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SUMMARY

~—

A review of some approximate modeling techniques used to develop

analytical solutions for damaged, fiber-reinforced composite materials

l ]
[ t

‘s presented along with previously unpublished results of the past

 p—

year's research concerning the application of these methods to particular
problems.

The classical shear-lag stress-displacement assumption is funda-
mental to much of this work. Based on this approximation, solutions
are developed for the two-dimensional region containing uni-directional

fibers with initial damage in the form of respectively; a notch, a

+

rectangular cut-outand a circular hole. An ultimate stress failure
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criterion is used for both the fibers and *he matrix; simple tension
for the fibers and shear failure for the matrix. Models which account
for longitudinal matrix yielding and splitting as well as transverse
matrix yielding and fiber breakage as a function of initial damage,
material properties and applied stress are presented. The fibers are
taken as linearly elastic and the matrix material as either elastic-
perfectly plastic or elastic-strain hardening. A cover sheet con-
straining the uni-directional laminate is also introduced although é
only its influence on the uni-directional laminate is modeled; the
stresses within the constraint layer are not computed.

For ductile matrix composites (boron/aluminum) the results
indicate that longitudinal matrix yielding and transverse notch

extension are the most significant forms of damage to include in order

for the model to agree with experimental results. The extent of the
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stable transverse damage is shown to be approximately constant,
independent of initial notch length. Including a cover sheet and/or
strain hardening matrix has minor influence. In the case of brittle
matrix composites (graphite/epoxy) longitudinal splitting is shown
to be the dominant form of damage.

Very little difference is found between the results for the
three types of initial damage, i.e. the notch, rectangular cut-out
and circular hole. In all cases, the presence of additional damage
changes the nature of the stress distribution in the unbroken fibers.

For the original Hedgepeth problem of a notched laminate the stresses

decay as the square root of the distance from the notch tip; including

longitudinal or transverse damage significantly reduces the stress
concentration and gives a much more uniform stress state in the un-
broken fibers. It is shown that this behavior cannot be accounted
for by introducing an effective notch length or crack tip damage zone
with a square root behavior.

The formulation of the problem for an edge notch in a uni-
directional half plane with no additional damage is also developed
and the appropriate equations are recorded but numerical results are
not given. This solution forms the basis for the general problem of
adjoining half-planes of different fiber-matrix properties now being

developed by the writers.
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INTRODUCTION

A major portion of the writer's research over the past few years
‘has concerned the deveiopment of suitable analytical techniques for
predicting the stress state and fracture behavior of damaged composite
1aminates. Much of this work has dealt with approximate solutions
based on discrete fiber-matrix material models with particular simpli-
fying assumptions used to relate fiber and matrix stresses to fiber
displacements. The resulting solutions are not complete solutions
to the equations of elasticity for the two phase region and a sig-
nificant portion of the study has been the investigation of the
agreement of the results with experimental data.

In past reports and technical papers concerning this work
specific models and results have been presented in each paper, but
no unified report has been written. Rather than add one more paper
covering only the work of the past year it was felt to be an appro-
priate time in the development of these methods to review the basic
assumptions and discuss the significance of the models and the results,
both for the convenience of having a more complete record and to be
able to make some important observations concerning the nature of the
different models, about which we have only recently become aware.

The initial work in modeling a uni-directional comoosite contain-
ina broken fibers was presented by Hedgepeth in [1] for broken fibers
with no longitudinal or transverse damage other than the initial notch.
This work was extended by Hedgepeth and Van Dyke in [2] for the special
case of one broken fiber with matrix yielding parallel to the fiber and
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in [3] for one broken fiber with longitudinal splitting in the matrix.
In all these studies the fiber breaks were assumed to 1ie on a transverse
1ine and the shear-lag assumption was used. One very important feature
of the shear-lag model is that it simplifies the equilibrium equations
by removing the transverse displacement dependence from the longitudinal
equation, and the fiber stress and the matrix shear stress can be
determined without solving the transverse equation. In reference [2]
Hedgepeth and Van Dyke used the same model to develop the solution for
broken fibers in a three-dimensional uni-directional composite con-
taining broken fibers with no additional damage. A detailed discussion
of similar material modeling techniques and some simplified solutions
are presented by Zweben in [4] and [5]. Eringen and Kim in [6] developed
a modified solution for the original Hedgepeth problem, [1], by extend-
ing the shear stress-displacement relation to include fiber bending as
well as axial displacements; no additional damage was accounted for in
[6]. The stress-displacement relation assumed in [6] allows for better
satisfaction of a stress free crack surface, i.e. the shear-lag
assumption does not have sufficient freedom to remove the shear
stresses from the crack surfice. However, Eringen's model does couple
the axial and transverse equilibrium equations and gives a somewhat
more complicated set of differential-difference equations. The
inclusion of matrix damage and transverse fiber breaks (notch extension)
in Eringen's model appears to be much more difficult than in Hedgepeth's
model and such modifications have not been attempted at this time.

The initial damage in all of the above studies consisted of

broken fibers in the form of a notch (crack). Frankin in [7] and

€ -y € ——
—m——t e



Kulkarni et.al. tn (8] investigated the case of a circular cut-out
containing no additional damage and found that the stress concen-
trations in the unbroken fibers was changed very little over the
corresponding solution for a notch.

Goree and Gross in [3] extended the Hedgepeth solutions to
include Tongitudinal matrix yielding and splitting for an arbitrary
number of broken fibers and in [10] developed a solution using the
Eringen model of [6] for a three-dimensional unt-directional composite
containing broken fibers but without matrix damage. The results of
[9] gave very good agreement with experimental results for brittle
matrix composite and reasonably good agreement for ductile matrix
composites. The inclusion of transverse stable notch extension to
this model is shown below to make a very significant improvement in
the ability of the model to represent the behavior of a ductile
matrix (boron/aluitinum) laminate.

Over the past year solutions have been developed for the following
problems:

1. transverse notch extension

2. constraint (or cover) layer

3. strain hardening matrix

4. rectangular (rather than slit) initial damage region

§. circular initial damage region

6. formulation of the edge crack problem.

In the first section presented below the formulation of the original
Hedgepeth problem [1] will be presented, using Fourier transform methods
rather than the influence function technique as used by Hedgepeth as

A A vy o T
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this is the foundation for the remaining solutions. The next sections
will then consider the development of the equations for respectiveiy;
longitudinal splitting and yielding of the matrix, transverse notch
extension, constraint layer, strain-hardening matrix, rectangular
damage region, circular damage region and the edge crack solution.
Results and comparisons of the various models wili then be presented.

O ——
s
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A. Two-Dimensional Shear-lag Model with Broken Fibers

Consider a two-dimensional uni-directional lamina containing
broken fibers as shown in Figure (1). The development presented in
this section will be for no additional damage other than the broken
fibers. This solution was first presented by Hedgeneth in [1] however,
as it is the fundamental solution on which all of the foilowing models
are based, it will be included in this report for completeness. Further,
the method of solution appropriate for the various extensions to this
basic model is somewhat different than that of Hedgepeth in (1], i.e.
Fourier transform tecnniques are used directly in the p:-esent work
while Hedgepeth developed the solution by means of influence functions.
For no damage other than the initial notch the two methods are equiva-
leat. However, for the extension to matrix yielding ard snlitting at the
end of the notch containing more than one broken fiber, the Fourter
transform method is more direct.

The formulation given below will also develop the solution for
the matrix normal stress which is not given in [1]. It should be
noted that it is often attributed to the shear-lag solution that onl,
shear stresses exist in the matrix. This need not be imposad on the
solution, althougn & fundamental property of the shear-lag assumptions
{s that the differential-difference equations for axial and transverse
fiber displacements uncouple such that the axial displacement can be
found without solving the transverse equation. As the fiber stress
and matrix shear stress are functions of the axial fiber displacement

alone, these stresses can then be <etermined without knowing the
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transverse displacements. Once the axial fiber displacement is known it
is a simple matter to solve the transverse equation for the transverse
fiber displacement and compute the matrix normal stress between fibers.

Following Hedgepeth [1], the laminate is nod:.ed as a two-
dimensional region, shown in I'igure (1), having a single row of parallel,
identical, equally spaced fibers, ueparated by matrix. The damage is
taken to consisy of an arbityary number of broken fibers such that all
breaks 1ie along the x-axis, but they need not form a continuous break
(nctch). Later in this section the equations corresponding to a notch
will be dev -‘oped. It 1s this solution for a notch that is extended
in the remaining sections. In all cases it is assumed that the fibers
have a sufficiently higher elastic modulus in the axial direction than
the matrix such that the fibers support all the axial stress in the
laminate. The matrix supports transverse normal stresses and shear
stresses.

Admittedly, most uni-directional composites consist of more than
one lamina with all fibers in each lamina surely not perfectly aligned
either through the thickness, or within each layer. These variationsl
can have 2 considerable influence on the stress state. For example in
[11] and [12] it is shown that the shear stress becomes larger as the
fiber spacing decreases. Local failures may well occur at the critical
points through the thickness in advance of laminate splitting which
could give an appareat shear stiffness considerabiy different from that
for the matrix alone. It is assumed that such variations can be
accounted for by an appropriate choice of a matrix shear modulus Gy
and a shear transfer distance h. It is with this in mind that the
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following development will be concerned with an equivalent lamina

~— ™

where GM and h are to be determined experimentally for any particular
laminate. The following fundamental assumptions regarding the stress-
displacement relations are made:

1. The 2x1al fiber stress, OF |, in fiber n is given by

o '-ﬂ)a‘-'ﬂ"&‘f-‘b"?“

dv
o =E n
Fln = “Fdy °

where EF is the Young's modulus of the fiber and a is the axial

. . . & .

displacement of fiber n.

P T—

2. The shear stress in the matrix, Tln+l , between fibers n and

n+l is given by

T!nﬂ =7 (Vay=va)
where GM/h is the equivalent shear stiffness of the matrix and
¥ is the axial displacement of fiber n. This relation is the

basic shear-lag assumption.

