGNIFICANTLY INCREASES REACTION RATE II PARTICLE SIZE DISTRIBUTION REACTION RATE INDEPENDENT OF SILICON METAL PARTICLE SIZES III IMPURITIES STUDY VERY SLOW REACTION RATE WITH HIGH PURITY, ELECTRONIC GRADE SI |
| AND ROLE OF CATALYST                                                                                                                                                                                                                                                                                                                                                                                                                                 | • IMPURITIES IN M.G. SILICON METAL  ACT LIKE A CATALYST                                                                                                                                                                                           |
| OPTIMIZE THE REACTION CONDITION FOR THE HYDROCHLORINATION STEP                                                                                                                                                                                                                                                                                                                                                                                       | IV MASS LIFE STUDIES  ● IN PROGRESS                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                   |

### Hydrochlorination of SiCl<sub>4</sub> and mg-Si to SiHCl<sub>3</sub>

3 S1C14 + 2H2 + S1 ≥ 4 S1HC13

REACTION TEMPERATURE

400°-550° C

REACTOR PRESSURE

300 AND 500 PSIG

H2/S1C14 FEED RATIO

1.0, 2.0 AND 2.8

SI PARTICLE SIZE

32 x 65, 65 x 150, 150 x 400 MESH

COPPER CATALYST

2% AND 5%

# Hydrogenation of SiCl<sub>4</sub> at 500 psig, 450°C and H<sub>2</sub>/SiCl<sub>4</sub> Ratio of 2.8

| Experiment No. | Hydrogren<br>Feedrate<br>SCCM(1) | Residence<br>Time<br>Second | REACTION SIH2Cl2 | PRODUCT COMPOSI<br>MOLEX<br>SIHC13 | SIC14 |
|----------------|----------------------------------|-----------------------------|------------------|------------------------------------|-------|
| 1              | 2920                             | 20.7                        | < 0.05           | 12.54                              | 87.48 |
| 2              | 2045                             | 29.6                        | 0.064            | 15.87                              | 84.06 |
| 3              | 1675                             | 36.1                        | 0.140            | 17.60                              | 82.29 |
| 4              | 1530                             | 42.1                        | 0.232            | 18.99                              | 80.89 |
| 5              | 1215                             | 53.0                        | 0,393            | 21.15                              | 78.46 |
| 6              | 1020                             | 63.1                        | 0.651            | 22.75                              | 76.60 |
| 7              | 477                              | 135                         | 0.969            | 29.83                              | 69.20 |
| 8              | 235                              | 257                         | 1.224            | 33.38                              | 65.40 |

<sup>(1)</sup> SCCM STANDARD C.C. PER MINUTE

### Metallic Impurities in mg-Si

| FE  |                | 0.5-0.9% |
|-----|----------------|----------|
| ĀL, | ~              | 0.3-0.6% |
| MM  | •              | 0.06%    |
| CA  | 11. <b>4</b> . | 0.05%    |
| Cu  | . *            | 0.01%    |
| Ni  | •              | 0.017    |
| CR  | •              | 0.01%    |
| Ti  |                | 0.01%    |

#### Plausible Reaction Mechanism

$$Cl_3S_1 - Cl$$
  $Cl_3S_1 - Cl$   $S_1 - S_1 - Cl$   $S_1 - S_1 - Cl$ 

• IN COMMON: BOTH OU AND IMPURITIES M CAUSE CRYSTAL DEFECTS

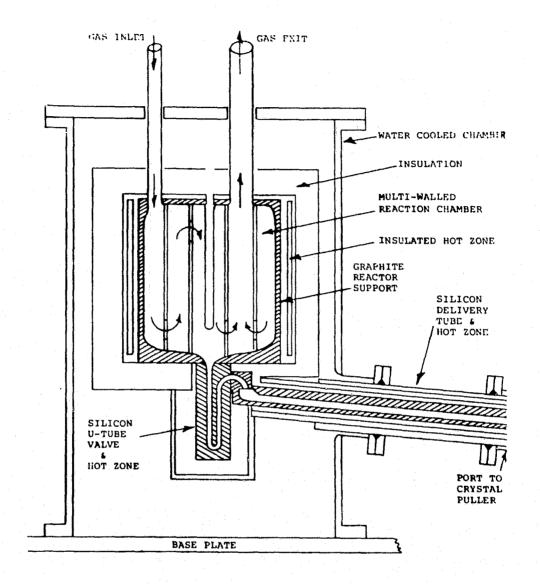
● DIFFERENCE: FE AND A1 ACCOUNTS FOR THE BULK OF IMPURITIES IN M.G. SILICON
FE AND A1 ARE CONVERTED TO FEC13 AND A1C13
THE CONSUMPTION OF C1 MAY CAUSE THE EQUILIBRIUM TO SHIFT FAVORABLY TOWARD SIH

### Summary of Progress

- I COPPER CATALYST STUDIES (COMPLETED)
- 2% CuCl IS AS EFFECTIVE AS 5% CuCl OR 5% CEMENT COPPER
- COPPER CATALYST PROVIDES A MEANS TO RECYCLE OFF-SPEC. SOLAR ST TO HYDROGENATION REACTOR
- HI PARTICLE SIZE DISTRIBUTION (COMPLETED)
  - REACTION RATE IS INDEPENDENT OF S1 PARTICLE SIZE
  - OUTPUT OF A GIVEN REACTOR SIZE CAN BE CONVENIENTLY INCREASED BY INCREASING SI PARTICLE SIZE TO COMPENSATE FOR INCREASE OF LINEAR GAS VELOCITY
- III IMPURITIES STUDIES (COMPLETED)
  - IMPURITIES ACT LIKE CATALYST
- IV MASS LIFE STUDIES (IN PROGRESS)
  - NO SIGNIFICANT CHANGE IN REACTION RATE AFTER 80 HOURS

### GASEOUS MELT REPLENISHMENT

ENERGY MATERIALS CORP.


#### Goals

- . 18% CONVERSION EFFICIENCY (TCS)
- . 500 GM/HR PRODUCTION RATE
- . 24 AND 96 HOUR OPERATION
- . MOLTEN SILICON TRANSFER TUBE DEMONSTRATION

#### **Demonstrated Results**

- . OPERATION OF CLOSED QUARTZ REACTION VESSEL WITH CYCLING OF U-TUBE VALVE.
- . 20% CONVERSION EFFICIENCY (SINGLE PASS)
- . 310 GM/HR PRODUCTION RATE
- . 360 MICRON/HR DEPOSITION RATE
- . 35 KWHR/KG ELECTRICAL ENERGY CONSUMPTION

### **Poly Reaction Chamber**



### **GMR Reactor Test Data**

| RUN        | TOTAL<br>SURFACE<br>AREA<br>(IN.) <sup>2</sup> | TOTAL<br>VOLUME<br>(IN.) | EFFECTIVE<br>TEMPERATURE<br>(OK) | TOTAL<br>GAS<br>FLOW<br>(SCFH) | MOLE<br>7<br>TCS | C1/H<br>ATONIC<br>RATIO |
|------------|------------------------------------------------|--------------------------|----------------------------------|--------------------------------|------------------|-------------------------|
| 5          | 355                                            | 280                      | 1100                             | 225                            | 1.5              | 0.02                    |
| 6          | 355                                            | 280                      | 900                              | 170                            | 5.0              | 0.08                    |
| 7          | 355                                            | 280                      | 975                              | 255                            | 6.25             | 0.10                    |
| 3          | 428                                            | 280                      | 1073                             | 170,216<br>270                 | 17.5             | 0.32                    |
| 3          | 530                                            | 230                      | 1000                             | 125,115                        | 19.3,25          | 0.37,0.50               |
| <b>1</b> 0 | 500                                            | 230                      | 1050                             | 100                            | 25               | 0.4                     |
| 11         | 1560                                           | 1000                     | 1300                             | 500                            | 10               | 0.17                    |

### **GMR Run Data**

| RUN    | TOTAL<br>RESIDENCE<br>TIME<br>(SEC) | DEPOSITION<br>RESIDENCE<br>TIME<br>(SEC) | HOURS<br>OF<br>DEPOSITION | % OF<br>SURFACE AREA<br>USED |
|--------|-------------------------------------|------------------------------------------|---------------------------|------------------------------|
| 5      | 0.55                                | 0.19                                     | 5                         | 33                           |
| 6      | 1.04                                | 0.63                                     | 8.75                      | 62                           |
| 7<br>8 | 0.64<br>0.88<br>0.69,0.55           | 0.61<br>0.88<br>0.59,0.55                | 8.5<br>4.49               | 96<br>100                    |
| 9      | 1,27,1,38                           | 0.75,0.83                                | 9.1                       | 30                           |
| 10     | 1,52                                | 0.95                                     | 9,5                       | 69                           |
| 11     | 0.95                                | 0,95                                     | 3,5                       | 100                          |

### **GMR Reactor Performance Data**

| RUN | ERAMS<br>SILICON<br>PRODUCED | AVERAGE<br>PRODUCTION<br>RATE<br>(GM/HR) | DEPOSITIO | ON RATE | AVERAGE<br>CONVERSION % | POWER KW-HR KG |
|-----|------------------------------|------------------------------------------|-----------|---------|-------------------------|----------------|
| 5   | 150                          | 70.0                                     | .039      | 170     | 20                      | 410            |
| 6   | 293                          | 33,5                                     | .024      | 100     | 13                      | 352            |
| 7   | 467                          | 35,0                                     | .039      | 166     | 18                      | 145            |
| 3   | 1050                         | 274                                      | . 285     | 354     | 20                      | 56,45,35       |
| 9   | 1030                         | 100.106                                  | .040      | 166,176 | 11                      | 115,108        |
| 10  | 1100                         | 115                                      | , 351     | 223     | 15.3                    | 98             |
| 11  | 1100                         | 312                                      | .031      | 133     | 17                      | 43             |

### **GMR Reactor Conversion Efficiency**

| <u>run</u> | CL/H | TEMP., OK | THEORETICAL CONVERSION % | ACTUAL CONVERSION 3       | ACT./THECR. |
|------------|------|-----------|--------------------------|---------------------------|-------------|
| 5          | .02  | 1100      | 38                       | 20                        | .53         |
| 6          | 30.  | 900       | 17                       | 4. <sup>1</sup> <b>15</b> | .76         |
| 7          | .1   | 975       | 19                       | 18                        | .95         |
| 8          | .32  | 1075      | 21                       | 20                        | .95         |
| 9          | .43  | 1000      | 19                       | 11                        | .58         |
| 10         | .4   | 1050      | 20                       | 15.3                      | .76         |
| 11         | .17  | 1200      | 27                       | 17                        | .63         |

### Prototype System Problem Areas

- . OUTLET TUBE PLUGGING
- HC1 IN RECYCLED H 2
- ~1250°C LIMIT BY QUARTZ ETCHING

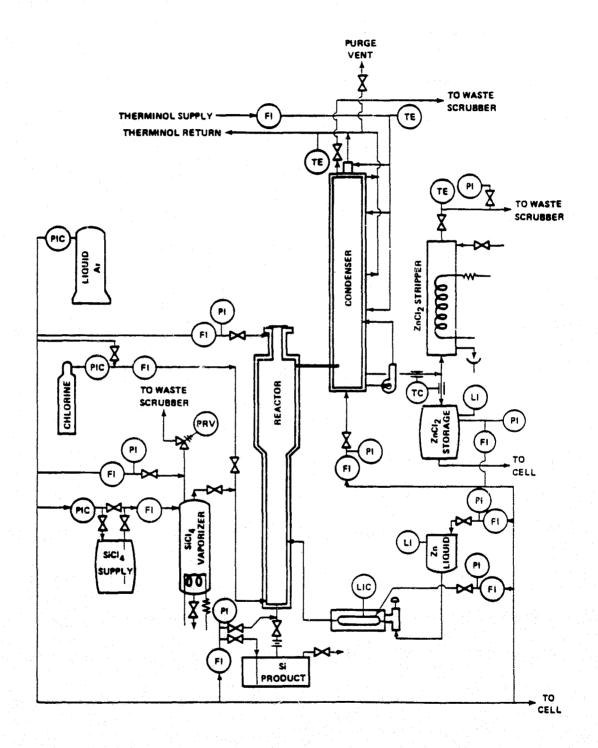
### Areas for Further Study

- . REACTOR OPTIMIZATION
- . REACTOR LIFETIME
- . FEED SYSTEM OPTIMIZATION
- OUTLET DESIGN

### POLYCRYSTALLINE SILICON

#### BATTELLE COLUMBUS LABORATORIES

| TECHNOLOGY                                                           | REPORT DATE                                                                                                                                                                                                                                                   |  |  |
|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| TASK 1: POLYCRYSTALLINE SILICON                                      | SEPTEMBER 23, 1980                                                                                                                                                                                                                                            |  |  |
| APPROACH                                                             | STATUS                                                                                                                                                                                                                                                        |  |  |
| PREPARATION OF SILICON BY ZINC REDUCTION OF SILICON TETRACHLORIDE    | • ECONOMIC ANALYSES INDICATE COST WITHIN \$14/kg GOAL.                                                                                                                                                                                                        |  |  |
|                                                                      | PROCESS FEASIBILITY DEMONSTRATED ON LABORATORY SCALE.                                                                                                                                                                                                         |  |  |
| CONTRACTOR  BATTELLE COLUMBUS LABORATORIES                           | WEB DENDRITE GROWN FROM FREE-FLOWING<br>GRANULAR PRODUCT YIELDED 12.8% AMI CELLS.      PROCESS DEVELOPMENT UNIT (25MT/YEAR, BATCH-WISE OPERATION) BEING OPERATED TO OBTAIN ENGINEERING INFORMATION.      OPTIONS DEFINED FOR HANDLING RESIDUAL ZINC IMPURITY. |  |  |
| GOALS  • DEMONSTRATE PROCESS FEASIBILITY                             |                                                                                                                                                                                                                                                               |  |  |
| ESTABLISH TECHNICAL READINESS BY OPERATION OF EPSDU SIZED TO 50MT/YR |                                                                                                                                                                                                                                                               |  |  |
| SILICON PRICE OF LESS THAN \$14/kg FOR<br>HIGH-VOLUME PROCESS        |                                                                                                                                                                                                                                                               |  |  |
| DEFINE PROCESS ECONOMICS                                             |                                                                                                                                                                                                                                                               |  |  |
|                                                                      |                                                                                                                                                                                                                                                               |  |  |
|                                                                      |                                                                                                                                                                                                                                                               |  |  |


### Summary of Program Since 15th PIM

- PDU
  - SPECIFIC OBJECTIVE OF CURRENT PHASE
  - STATUS

TWO 4-HOUR RUNS
DIFFICULTIES—MECHANICAL OR MATERIALS
NO TECHNICAL DIFFICULTIES IDENTIFIED
VALUABLE OPERATION AND DESIGN INFORMATION GAINED

- SUPPORT STUDIES
  TWO AREAS
- FUTURE PLANS

### PDU Flow Diagram, Reaction Section



## **Problems and Solutions**

### ZINC FEED SYSTEM OPERATION

- LACK OF COUPLING, PLASMA FORMATION IN VAPORIZER
  - + SUBSTITUTED ALTERNATE DESIGN VAPORIZER AND FEEDER
- FRAGILITY OF QUARTZ SYSTEM
  - + INCREASED MECHANICAL SUPPORT
- LIQUID ZINC LEAKAGE AT MOVING, DISSIMILAR MATERIAL JOINTS
  - + MODIFIED PACKING CONSTRUCTION
  - + IMPROVED MANIPULATION OF VALVE PACKING

### REACTOR OPERATION

- ZN VAPOR LEAKAGE AT REACTOR INLET
  - + REVISED SEAL GLAND DESIGN
- GRAPHITE NOZZLE LINER BREAKAGE
  - + REPLACED STIFF EXPANSION BELLOWS
  - + INSTALLED FLANGE MOTION CONTROL APPARATUS
- INTERNAL CORROSION OF REACTOR SHELL BY ZNCL2
  - + REVISED PDU START-UP PROCEDURE
  - + INCREASED SHELL PURGE FLOW CAPACITY
  - + REPLACED PORTIONS OF SHELL
- DISTORTION OF STAINLESS STEEL SHELL
  - + MODIFIED EXTERNAL SUPPORTS

## Problems and Solutions (Cont.)

#### CONDENSER OPERATION

- PLUGGING FROM DUST FORMED IN CONDENSER, STRIPPER
  - + HEAT TRACED EXHAUST GAS PIPING
  - + MINIMIZED PRE-RUN PURGE GAS FLOWS
- MARGINAL PRE-HEATING OF UPPER CONDENSER
  - + ADDED HEATING CAPACITY TO CONDENSER TOP
  - + DECREASED HEAT LOSS FROM CONDENSER TOP
  - + INCREASED INSTRUMENTATION OF CONDENSER TOP
- ZINC CHLORIDE RECIRCULATION
  - + OPERATE WITHOUT RECIRCULATION
  - + INSTALLED THROTTLING VALVE TO REDUCE ZNCL2 FLOW RATE
- PLUGGING OF CONDENSER TUBES
  - + BACK-CHLORINATE CONDENSER
  - + ZINC CHLORIDE FLUSH

## **Design Changes Indicated**

#### FLUIDIZED BED REACTOR

- RELOCATE TET INLET PORT
- ENLARGE AND RELOCATE ZINC INLET PORT
- STRENGTHEN-GRAPHITE NOZZLE, FLANGE CONNECTIONS
- IMPROVE SEALS AT REACTOR SHELL PENETRATIONS

#### CONDENSER

- INCREASE SUMP TANK CAPACITY
- ENLARGE SUMP TANK INLET NOZZLE
- INCREASE TEMPERATURE MONITORING CAPABILITY
- PROVIDE INCREASED START-UP HEATING CAPABILITY
- ADD CAPABILITY TO DRAIN CONDENSER RESERVOIR
- INCREASE PASS PLATE DEPTH IN CONDENSER BOTTOM RESERVOIR
- PROVIDE LIQUID LEVEL MONITORING IN SUMP TANK

## **Support Activities**

- RESIDUAL ZINC IN SILICON
- DIRECT COUPLED ZINC FEED SYSTEM

## Options for Dealing With Residual Zinc

- VACUUM- OR INERT-ATMOSPHERE HEAT TREATMENT
  - PROBABLY DAYS AT 1100 C CMAXIMUM TO AVOID SINTERING)
- MELTING
  - · IN EVOLUTION ALMOST INSTANTANEOUS
  - Vapor pressure of Zn 33 atm at 2420 C melting point of silicon
- TREAT AS PART OF THE SID EVOLUTION PROBLEM IN SHEET-FORMING PROCESS
  - FOR MOLTEN STLICON IN CONTACT 4 HOURS WITH SID2 CRUCIBLE 18-LM DIA BY 18-CM SI DEPTH:

|                 | RATIO OF VOLU | IME OF EVOLVED ZINC |
|-----------------|---------------|---------------------|
| ELMA SING IN 21 | TO VOLUME     | OF EVOLVED \$10     |
| 100             |               | 0.048               |
| 200             |               | 0.096               |
| 111()           |               | 0.24                |
| 1000            |               | 0.48                |

TYAPORATION OF ZINC DUST FALLING BACK INTO MELT SHOULD PRECLUDE

DETRIMENTAL EFFECT ON CRYSTAL GROWTH

## Residual Zinc in Silicon Granules

CONDITION: Highly segregated, up to 2.5 W/o in  $1\mu$ M<sup>3</sup> volume. (2-phase, solubility = 0.5 ppmw at 1100 C)

RANGE: 100 to 3000 ppmw in deposited silicon depending upon reactor geometry and run conditions. Should be ≤100 ppmw in well-run plant.

**ORIGIN:** Apparently result of occlusion of mist droplets from zinc vaporizer.

CORRECTION: In-Process: Eliminate Zn mist (or raise fluidized bed temperature at cost of decreased efficiency?)

POST-PROCESS: VACUUM OR ATMOSPHERE HEAT TREATMENT

# POLYCRYSTALLINE SILICON

## HEMLOCK SEMICONDUCTOR CORP.

| TECHNOLOGY                                                                                                   | REPORT DATE                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| POLYCRYSTALLINE SILICON                                                                                      |                                                                                                                                   |
| APPROACH                                                                                                     | STATUS                                                                                                                            |
| CHEMICAL VAPOR DEPOSITION OF<br>SILICON FROM DICHLOROSILANE (DCS)                                            | SILICON GROWN FROM DCS IN<br>EXPERIMENTAL REACTOR WITH                                                                            |
| CONTRACTOR HEMLOCK SEMICONDUCTOR CORPORATION                                                                 | 2X TCS DEPOSITION RATE SUBSTANTIALLY LONER POWER CONSUMPTION DIAMETER UP TO 53 NM                                                 |
| GOALS                                                                                                        | GOOD SURFACE QUALITY FEW OPERATIONAL PROBLEMS                                                                                     |
| DEMONSTRATE PROCESS FEASIBILITY ESTABLISH TECHNICAL READINESS BY OPERATION OF EPSDU SIZED TO ABOUT 150-MT/YR | REACTOR OPTIMIZATION PROGRAM COMPLETE TCS REDISTRIBUTION KINETICS ANALYZED PDU CONSTRUCTION SUSPENDED PENDING SAFETY-RELATED DATA |
| SILICON PRICE OF LESS THAN \$21/KG<br>(1980s, 1000-MT/YR, 20% ROI) IN<br>LOW-RISK PROGRAM                    | PRELIMINARY ECONOMIC ANALYSIS COMPLETED                                                                                           |
| DEFINE PROCESS ECONOMICS                                                                                     |                                                                                                                                   |

## **Dichlorosilane Process**

TRICHLOROSILANE REGENERATION

$$SICL_4 + H_2 + SI (M.G.) \xrightarrow{FBR} SIHCL_3 (+H_2, SICL_4)$$

DICHLOROSILANE FORMATION

SILICON GENERATION

## Dichlorosilane Experimental Reactor Milestones

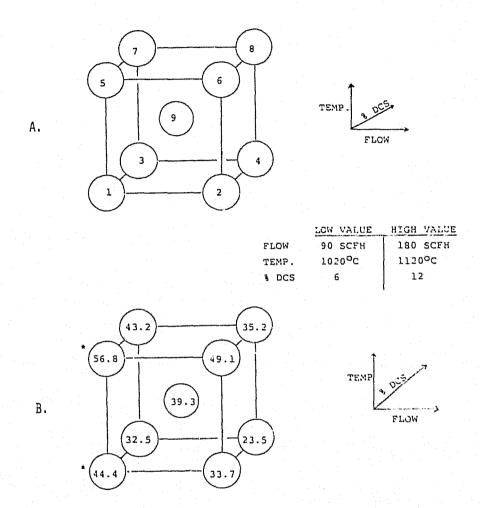
DEPOSITION RATE

1.67 G/HR/CM

CONVERSION

54.1 MOLE %

POWER CONSUMPTION 89.1 KWH/KG


PRODUCT DIAMETER

53 MM

(RECORD FOR REACTOR)

# Dichlorosilane Experimental Design

- A. CONDITIONS AND RUN NUMBERS
- B. CONVERSION VALUES (Mole %)



\* Extrapolated

# Correlation of System Response With Variables in Experimental Design

POWER = -98.15 + 0.1237A + 33.31B + 0.3402CCONSUMPTION + 0.0097D - 0.0006E - 0.0376F

CONVERSION = - 76.45 - Ø.3513A + 2.854B + Ø.1428C EFFICIENCY + Ø.0027D + Ø.0002E - Ø.0050F (MOLE %)

SILICON = 3.815 - 0.0300A - 0.2870B - 0.0032CDEPOSITION + 0.0004D + 0.00003E + 0.0003F

WHERE A = FLow (SCFH)

B = % DCS (MoLE)

C = TEMPERAURE (OC)

D = FLOW x % DCS

E = FLOW X TEMPERATURE F = % DCS X TEMPERATURE

EXAMPLE:

AT FLOW = 100 SCFH MOLE DCS % = 8 TEMP, = 1100 C

CONVERSION = 48.1%

## Solar Cell Evaluation

POLYCRYSTALLINE SILICON RODS GROWN TO 37 MM DIAMETER EXCLUSIVELY WITH DCS (RUN 394-057)

SINGLE CRYSTAL CZ INGOT PULLED FROM MELT

650 G. SAMPLE SENT TO WESTINGHOUSE FOR SOLAR CELL EVALUATION

PRELIMINARY RESULTS:

12=14% EEELCLENCY (AM1)

## Liquid-Phase Rearranger Data Summary

RUNS CONDUCTED WITH VARIABLE LENGTH BEDS AT  $78^{\circ}\text{C}$  VOID VOLUME OF .5 ASSUMED

- DIFFUSION EFFECTS ARE IMPORTANT AT FLOW VELOCITIES <25-30 FT/HR</li>
- $\bullet$  THE LIMITING SECOND RATE CONSTANT AT HIGH VELOCITIES IS .20 MIN  $^{-1}$
- YIELDS OF >6% DCS WERE OBSERVED WITH RESIDENCE TIMES OF 3Ø SECONDS

## Experimental Results With Dowex Resin Redistribution Catalyst

CATALYST TRANSPORT EVALUATION

A PARTIALLY EQUILIBRATED (8% DCs, 9% STC) SAMPLE WAS STORED FOR 162 HRS AT ROOM TEMPERATURE, THEN FOR 26 HRS AT 62  $^{\rm O}$ C. No change in composition was observed.

#### MIXED TCS/STC REARRANGER FEED

| MOLE | % FE    | ED           | MCS  | DCS  | MCS/DCS |  |
|------|---------|--------------|------|------|---------|--|
| 100% | TCS     | <del> </del> | Ø.37 | 1Ø.8 | Ø.Ø33   |  |
| 80%  | TCS/20% | STC          | 0.10 | 5.0  | 0.021   |  |

#### CATALYST LIFETIME DATA

NO LOSS IN ACTIVITY WAS OBSERVED AFTER 4000 G TCS WAS PASSED THROUGH CA. 50 G DOWEX RESIN

## **PDU Status**

- . DESIGN, LOCATION SELECTED
- CONSTRUCTION SUSPENDED PENDING RECEIPT OF SAFETY-RELATED DATA FROM HAZARDS RESEARCH

## Hazards Research Corp. Data for Dichlorosilane

| PROPERTY                                                | EXPT'L VALUE                                                                                     | LITERATURE VALUE                        |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------|
| AUTOIGNITION TEMP.                                      | 55-60 <sup>0</sup> C                                                                             | 100°C                                   |
| EXPLOSION SEVERITY<br>(10 L. SPHERE)<br>DCS/AIR         | (PSI/SEC) <sub>MAX</sub><br>of 120,000 Q<br>20% in Air                                           | None<br>(H <sub>2</sub> /Alr)<br>33,000 |
| HYDROLYSIS                                              | COPIUS EVOLUTION OF HCL; NO IGNITION                                                             | IGNITION MAY BE<br>POSSIBLE             |
| EXPLOSIVE OUTPUT (5 FT. CUBE, WITH PLASTIC SHEET FACES) | (1) UNEXPECTED IGNITION ON FLOW TERMINATION (2) SEVERITY > PROPYLENE/AIR; NO DETONATION OBSERVED | None                                    |
| EXPL. SEVERITY<br>(10% DCS/90% H <sub>2</sub> )/AIR     | 55,000 (PSI/SEC) <sub>MAX</sub>                                                                  | None                                    |

# Summary of Hazards Research Corp. Dichlorosilane Experiments

- VERY LOW IGNITION REQUIREMENTS
- 2. VERY BROAD FLAMMABILITY RANGE
- 3. DETONATION CAN OCCUR WITH CONFINEMENT

FEASIBLE IN UNCONFINED VAPOR

- 4. HYDROLYTIC BEHAVIOR PROBABLY NOT OF SPECIAL CONCERN
- 5. COMBUSTION BEHAVIOR UNPREDICTABLE
- 6. DILUTION WITH H2 ATTRACTIVE

## PDU Revised Design Features

- REMOTE LOCATION
- NO DCS STORAGE
- MINIMAL DCS HOLDUP IN EQUIPMENT
- DCS DILUTED WITH H2 BEFORE TRANSPORT
- REMOTE OPERATION

## **EPSDU Objectives**

- PRODUCE DICHLOROSILANE FROM REDISTRIBUTION OF TRICHLOROSILANE
- PURIFY DICHLOROSILANE
- PRODUCE HIGH PURITY POLYCRYSTALLINE SILICON FROM DICHLOROSILANE
- RECOVER REACTOR VEHT PRODUCTS
- OPERATE ON SCALE OF 100-200 TONNE SILICON/YR.

## **EPSDU Status**

- MATERIAL, ENERGY BALANCES COMPLETED
- PLANT AND REACTOR LOCATION SELECTION UNDERWAY
- REQUIREMENTS FOR INTEGRATION WITH EXISTING RECOVERY SYSTEM BEING DEVELOPED

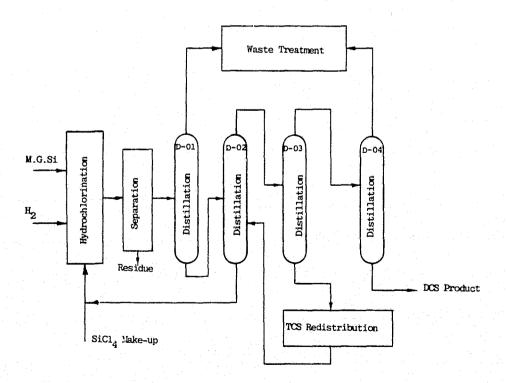
## **Problems and Concerns**

- SAFETY-RELATED DESIGN AND LOCATION CONSIDERATION FOR PDU
- REACTOR VENT DEPOSITION IN RUN 394-067

# CHEMICAL ENGINEERING AND ECONOMIC ANALYSES OF POLYSILICON PROCESSES

### LAMAR UNIVERSITY

| TECHNOLOGY  CHEMICAL ENGINEERING AND ECONOMIC ANALYSES OF POLYSILICON PROCESSES                         | REPORT DATE SEPTEMBER, 1980                                                      |
|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| APPROACH                                                                                                | STATUS                                                                           |
| PERFORM ANALYSES IN AREAS OF PROCESS SYSTEM PROPERTIES, CHEMICAL ENGINEERING, AND ECONOMICS             | 1. COMPLETED INITIAL ANALYSIS OF SIEMENS PROCESS -1977                           |
| FOR PROCESSES BEING DEVELOPED FOR THE HIGH VOLUME, LOW COST PRODUCTION OF POLYSILICON.                  | 2. COMPLETED INITIAL ANALYSIS OF UNION CARBIDE PROCESS -1978                     |
| CONTRACTOR                                                                                              | 3. COMPLETED ANALYSIS OF BATTELLE PROCESS -1979                                  |
| LAMAR UNIVERSITY                                                                                        | 4. ANALYSIS OF HEMLOCK SEMICONDUCTOR PROCESS BEING                               |
| GOALS                                                                                                   | PERFORMED - 1980 - DCS PRODUCTION (COMPLETED) - POLYSTLICON PRODUCTION (PLANNED) |
| 1. PERFORM ANALYSIS OF HEMLOCK SEMICONDUCTOR PROCESS -DCS PRODUCTION AS SILICON SOURCE                  | 5. RESULTS FOR DICHLOROSILANE PRODUCTION (DCS PROCESS - CASE A)                  |
| MATERIAL (1980) -POLYSILICON PRODUCTION FROM DICHLOROSILANE (1981)                                      | SALES PRICE RATE OF RETURN (1980 DOLLARS)                                        |
| 2. PREPARE FINAL REPORT -PROPERTIES ANALYSIS (1980) -CHEM ENG ANALYSIS (1980) -FCONOMIC ANALYSIS (1980) | 05 DCF                                                                           |
| 3. PERFORM ADDITIONAL ANALYSES (1980-85) -UNION CARBIDE PROCESS UPDATE -BATTELLE PROCESS UPDATE -OTHERS |                                                                                  |


# Hemlock Semiconductor Corp. Program

- · CHEMICAL ENGINEERING ANALYSIS
  - BASED ON INITIAL DCS PRODUCTION (DICHLOROSILANE)
  - Utilization of DCS as silicon source material in HSC Program (Hemlock Semiconductor Corp.)
  - DICHLOROSILANE PRODUCTION VIA DCS PROCESS CASE A
- · ECONOMIC ANALYSIS
  - Based on Chemical Engineering analysis results for DCS Process Case A
  - PROVIDE ECONOMICS (PRODUCT COST, SALES PRICE) OF DI-CHLOROSILANE AS SILICON SOURCE MATERIAL

# Chemical Engineering Analysis: Progress and Status

| 1.  | Base Case Conditions          | PRIOR<br>35% | Current<br>100% |
|-----|-------------------------------|--------------|-----------------|
| 2.  | REACTION CHEMISTRY            | 30%          | 100%            |
| 3,  | PROCESS FLOW DIAGRAM          | 20%          | 100%            |
| 4.  | MATERIAL BALANCE              | 5%           | 100%            |
| 5,  | Energy Balance                | 5%           | 100%            |
| 6.  | PROPERTY DATA                 | 2%           | 1007            |
| 7.  | EQUIPMENT DESIGN              | 0%           | 100%            |
| 8.  | Major Equipment List          | 03           | 100%            |
| 9.  | PRODUCTION LABOR              | 0%           | 100%            |
| 10. | Forward for Economic Analysis | 0%           | 109%            |

## Process Flow Sheet for DCS Process: Case A



# Economic Analysis: Progress and Status

|    |                              | PRIOR | CURRENT |
|----|------------------------------|-------|---------|
| 1. | Process Design Inputs        | 0%    | 100%    |
| 2. | Base Case Conditions         | 0%    | 100%    |
| 3. | RAW MATERIAL COSTS           | 0%    | 100%    |
| 4. | UTILITY COST                 | 0%    | 100%    |
| 5, | MAJOR PROCESS EQUIPMENT COST | 0%    | 100%    |
| 6. | PRODUCTION LABOR COST        | 0%    | 100%    |
| 7. | PLANT INVESTMENT COST        | 0%    | 100%    |
| 8. | PRODUCT COST                 | 07    | 100%    |

# Preliminary Cost Sensitivity Analysis: Progress and Status

|    |                                         | PRIOR | CURRENT |
|----|-----------------------------------------|-------|---------|
| 1. | BASE CASE CONDITIONS                    | 0%    | 100%    |
| 2. | RETURN ON ORIGINAL INVESTMENT           | 0%    | 100%    |
| 3. | DISCOUNTED CASH FLOW RATE OF RETURN     | 0%    | 1007    |
| 4. | PLANT INVESTMENT COST VARIATION         | 0%    | 100%    |
| 5. | RAW MATERIAL COST VARIATION             | 0%    | 100%    |
| 6. | UTILITY COST VARIATION                  | 0%    | 100%    |
| 7. | LABOR COST VARIATION                    | 0%    | 100%    |
| 8. | EFFECT OF INFLATION                     | 0%    | 100%    |
| 9. | COST AND PROFITABILITY ANALYSIS SUMMARY | 0%    | 100%    |

## IMPURITY EFFECTS IN SILICON

WESTINGHOUSE ELECTRIC CORP. R&D CENTER

| Technology Impurity effects in silicon                                                                                                                                   | Report Date<br>9/24/80                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Approach Analysis of silicon material and solar cells with controlled impurity additions                                                                                 | Status Phase IV experimental program underway                                                                                                                                                               |
| Contractor Westinghouse Electric Corp., R&D Center                                                                                                                       | Preliminary Results:  • Threshold for impurity-induced structure breakdown lower in poly                                                                                                                    |
| Phase  Goals  Evaluate impurity effects in:                                                                                                                              | <ul> <li>Less grain boundary segregation</li> <li>evident for Ti as metal content is lowered from 2 x 10<sup>14</sup> to 5 x 10<sup>13</sup> cm<sup>-3</sup></li> </ul>                                     |
| Polycrystalline silicon     High efficiency cells                                                                                                                        | <ul> <li>Impurity threshold for performance<br/>reduction projected lower in high<br/>efficiency cells</li> </ul>                                                                                           |
| <ul> <li>Experimental silicon materials</li> <li>Cells subjected to processing,</li> <li>e.g. gettering</li> <li>Cells treated to simulate long term behavior</li> </ul> | Solar cells made from DCS silicon comparable in efficiency to baseline solar cells     Accelerated aging tests indicate rate of performance degradation of impurity-doped cells in order: Cr > Ag > Nb > Ti |

## Polycrystalline Solar Cells

Impurity-dependent lifetime behavior is essentially the same as observed in single-crystal material.

The electrical activity of grain boundaries is virtually unaffected by impurities.

High impurity concentrations in poly cells result in considerable junction shunting.

Impurity segregation to grain boundaries is negligible.

Polycrystalline ingots suffer structural breakdown at lower impurity concentrations than do single crystal ingots.

6-3

## Gettering of Impurities

Gettering appears to be diffusion-controlled and is therefore most effective for fast-diffusing impurities.

| IMPURITY   | DIFFUSION CONSTANT( 900 C) |
|------------|----------------------------|
| Copper     | 10-6                       |
| Iron       | 6 10 <sup>-6</sup>         |
| Chromium   | 10 <sup>-7</sup>           |
| Silver     | 2 10-10                    |
| Vanadium   | 8 10 <sup>-10</sup>        |
| Titanium   | 2 10 <sup>-11</sup>        |
| Molybdenum | < 10 <sup>-14</sup>        |
| Tungsten   | < 10 <sup>-14</sup>        |
|            |                            |

## Permanence and Aging Effects in Solar Cells

Projected Behavior

| Ingot     | Activation Energy (ev)      | Time to Failure (hrs) |
|-----------|-----------------------------|-----------------------|
|           |                             | (100°C)               |
| Baseline  | 1.42                        | 6.3 10 <sup>12</sup>  |
| W077Mo001 | 2.03                        | 4,4 10 <sup>19</sup>  |
| w123T1008 | 3,47                        | 7.6 10 <sup>39</sup>  |
| W072Cr005 | 0.25,0.55                   | 1.0 10 <sup>5</sup>   |
| W192Ag001 | 0,59                        | 3.3 10 <sup>5</sup>   |
| 183Nb002  | 0.77                        | 7.4 10 <sup>6</sup>   |
| W135Fe005 | ing the ¥ of approximation. |                       |
| W166Fe007 |                             |                       |
| W167Nb001 | 0.79                        | 1.0 10 <sup>7</sup>   |

<sup>\*</sup> Time to failure is defined as the time for efficiency to drop 10%.

<sup>\*</sup> Twenty years equals 1.75 10<sup>5</sup> hours.

Proceeding.

## High-Efficiency Solar Cells

SOLAR CELL PERFORMANCE DEPENDS PRIMARILY ON THE ELECTRONIC PROPERTIES AND THE SPATIAL ARRANGEMENT OF THE SEVERAL N-TYPE AND P-TYPE REGIONS WHICH MAKE UP THE DEVICE.

THE MOST IMPORTANT PARAMETERS ARE THE MINORITY CARRIER DIFFUSION LENGTHS (OR LIFETIMES) AND THE CARRIER MOBILITIES.

THESE, IN TURN, DEPEND IN AN INTRICATE WAY ON THE CONCENTRATION OF THE DONOR AND ACCEPTOR DOPANTS, THE CONCENTRATION OF UNINTENTIONAL TRACE IMPURITIES, AND ON CRYSTAL AND SURFACE PERFECTION.

The model analysis characterizes carrier recombination and collection in terms of internal velocity parameters ( $S_{\rm E}$ ) from which are determined the voltage and current observed at the cell terminals.

## IMPURITY EFFECTS IN SILICON SOLAR CELLS

C.T. SAH ASSOCIATES

#### **TECHNOLOGY** REPORT DATE IMPURITY EFFECTS IN SILICON SOLAR CELLS 80/09/24 **APPROACH** STATUS Theoretical-numerical analysis of the (1) TECHNICAL REPORTS 1, 2 AND 3 GIVE: performance of silicon solar cells doped · Effects of substrate and surface dopant with specific impurities, using the trans-mission line circuit model as well as the experimental dopant impurity profiles and impurity concentration. Effects of two-level recombination experimental recombination impurity energy center and position variation of the levels, emission and capture rates.# impurity concentration, CONTRACTOR Effects of high illumination levels, C. T. SAH ASSOCIATES Effects of back surface field. Effects of interband Auger recombina-Predict the maximum allowable recombination • Effects of enhanced impurity solubility impurity concentration at a given one AM1 sun efficiency for: Good agreement between theory and experiments in Ti-doped cells. N+/P/P+ and P+/N/N+ cells Prediction of maximum zinc density for 17% AM1 efficiency (<4-7x10<sup>11</sup> Zn/cm<sup>3</sup>) Different impurity species Optimum cell thickness (2) CURRENT RESULTS · One and two optical passes Prediction of optimum cell thickness: 80 microns for one optical pass and 40 microns for two optical passes. #Detailed in Technical Reports 1,2,3 and summarized on pp.27-30, 14th PIM

## SILICON MATERIALS RESEARCH LABORATORY

### JET PROPULSION LABORATORY

## Silicon Material

**TECHNOLOGY** 

CONSOLIDATION OF SILICON POWDER IMPURITY EFFECTS IN SILICON

#### **APPROACH**

- CONSOLIDATION USING CZ AND FLOAT-ZONE
- IMPURITY EFFECTS USING THERMALLY STIMULATED CAPACITANCE (TSCAP)

#### CONTRACTOR

JPL IN-HOUSE (A. YAMAKAWA) (R. COCKRUM)

#### **GOALS**

- DEVELOPMENT OF A METHOD TO CONSOLIDATE SUB-MICRON SILICON POWDER
- EVALUATE IMPURITY EFFECTS IN PROCESS DEVELOPMENT SAMPLES

REPORT DATE

09-25-80

#### STATUS

#### CONSOLIDATION

• TEST APPARATUS USING HF
FLOAT-ZONE APPARATUS AS
THE HEAT SOURCE DEMONSTRATED

#### IMPURITY EFFECTS

 FACILITIES AND EQUIPMENT REQUIRED TO FABRICATE SCHOTTKY DIODES FOR TSCAP MEASUREMENTS COMPLETED

## Silicon Material Research Laboratory (SMRL)

FACILITIES AT SMRL INCLUDE

- CRYSTAL GROWING AND REFINING EQUIPMENT
- INGOT SLICING EQUIPMENT
- CHEMICAL CLEAN ROOM
- HIGH TEMPERATURE FURNACE
- METALLIZATION EQUIPMENT
- ELECTRICAL TEST EQUIPMENT
- CHEMICAL TEST EQUIPMENT
- AN ADDITIONAL RESPONSIBILITY OF THE SMRL
   IS TO PREPARE PROCESS DEVELOPMENT SAMPLES
   FOR TESTING BY OUTSIDE CONTRACTORS

## Status of SMRL

- MOVE-IN STARTED JUNE 1979
- ALL EQUIPMENT EXCEPT CHEMICAL TEST EQUIPMENT HAVE BEEN DELIVERED
- ALL DELIVERED EQUIPMENT EXCEPT HIGH TEMPERATURE
  FURNACE ARE CONNECTED AND OPERATING
- HIGH TEMPERATURE FURNACE WILL BE COMPLETED
  WITHIN 2 WEEKS
- CHEMICAL TEST EQUIPMENT EXPECTED BY END OF CALENDAR YEAR
- CONSOLIDATION EXPERIMENTS HAVE STARTED
- ELECTRICAL MEASUREMENTS HAVE STARTED

## **Impurity Effects**

- ANALYSIS OF IMPURITY EFFECTS IS PERFORMED USING TSCAP
- TSCAP MEASURES VARIATIONS IN CAPACITANCE WITH TEMPERATURE TO DERIVE ELECTRICALLY ACTIVE
   IMPURITY CONCENTRATIONS AND ACTIVATION ENERGIES
- TSCAP IS CAPABLE OF DETECTING IMPURITY CONCENTRATIONS FOUR ORDERS OF MAGNITUDE LESS THAN
   THE SUBSTRATE DOPING CONCENTRATION
- TSCAP USES A SIMPLE EXPERIMENTAL SET-UP

# **TSCAP Measurement Sequence**

- 1-V CURVE (ROOM TEMPERATURE)
- C-V CURVE (ROOM TEMPERATURE)
- TEMPERATURE-CAPACITANCE CURVE (LOW TEMPERATURE)
- IN-DEPTH T-C CURVE (LOW TEMPERATURE)

## Consolidation

- EXPERIMENTS ARE BEING PERFORMED BY DR. A. YAMAKAWA
- DR. YAMAKAWA IS DEVELOPING A METHOD OF CONSOLIDATE SUB-MICRON SILICON POWDER PRODUCED BY THE FSR OF THE UCC PROCESS
- THE METHOD CONSISTS OF MELTING THE POWDER ON TOP
   OF A PEDESTAL, FOLLOWED BY UNIDIRECTIONAL SOLIDIFICATION
- A TEST APPARATUS HAS BEEN CONSTRUCTED USING A HIGH
  FREQUENCY FLOAT-ZONE APPARATUS AS THE HEAT SOURCE
- ADDITIONAL EXPERIMENTS ARE PLANNED USING CZ FURNACE

## **Chemical Analysis**

- BY ZEEMAN ATOMIC ABSORPTION SPECTROMETER
- BY INDUCTIVELY COUPLED PLASMA-EMISSION SPECTROMETER

## **Problems and Concerns**

- THE MAJOR PROBLEM WITH THE SMRL HAS BEEN
  IN THE AREA OF STAFFING
- ANY ADDITIONS TO THE SMRL WILL REQUIRE
   NEW POWER LINES ALL AVAILABLE POWER HAS
   BEEN ALLOCATED

# Large-Area Silicon Sheet Task

## **TECHNOLOGY SESSION**

J. Liu, Chairman

Advanced Czochralski: Kayex Corp.

Process automation techniques utilizing microprocessor-controlled crystal growth are under development and are aimed at reducing cost and improving process yield.

Development priorities have been issued by JPL as follows:

Priority 1: Microprocessor controls

Priority 2: Accelerated growth

Priority 3: Accelerated meltback: chunk material utilizing cold crucible premelter.

A series of single-batch crystal growth runs have been made using microprocessor control. The runs have been demonstrated using 12-in.-dia crucibles and 4-in.-dia crystal growth.

A molybdenum heat sink has been designed and fabricated. Several crystal growth runs have been made, i.e. batch and recharge, using this heat sink.

A successful 150 kg 6-in.-dia crystal growth run has also been demonstrated.

The cold crecible premelter system has been assembled and melting trials have been successfully undertaken on a bench scale. Interfacing of the equipment with the crystal grower is ongoing.

Advanced Czochralski: Siltec Corp.

During the past months, several demonstration runs incorporating continuous melt replenishment were performed, growing individual crystals of 150 mm dia weighing 40, 52 and 65 kg per ingot. Growth conditions were extremely stable. Average growth velocity deviations were only +0.25 in./h. Typical solidification rates during these runs were 3.5 to 4.0 kg/h.

Structural problems occurred typically about 23 to 15 in. below the ingot shoulder, which was attributed to silicon monoxide particles interfering with crystal growth. However, it was possible to grow monocrystalline, dislocation-free material after several ingots had already been pulled and half the melt had already been in the crucible for more than 60 h. This is a significant result; it shows that it is possible to grow large portions of the 150-kg material monocrystalline, provided the silicon monoxide level in the furnace interior is kept to a minimum. This is usually accomplished when leak rates of the total system are kept below  $10^{-4}$  torr  $\ell/\mathrm{sec}$ .

Semicrystalline Casting: Semix Inc.

"Semicrystalline Casting Process Development and Verification" is a three-year cooperative agreement between Semix Incorporated and the United States Department of Energy. The goals of this agreement are to demonstrate Commercial Readiness of a silicon-sheet manufacturing process compatible with the 1982 price goal of \$2.80/W<sub>p</sub> and to demonstrate Technology Readiness to meet the 1986 price goal of \$.70/W.

The initial effort is aimed at economic evaluation of the projected 1982 and 1986 technologies in order to pinpoint critical process subsystems and set specific technical objectives for achieving the price goals. Equipment and process development will be carried out to meet the yields, throughput, productivity and other process parameters necessary to support program goals. A continuous verification procedure will be maintained to insure technical and economic viability of each development change. Current SAMICS analyses show that projected Semix semicrystalline technology can produce sheet material to meet 1982 and 1986 price goals.

Enhanced ID Slicing: Siltec Corp.

Experimentation with ingot rotation and minimum exposed blade area continued during the past months. Although average cutting feed rates of 13 to 15 mm/min for slices 100 mm in diameter, 250  $\mu$ m thick, with kerfs of 152  $\mu$ m were produced, these results could not be demonstrated consistently. Problems usually occurred after the cutting edge had penatrated 0.7 in. into the ingot, in the form of fracture lines, following the curvature of the cutting edge. This problem persisted for a wide range of cutting parameters and was identified as the result of high-frequency vibrations of the cutting edge.

The effectiveness of the cutting-edge position control system was further evaluated. Blade deflection values for 250  $\mu m$  wafers, cut with 152  $\mu m$  kerfs, were typically reduced by one order of magnitude. The effect of damping vibrations of the blade cutting edge through the deflection control mechanism was minimal, but cutting rates could be increased from 15 to 25 mm/min in the first 0.5 to 0.7 in. of radial cutting edge penetration.

Multiblade Slurry Slicing (MBS): P. R. Hoffmann Co.

Results of the tests performed indicate that the present state of the art of multiblade slurry wafering does not provide for successful wafering of 1 m<sup>2</sup>/kg of 10-cm-dia silicon ingot. The major problems to be overcome are related directly to blade wear, feed force control, and abrasive slurry characteristics. Other major factors in accomplishing the goals of the Large-Area Silicon Sheet Task are the cost of consumables and wafer cleaning and handling.

Fixed Abrasive Slicing Technique (FAST): Crystal Systems Inc.

A new slicing head was designed and fabricated. The salient features of this blade head are a very high degree of rigidity and accurate alignment. The blade head has been enlarged to accommodate 750 wires (25 wires/cm).

Initial testing with the new blade head has shown that 500 ft/min surface speeds can be achieved. Increased speed is limited by the drive unit rather than the blade head. Slicing tests using the blade head with electroplated wires has resulted in average slicing rates of 5.1 mils/minute (0.13 mm/min) with 83% yield.

Blade development has continued. Along with the 45 m diamonds used for slicing, smaller filler diamonds were used to prevent erosion of the matrix.

Partial Pressure of Reactant Gases: University of Missouri Rolla

Analysis of data obtained on the oxygen content of the silicon furnace purge gases in the JPL and Mobil Tyco facilities indicates that equilibrium conditions do not exist between their purge gases and the molten silicon. Therefore it is possible to use inert gases containing levels of oxygen much higher than the equilibrium oxygen partial pressure without seriously contaminating the molten silcon with oxide. This is true for several reasons. First, much of the purge gas never reaches the temperature of the molten silicon, and thus the oxygen has insufficient time to react before being exhausted from the system. Second, the portion of the oxygen that thermally accommodates with the 1700°K graphite surfaces in the furnace is quickly converted to CO. Finally, in the case of the Mobil Tyco ribbon-pulling system, the oxides that do form on the surface of the silicon reservoir remain there as a skin, while the silicon used in the formation of the ribbon is drawn from below this floating oxide skin through the die where it is exposed only to graphite and not to the surrounding atmosphere, maintaining an extremely low oxygen activity until it emerges from the top of the die where it freezes very quickly, before oxidation can occur.

Silicon Solar Cell Fabrication and Analysis: Applied Solar Energy Corp.

The objective of this program is to investigate, develop, and utilize technologies appropriate and necessary for improving the efficiency of solar cells made from various unconventional silicon sheets. Silicon sheets processed included EFG ribbons, dendritic web, SOC and wafers from HEM cast ingots and ingots from semi-continuous Cz growth techniques.

The effect of grain sizes and BSF on solar cell parameters are discussed. Performance summaries of all sheet cell evaluations are included.

# INGOT GROWTH: COST REDUCTION

KAYEX CORP.

| PROGRAM  1. LOWER THE COSTS OF THE MELT DOWN AND GROWTH PROCESSES.  2. REDUCE LABOR COSTS AND IMPROVE YIELDS.  COMBINATION OF THE ABOVE WILL REDUCE CZ ADD ON COSTS TO:  LOW COST CZ (ROD FEED)= 15.36/KG (19.30.1083 F/PE/LOW COST CZ (POLY CHUNK FEED)=14.95/LOW COST CZ (POLY CHUNK FEE |                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| AND GROWTH PROCESSES.  INCREASED GROWTH RATE.  USE 1 PRODUCTION OPERATOR PER 6 GROWTH RATE.  COMBINATION OF THE ABOVE WILL REDUCE CZ ADD ON COSTS TO:  LOW COST CZ (ROD FEED)= 15.36/KG (19.40.1083 F/PE/LOW COST CZ (POLY CHUNK FEED)=14.95/  =\$0.1054 \$\frac{27.27}{27.27}\$ COST REDUCTION 29.17 COMPARED TO COLI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |
| COMBINATION OF THE ABOVE WILL REDUCE CZ ADD ON COSTS TO:  LOW COST CZ (ROD FEED)= 15.36/KG (19.40 COST CZ (POLY CHUNK FEED)=14.95/COST CZ (POLY CHUNK FEED)=14.95/COST COST REDUCTION 29.1% COMPARED TO COLI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |
| CZ ADD ON COSTS TO:  LOW COST CZ (ROD FEED)= 15.36/KG (19.1083 F/PE/  LOW COST CZ (POLY CHUNK FEED)=14.95/  =\$0.1054 \$\frac{27.27}{4}\$ COST REDUCTION 29.17 COMPARED TO COLI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VERS,           |
| LOW COST CZ (POLY CHUNK FEED)=14.95/ =\$0.1054 ¢/PE/ APPROXIMATELY 27.2% COST REDUCTION 29.1% COMPARED TO COLI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | THE             |
| LOW COST CZ (POLY CHUNK FEED)=14.95/ =\$0.1054 ¢/PE/ APPROXIMATELY 27.2% COST REDUCTION 29.1% COMPARED TO COLI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 380)<br>AK WATT |
| APPROXIMATELY 27.2% COST REDUCTION 29.1% COMPARED TO COLI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | /KG<br>(1980)   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |

## Cost Projections (1980 \$) SAMICS-IPEG

| C1 EQPT = 0.49/YR - \$EQPT \$107,310 \$102,410 C2 SQFT = \$97/YR - \$SQFT 9,700 9,700 C3 DLAB = \$2.1/YR - \$DLAB 22,245 22,245 C4 MATS = \$1.3/YR - \$MATS 101,037 101,818 C5 UTIL = \$1.3/YR - \$UTIL 19.533 19.811  YOTAL \$259,825 \$255,984  QUAN (TOTAL CHARGED X % YIELD) (KG) 16,918 17,122 |                             |           |            |                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------|------------|----------------|
| C2 SQFT = \$97/YR - \$SQFT 9,700 9,700 C3 DLAB = \$2.1/YR - \$DLAB 22,245 22,245 C4 MATS = \$1.3/YR - \$MATS 101,037 101,818 C5 UTIL = \$1.3/YR - \$UTIL 19,533 19,811  TOTAL \$259,825 \$255,984  QUAN (TOTAL CHARGED X % YIELD) (KG) 16,918 17,122                                                | ASSUMPTIONS:                |           | ROD FEED   | POLY LUMP FEED |
| C3 DLAB = \$2.1/YR - \$DLAB 22,245 22,245 C4 MATS = \$1.3/YR - \$MATS 101,037 101,818 C5 UTIL = \$1.3/YR - \$UTIL 19,533 19,811  TOTAL \$259,825 \$255,984  QUAN (TOTAL CHARGED X % YIELD) (KG) 16,918 17,122                                                                                       | C1 EQPT = 0.49/YR - \$EQPT  |           | \$107,310  | \$102,410      |
| C4 MATS = \$1.3/YR - \$MATS 101,037 101,818<br>C5 UTIL = \$1.3/YR - \$UTIL 19.533 19.811<br>YOTAL \$259,825 \$255,984<br>QUAN (TOTAL CHARGED X % YIELD) (KG) 16,918 17,122                                                                                                                          | C2 soft = \$97/YR - \$soft  |           | 9,700      | 9,700          |
| C5 UTIL = \$1.3/YR - \$UTIL 19.533 19.811  TOTAL \$259,825 \$255,984  QUAN (TOTAL CHARGED X X YIELD) (Kg) 16,918 17,122                                                                                                                                                                             | C3 DLAB = \$2.1/YR - \$DLAB |           | 22,245     | 22,245         |
| TOTAL \$259,825 \$255,984  QUAN (TOTAL CHARGED X % YIELD) (KG) 16,918 17,122                                                                                                                                                                                                                        | C4 MATS = \$1.3/YR - \$MATS |           | 101,037    | 101,818        |
| QUAN (TOTAL CHARGED x % YIELD) (KG) 16,918 17,122                                                                                                                                                                                                                                                   | C5 UTIL = \$1.3/YR - \$UTIL |           | 19.533     | 19.811         |
|                                                                                                                                                                                                                                                                                                     |                             | TOTAL     | \$259,825  | \$255,984      |
| THRUPUT 2.25 KG/HR 2.28 KG/HR                                                                                                                                                                                                                                                                       | QUAN (TOTAL CHARGED X 7 Y   | ELD) (KG) | 16,918     | 17,122         |
|                                                                                                                                                                                                                                                                                                     | THRUPUT                     |           | 2.25 kg/HR | 2.28 KG/HR     |

#### **PROJECTION**

- 1. LOW COST CZ (ROD FEED)
  WITHOUT SILICON = \$15.36/KG ADD ON COST
  =\$0.1083¢/PEAK WATT.
- 2. COST WITH \$85/KG POLY ROD. (CURRENT COST) \$138.2/KG ADD ON COST \$0.97476/PEAK WATT
- 3. NO PROJECTED COST FOR SILICON POLY ROD
- 1. LOW COST CZ (POLY LUMP FEED)
  WITHOUT SILICON = \$14,95/KG ADD ON COST
  =\$0.1054¢/PEAK WATT
- 2. COST WITH \$65/kg SILICON LUMP (CURRENT COST)
  \$108.8/kg ADD ON COST = \$1.76734/PEAK WATT

  3. COST WITH \$14/kg SILICON LUMP(PROJECTED LSA GOAL)
  \$35.2/kg ADD ON COST = \$0.24834/PEAK WATT

## **CZ Growth Methods**

| CONDITIONS                | LOW COST CZ<br>(ROD FEED) | LOW COST CZ<br>(POLY LUMP FEED) |
|---------------------------|---------------------------|---------------------------------|
| CRUCIBLE SIZE (INCHES)    | 14" × 11-1/2              | 14" x 11-1/2                    |
| CRYSTAL DIAMETER (CMS)    | 15.25                     | 15.25                           |
| GROWTH RATE (CM/HR)       | 15.0                      | 15.0                            |
| TOTAL POLY MELTED (KG)    | 160                       | 160                             |
| TOTAL CRYSTAL PULLED (KG) | 150                       | 150                             |
| PULLED YIELD (%)          | 93.75                     | 93.75                           |
| YIELD AFTER CG (%)        | 85.0                      | 85.0                            |
| NO. CRYSTALS/CRUCIBLE     | 5                         | 5                               |
| CYCLE TIME (HRS)          | 59.8                      | 59.1                            |
| THROUGHPUT (KG/HR)        | 2,25                      | 2.28                            |
|                           |                           |                                 |

# SAMICS-IPEG Input Data and Cost Calculation for Low-Cost Cz (Rod Feed) vs Low-Cost Cz (Poly Lump Feed)

| CONDITIONS (PER CYCLE)            | LOW COST CZ<br>(ROD FEED) | LOW COST CZ<br>(POLY LUMP FEED) |
|-----------------------------------|---------------------------|---------------------------------|
| TOTAL SI MELTED (KG)              | 160                       | 160                             |
| CRYSTAL WEIGHT                    | 30                        | 30                              |
| NO. OF CRYSTALS/CRUCIBLE          | 5                         | 5                               |
| DIAMETER OF CRYSTAL (CM)          | 15.25                     | 15.25                           |
| GROWTH RATE (CM/HR)               | 15.0                      | 15.0                            |
| CYCLE TIME (HRS)                  | 59.8                      | 59.1                            |
| CRUCIBLE SIZE                     | 14" x 11-1/2              | 14" x 11-1/2                    |
| % YIELD (TOTALIN SPEC. CG GROUND) | 85%                       | 85%                             |
| THRU-PUT (KG/HR)                  | 2.25                      | 2,28                            |
| INPUT DATA (1980 \$)              |                           |                                 |
| CAPITAL EQUIPMENT COST (EQPT)     | 219,000                   | 209,000                         |
| MANUFACTURING FLOOR SPACE (SQF    |                           | 100                             |
| ANNUAL DIRECT LABOR SALARIES      |                           |                                 |
| PROD. OPERATOR (0.65 PERSON       | IS/YR) 8,100              | 8,100                           |
| ELECT. TEC. (0.3 PERSONS/YR       |                           | 1,425                           |
| INSPECTOR (0.1 PERSONS/YR)        | _1.068                    | 1.068                           |
| TOTAL DLAB                        | = 10,593                  | 10,593                          |

| UIRECT USED MATERIALS 8 SUPPLIES       | LOW COST CZ<br>(ROD FEED) | LOW COST CZ<br>(POLY LUMP FEED) |
|----------------------------------------|---------------------------|---------------------------------|
| 85% USAGE PER YEAR                     | 10h h Æ6 0                | 125 0/50 1                      |
| CYCLES/YR HRS/CYCLE                    | 124.4/59.8                | 125.9/59.1<br>20.144            |
| POLY-KG/HR (CHARGED)                   | 19,904                    | -                               |
| SEED (\$5.82)                          | \$ 722                    | \$ 733                          |
| DOPANT (NOT COSTED)                    |                           |                                 |
| ARGON (100 FI3/CYCLE-HR                | è 14 070                  | + 1h 001                        |
| a 0.02/FT <sup>3</sup>                 | <b>\$ 14,878</b>          | \$ 14,881                       |
| CRUCIBLES (14" = \$291)                | 36,084                    | 36,666                          |
| MISCELLANEOUS (INCLUDING               | 00 077                    | OC ONO                          |
| GRAPHITE: \$3.5/CYCLE-HR)              | 26.037                    | 26.042                          |
| MATERIALS TOTALS (MATS)                | \$ 77,721                 | \$ 78,322                       |
| UTILITIES (PROCESS):                   |                           |                                 |
| EL POTDICITY                           |                           |                                 |
| ELECTRICITY (65 KW x 0.035/ KW) (CYCLE |                           |                                 |
| TIME - 3HRS) (# CYCLES)                | \$ 16,075                 | \$ 16,354                       |
| TIME - SHRS) (W CICLES)                | <b>4 10,07</b> 5          | + 10,004                        |
| COOLING WATER                          |                           |                                 |
| (65 KW) (\$0.0074) (CYCLE              | 3,458                     | 3,457                           |
| TIME - 2HRS) (# CYCLES)                | -21-14¥.                  |                                 |
| TAIL ZIMO, (II OTOLCO)                 |                           |                                 |
| UTILITIES TOTAL (UTIL)                 | \$ 19,533                 | \$ 19,811                       |
| -,,,,                                  |                           |                                 |

| TECHNOLOGY: INGOT GROWTH  JPL CONTRACT 955270                                                                | REPORT DATE: SEPT. 24, 1980<br>START DATE: MARCH 12, 1979                                                                                                               |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| APPROACH                                                                                                     | GOALS                                                                                                                                                                   |
| EQUIPMENT AND PROCESS IMPROVEMENTS FOR PRODUCTION OF LOW COST SOLAR SILICON SHEET BY THE CZOCHRALSKI METHOD. | 1. CONTINUOUS GROWTH OF 150 KGS OF SINGLE CRYSTAL UTILIZING MELT REPLENSIMMENT TECHNIQUES EMPLOYING INDUCTION MELTING OF POLY RODS OR SI LUMP BY COLD CRUCIBLE MELTING. |
|                                                                                                              | 2. DIAMETER OF 15 CMS.                                                                                                                                                  |
|                                                                                                              | <ol> <li>GROWTH RATE OF 15 CM/HR USING HEAT<br/>SINK.</li> </ol>                                                                                                        |
|                                                                                                              | 4. PULLED YIELD OF 90% USING MICRO-<br>PROCESSOR CONTROL.                                                                                                               |
|                                                                                                              | 5. SOLAR CELL EFFICIENCY OF 14% AMI                                                                                                                                     |
|                                                                                                              | 6. TECHNOLOGY TRANSFER READINESS BY 6/30/80.                                                                                                                            |
|                                                                                                              |                                                                                                                                                                         |

## **Overall Program Progress**

| TECHNOLOGY - INGOT GROWTH                                                                        | REPORT DATE: SEPT 24, 1980<br>START DATE: MARCH 12, 1979                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PROGRAM  1. ACCELERATED MELT  2. ACCELERATED GROWTH  3. COLD CRUCIBLE  4. MICROPROCESSOR CONTROL | PEOGRAM GOAL  A) DECREASE CRUCIBLE DEVITRIFICATION  B) ACHIEVE FASTER MELT RATES, I.E. 25 + KG/HR  INCREASE GROWTH RATE TO 15 CM/HR FOR 15.25 CM DIAMETER CRYSTAL GROWTH.  A) MAINTAIN MELT PURITY LEVEL INTO CRUCIBLE  B) PREVENT CRUCIBLE DEVITRIFICATION  A) REDUCE LABOR COSTS BY PROCESS AUTOMATION  B) IMPROVE YIELD |
|                                                                                                  |                                                                                                                                                                                                                                                                                                                            |

| A٢ | ЪÃ | OA | CH |
|----|----|----|----|
|    |    |    |    |

EQUIPMENT AND PROCESS IMPROVEMENT FOR PRODUCTION OF LOW COST SOLAR SILICON SHEET BY THE CZOCHRALSKI METHOD.

