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SUMMARY

The stability of three-dimensional rotating disk flow is
investigated, including the effects of Coriolis forces and
streamline curvature. The numerical results show that the
critical Peynolds number for establishment of stationary vortex
flow is R, = 287. These vortices spiral outwards at an angle
of about 11.2° and transition to turbulence occurs when their
total amplification is about ell. It is shown that our anal-
ysis gives growth raies that compare much better with the avail-
able experimental results than do results obtained usinag the
Orr-Sommerfeld equation. The experimental results tend to
support the numerical prediction that the number of stationary
vortices varies directly with the Reynolds number, Our cal-
culations also indicate the existence of weakly unstable pro-

pagating (Type II) modes at low Reynolds numbexs (Ry = 49).
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L. INTRODUCTION

The prediction of transition in three-dimensional boundary
layers [1~3] is a subjec% of both fundamental and practical im-
pecrtance in fluid mechanics. Practical interest in the subject
centers on the design ¢of laminar flow control (LFC) wings that
promise significant improvement in airplane fuel efficiency.

At present, the most useful tool for transition prediction in
such flows is the so=-called eN method [4]. Hefner and Bushnell
(5] and Malik and Crszag [6] show that the exponent N (called
the N factor) is of the order 7-11 when transition occurs

on LFC swept wings.

The instability mechanism exhibited in the leading edge
region of a swept wing is similar to that found in the boundary
layer on a rotating disk, since both have mean cross-flow pro-
files with inflection points. More details on the similarities
between the two flows is given in Ref. [7). The rotating disk
flow is amenable to stability analysis in view of von Karman's
exact steady solution [8] of the Navier-Stokes equations free
of boundary-layer assumptions.

Using hot wire techniques, Smith [9] observed that =inus-
oidal disturbances appear in a rotating disk boundary layer at
sufficiently large Reynolds number. About 32 oscillations were
observed within a disk rotation period and analysis indicated
that the disturbances propagate at an angle of about 14° relative
to the outward drawn radius (where the direction of disk ro-
tation defines positive angles). Later,.in a remarkable study

using the china-clay technique, Gregory et al [10] observed




about 30 vortices over the disk spiraling outwards at an angle
of about 14° (that is, their normals make an angle of about 14°
witl the outward drawn radius). These vortices, which appeared
stationary relative to the rotating frame of the disk, were first
observed at a2 Reynolds number RC=430 [where R is defined after
(10) below]. Transition to turbulence occurred at RTﬁ530. The
stationary vortex flow established due to a rotating disk has
later been studied by several investigators [11-13). There
exists, among these studies, considerable controversy over the
value of the critical Reynolds number which in our view can be
attributed to the measurement techniques used. There is also
some confusion over the number of stationary vortices. Fedorov
et al [13], using visual {(Napthalene) and acoustic techniques,
observed 27-30 vortices at Reynolds numbers R > 387, However,
at low Reynolds numbers, they observed only 14-16 vortices with
normals lying at an angle of about 20°,

Stuart {10) anilyzed the linear, inviscid stability of
rotating disk flow. However, the neglect of viscosity resulted
in the prediction of 113-140 vortices over the disk which is
about four times larger than the observed value., Brown [14]
extended Stuart's work to the viscous case by applying the Orr-
Sommerfeld equation to disk flow. Using temporal instability
theory, Brown found RC¢178, which is much less than the observed
value. Recently, Cebeci and Stewartson [3] solved the Orr-
Somierfeld equation for rotating disk profiles using spatial
stability theory and found R‘=l76. They. also suggested that

C
wave packets propagate in three dimensional flows in such a way




that da/dg is real!. Using this condition Cebeci and Stewartson
correlated transition using the &N method and found the N
factor at transition (Rmﬁ 510) to be about 20 which is much
higher than that found for LFC wings ([5],[6]). Bushnell
(private communication) argues that a higher N factor may be
required for transition in disk flow than on LFC wings because
the boundary layer is rotating with the disk while the external
disturbances in the surroundings are not. Consequently, there
is no direct coupling between the external disturbances and the
instability waves in the rotating disk boundary layer.