. . v . ¢ -~

3. The transverse matrix stress, °M|n+l' between fibers n and n+i

“ is given by
Ew
i MUlper = H Cner =)

i .S 5

where EM/h is the equivalent matrix transverse stiffness and Up
} is the transverse displacement of fiber n.
- 4. Consistent with the above assumptions it then follows that the
stress state on a transverse plcne is constant between fibers.
(- With these definitions and assumptions, the equilibrium equations

for a typical element as indicated in Figure (2) are as follows:

A. do ‘
F _Fln -
T & T a0 (a.1)

et t
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and b4
°M|n+l '°M|n+ 7W{T|n+]*tln} =0 . (A.2)

Substituting from the above stress-displacement relations the

following pair of differential-difference equations are obtained:

2
EFAFh d L
& _z_dy + Vo4~V tv = 0 (A.3)

and
; Gy
M d =
' {unﬂ - 2un+un_]} v ay {Vnﬂ - vn-l} =0 . (A.4)
As mentioned above, the equilibrium equation in the axial direction,

equation {A.3), is seen to be independent of the transverse displace-

ment and can be solved without solving equation (A.4). Hedgepeth [1]

‘does not consider this transverse equation but develops a solution to

the axial equation (A.3) only. We now proceed to develop a solution

to equation (A.3) and, with this solution determined it will then give

the solution to equation (A.4) for the transverse fiber displacements.
Noting the coefficient of the first term in equation (A.3), the

following changes in the variables are suggested:

lEFAFh
y G t n o (A.S)

- dvﬂ
oFIn =aq, cFln = EF T and

Ach
= ow (EGT Yo v
n Byt 0
where n, &F| » V,, are non-dimensiona1. Equation (A.3) then becomes
n
independent of all material properties as

2
v,
—z-dn V=2V +V =0 . (A.6)

| oose S
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This differential-difference equation can be reduced to a differential
equation by defining a new function V(n,8) such that the normalized
displacement vn(“) is the Fourier coefficient in a Fourier series ax-

pansion. That is,

V(n,0) = ; vn(n)e-ine , and (A.7)

as the displacements are continuous functions of n,this representation

is necessarily valid and can be inverted to yield
] T ing
V,(n) = 2;-{“ V(n,0)e ~ do . (A.8)

Substitution for Vn(n) in terms of V(n,8) in equation (A.6) re-

sults in
) J'"{dz‘7 -2 -cos(e)]} eine de = 0 (A.9)
Zr L \dn?

This equation is of the form

1 7 ine
el F(n,0)e de =0, for all n and n.
-

The function F(n,8) is continuous in ¢ and therefore, if the integral
is to vanish for all n the function F(n,8) must be zero. The equation

specifying V(n,8) is then

&V 2
—7 - V=0 , {(A.10)
dn

where
62 = 2[1-cos(8)] = 4 sinz(e/Z) .

The solution to the problem of vanishing stresses and displace-

ments at infinity and uniform compression on the ends of the broken

fibers will now be sought. The complete solution is obtained by adding
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the trivial results corresponding to uniform axial stress and no broken
fibers to the following solution.

The boundary conditions are,

Vn(n)'O as n-+» , (A.11)
for all fibers,

avp(n) _

o 80F|n'-1 , at n=0 , (A.12)

for brclkon fibers, and
Vn(n) =0 , at n=0 , (A.l3)

for unbroken fibers.
Equation (A.10) has the complete solution satisfying vanishing

stresses and displacements remote from the damage as

V(n.8) = A(s)e™®" (A.18)
where the function A(e) must be determined from the remaining boundary
conditions.

Using equations (A.8) and (A.14) the displacement is given by

-6n in
Gne 8

Vo(n) = 5= {: A(8)e ds . (A.15)

Noting the form of the above integral for n = 0, the boundary condi-

tion of no displacement for the unbroken fibers, equation (A.13) is

identically satisfied by taking
A(8) = z B, (A.16)
L

with ¢ being the index of each broken fiber and the Bm are constants.
One then has precisely the number of constants Bz as broken fibers.
These constants Bz are determined from the remaining boundary condition,

equation (A.12), of a unit compressive stress on the broken fibers at
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n = 0. Substituting equation (A.16) into (A.15), equation (A.12) then

gives, at n= 0,

2‘; e B, de i & =2 sin(e/2) (A7)

O
for 2 and n corresponding to al! broken fiber indices. This equation
then gives a system of linear algebraic equations for the unknowns Bz
and the solution is complete. If the broken fibers are symmetric about
the zero fiber, and therefore form a notch, the above equations are con-
siderably simplified. Let the center fiber be located by the index n=0,

then equation (A.7) may be written as a cosine series as

- Voln) =
V(n,8) = ——+ z] V(n)cos(ne) , (A.18)
n=
from which
2 "o
Vp(n) = | V(n,6)cos(ne)de , (A.19)
o

where, as in equation (A.14), V(n,e) = A(e)e'G“.
Equation (A.16) is a cosine series for this symmetric case and is given

by

N
Alg) = ¢ Bz cos(ze) , (A.20)
220

where N is the index of the last broken fiber. One then has N+1 un-
known constants 81 with the solution given by satisfying tha boundary
condition of uniform stress on the broken fibers at n = 0, equation
(A.12). This gives

TN

N
T B fﬂa cos(28)cos(ne)ds =1 , n =0,1,...,N (A.21)
=0 *o

where, as before, recall that & = 2 sin(6/2). For example, if N=0
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which corresponds to one broken fiber, equation (A.21) gives Bo directly

as
%-nnzﬂzsmunmﬂagsnw). (A.22)
0

The maximum fiber stress in the first unbroken fiber is at n=0

& —t
e F

and is given by

ae| . (0)  dv,(0) 1
F|°1 - %n = %é -5 A(g)cos(e)de = :1; ]

or, for a unit stress at infinity and an unloaded free end of the broken

fiber

(0)
oy =1+ =

4
5.
The normalized crack opening displacement is given by equation (A.19) as |
n 3
2Vo(0)3~2' . )
For the general case of 2N+ 1 broken fibers, and with the axial
fiber displacement now known, the transverse fiber displacement un(n)
may be determined from equation (A.4). For the specific case of a T

symmetric number of broken fibers in which the axial displacement is

given by an even valued transform, equation (A.19), the transverse ;

displacement will be odd valued and is given by

ﬁ(n.e) = ; Un(n)sin(ne), and (A.23)
n=1 1

Upln) = 2 /" G(n,0)sin(ne)de
To

where,

E Gt
.t F:" . (A.24)

——— b M M % 7§ U W Sy P
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Substituting this representation into the normalized form of equation
(A.4), the resulting transverse displacement is then given by

1 & t " di(n,8) sin(e)sin(ne
(o) = = 3 BalKER dlne) siplolsinige) 4o . (.25)

In the following sections the ahove solution for a symmetric notch

will be modified to account for the various damage models.
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B. Two-Dimensional Shear-Lag Model with Broken Fibers and
Eongituaina1 E§§r1x4§p11%€1gg»aia 71e131ng

The solution developed in section A will now be extended to in-

clude longitudinal splitting and yielding of the matrix as shown in
Figure (3). This solution along with extensive results is given in [9].
A1l the previous assumptions are assumed valid and it is only necessary
to account for the additional damage region parallel to the fibers. It
1s assumed that splitting and yielding of the matrix initiates at the
notch tip and progresses longitudinally between the last broken fiber
and the first unbroken fiber as shown in Figure (3). The matrix ma-
terial is assumed to be elastic-perfectly plastic.

The same free-body diagram of section A, shown in Figure (2) is
considered with additional conditions for the last broken fiber, denoted

by n=N, and y < L, to account for the longitudinal damage taken as

T Z T<yel > (8.1)
N+1

where

<y-2>=1 , y>¢
<y=4>=0 , y<23 ,» and (B.2)

L equals the total damaged length, 2 the split lenath, and o the matrix
yield stress. Yielding is assumed to occur when the matrix shear strain
reaches the yield strain, Yo Splitting occurs at a multiple of Y, aS
given by the particular matrix material.

The equilibrium equations in the longitudinal and transverse

directions respectively for all fibers n, with the exception of N and

N+1 when y <L, are then

— .




A do
F _Fin .
T 7§L+'ln+l"'n 0 . (8.3)

h d
OM|n+‘-0M|n*zay{‘tlnﬂ‘f‘tln} =0 . (8.4)

and

For fiber N,y < L, th*‘ = -ty cy-t>, and the equilibrium equations are

A do
_t.F_ 1F}I—N—- T°<,Y-,'> - TIN s 0 Y (B‘s)
and
- U I SV z 0 (B.6)
TSI T TR & A W R A 1) R '

For fiber N+1, y < L, TINH = -1 <y-%>, and the equilibrium equations

A. do
N+
_tE. __Ei.y_]-o- 1|N+2+10<y-!,>= 0, (B.7)

hd
Mz Ml ¥ ZW{‘Imz'fow-“} =0. (8.8)

are

and

Substituting the stress-displacement relations into the equilibrium
equations the following pairs of equations are obtained.

For all fibers except N and N+ 1 when y < L ,

2
EFAFh d n
ot ‘d;z'*{"nn 'zvn*"n-l} =0, (8.9)
and
i Gy
M d
T {un+l -Zun"'un_]} + TW{VNH - Vn_] } ‘0 . (B.]O)
For fiber N,y <L ,
2
Ephgh d vy h
+ Wy =V - T, <y=-4>=0 (B.11)
Qt dyz N-1°'N G; o ’
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and
-EF"- {“Nﬂ - Z"N*“N-l} + ;-ady { -G# [vN 'VN-IJ =Ty <Y=L >} = 0. (B.12)

For fiber N+1, y < L.

2
TE T ety <y-i>=0, (B.13)

and

E
'hﬂ{“mz - 2upy *"N} ‘3 {TuGﬁ [z = Yot = 7g <=t ’} =0.(8.14)

Again, the axial equilibrium equation is independent of the trans-

verse displacement, Up -

The three equilibrium equations in the longitudinal direction are
then:
for all fibers, except N and N+1 when y < L ,

EAch dov,

‘G;t- :;2’* Vool ~Vpt Va1 = 0 (B.15)
for fiber N, y < L

2

EFAFh dovy h
—qt— -d—'y'2-+VN-]-VN'qT°<y'R.>'O. (8016)

and for fiber N+1, y <L
2

ErAeh 4V h
T T T M2 T T k> T 0 (8.17)

The same change in variables as before will be used, with the following

additional terms:
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(8.18)

L "\J-Eé_:_'r“ and “Vrg_g;‘:_rs '

where n, 3., V., ;o » a and 8 are non-dimensional.

In these equations EF. AF' t, L and % are taken as actual fiber
modulus, fiber cross-sectional area, lamina thickness and damage dimen-
sions respectively. The quantities Ty and GM/h are equivalent yield
stress and lamina stiffness respectively and are to be determined
experimentally. The yield stress, T » Should be reasonably close to
the matrix yield stress obtained from a test using matrix material
alone as long as the damage occurs in the matrix rather than along
the interface or within the fiber. The quantity GM/h is felt to be
less well defined as discussed.