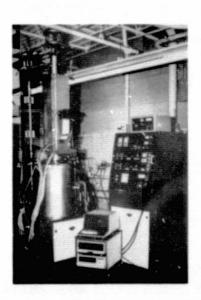
#### **STATUS**

JPL ISSUED TECHNICAL DIRECTION MEMO - APRIL 1980 PRIORITIES FORMULATED.

- 1. MICROPROCESSOR CONTROL DEMONSTRATED,
- 2. ACCELERATED GROWTH PARTIALLY DEMONSTRATED. ANCILLARY ADVANTAGES DEMONSTRATED.
- 3. COLD CRUCIBLE DEMONSTRATED OFF THE PULLER INTERFACE ASSEMBLY READY.
- 4. R.F. MELTING OF POLY ROD RECHARGE DE-EMPHASIZED.

PROBLEMS DUE TO: AVAILABILITY OF SUITABLE POLY RODS (CRACK, TAPES AND BOW FREE) AVAILABILITY OF POLY RODS AT A COST EFFECTIVE PRICE.

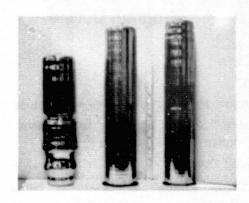
## Program: Microprocessor Control


#### **APPROACH**

EQUIPMENT AND PROCESS COST IMPROVEMENT FOR PRODUCTION OF LOW COST SOLAR SILICON SHEET BY THE CZOCHRALSKI METHOD.

#### GOALS

DEVELOP MICROPROCESSOR CONTROL OF THE CZOCHRALSKI PROCESS TO:

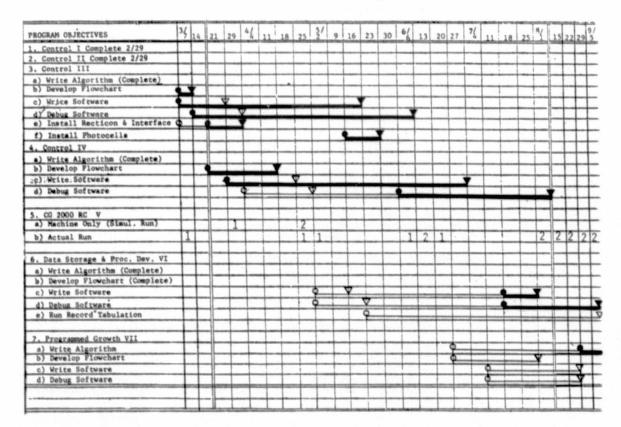

- A. REDUCE LABOR COSTS.
- B. IMPROVE YIELD BY REDUCING OPERATOR DEPENDENCE.



Advanced Cz Puller With Microprocessor Unit

#### STATUS

- MICROPROCESSOR CONTROL OF THE SHOULDER AND STRAIGHT GROWTH PROCESSES DEMONSTRATED FOR 4" AND 6" DIAMETER CRYSTALS.
- 2. OPERATOR PROMPTING OF MELT DOWN AND MELT STABILIZATION REQUIRED.
- 3. MANUAL CONTROL OF THE SEEDING AND NECK GROWTH PROCESSES THROUGH THE MICROPROCESSOR.
- 4. MANUAL TAPER OUT CONTROLLED THROUGH MICROPROCESSOR.




Crystals Grown With MPU Control: Run #32

#### SUMMARY

- CONTROL DEMONSTRATED FOR 4" AND 6" MICROPROCESSOR DIAMETERS.
- EFFECTIVE COST REDUCTION AND YIELD IMPROVEMENT BY TOTAL AUTOMATION OF THE GROWTH PROCESS REQUIRES ADDITIONAL DEVELOPMENT.

## Microprocessor Control Program Plan



## **Program Outline**

#### I. CONTROL I

#### A. GOALS

- 1. PROMPT OPERATOR FOR PROPER SEQUENCE OF OPERATION.
- 2. CAUSE "CRUCIBLE ROTATION" TO BE UNDER CONTROL.
  - A. MOTOR CONTROL ROUTINE
- 3. CAUSE "CRUCIBLE LIFT" TO POSITION CRUCIBLE.
- 4. PERFORM "BAKEOUT" BY OPERATOR DETERMINED PARAMETERS.
  - A. TEMPERATURE LEVEL (ENTERED)
    B. SOAK TIME (ENTERED)
    C. CRUCIBLE POSITION (ENTERED)
- 5. PERFORM "MELTDOWN" BY OPERATOR DETERMINED PARAMETERS.

  - A. TEMPERATURE LEVEL (ENTERED) MELTDOWN
    B. SOAK TIME (ENTERED) MELTDOWN
    C. CRUCIBLE POSITION (ENTERED) MELTDOWN
    D. TEMPERATURE LEVEL (ENTERED) STABILIZE
    E. SOAK TIME (ENTERED) STABILIZE
    F. CRUCIBLE POSITION (ENTERED) STABILIZE
- 6. MONITOR ALARM SENSORS AND SHUTDOWN IF MAJOR.

  - A. WATER FLOWS (MAJOR)
    B. WATER TEMPERATURES (MINOR)
    C. PRESSURES (MINOR/RAPID RISE MAJOR)
    D. POSITIONING (MINOR)
- B. MINIMUM ACCEPTANCE: (SCHEDULED 2/22/80)
  - 1. PROMPTING
  - 2. CRUCIBLE MOTIONS
  - 3. AUTO; BAKEOUT, MELTDOWN & STABILIZATION

#### 11. CONTROL II

#### A. GOALS:

- 1. ALLOW CONTROL OF ALL MOTORS (SPEED ONLY)
  - A. CRUCIBLE LIFT & ROTATION (NO JOG) B. SEED LIFT & ROTATION (NO JOG)
- 2. ALLOW FOR TEMPERATURE VARIATIONS
- 3. ROUTINE EXIT

  - A. ABORT BY OPERATOR
    B. ABORT DUE TO MAJOR ALARM
    C. EXIT TO AUTO-DIAMETER CONTROL
- B. MINIMUM ACCEPTANCE: (SCHEDULED 2/29/80)
  - 1. ALL MOTORS UNDER CONTROL
  - 2. TEMPERATURE VARIATIONS POSSIBLE
  - 3. OPERATOR TO BE ABLE TO PERFORM MANUAL GROWTH
    - A. DIP SEED

    - B. GROW NECK
      C. GROW CROWN
      D. SHOULDER CRYSTAL
      E. ABORT BY OPERATOR OR EXIT TO AUTO (THIS STAGE STILL ABORTS)

#### CONTROL III III. CONTROL III

#### A. GOALS:

- 1. CONTROL SEED LIFT VIA DIAMETER INPUT.
  - A. OPERATOR CAN CHANGE DIAMETER REQUIRED
    B. RETICON (OR PHOTOCELLS IF RETICON UNACCEPTABLE) DIAMETER
    INPUT. (RETICON INSTALLED & TESTED).
- LOCKOUT OPERATOR ATTEMPTS TO CHANGE ROTATIONAL SPEEDS. OPERATOR MAY ABORT OR EXIT TO AUTO OR MANUAL.
- 3. CRUCIBLE LIFT A FUNCTION OF SL, CAL. XTAL WEIGHT, AND CRUCIBLE
- 4. ABORT DUE TO MAJOR ALARM.
- B. MINIMUM ACCEPTANCE: (SCHEDULED 3/28/80)
  - 1. CONTROL SEED LIFT BY DIAMETER INPUT.
  - 2. SLAVE CRUCIBLE LIFT TO SL, XTAL WEIGHT, AND C. SIZE.
  - 3. LOCKOUT UNACCEPTABLE OPERATOR COMMANDS.
    - A. ROTATIONAL SPEED CHANGES. (ABORT OR FULL AUTO OR MAN. ALLOWED)

#### IV. CONTROL IV

#### A. GOALS:

- 1. INCREASE AND DECREASE TEMPERATURE SET POINT AS A FUNCTION OF THE AVERAGE DEVIATION OF THE SEED LIFT FROM THE SEED LIFT SET
- 2. OPERATOR ALLOWED TO:
  - A. ABORT

  - B. EXIT MANUAL C. EXIT AUTO DIAMETER
  - D. CHANGE SL OR DIAMETER SET POINTS.
- 3. ABORT DUE TO MAJOR ALARM.
- B. MINIMUM ACCEPTANCE: (SCHEDULED 4/18/80)
  - 1. TEMPERATURE SET POINT A FUNCTION OF AVERAGE SEED LIFT DEVIATION FROM ITS SET POINT.
  - 2. OPERATOR MAY ABORT ON EXIT TO CONTROLS II OR III.
  - 3. OPERATOR MAY CHANGE SEED LIFT OR DIAMETER SET POINTS.

#### V. CG 2000 RC USAGE

### A. SIMULATED RUNS:

- 1. REQUIRES ALL MACHINE FUNCTIONS EXCEPT FOR TEMPERATURE & DIAMETER SENSING.
- 2. TEMPERATURE CHANGES PERFORMED BY MONITORING THE APPROPRIATE DIA OUTPUT. (COMPARE VOLTAGE TO AN ACTUAL VALUE FOR THE SAME SET POINT READING.)
- 3. DIAMETER TESTING BY VARIOUS FORMS OF LIGHT SOURCES.
- 4. TEST ACTUAL MOTOR SPEEDS VERSUS REQUIRED AND DISPLAYED ACTUAL.

#### B. ACTUAL RUNS:

- 1. REQUIRES:

  - A. BAKEOUT FROM COLD MACHINE
    B. MELTDOWN FROM FINISH OF BAKEOUT
    C. VARIOUS STAGES OF ACTUAL CRYSTAL GROWTH, I.E. NECK ONLY
    OR NECK & CROWN, ETC.
- 2. GROWER SHOULD NOT BE IN USE FOR MORE THAN ONE SHIFT IN MOST

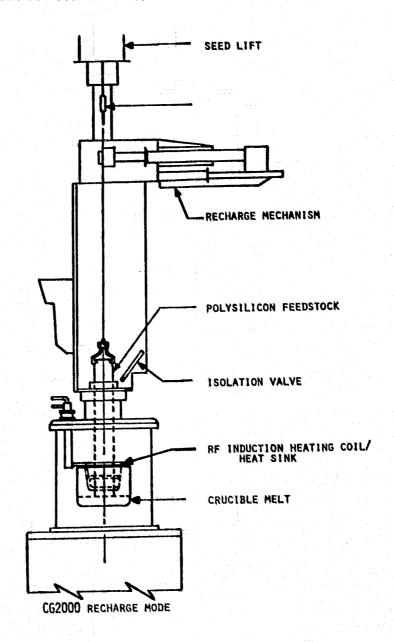
#### VI. DATA STORAGE AND PROCESS DEVELOPMENT

#### A. GOALS:

- 1. TO STORE RUN DATA AT FIXED TIME INTERVALS (UND. AS YET).

  - A. ALL MOTOR SETTINGS
    B. ALL MOTOR TACH READINGS
    C. DIAMETER SETTING
    D. TEMPERATURE SET POINT
    E. ACTUAL DIAMETER (REQ. RETICON OR SIMILAR)
- 2. TO STORE RUN DATA WHEN OPERATOR CAUSES A CHANGE TO OCCUR, I.E. ENTERS NEW SET POINT.
- 3. PRODUCE A HARD COPY OF ALL RUN DATA FROM THE FLOPPY DISK. A. SUITABLE FORMAT TO BE USED FOR EASE IN ANALYSES OF DATA
- B. MINIMUM ACCEPTANCE: (SCHEDULED 8/1/80)
  - 1. RUN DATA STORAGE ON FLOPPY DISK.

#### VI. PROGRAMMED GROWTH


#### A. GOALS:

- 1. ALLOW OPERATOR TO ENTER RUN DATA POINTS.

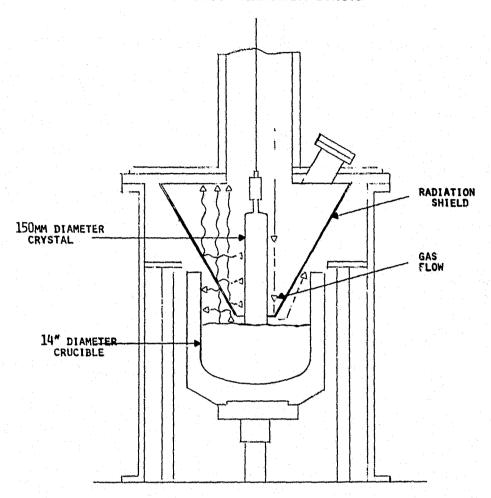
  - A. PARTICULAR DATA POINTS, I.E. SL, CR, ETC.
    B. PARAMETERS FOR USE OF DATA POINTS, I.E. TIME INTO RUN
    OR XTAL WEIGHT OR BOTH, ETC.
- 2. ALLOW FOR PERMANENT STORAGE OF DATA POINTS.
- 3. RETRIEVAL OF STORED FOR USE IN SUCCESSIVE RUNS.
  - A. ELIMINATES NEED FOR OPERATOR ENTRY AT START OF EACH RUN
- 4. ALLOW OPERATOR TO EDIT AND CHANGE GROWTH PROGRAM.
- 5. ALL ENTRY AND EDIT FEATURES TO BE IN PLAIN ENGLISH AND ENGINEERING UNITS SO AS TO REQUIRE NO PROGRAMMING KNOWLEDGE ON THE OPERATOR'S PART.
- B. MINIMUM ACCEPTANCE: (SCHEDULED 8/1/80)
  - 1. ALL GOALS LISTED PREVIOUSLY.
  - 2. OPTION TO POSTPONE UNTIL LATER DATE DUE TO PROCESS DEVELOPMENT PROBLEMS.
  - 3. IF POSTPONED, THEN SOME FORM OF PROGRAMMED TAILING OPERATION OF CRYSTAL TO BE DEVELOPED TO JPL CONTRACT REQUIREMENTS.

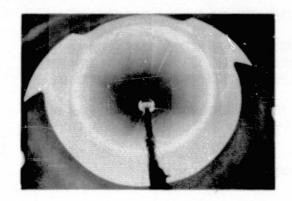
# Program: Accelerated Melting of Si Poly Rods

| TECHNOLOGY - INGOT GROWTH                                                                                               | REPORT DATE: SEPT 24, 1980<br>STATE DATE: MARCH 12, 1979                                         |
|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| APPROACH                                                                                                                | STATUS                                                                                           |
| DEVELOPMENT OF CRUCIBLE RECHARGE TECH-<br>NIQUES UTILIZING R.F. MELTING OF 5"<br>DIAMETER POLYCRYSTALLINE SILICON RODS. | JPL ISSUED TECHNICAL DIRECTION MEMO IN APRIL DE-EMPHASIZING THIS PROGRAM.  PROBLEMS              |
|                                                                                                                         | 1. TECHNICAL PROBLEMS DUE TO ARCING IN GROWTH ATMOSPHERE.                                        |
|                                                                                                                         | 2. AVAILABILITY OF SUITABLE QUALITY CRACK-FREE, TAPER AND BOW FREE POLY RODS IS A MAJOR PROBLEM. |
|                                                                                                                         | 3. AVAILABILITY OF POLY RODS AT A COST EFFECTIVE PRICE.                                          |
|                                                                                                                         |                                                                                                  |

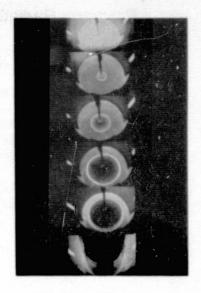


## **Problems and Concerns**

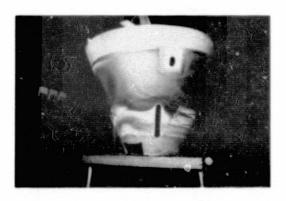

MELTING OF 25 KG/HR OF POLY ROD UTILIZING AN RF INDUCTION HEATING WORK COIL POSES TECHNICAL PROBLEMS:


- A) ARCING OCCURS UTILIZING NORMAL VACUUM/ARGON ATMOSPHERE (PRIMARILY ARGON IONIZATION)
- B) ARCING CORRECTED BY MELTING IN A HELIUM PRESSURE ATMOSPHERE, BUT IS COSTLY AND PRODUCES MORE OXIDE BUILD-UP ON COIL AND CHAMBER WALLS.
- C) POLY ROD CRACKS SLOW TEMPERATURE PREHEAT ESSENTIAL, BUT TIME CONSUMING.
- D) POLY ROD BOW AND TAPER DIFFICULT TO CENTER IF RF COIL, CAUSING ARCING IF TOO CLOSE TO COIL; VARIABLE MELTING RATE OCCURS DUE TO RF COUPLING VARIATION.

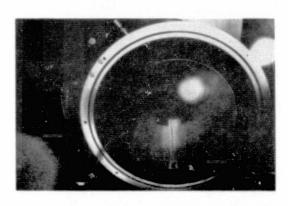
# Program: Accelerated Growth


| TECHNOLOGY - INGOT GROWTH                                                                                                                                                                                                            | REPORT DATE: SEPT. 24, 1980<br>START DATE: MARCH 12, 1979                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| APPROACH  EQUIPMENT AND PROCESS COST IMPROVEMENT FOR PRODUCTION OF LOW COST SOLAR SILICON SHEET BY THE CZOCHRALSKI METHOD.  GOALS  ACHIEVE A GROWTH RATE OF 15 CM/HR. USING A HEAT SINK TO ABSORB ENERGY RELEASED BY HEAT OF FUSION. | 1. USE OF R.F. COIL AS HEAT SINK DISCONTINUED. GROWTH RATE IMPROVEMENT OBTAINED. OXIDE FLAKING CAUSED STRUCTURE LOSS.  2. MOLYBDENUM HEAT SHIELD FABRICATED GROWTH RATE IMPROVEMENT OBTAINED. ANCILLARY BENEFITS OBTAINED: A) REDUCED OXIDE BUILD UP ON CRUCIBLE WALL |
|                                                                                                                                                                                                                                      | B) ELIMINATION OF OXIDE FORMATION ON CRYSTAL.                                                                                                                                                                                                                         |

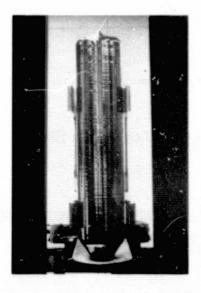
## Cz Furnace Radiation Shield



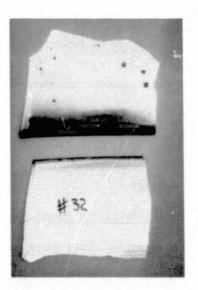




Crystal Growing Through Shield




Growth Sequence




Radiation Shield With Slots



Shield in Position (No Slots)



Crystal Grown in Run #33



Crucible Oxide Comparison

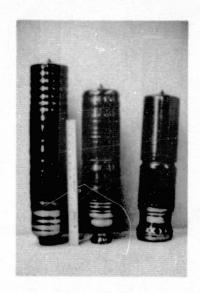
### Program: Radiation Shield to Accelerate Growth

- 1. MORE EFFECTIVE COOLING OF CRYSTAL DURING GROWTH.
- 2. REDUCED OXIDE BUILD UP ON CRUCIBLE WALL AND FURNACE TANK COVER PLATE.
- 3. CRUCIBLE WALL IS KEPT HOT BY RADIATION FROM MELT SURFACE BEING REFLECTED BY RADIATION SHIELD BACK TO CRUCIBLE WALL. THE REFLECTED BY RADIATION SHIELD PREVENTS THIS HEAT FROM BEING RADIATED BACK ON TO THE CRYSTAL.
- 4. RADIATION SHIELD REFLECTS HEAT FROM THE GROWING CRYSTAL AWAY FROM THE GROWTH REGION. THIS HEAT IS EFFECTIVELY ABSORBED BY THE WATER COOLED COVER PLATE.
- 5. ARGON FLOW REQUIREMENT TO VIEW PORT WINDOWS ELIMINATED.

### 6-in.-Dia Growth Rate Comparison

| (1)<br>Crystal ID<br>Run-Xtal # | (2)<br>Crystal<br>Length<br>(In) | (3)<br>Straight<br>Growth<br>(hrs) | (A)<br>Growth Rate<br>St. Growth<br>(inch/hr) | Avg. 1st ha'f<br>growth rate<br>(inches/ir) | (%) Avg total run growt: rate (inches/hr) | (1)  | (2)    | (3)  | (4)  | (5)  | (6) |
|---------------------------------|----------------------------------|------------------------------------|-----------------------------------------------|---------------------------------------------|-------------------------------------------|------|--------|------|------|------|-----|
| 70-1                            | 22-3/4                           | 8.25                               | 2.75                                          |                                             |                                           | 30-1 | 23-1/2 | 6.7  | 3.51 |      |     |
| 70-2                            | 21-1/2                           | 7.25                               | 2.97                                          |                                             |                                           | 30-2 | 22     | 6,3  | 3,49 |      |     |
| 70-3                            | 24                               | 8.50                               | 2.82                                          | 2.84                                        |                                           | 30-3 | 20-1/4 | 6.75 | 3,00 | 3,33 |     |
| 70-4                            | 25-1/2                           | 9.50                               | 2,68                                          |                                             |                                           | 30-4 | 26     | 9.7  | 2,68 |      |     |
| 70-5                            | 23 1/4                           | 9.90                               | 2,35                                          |                                             |                                           | 30-5 | 24-1/4 | 8.5  | 2,85 |      |     |
| 70-6                            | 24                               | 10,00                              | 2,40                                          |                                             | 2.54                                      | 30-6 | 25-1/2 | 9,8  | 2,60 |      | 2,9 |
| 72-1                            | 21-1/2                           | 7.50                               | 2.87                                          |                                             |                                           | -    |        |      |      |      |     |
| 72-2                            | 23                               | 7.80                               | 2.95                                          |                                             |                                           |      |        |      |      |      |     |
| 72-3                            | 22                               | 8.70                               | 2.53                                          | 2.77                                        |                                           |      |        |      |      |      |     |
| 72-4                            | 20                               | 8.00                               | 2,50                                          | -                                           |                                           |      |        |      |      |      |     |
| 72-5                            | 24                               | 9.20                               | 2.51                                          |                                             |                                           |      |        |      |      |      |     |
| 72-5                            | 26-1/2                           | 11.50                              | 2,30                                          |                                             | 2.50                                      |      |        |      |      |      |     |

### Program: Accelerated Growth Using Radiation Shield


#### SUMMARY

- ACCELERATED GROWTH PARTIALLY DEMONSTRATED. FURTHER DEVELOPMENT NECESSARY.
- REDUCED OXIDE BUILD-UP ON CRUCIBLE WALL.
- OXIDE BUILD-UP ON CRYSTAL ELIMINATED.
- IMPROVED MONOCRYSTALLINE YIELD.

| Crystal ID#<br>Run-Xtal # | Crystal<br>Length<br>(in) | Crystal<br>Weight<br>(kg) | Pt. of<br>Dislocation<br>(in) | top  | Inches of<br>Single Xtal<br>(in) | % of<br>Single Xtal | St.<br>Growth<br>(hrs) | Growth Rate<br>St. Growth           | Total-Single<br>Xtal % of Run |
|---------------------------|---------------------------|---------------------------|-------------------------------|------|----------------------------------|---------------------|------------------------|-------------------------------------|-------------------------------|
| *2-1                      | 16                        | 13.7                      | 13                            | 81.3 | 16                               | 100                 | 5.3                    | 3.02"/HR                            | 63.7                          |
| *2-2                      | 13-1/2                    | 9.9                       | 10 1/2                        | 77.8 | 13 1/2                           | 100                 |                        | 7.67CM/HR<br>2.7"/HR                |                               |
| *2-3                      | 21                        | 13.8                      | 13                            | 61.9 | 14 1/2                           | 69                  | 6.5                    | 3.23"/HR<br>8.20 CM/HR              |                               |
| *2-4                      | 10                        | 9.0                       | 4 1/2                         | 45.0 | 7                                | 70                  | 3,5                    | 2.86"/HR<br>7.26 CM/HR              |                               |
| *2-5                      | 18                        | 12.5                      | 5 1/2                         | 30.6 | 7                                | 38.9                | 6.7                    | 2.69"/HR<br>6.83 CM/HR              |                               |
| *2-6                      | 4-3/4                     | 3.0                       | 2                             | 42.0 | 4 3/4                            | 100                 | 1.5                    | 3.17"/HR                            |                               |
| *2-7                      | 9-1/2                     | 7.1                       | 2                             | 21.1 | 5                                | 52.6                | 4.3                    | 8.05 CM/HR<br>2.21"/HR              |                               |
| *2-8                      | 24                        | 15.4                      | 1 3/4                         | 7.3  | 10                               | 41.7                | 9.0                    | 5.6 CM/HR<br>2.67"/HR               |                               |
| *2-9                      | 23                        | 15.9                      | CROWN                         | 0    | 11 1/4                           | 48.9                | 10.0                   | 6.78 CM/HR<br>2.3"/HR<br>5.84 CM/HR |                               |
| TOTAL                     | 139.75                    | 100.3                     |                               |      | 89                               |                     | 46.8                   |                                     |                               |

| Crystal ID#<br>Run-Xtal # | Crystal<br>Length<br>(in) | Crystal<br>Weight<br>(kg) | Pt. of<br>Dislocation<br>(in) | ZOD  | Inches of<br>Single Xtal<br>(in) | % of<br>Single Xtal | St.<br>Growth<br>(hrs) | Growth Rate<br>St. Growth          | Total-Single<br>Xtal % of Run |
|---------------------------|---------------------------|---------------------------|-------------------------------|------|----------------------------------|---------------------|------------------------|------------------------------------|-------------------------------|
| 4-1                       | 17.5                      | 12.6                      | 12                            | 68.6 | 13,5                             | 77.1                | 4.25                   | 4.12"/HR<br>10.46CM/HR             |                               |
| 4-2                       | 11.5                      | 8.1                       | 2                             | 17.4 | 4.5                              | 39                  | 2.5                    | 4.6"/HR                            | 6.21                          |
| TOTAL                     | 29                        | 20.7                      |                               |      | 18                               |                     | 6.75                   | 11.68CM/HR                         |                               |
| 20-1                      | 20                        | 19,45                     | NONE                          | 100  | NONE                             | 100                 | 6.7                    | 2.99"/HR                           | 100                           |
| 21-1                      | 27.5                      | 27.7                      | 7                             | 25.4 | 9                                | 32.7                | 8                      | 7.59CM/HR<br>3.44"/HR<br>8.74CM/HR | 32.7                          |
| 22-1                      | 24 1/4                    | 22.8                      | NONE                          | 100  | NONE                             | 100                 | 7.0                    | 3.46"/HR                           |                               |
|                           |                           |                           |                               |      |                                  |                     |                        | 8.79CM/HR                          | 100                           |
| 22-2                      | 16 1/4                    | 14.2                      | NONE                          | 100  | NONE                             | 100                 | 4.9                    | 3.32"/HR                           |                               |
| TOTAL                     | 40.5                      | 37.0                      |                               |      | 40.5                             |                     | 11.9                   | 8.43CM/HR                          |                               |

| Crystal ID#<br>Run-Xtal # | Crystal Length (in) | Crystal<br>Weight<br>(kg) | Pt. of<br>Dislocation<br>(in) | 20D  | Inches of<br>Single Xtal<br>(in) | % of<br>Single Xtal | St.<br>Growth<br>(hrs) | Growth Rate<br>St. Growth | Total-Single<br>Xtal % of Run |
|---------------------------|---------------------|---------------------------|-------------------------------|------|----------------------------------|---------------------|------------------------|---------------------------|-------------------------------|
| 23-1                      | 24 + 2"<br>TAPER    | 22.2                      | NONE                          | 100  | 24 + 2                           | 100                 | 7.8                    | 3.07"/HR<br>7.80 CM/HR    |                               |
| 23-2                      | 18% +4"<br>TAPER    | 18.7                      | 16                            | 87,7 | 18                               | 98.6                | 5.0                    | 3.65"/HR<br>9.27 CM/HR    | 92.9                          |
| 23-3                      | 21%<br>NO TAPER     | 18.6                      | 15 1/4                        | 71.8 | 17                               | 80.0                | 5.5                    | 3.09"/HR<br>7.85 CM/HR    |                               |
| TOTAL                     | 63.5                | 59.5                      |                               |      |                                  | 59                  | 18.3                   |                           |                               |



Crystals Grown in Run #23


| Crystal ID#<br>Run-Xtal # | Crystal Length (in) | Crystal<br>Weight<br>(kg) | Pt. of<br>Dislocation<br>(in) | 20D  | Inches of<br>Single Xtal<br>(in) | % of<br>Single Xtal | St.<br>Growth<br>(hrs) | Growth Rate<br>St. Growth | Total-Single<br>Xtal % of Run |
|---------------------------|---------------------|---------------------------|-------------------------------|------|----------------------------------|---------------------|------------------------|---------------------------|-------------------------------|
| 27-1                      | 22" +25"<br>TAPER   | 22.8                      | NONE                          | 100  | 22                               | 100                 | 7.0                    | 3.15"/HR<br>8.00 CM/HR    |                               |
| 27-2                      | 22"+3/4"<br>TAPER   | 21.8                      | 11                            | 50   | 12                               | 54.5                | 7.4                    | 2.97"/HR<br>7.54 CM/HR    |                               |
| 27-3                      | 15%"                | 15.4                      | 2-1/2                         | 15.1 | 3-1/2                            | 22.6                | 4.0                    | 3.88"/HR<br>9.86 CM/HR    | 61.9                          |
| 27-4                      | 5                   | 5.2                       | CROWN                         | 0    | 3                                | 60                  | 1.6                    | 3.13"/HR                  |                               |
| TOTAL                     | 64.5                | 65.2                      |                               |      | 40.5                             |                     | 20                     | 7.95 CM/HR                |                               |

| Crystal ID#<br>Run-Xtal # | Crystal<br>Length<br>(in) | Crystal<br>Weight<br>(kg) | Pt. of<br>Dislocation<br>(in) | %OD  | Inches of<br>Single Xtal<br>(in) | % of<br>Single Xtal | St.<br>Growth<br>(hrs) | Growth Rate<br>St. Growth | Total-Single<br>Xtal % of Run  |
|---------------------------|---------------------------|---------------------------|-------------------------------|------|----------------------------------|---------------------|------------------------|---------------------------|--------------------------------|
| 30-1                      | 23-1/2 +<br>3" TAPER      |                           | NONE                          | 100  | 23-1/2 +<br>TAPER                | 100                 | 6.7                    | 3.51"/HR                  | (FIRST THREE<br>CRYSTALS 77/2) |
| 30-2                      | 22 +<br>2" TAPER          | 24.1                      | 10                            | 45   | 13                               | 59                  | 6.3                    | 3.49"/HR<br>8.86 CM/HR    |                                |
| 30-3                      | 20-1/4 +<br>3/4"<br>TAPER | 23.3                      | 13                            | 64   | 15                               | 74                  | F 75                   | 3.00"/HR<br>7.62 CM/HR    |                                |
| 30-4                      | 26 + 0                    | 26.1                      | CROWN                         | 0    | 3                                | 11.5                | 9.7                    | 2.68"/HR<br>6.81 CM/HR    | 45.6                           |
| 30-5                      | 24-1/4 +<br>1/2"<br>TAPER | 24.7                      | 2-1/2                         | 10.3 | 7                                | 28.9                | 8.5                    | 2.85"/HR<br>7.24 CM/HR    |                                |
| 30-6                      | 25-1/2 +                  | 26,3                      | CROWN                         | 0    | 3                                | 11.8                | 9.8                    | 2.60"/HR<br>6.61 CM/HR    |                                |
| TOTAL                     | 141.5                     | 148.5                     |                               |      | 64.5                             |                     | 47.75                  |                           |                                |



Crystals Grown in Run #30

| Crystal ID#<br>Run-Xtal # | Crystal Length | Crystal<br>Weight<br>(kg) | Pt. of<br>Dislocation<br>(in) | 200  | Inches of<br>Single Xtal<br>(in)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | % of<br>Single Xtal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | St.<br>Growth<br>(hrs) | Growth Rate<br>St. Growth | Total-Single<br>Xtal % of Rur |
|---------------------------|----------------|---------------------------|-------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------|-------------------------------|
| 32-1                      | 22's + 0       | 21.0                      | 12                            | 48.9 | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 57.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.7                    | 2.59"/HR<br>6.58 CM/HR    |                               |
| 32-2                      | 27 + 0         | 25.2                      | 13                            | 5.6  | 6"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.9                    | 2.73"/HR<br>5.93 CM/HR    | 32.2                          |
| 32-3                      | 28% + 0        | 24.8                      | 1                             | 3,5  | 6"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.9                    | 2.85"/HR                  |                               |
| TOTAL                     | 77.75          | 72                        | 8                             | 1    | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28.5                   | 7.24 CM/HR                |                               |
|                           | NDER MICH      |                           | DD AT 3.17"                   | /HR  | and the second s | the state of the s |                        |                           |                               |



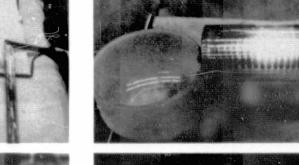
Crucible Thickness Comparison

### Cold Crucible Premelter System

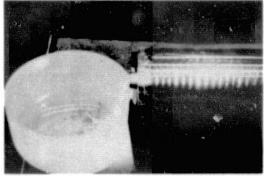
#### **GOALS**

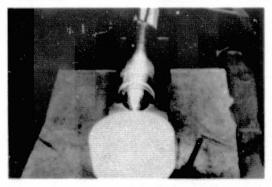
- 1. COLD CRUCIBLE DESIGN
- 2. MODIFIED FURNACE TANK
- SILVER BOAT/R.F. COIL ASSEMBLY
- MELT/LEVITATION/MELT TRANSFER EXPERI-MENTS.
- 5. COLD CRUCIBLE/CRYSTAL PULLER INTERFACE

**COMPLETE 3/28/80** 


COMPLETE 4/11/80

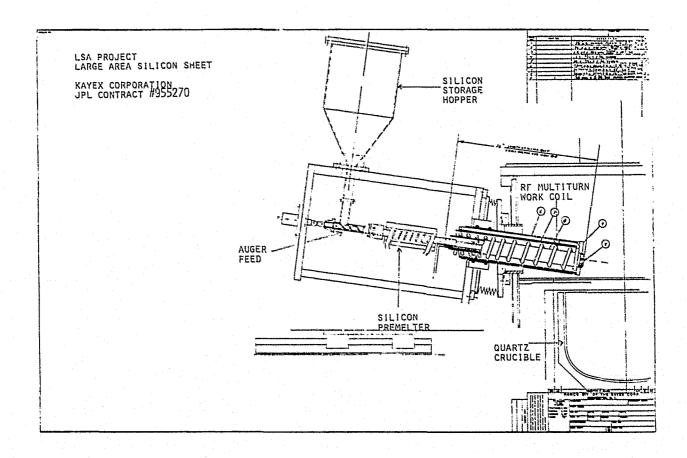
COMPLETE 5/8/80


**COMPLETE 8/15/80** 

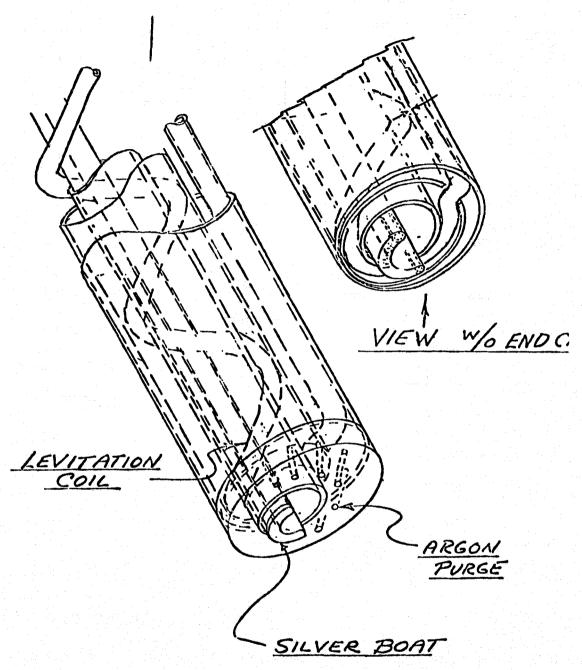

ONGOING



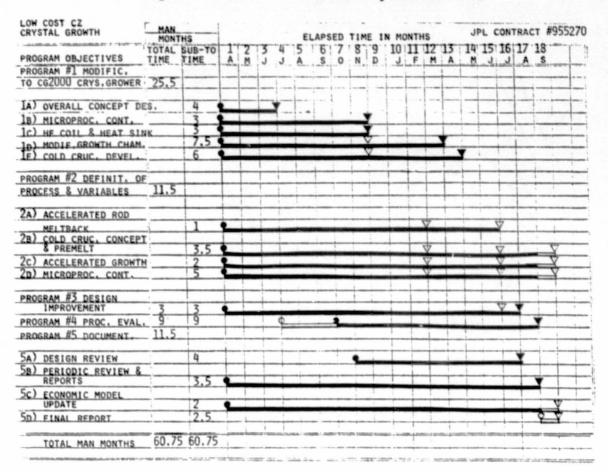







OF ROOM OF ALLY


Cold Crucible Views



### **Cold Crucible Premelter Silver Boat Assembly**



### Program Plan: Low-Cost Cz Crystal Growth



### Overall Program Summary

# 1. MICROPROCESSOR CONTROL

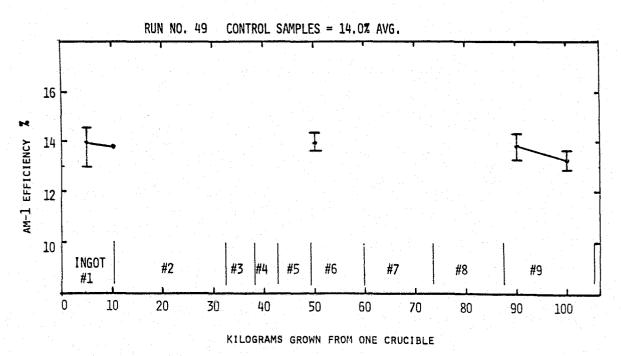
- 2. ACCELERATED GROWTH
- COLD CRUCIBLE

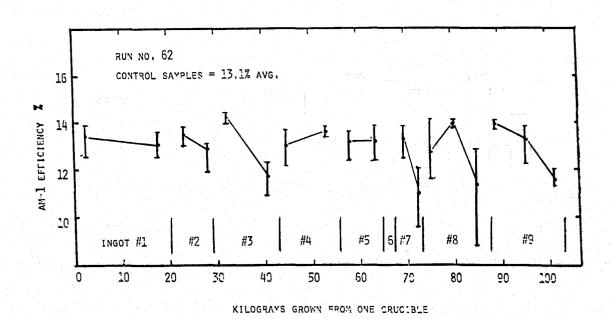
**PROGRAM** 

 ACCELERATED MELTING OF POLY RODS USING R.F. COIL

#### STATUS

SHOULDER AND STRAIGHT GROWTH DEMONSTRATED FOR 4" AND 6" GROWTH.


PARITALLY DEMONSTRATED
ANCILLARY BENEFITS GAINED:
A) CLEANER CRYSTALS

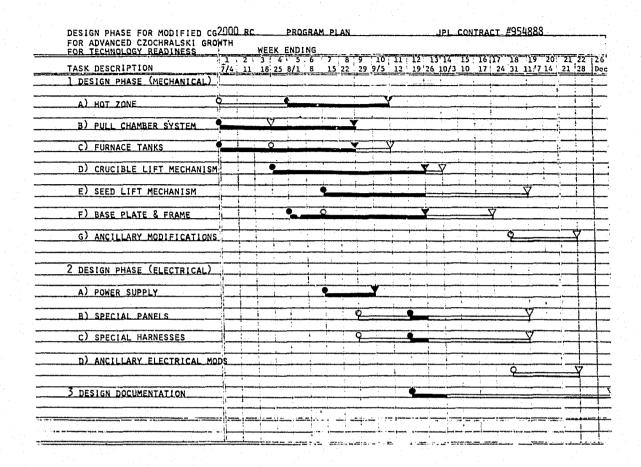

B) REDUCED OXIDE ON CRUCIBLE WALL

DEMONSTRATED OFF THE CRYSTAL PULLER TOTAL INTERFACE OF EQUIPMENT TO CRYSTAL PULLER AVAILABLE.

PROGRAM DE-EMPHASIZED BY J.P.L.

### Solar Efficiency vs Kilograms Grown






# INGOT GROWTH: ADVANCED CZOCHRALSKI

### KAYEX CORP.

| TECHNOLOGY - INGOT GROWTH                                                                                          | REPORT DATE: SEPTEMBER 24, 1980<br>START DATE: JULY 1, 1980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| APPROACH:  DESIGN OF A MODIFIED CG 2000 RC CRYSTAL GROWER FOR ADVANCED CZOCHRALSKI GROWTH FOR TECHNICAL READINESS. | GOALS:  DESIGN A MODIFIED CG 2000 RC CRYSTAL GROWER WITH A CAPABILITY OF PULLING FIVE CRYSTALS, EACH OF 30 KG WEIGHT, 150 MMS DIAMETER FROM A SINGLE 16" DIAMETER CRUCIBLE.  MODIFICATIONS TO BE AS FOLLOWS: A. OVERALL EQUIPMENT DESIGN B. PROCESS, AUTOMATION WITH MPU C. SENSOR DEVELOPMENT: MELT LEVEL; MELT TEMPERATURE; CRYSTAL DIAMETER D. RADIATION SHIELD TO ACCELERATE GROWTH E. RECHARGE RATE OF 25 KG/HR USING SILICON CHUNKS OR GRANULAR SILICON UTILIZING A RECHARGE HOPPER F. MODIFIED GROWTH CHAMBER SUITABLE FOR USE AS A PRODUCTION FACILITY WITH A THROUGHPUT CAPABILITY OF 2.5 KG/HR OF MACHINE THROUGHPUT |

### Program Plan



| TECHNOLOGY                                                                                                                                                                     | REPORT DATE START DATE                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| INGOT GROWTH                                                                                                                                                                   | SEPT. 24, 1980 JULY 1, 1980                                                                                                                                       |
| APPROACH: EQUIPMENT DESIGN OF A MODIFIED CG 2000 RC CRYSTAL GROWER FOR ADVANCED CZOCHRALSKI GROWTH FOR TECHNOLOGY READINESS. CONTRACTOR: KAYEX CORPORATION CONTRACT NO: 954888 | STATUS: MECHANICAL: DESIGNS COMPLETE FOR ALL MAJOR COMPONENTS AND HOT ZONES. SEED LIFT DESIGN ONGOING - COMPLETE BY 10/3/80 ELECTRICAL: POWER SUPPLY MODIFICATION |
| GOALS:  A. OVERALL EQUIPMENT DESIGN  B. DESIGN DOCUMENTATION                                                                                                                   | REQUIREMENTS COMPLETE.  SPECIAL HARNESSES, PANELS DESIGN ONGOING - COMPLETE BY 10/3/80.  DESIGN DOCUMENTATION: ONGOING - COMPLETE BY 10/31/80.                    |

# Thermal American Fused Quartz Co.

incorporated

MAIN OFFICE: Route 202, Montville, New Jersey 07045 Tel: 201-334-7770 Telex; 136477

го:

Hamco Machine

1000 Millsteadway Rochester, NY 114624

Attention: Elwyn Roberts

DATE:

May 12, 1980

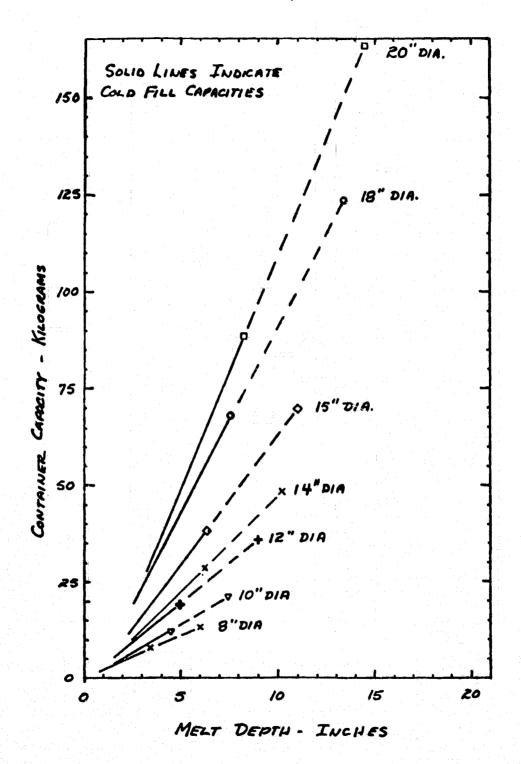
REFERENCE:

We are pleased to quote as follows:

| QUANTITY                  | DESCRIPTION                                                 | UNIT PRICE   | TOTAL |
|---------------------------|-------------------------------------------------------------|--------------|-------|
|                           | VITREOSIL A.M. CRUCIBLE                                     |              |       |
| 50                        | 16" OD x 12" High 3" Corner Radium/16" Bottom Radius        | \$391.00/ea. |       |
| 150/mo<br>for 15<br>mos.  |                                                             | 340.00/ea.   |       |
| 50                        | 15" OD x 12" High<br>w/3" Corner Radius/16" Bottom Radius   | 322.00/ea.   |       |
| 150/mo.<br>for 15<br>mos. |                                                             | 280.00/ea.   |       |
| 50                        | 14" OD x 12" High<br>W/3.5" Corner Radius/14" Bottom Radius | 230.00/ea.   |       |
|                           | Delivery: *Estimated Selling Price for Evaluation Only.     |              |       |

This quotation is valid for a period of 30 days from the date hereof. However, we reserve the right to revise upon notification to you during this period.

THERMAL AMERICAN FUSED QUARTZ CO.


Frank Rusignuolo

Title: Salesman

TERMS: 30 Days Net F.O.B.: Shipping Point

Manufacturers of Transparent & Opaque Fused Silica

# **Container Capacities**



### Cz Growth Parameters

# LOW COST CZ (POLY LUMP FEED) 15 CMS DIAMETER

| CONDITIONS (PER CYCLE)    | 3"/HR GROWTH | 4"/HR GROWTH |
|---------------------------|--------------|--------------|
| CRUCIBLE SIZE (INS)       | 16           | 16           |
| CRYSTAL DIAMETER (CMS)    | 15           | 15           |
| GROWTH RATE (CMS/HR)      | 7.62         | 10.16        |
| TOTAL POLY MELTED (KG)    | 157.5        | 157.5        |
| TOTAL CRYSTAL PULLED (KG) | 150          | 150          |
| PULLEY YIELD (%)          | 95.2         | 95.2         |
| YIELD AFTER CG (%)        | 85           | 85           |
| NO. OF CRYSTALS/CRUCIBLE  | 4            | 4            |
| CYCLE TIME (HR)           | 68.7         | 57.9         |

REPORT DATE: SEPT. 24, 1980 START DATE: JULY 1, 1980

# **Process Time Cycle**

| OPERATION                                                                                                                                                                      | LOW COST CZ                      | (3"/HR) | LOW COST CZ                               | (4*/HR)         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------|-------------------------------------------|-----------------|
| 1. PREPARATION LOAD POLY CLOSE FURNACE PUMP DOWN MELT                                                                                                                          | 25<br>5<br>10<br>140             |         | INS 25 5 10 140                           | 180 MINS        |
| 2. GROWTH CYCLE (INIT: LOWER SEED * STABILIZE TEMP. SEED & CROWN GROWTH STRAIGHT GROWTH TAPER END                                                                              | 15<br>30                         | 826 M   | INS<br>15<br>30<br>90<br>484<br>60        | 664 MINS        |
| 3. RECHARGE & GROWTH ( COOL CRYSTAL REMOVE CRYSTAL LOAD HOPPER LOWER HOPPER MELT POLY LUMP LOWER SEED * STABILIZE TEMPERATE SEED GROWTH CROWN GROWTH STRAIGHT GROWTH TAPER END | 30<br>10<br>15<br>5<br>100<br>15 |         | 30 CYCLES) 30 10 15 5 100 15 30 60 484 60 | 2472 (3 CYCLES) |

CONFLETED DURING MELT TEMPERATURE STABILIZATION

|    | LOW                                                                                                                                                                                                                      | COST CZ (3"                                                                                                                                                                                                                    | /HR)                                                        | LOW COST CZ    | (4*/HR)                                                         |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------|-----------------------------------------------------------------|
| 4. | SHUT DOWN CYCLE COOL FURNACE REMOVE CRYSTAL * CLEAN, SET UP                                                                                                                                                              | 80<br>10 *<br>80                                                                                                                                                                                                               | 160 MINS                                                    | 80<br>10<br>80 | •                                                               |
|    | * COMPLETED DURING FURN<br>TOTAL TIME (MIN)<br>(HRS)                                                                                                                                                                     | ACE COOLING<br>4124<br>687                                                                                                                                                                                                     | TIME,                                                       | 3476<br>579    |                                                                 |
|    | SAMICS/IPEG INPUT DATA                                                                                                                                                                                                   | AND COST CA                                                                                                                                                                                                                    | LCULATION                                                   |                |                                                                 |
|    | CONDITIONS (PER CYCLE) TOTAL SI MELTED (KG) CRYSTAL WEIGHT (KG) NO. CRYSTALS/CRUCIBLE DIAMETER OF CRYSTALS (C GROWTH RATE (CM/HR) CYCLE TIME (HRS) CRUCIBLE SIZE (INS)                                                   |                                                                                                                                                                                                                                | HR GROWTH<br>157.5<br>37.5<br>4<br>15<br>7.62<br>68.7<br>16 |                | 4"/HR GROWTH<br>157.5<br>37.5<br>4<br>15<br>10.16<br>57.9<br>16 |
|    | INPUT DATA (\$1980)  CAPITAL EQUIP. COST (EGMANUFACTURING FLOOR SPAANNUAL DIRECT SALARIES PROD OP. (0.65 PERSONS/ELECT. TECH. (0.33 PERSONS/ELECT. TECH. (0.19 PERSONS/ELECT. (0.11 PERSONS/ELECT. (0.11 PERSONS/ELECT.) | CE (SQFT)  YR) SONS/YR)                                                                                                                                                                                                        | 7500<br>100<br>8554<br>5082<br>1155                         |                | 167500<br>100<br>8554<br>5082<br>                               |
|    | TOTAL D/LAB                                                                                                                                                                                                              |                                                                                                                                                                                                                                | 4791                                                        |                | <u>14791</u>                                                    |
|    | Calculation: 4 × 3<br>Mod. CG 2000 RG                                                                                                                                                                                    |                                                                                                                                                                                                                                |                                                             |                |                                                                 |
|    | IPEG PRICE                                                                                                                                                                                                               | 1975 - 1986 - 1986 - 1986 - 1986 - 1986 - 1986 - 1986 - 1986 - 1986 - 1986 - 1986 - 1986 - 1986 - 1986 - 1986<br>1986 - 1986 - 1986 - 1986 - 1986 - 1986 - 1986 - 1986 - 1986 - 1986 - 1986 - 1986 - 1986 - 1986 - 1986 - 1986 |                                                             |                |                                                                 |
|    | C1 EQPT = \$ 0.49/YR = \$ C2 SQFT = \$ 97/YR = \$ S C3 DLAP = \$ 2.1/YR = \$ C4 MATS = \$ 1.3/YR = \$ C5 UTIL = \$ 1.3/YR = \$                                                                                           | OFT<br>DLAB<br>MATS                                                                                                                                                                                                            | \$ 82075<br>9700<br>31061<br>123819<br>39213                |                | \$ 82075<br>9700<br>31061<br>134377<br>38917                    |
|    | ANNUAL COST                                                                                                                                                                                                              |                                                                                                                                                                                                                                | \$285868                                                    |                | \$296130                                                        |
|    | QUAN (TOTAL CHARGE X % THROUGHPUT ADD ON COST (\$KG OR \$M <sup>2</sup> ) (ASSUME 1 KG = 1 M <sup>2</sup> )                                                                                                              |                                                                                                                                                                                                                                |                                                             | .95 KG         | 17163 KG<br>2.3 K<br><u>\$ 17.25</u>                            |
|    |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                | and the second second                                       |                |                                                                 |

# Cost Projections (1980 \$) SAMICS-IPEG

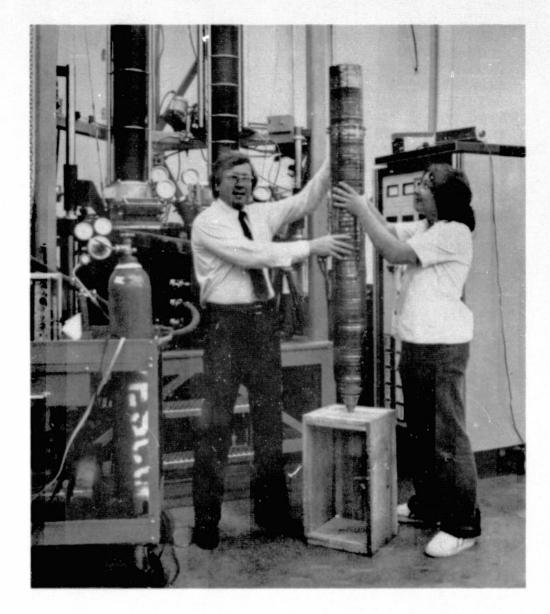
| ASSUMPTIONS: | PRODUCING 4 X | 37.5 KG CRYSTALS | FROM A 16" | DIAMETER CRUCIBLE |
|--------------|---------------|------------------|------------|-------------------|
|              |               |                  |            |                   |

| ASSUMPTIONS: PRODUCING 4 x 3/.5    | KG CRYSTALS FROM A 16" DI                                               | AMETER CRUCIBLE                             |
|------------------------------------|-------------------------------------------------------------------------|---------------------------------------------|
| LC                                 | OW COST CZ (3"/HR GROWTH)                                               | LOW COST CZ (4"/HR GROWTH)                  |
| C1 EQPT = \$0.49/YR = \$EQPT       | \$ 82,075                                                               | \$ 82,075                                   |
| C2 sqfT = \$97/YR = \$sqfT         | 9,700                                                                   | 9,700                                       |
| C3 DLAB = \$2.1/YR = \$DLAB        | 31,061                                                                  | 31,061                                      |
| C4 mats = \$1.3/yr = \$mats        | 123,819                                                                 | 134,377                                     |
| C5 util = \$1.3/yR = \$util        | 39.213                                                                  | <u>38,917</u>                               |
| QUAN (TOTAL CHARGED X X Y) THRO    | AL = \$ 285,869<br>BELD)(KG)=14,458KG<br>DUGHPUT = 1.95/KG<br>MOJECTION | TOTAL = \$ 296,130<br>=17,163KG<br>= 2,3/KG |
| Assume $1m^2 = 1$ kg               |                                                                         |                                             |
|                                    | COST CZ (3"/HR GROWTH)                                                  | LOW COST CZ (4"/HR GROWTH)                  |
| cz                                 | ADD ON COST =                                                           | CZ ADD ON COST =                            |
|                                    | \$ 19.77/kg                                                             | \$ 17.25/kg                                 |
|                                    | = \$ 0.1394/PEAK WATT                                                   | = \$ 0.1217/PEAK WATT                       |
|                                    |                                                                         |                                             |
|                                    |                                                                         |                                             |
|                                    |                                                                         |                                             |
| DIRECT USED MATERIALS              | & SUPPLIES                                                              |                                             |
| 85% USAGE/YEAR                     |                                                                         |                                             |
| CYCLES/YR HRS/CYCLE                |                                                                         | 1282/57.9                                   |
| POLY-KG/YR CHARGED                 | 17010                                                                   | 20191.5                                     |
| SEED (\$20)                        | 1080                                                                    | 1282                                        |
| DOPANT (NOT ÇOSTED)                | 7                                                                       |                                             |
| ARGON (100FT <sup>3</sup> /CYCLE H |                                                                         | 14845                                       |
| CRUCIBLES (16" a \$3.91            |                                                                         | <b>5012</b> 6                               |
| MISCELLANEOUS (INCLUD)             | ING GRAPHITE 37098                                                      | 37114                                       |
| AT \$5/CYCLE HR)                   |                                                                         |                                             |
| MATERIALS TOTAL (MATS)             | \$ 95245                                                                | <b>\$ 103367</b>                            |
| IMIENIALS IDIAL CIMIS              | 4 30240                                                                 | <b>→ 10220/</b>                             |
| UTILITIES (PROCESS)                |                                                                         |                                             |
| ELECTRICITY (100 KW x 0.035/KW)(C) | /rie Time                                                               |                                             |
| - 3 HRS) X (# 0F C)                |                                                                         | \$ 24633                                    |
| COOLING WATER                      |                                                                         |                                             |
| (100 KW x 0,0074/KW)((             | CYCLE TIME                                                              |                                             |
| - 2 HRS) X (# OF C)                |                                                                         | \$ 5303                                     |
|                                    |                                                                         |                                             |
| UTILITIES TOTAL (UTIL)             | \$ 30164                                                                | \$ 29936                                    |
|                                    |                                                                         |                                             |

### Cz Growth Parameters

LOW COST CZ (POLY LUMP FEED)
15 CMS DIAMETER

| 3"/HR GROWTH | 4"/HR GROWTH                                        |
|--------------|-----------------------------------------------------|
| 15           | 15                                                  |
| 15           | 15                                                  |
| 7.62         | 10.16                                               |
| 157.5        | 157.5                                               |
| 150          | 150                                                 |
| 95.2         | 95.2                                                |
| 95           | 85                                                  |
| 5            | 5                                                   |
| 74,75        | 64.0                                                |
|              | 15<br>15<br>7.62<br>157.5<br>150<br>95.2<br>95<br>5 |


# **Process Time Cycle**

|    | OPERATION                                                                                                                                           | LOW COST CZ                                                    | (3"/HR)    | LOW COST CZ                                                    | (4"/HR)    |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------|----------------------------------------------------------------|------------|
| 1. | PREPARATION LOAD POLY CLOSE FURNACE PUMP DOWN MELT                                                                                                  | 25<br>5<br>10<br>125                                           | 165 MINS   | 25<br>5<br>10<br>125                                           | 165 MINS   |
|    | ricci                                                                                                                                               | 125                                                            |            | 125                                                            |            |
| 2. | GROWTH CYCLE (INITIAL MELT POLY LUMP LOWER SEED * STABILIZE TEMP. SEED & CROWN GROWTH STRAIGHT GROWTH TAPER END                                     | 75<br>15 <b>1</b><br>30                                        | 772 MINS   | 75<br>15<br>30<br>90<br>388<br>60                              | 643 MINS   |
| 3. | RECHARGE/GROWTH CYC                                                                                                                                 | LES                                                            | 3,388      |                                                                | 2,872      |
|    | COOL CRYSTAL REMOVE CRYSTAL LOAD HOPPER LOWER HOPPER MELT POLY LUMP LOWER SEED * STABILIZE TEMP. SEED GROWTH CROWN GROWTH STRAIGHT GROWTH TAPER END | 30<br>10<br>15<br>5<br>90<br>15<br>30<br>30<br>60<br>517<br>60 | (4 CYCLES) | 30<br>10<br>15<br>5<br>90<br>15<br>30<br>30<br>60<br>388<br>60 | (4 CYCLES) |
|    |                                                                                                                                                     |                                                                |            |                                                                |            |

COMPLETED DURING STABILIZATION OF MELT TEMPERATURE

| OPERATION                                                                                                                                                                         | LOW COST C7                                       | (3"/HR)   | LOW CO         | OST CZ (4".                                                       | /HR) |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------|----------------|-------------------------------------------------------------------|------|------|
| SHUT DOWN CYCLE COOL FURNACE REMOVE CRYSTAL** CLEAN, SET UP                                                                                                                       | 80<br>10**<br>80                                  | 160 M     | INS            | 80<br>10**<br>80                                                  | 160  | MINS |
| ** COMPLETED DURING                                                                                                                                                               | FURNACE COOL                                      | ING TIME  |                |                                                                   |      |      |
| TOTAL TIME (MIN) (HRS)                                                                                                                                                            | 4485<br>74.75                                     |           | (MIN)<br>(HRS) | 3840<br>64                                                        |      |      |
| SAMICS/IPEG INPUT D                                                                                                                                                               | ATA AND COST                                      | CALCULATI | ON             |                                                                   |      |      |
| CONDITIONS (PER CYC<br>TOTAL S1 MELTED (KG<br>CRYSTAL WEIGHT (KG)<br>NO. CRYSTALS/CRUCIB<br>DIAMETER OF CRYSTAL<br>GROWTH RATE (CM/HR)<br>CYCLE TIME (HRS)<br>CRUCIBLE SIZE (INS) | ) 170<br>37.5<br>LE 4<br>(CMS) 15<br>7.62<br>73.8 |           | 4"/            | HR GROWTH<br>170<br>37.5<br>4<br>15<br>10.16<br>62.3<br>15" x 12" |      |      |
| INPUT DATA (\$1980)  CAPITAL EQUIP. COST MANUFACTURING FLOOR ANNUAL DIRECT SALAR PROD. OP. (0.65 PER ELECT. TECH. (0.3 PINSPECTOR (0,1 PERS)                                      | (EQPT) SPACE (SQFT) IES SONS/YR) ERSONS/YR)       | 8,554     |                | 167,500<br>100<br>8,554<br>5,082<br>1,155                         |      |      |
| TOTAL D/LAB                                                                                                                                                                       | 2110/ 11V                                         | 14.791    |                | 14,791                                                            |      |      |
|                                                                                                                                                                                   |                                                   |           |                |                                                                   |      |      |

| DIRECT USED MATERIALS & SUPPLIES  35% USAGE/YEAR  CYCLES/YE HRS/CYCLE  POLY-KG/YR CHARGED  SEED (\$20)  DOPANT (NOT COSTED)  ARGON (100 FT <sup>3</sup> /CYCLE HR a \$0.02/FT <sup>3</sup> )  CRUCIBLES (15" a \$322 EA.)  MISCELLANEOUS (INCLUDING GRAPHITE  AT \$4/CYCLE HR) | LOW COST CZ<br>(3"/HR GROWTH)<br>99.3/74.75<br>15640<br>993<br>14845<br>31974<br>29691 | LOW COST CZ<br>(4"/HR GROWTH)<br>116/64<br>18270<br>1160<br>14848<br>37352<br>29696 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| MATERIALS TOTAL (MATS)                                                                                                                                                                                                                                                         | \$ 77503                                                                               | \$ 83056                                                                            |
| UTILITIES (PROCESS)                                                                                                                                                                                                                                                            |                                                                                        |                                                                                     |
| ELECTRICITY (100 KW x 0.035/KW)(CYCLE TIME - 3 HRS) X (# OF CYCLES)                                                                                                                                                                                                            | \$ 24936                                                                               | \$ 24766                                                                            |
| COOLING WATER (100 KW x 0.035/KW)(CYCLE TIME - 2HRS) X (# OF CYCLES)                                                                                                                                                                                                           | \$ 5346                                                                                | \$ 5322                                                                             |
| UTILITIES TOTAL (UTIL)                                                                                                                                                                                                                                                         | \$ 30282                                                                               | \$ 30088                                                                            |
|                                                                                                                                                                                                                                                                                |                                                                                        |                                                                                     |
| IPEG PRICE                                                                                                                                                                                                                                                                     |                                                                                        | LOW COST CZ<br>(4"/HR GROWTH)                                                       |
| C1 EQPT = \$0,49/YR - \$EQPT<br>C2 SQFT = \$97/YR - \$SQFT<br>C3 DLAB = \$2,1/YR - \$DLAB<br>C4 MATS = \$1,3/YR - \$MATS<br>C5 UTIL = \$1,3/YR - \$UTIL                                                                                                                        | 82075<br>9700<br>31061<br>100754<br><u>39366</u>                                       | 82075<br>9700<br>31061<br>107973<br>39114                                           |
| ANNUAL COST                                                                                                                                                                                                                                                                    | \$ 262956                                                                              | \$ 269923                                                                           |
| QUAN. (TOTAL CHARGE X % YIELD) (KG) = THROUGHPUT = ADD ON COST (\$KG OR \$M^2) = (ASSUME 1 KG = 1 M^2)                                                                                                                                                                         | 13294 KG<br>1.79 KG/HR<br>\$ 19.78                                                     | 15529 KG<br>2.09 KG/HR<br>\$ 17.38                                                  |
|                                                                                                                                                                                                                                                                                | \$0.1395/PEAK<br>WATT                                                                  | \$ 0.1226/PEAK<br>WATT                                                              |



### Cost Projections (1980 \$) SAMICS/IPEG

ASSUMPTIONS:

EQUIPMENT COST \$160,000 (MACHINES IN QUANTITY, WITH #PROCESSOR CONTROL)

1 OPERATOR/4 PULLERS

90% EQUIPMENT UTILIZATION

10 cm/HR GROWTH VELOCITY (6" , 4 KG/HR)

56.85 HRS RUN CYCLE TIME

150 KG RUN SIZE 3 INGOTS/RUN, 86% GROWING YIELD

#### **PROJECTION**

\$12.75/kg crystal add on cost \$11.88/m<sup>2</sup> (25 slices/cm)

ORIGINAL PAGE IS OF POOR QUALITY

### Cost Projections (1980 \$) SAMICS-IPEG

ASSUMPTIONS: PRODUCING 5 x 30 KG CRYSTALS FROM A 15" DIAMETER CRUCIBLE

LOW COST CZ (3"/HR GROWTH)

C1 EQPT = \$0.49/YR = \$EQPT

C2 SQFT = \$97/YR = \$SQFT

C3 DLAB = \$2.1/YR = \$DLAB

C4 MATS = \$1.3/YR = \$MATS

C5 UTIL = \$1.3/YR = \$UTIL

TOTAL =\$ 262,956

QUAN (TOTAL CHARGED X % YIELD)(KG) = 13,294KG

THROUGHPUT = 1.79KG

PROJECTION

LOW COST CZ (4"/HR GROWTH)

\$ 82,075

9,700

31,061

107,973

39,114

TOTAL =\$269,923

TOTAL =\$269,923

= 15,529KG

THROUGHPUT = 1.79KG

PROJECTION

ASSUME 1m<sup>2</sup> = 1KG

LOW COST CZ (3"/HR GROWTH)
CZ ADD ON COST = \$ 19.78/KG
= \$ 0.1395/PEAK
WATT

LOW COST CZ(4"/HR GROWTH)
CZ ADD ON COST = \$17.38/KG
= \$ 0.1226/PEAK WATT

### CONTINUOUS LIQUID-FEED CZ GROWTH

SILTEC CORP.

| TECHNOLOGY                                                                                       | REPORT DATE                                                                 |
|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| ADVANCED CZOCHRALSKI                                                                             | 09/25/80                                                                    |
| APPROACH  CONTINUOUS LIQUID FEED  CZ - GROWTH  CONTRACTOR                                        | STATUS                                                                      |
| SILTEC CORPORATION                                                                               | INDIVIDUAL ACCOMPLISHMENTS                                                  |
| GOALS . 150 KG OF INGOTS/CRUCIBLE . 15 CM DIAMETER INGOTS                                        | . 100 kg of ingot/crucible . 15 cm diameter ingots                          |
| , 2 kg/hr growth rate , Automation , 90% yield                                                   | . 2.5 kg/hr growth rate . Under development (50% complete) . 85% yield      |
| . 16.9% SOLAR CELL EFFICIENCY . TECHNICAL FEATURES DEMO 03/31/80 . TECHNOLOGY READINESS 11/30/81 | SOLAR CELL EFFICIENCY (DATA NOT YET AVAILABLE) SIMULTANEOUS ACCOMPLISHMENTS |
|                                                                                                  | , 48 HOURS (2.1 kg/HR) THROUGHPUT                                           |

#### **Problems and Concerns**

PRODUCTION PROTOTYPE DEMONSTRATION IS TO BE ACCOMPLISHED WITHIN EXTREMELY SHORT TIME PERIOD.