The Orr-Sommerfeld stability equation neglects the effects
of Coriolis forces, streamwise curvature, and nonparallel flow.
In Ekman layer flow, Lilly [15] has shown that the Coriolis
force has a significant effect on stability at low Reynolds
numbers. 5Lilly showed that the critical Reynolds number for
appearance of stationary vortices is higher (Rcalls) when the
Coriolis force is included in the analysis than when it is ne-
glected (RC=85).~ In addition to the stationary vortices, he
showed the existence of another (Type II) instability caused
by the Coriolis force at much lower Reynolds numbers. Such an
instability mechanism was also observed in the Ekman layer
experiments of Faller and Kaylor [16] and Tatro and Mollo-
Christensen [17]. The Ekman layer and the rotating disk are
similar in that both are three-dimensional layer flows in which
rotation plays a significant role. Lilly's results suggest that
the inclusion of the Corlolis force in the stability analysis

of rotating disk flow may also lead to a higher critical Reynolds
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number for stationary vortices which is in better agreement with
observations.

In this paper we present a stability analysis of rotating
disk flow in which the effects of Coriolis force and streamline
curvature are included. The resulting sixth-order system is
solved numerically by a Chebyshev spectral method (18,19]. We
also follow the evolution of the disturbance modes using the
envelipe method [1,6] and calculate the N factor at transition.
The work of Kobayashi et ai (12}, which appeared during the
final stages of the present study, also includes the effects
of the Coriolis force and streamline curvature. We will comment

on this work in Sec. 6.

2. THEORRETICAL ANALYSIS

Consider an infinite plane rotating about its axis with
angular velocity 2 . We take cylindrical coordinates r¥*,06,z*
with z* = 0 being the plane of the disk and assume the fluid
to lie in the half-space z*>0. Let p, u, v, w, denote the
steady state values of pressure and velocity in the r*,0,2z*
directions, respectively, in the rotating coordinate frame.
Von Karman's exact solution [8] of the Navier~Stokes eguations

for steady laminar rotating disk flow is obtained by setting

r*QF(z), v = r*QG(z), w =/A0H(2), p = pvip(2z), (1)

L}

u
where 2z = 2*/Q/v. The Navier-Stokes equations reduce to the.

following equations for F,G,H and P:

r2 - (G+1)% + F'H - F" = 0 : (2)
2F(G+l) + G' H - G" =0 (3)




? P' + HH' -~ H" = 0 (4)
2F + H' = 0 (5)

where the prime denctes differentiation with respect to z. The
. boundary conditions are

F=0, G6=0, H=0 (z = 0) (6)
F’O. G==-1 (Z"*“’)

Now we study the evolution of infinitesimal small dis-~
turbances imposed on the strady flow governed by Egs. (1) - (5).
Let r2 be the radial location near which the analysis is to be
made. Using rg N as the reference velocity, 6§ * = /V/0 as the
reference length, and prg 92 as the reference pressure, the

instantaneous nondimensional velocities u,v,w and pressure P

can be written as

ulr,8,z,t) = % F(z) + u(r,8,z,t) (7)

vir,8,z,t) = £ G(z) + v(x,8,x,t) (8)

w(r,9,z,t) = ;IL—I H(z) + G(rlelzlt) (9)

p(r,8,z,t) = l§ P(z) + p(r,8,2,t) (10)
R

Here the nondimensional radius is r = r*/Q/v, the Reynoclds number

is R = r; vi/v, and ré crnrresponds to r = R.

