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ABSTRACT 

A low-frequency unsteady lifting-line theory has been developed for a 
harmonically-oscillating wing of large aspect ratio. The wing is assumed 
to be chordwise rigid but completely flexible in the span direction. The 
theory is developed by use, of the method of matched asymptotic expansions 
which reduces the problem from a singular integral equation to quadrature. 
The wing displacements are prescribed and the pressure field, airloads and 
unsteady induced downwasti are obtained in closed form~ The influence of 
reduced frequency, aspect ratio, planform shape and mode of oscillation on 
wing aerodynamics is demonstrated through numerical examples. Compared 
with lifting-surface tlleory, computation time is reduced significantly. 
The theory identifies and resolves the errors in the unsteady lifting-'line 
theory of James (1975) and raises questions about the complete validity of 
Ihat_9f .van Holten (1975) • ' ' , ' 

Using the present t,heory, the energetiC quantities 'associa~ed, with the 
propulsive performance of a finite wing oscillating in combined pitch and 
heave, namely the powe'r required to maintain the wing OScillations, the 
thrust, the energy loss rate due to vortex shedding in the wake and ,the 
leading-edge suction 'force have been obtained in closed form. Numerical 
examples are presented for an elliptic \oling. The region of validity of the 
present ,unsteady lifting-line theory is found to be considerably larger 
than antiCipated, containing the values of reduced frequency and aspect 
ratio which are of ,greatest interest in most ,applica tions. 

The optimum solution of Wu (1971b) for a rigid airfoil has been recast 
in terms of the normal modes of the energy-los's-rate matrix to shed light 
on the, structure of the solution. It is found that one of the modes, 
termed the invisible mode, plays a central role in the solution and is 
responsible, for the nonuniqueness of the solution. Using the results of 
,the present unsteady lifting-line theory, the optimum motion of 'a finite 
rigid wing has also been analyzed rigorously. It is found that the 
solution is unique (no 'invisible mode). Numerical results for the optimum 
motion of an elliptic wing are present~. 

Finally, an alternate approach has been presented for the calculation 
of the energetic quantities in two and three dimensions, namely the use of 
the integral: form of the conservation laws. This approach has the 
advantages of being quite general, physically enlightening and avoiding the 

'direct calculation of the leading-edge suction ,force ~ However, the 

Ngl-1303S~ 



distribution of bound circulation and pressure on the wing are required. 

Suggestions for future work on the basis of the present investigation 
are also given. 
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CHAPTER I 

INTRODUCTION 

Important unsteady and' three-dimensional effects occur for a wide 

range of problems of practical interest involving oscillating finite wings. 

Many of these cannot be, calculated by the use of strip-theory. and 

quasi-steady aerodynamics. The high cost of numerical implementation of 

current unsteady lifting-surface theory, on the one hand, and the success 

of Prandtl' s lifting-line theory,. on the other, have prompted several 

investigators in the past few years to seek to extend the lifting-line 

concept to unsteady flows. Another advantage of the lifting-line the'ories 

is that the results can be obtained in closed form which would be sui ted 

for optimization studies. Unfortunately, existing unsteady lifting-line 

theories are mostly incomplete and/or iricorreCt, with alIOOSt no numerical 

resul ts available. The present work includes the develo~ent and 

applications of an unsteady lifting-line· theory . for a 

harmonically-oscillating str~ght wing of large aspect ratio which is 

completely flexible in the span direction. Extensive numerical results are 

presented. 

One area of application which has received sane attention in recent· 

years is the study of the propulsive performance and optimum shapes and 

motions of OSCillating rigid or flexible wings. Optimum refers to those 

displacements of the wing which minimize the average energy loss rate in 

the wake due ,to vortex shedding (1) . subject to the condition of' fixed 

(1) 
This quanti'ty is al terna tel y referred to as the wake energy since, as we 
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average thrust. This w9Uld be helpful i~ understanding certain modes of 

animal propulsion in nature, such. as flapping. flight of birds and 

undulations of lunate tails of some· fish which are typically associated 

with high hydrodynamic efficiency. Studies in this area to date have been 

mostly in two dimensions where the. theory ·is well developed and the 

closed-form results have been used to determine the optimum motion of a 

rigid and a flexible airfoil. In·three dimensions, the studies have been 

based on numerical and approximate unsteady lifting-surface theories, where 

the numerical results have precluded a rigorous determination of the 

optimum~ In the current study, using the present unsteady lifting-line 

theory, the energetic quantities, namely the power required to maintain the 

wing oscillations, the thrust, the energy loss rate i~ the wake and the 

leading~edge suction force are determined in closed form for a finite wing 

oscillating in combined pitcti and heave. Then, using the latter results, 

the optimum motion is determined rigorously • The present work also 

~ncludes an alterpate method of determinin~ ~lle' energetics of. flapping 

flight, namely tpe use of the integral form of the conservation laws. This 

approach, however, is fo~nd not to be well suited for optimizati<;m studies. 

The studies presented in this work are based on· linearized 

arerodynamic theory and as such are restricted to small~~pl~tude 

transverse oscillati~ns of the wing. The free stre~ veloc;tr ~~ as.sumed 

to be small enough to consider the fluid as incompressible, an.d yet large 

enough so that the Reynold's number based on a ch~racteristic ~ength of the 

wing is large. The viscous effects are then con,£' !ped to a thin boundary 

layer at· the wing and a thin trailing wake. The energetic quantities are 

will see in Chapter VI, it is related to the kinetic energy content of the 
far wake. 



15 

O(E~) where E> 0 is a small parameter denoting the order of magnitude of 

the perturbations. The energetic quantities are, hence, alternately 

referred to as the quadratic quantities. Since the quantities of interest 

are primarily due to the inertial forces, they can be determined from 

potential flow theory. The analyses are restricted to the purely unsteady 

component.of the wing mQtion. 

Due to the diversity of the topics under consideration, a survey of 

the literature and further introductory remarks are presented in the 

introduction section of the following chapters. 



2 .1 Introduction 
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CHAPTER II 

UNSTEADY LIFTING-LINE THEORY AS A 

SINGULAR PERTURBATION PROBLEM 

Prandtl's lifting-line theory (Prandtl (1918» 'was the first 

successful attempt to solve the ·linearized problem of the uniform motion of 

a wing of large aspect ratio. After six decades, Prandtl's theory is still 

in use in preliminary design and analysis. Since the advent of high-speed 

computers, however,detailed design and analysis has been increasingly 

carried out using steady and unsteady. numerical lifting-surface theories 

(see, e.g., Landahl and Stark (1968». These generally involve the 

numerical solution of a singular integral equation and typically require 

large amounts of' computer time especially·for unsteady flows.· 

In the area of unsteady wing theory, in the meantime, a large number 

of . approximate and ad hoc theories have been ~eveloped. These may be 

termed irrational approximate theories sinCe the order of magnitude of the 

errors introduced by the approximations is not known. There also exist a 

few rather specialized exact·· solutions (see,e.g.,. Schade and Krienes 

(1947» which are, nevertheless, valuable in understanding certain aspects 

of finite wing problems such as the flow field near the wing tips. 

Quite a different approach began with the important discovery or 

Friedrichs (1953) that the motion of a high-aspect-ratio wing can be 

formulated as a singular perturbation problem. Using the method of matched 

asymptotiC expansions (MAE), Van .Dyke (1963) developed an asymptotic 

lifting-line theory which reduced the problem from an integral equation to 
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quadrature and reproduced Prandtl's result to the order of its validity. 

Such theories can be carried out to higher orders systematically, as was 

demonstrated by Van Dyke, although this is often unnecessary. Theories of 

this type may be termed, rational approximations, since the order of 

magnitude of the errors is known. 

During the last few years, a few investigators have developed 

asymptotic theories for' high-aspect-ratio wings in unsteady motion. These 

have been termed unsteady lifting-line theories (1). These theories are 

still in their infancy, as can be seen from an examination of the few 

published works, one of which is incorrect and for the others some 

questions remain' about their validity and utility. Also, since there is an 

almost total lack of numerical examples and correlations with 

lifting-surface and experimental results in these works, the assessment of 

their value is more· difficult. 

James (1975) has published a .work on an unsteady lifting-line theory 

for a straight flexible wing in unsteady motion. His treatment of the 

problem uses a semi-intuitive MAE approach. His unsteady induced dow nwa sh 

is found to be in error (as well as being 'infinite) which renders his' 

three-dimensional unsteady results incorrect. He also suggests that his 

theory is valid for' all reduced frequencies, whereas the formUlation 

clearly assumes low reduced frequencies. Further, he does not treat and 

(1) 
In the classical sense, this is a misnomer since in unsteady flow, as was 
first pointed out by Reissner (1944), the lowest-order induCed downwash is 
not a constant acro'ss the chord, except in the steady flow limit. Hence, 
one can no longer speak of a loaded line. However, in analogy with steady 
flow, we will use the term unsteady lifting-line theory for the asymptotic 
solution, where the . outer solution involves a loaded line and the inner 
solutionis.an oscillating airfoil with an induced downwash that is not 
.consta·nt across tpe chord. 
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resol ve the inherent nonuniqueness of the solution in the acceleration 

potential formulation of the problem. 

Cheng (1975) has proposed an unsteady lifting-line theory for a wing 

with curved and/or swept planform in harmonic oscillation. His formulation 

is in terms of the velocity potential which he determines to leading order 

in inverse aspect ratio. The work does not include calculation of the 

aerodynamic loading, the unsteady induced downwash and some of the 

impOrtant details, nor is the work presented in a form ideal 'for such 

calculations. To this author's knowledge, Cheng was the first to identify 

the various frequency d9mains for the influence of unsteadiness on the 

induced downwash. These domains are. described below •. 

Van Holten (1974, 1975, 1976, 1977) has developed lifting-line 

theories for a rigid rectangular wing in uniform motion, with and without 

yaw and transverse harmonic oscillation, and also as a helicopter rotor 

blade in . forwarq flight.' It is implici t in his analysis tha:t ~he unsteady 

induced· downwash is a constant across the chord. . As already mentioned, 

this is not the case in unsteady flow,except in the steady flow limit. He 

also regards his theory as 'valid . for all reduced frequencies; this' is 

unlikely since it uses a constant induced downwash at each chord. His 

analysis leads to. an integral equation which must be solved numerically~ 

Van Holten was the first to point out the correct physical. interpretation 

of the induced downwash in steady and unsteady flows. The same· 

interpretation comes'out of the present work. 

The problem of a· harIOOnically osci~lating three dimensional wing 

involves three characteristic length scales, namely the chord c, the sPan b 

and the wavelength of the peri9dic wake A = 21T U/W as shown in Figure 2.1. 

As far as the influence of unsteadiness on the three-dimensional effects 
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are concerned, Cheng (1975) has identified five. ranges of t.. for a 

high-aspect-ratio wing (c « b): 

I. c«·b« A very low frequency 

II. c« b = O( A) low frequency 

III. c« A « b intermediate frequency 

IV. c = O( A) « b high frequency 

V. A «c«b very high freque ncy 

Domain I corresponds· to very low frequencies where quasi-steady 

aerodynamic theory is adequate. Domain V, on the other hand, corresponds 

to very high frequencies where the self-averaging effect of the 

high~frequency periodic wake renders the problem locally two-dimensional. 

In domain II, the the reduced frequency based on the span W b/U = O( 1) , 

whereas in domain IV the reduced frequency based on the chord to c/U = O( 1) • 

The analysis of the problem in domains II and IV involves two distinct 

regions in space corresponding to length scales c and b, whereas· the 

analys~s of domain III involves three regions in space corresponding to c, 

b and A • 

Cheng further points out that an important result of the condition 

A «b is that the three-dimensional effects produced by the far wake 

vanish with A /b and become much smaller than the local. three-dimentional 

effects. The above frequency domains are depicted qualitatively in a 

reduced frequency aspect ratio diagram in Figure 2.2. 

Chapters II - V are devoted to the development and applications of an ., 

unsteady lifting-line theory valid in domains I and II. It seems, from the 

numerical results, that the theory. may be valid in parts of domains III - V 

as well. The wing model used is shown in Figure 2.3a where the chord is 

O(A-I) and the span is 0(1). A similar asymptotic theory can be developed 
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for domains IV and V using a wing model with chord of O( 1} and span of 

O(A}. Such a theory may also be valid in parts of domains I. - III, in 

which case the two theories together might form a unified unsteady 

lif~ing-line theory for the entire frequency spectrum. Otherwise, a third 

theory would be needed for domain· III to bridge the gap be tween the low-

and high-frequency theories • The latter will probably be the ·most 

. difficult of the three. However, since most applications of interest fall 

in domains I and II, this region will be our focus. 

