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Summary 
Steady-state wear and  friction  measurements were 

made  under  boundary  lubrication  conditions in a 
pin-on-disk  sliding  friction  and wear apparatus  at 
disk  temperatures of 20°, 150", and 260" C with five 
C-ether-formulated  fluids  (modified  polyphenyl 
ether  containing  phosphorous  ester,  organic  acid, 
and  other  additives).  Results were compared with 
those  obtained  under  similar  conditions for a fully 
formulated MIL-L-27502 candidate  ester  lubricant 
and  the  C-ether  base  stock  as  reference  oils. Test 
components were annealed,  pure-iron  riders  sliding 
against  rotating  consumable-vacuum-melted (CVM) 
"50 tool steel disks in a  dry-air (< 100 ppm H20) 
atmosphere.  Other  test  conditions were a  load  of 1 
kilogram,  a  disk  speed of 50 rpm (7.1- to  9.l-m/min 
sliding  contact  velocities),  and  test  times to 130 
minutes. 

Based on  steady-state wear rates and coefficients 
of friction,  three of the  C-ether  formulations gave 
better  boundary  lubrication  than  the  C-ether  base 
fluid  and  the  reference  formulated MIL-L-27502 
candidate  ester.  This was true under  most  test 
conditions,  but  most  significantly  it  occurred  for 
three of these  formulated  C-ether  fluids  at  the highest 
disk  temperature  of 260" C. 

The  other  two  C-ether  formulations yielded higher 
wear rates  and  friction  coefficients than the  C-ether 
base  fluid for most of the  temperature  range.  These 
are  the only  examples where C-ethers were found  not 
to be  susceptible to additive  treatment.  Only  one 
C-ether  test  fluid  showed  consistently  higher  steady- 
state wear rates than  the  formulated  ester  fluid,  but  it 
had  the same or slightly  lower  friction  coefficients 
over the entire  temperature  range. 

A qualitative  method was devised for  comparing 
friction  behavior  where  friction  traces  obtained 
during  steady-state  testing were judged to be  either 
smooth (wide or  narrow band) or erratic  (spiked or 
wandering). All the  test  fluids were classified  under 
one of  these four  trace  variations. No correlation was 
found between these  criteria  and  quantitative 
coefficient of friction  values,  but  the  trace  type 
seemed to be temperature  related.  It  varied  from 
smooth (wide band)  operation at 20" C  for all  fluids 
to  an erratic  (both  spiked  and  wandering)  behavior  at 
260" C for all  five  formulated  C-ether  fluids.  The 
reference  ester  fluid  gave  a  smooth  friction  trace  over 
the  entire  temperature  range. 

Introduction 
Efforts in recent  years to develop new and 

improved  turbine  engine  lubricants  have been 
primarily  under  the  sponsorship  of  Department  of 
Defense  organizations.  These  efforts were aimed at 
advanced  engine  developments  and  anticipated 
trends  toward  increased  operating  temperatures  that 
place  greater  thermal  demands  on  the  lubricants. 

The  Air  Force is seeking a MIL-L-27502 target 
specification  lubricant with an  operating  temperature 
capability to 240" C (464" F) for  a Mach 3 + engine. 
Also,  it is projected that  a 260" C (500"  F) capability 
lubricant will be  a necessity for  a Mach 4 +  engine 
(ref.  1). Use of heavy coolers of the  fuel-air  and  fuel- 
lubricant  types  could  preclude  the need for higher 
temperature  lubricants.  However,  the  added weight 
of the  coolers  limits  the  aircraft's  ability to  perform. 
By employing  lubricating  fluids  with  higher 
temperature  oxidative  and  thermal  stabilities,  greater 
advantage  can  be  taken of the  improved  thrust- 
weight ratios of new engines. 

Experience  already exists with at least  one  high- 
temperature  lubricant of a five-ring polyphenyl 
ether-base  fluid (bis [phenoxyphenoxy]  benzene)  in 
an  operational  military  gas  turbine  flight  engine 
(ref. 2). This  fluid meets military  specification 
MIL-L-87100. Although it has excellent high- 
temperature  stability,  it  also  has  a very high pour 
point of about 5"  C (41 F) and  poor  boundary 
lubricating  characteristics.  A  trichloroethylene 
diluent is required  with  this  fluid to reduce  the pour 
point  and make  it  operational.  The need for  good 
boundary  lubricating  ability is a  well-established 
requirement for  turbine engine  bearing  lubricants for 
use in  high-speed,  high-temperature  aircraft. 

The  lubricant capability  breach between current 
poly01 ester  fluids and  the five-ring polyphenyl  ether 
needs to be  filled.  It was decided  some  time  ago 
(ref. 1) that advanced  lubricant  development  might 
best  be  approached  in  two  phases.  The  first  phase 
concentrated on optimizing  the poly01 ester  chemical 
class of oils to meet or exceed the MIL-L-27502 
specification. A newly formulated  hindered poly01 
ester  based on polypentaerythritol and developed 
under  the  Air  Force  Materials  Laboratory 
sponsorship  (refs. 3 and 4) has a potentially  useful 
maximum  bulk  oxidative  temperature of about 
240" C (464" F). This  ester is currently  undergoing 
further testing by the U.S. Air  Force for possible 



qualification  as a MIL-L-27502 candidate.  The 
second and  more long-range  phase  has been to seek 
out  and develop  lubricants  capable  of  meeting  the 
ultimate  in  high-temperature  requirements.  One  such 
development  has been with C-ether  fluids, or  the 
modified  polyphenyl  ethers, that we are concerned 
with in this  study. 