The resulting non-dimensional equations are:

For all fibers, except N and N+1 when n < o ,

2
v, ‘
-;12-+ Ve =V +Vo =0 (B.19)

for fiber N, n < a

2
o2V,
22 "W e = 0, (8.20)

and for fiber N+1, n < a
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iy,
—d—-z-—-v“+‘+vmz+§o<n-e>-o. (B'zl)
n

D:fining a new unknown function f(n) such that

f(n) = VN'VN*'I -ty <n8> if n<a , (B.22)

and
f(ﬂ) s s nz_\‘l

with g(n) = VN‘VN-H for the same range of n values, the above three

equations then become :

2
dév,
Tt Ve BtV 20 (8.23)

2

d VN

:T + vNﬂ -ZVN*V“-‘ s « f(n) » (B.24)
a

and

PV .
——d:z- + VN*’Z - ZVN*I *‘VN = f(ﬂl‘- (8.25)

These differential-difference equations may be reduced to differen-

tial equations by introducing the even valued transform as

_ Voo

V(n,0) = -29- + nil V,(n)cos(ne) , (B.26)
from which

Vo (n) = %{,” ¥(n,8)cos(ne)de . (8.27)

and the three equations become:

ﬂ{qu -
;;Z’ -2 -cos(e)]v} cos(ng)de = 0 (B.28)

2
=1/
To

for all fibers, except N and N+ 1 when n < a ,
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2 /! & - 2[1 -cos(6)]V ) cos(ne)de = - f(n) (8.29)
T ° a:z RJ » .
fiber N, n< a, and
Z_,' a0 - 2[1 -cos(8)IV } cos(ne)de = f(n) (8.30)
Ty a:z' H -1 n N .

fiber N+1, n < a. Making use of the orthogonality ¢f the circular func-
tions these three equations may be written as one equation, valid for

all values of n and n, as follows:

2-
‘g' ¥ d v - - v
- é {;‘;2 riR| cos(e)}v} cos(ne)de

= ;2; <o.-n>fﬂf(n){cos[(N+'l)0] -cos{Ne)} cos(ne)de. (B.31)
(o]

This equation is of the form

!”F(n.e)cos(ne)de =(Q . for all nand n (B.32)
0

Ao

and noting the definition of V(n.8) in equations (B.26) and (B.27) it
is seen that the functfon F(n,8) is even valued in & and therefore, if
the {ntegral is to vanish for all n, the function F(n,8) must be zero.

The single equation specifying V(n.8) is then

2g -
:—} - 6% = - <q=n>D%f(n) (8.33)
n
where
82 = 2[1-cos(8)] = & sin®(6/2) . (8.34)
and
0% « cos(Ne) - cos[(N+1)e] . (B.35)

It is very significant that the irregular boundary condition,
equation (B.1), of specified stress over a finite length, not coincident

-

e o Sl ) b
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with either coordinate axis can be accounted for exactly and that the
problem reduces to one differential equation which must satisfy boundary
conditions along the coordinate axes only. The ability to do so strongly
depends on the form o7 the failure criterion. A condition in which both
wormal and shear stresses were included generally would couple the axial
and transverse equilibrium equations and yieid a far more complicated

set of differentfal equations.

The solution to the problem of vanishing stresses and displace-
ments at infinity and uniform compression on the ends of the broken
fibers will now be sought. The complete sciution is obtained by adding
the results corresponding to uniform axial stress and no broken fibers
to the following solution. |

The boundary conditions are then

V=0 asnse= , (8.36)

for all fibers,

dvn -
-a;‘—" cFiﬂ = .1, for ns0, (8-37)

for broken fibers, and
Vn =0 , for n=0, (B8.38)

for unbroken fibers.
Using a technique such as variation of parameters to determine a
particular solution to equation (B.33), the complete solution satisfying

stresses and displacements at infinivy is

2
W(n.o) = A(e)e™®" + B caun s/ sinnls(n-t)f(t)dt (8.39)
n

where the unknown functions are A(6) and f(t). The remaining two boundary

conditions give
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v, (0) T 2.0
- é {- 6A(e) + D g cosh(st)f(t)dt} cos(ne)de = - 1

- (B.40) :
for all broken fibers, and

SN

2
vn(o) = %- I {A(e) - %— fusinh(ct)f(t)dt} cos(ne)de=0 (B.41)
o )

for all unbroken fibers. Equation (B.41) is solved exactly by taking

22 a N
A(s) - 5/ sinh(st)f(t)dt = ¢ B cos{me) (B.42)
0 m=0

P .

where the Bm are constants. Equation (B.40) then gives a system of N+1

algebraic aquations for the N+ 1 constants Bn in terms of f(n) which

is, as yet, unknown. For the case of no damage the problem is then
exactly the same as section A of the present report.

For matrix damage, « # 0, equation (B.40) must be supplemented by
the condition that

f(n) = g(n) -7, <n-8> , n<a ,

=Wy = Vyq - Ty <08 >, (B.43) *

and recall from equation (B.22) that f(a) = 0 and therefore
ga) = 7, . (B.44)

The constants Bm and the function g(n) are then specified by

requiring that equations (B.40), (B.43) and (B.44) be satisfied. Using

L e BT v by e

equation (B.39) and after considerable algebraic manipulation, the {

{ displacement of any fiber for all values of n is P

Vo= £ Te™0
0

n cos(me)cos(ne )de

2|r

g
m=0
1
Z

+ 1 PHOC, ([ten]) - C (trn)2dt (8.45)
o |
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!,
where )
2 mp? s /!
Cn(a) = ;-g e cos(ng)de . ol
Equation (B.40) then becomes 3;
N . - a . i
z f“(-s r 8, cos(me) +0%/° e *%g(t)at-0% 7 /e ‘“dt} L

"o m=0 0 8
1
x cos{ne)de = - 1, n=0,1,...,N (B.46) oy

and equation (B.43) along with (B.45) gives, for n <a ,

gln) =V -V :

N
fﬂe'G" I B cos(me){cos(Ne) - cos[(N+1)e]}de
)

m=0

3N

+ ]2 g“g(t) {CN(lt-nl) - Cy(t+n) = Cy q ([ ton] )+C'N+](t*n)} dt
- £ {CN(It-nl) - Cy(t#n) = Cyyq (I ton]) +Cm](t*n)} dt.
(B.47)

The condition that

g(a) = 1, (8.48)
also must be satisfied.

Physically, it would be more direct to specify the applied stress

o, and the number of broken fibers, N, and determine the damage zone
a and 8 depending on given yielding and splitting conditions. As a and 8
appear in the limits of the above integrals this is not convenient
mathematically and it is easier to specify the number of broken fibers, N,
and the damage zone o and 8, and compute the required applied stress o_.

These equations were solved as follows:

av
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(I) An initial set of constants B, was determined for the problem
of no damage, a = 8 = 0 in equation (B.46), i.e.

N
B %f“c cos(me)cos(ne)de = 1, n=0,1,...,N . (B.49)
m=0 0

(I1) These initial constants were then substituted into the integral
equation (B.47) and, along with equation (B.48), the function

g(n) and T, were determined using the desired values for a and 8.

(III) Using g(n) and ?o.a new set of constants, B ,was computed from

m
equation (B.46) with the desired values of a and 8.
(IV) This procedure was repeated until the unknowns changed less

than a prescribed amount with additional iterations.

In the above solution the unknown function, g(n), was assumed to

be piece-wise linear over the interval 0 < n < o of the form
i A i s _
g (n) Yo + Y-l n 3 1 ]’2,.oo’k

when the interval was divided into k equal subdivisions. The function
g(n) then contained 2k unknowns with one additional unknown being 7, .

As g(n) is the displacement difference it should be a positive, mono-
tonically decreasing function and its representation as a piece-wise
linear function should be sufficiently accurate. The (k+1) equations
were obtained by requiring that the integral equation, equation (B.47),

be satisfied at the (k+1) end points, (k-1) equations resulted from the
requirement of continuity of the function g(n) between adjacent intervals
and the last equation was given by g(a) = ?o .
With the longitudinal displacement Vv, now known the transverse

displacement Un is obtained by solving equations (B.4), (B.6) and (B.8).

This solution is recorded below for completeness.

s o SRR PRI ittt et e R V.
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0, Gyh v
u, = - ;%é“ <s1n(e) g (sin(Ne)*Sin[(N+1)0]> %t—"é?g%%% :

(8.50)
The matrix normal stress, °Mln » is related to the transverse displace-

ment, U, » through the stress-displacement relations discussed in sec-

tion A. Knowing ug from equation (B.50) the matrix normal stress can

be computed for all values of n and n.
In the next section this solution is modified to account for

transverse damage.
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l& C. Two-Dimensional Shear-Lag Model with Broken Fibers, Longitudinal
Matrix Sp ttTﬁg,and’Yieiaigg and Transverse Matrix and Tiber

Damage

A certain amount of stable transverse extension of the initial

_.P“

notch under increasing applied 1oads has been observed in tests on
uni-directional and cross-ply composite laminates [13]. In case of
single-ply and multi-ply uni-directional laminate this occurs in the

form of hreakage of an arbitrary number of fibers ahead of the initial

notch tip sometimes accompanied by fracturing of the matrix and more

often without any matrix fracture [14]. In the later case the damage

P ———

may be observed with x-ray or by etching away the matrix. The matrix

s < Sy T 3 2Pt b < o e o i € < Ay LT S, I et ) STARAE A ST, T S M TN

{ material undergoes extensive longitudinal yielding in both the cases.

This behavior appears to be strongly dependent on the laminate thick-

rmr—

ness; a detailed investigation into this question is currently underway
( by the preSent writers. The breakage of fibers is found to not be
confined to a straight line in the transverse direction, that is, all
s. fibers do not break along the x-axis even though the initial notch
is oriented along the x-axis. This creates a zone ahead of the
b notch tip in which fibers do not possess their original stiffness and
} hence results in a reduced axial load carrying capacity of these
fibers. If all the fiber breaks are not along the same line this
i reduction will not be as drastic as for rectilinear extension and
thus the damage zone will support considerably more load than that
$= of a matrix region alone.
In order to account for this behavior, an idealized model having
P transverse damage ahead of the initial notch in addition to the longi-

x tudinal matrix damage considered in section B is now developed.

PR Do Y Yy o S p—
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This is shown in Figure (4). It is mathematically untractable to
account for the distribution of breakage of fibers occurring at
points other than those on the x-axis; the model then assumes all
breaks to occur on the x-axis and accounts for the stiffness by
assuming these fibers to carry a reduced load as described below.

The transverse damage consists of an arbitrary number of broken fibers
which are constrained by the adjoining matrix and/or by the unbroken
fibers through the thickness. These fibers in the transverse damage
zone will be referred to as constrained fibers. The extent of con-
straint is represented by a stiffness coefficient y and is assumed

to be constant for all the constrained fibers. The stiffness coeffi-
cient v, is given by

« _Stress in the constrained fiber
Y ¥ Stress in the Tirst unbroken tiber

Longitudinal damage, yielding and splitting, is assumed to occur at
the end of the original notch as in section A.

