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ABSTRACT 

A qualitative interpretation of the records from a monostatic 

acoustic radar is presented. This is achieved with the aid of air- 

plane, helicopter, and rawinsonde temperature soundings. The diurnal 

structure of a mountain-valley circulation pattern is studied with the 

use of two acoustic radars, one located in the valley and one on the 

downwind ridge. The monostatic acoustic radar was found to be suffi- 

ciently accurate in locating the heights of the inversions and the mixed 

layer depth to warrant use by industry even in complex terrain. 
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CHAPTER I 

INTRODUCTION 

An investigation of the inversion monitoring capabilities of a 

monostatic acoustic radar is- presented. This is accomplished simul- 

taneously with an investigation of inversion behavior in the vicinity of 

a deep river valley. The monostatic acoustic radar is analyzed with 

regard to noise and accuracy in locating and monitoring inversions. The 

behavior of inversions, the number, and heights of formation and break- 

up are. investigated with respect to the complex valley climatology and 

flow phenomenon. 

Acoustic radars promise to provide an economical method of 

monitoring the structure of the planetary boundary layer. Conventional 

rawinsonde methods of monitoring the atmosphere are expensive and, 

therefore, they are traditionally used only a few times daily. The cost 

of aircraft soundings in the atmosphere is even more prohibitive than 

that of rawinsonde. Acoustic radars can provide continuous monitoring 

of the atmosphere as compared to periodic aircraft or rawinsonde flights. 

Continuous monitoring of the planetary boundary layer is helpful in 

maintaining both air quality and air safety standards. This study was 

conducted to assess the usefulness of an acoustic radar for contin- 

uous monitoring of climatological factors, particularly inversion layers 

which influence the dispersion of pollutants in the atmosphere. 

The acoust ic radar is an act ive remote sens'ing device. A sound 

wave is transmitted either vertically or at a given angle into the atmo- 

sphere. The sound waves are scattered, reflected, and Doppler shifted 
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by density inhomogeneities and wind shears within the atmosphere. These 

inaudible echoes can be received and processed according to the specific 

needs of the user. 

Sonar was one of the first active acoustic sounders. Both the Navy 

and the fishing industry found sonar to be an invaluable tool. Seis- 

mologists have used passive and active acoustic devices for many years. 

Exploding rockets were used for the first high altitude temperature 

estimates, but it was not until 1968 when McAllister [l]' developed 

what he preferred to call the "echosonde" that atmosphere scientists 

began to realize some of the potential of using sound as a remote 

sensing tool. 

Acoustic techniques can provide vertical soundings up to 1.5 km 

altitude. From the echoes received, the three-dimensional wind field, 

inversion strength, and the three-dimensional spectral density functions 

for temperature and wind velocity can be estimated with time resolution 

better than five minutes, i.e., almost continuously [2]. 

There are a number of acoustic radar configurations used in 

boundary layer sounding. The monostatic mode refers to a collocated 

transmitter-receiver and receives only the backscattered echoes [l]. In 

this mode the three-dimensional spectral density function for tempera- 

ture fluctuations, the heights and strengths of inversions, and often 

the height of the mixed layer can be estimated. By separating the 

transmitter from the receiver, the three-dimensional spectral density 

'Numbers in brackets refer to similarly numbered references in the 
Bibliography. 
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function for velocity fluctuations can also be estimated. This con- 

figuration is referred to as the bistatic mode and can be combined with 

a monostatic unit for little additional cost, Placing a third trans- 

mitter perpendicular to the other two allows one to measure the three 

orthogonal components of the wind. This is achieved by measuring the 

Doppler shift in frequency caused by the movement of the scattering 

element and, therefore, this mode of operation is referred to as Doppler 

acoustic radar. These three modes of operation are shown in Figure 1. 

Experimental Applications of an Acoustic Radar 

The Aerovironment2 model 300 monostatic-bistatic acoustic radar was 

operated as continuously as possible from the spring of 1977 until the 

summer of 1978 by The University of Tennessee Space Institute (UTSI). 

This was first used in an advection fog research program funded under 

NASA contract NAS8-32031. The unit was operated in both monostatic and 

bistatic modes in conjunction with standard meteorological towers and a 

tethered balloon for vertical profiles of temperature, humidit)/, wind 

speed and direction. One individual run during that study is presented 

in Chapter II, page 19, to illustrate a cause of noise. 

A joint study with the Tennessee Valley Authority (TVA) was carried 

out following the fog study. Two identical acoustic radars were 

operated near the Widows Creek Steam Plant along the Tennessee River at 

Stevenson, Alabama. Figure 2 is a map of the steam plant and the 

surrounding area. TVA operates an air quality program which involves 

2Trade name for Aerovironment, Inc., Pasadena, California. 
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Monostatic Bistatic Doppler 

Figure 1. Three possible configurations used in atmospheric acoustic sounding. 



Figure 2. Map of Widows Creek steam plant. 
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two mesoscale weather stations, one in the valley and one near the edge 

of the downwind ridge. Temperature soundings were made periodically by 

rawinsonde, helicopter, and airplane flights. The instruments used in 

this study are listed in Table 1. In addition to the instruments listed 

in Table 1, hourly observations of sky cover and plume condition were 

made by TVA employees. All data for wind speed and direction, temperature, 

insolation, pressure and SO2 concentration were reduced by TVA and 

provided to UTSI in tabular form. 

Data Acquisition 

Mean wind speed and direction were measured by TVA's two 61-meter 

towers at 10 and 61 meters. The data were averaged for one-hour periods 

and supplied in tabular form. Insolation was measured at the valley 

meteorological station, indicated by a "V" in Figure 2, by a pyrheli- 

ometer. Hourly readings were supplied. Pilot balloons were launched 

from the valley meteorological station approximately every one to two 

hours (weather permitting) and tracked by single theodolite to estimate 

the wind field. 

Temperature soundings were made by aircraft following approximately 

a l-mile diameter spiral up to 1.5 kilometers. When atmospheric 

conditions prohibited aircraft flights, rawinsonde measurements were 

taken. Rawinsonde packages were released from the valley location. 