Substituting Egs. (7) = (10) in the Navier-Stokes equations

and linearizing with respect to the pérturbations gives:

0, rpdu, G3u, H3u Fz 2 v+ Ipow
T + R F T + R 36 + R 32 + g U R (G+1) v + R F' w (11)
¥
~ "2 2~ 2~ ~ ~ -
-_—_2.2.4-.;[_.2."“4-.1.'_._.2.3 -p.»..__f8 +}.au-2?.Y.-E]
r R ar 2 98 92 r 3T ;§ 3% rﬁ
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%Jg§rﬁ+§ﬁ+ﬁ%+§v+§(cﬂ)u+r§s'w (12)

- Ea by Ly g,

The houndary conditions axe that u,v, and w vanish at z = 0,=.
For R>>1, the system (11) - (14) may be consistently
approximated by replacing factors of r by R and neglecting terms

2 and smaller. The replacement of r by R at this

of order R
stage of the calculation implies that we neglect some nonparallel
flow effects. The neglect of terms of order R'z and smaller
has little effect on the results discussed below, as we verified
by computations in which they were included.

Replacing factors of r by R in (11) = (14) gives a set of

equations that are separable in r,6,t so that the perturbation

guantities may be assumed to have the form
(3,9,%,8) = (£(z),h(2),6(z),m(z))et (0T+BRO-uE) (15)
With this assumption, Egs. (11) = (14) become (not yet dropping
2
1 (aF+BG-w) £+F'¢ + iam = & [£-A%f - F£ + 2(G+1)h = HE']

terms of order R

1 [iaf -~ 2i B h)- 25 £ (16)
+ =5 [iaf - 2i -
R )



L(aF + 8G-w)h + G¢ + iBm = & [h*-3?h-Fh-2(G+1) £-Hh') (17)

+is (lan+ 218 £) - 35
R R
LoF + 80=u) ¢ + 7' = & [o"=AomHor-n'e] + Ly a g (18)
(iu+2) £ « iBh + ¢' = 0 (19)

where Az = a2 + 82.

Eliminating 7 from (16) ~ (18) by means of (19) gives,

2

neglecting terms of order R “ and smaller,

¥

L (1 (02-32) (D2-3F + R(aF+8G-w) (D2-12) = R(AF"+B8G"})~iHD(D%-1%)

- iH! <02-X2> - iFD2]¢+%[G+1)D + 2G'I n=0 (20)

[2(G+1)D=iR(aG'~BF') ) ¢+%—[i(02-k2) + R(aF+BG-w) = iHD - iF]n = 0
(21)

s L

2 . u6+82 and n=ah - Bf is pro-

and where D = d/dz, E=a—i/R,;
portional to the z-component of the perturbation vorticity. The

final result (20) = (21) is a consistent set of stability equations
valid to order R™:,

The boundary conditions for the sixth order system (20) -

(21) are

$(0) = ¢'(0) = n(0) = 0 , ¢(®) = ¢'(=) = n(») =0 (22)

Note that if the Coriolis force and streamline curvature
effects are neglected, the above system reduces to the fourth-

order Orr-Sommerfeld equation;

(1 (p2-22)2 & R(aF+8G-w) (D2=22) - R(cF"+EG")1¢ = 0  (23)
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In Sec. 6, we report numerical results for both the sixth
order system (20) ~ (21) and the fourth order equaticn (23) in
order to study the effect of Coriolis force and streamline

curvature terms on the stability of flow due to a rotating disk.

3. NCMERICAL METHOD

We solve the Orr-Sommerfeld Equation (23) using the computer
code SALLY [1] that employs a spectral method based on Chebyshev
polynomials (18~19]. Here we extend the method to solve the
gixth order system (20) - (22).

The boundary layer coordinate z, 0 < z < «» is mapped into

the finite interval - 1 ¢ E<l by the algebraic mapping

z
§ =2 3% 1 (24)
where L is a scale parameter chosen to optimize the distribution
of points in £. Then ;2) and n(z) are approximated as the

finite Chebyshev polynomial series

M
$(z) = nio an Ty (§) (25)
M
n(z) = nio b T, (&) (26)
Substituting (25), (26), in (20) - (22) and collocating

[19] at the discrete points Ej = COS nj/M (0 £ 3 £ M) gives the

algebraic eigenvalue problem,

a a
n n

A b = wB b (27)
n n

mr il an



where A and B are 2(M+l) x 2(M+l) matrices. The eigenvalue problem
(27) is solved globally (if a guess for an eigenvalue is not
available) by a generalized QR algorithm or locally (if a good
guess is aval!able) by inverse Rayleigh iteration [20]. The
resulting scheme is very efficient and accurate. 1In the present
calculations the optimum value of the scaling parameter L was

found to be about 1.8. 1In most of the calculations reported

below, M = 34 so 35 Chsbyshev polynomials were used.