With reference to Figure (4), n=0,1,...,N corresponds to broken
fibers in the initial notch region, n=N+1, N+2,...,M corresponds to
constrained fibers in the transverse damage zone and n=M+1, M+2,...,=
corresponds to unbroken fibers. By comparing Figures (2) and (4), it
may be observed that the only difference between this model and the
one considered in section B is in the boundary conditions along the
x-axis. These boundary conditions are given in Figure (5). The
governing differential-difference equations and also the final equa-
tion specifying V(n,8) will be the same as those of section B. Starting
from the differential equation derived in section B, the solution is
obtained using the appropriate boundary conditions following the pro-

cedure described in section B.
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The governing differential equation is given by

&%y
dn?

- 6% = - <a-g> D%f(n) (C.1)

where, all the quantities have the same meaning as in section B. With
reference to Figure (5), the boundary conditions, after normalization

are given as foliows:

(1) As n+e V¥V =0 for all fibers. (C.2)
v,
(i1) At n=0 el oFln TR for broken fibers, {C.3)
and

dv
Tn ® G|, = - 147 |y for broken fiders,(C.4)
where, EF!M'H is the normalized stress in the first unbroken fiber at

n=0 and y is the stiffness coefficient defined earlier.

(111) At n=0 V =0

n for unbroken fibers. (C.5)

As in section B, the complete solution to equation (C.1) satisfying

vanishing stresses and displacements at infinity is given by

_ 2
V(n,8) = A(e)e"sn + %— <a-g> [° sinh[s(n-t)]f(t)dt , (C.6)
n

where the unknown functions are A(8) and f(t). The remaining two bound-
ary conditions give

d\‘n(o) 2 7 .
dn ’Fé {-6A(e)+02£ cosh(at)f(t)dt}cos(ne)de--1

n=N+1,....N, (C.7)

an(O) 2 7 A +2a 46 =147 |
- ?f; {-6 (e) +D ‘f, cosh(st)f(t)dt} cos{ne)de =~ \EI
n=N+].-o.,Mi (608)
o it ———a ! B
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and
2
2 .7 p* @
vn(o) . ;-é {A(e) - 1;-: sinh(ct)f(t)} cos(ne)de = 0

\

n=M+1, M+2,...,=. (C.9)
Equation (C.9) is solved exactly by taking

A(e) - 5/ sinh(st)f(t)dt = I By cos(me) (€.10)
0 m=0

where the Bm are constants. The stress in the first intact fiber,

°F|M+l is given by

dVy,110)
M+ r 2 o

2 = ( -8A(68) +D°s cosh(st)f(t)dt M+l
— "o{ (8) ocos( )f(t) }COSE( )el

= ‘1+ aFlml . (CQ]])

Using equations (C.10) and (C.11) in equations (C.7) and (C.8), A(s)
and 5F|n+] may be elimated resulting in M+1 algebraic equations for
M+1 constants B, in terms of f(n) which is, as yet, unknown. For
longitudinal matrix damage, equations (C.7) and (C.8) must be supple-
mented by the conditions that

f(n) = g(n) - ?0 <n-g> , n<a, (C.12)

and

gla) = %, . (C.13)

From equations (C.6) and (C.10), A(8) may be eliminated to obtain
V(n,8) in terms of constants B, and unknown function f(t). Recalling
the relation between V(n,8) and Vn(n), an expression can be ob:ained

for the 2xial fiber displacement vn(n) as

2 é

it .
Vn(n) =-/e

n M \
T By cos(me)cos(ne)de
L

m=0
+ ‘ch: F(E)C, ([ton]) - Co(ten)ddt ,  (C.14)

—v—n—r, > ———
a— .

T g £, suzege ,
Y

¥ T
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where
2 |
Cn(s) 2z r D e 5 cos(ne)de . (C.15)
T o §
Equations (C.7) and (C.8) then become

M
z f“{-é T By cos(me) + D2 f e g(t)dt- 0l ;o fae'6t dt} X
Yo m=0 8

cos{ne)ds = - 1 n=0,1,...,N, (C.16)
and

TN

M a .
/" |-s T8, cos(me)+0% s ! e g(tydt - T 0%s etat| x
(o] m=0 8

{cos(ne) -y cos{[{M+1)e]}de=-1+y n=N+1,...,M.(C.17)

Equation (C.12) along with equation (C.14) gives

M
g(n) = %é e S0 zo Bn cos(me){cos(ne) - cos[(N+1)8]}de
m=
+ %- a(t) {CN(lt-nl) - Cy(t#n) = Cypq (1t=n]) *CNﬂ(t*n)} dt

i éa{c“( [t=nl) - Cy(tn) - Cyyy (tenl) + Cyyy (t+n)} dt. (C.18)

The condition that
gla) = ;0 (C.19)

must also be satisfied.

Equations (C.16) to (C.19) are of the same form as those obtained
in section B for g(n) and the constants By » however they now contain
the additional parameters M and y. The procedure to obtain displace-
ments and stresses is the same as before. For boron/aluminum laminate
the size of the damage zone (M-N) was found to be approximately constant

for all initial notch lengths (N). The coefficient y decreased with an




increase in the initial notch length. The results are discussed below

where it is shown that table transverse notch exténsion {is possible,
with the extension becoming unstable in a boron/aluminum laminate at

about seven damaged fibers.
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D. Two-Dimensional Shear-Lag Model with Broken Fibers, Longitudinal
Matrix Splitting and Yieia’lnj_w'itﬁ'—S'a urT'ac—Cm'f"ﬂi’tﬂﬁ_—e ira yer

over Sheet).

A constraint layer is added parallel to the main lamina of the
problem considered in Section B, providing additional shear stiffness.
The constraint layer is an attempt to account for either the misalign-
ment of fibers in a multi-ply uriidirectional laminate, or the presence
of a non-zero ply in the composite laminate. The extent of the above
effects may be represented by the amount of constraint the layer in-
troduces, defined in Figure (6) as the constraint ratio. The constraint
ratio may be varied by varying the constraint layer parameters. However,
in the present investigation no explicit relationship between the con-
straint ratic and constraint layer parameters is considered. Displace-
ment-stress relations similar to those in section B are assumed so as
to obtain decoupling of the equilibrium equations. Only fiber stresses
and matrix shear stresses will be develcped in the present study. The
equilibrium equations ir the transverse direction are more difficult
than those in the previous models due to the prasence of the constraint
layer and will be considered at a later time.

A free-body diagram of an element consisting of the main lamina
and the constraint layer is shown in Figure (6). With reference to the
free-body diagram, the equilibrium equations in the axial directions are
given below. For all fibers n, with the exception of N and N+1 when
y < L the equilibrium equation is

Ac do |
F _Fin -
T & *‘tlnﬂ-t‘ 0. (D.1)

n
For fiber N and N+1, y< L, th+l * - 1, <y-t> and the equilibrium equa-

tions are
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Ap do
‘51':-}! - Ty <yt> - IIELERE
3 T <Yt tlu"'{\' ‘Nﬂ T |“}T 0. (D0.2)
and
A 99 |ne1

' t .o,
+ T‘N+2 + Ty <ysL> ¢ {r |N¢-2 - 1|N+l} T 0 (D.3)

The following stress-displacement relations are introduced in equations

(D.1) through (D.3) as before:

dvn
o|n * € T
flm] = 'G# (Vn+] - Vn). and (0.4)

Gl
“lant = AT Ve 7Vl
The equations (D.1) through (D.3) then become

2
AFE d®v % 140
—fl:;!'l o (Vae -2Vt vpo) ¢ 'GF'%' (Ypey =2+ ¥p) =0 (0.5)

for all fibers, except N and N+1 when y < L,

2
AE. d°v tet
FEF 9 Va S G't
_t__d;z.- Ty <YL -+ (vt e (Vygay =2VN*Vyop) = 0

.6
for fiber N when y <L, and (0.6)

2
AFEF d I

Tt Tyt 'Gh! (o2 = Y1) *+ TE (Ve = 20 * 9p) =0

(0.7)
for fiber N+l when y < L .

G‘

By defining CR = F%EE" = constraint ratio, and rearranging terms,

equations (D.5) through (D.7) may be rewritten as

e A

. S - g = v prtmar— v BRI an
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Agt
ot

eh dy
U
i vy

o

Agt

P+ (140 vy = v, + v, ) =0, (0.8)

+ (] + Ca)(le - ZVN + VN_‘) = % fo <y=i> ¢+ v'«_"’l" [}

(0.9)
and

2
AFEFh 4 Van

Tt gyt TR Uz Bt T e & To <yt

(D.10)
The same change of variables as in Section B will be used in order to

normalize the quantities in the equilibrium equations. The resulting
non-dimensional equilibrium equations are:

for all fibers, except N and N+l when n < a
v, Q
_d';z"" (] + LR)(VM,I - ZVn + Vn_]) = 0 F} (Doll)

for fiber N, when n < a

2
d-y
— 4 (1 Gl = By Vyg) = Yy = Yy * Foneee (0.12)

and for fiber N+l, n < a
d%v
ad -
—d—r-‘z-' + (] *CR)(VN"'Z - ZVN"I "VN) E - (VN*I -V“) - t°< n-g8 >. (Do ‘3)

Defining a new function f(n) such that
f(n) Ld v" - vml - ;o‘ TI'ﬁ > 1f ﬂ < a [ (0014)
and f(n) = 0 if n>a ~° (D.15)

with g(n) = VN - Vyey o for the same range of n values, the above three

equations then become:

L_......_._-.A B e e cndn pren

T —
-
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a¥v,
‘m‘ + (‘ + CR)(V"H - ZV“ + Vn-‘) = 0 1 ] (0016)
2
d VN .
s + 0+ CR) (Vg = Dy + V) 1) =« f(a), (D.17)
and
oy
N+
T" (] + CR)(VN+2 - ZVN+] + v“) = f(n) (0.18)

These differential-difference equations may be reduced to differen-
tial equations by introducing a new function V(n,e) defined as in

section 8, so that, Vn(n) is given by

v (n) -5— " V(n,8) cos!né)de . (D.19)
0

After substituting for vn(") from equation (D.19) the above three equa-

tions become respectively,

25
%o {9—"2 - 201 + c)n -cos(e)lv} cos(ng)de = 0 , (D.20)
%,r {%— - 2(1+¢)( -cos(e)]\?} cos(Ne)ds = - f(n) , {0.21)
0 \dn
and
z f'{ﬁg - 2(1+Cp) -cos(a)JQ} cos[(N+1)n]d = £(n) . (D.22)
"o ldn

Making use of the orthogonality of the circular functions these
three equations may be written as one equation, valid for all values of

n and n as follows:

% {% z(HCR)[l-cos(e)Jv}cos(ne)de

= % <a=n >.-" f{n){cos[(N+1}8] - cos(Ne) } cos(ne)de . (D.23)
0
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This equation is of the form

2 T
?Fg F(n,0)cos(ne)de =0 , forallnandn .

Since F(n,0) is even valued in @, if the integral is to vanish for all
n the function, F(n,8) must be zero. The single equation specifying -

V(n,8) is then given by,

Y 62 ya.cam> 0%(n) (D.24)

dn

5 = 201 +CR)[1 -cos(e)]=[2/ 1+CR s-in(e/Z)]2 . (D.25)
and

02 = cos(Ne) - cos[ (N+1)8] . (D.26)

The equation (D.24) is exactly of the same form as the ccrrespond-
ing differential equation, equation (B.33) of section B, the only dif-
ference being in the definition of §. Consequently, the expression
for Vn(n). the algebraic equations for the constant Bm and the integral
equation are the same as in section B. They are reproduced here for
completeness.