Calibration of aircraft temperature measurements was accomplished by 

flying as close as possible to the 61-meter tower located at the valley 

meteorological station and adjusting the aircraft temperature reading 

to that of the temperature indicated at 61 meters by the tower 
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TABLE 1 

TVA WIDOWS CREEK AIR QUALITY MONITORING INSTRUMENTATION AND SETUP 

Instrument Time Location Desired Quantity 

Two monostatic acoustic 
radars 

Continuous Valley, ridge Inversions 

Two 61-meter towers instrumented Continuous Valley, ridge Three-dimensional wind 
at 61 and 10 meters field 

Pyrheliometer Continuous Valley Insolation 

Pibal Periodic Valley Three-dimensional wind 
ll field 

Rawinsonde Periodic Valley Three-dimensional wind 
field and lapse rate 

Airplane or helicopter flights Periodic Valley Lapse rate 

Microbarograph Continuous Valley Pressure and pressure 
tendency 

SOP monitors Continuous Surrounding Area SOP concentration 



instrumentation. All temperature soundings in this study are from air- 

plane flights unless otherwise specified. 

A microbarograph located at the valley meteorological station was 

used to determine atmospheric pressure. Hourly readings were supplied. 

Electrochemical SOP monitors were located in a spherical pattern 

surrounding the Widows Creek Steam Plant in the valley and on the down- 

wind ridge. The locations of the monitors are shown in Figure 2. 

Hourly SO2 concentrations were provided if the concentration exceeded 

0.01 parts per million. 

The University of Tennessee operated two identical acoustic 

radars, one of which is owned by NASA and the other by TVA. TVA 

supplied the support data from the aforementioned instruments used in 

this study. 

The investigation consists of two parts. During the first part 

of the study, both acoustic radars were operated side by side at the 

valley meteorological station. This was done to test the height and 

time scales of one radar against the other and also allowed for some 

adjustment in the sensitivity of the two radars. The adjustment, how- 

ever, was not totally satisfactory due to the difference in physical 

conditions of the two identical radars. 

The second part of the investigation was designed to monitor the 

behavior of inversions within the valley as compared to that on the 

downwind ridge. One acoustic radar was moved up to TVA's air quality 

monitoring station on the southeast ridge. The other was left in the 

valley. The difference in heights and durations of inversions inside 
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and outside of the valley is studied. This is done with respect to the 

valley flow phenomenon. 

A brief description of the theory and assumptions used in acoustic 

sounding is presented in Chapter II. A general interpretation of the 

major features on four acoustic records is presented. A description and 

analysis of noise sources in acoustic sounding are also included in 

Chapter II. 

Chapter III consists of two parts. The first section gives an 

introduction to the theory involved concerning the valley flow 

phenomenon. Meteorological wind roses for August from the Tennessee 

River Valley illustrate the valley flow phenomenon and are presented 

in this section. Section 2 consists of the major analysis of the 

acoustic records taken during this study. The acoustic records are 

analyzed for inversion heights and durations and are compared with the 

synoptic and mesoscale weather phenomena as indicated by the sup- 

porting climatological data. 
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CHAPTER II 

GENERAL INTERPRETATION 

Theory 

To better understand the concept of an acoustic radar, a brief 

explanation of the theory and assumptions is presented in this section. 

A full derivation of wave propagation is not presented, however, and the 

reader is referred to Monin [3] or Tatarski [4] for this information. 

As is the case with all radars, waves are transmitted, reflected, 

and received by the radar. The strength and location of the echo is 

then recorded in a convenient format. With conventional radars the 

desired echo producers are solid objects such as raindrops or some other 

form of tracer. Although the acoustic radar "sees" these solid objects, 

they are not the desired echo producers and appear as noise on the 

record. The acoustic radar is designed to record the extremely weak 

echoes from temperature variations or other inhomogeneities in clear air. 

If the atmosphere were totally still and homogeneous, sound waves 

would satisfy the homogeneous wave equation, 

V2p + k2p = 0 (1) 

where p is the pressure and k is the wave number. 

In a nonhomogeneous atmosphere there is always some scattering of 

sound waves. Separating the wave into an incident and a scattered wave 

and neglecting the higher order terms results in the scattering equation 

v2p + k2p = 2k2n'p (2) 
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The quantity of interest here is n', which is the fluctuating refractive 

index for sound in the nonhomogeneous atmosphere. This equation, also 

known as the Born approximation to the acoustic wave equation, is a 

second-order approximation and any errors introduced can be reasonably 

neglected. 

In order to relate the reflected acoustic power to transmitted 

acoustic power, a scattering cross section is defined as the ratio of 

scattered flux density to transmitted flux density per unit solid angle, 

per unit thickness of the scattering element. 

o(e) E yg 
0 

(3) 

Here s and So are the acoustic energy flux densities of the scattered 

and initial sound pulse, respectively. Theta is the angle formed 

between the initial and scattered waves. The brackets denote an 

ensemble average and r is the distance from the transmitter to the 

scattering volume, V. 

The turbulence in the scattering volume is assumed to be analogous 

to diffraction gratings with a spacing equivalent to the characteristic 

length of the turbulent motion, II, and with a cross-sectional area equal 

to the scattering cross section. 

(4) 

Equation 4 is known as the Bragg condition and gives the angle e for the 

principal maxima in the diffraction pattern created by passing waves of 

length x through a diffraction grating of spacing II. 
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For homogeneous isotropic turbulence, Tatarski [5], using the above 

assumptions, arrived at what is used today for the scattering cross 

section in the acoustic radar equation 

o(e) = ; k.4 cos2 8 

Here K = 2k sin $ 
0 

(5) 

is the turbulence wave number and $T and E(K) are the 

three-dimensional spectral density functions for temperature and wind 

velocity fluctuations, respectively. To is an appropriate average 

temperature which will influence both terms of the equation since c, the 

velocity of sound, is also a function of temperature. 

