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SUMMARY

The stability of three-dimensional rotating disk flow is
I

investigated, including the effects of Coriolis forces and
streamline curvature. The numerical results show that the	 r

critical Reynolds number for establishment of stationary vortex

flow is RC	2437. These vortices spiral outwards at an angle

of about 11.2° and transition to turbulence occurs when their

total amplification is about e 11 . It is shown that our anal-

ysis gives growth rates that compare much better with the avail-

able experimental results than do results obtained usi.;zg the

Orr-sommerfel,d equation. The experimental results tend to

support the numerical prediction that the number of stationary

vortices varies directly witai the Ro.ynolds number. our cal-

culations also indicate the existence of weakly unstable pro-

paga,ting (Type IT) modes at low Reynolds numbers (RC = 49) .
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1. INTRODUCTION

The prediction of transition in three-dimensional boundary

layers [ 1-3] is a aubject of both fundamental and practical im-

portance in fluid mechanics. Practical interest in the subject
w

centers on the design of laminar flow control (LFC) wings that

promise significant improvement in airplane fuel efficiency.

At present, the most useful tool for transition prediction in

such flows is the so-called e  method [4]. Hefner and Bushnell

[5] and Malik and orszag [6] show that the exponent N (called

the N factor) is of the order 7-1111 when transition occurs

on LFC swept wings.

The instability mechanism exhibited in the leading edge

region of a swept wing is similar to that found in the boundary

layer on a rotating disk, since both have mean cross-flow pro-

files with inflection points. More details on the similarities

between the two flows is given in Ref. [7). The rotating disk

flow is amenable to stability analysis in view of von Karman's

exact steady solution (8) of the Navier-Stokes equations free

of boundary-layer assumptions.

Using hot wire techniques, Smith [9) observed that sinus-

oidal disturbances appear in a rotating disk boundary layer at

sufficiently large Reynolds number. About 32 oscillations were

observed within a disk rotation period and analysis indicated

x	that the ds •-urbances propagate at an angle of about 14 0 relative

to the outward drawn radius (where the direction of disk ro-

tation defines positive angles). Later,,in a remarkable study

using the china-clay technique, Gregory et a1 [101 observed
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about 30 vertices over the disk spiraling outwards at an angle

of about 14 0 (that is, their normals make an angle of about 140

with the outward drawn radius). These vortices, which appeared

stationary relative to the rotating frame of the disk, were first

observed at z Reynolds number Rc=430 [where R is defined after

(10) below)f Transition to turbulence occurred at RT r-,530. The

stationary vortex flow established due to a rotating disk has

later been studied by several investigators [11-13). There

exists, among these studies, considerable controversy over the

value of the critical Reynolds number which in our view can be

attributed to the measurement techniques used. There is also

some confusion over the number of stationary vortices. Fedorov

et al [131, using visual (Napthalene) and acoustic techniques,

observed 27-30 vortices at Reynolds: numbers R > 387. However,

at low Reynolds numbers, they observed only 14-16 vortices with

normals lying at an angle of about 20 0 .

Stuart {101 analyzed the linear, invisci.d stability of

rotating disk flow. However, the neglect of viscosity resulted

in the prediction of 113-140 vortices over the disk which is

about four times larger than the observed value. Brown [14)

extended Stuart's work to the viscous case by applying the Orr-

Sommerfeld equation to disk flow. Using temporal instability

theory, Brown found RC=178, which is much less than the observed

value. Recently, Cebeci and Stewartson [3) solved the Orr-

Sor,arfeld equation for rotating disk profiles using spatial

stability theory and found R C-176. They.also suggested that

wave packets propagate in three dimensional flows in such a way
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that do/d6 is read. Using this condition Cebeci and Stewartson
4

correlated transition using the eN method and found the N

factor at transition (RT- 510) to be about 20 which is much
r

higher than that found for LFC wings ([51,16]). Bushnell

(private communication) argues that a higher N factor may be

required for transition in disk flow than on LFC wings because

the boundary layer is rotating with the disk while the external

F

	

	 disturbances in the surroundings are not. Consequently, there

is no direct coupling between the external, disturbances and the

instability waves in the rotating disk boundary layer.