The displacement of any fiber for all values of n is

V (n) =2 [ g=dn ! 8 ( (ne)d
nln) == e £ B cos(me)cos(ne)do

om0
% gaf(t){cn( [t-n]) - Cn(tm)} dt , (0.27)
where
¢ (c) = % {)" %_2 e%%cos(ne)de .

The albebraic equations for the constants Bm are given by
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TN

N ™ e
IN -8 By cos(me) + szae 5tg(t)dt - D2 /e st d£} b3
0 m=0 0 8

| cos(neldt = -1, n=0,1,...,N . (D.28)

The function g(n) is given by the integral equation

h:
g(n) = %- e S g B, cos(me)Dzde

O~

+y gag(t){cn( [t-n!)-Cp(t+n)=Cyy it-nl)+CN+](t*n)} dt

T, a

0
-5/
B

The condition that

{CN( [t=n|) - Cy(t4n) - CpapLitonl 1+Cy (t+n)} dt. (D.29)

g9(a) = T4 »
must also be satisfied.

The numerical technique described in section B is employed to

obtain the solution to the above equations.
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E. Two-Dimensional Shear-Lag Model with Broken Fibers, Longitudinal
atrix Splitting, an elding with an Elastic, Linearly Strain
ardening Matrix .

In section B longitudinal matrix splitting and yielding was con-
sidered, with the matrix material being elastic-perfectly plastic. In
this section a bilinear stress-strain behavior for the matrix material

is assumed, as shown in the figure below.

G

T = é;+(G-G*)Y°

Bi-linear stress-strain relationship

A free-body diagram for a typical element is given in Figure (2)

with the special condition for the last broken fiber, N now given by
T = [G*yp,y = (Gy = G*)y,] <y-2> , (E.1)
. w1 " (G- Evgl <y

where the negative sign is taken to account for negative shear strain,
so that the absolute value of Y, 1s specified.

The equilibrium equations in the longitudinal and transverse
directions respectively for all fibers n, with the exception of N

and N+l when y < L, are

o m.m,,.,.\, R
H
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AF dUF
T —-a-Ly" *Tpny T <0
and
h d
°M|n+l - °Mln *7 3y (Tlm-l + Tln) =0. (E.2)

For fiber N, y < L the equilibrium equations are
Ap doply ..
T Tdy + [6 A(TS] ‘(GM‘G*)YO] <.Y'1>‘T|N=0=

and
h d ) .
°M|N+] - HIN + 7dy [{G*YNH - (GM-G*)YO} <y-L> + T'N] =0. (E.3)

For fiber N+1, y < L the equilibrium equations are

A do

and
Mz My * 3 Ctlpep * (6% vyeg - (By = 8¥)vg <y-2>]=0.
(E.4)
Introducing the stress-displacement relations defined in sections
A and B, and also noting that Tpey = (Vnﬂ -vn)/h, the equilibrium
equations in the longitudinal direction may be written as follows.
For all fibers except N and N+! when ys<tL,

AEeh dy_
Tt ._Z_dy * (Vo -2, + Vo) =0 . (E.5)

For fiber N, when y < L ,

2
AcEch d°v
F-F N G*\ h
+ (v -vy)-(1- ) T, <y=2>

*
+Gq(VN+]-VN)<y~2.>= 0 . (E.G)

T
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For fiber N+1, when y < L ,

2
AcE-h d%v
F-F N+1 G*, h
+ Vy,n=V + (1 - &) T, <Yy-L>
ﬁ;t dyz N+2 7 N+ G; q 0

- .gi (VN'H -vN) <y-t>= 0, (E.7)

The equilibrium equations in the longitudinal direction are independent

of transverse displacements u Therefore, only the solution for the

n’
longitudinal displacement, Vn will be considered.

The same change of variables as in section 8 will be used in
order to normalize the quantities in the equilibrium equations. The
resulting non-dimensional equations are:
for all fibers, except N and N+l when n < a

v

n -
d_n2_+ Vm_] -ZVn"'Vn_‘ =0, (E.8)

for fiber N, when n < a

2
d%v o

TV - Gt

R vty - -7 cnops + & (Vyy1-Vy) <n-8>20, (E.9)
gl NI T gty <nmg> 4 o Uy =Yy

for fiber N+1, when n < a

2
da-v
N+1 G*, - G*
+ Vo=V + (1) T <neg>=-g— (Vy,q-Vy) <n-8>=0 .
dnz N+2 T 'NH Ci o G; N#1 TN
(E.10)
For the sake of simplicity, let G, = G and
R~ Gy
As before, a new function f(n) is defined such that
f(ﬂ) = VN-VNH - {EOR-GR(VN"] 'VN)} <n 8> ] if n<a »
and f(n) =0, if n>a. (E.N2)
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With the introduction of f(n), the equatfons (E.8) to (E.10) may
be written as follows:

2
d Vn
E?-* Vael =WVt Vpy =0 s (E.13)

d%v
N
PRl S A R I (€.14)

and
2
4"V,

1
—;‘2— + VMZ-ZVNH +VN = f(n) . (EolS)

Equations (E.13) to (E.15) are exactly of the same form as the cor-
responding equations of section B, i.e., equations (B.23) to (B.25).
The only difference is in the function f(n), which is now defined as

f(n) = g(n) - Tpp <n-g>, for n<a, (E.16)
so that

g(n) = (1-Gp <n-8>)(¥y-Vyyq) » (E.17)
and

gla) = Tp - (E.18)

The boundary conditions on stress and displacements are the same

as those of section B. Following the procedure detailed in section 8B,

the axial displacement in fiber n for all values of n is given by

zn N
Vn(n) =2 f"e én L Bm cos(me)cos(ne)de
To m=0

+

M—a

éaf(t){cn(!t-nl) -Cn(t+n)}dt R (E.19)

where,

114

2 T DZ -
Cn(f;) = —é‘ Te cos(ne)ds ,

"
§ =2 Siﬂ(e/z)a
and 0 = cos{Ne) - cos[(N+1)e] .

o,
. .



Boundary conditions on fiber stress yield the following equation
{ § zo B,, cos(me) + Ozf e tg(t)dt - 0225 1 / e dt}x
NF

cos(ne)de = - 1 , n=0,1,...,N. (E.20)

Putting n=N and N+1 in (E.19) and subtracting Vysp from Vy gives
-8n N

I e L B cos(me)Dzde
)

=2,
T m=0

27N f(t){CN( [ten]) - Cy(t+n) = Cyyq Iton]) +cN,,(c+n)}dt.

(E.21)
Multiplying equation (E.21) by (1 - Gp < n-8>)and recalling the defini-
tion of g(n), equation (£.21) reduces to the following:

2 m -én N 2
g(n) = [1-Gp<n-8>]) 2/ "3 B, cos(me)D de
Y m=0

+ ']2' éa{g(n) - ;0R< n=-g >} {CN( lt'ﬂl) - CN(t+n) - CN+] ( lt"ﬂ“

+CN(t+n)}dt] . (E.22)
Further simplification of (E.22) yields the integral equation,
g(n) = [1- Gp < n-8 >] [% f"e'é“ B, cos(me)cos(ne)Dzde
0

+ %— éug(n){cn( [t-nl) = Cy(t+n) = Cppq(lt-nl) *CN+1(t+n)}dt

YR
e Cyllt=nl) = Cy(tn) = Cypq(lt=nl) +Cp,y (t4n)idt |

(E.23)
The last condition that must be satisfied is

g(a) = ioR = To(l "GR)°
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Equations (E.20) and (E.23) together with equation (E.24) are solved
emloying the numerical technique described in section B in order to
obtain displacements and stresses.

The above development of the different modifications to the fun-
damental solution of section B has been nresented with each change con-
sidered separately in the past three sections (C,D and E). This pro-
cedure was used to note more clearly the necessary changes. However,
in developing the comnuter codes for these solutions we have included
all the modifications in one code and have investigated the influence
of the various models as a complete set. In the results, to be dis-
cussed later in this report, it was found that the transverse damaqe
model of section C was the most significant. The inclusion of a strain-
hardening matrix had very little influence on the ability of the solu-
tion to give results consistent with experiments for ductile matrix
laminates. Perhaps if unloading had been considered, more dependence
would have been noted. Also, the constraint layer (cover sheet) was
not significant in comparing with experimental data on uni-directional
laminates, however it certainly would be for cross-ply laminates.

The following two sections present the solutions for a rectanqular and
circular damage region without including a strain-hardening matrix or
a cover layer but including all other damage. The main ourpose was to

investigate the changes given by different initial damage shaoes.

o ——

€ s
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F. Two-Dimensional Shear-Lag Model with a Rectangular Notch, Longi-
tudinal Matrix §pl¥tt1@gfan3 71e131ng,ana Transverse Matrix and

Fiber Damage

In the next two sections we extend the above solutions to account
for an initial damage zone in the shape of respectively; a rectangular
notch and a circular cut-out. These represent more realistic damage
shapes and it is of primary interest to investigate the differences
in the results as compared to the idealized model of a slit as previously
discussed. The same basic assumptions as before will be made and, as
the solutions are developed very easily from the past work, only the
fundamental differences will be discussed. Both longitudinal and trans-
verse damage will be included initially. That is,the development will
concentrate on the necessary changes to the complete solution presented
in section C rather than starting with no damage and developing each
successive solution. For both of these cases the only significant
difference in the solutions is the change in boundary conditions on the
initial damage region and, for the rectangular opening in particular,
these differences give almost trivial changes in the resulting form
of the equations.

The solution to be developed in this section is for an initial
damage region having the form of a rectangular opening. Under loading,
damage is taken, as before, in the form of longitudinal splitting and
yielding of the matrix and transverse damage to the fibers. The longi-
tudinal damage is assumed to occur at the end of the initial notch
between the last broken fiber and the first unbroken fiber. Transverse

damage is modeled, in the same manner as in the preceeding sections, as
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reduced load carrying fibers along the horizontal axis. Figure (7)
depicts the geometry for this study. This last assumption is admittedly f;
a simplification as one would assume that the location of the maximum
axial stress in the first unbroken fiber in front of the notch, before
transverse damage occurs, would be at the corner of the notch rather -
than the center. If this is true then notch extension would, at least,
begin at the corner. The results from the present solution indeed in- fl
dicate the maximum stress to occur at the corner. Rowever, the difference .
between this maximum stress and the stress at y=0 is small and further,
the location of the maximum stress in adjacent unbroken fibers away
from the notch changes from the corner to the y-axis after only a few
fibers. Preliminary experimental studies now being initiated also
indicate that transverse extension does originate at the notch corners
but successive breaks occur in a random manner tending to be symmetric
about the x-axis. So, even though the model does not account for this
irregularity in transverse extension, it is felt to be a reasonable
approximation, especially for larger notch extension.