In the Kolmogorov inertial subrange, Equation 5 reduces to 

) = 0.03k"3 
cf c$ -11/3 

cos2(e) 0.13 T2 + - cos 
0 C2 (6) 

CT and Cv are the structure coefficients for temperature and wind 

velocity, respectively. The defining equation for the temperature 

structure coefficient is: 

(7) 

Although Equation 7 is strictly valid for potential temperatures, no 

measurable error is introduced by using actual temperature differences. 

It should be noted that for monostatic operation, e = 180", 

Equation 7 reduces to a linear function of C;. 
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C2 
&ao) = 3.9 x 1o-3 4 

0 
(8) 

Analysis 

Theory predicts that in the monostatic mode with the attenuation 

of sound being taken into account, the returned echo strength is 

directly proportional to the structure coefficient for temperature. Any 

sharp temperature discontinuity will therefore produce an echo. Although 

sharp density gradients do not exist for any length of time in the 

atmosphere, turbulence along even a weak discontinuity continuously sets 

up and breaks down strong gradients. The result is that even weak 

inversions produce echoes if sufficient turbulence exists along the 

boundary. 

A comparison of the heights of inversions as indicated by aircraft 

and monostatic acoustic radar for the period October 25 to October 28, 

1978, is presented in this section. The acoustic record shows that the 

acoustic radar is as accurate as aircraft temperature soundings in 

locating the inversion heights. 

Figure 3 shows the acoustic records for the period October 25-26, 

26-27, and 27-28, 1978, produced by TVA's acoustic radar located at the 

valley meteorological station. 

The chart records are for a 24-hour period beginning at 1700 LST 

(local standard time). The time of 1700 LST was chosen because of the 

obvious change in atmosphere structure which usually occurs between 1600 
I_ 

and 1800 LST. The decay of daytime thermals and formation of nocturnal 

inversions usually occurs during this period. 
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Temperature ("C) 

Temperature ("C) 3.0 11.0 11.0 16.011.0 21.0 

I I I 4 

7.0 15.0 11.0 21.0 

Figure 3. Acoustic records for Widows Creek steam plant (valley location). 

(a) October 25-26, 1978 (upper chart) (b) October 26-27, 1978 (lower chart). 

Symbols- and A: Non-atmospheric noise. 
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Temperature ("C) 

9.0 14.0 

11.0 16.0 11.0 15.0 8.0 16.0 

0200 Time (LST) 0800 

10.0 14.0 13.0 23.0 
- * 

15.0 13.0 21.0 14.0 24.0 - 
-b 

Figure 3. (continued). (c) October 27-28, 1978. 



Six airplane temperature soundings were made during the time period 

shown in Figure 3(a), five for 3(b), and nine for 3(c). Temperature 

profiles from these soundings are overlaid (the same height scale) on 

the acoustic records at the appropriate time. The temperature profiles 

were drawn by a computer graphics program which determines the scale 

of each individual case based on the data. The temperature scales 

therefore are not always identical. The temperature scale is indicated 

directly above or below each profile. There is almost perfect agreement 

in the heights of the inversions indicated by the acoustic radar and the 

temperature soundings. No quantitative comparison is attempted with 

regard to the strength of the inversions because the acoustic radar 

calibration is not known. The sensitivity was set only to produce a 

meaningful qualitative record. The aircraft was not equipped to measure 

turbulence and therefore values of CT could not be calculated and the 

acoustic radar's calibration could not be tested. 

Three common types of inversions that occurred in the Tennessee 

Valley during this study are shown in Figure 3. Figure 3(a) illustrates 

a nocturnal ground-based inversion which elevates and separates from the 

surface. Figure 3(b) illustrates a typical formation, strengthening, 

and decay of an elevated nocturnal inversion. Figure 3(c) shows an 

elevated nocturnal inversion lowering to meet a deepening ground-based 

inversion. Both inversions then leave the surface, separate and even- 

tually decay by 1000 LST. 

During late evening on October 26, left side of Figure 3(b), the 

formation of an inversion between 300 and 600 meters is apparent. 

Rawinsonde measurements at 2107 LST indicate that the base of the 
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inversion occurred at 450 meters with an approximately isothermal layer 

above for 300 meters. This was a thick, but weak, inversion layer. The 

acoustic radar shows a very disorganized inversion layer since a sharp 

gradient or strong turbulence across a weak gradient is necessary to 

produce an echo. It is likely that the turbulence was insufficient 

across the inversion during this "quiet" period to show the weak in- 

version observed from the rawinsonde measurements. 

Noise 

Noise is defined differently according to specific needs. The 

major characteristic in most definitions is: that which is unwanted or 

distorted. Therefore, noise is referred to herein as undesirable 

sources of sound which either distort or place spurious signals on the 

acoustic radar record. 

Since the desired return echo of an acoustic radar has extremely 

low power levels, there are many sources of noise which affect acoustic 

soundings. These sources of noise are classified for purposes of the 

following discussion into two categories based on origin--atmospheric 

and non-atmospheric. 

Major non-atmospheric sources of noise are those which radiate 

sound of wavelength within the band-pass range of the acoustic radar. 

Such sources are cars, lawn mowers, electric fans, etc., which all pro- 

duce noise on the record. Large lead shields padded with foam are used 

to eliminate these sources of noise. However, they cannot all be 

eliminated; the dark vertical lines spanning the chart record, for 

example, are a result of these types of noise sources, Figure 3 
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and Figure 4 show a number of these lines, a few of which are indicated 

by an arrow. 

Other sources of non-atmospheric noises are electron shot noise, 

unsatisfactory line current and other system problems inherent in 

facsimile recorders. Electron shot noise is easily calculated and is 

found to be negligible compared to the level of the desired signal and 

other noise sources. The incoming ac line current creates a problem 

that can be recognized by the operator. Although not occurring in the 

records of this study, an unuseable signal results when a IlO-volt 

square wave input from a 12-volt inverter is used to power the acoustic 

radar. One of the largest sources of noise is inherent to the facsimile 

recorder itself. In theory, facsimile recorders should be nearly noise- 

free. In practice, however, they scrape, burn, and tear the recording 

paper. The pen and conductive plate must be cleaned on at least a 

weekly basis to insure proper operation. These sources of noise can, 

with proper maintenance and operation procedures, be eliminated or 

accounted for when interpreting the recorded data. 