# SEMICRYSTALLINE CASTING PROCESS DEVELOPMENT AND VERIFICATION

### SEMIX-DOE COOPERATIVE AGREEMENT

SEMIX INC.

Z. Putney

### **Agreement Objectives**

- DEVELOP AND DEMONSTRATE THE KEY ELEMENTS OF SI SHEET TECHNOLOGY NEEDED BY SEMIX TO ACHIEVE COMMERCIAL READINESS TO MEET 1982 PRICE GOALS AT 10WM/YEAR OUTPUT
  - \$1.66/WP \*(SHEET) \$\\$56/KG. SILICON COSTS FOR \$2.80/WP (MODULE)
- DEVELOP AND DEMONSTRATE TECHNOLOGY REDINESS TO MEET 1986 PRICE GOALS
  - \$.37/WP \*(SHEET) & \$14/KG SILICON COSTS FOR \$.70/WP (MODULE)
- SEMIX INTENDS TO FULLY COMMERCIALIZE TECHNOLOGY WITH PRIVATE FUNDS, TO MEET OR EXCEED PHOTOVOLTAIC PROGRAM GOALS
- SEMIX INTENDS TO SELL SHEET TO PHOTOBOLTAIC INDUSTRY AT PRICE GOALS IF PROJECT IS SUCCESSFUL
- \* ALLOCATION BASED UPON JPL PRICE GUIDELINES

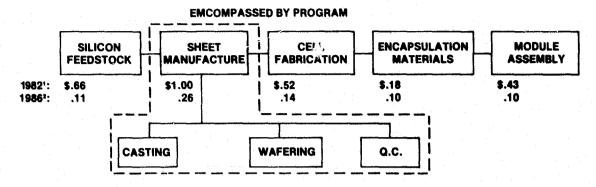
#### **Basic Terms**

- ESTABLISHED AGREEMENT FORMAT INTEGRATED INTO JPL/LSA PROJECT
- 3 YEAR PROGRAM
- FINANCIAL
  COST SHARING AGREEMENT 77.8% D.O.E. \$7.7M
  22.2% SEMIX \$2.2M
  PAYBACK 1% OF NET SALES AFTER PROGRAM
  SUCCESSFULLY COMPLETED
- PATENT AND TECHNICAL DATA RIGHTS AND GOVERNMENT WAIVES PATENT RIGHTS RESTRICTION OF PROPRIETARY INFORMATION

### Semix Semicrystalline Material

#### **Technical Advantages**

- ELECTRICAL EFFICIENCY:


  COMPARABLE -17% DEMONSTRATED (2x2cm.)

  TO CZ 10-14% PRODUCTION (10x10cm)
- SILICON MASS YIELD:
   PROJECTED 98% vs. 85% FOR ROUND CZ
- AREA RELATED SAVINGS PACKING DENSITY: 96% VS. 78% FOR ROUND CZ
- FASTER SAWING RATE DUE TO FLAT TOP (MBS)
- COMPARABLE OR HIGHER MECHANICAL STRENGTH:
   22.3 K.P.S.I.
   RUPTURE MODULUS VS.
   20.3 FOR SINGLE SRYSTAL
- HIGH IMPURITY TOLERANCE
- LOW ENERGY, EQUIPMENT AND PRODUCTION COSTS

ALL OF THE ABOVE ELEMENTS WILL BE VERIFIED BY JPL UNDER THIS AGREEMENT

#### **Process Flow and Price Allocation**

1982' \$2.80/WP (MODULE) 1986' \$.70/WP (MODULE)



- 1. PRICE ALLOCATION GUIDELINES
  J.P.L. LOW CAST SOLAR ARRAY 5101-68
  R.W. ASTER, MAY 12, 1978
- 2. PRICE ALLOCATION GUIDELINES
  J.P.L. LOW COST SOLAR ARRAY 5101-68 REVISION A
  R.W.ASTER, JANUARY 15, 1980

#### Agreement Outline

#### PHASE I - JUNE 1980 - JUNE 1981

- TASK 1 DEMONSTRATE PROOF OF CONCEPT FOR SEMICRYSTALLINE PROCESS
- TASK 2 PROOF OF CONCEPT REPORT
- TASK 3 PRELIMINARY DESIGN, ANALYSIS AND PROTOTYPE EVALUATION
- TASK 4 CRITICAL SUBSYSTEM DESIGN, ASSEMBLY AND TEST
- TASK 5 PRELIMINARY TECHNICAL AND ECONOMIC EVALUATION FOR 1986 GOALS

#### PHASE II - JUNE 1981 - JUNE 1982

- TASK 6 DETAILED DESIGN AND EXPERIMENTAL EVALUATION OF CRITICAL SYSTEMS
- TASK 7 ANALYSIS AND DESIGN OF INTEGRATED PRODUCTION SYSTEM
- TASK 8 TECHNICAL AND ECONOMIC EVALUATION FOR 1986 GOALS

#### PHASE III - JUNE 1982 - JUNE 1983

- . TASK 9 EPSDU SYSTEM ASSEMBLY AND CHECKOUT
- TASK 10 PROCESS VERIFICATION OF COMMERCIAL READINESS FOR 1962 GOALS
- TASK 11 DEMONSTRATION OF TECHNOLOGY READINESS FOR 1986 GOALS

# **ENHANCED ID SLICING**

SILTEC CORP.

| EXPERIMENT No. | DIA | SLICE<br>THICKNESS<br>MILS | KERF<br>MILS | FEED RATE INCH/MIN | No, of | YIELD % | FORM OF |
|----------------|-----|----------------------------|--------------|--------------------|--------|---------|---------|
| 15             | 100 | 10                         | 10           | 2.0                | 100    | 90%     | I.R.    |
| 16             | 100 | 10                         | 10           | 1.5                | 100    | 95%     | 1.R,    |
| 17             | 100 | 10                         | 8            | 1.0                | 100    | 90%     | I.R.    |
| 18             | 100 | 12                         | . 8          | 1.5                | 100    | 95%     | I.R.    |
| 19             | 100 | 12                         | 7            | 0.8                | 50     | 70%     | I.R.    |
| 20             | 100 | 10                         | 7            | 0.6                | 50     | 657     | 1.R.    |
| 21             | 100 | 15                         | 6            | 0.25               | 20     | 70%     | I.R.    |
| 22             | 100 | 10                         | 6            | 0.25               | 20     | 50%     | I.R.    |
| 23             | 150 | 12                         | 12           | 2.0                | 50     | 85%     | P.C.    |
| 24             | 150 | 12                         | 10           | 2.0                | 25     | 80%     | P.C.    |

# Cost Projections (1980 \$) SAMICS-IPEG

ASSUMPTIONS: MACHINE COST \$30,000

1 OPERATOR/6 SAWS

150 MM INGOT DIAMETER

PRODUCTIVITY/MACHINE/24 HOURS 900 WAFERS

CUTS/BLADE 2000 SLICING YIELD 95%

#### **PROJECTION**

\$10,48/m<sup>2</sup> WAFERING ADD ON COST - 150 MM \$11,58/m<sup>2</sup> WAFERING ADD ON COST - 100 MM

| TECHNOLOGY                         | REPORT_DATE                 |
|------------------------------------|-----------------------------|
| ADVANCED INGOT WAFERING            | ກ9. 25780                   |
| APPROACH                           | STATUS                      |
| ENHANCED I.D. SLICING              |                             |
|                                    |                             |
| CONTRACTOR                         |                             |
| SILTEC CORPORATION                 |                             |
| GOALS                              | . 22 WAFERS/CM OF INGOT     |
|                                    | 0.5 WAFERS/MIN, 100 MM DIA  |
| , 25 WAFERS/CM OF INGOT            | , 25 WAFERS/CM OF INGOT     |
| (250 µm THICK, 152 µm KERF)        | 0.25 wafers/min, 100 mm dia |
| . 10 cm dia wafers                 | . 150 cm wafers             |
| , 1,0 WAFERS/MIN                   | . 0.5 WAFERS/MIN            |
| , 95% YIELD                        | . 90% YIELD                 |
| , TECHNICAL FEATURES DEMO 10/31/30 |                             |
| . Technology Readiness 11/30/81    |                             |

# **INGOT SLICING (MBS)**

#### P.R. HOFFMAN CO.

| TECHNOLOGY INGOT SLICING                                                                  | REPORT DATE<br>5/23/80                                                 |
|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| APPROACH  Multi-blade Slurry Technique (MBS)  CONTRACTOR  P. R. HOFFMAN Co. (Norlin Ind.) | STATUS . 10 cm Diameter Workpiece . 400 Parallel Slices . 18 Wafers/cm |
| GOALS  . 10 CM DIAMETER WORKPIECE . 455 PARALLEL SLICES                                   | DEMONSTRATION . 95% YIELD . 1.5 MIL/MIN CUT RATE                       |
| . 25 Wafers/cm<br>. 95% Yield<br>. \$13.70/m (1980\$)                                     |                                                                        |

### **Demonstrated Technology (Various Tests)**

. 400 WAFERS/RUN 10 CM WORKPIECE
. 100% YIELD 5 CM WORKPIECE
. 20 WAFERS/CM 5 CM WORKPIECE
. 1.5 ML/MIN CUT RATE 10 CM WORKPIECE
EQUIV. 0.17 WAFERS/MIN 8 455 WAFERS/RUN

### Cost Projections (1980 \$) IPEG

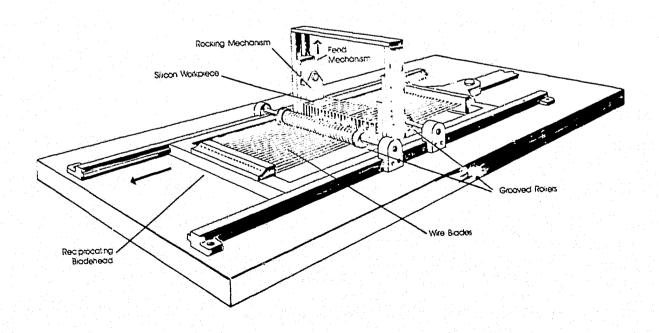
#### ASSUMPTIONS:

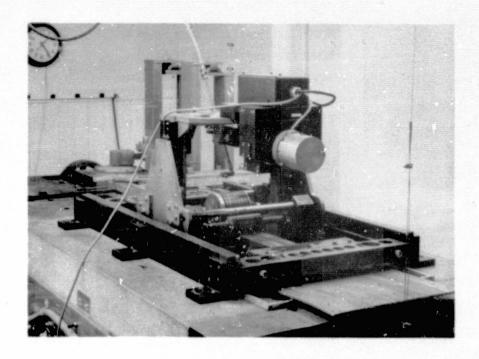
EQUIPMENT COST - \$42K/MACHINE
FLOOR SPACE - 36 SQ. FT.
1 OPERATOR/15 UNITS
EXPENDABLES/RUN - \$140.89 (BLADE PACK, OIL, ABRASIVE)
455 WAFERS/RUN (20 WAFERS/CM)
45 HOUR RUN TIME
95% YIELD
95% DUTY CYCLE

#### PROJECTION:

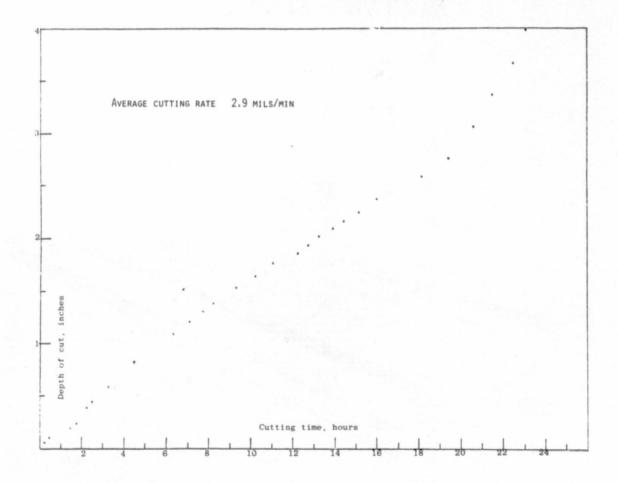
\$104.4/m<sup>2</sup> VALUE ADDED

#### **Problems and Concerns**

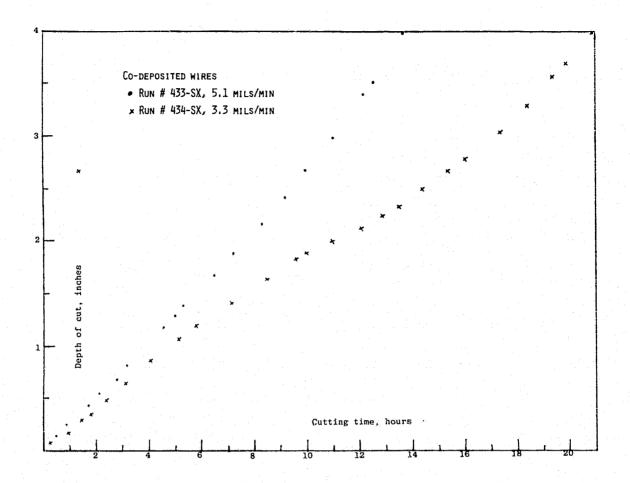

- SEVERAL DESIGN IMPROVEMENTS APPEAR NECESSARY TO OPTIMIZE THE MBS TECHNOLOGY INCLUDING: SAW CAPACITY, FEED FORCE CONTROL, INGOT MOUNTING AND WAFER SUPPORT.
- . SEVERAL PROCESS IMPROVEMENTS ARE NECESSARY TO OPTIMIZE THE MBS TECHNOLOGY INCLUDING DEFINITION OF OPTIMUM FEED RATES, BLADE HEAD SPEEDS, SLURRY FORMULATION, SLURRY VOLUME AND DELIVERY, AND BLADE ALIGNMENT TECHNIQUES.
- . SIGNIFICANT COST REDUCTION IN CONSUMABLE ITEMS MUST BE REALIZED.
- . EVALUATE DESIGN CONSTRAINTS
- . DEVELOP DESIGN IMPROVEMENTS
- . EVALUATE PROCESS CONSTRAINTS
- . DEVELOP PROCESS IMPROVEMENTS
- . EVALUATE ALTERNATIVE CONSUMABLES
- . DEFINE OPTIMUM SAW DESIGN
- . DEFINE OPTIMUM PROCESS
- . Provide Saw Design Consistent with Definition of Optimized Process/Design

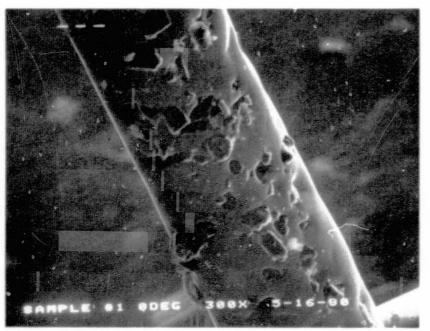

- . MICROPROCESSOR FEED FORCE CONTROL
- . WAFER LIFT-OFF/SUPPORT DEVICE
- . INGOT MOUNTING/DEMOUNTING SYSTEM
- . NEW BLADE HEAD DESIGN
- . NEW SAW DESIGN
- . BLADE PACKAGE SPECIFICATIONS
- . ABRASIVE PARTICLE SIZE
- . ABRASIVE/VEHICLE RATIO
- . SLURRY APPLICATION METHODS (DELIVERY SYSTEM)
- . SLURRY APPLICATION METHODS (VOLUME)
- . BLADE HEAD SPEED
- . FEED FORCE/CUTTING RATE
- . EVALUATE VEHICLE RECYCLING
- . EVALUATE ABRASIVE RECYCLING
- . INVESTIGATE ALTERNATIVE VEHICLES
- . INVESTIGATE ALTERNATIVE ABRASIVES

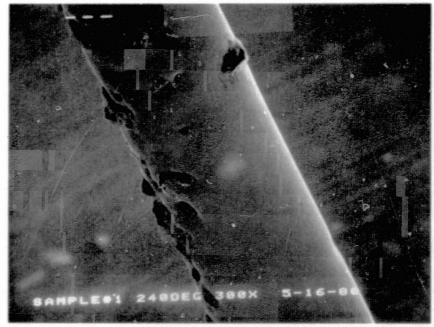
# **MULTIWIRE SLICING (FAST)**

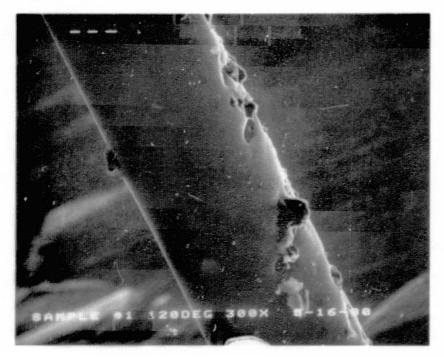

CRYSTAL SYSTEMS, INC.

F. Schmid and C. P. Khattak

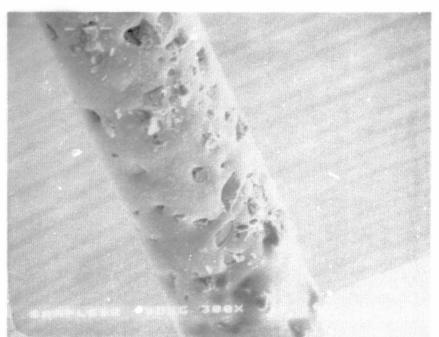


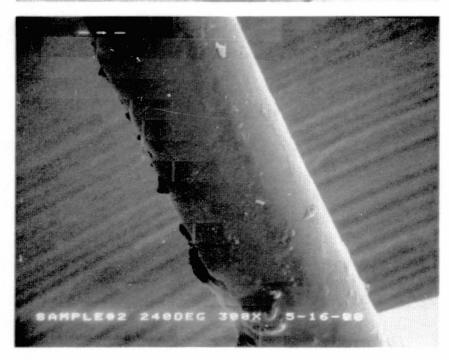


Impregnated Wires (Run #432-SX)



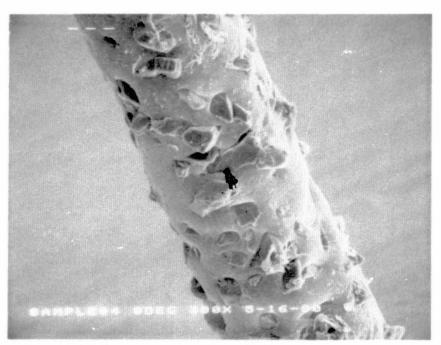

# **Co-Deposited Wires**

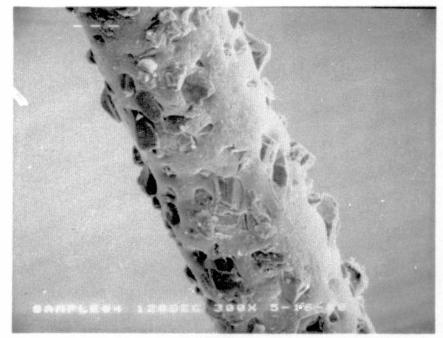


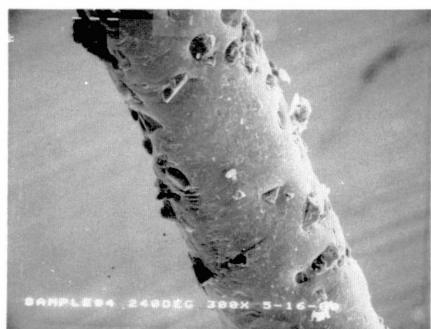


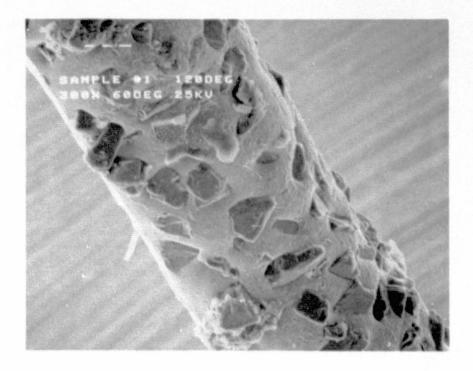




SEM Photographs of Unused Wire, at 120 Rotation of Wire. Wire Was Used in Run 420-SX.

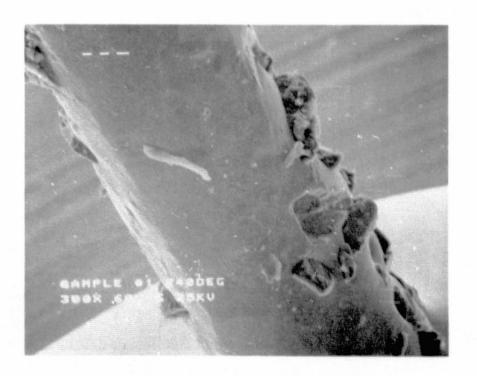




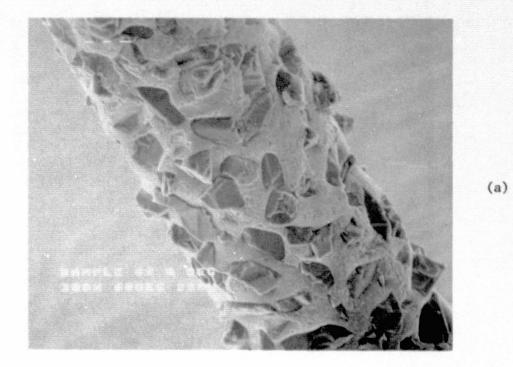


SEM Photographs of a Wire After First Slicing Test (Run 420-SX)

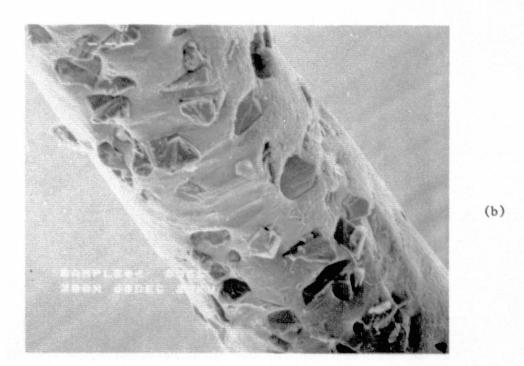







SEM Photographs of a Wire After Second Run (421-SX). This Wire Has Diamond Electroplated Over Its Entire Circumference.





(a)



(b)

SEM Photographs of a Wire Used in Runs 413-SX through 415-SX, Showing Diamonds Electroplated Only on One Side (300 X). View (b) Shows Wire Rotated  $120^{\circ}$  From View (a).





SEM Photographs of Wires Taken From Different Locations of the Blade Pack Used in Runs 413-SX Through 415-SX: (a) From the Middle; (b) From the Right Side.

IPEG Analysis for Value Added Costs of FAST Slicing using Conservative and Optimistic Projections of Technology

|                                      | Estimate     |            |  |
|--------------------------------------|--------------|------------|--|
|                                      | Conservative | Optimistic |  |
| Equipment cost, \$                   | 30,000       | 30,000     |  |
| Floor space, sq.ft.                  | 80           | 80         |  |
| Labor, units/operator                | 5            | 10         |  |
| Duty cycle, %                        | 90           | 95         |  |
| Set-up time, hrs                     | 1.5          | 1.0        |  |
| Slicing rate, mm/min                 | 0.1          | 0.14       |  |
| Slices/cm                            | 22           | 25         |  |
| Slices/wire                          | 5            | 10         |  |
| Yield                                | 90           | 95         |  |
| Expendables/run, \$                  | 28           | 14         |  |
| Motor power, h.p.                    | 5            | 3          |  |
| Conversion ratio, m <sup>2</sup> /kg | 0.85         | 1.0        |  |
| Add-on Price, \$/m <sup>2</sup>      | 13.13        | 5.9        |  |

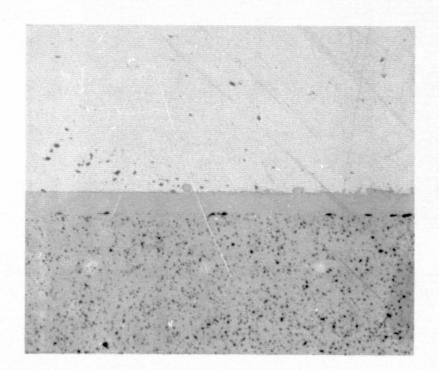
# SILICON INGOT CASTING: HEAT EXCHANGER METHOD (HEM)

CRYSTAL SYSTEMS, INC.

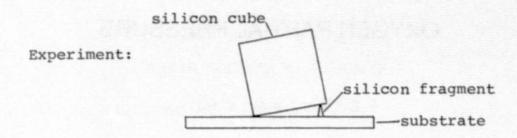
F. Schmid and C.P. Khattak

| TECHNOLOGY INGOT CASTING                                                                             | REPORT_DATE<br>08/25/80                                                                                  |
|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| APPROACH  DIRECTIONAL SOLIDIFICATION BY THE HEAT EXCHANGER METHOD (HEM)                              | STATUS  - 34 CM X 34 CM X 20 CM INGOT (45 KG)*  - 15% CELL EFFICIENCY DEMONSTRATED  - 90% SINGLE CRYSTAL |
| CONTRACTOR CRYSTAL SYSTEMS, INC.                                                                     | • 12.3 % CELL EFFICIENCY DEMONSTRATED WITH UMG SILICON                                                   |
| • 30 cm cube ingots (63 kg)  • ≥ 15% cell efficiency  • ≥ 90% single crystal  • ≤65 hours cycle time | • FLAT PLATE CRUCIBLES DEMONSTRATED  • 3.1 kg/hr growth rate Demonstrated*                               |
| Technical features demonstration 12/15/80 Technology readiness 10/01/82                              | * NEW ACHIEVEMENT                                                                                        |

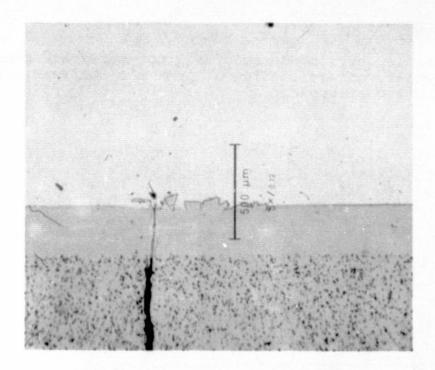
# **OXYGEN PARTIAL PRESSURE**


UNIVERSITY OF MISSOURI ROLLA

P. D. Ownby and H. V. Romero

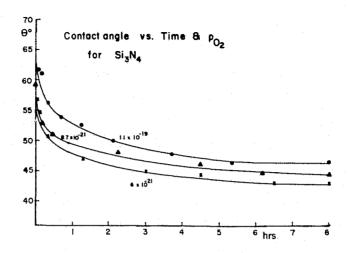

# H<sub>2</sub>H<sub>2</sub>O Buffer-Controlled Equilibrium in Sessile Drop Experiments

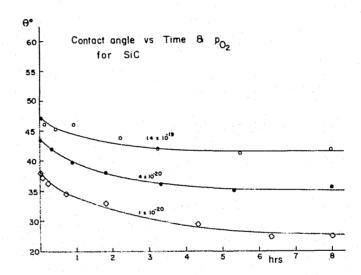
#### A. Review


 Review of dependence of silicon-substrate compatability on equilibrium of pre-melt surfaces with buffer atmosphere.



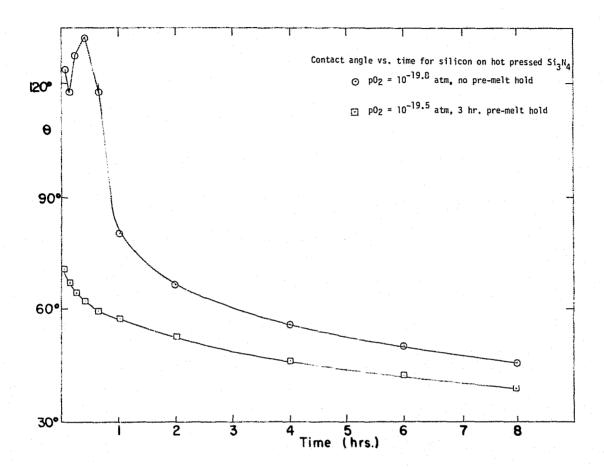
Photomicrograph of polished sections of the silicon-CNTD silicon carbide coating interface showing the abrupt change from practically no interaction on the left side to appreciable interaction on the right beginning precisely at the position of the original silicon cube edge after a  $1700^{\circ}\text{K}$  anneal at  $P_{02} = 1.8 \times 10^{-20}$  atm.





Experimental configuration of silicon cube to allow all surfaces to equilibrate with buffer gas prior to melt.

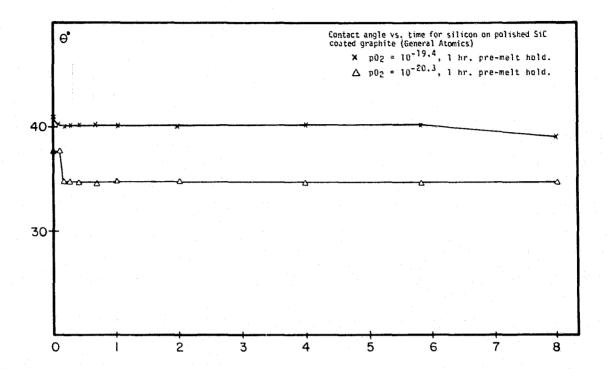


Results of tilt experiment showing interface degradation only at position of silicon chip.

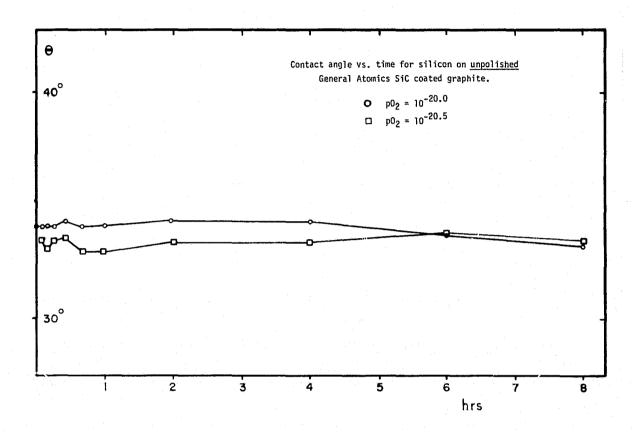

2. Review of silicon sessile drop contact angle dependence on oxygen partial pressure.






- Lower PO2 gives lower contact angle.
- Initially large decrease in contact angle after melt.
- Continued decrease in contact angle up to 8 hours.

B. Pre-melt hold equilibration of interface precursor surfaces with buffer at melt temperature.




Initial drop in contact angle on silicon nitride is greatly reduced by pre-melt equilibration.

C. Initial and long-term drop in contact angle on SiC is virtually eliminated by pre-melt equilibration.



D. Note that stable contact angle is obtained on the as-coated General Atomic SiC on graphite without further surface preparation. Results are similar to those on polished surfaces except contact angles are lower for the same oxygen partial pressures.



# II. Non-Equilibrium Dynamics of Purge Gas in Contact With Hot Graphite

# II. Non-Equilibrium Dynamics

A. Analysis of possible non-equilibrium conditions that may exist when a purge gas containing an oxygen impurity flows through a furnace containing hot graphite and then sampled under equilibrium conditions in an oxygen cell.

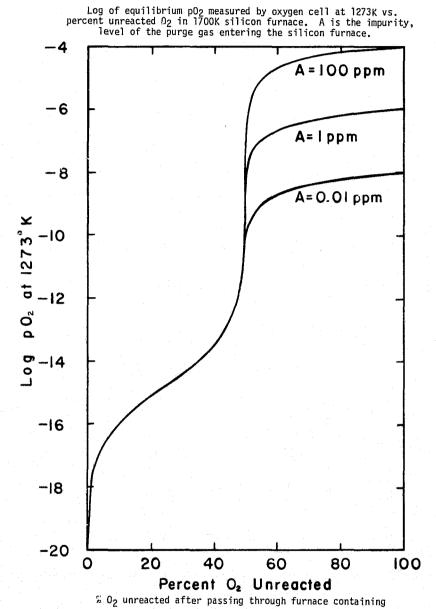
- Oxygen enters 1700K silicon furnace as impurity A (PPM) in purge gas.
- A FRACTION X FORMS 2xA PARTS CO WITH FURNACE GRAPHITE LEAVING A(1-x) PARTS  $O_2$  UNREACTED.
- THE NON-EQUILIBRATED MIXTURE OF A(1 x) PARTS 02 AND 2xA PARTS CO ENTERS THE OXYGEN CELL AND EQUILIBRATES AT 1273K.
  - I If x < 0.5 (HIGH PURGE RATE)

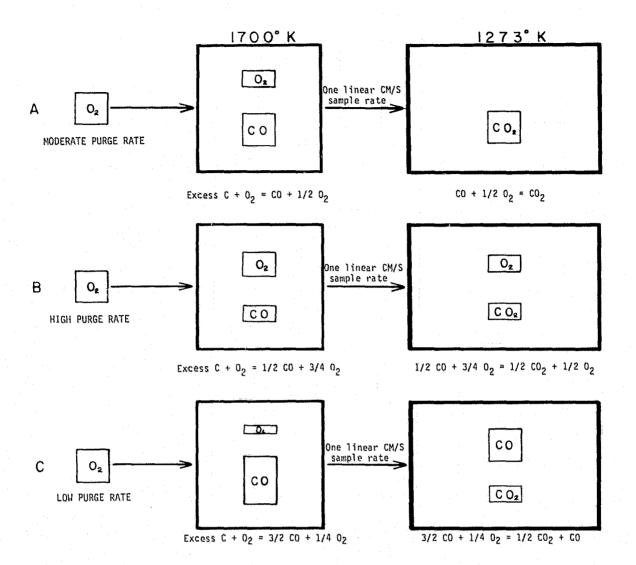
$$2xA(C0) + xA(O_2) = 2xA(CO_2) + A(1-2x)O_2$$

This leaves A(1 - 2x) parts  $0_2$  unreacted, i.e.  $p0_2$  = A(1 - 2x) x  $10^{-6}$  ATM.

II IF x > 0.5 (Low purge RATE)

$$(2x - \delta)A(C0) + A(1 - x)O_2 = (2x - \delta)A(CO_2)$$


LEAVING &A PARTS CO UNREACTED. FOR BALANCE, WE REQUIRE


$$(2x - 6)A = 2A(1 - x) \implies 6 = 4x - 2$$

THE CO/CO<sub>2</sub> RATIO IS THEN  $\frac{1}{2x-1} = \frac{2x-1}{1-x}$ 

AND: 
$$PO_2 = \left(\frac{1-x}{2x-1}\right)^2 EXP \frac{\Delta G}{RT} = \left(\frac{1-x}{2x-1}\right)^2 \times (7.67 \times 10^{-15})$$
IF  $T = 1273K$ .

B. Calculated equilibrium  $P_{02}$  expected at  $1273^{\circ}$ K in oxygen cell for varying percentages of oxygen impurity in inert gas passing unreacted through graphite furnace.





D. Experimental results verifying CO concentration dependence on purge gas flow rates expected from calculations.

| SAMPLE      | MAIN ZONE         | CO (PPI  | (1) | $L_{\mathrm{D}}$ |
|-------------|-------------------|----------|-----|------------------|
|             | FLOW RATE (L/MIN) | KITAGAWA | IR  | (µm)             |
| 18-183-1G   | 5                 | 10       | 45  | 17.2             |
| -21         | 5                 | 10       | 56  | 29.7             |
| -3A         | 3                 | 15       | 120 | 30.7             |
| -3B         | 2.5               | 30       | 94  | 41.6             |
| -3F         | 2                 | 40       | 112 | 41.6             |
| -311        | 1                 | 80       | 226 | 39.2             |
| <b>–3</b> J | 1                 | 110      | 222 | 49.7             |

After Mobil Tyco presentation at 15th P.I.M. showing increase of CO for decreasing purge gas flow rates.

# Summary

- 1. EQUILIBRIUM CONTACT ANGLE MEASUREMENTS REQUIRE
  THAT ALL SURFACES EQUILIBRATE WITH THE LOW OXYGEN
  PARTIAL PRESSURE ATMOSPHERE AT THE MELT TEMPERATURE
  PRIOR TO MELT.
- 2. IMPURITY OXYGEN IN INERT PURGE GASES MAY NOT EQUILIBRATE IN SILICON FURNACES INCORPORATING HUT GRAPHITE.

# CELL PROCESS DEVELOPMENT, FABRICATION AND ANALYSIS

APPLIED SOLAR ENERGY CORP.

### INTRODUCTION

This talk is a review of work to date. Detailed results of recent work were described at the critical review meeting on September 23rd.

A wide range of sheet forms have been evaluated (TABLE I). All these sheets have shown improved quality and increased throughput. In some cases, lower cost starting silicon has been tested.

The evaluation process is shown in <u>Figure 1</u>. The baseline (BL) process is conservative, and provides objective comparative evaluation. The back-up measurements are of diffusion length (L), spectral response, fine light spot scanning, and dark diode characteristics.

Correlation of the baseline evaluation results with sheet properties can:

- Indicate areas where sheet formation can be improved.
- Suggest cell process modifications which can increase efficiency.
- Compare with defect characterization by other groups.

### RESULTS

The baseline cell efficiency obtained depended strongly on the L-values of the sheets. The L-value appeared to represent the combined effects of the major defects (crystallographic, impurities, process defects), although efficiency reduction could also be caused by surface defects.

NOTE: Separate work (Dow-Corning-Westinghouse) had shown that certain impurity levels could be tolerated without severe decrease of efficiency, although the tolerance level varied for different impurities.

Improved processes included obvious modifications (better AR coatings, perhaps texturing greater active area, shallower barrier) and defect correcting methods (gettering, grain boundary passivation, surface cleaning, annealing) and use of back surface fields (BSF) or reflectors (BSR).

The "improved" cell efficiency also showed close dependence on L-value, and the sheets with best BL performance could be improved most. (Figure 2)

This suggests that high defect densities in the sheets cannot be easily offset by later cell processing, and may impose similar limits on use of alternative barrier methods such as SIS or pulsed annealing, except that these barrier methods may minimize GB effects.

The highest efficiency values obtainable are more important now that balance-of-systems cost estimates have shown increased importance for area-related costs.

### OTHER STUDIES

### **Grain Size Effects**

Using high purity crystals, the BL efficiency dependence on grain size showed that grains ~500 µm are necessary for good efficiency. (Figure 3)

### BSF

Studied BSF effectiveness versus impurity concentration, defect density, and starting L-values. (Figure 4)

Have also identified and corrected some BSF-process induced defects when the Al-alloy method is used. (main problem in leakage of Al to and through front surface).

### Use of Lower Cost Silicon

When arc-furnace purified silicon was used for Czochralski or HEM ingots, good cell efficiencies were obtained. However, use of metallurgical grade silicon for HEM growth gave poor cells.

### OTHER COMMENTS

### Consistency

The importance of consistency for high cell yields has been stressed. Conventional Czochralski sheet and most dendritic web have shown good consistency, the other sheets giving fair consistency.

Continuous grown Czochralski crystals show good consistency for 90% of the crystals, with rapid pull-off for the last 10%, or when polycrystal sections are formed. (Figure 5)

HEM crystals generally have large grains, so that often polycrystalline HEM sheets give good cells. Detailed plotting along and transverse to the growth direction showed that the best areas gave efficiency 0.93 of that of control Czochralski, with an average over the sheet 0.78 (Figure 5).

### Throughput

Most ribbon methods report upper limits to solidification ratios, especially when wide or reasonably thick sheets were required. Even so, EPG ribbons have shown impressive throughputs (3 ribbons, 45 cm<sup>2</sup>/min, 0-8 m<sup>2</sup>/hr).

The ingot methods generally gave  $\sim 0.8$  m<sup>2</sup>/hr (after slicing) but recently large Czochralski ingots have reported growth rates  $\sim 2-3$  times higher than previous results.

### Commercialization

The most promising materials, considering the combination of efficiency, yields, throughput, and use of current cell processing methods are:

Continuous Czochralski Dendritic Web (Best) HEM (Best) EFG (Perhaps) RTR

### INTERACTION WITH LOW COST PROCESSES

Because L-values impose efficiency restrictions, most of the current low cost processes can be applied to the sheets. These process areas include barrier methods, cleaning and handling, AR coatings, measurements, contact metals and methods, interconnection and encapsulation methods.

The most serious process limitation is the mechanical properties of the sheets.

### **SUMMARY**

The evaluation process has proved to be a valuable way to evaluate a variety of sheet materials for their solar cell promise, and to monitor the improvements made in the growth methods.

The information required is in directly usable form, including realistic interactions with the cell processes used. The internal consistency of the back-up measurements and the cell results has increased confidence in the analysis.

This is an exciting project, because of the significant advances made by all the sheet manufacturers in the past few years.

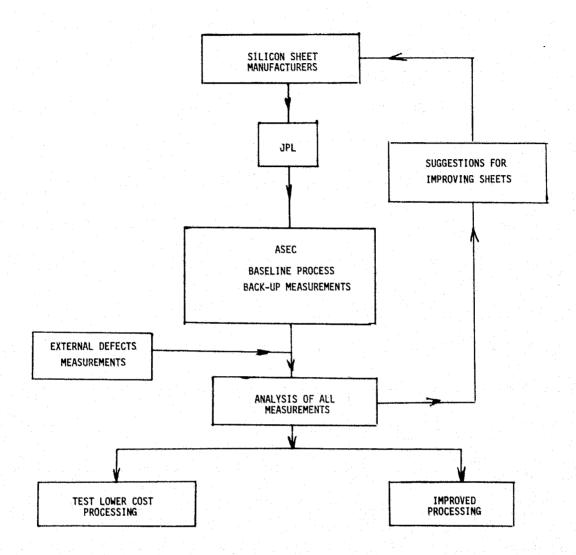
## Silicon Sheet Forms Evaluated

<u>INGOTS</u>: CZOCHRALSKI - STANDARD

SEMICONTINUOUS

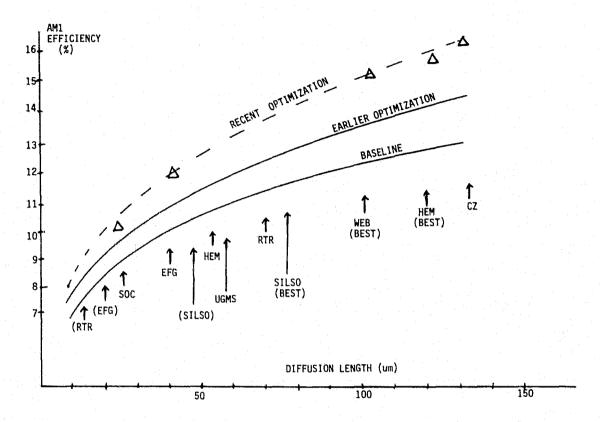
CAST - HEM (MOSTLY SINGLE CRYSTAL)

WACKER (POLYCRYSTALLINE)

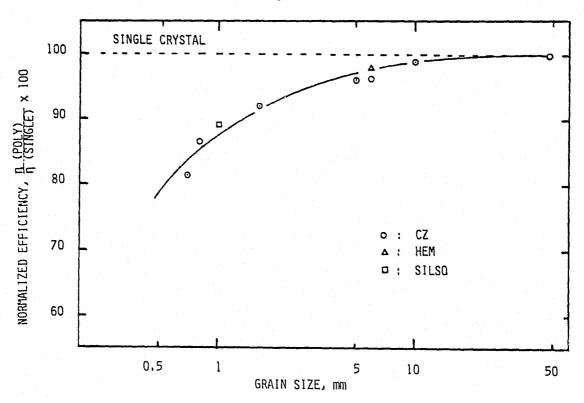

RIBBONS: UNSUPPORTED - EFG

DENDRITIC WEB

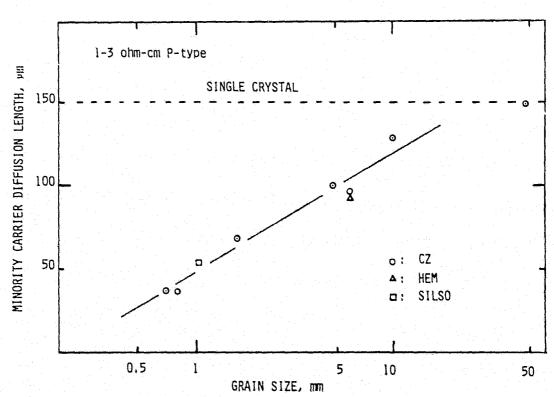
- RTR


SUPPORTED - SOC

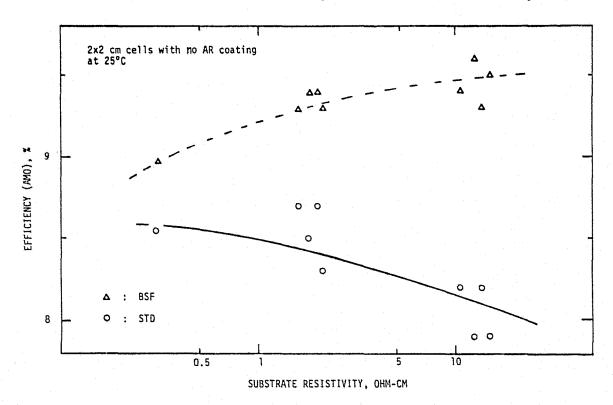
# **Evaluation Process**



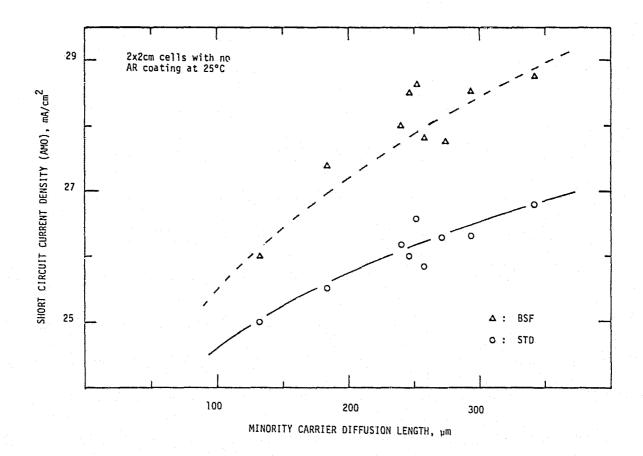

# AM1 Efficiency vs Diffusion Length


FOR VARIOUS SILICON SHEETS,
BASELINE AND OPTIMIZED PROCESSING




# Efficiency vs Grain Size




# Effective Minority Carrier Diffusion Length vs Grain Size



# Effect of BSF Process on Cell Efficiency As a Function of Starting Si Substrate Resistivity



# Effect of BSF Process on $I_{SC}$ Density of Cells As a Function of Minority Carrier Diffusion Length



# **Baseline Process**

- 1. DEEP JUNCTION (0.3  $\sim$  0.4 $\mu$ m) BY POC13 SOURCE.
- 2. METALLIZATION (BOTH FRONT AND BACK) BY EVAPORATION THROUGH METAL SHADOW MASK.
  - Ti-Pd-Ag (THREE LAYER)
  - 90% FRONT ACTIVE AREA
- 3. AR COATING: EVAPORATED SIO WHICH WILL PROVIDE ABOUT 35% CURRENT GAIN OVER THE BARE SURFACE.
- 4. CELL SIZE IS 2x2 cm.

#### AM1 MEASUREMENTS

- 1. LIGHT SOURCE: SPECTFCLAE MODEL XT-10
- 2. INTENSITY CALIBRATION: A TERRESTRIAL SECONDARY STANDARD (TSS-014, SOLAR CELL) FROM JPL.
- 3. TEMPERATURE: 28°C TEST BLOCK

## **Dendritic Web**

|      |         | AVERAGE CE                |       |              |                 |                     |
|------|---------|---------------------------|-------|--------------|-----------------|---------------------|
|      | Voc. mV | Jsc<br>mA/cm <sup>2</sup> | CFF,% | η<br>(AM1) % | PROCESS USED    | <b>n</b> B<br>(AM1) |
| 1    | 543     | 27.7                      | 76    | 11.5         | BL :            | 12.1                |
| 2    | 582     | 32.8                      | 75    | 14.3         | SJ+BSF+BSR+MLAR | 15.5                |
| CONT | 583     | 27.9                      | 77    | 12.5         | BL              | 12.7                |

# Earlier EFG (RH)

|       | _A'     | VERAGE CEL    | GE CELL PARAMETERS |              |              |       |
|-------|---------|---------------|--------------------|--------------|--------------|-------|
|       | Voc. mV | Jsc<br>mA/cm2 | CFF, %             | ∩<br>(AM1),% | PROCESS USED | (AMI) |
| 1     | 500     | 18.5          | 73                 | 6.7          | BL           | 7.2   |
| 2     | 509     | 19.5          | 66                 | 6.6          | SE + RL      | 7.2   |
| 3     | 514     | 18.4          | 70                 | 6.6          | ST + BL      | 7.1   |
| 4     | 532     | 21.8          | 73                 | 8.5          | GBP + BL     | 9.3   |
| .5    | 523     | 22.9          | 68                 | 8.1          | GET + BL     | 8.4   |
| 6     | 527     | 22.0          | 71                 | 8.2          | BL + BSF     | 9.0   |
| 7     | 533     | 22.5          | . 75               | 9,0          | SJ + MLAR    | 10.2  |
| CONT. | 588     | 28.1          | 76                 | 12.6         | BL           | 13.8  |

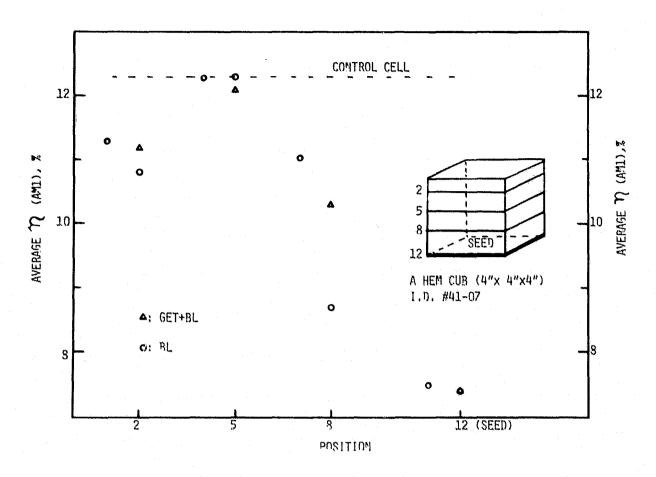
# New EFG (RH)

|    | AVERAGE CELL PARAMETERS |                           |        |                  |                 |                |
|----|-------------------------|---------------------------|--------|------------------|-----------------|----------------|
|    | Voc, mV                 | Jsc<br>mA/cm <sup>2</sup> | CFF, % | <b>1</b> (AM1),% | PROCESS USED    | η <sub>B</sub> |
| 8  | 524                     | 21.4                      | 71     | 8.1              | BL              | 8.7            |
| 9  | 568                     | 24.3                      | 75     | 10.3             | BL              | 11.1           |
| 10 | 565                     | 28.4                      | 76     | 12.1             | SJ + BSR + MLAR | 13.6           |

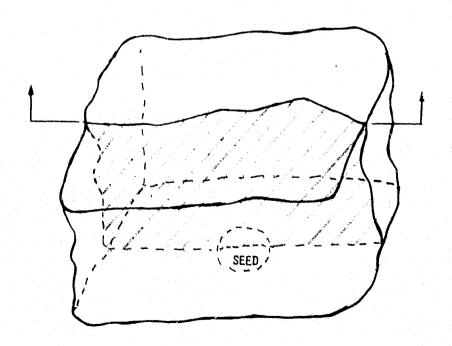
## SOC

|   | AVERAGE CELL PARAMETERS |                           |            |              |              |                      |
|---|-------------------------|---------------------------|------------|--------------|--------------|----------------------|
|   | Voc. mV                 | Jsc<br>mA/cm <sup>2</sup> | CFF, %     | (AM1)%       | PROCESS USED | <b>↑</b> B<br>(AM1)% |
| 0 | 532                     | 19.3                      | 66         | 6,9          | PHASE I      | 7.9                  |
| 1 | 524                     | 22.6                      | 65         | 7.6          | STD          | 8.3                  |
| 2 | 523                     | 23.5                      | 64         | 7.8          | SJ+STD       | 8,2                  |
| 3 | 529                     | 23.7                      | 67         | 8.4          | SJ+MLAR      | 8.9                  |
| 4 | 555                     | 24.1                      | 69         | 9,3          | SJ+MLAR      | 9.6                  |
| 5 | 564<br>(574)            | 23.0<br>(23.5)            | 73<br>(74) | 9.5<br>(9.9) | HONEYWELL    | 9.8<br>(10.2)        |

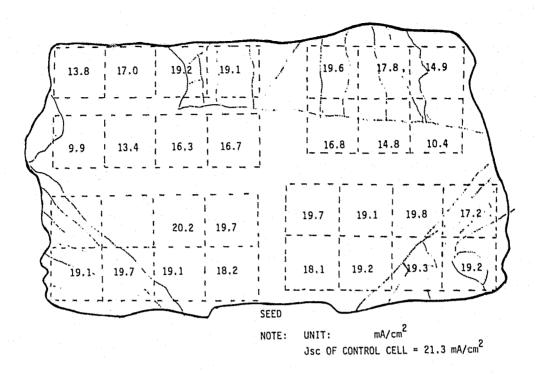
# **STD Process**


- 1. EVAPORATION OF AT ## THE BACK.
- 2. STD DIFFUSION
- 3. BACK CONTACT EVAPORATION (Ti-Pd-Ag) AND SINTER
- 4. FRONT CONTACT (Ti-Pd-Ag) BY PHOTORESIST TECHNIQUES.
- 5. MESA FORMATION
- 6. AR COATING BY EVAPORATION (S10)
- 7. INDIUM-TIN SOLDER FILL IN THE BACK SLOTS.

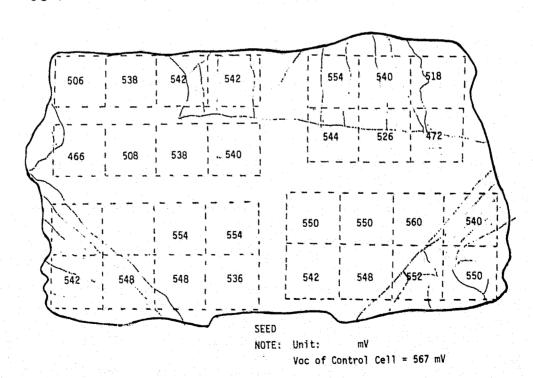
HEM


|      | AVERA   | GE CELL PA                  | RAMETERS ( | AM1)  |                 |             |
|------|---------|-----------------------------|------------|-------|-----------------|-------------|
|      | Voc. mV | Jsc 2<br>mA/cm <sup>2</sup> | CFF.%      | η, %  | PROCESS USED    | <b>1.</b> 2 |
| 1    | 564     | 25.9                        | 73         | 10 .8 | BL (1,S)        | 11.5        |
| 2    | 560     | 26.0                        | 74         | 10.8  | BL (I,P)        | 11.5        |
| 3    | 580     | 25.3                        | 73         | 10.8  | BL (II,S)       | 12.1        |
| 4    | 580     | 23.7                        | 63         | 8.7   | BL (II,P)       | 10.7        |
| 5    | 591     | 27.7                        | 71         | 11.7  | GET+BL (II,S)   | 13.5        |
| 6    | 583     | 26.3                        | 72         | 11.2  | GET+BL (II,P)   | 12.8        |
| 7    | 550     | 23.9                        | 74         | 9.8   | BL (III,SP)     | 12.6        |
| 8    | 557     | 24.9                        | 73         | 10.2  | GET+BL(III,SP)  | 12.1        |
| 9    | 597     | 32.5                        | 78         | 15.0  | GET+SJ+BSF+MLAR | 15.7        |
| 10   | 550     | 23,5                        | <i>7</i> 5 | 9.8   | BL (III,SP)     | 12.8        |
| CONT | 588     | 28.1                        | 76         | 12.6  | BL              | 13.8        |

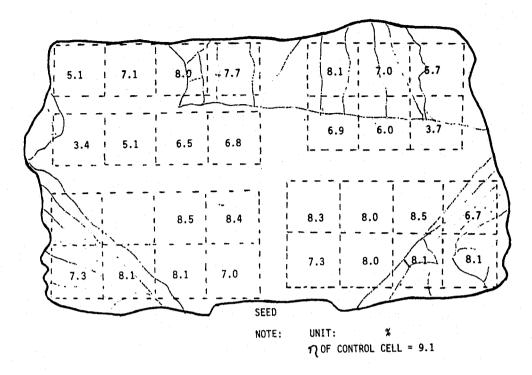
NOTE: 1. #7, 8, and 9 from a cube (4"x 4"x4", Crystal System #41-07)


 #10 from a vertically cut wafer (a whole ingot, Crystal system #41-24)

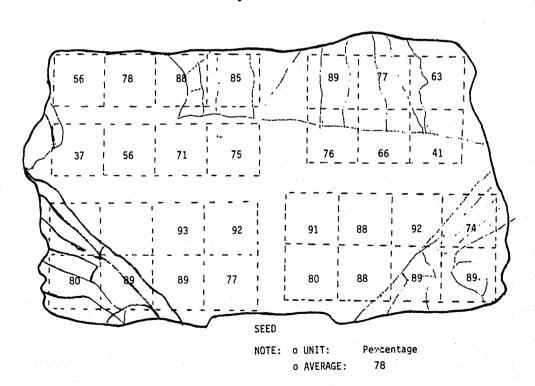



# Cross Section of Vertically Cut HEM Ingot




Isc Density (AM1, no AR) Mapping
Of Vertically Cut HEM Wafer




Voc (AM1, no AR) Mapping of Vertically Cut HEM Wafer



Efficiency (AM1, no AR) Mapping of Vertically Cut Wafer



# Efficiency (Normalized WRT) to Control Cells) Mapping of Vertically Cut HEM Wafer

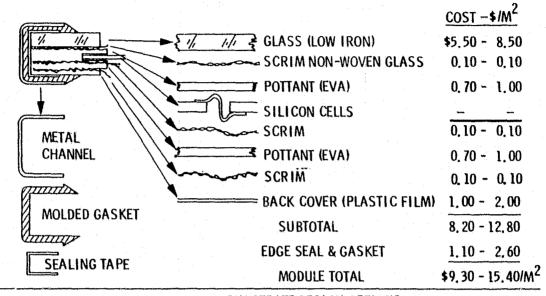


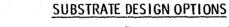
# **Encapsulation Task**

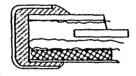
### TECHNOLOGY SESSION

C.D. Coulbert, Chairman

Continued development and characterization of ethylene vinyl acetate (EVA) as an encapsulant increases confidence in its 20-year life potential. Studies continue at JPL, Springborn, and Spectrolab in characterizing the thermal and UV radiation stability, the processing parameters, and the performance of module designs incorporating EVA as the elastomeric pottant.


These studies include parallel evaluations of alternative candidate module designs and material systems as outlined in Springborn's presentation. Two recent additions to the list of material candidates are a 3M acrylic top-cover film (X-22417) to replace Korad and ethylene methyl acrylate (EMA) produced by Gulf Oil Chemicals as a possible alternative to EVA. Initial evaluation shows EMA to be very similar in cost, performance, and processing to EVA. It may have a somewhat higher temperature stability, which may be crucial in view of recent module hot-spot experience.


The ultraviolet absorber, 5-vinyl tinuvin, developed at the University of Massachusetts has been successfully copolymerized with acrylic polymers to give a non-extractable absorber to be used in the preparation of weatherable UV screening top-cover films. Scale-up and evaluation continues at Springborn.


The module design analysis effort at Spectrolab-Hughes has provided a number of parametric evaluations of the effects of encapsulant properties and configurations on module optical, thermal, electrical and structural performance. These results, which will appear in a forthcoming report, will demonstrate the economic effects of such design parameters as glass-cover properties, module surface emissivities, pottant thickness and modulus, and the use of stiffening ribs on substrate panels.

# **Encapsulant Material Design Candidates**

## **Superstrate Designs**







UV COVER FILM (ACRYLIC OR TEDLAR)
POTTANTS (EVA, EMA, ACRYLIC)
SUBSTRATE (WOOD OR STEEL)
EDGE SEAL & GASKET

MODULE TOTAL \$5.00 - 13.00/M<sup>2</sup>

# Candidate Low-Cost Encapsulation Materials Continuing Evaluation

SUPERSTRATE DESIGN

| CONSTRUCTION ELEMENT | CANDIDATE MATERIAL                                                                           |
|----------------------|----------------------------------------------------------------------------------------------|
| STRUCTURAL ELEMENT   | SODA-LIME<br>GLASS                                                                           |
| ELASTOMERIC PUTTANTS | ETHYLENE VINYL ACETATE ETHYLENE METHYL ACRYLATE ALIPHATIC POLYURETHANE POLY-N-BUTYL-ACRYLATE |
| BACK COVER FILM      | MYLAR TEDLAR ALUMINUM FOIL                                                                   |

. MODULES UNDER CONSTRUCTION AND TESTING

# SUBSTRATE DESIGN

| CONSTRUCTION         | CANDIDATE                                 |
|----------------------|-------------------------------------------|
| ELEMENT              | MATERIAL                                  |
|                      | X-22417 ACRYLIC FILM                      |
| TOP COVER FILM       | TEDLAR 100 BG 30 UT                       |
|                      | ETHYLENE VINYL ACETATE                    |
| ELASTOMERIC POTTANTS | ETHYLENE METHYL ACRYLATE                  |
| CLASTOPERTO FOTTANTS | ALIPHATIC POLYURETHANE                    |
|                      | POLY-N-BUTYL ACRYLATE                     |
|                      |                                           |
|                      | GLASS REINFORCED CONCRETE                 |
| STRUCTURAL PANEL     | MILD STEEL                                |
| STRUCTURAL PANEL     | FIBERBOARD (E.G., "SUPER-DORLUX MASONITE) |
|                      | FLAKEBOARD (POTLATCH)                     |

. MODULES UNDER CONSTRUCTION AND TESTING

### **ENCAPSULATION TASK**

# Candidate Pottant Under Development

## Ethylene/Methyl Acrylate

- . PRODUCED BY GULF OIL CHEMICALS
- . COST, \$0.59 /LB
- . VERY HIGH THERMAL STABILITY
- . EXCELLENT ADHESION PROPERTIES
- . NON-HYDROPHILIC
- . AVAILABLE WITH ANTI-BLOCKING ADDITIVE
- . CAN BE VACUUM BAG LAMINATED
- . TOTAL INTEGRATED TRANSMISSION: 91.5%
- . IN THIN FILMS EXTRUDABLE

# **Outer Cover Materials**

NEW CANDIDATE MATERIAL MADE AVAILABLE BY 3M CORPORATION. BIAXIALLY ORIENTED ACRYLIC FILM.

### PROPERTIES:

- . HIGH TENSILE STRENGTH, 25,000 PSI
- . NO SHRINKAGE DURING LAMINATION
- . HIGH OPTICAL TRANSPARENCY: 91.5%
- AVAILABLE WITH UV ABSORBER, CUTOFF WAVELENGTH, 385 NM.
- PRELIMINARY INDICATIONS OF GOOD STABILITY, UNCHANGED AFTER 1,500 HRS. RS/4 EXPOSURE
- . MINIMODULE PREPARED AND UNDERGOING JPL
  THERMAL CYCLE TESTING

### **ENCAPSULATION TASK**

# Outer Cover Candidates for Substrate Design Modules

| MATERIAL  | COMPOSITION          | RS/4 EXPOSURE<br>PERFORMANCE                  |
|-----------|----------------------|-----------------------------------------------|
| KORAD 212 | ACRYLIC MULTIPOLYMER | BRITTLE AND<br>DEGRADED IN<br>500 - 1000 HRS. |

### OF CURRENT INTEREST:

TEDLAR 100BG30UT

POLYVINYL FLUORIDE UNCHANGED

3,000 HRS.

3M X-22417

BIAXIALLY ORIENTED A.
ACRYLIC POLYMER

UNCHANGED 1,500 HRS.