The present theory is formulated in terms of the acceleration 

potential ~. The advantages of this formulation are that 4J is continuous 

across the wake and the pressure on the wing is obtained directly from 4' • 

However, the solution is not unique since .multiples of·eigensolutions with 

a'VI"dt. = 0 at the wing may be added. Uniqueness is achieved by determining 

thedownwash by integration of ~ from far upstream to some point on the 

wing. 

An asymptotic expansion is carried out to leading order in.· inverse 

aspect ratio. All of the results of the present theory are obtained in 

closed form and are thus suited ·for optimization studies. Numerical 

results for the present theory compare favorably with other theories 

including unsteady lifting-surface theories. Compared with the latter, the 

required computation time is reduced significantly. 

2.2 Problem Formulation 

Consider a thin almost planar wing of large aspect ratio, executing 

small-amplitude harmonic oscillations normal to the wing planform, in a 

uniform stream of inviscid incompressible fluid. The wing .has a straight 

mid-chord line positioned normal to the free stream •. 
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The wing planform is described by . 

X :.±C ('I) / A /yt ~b ~=O (2. I) 

in a coordinate system (x,y,z) fixed to the mean position of the wing as 

shown in Figure 2.3a. The free stream velocity U is directed along the 

positive x-axis. Here, A is the wing aspect ratio defined as 

A = (Zb)2. / S ex. 

where b is the semi span length and Sa. is the wing planform area. c(y)/A 

is the semi chord. Both band c(y) are assumed to be O(Ao). 

The transverse displacements of the wing (mid-camber surface) are 

described by 

IXI ~ c:.<"'O/A 

or, equivalently, b~ 

jwt 
e 

1'1' ~ b 

I,/l~ b \2.4 ) 

where ;e ' S. and ~z are nondimensional quant~ties; colA is the root semi 

chord; j is the temporal complex unit; W is the radian frequency of 

oscillation; and t is time. The above relations define a wing which is 

flexible in the span direction, capable of executing arbitrary torsional 

and bending oscillations. The wing sections, . however , are rigid airfoils 

performing heaving motion of amplitude 
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(2.5) 

and pitching motion, about.the mid chord, of amplitude 

I OI.l 'f) I -= J §, (Y) + J ~ 2. (y) , 

with phase angle 

leading the heaving motion. The heaving motion is taken as positive in the 

positive z-direction and the pitching motion is taken as positive ~n the 

direction of ~efl~tive rotation about the y-axis as shown in Figure 2.3b. 

We require that the arbitrary functions h. (y) and 0<. (y) (or, 

,equivalently, ~ (y), 
o 

~;(y) and ~ (y)) be such that the wing displacements 
,2, 

satisfy the. conditions of linearized theory, namely 

(Z.8)' 

'ImpliCit in the above restrictions on the choice of h(x,y,t) and c('y) is 

the ,fundamental assumption of lifting-line theory that the spanwise flow 

perturbations, are small compared w1th,thosein planes normal to the span. 

In this work, we use the forms (2~3) and (2.4) interchanseably, with 

the latter being especially convenient in numerical calculations. The wing 

shapes and ~otions des~ibed by (2.1) ,(2.3) and (2.4) embraces a broad 

class of interesting problems involving unsteady motion of spanwise-

flexible wings. 

The 'above problem can be formulated in terms of the acceleration 

potential YJ defined as 

(2.9) 
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-where X = (x,y,z), p is pressure, P is fluid density and Pco is the free 

stream pressure. It follows fran the linearized Euler equation and the 

continuity equation that tV is governed by the Laplace equation 

c:z.. i o} 

where the subscript (.)'3 indicates a thre~dimensional Laplacian. The 

linearized boundary condition at the wing specifies the downwash • 

\ VI ~ b z=o± . (Z.i1a.) 

For h(x; y, t) in (2.3), this becomes 

\XIs;ct..'i)/A \ 'II ~ b (2.lIb) 

Substituting (2.11a) in the z-component of the linearized Euler equation, 

we can express .the tangency condition in terms of tp • 

~:r. 4'(X,t) = (~t + U ~) \No (X 1'1) t) 

. '0 '0 z.. 
= C~t + U d~) ~ l '.<) 'I) 1: ) 

\x\~·c.(y)/A I'll $ b ~=O± (Z.iZ) 

Along the trailing edge, the Kutta condition requires that the pressure 

remain bounded. 

x = c<.y)/A \YI ~ 6 (2.13) 
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Since If is an odd function of z, it tollows that . 

4J<X,t) =0 \X\'7c."-'f)/A i:=o (2.14) 

Further, we require the pressure disturbances to vanish at infinity. 

(Z. is) 

The solution of the linearized boundary value problem (1) defined by 

(2.10)· (2.15) can be expressed in terms of a distribution of 

three-dimensional pressm-e doublets· over the projection of the wing 

planform on. the xy-plane. 

(.2,.16) 

. where 

1R - [( X - ~ )2..+ l '/- ~ ) 2. + :e %. ] 
I/;l. 

(2.11- ) 

and!. p = Pi - pL\is the lo.cal pressure jump across the wing, with (, '1.1. and' 

( )t denoting the upper and lower wing surfaces respectively. This can be 

readily.seen from (2.16) by taking the limit as z~O±w1th x and yfixed. 

~. ~ -
P [LV t X, 'I) 0+) - 4' {'f.., '11 0-) 1 =~-f (X, 'I) <Z.i8) 

In the following sections., using the MAE method,. we find the solution 

for lP, for given wing shapes and motions, which is uniformly valid 

(1) 
We are justified by linearity to write all dependent variables as 

. B (X, t) . 5 (X) e jL\lt' 
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throughout the flow field. The value of tp at the wing yields the wing 

pressure distribution (see (2.18» which can be integrated to obtain 

various aerodynamic quantities of interest. 

Formally, as aspect ratio tends to infinity, we consider two 

simplified asymptotic limits of the problem: the outer limit and the inner 

limit. The outer limit corresponds to holding the span fixed and letting 

the chord tend to zero, where the wing collapses to a loaded line. The 

inner limit corresponds to holding the chord fixed and letting the span 

tend to infinity, where the two-dimensional unsteady airfoil solution is 

emphasized. The outer and inner limits are both incomplete representations 

of the full problem, each lacking some essential features of the problem: 

the basic unsteady airfoil solution in the outer limit and. the 

three-dimensional effects·in the inner limit. Matching the two expansions 

resolves this incompleteness. As mentioned earlier, however, this solution 

is not unique since ·multiplesof eigensolutions with ·()4'/Cyc =0 at the wing 

may be present. Uniqueness is achieved by determining the downwash by 

. integration of ~ from far. upstream to some pOint on the wing. 

2.3 Outer Solution for the Acceleration Potential 

Here, we seek an expansion for 4J valid i~ the outer region (distances 

o from the wing of the order of wing span, viz. O(A » where the wing shrinks 

to a loaded line as ·A~ci;). Formally, this is obtained from (2.16) by 

m-i c expanding the kernel function ~ in a Taylor Series for small ? and 

integrating across the chord. Using 

~ 2. <.< I (2./9) 
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where 

(2. 20) 

'10= Y-1 

we obtain the three-term outer expansion 

,-Jo b ~ 

4.J (X) -I tii J ~ ('1) d1 I"OJ -
4TrP R.. -b 

-a"l. b ,... '1'd3 . 
b_ 

S 0'\ l"f ) d1 S ~{'1}. d, + + r ')'}(.2. 0 r aXc>r K. -b -b R 

+ HOT} ( 2.2') 

o 
where () indicates the outer region, HOT denotes higher order terms and 

CtYHA 

1 lY) = J fj~ ( ~, 'f) d ~ ,-v 0 (A -I) 

-c( '1J I A 

~ Joel 'fJlA s: 
YY\ t,() = - :> 

-Cl'l)/A 

'Cl'/)lA 

-- J ~ :2. fi~ ( ~.J Y ) d. 3 ( 2..24) 

~C('1)IA 

This outer expansion is in agreement w.1th that of James (1975) who gives 

the first two terms of (2.21). 

The outer expansion, thus, consists of· spanwise distributions of 
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three-dimensional multipoles along the loaded line. The first terms is a 

distribution of dipoles of strength equal to section lift. The second term 

is a distribution of quadrupoles of strength equal to section moment about 

the mid chord (positive nose up). The higher order terms consist of 

distributions of higher order multipoles of strength equal to higher 

. moments of section lift about the mid chord. Hence, retaining more terms 

renders the outer expansion an increasingly accurate representation of the 

full problem. The sign and order of magnitude of the strength of the first 

three terms are indicated in (2.22) - (2.24). 

Inner Expansion Qf Outer Expansion 

Later, for the purpose of matching, we will need an inner expansion of 

. this outer expansion, l.e., an approximation for (2.21) as r~O (or as 

A ~ CIO wi th ~.ll Ar = 0 (A 0 
) ) • 

differentiations to obtain 

To this end, first we carry out the indica ted 

+ f 
-b 

b 

+ S ~(1) 
-b 

-\- HOT} 

b 
3Xe 

.:3 ~ [ ~ 2. _ 4)( 2. + 'to 2. J 
:2. [r:z. + '10 Z J 1-12 

(2.2.5) 

Due to.the increasingly singular nature of the kernel functions of 

(2.25) , straight forward expansions are not adequa te and will give rise to 
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divergent integrals. This can be avoided by first integrating under the 

integral with respect to y and placingo!Oy in front of· the integral; an 

idea familiar from slender-body theory for related integrals (see Heaslet 

and Lomax (1953». Repeated applications of this idea to (2.25) leads to 

IVO { 3 b ..... . 
4J (X) ,..,::.L ~ 2- S .t (\'1) ['I J (" 2.. + 'I 2.. 

41fP .2. r2. 0,/ 3 . I 0 0 

-b 

+ X:e 
r. 4 

jJ1 + HOT} 

lie can now expand' the integrals. First, we break up each integral 

into three parts. 

I 
Y-E Y+€ J b 

- J '+J + 
-b Y-E '1+€ l2.. 2."=l-) 

+ 

where E > 0 is a small neighborhood of y = ~ • In II andIz , we expand the 

kernels for r~O with € fixed, noting that. Yo > 0 for the former and 

Yo < 0 for the latter. In Ie.' we expand the integrand for €~ 0 with r 

fixed. In each case we find 
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( 2.. :2. 8) 

which vanishes as e.~ 0 • Next, we combine I , and I.2. for each of the 

integrals in (2.26), let E-+O, take the indicated derivatives and 

introduce the magnified (inner) variables 

" " X - Ax - r cos e 

" " ~ - A~ - r 'SI(\ e 

1\ A'r AJX2+'12 r - .-

t~ O?t~~ the inner expa~sion of tpe thre~term o?ter expansion. 

S!" 2.e 
. "2. r 

I 'V 1/ - 4" \'Y\' (y) '51" 26 

+ -L rt:.. $1" e . 4A .. ' .' 

+ ot A- Z rh) 

(Z • .2.9 ) 
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.... 
r 

, --8 

t"W II 

A ~ (y) 
:5\'" e - Sln 39 

+ !-lOT} \'I'~b (Z.'30) 

where (. ) f denotes derivative with respect to the indicated argument .. 

Here, the terms denoted by "dipole" are the inner expansio.n of the 

first term of the outer expansion, (2.21). As r~O, the spanwise 

distribution of three-dimensional dipoles reduces to a two-dimensional 

dipole plus additional terms of higher order which represent the 

three-dimensional correction. A simila.r explanation applies to the terms 

denoted by "quadrupole" and "octapole". 

Van Holten (1975), using the method of separation of variables, has 

solved the outer. problem for a rigid rectangular wing in steady flow and 

obtained the dipole and tlie quadropole expansions, as in (2.30), but the 

corresponding result for the oscillating rigid wing is not· given. The two 

expansions are in overall agreement, though detailed correlation of the 

corresponding coefficients is not feasible. James (1975) has also obtained 

the first term 'of the dipole and the quadrupole expansions as well as the 

'order of magnitude of the higher order terms. Except for a. missing factor 

of A, his result is in agreement with (2.30) (apparently a misprint). 