A third major source of non-atmospheric noise results from solid 

objects which pass through the scattering volume or through a side lobe 

of the antenna pattern. Airplanes, flocks of birds, and helicopters are 

common examples. Echoes from airplanes appear as thin vertical lines on 

the record. A number of these lines appear on Figures 3 and 4, a few of 

which are indicated on the chart by an "A." Nearby trees and buildings 

appear as horizontal lines on the-record. Thus, they also are non- 

atmospheric sources of noise. Figure 4 shows the effect of a single 

building located 300 meters from the radar. Note the horizontal line 

18 
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Figure 4. Acoustic records for The University of Tennessee Space Institute, June 3-4, 1978. 

(Horizontal line is reflection from building.) 



at approximately 400 m during the period from 2000 LST until 0900 LST. 

The echo from another building appears later in the evening (2400 LST) 

slightly above the first. Echoes from buildings generally appear only 

at night when the humidity is high and the atmosphere is stable. These 

nocturnal conditions produce higher refractive bending of the sound 

waves and a side lobe of the antenna reflected off the buildings. The 

height of the echo on the chart is approximately the distance from the 

antenna to the building. This source of noise is easily recognized and 

can be taken care of by moving the antenna. 

There are three sources of atmospheric noise that are significant 

to this study--rain, wind, and thermal noise. Rain will totally blacken 

the chart. The desired signal is too weak to be recorded over the sound 

of rain on the antenna. 

Wind noise appears as a shading on the chart from light gray at the 

bottom to black at the top. The change in the intensity of this noise 

with height is due to the nonlinear amplification designed into the 

recorder. This design feature accounts for the loss in acoustic power 

due to atmospheric attenuation. No clear example of wind noise is 

available from this study; however, there is little doubt that wind 

noise appears to some degree on all of the records presented. Wind and 

rain noise can totally obliterate the record,and there appears no way of 

eliminating this noise at the present time. 

Thermal noise due to the collision of air molecules with the 

receiver is of the same magnitude as electron shot noise and is there- 

fore negligible. 

20 
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Calibration and Presentation 

Facsimile recorders can condense huge amounts of data into a con- 

cise readable format for the trained eye. The human eye, however, is a 

poor density discriminator, making quantitative interpretation from 

visual inspection difficult. Facsimile recorders are difficult to 

reproduce satisfactorily and, thus, considerable record content is lost 

in presenting the recorded data. Facsimile recorders, however, are 

economical and record a large amount of data. Digital techniques are 

now producing computer printouts which can be quantitatively analyzed, 

while color slicing provides significantly more readable records. The 

digital techniques also allow for some noise elimination and boundary 

enhancing. With digital systems, the Doppler shift may also be deter- 

mined. The choice of system depends on the needs of the user. Digital 

systems are more expensive but allow for much more data to be analyzed. 

Calibration of an acoustic radar is a problem equally as difficult 

as data recording. Calibration with tower data and airplane flights has 

been attempted by others, but has not, however, produced totally satis- 

factory results [6]. The acoustic radar measures vertical profiles of 

Cf; thus, calibration requires measuring both vertical profiles of temp- 

erature and the turbulence parameters. The latter requires the use 

of an inertial platform. Since the expense of aircraft so equipped 

is high, no known attempt has been made. It appears a Lidar system 

might prove more useful for calibration of the acoustic radar since 

both measure fluctuating refractive indices continuously. 

21 



The data analysis presented in Chapter III is therefore, for the 

most part, a qualitative comparison. Calibration, by placing two 

identical acoustic radars near each other and operating them for a 

month to calibrate one against the other, was attempted. The sensi- 

tivities were adjusted as accurately as possible to produce identical 

records. Although the acoustic radars were the same model, they were 

not in the same physical condition and apparently for this reason 

could not be adjusted to give equal intensities. Thus, quantitative 

measurements of temperature discontinuities were not possible. The 

locations of temperature inversion, however, which are not dependent 

on the intensity of the record, correlate very well with each other and 

with aircraft data. Thus, as will be shown in Chapter III, the height 

as well as the growth and decay patterns of inversion can be adequately 

monitored with an acoustic radar. 
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CHAPTER III 

VALLEY FLOW 

I. THEORY OF VALLEY FLOWS 

The phenomenon of katabatic and valley winds has been observed for 

a long time. Besides meteorologists, however, only the people who live 

or work in a large mountain-valley-plain location are familiar with the 

valley-plain breeze. The cause, differential terrain heating and 

cooling due to surface orientation, is only partly understood. 

The need for a heat sink by conventional electric power generating 

stations has traditionally limited their construction to large water 

bodies and river valleys. The result is that the plume trajectory is a 

complex diurnal function of topography and synoptic condition. This has 

frustrated the power companies and other industrial companies using the 

atmosphere as a sink for their effluent, as well as the people living 

in the valley. 

An initial theoretical explanation of valley flow is accredited to 

Prandtl [7] and Defant [8]. Their classical description is illustrated 

schematically in Figure 5. This is clearly an over-simplified view of 

the circulation pattern. The slope of the valley floor, the slope of 

the valley walls, the prevailing wind direction, and the orientation of 

the valley all have dramatic effects on this pattern. A west-facing 

slope will experience up-slope winds after they have ceased on the east- 

facing slope. A crosswind will produce eddies on the lee slope and 

cause up-slope winds on the windward slope. Valley axis winds hamper 

and disguise the circulation pattern, or may even destroy it completely. 
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Sunrise 
Up-Slope/Down-Valley 

Late Kerning 

Up-Slope 

Afternoon 
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Late Afternoon 
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E.arly Evening 
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Late Evening 
Down-Slope 

Midnight 
Down-Slope/Down-Valley 

Early Morning 
Down-Valley 

Figure 5. Simplified circulation pattern of the valley-plain breeze. 
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Differential heating and cooling is the cause for both land-sea and 

valley-plain circulation patterns. The amplitude of the diurnal 

temperature variation is greater in the valley than over the plain which 

the valley empties into or the plateau which it cuts through. The 

result of this temperature variation is a diurnally alternating pressure 

gradient which produces the up-slope/up-valley winds during the day 

and the down-slope/down-valley winds at night. 