## **UV** Absorbers

5-VINYL TINUVIN
CHEMICALLY REACTIVE UV ABSORBER FROM UNIVERSITY
OF MASSACHUSETTS

- HAS BEEN SUCCESSFULLY COPOLYMERIZED WITH ACRYLIC POLYMERS TO GIVE NON-EXTRACTABLE ABSORBER
- . MAY BE USEFUL FOR THE PREPARATION OF OUTER COVER FILMS THROUGH COPOLYMERIZATION OR MASTERBATCH BLENDING.
- . SUCCESSFULLY COMPOUNDED AND CURED INTO EVA-EXTRACTION SHOWS ONLY 8% LOSS OF ABSORBER
- DEMONSTRATES CHEMICAL PERMANENCE IS POSSIBLE
- TECHNOLOGY FOR SYNTHESIS HAS BEEN TRANSFERRED TO SPRINGBORN LABORATORIES

A. MODULES HAVE BEEN PREPARED WITH THIS FILM - NO DIFFICULTY TH FILM SHRINKAGE HAS BEEN ENCOUNTERED.

# **ENCAPSULATION TASK**

# **Anti-Blocking Treatments**

EXTRUSION/GLASS MAT TECHNIQUE

POLYMER EXTRUDED DIRECTLY ONTO "CRANEGLASS" 230 5-MIL NONHOVEN GLASS MAT

### ADVANTAGES:

- . GLASS MAT AVAILABLE IN ROLL FORM
- EFFECTIVE ANTI-BLOCKING SURFACE
- . POSITIVE SPACER FOR MODULE COMPONENTS
- . AIDS DEGASSING IN LAMINATION STEP
- . PROVIDES INSULATION RESISTANCE
- . TOTAL INTEGRATED TRANSMISSION 91% (MOLDED)
- . DUE TO INTERNAL LIGHT TRAPPING
- . ADD ON COST ONLY 0.78¢/FT<sup>2</sup>
- NO DECREASE IN POWER OUTPUT FOUND WHEN PLACED OVER THE CELLS IN SUPERSTRATE MODULE.

# Thermogravimetric Analysis of Candidate Encapsulation Materials

# TEMPERATURES INDICATE ONSET OF WEIGHT LOSS IN ATMOSPHERES OF AIR AND NITROGEN

| MATERIAL                      | IN AIR (°C) | <u>IN NITROGEN</u> (OC) |
|-------------------------------|-------------|-------------------------|
| SAFLEX-PVB                    | 60          | 60                      |
| KORAD ACRYLIC FILM            | 220         | 250                     |
| TEDLAR                        | 280         | 280                     |
| EMA (BASE RESIN)              | 300         | 370                     |
| EVA (ELVAX 150)<br>BASE RESIN | 275         | 300                     |
| EVA (A9918)<br>UNCURED        | 190         | 210                     |
| EVA (A9918)<br>CURRED         | 260         | 275                     |

- . EMA BASE RESIN VERY THERMALLY STABLE
- . TEDLAR SHOWS LITTLE SIGN OF OXIDATION (AIR AND NITROGEN TEMPERATURES THE SAME)
- . EVA BASE RESIN APPEARS STABLE TO 275C
- . COMPOUNDED RESINS LOSE VOLATILES AT LOWER TEMPERATURES

#### **ENCAPSULATION TASK**

#### Primers — Adhesives

#### MODIFIED PRIMER FORMULATION A.

DOW CORNING Z-6030 9.0 PARTS
BENZYL DIMETHYL AMINE 1.0 PARTS
LUPERSOL 101 PEROXIDE 0.1 PARTS

DILUTE TO 10% SOLUTION WITH ANHYDROUS METHANOL, SWAB ON, AIR DRY, 1/2 HOUR.

#### BOND STRENGTHS (TO EVA)

#### IN POUNDS PER INCH OF WIDTH

| SUBSTRATE                              | PRIMED      | BOILING WATER ( 2 HOURS) |
|----------------------------------------|-------------|--------------------------|
| SODA LIME GLASS                        | 40          | 24                       |
| "SUNADEX"                              | 35          | 32                       |
| MILD STEEL                             | 56          | 50                       |
| TEDLAR KORAD ALUMINUM GALVANIZED STEEL | INEFFECTIVE |                          |
| A. NUMBER All861                       |             |                          |

## **Durable Coatings for Steel**

# RECOMMENDATIONS FROM MILT GLASER<sup>A</sup>. CONSULTANT - COATINGS EXPERT

|     | COATINGS                                                                           | cost, Both ¢ / FT <sup>2</sup> | SIDES |
|-----|------------------------------------------------------------------------------------|--------------------------------|-------|
| •   | POLYVINYLIDENE FLUORIDE ( PRIMER+ENAMEL) PPG INDUSTRIES, 10 YEARS OUTDOOR TO DATE  | 11.2                           |       |
| . • | SILICONE/POLYESTER DEXTER - MIDLAND, PROTOTYPES TO 20 YEARS                        | 5.4                            |       |
| •   | POLYESTER DEXTER - MIDLAND , 5-10 YEARS OUTDOORS                                   | 4.0                            |       |
| ٠   | ACRYLIC COATING PPG INDUSTRIES, 5 YEARS OUTDOORS                                   | 4.0                            |       |
| •   | POLYESTER (COMPLIANCE COAT) DEXTER - MIDLAND, 5 YEARS OUTDOORS                     | 4.0                            |       |
|     | ACRYLIC EMULSION COATING DEXTER - MIDLAND, 5 YEARS (EXTRAPOLATED)                  | 5.2                            |       |
| •   | POLYESTER POWDER COATING DEXTER - MIDLAND                                          | 5.6                            |       |
| •   | "BONDERITE" PRIMER TREATMENT CONVERSION<br>COATING; TO BE APPLIED PRIOR TO COATING | 9.2                            |       |

A. COST/ PERFORMANCE HEIRARCHY FOR COATINGS FOR GALVANIZED STEEL OR CONVERSION COATED MILD STEEL.

#### **ENCAPSULATION TASK**

#### **Corrosion Studies**

RESULTS OF 1600 HOURS OF SALT SPRAY EXPOSURE (ASTM B-117)

METALS PRIMED WITH SILANE PRIMER A.

ENCAPSULATED IN EVA

| METAL            | UNPRIMED         | PRIMED          |
|------------------|------------------|-----------------|
| GALVANIZED STELL | MEDIUM CORROSION | HEAVY CORROSION |
| MILD STEEL       | MEDIUM CORROSION | LIGHT CORROSION |
| COPPER           | UNCHANGED        | UNCHANGED       |
| ALUMINUM         | UNCHANGED        | UNCHANGED       |

- . PRIMED METALS GENERALLY BETTER THAN UNPRIMED
- . ALUMINUM LEAST EFFECTED OF METALS INVESTIGATED BOTH PRIMED AND UNPRIMED.

A. PRIMER Al1861; SILANE/AMINE/PERGXIDE

#### **ENCAPSULATION TASK**

## Engineering Design Trends and Guidelines

- 1) TEMPERATURE CONTROLLED PRIMARILY BY EMISSIVITY, NOT BULK THERMAL CONSIDERATIONS
- 2) AR COATING ON CELL A MUST
- 3) RIBS ARE NECESSARY ON SUBSTRATE MODULES
- 4) AL SUBSTRATE UNSUITABLE
- 5) ENCAPSULANT SHOULD BE ELASTOMERIC
- 6) LOW IRON GLASS COST EFFECTIVE
- 7) CRANE GLAS ABOVE CELLS OKAY
- 8) FRAME DESIGN: 3/8" BITE, 1/16" GASKET
- 9) MINIMUM POTTANT THICKNESS HAS STRUCTURAL DEPENDENCE
- 10) LOWER EFFICIENT CELLS NOT COST EFFECTIVE

## Minimodule and Submodule Weathering Program

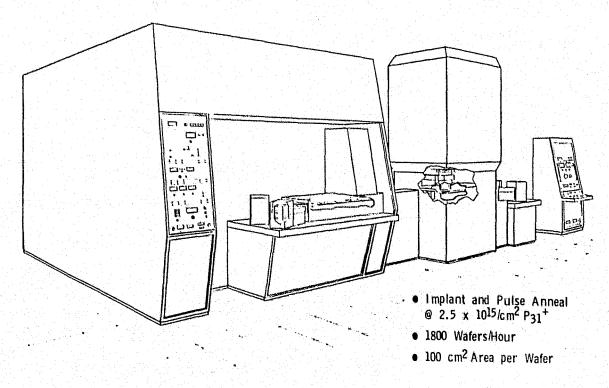
#### STATUS

- JPL SITE COMPLETELY INSTALLED
  - 24 MINI-MODULES
  - 92 SUB-MODULES
  - UV AND OTHER INSTRUMENTATION
  - 2 MONTHS OF WEATHERING
    - NO VISUAL DEGRADATION
    - SLIGHT REDUCTION IN ELECTRICAL OUTPUT OF MINI-MODULES
    - SUB-MODULES NOT TESTED ELECTRICALLY (TEST EQUIPMENT IN PREPARATION)
- GOLDSTONE SITE READY FOR INSTALLATION (WAITING FOR TEST EQUIPMENT)
- POINT VINCENTE SITE UNDER CONSTRUCTION (READY BY 10/1/80)

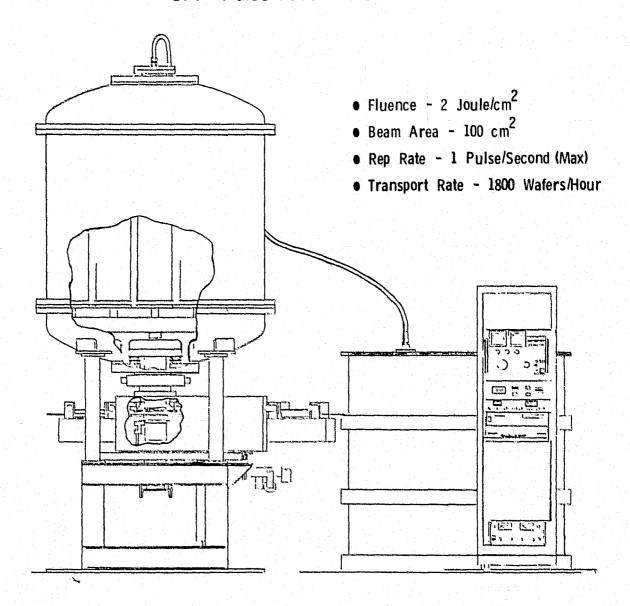
c-4

#### TECHNOLOGY SESSION

Don Bickier, Chairman


The seven contracts managed by PP&E that originated with the near-term funding group were not reported on at this PIM. Some of the contracts are still listed as active only to complete the required documentation. All significant technical developments in these contracts were reported previously.

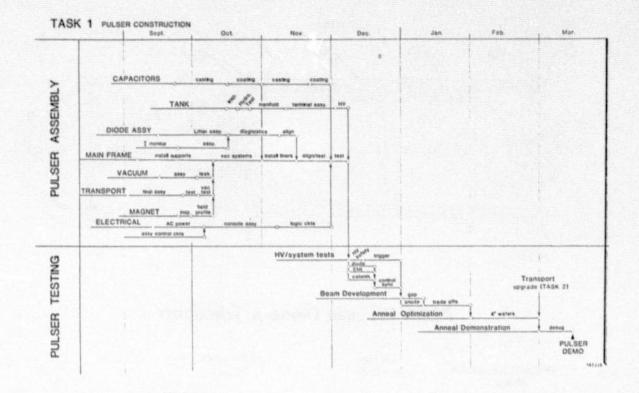
Reduction in the number of presentations resulted in a single four hour session for the PP&E Area contractors. This allowed the contractors to participate in the plenary sessions and to interface with the activities in the other areas of the Project.


## SOLAR CELL JUNCTION PROCESSING SYSTEM

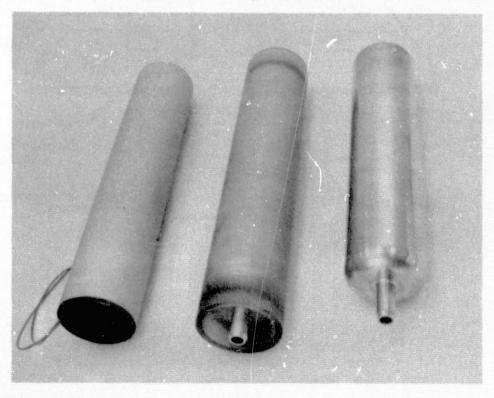
SPIRE CORP.

## **Spire-JPL Junction Processor**

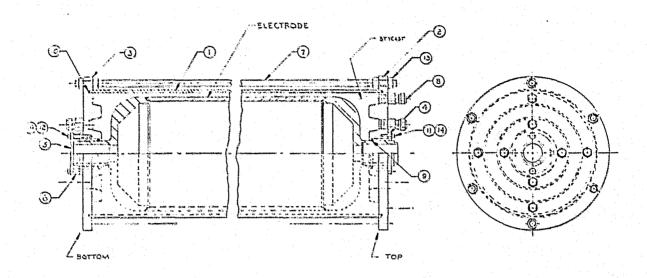



SPI - Pulse 7000 Pulse Annealer

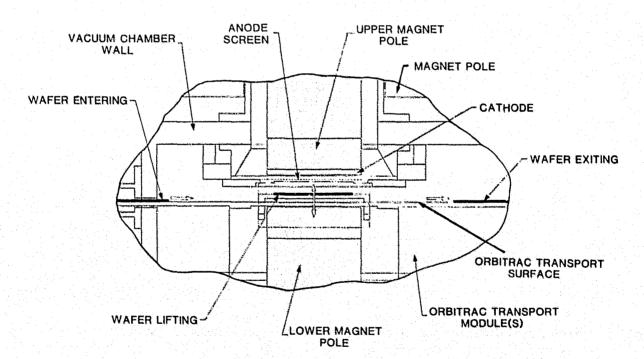


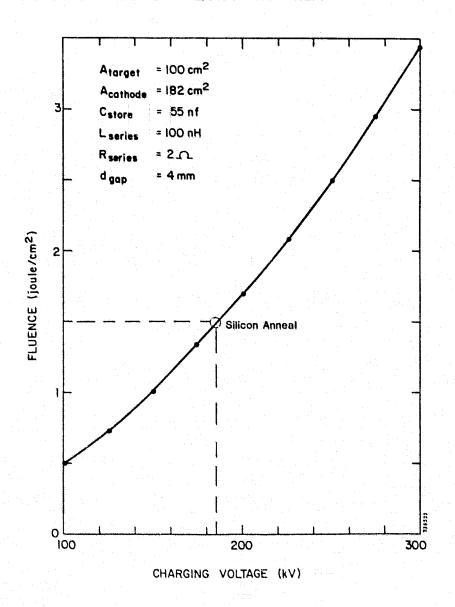

## Junction Processor Program Status, September 1980

- 1. PULSER DETAIL DESIGN COMPLETED JULY 1980
- 2. ALL COMPONENTS ARE BEING MANUFACTURED
- 3. FINAL ASSEMBLY TO START SEPTEMBER
- 4. ASSEMBLY TO BE COMPLETED BY JANUARY 1

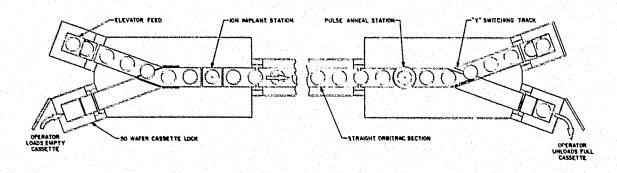

## Junction Processor Development



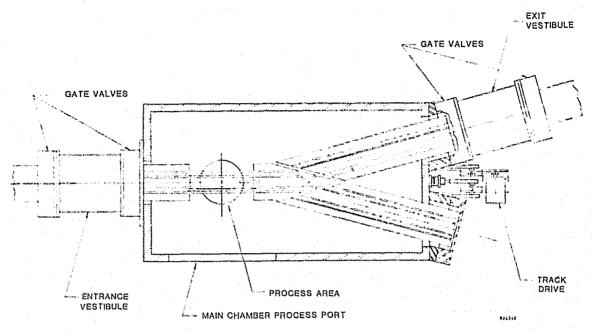

## SPI-Pulse 7000 Energy Storage Capacitor Manufacturing Sequence



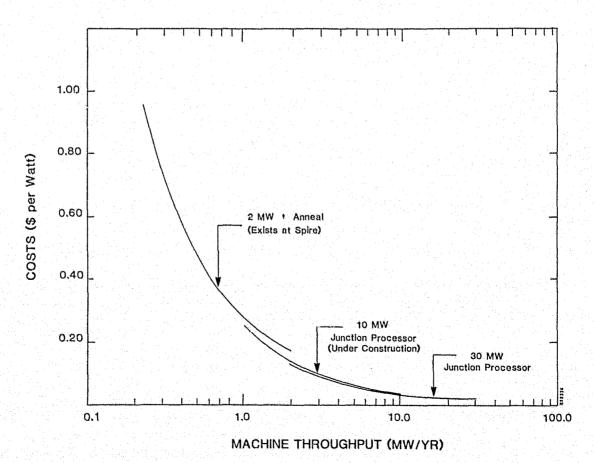

#### Mold

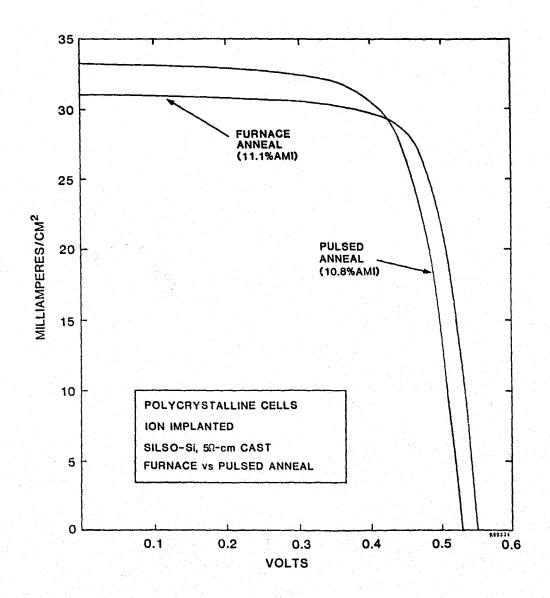



## PEBA Process Diode & Transport

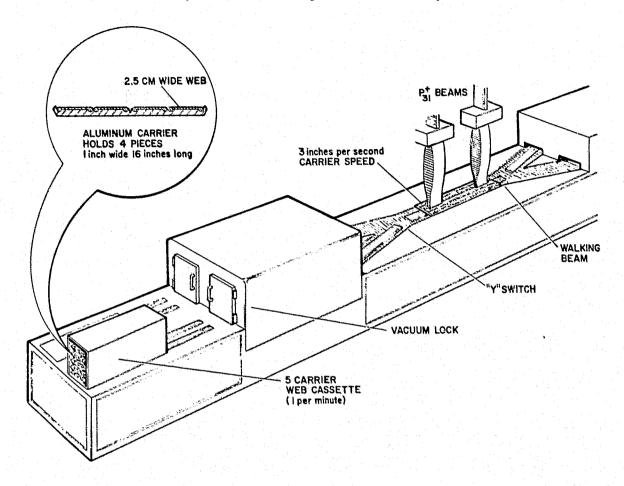






## Spire 1800-Wafer/h Vacuum Transport System

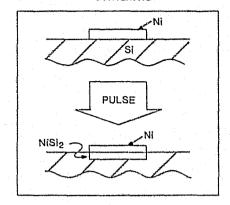



## Process Chamber (Top View)




## Junction Formation Costs by Ion Implantation





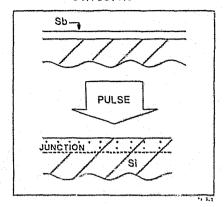

## Concept for 30 MW/yr Web Ion Implanter



## Other Applications of Pulse Electron Beam Heating

#### SINTERING




#### PROCESS:

- Evaporate/Pattern Ni Layer
- Pulse Ni to Near Melt

#### RESULTS:

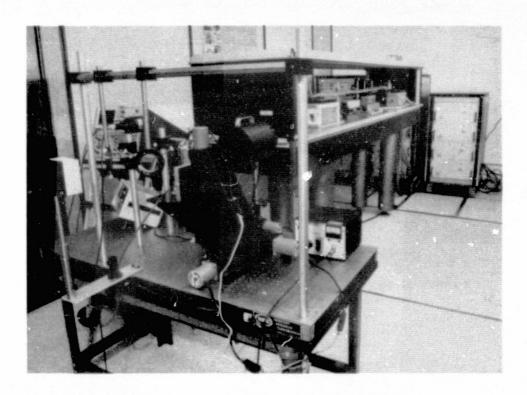
- Si Under Ni Alloys
- Exposed Si Not Melted

#### DIFFUSION



#### PROCESS:

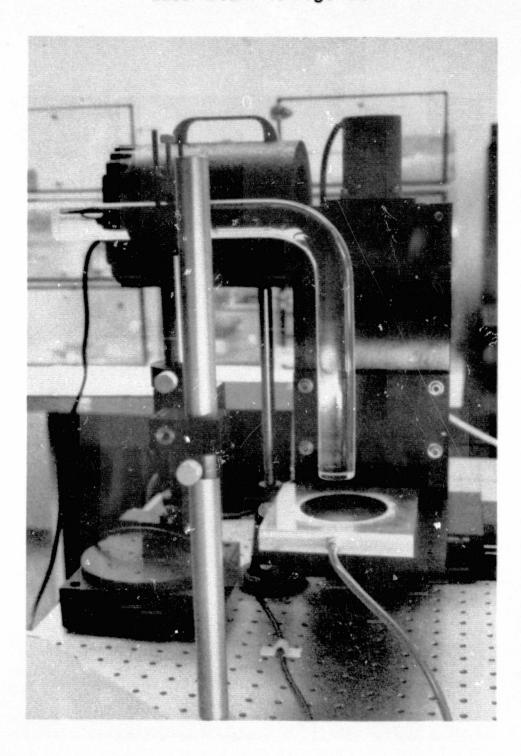
- Evaporate ≤ 200 A Sb
- Pulse; Melt Sb and Si


#### RESULTS:

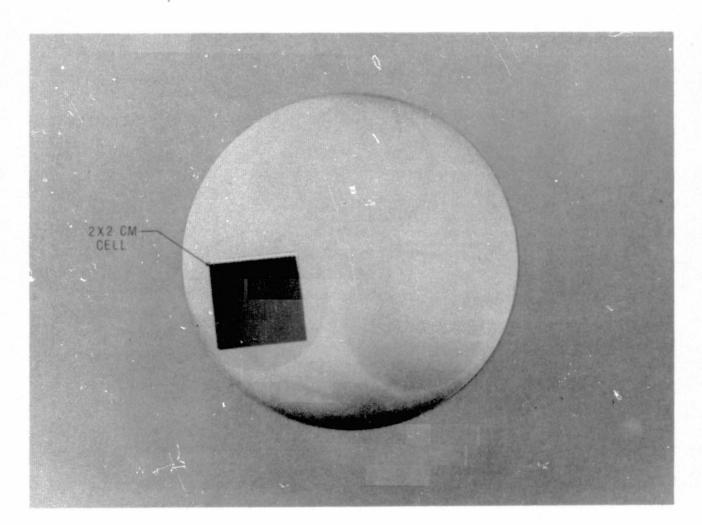
- Shallow (≤3000 A) Junction
- Sb Substitutional, No Excess

## LASER ANNEALING

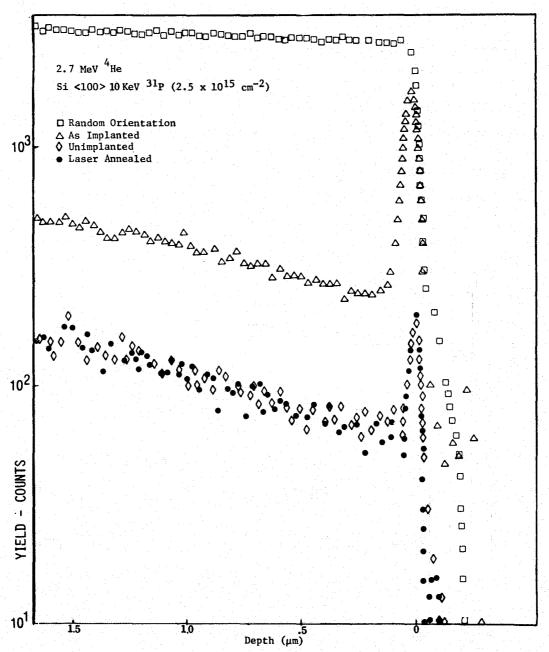
LOCKHEED MISSILES & SPACE CO., INC.


Nd:Glass Laser System

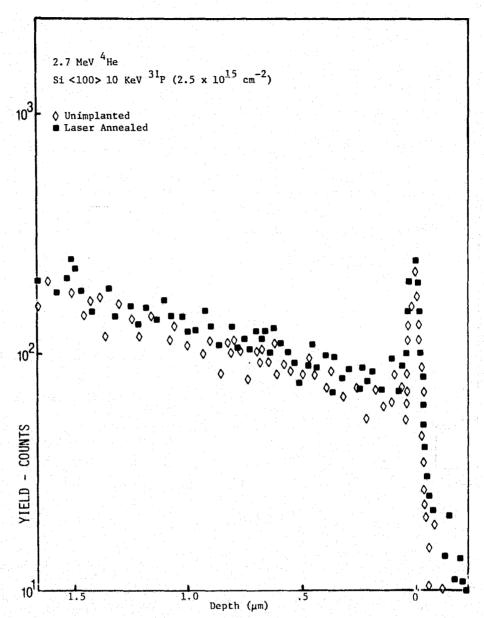



## Laser Anneal Parameter Variables

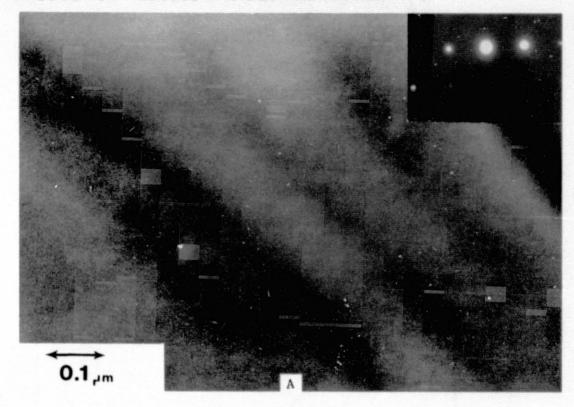
| WAVELENGTH     | PULSE WIDTH | ENERGY DENSITY        |
|----------------|-------------|-----------------------|
| 1064 nm        |             | 1,2J/cm <sup>2</sup>  |
|                |             | 1.5J/cm <sup>2</sup>  |
| 532 nm         | 20-50 nSEC  | 1,9J/cm <sup>2</sup>  |
| 1064 nm/532 nm |             | 2, 1J/cm <sup>2</sup> |

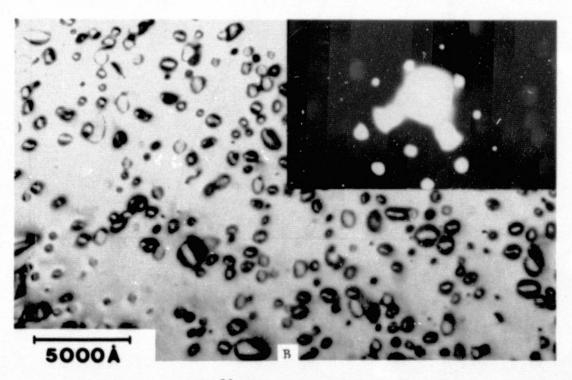

## Laser Beam Homogenizer




Single-Pulse 30-mm-Dia Laser-Annealed Areas on 3-in.-Dia Wafer

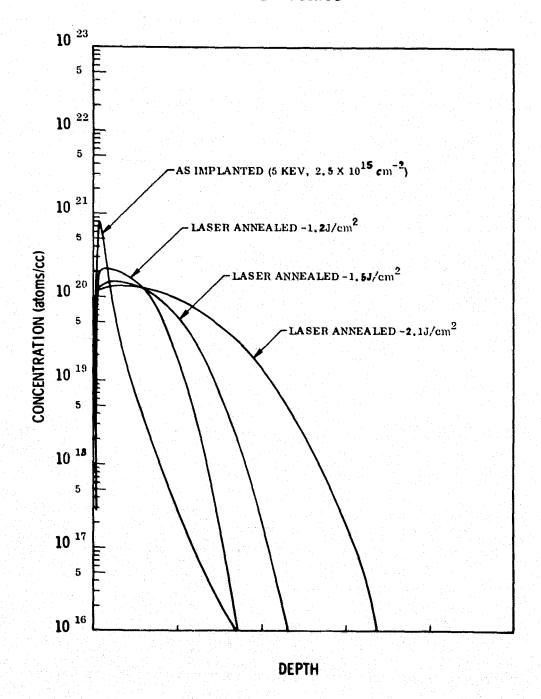


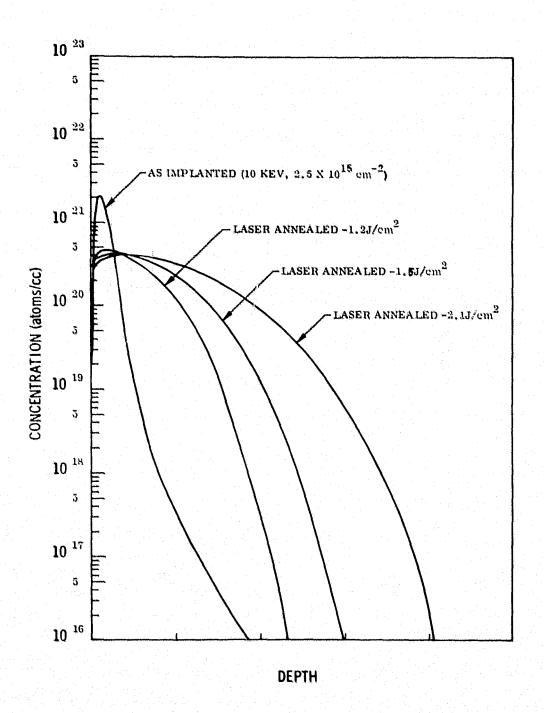

## **RBS Spectra**




BACKSCATTERING SPECTRA OF 100 SILICON WAFERS IN UNIMPLANTED (VIRGIN), AND LASER ANNEAL (2.1  $\rm J/cm^2$ ). A RANDOM SPECTRUM FOR THE VIRGIN CRYSTAL IS ALSO SHOWN.




BACKSCATTERING SPECTRA OF 100 SILICON WAFERS IN UNIMPLANTED (VIRGIN), AND LASER ANNEAL (1.5  $\rm J/cm^2)$  STATES.






TEM Micrographs of  $^{31}\text{P}$  Implanted Silicon After Laser Annealing (A), and After Furnace Annealing  $900^{\circ}\text{C}/20$  minutes (B).

## **SIMS Profiles**





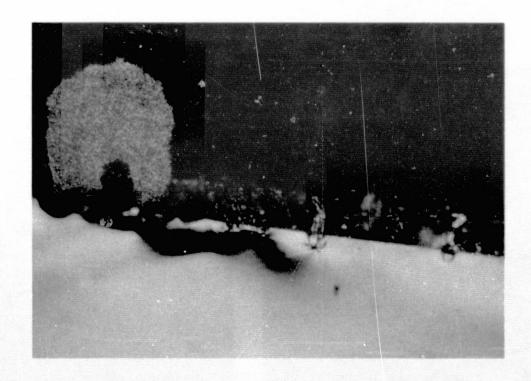
## **Cell Variables**

| SURFACE<br>VARIABLES        | IMPLANTATION<br>VARIABLES                                                                                                                   | CELL<br>PROCESSING                                                                                | LASER ANNEAL<br>VARIABLES                   |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------|
| CHEM, POLISHED              | 5 KEV/2. 5 X 10 <sup>15</sup> cm <sup>-2</sup><br>10 KEV/2. 5 X 10 <sup>15</sup> cm <sup>-2</sup>                                           | STANDARD                                                                                          | 1. 2J/cm <sup>2</sup>                       |
| FLASH ETCHED TEXTURE ETCHED | 5 KEV/2. 5 X 10 <sup>15</sup> cm <sup>-2</sup> 10 KEV/2. 5 X 10 <sup>15</sup> cm <sup>-2</sup> 10 KEV/4 X 10 <sup>15</sup> cm <sup>-2</sup> | BF <sub>2</sub> BSF ELECTRON BEAM ANNEALED  BF <sub>2</sub> BSF ELECTRON BEAM PLUS LASER ANNEALED | 1. 5J/cm <sup>2</sup> 1. 9J/cm <sup>2</sup> |

## Laser-Annealed Solar Cells (2 x 2)

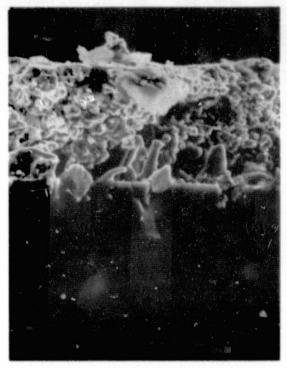
| FRONT<br>IMPLANT<br>PARAMETERS<br>(2.5 X 10 <sup>15</sup> ) | WAFER<br>SURF,<br>CONDITION | BSF                                         | LASER<br>ENERGY<br>DENSITY<br>(J/cm <sup>2</sup> ) | Voc<br>(mV) | Isc<br>(mA) | FF        | CONV.<br>EFF. | Jsc<br>(mA/cm <sup>2</sup> ) |
|-------------------------------------------------------------|-----------------------------|---------------------------------------------|----------------------------------------------------|-------------|-------------|-----------|---------------|------------------------------|
| 10 KEV                                                      | РО                          | NONE                                        | FURNACE<br>875°/20 min                             | 550,553     | 126.5,127.5 | 77,78.6   | 13.7          | 31,63,31,88                  |
| 5 KEV                                                       | PO & FE                     | NONE                                        | 1,5                                                | 539/556     | 133,6/136   | 72,3/77,1 | 13.3/14.5     | 33,40/34,00                  |
| 10 KEV                                                      | PO & FE                     | NONE                                        | 1,2                                                | 530/549     | 125,7/133,5 | 70.5/75.5 | 12.5/13.1     | 31,43/33,38                  |
| 10 KEV                                                      | PO& FE                      | NONE                                        | 1,5                                                | 545/555     | 126/132     | 72.8/77.9 | 12.9/13.9     | 31.50/33.00                  |
| 10 KEV                                                      | PO & FE                     | NONE                                        | 1.9                                                | 649/556     | 125/131.5   | 75.8/77.3 | 13.3/14.1     | 31,25/32,88                  |
| 5 KEV                                                       | РО                          | BF <sub>2</sub> , EB                        | 1.5                                                | 555         | 132,7,133,6 | 76.9,77.6 | 14.2,14.4     | 33.18,33.40                  |
| 5 KEV                                                       | Oq                          | ANNEALED<br>BF <sub>2</sub> , EB<br>& LASER | 1.5                                                | 575         | 139         | 73.7      | 14.7          | 34.75                        |
| 5 KEV                                                       | PO                          | BF <sub>2</sub> , EB                        | 1.9                                                | 573         | 136         | 73.8      | 14,4          | 34,00                        |
| 10 KEV                                                      | PO & FE                     | & LASER<br>BF <sub>2</sub> , EB             | 1.2                                                | 534/550     | 127/132.5   | 72/78.2   | 12,6/13.9     | 31,75/33,13                  |
| 10 KEV                                                      | PO & FE                     | BF <sub>2</sub> , EB                        | 1.5                                                | 540/557     | 127/131     | 68.9/78.1 | 11.8/14       | 31,75/32,75                  |
| 10 KEV                                                      | PO & FE                     | BF <sub>2</sub> , EB<br>& LASER             | 1.5                                                | 560/571     | 127.5/134   | 74/78.7   | 14/14.2       | 31.88/33.50                  |
| 10 KEV                                                      | PO & FE                     | BF <sub>2</sub> , EB                        | 1,9                                                | 552/556     | 126/132     | 71.4/78.2 | 12.9/14       | 31.50/33.00                  |
| 10 KEV                                                      | PO & FE                     | BF <sub>2</sub> , EB<br>& LASER             | 1.9                                                | 560,565     | 126.7,133   | 72.9,78.1 | 13,6/14       | 31,68,33,25                  |

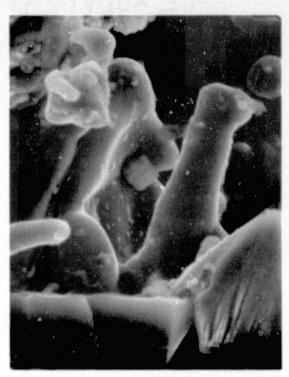
# DEVELOPMENT OF ALL-METAL THICK-FILM COST-EFFECTIVE METALLIZATION SYSTEM


#### BERND ROSS ASSOCIATES

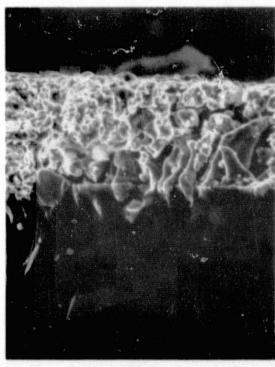
#### PROGRESS TO DATE

New materials ordered and received
Pastes based on copper powder fabricated including formulation for front contact
Observation of unexpected microstructure during cross sectional analysis
Identification of structure
Solar cell front contact experiment in process


#### RESULTS OF ANALYSIS


WHILE LOOKING FOR REGROWN ALUMINUM DOPED SILICON DURING THE ANALYSIS OF CROSS SECTIONS OF ELECTRODES THE STRUCTURE SHOWN IN THE FOLLOWING ILLUSTRATIONS WAS OBSERVED.

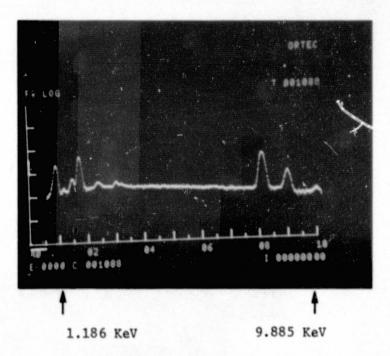



Optical micrograph of SO80 paste approximately 85 wt. % copper, 5 wt. % silver fluoride, 5 wt. % germanium-aluminum eutectic, 5 wt. % lead. Combined optical and photographic enlargement about 1600x. Color of spikes suggests semiconductor material.

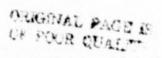


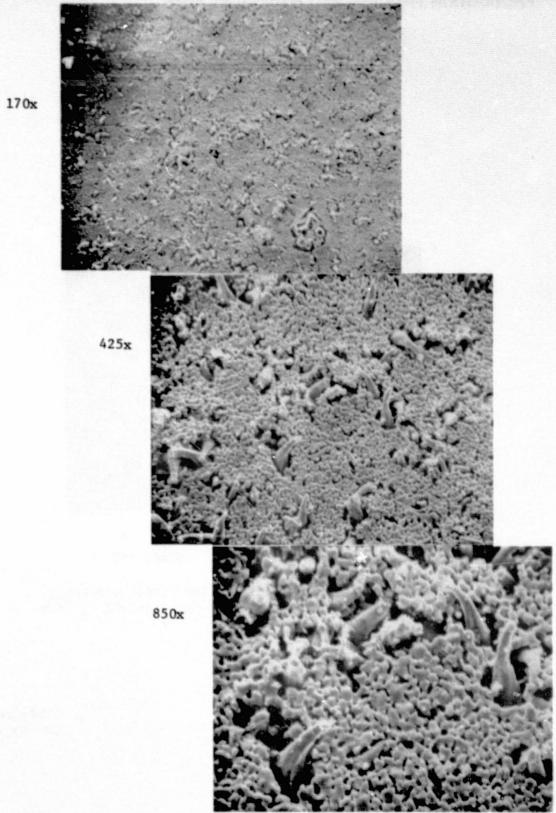





870x 4400x Cross section of S079 electrodes fired at 550°C

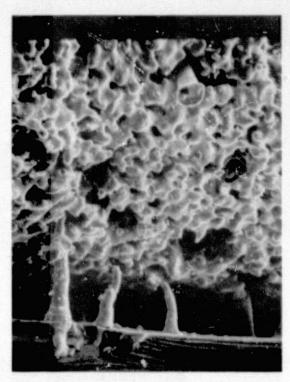





Similar to above. Note subsurface structure below spikes




Xray fluorescence spectral scan of SO80 fired electrode cross section. Indicated peaks are  $\text{GeL}_{\alpha_1}$  and GE  $\text{K}_{\alpha_1}$  lines





Sequence of photomicrographs of SO71-A9, fired at 600°C in forming gas



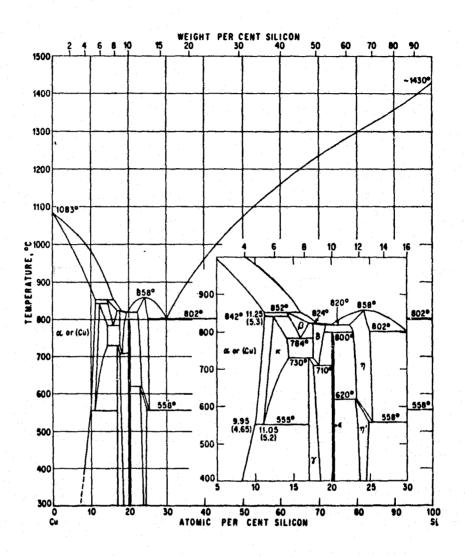


450X

825X

S071 Electrode partially pulled from substrate (in cross section)

#### Conclusions and Problems


- Solar cells appear to be tolerant to high temperature heat treatment (550°C at 13 min.) despite existence of integral portion of silicon-copper eutectic on face opposite junction.
- PROBLEMS EXIST IN ACHIEVING REPRODUCIBILITY IN RHEOLOGY AND METALLURGY OF COPPER PASTES.
- VIABILITY OF COPPER PASTE FOR FRONT CONTACT AND POSSIBLE FIRING THROUGH AR COATING REMAINS TO BE DEMONSTRATED (EXPERIMENT IN PROGRESS).



Electron microprobe analysis (CAMECA microprobe) of spike structure; target structure photographed in CAMEBAX at 2000x, paste S079

Composition According to Microprobe

|          | Needle    | General   |
|----------|-----------|-----------|
| Silver   | 0.38 at % | 0.84 at % |
| Copper   | 63.45     | 81.08     |
| Silicon  | 29.80     | 3.79      |
| Lead     | 0.17      | 6.76      |
| Aluminum | 1.20      | 7.54      |



From M. Hansen and K. Anderko, "Constitution of Binary Alloys," McGraw-Hill, 1958, p. 631

## NICKEL-SOLDER METALLIZATION

SOLAREX CORP.

## **Electroless Nickel Plating on Silicon**

#### EXPERIMENTAL TASKS

- ENVIRONMENTAL STRESSES
   FOUR SELECTED THERMAL STRESS TESTS
- PLATING ON SILICON OXIDE DOES OXIDE AFFECT PLATING?
- EFFECT OF PLATING SOLUTION ON CELLS
   DOES SOLUTION INFLUENCE CELL PROPERTIES?
- NICKEL PENETRATION OF SILICON
   HOW MUCH SINTERING IS TOLERABLE?
- EVALUATION OF MOTOROLA PROCESS RELATIVE
   TO SINGLE STEP ELECTROLESS NICKEL PLATING

#### **Environmental Stress Task Observations**

- 1 B-T-H (85°C 85% RH 0.45 VOLT) 1074 HOURS
  - VISUAL INSPECTION LIGHT I-V CURVES TAB PULL TESTS
     NO EVIDENCE OF DEGRADATION
- 2 150°C 1008 HOURS
  - DEGRADATION AND CONTACT LIFTING IN MOST CELLS
  - CELLS WHICH LOOK PERFECT SHOW LITTLE CHANGE IN ELECTRICAL PROPERTIES
  - CONTACTS FAIL AT SI-NI INTERFACE
     NO EVIDENCE OF SI DAMAGE
- 3 THERMAL CYCLE (-65°C TO +150°C) 100 CYCLES IN AIR
  - · LIFTING OF CONTACTS IN ALL CELLS
  - SOME SILICON DAMAGE EVIDENT

- 4 THERMAL SHOCK (-65°C TO +150°C) 25 CYCLES
  - · LIFTING OF CONTACTS IN MOST CELLS
  - · SILICON DAMAGE EXTENSIVE
  - SOME CELLS LOOKED PERFECT AND SHOWED LITTLE CHANGE IN LIGHT I-V CURVES, BUT TAB PULL TESTS INDICATED WEAKENED CONTACTS.
- 5 METALLIZATION DOES SURVIVE 763 HOURS AT 100°C AND 25 CYCLES OF THERMAL SHOCK (-40°C TO +100°C)

## Results of Thermal Stress Tests (-40°C, +100°C)

|                              | TAB PULL STRENGT<br>MEAN | нs (G)<br>Sто Dev |
|------------------------------|--------------------------|-------------------|
| CONTROL GROUP                | 431                      | 248               |
| THERMAL SHOCK                | 384                      | 165               |
| 25 cycles<br>-40°C το +100°C |                          |                   |
| 763 Hours<br>at 100°C        | 453                      | 282               |

CHANGES ARE WELL WITHIN EXPERIMENTAL ERROR

#### **Environmental Stress Task Conclusions**

- 1. CELLS SURVIVED B-T-H TEST PERFECTLY.
- 2. TEMPERATURE EXTREMES OF -65°C AND +150°C WERE TOO SEVERE.
- 3. TAB PULL MEASUREMENTS APPEARED TO BE A MORE SENSITIVE MEASURE OF CONTACT QUALITY THAN DID ELECTRICAL MEASUREMENTS.
- 4. DIFFERENT MODES OF FAILURE OBSERVED WITH DIFFERENT STRESSES INDICATE AT LEAST TWO DIFFERENT FAILURE MODES OPERATING.
- 5. METALLIZATION BEHAVES WELL UNDER MORE MODERATE TEMPERATURE EXTREMES OF -40°C AND +100°C.

## **Electroless Nickel Plating on Oxide Films**

- OXIDE GROWTH THERMAL IN OXYGEN
- MEASURE OXIDE THICKNESS BY ELLIPSOMETRY
- NICKEL PLATING SOLUTION DISSOLVES OXIDE DOWN TO 50 ANGSTROMS OR LESS BEFORE DEPOSITING NICKEL

## Oxide Dissolution by Nickel Plating Solution

| OPERATION               |          | RESULTS  |          |
|-------------------------|----------|----------|----------|
|                         | CELL D   | CELL E   | CELL H   |
| MEASURE OXIDE THICKNESS | 110 Å    | 157 Å    | 177 Å    |
| IMMERSE 12 MINUTES      | NO PLATE | NO PLATE | NO PLATE |
| MEASURE OXIDE THICKNESS | 55 Å     | 92 Å     | 114 Å    |
| IMMERSE 6 MINUTES       | PLATED   | PLATED   | NO PLATE |
| MEASURE OXIDE THICKNESS |          |          | 51 Å     |

#### Tab Pull Data on Oxidized Silicon

|             | AVERA        | GE PULL STRENGTH | l (G)       |
|-------------|--------------|------------------|-------------|
| SINTER TEMP | 70 Å OXIDE   | NO OXIDE         | NO OXIDE    |
| (1 MIN)     | 10 MIN PLATE | 10 MIN PLATE     | 6 MIN PLATE |
| NONE        | 549          | 801              | 358         |
| 200°C       | 536          | 683              | 727         |
| 250°C       | 731          | 490              | 853         |
| 300°C       | 593          | 519              | 756         |

## Oxide Effect on Cell Properties

|                       | MEAN CHARACTERISTICS |         |  |
|-----------------------|----------------------|---------|--|
|                       | OXIDE                | OXIDE   |  |
|                       | (35 <b>-</b> 80 Å)   | REMOVED |  |
| V <sub>oc</sub> (MV)  | 558                  | 551     |  |
| I <sub>sc</sub> (MA)  | 763                  | 740     |  |
| P <sub>M</sub> (MW)   | 280                  | 253     |  |
| TAB PULL STRENGTH (G) | 794                  | 765     |  |

DIFFERENCES ARE LESS THAN ONE STANDARD DEVIAITION

## Effect of Plating Solution on Solar Cells

DOES EXPOSURE TO PLATING SOLUTION HARM CELL JUNCTION?

FABRICATE CELLS USING A RANGE OF NI PLATING TIMES (4-14 MIN)

MEASURE LIGHT I-V CHARACTERISTICS AND DARK FORWARD AND REVERSE I-V

#### Illuminated I-V Characteristics

CELLS PLATED FOR 6, 8, 10 MIN BETTER THAN CELLS PLATED FOR 4, 12, 14 MIN CORRELATES WITH QUALITY OF METAL ADHESION ON THESE CELLS

#### Dark I-V Characteristics

DIONE N-FACTORS DETERMINED FROM DARK
I-V DATA SHOW NO TREND WITH PLATING TIME

#### Conclusions

CELL PROPERTIES NOT AFFECTED BY EXPOSURE TO PLATING SOLUTION FROM 4 TO 14 MINUTES EXCEPT FOR EFFECT OF NICKEL THICKNESS ON CONTACT QUALITY

## **Etching of Silicon by Plating Solution**

- WEIGH SI PLATE NI DISSOLVE NI - WEIGH AGAIN
- WEIGHT LOSS EQUIVALENT TO 0,12 MICRON S1
- SHEET RESISTIVITIES OF DIFFUSED WAFERS ALSO INCREASE AFTER PLATING AND STRIPPING NICKEL

PLATING SOLUTION ETCHES SILICON BEFORE DEPOSITING NICKEL

POSSIBILITY OF DAMAGE TO VERY SHALLOW JUNCTIONS

### Nickel Penetration of Silicon on Sintering

PLATE - SINTER - ANGLE LAP MICROPROBE ANALYSIS

NO EVIDENCE OF NICKEL PENETRATION UP TO 425°C, 12 MIN 450°C, 2 MIN

EXTENSIVE NICKEL PENETRATION AT 450°C, 20, 30, 40 MIN

CONSISTENT WITH LEAKAGE CURRENT DATA SHOWING LITTLE CHANGE AFTER 30 MIN AT 350°C OR 2 MIN AT 450°C, BUT SUBSTANTIAL INCREASE AFTER LONGER TIMES AT 450°C

#### Motorola Process

- COMPLEX AND LENGTHY
- ELECTROLESS NICKEL PLATING PRECEDED BY THREE STEPS OF IMMERSION PALLADIUM PLATING AND ONE STEP OF ELECTROLESS PALLADIUM PLATING PLUS TWO HEAT TREATMENT STEPS AND SEVERAL CLEANING AND RINSING STEPS.
- DESIGNED FOR REPRODUCIBLE HIGH QUALITY METALLIZATION

## Comparison of Motorola Process With Simple Electroless Nickel Plating

DIRECT COMPARISON BY PARALLEL EXPERIMENTS

- REPRODUCIBILITY OF RESULTS IS SOMEWHAT BETTER
   WITH SIMPLE ELECTROLESS NICKEL PLATING
- ETCHING OF SILICON APPEARS GREATER WITH MOTOROLA PROCESS (SHEET RESISTANCE CHANGES)
- TAPE PEEL TESTS AND TAB PULL TESTS GIVE IDENTICAL RESULTS WITH BOTH PROCESSES
- EFFECTIVE DIODE N-FACTORS ARE THE SAME
- ELECTRICAL CHARACTERISTICS OF CELLS PROVIDE
   NO BASIS FOR CHOOSING BETWEEN THE TWO PROCESSES

#### **Electrical Characteristics of Cells**

| PROCESS  |        | V <sub>oc</sub> MV | I <sub>sc</sub> MA | P <sub>M</sub> MW |
|----------|--------|--------------------|--------------------|-------------------|
| MOTOROLA | MEAN   | 543.7              | 1370               | 445               |
|          | (S.D.) | (6,4)              | (78)               | (59)              |
|          |        |                    |                    |                   |
| NICKEL   | MEAN   | 550.6              | 1337               | 472               |
| ONLY     | (S.D.) | (10.7)             | (39)               | (24)              |

- BOTH PROCESSES EQUALLY GOOD
- MOTOROLA PROCESS LENGTHY AND CUMBERSOME

# HIGH-RESOLUTION, LOW-COST CONTACT DEVELOPMENT (MIDFILM)

SPECTROLAB, INC.

Nick Mardesich

# **Program Tasks**

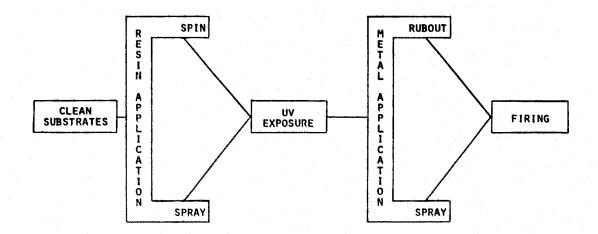
- I. ESTABLISH MIDFILM PROCESS
  AT SPECTROLAB
- II. FABRICATION OF MODULES
- III. ENVIRONMENTAL TEST
- IV. ALTERNATE MATERIALS

# Standard Cell Processing

SURFACE PREPARATION - 30% NAOH

JUNCTION FORMATION - SPIN-ON DIFFUSION SOURCE

ALUMINUM BACK SURFACE FIELD - SCREEN PRINTED ALUMINUM PASTE


CLEAN RESIDUAL ALUMINUM AND DIFFUSION OXIDE - HF AND BRUSH

JUNCTION CLEAN - LASER SCRIBE

FRONT CONTACT - MIDFILM

AR COAT - EVAPORATED SIO

#### Ferro E-100 Midfilm Process



#### SILVER POWDER COMPOSITIONS

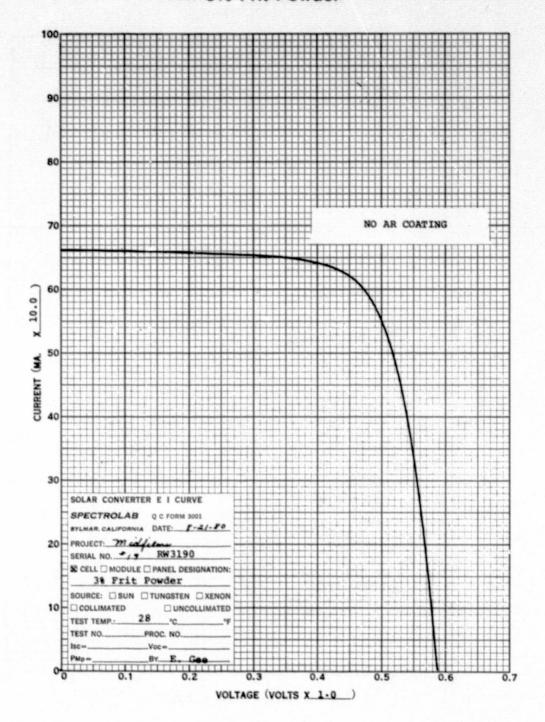
- 1. 98% TFS SPHERICAL TYPE POWDER; 2% 3347 TFS FRIT
- 2. 97% TFS SPHERICAL TYPE POWDER; 3% 3347 TFS FRIT
- 3. 95% TFS Spherical Type Powder; 5% 3347 TFS Frit
- 4. 90% TFS SPHERICAL TYPE POWDER; 10% 3347 TFS FRIT

#### RESIN

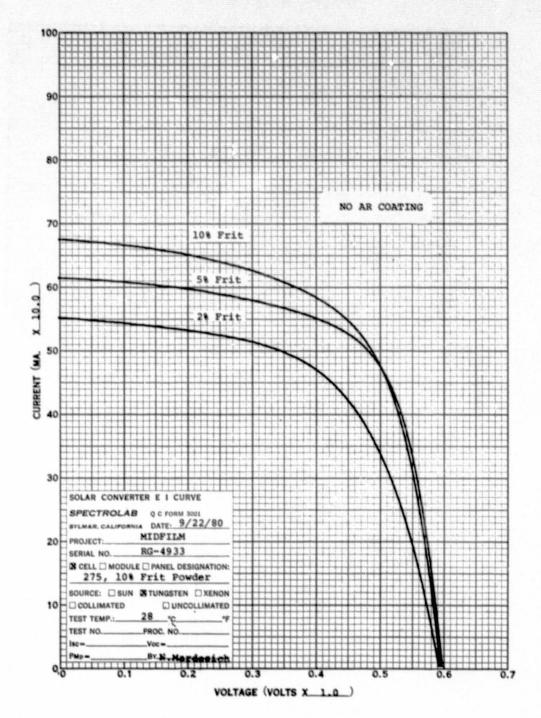
- 1. FERRO RC 4851
- 2. FERRO RW 3190
- 3. FERRO RG-4933

#### EVALUATION

HIGH SERIES RESISTANCE (100-200 ma)
SOLDER LEACHES SILVER


HIGH SERIES RESISTANCE (100-200 ma)
Solder Leaches Silver

Lower Series Resistance (80-110 mg)


Lower Series Resistance (80-110 mm)

Does Not Meet OSHA STANDARD HUMIDITY SENSITIVE


### 3% Frit Powder



# 275, 10% Frit Powder



### Front Contact Grid Line Pattern



# Series Resistance Calculation

| A) | 3 R-CM BASE SILICON           | 3,48 ma  |  |  |  |
|----|-------------------------------|----------|--|--|--|
| B) | 35 n/□ Diffused Surface Layer | 4,59 mΩ  |  |  |  |
|    |                               |          |  |  |  |
| C) | GRIDLINE RESISTANCE           | 10.59 mΩ |  |  |  |
| D) | CENTER OHMIC COLLECTOR        | 20.38 ma |  |  |  |
|    | TOTAL                         | 39.04 mΩ |  |  |  |

#### **Cost Effectiveness**

PR = (0.49:EQPT + 97.SQFT + 2.1.DLAB + 1.3.MATS + 1.3.UTIL)/QUAN.

EQPT = \$210,000 + 6,000 - 10,000 = \$206,000

SOFT = 1,500

DLAB = 1.0 PRSN.YRS./SHIFT  $\times$  4.7  $\times$  \$3,100

+ 0.4 PRSN.YRS./SHIFT x 4.7 x 11,000 = \$58,750/YR

MATS = (0.025 GM AG POWDER @ \$0.58/GM

+ 0.205 ML RESIN a \$.01717/ML)

x 55,890,000 CELLS/YR

= \$1,007,129/YR

UTIL = .0055 kWH/CELL x 55,890,000 CELLS/YR x \$.0452/kWH

= \$13,894/YR

 $QUAN = 7500 \text{ CELLS/HR } \times .90 \times 8280 \text{ HR/YR } \times$ 

= 55,890,000 CELLS/YR

 $P_R = (100,940 + 145,590 + 123,375 + 1,309,268 + 18,062)/55,890,000$ 

= 0.0304/CELL

IF n = .13

POWER/CELL =  $(10.16)^2 \text{ cm}^2 \times .1 \times .13$ 

= 1.342 WATTS/CELL

PR = 0.0226/WATT

ASSUMING NO YIELD LOSS.