The Orr-Sommerfeld stability equation neglects the effects

of Coriolis forces, streamwise curvature, and nonparallel flow.

i
in Ekman layer flow, Lilly [15; has shown that the Coriolis

force has a significant effect on stability at low Reynolds

numbers. Lilly showed that the critical. Reynolds number for

appearance of stationary vortices is higher (R C=115) when the

Coriolis force is included in the analysis than when it is ne-

glected (RC=85).• In addition to the stationary vortices, he

showed the existence of another (Type II) instability caused

by the Coriolis force at much lower Reynolds numbers. Such an

instability mechanism was also observed in the Ekman layer

t

	

	 experiments of Faller and Kaylor (161 and Tatro and Mollo-

Christensen [17]. The Ekman layer and the rotating disk are

h

	

	 similar in that both are three-dimensional layer flows in which

rotation plays a significant role. Lilly's results suggest that

the inclusion of the Cor*^.olis farce in the stabil-ity analysis

of rotating disk flow may also lead to a higher critical Reynolds

3



F2 - ( G+3.) 2 + F' H - F" = 0 (2)

2F (G+l) + G' H - G"	 0 (3)

}

number for stationary Mortices which is in better anreameot with

Observations.

r In this paper we present a stability analysis of rotating

disk flow in which the effects of Coriolis force and streamline

curvature are included. The resulting sixth-order system is

solved numerically by a Chebyshev spectral method [18 0 19]. We

also follow the evolution of the disturbance modes using the

envelrc..pe method [1,6] and calculate the N factor at transition.

The work of Kobayashi et ai. (12), which appeared during the

final stages of the present study, also includes the effects
of the Coriolis force and streamline curvature. We will comment

on this work in Sec. 6.

2. THEOnRTICAL ANALYSIS

consider an infinite plane rotating about its axis with

angular velocity 9 . We take cylindrical coordinates r*,8,r*

with z* m 0 being the plane of the disk and assume the fluid

to lie in the half-space z*>0. Let p, u,	 v, w, denote the

steady state values of pressure and velocity in the r*,8,7.*

directions, respectively, in the rotating coordinate frame.

Von Karman's exact solution [8) of the Navier-Stokes equations

for steady laminar rotating disk flow is obtained by setting

	

Z	 r*'.1'(z), v= r*SIG(z), w= vQji(z), p	 pvPp(z') j	 (1)

	

where z	 z* y"2 v. The Navier-Stokes equations reduce.to the,

following equations for F,G,H and F:

4



P' + HH'	 H" a 0
	

(4)

2F+N' = 0
	

(5)

where the prime denotes differentiation with respect to' z. The

m	 boundary :onditions are

F
	

0, G = O f H - 0	 ( z a 0)	 (6)

F
	

Of G=-1	 (z+0)
Now we study the evolution of infinitesimal small dis-

turbances imposed on the st*,ady flow governed by Eqs. (1) 	 (5).

Let re* be the radial location near which the analysis is to be

made. using re 	S2* P as the reference velocity, 6 * _ v as the

reference length, and pri S2 2 as the reference pressure, the

:instantaneous nondimensional velocities u,v,w and pressure p

can be written as

u(r,$,z,t) = R F(z) + u(rjOrz, t ) (7)

v(r,6,z,t) = R G(z) + v(r,8,x,t) (8)

w(r,e,z,t) = R H(z) + w(r,e,z,t) (9)

p(r,e,z,t) = 12 p (z)
R

+ P(r,0, z ,t) (10)

Here the nondimensional radius is r r*47, the Reynolds number

is R = re* 4057, and r* corresponds to r = R.

Substituting Eqs. (7) 	 (10) in the Navier-Stokes equations

and linearizing with respect to the porturbations gives:

k

au	 r	 au G_ n	 FY au	 F	 2	 r
at + R F 3r + R 

a8 +R az
+ R u - R (G+1) v+RF' w

+ 1 ta2u + 1
	 a 2u + a 2u + 1 au _ 2 air	 u

a 
7 

r:2 a 2
	

a. 2	
r ^r	 a e	 ^)r R 

(11)
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N	 M	 h	 wr

,^ I ^ + AR + Rz+'Kv+W (+)	 R a w	 (12)

1 a 2v 1 92v	 a 2v 1 3v 2 Du v

r 9 + R a	 a8y + az^ + r WE + 	 rI

N	 N	 Hr	 N

aw + r F aw + G aw + Haw + H'	 (13)at R ar R aA R az	
w

 R

_ 	 +1 a 2w + 1 a 2w + a 2w + 1 aw
az R 7r ^ ,à a a"	 r arl

M	 H	 N	 y

ar + r1 9V re 	 az + r a0
	 (14)

The boundary conditions are that u,'v, and w vanish at z w O,M.