With the above assumptions, the solution is then developed by
modifying the previous results to account for the boundary conditions
of zero shear stress on the sides of the notch and a unit compression
stress on the ends of the fiber at the top (and bottom) of the notch.
As the solution already allows for matrix splitting, the first of the
above conditions is met simply by setting the minimum value of the split
length (8) equal to the half-notch height. The remaining boundary }
condition is satisfied by taking n=H (normalized half-notch neight)

el i by . oo
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rather that n=0 as in equation (B.46); this is

x N
J -1
]

Bm cos(me)se"“ cos(ne)de = - 1
m=0

AN

Al11 other equations are unchanged.
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G. Two-Dimensional Shear-Lag Model with a Circular Cut-out, Longi-
Watrix

tudTnal Matrix Splittina and Yield{ng and Transverse
and fFiber Damage

The solution to this prublem for the case of no additional
damage was presented by Franklin in [7] and Kulkarni et. al. in [8].
Both of these studies had difficulty satisfying the stress free
boundary condition of the circular boundary; Franklin's solution gave
zero stress in the fibers but did not consider ti:¢ non-zero shear
stresses in the matrix while Kulkarni attempted %0 remove the shear
stresses by an averaging technique. The results of the two are
however, not significantly different. In the present solution we
formulate the boundary conditions in the same way as Franklin but
the ability of the present model to allow for matrix splitting gives
some necessary additionil freedom to satisfy the stress free conditions
more accurately. Longitudinal and transverse damage is also included
with the longitudinal damage being at the edge of the hole and the
transverse damage originating and extending along the horizontal
axis as in the slit and the rectangular notch.

To develop the stress free boundary conditions on the hole
surface first consider an unnotched laminate having uniform applied
stresses at infinity and determine the fiber stresses on a circular
region having the radius of the desired cut-out as shown in Figure (8).
The negative of these stresses are then the appropriate boundary
stresses to be applied to the edge of the circular hole in an infinite
laminate having vanishing stresses and displacements at infinity.

A typical element on the boundary of the circular hole is shown

in Figure (9). A series of these inclined elements were joined together

— e R e—
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to form an approximation of the circular boundary as shown in Figure
(10). It is seen in Figure (10) that for each element a small vertical
matrix boundary exists on which the shear stress, as given by the shear-
lag assumption, will not be zero. The largest such surface is between
the last broken and first unbroken fiber. By setting the matrix

split length (8) equal to this distance, this portion of the shear

stress boundary condition 1is satisfied. The shear stress condition

on the remaining elements is not satisfied.

Referring to Figure (9) and summing forces in the horizontal and

A A e T, T . N Y s e et e | 4

vertical directions yields

Ago, - tagt, sin(e,) - trpr 2, cos(e,) = 0 , (6.1)
and

- tops, °°s(°n)*'t‘ar %o sin(en) =0 , (6.2)

Solving for the boundary stresses yields

Ae . 2
9% * 9, ft Sin (en) R (6.3)
and
A
Tar * % R Sin(eg)cos(e,) - (6.4}

As previously mentioned, the negative of these stresses will be
applied to the boundary of the hole in order to remove the resultant
stress on the hole boundary. Since it is only necessary to solve the

axial equation in order to ottain the axial stresses and displacements,

a boundary condition in the axial (fiber) direction is the only one
needed. Thus the appropriat: boundary condition can be derived by
summing forces in the axial (y) direction.

A
F A
ht °F n sin(s,) + rn+]cos(en) -0, ﬁ§~sin(en) . (G.7)
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The same equation can be derived by summing forces in the radial and
transverse directions and solving the resulting equation simultaneously.
The stresses can now be expressed in terms of displacements by
using the shear-lag assumptions as before. Upon substituiion, the new

boundary condition becomes

AFEF an -3 A

vl sin(e,) + (Vo4 - V,] cos(e,) = "G;_tF' sin(e,) . (G.8)

From the geometry of the hole, as seeu in figure (8), the radius

can be expressed as

R= 251, (6.9)
where the coordinates of a particular point are

X, = hn and

Yo " h'\[-nzu-zl;—‘-)z : (6.10)

The boundary condition for the circular hole then becomes

a-;:—"# n [vn+] -Vn] 3 - l [ ] (6011)

where
2n F°F
a, = and H_s
n ZN+] o G;Ff
This boundary condition must be satisfied at the appropriate value
along the boundary of the hole. It is seen that the normalized coordinate

n is then
Yn -
n(n) ‘W W ]-an . (G.12)
’ (s)

0
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Finally, the boundary condition becomes

]
én i i

N - M
3-;“- r B cos(me)se N cos(ne)de P
To m=0 [
(6.13) P
N ;|

T . % T By cos(me)e"s"{cos[n-ﬂ)e] -cos(ne)l=-1. i

q, Z o m=0
Ho Y1-ap

This boundary condition replaces equation (B.46) used in the slit prob-
lem. Note that this solution is not independent of material proper-
ties due to the term H/ defined above.

Since the damage is defined in the same manner as in section B for
the slit, the integral equation for the present solution remains the
same. The only other change is that the slit length (8) must be, at
least, equal to the matrix mis-match on the last inclined element.

This value is given by

g=—3>1 . (G.14)

[ZHO 1-an]

The solution is obtained in the same manner as in the previous sections.
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H. Two-Dimensional Shear-Lag Model With Broken Fibers for the Half-Plane

The motivation for much of the above work has been the interest
in attempting to develop approximate analyses capable of predicting
accurately the fracture behavior of hvbrid (buffer strin) composite
laminates. In this report solutions have been developed and the sig-
nificance and validity of the various models will be demonstrated for
the uni-directional full-plane laminate following this section. Based
on the understanding developed in this phase of the study, future work
will involve the extension of these models to multi-material laminates.
As a first step in this direction the solution for adjoining uni-
directional half-planes containing damage at, or near, the interface
will be investigated. The solution presented below is a fundamental
part of this extension, and consists of the solution for an edge crack
in a uni-directional half-plane. Using supperposition, i.e.; matchina
boundary conditions on the interface, this solution can then be added
to a second half-plane having different fiber and matrix nronerties to
construct the adjacent haif-plane problem.

A two-dimensional array of parallel fibers with an arbitrary num-
ber of broken fibers at the free edae is shown in Figure (11). The
laminate is subjected to a prescribed shear stress and transverse normal
stress along the free edge in addition to a remote uniform tensile stress
in the axial direction. No additional damage other than the broken
fibers at the free-edge is considered at this time.

With reference to the free-body diagrams shown in Fiqure (12) the
equilibrium equations in the axial and transverse directions are given

below. The boundary conditions on the free-edge must now be specified
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as opposed to the full-plane solution, in which they were accounted for
by symmetry. We assume the first fiber in the half-plane to be embedded
in the matrix material and, as seen in Figure (11), it will have a

different set of equilibrium equations than all the remaining fibers.
The equations of equilibrium are:

Agdag |,
y +trl2-tta=0, (H.1)

h d
o"l?_-aMh + Zay{rizi-ta} =0 , (H.2)

and

for the first fiber.
Ach’F‘n
- = H.3
y +t t‘nﬂ t rln 0 . (H.3)

d
aMlnH -onln +g— a—;{tinﬂ *T‘n}'-' o, (H.4)

and

for all other fibers.

Substituting the stress-displacement relations of Section A into
the above equilibrium equations the following pairs of equations are
obtained :

2
AE.h dv
F°F 1 h
+ (vp=Vvy) -1 =0, (H.5)
Qit dyZ 2° M a G’M_

and

-?—(uz-u])-oMI]-F-GZM— ady(vz-v]h g—ady-ra=0. (H.6)

for the first fiber.
AcEch dzvn
T oFt Mt tia) T 0 (H.7)

and
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w—t
S—

g -

'Eh! (U = 2up *up )+ ‘GZM‘ dy (a1 = Yot} = 0 (H.8) T

for all other fibers.
From equations (H.5) and (H.7) it can be observed that the axial L
equilibrium equations are independent of transverse displacement. 18
Since only fiber axial displacements and axial stresses will be
developed in this section, the solution for the transverse direction ;E ;
equilibrium equation will not be given here. a
The same change of variables as in section A will be used to .
normalize the quantities in the equilibrium equations. The resulting
equations in the non-dimensional form are given by
2 )

d v .
22 P50,

for the first fiber, and ’i

2
v, .
-d'r—\z‘ + (Vn+‘ - ZVn +Vn_«l) = 0 Y (H.g) -V;

for all other fibers, where

. EFth :a_
2 VAl o
Defining a new function f,(n) such that X
ﬁ(ﬂ =%a-V‘ , {H.10) -§1
for all values of n the above two equations become E4
a%v, ]
——2-+ VZ-ZVI = f](n) s (H.]‘) E{
dn :
for the first fiber, and ']1

B il R e e N
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d%,
3 VgV Y =0, (H.12)

for all other fibers.

These differential-difference equations may be reduced to dif-
ferential equations by introducing a new function \Y(n.e) such that
the normalized displacement Vn(n) is the Fourier coefficient in a
Fourier series expansion. In order to represent the free-edge boundary
conditions as discussed earlier, it is appropriate to utilize a sine

transform. Then

V(n,0) = z] V,(n)sin(ne) , (H.13)
n=
and
2 T~ .
Vo(n) = =/ V(n,8)sin(ne)de . (H.14)
To
With the introduction of \.l(n,e) the equilibrium equations become,
respectively
x( 420 -
%—cf) {:—n;— - 21 -cos(e)]v} sin(e)de = fl(“) R (H.15)
and
1 20 -
%é {:—n; -2[1 -cos(e)]v}sin(ne)de =0 . (H.16)

Making use of the orthogonality of circular functions these two

equations may be written as one equation valid for all n as follows:

2-

2 "fd°V -

=7 - 2[1-cos(s V} sin(ne)de

T Ak )1V} sin(ne)
2

T

é“fl(n)sin(e)sin(ne)de .

This equation is of the form
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Ao

é" F(n,0)sin(ne)de = 0 , for all nandn ,

and noting the definition of V(n,8) in equations (H.13) and (H.14) it
is seen that the function F(n,8) is odd valued in 6 and therefore, if
the integral is to vanish for all n the function F(n,8) must be zero.

The single equation specifying V(n,8) is then

2 .
%-% - 680 =f,(n) sin(e) , O (HaD)
n

where
5 = 2[1-cos(8)] = 4 sinz(e/Z) .