# AUTOMATED MODULE ASSEMBLY USING AN INDUSTRIAL ROBOT

#### **MBAssociates**

DIRECT FOLLOW-ON TO JPL CONTRACT NO. 945882: AUTOMATED CELL LAYUP AND INTERCONNECT USING AN INDUSTRIAL ROBOT

#### FIVE PHASE PROGRAM:

#### PHASE ONE - IMPROVEMENTS TO EXISTING SYSTEM

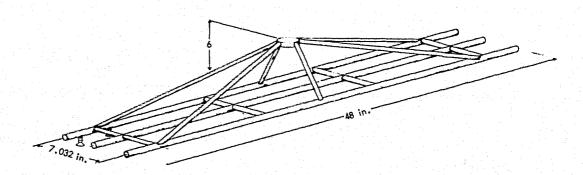
- SPEED UP CYCLE TIME TO 10 SEC/CELL
- IMPROVE SOLDER PASTE DISPENSING
- IMPROVE SOLDER BOND

#### PHASE TWO - EXPAND CAPABILITY

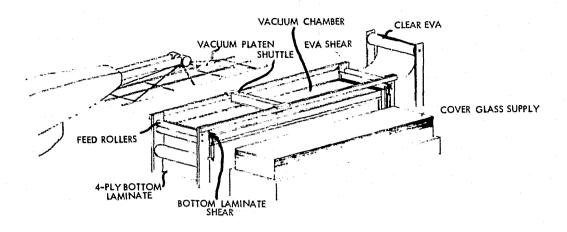
- BROKEN CELL DETECTION AND DISPOSAL
- POST SOLDER TESTING

#### PHASE THREE - AUTOMATED ENCAPSULATION STATION

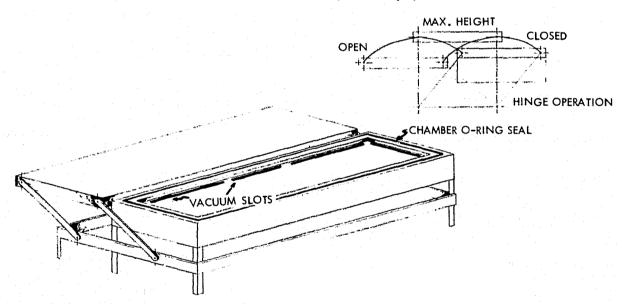
- LAMINATION PREPARATION STATION
- VACUUM PLATEN
- AUTOMATED LAMINATION CHAMBER


#### PHASE FOUR - FINAL ASSEMBLY STATION

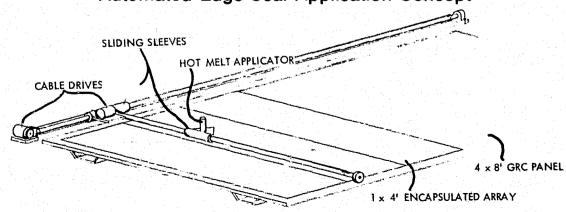
- APPLY EDGE SEAL
- GRC


#### PHASE FIVE - FABRICATION

 SIX 1' x 4' MODULES USING EQUIPMENT DEVELOPED UNDER BOTH CONTRACTS


# Vacuum Platen End Effector Concept




### **Automated Lamination Station Concept**



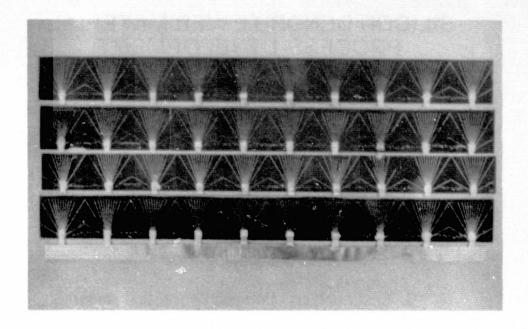
# Automated Lamination Chamber With Low Profile Cover (Concept)



# **Automated Edge Seal Application Concept**



# SILICON DENDRITE WEB MATERIAL PROCESS DEVELOPMENT


#### WESTINGHOUSE R&D CENTER

#### **Tasks**

- 1. Ultrasonic Seam Bonding
- 2. Lamination Ethylene Vinyl Acetate, And Polyvinyl Butyral
- 3. Cost Analysis Updated Conceptual Factory
- 4. Module Fabrication 30 cm × 60 cm

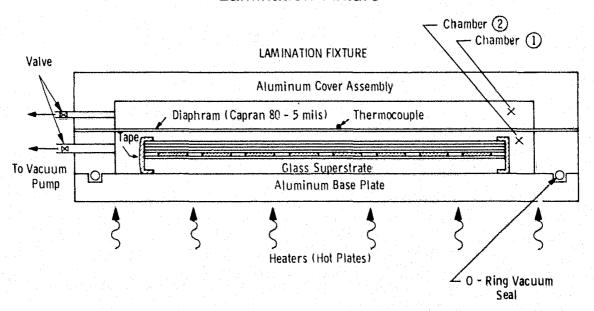
# Advantages of Ultrasonic Bonding

- Clean No Flux No Waste Products
- No Metal Build Up
- No Material Cost
- Automatable
- Rapid, Cost Effective
- Low Energy Requirements
- Moderate Capital Cost
- Reliable



# Survey of Ultrasonic Seam-Bonded Al Ribbon to Metallized Dendritic Web Solar Cells

| Metal System | Front/Back | Cell Type | Av. Pull Strength (Grams) | Std.<br>Deviation | No. of Bonds<br>Tested |
|--------------|------------|-----------|---------------------------|-------------------|------------------------|
| Ti Pd Cu (1) | Front      | B-BSF     | 85                        | 33                | 49                     |
| Ti Pd Cu (1) | Front      | AI-BSF    | 80                        | 25                | 48                     |
| Ti Pd Cu (1) | Back       | B-BSF     | 75                        | 37                | 33                     |
| Ti Pd Cu (2) | Back       | AI-BSF    | 80                        | 16                | 8                      |
| AI (3)       | Back       | AI-BSF    | 90                        | 28                | 43                     |


<sup>(1)</sup> Evaporated Ti Pd; Electroplated Cu

<sup>(2)</sup> Excess Al Etched Off Back; Remetallized Ti Pd Cu

<sup>(3)</sup> Al Evaporated On Back Surface After Oxides Removed

- **Ultrasonic Bonding Conclusions**
- Bonds Can Be Made Without Cell Fracture With Suitable Bonding Parameters
- Bonds Made With Pull Strength Equal To Half Ultimate Strength Of 0.001 Inch Aluminum Foil
- Cells Interconnected By Ultrasonic Bonding Have Been Successfully Laminated
- Contact Resistance Of Bonds < 1 Milliohm</li>

#### **Lamination Fixture**



#### Lamination

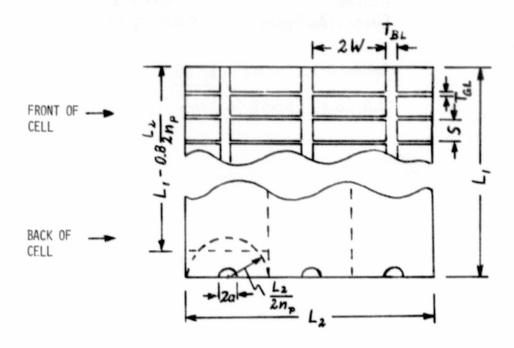
- EVA And PVB Tested
- Fixturing For Modules Up To 30 cm × 60 cm Fabricated
- Curing Cycles Determined

# Cost Analysis, Conceptual Factory

# **Assumptions**

- 25 MW/Yr Production
- Module Size 16" × 48" (Nominal)
- 12% Module At 28°C And 100 mW/cm<sup>2</sup> Insolation
- Dendritic Web Silicon Sheet Input At \$0.24/Peak
   Watt (1980 \$)
- 85% Overall Yield With 90% Cell Yield And 95% Module Assembly Yield
- All Capital Equipment Costed As Second Copy

# 25 MW/Yr Production


| Total Capital -     | 4,620 K \$         |
|---------------------|--------------------|
| Direct Labor -      | 96 Py or 1,560 K\$ |
| Materials -         | 13,737 K \$        |
| Utilities -         | 267 K \$           |
| Space - (All Types) | 6300 Sq. Ft.       |

Selling Price Per Watt - \$0.66 (All Costs 1980 \$ in 1986)

| Process<br>No. | Process                                  | \$/Watt-Peak<br>(1980 \$) |
|----------------|------------------------------------------|---------------------------|
| 1              | Pre-Diffusion Clean + Si                 | 0.280                     |
| 2              | POCI3 Diffusion                          | 0.016                     |
| 3              | AL-BSF                                   | 0.018                     |
| 4              | Antireflection/Photoresist<br>Deposition | 0.016                     |
| 5              | Expose/Develop/Etch                      | 0.020                     |
| 6              | Metallize-Front & Back<br>Ti Pd          | 0.032                     |
| 7              | Rejection/Cuplating                      | 0.041                     |
| 8              | Laser Scribe/Break                       | 0.015                     |
| 81             | Yield Dummy - 90% Cell Yield             | 0                         |
| 9              | Interconnect                             | 0.018                     |
| 10             | Lamination/Test                          | 0.179                     |
| 101            | Yield Dummy - 95% Module Yield           | 0                         |
| 11             | Crating                                  | 0.026                     |
|                |                                          | \$0.66/Watt-              |

# ANALYSIS AND EVALUATION OF PROCESSES AND EQUIPMENT

#### UNIVERSITY OF PENNSYLVANIA



 $\begin{array}{lll} & = & \text{RESISTIVITY OF SEMICOND. BASE LAYER} \\ & = & \text{SHEET RESISTANCE OF BACK METALLIZATION} \\ & = & \text{SHEET RESISTANCE OF SEMICOND. FRONT LAYER} \\ & = & \text{SHEET RESISTANCE OF GRID LINE.} \\ & = & \text{SHEET RESISTANCE OF GRID LINE.} \\ & = & \text{RESISTIVITY OF BUS LINE (ROUND WIRE, DIA. = T_{GL})} \\ & = & \text{NUMBER OF INTERCONNECTS TO BACK} \\ & = & \frac{L_1}{S+T_{GL}} = & \text{NUMBER OF GRID LINES} \\ & = & \frac{L_2}{2W+T_{BL}} = & \text{NUMBER OF BUS LINES} \\ & = & \text{GEOMETRY FACTOR} = & \begin{cases} 1 & \text{FOR PARALLEL} \\ \frac{3}{4} & \text{FOR FULLY TAPERED} \end{cases} & \text{GRID LINES} \\ & = & \text{GRID LINES} \end{cases}$ 

RELATIVE POWER LOSS:

$$\frac{\Delta P}{P} = \frac{1}{V_{\text{MP}} J_{\text{MP}} L_{1} L_{2}} \left( A_{\text{ACT}} \Delta V_{\text{EFF}} + A_{\text{SHADE}} V_{\text{MP}} \right) J_{\text{MP}};$$

$$\approx \frac{\Delta V_{\text{EFE}}}{V_{\text{MP}}} + \frac{A_{\text{SHADE}}}{L_{1} L_{2}}$$

$$\Delta V_{EFF} = \frac{1}{3} J_{MP} \begin{cases} R_{SH,DIFF} & \left(\frac{S}{2}\right)^2 + FR_{SH,GL} \frac{S}{T_{GL}} W^2 \\ SEMICOND. & GRID LINES \\ FRONT LAYER & \frac{4\rho_{BL}}{\pi} \frac{S}{S+T_{GL}} \frac{2W}{T_{BL}^2} L_1^2 + 3\rho_B D \\ & SEMICOND. \\ BUS LINES & SEMICOND. \\ BASE LAYER & \\ + R_{SH,B}L_1^2 \left(1 - \frac{L_2}{L_1N_P} \left(\frac{2}{5} - \frac{1}{\pi} \left(\frac{LN\left(\frac{L_1}{2N_PA}\right)}{1 - \left(\frac{2N_PA}{L_1}\right)^2} - \frac{1}{2}\right)\right) \end{cases}$$

$$BACK METALLIZATION$$

$$A_{SHADE} = L_1L_2 \frac{2W}{2W+T_{BL}} \left( \frac{S}{S+T_{GL}} \frac{T_{GL}}{S} + \frac{T_{BL}}{2W} \right);$$
GRID LINES
BUS LINES

# Design Rules

| DESIGN                                                                                |                          | OPTIMUM                      | NEAR<br>OPTIMUM      | THIN NI                             | PLATED<br>BUS LINES  | NEAR<br>OPTIMUM                    | SCREEN<br>PRINTED AG             |
|---------------------------------------------------------------------------------------|--------------------------|------------------------------|----------------------|-------------------------------------|----------------------|------------------------------------|----------------------------------|
| NO. OF BUS LINES (SPACING)<br>BUS LINE WIDTH (DIAMETER)<br>BUS LINE THICKNESS (GAUGE) | - (см)<br>мм<br>им (B&S) |                              |                      | :                                   | 0,75<br>10 (Cu)      | 3 (3,333)<br>0,361 NIA<br>(27 GA.) | <b>=</b>                         |
| NO. OF GRID LINES (SPACING) GRID LINE WIDTH GRID LINE THICKNESS GRID MATERIAL         | - (мм)<br>- (мм)         | 65 (1.53)<br>12.5<br>5<br>Cu | 25 —<br>10           | 2 10                                | Cu                   | 40 (2.50)                          | 127<br>10 (FIRFD)<br>SINTERED 46 |
| BUS SHADING<br>BUS LOSS                                                               | X<br>X                   | 1.79<br>0.96                 | 1.79<br>0.94         | 1.79<br>0.94                        | 5.25<br>4.46         | 1.08<br>1.12                       | 1.08                             |
| GRID SHADING<br>GRID LOSS<br>FRONT LAYER LOSS                                         | 7. 7. 7.                 | 0.82<br>0.42<br>0.41         | 1.63<br>0.10<br>0.41 | 1.63<br>0.51<br>0.41                | 1.55<br>0.09<br>0.39 | 1.00<br>0.94<br>1.11               | 5.08<br>0.49<br>0.98             |
| BASE LOSS (200 µm 10cm; 10 µm Cu)                                                     | Z                        | 0,46                         | 0.46                 | 0,4811.82                           | 0.44                 | 0.49                               | 0.47                             |
| TOTAL POWER LOSS                                                                      | Z                        | 4.9                          | 5,3                  | 5.8 7.1                             | 12.2                 | 5.7                                | 9.1                              |
| CELL EFFICIENCY<br>MODULE EFFICIENCY                                                  | Z<br>Z                   | 16.36<br>15.34               | 16.29<br>15.27       | 16.20 115.98<br>15.19 <b>114.98</b> |                      | 16.22<br>15.21                     | 15.63<br>14.65                   |
| CELL VALUE                                                                            |                          | 86.31<br>56.3                |                      | 84.49 81.93<br>55.6 54.7            |                      | 84.73<br>55,7                      | 77.91<br>53.2                    |
| DIFFERENCE IN VALUE                                                                   | \$/m2                    | REFERENCE                    | -0.85<br>REF.        | -0.97 -3.53                         |                      | -1.58<br>REFERENCE                 | -6.3?                            |

1. 
$$W = \frac{1}{2} \left( \frac{3}{\pi^2} - \frac{\rho_{BL}^2}{R_{SH,GL}^3} - \frac{V_{MP}}{J_{MP}} \right)^{1/8} L_1^2$$

2. 
$$T_{BL} = \left(\frac{32}{3\pi} - \frac{J_{MP}^{\circ}BL}{V_{MP}} - L_1^2 W^2\right)^{1/3}$$

3. 
$$S \le 2 \left[ \frac{1}{3} + \frac{R_{SH,GL}}{R_{SH,DIFF}} \left( \frac{V_{MP}}{J_{MP}} \right)^{1/2} W \right]^{-1/2}$$

(SELECT S AS SMALL AS POSSIBLE IN VIEW OF TECHNICAL LIMITATIONS ON  $\mathsf{T}_{\mathsf{GL}}$  (SEE 4 BELOW), BUT NOT SIGNIFICANTLY LARGER THAN GIVEN BY THE ABOVE RELATIONSHIP FOR S.)

4. 
$$T_{GL} = \left(\frac{1}{3} R_{SH,GL} \frac{J_{MP}}{V_{MP}}\right)^{1/2} WS$$

(IF TECHNICAL LIMITATIONS REQUIRE A VALUE FOR  $T_{GL}$  LARGER THAN RESULTING FROM RELATIONSHIPS 3.) AND 4.), USE THE SMALLEST PRACTICAL VALUE FOR  $T_{GL}$ , IF PATTERN RESOLUTION IS LIMITING. IF GRID LINE WIDTH-TO-THICKNESS RATIO IS LIMITING, REDUCF THICKNESS (INCREASE  $R_{SH,GL}$ ), TO FIND  $T_{GL}$  AND  $R_{SH,GL}$  VALUES FOR LEAST POWER LOSS.

- 5. ARRANGE GRID LINES NORMAL TO BUS LINES.
- 6. SELECT CONDUCTOR METAL OF THE HIGHEST PRACTICAL CONDUCTIVITY.
- 7. SELECT DEPOSITION PROCESSES WHICH APPROACH RULK CONDUCTIVITY AS CLOSELY AS PRACTICAL.
- 8. EACH HIGHER LEVEL IN THE HIERARCHY OF CONDUCTORS NEEDS A MUCH LOWER SHEET RESISTANCE THAN THE PRECEDING LEVEL. THIS LEADS TO THE "SKY SCRAPER RULE" FOR THE BUS LINES: BUILD HIGH RATHER THAN WIDE.
- 9. THE "EFFECTIVE VOLTAGE DROP" OF FULLY TAPERED LINES IS 3/4 THAT OF UNIFORM WIDTH LINES OF EQUAL SHADING, OR 1/2 OF THE "END-POINT VOLTAGE DROP".
- 10. CARELESS METALLIZATION DESIGN IS COSTLY.

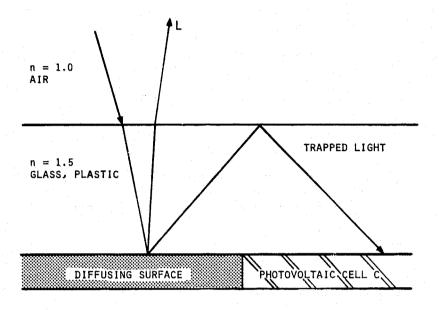
# ANALYSIS OF PANEL DESIGN CONCEPTS USING LIGHT TRAPPING

SCIENCE APPLICATIONS, INC.

# **Briefing Outline**

- INTRODUCTION
- LIGHT TRAPPING OPTICS
- SIMPLIFIED DESIGN EQUATIONS
- CASE STUDY

### **Goals of Contract**


- SUMMARIZE PRIOR SAI COMPUTER SIMULATION AND TESTS OF LIGHT TRAPPING IN DESIGN GUIDE TO INCLUDE:
  - SIMPLIFIED OPTICAL EQUATIONS
  - GRAPHS
  - TABLES
- APPLY DESIGN GUIDE CONCEPTS BOTH TO EXISTING MODULES AND INNOVATIVE POSSIBILITIES
- PERFORM COST/BENEFITS ANALYSIS TO INCLUDE:
  - COST OF MANUFACTURING PANELS
  - COST OF BUILDING SYSTEMS
  - COST OF 0&M
- DEVELOP COST-EFFECTIVE DESIGN RECOMMENDATIONS

# Task I Objectives

- DEVELOP SIMPLIFIED OPTICAL PERFORMANCE EQUATIONS
   FOR A GENERIC FLAT PLATE PV MODULE
- USE AS BASELINE A MODULE WITH NO OPTICAL TRAPPING

# **Light-Trapping Concept**

- USE OF HIGH INDEX OF REFRACTION MATERIALS
- DIFFUSELY REFLECTING INTERCELL AREA

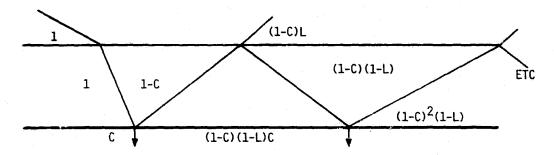


# **Closed-Form Approximate Solution**

- ASSUMPTIONS:
  - SINGLE TRAPPING LAYER
  - NO ABSORPTION IN LAYER
  - NO FRESNEL REFLECTIONS
  - HOMOGENEOUS MIXTURE OF DIFFUSING LAYER AND CELLS
  - PERFECT DIFFUSE (LAMBERTIAN) REFLECTION BETWEEN CELLS
- METHOD—SERIES SOLUTION TO RAY PROPAGATION

$$G_0(N_1) = 1/(C+L - LC)$$

C = CELL PACKING FRACTION


L = LOSS DUE TO LESS THAN CRITICAL ANGLE REFLECTION

$$1 - \sin^2 \theta_C = \left(\frac{n_1}{n_2}\right)^2 = (N_1)^2$$

$$G_0(N_1) = 1/(N_1)^2; C \longrightarrow 0$$

$$= (n_2/n_1)^2$$

#### **Derivation of Closed-Form Solution**



$$G = \left[1 + \underbrace{(1-C)(1-L)}_{1-C-L+LC} + (1-C)^{2}(1-L)^{2} \cdot \cdot \cdot\right]$$

$$G = \sum_{n=0}^{\infty} (1-C-L+LC)^n = \sum_{n=0}^{\infty} X^n = \frac{1}{1-X} = \frac{1}{C+L-LC}$$

# Computer Model for Simulation of Light Propagation and Diffusion by Monte Carlo Methods

- PROPAGATION OF LIGHT IN THREE DIMENSIONS INCLUDES FRESNEL LOSSES, ABSORPTION LOSSES, AND DIFFUSION LOSSES
- DIFFUSED RAYS GIVEN ANGLES AND ENERGIES WHICH EFFECTIVELY SAMPLE
  THE REAL DISTRIBUTION OF DIFFUSED LIGHT
- VARIOUS DIFFUSION PATTERNS INCLUDING LAMBERTIAN DISTRIBUTION

# **Preliminary Simplified Design Equations**

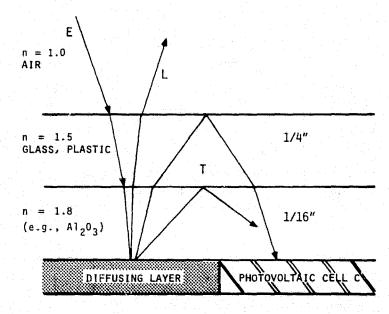
1) GAIN WITH NO FRESNEL REFLECTIONS

$$G_0 = 1/(C+L-LC)$$

2) GAIN WITH FRESNEL REFLECTION AT TOP LAYER

$$G_0 = 1/(C+L-LC-LF+CLF)$$

3) GAIN WITH FINITE REFLECTIVITY R ≤ 1.0


$$G(R) = 1 + [G_0(R=1)-1]R; R \le 1.0$$

GAIN FOR LESS THAN OPTIMUM THICKNESS  $T \le T_0 = 1/4$   $G(T) = 1 + \left[G_0(T = T_0) - 1\right] \left(\frac{T}{T_0}\right)^{1/2}; \quad T \le T_0$ 

EFFECTS OF R,T AND ADDITIONAL LAYERS ARE MULTIPLICITIVE  $G(N_1, N_2, \dots, R, T) = 1 + \left[G_0(N_1) G_0(N_2) \dots - 1\right] R\left(\frac{T}{T_0}\right)^{1/2}$ 

# Multilayer Light Trapping

- HIGHER II LAYERS ARE LOCATED CLOSER TO CELL
- LIGHT TRAPPING IS DETERMINED BY HIGHEST N MATERIAL
- MONTE CARLO PROGRAM IS CAPABLE OF MODELING MULTIPLE LAYERS
- SIMPLIFIED DESIGN RULES WILL BE VALIDATED



# Typical Gains for Block III Modules Using Simplified Design Equations

| SUPPLIER          | AS CONFIGURED | WITH $T = 1/2$ " |
|-------------------|---------------|------------------|
| ARCO              | 1.08          | 1.17             |
| MOTOROLA          | 1.10          | 1.20             |
| SENSOR TECHNOLOGY | 1.12          | 1.24             |
| SOLAR POWER       | 1.06          | 1.13             |
| SOLAREX           | 1.13          | 1.26             |

# Scope of Further Effort

- IN ORDER TO UTILIZE LIGHT TRAPPING AS AN EFFECTIVE MEANS OF INCREASING GAIN, THE FOLLOWING ARE BEING EXAMINED:
  - GENERIC CELL ENCAPSULATION AND ATTACHMENT SCHEMES
  - CELL SIZES, SHAPES, EFFICIENCIES
  - INTRACELL AREAS—REFLECTIVITY, ANGULAR PATTERN
  - INTERCELL AREAS-INTERCONNECTIONS, TERMINALS, CELL GRID PATTERNS, GEOMETRIES AND BLOCKAGE
  - CELL EFFICIENCIES AS A FUNCTION OF ILLUMINATION
  - ANTI-REFLECTION COATINGS

JOINT TECHNOLOGY SESSION

R.G. Ross Jr. and Larry Dumas, Chairmen

### **OPERATIONS AREA**

LSA Environmental Test Director John Griffith presented an update on recent test results and pointed out some needed improvements in both the modules and the tests themselves. Prototype modules for seven of 10 Block IV designs have now been tested, and most will need changes in design or processing. The problems encountered have typically not been catastrophic, but seem to indicate once again that reliability and durability in hardware is seldom achieved on the first try.

Some difficulties in obtaining repeatable Nominal Operating Cell Temperatures (NOCT) in outdoor testing were noted. The results from indoor simulation of these tests suggest that wind speed and direction may be more critical than had been believed. Field results also indicate that the effects of reverse voltage bias and of extended duirnal thermal cycling can cause failures that are undetected in the current series of qualification tests. A cell hot-spot test is being added to the qualification sequence to correct the former deficiency; resolution of the latter is under study.

Results of this year's survey of modules at the endurance test sites were presented by Field Test Director Peter Jaffe. During the past year three modules have failed and six additional modules show electrical degradation among the 167 Block II modules at these sites. Hot, humid, and salty environments are the most harmful to the modules; dry and cool climates, such as those at high elevations, are the least harmful. Cracked cells, corrosion of exposed metallic surfaces, and encapsulation delamination are the most common forms of physical deterioration.

Status reports for Test and Applications Projects were given by Edwin T. Muckley of NASA LeRC, Calvin B. Rogers of Sandia Laboratories, Ron Baisley of JPL, and Steve Forman of MIT/LL. Until recently, NASA LeRC field experience with arrays in remote stand-alone systems has been excellent. Open-circuit failures at Upper Volta and Schuchuli villages are of present concern, however. LeRC is stressing market development for remote stand-alone systems to provide near-term mass markets for PV products.

The Sandia-monitored PRDA-35 (concentrator) and PRDA-38 (flat-plate) application experiments are nearing installation. The four flat-plate experiments, using Solarex and Solar Power modules, will provide valuable experience with large-scale intermediate-load systems in a variety of new applications.

A recent survey of the 60-kW array at Mt. Laguna has revealed a continuation of the module problems reported earlier for this site. Although the incidence of newly cracked cells from reverse voltage bias heating has slowed, the module failure rate from this condition has increased. Evidence of this degradation mode has now also been seen on the second of the two typer of modules in the array, which has construction features similar to those of the first but much lower cell shunt resistance. Impact fractures, which had previously been mainly observed in the latter module type, are now becoming evident in the former as well.

Overall module failure rates at MIT/LL test sites continue to be low. The array at the University of Texas Arlington (UTA), which suffered from the same reverse voltage bias hot-spot problem as that at Mt. Laguna, was replaced after module failures had reached 27%. Techniques for fault detection and isolation in the systems at Natural Bridges National Monument, WBNO (Bryan, Ohio), UTA, and the John F. Long house (Phoenix) were described by Steve Forman.

Steve Sollock, responsible for LSA problem and failure analysis activities, provided an overview of significant findings since the last Project Integration Meeting. Analyses of cracked cover glasses, cell-string shorts, fractured interconnects, and cell heating and cracking have been carried out in the laboratory. On-site array diagnoses at Mt. Laguna and Camp Pendleton were also made by Failure Lab personnel.

#### SUMMARY

Larry Dumas, Operations Area Manager, reviewed the schedule status for Block IV module design and test contracts, which have typically slipped 7 to 8 months. After recapping some of the more significant negative findings from environmental testing and field-test-and-application project presentations, he offered some observations on the current status of Project reliability and durability goals. Indications are that the 20-year lifetime goal and the methods for assessing and controlling the factors which govern it are not well in hand. Increased emphasis on this aspect of the Program was recommended.

# **ENGINEERING AREA**

R. G. Ross Jr., Engineering Area manager, presented a brief overview of Engineering Area activities. Recently published reports describing activities contracted by Engineering include completed array design requirements studies by Burt Hill Kosar Rittelman Associates on operations and maintenance costs for residential applications, studies by Bechtel National, Inc., of curved-glass modules and electrical isolation requirements, and an assessment of current module output termination methods and requirements by Motorola, Inc. The series-parallel circuit design workshop was repeated for interested program participants on May 19 and 20. As part of the SERI-supported standards effort, documentation of array interim performance criteria and test methods was released as part of IPC-1. A number of ongoing tasks were

described briefly in the areas of array requirement studies, array subsystem development, component engineering and reliability studies, and standards development. The detailed status of a number of these activities was described in a technical session held jointly with the Operations Area.

As an update of ongoing array low-cost structures development, Abe Wilson described the improved  $8 \times 20$ -ft frame and panel design that was demonstrated at the PIM. Since the last PIM, detailed cost vs quantity sensitivity analyses have been performed, which indicate that substantial savings can be made for the proposed design even in quantities of a few tens of panels and frames. Total installed cost estimates (not including modules) have been developed for  $2 \times 4$ -ft and  $4 \times 4$ -ft module installations.

Boeing Engineering and Construction presented the results to date of the wind-tunnel testing conducted on a 1/24th-scale model of an array field at Colorado State University. As part of the presentation a film was shown that highlighted the significant effect that proper fencing has on wind loads within an array, especially as the first row, resulting in substantial reductions in normal force coefficient. Future work will include documentation of the results of steady-state wind loading and the beginning of evaluation of the effects of turbulence and array dynamics on design guidelines.

Steve Gasner and Al Wen described photovoltaic/thermal module development work at JPL. The objectives of this activity are development of design requirements for PV/T modules and the development of performance test methods. This effort is part of the SERI-supported Standards and Test Method Project. He also described work toward verifying a new proposed cell-temperature test procedure.

Allan Levins, Underwriters Laboratories, Inc., discussed progress in the UL contract to study photovoltaic module and array safety concerns. a goal of this study is the development of preliminary standards for product requirements for protection of personnel and equipment from hazards of shock, fire and casualty. Of particular interest were results of recently conducted fire-resistance tests on representative Block III modules. An additional area of discussion was design of suitable ground-fault detection and interruption circuits for PV systems.

G. R. Mon described a JPL in-house investigation of electrical insulation design requirements. Both theoretical considerations and results of empirical tests of a variety of module types were discussed.

Cell hot-spot heating was discussed in the last two presentations. JPL has recently completed fabrications of a five-bay cell hot-spot endurance test facility. This facility is being used to evaluate proposed methods for conducting hot-spot tests is part of future module qualifications test sequences. The procedures under evaulation were described along with reverse quadrant data for representative Block II and III modules. Clemson University provided a detailed discussion of a thermal model that has been developed to describes the temperature performance of cells subjected to second-quandrant heating.

# **ENVIRONMENTAL TESTING**

JET PROPULSION LABORATORY

John S. Griffith

#### **Contents**

- TYPES OF TESTS, A BRIEF REVIEW
- RECENT QUALIFICATION TEST RESULTS
  - BLOCK III, TASK 4, PRDA 38
  - BLOCK IV
- PROBLEMS IN ENVIRONMENTAL TESTING
- TESTS PLANNED FOR THE NEAR FUTURE
- SUMMARY

# Types of Tests

 QUALIFICATION TEST — ENVIRONMENTAL EXPOSURES REQUIRED IN THE PROCUREMENT SPECIFICATION

| • TEMPERATURE CYCLING                    | +90°C, -40°C, 100°C/hr, 50 TIMES                       |
|------------------------------------------|--------------------------------------------------------|
| HUMIDITY CYCLING                         | +40°C, +23°C, 90% R.H., 5 DAYS                         |
| • WIND SIMULATION                        | ±2400 PASCALS (50 lb/ft <sup>2</sup> ), 10, 000 CYCLES |
| • TIVIST                                 | ±2 cm/100 cm OUT-OF-FLAT                               |
| • HAIL                                   | 1.9 cm (0.75 inch) HAILSTONES AT 20 m/s (45 mph)       |
| <ul> <li>ELECTRICAL ISOLATION</li> </ul> | 2000 VDC AT LESS THAN 50 MA LEAKAGE                    |

- EXPLORATORY TESTS TESTS FOR SPECIAL ENVIRONMENTS OR DEVELOPMENT OF NEW QUALIFICATION TESTS
  - HEAT/RAIN, HUMIDITY/HEAT, HUMIDITY/FREEZE, SALT FOG
- ADDITIONS TO EXPLORATORY TEST SERIES UNDER CONSIDERATION
  - HOT CELL TESTS
  - ADDITIONAL TEMPERATURE CYCLING TO DETECT INTERCONNECT FATIGUE

#### **Qualification Tests Completed Recently**

- Y TYPE HIGH DENSITY. LATE BLOCK III
- M TYPE, TASK 4
- Y TYPE, PRDA 38, RETEST OF PHASE 1 MODULE
- SEVEN OF THE TEN TYPES OF BLOCK IV PROTOTYPE MODULES

#### Results of Qualification Tests

- Y TYPE, HIGH DENSITY, LATE BLOCK III SATISFACTORY
- M TYPE, HIGH EFFICIENCY, TASK 4 TWO SMALL CELL CRACKS, ONE MODULE FAILED HIPOT
- Y TYPE, PRDA 38, RETEST OF PHASE I MODULE

TEMPERATURE CYCLING PVC J-BOXES DISTORTED AT 1050C

ONE MODULE UNSTABLE WITH POWER LOSS UP

TO 15%

WIND ONE MODULE HAD 6% ELECTRICAL LOSS

TWIST MORE ELECTRICAL LOSS AND TWO OTHERS HAD

MARGINAL ELECTRICAL LOSSES

# Block IV Module Type GR (Shingle)

 MODULE CONSTRUCTION TOP TO BOTTOM 4.4-mm GLASS, CELLS BONDED WITH SILICONE, WHITE SILICONE ENCAPSULANT, WEATHER-PROOFED CARDBOARD BACK. FLEXIBLE PORTION IS TWO LAYERS OF POLYESTER SCRIM REINFORCED WHITE HYPALON WITH A CORE OF POLYETHYLENE CLOSED-CELL FOAM. THREE MODULES MOUNTED ON A

SIMULATED ROOF SECTION

TEST RESULTS

TEMPERATURE CYCLING

OPEN CIRCUIT, UNEXPLAINED. FORWARD CURRENT OF 2A CORRECTED THIS. SOME DELAMINATION AT

INTERCONNECTS AND ADJACENT CELLS

HUMIDITY CYCLING

ALL DUMMY SHINGLES WARPED

CONCLUSION

MODULES PASS BUT IMPROVEMENTS IN DUMMY

SHINGLES NEEDED

# MS Module (Two Sets Tested)

| • CONSTRUCTION               | 4.8-mm GLASS, PVB, CELL, PVB, .1 mm TEDLAR. SOLDER-PLATED COPPER MESH INTERCONNECT CONTACTS CELL AT CENTER. EXTRUDED ALUMINUM ALLOY FRAME. |                                                                            |  |  |  |  |  |  |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--|--|--|--|--|--|
| • TEST RESULTS               | SET 1 (4 MODULES)                                                                                                                          | SET 2 (3 MODULES)                                                          |  |  |  |  |  |  |
| • TEMPERATURE CYCLING        | CELL CRACKS IN 4 MODULES, 3, 7, 9, AND 15, RESPECTIVELY                                                                                    | 2 CELLS CRACKED IN ONE MODULE.<br>10% ELECTRICAL DEGRADATION<br>IN ANOTHER |  |  |  |  |  |  |
| • HUMIDITY                   | FRAME SEAL DELAMINATION                                                                                                                    | ELECTRICAL RECOVERY                                                        |  |  |  |  |  |  |
| • WIND                       | MORE CRACKS, 14% ELECTRICAL DEGRADATION IN ONE MODULE                                                                                      | SATISFACTORY                                                               |  |  |  |  |  |  |
| • TWIST                      | MORE CRACKS                                                                                                                                | SATISFACTORY                                                               |  |  |  |  |  |  |
| • HAIL                       | MORE CRAKCS                                                                                                                                | ONE SMALL SEMICIRCULAR CRACK IN A CELL FROM HAILSTONE IMPACT               |  |  |  |  |  |  |
| <ul><li>CONCLUSION</li></ul> | FURTHER REDUCTION IN CELL CRA                                                                                                              | ACKING AND RETEST NEEDED                                                   |  |  |  |  |  |  |

# **RS Module**

| • CONSTRUCTION                                  | 3. 2-mm TEMPERED GLASS, PVB, CELLS, PVB, WITH A BACK-SURFACE SANDWICH OF 0. 025 mm TEDLAR/ 0. 008 ALUMINUM/0. 025 mm TEDLAR. BENT-UP FRAME OF STAINLESS SHEET. BUTYL RUBBER GLASS-TO-FRAME SEAL |
|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • TEST RESULTS                                  |                                                                                                                                                                                                 |
| <ul><li>TEMPERATURE<br/>CYCLING</li></ul>       | SEALANT BETWEEN GLASS AND FRAME EXTRUDED                                                                                                                                                        |
| HUMIDITY CYCLING                                | TWO CELLS CRACKED                                                                                                                                                                               |
| • WIND                                          | ONE CELL CRACK. ONE FRAME CORNER BROKEN OFF AT MOUNTING HOLE                                                                                                                                    |
| • HIPOT                                         | 3 OF 5 MODULES FAILED HIPOT TEST. ONE FAILED GROUND CONTINUITY TEST                                                                                                                             |
| <ul> <li>MODIFIED MODULES<br/>TESTED</li> </ul> | FAILED HIPOT                                                                                                                                                                                    |
| • CONCLUSION                                    | IMPROVED MODULES TO BE SUPPLIED FOR TESTING                                                                                                                                                     |

#### SS Module

CONSTRUCTION

3. 2-mm GLASS, EVA, CELLS, EVA, POLYESTER RIPSTOP, MYLAR/ALUMINUM BACKING, 244 SCOTCHCLAD BACKSPRAY. STAINLESS STEEL FRAME

TEST RESULTS

• TEMPERATURE CYCLING

STRIPPED J-BOX THREADS, ONE CELL CRACKED, SMALL BLISTERS OF THE MODULE BACK COVER FOUND ON ONE MODULE

CONCLUSION

SATISFACTORY AFTER FIXING SCREW-THREAD PROBLEM. IMPROVE LAMINATION PROCESS CONTROL

#### YR Module

CONSTRUCTION

4.7-mm TEMPERED GLASS, EVA, POLYCRYSTALLINE CELLS, EVA, TEDLAR BACK SURFACE. RUBBER GASKET EDGE, NO FRAME SUPPLIED

TEST RESULTS

• TEMPERATURE CYCLING

ALL MODULES HAD BACKSIDE TEDLAR DELAMINATION, BLISTERS. ONE CRACKED CELL. ONE WITH

MARGINAL ELECTRICAL DEGRADATION

HUMIDITY CYCLING

ONE WITH MARGINAL ELECTRICAL DEGRADATION BUT WITH RECOVERY LATER

• WIND

**BLISTERS ENLARGED** 

CONCLUSION

IMPROVED PROCESSING AND MODULE RETEST NEEDED

#### YS Module

CONSTRUCTION

4.8-mm GLASS, EVA, POLYCRYSTALLINE CELLS, EVA, TEDLAR BACKING. ALUMINUM ALLOY FRAME

TEST RESULTS

• TEMPERATURE CYCLING

AIR BUBBLES

HUMIDITY CYCLING

TWO WITH TEDLAR DELAMINATION

CONCLUSION

IMPROVED PROCESSING AND RETEST OF MODULES NEEDED

#### **ZS Module**

CONSTRUCTION

0.05-mm POLYESTER TOP COVER, EVA, CELL, EVA, FIBERGLASS SCRIM, 0.12-mm ACRYLIC, EVA, PORCELANIZED STEEL PAN, ALUMINIZED STEEL BACK STRUCTURE.

TEST RESULTS

 TEMPERATURE CYCLING ENCAPSULANT LIFTED OFF ENAMELED STEEL PAN IN SEVERAL PLACES. THREE OF FOUR MODULES HAD CELL CRACKS. ONE MODULE HAD CORNER

**DELAMINATION** 

HUMIDITY CYCLING

ONE CELL CRACK

WIND

TWO MODULES HAD CRACKED CELLS, DELAMINATION FROM THE PAN, AND ONE WITH MARGINAL

ELECTRICAL DEGRADATION

HAIL

**FAILED** 

CONCLUSION

REDESIGN AND RETEST OF MODULES NEEDED

### Problems in Environmental Testing

- DETERMINATION OF NOMINAL OPERATING CELL TEMPERATURE (NOCT)
  - JPL VARIATIONS FROM VENDOR MEASUREMENTS
  - CONTROLLED NOCT TESTS IN THE 25-FOOT SOLAR SIMULATOR
- STANDARD QUALIFICATION TESTS DO NOT DETECT POTENTIAL HOT CELL PROBLEMS
  - A HOT-CELL TEST IS UNDER DEVELOPMENT BY THE ENGINEERING AREA
- STANDARD QUALIFICATION TEST AND/OR INSPECTION METHODS DO NOT DETECT LONG-TIME INTERCONNECT FATIGUE
  - SOMETIMES STRESS DAMAGE AFTER 50 CYCLES CAN BE SEEN AT HIGH MAGNIFICATION
  - SECTIONING INTERCONNECTS AFTER TEMPERATURE CYCLING MAY BE NECESSARY
  - TEMPERATURE CYCLING MAY HAVE TO BE EXTENDED WELL PAST 50 CYCLES

# Testing Planned for Near Future

- COMPLETE THE BLOCK IV QUALIFICATION TESTS
- TEST 4 TYPES OF MODULES FROM THE WORLD BANK/HALCROW
  - TWO U.S. MODULES, ONE FRENCH, ONE FROM INDIA
  - ULTRAVIOLET EXPOSURE TESTS ARE DONE IN ENGLAND
  - QUALIFICATION TESTS ARE TO BE RUN AT JPL PLUS HUMIDITY-HEAT AND HUMIDITY-FREEZE IF TIME PERMITS
- EXPLORATORY TESTS ON BLOCK IV MODULES, ADDING HOT-CELL TESTS AND MORE TEMPERATURE CYCLING
- TEST MODULES FROM THE THREE MIT-MANAGED RESIDENTIAL EXPERIMENT STATIONS

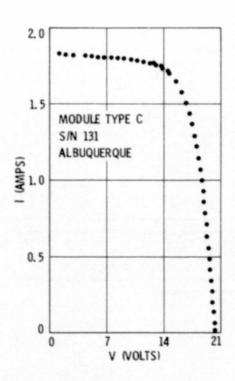
### Summary

- SEVEN OF THE TEN TYPES OF BLOCK IV MODULES HAVE BEEN RECEIVED AND QUALIFICATION TESTS COMPLETED. ONE TYPE HAS BEEN RETESTED.
  - FIVE OF THE SEVEN FAILED TO QUALIFY. IMPROVEMENTS AND RETEST NEEDED.
- DIFFICULTIES IN MEASURING NOCT PERSIST
  - TEST REFINEMENTS ARE UNDER CONSIDERATION
- STANDARD QUALIFICATION TESTS HAVE NOT DETECTED HOT-CELL AND INTERCONNECT FATIGUE PROBLEMS
  - EXTENDING THE QUALIFICATION TEST SEQUENCE IS UNDER STUDY

# REAL-TIME ENDURANCE TESTING Status Report on Modules at Continental Remote Sites

# JET PROPULSION LABORATORY

Peter Jaffe


### **Continental Remote Sites**

|                      |                                | <u></u>               |                    |                                                                     |
|----------------------|--------------------------------|-----------------------|--------------------|---------------------------------------------------------------------|
| CATEGORY             | LOCATION                       | LATITUDE<br>(degrees) | ALTITUDE<br>(feel) | KEY FEATURES                                                        |
| EXTREME WEATHER      | CANAL ZONE<br>(FT. CLAYTON)    | 9                     | ~0                 | TYPICAL TROPIC: HOT AND HUMID;<br>100 INCH-PER-YEAR RAINFALL        |
|                      | ALASKA<br>(FT. GREELY)         | 64                    | 1,270              | SEMI-ARCTIC: DRY, COLD AND WINDY; -30 F WINTERS                     |
| MARINE               | KEY WEST, FLA.                 | 25                    | 0                  | HOT AND HUMID: CORROSIVE SALT SPRAY                                 |
|                      | SAN NICHOLAS<br>ISLAND, CALIF. | 34                    | 0                  | SOMEWHAT MILDER THAN KEY WEST                                       |
| MOUNTAIN             | MINES PEAK,<br>COLORADO        | 40                    | 13,000             | CLEAR AND COLD: HIGH-VELOCITY WINDS: MAXIMUM UY                     |
| HIGH DESERT          | ALBUQUERQUE,<br>NEW MEXICO     | 35                    | 5,200              | DRY WITH CLEAR SKIES; AN<br>ABUNDANCE OF UV                         |
|                      | DUGWAY, UTAH                   | 40                    | 4,300              | COLD WINTERS, HOT SUMMERS;                                          |
| MIDWEST              | CRANE, INDIANA                 | 39                    | ~0                 | TYPICAL MIDWEST: HOT HUMID SUMMERS, COLD SNOWY WINTERS              |
| NORTHWEST            | SEATTLE<br>(FT. LEWIS)         | 47                    | ~0                 | TYPICAL NORTHWEST: MILD<br>TEMPERATURES AND AN ABUNDANCE<br>OF RAIN |
| UPPER<br>GREAT LAKES | HOUGHTON,<br>MICHIGAN          | 47                    | 750                | MILD SUMMERS, SEVERE WINTERS                                        |
| URBAN<br>COASTAL     | NEW LONDON,<br>CONNECTICUT     | 41                    | 0                  | TYPICAL NEW ENGLAND COASTAL                                         |
|                      | NEW ORLEANS,<br>LOUISIANA      | 30                    | ~0                 | HOT AND VERY HUMID; HIGH<br>POLLUTION ENVIRONMENT                   |

# Typical Data from Portable I-V Data Logger

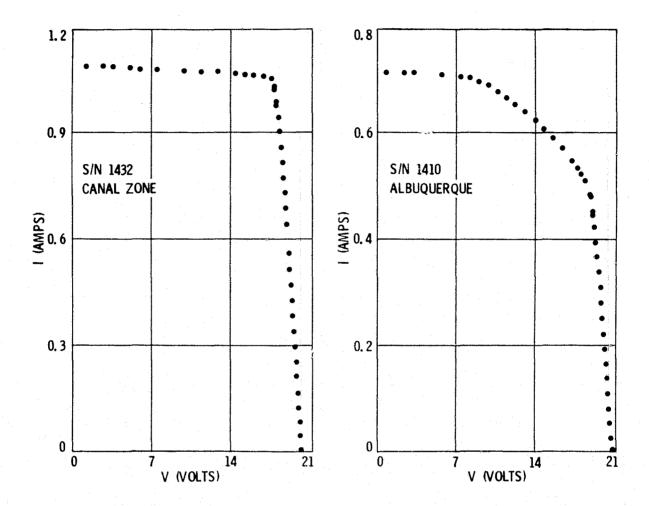
PORTABLE IV DATA

| MEDIA SER  | IAL NR: 10 | 02 M    | EDIA RECOR | D NR: 5 | STORAGE    | FILE NA | ME: DK1:A | L801 |
|------------|------------|---------|------------|---------|------------|---------|-----------|------|
| LOG NUMBER | R: 2516    | 10      | NUMBER: 1  | 31      | DATE: 7    | 7/18/80 | TIME: 1   | 024  |
| THERMOCOUR | PLE DATA   | DEG F): | 97         | 97      | 134 13     | 34      |           |      |
| PYRANOMETE | ER DATA:   | 9.      | 73 9.72    |         | 0.08       | 0.00    |           |      |
| REFERENCE  | CELL DATA  | : 102   | .1 102.4   |         | 153.1 15   | 53.1    |           |      |
| NUMBER OF  | RAW DATA   | POINTS: | 53         | NUMB    | ER OF MERC | ED DATA | POINTS:   | 48   |
| ISC=1.829  | V0C=20.    | 38 PEA  | K-PWR=25.6 | 6 V@PE  | AK-PWR=15  | 62 FIL  | L-FAC=0.6 | 88   |
|            |            |         |            |         |            |         |           |      |
|            |            |         | I-V DATA   |         |            |         |           |      |
| I          | U          | 1       | v          | I       | V          | I       | V         |      |
| 0.000      | 20.380     | 0.071   | 20.270     | 0.143   | 20.180     | 0.214   | 20.070    |      |
| 0.286      | 19.970     | 0.357   | 19.850     | 0.429   | 19.740     | 0.500   | 19.620    |      |
| 0.572      | 19.490     | 0.643   | 19.370     | 0.715   | 19.230     | 0.786   | 19.090    |      |
| 0.857      | 18.940     | 0.929   | 18.780     | 1.000   | 18.610     | 1.072   | 18.430    |      |
| 1.143      | 18.230     | 1.215   | 18.010     | 1.286   | 17.780     | 1.358   | 17.490    |      |
| 1.429      | 17.180     | 1.492   | 16.790     | 1.501   | 16.800     | 1.569   | 16.260    |      |
| 1.572      | 16.310     | 1.641   | 15.560     | 1.643   | 15.620     | 1.693   | 14.770    |      |
| 1.707      | 14.650     | 1.726   | 13.970     | 1.739   | 13.820     | 1.747   | 13.180    |      |
| 1.761      | 12.390     | 1.763   | 12.800     | 1.771   | 11.600     | 1.780   | 10.810    |      |
| 1.787      | 10.020     | 1.792   | 9.230      | 1.798   | 8.440      | 1.803   | 7.650     |      |
| 1.806      | 6.860      | 1.810   | 6.060      | 1.814   | 5.270      | 1.817   | 4.480     |      |
| 1.821      | 3.690      | 1.823   | 2.900      | 1.827   | 2,110      | 1.829   | 1.320     |      |

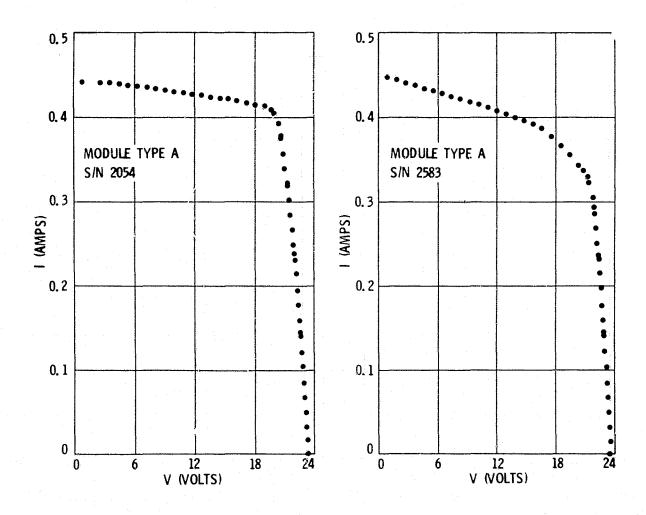


# Typical I-V Summary Data

SUMMARY OF DATA FOR SPECIFICLAR MODULE 131 TAKEN AT ALBUQUERQUE


|   | FEFTENDE  |        |         |        |          |        |       |       |        |          |          |        |         |         |         |        |
|---|-----------|--------|---------|--------|----------|--------|-------|-------|--------|----------|----------|--------|---------|---------|---------|--------|
|   |           |        |         |        | ECTED I  |        |       |       | CM*CM) | = 100.0  | MODUL    | E TEMP | ERATURE | (DEG (  | () = 28 | .0     |
| , | MODULES I | NSTALL | ED IN F | IELD - | 1/2 1/28 | L      |       |       | PR     | F-INSTAL | LATION I | PATAL  | 1.84    | 23.6    | 30.77   | : 7/32 |
|   |           |        |         |        | 6AW 1    | DATA   |       | ***   |        |          |          |        | CORRECT | ED DATE | A       | )      |
|   | DATE      | TIME   | ISC     | V0€    | PN-FWR   | FILFAC | REFCL | PYPO  | TAIR   | TRACK    | REFCLV   | TCELL  | ISC     | VOC     | PK-PWR  | FIL-FA |
|   | 7/18/80   | 1024   | 1.829   | 20.38  | 25.00    | 0.688  | 102.3 | 102.2 | 97.0   | 134.0    | 95.6     | 145.1  | 1.909   | 23.47   | 31.71   | 0.708  |
|   | 7/18/80   | 1024   | 1.829   | 20.37  | 25.63    | 0.688  | 102.5 | 102.1 | 97.0   | 134.0    | 95.5     | 145.1  | 1.910   | 23.49   | 31.71   | 0.707  |
|   | 7/18/80   | 1024   | 1.833   | 20.36  | 25.66    | 0.688  | 102.7 | 102.2 | 97.0   | 133.0    | 95.6     | 144.1  | 1.912   | 23.41   | 31.66   | 0.707  |
|   | 7/21/80   | 903    | 1.708   | 21.02  | 25.97    | 0.703  | 98.2  | 96.5  | 84.5   | 103.0    | 90.2     | 113.5  | 1.892   | 23.36   | 31.41   | 0.711  |
|   | 7/21/80   | 903    | 1.702   | 21.60  | 25.92    | 0.705  | 98.2  | 96.4  | 84.5   | 103.5    | 90.1     | 114.0  | 1.687   | 23.36   | 31.42   | 0.713  |
|   | 7/21/80   | 903    | 1.703   | 21.57  | 25.88    | 0.704  | 98.2  | 96.3  | 85.0   | 104.0    | 90.1     | 114.4  | 1.890   | 23.36   | 31.43   | 0.712  |

# Electrical Performance Summary of Remote-Site Modules


|        | OLD - NEW                                    | CAMA | KEY " COME | Men. | CRAM | HOU. | MOM MAN | 418110N | DUCE | 1440 | Sear | SAW. | MCHOLAS | TOTALS        |
|--------|----------------------------------------------|------|------------|------|------|------|---------|---------|------|------|------|------|---------|---------------|
| TYPE A | NUMBER OF MODULES                            | 4    | 4          | 2    | 4    | 3    | 4       | 4       | 4    | 4    | 4    | 4    |         | 41            |
|        | FAILED                                       |      |            |      |      |      |         |         |      |      |      |      |         | 0             |
|        | DEGRADED                                     |      |            |      |      | /2   | ,       |         |      |      |      |      |         | /2            |
| _ [    | NUMBER OF MODULES                            | 4    | 3          | 4    | 4    | 4    | 4       | 4       | 4    | 4    | 4    | 2°   | 1       | 41            |
| TYPE B | FAILED                                       |      |            |      |      |      |         |         |      |      |      |      |         | 0             |
| ٦      | DEGRADED                                     |      |            |      |      |      |         |         |      |      |      |      |         | 0             |
| TYPE C | NUMBER OF MODULES                            | 4    | 3          | 4    | 4    | 4    | 4       | 4       | 4    | 4    | 4    | 4    | 1       | 43            |
|        | FAILED                                       | 1/1  |            |      |      |      |         | 1/      |      |      |      |      |         | 2/3           |
|        | DEGRADED                                     |      | 2.         |      |      | 1/2  |         | 1       |      |      |      |      |         | $\frac{2}{3}$ |
|        | NUMBER OF MODULES                            | 4    | 4          | 4    | 4    | 4    | 4       | 4       | 4    | 4    | 4    | 2    |         | 42            |
| TYPE D | FAILED                                       |      |            |      |      |      |         |         |      |      |      |      |         | 0             |
| ٢      | DEGRADED                                     |      |            |      |      |      |         |         |      |      | 1    |      |         | $\sqrt{1}$    |
|        | TOTAL FAILED                                 | 1/1  |            |      | 0    | 0    | 0       | 1/      | 0    | 0    | 0    | 0    |         | 2/3           |
|        | TOTAL DEGRADED                               | 1    | 0          | 1    | 0    | 1/4  | 0       | 1       | 0    | 0    | 1    | 0    |         | $\frac{2}{3}$ |
|        | *MODILIE INCHIDDED MASSIVE DIVISIONAL DAMAGE |      |            |      |      |      |         |         |      |      |      |      |         |               |

<sup>\*</sup>MODULE INCURRED MASSIVE PHYSICAL DAMAGE

Typical I-V Curves of Degraded Type C Modules



# I-V Curves of Degraded Modules Resulting From Impact Cracks at Houghton

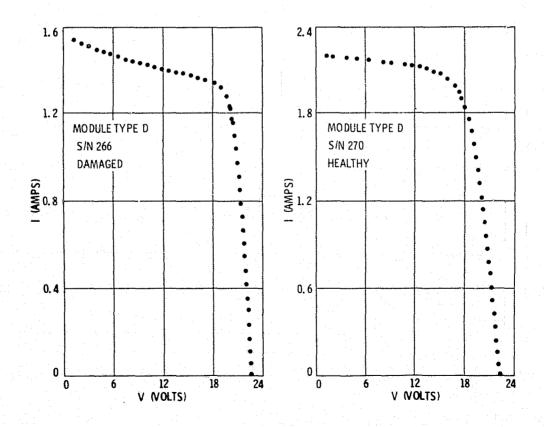


## Comments on Methods of Determining Physical Change

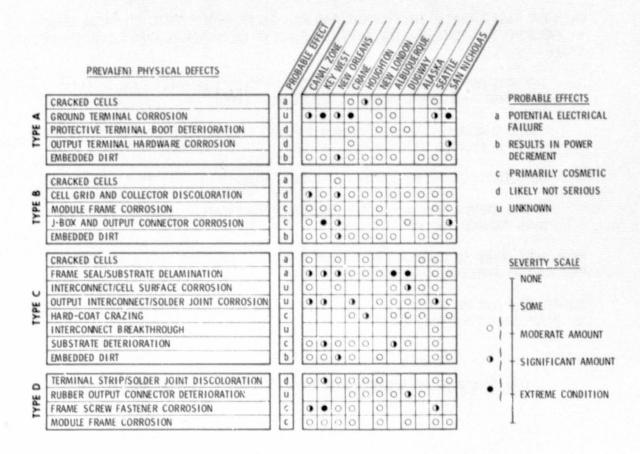
OVER THE PAST 2 YEARS, THE PROCESS HAS EVOLVED FROM RECORDING PHYSICAL DEFECTS BY CATEGORY TO COMPARING THE PHYSICAL STATE OF EACH MODULE TYPE ON A SITE-BY-SITE BASIS

MODULES ARE INSPECTED USING A PRIORI KNOWLEDGE OF "PREVALENT DEFECTS"—
OBSERVED PROBLEMS COMMON TO A SPECIFIC DESIGN

INSPECTION DATA FOR EACH MODULE TYPE ARE COLLECTIVELY REDUCED TO SET OF RELATIVE INDICES WHICH DEPICT THE STATE OF THE "PREVALENT DEFECTS"


OBJECTIVITY IS INCREASED BY USING CONSENSUS OF SEVERAL OBSERVERS

SINGLE EVENTS, VANDALISM AND NON-NATURAL WEATHERING DAMAGE, SUCH AS BIRD DAMAGE, ARE NOT INCLUDED


PROCEDURE COULD BE IMPROVED BY HAVING A WHAT-TO-LOOK-FOR LIST AHEAD OF TIME, PROVIDED BY MATERIAL AND DESIGN SPECIALISTS

DETERMINING AND REPORTING PHYSICAL CHANGE IS A LEARNING, EVER-REFINING PROCESS—NO ESTABLISHED PROCEDURE EXISTS

## I-V Curves of Damaged and Healthy Glass Modules



# Physical Inspection Summary of Remote-Site Modules



# Physical Inspection Data Indicate Things to Avoid

- DISSIMILAR METAL COMPONENTS IN CONTACT WITH ONE ANOTHER
- NEOPRENE ELECTRICAL CONNECTORS AND PROTECTIVE DEVICES.
- GALVANIZED MATERIALS FOR NEAR-OCEAN APPLICATIONS
- SINGLE INTERCONNECTS BETWEEN CELLS AND TERMINALS
- MODULE DESIGNS WHICH COULD RETAIN WATER BETWEEN FRAME AND ENCAPSULANT

#### **Summary and Conclusions**

- HOT HUMID ENVIRONMENTS APPEAR TO BE THE MOST DAMAGING; COLD, DRY ENVIRONMENTS THE MOST BENIGN
- ALL ELECTRICAL FAILURES AND 6 OF THE 9 MODULES THAT DEGRADED WERE OF TYPE C
- FAILURES PROBABLY DUE TO CRACKED INTERCONNECTS, INTERCONNECT SOLDER JOINT FAILURES. OR CRACKED CELLS
- SOME PREVALENT PHYSICAL DEFECTS HAVE BEEN IDENTIFIED BUT SO FAR NO CORRELATION WITH ELECTRICAL CHANGE HAS BEEN OBSERVED
- TWO SUCCESSFUL DESIGN FEATURES WORTHY OF COMMENT ARE:
  - WRAP-AROUND FRAME ENCAPSULANT CONTAINMENT DESIGN OF TYPE B MODULES
  - THE PVB LAMINATED CONSTRUCTION OF TYPE D MODULES
- GLASS MODULES HAVE SUPERIOR NON-SOILING AND SELF-CLEANING CHARACTERISTICS
- MODULE DEFICIENCIES APPEAR TO BE EITHER DESIGN-RELATED OR THE RESULT OF POOR FABRICATION PRACTICE—NO INHERENT LIFE-LIMITING PROBLEMS HAVE BEEN IDENTIFIED

# PV STAND-ALONE APPLICATIONS PROJECT: PV APPLICATION EXPERIENCE

#### NASA LEWIS RESEARCH CENTER

Edwin T. Muckley

#### DOE PV Stand-Alone Applications Project

OBJECTIVE: ACCELERATE PENETRATION OF PHOTOVOLTAIC SYSTEMS IN

NEAR-TERM AND INTERMEDIATE MARKETS (ESPECIALLY INTERNATIONAL) TO STIMULATE PV INDUSTRY GROWTH

TOWARD DOE GOALS

APPROACH:

o DEVELOP AND DEMONSTRATE, IN PARTNERSHIP WITH HOST COUNTRIES AND USERS, STAND-ALONE APPLICA-TIONS WHICH REPRESENT A POTENTIALLY LARGE MARKET FOR PHOTOVOLTAICS

o DEVELOP THE SUPPORTING SYSTEM, SUB-SYSTEM, AND COMPONENT TECHNOLOGY

RESOURCES: o FY 80 FUNDS

\$3 M

o FY 81 FUNDS

\$4.4 M

# Why Remote Stand-Alone Applications Are Important

- O EARLY MARKET FOR PHOTOVOLTAIC SYSTEMS NEEDED TO SUPPORT GROWTH OF PV INDUSTRY
- O REMOTE STAND-ALONE APPLICATIONS CONSTITUTE FIRST MARKET FOR PHOTOVOLTAIC SYSTEMS
  - NEED NOT COMPETE WITH UTILITY POWER IN COST
  - ARE NOW COST COMPETITIVE WITH ALTERNATIVE POWER SOURCES IN IMPORTANT SELECTED USES IN THE DEVELOPING WORLD

# **Major Activities**

- o MARKET DEMONSTRATIONS
- o MARKET STUDIES
- o SYSTEM TECHNOLOGY DEVELOPMENT
- o SUPPLIER DEVELOPMENT

# Summary: Single Applications

| APPLICATION CATEGORY | USE                     | USER                          | DATE OPERATIONAL | LOCATION                                                                      | POWER LEVEL, W |
|----------------------|-------------------------|-------------------------------|------------------|-------------------------------------------------------------------------------|----------------|
| INSTRUMENT           | WEATHER DATA            | uscg                          | DECEMBER 1972    | CLEVELAND, OH                                                                 | 30             |
| INSTRUMENT           | WEATHER DATA            | NOAA                          | AUGUST 1973      | MAMMOTII MT., CA                                                              | 60             |
| COMMUNICATIONS       | RADIO REPEATER          | USFS                          | JULY 1974        | WHITE MT., CA                                                                 | 16             |
| COMMUNICATIONS       | EDUCATIONAL TV          | GOVT. INDIA                   | JULY 1976        | 1) AHMEDABAD, INDIA<br>2) SAMBALPUR, INDIA                                    | 55<br>55       |
| REFRIGERATION        | FOOD PRESERVATION       | USNPS                         | JUNE 1976        | ISLE ROYALE, MI                                                               | 220            |
| REFRIGERATION        | MEDICAL                 | VILLAGE RESIDENTS             | JULY 1976        | SIL NAKYA, AZ<br>PAPAGO TRIBE                                                 | 330            |
| INSTRUMENT           | MEATHER DATA            | NOAA                          | APR-SEPT 1977    | 1) NEW MEXICO;<br>2) NEW YORK; 3) HAWA!<br>4) ALASKA; 5) MAINE;<br>6) FLORIDA | 75-150<br>l;   |
| HIGHNAY              | DUST STORM WARNING SIGN | DOT-AZ                        | APRIL 1977       | CASA GRANDE, AZ                                                               | 116            |
| INSTRUMENT           | INSECT SURVEY TRAPS     | USDA                          | MAY 1977         | COLLEGE STATION, TX                                                           | 23 £ 163       |
| REFRIGERATION        | WATER COOLER            | INTERAGENCY<br>VISITOR CENTER | OCTOBER 1977     | LONE PINE, CA                                                                 | 446            |
| INSTRUMENT           | AIR POLLUTION MONITOR   | NJ-DEP                        | NOVEMBER 1979    | LIBERTY PARK, NJ                                                              | 360            |
| INSTRUMENT           | SEISMIC MUNITORS        | uscs                          | JANUARY 1980     | KILAUEA VOLCANO, HI                                                           | 18 & 18        |
|                      |                         |                               |                  |                                                                               |                |

# Major Current Market Demonstrations

| LOCATION                | APPLICATION CATEGORY | SERVICES        | SPONSORS     | STATUS              |
|-------------------------|----------------------|-----------------|--------------|---------------------|
| SCHUCHULI, AZ.          | VILLAGE SERVICES     | LIGHTS          | DOE,         | OPERATING SINCE     |
|                         |                      | REFRIGERATORS   | PAPAGO TRIBE | DECEMBER 1978       |
|                         |                      | WATER PUMP      |              |                     |
|                         |                      | WASHING MACHINE |              |                     |
|                         |                      | SEWING MACHINE  |              |                     |
| 4 VILLAGES IN           | VILLAGE SERVICES     | WATER PUMPS     | DOE,         | PROJECT DEFINITION  |
| GABON                   |                      | REFRIGERATORS   | GABON        | IN WORK OPERATION   |
|                         |                      | INDOOR LIGHTS   |              | PLANNED FOR MID     |
|                         |                      | OUTDOOR LIGHTS  |              | 1982                |
| COLOMBIA                | HEALTH: VACCINE      | REFRIGERATORS   | DOE, CENTER  | OPERATION SCHEDULED |
| GAMBIA                  | PRESERVATION         |                 | FOR DISEASE  | FOR EARLY 1982      |
| INDIA                   |                      |                 | CONTROL, PAN |                     |
| IVORY COAST             |                      |                 | AMER. HEALTH |                     |
| MALDIVE ISLANDS<br>PERU |                      | •               | ORG.         |                     |

# PV Applications Projects Managed by NASA-LeRC for the Agency for International Development

| LOCATION                   | APPLICATION CATEGORY               | SERVICES                                                         | SPONSORS             | <u>status</u>                         |
|----------------------------|------------------------------------|------------------------------------------------------------------|----------------------|---------------------------------------|
| TANGAYE,<br>UPPER VOLTA    | VILLAGE SERVICES                   | WATER PUMP<br>GRAIN MILL                                         | AID,<br>UPPER VOLTA  | OPERATING SINCE<br>MARCH 1979         |
| TUNISIA                    | VILLAGE SERVICES                   | WATER PUMP<br>LIGHTING<br>DOMESTIC APPLIANCES<br>DRIP IRRIGATION | AID,<br>TUNISIA      | OPERATION SCHEDULED<br>FOR MARCH 1982 |
| ECUADOR<br>GUYANA<br>KENYA | HEALTH SERVICES<br>(MEDICAL POSTS) | LIGHTS REFRIGERATOR AUTOCLAVE DENTAL EQUIPMENT ETC               | AID,<br>HOST COUNTRY | PROJECTS BEING<br>DEFINED             |

# **Operational History**

|                   | SYSTEM PEAK<br>POWER<br>We | INSTALLED  | MODULE () | 1 IOTAL<br>No. | MODULE EXPERIENCE (2)                                                                 | OTHER COMPONENT EXPERIENCE                                                                          |
|-------------------|----------------------------|------------|-----------|----------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| ISLE ROYAL        | 220                        | MAY 76     | SXCD      | 24             | NO PROBLEMS                                                                           | NO PROBLEMS                                                                                         |
| SIL NAKYA         | 330                        | JUL 76     | SXCD      | <b>3</b> 0     | 2 - OPEN CIRCUIT<br>1 - CRACKED CELL                                                  | REFRIGERATOR DEFICIENT <sup>(3)</sup> VOLTAGE REGULATOR DEFICIENT— REPLACED                         |
| FOREST TOWERS     | 294                        | OCT 76     | SX(1)     | 64             | NO PROBLEMS                                                                           | NO PROBLEMS                                                                                         |
| RAMOS             | 75-150                     | APR-OCT 77 | SX(I)     | £4             | 3 - CRACKED CELLS<br>(IN SERVICE)<br>5 - VANDALISM                                    | VOLTAGE REGULATOR DEFICIENT -<br>REPLACED<br>ENVIRONMENTAL CORROSION<br>PROBLEM AT SSNY - CORRECTED |
| ADOT SIGN         | 116                        | APR 77     | ST(1)     | 20             | I - VANDALISM                                                                         | NO PROBLEMS                                                                                         |
| USDA INSECT TRAPS | 23-163                     | MAY 77     | \$1(1)    | 64             | 1 - OPEN CIRCUIT<br>(INFANT MORTALITY)                                                | NO PROBLEMS                                                                                         |
| LONE PINE         | 446                        | SEP 77     | ST(II)    | 48             | NO PROBLEMS                                                                           | VOLTAGE REGULATOR FAILED -<br>REPLACED W/REDESIGNED REG.                                            |
| SCHUCHUI, I       | 3,500                      | NOV 78     | SX(11)    | 105            | 34 - OPEN CIRCUIT<br>BET, 7/79 AND 8/80<br>(27 REPLACED)                              | CONTROL SYSTEM FAILURES - CORRECTED REFRIGERATOR: MOTORS - REPLACED FREON LEAKS - CORRECTED         |
| UPPER VOLTA       | 1,800                      | MAR 79     | SX(11)    | 100            | 26 - OPEN CIRCUIT BET. 10/79 & 9/80 (1 REPLACED 1979, 23 REPLACEMENTS INSTALLED 9/80) | BURR MILL EXCESSIVE WEAR -<br>REPLACED WITH HAMMER MILL                                             |
| NJ DEP            | 360                        | NOV 79     | ARCO(111) | 20             | NO PROBLEMS                                                                           | NO PROBLEMS                                                                                         |
| HVO               | 40                         | OS NAL     | STUID     | . ц            | NO PROBLEMS                                                                           | NO PROBLEMS                                                                                         |
|                   |                            |            |           |                |                                                                                       |                                                                                                     |

<sup>(1)</sup> SX = SOLAREX CORP. ST = SENSORTECH CORP.

ARCO - ARCO SOLAR INC.