For R? >1, the system (11) - (14) may be consistently

approximated by replacing factors of r by R and neglecting terms

of order R 2 and smaller} The replacement of r by R at this

stage of the calculation implies that we neglect some nonparallel

flow effects. The neglect. of terms of order R-2 and smaller

has little effect on the results discussed below, as we verified

by computations in which they were ;included.

Replacing factor.s of r by R in (11) - (14) gives a set of

equations that are separable in r,e,t so that the perturbation

quantities may be assumed to have the form

(u,V' ,w, p )	 (f(z),h(z),^(z),n(z))el(ar+$Re-wt)	 (15)

With this assumption # Eqs. (11)	 (14) become (not yet dropping

terms of order R_2)

i(aF+$G-w)f+F'w + ian	 R [f" - l 2 f	 Ff + 2(G+l)h	 Hf')

+ 
1

[isf - 2i 0 h)- 
R 

f
	 (16)

ti

. Y

..

< n

6



[i(D2_ X 2 ) 2 + R(;aF+$G -W) (D2 -71 2 )	 R(OtF I'+8G") J0 = 0	 (23)

7

01

i (aF + $0-0h + G^ + iBi,r =	 Ch " - X 2 h-Fh-2 (G+1) f-Hh')	 (17)

+ 7 ( lah + 21 8 f) ..	 h
R	 R

i (aF + 8G -W)	 ^' tt' °'^ R rr^"-A 2 -H^'-H' f) +	 ' a< +	 (18)
R

(i(A+R) f .fl i$h + '	 0	 (19)

where X 2 	 a2 + 82.

Eliminating n from (16) - (18) by means of (19) gives,

neglecting terms of order R-2 and smaller,

R 
[a.( D2_

X 2 ) (D2'_K^ + R (aF+BG-W) (D2_ 2 )	 R ( aF"+8G")—i HD(D2
_^2

- iH' 
(D2

- A 2 ) - iFD2 10+R[G+l)D + 2G'I n = 0
	

(20)

(2(G+l) D-iR(aG',-$F')) O+R [i(D2 -71 2 ) + R(aF+BG-w) - iHD 	iF)n	 0

(21)

and where D = d/dz, 6=-O(-i/R, a2 	 a6+82 and n=ah	 $f is pro-

portional to the z-component of the perturbation vorticity. The

final result (20)	 (21) is a consistent set of stability equations

valid to order R-1.

The boundary conditions for the sixth order system (20) -

(21) are

(0) = $ r (0) = n (0) w 0 , ^ (°*) _ ^' (-)	 n ( w ) = 0 .	 (22)

Note that if the Coriolis force and streamline curvature

effects are neglected, the above system reduces to the fourth-

order Orr-Sommerfeld equation;



In Sec. 6 0 we report numerical results for both the sixth

order system (20) - (21) and the fourth order equation (23) in

order to study the effect of Coriolis force and streamline

curvature terms on the stability of flow due to a rotating disk.

3. NUWERICAL METHOD

We solve the Orr-Sommerfeld Equation (23) using the computer

cone SALLY (11 that employs a spectral method based on Chebyshev

polynomials (18-19). Here we extend the method to solve the

v&Nth order system (20) - (22) .

The boundary layer coordinate z, 0 4 z < - is mapped into

the finite interval. - I 4<1 by the algebraic mapping

2 z* - 1	 (24)

where L is a scale parameter chosen to optimizes the distribution.

	

of points in	 Then 4,z) and n(z) are approximated as the

finite Chebyshev polynomial. series

M

	

(z) --	 an Tn ()	 (25)
n^a	 _

M

r; (z) = Z	 b  Tn M	 (26)
n=0

Substituting (25), (26), in (20) - (22) and collocating

[19) at the discrete points t i = cos n
i
/M (0 < j < M) gives the

algebraic eigenvalue problem,

A

anan

wBb b
n n

(27)
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where A and A are 2(M+l) x 2(M+l) matrices. The eigenvalue problem

(27) is solved globally (if a guess for an eigenvalue is not

availabxe) by a generalized OR algorithm or locally (if a good

guess Is ava! able) by inverse Rayleigh iteration (20). The

resulting scheme is very efficient and accurate. In the present

calculations the optimum value of the scaling parameter L was

found to be about 1.8 In most of the calculations reported

below, M _ 34 so 35 Ch^rbyshev polynomials were used.