As with all standing circulation patterns, there must be a counter 

circulation pattern nearby to sustain the circulation. In the case of 

the valley-plain breeze there is a counter current aloft forming just 

above ridge height. This counter current is illustrated in Figure 6. 

The counter current is weaker and less frequent due to the stronger 

prevailing wind speeds at these heights. It seems reasonable to assume 

that the return circulation is often just a variation in the prevailing 

wind field and may not be immediately apparent. The prevailing winds, 

unless orientated along the valley, are much weaker in the valley; 

therefore, the valley-plain breeze appears much stronger and more fre- 

quent than its counterpart. 

To investigate the valley-plain winds measured in this study, a 

computer program was written to compute wind roses using data from the 

two TVA 61-meter towers. One tower is located in the valley and one on 

the ridge. The horizontal wind field and temperature were measured at 

10 m and 61 m levels for both locations. The length of a line on a wind 

rose is proportional to the percentage of time the wind blows from that 

direction. Figure 7 shows hourly averaged wind roses for the four 

locations for the month of August 1978. These are standard 
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Figure 6. Valley-plain breeze illustrating the counter current aloft. 
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meteorological 16-point roses. A wind from the north appears as a line 

toward the top of the page. Any wind between 348.75 and 11.24 degrees 

is considered to be a north wind, between 11.25 and 33.74 degrees, a 

north-northeast wind, and so on. The averaged insolation and tempera- 

ture are shown for each hour. 

The diurnal variation in wind direction is clearly evident at 10 

and 61 m levels in the valley. The return circulation on the ridge is 

also shown, although much less apparent. This counter circulation 

appears mostly as southwest to southeast winds at night and as prevailing 

westerly winds during the day. A longer averaging period, say, for 

example, over the entire summer, would no doubt show the return circu- 

lation more clearly. However, since the length of daylight hours 

changes considerably at this latitude, it would be better to average 

the same month for a number of years rather than all the months for one 

year. Thirty-one days, however, were sufficient to produce meaningful 

results. 

The difference in amplitude of the diurnal temperature variation is 

to be noted. The maximum averaged temperature differences during the 

day in degrees Celsius are 8.6, 7.5, 6.3, and 5.9 for the 10 m level 

(valley), 61 m level (valley), 10 m level (ridge), and 61 m level (ridge) 

locations, respectively. The temperature difference in these averaged 

peak-to-peak values between the valley and the ridge are 2.3" and 1.6 "C 

for the 10 m level (valley) minus the 10 m level (ridge), and the 61 m 

level (valley) minus the 61 m level (ridge), respectively. These numbers 

are averaged over the 31 days of August; individual days may be greater 

or less. It is this difference which causes the valley-plain breeze. 
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The pibal soundings show the counter current more clearly than the 

tower data. The counter current is often only directly.above the center 

of the valley and, thus, not detectable with the tower measurements. 

The pibol soundings often show a low level jet near or slightly above 

ridge height. A low level jet is a local maxima in the wind speed, 

possibly accompanied by a directional shear within the boundary layer. 

It is believed that the low level .jets apparent in the pibol records 

are a result of the counter current. When the prevailing winds are in 

the direction of the counter current, the local maxima appear higher in 

elevation than when they are opposing each other. A local minimum in 

the prevailing winds occurs at counter current height, thus producing a 

local maximum just below when the counter current and the prevailing 

winds are opposing each other. Similar maxima with a directional shear 

occur with crosswinds. The height and strength of the jet are a 

function of wind direction. Figure 8 shows typical wind profiles 

illustrating these maxima. 

II. DATA ANALYSIS 

A chronological synopsis of the local prevailing weather which 

occurred during the measurement program is presented in this section 

for the.time periods October 1-5, 11-12, and 21-28. This is done on a 

24-hour basis, 1700 to 1700 LST, corresponding to the time period shown 

in each figure. Airplane temperature soundings are superimposed at the 

same vertical scale as the acoustic record. Pibal readings are dis- 

cussed with respect to the valley and counter valley flows. The sky 
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Figure 8. Arbitrary wind profiles illustrating the low level jet. 



cover, barometric pressure, and prevailing winds are also reported 

along with the time of change in the direction of the wind. 

Both acoustic radars were operated at the valley location during 

the time illustrated in Figures 9, 10, and 11. The purpose of locating 

the radars adjacent to each other was to compare the vertical axis of 

one radar with the other. The numerous dashed vertical lines appearing 

at approximately every five minutes are the result of slight differences 

in the height scale of the recorders. The transmitted acoustic pulse 

of one recorder appears on the record of the other recorder as a 

vertical line. Both the upper and lower charts on these figures appear 

nearly identical. One of the acoustic radars was moved to the ridge 

location on the afternoon of October 5, extreme right side of Figure 11. 

October l-2, Figure 9 

By 1700 LST the sky had cleared from a stratocumulus deck which was 

prevalent earlier in the day. The down-valley breeze had set up by 

1430 LST, which is earlier than normal. A temperature sounding at 2010 

LST indicated the formation of an inversion at 500 meters which cop 

responds to the formation of the elevated inversion shown on both 

acoustic records. The acoustic records also show that a ground based 

inversion began to form shortly thereafter. A 1900 LST pibal reading 

showed northeasterly winds up to 1 km with a low-level maximum from the 

north at ridge height. This is a result of the minimum just above the 

jet due to the counter current. The evening remained clear and the 

pressure continued to rise steadily. Visual observation revealed that 

the plume which had been coning began fanning out beneath the 400 m 

inversion by 2200 LST. 
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Figure 10. Acoustic records for Widows Creek steam plant (parallel operation, valley location), 

October 3-4, 1978. 
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Figure 11. Acoustic records for Widows Creek steam plant (parallel operation, valley location), 

October 4-5, 1978. 