# Market Development of PV Products

- o <u>IDENTIFY</u> PROMISING MATURE OR NEARLY-DEVELOPED PV POWERED <u>SYSTEMS</u> AND <u>SUPPORT</u> THEIR <u>PENETRATION</u> INTO <u>WORLDWIDE</u> MARKETS
- o ISSUE "ANNOUNCEMENT OF OPPORTUNITY" OR EQUIVALENT, SOLICITING <u>COST-SHARED</u> MARKETING APPROACHES FOR PV SYSTEMS
- o <u>EMPHASIS</u> ON ACTIVITY SHALL BE ON <u>MARKETING</u> OF PRODUCT
  - LIMITED PRODUCT DEVELOPMENT POSSIBLE
- O MULTI-CONTRACTS TO BE ISSUED WITHIN ONE YEAR

NUMBER IN PARENTHESIS REFER TO JPL PLOCK BUY MODEL

<sup>(2)</sup> UNLESS OTHERWISE NOTED, ALL FAILED MODULES REPLACED

<sup>(3)</sup> OUT OF SERVICE PENDING REPLACEMENT

# STATUS OF FLAT-PLATE PV PROJECTS

# SANDIA LABORATORIES Calvin B. Rogers

# Sandia Application Projects

- FOUR PRDA-38 FLAT PLATE PROJECTS
- FIVE PRDA-35 CONCENTRATOR PROJECTS
- THE SAN BERNARDINO COMM. DEV. PROJECT

# New Mexico Solar Energy Institute, Newman Power Station, El Paso, Texas

- SIZE IS 18 KW
- COST IS \$471 K, \$26/WATT
- SOLAR POWER G-361 MODULES
- NO INVERTER DC SYSTEM
- LOAD IS UPS BATTERY BANK
- OPERATIONAL DEC 1980

# Lea County Electric, Lovington, New Mexico

- SIZE IS 100 KW
- COST IS \$2.7 M, \$27/WATT
- SOLAR POWER G-361 MODULES
- TWO DECC INVERTERS
- NO STORAGE, COOPERATIVE UTILITY INTERFACE
- OFERATIONAL FEB 1981

# Solar Power, Beverly High School, Beverly, Mass.

- SIZE IS 100 KW
- COST IS \$2.7 M, \$27/WATT
- SOLAR POWER G-361 MODULES
- TWO DECC 60 KW INVERTERS
- NO STORAGE, COOPERATIVE UTILITY INTERFACE
- OPERATIONAL FEB 1981

# SAI-Oklahoma Center for Science and Arts, Oklahoma City

- SIZE IS 135 KW
- COST IS \$2.7 M, \$20/WATT
- SOLAREX SEMI-CRYSTALLINE MODULES
- WINDWORKS 150 KVA INVERTER
- NO STORAGE, COOPERATIVE UTILITY INTERFACE
- OPERATIONAL MARCH 1981

# San Bernardino, Calif., Westside Community Development

- SIZE IS 35 KW
- COST IS \$983 K, \$28/WATT
- SOLAREX 36 CELL SQUARE PANELS
- THREE 10 KVA SUNVERTERS BY ABACUS
- NO STORAGE, COOPERATIVE UTILITY INTERFACE
- OPERATIONAL NOV 1981

# STATUS REPORT: MT. LAGUNA AIR FORCE STATION

#### JET PROPULSION LABORATORY

Ron Baisley

#### **History**

- DEDICATION AUG 15, 1979
- FULLY OPERATIONAL SINCE
- PERIODIC FIELD AUDITS

#### **Array Characteristics**

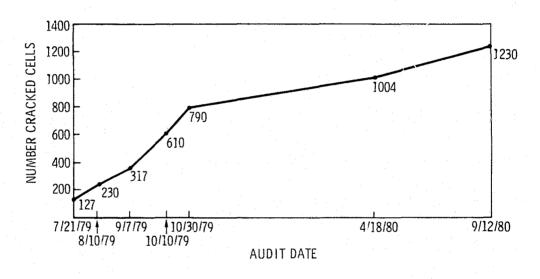
- ARRAY POWER 64 kW PEAK (60 kW SYSTEM AC OUTPUT)
- ARRAY BUS VOLTAGE 230 V
- ELECTRICAL CONFIGURATION:

169 PARALLEL STRINGS

115 SOLAR POWER MODULES (BLOCK III) 54 SOLAREX (BLOCK II AND III) SERIES DIODE EACH STRING

14 MODULES PER STRING

SERIES CONNECTED
BYPASS DIODE EACH MODULE


2366 TOTAL MODULES

1610 SOLAR POWER (50 kW PEAK) 756 SOLAREX (14 kW PEAK)

# Visual Observations Cracked Cells, Burst-Type Fractures: 30-W Module

- OCCURRENCE 1230 CELLS (671 MODULES)
- DISTRIBUTION: NON-UNIFORM
- DELAMINATION -
  - CELL 411 CELLS
  - EDGE 1485 MODULES

# Visual Observations Cracked-Cell, Burst-Fracture History: 30-W Module



# Visual Observations Cracked Cells, Impact Fractures: 20-W Module

- 195 CRACKED CELLS IN 141 MODULES
- TYPICAL OF IMPACT CRACKS
- HAILSTORM
- SOME BURST-TYPE FRACTURES

- BURST-CELL PHENOMENON
  - CONTINUING
  - SPREADING TO 20-W MODULE
- IMPACT FRACTURES
  - PROBABLE CAUSE: HAILSTORMS
  - ALSO OBSERVED IN 30-W MODULES
- MODULE DEGRADATION
  - INCREASING
  - ARRAY PERFORMANCE NOTICEABLY AFFECTED

# MODULE FAILURES AT MIT/LL TEST SITES

MASSACHUSETTS INSTITUTE OF TECHNOLOGY LINCOLN LABORATORIES

S. E. Forman

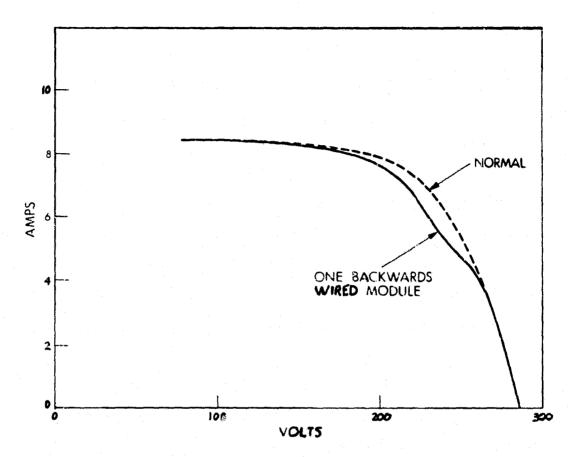
# Data Up to 8/80

| MFG.<br>START                                             | NEB<br>(7/77)                    | RES STF<br>(11/78)                      | ROOF STF<br>(5/77)                                 | UTA<br>(8/78)                        | сніс<br>(7/77)                           | wbno<br>(8/79)            | мвим<br>(1/80)                                   | TOTALS                                                                                    |
|-----------------------------------------------------------|----------------------------------|-----------------------------------------|----------------------------------------------------|--------------------------------------|------------------------------------------|---------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------|
| A (I) A (II) B (II) C (II) C (III) D (II) E (III) F (III) | 35/1512<br>-<br>31/728<br>-<br>- | -<br>15/700<br>6/372<br>-<br>5/194<br>- | 15/945<br>-<br>5/64<br>0/36<br>-<br>-<br>1/74<br>- | 65/240<br>-<br>4/640*<br>-<br>-<br>- | 0/288<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>4/800 | 0/720**<br>-<br>-<br>-<br>-<br>1/1740<br>28/2064 | 15/1233<br>0/720<br>70/304<br>50/2248<br>10/1012<br>31/728<br>9/1068<br>1/1740<br>28/2064 |
|                                                           | 2.95%                            | 2.05%                                   | 1.9%                                               | 27%<br>C.6%                          | 0%                                       | 0.5%                      | 0.6% 2                                           | 1.93%                                                                                     |

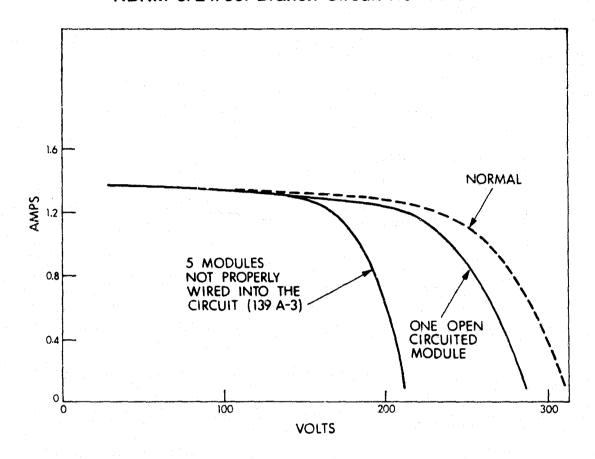
- \* Array Start Date 4/80
- \*\* 52 Modules have been found with CRACKED GLASS COVER SHEETS

| SITE     | STARTING<br>DATE | No.<br>Block I | OF FAILURES/TOTA<br>BLOCK II | BLOCK III |
|----------|------------------|----------------|------------------------------|-----------|
| NEB      | 7/77             |                | 66/2240                      |           |
| RES STF  | 11/78            |                | 15/700                       | 11/556    |
| ROOF STF | 5/77             | 15/945         | 5/100                        | 1/74      |
| UTA      | 8/78-4/80        |                | 65/240                       |           |
| UTA      | 4/80             | · ·            | - <del>-</del>               | 4/640     |
| CHIC     | 8/79             | 0/288          |                              |           |
| WBNO     | 8/79             |                |                              | 4/800     |
| NBNM     | 1/80             |                | 0/720**                      | 29/3804   |
| TOTALS   |                  | 15/1233        | 150/4000                     | 49/5884   |
|          |                  | (1.22%)        | (3.75%)                      | (0.83%)   |

\*\*NOTE: 52 MODULES HAVE BEEN FOUND WITH CRACKED GLASS COVER SHEETS.


# Principal Causes of Module Failures

- 1. CELLS CRACKED DUE TO WEATHERING OR INTERNAL MODULE STRESSES.
- 2. FAILED SOLDER JOINTS.
- 3. INTERCONNECTS NOT SOLDERED TO REAR SIDES OF CELLS AT ASSEMBLY.
- 4. CELL STRING SHORTED TO SUBSTRATE.
- 5. BROKEN OR SPLIT INTERCONNECTS.


# Natural Bridges National Monument System Characteristics

| MODULES (GLASS)                   | 1740 E (111)   | 2064 F (III)   | 720 A (II)                             |
|-----------------------------------|----------------|----------------|----------------------------------------|
| NO. OF BRANCH CIRCUITS            | 116            | 43             | 10                                     |
| BRANCH CIRCUIT CON-<br>FIGURATION | 15 IN SERIES   | 48 IN SERIES   | 5 IN PARALLEL<br>BY 14 IN SERIES       |
| DIODES                            | ONE PER MODULE | ONE PER MODULE | ONE PER GROUP<br>OF 5 IN PARA-<br>LLEL |

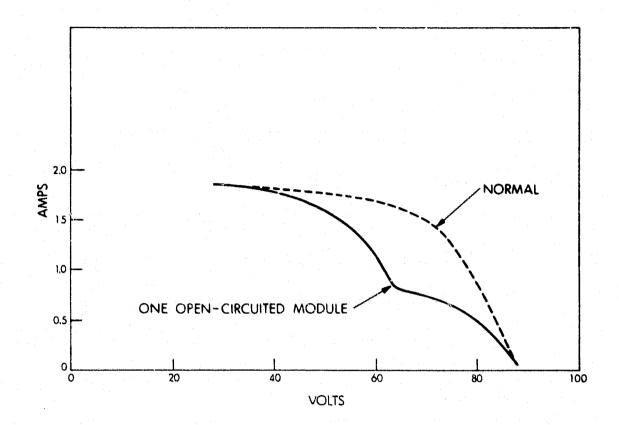
NBNM 6/24/80: Branch Circuit No. 102



NBNM 6/24/80: Branch Circuit No. 144B-4



# **WBNO System Characteristics**


MODULES - 800 MFG D (III) RTV

NO. OF BRANCH CIRCUITS - 100

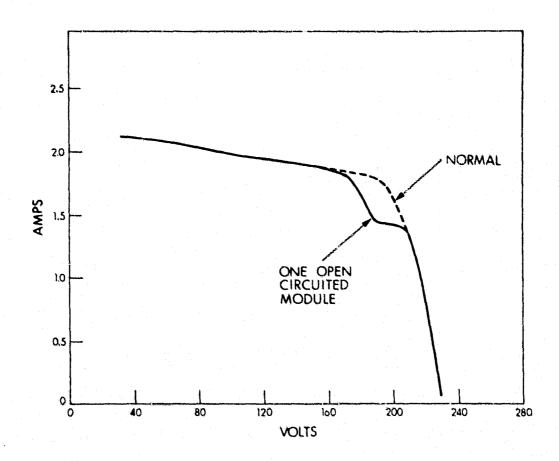
BRANCH CIRCUIT CONFIGURATION - 4 IN SERIES PARALLELLED WITH 4 IN SERIES

DIODES - EACH MODULE HAS ONE DIODE

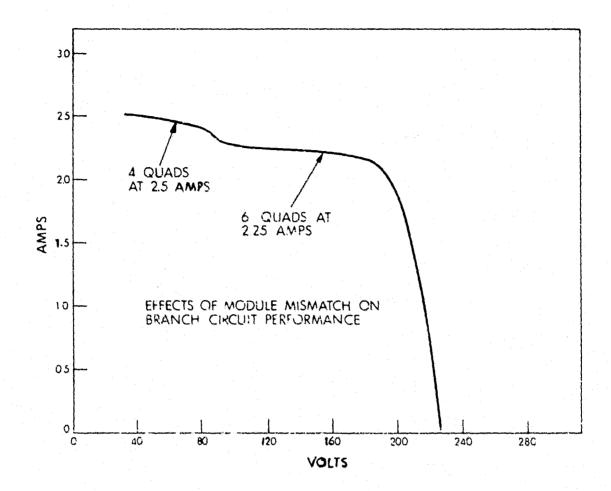
## WBNO 5/14/80: Branch Circuit No. 7



# University of Texas Austin System Characteristics


MODULES - 640 MFG C (111) RTV

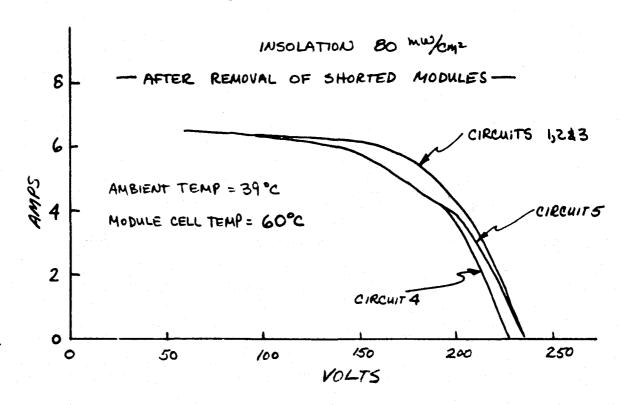
NO. OF BRANCH CIRCUITS - 16


BRANCH CIRCUIT CONFIGURATION - 4 IN PARALLEL BY 10 IN SERIES

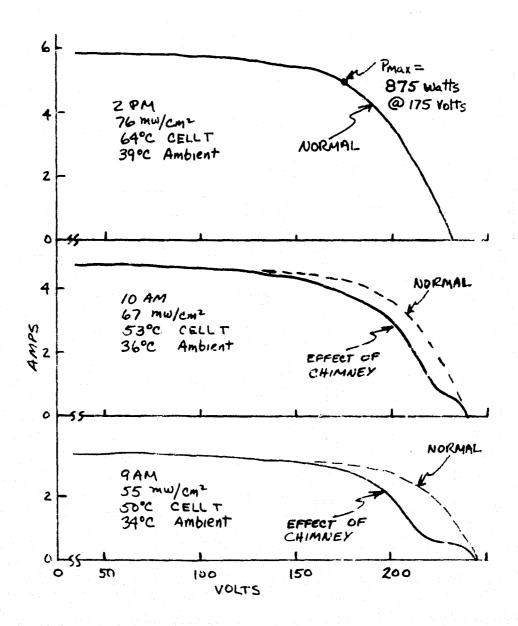
DIODES - EACH GROUP OF 4 IN PARALLEL HAS ONE DIODE

UTA 4/16/80: Branch Circuit No. 11




UTA 4/16/80: Branch Circuit No. 16




John F. Long House System Characteristics

| MODULES                      | 120 E (IV)           |
|------------------------------|----------------------|
| NO. OF BRANCH CIRCUITS       | <b>5</b>             |
| BRANCH CIRCUIT CONFIGURATION | 24 MODULES IN SERIES |
| DIODES                       | ONE PER MODULE       |
| MEASURED ARRAY PMAX AT NOCI  | <b>1.6 . W</b>       |

John Long House 7/30/80, 11:30 a.m.



# John Long House 7/31/80



# PROBLEM-FAILURE ANALYSIS

#### JET PROPULSION LABORATORY

S. G. Sollock

- Problem/Failure Reporting System Status
- Block I! Laminated Glass Superstrate
- Block III Glass-Stainless Steel Case
- Block II 20 Watt Module
- Residential Batten Seam
- Mt Laguna Field Analysis Results
- Camp Pendleton Marine Base Repeater Arrays

# Problem-Failure Report (P-FR) Status

|                          |                                              |                     |                | PROBLEM/FAILURE ORIGIN |                   |                          |
|--------------------------|----------------------------------------------|---------------------|----------------|------------------------|-------------------|--------------------------|
| VENDOR                   | MODULE TYPE                                  | NO. PFR'S           | NO. CLOSED     | ENVIRONMENTAL<br>TEST  | JPL FIELD<br>TEST | APPLICATIONS<br>PROJECTS |
| ٧                        | BLOCK I<br>BLOCK II<br>BLOCK III             | 21<br>101<br>35     | 19<br>91<br>21 | 9<br>57<br>31          | 7<br>3            | 5<br>41<br>4             |
| W                        | BLOCK I<br>BLOCK II                          | 51<br>16            | 45<br>15       | 27<br>15               | 5                 | 18<br>1                  |
| Y                        | BLOCK I<br>BLOCK II<br>BLOCK III<br>BLOCK IV | 40<br>38<br>27<br>6 | 33<br>24<br>8  | 21<br>7<br>13<br>6     | 7<br>4<br>1       | 13<br>27<br>13           |
| Z                        | BLOCK I<br>BLOCK II<br>BLOCK III<br>BLOCK IV | 75<br>53<br>39<br>9 | 66<br>39<br>21 | 31<br>25<br>28<br>9    | 21<br>4           | 23<br>24<br>11           |
| U                        | BLOCK III                                    | 30                  | 19             | 30                     |                   |                          |
| R                        | BLOCK III<br>BLOCK IV                        | 40<br>13            | 32<br>10       | 29<br>13               |                   | 11                       |
| S                        | BLOCK IV                                     | 4                   |                | 4                      |                   |                          |
| K                        | BLOCK IY                                     | 2                   | 2              | 2                      |                   |                          |
| М                        | BLOCK IV                                     | 19                  |                | 19                     |                   |                          |
| DEVELOPMENT & COMMERCIAL |                                              | 154                 | 88             | 153                    | 1                 |                          |
| PRDA                     |                                              | 94                  | 86             | 94                     |                   |                          |
| TOTAL                    |                                              | 867                 | 619            | 623                    | 53                | 191                      |

# Problem-Failure Analysis

• Laminated Glass Superstrate Block 11 Modules (28 of 720)

Natural Bridges National Monument

Problem: Glass Cover Broken

Cause: Edge Chip/Temperature

## Problem-Failure Analysis

• Glass Stainless Steel Case Block 111 Modules (26 of 2256)

Natural Bridges National Monument

Problem: Short to Ground

(I) Edge Foil to Pan Shorts (8 ea.)

(2) Terminal to Foil Solder Joints (2 ea.)

(3) Feed Through Insulator Damage (1 ea.)

Cause: Workmanship/Handling.

• 20 Watt Block II Modules

Schehuli Indian Reservation (34 of 192)

Tangaya South Africa (20 of 100)

Problem: Open Circuit Intermittant

Fractured Interconnects

Cracked Cells

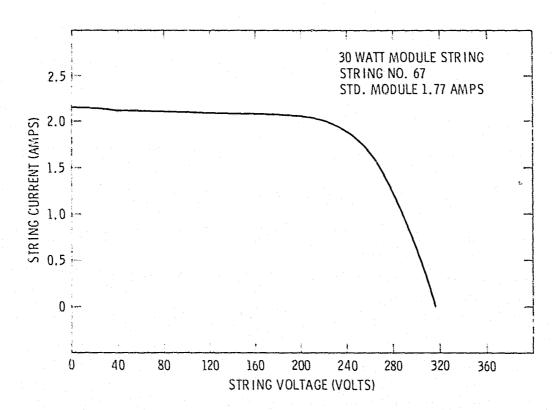
Cause: Workmanship/Design

• Batten Seam Residential Module

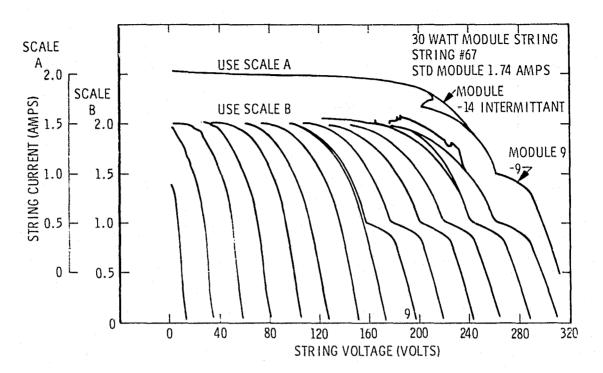
John F. Long Installation, Az. (15 of 120)

Problem: Cell Heating & Cracking

Reverse Bias


Encapsulant Outgasing

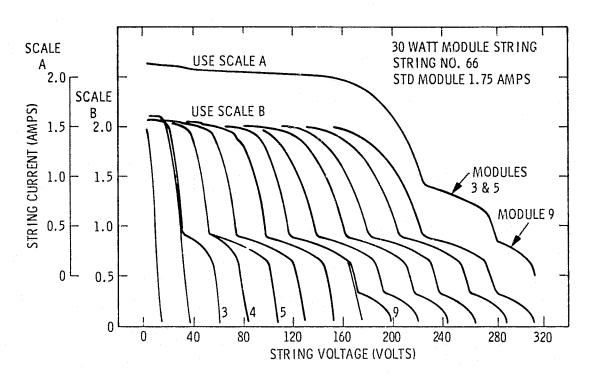
# Field Performance Analysis of Mt. Laguna


Data Taken of Individual String and Module

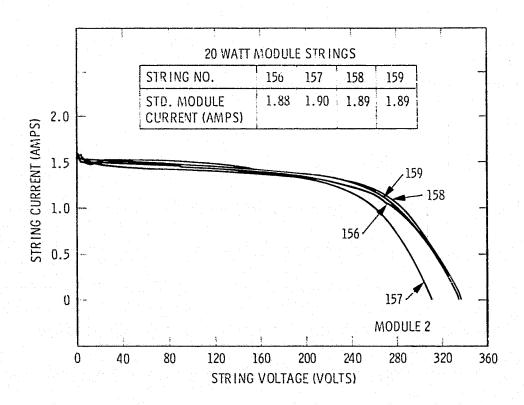
- IV Curves
- Module Bypass Test

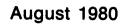

## March 1980

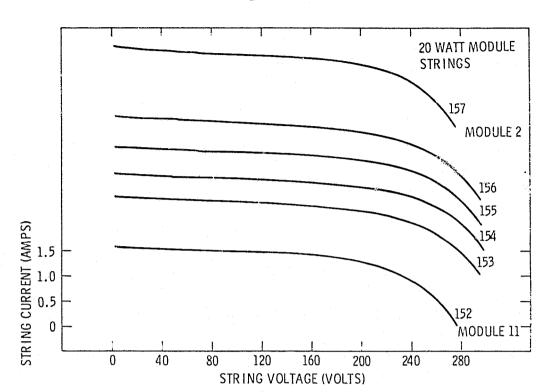



# August 1980




#### March 1980



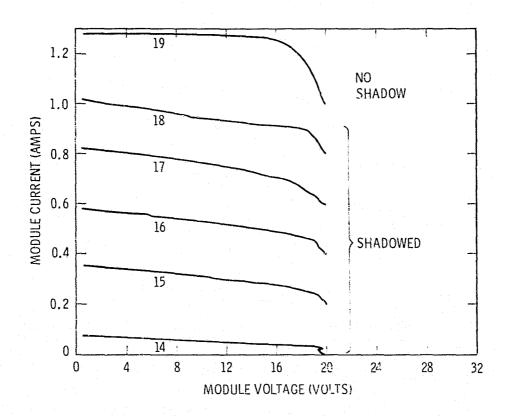


August 1980



March 1980








# Field Performance Analysis of Camp Pendleton Repeater Array

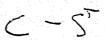
Problem: Array Not Operating at Peak Efficiency

Cause: Fence Shadowing

# **PMO** Repeater



# **BLOCK IV FINAL DESIGN REVIEW STATUS**


#### JET PROPULSION LABORATORY

#### Larry Dumas

|                      | ORIGINAL<br>PLAN | ACTUAL, OR CURRENT PLAN |
|----------------------|------------------|-------------------------|
| APPLIED SOLAR ENERGY | 1/80             | 8/19/80                 |
| ARCO SOLAR           | 3/80             | 11/80                   |
| GENERAL ELECTRIC     | 2/80             | 3/31/80                 |
| MOTOROLA             | 2/80             | 8/25/80                 |
| PHOTOWATT            | 12/79            | 10/80                   |
| SOLAR POWER          | 2/80             | 9/20                    |
| SOLAREX              | 1/80             | 9/80                    |
| SPIRE                | 1/80             | 8/21/80                 |

#### **Summary Observations**

- BLOCK IV SCHEDULE SLIPS & ENVIRONMENTAL TEST RESULTS SUGGEST DIFFICULTIES
   IN ASSIMILATING TECHNOLOGY DEVELOPMENT AND INDUSTRY GROWTH
- FIELD RESULTS INDICATE THAT TYPICAL BLOCK I-III MODULE DESIGNS DO NOT MEET PROJECT 1986 RELIABILITY/DURABILITY GOALS
- ANALYSIS OF LABORATORY AND FIELD RESULTS SHOWS THAT PROBLEMS ENCOUNTERED TO DATE ARE ALL CORRECTABLE OR CONTROLLABLE BY KNOWN TECHNIQUES. MOST HAVE ALREADY BEEN CORRECTED
- COMPLETE METHODOLOGIES FOR PREDICTING AND CERTIFYING MODULE RELIABILITY
   AND LIFETIME ARE NOT IN HAND
- FIELD TESTS ARE AN ESSENTIAL FINAL ELEMENT IN THE DEVELOPMENTAL PROCESS



# ENGINEERING AREA STATUS (SEPTEMBER 1980)

JET PROPULSION LABORATORY

R.G. Ross, Jr.

#### RECENTLY COMPLETED ACTIVITIES

- REQUIREMENTS DEVELOPMENT
  - RESIDENTIAL O&M COST STUDY (BURT-HILL)
- ARRAY SUBSYSTEM DEVELOPMENT
  - CIRCUIT DESIGN GUIDELINES (WORKSHOP)
- ARRAY COMPONENT ENGINEERING
  - CURVED GLASS MODULE REPORT
- (BECHTEL)
- ELECTRICAL INSULATION REPORT
- ELECTRICAL TERMINATION REPORT (MOTOROLA)
- ARRAY STANDARDS
  - INTERIM PERFORMANCE CRITERIA INPUT
  - ARRAY REFERENCE CONDITION STUDY

#### ONGOING ACTIVITIES

- REQUIREMENT DEVELOPMENT STUDIES
  - SAFETY DESIGN REQUIREMENTS (UL)
  - PRODUCT LIABILITY REQ (CARNEGIE-MELLON)
  - COMMERCIAL BUILDING CODES (BURT-HILL)
  - WIND LOADING (BOEING/CSU)
- ARRAY SUBSYSTEM DEVELOPMENT
  - LARGE GROUND MOUNTED ARRAYS (JPL)
  - INTEGRATED RESIDENTIAL ARRAYS (GE AND AIA)
- COMPONENT ENGINEERING/RELIABILITY STUDIES
  - OVERALL RELIABILITY ANALYSIS (JPL/IITRI)
  - ELECTRICAL INSULATION (JPL)
  - GLASS BREAKAGE (IPL)
  - INTERCONNECT FATIGUE (JPL)
  - HOT-SPOT ENDURANCE (JPL)

#### ONGOING ACTIVITIES (CON'T)

- COMPONENT ENGINEERING/RELIABILITY STUDIES (CON'T)
  - CELL RELIABILITY TESTING (CLEMSON)
  - CELL FRACTURE MECHANICS (JPL)
  - ACCELERATED SUNLIGHT TESTING (DSET)
  - LONG-TERM HUMIDITY TESTING (WYLE)
  - CORROSION ENDURANCE (WYLE)
  - SOILING (JPL)
- STANDARDS ACTIVITIES
  - ARRAY TASK GROUP MANAGEMENT (FOR SERI)
  - PV-T PERFORMANCE TEST DEVELOPMENT (JPL)
  - CONCENTRATOR PERFORMANCE TEST DEVEL (ASU)

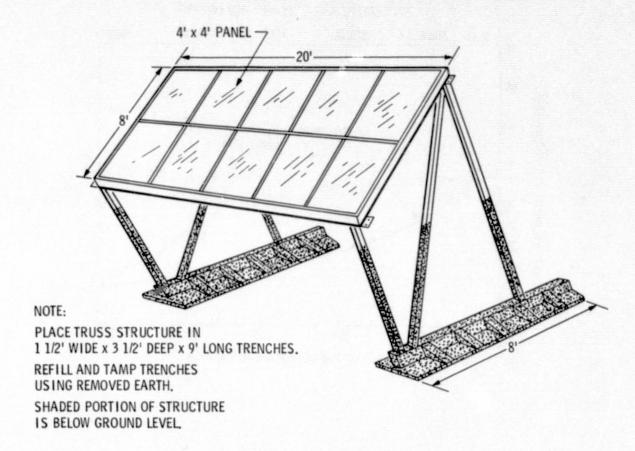
# ARRAY STRUCTURE COST REDUCTION STUDY

JET PROPULSION LABORATORY

Abe Wilson

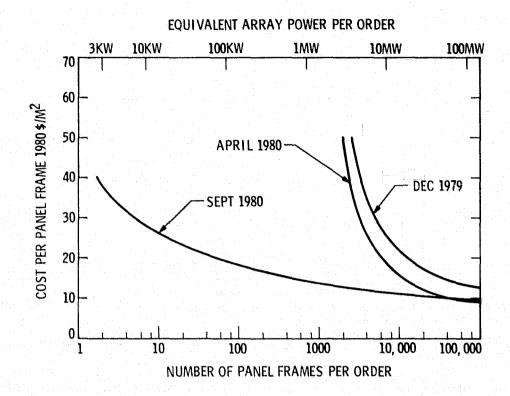
## **Objective**

- IDENTIFY MEANS FOR REDUCING THE COST OF FLAT PLATE ARRAY STRUCTURES FOR LARGE INDUSTRIAL/CENTRAL STATION ARRAYS
  - PANEL FRAME
  - ARRAY STRUCTURE
  - ARRAY FOUNDATION
  - ASSEMBLY OF MODULES, FRAMES AND STRUCTURES
- DEVELOP DATA ON SIMILAR ARRAYS APPLICABLE TO CURRENT ILC ARRAY DESIGNS
   (1 KW TO 1 MW)


## **Approach**

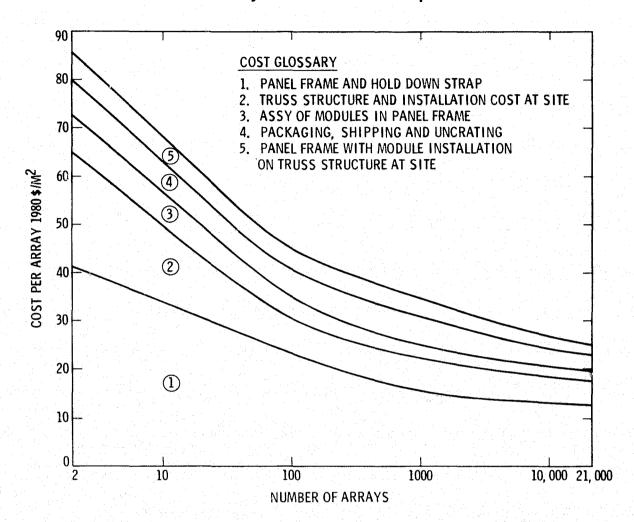

- REVIEW PERFORMANCE AND COST OF PANEL FRAME DEMONSTRATED AT APRIL 1980 PIM
- MODIFY DESIGN TO IMPROVE PERFORMANCE AND/OR REDUCE OVERALL COST
- FABRICATE PANEL FRAME PER MODIFIED DESIGN AND PROOF TEST
- REVIEW PERFORMANCE AND COST OF FOUNDATION AND SUPPORT STRUCTURE DEMONSTRATED
  AT APRIL 1980 PIM
- MODIFY DESIGN TO IMPROVE PERFORMANCE AND/OR REDUCE OVERALL COST
- FABRICATE AND TEST MODIFIED FOUNDATION AND SUPPORT STRUCTURE
- INVESTIGATE PROBLEMS OF ASSEMBLING MODULES ON PANEL FRAME
  - GASKETS

A real parties of the second s

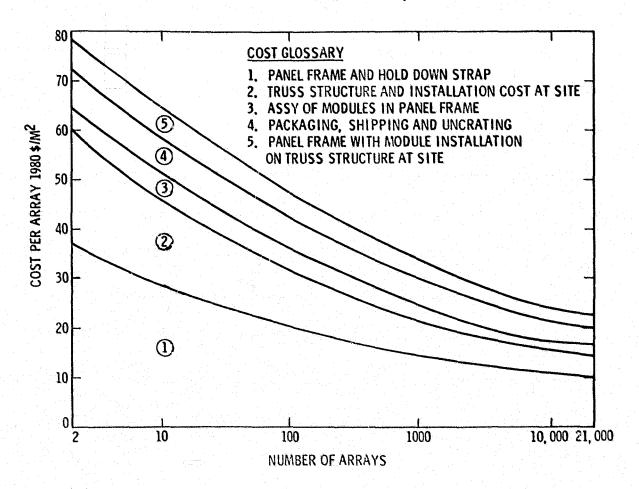

- ASSEMBLY LABOR
- SHIPMENT COSTS
- INSTALLATION LABOR

# Low-Cost Array Structure Displayed at 16th PIM (Demonstrating Framed & Unframed Module Mounting)






# Panel Frame Cost/Quantity Sensitivity




4.6

# Based on Twenty 2 x 4-ft Modules per Frame



# Based on Ten 4 x 4-ft Modules per Frame



# Preliminary Study Results (1980 \$/m²)

| DATE OF ESTIMATE | (1)<br>BARE<br>PANEL<br>FRAME | (2) ARRAY AND STRUCTURE FOUNDATION | (3) CONNECTORS MODULE ASSEMBLY SHIPPING AND FIELD INSTALLATION | (4)<br>TOTAL<br>(1) + (2) + (3) |
|------------------|-------------------------------|------------------------------------|----------------------------------------------------------------|---------------------------------|
| *AUGUST 1978     | \$18.90                       | \$40.32                            | \$9,52                                                         | \$68,74                         |
| *NOVEMBER 1979   | \$13,45                       | \$7.56                             | \$9,52                                                         | <b>\$30.53</b>                  |
| *APRIL 1980      | <b>\$9.</b> 80                | \$8.90                             | \$9,52                                                         | \$28, 22                        |
| **SEPTEMBER 1980 | \$10.77                       | <b>\$5.50</b>                      | <b>\$7.63</b>                                                  | \$23,90                         |

\* BASED ON 50,000 FRAMES

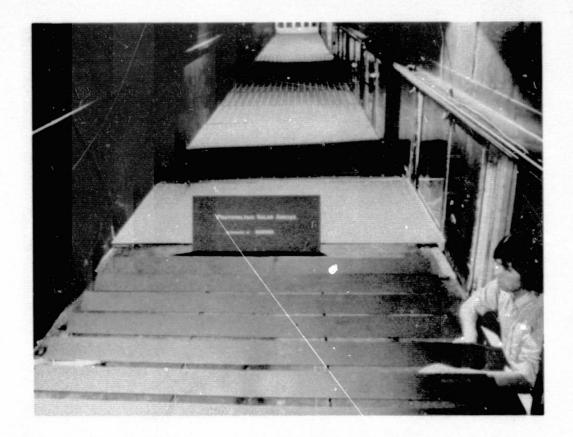
\*\*BASED ON 20,000 FRAMES

# **Future Work**

- ARRAY STRUCTURE
  - SIMPLIFY SECTION TO REDUCE WELDING
  - VERIFY NEED FOR CROSS BRACES
- ARRAY FOUNDATION
  - EFFECT ON PERFORMANCE OF SOIL TYPE
- INTERFACE WITH MODULE SUPPLIER
  - ASSEMBLY OF MODULES ON PANEL FRAME
  - CRATING AND SHIPPING OF THESE ASSEMBLIES

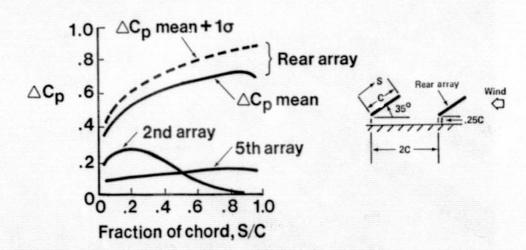
# WIND LOADS ON FLAT-PLATE PV ARRAY FIELDS

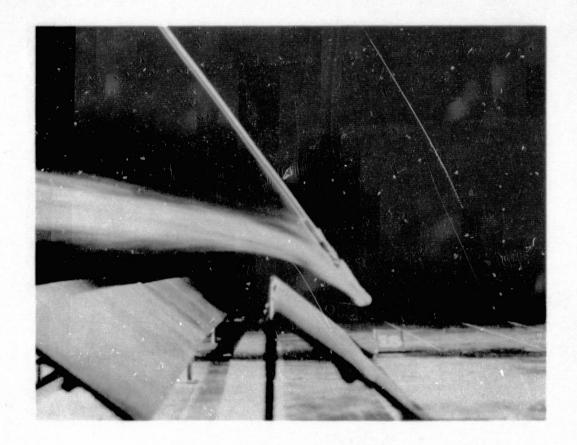
#### **BOEING ENGINEERING & CONSTRUCTION**


Objective:

Develop more refined estimates of wind loading on flat-plate photovoltaic modules and array support structures and develop design guidelines

- Approach: Theoretical | Phase II Report No. DOE/ JPL954833-79/2]
  - Literature search
  - Separated flow analysis
  - Experimental (Wind Tunnel Test Phase III)
    - Colorado State University environment tunnel
    - 1/24 scale model


## Parameter Variation

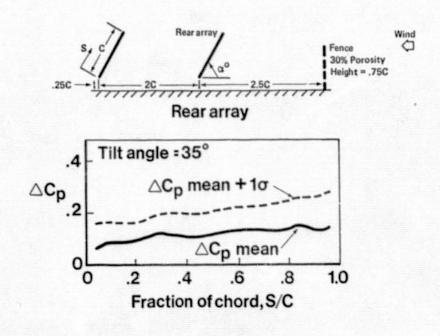

Tilt angle ■ Fence-array spacing Array spacing ■ Fence height Array ground clearance Wind profile

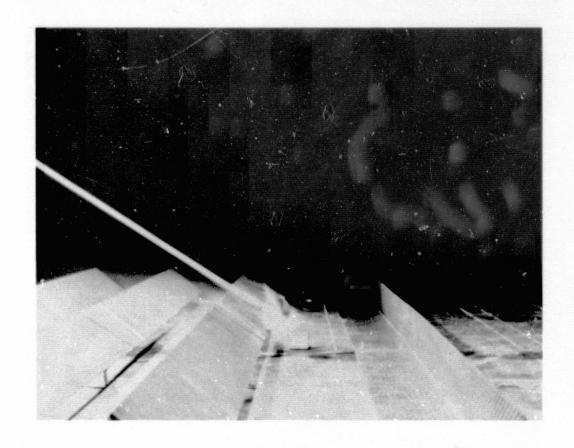


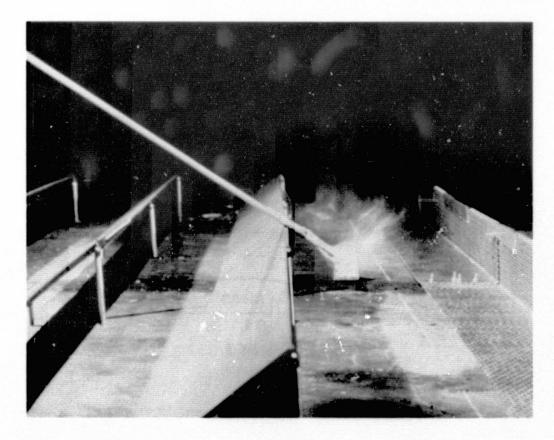
Typical Wind-Tunnel Test Results
Without a Fence

- 1/7 power law wind velocity profile
- Wind from rear



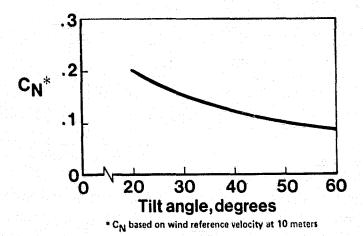




ORIGINAL PAGE IS OF POOR QUALITY



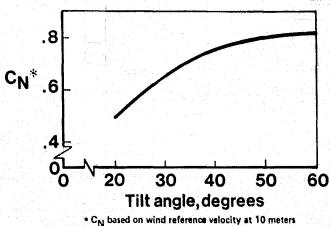
With a Fence








# Design Guidelines Normal Force Coefficient


- Interior arrays
- Arrays behind a protective wind barrier
- Steady state wind

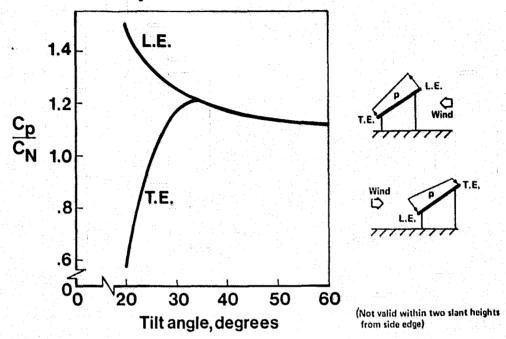


FN Wind

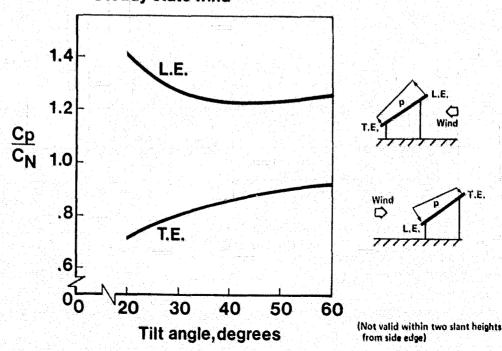
(Not valid within two slant heights from side edga)

- Boundary arrays without a protective wind barrier
- Steady state wind




Wind FN

Wind FN


(Not valid within two slant heights from side edge)

## Normalized Pressure Coefficients

- Înterior arrays
- Arrays behind a protective wind barrier
- Steady state wind



- Boundary arrays without a protective wind barrier
- Steady state wind



# **Remaining Work**

- Complete wind tunnel test
- Develop design guidelines for array side edges
- Complete documentation for steady state wind loads
- Evaluate effects of turbulence and array dynamics on design guidelines

# PHOTOVOLTAIC/THERMAL MODULE DEVELOPMENT AT JPL

JET PROPULSION LABORATORY
S, Gasner and A. Wen

- DEVELOPMENT OF DESIGN REQUIREMENTS AND GENERATION
   OF OPTIMUM PV/T MODULE DESIGNS
- DEVELOPMENT OF PERFORMANCE TEST METHODS FOR PV/T MODULES IN SUPPORT OF SERI'S STANDARDS & TEST METHOD PROJECT

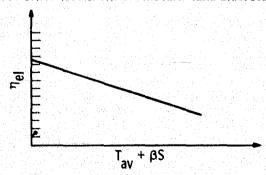
# **Performance Test Method Development**

- COMMITTEE OF INDUSTRY, UNIVERSITIES, AND GOVERNMENT LABS
  FORMED TO DEVELOP TEST METHODS AND STANDARDS FOR FLAT PLATE
  AND CONCENTRATOR PV/T SYSTEMS
- CANDIDATE PERFORMANCE TEST METHODS IDENTIFIED
  - ELECTRICAL PERFORMANCE
    - FLAT PLATE (JPL)
    - CONCENTRATOR (E-SYSTEMS/ASU)
  - THERMAL PERFORMANCE
    - MODIFIED ASHRAE TEST
- TEST METHOD PROOF-OF-CONCEPT EXPERIMENTS IN PROGRESS
  - E-SYSTEMS
  - JPL
  - · MIT/LL
  - SANDIA

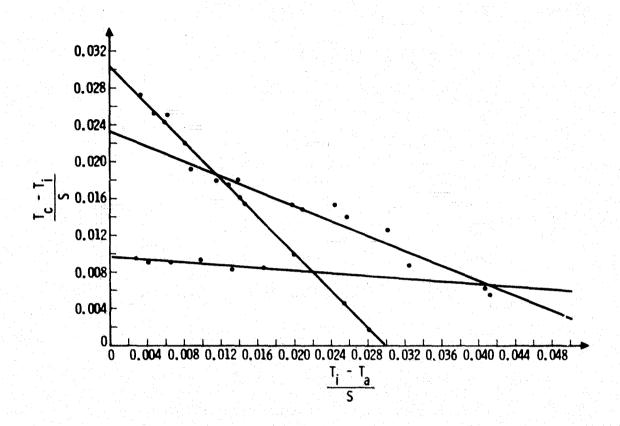
# **PV/T Module Testing**

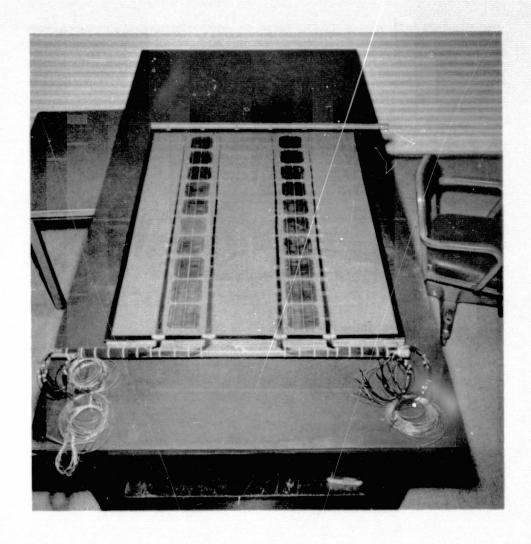
- FLAT PLATE
  - 1-V PERFORMANCE vs (S, T<sub>cell</sub>)
  - T<sub>cell</sub> vs (S, T<sub>air</sub>, T<sub>in</sub>, WIND)
  - THERMAL ASHRAE TEST

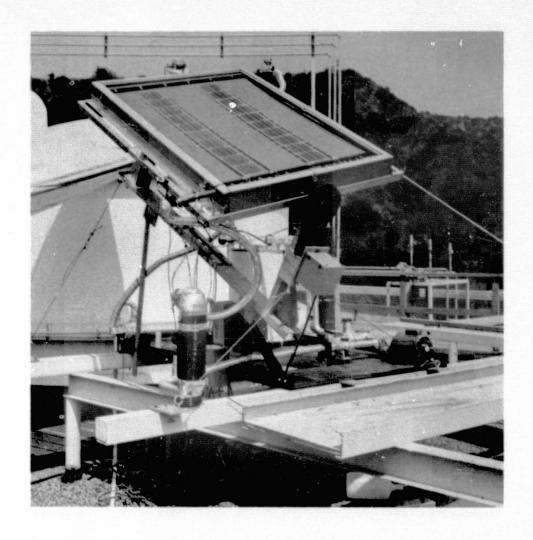
### CONCENTRATOR


- 1-V PERFORMANCE vs (S, Tair, Tin, △T)
- THERMAL ASHRAE TEST

# Electrical Performance Test For Actively Cooled Concentrators

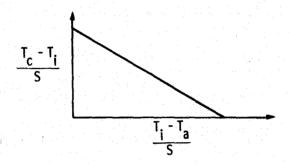

- COLLECT THE FOLLOWING DATA:
  - INLET FLUID TEMPERATURE (T.)
  - TEMPERATURE INCREASE ACCROSS THE COLLECTOR (ΔΤ)
  - IRRADIANCE (S)
  - MAX POWER
- **CONSTRUCT PLOT OF**


$$\eta_{el}$$
 vs  $T_{average} + \beta S$ 


- ullet INTERPOLATED LINE DEFINES  $\eta_{el}$  AS A FUNCTION OF  $T_{av}$ . S
- (HAS DRAWBACK OF NOT TAKING AMBIENT TEMPERATURE INTO ACCOUNT)



# Cell Temperature Test Results (Three Prototype Collectors)



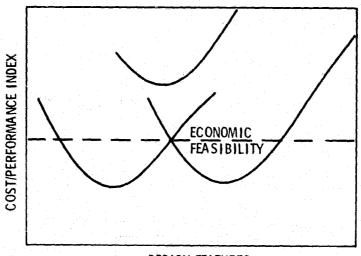





# Flat-Plate PV/T Cell Temperature Test

- COLLECT THE FOLLOWING DATA
  - INLET FLUID TEMPERATURE (T.)
  - CELL TEMPERATURE (T\_)
  - AMBIENT AIR TEMPERATURE (T\_)
  - IRRADIANCE (S)
- CONSTRUCT PLOT:

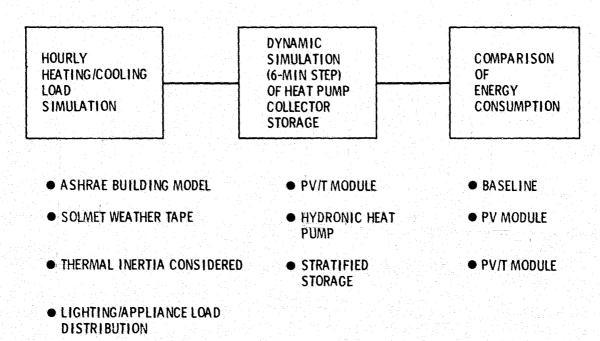



ullet INTERPOLATED LINE DEFINES  $T_c$  AS A FUNCTION OF  $T_i$ ,  $T_a$ , S

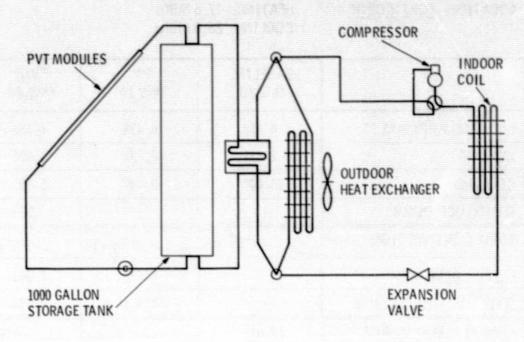
# PV/T MODULE DESIGN REQUIREMENTS

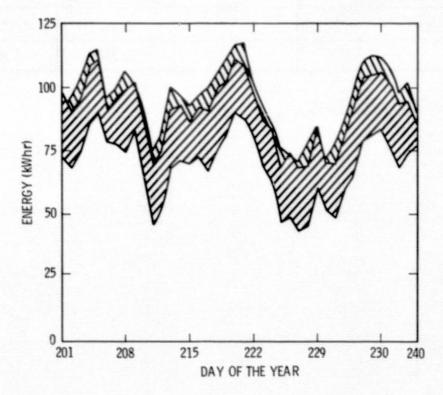
# **Objectives**

- DETERMINE "OPTIMAL" DESIGN FEATURES FROM COST/PERFORMANCE SENSITIVITY STUDIES
- ESTABLISH "JUSTIFIED COST" FOR PV/T MODULES
   BASED ON OVERALL PERFORMANCE AND
   INTEGRATED ENERGY DISPLACEMENT (kWh)


# Approach




#### DESIGN FEATURES


- PV/T MODULE CHARACTERISTICS
- APPLICATIONS
- SYSTEM ARRANGEMENT/SIZING

# Methodology



# System Arrangement





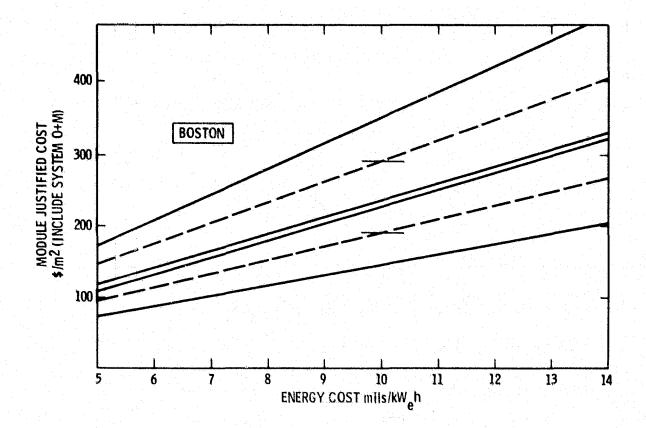
# SAMPLE RESULTS OF ANNUAL ENERGY CONSUMPTION LOCATION: FORT WORTH HEATING: 17.6 MBtu

COOLING: 86.6 MBtu

|                       | BA SEL I NE<br>(kW <sub>e</sub> h) | PV<br>(kW <sub>e</sub> h) | PV/T*<br>(kW <sub>e</sub> h) |
|-----------------------|------------------------------------|---------------------------|------------------------------|
| LIGHTING/APPLIANCES   | 6, 438                             | 6, 438                    | 6, 438                       |
| HEATING               | 2, 731                             | 2, 731                    | 1, 498                       |
| COOLING               | 10, 449                            | 10, 449                   | 8, 885                       |
| FLUID LOOP PUMP       | · inches                           | -                         | 530                          |
| TOTAL CONSUMPTION     | 19, 619                            | 19, 619                   | 17, 312                      |
| ENERGY GENERATION     |                                    | 6, 838                    | 7, 043                       |
| EFFECTIVE UTILIZATION | •                                  | 4, 531                    | 4, 258                       |
| ANNUAL ELECTRIC BILL  | 19, 619                            | 15, 088                   | 13, 063                      |
| DIFFERENCE            |                                    | 4, 531                    | 4, 531 + 2, 025              |
| CREDIT                | <u>-</u>                           | 2, 307                    | 2, 785                       |

<sup>\*47.57</sup> m<sup>2</sup> UNGLAZED MODULE

# SAMPLE RESULTS OF ANNUAL ENERGY CONSUMPTION LOCATION: BOSTON HEATING LOAD 62.5 MBtu COOLING LOAD 28.7 MBtu


|                       |                                  |                           | and the second s |
|-----------------------|----------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       | BA SELINE<br>(KW <sub>e</sub> H) | PV<br>(KW <sub>e</sub> H) | PV/T<br>(KW <sub>e</sub> H)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| LIGHTING/APPLIANCES   | 6, <b>43</b> 8                   | 6, 438                    | 6, 438                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| HEATING               | 9, <b>890</b>                    | ð 8 <del>3</del> 0        | 7, 950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| COOLING               | 3, 240                           | 3, 240                    | 2, 387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| FLUID LOOP PUMP       |                                  |                           | 293                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| TOTAL CONSUMPTION     | 19, 569                          | 19, 569                   | 17, 029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ENERGY GENERATION     | _                                | 5, 676                    | 5, 882                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| EFFECTIVE UTILIZATION | <del>-</del>                     | 3, 457                    | 3, 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ANNUAL ELECTRIC BILL  | 19, 569                          | 16, 112                   | 14, 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DIFFERENCE            |                                  | 3, 457                    | 3, 457 + 2, 011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CREDIT                |                                  | 2, 219                    | 2, 777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

<sup>\*47.57</sup> m<sup>2</sup> UNGLAZED MODULE

# SAMPLE RESULTS OF ANNUAL ENERGY CONSUMPTION LOCATION: SANTA MARIA HEATING LOAD 6.3 MBtu COOLING LOAD 9.3 MBtu

|                       | BASELINE<br>(KW <sub>e</sub> H) | PV<br>(KW <sub>e</sub> H) | PV/T<br>(KW <sub>e</sub> H)* |
|-----------------------|---------------------------------|---------------------------|------------------------------|
| LIGHTING/APPLIANCES   | 6, 438                          | 6, 438                    | 6, 438                       |
| HEATING               | 993                             | 993                       | 342                          |
| COOLING               | 1, 036                          | 1, 036                    | 720                          |
| FLUID LOOP PUMP       |                                 |                           | 203                          |
| TOTAL CONSUMPTION     | 8, 468                          | 8, 468                    | 7,663                        |
| ENERGY GENERATION     |                                 | 7, 971                    | 8, 205                       |
| EFFECTIVE UTILIZATION |                                 | 2, 466                    | 2, 198                       |
| ANNUAL ELECTRIC BILL  | 8, 468                          | 6, 002                    | 5, 465                       |
| DIFFERENCE            |                                 | 2, 466                    | 2, 466 + 537                 |
| CREDIT                |                                 | 5,505                     | 6, 007                       |

<sup>\*47.57</sup> m<sup>2</sup> UNGLAZED MODULE



# **Discussions**

- PRELIMINARY ANALYTICAL RESULTS SHOW THAT UNGLAZED PV/T MODULES ARE WORTH <u>AT LEAST</u> 30% - 60% MORE THAN CORRESPONDING PV MODULES
- APPLICATIONS USING GLAZED PV/T MODULES SHOULD CONSIDER TECHNICAL CONSTRAINTS AND SUMMER OPERATING CONDITIONS
- INCLUDING POTENTIAL FOR DOMESTIC HOT WATER HEATING,
   VALUE COULD BE SIGNIFICANTLY ENHANCED

# PV MODULE AND ARRAY SAFETY STUDY

UNDERWRITERS LABORATORIES INC.
Allan Levins

DEVELOPMENT AND APPLICATION OF PRODUCT REQUIREMENTS FOR PROTECTION AGAINST DESTRUCTION OF:

**PROPERTY** 

HUMAN LIFE

AS A RESULT OF:

SHOCK

FIRE

CASUALTY

#### Points to Be Covered

- 1) NATIONAL ELECTRICAL CODE ARTICLES AND SECTIONS RELATIVE TO PV INSTALLATIONS AND APPLICATIONS
- 2) ROOF FIRE TESTS
  - A) PROCEDURE
  - B) RESULTS OBTAINED
- 3) PROPOSED STANDARD (OF PARTICULAR INTEREST TO MODULE AND PANEL MANUFACTURERS)
  - A) AREAS TO BE ADDRESSED
  - B) EVALUATION OF CURRENT MODULES
- 4) FUTURE ACTIVITIES

THE RESULTS OF UL'S WORK ARE PROMULGATED IN DOCUMENTS RELATED TO PRODUCT SAFETY.

- 1) BUILDING AND ELECTRICAL CODE (NEC) ARTICLES DESCRIBING REQUIREMENTS FOR PRODUCT INSTALLATION AND APPLICATION DOCUMENTS USED BY (MUNICIPAL INSPECTORS) IN EVALUATING PRODUCT INSTALLATIONS.
- 2) UL STANDARDS FOR FACTORY BUILT ITEMS
  DOCUMENT USED BY UL IN LABORATORY EVALUATIONS.

AT PRESENT NO UL OR CODE REQUIREMENTS OR PROVISIONS FOR PV MODULES OR ARRAYS, BUT CERTAIN SECTIONS OF ELECTRICAL CODE MIGHT BE APPLICABLE TO PARTS OF PV SYSTEM.

BECAUSE OF LACK OF SPECIFIC DIRECTIVES INSPECTORS WOULD BE AT LIBERTY TO RENDER THEIR OWN JUDGEMENTS ON ACCEPTABILITY OF INSTALLATION, AND INDIVIDUAL JUDGEMENTS MAY BE INCONSISTENT WITH EACH OTHER.

IT IS DESIRABLE TO ELIMINATE VOID IN THE NEC TO:

- 1) REMOVE INCONSISTENCIES AS CONCERNS INSPECTOR JUDGEMENT.
- 2) DIRECT AND EDUCATE LOCAL INSPECTORS.
- 3) ALLOW UNIFORMITY IN THE PRODUCTS.

NEC COMMITTEE BEING FORMED TO CONSIDER REQUIREMENTS TO PV ARRAYS.

#### **National Electrical Code**

CURRENT ARTICLES AND SECTIONS CONSIDERED PERTINENT TO PHOTOVOLTAIC SYSTEMS.

| GENERAL - | 110-7;  | INSULATION INTEGRITY                  |
|-----------|---------|---------------------------------------|
|           | 110-11; | DETERIORATING AGENTS                  |
|           | 110-12; | MECHANICAL EXECUTION OF WORK          |
|           | 200-6;  | IDENTIFICATION OF GROUNDED CONDUCTORS |
|           | 215-2:  | FFFDFR RATINGS AND SIZES              |

#### SPECIFICS:

Considerate the common transportation hadron of the control policy of the control of the control

110-16 (A) AND 110-34 (A); WORKING CLEARANCES AND SPACES

110-17 AND 110-34 (C); GUARDING OF LIVE PARTS

200-2; GROUNDED CONDUCTORS

200-3; CONNECTION TO GROUNDED SYSTEM

200-10; TERMINAL IDENTIFICATION

200-22 (C); MAXIMUM LOADS

225-4; CONDUCTOR COVERING

225-6; OVERHEAD SPANS

225-10; WIRING ON BUILDINGS

225-11; CIRCUIT EXIT AND ENTRANCES

225-12; OPEN CONDUCTOR SUPPORTS

225-14; OPEN CONDUCTOR SPACINGS

225-15; SUPPORT OVER BUILDINGS

225-16; POINT OF ATTACHMENT TO BUILDINGS

225-17; MEANS OF ATTACHMENT TO BUILDINGS

225-18; CLEARANCE FROM GROUND

225-19; CLEARANCE FROM BUILDINGS AND ZONE FOR FIRE

#### **LADDERS**

- 225-20; MECHANICAL PROTECTION OF CONDUCTORS
- 225-21; CABLES ON BUILDINGS
- 225-22; RACEWAYS ON BUILDINGS
- 230-26; POINT OF ATTACHMENT
- 230-27; MEANS OF ATTACHMENT
- 230-29; SUPPORT OVER BUILDINGS
- 230-43; WIRING METHODS
- 230-50; PROTECTION OF CONDUCTORS
- 230-51; MOUNTING SUPPORTS
- 230-52; CONDUCTORS ENTERING BUILDINGS
- 230-53; DRAINING OF RACEWAYS
- 230-54; CONNECTIONS AT SURFACES
- 230-70; GENERAL (AS APPLIED TO DISCONNECTING MEANS)
- 230-71; MAXIMUM NUMBER OF DISCONNECTS
- 230-82; EQUIPMENT CONNECTED TO THE SUPPLY SIDE

OF A SERVICE DISCONNECT

230-95; GROUND FAULT PROTECTION

#### OVERCURRENT PROTECTION

240-21; OVERCURRENT DEVICE; LOCATION IN CIRCUIT

#### GROUNDING

- 250-21; OBJECTIONABLE CURRENTS
- 250-22; POINT OF CONNECTION
- 250-26; SEPARATELY DERIVED SYSTEMS
- 250-42; EQUIPMENT FASTENED IN PLACE
- 250-51; EFFECTIVE GROUNDING PATH
- 250-72; METHOD OF BONDING SERVICE EQUIPMENT
- 250-91; MATERIAL (FOR GROUNDING CONDUCTORS)

X

Х

300-15; BOXES OR FITTINGS

310-5; MINIMUM SIZE CONDUCTORS

310-10(B); CONDUCTOR IDENTIFICATION

318; CABLE TRAYS

320; OPEN WIRING

480; STORAGE BATTERIES

#### RATIONALES:

- 110-16(A) AND 110-34(A); WORKING CLEARANCES AND SPACES TO PROVIDE SUFFICENT AREAS TO SAFELY AND PROPERLY
  FUNCTION.
- 110-17 AND 110-34(C); GUARDING OF LIVE PARTS TO PROTECT AGAINST PERSONAL CONTACT WITH HAZARDOUS
  ENERGY PARTS. SUGGEST 30 VOLTS AND 30 MA DC AS
  HAZARD LEVEL, BASED IN PART ON NEC LIMIT FOR WET
  LOCATIONS, CLASS 2 CIRCUITS, TABLE 725-31(B),
  NOTE 5.

#### APPLICATION PROBLEMS:

SECTION 200-2; "ALL PREMISES WIRING SYSTEMS SHALL HAVE A GROUNDED CONDUCTOR".

PROBLEM IF TRANSFORMERLESS CONDITIONER, AS ONLY VIRTUAL GROUNDING OF ARRAY WIRING MAY BE POSSIBLE.

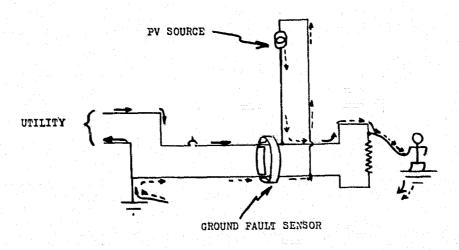
- SECTION 200-3; IS WIRING FROM A REMOTE ARRAY OR CONDITIONER
  A "SUPPLY SYSTEM"? IF SO THERE MAY BE A PROBLEM
  COMPLYING WITH THIS SECTION FOR A SYSTEM WITH A
  TRANSFORMERLESS CONDITIONER.
- SECTION 200-10; IS IT THE INTENT OF THIS REQUIREMENT TO INCLUDE TERMINAL IDENTIFICATION STIPULATIONS FOR EQUIPMENT THAT GENERATES ELECTRICAL POWER? UL PROPOSES YES.
- ARTICLE 210; BRANCH CIRCUIT SUGGEST THAT THE PROVISIONS
  OF THIS ARTICLE APPLY TO THE WIRING BETWEEN THE
  SERVICE ENTRANCE AND THE CONDITIONER.
- SECTION 210-22(C); CONTINUOUS LOADS ON A BRANCH CIRCUIT
  ARE GENERALLY RESTRICTED TO 80% OF RATING, SUGGEST
  THIS SAME STIPULATION ALSO BE APPLIED TO THE
  CONDITIONER CIRCUIT.
- SECTION 225-19(D); ZONE FOR FIRE LADDERS, UL SUGGESTS
  THAT SIMILAR IDEA BE APPLIED TO ROOF MOUNTED
  MODULES.
- SECTIONS 225-14(A) AND (B): MAY NOT NEED TO BE APPLIED CONSIDERING "STATE OF THE ART" INSULATIONS AND THE LIMITED POTENTIAL FAULT CURRENTS FROM PV ARRAYS.