The accuracy of the method was tested‘in several ways.
First, the number of retained polynomialsr M + 1 was varied to
check the accuracy of the eigenvalues And eigenfunctions. Then,
calculations were made for the stability of likman flow. Com-
parisons were made with the results obtained by Lilly [15]
for R = 65, 110, 150, 300 and 500 with good agreement.

For rotating disk flow, the global method gives only one
unstable eigenvalue (Im(w)>0)] for R 2 150 that is insensitive
to M. However, spurious unstable modes appear for lower R
which are discarded as unphysical because they are very in-
sensitive to M.

4. TRANSITION PREDICTION USING THE eN METHOD

In three-dimensional flow, the dispersion relation is given

by the complex relation
w = wla,B) (28)

where a,B8, and w are, in general, complex. Therefore, there are
four arbitrary real parameters among a,B8, and w. There are several

ways [6] to remove this arbitrariness. In the present study we



employ the envelope method [l). Here the four conditions are
obtained by using temporal stability theory (in which Im(a) =
Im!f) = 0] and by maximizing Im(w) with respect to a,p at fixed
Re(w). The N factor is then given by

8
N [T I g (29)
8a | Re(vg) |

»
where vg = (wu.wa) is the (complex) group velocity and s is the

arc length along the curve whose tangent is the real part of the

group velocity. Noting that

dr 3 7 _ar .
a5 = e Y(Relu)? & (Rewg)® = ol { Re(V,) l .

Eq. (29) can be written as
R

T
, Im(w)
N = Ij;c W"‘ dar (30)

Here the subscripts C and T indicate critical (linearly

unstable) and onset of transition, respectively.

5, RESULTS AND DISCUSSION

Critical and Transition Reynolds Numbers

Some of the available experimental data for critical and
transition Reynolds numbers are given in Table 1. It is apparent
that there is considerable variation of the observed critical
and transition points. We believe that the varxiation can be
attributed to either the different measurement techniques used
in the experiments or to the influence of external disturbances.

Using the Orr-Sommerfeld equation, we obtained a critical Reynolds

10



number RC=171 which is in good agreement with the theoretical
results of Brown [l14] and Cebeci and Stewartson (3] but is con-
siderably less than the observed values. The value of the critical
Reynolds numbegs for stationary disturbances is significantly im-
proved when the effects of Coriolis forces and streamline curvature
are included. Our caiculated critical Reynolds number of 287

for disturbances of this kind is in excellent agreement with the
results obtained in [21] and [12] using hot wire techniques.
Kobayashi et al [12] also performed a theoretical analysis in

which some of the effect., of Coriolis forcess and streamline
curvature were considered. They calculated a critical Reynolds
number of 261.

In order to correlate transition using stability theory,
one has to know the experimental location of the onset of tran-~
sition. The transition Reynolds numbers usually given for ex-
periments (see Table 1) are the locations where transition is
complete. Gregory and Walker [22] showed that, for a slotted
rotating disk, the transition region is composed of two sub-
regions: (i) a vortex region and (i) an intermediate turbulent
region where the intermittancy factor y varies from 0 to 1.
Stability theory is only applicable up to the point where the
first turbulence burst appears (y = 0). Gregory and Walker
obtained R = 505 and 524 for vy = 0 and y = 1, respectively.

Chin and Litt [23], using an electrochemical technique, observed
that the transition was complete at R = 592. They also observed
that the vortices start breaking down into turbulence at RT = 510.

We believe that this result should be taken as the relevant

11



location for the onset of transition for the purposes of comparison
with stability theory. Ffurther evidence that the initiation of
transition occurs at RT * 510 is provided by Kobayashi et al

[12] who observe that the disturbances are non-linear at R = 500.
Usually in boundary layer flows the non-linear region is relatively
narrow so the onset of transition soon follows. Further,

Federov et al [13] observed turbulent flow at R = 515. In the
experiments of Ref. [21] turbulent spots first appeared at R =
513-526. On the basis of the evidence provided by these in-

= 513 as the location of
N

vestigators [12,13,21-23] we take RT
the onset of transition for the purpose of applying the e

correlation method.