The  C-ethers have  been  under study  and 
development for  about 15 years.  They were first 
reported in reference 5 by Monsanto  Research,  their 
originator.  The  second  of  two NASA contractual 
studies  on  C-ethers,  completed  recently,  involved  the 
synthesis  and  evaluation of C-ether  formulations  for 
use as  turbojet  aircraft  engine  lubricant  fluids  useful 
to 260" C (500" F). These  studies are  reported in 
references 6 and  7.  Extensive  bench  screening and 
tests of large-scale (80-mm bore  diameter)  bearings  at 
high speed and  an oil-in  temperature of 260" C were 
used to evaluate  a  number  of  additive  packages in the 
C-ether  base  oil.  Results  did  indicate that  the  poor 
boundary  lubricating  characteristics of this  fluid 
could  be  improved by using the  proper  additive 
package.  However,  the  screening  tests (which 
included  macro-  and  thin-film  oxidation-corrosion 
tests,  friction  and wear tests  on  a  rub-block  rig,  and 
slow and  fast  four-ball  tests) were not very reliable in 
selecting the  proper  candidates for 100-hour  bearing 
endurance  tests.  Thus  the need exists for more 
simulative  and  reproducible  lubricant  screening  tests, 
especially in the  boundary  lubrication regime. 

Progress was made  toward  establishing  more 
reproducible  and  reliable  testing  procedures in the 
boundary  lubrication regime in a  recent  study of 
steady-state wear and  friction using a pin-on-disk 
machine  (ref. 8). Ester  base  and  C-ether  base  fluids 
were studied  at  room  temperature  (20"  C) in a sliding 
friction and wear apparatus where steady-state wear 
rates, as defined in reference  8,  appeared to be the 
best single  criterion for determining  comparative 
lubrication  behavior  among  fluids. 

The  objectives of this  investigation were (1) to 
determine wear rates  and  friction  coefficients with 
five  C-ether  formulations developed by Monsanto 
Research  (refs.  6  and 7) during  steady-state  operation 
under  boundary  lubrication  conditions  at  disk 
temperatures  of  20", 150", and  260" C,  and (2) to 
compare  these  results  with  those  of  the 
MIL-L-27502 candidate  ester  liquid  lubricant  and 
the  C-ether  base  stock. 

In  the  experiments  annealed,  pure-iron  riders 
(99.99 percent  iron) slid against "50 tool steel disks 
in  dry  air (< 100 ppm H20)  at a  load of 1  kilogram 
(initial  Hertz  stress, 1 x lo9 N/m2)  and  at sliding 
velocities of 7.1 to 9.1 m/min. Test time  intervals for 
wear measurements were usually at 10, 40, 70, 100, 
and 130 minutes. 
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Annealed,  pure-iron  riders were used instead of 
"50 tool  steel  (as in previous  studies,  refs. 9 and 10) 
to achieve  larger  and  more easily measured wear 
scars,  the  iron being much  softer  than  the "50 tool 
steel  disks.  Surface  sliding velocities and  loads were 
selected that  avoided  elastohydrodynamic  and 
"mixed" lubrication  regions  (ref. 8). A dry-air  test 
atmosphere was selected  because  it had been 
determined  (ref. 9) that, in general, lower wear rates 
were observed when fluids were tested in moist air. 

Apparatus 
The sliding  friction  and wear apparatus used in  this 

study is shown  in  figure 1. The  test  specimens were 
contained  inside  a  stainless-steel  chamber,  and  the 
moisture  content of the  chamber  atmosphere was 
controlled.  A  stationary, 0.476-centimeter-radius, 
hemispherically  tipped  rider was placed  in sliding 
contact with a  rotating,  6.35-centimeter-diameter 
disk.  Rider  holders of three  different  lengths were 
used to  permit  three  concentric wear tracks to be  run 
on  a single disk,  thereby  eliminating the need to 
refinish  disks  after each run. Sliding velocities ranged 
from  about 7.1 to 9.1 m/min  as disk rotational speed 
was maintained at 50 rpm for all  three  rider  holders. 

A  normal  load of 1 kilogram  (initial  Hertz  stress, 
1 x lo9 N/m2) was applied with a  deadweight. Disks 
were made of consumable-vacuum-melted (CVM) 

r "  V R i d e r  (0.476-cm rad) C I !  

---- Induct ion- 

CD-12360-15 

Figure 1. - Friction  and  wear  apparatus. 



"50 tool steel and heat treated to a hardness of Disk wear with pure-iron  riders was found to be so 
Rockwell C62 to C64. Riders were made  of  pure  iron small that it was not measurable.  During  most test 
(99.99 percent iron)  and were annealed to a hardness runs rider wear scars were measured at test times of 
of 70 to 92 kg/mm2  (diamond  pyramid  hardness 10, 40, 70, 100, and 130 minutes. 
number,  DPH)  as  measured  on  an  Eberbach 
microhardness tester at a 150-gram load. 

The disk was partially  submerged in a polyimide Experimental  Lubricants 
cup containing the test lubricant and was heated by 
induction. Bulk lubricant temperature was measured 
with a thermocouple.  Disk  temperature was 
monitored with an  infrared pyrometer.  Frictional 
force was measured with a strain gage and was 
recorded on  an X-Y recorder. 

The test atmosphere used in this  study was dry  air 
(< 100 ppm H2O)  obtained by drying and filtering 
service  air.  The  moisture  concentration  was 
monitored by a moisture analyzer with an accuracy 
of f 10 parts per million. 

Procedure 
Disks  were ground  and lapped to a surface finish 

of 1 X to 2 x  meter (4 to 8 pin.)  rms. Rider 
tips were machined and polished to a surface finish 
of 5 x 10-8 to l o x  10-8 meter (2 to 4 pin.)  rms. 
Specimens were scrubbed with a paste  of levigated 
alumina  and water, rinsed with tap water and 
distilled water, and then placed in a desiccator. 

Test lubricants were degassed at approximately 
150" C (302" F) at 2.7 x 102-N/m2 pressure for 1 
hour. Measurements  made using the Karl Fisher 
technique  indicate that  this degassing procedure 
reduces dissolved water content in the test fluids to 
less than 20 ppm. 