2.4 Inner Solution and Eigensolutions for the Acceleration Potential 

The inner region is that part of the flow field where distances from 

-\ the wing are of the order .of the chord,. Le., O(A . ). As A~ a:>, the chord 
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and, hence, the inner region become vanishingly small. In order to study 

the details of the flow near the wing, we magnify the variables in the 

cross-sectional plane of the wing so that the two-dimensional (airfoil) 

character of the flow is emphasized. Thus, 

" )( - A~ 

" (.2. .. 31) 
Y - Y 
" At:. ~ -

The characteristic length scale in the inner region is the magnified semi 

chord c(y). 

In the boundary value problem at hand, time enters in through the 

boundary condition at the wing. In the Laplace equation and the remaining 

boundary conditions, it appears only as a parameter. In terms of the inner 

variables, the wing boundary condition becomes 

\'1\~b " -e=O+ 

(2.32 ) 

where ~ = Ah and ( )L denotes the inner region. Ih (2.32), we may think of 

At as a stretched time 

" 1:. - At (:2..33 ) 

This is strictly for mathematical convenience and does not change the 

solution. 

In the inner region, we further assume that the acceleration potentiaL 

may be expanded in an asymptotic' series in inverse aspect ratio of the form 
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" where 
.... I\, ,. 

X = (x,y,z). Since in inviscid flows physical quantities are 

independent of· scale (see,e~g., Ashley and Landahl. (1965), pp. 5-1), the 
. 0 

first term of the expansion is O(A ). James (1915) assumed an expansion 

whose le~ding term is· O(A- 1 ) which is incorrect. This is, however, 
. . oi 

balanced by the missing factor of A in his l\J and hence the structure of 

his solution is not affected. We have included logarithmic terms in (2.34) 
oC: . 

because of the anticipated matching. to. tp. , (2.30), which contains a 

logarithmic term. . Another sOurce of' logarithmio termS in the inner 

solution is the low-reduced-frequenoy expansion of Theodorsen's funotion 

discussed later in this section. Matoh1ilg will 'show, however, that the 
-I . 

O(A log A) term in (2.34) is not needed. 

Introduoing (2.31)- (2.34) into the.full·prC?blem, (2.10)- (2.15), :we· 
.. i 

obtain a series:of simplified problem~ for the ~n. The lowest order inner 
. . . . 

solution q,~. satisfies the follo~ing boundary value problem. 

L ~ " tp. ()( ,t) = 0 
. 0 

" . .e,=O± (Z.35) 
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I/IIL .!. A 
'1' a l)( ,t) I (Q:) 
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" x.:C('1) 

" r -+ c:::o 

1'(1 ~ b " e:.O 

where the subscript ( >z indicates a two-dimensional Laplacian. The main 

simplification here is in the reduction of the three-dimensional Laplace 

,equation to a two-dimensional one. We have aSsigned all of the boundary 
, 

" condition at the wing Wo 
, (. 

to t.p o. It can be shown that this does not 
c (. 

affect the complete inner solution 4J. The reason for this choice is that 

" it makes the lowest order inner solution 4J 0 the exact two-dimensional 

unsteady airfoil solution tVi"o which is the dominant feature of the inner 

,solution~ 

The loss of the boundary condition at inf.1n1ty is due to the 

stretching of the variables and implies the presence of certain . , 

eigensolutions in the solution. Hence, LPoc. consists of' multiples of . these" 
'. a' i. 

eigensolutions, 4J~o and mUltiples of eigensolutions with "dllJ rai =0 at 

the wing. The eigensolutionswill be determined later in this section. 
. " . 

The boundar.y value problem governing tf,l, 4'2. ... and LP
3

(. is: 

,.. 
\)(.\ ~ ~<..y) 

1\ 

c.::. o± \'11 ~ 6 

::.0 " \x \ ~ C{'1) 
"-
e='O (2.:36) 

<.00 IYI ~ b 

" r- --=>- 00 

) 

) 

) 
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The solution of this homogenous boundary value problem consists of 

eigensolutions alone • . 
LV~ is the solution of the boundary value problem: 

7>1. 111 ~ !... " 
,- d Y Z T 0 (X ~ t ) 

At. ~ !... " 
'12. £P4 ex.l t) -

~ ., " 
'Otp4 (X', t:) 

o~ 
- 0 " 1'1' ~b 

,... 
IXI~C.lY) "e=O± 

. 
" "'-\ x \ '> Cl'!) 1::. 0 CZ •. 31-) 

c:. '.' " tp 4 eX )t ) =- 0 

1\ " X ::: elY> \ '1\ ~ b Z: =0 

The solution of (2.37) consists of 'a homogeneous solution, a particular 

solution and eigensolutions of the Laplace equa tion. tf~ enters ,into the 

solution to determine higher or~er three-dimensional effects. 

Wu's Unsteady Airfoil Theory 

To determine the solution of (2.35), we note that with the additional 

boundary condition 

~ ;.. ,,, (X 
'1'0 .I 

" ,- ~ co 

tV~ is the solution of a classical two-dimensional boundary value problem. 

Wu (1971a) has obtained the general ~olution of this problem which is valid 

throughout the flow field., For steady-state harmonic' oscillations and in 
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terms of the inner variables, his solution, for arbitrary sbapes and 

motions of the wing sections, is given by 

. <Z.38) 

t2...38 a.) 

" . X 

tf,tX, y,i.) =-(~ +U~x ) S 
-Co 

" h<\ ~ c.<. 'f ) 

(Z.38b) 

U A U ~ A_ ( V, L) .= _ a. ''I .L) 
- IL: Z 0" Je.. 

(2.38 c.) 

l2.38e) 

1f , 

b i'l l V /t) - .~ S \V 0 l (~) Y I .t. ) c.o 5 ", e . d e i'\=o\Z ... CZ.3Sf) 
I J , 

o 

, 
LA" 

Here, f (J.,y,t) is the complex acceleration potential with respect to the 

inner variables defined as 
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C.2.3 Cl) 

, 

where r:r' is the conjugate harmonic function of i.p L and i is the spatial 

complex unit (note, ij ~ -1). Further, 

" j -
(2.40) 

"-

X - c. <.. y) CoS e 

. and k is the reduced frequency based on the local semi chord, namely 

key) = ,~ 
U 

In (2 .38d) ,<L (k) is Theodorsen' s ·~unction defined as 
. ' 

C lie .. ) .= J:(k) + j q lie.) -
(Z) • (2.) . 

~, (I<.) + J \40) . (k.) 

<.zJ 

(2.41) 

Lz .. 42.) 

where H" is the Hankel function of the second kind of order n defined as 

<..2..43) 

J~ and. Yn are Bessel functions of the first and second kind qf order n 

respectively. It follows from (2.42) and (2.43) that 

~(k.) _ 

~ t "-) :=. 

J I \ J, + '( 0 )+ '( I ~ '1', - J u ) 

<"1,+ Yo),z. + t Y. - Ju)z

-tY,Yo + },Jo ) 

(.2..44) 

where 'the argument of all Bessel functions is k. (. (k) is plotted as a 

complex vector in Figure 2.4. 
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Wu's solution yields the acceleration potential throughout the flow 

field' as is needed for the present MAE analysis. Wu's solution is also 

unique having been ~()rmula ted directly in terms of the downwash at the wing 

wet instead of the vertical acceleration o4'~ n/i 
Calculation of the pressure field from (2.38) for most . wing 

displacements of interest requires evaluation of integrals of the form 

c ,..' " J\ [Co + ~ J Ill. 
Q n l l' J '1)= -c . C _ ~ ". 

<:2..45) 

n= 0),2, .... , 

The first five members of this family are evaluated and listed in part 1 of 

Appendix A. 

USing Wu's' method, the exact two-dimensional unsteady airfoil solution 

tp~D i.s determined. For later use~ we list here the acceleration potential 

in complex form •. 

,.., . 

t B,l'l) [ _ 32. + ( !:z. " c:z. ) A) +1.. 1\ 

:2.0lJJY) 
. 

+ c.s .;-- -(.. -Z 

+B:z.l'f) [ -! + .J i 1. .- cz. ] 

. (.2.46a.) 

where. 
. 

,... <. ,.. 

~ ZQ eX} \1..4Gb) 

(j(.~ denotes the real part of a complex quantity with respect to i and 

(2. .41) 
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B, l'f ) \ U2. k.2. ()i.. -:z.c2. 

B;2. l'f) - .l U;2. [ ~ k ( h~ ) 2.J k o£ ] 
C . CO 

(2.49) 

B3 l't) - U - - Ie.: - 2J k 0(. 1. t \ (... ") 
. 4 

- [j ko \ ~:)+ ( I + J k) "" 1 ~ ll-.)1 Z, 
(2..50 ") 

where 

ko t.4J Co .-
V A 

(% .. 51) 

is the reduced frequency based on the the root semi chord colA. The lowest 

order inner solution is then given by 

Nt. ". /"'oJ' '" 

·tpo Lx) = 4J~[) eX) + eigensolutions (,2..5.2.) 

Eigensolutions of the Acceleration Potential 

Next, we determine the eigensolutions of the inner solution. These 

satisfy the homogeneous problem defined in (2.36). We consider two cases. 

tIl ~ " " First, we assume 'f (X, t) ~ 0 as r~.:c. The solution of this problem can be 

obtained using Wu's method. However, first we must express the boundary 
. ,.. 

condition at the wing olJ.l/ac =0 in terms of downwash. This can be done by 

inverting the z-component of the linearized Euler equation 

" "'." l " () 1.." " ":2:. tV (x: t) = 'cli + U iX) w t r. t) (.2.53) 

written for convenience in terms of the inner variables. The downwash. at 
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the wing is given by 

., '" -I 

J'w(~-X)A 
e . d~ 

l'fl~b (;2.,-54 ) 

where w = til /U. Using ()t\J/{)~ =0 on the wing, this becomes 

. 
Wo<.... " 

(X) '(J O± .. t) -

\'1\~b (Z.5S) 

where 

tV 

W.5 LV) - 1J (2.56) 

Physically, .the above result indicates that, in the presence of a 

harmonically oscillating wing, a fluid particle traveling from far upstream 

attains a sinusoidal downwash velocity of varying amplitude (a convecting 

" gust). Since for the present eigensolution .~4' /~.e= 0 at the wing, the 
AI 

complex amplitude of the sinusoidal gust W~(y) is constant across the 

chord, although it varies with y. Therefore, one eigensolution is 

essentially the solution to the Sears problem: the interaction of a 

convecting sinusoidal gust of constant amplitude with an airfoil. . 

Using (2.55), we can rewrite the boundary condition at the wing in 

terms of downwash as 
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I'll ~ b '" t: =o± (2.51-) 

Using Wu's method, the' solution . of (2.36) with ~~ 0 as 
A 
r~oo is 

determined. For later use, we present here the acceleration potential in 

complex form • 

. 
r (. " . U W~ S U(.) [A 1 ;-Se",..'S (:r ~ 'I) =- -t !:J t'f) . -, CZ.S8 a.) 

where . 
/'W(. A 

~ lx)-
S«('(s 

. (2.5eb) 

A is defined in (2.47) and S(k) is the S~.rs function defined as 

(Z.59) 

S(k) is shown as a complex vector in Figure 2.5. (2.58a) is a 

generalization of Sear's. original result (Sears (1941» in that it gives 

the pressure throughout the flow field. . 

In passing,' we. note that a· similar analysis yields the eigensolution 

for the steady case as a flat plate at an angle of attack. This result can 

also be obtained fran (2.583,) in the. limit of steady flow (w~O) • . 
~ . 

In addition to ~.c ' .. , there are an infinite number of eigensolutions 
. weCl'f ~ 

which satisfy (2.36) but do not vanish at infinity. They can be found by 

inspection as 

IT} ~ ~) J) ~ , i) + (W/A) ~ .~ 
1:., ~)(. - T Z0.l h~c;\vc: 

\.Z.bO) 

. 
. ""'-1 L " 

~2. eX) := (.z.61) 
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The first member of this family, (2.60), consists of the pressure field of 

an airfoil in heaving motion of unit amplitude and the pressure field 

necessary to cancel out the resulting vertical acceleration at the airfoil 

" so that 'dtp /7J"l-= 0 • The second eigensolution, (2.61), consists of the 

pressure field of an airfoil in pitching motion of unit a~plitude and the 

pressure field necessary to cancel out ~he resulting vertical acceleration 

at the airfoil. The other eigensolutions involve oscillating airfoils with . . 

chordwise bending. In each eigensolution, while the airfoil term vanishes 

at infinity, the remaining terms do not. As we will see, in the present 

theory to obtain the leading' three-dimensional corrections, only ~~eays is 

required. The other eigensolutionsenter in at higher orders. 

