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DESIGN OF MULTIVARIABLE FEEDBACK CONTROL
SYSTEMS VIA SPECTRAL ASSIGNMENT

By
Stanley R. Liberty!, Roland R. Mielke?, and Leonard J. Tungd

ABSTRACT

Applied research in the area of (pectral assignment in multivariable
systems is reported. A new frequency domain technlque for determining the set
of all stabilizing controllers for a single feedback loop multvivariable
system is described. It is shown that decoupling and tracking are achievable
using this procedure, The techrique is illustrated with a simple example,

INTRODUCTION
This report summarizes the progress of applied research beang conducted
by the authors anmd colleagues under the support of NASA Grant NSG 1650. ‘the
objective of this work is to investigate the applicability of modern control
theory to the design of multivariable feedback control systems, particularly
as applied to aircraft flight-control problems.

Previous research efforts under NASA Grants NSG 1519 and NSG 1650 have
included an investigation of eigenvalue/eigenvector assignment procedures
(refs, 1-3). Early studies focused on an algorithmic formulation of the
spectral assignment problem by Srinathkumar (ref. 4}, while later studies
included a geometric formulation of the same problem by Moore (ref. §5),
Kimura (ref. §), and Davison and Wang (ref, 7). Based on these theories,
design procedures have been develuped for achieving desired mode mixing
(ref. 8), reducing eigensystem sensitivity to variations in plant parameters

1Chairpersen and Professor, Department of Electrical Engineering, Old
Dominion University, Norfolk, Virginia 23508,

“Associate Professor, Deparcment of Electricgl Engineering, 0ld Dominion
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(ref. 9), and reducing the effects of actuasor nhise an system perZormance
(ref. 10)., In addition, these procedures have been successfully applied to
the design of a jet engine controller (ref., 11) and an insensitive servo
control system (refs, 12, 13). A detailed survey of eignevalue/eigenvector
assignment design tochnigues was recently presented by the authors in a
21-hour shoxt cuurse entitled A Geometric Approach to Control System
Synthesis" at the NASA/Langley Research Center (LaRC), The course was
extremely well received and demonstrated that eigenvalue/eigenvectow
assignment techniques are accessible to practicing control engineers.

Research efforts during the past seven wonths have focused on
frequency domain theories utilizing spectral factorizotion techniques of
the Wiener-Hopf class. The Wiener-Hopf theories have been studied by
several investigators including Whitbeck (rers. 14-16), and were developed
in the most gener«l form by Youla (refs. 17, 18). The Youla work deals
with the design of optimal controllers for multi-input-output plants
imbedded in a single multivariable feedback loop configuration. Two
significant contributions were made in this work. First, a procedure was
given for characterizing the set of all controllers of a particular class
which stabilize the overall system; second, a method for selecting an
optimal controller from the set of all stabilizing controllers was presented,
The optimization procedure wus based on the standard Wiener-Hopf filtering
problem. Youla's stabilization procedure has been further studied and
generalized by Desoer (ref. 19). Based on this work, a frequency domain
design procedure for constructing a stabilizing controller has been
developed. This procedure is explained and illustrated with an academic

example in the next section,

DESIGN OF A STABILIZING CONTROLLER
i}

Consider the single feedback loop multivarisble control system shown
in figure 1. In this figure, P(s) is a proper rationul matrix transfer
function representing the system blant, while C(s) is a proper rational
transfer function matrix representing the controller. It is desired to
First characterize the set of all transfer function matrices C(s), such
that the closed-loop system is stable. Then, a search will be conducted

tJ
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over this set of stabilizing controllers to locate the particular controller
which also achieves desired mode decoupling and/or system tracking. The
following definitions are essential to this development:

Definition 1: A proper rational matrix is said to be exponentially
stable if all poles of each matrix element are located in the left half of
the cumplex planz.

Definition 2: Given a proper rational matrix P(s), the expression
P(s) = Nr(s) Dr'l(s) is said to be o right exponentially stable rational
fraction description (right ESRFD) of P(s) if both Nr(s) and Dr(sj are
proper and exponentially stable, In a similar manner, the expression P(s)

= Dg”l(s) Nz(s) is said to be a left exponentially stable rational fraction
description (left ESKFD) of P(s) if both Ng(s) and Dg(s) are proper
and exponentially stable.