The specimens were assembled, and approximately 
3 X cubic meter (30 milliliters) of lubricant was 
placed in the lubricant cup.  The test chamber 
(3.7 X 10-3-m3 volume) was purged with the dry-air 
test atmosphere  for 10 minutes at a flow rate greater 
than 5 X m3/hr. During the high-temperature 
runs  the disk was heated  by  induction to test 
temperature while rotating.  The rider was then 
loaded against the disk  with the deadweight, and  this 
marked  the  start of the test run.  The flow rate of the 
dry-air atmosphere was reduced to 3.5 X m3/hr, 
and a pressure of 6 . 9 ~  N/m2 (1  psig)  was 
maintained in the test chamber.  The lubricant was 
heated  only by heat  transfer from  the  disk.  At disk 
temperatures  of 150" and 260" C (302" and 500" F) 
the bulk oil temperatures stabilized at approximately 
140" and 230" C (284" and 446" F), respectively. 

Frictional  force was continuously  recorded. Bulk 
lubricant  temperature  and disk temperature were 
continuously monitored. Rider wear scar  diameters 
were measured and recorded after each time  interval. 

The experimental fluids used in this  study were a 
fully formulated  ester (used for reference), a C-ether 
base  fluid  (modified polyphenyl ether),  and five 
C-ether formulated fluids (containing phosphorous 
ester,  organic  acid, and other additives). Some 
typical properties of  the ester and  the C-ether  base 
fluid  are given in table I .  The  formulated  fluids, 
which contain  no  more  than 0.10 percent by weight 
of any  one  additive, have essentially the  same 
physical properties as  the C-ether base fluid.  Table I1 
gives the additive  contents.  structures. and functions 
for all the test fluids. 

Formulated Ester 

The fully formulated ester is a special synthesized 
fluid whose base  stock is a mixture  of  hindered 
poly01 esters, polyester, and dipentaerythritol  esters. 
It was developed by  Monsanto Research (refs. 3 
and 4) as a MIL-L-27502 specification candidate 
lubricant ( - 40" to 240" C operating  range).  Generic 
names for  the additives are given in table I1 for  this 
reference fluid where exact information is considered 
proprietary  by the  fluid  manufacturer. 

C-Ether Base Fluid 

The C-ether base fluid used in this study was 
originally reported in reference 5 and more recently 
in references 6 and  7. This fluid is a blend of three- 
and four-ring  components  that  are  structurally 
similar to  the polyphenyl ethers and contains a 
dimethyl silicone antifoaming  additive. 

C-Ether Formulations 

The five specially formulated C-ether-base fluids 
were developed by Monsanto Research and subjected 
to extensive screening tests (ref. 7). The additive 
contents  of  these  fluids are listed in table I1 along 
with the weight percentage of each used,  their 
molecular structures,  and  the general function  or 
purpose  for  each  additive.  An  appropriate 
background reference for a general understanding of 
the mechanisms and purposes involved in using 
various chemical lubricant additives is  given in 
reference 11. Also, a study by Jones (ref. 9) involved 
the use of phosphorous ester and organic acid 

3 



TABLE I. - TYPICAL  PROPERTIES OF  TEST FLUIDS 

I 

- 

Propertya 

. . .. . .. 

Kinematic  viscosity,  m2/sec (cS): 
At 38' C (100' F )  

At 99' C (210' F) 
At 150' C (302' F) 
A t  260' C (500' F) 
A t  300' C (572' F) 

Pour point, OC ("F) 
Flashpoint, OC eF) 
F i r e  point, OC eF) 
Density a t  38' C (100' F),  kg/m3  (g/milliliter) 
Thermal  decomposition  (isoteniscope), O C  ("F)" 
Vapor  pressure,  N/m2: 

At 220' C (428' F) 
At 371' C (600' F) 

Surface  tension at 23' C (73' F), N/cm  (dynes/cm) 

aManufacturer's  data. 

~ . "" 

Formulated 
e s t e r  fluid b 

3.96X10-5  (39.6) 

7.02x10-6 (7.02) 

2.80X1O4 (2.80) 
1.06X10-6 (l.06) 
' 8 . 6 ~ 1 0 - ~  (0.86) 

-51 (-60) 

274 (525) 

do. 994 
298 (536) 

1. 33x102 

C-ether 
base fluid 

2. ~xIO-~ (25) 

4.  1X10-6 (4.1) 

1.9x10 -6 (1.9) 
7 . 6 ~ 1 0 - ~  (0.76) 
6.  9x10T7  (0.69) 

-29 (-20) 
239 (445) 

285 (540) 
1. 19x103  (1.19) 

390 (734) 

""""""" 

1 . 8 6 ~ 1 0 ~  

e4.48x10-4 (44.8) 

bA specification MIL-L-27502 candidate  lubricant with  a  base  stock  mixture of hindered 
poly01 esters,   polyester,  and dipentaerythritol  esters  (refs. 3 and 4). 

'Extrapolated. 
dSpecific  gravity, 15.6'  C/15.6' C (60° F/60° F) 
eMeasured i n  author's  laboratory. 

additives  of  the  same  general  types  of  some  employed 
in this  study. 

Additional  comments  on  the  rationale  for selecting 
the additives  shown in table I1 are  presented  for  each 
C-ether formulation,  as follows: 

Formulation 1.-This formulation  contained  two 
antiwear  or  boundary  lubrication  additives  consisting 
of  0.07-weight-percent  perfluoroglutaric  acid 
(PFGA)  and 0.05-weight-percent di[2-ethylhexyl] 
perfluoroglutarate (ester of  PFGA).  Chemical 
analyses during  previous  bearing test studies  (ref. 6 )  
with a  C-ether-plus-PFGA  lubricant showed a  quick 
loss of additives  from the fluid in most  instances. 
Therefore, to provide  a  cushion  or  continuing  source 
of  additive,  this  formulation was  devised to use a 
fast-reacting  absorbed  additive  (the PFGA) in 
combination with a slowly reacting compound (the 
PFGA ester). 

Formulation 11.-The second  formulation  studied 
was  the  base  fluid  plus  0.10-weight-percent 
2-[hexafluoro-i-propoxy] ethyl  phenylphosphinate. 
This  multipurpose  additive is a boundary  lubrication 
improver as well as  an antisludge  agent  (both 
corrosion  and  oxidation  inhibition). 