Growth of Infinitesimal Disturbances

Disturbances of all frequencies may be present in natural
transition. We follow the evolution of several different moC =
and the one which gives the highest integrated growth factor is
used to correlate transition. Stationary disturbances were found
to give the highest N factor for rotating disk flow over all
positive real frequencies. Disturbances with negative phase
velocities can give slightly higher N factors but they are of
no consgequence in the process of transition.

It was shown in [6] that the envelope method is a reliable
tool for transition prediction in three dimensional flows.
First, we report calculations using the Orr-Sommerfeld equation.
The resulting N factors are compared with those of Cebeci and
Stewartson [3] in Figure 1. It is evident that their method

predicts N=20 at transition (R = 513) while the present (envelope)

12



method gives N = 22 at transition. Cebeci and Stewartson [3]
used spatial stability theory and in order to remove arbitrar-
iness among the parameters ¢f equation (28), they imposed the
condition

a0
k)

.

|

(31)

T

H

where o, = Im{a), B

i = Re(B). In order to simplify their com-

o
putations, Cebeci and Stewartson assumed that the maximum growth
rate at any R>RC is independent of the growth direction. We
believe that had their growth rates been maximized over all
possible growth directions their N factor at transition would

be in better agreement with the present predictions using the
Orr?Sommerfeld equation.

In Fig. 2 we plot calculated temporal growth rates (Im w)
for stationary vortices. It can be seen that the inclusion of
streamline curvature and Coriolis forces have a s.gnificant
stabilizing effect. Calculations with only Coriclis terms (as
done by Lilly [15] for Ekman flow) were also made. These results
indicate that streamline curvature effects must also be included
in order to model properly the physical problem.

Since the instability is spatial in nature, we transform
temporal growth rates to spatial growth rates o using the group

velocity transformation

o = ﬁg‘% (32)

The spatial growth rates are plotted in Figure 3. The

effect of streamline curvature and Coriolis forces is found to

13
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- R>500 is due to the highly nonlinear nature of the flow in this

be very significant.

Integrated growth rate (N factor) results are presented in
Figure 4. The present stability theory gives N = 10.7 which is
close to the value N = 9 for two dimensional flows and is in the
range of values found for swept wings [6]. It i3 appavent that
there is a very significant effect on the predicted transition
N factor when the effects of Coriolis forces and streamline
curvature are included. The resulting N factors are much lower
than those obtained by conventional stability theory where only
the Orr-sommerfeld equation is solved.

Also presented in Figure 7 are experimental results from
Ref. [21] for the % factor. The experimental amplification rate
of the stationary vortices was determined by integrating the
rms fluctuation spectrum in a narrnw band centered on a frequency
determined by the observed number of vortices, as described in
[21]. Due to the problem with disk vibrations, the disturbance
amplitude (AO) at the minimum critical Reynolds number could

not be measured with any certainty. It was assumed that A, = 1

0
and the resultant data were shifted at constant Reynolds number
to match the theoretical growth curve. The data are seen to be
in a fair agreement with the present theory over the range 400
<R<500. The significant deviation of the data for R<400 is

attributed to disk vibrations. The falling off of the data for

region and breakdown to turbulence.
Although shifting the level of the data because of un-

certainty in the value of Ay can be questioned and the resultant

14



data can not be used to show conclusive support for the theory,
the fact that the slope of the experimental curve (o = dN/AR)
matches the present theory in the range 400<R<500 is very

encouraging.

Orientation and Number of Vortices

In the envelope method we maximize growth rates Im(w) for
stationary vortices over all possible wave angles. We find that
the vorvex spirals make an angle of about 11.2° with the negative
of the direction of disk rotation. This is within the range
of the experimental value of 11-14° [10-13]. The predicted angle
varies very slowly with R.