Definition 3: A right ESRFD of P(s), P(s) = N,(s) Dr‘l(s), is said
to be coprime if there exist matrices Ur(s) and Vr(s), both proper and

exponentially stable, such that Ur(s) Nr(s) + Vr(s) Dr(sj = 1, Similarly, a
left ESRFD of P(s), P(s) = D&‘l(s) Nz(s), is said to be coprime if there
exist matrices UQCs) and Vﬁ(s), both proper and exponentially stable,
such that Ng(s) U£(s) + DQCS) VR(s) = 1,

The above definitions make possible the following characterization of
the set of all stubilizing controllers for the system of figure 1. A proof
of this theorem is given in reference 19.

Theorem 1: Let P(s) = Nr(s) Dr'lts) be a right coprime ESRFD of P(s)
with UrCs) Nr(s) + Vr{s} Dr{s) = 1, and let P(s) = D£"1(s) N&(s) be a }eft
coprime ESRFD of P(s) with NQ(s) Ul(s) + Dg(s) Va(s) = 1, Then, the
closed-loop system is stable if C(s) is chosen as

C(s) = [N(s) Ny(s) + VL ()]™' [-N(s) Dy(s) + U,(s)]
where W(s) is any proper exponentially- stable matrix such that [W(s) Ng(s)

+‘Vr(s)I # 0, Moreover, GC(s) is a proper rational ma.rix. The transfer
function matrix relating output to input, Ty(s), is given by

Ty(s) = Nr(s) [-W(s) D£(s) + UrCs)]



and the transfer function relating the error signal to input, Te(s), is
given by

TeCs) =1 + Ty(s).

The freedom available in choosing a stabilizing controller C(s) is
thus characterized by the freedom available to choose W(s). If the oniy
design consideration is to stabilize the overall system, then any proper
exponentially stable matrix W(s) will yield an appropriate controller,
If, in addition, output decoupling is desired, then a proper exponentially
stable W(s) such that Ty(s) is diagonal is chosen. Similarly, if it
is desired to trask step inputs, a proper exponentially stable w(s) for

., Llim . \
which s=+0 E-Ty(s) exists in chosen.

Problems in which decoupling and tracking are desirved are simplified
when P(s) 1is exponentially stable. In this situation, Ng(s) = Nr(s)

= P(s), Dg(s) = 1, D (s) = 1, U,(s) = 0, U(s) = 0, Vy(s) =1, and V. (s) = L.

Then,
TyCS) = -P(s) W(s),
Te(s) =1 + P(s) W(s)
and
C(s) = =W(s) [1 + P(s) wW(s)]"!

An example will now be presented to illustrate this technique.
Consider a two input, two output plant described by the transfer matrix

P11(s) Pia(s)

Pay(s) Paa(s)

[

P(s)

1 (s +1) (s + 3) 1

(s + 2) (s2 + d4s + 2) 1 (s + 1) (s + 3)

P
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Since P(s) 1s exponentially stable, stability of the closed-loop system
is assured if the controller transfer matrix is chosen as C(s) = -W(s)

x [1 + P(s) W(s)] %, where W(s) is any exponentially stable rational
matrix having approprisite dimension. With this controller, the output
transfer function is Ty(s) = -P(s) W(s) and the error transfer function is
Te(s) = 1 + P(s) W(s).

If decoupling is desired, W(s) hust be chosen such that Ty(s)
= -P(s) W(s) is a diagonal matrix. With W(s) given by

Wip(s) Wya(s)
W(s) =
Woy(s) Waa(s)

the closed-loop transfer function is

P13 (s)  Pira(s) Wy1(s) Wia(s)
-P(s) W(s) = ) )
iPa1(s)  Paa(s)] [S21(s) Waa(d)

u

Ty(53

Pyy(s) Wip(s) + Pya(s) Way(s)  Ppi(s) Wya(s) + Pya(s) Waa(s)

Pay(s) Wiy(s) + Paa(s) Wia(s)  Pai(s) Wya(s) + Paa(s) Waa(s)

Thus, for decoupling,

‘912(5) 1
Wia(s) = W‘Vgg(s) TEITD D Waa(s)

and

-P21(s) 1
R T A O Y

Waz (s).