Formulation Z1Z.-The third  formulation  chosen 
fo r   s tudy   con ta ins   0 .10 -we igh t -pe rcen t  
i-propylphenylphosphinate as a  boundary  additive 
plus 0.05-weight-percent trichloroacetic  acid to 
improve  fluid  wettability. 

Formulation 1V.-The fourth  formulation  studied 
was the  base  stock plus 0.075-weight-percent 
m-trifluoromethylphenylphosphinic acid, which 
should serve as a boundary lubrication  improver as 
well as  an antisludge  additive.  In  a previous study 
(ref. 6)  one  additive  containing  a pH  group gave 
good  bearing  lubrication,  but large amounts of 
sludge were formed. This  sludge  could  come  from 
reaction  of  the  C-ether  base  stock at reactive sites on 
the  metal. To prevent  this,  the  phosphorous  additive 
was partially  fluorinated to form  an even more 
protective  absorbed film between the  metal and  the 
C-ether. 

Formulation V.-The fifth  formulation was the 
base  fluid  plus 0.10 weight percent  of  a  commercial 
acid  phosphate  mixture  (refer to structure in table 11) 
and 0.05 weight percent of dibenzyl disulfide.  This 
formulation  has  the same expected function  as 
formulation  IV  and uses essentially the  same 
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TABLE II. - ADDITIVE CONTENTS AND FUNCTIONS OF  TEST  FLUIDS 

Test  fluid 

Formulated  estera 
(specification- 
MIL-L-27502 
candidate) 

1 

C-ether  base 
fluid 

C-etherf 
iormula- 
tion I 

I 

C  -ether 
formula- 
tion I1 

C  -ether j 

Additive 

~ 

Proprietary  metal  derivatives  consisting 
of (1) a complexing  agent  and (2) a 
metal  compound  that i s  complexed by 
that  agentb 

Alkylated amine 

Aromatic  amine 

Triphenylphosphine  oxide 

Metal deactivatord 

Dimethyl silicone 
(Grade, 350 cS  at 25O C) 

Perfluoroglutaric  acid 

3i (2-ethylhexyl)  perfluoroglutarate 

2-(hexafluoro-i-propoxy) ethyl 
phenylphosphinate 

.-propylphenylphosphinate 

rrichloroacetic  acid 

n-trifluoromethyl- - 
phenylphosphinic  acid 

Zommercial  acid  phosphate  mixture 

Dibenzyl  disulfide 

iddit~ 
:onte 

wt9 

(C ) 

(e) 

.07 

.05  

.10 

.10 

. 0 5  

.07 5 

- 

.10 

. 05  

Additive structure 

0 
II 

(C4Hg-(CH-CH2-O-C)Z-(CF ) 

‘ZH5 
2 3  

,o 
P,-O(CH ) OCH(CF3)2 2 2  aH //” 

~ 

P,- O-CH(CH3)2 
H 

FI 
CC13-C-OH 

~~ ~~~ 

!/ 
0 

CgH1g-O-(CH2CH20)6-P-OH 

(X=H or ethylene  oxide  chain) 
ox 

w m  CH2S-SCH2 

Additive  function 

3eposit  inhibitor 

hidation  inhibitor 

kidation  inhibitor 

Netal passivator  (corrosion 
and  oxidation  inhibitor) 

vIagnesium corrosion  in- 
hibitor 

4ntifoaming  agent 

?ast-reacting  boundary 
lubrication 

Slow-reacting  boundary 
lubrication 

Boundary lubrication  and 
antisludge  agent 

3oundary  lubrication 

3oundary  lubrication 
(wettability  agent) 

3oundary  lubrication  and 
antisludge  agent 

3oundary  lubrication 

Antisludge  agent  when  corn 
bined  with  phosphorous 
additive 

aRefs. 3 and 4. 
bDescription  of  complexing  agent  given  in  ref.  17. 
‘Proprietary  information  (refs. 3 and 4). 
dMore  exact  description is proprietary  (ref. 4). 

%eight  percentage of antifoaming  agent is proprietary. 
i All Cether  formulations  contain  antifoaming  agent. 
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mechanism to accomplish the desired result.  The 
difference from  formulation IV is that  an active 
sulfur  compound is combined with a phosphorous 
compound to function as  the metal  deactivator. 

Results and Discussion 

Steady-State  Wear 

Typical results of wear tests for all reference and 
test fluids, plotted in figures 2 and 3,  show a 
consistent linear relationship with  sliding distance in 
the range  of about 200 to 1100 meters (about 50 to 
130 min  test time). Wear rates were calculated as  the 
slopes of these lines  by  using the linear regression fit 
formula (least-squares estimates) as described in 
references 12 and 13, and they are herein defined as 
the "steady-state wear rates." 

The computed  mean values of these wear rates are 
presented in table 111 for three test runs at each fluid- 
temperature   combinat ion.   The  correlat ion 
coefficients R for each corresponding wear rate  are 
shown in table IV, and these are  the approximate 
measure  of the degree of fit for a linear relationship 
of the two variables (rider wear and sliding distance) 

3 2 0 ~ 1 0 - ~ ~  
Disk 

ture,  
OC 

tempera-  Steady-state 

240 

80 
L 

9 
lx (a)  Formulated  ester. 

1 6 0 ~ 1 0 - ~ ~  r r 7 ~ 1 O - l ~  

Sliding  distance, m 

(b)  C-ether base fluid. 

Figure 2. - Typical r ider  wear as  a func t i on  of sl iding  dis- 
tance  for  two reference  f luids  at  three  disk  temperatures, 
Test conditions: load, 1 kg; disk speed, 50 rpm;  sliding 
speed, 7.1 to 9.1 mlmin;   a tmosphere,   dry   a i r  (<lo0 ppm 
H20); r ider,  pure  iron;  disk, "50 tool steel. 