Expansion of Inner Solution for Small Reduced Frequency 

In the present model, since the wing chord c(y)/A ~ O(A-I) (see 

Figures 2.3a and 2.3b), the reduced frequenoy based on the chord 

k(y)' = (WIU)c(y)/A is also O(A-I). Hence, k-+ 0 as A~oO. Therefore, we 

must expand all elements of the inner solution for small k. These contain 

Theodorsenfs function which we expand first. 

lC l k.} .I'oJ I + j k. JO) (" 'II k /2) - ~ k + 0 ( k.
2 k., 2. Ie. ) 

d:ll) I'.J 1-1' [~ ._j t:J (~I1>/2.)JA-' _j'YA-1l oj A 

+ OlA-2.-t:J'zA) 

(2. 62) 

(2. 63) 

where log '(I = '( = .57721 ••• is the Euler constant and -V (y) = ~ c( y)/U is 

the reduced frequency based on the magnified semi chord c(y). The 
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expansion in (2.63) displays the aspect ratio dependencies explicitly • . 
~ 

The expansion of tj).2D for small k is obtained from (2.46b) using 

(2.63) • 
. 

~~D (:t)"-I ~~D'I (~) +A-'~OjA ~~D,2(~) 

(2..64) 

where 

(.t. '4 0..) 

-L" ., III -. . VI-
't'20Z eX) - J'Y 01... , 

(Z.'4b) 

. ' 

~ ~DJ 3 cb :0 ~ "/ U z 1 H 1,'j (1 ,,)If.t. )+ J ~ J .)(+b}." c: 

. flcb1 +¥8.. Fi +/fz
_ C

Z J] Cz..~4c) 

are all O(Ao) quantities. We note that the A-Ilog A term in (2.64) 

originates in the expansion of Theodorsen's function as mentioned earlier. 

~. denotes the imaginary, part of ~ complex quantity with respect to i. . 
. . . i 

We wll~ see shortly that there is no need. to expand ~ !).:o.rs for small 

k. The expansions for the other eigensolutions are readily obtained from 

the -above expansion for 4J~D' Setting 0( = 0 and ho = 1 in· (2.64) 
. 

. \" 

(2 .64c?, we obtain the expansion for '-V:l O, he"ve. which leads to 

(.2.6S) 

Similarly, setting ct, = 1 and ho = 0 in (2.64) - (2.64c)" we obtain the 
(, 

expasion for. ,I J t L and, hence, 
1%0) \3i .;n 
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~ ~ (~l '" (* t l( i - 2 j "'.!' 1: - U:L .9.: (A) 

+ A-I ~ A j y U 2 Si. [A 1 

- A-I j .y U 2. (L '" (~('I/2.) + j f] !i. [A j 

+ t 9i [- 1 + J ! 2. - C z ]1 + 0 ( A-21~2. A) 

(2.66) 

Similar expansions can be obtained for the remaining eigensolutions. 

The inner expansion, ~hus, becomes 

N • "-JC:,.. Nt: ..... 
r.p L ct) ,..., tp 0 . , l X) + A-I 103 A 4' 0 :z. ~ X ) 

J . ~ 

~ A -\ t$;~ 3 ~ t) + q (A-Z 1".) z. A ) 

Each element of this expansion contains all possible eigensolutions, i.e., 

. 
~L" Nt,. . 

l\J 2 D n (t) + F n l "I ) 4J S olc:u' S ( 1 ) 
I 

.N l " 
+ 3nl~) ~.z.(-;) + ... 

(2..66) 

N' 
• L ~ 

lflo n . <. )( ) -
J 

where the as-yet-unknown functions Fn , fn' g", ••• a:e the respective 
. L 

w.eighting functions for the eigensolutions present in LPo f\' These will be 
. ) 

determined by matching. the acceleration potential in the field and the 

downwash at the wing. Without loss of generality, we assume that Fn , fn' 

o 
g , ••• are O(A). Also, 

n 

(~.69) 

. 
where we have absorbed the terms multiplying gi. [ A] in il' ~~CI."'s' (2.~8b)., 
into the unknown functio n F 1'\ (y) • Hence, th ere is no need to expand ip "S.:o.Y""S 
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L 

for small k since" t\J S4WfS is independent of k. 

Outer Expansion of Inner Expansion 

In the next section, for the purpose "of matching, we will need the 

outer expansion of the inner expansion, i.e., an expansion for (2.67) as 

A ~ 
r-'?oo or, equivalently, an expansion for A~CX) with r = rIA = O(AO). This 

can be" done using the following expansions (written in terms of the outer 

variables). 

~. [Al ~(~) S\~e_ i (~);t sl;~e + i (~)3 SI~;S+ O(A-4) 

" l2-. ::r-O) 

(.1.1-1) 

Using "(2.70) and (2.71), the outer expansion of (2.64a) - (2.64c)" is 

"" found to be 

~ ~:'I (~) ~ irrp {[ -.zlf PU2. (. ~ ).x} S\~ e 

" "[ " :z. i C)2.. ] + "IT pU "\ A 0\" 

"+ [ _ IT P U 2 ( "~ ) 3 ~ ]" 

_..L ) [.;l rr P U:l.j I~ (~) "~ ) 

J.rrp ( " 
Sit'! e 

'r 

(2.r2) 

+ [-npv2.°j'\l (~{",,] '5\<'/:_ -\- O(A-
3 l) °(2..13) 
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+1fPu2j,y {(~('t~~i2)+j} ]~+~}(~\l. 

+ O~A-3) } ('%.."1-4) 

c.. 
The outer expansion of 4JS~r5 is given by (2.70). The outer expansion of 

the other eigensolutions are obtained from (2.65) and (2.66) using (2.70) 

and (2.71). Thus, 

UJ'Z. -A + ' "[ ... . \ <In a ~ 1 
'(" ~,r\ e" ~ -:zft pu'" J" - =--'(' + O(A-"') zrrp A~ 

(2.. '1-5) -,0 " 
~i l~) N t u.)2.. r ~ ~\V\ ze - zjw V r S\r\ e 

• 

;- :z.'rr P [ ~ 2rf PU 1. c*) "5\~,.. e + 0 (f\-:Z) ] 

(2..=1-6) 

This completes the inner expansion and its outer . expansion. " The 
" io" " 

result of James (1975) for t.p is basically correc"t, except it lacks the 

eigensolutions, it has not been expanded for k~ 0 and has an extra factor 

of A-I. Van Holten (1975) does not give an expression for LV
lo

• In the 

next section, the inner and outer solutions for the acceleration potential 

are matched. 

2.5 Matching 

As mentioned earlier, the inner and outer solutions are incomplete 

representations of the full problem~ each lacking ~ome essential features. 

The inner solution is incomplete since it lacks the boundary condition at 

infinity which gives rise to eigensolutions, the amount of which are still 

unknown. The outer solution is also incomplete in that it lacks the 

) 
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boundary ·conditions at the wing. As a result, the load distribution in the 

outer solution is unknown (~p or the strength of the multipoles, i.e., 1, 

m, q; ••• ). 

The solution is completed (except for determining the amount of some 

of the e1gensolutions) by· ma~ching the inner and outer solutions for the 

acceleration potential. The amount of the remaining eigensolutions is 

determined when the downwash at the wing is matched. Here, we employ the 

asymptotic matching prihciple of Van Dyke (1975). For the sake of brevity, 

we employ the notation: 

YY'\ 1 .. : m-term inner expansion 

1'\ ¢ : n-term outer expansion 

. The asymptotic matchingprinc1Ple then reads 

Ml.Cn¢) ~ ncp (mI) 

W.e now .summarize a· st.ep-by~step applica Uon· of the ma·tchiilg .principle 

to the ·present problem. The matching order is depicted schematically in 

Figure 2.6. We will use the outer expansion (2.21); the inner expansion of 

the outer expansion (2.30); the inner expansion (2.67) and (2.68); and the 

outer expansion of the inner expansion (2.70) - (2.76). The inner and 

outer expansions must bema tched . with respect to the same·· spa Ual 

variables. 

Matching. m = n = 1 

(2.1-8) 

where 



47 

1I( 1 ¢): 

where ~.= A'r _ A J).:2.. + ~:L. 

1 I: 

,"OJ C. 0 . 
" ..... (. ., 

- t " 

tV eX) ,..., tpO}1 t X) - t¥:ZD,,1 lX) 

roJ " " 

+ +, t 'I) ~ I <. X ) + 31lY) 

1 ¢( 1I): 

S\I"\ e 
x 
r 

+ F, l'f) 

. 
-l. 1\ 

iE (x) 
2 

.-( 

YJ'S~\ors 

+ " ,. , 

( .2..7-9) 

"-

tx) 

c.z.. 80) 

"5\'" e 
r 

...... ~ 0 " . -- t' 0 ., 

. + +,l '1)~, (X) + :), ( V) tf 2. (x) .+ .. .... (:LS\) 
. 

where tf'j(.o and ~~c are given in (2.75) and (2.76). Matching (2.79). and 

(2.81), we obtain 

,... . 

.Q. l V) - - ,.HT PO 2 ( ~) ~ + ~ IT P ( ~ .)F, l \f ) (2.. e:z.) 

...... _0 (.2.83) 

Thus, to leading order, the solution contains no eigensolutions, except 
. I. 

possibly lPS(!Q'fs' Section 11ft consists of the two-dimensional 

. quasi-steady value plus a possible contribution from 4>~~t'S . 
Matching. m = 1. n = 2 

2¢: 
b .... 

'--0 .-1 

[ ;" s ..t l1) if (X),..., J1 + 4iTP R. -b 

) 
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(z.84.) 

1I: 

2¢(1I): 

~L\b .~ frrp tL -:111' PU2. 0( +21\' f Fll'!) j l ~) ~\~e 

+ [lfPU:!."': ~np F,m] (~y' S\"::"} (;Z.8"T) 

Matching (2.85) and (2.87), we obtain 

.... 
.. .Q l'f) = -.l ri P u;t ( ~) 0(. -\- :uT P ( ~) F, ( 'f ) (:2... 88) 

At this stage, . section lift and moment have their two-dimensional 
. 

. c:. 

quasi-steady value plus possible contributions from 4J~rs. 

Matching, m = n = 2 

~ 2..90) 
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2I(2CP): 

(2.91) 

2I: 

. 
+ A-I 1.,5 A ~~'l. lb + A.,-I 4{3 l~) (2 . .92) 

+ ho 1 (.c.) .Sin e + ;tIT P F ('f) (S::.) 5in §. 
A \.A r 3 A r . 

Matching (2.91) arid (2.93), we obtain 



50 

,.., . 

.Q,('1) -= -~rrpu:z. (~) ()( + .2rrp ("~) F,l'f) 

+ A-' ~Oj A [:ur P U 1.. j l' ( A ) ~ + 2TT f ( A) F2 ('f) ] 

+ A-' i -;I. IT P u:t j.y lLlOj ('(,'I" 12..) t-j ~ + IJ ()I. 

+:l't1(*) + .tITf(~)F3l'f)} (Z.94) 

+2. l'f) -:::. '3
2 

t 'f) =: ,.... = 0 

f3 ( 't ) - ~ 3 \ 'f} - ... ,..... -::. 0 

(2...95) 

(Z.9 '=1-) 

. . .' ~~. '. - .... ~ 

.Thus, we find that to O(A ) only the sears· eigensolution t.Vse~ .... siS 

present in the solution. Furthermore, while section moment remains the 

same as in the previous level or matching (see (2.89», section lift is 
. . .' . . . 

further refined with two-dimensional unsteady information plus a possible 
-

contribution fromtV~"s' We will s'ee in the next section that the latter 

represents the three-dimensional unsteady correction. 

Matching. m = 2. n = 3 

3¢: 

qJ°{X) ..... .=L. 5 ~ ,b :e:Vll 
. 4fTI' l ~e~b R. 

(2.98) 
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2I(3¢ ): 

2I: 

$ ~ ( ~) ""' ~ ; 0 ~ \ l ~) .+ Fit 'I J qJ ~CArs t ~ ) . 