With this constraint on W(s),

LR Ly o) 0

Paz(s)
Ty(s\ = -
P(s)
i 0 %I;f§§ Wiz (s)



{s + 2)

(s +1) (s + 3) W11 (s) 0
(s + 2
0 TG ! 5y Wea(s)

If, in additien to decoupling, it is desired that the system track step
inputs, then every element of the error transfer function Te(s) must
contain a factor s in the numerator. For the previous selection of

W(s),

. (s + 2)
L G55 Wiy (s) 0
T (s) =
. (s +2)
| 0 1+ T 1)+ 3 Wg;g(S)‘-1

Thus, there are many choices of W(s) which will result in the desired

tracking property. A particularly simple choice is Wyj(s) = Waa(s) = -%«
Then,
3 3
2 2(s + 1) (s + 3)
W(s) = -
3 3
(s + 1) (s + 3) 2
and the controlley transfer matrix becomes
. b
3(s +1) (s +3) . 3 -
2 S +~§) 2s (s + 3)
5 2 - 2

Cls) = 3(s + 1) (s + 3) |

3
L25(5+%) 25(54-'—;-)

The system transfer functions are then given by




) 3(s + 2) 0
2(s + 1) (s + 3) '
Ty(s) =
0 3(5 + 2) o ’i
- 2(5 +1) (s + 3)
and . -
5.
s{s + 5
(e 3) : |
(s +1) (s +3)
T (s) = .
¢ s(§ +‘%)
L 0 (5+1) (s + 30

The frequency domain technique demonstrated above appears to be an
attractive method for control system design and is worthy of further study.
Investigation of two areas in particular appear promising. First, when
the above techniques are aupplied, the set of all stabilizing controllers
for a given system configuration is obtained, The freedom available to -
the designér is to choose a particular controller from this set by R
specifying a proper exponentiaily stable, but otherwise arbitrary, matrix
W(s), which is selected to achieve a desired system characteristic such
as mode decoupling, reference tracking, or disturbance rejection. However,
a systematic procedure for generating a W(s) to achieve given design
specifications has not been thoroughly developed. Second, the stabilization
techniques have been developed only for the single multivariable feedback
loop configuration. Preliminary studies, however, have indicated that a
similar formulation may be possible for other system topologies. In
addition, several classes of problems have been identified in which the
use of other topologies would greatly enhance the freedom available to the

designer.

In addition to being a possibly attractive design procedure, the
generality of the above approach holds promise of a tie with the
spectral assignment techniques previously investigated. Investigation of
these relationships should significantly enhance the applicability of the
stabilization techniques and improve the spectral assignment procedures.

Y
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EIGENVECTOR ASSIGNMENT FOR NOISE SUPPRESSION

Robert A, Maynard, Roland R. Mielke and Stanley R. Liberty
Department of Electrical Engineering
0ld Dominion University
Norfolk, Virginia 23508

ABSTRACT

A new methnd of selecting a multivariable state feedback controller is
presented. The resulting coatroller simultaneously realizes arbitrary dis-
tinct closed-lovp elgenvalues, approximztes specified modal behavior, and
reduces the effects on the system of actuator noise. The method character-
izes the subspace assoeciated with each closed~loop eigenvalue in which the
corresponding eignevector must lie. The vector that is to be approximated
by this eigenvector is projected onto the subspace, When all the eigenvectors
have been obtained in this way, the steady-state meanw-squared errnr of the
state variable of the closed-loop system is reduced local to this set of
elgenvectors using a gradient search technique.

I. INTRODUCTION

Consider a linear, time-invariant, multivariable system described by
x = Ax + Bu + &, where x, £ € Rn, ue Rm, and the pair (A, B) is controllable.
In this paper consideration is given to the eigenvalue/eigenvector assign-
ment problem of selecting a stationary feedback matrix F in the control law
u = Fx such that the eigenvalues of the closed-loop system matrix X = A + BF
are arbitrarily placed. Throughout this paper the closed-loop eigenvalues
are assumed to be distinct. Once the eigenvalues are assigned, freedom re-
maining in selecting the eigenvectors of.X is utilized to approximate
specified modal brhavior'and to reduce the effects on the closed-loop sys-
tem of the actuator noise, §&.

It has been shown by Moore [1] that the eigenvalues of X can be arbi~-
trarily assigned, but that each eigenvector of X must lie in a subspidce of

R" determined by the corresponding eigenvalug. However, despite the re-

12



stilctions imposed on the eigenvectors, there remains some freedom in select-
ing the eigenvectors. This freedom can be used to affect mode mixing [2, 3],
reduce system sensitivity to plant parameter variations [4], and as is

shown in this jpaper, reduce the effects of actuator noise.