Disk 
ternpera- 

ture,  
OC 

--A- 150 

(a)  C-ether  formulation I. 
1 6 0 ~ 1 0 - ~ ~  
r 

(b)  C-ether  formulation 11. 
1 6 0 ~ 1 0 ' ~ ~  r 

mE 80,"". 

d E ""A"" 
- 3 -4<"A-- 
P ,/ "_o.""-u-""o 
L O  rrr 
E .^ (c)  C-ether  formulation 111. 

80 

( e )  C-ether  formulation V. 

Figure 3. - Typical r i d e r  wear as a func t i on  of s l id ing  d is-  
tance  for  f ive  C-ether  formulations  at  three  disk  tem- 
peratures. Test conditions: load, 1 kg; disk speed, 
50 rprn; s l id ing speed, 7.1 to 9.1 mlrnin;  atmosphere, 
d r y   a i r  ((100 ppm H20); r ider,  pure  iron;  disk, "50 
tool steel. 
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TABLE 111. - SUMMARY OF FRICTION AND WEAR RESULTS FOR TEST FLUIDS 

Disk Test fluid 
temperature 

I C +.ther Formulated C-sther  formulation 

O C  base fluid advanced O F  

estera I V IV I11  I1 

Steady-state  coefficient of friction b 

20 

.14(*0.02)' .14(&0.03)  .13(+0.025) .14(+0.015) .19 (+O .02) .17 (+0 . 0 1) .14(+0.01) 500  260 

.12 (io. 01) .lS(+O.OlS) .16 4 0 . 0 2 )  .16(+0.025) .15(+0.015) .15 (+0 . 02) .16(&0.02) 302 150 
0.07(+0.06) 0.06(i0.055)  0.09(+0.06) 0.08(*0.06)  0.09(*0.06)  0.06 (*O. 045) 0.09(+0.07) 68 

Steady-state  rider  wear  ratec,  m3/min 

20 8 . 5 ( * 0 . 9 9 ) ~ 1 0 - ~ ~  1 . 9 ( * 1 . 4 ) ~ 1 0 - ~ ~  1 . 5 ( + 0 . 2 1 ) ~ 1 0 - ~ ~  1 . 2 ( * 0 . 2 7 ) ~ 1 0 - ~ ~  2 . 1 ( * 0 . 4 0 ) ~ 1 0 - ~ ~  6 . 9 ( * 0 . 2 1 ~ 1 0 - ~ ~  1 5 ( + 2 . 9 ~ 1 0 - ~ ~  68 
150 

12 (+1.8) 3.5(*1.7) 2.9(+0.70) 2.6(+1.3)  7.3(+1.2)  4.l(i1.0) 6(*l. 3) 500 260 
30 (i3. 3) l l .F(+l.3) 6.4(+0.91) 5.8(11.4) 7.1(*0.74) 6.5(+1.3)  26(i24) 302 