• + A~llo3 A l ;P~~,2.( ~) -t- Fz (y);:P~Q'5 l;) J 
+ A-I L ~ ~n" (b + 1=3 ('f) ~~,,~ .. (~)} (2,100) 

3 ¢ (21) : 

f"ti) ~ :/~p lL'-:2TfPLJZ 0( + 211" P F. (Y) J (~) s,~ e 

+ [ IT P U:2..o(_ TT f F, ty) J \ C.)1. ~I" 1.9 
. A . r~ 

+.r -'iT put 0<.. + IT P Fl ('I) 1 \s-A)3 ?\r\ 39 1 L . ,3. 
+ A-I ~Oq A --L 5rl.:t"T\ p OZ j.y 0( +..z IT P Fi t'1)l lc:..) $\1'\ e 

J ;(lTf ~ . . J A ,-

_ r it" P l)2. j.y 0( +- IT P F, ('1 >ll c.A) i. $\1\ 2~} 
L . rZ 

+ A-I .2np i -;ZIT P U Z hIll &"3 ('&,1/.2.) +j li +1] cf.. 

+. h}l £.) 'Sine 
. c.. A r 

+'[f PU z j "i 1 L ~ l ~,'}I12) +j % ] ()( + ¥ } ('A/- s.~~-+ 
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+ .:1TTf F3 (,/) ( ~) s.~ e - iiI' F3 l'O CA)1. S.n .... ~ } 
(2.. lOt) 

Matching (2.99) and (2.101), we find that section lift is given by (2.94) 

and 

Ml Y) = _°TrP U1.(t)2 oi. + rrf' <. ~ ) 'Z. F, <. 'I ) 

+ A ~\ JOj A [ If PU Z j 1l ~ f2. £X + rr p ( ~ ) 2. F2 ( 'I)"] 

+ A-I l-rrl'U Zj ~ 1l1o.J (1. ')lIZ) + j Jt ] IX + ~ }. 

• (~) Z + 'IT p (-~f F 3 ( Y ) } , (2. i 02 ) 

(2 .. i03) 

Inothis level of matching, we find °that, while section lift remains 

the same as in othe prev~ous level, section moment is further refined with 

two-dimensional unsteady information plus a possible contribution from 

4J~QYs. We will see, in the next section, that the latter represent the 

three-dimensional unsteady correction. At this level, we also note the 

appearance of the second moment of section lift, namely q(y), which has its 

two-dimensional quasi-steady value, namely -if pug (CIA):3 0<. • 

t. 
The next level of matching (m = n = 3) lnvol ves tfJ4 which is the 

(. 

solution of the Poisson equation in (2.37). The outer expan~on of 414 has 

the behavior r log r sin e , ° r sin e and' sin 26 which will °match with 

higher-order terms of 4J0'-, (2.30). Further, at this level, for the first 
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ITI.L time, the eigensolution '±' ' which also has the behavior r sin e in the 

outer region, may enter into the solution. However, for reasons we already 

mentioned, we will not carry out the analysis to higher orders. We will 

see in the next section that the present analysis through (m = 3, n = 2) 

level· contains the leading three-dimensional correction. 

We can now construct a composite solution, namely one which. is 

uniformly valid (to O(A-~» throughout the flow field. Such a solution is 

given by 

LpC '- 4>.\. + ~o 4J to 
(2. 104) 

- q/ . 41 0 
+ . if 0(, 

tiJ ~o_ I hOC: is where T ~ the common solution. 

. 
<-

To O(A-2 ), ~ is given by (2.100) 

which, using (2.64) -(2.64c), may be written as 

l.:2.. io5') 

without altering its accuracy. We will see in the next section that using 

(2.105) instead of (2.100) will faCilitate downwash calculation greatly. 

To O(A-2.), 

(.l.\o:r) 

i n = - {o.{'1) 
~rrp 
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where 

(2"08) 

o 
is the two-dimensional quasi-steady section lift. Here, 4J consists of a 

AI 

spanwise distribution of three-dimensional dipoles of strength ~o( y) and 

l\JLO 
IV • 

is a two-d1mensional dipole of strength £o(y). 4J \.c) is chosen in 

such 
. 0 -2 

a way that it is equal to 4J in the inner region to O(A ) and it is 
, 

equal 
c. " -z 

to" top in the outer region toO(A ). 

Clearly, the problem is not complete yet since the solution as it 

stands is nonunique due to the presence of multiples of 4J~.,.sas 

indicated ~y the as~yet-unknown weighting functions F, (y), F2 (y) ~d F3 (y). 

In the next section,we will determine Pi , F2. and F3 and," thus," complete 

the solution to 0(A-2 ). 

2.6 Integration of Composite Pressure· Field to Achieye Uniqueness 

To achieve uniqueness for the solution, we determine the downwash by" 

"integrating the composite pressure" field tpC from far upstream.to some. 

point on the wing. 

The linearized Euler "equation in the z-directionis given by 

(2.\09) 

Iriverting this, we obtain the downwash. 

d~ (Z.IfO) 

where the linearized path of integration is the straight line, parallel to 
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the x-axis, from far upstream to the paint in question. For points on the 

wing, the path is defined as 

~. - -00 ...... X 

lYl "b (2.. Ill) 

~ _ 0+ 

which passes over (or under) the leading edge where one might expect 

difficulty due to the singular behavior of pressure and downwash there. An 
c 

examination of 'dl\l/dT; near the leading edge reveals that 

. 
OtpC 'dtpL 
.-r..J_~ 

o~ vi 
" 'S ~ - C.lYJ 

which is not integrable. 

Calculation of Downwash at· the Wing Due to . 
lil(. wL First, We calculate the downwash due to T ,say , which is obtained .. 

from (2. 11 0) , after replacing rli C T by 111 L .. and introducing the inner 

variables. The difficulty at the leading edge can be resol ved by 

considering the general case of ~ ~ o. After expressing the integral in 

terms of complex variables, an integration by parts can be performed. This 

reduces the order of the' leading~edge singularity to -1/2 which is 

" integrable. Then, we can take lim z ~ o±. Since the downwash field is an 
~ ~ 

even function of z, it suffices to consider. lim z ... 0+ only. 
" ,.... ,,: 

IntrodUCing the complex variable S = x + i z and the complex 
. 

",to, ,1\ It. acceleration potential for ~ namely f (~ ,y,t), (2.39), into (2.110), we 

" . obtain, for z F 0, 
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" . . ~ 

#OJ c.. ~ -I g {J' d w (X)=-u. --;:: 
, .A "dr 

-co +c.i: \ 

" 1\ 1\ 
where j\ = §\ + i z. Integrating by parts and noting that 
-t' ~ ,. , 
f (_00 + i z,y) =·0 (because both f.,O and ..r (see below) vanish ~ 'TsCGV"s 

A as r _ co), .we obtain 

(:Zw. '\5) 

. -. 
+Jw 

. VA 
I\.}' .. d!, . 

. 
L 

where f has a square-root singularity at the leading edge which is 

in:tegrable. 
. ~ '" 

Hence, we .·~n take lim z -+0 +',. resultiilg in 

(2. \, 6)-

" ... ·-l 
j W (~-X)"A " 

e d~ 

" \ X \ ~ C.l'f) 1'(\ ~b 

The above procedure is depicted schematically in Figure 2.7. 

-2. i ;.".tL J'C: To 0 (A ), f co ns1.s ts of f"D and. T S '. where T -.: is th e complex 
.,. ~(lt~ ... <..",.s 

form of 1!J~'. ~~. is obtained from (2.58a) after removing the factor 
.. S SC&A:r~ . 

U~(y)S(k) which is absorbed into the function . Fn(y). As expected, . 
<-substituting f

20
, (2.46a),in (2.116) yields the prescribed downwash at the 

wing, 1.e.,· 
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IV • " 

W (. ( X • 'f) 0+) 
20 ' 

." 
\ X \ ~ Cl'l) 1'1 l~ b (2. \I~) 

In arriving at this result we have made use of some of the analytic 

properties of the functions [( l - c)/( -i + c)] 112, and [~% _ c2 ]1/2. which 

are listed in Table 2.1 below. Each of the functions has a branch cut 

" A from J = -c to 1 = c defined by 

" l1+c:)<;Ur 
(2..118) 

..... 
Cl - c.) <..zrr 

Further, we have made use of the integrals developed in part 20f Appendix 

l ~ -C 

"S + c: 

J'IZ J ~1._ c:~ 

1\ A LC
- X f2 j c:"Z. _ .;:z.. \X\ ~c 2: = 0+ L .l. 

<:.+~. 

[c~~rt -iJc'--R2 " '" . 
Ix I ~ c. ~":"o- -t 

c+ )( 

,. "- [x _C JI/2- - Vi.. z. - cz.. )( <-c .'C, =0 
x+c 

" "- P_C]"k J X 1-._ X ~ c. :e -=0 c'Z.. 
x+c. 

Table 2.L Some of the analytic properties of [\ -S - c )/( -St- c. n" 21 

and [~ .to _ c:z. ] liZ. • 
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r. (. . , 

The downwash at the wing due to =t=SC4~S' say WSc,,"Ys" is obtained from 

(2.58a) and (2.116), using some of the above mentioned integrals and Table 

2.1. 

W,., c:... j1T -jw X A-I [ (1) (~) J 
SUi S (X I '1.1 0 +) -= 2u k e H, ( Ie.) + j He ( Ie. ) 

tZ,l\9) 

. 
Clearly, the downwash at the wing due to f~ is that in (2.57). 

• s<~ ... s 

Putting the above results for W~ in (2.110), for points on the wing, . 
and 

. , 
setting the computed downwash equal to the prescribed value We , we 

obtain the following equation for F, ,Fzand Fa-

.~)=~). 

+ b!.. k;jw~ [F,<. y) + A-~~~ A Fz t'l) + A-' ~('f.))(H~2't~).+ jH~-Z\k)1' 
.tU 

(Z~ IZO) 

\x \ ~ c..l 'f) I A l '{\ ~ b 

where 

(Z. \ 2 I ) 

._ X 
.-;.J w X ,., oe.' . \ J 
e Vi tX,'f,T:}=='U 

. -co 

(Z.. \22) 
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are the downwash velocities due to the outer and comllDn solutions 

respectively. They are grouped together,' in (2.120), because, as we will 

see below, while each of them is singular as z -+ 0, their ·difference is 

finite. Further, in -(2.120), we note" that the 
(. 

downwash due to ill 
Tl.l> 

identically cancels out with the prescribed' value at the wing. This 

demonstrates the advantage of assigning all of the wing' boundary condition 

we'- to the lowe~t order inner solution tV~ which makes ~; = t.V~D (see 

II,' i Ji,L (2.35» and of replacing the two-term expansion of "1"z-oin t.p by '1'2.D 

(see(2.105». 

We now consider the balance of the two remaining terms in (2.120). 

After cancell1~g out the common sinusoidal dependence on x, we conclude 

that, since the first term is independent of x, the second term must be 

independent of x too. Hence, we need to evaluate the second term for one 

value of x only. It is convenient to choose x = o. 
,...Q 

W (O,~,z1is then t~e 

iliO downwash· due to ~ near the loaded line which consists of a spanwise 
N 

distribution of three-dimensional dipoles of strength lo(Y) (see (2.106)). 
~~ ~ 

Similarly, W. (O,y,z) is the downwash due to t.lJ near the two-dimensional 

'" dipole of strength lo(y). Clearly, both downwash velocities are singular 

for x = 0 and z = O. Hence, we seek an expansion for each, for x = 0 and 

small positive z. In each case, lim x~ 0 must be carri~ out before lim 

z-'P- 0, otherwise infinite dow nwa sh velocities will be encountered. 

PhYSically, this can" be seen by considering the downwash, as a concentrated 

vortex, say at ·the origin, is approached along the z- or alternately the 

x-axes. 