It can be shown that the number of vortices is given by
n = BR (33)

where B is defined in (15). Our calculations show that £ remains
almost constanc (20.0698) so that n varies nearly linearly with
R. The numerically predicted variation of number of stationary
vortices is plotted in Figure 5 along with the experimental data
[21]. The experimental results show that there are about 21
vortices at a Reynolds number of 294. The number of vortices in-
creases radially and there appear about 29-31 vortices at R = 513,
This radial increase in n is apparently due to the branching of
individual vortices with increasing R. Although the data fall
well below the theoretical curve at high Reynolds numbers, it does
substantiate the overall trend predicted by the theory.

Previous investigators [10,12,13,25] have not suggested

any direct correlation between the number of vortices and the

15



Revniolds numbers. A careful analysis of their data (Figure 5},
however, shows that their results do not necessarily disagree

with the present findings.

Parallel or Type II Instability

Lilly [15] presented numerical sclutions of the Ekman layer
problem and included the effect of Coriolis forces in his analysis.
He found that at very low Reynolds numbers an instability mechanism
exists whose disturbances are different from the stationary
disturbances described previously. Lilly called this "parallel
instability" and suggested that it is of wviscous type since it
vanishes at high Reynolds numkers. He found that the critical
Reynolds number for these fast moving disturbances is 55 and
the resulting modes are oriented at snall negative angles. The
orientation angle at the critical point is -23° which decrsases
in magnitude as the Reynolds number increases. A similar in-
stability mechanism was detected in the experiments of Faller and
Kaylor [16] (who zalled it a type II instability) and Tatro
and Mollo-Christensen [17].

In our calculations, we alsc find travelling disturbances
(f ~ 100 Hz relative to the disk) at Reynolds numbers much lower
than the critical Reynolds number for stationary disturbances.

The critical Reynolds number for travelling disturbances is
calculated to be about 49. These disturbances appear to have

characteristics similar to those reported by Lilly [15].

6. CONCLUSIONS
The growth of instabilities in the three-dimensional flow

due to a rotating disk is studied using linear stability theory
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includiny the effects of Coriolis forces and streamline curvature.
Using the eN analysis for transition prediction in these three
dimensional boundary layers the N value is the order 1ll. Recent
experiments [21] tend to support the theoretical prediction that

the number of stationary vortices increases with R.
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TABLE 1.

Investigators

smith [9] (1947)

Gregory et al
[10] (1955)

Cobb & Saunders
(241 (1956)

Gregory & Walker

[22] (1960)

Chin & Litt
(23} (1972)

Fedorov et al
[13] (1976)

Clarkson et al
(11] (1980)

Kobayashi et al
(121 (1980)

Malik et al [21]

STATIONARY VORTEX FLOW

Reyncolds Number

Critical Transition

460 557

430 530

447 490

367 524

412 592

387 515
532-621 562-680
297 566

204 -

21

Onset of
Transition

505

510

500 (non-
linear)

513-526

EXPERIMENTAL CRITICAL AND TRANSXTION REYNOLDS NUMBERS FOR

Method of
Investigation

hot~wire probe

visual (China
clay technique)

heat transfer
from the disk

acoustical
slotted disk

mass transfer
coefficient
using electro-
chemical

visual
(Napthalene) ,
acoustical

visual
(dye in water)

hot wire probe

hot wire probe
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FIGURE 3.
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FIGURE 5.

FIGURE CAPTIONS

Integrated growth factor using Ory-Sommerfeld
equation

(a) Pressent caleulations

(b) Cebeci and Stewartson (3]

Temporal growth rates for stationary vortices
(a) Orr-sommerfeld equation

(b) Orr-Sommerfeld equation with Coriolis force
effects included

(¢) GCrr-Sommerfeld equation with Coriolis force
and streamline curvature effects included

Spatial growth rates for stationary vortices

(a) Orr-Sommerfeld equation

(b) Present theory

Integrated grawth factor for stalionary vortices
(a) Orr-Sommerfeld equation

(b) Present theory

Number of stationary vortices as a function of
R.
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