Run-in wear  ratec,  m3/min 
~~~~~~~ ~~ ~ ~ 

20 2 8 ( + 3 . 5 ) ~ 1 0 - ' ~   8 . 4 ( + 2 . 6 ) ~ 1 0 - ~ ~  1 6 ( + 2 . 8 ) ~ 1 0 - ~ ~   1 6 ( i 2 . 3 ) ~ 1 0 - ' ~  1 7 ( * 3 . 8 ) ~ 1 0 - ~ ~   1 6 ( * 2 . 4 ) ~ 1 0 - ~ ~   3 1 ( + 1 0 ) ~ 1 0 - ~ ~  68 

150 
8.1(*3.6) 7.5(*1.1) 8.6(+6.0) 3.3(+3.7)  7.1(+0.81) 3.3(+1.3)  8.1(*5.2) 500 260 

25(+2. 3) 18  (+3.5) 23(i4.8) 18 (*7.6) 15 44. 9) 12 (35.0) 25(+12) 302 

aA mixture of hindered poly01 esters,  polyester, and dipentaerythritol  esters  formulated Lor use  as  a  specification MIL-L-27502 candidate  lubricant 

bMean values.  Scatter i n  parentheses. 
'Mean values.  Standard  deviation  in  parentheses. 

(refs. 3 and 4). 



TABLE IV. - CORRELATION COEFFICIENTS  FOR RIDER  WEAR  RATES AS CALCULATED 

BY LINEAR  REGRESSION ANALYSIS FOR SLIDING  FRICTION  EXPERIMENTS 

[Disk temperature, as shown;  load, 1 kg; test atmosphere,  dry air (<lo0 ppm H 0); 2 
"50 steel  disk and pure-iron  rider.] 

Tes t  fluid I 
Formulated  ester 
C-ether  base 
C-ether  formulation I 
C-ether  formulation II 
C  -ether  formulation 111 
C  -ether  formulation IV 
C-ether  formulation V 

aRef. 12. 

I 

Disk temperature, OC 

temperature,   at   disk  temperature,  
R 

- 

(ref. 12). Thus  the  consistently high absolute values 
of R,  generally between 0.995 and 0.999 for the 
variables,  indicate  a high degree of association 
between them. 

The  square of the  correlation coefficient R 2  is an 
even more significant parameter  for  determining these 
variable  relationships. It measures the  proportion of 
the  total  variation between the  two  parameters 
accounted  for by the regression equation  (ref. 14). 
Thus  the data given  in tables I11 and IV indicate that, 
in general, between 99.0 and 99.8 percent of the 
relationship between rider wear and sliding distance 
can be shown as a  straight-line  function. 

Good reproducibility of the  steady-state wear rate 
results in table I11 is shown by the  fact that the  ratio 
of standard  deviations to mean wear values was  less 
than 0.2 in most cases. 

A discussion  for  each test fluid  follows. 
Formulated ester.-This reference  fluid was used 

because it represents  the most advanced  ester  known 
to date.  Although  it  has  not been fully  qualified  as  a 
-40" to 240" C  specification MIL-L-27502 
lubricant, it  is considered to be a  prime  candidate. 
Typical wear results for this  fluid are shown in figure 
2(a), and  the  slopes of these  linear  relationships at 
sliding distances of about 200 to 1100 meters (- 50 
to 130 min test  time) are given as the  steady-state 
wear rates.  The  average wear rates for three  separate 
test runs  are  summarized  in  table I11 and shown 
graphically in figure 4 for each of the  three  disk 
operating  temperatures. 

The  steady-state wear rates were found  to be 
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0.9597 
.9937 
.9985 

.9893 

.9980 

.Sa55 

.9992 

0.9974 
.9959 
.9996 

.9215 

.9667 
-9841 

.9996 

0.9890 
.9961 
.9945 

.9722 

.9950 

.9965 

.997 9 

0.9211 
.Sa74 
.9970 
.9787 
.9959 

.9711 

.9984 

15 x 10-14 and 26x cubic meter per  meter of 
sliding  distance for  the two lower temperatures of 
20" and 150" C, respectively.  These wear results  and 
the  appearance of the  rider wear surfaces  indicate 
that  lubrication was comparable  to  that in prior 
studies  with a formulated  type I1 ester  (a 
MIL-L-23699 specification  fluid)  that  was 
considered  only  marginally  adequate  lubrication 
(ref. 9). However, wear rates for the  formulated  ester 
of this  study  showed  improved  lubrication for the 
higher operating  temperature of 260" C, where a 
value of 6.1 x m3/min was obtained.  The 
increased  effectiveness of the  esters'  additives at  the 
highest temperature  studied is probably  due  to  their 
greater  chemical  reactivity, which could  form 
protective  surface  films. 

C-ether  base  fluid.-Typical wear results for this 
base fluid  appear in figure 2(b), and  the  average 
steady-state wear rates for each  temperature  run  are 
given in table I11 and  shown  graphically in figure 4. 
Wear  rates  decreased  slightly with  increasing 
temperature  (from 6 . 9 ~  m3/m at 20" C  to 
4.1 x 10-14 m3/m  at 260" C).  This  indicates that the 
C-ether  base  fluid's molecules are more  reactive  at 
higher temperatures and apparently  follow  the 
general  relationship that exists between wear and 
reactivity  as  described in reference 15. The C-ether 
base  fluid  had  steady-state wear rates that were one- 
half  the  comparable values for the  reference  ester 
fluid or less at temperatures of 20" and 150" C  and 
about two-thirds  these  values at 260" C. 

C-ether  formulations.-Typical wear results  for 



:10-14 - 
Formulated  ester 

(MIL-L-27502 
candidate) 

C-ether base f l u i d  
- C-ether  formula- 

t ions (I. 11,  111, 
IV. and  V )  - 

I 

Disk  tempera- 
ture,  OC  (OF): 20 (68) 150 ( N 2 )  

\ 

260 (5001 

Figure 4. - Steady-state rider  wear  rate  at  three  disk  tempera- 
tures  for  formulated  ester,  C-ether base f lu id ,   and  f ive 
C-ether  formulations. Test conditions: load, 1 kg; disk 
speed, 50  rpm;  sliding speed, 7.1 to  9.1  mlmin;  atmospherc 
dry   a i r   (< lo0 ppm H20);  r ider,  pure  iron;  disk, "50 tool 
steel;  maximum test durat ion,  130 min. 

C-ether  formulations I to V appear in figure 3,  and 
the average  steady-state wear rates  for  three  separate 
test runs  for each formulation at the  three  operating 
temperatures  are  shown  in  table I11 and  
comparatively in figure 4. In general,  these  fluids 
followed the  same pattern of wear behavior with 
temperature, except at  lower  values,  as  the 
formulated ester fluid: that is,  steady-state wear rates 
were  low at 20" C (generally < 2 x  10-14 m3/m), 
reached  maximum  values  at  the  intermediate 
temperature of 150" C (from 6 x  to 12x 
m3/m),  and decreased to lower  values at 260" C 
(about 3 x m3/m).  One exception to this 
general wear trend was observed for  formulation I, 
where  wear rate remained essen.tia1ly constant at 

about 7 x m3/min  at  temperatures of 150" and 
260" C. 

Effectiveness of  the various  additives on wear is 
shown  by the  comparisons between the steady-state 
wear rates for  the five formulations  and  the  C-ether 
base  fluid in figure 4. Formulations I1 and I11 yielded 
lower wear than  the base  fluid at all test conditions 
and gave the best overall wear results.  Formulation 
IV gave somewhat less desirable wear behavior at  the 