In order to be consistent, first we expand the Hankel functions in 

(2.120) for A_co (or k ~ 0) • Using the definition of Hankel function of 
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the second kind (see (2.43» and the asymptotic expansions for Bessel 

functions of the first and second kind of order zero and one for small 

arguments, it can be shown that 
. -\ 

{-j r k. [H:Z\k.l+ j I-I~Z) (k.) 1 } ~ \ + 0 ( A-I .f.~ A) {Z.\2.3) 

Using this result, (2.120) becomes 

(2.IZ4) 

NO 
To determine r; , F2. and F

3
, it only r.emains to determine lim [W (O,y,z) 

~oC: . a~O-t-
W (O,y,z)]. 

o 
Calculation of W (O,y.z,t) as z~ 0+ 

o 
Substituting q; , (2.106), in (2.121) with x = 0 and interchanging the 

order of integration, we obtain 

We recognize. the expression. in' the braces as the three-dimensional, 

nonplanar (z ~ 0) unsteady kernel function of lifting-surface theory in 

incompressible flow for Xo = O. The general form of the kernel function is 

CZ·i26 ) 

with the corresponding integral equation of unsteady lifting-surface theory 

given by 
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'" , 
Wo (X,'(, o±) :: --. . 4rrpU 

where 

XI)= x-§ 

(2.lZ8) 

Yo· = '/- '1 

To evaluate the kernel function of (2.125), we start· with the general 

form in (2.126)". K3U can be evaluated in terms of special functions. For 

example, see Widnall (1964) for z ~ 0 and Watkins, Runyan and Woolston 

(1955) for z = O. The latter contains many useful integrals and relations 

for the evaluation of the kernel function.. The full nonplanar K 3pis given 

by 

-e 
j w Xo 

d)' 

'- 'Z. jw~o 
(21j<+X;-)Xo 

JWXo 

1 JwXo e· e 
(2.i 29) 

~2. Jrj"Z. + Xo" 
+ 

<.-Xo2.. +r, 4) 3/"z' r.2. , , 

where In' Kn and L" are modified Bessel functions of the first and second 

) 

) 
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kind of order nand modified Struve function of order n respectively and 

( z.. i 30) 

For Xo = 0, (2.129) reduces to 

-2. Z { , ..~' - '} W -~ K (- ) .. 1t [I 1- ) L ._. wr J 
. Z\"Hj -J- 2. "w r, - ztwr,)j~ --::- . (~.131) 

r:2. 2. 3 wrl \: 
I . 

In order to understand the nature of the singularities invol~d in 

'(2.125), we note that, fr.omthe vortex viewpoint, the outer solution 

consists of a loaded line which is a harmonically oscillating concentrated 

,vortex with the accompanying wake of, shed and trailing vorticity. As in 

the steady flow case, we e~ect the contribution of the trailing vorticity 

to the, downwash at' the loaded line (x = 0, z .... 0+) to be finite •. This 
, . 

contribution can be expr.essed' ~ an, integral with a second 'order 

singularity in the span direction (or atter an integration by parts, a 

, Cauchy singularity). The contribution of the straight loaded line is 

clearly zero. The co'ntribution of the shed vorticity is logarithmically 

infinite; an idea familiar from lifting surface theory, namely that the 

downwash at the edge of a vortex sheet, containing vortiCity parallel to 

the edge and of finite strength, contains a logarithmic singularity. 

Formally, we substitute (2.131) into (2.125) and, by inspection, group 

the terms in the kernel so as to identify the above mentioned logar~thmic 

term and the classical second order singularity of wing theory. Let, 

-0 ~o ~o· 

W (o,'I/r) '= W, ,(o,"I,t) + Wz to/'t,c) 

~o ~o' , 
+ \"3 (0, YI ~ >. .+ \" 4 ( 0 I 'II ~) 

(2. 13Z) 
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where b . -

W ~ lo) '1, ~) - 5 d1 Io \ 1) [-j w 
4rrpu -b' '\ 

(z. i33) 

b .... 

-4ITPU L d1 t(1) [~ K, Uotj) - W~~: K2. (i;; '-1\1 

(t..i35) 

"";0 
WI' (2.133), contains the "logarithmic term which can be isolated using 

the following procedure' familiar from siender-body theory (see, e.g., 

Ashley and Landahi (1965), pp. 102-103)~ We note that the logarithmic term 

arises from the term (_jw/r l ) in the kE!rnel of the integral in (2.133). 
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It can be shown that the last term here can be appooximated as 

b 
(2. i38) 

=5 
-b 

where the last integral has a removable singularity at y = ~. The first 

term on the right hand side of (2.137) can be integrated and expanded for 

small z, to obtain 

b 'f1J 1-

lb [y/ + z:ZJ3/Z q~ = - Z -z ~ (~/bl 
(Z.l34 ) 

,+ l~ 4 [ \ - ( V/b ) Z] +, 0 (T; Z ~Oj ~) 
NO 

Combining the above results, we obtain an expansion for WI for small z. 

\~lc'(OJ'i/~) _ ,_)Oi 1 (y) {'-. z-'Z ~q t~/h)+ t" 4[1-<Y/bJ2.J} 4rrPU 0 J, J, ", . ' 

" b ,,,,AI 

,_ ji:O "J ~o(') -fo<'Y) d1 +. O(r:z. ,'~. 2:) .(t.. i'4o) , 
4 rrp U _ b ' ,I ~ - , I, 

"'0 ' 
Vlz., (2.134), contains the classical second order span singularity of' 

wing theory. 'First. we break down the integral into three parts. 

Y-E 

=.J (Z.141)' 

-b 

where e > 0 denotes a small neighborhood of' the singularity at y = 1- In 

the integral containing the singularity, we introduce'the expansions 

(Z~14Z) 
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(Z.14'3) 

~ N N/ N~ 

~O PUN ~O lY) + (~-y) 10 ("0 + t. (1-Y)Z. ~O ('I) -t (2.144) 

and the change of variables 

Then, we integrate term by term and take lim z -+- 0+, to obtain 

N . z n - E ·"to ty) + OCE.) <'2.145) 

Clearly, the first term here is the contribution of the first term in 

(2.144). The second term of (2.144) makes no contribution and the 

contribution of the higher-order terms is O( E) which vanishes as E~O. 

Asz ~ 0+ and E -. 0, we recognize (2.145) together with the remaining 

two nonsingular integrals in (2.141) as the defini t.ion of the principle 

value of an integral with a Second order singularity given, e. go, by 

Mangler (1951), namely 

\::l '1- e 

5 = ~\~. [S 
(.l a.. 

-(2/':) Ft'OJ (2.\46) 

. In (2.134), since the contribution of the part of the kernel 

containing K2, to the integral is O( l-), as z ~ 0+, it vanishes everywhere 

except near the singularity, where it together with the rest of the kernel 

gives rise to (2.145). Therefore, we may drop the part of the kernel 

containing K2 and put an x on the integral sign to signify the principle 
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NO 

value defined in (2.146). W2 ' then, becpmes 

b 

j 
-b 

AI 

_L_C,_) _ .J 1<, (.i') dVl + 0 ("t?,) 
('f-~)Z I 

(:z.i41-) 
where 

lz.148) 

-4 
and we have written the integrand so ,as to display the (y - '1 ) 

singularity explicitly. ' 
NO 

Next, we consider Wg, defined· in (2.135)" First, we break down the 

integral into three parts as .in (2.141). In the integral containing 

'1 = Y , we ,expand the integrand using the following asymptotic expansions 

for small arguments :. 

to obtain the approximation 

'/-rE 

j .. J~ t Vrp 
'1-€ 

. (2.\49) 

(2. ISO) 

oTT -2 1. )'4 W .+ O(C ) 

It is seen that the contribution of the part of· the kernel containing 

I z - L z. to the integral is O( zZ) everywhere and thus vanishes as z ~ 0+. 

On the other hand, the contribution of the rest of the kernel is 0(1) and, 
NO 

hence, they are retained. W'3 then becomes 
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This integral is nonsingular. Here, we have written it in a form to be 

"'0 
combined with Wz, (2.147), later. 

NO .. 
W4' defined in (2.136), is given by 

This integral appears in slender body theory where it is shown to be 

O(log z) as z-+O (see,e.g., Ashley and Landabl (1965), pp. 102-103). . 

Hence, 

(z"iS4) 

Combin1ng the above results, we obtain .. the following expansion for 

NO 
W (O,y,z) as z-'O+~ 

b 

f 
-b 

where 

N' 

_t_( ~_) _ 1\ lw \.'( - ''1\") ~ "\. 
(~_l'J)2 

IVI ~ b (Z.'S5~) 

(Z .1556) 
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The unsteady induced downwashof James (1975) is closely. related to 

"'0 W. In the present notation, it is given by 

(2.156) 

. where 

Thu~, IT' is just the first term of the three-dimensional unsteady. kernel 

function K30 for xo:: 0 (see (2.131». James does not show that the 

integral in (2.156) is a principle value integral as indicated. In fact, 

it is not.. This integral contains a nonremovable logarithmic singularity 

discussed in the above· (arising frCXll (-j}'-) term in 11')' and is, hence, 

infinite •. 

0(,' . 
Calculation of W (o.y.z.t) as z ~ 0+ 

Substituting tP°i ,(2.107),' in (2.1~2),. Wi~h x'= 0, and inte'rchailging 

the order of integration, we obtain 

jWA 1. . 
e . d~ J (2. ISS) 

We recognize the expression in the braces as the two-dimensional, nonplanar 

(z ~ 0) unsteady kernel function of airfoil theory in incompressible flow 

wi tho x 0 = 0.. The ge neral form of the ke rne1 funetio n is 
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with the corresponding integral equation of unsteady airfoil theory given 

by 

TE 

W
c

(X,04-) __ ,_ r ~fC~) 11~ K20 
.2rrf U ~E -e~o± 

To evaluate the kernel function of (2.158), we start with the general 

form of the kernel in (2.159). Using particiJ. fractions, KzDmay be written 

as 

Xo jw~ Xo jWA 
: -jwXo) d 

U<a 
·e d~ ~ J -e 

I<.20 (Xo,:e) :1.e. - A+jZ:" ~-J~ 2 oe -co 

(2..,'1) 

In the first integral, we make the SUbstitution 

s = w (~+j ~). <.. 2.16Z) 

and, in the second, 

(2.163) 

to obtain 
;:J()<a-+j~) . 

. KzO lX., ~) = { ;jr;;x. -Ode [ e",e5 $"' e
js 

ds 

'-o;)'+J'w r 
w<'Xo-)c) 

;:W~ SSI ~js cA~ 
-c:o-j~~ 

To evaluate these integrals, we make a further substitution 

t.= j '5 

(Z.I(;4) . 

(2.\65) 
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-w (e-t-jco) 
Ul(i:+jXo ) 

;."': s. -I:-'-:t J-I:J 
wt~-JC:C) 

We evaluate these integrals by contour integration. For reasons·. mentioned 

earlier, we consider z >0. Xo is arbitrary. 

The contours for the eval~tion of the first 1ntegral.in (2.166), sal" 

I" for Xo > 0, Xc) = 0 and Xo < 0, are shown in Figure 2.8. In ~ach Case, 

the integrals along C" C 20 and C3 , in the indica ted directions, are denoted 

by II" ,I l and I3 res~ctively •. ~3 consists of a circular arc .Of radius R· 

centered at the origin. According to the reSidue theorem 

. I, - I z +l 3 = 0 

.It can. be shown that, as R ~ 00 ; I3 .vanish es, resulting' in 

I I == 12 = E. L (~I ) ·(Z·.i~8) 

where 

(2.i69) 

and Ei is the complex exponenti,al integral defined as 

__ fS t,-I.o t J.t 
EL t~) '- (Z.Ih» 

-co 

with a branch cut along the positive real axis. 
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The contours tor the evaluation ot the second integral in (2.166), say 

J" tor Xo > 0, Xo = 0 and Xo < 0 are shown in Figure 2.9. The integrals 

along C" C2.' C3 and C
4

, in the indicated direations, are denoted by J, ' 

Jz., J 3 and. J4 respectively. C3 and C4 are circular arcs of radius R and p. 

correspondingly. Again, Jg vanishes as R ~ eo. In the following,. we apply 

the residue theorem to each of the contours. 

i) x 0 > 0 

The resid':1e of the simple pole at the. origin is unity. Hence, 

where 

(Z.11!,) 

ii) Xc = 0 

J41s one half th~ resid~e of the simple pol~ a.t the origfn? as P~O. 

Hence, 

iii) . Xo < 0 
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Hence, 

3'\ = .J z. _. Ei. (+z) 

The three cases in the above can be combined to obtain, for all Xo , 

. (Z.I~7-) 

. where the generalized function in the brackets. is defined as 

.. , Xo ,>0 

)(0 ::. 0 XQ - :0 
l){o\ 

(Z.\T-8) 

-\ X.O <.0 .. 

Su~stitut~rig. II' (2.168),. and J" (2.111), in (2.166) .an.d carrYing out 

the indicated differentiation; we 'ob~a1n 

-Xo' jGl 
-= y..}-+ 'C2. + T 

s -~ 
le.I Ei. (~I) 

[ Ei l~2) +\13(\ + fxJ 11 1 
This is the two-dimensional, nonplanar unsteady kernel function of airfoil 

theory. The first term of (2.119) is the steady two-dimensional kernel 

function. 