An initial eigenvector assignment is made by successively projecting
each vector from a specified set onto the corresponding subspace, This
yields a set of eigenvectors each of which is the best approximation in a
leést-squares sense to the corresponding specified vector. The eigenvectors
obtained are cxpressed as linear combinations of basig vectors for the sub-
spaces. The steady-state mean~squared error of the state variable is ex-
pressed as a function of the scalar coefficients in these linear co@binations,
and is reduced local to the initially assigned eigenvectors by a gradient

search procedure over the scaladr coefficients.

IT. INITIAL EIGENSYSTEM ASSIGNMENT

Let {Al, ey An} be a self-conjugate set of distinct complex numbers.

Then it is known that there exists a real-valued matrix F such that
(A + BF) vy = Aivi’ i=1, ..., n

if and only if the following three conditions are met for i =1, ..., n:
(1) Vectors v, are lirearly independent in Cn;
- x = x
(i1) vy whenever Ai Aj ;

(iii) v_.e span {N }, where the columns of K, = N form a basis for
i Ai Ai Ai
M

ker[kiI-AiB]. Here, K, is partitioned compatibly with [XiI—AEB].
i

If {pl, cees pn} is a set of vectors, and it is desired that the ith eigen-
vector approximate Py i=1, ..., n, then the closest approximation in a

least-squares sense is obtained by projecting Py onto span {NA }. This
’ 1
13
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projection is expressed as

Ny
v D) 4 (1)
- a,.b
i y=1 1373 !
where bi ig the jth column of N, and {a,, +0ovy &, } is a set of scalars,

or equivalently,

where ai = {ail . v ain }T. The p; vectors are projected successively
i

and when all have been projected, F is calculated from

-1
F = —[Mklal , Mknan]v (3)

1.

where V = [vl vy

III. NOISE REDUGTION

Consider a system with actuator noise described by

% wAx+Bu+ & , (4)
where £ is assumed tu be zero mean white noilse characterized by the

following equations

B{g(e)) = 0, (5)

E(E()ET ()} = E 8(t-1), (6)

E{x(o)} = x, (7)

E{[x{0) - x ] [x(e) = xC]T} = P (8)

and Bl - 5 JET0) = B(E)[xG) -~ 51T = 0. (®)
14




The effect of actuator noise on the response of the system can be reduced
by proper choice of the feedback gain matrix F. Noise reduction is made
in the sense that the steady-statr '‘—an~-squared error of the state vector

x(t) is rediced; that is,

1im E{||x(t) - 7(t)|]%)
£ro0

is reduced where x(t) = E{x(t)}.
To see how this is done, it is helpful to note that the mean-squared

error is equal to the trace of the state covariance matxix, W(t). Thus,

Linm EC |x(e) - %(e)||%) = ex W (10)
00

where Wss = lim W(t). Moreover, 1f &(t) is the state transition matrix
[ e ]

for the closed-loop system, then
+ 2ql T
wit) = [ (e-1)E¢ (t—'r)dT + ¢(r)P, 97 (L), (11)
Differentiating (11) with respect to t yields

Q(:) = X W(t) + w(t) XT + =, (12)

If A has eigenvalues in the left-hand half-plane, then lim W(t) exists
o

and therefore lim W(t) = 0. Thus, equation (12) reduces to the Lyqpunov
£

stability equation

(o)

T, =
A wss + wssA +2 =20 (13)

whose solution is obtained from

vec wss = —HGQR%—XGDH_lvec g (14)
where 8,
vee [a1 ’ an] = {3
8

15



and

e »—
8,8 a;, B a B
80 B a5, B e, B
A®B = . .
a1 B a ., B «» a . B .
for A = [aij]mxn .

Since wss is a function of A, it is a function of the eigenvectors
and, therefore, of the scalars in (1). Thus,
lim Efllx(:) - i(t)”z} = tr[wss] can be reduced local to the initial eigen~
5::tor assignment through a gradient search over these scalars. The gra-

dient, Vy = V(trwss), is a vector with components of the form

d triW
___.._..__.[ 531. = tr Erec‘l {a'l(x®nijv'l + 8, VI®Da™ vec&ﬂ (15)
d X4y :

where amw I@ A + A®1T and Bij is a matrix whose only nonzero column is the
e column, whiclh is (XiI - k) b;. The symbol tyee Ln indicates the oper-
ation of "unstacking' the nz—component vector into an n ¥ n matrix, The
steady-state mean-squared error is reduvced interatively until an acceptable
trade-off is reached between obtaining élgenvectors that closely approximate

the desired vectors and obtaining a small steady-state error,

16
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