150" C level than  the  other  formulations. 
Formulation I exhibited lower  wear rates  only at  the 
20" C operating  temperature.  The  most  adverse wear 
behavior was shown  by  formulation V, which  gave 
higher  wear than  the C-ether  base  fluid at all test 
conditions.  Formulations I1 and 111, which  gave the 
best wear results, were the  only  two  fluids  containing 
esters  of  phenylphosphinic  acids.  Any further  efforts 
in formulating C-ether  fluids should  include 
additional  studies on these  types  of effective antiwear 
compounds. 

Steady-State  Coefficient of Friction 

The friction  coefficients that were measured 
during  the stepwise  wear tests at the  three  operating 
temperatures  are  compared in figure 5 for  all the test 

Formulated  ester 
(MIL-L-27502 
candidate) a C-ether base f l u i d  

D C-ether   formula-  
t ions (I, 11,  111, 
IV, and V )  

- 

I  I11 

Disk  tempera- 
ture,  OC (OF): 20 (68) 

.r 
I1 

i I11 
I 

150  (302) 

I 

4 

I11 u 
260  (500) 

L 

Figure 5. - Coefficient of f r i c t i o n   d u r i n g  steady-state  wear  at 
three  disk  temperatures  for  formulated  ester,  C-ether base 
f luid,  and  f ive  C-ether  formulations. Test conditions: load, 
1 kg; disk speed, 50 rpm;  sliding speed, 7.1 to 9 .1   mlmin ;  
atmosphere,  dry  a i r  (<I00 ppm  H20);  maximum test durat ion,  
130 min. 
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TABLE V. - EXAMPLES  OF FOUR TYPES OF FRICTION  TRACES  FROM 

SLIDING  FRICTION  EXPERIMENTS 

[Test  conditions:  load, 1 kg; disk  speed, 50 rpm;  sliding  speed, 8 . 1  m/min;  atmosphere, 
d ry  air (400 ppm H20.] 

Smooth,  wide 
band (S,) 

I 

Smooth, 
narrow band 

Errat ic ,  
spiked (Es) 

Errat ic ,  
"wandering" 

(Ew) 

Friction  trace  segment 

30  32 34 36 

Time,  min 

"" ~ . 

Test 
fluid 

C -ether 
formula- 
tion I11 

Formulatec 
advanced 
es te r  

C -ether 
formula- 
tion V 

~ .. 

C  -ether 
formula- 
tion IV 

- . "" 

Disk 
temper- 
a ture ,  

OC 

20 

260 

260 

2 60 

aFurther  variations  include  these  types of friction  accompanied by audible  friction  noise 
bMean values.  Scatter  in  parentheses. 
'Mean value  obtained  over  more  extended  period of time. 

fluids.  These values are also presented in  table 111, 
and they are  the steady-state  friction coefficients, 
defined in reference 8 as  the coefficients of  friction 
obtained  during  steady-state wear and  after  the  run- 
in period, where initially higher coefficients were 
measured. They are analogous to  the corresponding 
steady-state wear rates in that they  occur during 
approximately the same test time  interval. As shown 
in this figure the general trend of all fluids  evaluated 
was for  the steady-state  friction coefficients to 
double when operating  temperatures are increased 
from 20" to 150" C (average value going from  about 

Steady-state 
coefficient 
of friction b 

0.09(+0.06) 

0.14(+0.01) 

0.14(+0.02) 

0.14(+0.03)c 

0.08 up  to 0.16 for most fluids). Further increasing 
the disk temperatures from 150" C up  to 260" C re- 
sulted in slight decreases in friction coefficients 
(values going to 0.14) for  the ester fluid  and C-ether 
formulations 11, 111, and IV. The same temperature 
increase  caused  slight  increases  in  friction 
coefficients (values increasing to  about 0.18) for  the 
C-ether base fluid  and C-ether formulations I and V. 

A qualitative  evaluation  of  friction  can be made by 
observing the  friction  traces  during  steady-state 
operating periods for each test fluid.  There were four 
general types of  friction  traces  recorded  during  the 
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experimental  runs.  In  addition,  audible  rubbing 
friction  noise  occurred at high temperatures  in  some 
runs when apparent fluid starvation in the system due 
to evaporation was evident.  Examples  of  these types 
are illustrated and  described in  table V, and a listing 
is shown  in  table VI of  those  friction  trace  types 
encountered  for each test fluid  at  each  of  the three 
operating  disk  temperatures  studied.  As  indicated  in 
these  two  tables the  four types  of  friction  traces 
obtained were (1) smooth, wide band S,; (2) smooth, 
narrow  band S,; (3) erratic,  spiked E,; and (4) 
erratic,  wandering E,.  These friction  traces appear 
to be somewhat  temperature  related,  but  other test 
parameters  not  investigated  here  (e.g.,  speed,  load, 
test component metallurgical combinations, rig 
stiffness) and fluid film properties may also  affect 
results.  Each  type  of  trace is discussed separately 
below. 

Smooth, wide band. -The smooth,  wide-band 
type of friction  trace was observed  for all fluids only 
at the  20" C operating level, where lower coefficients 
of friction (0.06 to 0.09) were measured.  Friction 
trace  variation  ranged  from about Zk0.05 to Zk0.07. 

Smooth,  narrow band.-Five  of the seven fluids 
exhibited the  smooth,  narrow-band  type  of friction 
at 150" C ,  and two of the fluids  showed  this  type  at 
260" C .  Friction  trace  variation  ranged  from ~k0.01 
to dz0.02. 

Erratic,  spiked. -The erratic, spiked friction  trace 
was similar to  the  smooth,  narrow-band trace  in that 
normal  variations were about Zk0.02. However,  there 
were periodic "spikes" or surges in the friction 
values to  about twice the  normal  values.  This 
frictional  behavior was noted  for several of the  fluids 
at the 150" and  260" C operating  temperatures. At 
260" C it was usually accompanied by audible 
friction noise in the test components. 

Erratic, wandering. -Erratic,  wandering  friction 
traces  display a somewhat  larger  friction  variation 
(about ~k0.03) than  does  the  erratic,  spiked  type of 
friction  trace.  It is the  most  erratic  or  irregular 
friction that was observed in all the  experimental 
runs.  Audible  friction  noise  accompanied  the  two 
examples  that were noted  at  the 260" C test 
conditions. 

From  this  qualitative  friction  viewpoint, the 
formulated  ester  fluid gave the best results, with 
smooth  friction  traces  over  the  entire  temperature 
range.  The C-ether formulation I1 fluid had erratic, 
spiked  traces with audible  noise at  the  two  upper 
operating  temperatures.  The  remaining  fluids 
showed mixed results, with both  smooth  and  erratic 
friction.  There was no correlation between the  type 
of  friction  trace and coefficient of friction values. 

All the  friction and wear  results for all the test 
fluids at  the three selected temperatures  of 20°, 150", 