To find the limiting form of the kernel function indicated in (2.158), 

we use the following expansions. 
co . !~2.Y\+') 

E.i. C!R. ±jo) = E~ l-!R,) "+ ITj + z. I. -(-2"'-+";';,;;"') ~-(-2t\--r-· ,-) 
n==o 
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E L (- j It) - :{ + ~"j '5 R. + L (-'S R. ) n / " n '. fl) 
1\::\ 

'SfL ")0 

(Z.,gl) 

where .lR is the real part of the complex argument),. The first expansion 

is found in Erdelyi (1953) and the second in Grobner and Hofreiter (1961). 

It is seen from (2.180) that Ei(q2), whose argument has a positive 

real part (z > 0), is discontinuous for x 0 = O. However, in (2.179), 

Ei(Q2.) and the generalized function 1fj(1 + xo/\xo \), which is also 

discontinuous for x 0 = 0, together form a continuous function, which is 
. -

what we expect on physical grounds. The limiting form of K ZD as xo"'" 0 

(actually, xo'" o±) is obtained from (2.179) and (2.180) as 

"+TTj + z (z.lez..) 

As z ~ 0+, using (2.181), we obtain 

(Z.183) 

In order to check the above two-dimensional analysis, this result was also 

obtained from a-vortex model. 

Substituting (2.183) into (2.158), we obtain the following expansion 
IV Ol 

for W ( 0 , y, z) as z ~ 0+. 

Physically, this represents the self-induced downwash just above (or below) 

a harmonically-oscillating two-dimensional pressure doublet, or a 



14 

harmonically - oscillating two-dimensional vortex with the accompanying wake 

of shed vorticity. From the latter viewpoint, it is evident that . 
NO(. 

W (O,y,z) is e-ntirely due to the unsteady wake and, hence, vanishes in the 

limit of steady flow, as seen from (2.184). The logarithmic term in z in 

Noi . 
W (O,y,z) is due to the previously mentioned phenomena of approaching the 

edge of the shed vortex sheet. As expected, this singularity is 
NO 

identically equal to that in W (O,y,z). 

It follows from (2.155a) and (2.184) that, as z -+ 0+, 
Noi -
W (O,y,z)] isa finite quantity given by 

where 

~I~ l WO (oJ 'I, ~) 
c~o+ 

I .. 5/ z ( 1> 1T( OJ \ Y - '" \) J 1 __ 
-~ 4rrPV t.[b- (\1-"1> z. 

'w JbZ (1) -l (Y)J1 
-J ~b Ij-11 

+ :l.j w 10 (y) 11~"Y ~ j -~ -loj JA o 

-t tJ 4 [ I"'" (YI b)2 J1 } '" 01 A-I) 

,)-40 =. ~ b -

....0 
[W (O,y,z) 

(:G.185) 

(Z.iS6) 

is the reduced frequency based on the semi span length band 1\ ( w, y - ., , ) 

is given by (2.155b). The order of magnitude of (2.185) follows - directly 

from the fact that 10(Y) ~ O(A-I)~ 

Now, we-return-to (2.124) and, using the above results, determine F1 , 

F 2. and F'3. . 'Examining the order of magni tude of the terms in. (2.124) and 
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recalling that the unknown weighting functions are O(A ) (by construction), 

we conclude that 

(Z.l8:r) 

(7-. lee) 

F3 (y) - UA ~I~ [WOtoJ'1,r:) -W°C:(oJ'Ilr)J 
t~O+ 

(Z.189) 

We have thus determined the amount of the eigensolutions present in the 

solution and, hence t completed the MAE analysis of the unsteady 

lifting-line theory to 0(A-2). 

In summary, we note that, t~ 0(A-1), the pressure field "is given by 

(2.104) - (2.10'7) and "section 11ft and moment are given" by (2.94) and 

(2.102) respectively, with F" F2, and F3 given by (2.187) - (2.189). 

Further, we now 11st the results of the matching in symbolic form and 

indica te the order of magnitude and the type of each term. 

m = n = 1 

" N 

..Q t Y) "N a (A-I) (2.190 ) 

m = 1 , n = 2 

N 

..t tV) /V o ( A-I) 
(Z. \~IJ 

/\oJ o (A- 2.) m l'f) tV 

m = n = 2 
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m = 2, n = 3 

where 

U: denotes tWQssdimensional quasi-steady information, 

( ): denotes two-dimensional unsteady information and 
= 

, '( ): denotes three-dimensional unsteady information. 

It is thus seen that, in the MAE analysis of the problem, section lift, 

moment".. as well· as the pressure field first take on their 

two-dimensional quasi-steady values, As ,the anatysis is carried out to 

higher orders, they are 'increasingly refined with two- and 

three-dimensional' unsteady information', 
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CHAPTER III 

CALCOLATION.OF AIRLOADS USING.UNSTEADY 

LIFTING-LINE THEORY 

·In this chapter, we extend, improve and apply the unsteady 

lifting-line theory of Chapter II to a number of oscillating wing problems. 

First, we identify an unsteady induced downwash, analogous to that in 

. steady lifting-line theory. The importance of the induced downwash lies in 

the fact that, in the present theory, it represents all of the 

three-dimensional unsteady effects. Then, an improvement to the asymptotic 

results is presented which increases the accuracy and extends the range of· 

validity of the theory. 

As mentioned earlier, presently there are almst no reliable num~rical 

. results available for unsteady lifting-l,ine theories. Here, for comparison 

we present .the unsteady induced downwash of Reissner's approximate unsteady 

lifting-surface theory (Reissner (1947» which, although is based on an ad 

hoc . analysis, has good experimental confirmation. Computational schemes 

for the calculation of the unsteady induced downwash for both theories are 

presented in related appendices. Numerical examples show good agreement 

between the two theories for a range of values of ko • 

In order to assess the utility of the present theory, we then use it 

to calculate sectional and total lift and moment coefficients for a family 

of. wing planforms in pitch and heave •. The calculations are carried out for 

a range of reduced frequencies and for several. 

poSSible, the resUlts are correlated'. with 

aspect ratio·s. Whenever 

numerical lifting-surface 
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theories and Reissner's theory. The over81.l agreement is found to be good. 

3.2 Unsteady Induced Downwash 

In order to determine the unsteady induced downwash of the present 

unsteady lifting-line theory, we return to (2.120) which .states that the 

computed downwash from integration of the composite pressure field is equal 

to the prescribed downwash at the wing. The f~nctions F, ' F z. and F 3 are 

given in (2.187) (2.189). The first term on the right hand si~e of 

(2.120) is the downwash at the wing due to the two-dimensioilal. solution 

4J~o which is exactly equal to the presCribed downwash and, hence, cancels 

out with the left hand side (the prescribed value). 

The third term on the right hand side of (2.120) is the downwash at 

the wing due to the outer solution minus the common solution. The second 

iii Co term is the downwash at the wing due to "t'se...w's' 
. . ~ 

Physically, 4J SC:~t'S 

represents the . modification of the two-dimensional part of the inner 

solution which arises in response to the three-dimensional effects and 

cancels them out as seen in this equation. Therefore, the last term. on the 

right hand side is just the unsteady induced downwash. 

According to the discussion following (2.120), the balance of the last 

two terms on the right hand side of this equation leads us to the 

conclusion that the last term; apart fran the common sinusoidal dependence 

on x~ is independent of x. Hence, in the last term, x can be set equal to 

any constant value on the wing (i.e., \x\ ~ ciA). For convenience, again 

we choose x = O •. This means that the upper limit of the integrals in 

(2.121) and (2.122) are set equal to zero. 

The induced downwash is then given by 



where 
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jwt 
e. \X, ~ ClY) I A l'f' ~ b 

(3. , ) 

is the complex amplitude of the induced downwash ·given by (2.185). In 

(3.1) , since x - O(A- 1
) ,to be consistent,- we must expand the exponential 

factor in x for large aspect ratio. This can be done, after normalizing x 

with the root semi chord oo/A, to obtain 

(3.3) 

It follows from (3.1)·- (3.3) that, to leading order, for the present 

low-frequency theory the unsteady induced downwash, like its steady 

counterpart, is a constan~ across the chord and of O(A-' ). WI. is given by 

/'oJ 

WI.{X,'f/t\ - W~('1) 
Jwt 

e. \X\~.C<''()IA .\'1,~b 

Physical Interpretation of Unsteady Induced Downwash . 

(3.4 ) 

It follows from the above discussion and those following (2.122), 

(2.131) and (2.184) that the. unsteady induced downwash for a straight wing, 

placed in a uniform stream normal to the span, has the following physical 

interpretation. 

Again, we adopt the vortex viewpoint for its physical perspicuity. 

According to (3.4) and (3.2), to leading order, the unsteady induced. 

downwash at a spanwise station Q consists of the downwash due to vortex 
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system CD minus that due to vortex system @, as shown in Figure 3.1. 

Vortex system CD is the outer solution consisting of a harIOOilically 
~ 

oscillating loaded line (vortex) of strength r'(y) with its accompanying 

wake of shed and trailing vorticity (or, equivalently, a spanwise 

"" distribution "of three-dimensional pressure doublets of strength 10 (y» • 

Vortex system @ is the comIOOn solution which is a harIOODically 
#OJ 

oscUlating two-dimensional vortex of strength r (y) (or, equivalently, a 

"" two-dimensional pressure doublet of strength lo(y». As we saw in Section 

2.6, the downwash at Q due to both vortex systems is singular but their 

difference, which is the unsteady induced downwash, is finite •. 

This also resolves the main error in the unsteady lifting-line theory 

of James (1975). As pointed out in Section 2.6, his induced downwash is 
"-'0 . 

essentially·W (O,y,O+) and likewise contains a logarithmic singularity in 

z.· In the present theory, the induced dowIlwash is de termined a posteriori, 

being inferred· fran· the solution. James, on the other hand, intuitively 

The· phYSical interpretation of steady induced dow nwa sh is quite 

similar to the unsteady·case in the above, except that the shed vorticity 

is absent fro~ both vqrtex systems CD and @, a:3 shown in Figure 3.2. 
NOl 

As pointed out in Section 2.6, W (O,y,O+) is entirely due to the unsteady 
Noi 

effects. Hence, . in the steady case W (O,y,O+):: ° and the induced 

downwash is entirely due to the trailing vorticity Qf system CE) w~ich is a 

finite quantity. The above physical interpretation of' (steady and 

unsteady) induced downwash was first given by Van Holten (1976). 

In passing, we note that, both in steady and unsteady flows, spanwise 

.. 
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sweep and/or curvature of the wing plantorm give rise to important 

additional contributions to the induced· downwash. For a brief discussion 

of these for incompressible flow, see Cheng (1975). 

We now express the results of the unsteady lifting-line theory 

directly in terms of the induced downwash. Substituting (3.4) and (3.2) 

into (2.189), we obtain 

~ . 
where W1(y)/U may be thought of as the unsteady. induced angle of attack 

which varies harmonically with time. Using (3.5) and (2.69), the results 

-1-of the unsteady lifting-line theory, to O(A ), ar~ give~ by 

N . . . 

~ (y) := - 2. If PUt. (~) 0( + A-I ~ A [~IT P U2 j "I (~) .fX.J 

+ A-I { ~ Zli PUZjv (L ~'j(i,ijt.) + j ~ + ,} 0( + -';;:-1l~) 

+.%IT pU z A (~) [W1. ('I) / U J 1 (3."1-) 

~ t'1) = -l\ P U z <. ~ ) 2 oi. + . A -\ ~ j A L 1\ P u;z. j.y (~) 'Z. c( 1 
+ A-i {-IT puz. jl)' H ~ ("1,'1' j z) +j ll- ] 0(+ ~1 (~)1-

-+ If P U -z. A \ A)'" [ 01. w) / U ] J (3. 8 ) 

where log "i, = '( = .57721. ~. is the Euler constant. The outer solution lfJo 

and the coinmonsolutionL\J°i. are given by (2.106) and (2.107) re'spectively. 
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An Improvement 

The present asymptotio analysi"s invol vas a number of exaot solutio~s 

and funotions whioh have been expanded for large aspeot ratio or, 

alternately, small reduced freque!l0Y k. In e~ll case, only the first few 

terms of the expansions have ~een retained in aocordance with the ordering 

of the asymptotic analysis. As an example, we cite the expansion of the . 
exact two-dimensional unsteady airfoil solution q;;o in (2.64). " 

We expect that replacing such expansions by the exact functional forms 

will i~prove tlle ~Qouraoy and extend the range of validity (in k) of the 

results, This can be seen in the following ~ay. Co~sider a function f( E ) 

wh~ch is well behaved for all ~. In a~ aSYDlptotic expansion of f for 

small e , as Eo is i~creased i) the agcuracy of tlle expansion deteriorates 

and ii) beyond a certa~value o~ € the expansion often diverges. Hence, 

whenever the exaQt functional form f( €) is available," replacing the 

expa~~ion byf should i~pr~e the res~ts. In the present analysis, 

lloweV~rt since the overall th~orr is der!Ve9 asymptotically for large 

aspec~ rat:i:o (9r sma!~ k), as we will ~ee, tne ~pree-dimeIlsioIlal results 

ultimately diver~~ with increasing k. Th~~ is du~ to tpe divergence of the 

unst"eadY induced dowllwash ~t lligher k. 