As before, the solution to the problem of vanishing stresses and
displacements at infinity and uniform compression on the ends of broken

fibers will now be sought.

The boundary conditions are given by

Vn =0 as n-+o,

for all fibers,

&,
Bn_scFlns'] ’ at n

for all broken fibers, and

Vn(O) =0 at n=0 R

(H.18)

L]
o
-

for all unbroken fibers.

Equation (H.17) has the complete solution satisfying vanishing

stresses and displacements remote from the damage as
W(n,o) = A(e)e " - SI0(8) Toinnls(net)If (DAt . (H.19)
n

where the functions A(e) and f1(t) must be determined from the remaining

boundary conditions. Using equation (H.14), the displacement is given by
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Vo(n) =-12; (f:[ A(s)e ™" -ﬂ“sﬂ fosinh[s(n-t)]fl(t)dt] sin(ne)de .
n

(H.20)
The remaining boundary conditions give
dvn(O) 2
w rale = { 6A(8) - sin(e) s cosh[&(n-t)]fl(t)dt} sin(ne)de=-1,
0
(H.21)

for all broken fibers, and

v (0) 3 {A(e) + _13&_9)_; smh(st)f](t)dt} sin(ne)de = 0 ,

T o
(H.22)
for all unbroken fibers. Equation (H.22) is solved exactly by taking
w N
A(e) + S0(8) © sinn(st)fy(t)dt = & B sin(me) , (H.23)
0 m=1
where the Bm are constants. Equation (H.22) then gives a system of
N algebraic equations for N constants, Bp»
as yet unknown. Eliminating A(8) between equations (H.20) and (H.23),

in terms of f1(n) which is

the displacement V (n) can be givemas

N
Vo(n) =2 ™ 5 B sin(me)sin(ne)ds
To m=] M
- %‘é fi(t) {Cn(lt-nl) -Cn(t+n)} dt , (H.24)
where,
. 2 " sin(e) _-S¢
cn(g) ;-é ¢ sin(ne)de
and
6§ = 2 sin(6/2) .
Equation (H.21) then becomes

Mo

- N
! {-6 T B sin{me) + sin(e) f e V](t)dt
o ms]

-Gt

- sin(8) g e ?a(t)dg}sin(ne)de = -1, (H.25)

where f](t) has been replaced by %a-V](t) .

T
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Equations (H.10) along with (H.24) gives

V() = %é"e"’“ £ B, sin(me)sin(e)de .

+ 'g °°° {vl(t) - %,(t)} {c,(lt-nl) -c,(m)} dt ,  (H.26) oy

where
2( ) .-
0

Equation (H.25) and (H.26) must be solved simultaneously for V](n)
and the constants B . Once V,(n) and B, are known, the displacement
of any fiber n can be obtained from equation (H.20) and hence the fiber o
stresses.

These equations were solved as follows:

(1) An initial set of constants B, was determined by setting f](t)==0,
that is, Vi(t)= fi(t) in equation (H.25) giving

A

N
fﬂ{-é I B sin(me)sin(ne)} de=-1, n=1,2,...,N. (H.27)
0 mel

(I1) These initial constants were then substituted into the integral
equation (H.26) and the function V](t) was determined for a known ;E
distribution of ?a(t).
(III) Using V](t), a new set of constants B was computed from equation
(H.25).
(IV) This procedure was repeated until the unknowns changed less than
a prescribed amount with the additional iterations.
In the above solution, the unknown function, V,(n) was assumed

to be piece-wise parabolic over the interval 0 < n < = of the form

V:(n) = Y; + Y: n + y; nz R i=1,2,...,k
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when the interval was divided into k subdivisions. The function, V,(n)
contained 3k unknowns. (k+1) equations are obtained by requiring that
the integral equation (H.26) be satisfied at the (k+1) end points,
(2k-2) equations resulted from the requirement of continuity of the
function V](n) and its first derivative between adjacent intervals

and the last equation was given by setting Vl(“) =0 as n - », Because

the interval of integration was infinite, the piece-wise linear anproxi-
mation for V](n) unlike in the preceeding sections was found to be

inadequate.




Numerical solutions have been developed for all the specific pro-

S T T

blems discussed in the previous sections, using an IBM 370 computer at
Clemson University. For the case of a notch with no additional trans-

verse or longitudinal damage, as considered in section A, the solution

A & i A AN S

. invoives inverting the system of algebraic equations (A.21) for the
constants, By, In sections B-G the inclusion of longitudinal damage
requires the introduction of an unknown function g(n) representing the
displacement difference between adjacent fibers in the damage zone.
Satisfaction of the boundary conditions then gives a far more complex
system of algebraic equations for the constants By, coupled with a

‘ Fredholm integral equation for the function g(n). The form of this pair

of equations is identical for all sections B-G, (see equations (B.46),

(B.47) and (B.48)). The solution technique discussed in section B for

these equations is appropriate for the remaining sections through G.

For the half-plane considered in section H, even though no longi tudinal

damage is assumed, a set of equations similar to those of sections B-G

still results. A discussion of an appropriate solution technique for

| the half-plane is given at the end of section H and some changes made
necessary by unbounded intervals of integration are considered.

For the present report the main emphasis will be to compare the

- T

resul ts of the various models and demonstrate the agreement with

- available experimental results. More detailed results for the original
Hedgepeth problem are given in [1]; the inclusion of longitudinal damage
for one broken fiber is given in (2] and [3] and the general solution

of section B is presented in [9].
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Some interesting observations concerning the case of broken fibers
with no additional damage, as presented in section A and [1] are first
considered, with particular emphasis on the behavior of the fiber stress
in front of the notch. The normalized fiber stress in the first

unbroken fiber was shown in (1] to have the following representation:

(2 F L 068, (20 +2)
rooa, 357,00 (2r +1) (1)

where op is the stress in the first unbroken fiber, and r is the total

number of broken fibers. This equation may be written as
L (2)% (r e 01 ()
Kr r+ - .
(2)

Using Stirling's formula for the asymptotic representation of {(r)! when
r is large, i.e.
(1)1 - vz ()
and substituting into equation (2), gives
K, = 7'/’7 O (3)
If the total number of broken fibers 1S odd and the notch is symmetric
about the y-axis, as is the case in all the full-plane problems consid-
ered here, then r = 2N + 1, where N is the last broken fiber, so that
equation (3) may be written as
6%1 < NTT - ¢/§ N , for large N. (8)
N+l
The present failure criterion is similar to the “point stress” cri-
terion presented by Nuismer and Whitney in [16], at least when applied
to the models of section A and B. That is, if transverse damage is not
admitted then laminate failure is assumed to occur when the stress in

the first unbroken fiber reaches the unnotched ultimate stress. The
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remote failure stress, o_, is then given by equation (1) for any number

of broken fibers, r, where g. 1s replaced by the unnotched strength CPe

F
Following [16], a fracture toughness parameter can be defined as
KqQ = o_rma where a is the crack half-length. Kq is given by
equation (4) for large crack lengths as

KQ = aavcr-i = 00/2- s (5)
where d is the fiber spacing,a = Nd and o_ = o  v2/aN .

A comparision can also be made between the solution of section A

and that of a homogeneous isotropic plate with a central notch of length
2 a(Griffith crack). The stress distribution at the crack tip along the

x-axis 1s given by

g
_ls y X » A
o A (6)

This equation can be modified for a uni-directional lamina in terms of

the discrete fiber spacing and fiber index as

- nd n
OFln: = ,ﬂ}N"'l.

JoaZ - e g%t R (e )’ (1)

l is the normalized stress in the fiber n,

d " is the fiber spacing,

n is the fiber index

N is the index of the last broken fiber, and,

Cy s a constant needed to fit the data for each particular
initial notch length specified by N. Note that (N + Cy)d

represents an eqivalent notch half-length,

P
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For n= N + 1 this ecuation is set equal to equation (2), with r = 2N + 1,
in order to determine the constant Cy for any particular N. The

following table of values for Cy as a functicn of N results.

Gy 0.6614 0.6742 0.6805  0.6814  0.6815
(1-1

For large N equation (7), with n = N + 1, and equation (4) in place
of equation (2) gives the 1imiting values of Cy as
N+ 1

Lim - = T N,
Now AN+ 1)" - (N+cyf z

from which,

Cy = 1 - +=0.6815 = C. (8)
It is then seen that Cy is approximately equal to a constant, C,
independent of N. Now, using the above vaiues for Cy the stress in
fibers n > N+ 1 in front of the notch was computed from equation (7)
and compared with the solution of section A. For all notch lengths the
agreement was found to de excellent as shown in Figure (13). Therefore
the central notch in a uni-directional laminate using the shear-lag
model has a square root type stress distribution with an equivalent
notch length given by (N + Cy)d where the constant Cy = C = 1 - 1/x
for all N. That is, the stress in the first unbroken fiber is given by
the modified Griffith solution, equation (7), which also correctly

predicts the stresses in the remaining unbroken fibers.
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An analogous investigation concerning the maximum fiber stress and
the fiber stress decay away from the notch when longitudinal and trans-
verse damage {s present, as given in sections 8 and C, is now discussed.
The resy:ts are considerably different from the above and it is indi-
cated that a basic assumption of [16] in which a square root behavior
was assumed to exist may be in error. That is, for cases having
longitudinal and/or transverse damage the notch tip fiber :itress as
determined from sectiors B and C does not have a square root form. To
demonstrate this for longitudinal damage we used equation (7), with
n=N+1, to represent the fiber stress in front of the notch and
determined the constant Cy by comparing with the numerical results. A
significantly different value of Cy was found for each particular N as
indicated in the following table. In constructing this table the ulti-
mate stress in fiber N ~ 1 was taken as constant for all values of N;

the remote stress and damage length,. , then changed with N,

N 0 1 3 14

Cn 0.6459 0.5008 0.3437 -0.2364

Further, using a specific value of N and the corresponding Cy, the
fiber stress computed for n > N + 1 from equation (7) was found to be
different from the numerical results. An example of the fiber stress
for seven broken fiuers, and longitudinal damage consisting of yielding
given by 5 = 5.0 s given in Figure (13). First, comparing with the
resul ts of the no damage, it is scen that the stress distribution is
greatly reduced and distributed more uniformly to the adjacent fibers.
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Second, the results are seen to be different from equation (7) but not
drastically so.

When transverse damage is included the stress field, shown in
Figure (13) for four damaged fibers, is fundamentally different from
that of the modified Griffith form, equation (7). A value of Cy was
not determined. It is indicated below that both longitudinal yielding
and transverse damage are necessary in order to agree with the limited
experimental results for boron/aluminum laminates.

The failure criterion for longitudinal damage alone is the same as
in section A. When the stress in the first unbroken fiber reaches the
unnotched laminate stress and fails, then the stress in the adjacent
unbroken fiber will be above the critical value.