SECTION 230-95; GROUND FAULT PROTECTION - NEED TO INTERRUPT PV SOURCE AS WELL AS UTILITY SUPPLY.

SECTION 240-21; STIPULATION THAT A CONDUCTOR BE PROTECTED BY AN OVERCURRENT DEVICE WHERE IT RECEIVES ITS SUPPLY IS LIKELY UNWARRANTED FOR PV SOURCE, AS OVERCURRENT CONDITION FROM PV CAN NOT EXIST.

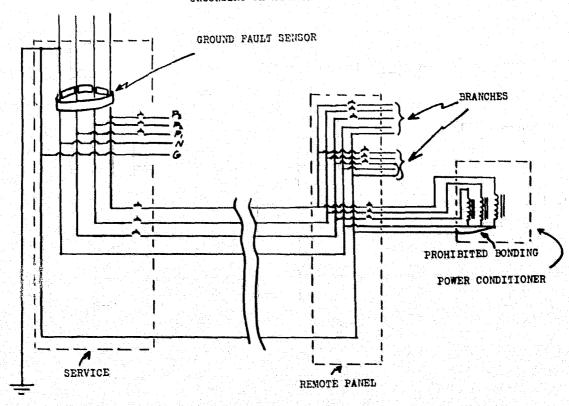
ARTICLE 250; GROUNDING - LIKELY THAT AN ARRAY WITH A TRANSFORMERLESS SUPPLY CAN SATISFY GROUNDING REQUIREMENTS WITH A "VIRTUAL GROUND". HOWEVER THIS MEANS THAT POTENTIAL FAULT CURRENTS FROM EXTERNAL SOURCES MUST BE ELIMINATED OR AT LEAST MINIMIZED, THEREFORE POWER LINES SHOULD NOT CROSS OVER ARRAYS.

SECTION 250-26; GROUNDING SEPARATELY DERIVED SYSTEMS
IS NOT APPLICABLE, A UTILITY INTERACTIVE SOURCE
IS NOT SEPARATELY DERIVED.
ADDITIONAL BONDING PATHS MAY RENDER GROUND FAULT
SENSING AND RELAYING EQUIPMENT INEFFECTIVE AND/OR
PLACE EXCESSIVE FAULT CURRENTS ON GROUNDING
CONDUCTORS.

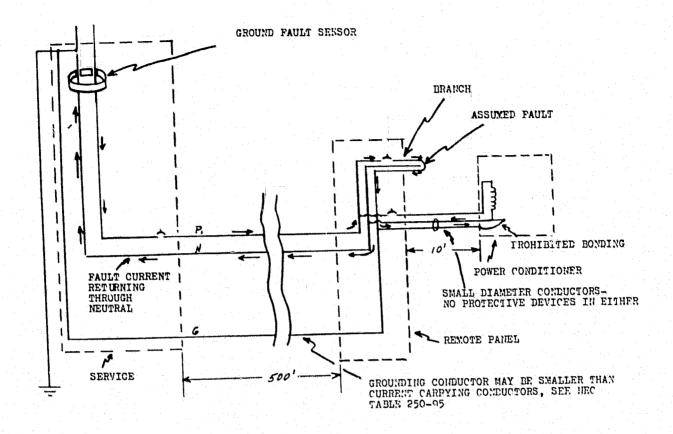

SECTION 450-4; THREE PHASE SOURCE SHALL NOT SINGLE PHASE INTO A THREE PHASE SYSTEM.

X X X X

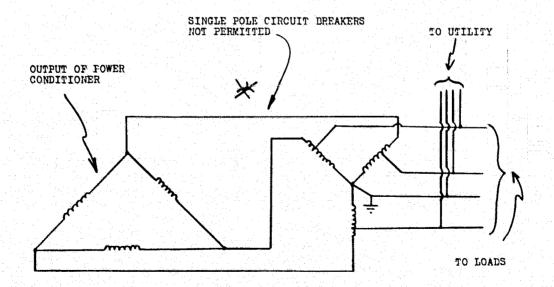
NON HARDWIRED UTILITY INTERACTIVE SOURCE AND REQUIRED GROUND FAULT PROTECTION, PROBLEM UNLESS PROPER (2 POLE) GFCI CONFIGURATION.


CIRCUIT GROUNDING IS WARRANTED, TO STABILIZE CIRCUIT VOLTAGES WITH RESPECT TO EARTH. GROUNDING WILL DISSIPATE INDUCED CHARGES, SO AS TO PREVENT INSULATION BREAKDOWNS.

#### CASUALLY CONNECTED PHOTOVOLTAIC SOURCE




FAULT CURRENT FROM PV SOURCE
FAULT CURRENT FROM UTILITY SOURCE


# GROUNDING SEPARATELY DERIVED SYSTEMS



#### GROUNDING SEPARATELY DERIVED SYSTEMS



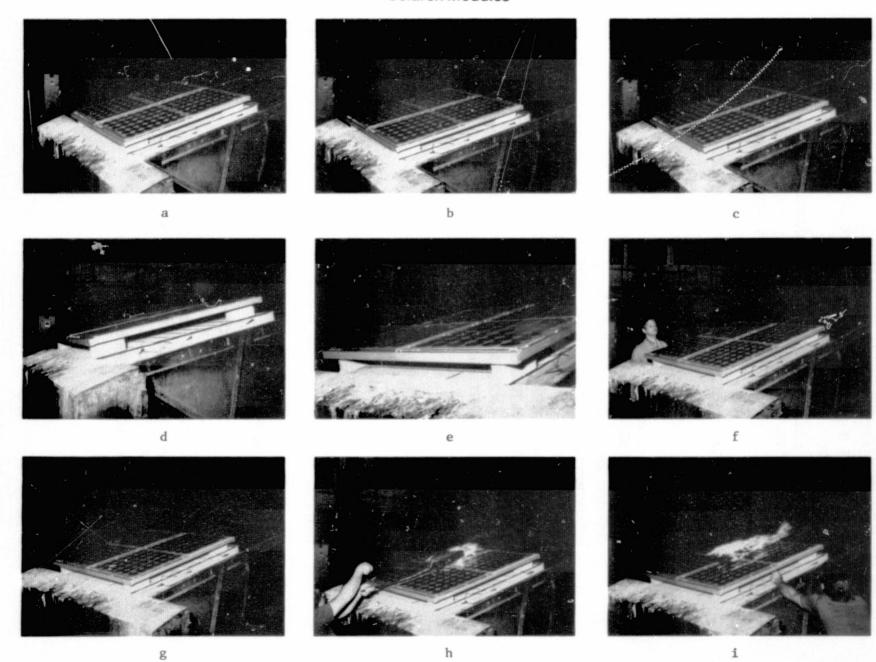
#### CIRCUIT INTERRUPTING DEVICES IN INTERFACE

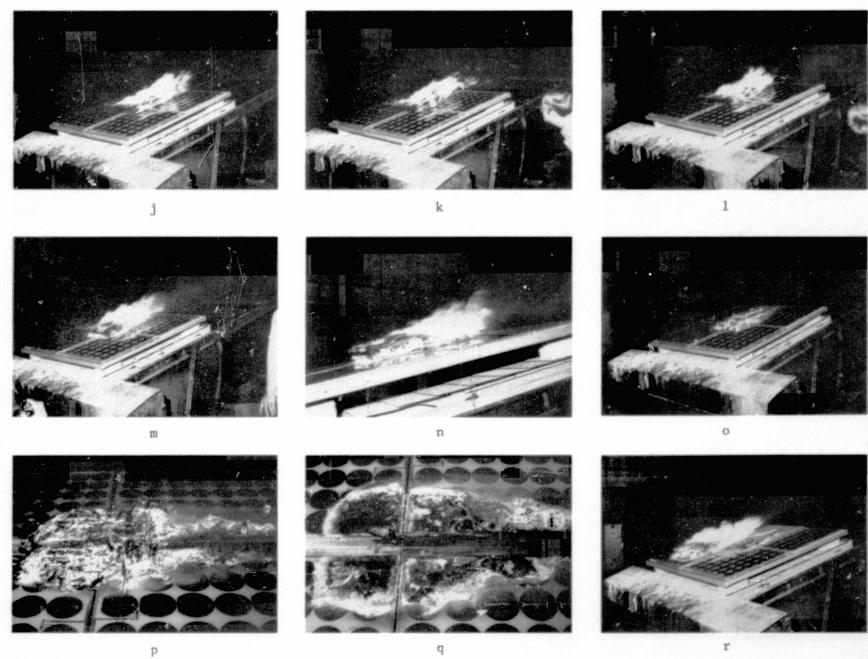


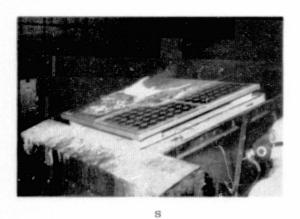
BUILDING CODE PROVISIONS
FIRE RESISTANCE OF ROOF COVERING MATERIALS (UL 790)
ROOF RATING

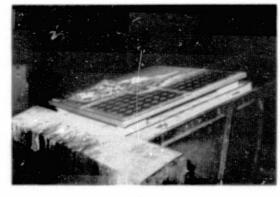
| CLASS | FIRE RESISTANCE      | TYPICAL APPLICATIONS             |
|-------|----------------------|----------------------------------|
| A :   | MOST RESISTANT       | COMMERCIAL AND INDUSTRIAL BLDGS. |
|       |                      | MULTI-FAMILY RESIDENTIAL BLDGS.  |
|       |                      | SCHOOLS, HOSPITALS               |
| В     | MODERATELY RESISTANT | ONE OR TWO FAMILY RESIDENCES IN  |
|       |                      | HIGHER FIRE RISK LOCALES         |
| C     | LIGHT RESISTANT      | ONE OR TWO FAMILY RESIDENCES     |

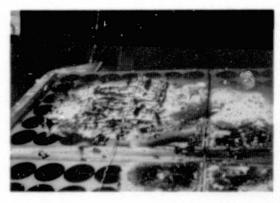
ARRAY TESTING PER UL 790 - ON ROOF INTERMITTENT FLAME TEST - REPRESENTS LAPPING OF FLAMES
FROM OTHER BURNING PARTS. GAS BURNER IS IGNITED AND
EXTINGUISHED FOR A SPECIFIED NUMBER OF CYCLES.
SPREAD OF FLAME TEST - REPRESENTS PRESUMED IGNITION OF
ONE PART OF ROOF, DETERMINATION OF EASE OF SPREAD OF
FLAMES. GAS BURNER ON CONTINUOUSLY.
BURNING BRANDS TEST - REPRESENTS BURNING PIECES ALIGHTING
ON ROOF FROM NEARBY FIRES. GAS BURNER NOT PRESENT.
BURNING BRANDS PLACED ON ROOF.


#### ACCEPTANCE CRITERIA - FIRE TESTS

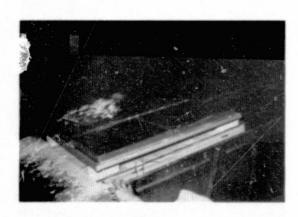

- 1) DURING AND AFTER THE TEST NO PORTION OF ROOF COVERING SHALL HAVE BLOWN OR FALLEN FROM THE TEST DECK IN THE FORM OF FLAMING OR GLOWING BRANDS OR PARTICLES.
- 2) ROOF DECK SHALL NOT BE EXPOSED BY BREAKING, SLIDING, CRACKING OR WARPING OF THE ROOF COVERING.


#### CONCLUSION


PERMITTING AIR CIRCULATION BETWEEN ROOF DECK
AND PV PANELS IS NOT RECOMMENDED FROM A FIRE SAFETY
STANDPOINT. THE USE OF FIRE STOPS MAY ALLEVIATE THIS
CONDITION, HOWEVER, THIS MAY BE AT THE COST OF ELEVATED
TEMPERATURES AND THEREFORE DETERIORATED PERFORMANCE OF
THE ARRAY.

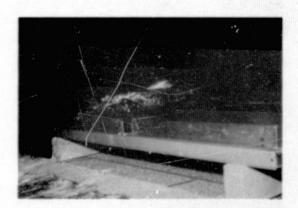

# Brand Test Solarex Modules







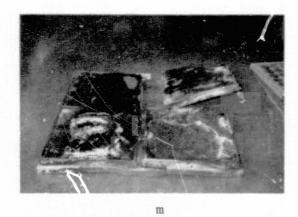


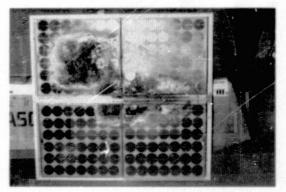

Brand and Spread of Flames Motorola Modules



420

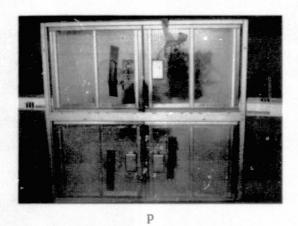


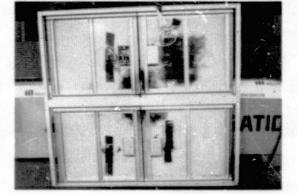




a

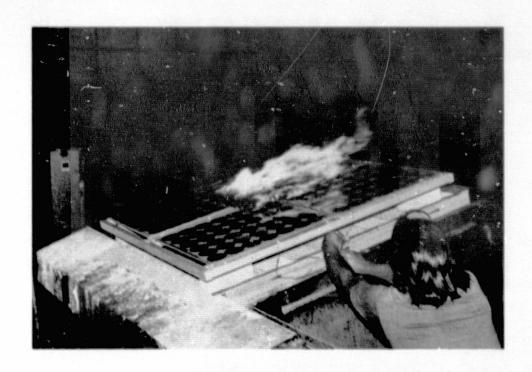
b

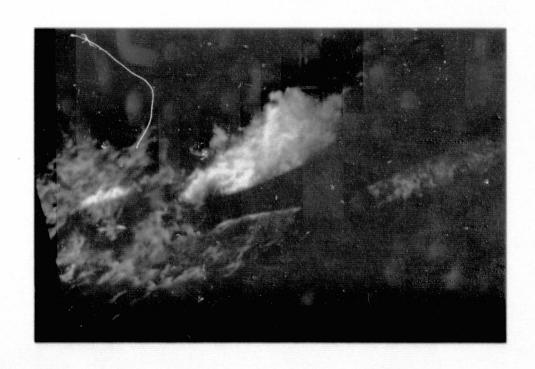
C







n


0





q





#### POINTS TO BE ADDRESSED IN UL STANDARD

GENERAL - WHERE POSSIBLE ACCEPTANCE TO BE BASED ON PERFORMANCE RATHER THAN CONSTRUCTION.

- 1) INSTALLATION
  - A) COMPATABILITY WITH NEC, E.G. WIRING MEANS, TERMINAL IDENTIFICATION, PROVISIONS FOR GROUNDING
  - B) INSTRUCTIONS TO MINIMIZE HAZARDS TO INSTALLER
- 2) RESISTANCE TO MECHANICAL ABUSE, E.G. CELL ENCAPSULANT TO PROTECT AGAINST PERSONAL CONTACT WITH HAZARDOUS ENERGY DURING AND AFTER PRESCRIBED IMPACTS AND CUTTING ATTEMPTS.
- 3) TEMPERATURES OF MATERIALS DURING OPERATION AVOID RAPID DETERIORATION
- 4) ELECTRICAL CHARACTERISTICS OF INSULATION, E.G. IMPULSE VOLTAGE WITHSTAND, DIELECTRIC VOLTAGE WITHSTAND AND LEAKAGE CURRENT LEVELS
- 5) EFFECTS OF CORROSIVE ATMOSPHERES, E.G. SALT SPRAY, HYDROGEN SULPHIDE
- 6) ROOF FLAME TESTS
- 7) SHARPNESS OF EDGES, TO REDUCE RISK OF CUT HAZARD
- 8) MARKINGS

Torac Control of the Control of the

9) FACTORY DIELECTRIC WITHSTAND

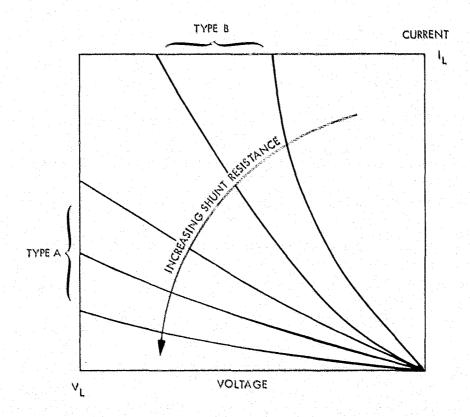
#### FUTURE ACTIVITIES

# DEVELOP SAFETY SYSTEM CONFIGURATIONS EXAMPLE:

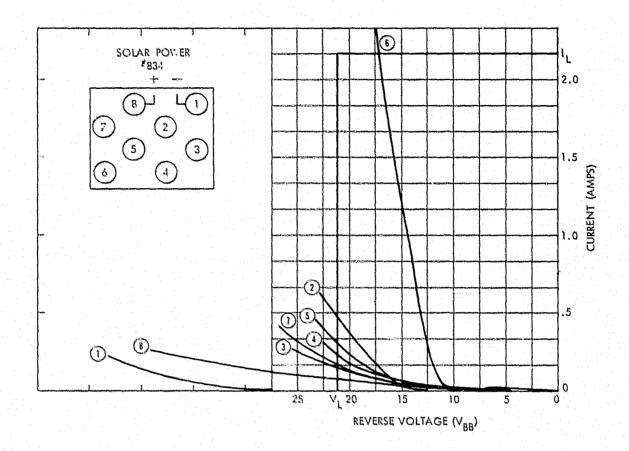
- 1) GROUND FAULT DETECTION WITH DISABLING OR INTERRUPTION
- 2) GROUNDING
- 3) DOUBLE INSULATION

DEVELOP PROCEDURES FOR INSTALLATION AND SERVICING

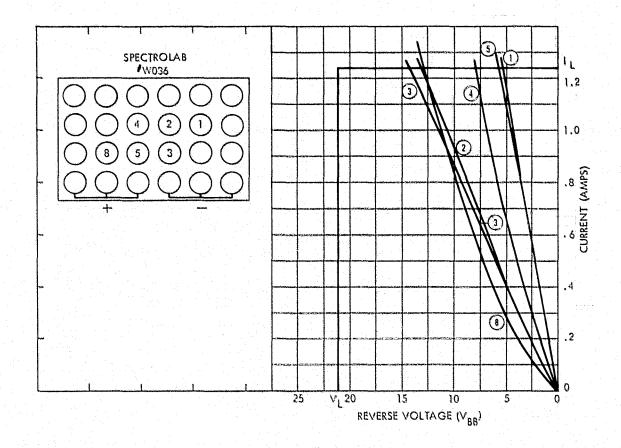
EVALUATE GROUNDING SCHEMES


CONDUCT ADDITIONAL FIRE TESTS

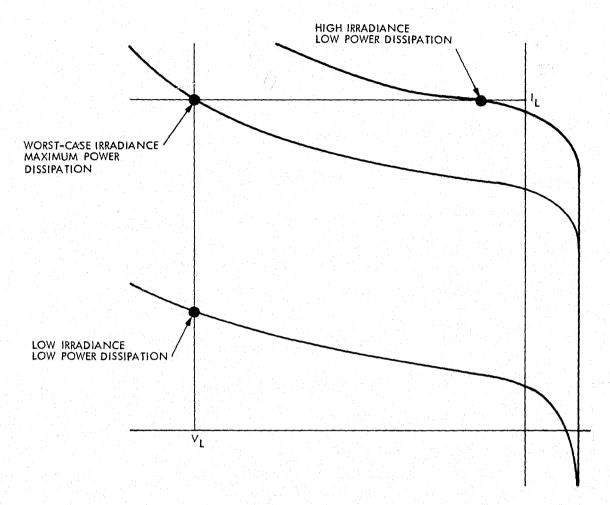
# MODULE HOT-SPOT TESTING RESULTS


JET PROPULSION LABORATORY

J.C. Arnett


# Typical Cell Reverse-Bias I-V Curves




# Solar Power No. 834



# Spectrolab No. W036

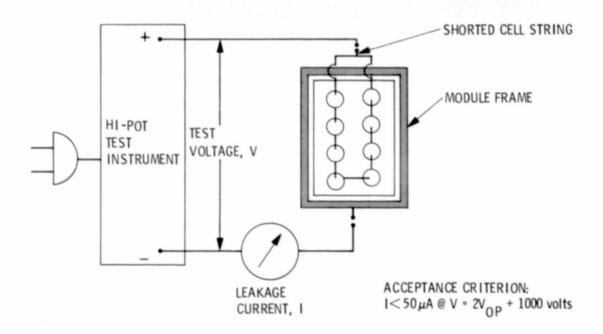


# Effect of Test-Cell Illumination Level On Hot-Spot Power Dissipation



# Hot-Spot Test Facility




# MODULE INSULATION VOLTAGE BREAKDOWN STUDY

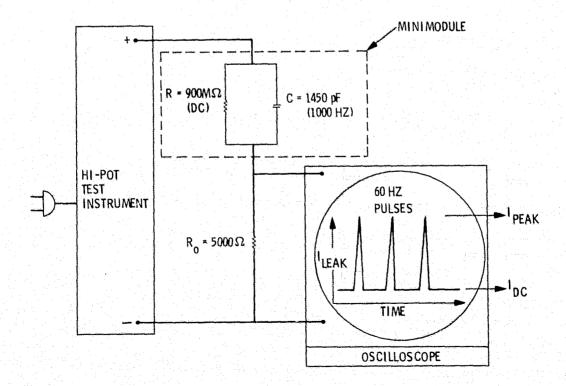
JET PROPULSION LABORATORY G.R. Mon

#### Electrical Isolation

- DESIGN METHODS (SIZING)
- DURABILITY/RELIABILITY
- INITIAL PERFORMANCE EVALUATION

## Hi-Pot Test Schematic and Acceptance Criterion




# Comparison of Test Results for Two Different Test Instruments

|            | VOLTAGE (volts)  |                  |  |
|------------|------------------|------------------|--|
| MODULE NO. | INSTRUMENT NO. 1 | INSTRUMENT NO. 2 |  |
| 1          | 500              | 1400             |  |
| 2          | 300              | 1450             |  |
| 3 ·        | 200              | 2000             |  |
| 4          | 10, 000          | 460              |  |
| 5          | <b>4000</b> .    | 4500             |  |
| 6          | 700              | 1750             |  |
| 7          | 1900             | 1300             |  |

#### REJECTION CRITERIA:

INSTRUMENT NO. 1  $\rightarrow$  1  $>100 \mu A$  INSTRUMENT NO. 2  $\rightarrow$  1  $>50 \mu A$ 

# Hi-Pot Test Circuit and Leakage Current Wave Form



# Calculated and Measured Peak Leakage Currents (Metal Substrate Module)

|           |             | INSTRUMENT NO. 1*    |                   | INSTRUMENT NO. 2** |  |
|-----------|-------------|----------------------|-------------------|--------------------|--|
| V<br>(kV) | IDC<br>(μΑ) | MEASURED I peak (μΑ) | CALCULATED I peak | CALCULATED I peak  |  |
| 2, 0      | 4.6         | 44                   | 55                | 27                 |  |
| 6.0       | 13.8        | 152                  | 164               | 82                 |  |
| 10,0      | 29.0        | 260                  | 273               | 136                |  |

<sup>\*5%</sup> RIPPLE VOLTAGE (RATED)

#### SAMPLE CALCULATION:

$$X_{c} = \frac{1}{2\pi fC} = \frac{1}{2\pi (60) (1450 \times 10^{-12})} = 1.829M\Omega$$

$$I_{peak} = \frac{V \times ripple factor}{X_{c}} = \frac{2000 \times 0.05}{1.829 \times 10^{6}} = 55\mu A$$

# Conclusions and Recommendations on Hi-Pot Testing

#### CONCLUSION:

 RIPPLE VOLTAGE FROM HI-POT TEST INSTRUMENT INTERACTS WITH MODULE CAPACITANCE TO PRODUCE HIGH AC RIPPLE CURRENTS
 WHICH CAN LEAD TO IMPROPER MODULE REJECTION

#### RECOMMENDATION:

MEASURE/MONITOR ONLY DC COMPONENT OF LEAKAGE CURRENT

#### CONCLUSIONS:

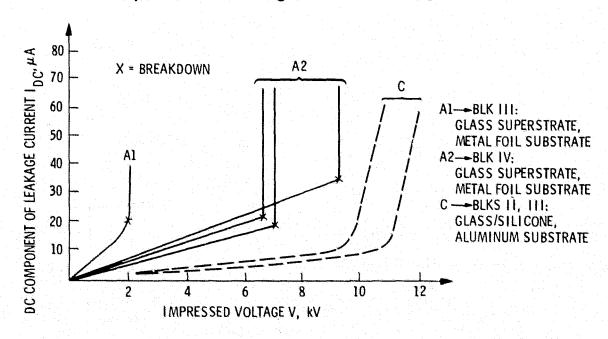
HIGH AC RIPPLE CURRENTS WILL FLOW IN ARRAY GROUND CIRCUIT
IF POWER CONDITIONER FEEDS RIPPLE ONTO THE ARRAY. THESE
HIGH AC CURRENTS MAY MAKE DETECTION OF DC GROUND FAULT
CURRENTS DIFFICULT

<sup>\*\*2 1/2%</sup> RIPPLE VOLTAGE (RATED)

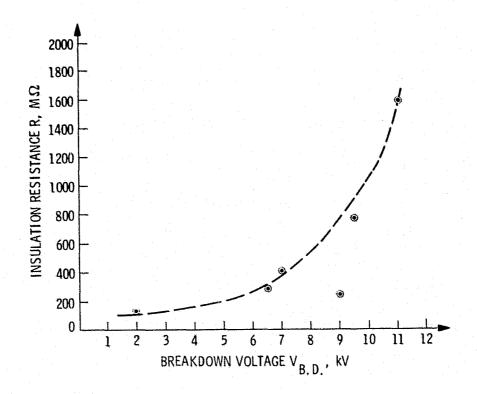
## Quantification of Module Breakdown Voltage

#### **OBJECTIVE**

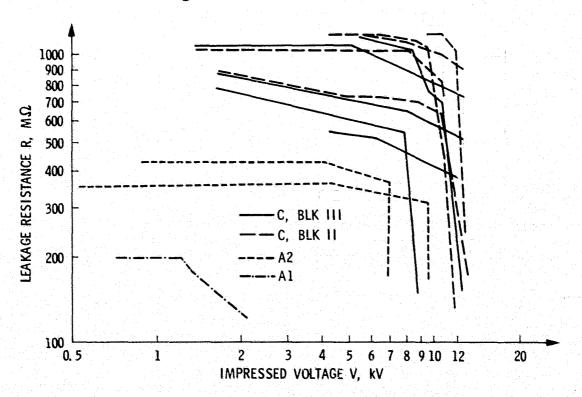
DEVELOP NON-DESTRUCTIVE TEST WHICH QUANTIFIES MODULE INSULATION STRENGTH


#### CANDIDATES

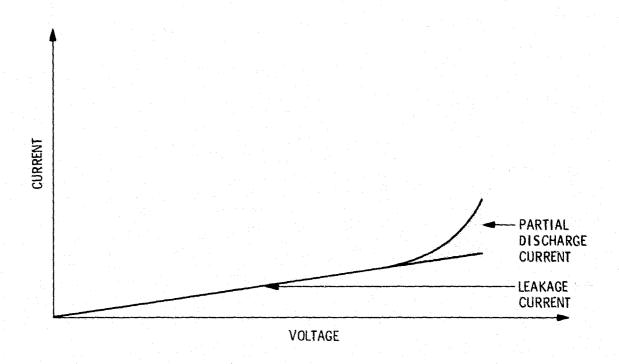
- LEAKAGE CURRENT AT FIXED VOLTAGE (HI-POT)
- INSULATION RESISTANCE
- VOLTAGE AT FIXED PARTIAL DISCHARGE (CORONA) LEVEL


#### **APPROACH**

SEEK CORRELATION BETWEEN CANDIDATE VARIABLES AND BREAKDOWN VOLTAGE (OR STRESS) LEVELS


## Dc Component of Leakage Current vs Applied Voltage




# Module Insulation Resistance vs Breakdown Voltage



## Module Leakage Resistance vs Applied Voltage



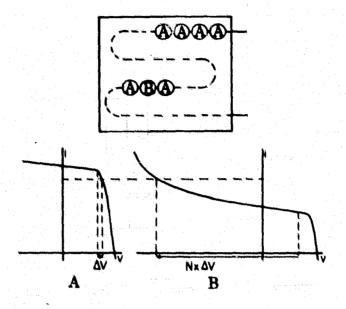
## **Partial Discharge Detection**



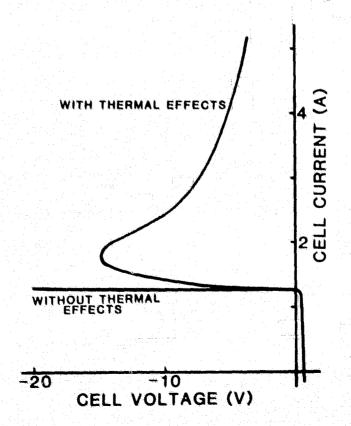
### Conclusions

- LOW LEAKAGE RESISTANCE CORRELATES LOOSELY WITH LOW BREAKDOWN VOLTAGE, BUT THE CORRELATION IS NOT SUFFICIENT TO JUSTIFY USING LEAKAGE RESISTANCE TO QUANTIFY BREAKDOWN STATISTICS
- PARTIAL DISCHARGE DETECTION SYSTEMS APPEAR TO PROVIDE A
   MEANS FOR NON-DESTRUCTIVE DETERMINATION OF MODULE INSULATION
   STRENGTH. SUCH SYSTEMS, HOWEVER, ARE EXPENSIVE: \$25K-\$50K.

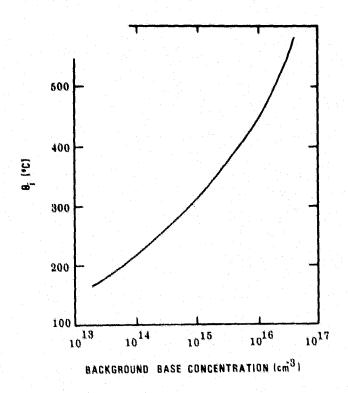
# SECOND-QUADRANT EFFECTS IN SILICON SOLAR CELLS


#### **CLEMSON UNIVERSITY**

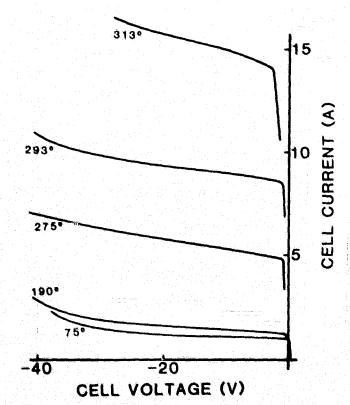
R.A. Hartman J.W. Lathrop


#### Outline

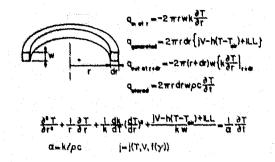
- o INTRODUCTION
  - o WHEN DOES IT OCCUR
  - o THERMAL EFFECTS
  - o PHYSICAL BACKGROUND
  - TEMPERATURE DEPENDANCE OF IV-CURVE
- o MODEL AND OBSERVATIONS
  - o MODEL
  - o IV-CURVE
  - o TEMPERATURES
  - o HOT SPOT
- **o ENCAPSULATED CELLS** 
  - o STRUCTURE
  - o IV-CURVE
  - o DAMAGE
  - O INTEGRATED DIODE SOLAR CELL
- o CONCLUSIONS


N Cells in Series With a Cell With an Anomalous I-V Curve

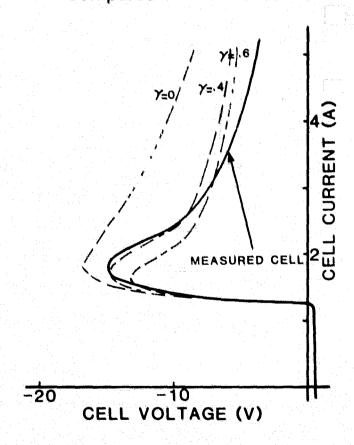



I-V Curve of Unencapsulated Cell With And Without Thermal Effects

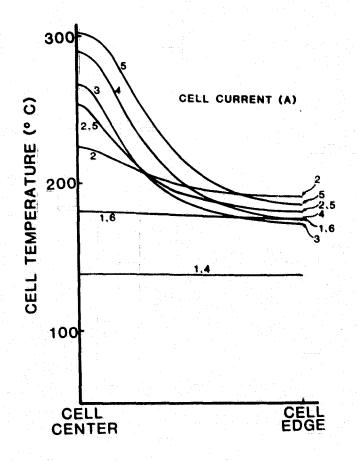



# Intrinsic Temperature vs Doping Level




# I-V Curve of a Cell: Uniform Temperature

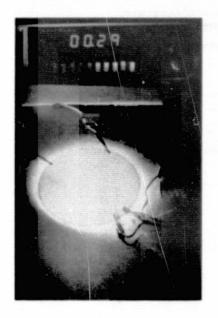



## Model for a Cell in the Second Quadrant

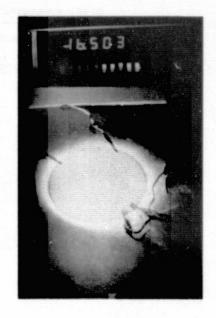


# I-V Curve of Unencapsulated Cell Compared With the Model

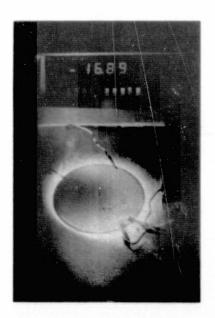



Temperature Profiles of Unencapsulated Cell: Model

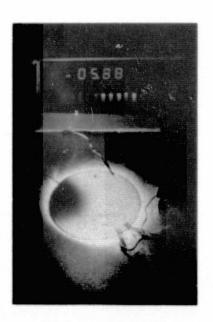



Temperatures of an Unencapsulated Cell Compared With the Model

| CURRENT  | TEMPERAT | URES ° C |
|----------|----------|----------|
| <b>A</b> | MEASURED | MODEL    |
| 1.3      | 100      | 90       |
| 1.4      | 140      | 138      |
| 1.6      | 180      | 182      |
| 1,8      | 200      | 206      |
| 2,0      | 230      | 225      |
| 2,5      | 270      | 253      |
| 3,0      | 280      | 268      |
| 4,0      | 310      | 287      |
| 5,0      | 325      | 304      |


# Development of Hot Spot




At OV

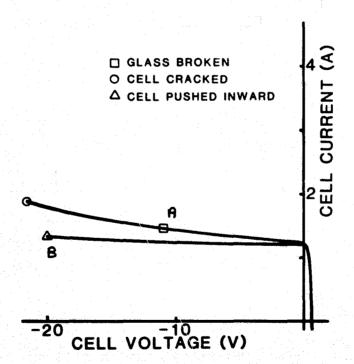


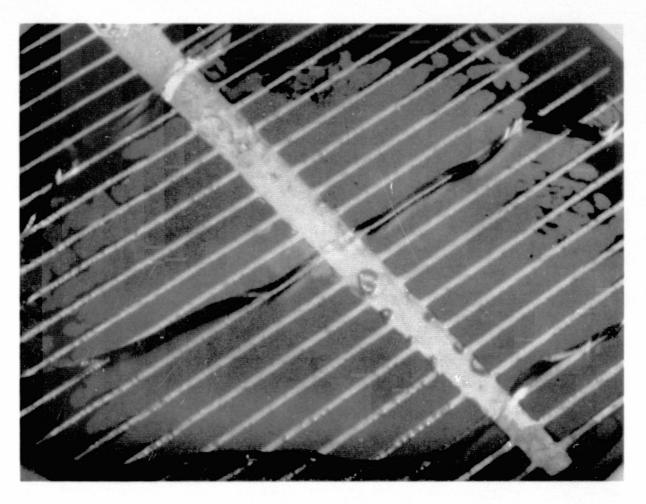
Before the Knee



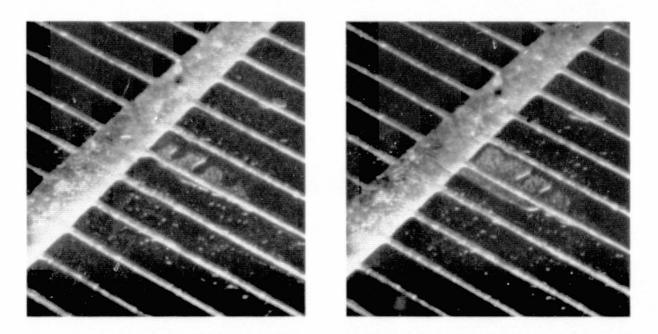
Over the Knee




At High Currents

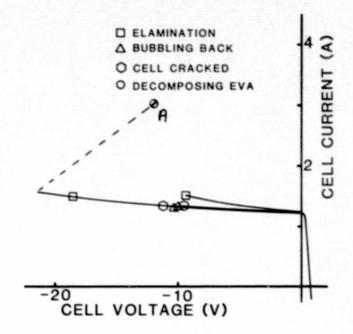

## Structure of Minimodules

| GLASS SUPERSTRATE |                   | MASONITE SL                                   | JBSTRAT      | _     |                                                |
|-------------------|-------------------|-----------------------------------------------|--------------|-------|------------------------------------------------|
|                   | THICKNESS<br>(MM) | THERMAL<br>CONDUCTIVITY<br>(W/* C.CM)<br>X 10 | 1            | (MM)  | THERMAL<br>CONDUCTIVITY<br>(W/* C.CM)<br>x 103 |
| GLASS             | 3.175             | 0.37                                          | KORAD        | 0.076 | 1,93                                           |
| EVA               | 0.445             | 2.62                                          | EVA          | 0.432 | 2.62                                           |
| CELL              | 0.495             | k = k(T)                                      | CELL         | 0.495 | k=k(T)                                         |
| EVA               | 0.254             | 2.62                                          | EVA          | 0.254 | 2.62                                           |
| ALUMINUS          | 0.025             | 2300                                          | SUPER DORLUX | 3,175 | 1.87                                           |
|                   |                   |                                               | EVA          | 0,254 | 2.62                                           |


# I-V Curve of Glass-Encapsulated Cell

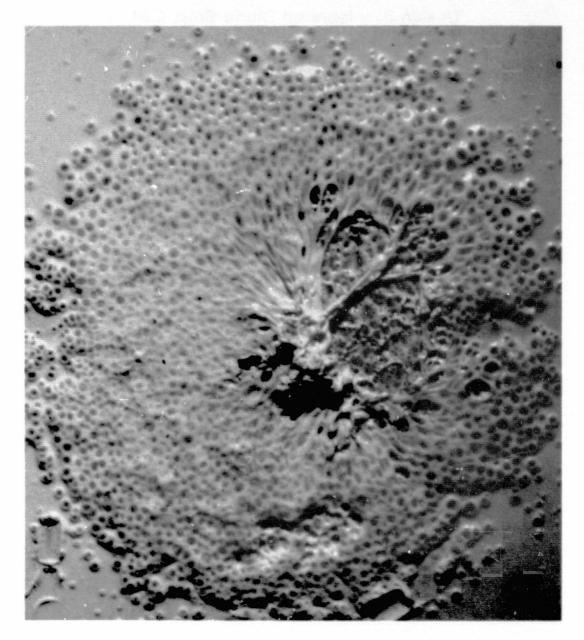
# EVA WITH GLASSMAT AND WHITE PIGMENT





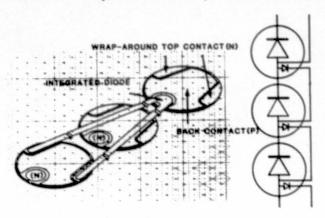

Broken Superstrate and Cell Delamination, Point A of the Curve




Cell Being Pushed Into the Backing at Point B of the Curve

# I-V Curve of Masonite-Encapsulated Cell






Back of Masonite After Three Hours at 10 V Reverse Bias



Degradation of the Encapsulation After a 5-Minute Power Dissipation of Approximately 35 W, at Point A of Curve

# Design of Integrated Diode Solar Cell With Wraparound Top Contact



## Conclusions

- o MODEL DESCRIBES THE BEHAVIOR OF AN UNENCAPSULATED CELL ADEQUATELY
- GLASS ENCAPSULATED CELLS DO NOT WITHSTAND 20V BACKWARD BIAS, FAILURE OF ENCAPSULANT AS LOW AS 10V HAS BEEN OBSERVED
- O DEGRADATION OF MASONITE ENCAPSULATED CELLS STARTS AT 10V
- o INTEGRATED DIODE SOLAR CELL IS A POSSIBLE SOLUTION

**Technology Session** 

Paul K. Henry, Chairman

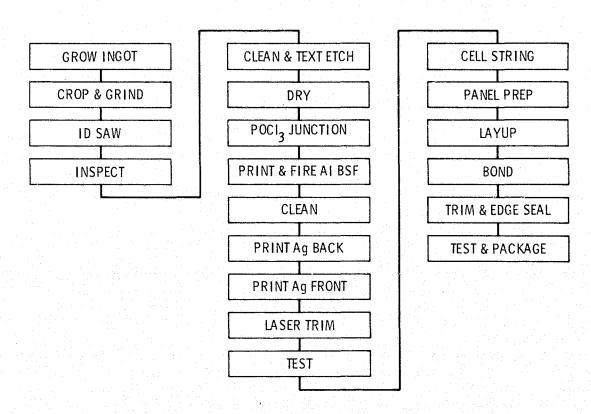
A discussion of Technical Readiness of \$2.80/W<sub>p</sub> technology was presented in the plenary session. The discussion examined the way in which the most widely used technology in the industry, Czsochralski ingot, could meet the 1982 \$2.80/W<sub>p</sub> commercial production milestone in the National Photovoltaics Program.

The analysis of energy payback time for photovoltaic module manufacturing responds to an increasing number of requests to the LSA Project for estimates of energy payback time and inquiries regarding conflicting estimates from other sources. The discussion described how energy payback time computation is incorporated in SAMIS and how the energy content of materials is being assembled into a data base in the Cost Account Catalog.

The latest addition to the SAMICS family of models, IPEG4, was introduced by Robert Chamberlain and Paul Firnett. IPEG is a major expansion in the capabilities, flexibility and simplicity of applying SAMICS, and it is cheap. A single SAMIS run is used to generate input data for IPEG4. Sensitivities can than be run quickly for any of the process input parameters.

# TECHNICAL READINESS \$2.80 Wp

JET PROPULSION LABORATORY
Paul K. Henry


## Agenda

- 1. BACKGROUND
- 2. 1980 PRODUCTION TECHNOLOGY WHERE ARE WE NOW?
- 3. 1982 PRODUCTION TECHNOLOGY WHAT DOES IT TAKE TO GET TO \$2.80/Wp?
  - a) 1982 BASELINE CASE A CONSERVATIVE ESTIMATE
  - b) SENSITIVITY TO VARIOUS PARAMETERS

# Financial Parameters That Apply for All Cases

| AFTER-TAX RATE OF RETURN   LEQUITY CAPITAL                      | 20%/YR    |
|-----------------------------------------------------------------|-----------|
| INTEREST RATE ON CORPORAIL DEBT                                 | 9 1/4%/YR |
| COMBINED STATE/FEDERAL CORPORATE INCOME TAX RATE                | 50%       |
| MAXIMUM INVESTMENT TAX CREDIT                                   | 11%       |
| PROPERTY TAX RATE                                               | 2%/YR     |
| INSURANCE PREMIUM RATE                                          | 4%/YR     |
| GENERAL INFLATION RATE (AFTER 1980)                             | 7%/YR     |
| CONSTRUCTION AND EQUIPMENT CONTINGENCIES                        | 15%       |
| AVERAGE TIME IN INVENTORY FOR RAW MAT'LS & FINISHED GOODS       | 2 WEEKS   |
| DAYS COMPANY CLOSED                                             | 20 DAYS   |
| DAYS PER WORKER'S WEEK                                          | 5 DAYS    |
| PAID DAYS OFF (HOLIDAYS, VACATION, SICK LEAVE, JURY DUTY, ETC.) | 39 DAYS   |

# Process Sequence Applied to Both 1980 and 1982 Cases



## 1980 Commercial Production Case Ground Rules

- ALL EQUIPMENT AND PROCESSES MUST
   PRESENTLY BE IN USE IN FULL-SCALE
   PRODUCTION SOMEWHERE IN THE INDUSTRY
- ALL EQUIPMENT AND PROCESSES
   NEED NOT PRESENTLY BE COLOCATED

## 1980 Commercial Technology Assumptions

#### GENERAL:

- PRODUCTION YEAR 1980
- FACTORY SIZE −5 MW/yr
- 3 SHIFTS/DAY, 7 DAYS/WEEK FOR INGOT GROWTH & SLICING
- 1 SHIFT/DAY, 5 DAYS/WEEK FOR ALL OTHER WORK STATIONS

#### SILICON MATERIAL:

POLYSILICON COST - \$84/Kg

#### MODULE DESIGN AND PERFORMANCE:

- CELL DIAMETER 4. 015 INCH (102 mm)
- 2.5 FT x 4 FT MODULE (0.76m x 1.22m)
- GLASS SUPERSTRATE, PVB, CRANE GLASS, TEDLAR
- EXTRUDED ALUMINUM FRAME
- PACKING FACTOR -77%
- MODULE EFFICIENCY 9,47%
- ENCAPSULATED CELL EFFICIENCY 12.3%
- MODULE PERFORMANCE 88 W<sub>D</sub>/MODULE
- SERIES-PARALLELING 11 CELLS/STRING, 8 PARALLEL STRINGS
- BYPASS DIODE

#### INGOT GROWTH:

• ONE 20 kg Cz INGOT PER CRUCIBLE

#### INGOT SAWING:

- ID SAWING 25 mils/ SLICE PLUS KERF
- SAWING RATE 1 5 in/min
- SAWING YIELD 95%
- SAWS/OPERATOR 3
- BLADE LIFE 2500 SLICES

#### CELL PROCESSING:

- TEXTURE ETCHED
- POCI<sub>3</sub> JUNCTION FORMATION
- ALUMINUM BSF
- CLEAN & BRUSH
- PRINTED SILVER FRONT AND BACK CONTACTS (\$18, 40/oz SILVER)
- CELL PROCESSING YIELD -- 87%

#### MODULE ASSEMBLY:

- CELL STRINGER -\$75K EACH
- ◆ CELL STRINGERS/OPERATOR 1
- MODULE TEST YIELD 90%

# 1980 Commercial Technology Value Added (1980\$)

|                                             | VALUE ADDED (\$/Wp)   |
|---------------------------------------------|-----------------------|
| INGOT GROWTH (INCL. SILICON)                | 2.86                  |
| SAWING                                      | 0.83                  |
| CELL PROCESSING                             | 0.65                  |
| MODULE ASSEMBLY (INCL. ENCAPSULATION MATIL) | 1,20                  |
|                                             | \$5.54/W <sub>P</sub> |

## 1982 Commercial Technology Ground Rules

#### ● 1982 BASELINE CASE:

ALL EQUIPMENT AND PROCESSES MUST BE
PRESENTLY IN USE OR PROVEN AND AVAILABLE
FOR PURCHASE, INSTALLATION AND COMMERCIAL
OPERATION BY LATE 1982. ALL PARAMETERS
VERY WELL KNOWN.

#### • SENSITIVITY CASES:

SUBSTITUTE OPTIMISTIC OR PESSIMISTIC VALUES FOR CERTAIN KEY PARAMETERS

## 1982 Commercial Technology Assumptions

#### GENERAL:

- \* FULL-SCALE PRODUCTION STARTS LATE 1982
- FACTORY SIZE 30 MW/yr
- 3 SHIFTS/DAY, 7 DAYS/WEEK FOR ALL WORK STATIONS

"INDICATES A DEPARTURE FROM 1980 COMMERCIAL TECHNOLOGY CASE

#### MODULE DESIGN AND PERFORMANCE:

- CELL DIAMETER 4.015 INCH (102mm)
- 4ft x 4ft MODULE (1, 22m x 1, 22m)
  - GLASS SUPERSTRATE, "EVA, CRANE GLASS, TEDLAR
- " NO FRAME
- PACKING FACTOR ~78% (ROUND CELLS)
- MODULE EFFICIENCY ~ 9,6%
  - ENCAPSULATED CELL EFFICIENCY 12.3%
- MODULE PERFORMANCE = 143 Wp/MODULE
- SERIES-PARALLELING 11 CELLS/STRING, 13 PARALLEL STRINGS
  - BYPASS DIODE

\*INDICATES A DEPARTURE FROM 1980 COMMERCIAL TECHNOLOGY CASE

#### SILICON MATERIAL:

POLYSTLTCON COST - \$84/Kg (\$1980)

#### INGOT GROWTH:

■ TWO 26 Kg Cz INGOTS PER CRUCIBLE

#### INGOT SAWING:

- • ID SAWING 20 mil/SLICE PLUS KERF
- ■ SAWING RATE 2.0 in/min
  - SAIVING YIELD 95%
- SAWS/OPERATOR -- 5
- " BLADE LIFE 3100 SLICES

"INDICATES A DEPARTURE FROM 1980 COMMERCIAL TECHNOLOGY CASE

#### CELL PROCESSING:

- TEXTURE ETCHED
- POCI3 JUNCTION FORMATION
- ALUMINUM BSF
- CLEAN AND BRUSH
- PRINTED SILVER FRONT AND BACK CONTACTS (\$18, 40/oz SILVER)
- CELL PROCESSING YIELD -89.1%

#### MODULE ASSEMBLY:

- ⇒ CELL STRINGERS/OPERATOR 4
- MODULE TEST YIELD 99%

# 1982 Commercial Technology Value Added (1980\$)

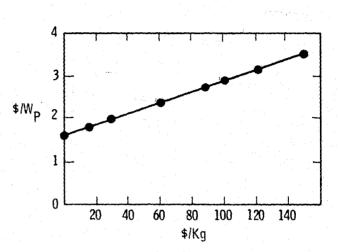
|                                             | VALUE ADDED (\$1Wp)   |
|---------------------------------------------|-----------------------|
| INGOT GROWTH (INCL. SILICON)                | 1,63                  |
| SAWING                                      | 0.37                  |
| CELL PROCESSING                             | 0.36                  |
| MODULE ASSEMBLY (INCL. ENCAPSULATION MATIL) | 0.34                  |
|                                             | \$2.70/W <sub>P</sub> |

<sup>&</sup>quot;INDICATES A DEPARTURE FROM 1980 COMMERCIAL TECHNOLOGY CASE

# \$/Wp Effect of Changes Between 1980 and 1982 Technologies

| PROCESS STEP      | PARAMETERS                       | <u>1980</u>     | <u>1982</u>   | <u>0\$/W</u> P |
|-------------------|----------------------------------|-----------------|---------------|----------------|
| INGOT GROWTH      | INGOTS/CRUCIBLE                  | 1               | 2             | \$0.40         |
| SAWING            | SLICE + KERF (D+K)               | 25              | 20            | 0.39           |
|                   | SAWS/OPERATOR                    | 3               | 5             | 0.18           |
|                   | BLADE LIFE (SLICES)              | 2500            | 3100          | 0.02           |
| ALUMINUM BACK     | YIELD                            | 98%             | 99%           | 0.04           |
|                   | PRINTERS/OPERATOR                | 2               | 3             | 0.02           |
| SILVER FRONT/BACK | YIELD (EACH)                     | 98%             | 99%           | 0.08           |
|                   | PRINTERS/OPERATOR                | 2               | 3             | 0.04           |
| LAMINATION        | THROUGHPUT RATE                  | 0.2             | 0.3           | 0.03           |
|                   | (MODULES/MIN)                    |                 |               |                |
| EDGE TRIM & SEAL  | FRAME                            | FRAME           | NO FRAME      | 0.48           |
| MODULE TEST       | YIELD                            | 90%             | 99%           | 0.50           |
|                   |                                  |                 |               | \$2.18         |
|                   | SHIFTS/DAY                       | [3-INGOT & SAW] | 3 (7 DAYS/WK) | 0.54           |
|                   |                                  | 1 REST OF PLANT |               |                |
|                   | MISC                             |                 |               | 0.12           |
|                   | BOTTOM LINE (\$/W <sub>P</sub> ) | \$5.54 -        | \$2.70 =      | \$2.84         |

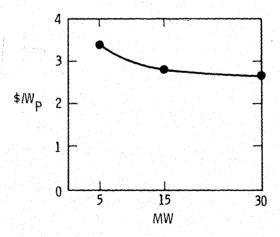
# **Total Initial Capital Investment**


|   | PLANT DESCRIPTION     | TOTAL DIVIDED INVESTMENT BY OUTPUT (MILLIONS) (\$/W) |
|---|-----------------------|------------------------------------------------------|
| T | 1980 5 MW             | 12.6 2.5                                             |
|   | 1982 5 MW (4 SHIFTS)  | 7.8                                                  |
|   | 1982 15 MW (4 SHIFTS) | 17.6                                                 |
|   | 1982 30 MW (4 SHIFTS) | 32,7                                                 |

<sup>\*</sup>IN 1980 DOLLARS. INCLUDES EQUIPMENT, WORKING CAPITAL, ALL FACILITIES AND LAND.

# Silicon Price Sensitivity

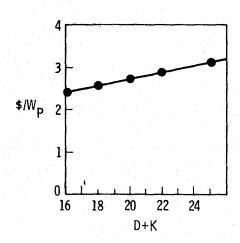
BASED ON THE \$2.70/W CASE WITH THE 2 INGOTS/CRUCIBLE Cz FURNACE AND 20 mil D+K ID SAWS:


| MODULE PRICE<br>(\$/W) |
|------------------------|
| 1.55                   |
| 1.74                   |
| 1.93                   |
| 2.37                   |
| 2.70                   |
| 2.92                   |
| 3.19                   |
| 3.60                   |
|                        |



# Factory Size Sensitivity

BASED ON THE \$2.70/W CASE WITH THE 2 INGOT/CRUCIBLE Cz FURNACE, 20 mil D+K SAWS:


| FACTORY<br>SIZE<br>(MW) | MODULE<br>PRICE<br>(\$/W <sub>P</sub> ) |
|-------------------------|-----------------------------------------|
| 5                       | 3.35                                    |
| 15                      | 2.82                                    |
| 30                      | 2.70                                    |



# Saw Slice + Kerf (D + K) Sensitivity

BASED ON THE \$2.70/W<sub>P</sub> CASE WITH THE 2 INGOT/CRUCIBLE Cz FURNACE, 2 INCH/MINUTE PLUNGE RATE:

| D+K<br>(MILS) | MODULE PRICE<br>\$/Wp |
|---------------|-----------------------|
| 25            | 3.09                  |
| 22            | 2.86                  |
| 20            | 2.70                  |
| 18            | 2.54                  |
| 16            | 2.39                  |



# Major Components of Capital Investment\*

| COMPONENT            | 1980<br>(5 MW) | 1982<br>(5 MW) | 1982<br>(15 MW) | 1982<br>(30 MW) |
|----------------------|----------------|----------------|-----------------|-----------------|
| WORKING CAPITAL      | 2.8            | 1.8            | 4.8             | 9.3             |
| FACILITIES           | 2.7            | 1.8            | 3.1             | 5.3             |
| SAWS                 | 1.6            | 1.1            | 3.2             | 6.4             |
| CZ EQUIPMENT         | 1.2**          | 1.0            | 3.0             | 6.0             |
| PRINTERS + DRYERS    | 0.6**          | 0.2            | 0.4             | 0.6             |
| OTHER CELL EQUIPMENT | 2.4**          | 1.1            | 1.8             | 2.9             |
| REMAINING EQUIPMENT  | 1.2**          | 0.7            | 1.2             | 2.1             |
| TOTAL EQUIPMENT      | 7.0            | 4.1            | 9.6             | 18.0            |

<sup>\*</sup>IN MILLIONS OF 1980 DOLLARS.

<sup>\*\*</sup>OPERATED 40 HOURS/WEEK. OTHER EQUIPMENT OPERATED 160 HOURS/WEEK.

# **Options for Further Price Reductions**

- NONPRECIOUS METALS
- PLATING METALLIZATION
- SEMIX INGOT GROWTH
- HEM INGOT GROWTH
- WEB RIBBON
- EFG RIBBON
- IMPROVED SAWING

## Summary

- PATH FROM 1980 COMMERCIAL TECHNOLOGY TO
   1982 COMMERCIAL TECHNOLOGY CLEARLY DISCERNIBLE —
   AUTOMATION, YIELDS, MODULE DESIGN
- ALL ASSUMPTIONS QUITE CONSERVATIVE NO OPTIMISTIC ASSUMPTIONS NECESSARY
- MODULE ENGINEERING IMPORTANT FACTOR
- BY 1982, CELL AND MODULE PROCESSING WITHIN FACTOR
   OF 2 OF 1986 GOAL
- INGOT GROWTH AND SAWING WILL BE LARGE 1982 COST DRIVERS
- POLYSILICON WILL CONTRIBUTE OVER \$1.00/W TO 1982 PRICE

#### **Conclusions**

- TECHNICAL READINESS FOR \$2,80W<sub>P</sub> COMMERCIAL PRODUCTION IN 1982 HAS BEEN ACHIEVED
- SEVERAL OPTIONS EXIST WHICH COULD DRIVE THE PRICE WELL BELOW \$2.80/W<sub>P</sub> BY LATE 1982 OR 1983

# PRELIMINARY ENERGY PAYBACK ANALYSIS FOR A PV MANUFACTURING INDUSTRY

JET PROPULSION LABORATORY Erin D. Muha



# ENERGY PAYBACK TIME (PBT)



# **SOLAR ARRAY LIFETIME**

## **Energy Content of Materials**

| SAMICS<br>REFERENT | MATERIAL                            | ENERGY<br>CONTENT       | SAMICS<br>REFERENT | MATERIAL                           | ENERGY<br>CONTENT         |
|--------------------|-------------------------------------|-------------------------|--------------------|------------------------------------|---------------------------|
| EG1056D            | ACETATE, CHROMIUM                   | 19,7 kW/lb              | EAID               | HYDROGEN FLUORIDE                  | 147.8 kWh/ft <sup>3</sup> |
| EG1058D            | ACETATE, NICKEL                     | 19.7 kW/lb              | E1128D             | INK SOLVENT (BUTYL ACETATE)        | 1.73 kW/lb                |
| EG1064D            | ACETATE, SODIUM                     | 19.7 kW/lb              | E1360D             | KORAD A (76.2 mm thick)            | 0.66 kWh/lb               |
| E1016D             | ACID, ACETIC                        | 2.95 kW/lb              | E1382D             | LUCITE                             | 0.66 kWh/lb               |
| E1400D             | ACID, NITRIC                        | 4.25 kW/lb              | EG30D              | MYLAR (5 mil thick)                | 0.00642 kWh/ft            |
| E1640D             | ACID, SULFURIC                      | 0.15 kWh/lb             | E1796D             | NITROGEN GAS                       | 0.036 kWh/ft3             |
| E1352D             | ALCOHOL, ISOPROPYL                  | 16.5 kWh/gal            | EG55D              | NITROGEN, LIQUID                   | 1.27 kWh/I                |
| EG52D              | ALCOHOL, METHANOL                   | 1.26 kWh/l              | E1448D             | OXYGEN GAS                         | 0.028 kWh/ft3             |
| E0001D             | ALCOHOL, METHYL                     | 4.77 kWh/gal            | EM1460D            | PHOSPHINE GAS                      | 1.42 kWh/ft3              |
| E1096D             | ALUMINUM                            | 31.9 kWh/lb             | E1502D             | POCL3 (PHOSPHORUS OXYCHLORIDE)     | 63.5 kWh/lb               |
| E1108D             | AMMONIA GAS                         | 0.18 kWh/ft3            | EG1D               | POLYVINYL BUTYRAL (0.01 mil thick) | 1.479e-4kWh/ft            |
| E1110D             | AMMONIUM HYDROXIDE                  | 37.4 kWh/ft3            | EG1007D            | RESIST, PLATING                    | 19.7 kWh/gal              |
| E1112D             | ARGON GAS                           | 0.028 kWh/ft3           | EG1586D            | SILICON (POLYCRYSTALLINE MG)       | 23.97 kWh/kg              |
| EP1044D            | CERAMIC BLOCK                       | 0.824 kWh/block         | E1586D             | SILICON (POLYCRYSTALLINE Se-G)     | 621 kWh/kg                |
| EG16D              | COPPER STRIP                        | 0.036 kWh/ft            | E1592D             | SILVER                             | 0.441 kWh/g               |
| E5009D             | COVER FILM, POLYESTER (2 mil thick) | 2.56E-3 kWh/ft2         | E1632D             | STYCAST (1269A)                    | 0 659 kWh/lb              |
| E1284D             | GLASS, TUBING                       | 3274.27 kWh/\$          | E1664D             | TANTALUM PENTOXIDE                 | 0.11 kWh/g                |
| E1812D             | GLASS, FLOAT                        | 4.89 kWh/ft2            | E1672D             | TEDLAR (1 mil thick)               | 0.00651 kWh/ft            |
| E1480D             | GLASS, PLEXIGLASS                   | 52.6 kWh/m <sup>2</sup> | E1704D             | TITANIUM                           | 59.73 kWh/lb              |
| EP12D              | GLASS, SEALING                      | 0.83 kWh/m <sup>2</sup> | ES002D             | TITANIUM DIOXIDE                   | 11.27 kW/lb               |
| E1828D             | GLASS, TEMPERED FLOAT               | 4.89 kWh/ft2            | EG4D               | TOLUENE                            | 3.9 kWh/gal               |
| EG1018D            | GRAPHITE BEAM MOUNT                 | 2.8 kWh/each            | E1716D             | TRICHLOROSILANE                    | 73.9 kWh/lb               |
| E1144D             | HYDROGEN GAS                        | 2.34 kWh/m <sup>3</sup> | EG1900D            | VACUUM PUMP OIL                    | 71,42 kWh/gal             |

# Payback Time Factor

pbtf = 
$$\frac{G \circ CHPY}{1000}$$
 = 1.7531617  $\left(\frac{hr}{yr}\right) \left(\frac{kW_e}{W_p}\right)$ 

G = SOLAR ENERGY USAGE (%) = 0.20 
$$\frac{W_e hr}{W_p hr}$$

CHPY = CALENDAR HOURS PER YEAR = 
$$8765.8128 \frac{hr}{yr}$$

1000 = CONVERSION FACTOR = 
$$\frac{W_e}{kW_e}$$

# Example: Energy Payback Analysis Using SAMICS

#### PARAMETERS:

- (1) Cz INGOT GROWTH
- (2) ID SAWING
- (3) 4-in. ROUND INGOT
- (4) 15% ENCAPSULATED CELL EFFICIENCY
- (5) MANUFACTURING YEAR IS 1986
- (6) 100 MEGAWATTS PRODUCED PER YEAR

#### RESULT:

NET ENERGY PAYBACK = 2.962 YEARS

\*DESIGNATES SAMICS CATALOGUE ITEMS WITH VALUE FOR ENERGY CONTENT

| SAMIS DIRECT REQUIREMENTS |                               |  |  |  |
|---------------------------|-------------------------------|--|--|--|
| REFERENT                  | DESCRIPTIVE NAME              |  |  |  |
| D1032D                    | ACID, POISONOUS               |  |  |  |
| *E1640D                   | ACID, SULFURIC                |  |  |  |
| C2032D                    | AIR, COMPRESSED               |  |  |  |
| *E1352D                   | ALCOHOL, ISOPROPYL            |  |  |  |
| E1112D                    | ARGON GAS                     |  |  |  |
| E1204D                    | BLADES, DIAMOND               |  |  |  |
| EG1024D                   | BLADE DRESSING                |  |  |  |
| EA4D                      | BUS BAR, COPPER               |  |  |  |
| E1100D                    | CHANNEL, ALUMINUM             |  |  |  |
| E1080D                    | COATING, ANTIREFLECTIVE       |  |  |  |
| E1180D                    | CRATES, WOODEN                |  |  |  |
| *C1032B                   | ELECTRICITY                   |  |  |  |
| E1232D                    | EDGE SEAL                     |  |  |  |
| EF1015D                   | EVA FILM, 0.015 IN. THICK     |  |  |  |
| *E1829D                   | GLASS, TEMPERED FLOAT         |  |  |  |
| E1526B                    | GRAPHITE                      |  |  |  |
| EG13D                     | GRINDING WHEEL                |  |  |  |
| EP20D                     | INTERCONNECTS, COPPER         |  |  |  |
| EF1017                    | MYLAR/ALUMINUM FILM BACK      |  |  |  |
| C1064B                    | NATURAL GAS                   |  |  |  |
| *E1416D                   | NITROGEN GAS, REG.            |  |  |  |
| *E1448D                   | OXYGEN GAS                    |  |  |  |
| EP27D                     | PASTE, ALUMINUM               |  |  |  |
| E1064D                    | PASTE, SILVER 80%             |  |  |  |
| *E1504D                   | POCL3, PHOSPHOROUS            |  |  |  |
| *E1520D                   | QUARTZ                        |  |  |  |
| E1576D                    | SCREEN                        |  |  |  |
| E1600D                    | SODIUM HYDROXIDE              |  |  |  |
| EG1600D                   | SOLDER PASTE                  |  |  |  |
| E1608D                    | SPARE PARTS                   |  |  |  |
| *E1586D                   | SILICON, POLYCRYSTALINE, (SG) |  |  |  |
| EG14D                     | SILICON SEED CRYSTAL          |  |  |  |
| D1096B                    | WASTE, SOLID                  |  |  |  |
| C1128D                    | WATER, COOLING                |  |  |  |
| C1144D                    | WATER, DEIONIZED              |  |  |  |
| C1016B                    | WATER, DOMESTIC               |  |  |  |
| D1048D                    | WATER, POLLUTED               |  |  |  |

# How Energy Payback Time Is Calculated By the SAMICS Program

 $PBT = \frac{ENERGY}{f * IS * pbtf}$ 

PBT = ENERGY PAYBACK TIME FOR A COMPANY (OR A WORK STATION)

ENERGY = AMOUNT OF ENERGY PER YEAR FROM NATURAL RESOURCES NEEDED IN THE MANUFACTURING OF PRODUCT X (MEASURED IN kW hr/yr OF ACTUAL ELECTRICAL ENERGY)

F = RATIO OF A PRODUCT X PRODUCED BY AN INDIVIDUAL COMPANY TO THE TOTAL AMOUNT OF PRODUCT X PRODUCED BY THE WHOLE PRODUCT X INDUSTRY

IS = INDUSTRY SIZE (W<sub>D</sub>/yr)

pbtf = PAYBACK TIME FACTOR; CONVERTS W<sub>p</sub> OF ENERGY MANUFACTURED BY THE WHOLE PRODUCT X INDUSTRY TO Whr OF ENERGY PRODUCED BY PRODUCT X OVER AN AVERAGE YEAR OF PRODUCT X'S USE (hr/yr) (kW<sub>e</sub>/W<sub>p</sub>)

# IPEG4: IMPROVED PRICE ESTIMATION GUIDELINES COMPUTER PROGRAM IMPLEMENTATION

JET PROPULSION LABORATORY

Robert G. Chamberlain

- WHAT IS IPEG AND SO WHAT?
- LET SAMIS DO THE SCUT WORK
- WHEN TO USE SAMIS, WHEN IPEG
- HOW TO USE IPEG4

# What Ever Happened to IPEG2 and IPEG3?

# ORIGINAL IPEG - INTERIM PRICE ESTIMATION GUIDELINES

(JPL DOC 5101-33, 9/10/77, BY R. W. ASTER)

- PRICE = (0.49 EQPT + 97 SQFT + 2.1 DLAB + 1.3 MATS + 1.3 UTIL) IQUAN
- "INTERIM" MEANT "WHILE SAMIS PROGRAMMING WAS COMPLETED"
- RESULTS COMPARE WELL WITH SAMIS BUT "WHAT IF . . . CHANGES?"