The sky remained clear on the morning of October 2, and the pres- 

sure continued to rise. A temperature sounding at 0005 LST showed both 

a ground-based inversion and an elevated inversion of 400 m. Pibal 

readings at 0100 LST and 0300 LST showed a low-level jet at ridge 

height but very little change in direction from the prevailing winds 

which were still northeast up to a height of 1.5 km. 

A thick fog had formed which obscured the sky by 0400 LST. A 

rawinsonde recording at 0430 LST showed only a ground based inversion 

up to 500 m. The fog remained thick until 1000 LST, after which time 

only patches of fog were left. A temperature sounding at 1010 LST 

showed two elevated inversions, with the highest one being very weak. A 

1015 LST pibal reading showed that the low level jet was weakening and 

had disappeared by 1202 LST. 

The inversions had been eroded by thermals when the 1205 LST 

temperature sounding was made. The up-valley wind began to form by 

1130 LST and continued to develop until 1700 LST. The sky was scattered 

with fair weather cumulus for the afternoon, and the pressure began to 

fall steadily from 1300 LST on. The time of decay of the jet and the 

formation of the up-valley wind corresponded perfectly. 

October 3-4, Figure 10 

On the evening of October 3, the up-valley winds continued excep- 

tionally longer than normal, lasting well past 1900 LST. A strato- 

cumulus deck had formed with a thin altocumulus deck above. A 

temperature sounding at 2010 LST shows the formation of an elevated 

inversion at 400 m. This is one of the few cases where the acoustic 
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record does not clearly show the inversion. Figure 10, upper chart, 

shows the inversion, but it is indistinguishable from the noise above 

it. The original facsimile recording of Figure 8, lower chart, shows a 

weak return, but it did not reproduce on this illustration. The 1900 

LST pibal reading indicates that the low level jet at ridge height was 

from the southwest with no directional shear. 

The broad vertical lines shown on the acoustic record are the 

result of a number of showers which passed over the area. The pressure 

began to rise and the prevailing wind, now northeasterly, formed a 

shallow fog by 0100 LST on October 4. A rawinsonde sounding at 0027 LST 

showed a positive lapse rate up to 2 km. 

By 0400 LST the sky had cleared, and the pressure continued to rise. 

A rawinsonde sounding at 0413 LST showed that a shallow ground based 

inversion had formed up to 100 m. A 0640 LST pibal reading showed no 

evidence of a low-l.evel jet in the strong prevailing winds which were 

northeast at the surface and veered to the west at a height of 1200 m. 

The fog was quickly diminished due to surface heating after sunrise. 

An 0840 LST temperature sounding showed an inversion at 500 m, but the 

1006 LST temperature sounding showed only an isothermal layer. A 

possible explanation for the apparently contradictory soundings may be 

that the strong echo at 550 m was formed by the plume or a warm bubble 

and that the 1066 LST sounding did not encounter the warm area. 

Fair weather cumulus characterized the rest of the day. The 

1215 LST temperature sounding showed an adiabatic lapse rate, and the 

acoustic record showed thermals until 1700 LST. The prevailing north- 

easterly winds apparently prevented the up-valley wind from forming. 
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October 4-5, Figure 11 

The 1700 LST temperature sounding on October 4 continued to,show 

an almost adiabatic lapse rate, and the acoustic record showed no returns. 

The sky remained clear, with the weak high pressure regime already 

becoming modified. The 1900 LST pibal reading indicated veering of the 

wind from northeast at the surface through the south to southwest at 

1.5 km. A weak low-level jet began to form at ridge height. The 2035 

LST temperature sounding shows the formation of a ground based inversion. 

The rest of this day remained clear and the jet at ridge height 

strengthened. 

By 0302 LST on October 5, the ground based inversion is shown to 

have deepened to 400 m. A pibal reading at this time indicated that 

the wind veered to the southwest directly above the inversion top much 

lower than previously. A deepening fog formed by 0400 LST. 

deep. The temperature By 0700 LST the fog was almost 300 m 

sounding at 0924 LST showed a strong shal 

strong elevated inversion at 300 m, and a 

low ground based inversion, a 

weak inversion at 600 m. The 

acoustic record does not show a return from 600 m. 

By 1000 LST the synoptic wind was southerly at the surface, and 

the 1105 and 1300 LST pibals showed southwesterly to westerly winds up 

to 1.5 km with weak jets at ridge height due to the minimum at counter 

current height. A temperature sounding at 1224 LST showed a positive 

lapse rate to 1 km. The acoustic record showed only thermal echoes. 

October 11-12, Figure 12 

A broken stratocumulus deck occurred at 1.5 km on the evening of 

October 11, and a pibai reading at 2200 LST indicated the prevailing 
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Figure 12. Acoustic records for Widows Creek steam plant, October 11-12, 1978. 

(a) Ridge location (upper chart). (b) Valley location (lower chart). 



winds were southwesterly to a height of 1.5 km. A pibal reading at 

2312 LST showed the formation of a jet at ridge height and the winds 

continuing from the south southwest to heights of 1.5 km. The acoustic 

record shows a deep ground based inversion, 400 to 500 m, in the valley 

and a shallow ground based inversion, 100 to 200 m, on the ridge. It 

should be noted that the difference in the heights of the inversion is 

nearly equal to the height of the ridge, approximately 300 m. 

The sky had cleared by 0100 LST on October 12, and the down-valley 

wind finally set up over the strong southerly winds by 0300 LST. A 

pibal reading at 0305 LST showed a weak jet above the inversion top. 

By 0700 LST the sky was again covered with a stratocumulus cloud deck. 