and 260" C  are  summarized in table 111, including a 

c 
a- 
m 

L 
m z 

TABLE VI. - TYPES O F  FRICTION TRACES 

FROM SLIDING FRICTION EXPERIMENTS 

Tes t  fluid 

Formulated  ester 
C-ether  base fluid 
C-ether  formulation I 
C-ether  formulation I1 
C-ether  formulation III 
C-ether  formulation IV 
C-ether  formulation V 

%ypes of friction  trace 
table V): 

!S 

Disk temperature, OC 

20 

Friction  trace typea 

260 150 

Sw = Smooth, wide  band 
S = Smooth,  narrow  band 
Es = Erratic,  spiked 
E = Erratic,  wandering 
N = Audible  friction  noise 
w 

3 0 ~ 1 0 - I ~  
r 

10 t 0 

Bulk oil temperature limits: 

23699 27502 for C-ether 
MIL-L-  MIL+ Proposed 

I I ,  

ester  oxida- 
Increasing 

tive instability 

I I I d  
loo 200 m 40 500 

Disk temperature, OF 

Figure 6. - Steady-state friction and  wear as a function of 
disk  temperatures  from 20' to 260' C (68' to 500O FJ for 
a formulated  ester  (MIL-1-27502  candidate)  and C-ether 
formulation 11. Test conditions: load. 1 kg; disk speed, 
50 rpm;  sliding speed, 7 .1 to 9.1 mlmin; atmosphere, 
dry air (<lo0 ppm H20J; maxaimum test duration, 130 min. 

tabulation  of  the run-in wear rates for all tests. Run- 
in wear  is the usually higher initial wear rate  that is 
experienced before  the  onset  of  the linear  steady-state 
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wear after  reaching the "transition  point"  (ref. 16). 
As  defined and  demonstrated  in  reference 8, run-in 
wear behavior  of  liquid  lubricants in  the  boundary 
lubrication regime could  be  important if it is a 
significant part of  the  total wear since the  total wear 
for a test run is the sum  of  the  steady-state  and  run-in 
wear values. Over longer  running  periods,  such  as 
these  tests,  run-in wear is  less significant  than  in 
previous  studies  of  this  type, where a test duration  of 
25 minutes was used (refs.  9 and 10). 

Two  problems  observed for  the  C-ether  fluids,  the 
study of which was beyond  the  intended  scope of this 
effort, were (1) the  increased  volatility  of  the  fluids at 
the 260" C disk temperature  that  required  additional 
fluid to be added  to the  test  lubricant  reservoir  cup 
during  the  incremental  testing, and (2) the  formation 
of  sludge  material  during  friction and wear studies 
that is a  potential  filter-clogging  agent  in system 
applications  (e.g.,  as  encountered in the  bearing  tests 
of ref.  7). 

Concluding  Remarks 
In  conclusion,  the  susceptibility of C-ethers to 

selective additive  treatment  has been demonstrated  in 
a series of sliding  friction  and wear studies at 
temperatures to 260" C. Based on steady-state wear 
rates,  coefficient of friction  values,  and  friction 
traces,  three  C-ether  formulations (11,  111, and IV) 
gave better  boundary  lubrication  than  the  C-ether 
base  fluid  and  a  reference  formulated  ester in the 
temperature  range of 20" to 260" C. Figure  6  shows 
comparative  plots of friction  and wear rate  data  for 
the ester and  C-ether  formulation 11. This  figure 
shows  the  increased  thermal  operating  potential for 
formulated  C-ethers in relationship to bulk oil 
temperature  limits  for  MIL-L-23699  and 
MIL-L-27502 type  esters.  This  difference in 
temperature  operation  above  220"  C is even more 
significant  because  of  the  increasing  ester  oxidative 
instability at these  higher  temperatures. 

Summary of Results 
Steady-state wear and  friction  measurements were 

determined  under  boundary  lubrication  conditions in 
a  pin-on-disk  sliding  friction and wear apparatus  at 
disk  temperatures of 20°, 150", and 260" C with five 
C-ether  formulations  (containing  phosphorous  ester, 
organic  acids,  and  other  additives).  Results were 
compared  with  those  obtained  under  similar 
conditions for a fully  formulated MIL-L-27502 
candidate  ester  lubricant  and  the  C-ether  base  stock 
as  reference  oils. Test component  metallurgy was 
annealed,  pure-iron  riders  sliding  against  rotating, 
hardened,  consumable-vacuum-melted (CVM) "50 

tool  steel  disks in a dry-air (< 100 ppm H20)  
atmosphere.  Other  test  conditions were a load  of 
1 kilogram  (initial  Hertz  stress, 1 x lo9 N/m2), a disk 
speed of 50 rpm, which results  in  sliding velocities of 
7.1 to 9.1 m/min,  and time  sequences for each  test 
run  of 1 to 130 minutes. The  major results were the 
following: 

1.  Three  of  the  C-ether  formulations gave better 
boundary  lubrication than the  C-ether  base  fluid  and 
a  reference  formulated  ester,  based on steady-state 
wear rates  and  coefficients of friction.  This was the 
case  under  most  test  conditions,  but  most 
significantly  this  occurred for  three of the  formulated 
C-ether  fluids at  the highest disk temperature  of 
260"  C.  These  formulations  all  contained 
phosphorous  acids  or  esters,  including  one  that was a 
mixture  of  phenylphosphinic  acid  ester  and 
trichloroacetic  acid. 

2.  The  other  two  C-ether  formulations yielded 
higher wear rates  and  friction  coefficients than the 
C-ether  base  fluid  for  most of the  temperature  range. 
One  of  these  formulations  contained  glutaric  acid 
and  an  ester of this  acid,  and  the  other  contained 
phosphorous  acid  and  dibenzyl  disulfide. 

3 .  Only  one  C-ether  formulation  showed 
consistently  higher  steady-state wear values than  the 
formulated  ester  fluid,  but  the  friction  coefficients 
were the same or slightly lower over  the  entire 
temperature  range.  This  formulation  consisted  of  the 
base  stock  plus a phosphorous  acid  and  dibenzyl 
disulfide. 

4. A qualitative  method for comparing  friction 
behavior was devised where friction  traces  during 
steady-state  testing were designated as  one of  the 
following: (a) smooth, wide band S,;  (b) smooth, 
narrow  band S,; (c) erratic,  spiked E,; and  (d) 
erratic,  wandering E,.  No  correlation was found 
between this  criterion  and  quantitative  coefficient of 
friction  values,  but  the  trace  type seemed to be 
temperature  related.  It  varied  from  smooth, wide- 
band  operation  at 20" C  for all fluids to  an erratic 
(both  spiked  and  wandering)  behavior at 260" C  for 
all five C-ether  formulated  fluids.  The  ester  fluid 
gave a smooth  friction  trace  over  the  entire 
temperature  range. 

Lewis Research Center 
National  Aeronautics  and  Space  Administration 
Cleveland,  Ohio,  October 8, 1-980 
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