If transverse damage is also present the failure criterion is more
compiicated. The results from the model developed in section C indi-
cated that stable transverse fiber breaks can occur. Failure of the
first fiber does not then necessarily signify lamina failure as it may
well require an increased applied stress to critically stress the next
fiber. Recall that in the lamina, the fiber breaks occur in front of
but not necessarily in line with the initial notch, with the matrix
material remaining intact. Shear stress transfer from the matrix as
well as some smail axial matrix stress then gives a reduced load carry-
ing capacity to the damage region in front of the notch as accounted for
by the stiffness coefficient, y. Typical results are shown in Figure
(14) for an initial notch length corresponding to seven broken fiders

and a fiber stress in the damaged zone corresponding to a stiffness

coefficient of y = 0.90. It is seen that the transverse damage is

e

Cem
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stable until about sever additional fibers are broken. At this point
the curve levels off and successive breaks require no increase in
applied stress, o_. An appropriate failure criterion is then to
dctermine the applied stress, o_, giving unstable transverse damage. It
is significant that the number of stable fiber breaks was approximately
constant, independent of initial notch length. This constant damage
zone size was about seven broken fibers which is in good agreement with
the observed results of Awerbuch and Hahn [13].

The value of vy, which represents the stress carried by the
transverse damage region, was found to be that giving the best fit to
the COD and strength curves along with a constant damage zone length.
As the intial notch length increased, the 1oad carried by the transverse
damage region decreased,while the size of the region remained constant.
Extensive experimental studies to investigate this behavior are
underway.

The results of the present methods are shown below to predict
accurately the fracture behavior of toth brittle and ductile matrix
composites in terms of crack opening displacement (COD) and fracture
strength. It then seems reasonable to conclude that the manner of
stress diztribution in the fibers is given with the same degree of
accuracy. If this is true then it follows that, for the notched
laminate with longitudinal and transverse damage, the fiber stresses in
front of the notch are less severe than a square root behavior. The
failure criteria suggested by Vuismer and Whitney [1€], either the
"point stress" or the "average stress" criterion both assume a stress

field in the front of the notch as
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k . ) where a is the half notch length. Based on the above observations these
;‘ ; criteria are perhaps not valid for uni-directional laminates. It
FE ( .
i ] appears then that longitudinal and/or transverse damage reduces the

influence of a notch to a greater degree than an equivalent notch length

.
o

L model, with a square root behavior, would predict. It is important to
note that, even though the present study indicates the true fiber stress
¢ distribution, section C, to be different from [16], results using the
| classical square root behavior do predict the fracture characteristics
of laminates with surprising accuracy. For example, see the work of Poe
\ and Sova presented in references [17] and [18]. This is perhaps fortui-
. ' tous as the stress is not drastically different from a square root form
[ even though only the undamaged laminate of section A agrees accurately
with the square root behavior of equation (7).
It has been demonstrated in [9] that for composites with a brittle
} matrix such as epoxy, the extensive splitting and the eventual instabi-
lity in the longitudinal directicn can be predicted by introducing
longitudinal damage alone as covered in section B. Results for cases of
one and seven broken fibers are presented in Figure (15).
For a composite with a ductile matrix such as aluminum some negli-
| gible splitting has been observed [15] and (1], but the stres; in the
= " fibers continues to increase with increased remote stress until the
ultimate fiber stress is reached. In order to predict the fracture
behavior of composites with a ductile matrix, such as boron/aluminum, it

was found to be necessary to improve the model presented in section 8.




T T R TSI T s A T T LT iadise ”

66

Effectiveness of these improved models, which are developed in sections
C-E, will now be discussed.

In all these cases, the model parameters such as number of
constrained fibers, stiffness coefficient, strain-hardening ratio,
constraint ratio were varied and their effect on the fracture characer-
istics of the laminate was investigated. A comparison of predicted
values with the experimental results of [13] was done with respect to
two fundamental characteristics, crack opening displacement and laminate
strength.

As explained in section B, the fiber axial displacement and
stresses can be computed for different material properties, applied
stress and notch lengths. For a particular laminate a plot of COD vs.
applied load was obtained and then, by comparing with the experimental
study of Awerbuch and Hahn in [13] for the uni-directional boron/
aluminum laminate, appropriate values of T, and theé stiffness constant
Gu/h were determined. The laminate used in [13] had the following

material and geometric properties:

Er = 475 x 109 pa,
Ar = 1.59 x 10-8m2, (D = 0.1427 mm),
t = 0,165 mm/ply, eight plies

%1t = 3.98 x 109 Pa
w = width = 25.4 mm and
fiber center line spacing = 0.178 mm.
For a laminate having seven broken fibers, which corresponds to a
notch length of about 1.27 mm, the load vs. COD curve required specific

values of T, and Gy/h in order to give a "best fit" to the experimental
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results of [13]. The numerical values of Gy/h and T, determined in

this manner are given in the following tahle for the various models.

long: tudinal transverse constraint strain
damage, 8 damage, C layer, D hardening, E

aw/n 65.4x10%2n/m%  115x10%2w/m®  1aex10°%u/m? 35.9x10%N/m
x 109x10%N/m & 88x1C8 N/m? 82x10° N/m2 164x10° N/m?

For the strain hardening case the modulus ratio was taken as Gg = 0.5
and for the constraint layer Cg = 0.05. Using the abcve tabulated
values in each model gave essentially the same COD curves for both seven
and twenty-nine broken fibers with both being in close agreement with
the experimental results of [13]. This comparison is shown in Figure
(16).

The differences in the four models in predicting COD curves is then
small although the particular values of the material constants Gy/h
and T, are considerably different as seen from the table.

Now using the above constants for Gy/h and T the normalized
ul timate fiber stress

[+]

ult /O

%o

S =

e

was computed for a specific ultimate fiber stress. Then the remote
stress required to give a particular ultimate stress in the first
unbroken fiber, or unstable extension in the case of section C, was
determined from a plot of applied stress, o_vs fiber stress,o., Figures

(17) and (18). This gives the strength of the laminate as a function of

number of broken fibers (or notch length). This was repeated for all

Aaae
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the models in section B through €. Figure (19) shows the plot of
applied stress as a function of number of broken fibers for the differ-
ent models along with the experimental results of [13].

From Figure (19) it may be observed that even though COD was insen-
sitive to model parameters, the strength curve was very much dependent on
them. All the models predict the same trend in strength curves as those
given by the experimental results. However, for the case of longitudi-
nal damage, the model gives a much larger decrease in strength for small
notch lengths than the experiment. At longer notches the model predicts
the failure stress reasonably well. An increase in the fiber utlimate
stress tends to rotate the curve about the knee of the curve without
much change in the behavior for the shorter notches.

Addition of a constraint layer does not make a significant differ-
ence in the predicted strength curve. Variation in the constraint ratio
had a similar effect as that of increasing the fiber utlimate stress in
the longitudinal damage model.

The strain-hardening model predicts strength values much lower than
those of the longitudinal damage model, making it more and more notch
sensitive. The best predicted values of the strain-hardening model are
no better than those of the longitudinal damage model.

The transverse damage model however predicts strength values very
close to the exprimental results and seems to account for an essential
damage mode. By varying the transverse stiffness coefficient and number
of constrained fibers, it was possible to move the predicted strength
curve such that it fit the experimental results exceptionally well. One

important observation was that the number of constrained fibers required
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to fit the experimental data was approximately a constant at all notch
lengths, indicating that the transverse damage zone size ahead of the
notch tip was independent of the notch size.

Introduction of transverse damage in addition to longitudinal
damage then not only predicts COD in good agreement, at the same time it
predicts strength values exceptionally well. The above computed value
of T, s close to the yield stress for a homojeneous aluminum specimen.
The equivalent stiffness, Gy/h, for h = 1.78 x 10~% m, (i.e., the
center-line distance between fibers) gives a shear modulus of Gy =
20.5 x 109 N/m? which is also close to the shear modulus of
aluminum. For annealed aluminum the yield stress is about 95 x 106N/mF
and the shear modulus is 27 x 109N/me,

Also of interest is the extent of the longitudinal yielding which

is given by

- TMFF % = 3.54 fiber spacinas.

L=

ajr

For the case of seven broken fibers the damage length corresponds to

a = 11.5 or therefore L = 40.7 fiber spacings,, (approximately 6 times

the crack length). For twenty-nine broken fibers a = 35, and L = 123.9

fiber spacings, {(approximately 4 times the crack length). Experimental

determination of the extent of longitudinal yielding is now being

investigated by the writers, however this damage does seem reasonable.
With the above observations in mind it should be emphasized that in

order to predict the fracture behavior of uni-directional composites with

a ductile matrix it was essential to consider the transverse damage of
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matrix and fibers along with the longitudinal matrix damage as modeled
in section C of this report.

Note that the above results indicate an approximately constant
transverse damage zone size of seven fibers, independent of initial
notch length, which is in agreement with both Awerbuch and Hahn [13] and
Nuismer and Whitney [16]. However, the disagreement with Nuismer and
Whitney [16] as discussed above is that the present solutions predict
fiber stresses in front of the notch to be different from and less
severe than a square-root behavior.

The final results to be presented in this report concern the solu-
tions developed in sections F and G for the rectangular and circuiar
cut-outs. Of principal interest will be the comparison of these results
with the corresponding solutions for the notch. Extensive results are
presented by Jones [19] where it is demonstrated that very little dif-
ference exists between the three solutions concerning maximum fiber
stress and the stress distribution in front of the damage.

In Figure (20) results are presented for eleven broken fibers in
the instance of no additional damage. The differences are largest in
this case; any longitudinal or transverse damage brings the solutions
closer together. Figure (21) gives the results for the same geometry
with longitudinal damage, o = 4, and transverse damage of four fibers.
In both cases the material constant, Hy, needed in the solution for
the circular hole, was taken as 5.0 which corresponds to a volumetric
ratio of 50% and Ep/Gy = 50. Within the range of realistic material
properties for fiber dominated laminates, changes in Hg have little

effect on the solution.
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The behavior depicted by these two figures is typical of the gen-
eral results and one can conclude that the shape of the initial damage
is less significant in determining the laminate fracture properties than
the total number of fibers broken. These results are fundamentally dif-
ferent from the case of an isotropic plate in which the sharp notch has
singular stresses near the notch tip with a square root singularity;the
rectangular hole also has singular stresses but with a power of less
than one-half; and the circular hole has a stress concentration of
three, independent of hole size.

Future work in the area of this study will include a detailed
experimental investigation of the damage growth in notched boron/alumi-
num uni-directional laminates and the extension of the above half-plane
solution to include damage and the presence of an adjacent half-plane of

different material properties.
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Figure 13. Comparison of notch tip stress distribution for 7
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Figure 20. Comparison of notch tip stress distribution for various
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