The accuracy of the method was tested in several, ways.

First, the number of retained polynomials,. M + 1 was varied to

check the accuracy of the eigenvalues and eigenfunctions. Then,

calculations were made for the stability of 14kman flow. Com -

parisons were made with the results obtained by Lilly [15)

for R - 65, 110, 1:50, 300 and 500 with good agreement.

For rotating disk flow, the global method gives only one

unstable eigenvalue (2m(w)>0) for R ^ 150 that is insensitive

to M. Howevero spurious unstable modes appear for lower R

which are discarded as unphysical because they are very in-

sensitive to M.

4. TRANSITION PREDICTION USING THE e  METHOD

In three-dimensional flow, the dispersion relation is given

by the complex relation

W	 w(a,0)	 (28)

where a,$, and w are, in general, complex. Therefore, there are

4#

it arbitrary real parameters among a,5, and w. There are several.

►s (51 to remove this arbitrariness. In the present study we

9



k

employ the envelope method (1). Here the four conditions are

obtained by using temporal stability theory (in which Im(a) w

IWO = 01 and by maximizing Im(w) with respect to a,$ at fixed

Re(w). The N factor is then given by

s
N 

F	 IM (w) 
ds

S C	 Re (vg)

where v. M (W a 1w) is the (complex) group velocity and s is the

arc length along the curve whose tangent is the real part of the

group velocity. Noting that

wP^1)5. 2 	 dR

ds ut Re ( )	
V(Re tw 

a	
+ (Re (W 	

ReTW--T	
Re (+V 9

C1	 a

Eq. (29) can be written as
P.T

N f	 Imm. dR	 (30)R C Re( w 
a)

Here the subscripts C and T indicate critical ( linearly

unstable) and onset of transition, respectively.

5. RESULTS AND DISCUSSION

Critical and Transition Reynolds Numbers

Some of the available experimental data for critical and

transition Reynolds numbers are given in Table 1. It is apparent

that there is considerable variation of the observed critical

and transition points. We believe that the variation can be

attributed to either the different measurement techniques used

in the experiments or to the influence of external disturbances.

Using the Orr-Sommerfeld equation, we obtained a critical Reynolds

(29)



number Rcu171 which is in good agreement with the theoretical

results of Brown (141 and Cebeci and Stewartson (3) but is con-

siderably less than the observed values. The value of the critical

Reynolds number for stationary disturbances is significantly im-

proved when the effects of Coriolis forces and streamline curvature
d

	

	

are .included. our calculated critical Reynolds number of 287

for disturbances of this kind is in excellent agreement with the

results obtained in (21] and [12) using hot wire techniques.

Kobayashi et al [12] also performed a. theoretical analysis in

which some of the effect, of Coriolis forces and streamline

curvature were considered. They calculated a critical Reynolds

number of 261.

In order to correlate transition using stability theory,

one has to know the experimental location of the onset of tran-

sition. The transition Reynolds numbers usually given for ex -

periments (see Table 1) are the locations where transition is

complete. Gregory and Walker [221 ;showed that, for a slotted

rotating disk, the transition region is composed of two sub-

regions: (i') a vortex region and (ii) an intermediate turbulent

region where the intermittancy factor 'y varies from 0 to 1.

Stability theory is only applicable up to the point where the

w

	

	 first turbulence burst appears (y 0). Gregory and Walker

obtained R = 505 and 524 for Y = 0 and Y = 1, respectively.

Chin and Litt (23], using an electrochemical technique, observed
a^

that the transition was complete at R = 592. They also observed

that the vortices start breaking down into turbulence at 
R  = 5,10.

We believe that this result should be taken as the relevant

^-	 11
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location for the onset of transition for the purposes of comparison

with stability theory. Further evidence that the initiation of

transition occurs at RT = 510 is provided by Kobayashi et al

[12] who observe that the disturbances are non-linear at R = 500.