A temperature sounding at 0844 LST showed a negative lapse rate up to 

600 m. A pibal reading at 0700 LST showed the jet still existed and 

that the prevailing winds were south southeast to 1.5 km. By 1000 LST 

the cloud deck broke up, now covering only one-tenth of the sky, and the 

down-valley wind diminished. Pibal readings continued to show south- 

southwest winds up to 1.5 km with no apparent jet occurring. A temper- 

ature sounding at 1238 LST showed no inversion, while the acoustic 

record showed forming thermals. The inversion breakup on the plateau 

occurred almost two hours earlier than in the valley. The periodic 

black vertical lines caused by a lawn mower at 1400 LST are shown on 

the acoustic record from the valley. 

October 21-22, Figure 13 

A strong high pressure regime had moved into the area with clear 

skies. The down-valley breeze began to set up by 1900 LST and by 2000 

LST was evident at 61 m. A temperature sounding at 2011 LST indicated 
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Figure 13.. Acoustic records for Widows Creek steam plant, October 21-22, 1978. 

(a) Ridge location (upper chart). (b) Valley location (lower chart). 



the formation of a ground-based inversion up to 300 m. A pibal reading 

at 2315 LST showed southerly winds up to 1.5 km starting just above the 

down-valley breeze with a jet at ridge height. 

The plume was fanning out beneath the inversion and creating higher 

than normal SO2 concentrations at the surface early on October 22. The 

sky remained clear, and pibal readings at 0220 LST and 0500 LST con- 

tinued to show southerly winds above 76 m, with northerly winds below 

this level and the appropriate jet. A temperature sounding at 0400 LST 

indicates a strong, deep ground based inversion up to 500 m. Again, 

the extremely shallow inversion on the ridge is to be noted. 

The sky remained clear and the plume continued to fan out beneath 

the inversion, creating some SO2 readings at the surface. A pibal 

reading at 0710 LST continued to show southerly winds, the down-valley 

breeze had deepened to 200 m, and the jet weakened. A temperature 

sounding at 0820 LST showed little change from that at 0400 LST. A 

cirrus deck began to invade the sky by 1000 LST and by 1300 LST covered 

the whole sky. The up-valley winds had formed at the surface by 1100 

LST and moved upward to 61 m by 1200 LST. Pib:j! readings at 1109 LST 

and 1330 LST showed southerly winds up to 1.5 km with no jets. A 

temperature sounding at 1210 LST showed a positive lapse rate, while 

the acoustic record showed growing thermals. The much quicker and 

earlier breakup of the inversion on the ridge is again to be noted. 

The decay of the jets is the result of the change in counter current 

direction. 
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October 23-24, Figure 14 

The clear high pressure regime remained in the area through 

October 24. The down-valley breeze had set up by 1700 LST. A pibal 

reading at 2220 LST showed northwesterly wind veering to westerly at 

1 km with a jet occurring at ridge height. A pibal reading at 2330 LST 

showed northwesterly winds up to 1.5 km. 

A low cumulus deck began to form early on October 24. A rawin- 

sonde record at 0014 LST showed the formation of a weak elevated 

inversion at 800 m. A pibal reading was attempted at 0300 LST, but was 

lost at 300 meters because the sky was by now covered by clouds. 

A rawinsonde temperature sounding at 0357 LST showed a strong inversion 

topping out at 1 km. The acoustic record shows the height of a fluctu- 

ating inversion between 300 and 600 m over the ridge and between 700 m 

to off-the-chart in the valley. 

Pibals reading at 0630, 0800, 0900, 1000, and 1100 LST were all 

lost in the clouds, a height too low to be of any significant value. 

Airplane temperature soundings were aborted due to the low-level clouds 

below inversion height at 0820 and 1000 LST but did indicate super- 

adiabatic lapse rates to 500 m. The plume was observed to be trapped 

below the strong inversion and descended to the surface a number of 

times. A pibalreading at 1155 LST showed northeast winds below the 

inversion, with southwest winds above. A temperature sounding at 1215 

LST located the inversion near 800 m. 

The sky cleared by 1300 LST and remained clear until late afternoon 

on October 25. A pibal reading at 1300 LST continued to show strong 

shear just above inversion height. A temperature sounding at 1615 LST 
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showed only an isothermal layer between 900 and 100 m, accounting for 

the weak echoes still shown on the acoustic record. 

October 25-26, Figure 3(a), Page 14 

The afternoon of October 25 was hazy and totally overcast with a 

cover of clouds between 1.5 and 2.0 km. Moderate winds were from the 

southeast at the surface and were southwest up to 1.5 km. The 1839 LST 

pibal reading showed moderate wind shear at 300 m, which corresponds well 

with the height of the forming ground based inversion. The sky cleared 

and the inversion top was near 600 m by 2000 LST. The haze continued 

and thin clouds formed again early on October 26. The aircraft 

soundings flown at 0300 and 0640 LST show the ground-based inversion 

top near 700 

"quiet" area 

in the sound 

sion was no 

m. This is clearly shown on the acoustic record with the 

in between corresponding to the positive lapse rate shown 

ngs between 600 and 800 m. By 0640 LST the lowest inver- 

500 m. 

unti 

longer ground based and lowered to 

The down-slope winds did not set up until 

1 0400 LST. The drainage wind was extreme 

0230 LST and lasted only 

ly weak and the prevailing 

southwesterly wind was observecl at 61 m. The wind returned to the 

southwest at 0400 I-ST, and the surface warmed, destroying the ground- 

based inversion at 0600 LST. This registered on both the acoustic 

record and temperature soundings. 

At 0600 LST the drainage wind set up, again only at the surface. 

This produced a very shallow fog, and the sky was still visible. By 

0800 LST the southwest winds returned and the 0815 LST sounding showed 

only a weak inversion at 500 m. The temperature sounding at 1000 LST 
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showed only an isothermal layer and by 1200 LST, only an isothermal 

layer at 900 m. The 1625 LST temperature sounding showed a positive 

lapse rate for the complete sounding. The acoustic record shows the 

afternoon thermals breaking through the inversion around 1200 LST. Pibal 

readings showed basically strong southwest winds reaching a maximum of 

20 m s-'. It is easy to understand why the valley and counter circu- 

lations are nonexistent with such strong prevailing winds. 