# IPEG2 - IMPROVED PRICE ESTIMATION GUIDELINES

• PRICE = 
$$(C_{13}^{EQPT}_3 + C_{15}^{EQPT}_5 + ... C_{1,20}^{EQPT}_{20} + C_2^{SQFT} + C_3^{DLAB} + C_4^{MATS} + C_5^{UTIL})$$

• 
$$C_{13} = 0.81$$
,  $C_{15} = 0.61$ ,  $C_{17} = 0.54$ ,  $C_{1,10} = 0.49$ ,  $C_{1,15} = C_{1,20} = 0.47$ ,  $C_{2} = 110.61 *80/61^{2}$ ,  $C_{3} = 2.14$ ,  $C_{4} = C_{5} = 1.23$ 

- SOME SUBMODELS AND DATA IMPROVED
- EQUIPMENT LIFETIME DIFFERENCES AFFECT PRICE
- ANALYTIC EXPRESSIONS DERIVED FOR THE C'S

### IPEG3 - SUPER-IPEG (EXISTS IN CONCEPT ONLY)

- EXPAND CATEGORIES OF SOFT AND DLAB
- INCLUDE OFF-DIAGONAL TERMS IN INDIRECT REQUIREMENT SUBMODEL
- MAY OR MAY NOT BE IMPLEMENTED EVENTUALLY

### IPEG4 - COMPUTER VERSION OF IPEG2

- COMPUTES PRICE FOR CHANGES IN EQPT, SQFT, DLAB, MATS, UTIL, QUAN (TRIVIAL)
- COMPUTES NEW C'S FOR CHANGES IN ECONOMIC ASSUMPTIONS

(NOT TRIVIAL)

- FACILITATES SENSITIVITY STUDIES
  - PRINTER PLOTS OF (EG) ROROE VS PRICE
  - MUCH CHEAPER THAN SAMIS: RUN COST≈ \$4 + \$2/CASE
- DOES NOT REPLACE SAMIS
  - IPEG4 HAS SIMPLIFIED ECONOMIC MODEL (EG NO INFLATION)
  - IPEG4 HAS NO NONLINEARITIES OF SCALE

# **IPEG4 Documentation**

JPL DOC 5101-156, IMPROVED PRICE ESTIMATION GUIDELINES (IPEG.)

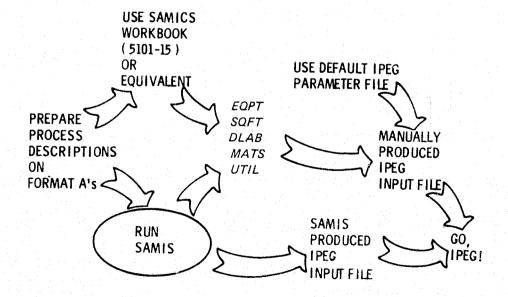
COMPUTER PROGRAM USER'S GUIDE, PAUL J. FIRNETT, JULY 21, 1980.

JPL DOC 5101-158, IMPROVED PRICE ESTIMATION GUIDELINES (IPEG.)

DESIGN DOCUMENT, ROBERT W. ASTER, ET AL, JULY 21, 1980

JPL DOC 5101-159, IMPROVED PRICE ESTIMATION GUIDELINES (IPEG.)

COMPUTER PROGRAM SOURCE CODE, ROBERT G. CHAMBERLAIN, ET AL,


JULY 21, 1980

# **IPEG4 Questionees**

FOR OUESTIONS ON THE COMPUTER PROGRAM, CONTACT:
PAUL FIRNETT (213) 354-4670

FOR OUESTIONS ON THE MODEL, CONTACT:
BOB ASTER (213) 577-9545

# Let SAMIS Do the Scut Work?



# Three Ways to Use IPEG

## WHO NEEDS A COMPUTER?

- CALCULATE EQPT, SQFT, DLAB, MATS, UTIL (SOMEHOW)
- USE IPEG2 VALUES OF COEFFICIENTS: CALCULATE PRICE
- CALCULATE EFFECTS OF CHANGES IN EQPT, SQFT, DLAB, MATS, UTIL

# LET SAMIS CALCULATE DIRECT REQUIREMENTS

- USE SAMIS TO GET EQPT . . . UTIL FROM FORMAT A'S
- USE IPEG2 BY HAND, OR
- BY COMPUTER VIA DEFAULT IPEG PARAMETER FILE
- COMPUTE (AND PLOT?) SENSITIVITIES TO !NPUTS AND PARAMETERS

### USE SAMIS TO TAILOR THE IPEG PARAMETERS

- USE SAMIS TO GET EQPT . . . UTIL FROM FORMAT A'S
- LET SAMIS ADJUST IPEG PARAMETERS FOR ECONOMIES OF SCALE, DETAILED INDIRECT STRUCTURE, FACILITY REQUIREMENTS, ETC.

# How to Read SAMIS Output (to Get IPEG Inputs)

#### WHAT HAS TO BE FOUND:

*EQPT* = PURCHASE COST OF EQUIPMENT IN MFG YEAR \$

SQFT = DIRECT FLOOR AREA NEEDED BY EQUIPMENT AND OPERATORS IN SQUARE FEET.

DLAB = ANNUAL COST OF DIRECT LABOR (INCLUDING FRINGE BENEFITS)
IN MFG YEAR \$

MATS = ANNUAL COST DIRECT MATERIALS AND SUPPLIES IN MFG YEAR \$

UTIL = ANNUAL COST OF DIRECT (MFG PROCESS REQUIRED) UTILITIES
IN MFG YEAR \$

1. QUAN = ANNUAL PRODUCTION QUANTITY ASSOCIATED WITH EQPT, SQFT, DLAB, MATS, UTIL EXPRESSED IN PEAK WATTS PER YEAR.

P. QUAN = ANNUAL PRODUCTION QUANTITY EXPRESSED IN PRODUCT UNITS (EG: MODULES OR CELLS) PER YEAR.

G = INFLATION RATE IN FRACTION/YEAR.

# How to Read SAMIS Output: Warnings

- IPEG CAN BE APPLIED AT COMPANY LEVEL OR PROCESS LEVEL
  - DO NOT MIX INPUTS, BUT IQUAN COMES FROM INDUSTRY LEVEL REPORT AND G COMES FROM COMPANY LEVEL REPORT
- IPEG DOES NOT DEAL WITH INFLATION SO EQPT, DLAB, MATS, AND UTIL (AND C2)
   MUST BE IN SAME YEAR DOLLARS AS PRICE (BUT THE INFLATION RATE, G, IS
   NEEDED NONETHELESS)
- BYPRODUCT EXPENSES AND REVENUES, IF ANY, ARE TO BE INCLUDED IN MATS.
- IPEG WILL ALLOW YOU TO VARY *EOPT* (FOR EXAMPLE) WITHOUT VARYING *DLAB* (FOR EXAMPLE). IF YOU MEAN TO INCREASE THE NUMBER OF MACHINES WITHOUT CHANGING THE NUMBER OF MACHINES PER OPERATOR, YOU MUST ALSO INCREASE *DLAB*. IPEG CONTAINS NO RELATIONSHIPS BETWEEN ITS INPUTS.

## SIMULATION REPORTS

\*\* INDUSTRY.PRICE.UUANTITY.REPORT \*\*

SAMIS III - RELEASE 3

INDUSTRY SIZE INCEX = 1

INDUSTRY: DEFAULT, FIFTY CENT PER WATT CASE, LSA TENTH PIM

INDUSTRY OBJECTIVE: NEW PHOTOVOLTAIL POWER CAPABILITY FINAL PRODUCT: PMODULE, CRATES

PRODUCING 172.80 PEAK-WATTS PER PRODULE

QUANTITY: 15000000 = (1.50 07 PEAK-WATTS/YEAR) => 8.6818 04 PMDDULE/YEAR

PRICE: \_\_5814 \$(1975)/PEAK-WATT => \$ 100.468 \$(1975)/PMODULE

THE STANUARD BASE YEAR 15 1975

THE STANDARD MANUFACTURING YEAR IS 1986

THE REPURT YEAR IS 1975

# Company Data

SIMULATION KEPOKTS

10:11 AM 06/25/80 PAGE : COMPANY: \$-50/WATT

```
** 1.50/HATT: COMPANY. SUMMARY. REPORT **
COMPANY: $.50/WATT. $.50 PER WATT
PRODUCT
         SUBSTITY SOLD
                                ADRMATIVE PRICE
PHODULE
                                 100.468 $11975)/CHATED PM =
                                                              .5614 $(1975)/PEAK-WATT
  ENERGY ADDED PAYBACK TIME =
                               .196 YEARS
  COMPANY MARKUP =
                    1.687 TIMES (DIRELT EXPENSES PLUS EXTERNAL PRODUCT COSTS)
  COMPANY PROFIT =
                        942,814. $11975) = 10.8% OF SALES REVENUES = 101.5% OF EQUITY
                                                                                                    NEEDED FOR
     CAPITAL VALUES
                                                                                   G = \sqrt{A-1} \backslash PROCESS DATA, TOO
              INFLATER (1975) 10 (1986)
                                              DEFLATOR (1986 TO 1975)= .4757
                          IN $ ( 1900)
                                                ----- IN $(1975)-----
                 INITIAL
                             BUCK
                                    TAXABLE
                                                 INITIAL
                                                              BOOK
                                                                    TAXABLE
     FACILITIES 2121787.
                           473470.
                                     406972.
                                                 1009234.
                                                            225207.
                                                                     194529 .
     EGUIPMENT
                           1870008.
                                                 2295229.
                                                            669475.
                                    1106374.
                                                                     526259.
                                                                                   EOPT
     WORKING
     LAND
                             50415.
                                                   23460.
                                                             23980.
                                                ------
        TOTAL
                 8887540. 4283857. 3455746.
                                                 4227411. 2037629. 1643735.
     FINANCIAL PARAMETERS
      COST OF
                  HATE OF RETURN
                                                                INCOME TAX
                                                                             CONSTRUCTION CONTINGENCIES
                                      DEBT
                                                   LEVERAGE
      CAPITAL
                     UN EQUITY
                                 INTEREST RATE
                                                (TUTAL/EQUITY)
                                                                                            EQUIPMENT
                                                                   RATE
                                                                               FACILITIES
     -CALCULATED-
                      -INPUT-
                                    -INPUT-
                                                   -INPUT-
                                                                -LALCULATED-
                                                                                 -INPUT-
                                                                                             -INPUT-
       17.448
                       $00.00t
                                      9.25%
                                                     1.20
                                                                  49.758
                                                                                  15.00%
                                                                                             15.00%
     TIME PARAMETERS
     CONSTRUCTION LEAD TIME = 2.00 YEARS, STARTUP PERIOD = 1.00 YEARS
     RAW MATERIAL INVENTORY TIME (IMPUT)
                                              = .040 YEARS ( 14.6 DAYS)
     BETWEEN PROCESS INVENTURY TIME (INPUT)
                                              = U. YEARS (
                                                               U. DAYSI
     INPRUCESS INVENTORY TIME (CALCULATED)
                                              = .004 YEARS (
                                                               1.6 DAYS)
        (MULTIPLIED BY 1.0 FOR WURKING CAPITAL CALCULATION)
     FINISHED GUDDS INVENTURY TIME (INPUT)
                                              = .040 YEARS ( 14.6 DAYS)
     ALCOUNTS RECEIVABLE TURNOVER TIME (INPUT) = 1.000 YEARS ( 365.2 DAYS)
     ALCOUNTS PAYABLE TURNOVER TIME (INPUT)
                                              = .990 YEARS ( 361.6 DAYS)
                                               ------
     WORKING CAPITAL TIME LAG (CALCULATED)
                                              = .794 YEARS ( 34.4 DAYS)
        ALL COMPANY EXPENSES ARE IN $119751
                                                             $119751/PEAK-WATT
        CUMPANY DIRECT EXPENSES
                                         5 ,164 ,1 15.
                                                                                     DLAB
                                                                      .3446
           CLMPANY DIRECT LABOR EXPENSES
                                                     789.273.
                                                                      .0526
                                                                                     ADD TO GET MATS
           COMPANY DIRECT MATERIALS AND SUPPLIES
                                                                      .2846
           CLMPANY DIRECT SYPRODUCT EXPENSES
                                                                      .0000
           CUMPANY DIRECT STILITIES EXPENSES
                                                                      .0074
                                                                                     UTIL
        CUMPANY INJIKELT EXPENSES
                                                                      .0435
                                                     534,174.
           COMPANY INDIKECT LABOR EXPENSES
                                                                      .0356
(NEXT PAGE) BYPRODUCT INCOME
```

15:11 AM 08/25/80 PAGE COMPANY: 3.50/WATT

EFG

.139 \$/A LOBEN

TOTAL VALUE ADDED:

100.409 \$/CRATED PM =

.581 S/PEAK-WATT

\*\* \$.50/HATT: BRIEF.FIRM.NEEDS.REPURT \*\*

THIS CUMPANY, S.SOZMATT, HAS THE FULLOWING (ANNUAL) REQUIREMENTS:

ALL PRICES AND COSTS ARE IN \$(1975) FOR SQFT ADD QUANTITIES FOR A2064D, A2080D, A2096D

|           | RECT REGUL |            |          |                        | ROM THE     |          |         |          | UIKEMENIS              |
|-----------|------------|------------|----------|------------------------|-------------|----------|---------|----------|------------------------|
| GUANTITY  | PEICE      | 6051       | KEFERENT | DESCRIPTIVE NAME       | GUANTITY    | PRICE    | COST    | REFERENT |                        |
| 1.550E 03 | 122.38     | 18969).    | A2 UB UL | FLOUR SPACE, CLEAN ROD | C+.836E 03  | 39.16    | 169573. | A2064L   | PLOOK SPACE, TILE (WI) |
| 4.1366 01 | 10326.32   | 423784.    |          | CHEMICAL OPERATOR II   | 8.624E UC   |          |         | 837520   | SPERATOR, PRODUCTION-  |
| 6.500£ 00 | 6317.87    | 54117.     | D3032U   | ASSEMBLER, ELECTRONICS | 4.172E 00   | 12117.39 | 50550.  | B3736U   | MAINTENANCE MECHANIC   |
| 4.695E 00 | a317.87    | 39050.     | 0090U    | ASSEMBLER, SEMICONDUCT | 2.107E 00   | 6420.56  | 17742.  | 637680   | TESTER, ELECTRUNIC CON |
| 5.6166-01 | 23610.65   |            | B32248   | ENGINEER, INDUSTRIAL   | 1.114E 00   |          |         | d3666U   | ELECTRUNILS MAINTENAN  |
| 5.575E-01 | 11295.87   | 6247.      | 83704U   | ELECTRONICS TECHNICIAN | 5.627E-01   | 8317.87  | 4001.   | 630640   | ASSEMBLER, GENERAL LEI |
| 1.4316-01 | 10063.59   | 1446.      | 830500   | PACKAGER, MACHINE      | 0.373E-03   | £471.90  | 54.     | 837200   | INSPECTOR, SYSTEMS IN  |
| 3.594E 06 | .03        | 108834.    | C103.D   | ELECTRICITY            | 3.047E 15   | .01      | 2757.   | CICIEB   | WATER, DOMESTIC        |
| 1.1416 00 | 42.43      | 46.        | C10800   | NITROGEN, LIGUID       | 1.1596 05   | c.       | 0.      | CELEED   | VENTILATION            |
| 4.208E 00 | 4.05       | 17.        | U61024U  | GIL. VALUUM PUMP. JSED |             |          |         |          |                        |
| 2.459£ 96 | .78        | 1920966.   | £14640   | PASTE, SILVER 80%      | 0.48E U4    | 9.99     | 648031. | E15860   | SILICUN. POLYCKYSTALI  |
| 1.4176 06 | .25        | 360440.    | 618120   | GLASS. AMMEALED. 1/8 I | 5.669E 06   | .06      | 351416. | £610     | PULTVINTL BUTTERL (U.  |
| 1.417E 05 | .17        | 232396.    | E6300    | MYLAR, 5 MIL THICK     | 1.702€ 07   | .01      | 229124. | FPZOU    | INTERCONNECTS. CUPPER  |
| 7.9736 05 | 9.15       | 72809.     | £15600   | HTV 615 (SILICONE)     | 6.275E 04   | 1.00     | 62754.  | c1090D   | THERMOCOUPLE           |
| 4.176E 06 | .01        | 00425.     | E1 1120  | ARUCH GAS              | 6.351£ 05   | .06      | 53487.  | £13040   | HELIUM GAS             |
| 4.454E 64 | 3.60       | 52383.     | EU17000  | TETHAFLUOROMETHANE     | 3.0 . LE 04 | 1.00     | 30112.  | E68070   | ETO CARTRIDGE MATERIA  |
| 9.292E :3 | 3.57       | 33100.     | £15700   | SCHEEN                 | 1.772E US   | .16      | 48148.  | £6390    | TERMINAL BLOCK SETS    |
| 7.873£ 04 | .35        | 275+0.     | £1024U   | Swutteets              | 1.013t 03   | 10.33    | 16732.  | E1060D   | CUATING, ANTIREFLECTI  |
| 1.417E 06 | .0ı        | 15897.     | £11000   | CHANNEL, ALUMINUM      | 1.063E 00   | .01      | 15012.  | E6370    | WIRE. TERMINAL DUS     |
| 1.387t 04 | 1.00       | 13366.     | £68036   | EFG INSULATION MATERIA | 5.2415 01   | 173.90   | 9115.   | €11200   | BUATS, (12" X 4")      |
| 7.197E 63 | 1.00       | 7197.      | tucu:u   | EFG DIES               | 6.921E 03   | 1.00     | 6421.   | こしおひうし   | EFG MEATING ELEMENT    |
| 3.841£ ws | -61        | 3644.      | EFZIS    | PASTE . ALUMINUM       | 2.8948 (4   | .07      | 201     | E1180u   | CHATES, WOODEN         |
| 1.6198 03 | .60        | 1451.      | t1.46    | TULUENE                | 1.148E US   |          | 391.    | E1416D   | NITHUGEN GAS, REGULAR  |
| 4.466E-02 | 75.02      | 4.         | t61460U  | PHUSPHINE GAS          |             |          |         |          |                        |
| 18        | DIRECT REQ | ula FMENTS |          |                        |             |          |         |          |                        |
| MANTITE   | PAICE      | COST       | REFERENT | LESCRIPTIVE NAME       | WANTITY     | PR ICE   | COST    | REFERENT | DESCRIPTIVE NAME       |
| 3.077E 04 | 27.75      |            | #21261   | OFFICE SPACE, ADMINIST | 9.4646 61   |          |         | 14005A   | AIR CUNDITIONING FACT  |
| 7.051E 02 | 50.00      |            | */0101   | CAFETERIA AND LUNCHROC | 3.265E C3   |          |         | A21521   | OFFICE FURNISHINGS     |
| 4.019E 02 | 27.92      |            | Ac2561   | TOTALT AND LOCKER ROOM | 2.099: 04   |          |         | A21701   | MAINTAINENCE AND MACH  |
| 5.985E 02 | 33.60      |            | A11921   | SANITARY SEWEKS        | 5.344E 04   |          |         | 10801A   | LANG                   |
| 1.3201 0. | 141        |            | ACC721   | FLOOR SPACE. WAREHUNSE | 6.298E 02   |          | -       | AZ0401   | MALLS. EXTERIUR        |
| 1.0005 00 | 14270.51   |            | A50001   | FUNKLIFTS              | 0.0505 02   |          |         | A21601   | PASSAGES AND COPRIDOR  |
| 1.168t 04 | 1.37       |            | Alshil   | HALKS. LUFBS AND GUTTE | 2.6215 02   |          |         | A20241   | COMPUTER NOOM AND COM  |

# OR, GET SOFT FROM A30321 IN THE INDIRECT LIST

|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |            | J., J.                   |             |           |         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------|--------------------------|-------------|-----------|---------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.490E 04  | .40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10010. | A12721     | PARAING LUI PAVING (LI   | 5.7976 02   | :6.72     | 9694.   | A24321         | ELECTRICAL EQUIPMENT R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2.790E 02  | 10.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9679.  | A41143     | MECHANICAL EQUIPMENT K   | 1.1926 05   | 7.75      | 4:36.   | A11121         | ELECTRICAL SERVICE FAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.059E 04  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9109.  | A10961     | LANDSCAPING AND IRRIGA   | 2.553F 02   | 33.28     | 8496.   | A12001         | STURM URAINS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.053E 04  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 64/0.  | AiZbol     | RUAUS. ON-SITE. PAVING   | 2.726t 02   | 22.44     | 6121.   | A41941         | WUALITY CONTRUL LABORA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 6.170£ 02  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | A: 2631    | VENTILATION FACILITIES   | 2.624E 02   | 21.82     | 5724.   | A21701         | PLANT MAINTENANCE AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1.887E 02  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 12441      | UFFICE SPACE, MANUFACT   | 3.829F 63   | 1.00      | 3829.   | A13521         | LIGHTING, SITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 6.717E 02  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | A:0161     | FERLING                  | C. 344E C4  | د ٠٠ ء    | 2.62.   | A15461         | GRADING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2.000E 03  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | A15041     | SIGNS AND FLAGPOLE       | 1.777E 02   | 4.48      | 1774.   | A22001         | SHIPPING AND RECEIVING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 6.4816 01  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | A 2401     | TELEPHUNE ENUIPMENT RO   | 1.323E 01   | 73.15     | 966.    | A12401         | WATER SERVICE FALILITI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5.600E 01  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | ALZZAL     | TELEPHUNE LINES          | 1.019t 02   | 7.14      | 727.    | A1 3301        | SPALE, STURAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1.686t U1  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | A2048 I    | HEALTH SERVICE FACILIT   | .037E 01    | 111       | 401.    | A1 3201        | WALLS. STORAGE AREA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1.050£ 03  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/5.   | A20501     | HEATING FALILITIES       | 8106 42     | .63       | 115.    | A11281         | FUEL LIL SERVICE FACIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.141E 00  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | A11601     | LIQUIU NITHOGEN SERVIC   | (6.386E C3) | ٥.        |         | A30321         | FLUUR SPALE, TUTAL MAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.532E 04  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 10101      | FLUUR SPACE, TUTAL FAC   | 6.9328 C3   | 0.        |         | A30481         | FLOOR SPACE. TOTAL SUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.000£ 00  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 4103.4     | FIRE LUOP AND SECUNDAR   | 0.000E 00   | 0.        | 0.      | <b>▲1286</b> I | SECURITY CONTRUL FACIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3.422E wu  | 13349.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 45002. | 100668     | CHEMICAL PROCESS FOREM   | 4.700E 00   | 7188.26   | 33785.  | 83576D         | FORKLIFT TRUCK OPERATO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 8.3706-21  | 27917.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1750 . | bilisi     | EMPLOYMENT INTERVIEWER   | 8.37UE-U1   | 20901.04  | 17500.  | 014401         | SUPERVISOR. TRAINING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8.370E-01  | 20537.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17191. | 822001     | PURCHASING AGENT         | 8.370E-01   | 20537.46  | 17191.  | 632881         | ENGINEER, RESEARCH LEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.276E 00  | 11655.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14050. | 814441     | SELKETARY III (UPPER M   | 1.477E 00   | 10012.25  | 14780 . | 014321         | SECRETARY & ILONER MAIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.674E 00  | 8462.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14400. | 813541     | PEKSONNEL CLERK          | 9.803E-01   | 14376.57  | 14093.  | 633201         | ASSEMBLY FOREMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.370E-G1  | :4370.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .2034. | 820001     | ACCOUNTANT               | 4.185E-01   | 24132.09  | 10100.  | 832088         | ENGINEER, ELECTRUNICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4.1856-ul  | 44132.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10100. | 032460     | ENGINEER, MECHANICAL     | 7.166E-01   | 13863.12  | 9953.   | 63400I         | MACHINE SHOP FOREMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4.185E-01  | 23616.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9885.  | 832568     | PRUDULTION PLANNER       | 4.185E-U!   | 23010.05  | 9865.   | 032728         | QUALITY CONTROL ENGINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4.185E-01  | 23618.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9885.  | 832248     | ENGINEER, INDUSTRIAL     | 2.790E-01   | 33846.54  | 9444.   | 816801         | DIRECTOR, OFFICE AUMIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 9.8438 -02 | 90675.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6925.  | £13841     | PRESIDENT                | 6.370E-01   | 10266.98  | 8595.   | 150038         | BUUNKEEPEK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4.891£-01  | 17457.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6539.  | 033301     | ASSEMBLY OPERATIONS SU   | 1.899E-01   | 10679.73  | 8436.   | 814401         | SELAETARY II (MIDDLE M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 8.370E-0   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8444.  | 841601     | PRULUREMENT CLERK        | 1.4065-01   | 53912.14  | 7905.   | 033041         | VICE PRESIDENT, MANUFA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5.58UE-U1  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 100010     | MURSE. PROFESSIONAL 16   | 1.34bt-01   | 53912.14  | 7 266.  | 014641         | VILE PRESIDENT, AUMINI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.4766-01  | 36244.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7164.  | telact.    | CUNTRULLER AND CHIEF A   | 8.37uE-u1   | 8482.17   | 7:06.   | t14401         | LLERK. GENERAL OFFICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 8.370E-01  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 51.401     | MAIL CLERK               | 8.370E-01   | 8482.17   | 7100.   | b21441         | PATROLL CLERK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7.059E-01  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 012721     | MAINTENANC MAN IPLANT    | 2.0966-01   | 32800.72  | 0000.   | 031441         | UIRECTUR, MANUFACTURIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2.79GE-01  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 5-1200     | ENGINEER. CHEMICAL       | 1.286E-01   | 53398.64  | 6565.   | 252721         | VILE PRESIDENT, FINANC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2.405E-01  | The state of the s |        | 034901     | PRODUCTION SUPERINTEND   | 4.740E-01   | 20537.95  | 5730.   | 633521         | PRUDUCTION SUPERVISUR.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4.115E-01  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 654401     | MELMANILAL MAINTENANCE   | 2.7906-01   | 20024.50  | 5587.   | 420961         | FINANCIAL ANALYST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.127E-01  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 611921     | JAN 1 TUK                | 4.185E-01   | 13041.59  | 5+58.   | 031921         | DRAFISMAN . MECHANICAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3.917E-01  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 624261     | MATERIALS-HANDLING FOR   | 1.395=-01   | 38611.53  | 5 386.  | 010161         | AUMINISTRATIVE ASSISTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4.185E-01  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 452161     | ENCINEERING ALUE         | 1.395E-01   | 33840.54  | 4122.   | 911121         | DIRECTOR. PUBLIC RELAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.395E-01  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 8: 2551    | FRE ASURER               | 4.195E-01   | 10685.11  |         | 314001         | RELEPTIONIST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 453E-W.    | 77 00 00 00 00 00 00 00 00 00 00 00 00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | t - 19 - 1 | PURCHASING ALMINISTRAT   | 1.628t-01   | 4721 4.74 |         | 813041         | MANAGER. PERSONNEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1.3956-01  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 60.761     | DIRECTOR . RESEARCH AND  | 5.1voE-vl   | 1290.91   |         | r.1661         | GUARD (SECURITY)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.0466-01  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | #1064A     | DIRECTOR. INDUSTRIAL K   | 1.3951-01   | 24132.10  | 3367.   | th2361         | LANYER. LURPORATE IBUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.395E-01  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 5.0321     | AUUITUR. INTERNAL        | 2.790E-01   | 10865.11  |         | 020001         | DIGITAL SUMPUTER OPERA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.3956-01  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | p<0101     | ALCUMNTING SUPERVISOR    | 1.790E-01   | 9030.70   |         | 921121         | KEY PUNCH OPERATOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 761E-01    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 825141     | SUELITY CONTRUL FOREMA   | 7.3016-02   | 32660.72  |         | 831601         | DIRECTUR. CUALITY CONT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.190E-ul  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 134861     | PRESUCTION MACHINE SHO   | 1.208E-01   | 16019.61  |         | 012501         | MAINTENANCE FOREMAN (P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.3936-01  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 823641     | ELECTRUNICS MAINTENAND   | 1.3956-01   | 12836.22  |         | 513301         | PERSONNEL CLERK. SUPER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            | ∠0024.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | 8.2401     | SYSTEMS ANALYST          | 8.370t-12   | 10176.09  |         | 821761         | PHJGRAMMEH, BUSINESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4.050E -02 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 012861     | MANAGER . COMPENSATION . | 6.975E-02   | 17970.71  |         | 522241         | PURCHASING SUPERVISUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3-120E-02  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | t3-0-1     | PHULESS MAINTENANCE SU   | 0.510E-02   | 11295.87  |         | 811761         | GUARU CHIEF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|            | 27212.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | p:3201     | MANAGEA . SECURITY AND   | 3.178E-02   | 27212.79  |         | 821251         | MANAGER. DATA PROLESSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |            |                          |             |           |         |                | The second secon |

\*\* P. MCU: PROCESS. SUMMARY. HEPORT #\*  $EQPT = \sum N(C+I-S) (1+G)^{TM-TP}$ PROCESS: PACHUD . PACKING MUDULLS AFTER TEST PRODUCT: PHODULE , CHATES PRODUCES: 24.0000 CRATED PM/MINUTE. STAYING 10.000 MINUTES EACH COMPONENTS OPERATES .95 OF THE TIME THE FACTORY IS OPERATING COMPONENT: MACHINE, INSTALLATION: (1000.) (1500 0) (11976) 1500 \$(1978) AFTER 7.0 YEAR DUANTITY 8.681E 04 CHATED PM/YEAR AT 100.4678 (1975) CRATED PMUDULE = .56 \$11975)/PEAK-WATT IDEAL QUANTITY TUNITY TIELDS) = 0.601E 04 => IDEAL PRICE = .50 \$(1975)/PEAK-HATT NUMBER OF PACHOU MACHINES = (1.5 T) UF WHICH .993 ARE TOLE (INCLUDING .992 FROM ROUNDING UP) VALUE ADDED: 1.073 \$119751/CHATED PHUDULE = .006 \$119751/PEAK-WATT THE IPEG PRICE CORRESPONDS -010 \$(1975)/CHATEU PMODULE = .000 \$(1975)/PEAK-HATT 1906 TO THE REGULARDOURS THAT US NOT MAKE IT THROUGH THE PROCESS.) "TRUE" COST OF PROCESS = VALUE ADDLO + VALUE LOST = 1.083 \$(1975)/CRATED PRODUCE = MARKUP = 1.010 TIMES (U: KEC) EXPENSES PLUS INTERNAL AND EXTERNAL PRODUCT COSTS) THE ENERGY ADDED PATRACK TIME FOR THIS PROCESS IS .008 YEARS P. QUAN PROJECT 6.681E OF CHATE! PH OF PHODULE, THE PACHOD PROLESS REGULAES THE POLLUMING PRODUCTS MANUFACTURED ELSEWHERE IN THE DEFAULT INDUSTRY (PERHAPS WITHIN THIS \$.5"/HATT CUMPANY): PRUDUCT YIELD IUEAL KATIU QUANTITY PRICE \$(1975) SENSITIVITY -----------------------------------THODULE 1.5000 CHATEU PH/MOTULE .0057 \$119751/PEAK-HATT 1.000 d. 681E G4 MODULE 99.38 "SENSITIVITY" IS THE REDUCTION IN PRICE OF THE INDUSTRY OBJECTIVE, NEW PHOTOVOLTAIC POWER CAPABILITY, THAT WOULD RESULT FROM INCREASING THE YIELD (JR THE LUEAL KATTU) BY A FACTUR OF 1.01 \*\* PACHOD: PROCESS.EXPENSE.REPORT +\* ALL EXPENSES ARE IN \$(1475) 1114751/PEAK-WATT .0003 DIRICT EXPENSES 2,096. - DLAB DIRECT LABOR EXPENSES 1.608. . UUU I WIRECT MATERIALS AND SUPPLIES .0003 ADD TO GET MATS DIRECT SYPRIDUCT EXPENSES .0000 DIRECT UTILITIES EXPENSES .0000 UTIL . 4:33 INDIRECT EXPENSES 44,770 INDIRICT LABOR EXPENSES 4C.203. .0027 2,512. INDIRECT MATERIALS AND SUPPLIES .000% INDIRECT BYPAULUCT : APENSES 23. .0000 INDIRECT UTILITIES EXPENSES 7,040. -0005 BYPKOJULT INCOME .000001

469

| CAPITAL EXPENSES                 | 24.173.    |        | .0016 |
|----------------------------------|------------|--------|-------|
| EQUIPMENT REPLACEMENT            |            | 1,551. | .0001 |
| FACILITIES REPLACEMENT           |            | 2.503. | .0002 |
| AMORTIZED ONE-TIME COSTS         |            | 6,410. | .0004 |
| INTEREST ON DEBT                 |            | 563.   | 3,33. |
| RETURN ON EQUITY                 |            | 6.085. | .0004 |
| NUN-INCOME TAXES                 |            | 2.224. | .0001 |
| INSURANCE PREMIUMS               |            | 4,839. | .0003 |
| INCOME TAXES                     | 10.000.    |        | .0007 |
| MISCELLANEOUS                    | 5.287.     |        | .0004 |
| EXTERNAL PRODUCT COST            | 0.         |        | •0000 |
| TETAL ANNUAL EXPENSES            | 63 136     |        |       |
| INIAL MANDAL EXPENSES            | 93,135.    |        | .0062 |
| INTERNAL (IMPLICIT) PRODUCT COST | 6,627,994. |        | .5752 |

\*\* PACHOD: BRIEF.WORK.STATION.NEEDS.REPORT \*\*

TO PRODUCE 8.581E 04 CHATED PHODULES/YEAR, THE PACHOD PROCESS REQUIRES:

ALL PRICES AND COSTS ARE IN \$(1975)

# FOR SQFT, ADD QUANTITIES FOR A2064B, A2080D, A2096D FROM THE LIST OF DIRECT REQUIREMENTS

| GUANTITY  |             | COST     | REFERENT | DESCRIPTIVE NAME       | WANTITY   | PRICE | COST  | KEFEKENT | DESCRIPTIVE NAME       |
|-----------|-------------|----------|----------|------------------------|-----------|-------|-------|----------|------------------------|
| 9.000E 02 |             |          | A2064U   | FLOUR SPACE, TILE (WIT |           |       |       |          |                        |
| 1.431t-01 | 10063.59    |          | 336560   | PALKAGEK, MACHINE      |           |       |       |          |                        |
| 9.042E 03 | •03         |          | C1032B   | ELECTRICITY            |           |       |       |          |                        |
| 2.894E 04 | .07         | 2014.    | E1 .800  | CRATES, HUDDEN         |           |       |       |          |                        |
|           | DIRECT REQU | IREMENTS |          |                        |           |       |       |          |                        |
| QUANTITY  | PRICE       | COST     | REFERENT | DESCRIPTIVE NAME       | WUANTITY  | PRICE | COST  | REFERENT | DESCRIPTIVE NAME       |
| 1.272E 01 | 817.71      | 10403.   | A20061   | AIR CUNUITIONING FACIL | 7.3245 0? | 11.41 | 5350. | A22721   | FLOOR SPACE, WAREHOUSE |
| 5.549E-01 | 14270.51    | 7922.    | A50001   | FORKLIFTS              | 1.210E 02 | 27.73 | 3356. | a21201   | OFFICE SPACE, AUMINIST |
| 3.870£ Ul | 54.85       | 1971.    | AZULol   | CAFETERIA AND LUNCHROD | 8.520E G1 | 22.62 | 1944. | A2040I   | HALLS. EXTERICR        |
| 0.194t 03 | .31         | 1911.    | Alceol   | LAND                   | 9.052E U1 | 17.04 | 1095. | A21001   | PASSAGES AND CORRIJONS |
| 1.281: 02 | 11.09       | 1441.    | A21321   | UFFICE FURNISHINGS     | 4.380E 51 | 33.28 | 1358. | A11921   | SANITARY SENERS        |
| 1.433E 03 | .01         | 1540.    | A10961   | LANUSCAPING AND IRRIGA | 3.454E 01 | 33.28 | 1149. | A12001   | STURM JRAINS           |
| 1.140E 03 | 1.00        | 1140.    | A13661   | MALKS, LUNES AND GUTTE | 1.581E 01 | 67.95 | 1074. | A22561   | TUILET AND LOCKER HUDM |
| 9.859t 01 | 4.98        | 964.     | A22001   | SHIPPING AND RECEIVING | 1.425E 03 | .61   | 070.  | A12561   | RUAUS. UN-SITE. PAVING |
| 8.341E U1 | 9.51        | 793.     | 422034   | VENTILATION FACILITIES | 5.160E 02 | 1.00  | :16.  | A13521   | LIGHTING. SITE         |
| 7.456E FO | 50.01       | 346.     | A23241   | CUMPUTER RUDM AND LUMP | 4.796E UZ | .40   | 394.  | +12721   | PARKING LOT PAVING ILI |
| 4.277E 01 | 16.72       | 391.     | 15115A   | MELHANICAL EQUIPMENT R | 2.2346 01 | 16.72 |       | A20321   | ELECTRICAL EQUIPMENT & |
| 4.595£ 01 | 7.7>        | 335.     | A11121   | ELECTRICAL SERVICE FAC | 3.323E 02 | 1.00  | 332.  | A21761   | MAINTAINENCE AND MACHI |

47

# OR, GET SQFT FROM A30321 IN THE INDIRECT LIST

|       | ,                 | ,            |        |            | A series of the |             |           |       |        |                         |
|-------|-------------------|--------------|--------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|-------|--------|-------------------------|
|       | 10 30             | 4.25         | 201.   | 4101bl     | FENCING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.706t 02   | 1.00      | 271.  | A130+1 | SIGNS AND PLAGPULE      |
|       | 4E 03 /           | .03          | 211.   | A104c1     | GKALING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.122E 00   | 23.77     | 109.  | ac1441 | OFFICE SPACE, MANUFACT  |
| 1.59  | 6E C1/            | 7.14         | 100.   | Als3ol     | SPALE STURAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4-154E 00   | 21.02     | 91.   | A21761 | PLANT MAINTENANCE AND   |
| 1.21  | 5E 00             | 73.15        |        | 4 C45 4 A  | MATER SERVICE FACILITI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 . 141E 11 | :3.00     | 70.   | A1.241 | TELEPHONE LINES         |
| 1.00  | BE 02             | .63          | 04.    | Allega     | FUEL UIL SERVICE FACIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.533E 00   | 11.41     | 63.   | A13201 | WALLS . STURAGE AREA    |
|       | 0E 0              | 19.11        | +4.    | A22401     | TELEPHONE EQUIPMENT NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0408 00   | 22.44     | 37.   | A21961 | QUALITY CONTROL LABORA  |
| Avez  | 96 (01            | 30.61        | 24.    | A40401     | HEALTH SERVICE FACILIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.503t 02   | .07       |       | 1000A  | MEATING FALILITIES      |
| (9.00 | GU JU             | 0.           | 0.     | A30341     | FLUCK SPACE. TOTAL MAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.0725 03   | 0.        |       | Asolol | FLOUR SPALE. TOTAL FAC  |
| 1.17  | ZE 33             | 0.           | ₹.     | A36461     | FLUCK SPALE, TOTAL SUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |           |       |        |                         |
| 2.60  | 00 38             | 7188.28      | 18746. | 830760     | FURALIFT TRUCK UPERATO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.17 St -01 | 13863.11  | 3013. | 034321 | MATERIALS-HANDLING FUR  |
| 1.03  | 6=-01             | 4030.69      | 930.   | 812724     | MAINTENANCE MAN (PLANT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.269E-02   | 9036.70   | 149.  | 811921 | JANITUR                 |
| 3.29  | 5E-02             | 20907.64     | 607.   | 914481     | SUPERVISOR. TRAINING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.2956-02   | 2090 7.64 | 589.  | 911291 | EMPLOYMENT INTERVIEWER  |
| 3.29  | 5E-02             | 20531.96     | 611.   | 100526     | PUKCHASING AGENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.2958-04   | 20537.90  | 677.  | 100560 | ENGINEER. RESCARLE IEL  |
| 5.00  | SF-05             | 11655.29     | 503.   | 014441     | SECRETARY 111 SUPPER M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.591F-62   | 8482.17   |       | r13521 | PERSUNNEL CLERK         |
| 5.32  | 5£-02             | 10012.25     |        | 614321     | SECRETARY & LLOWER MAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.407E-02   | 7291.97   |       | 611001 | GUARD (SECURITY)        |
|       | 5E -02            | 14376.57     |        | 8 < 00 b I | ACCOUNTANT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.547F-02   | 16943.81  |       | 035441 | WAREHOUSE AND MATERIAL  |
|       | 8E-02             | c+132.09     |        | 834038     | ENGINEER. FLECTRUNICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.048E-02   | 24132.09  |       | B3240B | ENGINEER. MECHANICAL    |
|       | 8E-02             | 4 36 16 - 65 |        | 032240     | ENGINEER. INCUSTRIAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.5-86-02   | 23618.65  |       | 534748 | WUALITY CONTRUL ENGINE  |
|       | 8E-42             | 23618.65     |        | 6325or     | PRODUCTION PLANNER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0986-02   | 338+6.5+  |       | 010001 | DIRECTOR, OFFICE ALMIN  |
|       |                   | 93675.3      |        | 6138+4     | PRESIDENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.2956-02   | 10208.98  |       | e20321 | BUCKKEEPEN              |
|       |                   | 10063.59     |        | 821601     | PRULUREMENT CLERK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.3456-02   | 10674.73  |       | 514401 | SECRETARY II (MIDDLE M  |
|       |                   | 53912.14     |        | 019691     | VILE PRESIDENT, AUMINI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.197E-02   | 13240.98  |       | 613361 | NURSE . PHUFESSIUNAL 16 |
|       |                   | 53912-14     |        | 533041     | VILE PRESIDENT, MANUFA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.7616-03   | 36249.46  |       | 620401 | LUMTHULLER AND CHIEF A  |
|       | 56-02             | 8482.17      |        | 010401     | CLERA - GENERAL OFFICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.295t-02   | 6402.17   |       | 514401 | MAIL CLERK              |
|       | 5E-62             | 8482.17      |        | r21441     | PAYRULL CLERK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0966-02   | 24045.54  |       | 031200 | ENGINEER, CHEMICAL      |
|       |                   | 53348.04     |        | 822761     | VILL PRESIDENT, FINANC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |           |       |        |                         |
|       |                   |              |        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.6345-02   | 10019-01  |       | 812501 | MAINTENANCE FUREMAN IP  |
|       | 5E-03<br>8E-02    | 24132-09     |        | 10906      | PRODUCTION SUPERINTEND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.098E-02   | 20537.45  |       | 833521 | PRUDUCTION SUPERVISOR,  |
|       | The second second | 20024-50     |        | 620961     | FINANCIAL ANALYST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.648E-02   | 13041.59  |       | 831921 | URAFTSMAN, MECHANICAL   |
|       |                   | 30611.33     |        | 10101      | AUMINISTRATIVE ASSISTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.408E-03   | 32860.72  |       | 231441 | DIRECTUR, MANUFACTURIA  |
|       | 8E-02             | 11295.87     |        | baclos     | ENGINEERING ALUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.4946-03   | 338+6.5+  |       | 811121 | DIRECTUR, PUBLIC KELAT  |
|       | 2E-03             | 33846.54     |        | 622501     | The ASUREA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1-048E-02   | 10885.11  |       | 014001 | RECEPTIONIST            |
|       | 16-03             | 30606.94     |        | 641971     | PURCHASING AUMINISTRA!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.4086-03   | 27212.74  |       | 013041 | MANAGER, PERSONNEL      |
|       | 2E-02             | 13863.12     |        | 635601     | MAMEHOUSE FOREMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.4428-03   | 28753.14  |       | 03176i | DIRECTOR. RESEARCH AND  |
|       | 9E-03             | 33846.54     |        | 1+0018     | DIKECTUR, INDUSTRIAL R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.492E-03   | 2+132.10  |       | 812001 | LANYER, CURPURATE 1805  |
|       | 1E-02             | 11295.87     |        | 611761     | GUARD CHIEF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.64ZE-03   | 27212.79  |       | 613201 | MANAGER, SECURITY AND   |
|       | 4E-03             | 13863.11     |        | 034461     | MECHANICAL MAINTENANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.443E-03   | 21770.23  |       | 810321 | AULITUM, INTERNAL       |
|       | 8F-US             | 13885.11     |        | trubul     | UICITAL COMPUTER OPERA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.4925-03   | 21154.09  |       | 191070 | ACCUUNTING SUPERVISOR   |
|       | a6-05             | 9036.70      |        | 021124     | KEY PUNCH JPERATUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.746E-5    | 32860.72  | 97.   | #316vl | DIKELTUK, WUALITY LUNT  |
|       | 2E-03             | 9030.70      | 00.    | 811441     | GRUUNDSKEEPER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.492E-03   | 12836.22  | 71.   | 013601 | PERSUNNEL CLERK, SUPER  |
|       | 5E-03             | 20024.51     | 36.    | 862-01     | SYSTEMS ANALYST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.295E-03   | 10176.09  | 60.   | m217o1 | PRUGRAMMEN, BUSINESS    |
|       | 7t-03             | 33846.54     | 26.    | 610961     | DIRECTOR, PLANT MAINTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.8316-03   | 47212.79  | 50.   | 014681 | MANAGER, LUMPENSATIUN,  |
| 1.74  | 6E-03             | 11970.71     | 47.    | 0:2241     | PURCHASING SUPERVISOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.251E-03   | 27212.79  | 34.   | 021201 | MANAGER, DATA PROLESSE  |
| 1.63  | 1E-03             | 16176.34     | 33.    | 620041     | DATA PROCESSING SUPERY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.740=-03   | 10885.11  | 36.   | 012241 | LEGAL SECNETARY         |
| 9.59  | 3E-04             | 16943.61     | 16.    | 034641     | PRUCESS MAINTENANCE SU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.751t 27   | c.        | 3.    | p56161 | TUTAL DIRECT PERSUNNEL  |
| 1.29  | 5E-01             | 0.           | 0.     | 850641     | TUTAL MAINTENANCE PERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.914E-01   | 0.        | 0.    | 850481 | TOTAL STAFF PERSONNEL   |
| 3.29  | 5E 00             | 0.           | 0.     | 850501     | TOTAL PRODUCTION PERSO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.442E-01   | 0.        | 0.    | 650491 | INVIRECT PRODUCTION PE  |
| 18    | 7E 00             | 0.           | 0.     | 6:0321     | TOTAL PERSONNEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |           |       |        |                         |
|       | 9E 35             | .03          | 4510.  | clusit     | ELECTRICITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.207E US   | .01       | 80    | C16168 | HATER. JUMESTIC         |
| 5.54  | 9F 05             | +63          | 340.   | C194 ab    | FUEL Ust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.2125 05   | -90       | 272.  | C20640 | MASTE DISPUSAL, SEMAGE  |
|       |                   |              |        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |           |       |        |                         |

# When SAMIS? When IPEG?

- USE SAMIS (ONCE) TO PREPARE IPEG INPUT (COUNTING THE COST OF YOUR TIME, IT IS MUCH CHEAPER)
- USE SAMIS TO GET A TAILORED IPEG WHENEVER YOU ARE LOOKING AT A SIGNIFICANTLY DIFFERENT FACTORY
   (EG: SIZE OR TECHNOLOGY OR INDUSTRY STRUCTURE)
- USE IPEG FOR SENSITIVITY STUDIES OF PROCESS PARAMETERS OR FINANCIAL PARAMETERS.
- USE SAMIS FOR DEFINITIVE, DEFENSIBLE PRICE ESTIMATES.
- USE SAMIS FOR CONTRACTURAL "SAMICS PRICE ESTIMATES" (BUT USE IPEG TO OPTIMIZE PROCESS PARAMETERS)

# IPEG4: IMPROVED PRICE ESTIMATION GUIDELINES HOW TO USE IPEG4, AND WHAT CAN IT DO?

JET PROPULSION LABORATORY
Paul J. Firnett

# The IPEG4 Program

- INTERACTIVE COMPUTER PROGRAM
- WRITTEN IN SIMSCRIPT
- INSTALLED ON THE NATIONAL CSS TIMESHARING SYSTEM
- INTERFACES WITH SAMIS VIA THE IPEG INPUT FILE

# How to Access the IPEG4 Program

- CONTACT NEAREST NCSS OFFICE (IN L,A. 277-7511) AND ESTABLISH AN ACCOUNT ON THE NCSS SUNY COMPUTER
- GET AT LEAST 1 CYLINDER OF DISK STORAGE SPACE (MORE IF ALSO RUNNING SAMIS)
- GET MINIMAL INSTRUCTION AND MANUALS FROM NCSS ON USING THEIR SYSTEM
- READ AND USE THE IPEG4 USER'S GUIDE
- GET THE DEFAULT IPEG PARAMETER FILE OR USE SAMIS TO GENERATE AN IPEG INPUT FILE (APPENDIX A)
- BRING IPEG4 INTO EXECUTION VIA THE ATTACH COMMAND:

  ATTACH JPLSAMIS SAMIS AS Z

# The IPEG Input File

- NORMALLY GENERATED BY SAMIS
- DEFAULT FILE ON JPLSAMIS WAS PRODUCED WITH THE SYSTEM TEXT EDITOR. IPEG QUANTITIES EQPT, SQFT, ETC. ARE SET TO ZERO; HOWEVER, I.QUAN AND P.QUAN ARE NOT.
- CAN HAVE MULTIPLE CASES ON THE FILE, THAT IS, SEVERAL COMPANIES AND INDUSTRY SIZE VALUES

# What Can IPEG4 Do?

- USER CAN PICK A PARTICULAR CASE TO BE PROCESSED FROM THE IPEG INPUT FILE
- IPEG4 WILL AUTOMATICALLY COMPUTE AND PRINT THE
   IPEG COEFFICIENTS AND PRICE FOR THE CASE SELECTED.
- IPEG4 ENTERS INTO A CYCLIC DIALOGUE WHICH ALLOWS
  YOU TO PERFORM ONE OR MORE SENSITIVITY STUDIES OF
  THE CASE BEING PROCESSED. RESULTS CAN BE PRINTED
  AND/OR PLOTTED AT THE TERMINAL OR ON A LINE
  PRINTER (OFF LINE).
- IPEG4 ALLOWS YOU TO SELECT ANOTHER CASE

# How About an Actual Example?

- USES THE DEFAULT IPEG PARAMETER FILE WITH I.QUAN SET TO 1.5E7 AND P.QUAN SET TO 86810.0 USING THE TEXT EDITOR. THIS IS NECESSARY BECAUSE IPEG4 WILL NOT PRESENTLY ALLOW YOU TO CHANGE THESE VALUES.
- VALUES FOR EQPT, SQFT, DLAB, MATS, AND UTIL ARE SUPPLIED VIA THE IPEG4 "CHANGE" COMMAND.
- SENSITIVITY STUDY OF PRICE AS A FUNCTION OF RATE
  OF RETURN ON EQUITY (R) WITH ALL OTHER PARAMETERS
  HELD CONSTANT. RESULTS SENT TO THE USER'S
  TERMINAL.

# Procedure for Obtaining Default IPEG Parameter File From JPLSAMIS

13.50,30 PATTACH JPLSAMIS SAMIS AS T JPLSAMIS ATTACHED AS T-DISK

YOU HAVE ATTACHED JPLSAMIS AS T THEREFORE YOU WILL BE PROMPTED FOR A COMMAND, WHICH MUST BE LIST, CUPY (FULLOWED BY FILENAME, FILETYPE, AND FILEMOUS), OR DONE.

INPUT A CUMMAND >DUNE DEV T DETACHED

# **Bringing IPEG4 Into Execution**

13,21.52 PAITACH JPLSAMIS SAMIS AS Z JPLSAMIS ATTACHED AS Z-DISK

RELEASE 3.2 UP SAMIS HAN BEEN INSTALLED UN JPLSAMIS
SEE DETAILS IN "USER NEWS".

DU NOT ATTEMPT TO KON SAMIS UNTIL YOUR DATA FILES HAVE BEEN CONVERTED AND YOU HAVE COTAINED VERSION 4 OF THE COST ACCOUNT CATALOG

RELEASE 2 UP THE TPEG PRUGRAM HAS BEEN INSTALLED ON JPLSAMIS SEE DETAILS IN "USER NEWS".

YOU HAVE ATTACHED JPESAMIS AS & THEREFORE THE TPEG PROGRAM IS BEING BROUGHT INTO EXECUTION.

DEV V DETACHED

SCRATCH ATTACHED AS V-DISK

SIM25LIC ATTACHED AS 1-DISK

SIMSCRIPT 11.5 (RELEASE BH) AS UF JUNE 1, 1979

TYPE "SIMHELP INDEX" FUR A LIST OF ALL SIMSCRIPT COMMANOS.

R = P1 =

.40050 \$/\$Q. FT.

P2 = 60.00000 \$/\$Q. FT.

# Output

```
WELCOME TO THE IPEG PROGRAM, RELEASE 1
 DO YOU WISH TO PROCESS ANOTHER CASE?
                                           PROGRAM DIALOGUE BEGINS HERE
 INPUT THE SIZE. INDEX -
 >D
                                            START CASE DEFINITION
 THE DEFAULT. 1. HAS BEEN ASSUMED.
 INPUT THE COMPANY . REFERENT
 THE DEFAULT "MODULECO" HAS BEEN ASSUMED.
 DU YOU WISH TO DISPLAY THE COMPANY DATA?
 >YES
COMPANY: MODULECO, THIS IS A TEST COMPANY FUR THE IPEG PROGRAM
 PROCESS.LIST =
  DUMMY #
 1.QUAN = 1.500GGE 07 PEAK-WATTS
 P.QUAN = 86810.00000 MDDULES
                 $/YEAR
 EUPT =
           0.
                                     NOTE
           .0.
                    SQ. FT.
 SUFT =
 ULAR = 0.

MATS = 0.

UTIL = 0.
 ULAB =
                    $/YEAR
                                     VALUES
                    $/YEAR
                    S/YEAR
 EL = 10.00000 YEARS
 EITLR =
            -11000 FRACTIONZYŘ
 FL = 40.00000 YEARS
 BETA = 2.00000E-02 FRACTION/YR
 X = 3.05000E-02 FRACTION/YR
 NU = 4.00000E-02 FRACTION/YR
 _ = 0.
RLAB = 
RD# ~
                 FRACTION/YR
             .70000 $/$
 RUTIL =
             6.00000 $/$Q. FT.
 G = 7.00000E-C2 FRACTION/YR
W = 1.6.360E-01 YEARS
            +50000 FRACTION/YR
 TAU =
 LAMBDA =
             1.20000 $/$
 IR = 9.25000E-02 FRACTION/YR
        .20000 FRACTION/YR
```

```
P3 =
        63.79999 $/SQ. FT.
U1 =
         6.00000 FRACTION
D2 =
         1.40000 FRACTION
GU = 8.000GDE-U2 FRACTION/YR
GF = 8.00000E-02 FRACTION/YR
Y = 4.00000 YEARS
V = 4.00000E-02 FRACTION/YR
        1.00000 YEARS
TS =
TM = 1986.00000 YEAR
        3.COOOC YEARS
TC =
L =
         .63500 FRACTION/YR
TB = 1975.00000 YEAR
        .11000 FRACTION/YR
A =
UF =---
         .67000 FRACTION/YR
LF =
          .33000 FRACTION/YR
        7.00000 YEARS
T =
M =
        5.00000 YEARS
8 =
        3.00000 YEARS
TLF =
           .67000 FRACTION/YR
XEC =
           .15000 FRACTION/YR
XFC =
           -15000 FRACTION/YR
XOPR = 1.00000E-01 FRACTION/YR
        1.25000 FRACTION
N =
INPUT THE PROCESS.REFERENT OR #COMPANY#
>D
THE DEFAULT "*COMPANY ** HAS BEEN ASSUMED.
INPUT THE REPURT. YEAR BETWEEN 1975. AND 1986. (INCLUSIVE)
DO YOU WISH TO DISPLAY ANY OF THE SAVED VARIABLES?
>N0
UO YOU WISH TO DISPLAY THE TRANSFORMATION MATRIX?
>NO
                     COMPUTED
           .48417
                                          ENDS
C(1) =
C(2) =
        110.60727
                         BY -
                                          CASE
C(3) =
          2.14224
C(4) =
          1.22917
                                        DEFINITION
                       IPEG4
L(5) =
          1.22917
PRICE =
           -0000 $(1975)/PEAK-WATT =>
                                            .000 $(1975)/MODULE
```

```
BEGIN SENSITIVITY
DU YOU WISH TO PERFORM ANGTHER SENSITIVITY STUDY?
                                                          STUDY DIALOGUE
>YES
DO YOU WISH TO REINITIALIZE THE WORKING VARIABLES?
>YES
DO YOU WISH TO CHANGE ANY OF THE WORKING VARIABLE VALUES?
>YES
INPUT A CHANGE COMMAND OR DONE
>C EOPT 5.65 C SQFT 1.57164 C DLAB 7.8965 C MATS 4.23866 C UTIL 1.565
EUPT CHANGED FROM: 0.00000E 00 Tu: 5.00000E 05
                                                                       PUTTING IN
SUFT CHANGED FROM: 0.00000E 00 TO: 1.57100E 04
                                                                      IPEG VARIABLE
DLAB CHANGED FRUM: G.COUGGE GG TG: 7.89666E G5
MATS LHANGED FROM: 0.00000E 00 TO: 4.23800E 06
                                                                          VALUES
UTIL CHANGED FRUM: 0.00000E 00 TO: 1.50000E 05
INPUT A CHANGE COMMAND OR LONE
>DONE
```

THE FOLLOWING VARIABLES HAVE WORKING VALUES DIFFERENT THAN SAVED VALUES:

```
VARIABLE
              SAVED VALUE
                            WORKING VALUE
 EQPT
                  0.
                             5.00000E 05
 SQFT
                             15710.00000
                  U.
 DLAB
                  0.
                             7.69000= 05
 MATS
                  0.
                             4.23800E 05
 uTIL
                             1.500000 05
                  0.
INPUT AN INDEPENDENT VARIABLE FOR THE SENSITIVITY STUDY
>NUNE -
                                     - THIS IS A SPECIAL RESPONSE!
(11) =
          -48417
       110.60747
C(2) =
                        THE IPEG4 PRICE
C(3) =
        2.14224
C(4) =
          1.22917
         C(5) =
PRICE =
                                        49.603 $(1975)/MODULE
DO YOU WISH TO PERFURM ANOTHER SENSITIVITY STUDY?
>YES
DU YOU WISH TU REINITIALIZE THE WURKING VARIABLES?
>NU
DU YOU WISH TO CHANGE ANY OF THE WURKING VARIABLE VALUES?
>NO
```

THE FOLLOWING VARIABLES HAVE HURKING VALUES DIFFERENT THAN SAVED VALUES:

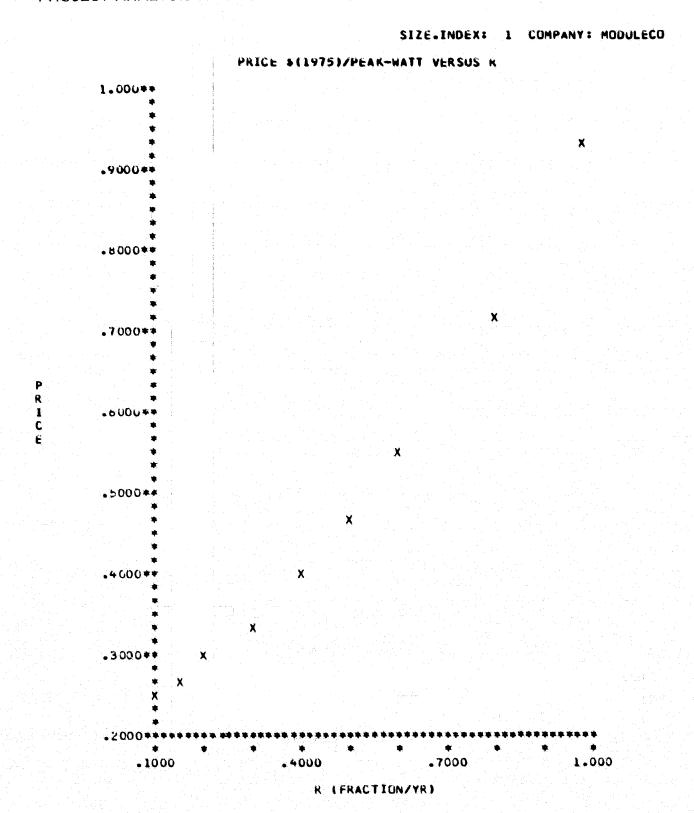
| VARIABLE SAVED VALUE WORKING VALUE                                                       |                                         |
|------------------------------------------------------------------------------------------|-----------------------------------------|
| EQPT U. 5.00000E US<br>SQFT 0. 15710.00000<br>DLAB 0. 7.69000E OS                        |                                         |
| MATS 0. 4.23800E DE UTIL 0. 1.50000E OE INPUT AN INDEPENDENT VARIABLE FOR THE SEN        |                                         |
| NOTITIES FORM OF THE INDEPENDENT VARIABLE                                                | JRN ON EQUITY                           |
| INPUT A LIST UP VALUES ENDING IT WITH *** >-1 -15 -2 -3 -4 -5 -6 -8 -99 *                |                                         |
| DO YOU WISH TO DISPLAY THE SET OF INDEPER >NO DO YOU WISH TO PRINT ANY SENSITIVITY STORE |                                         |
| TYES DU YOU WISH TO HAVE THE OUTPUT DIRECTED I                                           |                                         |
| >YES INPUT A REPURT TITLE >THIS IS A TEST                                                |                                         |
| ENTER A DISPLAY COMMAND FULLWED BY THE STATE PRICES PRICES                               | VARIABLES TO BE DISPLAYED UN ENTER DONE |

THIS IS A TEST

1:52 PM 09/18/80 PAGE 1 SIZE.INDEX: 1 LUMPANY: MEDULECO

| FRACTIUNYR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (11)    | C(2)        | <b>((3)</b> | PRICE<br>\$(1975)/ | PRICE<br>4(1975)/ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------|-------------|--------------------|-------------------|
| The state of the s | THE     | INPUT VALUE |             | MODULE             | PEAK-HATT         |
| 1.005006-51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -30896  | 62.8-798    | 4.05597     | 43.70461           | .25293            |
| -15000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .39140  | 84.69824    | 2.09720     | 46.45547           | -26585            |
| .20000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . 48417 | 110.50727   | 2.14224     | 49.60300           | -28707            |
| .30000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . 70017 | 174.17253   | 2.24255     | 57.17459           | .33084            |
| •+0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .95393  | 254.90819   | 2.35369     | 66.48915           | .38479            |
| .56000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.23864 | 353.00024   | 2.47220     | 77.49944           | -44652            |
| .63000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.54726 | 467.99266   | 2.59569     | 90.10446           | -52146            |
| • b 60 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.20741 | 745.66846   | 2.84525     | 119.64111          | •69240            |
| .99000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.65733 | 1063.57176  | 3.08004     | 152.42444          | .00213            |

ENTER A DISPLAY CUMMAND FULLOWED BY THE VARIABLES TO BE DISPLAYED OR ENTER DONE SHOWLE


DES YOU WISH TO PLOT ANY SENSITIVITY STUDY RESULTS?

>YES

DC YOU WISH TO HAVE THE PLUTS DIRECTED TO YOUR TERMINAL?

>YES

ENTER A PLOT CUMMAND FULLIWED BY THE VARIABLES TO BE PLOTTED OR ENTER DONE >PLOT PRICE 2



ENTER A PLUT LUMMAND FULLUMED BY THE VARIABLES TO BE PLOTTED OR ENTER DUNE >DONE

DU YOU WISH TO PERFORM ANOTHER SENSITIVITY STUDY?

>NO

DO YOU WISH TO PROCESS ANOTHER CASE?

-TERMINATES THE RUN

UEV Z DETACHED

14.00.08 >LDG 36.30 ARU S, .17 CONNECT HRS LUGGED OFF AT \$14.00.23 ON 18SEPT80

COST OF RUN IS (36.30) (0.20) + (0.17) (\$15.)  $\approx$  \$9.79