Usually in boundary layer flows the non-linear region is relatively

narrow so the onset of transition soon follows. Further,

Federov et al [13] observed turbulent flow at R = 515. in the

experiments of Ref. [21] turbulent spots first appeared at R =
513-526. On the basis of the evidence provided by these in-
vestigators [12,13,21-23) we take RT 513 as the location of
the onset of transition for the purpose of applying the e 

correlation method.

Growth of Infinitesimal Disturbances

Disturbances of all frequencies may be present in natural

transition. C:Ie follow the evolution of several different mop'

and the one which gives the highest integrated growth factor is

used to correlate transition. Stationary disturbances were found

to give the highest N factor for rotating disk flow over all

positive real frequencies. Disturbances with negative phase

velocities can give slightly higher N factors but they are of

no consequence in the process of transition.

It was shown in [6] that the envelope method is a reliable

tool for transition prediction in three dimensional flows.

First, we report calculations using the Orr-Sommer,feld equation.

The resulting N factors are compared with those of Cebeci and

Stewartson [3] in Figure: 1. It is evident that their method

predicts N=20 at transition (R = 513) while the present (envelope)



Dai

T^ r (31)

13

method gives N a 22 at transition. Cebeci and Stewartson (3)

used spatial stability theory and in order to remove arbitrar-

iness among the parameters of equation (28), they imposed the

condition

t

where ai = Im(a), Rr Re")' In order to simplify their com-

putations, Cebeci and Stewartson assumed that the maximum growth

rate at any R>RC is independent of the growth direction. We

believe that had their growth rates been maximized over all

possible growth directions their N factor at transition would

be in better agreement with the present predictions using the

Orr-Sommerfeld equation.

in Fig. 2 we plot calculated temporal growth rates (Im w)

for stationary vortices. It can be seen that the inclusion of

streamline curvature and Coriolis forces have a s-`.gnificant

stabilizing effect. Calculations with only Coriolis terms (as

done by Lilly (15) for Ekman flow) were also made. These results

indicate that streamline curvature effects must also be included

in order to model properly the physical problem.

Since the instability is spatial in nature, we transform

temporal growth rates to spatial growth rates a using the group

velocity transformation

c	 Im(w)	 (32)Re wa
Y

The spatial growth rates are plotted in Figure 3. The

effect of streamline curvature and Coriolis forces is found to



s^.

be very significant.

Integrated growth rate (N factor) results are presented in

Figure 4. The present stitbility theory gives N % 10.7 which is

close to the value N = 9 for two dimensional flows and is in the

range of values found for swept wings [6). It io appAvant that

there is a very significant effect on the predicted tr?mrsa.tion

N factor when the effects of Coriolis forces and streamline

curvature are included. The resulting N factors are much lower

than those obtained by conventional stability theory where only

the Orr-Sommerfeld equation is solved,.

Also presented in Figure 7 are experimental results from

Ref. [21) for the 1,4 factor. The experimental amplification rate

of the stationary vortices was determined by integrating the

rms fluctuation spectrum in a narrow band centered on a frequency

determined by the observed number of vortices, as described in

(21). Duey to the problem with disk vibrations, the disturbance

amplitude (A0 ) at the minimum critical Reynolds number could

not be measured with any certainty. It was assumed that A0 = 1

and the resultant data were shifted at constant Reynolds number

to match the theoretical growth curve. The data are seen to be

in a fair agreement with the present theory over the range 400

<R<500. The significant deviation of the data for R4400 is

attributed to disk vibrations. The falling off of the data for

R5500 is due to the highly nonlinear nature of the flow in this

region and breakdown to turbulence.
h

Although, shifting the level of the data because of un-

certainty in the value of A0 can be questioned, and the resultant

14
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data can not be used to show conclusive support for the theory,

the tact that the slope of the experimental curve (c = dN/dR)

matches the present theory in the range 400<R<500 is very

encouraging.

Orientation and Number of Vortices

In the envelope method we maximize otowth rates Im(w) for

stationary vortices over all possible wave angles. We find that

the vortex spirals make an angle of about 11.2° with the negative

of the direction of disk rotation. This is within t,,e ;range

of the experimental value of 11-14 0 (10-131. The predicted angle

varies very slowly with R.