October 26-27, Figure 3(b), Page 14 

The prevailing southwesterly winds continued until 1900 LST, and the 

sky was completely overcast with a stratus deck near 1.5 km. The pre- 

vailing winds then veered from the west to northwest by 2100 LST, and 

the pressure began to rise moderately. The 2100 LST rawinsonde reading 

showed an inversion forming at 500 m. 

The cloud deck had lowered to 1 km by 0100 LST on October 27, and 

the prevailing winds had shifted to the north to northeast by 0200 LST. 

The 0225 LST rawinsonde shows that the inversion at 500 m had 

strengthened and a negative lapse rate existed from 550 to 850 m. 

The sky had cleared by 0400 LST, and a strong wind shear existed 

just above inversion height as the wind veered from the northeast to the 

west. The strong subsidence inversion associated with the oncoming high 

pressure, which reached 1020 mb by 0700 LST, is shown weakening and 

decaying in the four airplane soundings. A pibalreading at 1030 LST 

clearly shows the return circulation with a southerly wind at 630 m 

forming against the prevailing northerly winds. The inversion is 

totally broken down by 1450 LST. The plume from the power plant was 

observed to be trapped below the inversion until 1300 LST and a number 
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of times reached the surface, accounting for the high SO2 concentrations 

downwind. The pibal readings indicated that the strong counterclockwise 

veering just above inversion height continued until 1400 LST. 

At 1400 LST the up-slope winds formed in the valley, and weak 

thermals broke through the inversion. The up-slope winds did not last 

long and by 1630 LST the stronger northwesterly winds prevailed. 

October 27-28, Figure 3(c), Page 15 

The evening of October 27 remained clear with an almost adiabatic 

lapse rate at 1700 LST. The 1732 CST and 1900 LST pibal readings 

showed the wind direction veered with height from the northwest at the 

surface and north at ridge height, east at 1 km and southwest at 1.5 

km. The temperature sounding at 2020 LST showed the formation of an 

inversion just above ridge height. The plume became trapped below the 

sinking inversion and by 2400 LST was below ridge height. 

The temperature sounding at 0010 LST on October 28 shows a surface 

inversion rising to meet the sinking inversion which was at ridge height. 

By 0100 LST the inversions met and formed a single ground-based inver- 

sion; the 0225, 0426, and 0816 LST soundings showed only a ground-based 

inversion. The plume, being trapped below the ridge height until 

0700 LST, fanned out just above ridge height until 0900 LST. At approxi- 

mately 0900 LST the ground-based inversion again split. This is clearly 

indicated by both the acoustic record and the 0957 LST temperature 

sounding. 

Pi!;a.l readings at 0300, 0550, 0700, 0752, 1000, 1055, and 1700 LST 

all show the low-level jet indicative of the return circulation pattern. 
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By 1220 LST the inversion was broken down and only thermal plumes 

appeared on the acoustic record. The up-slope winds occurred only at. 

the lowest level from 1500 to 1700 LST before the northerly winds again 

prevailed. 

Discussion 

One of the most persistent air pollution problems is created by 

the subsidence inversion. The inversions formed by the diurnal effect 

of mesoscale climates associated with mountain-valley systems can be 

as serious. Subsidence inversions occurred during the periods shown in 

Figures 3(b), 3(c), 9, and 14, pages 14, 15, 35, and 46. Higher than 

normal SO2 concentrations were recorded downwind on three of the four 

days shown. The SO2 concentration data were missing for October l-2, 

Figure 9. Deep ground-based inversions occurred in the valley during 

the times shown in Figures 3(a), 11 through 13, pages 14, 37, 41, and 43. 

Higher than normal concentrations of SO2 were recorded on three of the 

four days shown. During October 4-5, Figure 9, there were only occa- 

sional times when the SO2 concentrations were measurable. 

The ground-based inversions shown in Figures 12 and 14 are deep 

only in the valley. The effluent from a stack located on the ridge 

would not have been trapped below the inversions, as was the case in the 

valley. Ground-based inversions occur regularly on clear, calm nights. 

These inversions tend to extend just over the top of the ridge. The 

use of taller stacks, similar to the one at Widows Creek, which extend 

above the ridge will help to eliminate air pollution problems in the 

valley during these nocturnal conditions. 
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The use of larger stacks during periods when subsidence inversions 

exist will be of less value than for ground based inversions. The 

subsidence inversion shown in Figure 12, page 41, is at times 900 m 

above the valley floor. It would take an extremely large stack to 

insure no trapping of the plume below a strong inversion at this height. 
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CHAPTER IV 

CONCLUSIONS 

It is evident from the data presented here that the acoustic radar 

is as accurate in locating inversion levels as conventional rawinsonde 

or airplane soundings. Moreover, the acoustic radar has the advantage 

of continuously monitoring the inversion layers as opposed to periodic 

temperature soundings. The monostatic acoustic radar, however, does 

not give the magnitude of the temperature measurements, but only 

locates the spatial position of temperature discontinuities. 

Calibration for quantitative analysis requires profiles of both 

temperature and the turbulence parameters. The aircraft was not 

equipped to measure turbulence, and therefore quantitative calibration 

was not attempted. Operation of two identical model radars side-by- 

side allowed for calibration of the height scales, but only visual 

calibration of the sensitivities. This, however, was sufficient for 

qualitative monitoring of the inversion layers. A monostatic acoustic 

radar, thus, provides an inexpensive means for continuous monitoring of 

inversions. 

The difference in the structure of the atmosphere within and out- 

side a large valley has been demonstrated. The acoustic record shows 

that the height of the major inversion is greater in the valley than 

on the ridge. The difference in height is approximately the height of 

the ridge. The use of taller stacks in the valley will be of greater 

value during times when ground-based inversions occur than when sub- 

sidence inversions occur. 
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