It can be shown that the number of vortices is given by

n = 8 F,	 (33)

where $ is defined in (15). Our calculations show that $ remains

almost constana ( =0.0698) so that n varies nearly linearly with

R. The numerically predicted variation of number of stationary

vortices is plotted in figure 5 along with the experimental data

[21]. The experimental results show that there are about 21

vortices at a Reynolds number of 294. The number of vortices in-

creases radially and there appear about 29-31 vortices at R = 513.

k='	 This radial increase in n is apparently due to the branching of

individual vortices with increasing R. Although the data fall

well below the theoretical curve at high Reynolds numbers, it does
5	

substantiate the overall trend predicted by the theory.
. E

Previous investigators [10,12,13,25] have not suggested

any direct correlation between the number of vortices and the
>I
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5

pgynp}os pj*bers. A careful analysis of their d4t4 (Figure 5),

however; shows that their results do not necessarily disagree

with the present findings.

Parallel or Type II Instability

Lilly [15] presented numerical solutions of the Fkman layer

problem and included the effect of Coriolis forces in his analysis.

He found that at very low Reynolds numbers an instability mechanism

exists whose disturbances are different from the stationary

disturbances described previously. Lilly called this "parallel

instability" and suggested that it is of viscous type since it

vanishes at high Reynolds numbers. He found that the critical

Reynolds number for these; fast moving disturbances is 55 and

the resulting modes are oriented at sn^all negative angles. The

orientation angle at the critical point is -23 0 whiC,h decreases

in magnitude as the Reynolds number increases. A similar in-

stability mechanism was detected in the experiments of Faller and

Kaylor [16] (who :;ailed it a type II instability) and Tatro

and 14ollo-Christensen [17].

In our calculations, we also find travelling disturbances

(f - 100 Hz relative to the disk) at Reynolds numbers much lower

than the critical Reynolds number for stationary disturbances.

The critical Reynolds number for travelling disturbances is

calculated to be about 49. These disturbances appear to have

characteristics similar to those, reported by Lilly [15].

6. CONCLUSIONS	 t

The growth of instabilities in the three-dimensional flow

due to a rotating disk is studied using linear stability theory

AIGINAL PAGE I.8
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including the effects of Coriolis forces and streamline curvature.

Using the eN analysis for transition prediction in these these

dimensional boundary Layers the N value is the order 11. Recent

experiments [21) tend to support the theoretical prediction that

the number of stationary vortices increases with R.

h

r

w
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TABLE 1. EXPERIMENTAL CRITICAL AND TRANSITION REYNOLDS NUMBERS FOR
STATIONARY VORTEX FLOW

Reynolds Numbor

Onset of
Critical 	 Transition Transition

460 557

430 530 -

447 490 -

367 $24 505

412 592 510

387	 51.5

532 -621	 .562-680

297	 566	 500 (non-
linear)

294	 -	 513-526

Investigators

Smith. [9] (1947)

Gregory et al
(101 (1955)

Cobb & Saunders
(24) (1956)

Gxegory & Walker
[22] (1960)

Chin & Litt
[231 ( 1972)

Fedorov et al
[13] (1976)

Clarkson et a1
[ill (1980)

Kobayashi et al
[12] (1980)

Malik et al [21)

Method of
Investigation

hot-wire probe

visual (China
clay technique)

heat transfer
from the disk

acoustical
slotted disk.

mass transfer
coefficient
using el.ectro-
chemical

visual
(Napthaleane) ,
acoustical.

visual
(dye in water)

hot wire probe

hot wire probe
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FIGURE CAPTIONS

FIGURE 1. Integrated growth factor using Orr-Sommerfold
equation

(a)	 Prasent calculations

(b)	 Cobeci and Stawartson (31

VTGURE 2, Temporal growt,h rates for stationary vortices

(a)	 Orr-Sommerfeld equation

(b)	 Orr-Sommerfeld equation with Coriolis force
effects Included

(c)	 Orr-Sommerfeld equation with Coriolis force
and streamline curvature effects included

FXGURE 3. Spatial growth rates for stationary vortices

(a)	 Orr-Sommerfold equation

(b)	 Present theory

FIOQPX,, 4. integrated growth factor for stationary vertices

(a)	 Orr-Sommerfeld equ4ti-on

(b)	 Present theory

rIGURE 5. Number of stationary vortices as a function of
R.
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