In this way, we make maximum use of t;~e a:v~ilable exact solutions! 

The errors introduced by the substitution~, +~ ea,ch case, are of the ~rder 

of the errors of the original asymptotic expressions. Therefore, 

asymptotically speaking, the acouracy of the results i~ not in'luenc~d! 

To improve the unsteady induced downwash, we restore the sinusoidal 

dependence on x (see (3.1), (3.3) and (3.4». 
,.., " 

We also replace 1 (y), which 
o 

is the strip-theory quasi-steady section lift, with its exact unsteady 
,... N 

counterpart l:zo( y). l:zn (y) is given by " 



where 

C(,( )fA 

.t2D lY) .- J 
-ccY)fA 
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(3.9) 

(3.10) . 

which can be obtained trom (2.46a) and (2.46b) using Table 2.1 (p. '5~). 
,.J 

1%0(Y) is tound to be 

.t:ro l 'fl = - IT PU 1. t ~) S j k.o( - ~ k.. (.h) ~ Co 

+l (Z+j .. )",- + 2j k. C~)14:(k) 1· 
The improved unsteady induced downwash then becomes 

where 

+ 2 j i:ii ~ 2 D l Y ) t \ --y - j ~ - -foj y.. 

-~ 1,:; 4 [ I - (VI b)'!. ] J 1 1:11 ~ b 

\3. \\) 

(3.\1. a.) 

(:3.12 b) 

1f (wi y"- ~ I ) is given by (2.155b). The real and ima.ginaryparts ot 1T are 



84 

shown in Figure 3.3. 

It is seen from (3.12a) and (3.12b) that, in the present problem, the 

three-dimensional effeots are manifested in the form of a oonveoting 

sinusoidal gust at eaoh seotion of the wing. The oomplex amplitude of the 
AI 

- gust w" (y)is a oonstant aoross the ohord but varies aoross the span in a, 

manner determined by the wing displacements and planform. We may thus 

refer to WI. as the induced gust. 

Sinoe the problem is' linearized, we oonolude that the 

three-dimensional oorrection to the basio two-dimensional inner solution is 

the pressure field due to the interaction of the induced sinusoidal gust 

with the wing. This is the full Sears eigensolution ~ ~Ars given by 

(2.58b). Henoe, the improved inner solution, to O(A-~), is given by 

~ ~ C~) = ~ ~o l~) + ~L~:s tX) t3.13) 

Consequently, the improved three-dimensional seotion lift and moment, 
N IV 

say ley) and m(y), oonsist of the exaot 
iV N 

quantities, 12D(y) and m
20

(y), and the lift and 

two-dimensional unsteady 

moment due to ITIL 
':t: S ~",.s ' 

-.J -.J 

whioh we denote by 1<:_ (y) and m<- __ (y). Hence; 
VCJ,\ofS ~s 

N N A.J 

Q. t'l) - .t -Z 0 t'f) + -t ~o.y s l'l) 

(3.iS) 

N 

l~D(Y) was evaluated in the above and is given by (3.11). In a similar 
IV 

way, we determine m~D(Y} which is measured about the mid chord line 

(positive nose up). Hence, 
Cl't)fA 

, ~ 2 0 l 'f) = - S :$ L)-P:2 D . <. §" 'f) ct '3 (3.16 ) 

-C('()/A ' 
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~ 20 (y) =- ~ p U z. (~) 1. i (j k. - "* k. 4 ) ~ 

- [(Z+j 1<..) 0(. + 2j k.. l ~ n It (Ie.) J ~3.1'1-) 
. 
L 

Likewise, section lift and moment due to ~ 5c~r~ are determined using 

(2.58b) and Table 2.1 (p. 57). They are found to be 

IV 

is~~,'(s t'f) - ~rT,oU'" l~) [Wgl'1) IU] 5(k.} (3.\S) 

. . 

~~Y-S' l'f) = llP U z. (~) '"C W~ l'l) / U J ~ (k.) (3.19 ) 

where S(k) is the Sears function defined in (2.59). 

o ,II 01.. The improved form of ljJ and.T are obtained respectively· frau 
N ~ 

(2.106) and (2.107) aft.~r replacing 10 (y) by lA-O(Y). The results are 

. " 

NOI. 

qJ lX)-

As a check, it can be shown that if the "above improved results are 

expanded for large aspect ratiO, keeping the appropriate .number of terms in 

each' case, the 'original asymptotic results are recovered. All of the 

necessary expansions have already been given except the one for ". the Sears 

function S(k) which can be o~tainedfrom (2.59), (2.62) and the asymptotic 

expansions for Bessel functions of the first and second' kind of order zero' 

and one for small arguments. The results are 

StlcJ A.J I .- "~ k +j k ~, ("{, k./2) -\- 0 (k2~ k 1 
(3. 'Z."2 ) 
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;5(k.) .N , -t [);Y ~("I ~/Z) - 1f l' J A-\ 

-J ~ A-'lo.j A + 0 (A·--z.~ A) (3.23) 

In the remainder of this work, we will always use the above improved 

version of the unsteady lifting-line' theory. 

It can be shown that, in the steady limit (c.u - 0), the results of the 

unsteady lifting-line theory reduce to the classical steady results (see, 

e.g., Van Dyke (1963». 

Reissner's Unsteady Induced Dowawash 

It is desirable to compare the three-dimensional corrections from the 

present theory with those of other line and surface theories. As mentioned 

previously, there are presently no. reliable unsteady lifting-line 

calculations available. Further, there exists no exact analytical solution 

for the general osc1liating lifting-surface problem. From among the many 

approximate unsteady lifting-surfaoe theories, for comparison here we 

ohoose Reissner's theory (Reissner (1947» for whioh satisfactory 

experimental confirmation exists. The theory is best sui ted for straight 

wings of moderate to. high aspeot ratio. Like. the present unsteady 

lifting-line theory, Reissner's theory contains the unsteady airfoil theory 

and steady lifting-line theory as speoial cases. One advantage of 

Reissner's theory is that one can readily determine the induced downwash 

from his simplified integral equation. 

In the present notation and for the wing in Figures 2.3a" and 2.3b, 

Reissner's simplified integral equation of unsteady lifting-surface theory 

is given by 
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CIA 

Wo(X",Y)O±)=-.::.'... ,( , .zrr ~ 

I . k 
+.z.~ 0 

-cIA 

\x,~ CIA 

-'( (~ .. 't) 
x- ~ 

ly\ ~ b (3.24 ) 

N N 

where "6 is the bound vorticity and 11 'is the three-dimensional reduced 
N 

oirculation which is 'related to the circulation r (y) through 

La. zs) 

Here, we, have introduced the modified kernel. function II<.. so as to 

explicitly display the Cauchy singularity of the last integral. JIG is 

nonsingular and def!ned as ' 

I/( (4) = I-j 1- FCi-) (3.26) 

where 

\ ~,\ 1 d A (3 .. 2r-) 

The integral here is known as the Cicala function which is an odd function 

of its argument. Using the t~btilated values of this function in Reissner 

(1947), the values of. IK' have been computed. Theyare listed in Table 3.1 

(p. '339) and plotted in' Figure 3.4. fK. (q) is an even function of its 
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argument. 

The unsteady induced downwash can be identified from (3.24) by noting 

that the first and the second terms on the right hand side are respectively 

the downwash due to the bound vorticity and the shed vorticity, both of 

which are treated as two dimensional with strength equal to that at station 

y. These two terms correspond to the downwash due to the inner solution 

NL Nl -2 
(namely Wo + W S~Q."'~ in the present theory to D(A ». Therefore, the last 

term in (3.24) is the unsteady induced downwash. Hence 

\X \ ~ c../A \'f\~b (3. 2 Sa..) 

where 

b N 

Wo ly) = .::.L( Co) .c . diL 
J 4rr A } d, 

-b 

-iK ( ~·I Y - Y) \) d 
Y-1 " 1 \ '1\ ~ b (3.zab) 

It is noteworthy that Reissner' s WI t like that from the. present theory, 
N 

consists of a convecting sinusoidal gust whose complex amplitude w~ (y) is a 

constant across the chord, but varies along the span ina manner determined 
'" 

. by the wing displa"cements and planform. Since JL is normalized with 

respect to the root semi chord ColA (see(3.25», it is O(A
Q

). Therefore, 

as in the present theory, Wj and WI for Reissner's theory are both D(A- I ). 

In the next section, numerical examples for W:t for both theories are 

presented. 
,..... 

In Reissner' s theory, the three-dimensional reduced circulation Jt is 

obtained from an integro-differential equation of the lifting-line type by 

numerical methods. For wings of large aspect ratio, however, in the spirit 
,... 

of perturbation theory, we may replace JL with its strip-theory 
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counterpart, say n, given below~ -I Since WI. IV O(A ), any three-dimensional 
N 

refinement of.n. will give rise to higher-order corrections to W'I. which may 

be neglected for the present' purposes. The strip-theory value of the 

reduced circulation, for the wing under consideration, is given by 

N 

11 ty) -
. lC) rllez.) • 11l:~)(11 iTJ ko A L n, . (Ie.) +J Mo IC.) 

~ . 

Stirctly speaking, we should replace~with its quasi-steady strip-theory 

value which can be obtain~ from (3.29) by expanding for large aspect ratio 

(hence, also for small k). The use of the exact unsteady value herein is 

an improvement over the latter, analogous to the improved. version of the 

unsteadyl1fting-linetheory. In the remainder 'of this work, we always use 
,..,. . 

it(y) in conjunction with Reissner's unsteady induced downwash • 
. . ' 

It can be shown, that, in the limit of steady flow,. (3.24)" reduces to 

the integral equation of ·steady lifting-line theory, and (3.28a) and 

(3.28b) reduce to steady induced downwash. 

3.3 Numerical Eyaluation of Unsteady IndUced Dowowash 

In this section, we focus attention on the numerical' evalua tion of the 

unst~ady induced downwash o~ the present unsteady lifting-line theory and 

Reissner's theory. Sample calcula tions for both theories are also 

presented and compared. First, we review s.ome ideas on the applicability 

of· lifting-line theory to various wing planform shapes (with straight 

span). For a fuller discussion of the steady Case see Van. Dyke (1963). 

The latter contains errors which have been corrected in Van Dyke (1975). 

The fundamental assumption that physical quantities vary slowly in the 
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span direction is violated near blunt wing tips where the flow does not 

become two-dimensional no matter how large the aspect ratio. This gives 

rise to local regions of nonun1formity near the tips, the size of which are 

larger for blunter tips. The nonunitormities show up as Singularities, at 

the tips, in the spanwise distributionot various phyrical quantities, such 

as section lift and moment. The nonun1tormities can be corrected by 

constructing additional asymptotic expansions valid in the immediate 

vicinity of the tips and matching them to the inner solution. 
. . -3 

For steady lifting-line theory, to O(A), Van Dyke (1963) has tound 

that, for elliptic and more slender plantorms, the spanwise distribution of 

.lift and moment contain, at worst, integrable singularities at the tips 

and, hence, convergent total results are obtained. Further, he has found 

that the extent of the region· of nonun1formity at the tips for these 

. -2 
planforms is quite small. For the elliptic wing it isO(A ) and for the 

lenticular wing (parabolic leading and trailing edges) it is exponentially 

small. Since the loads vanish at the tips, the resulting errors· in the 

total integrated quantities, for wings of large aspect ratio, is expected 

to be quite small. For plantorms with blunter tips, such as the 

rectangular· one, the resulting tip singularities are not integrable and, 

hence, total quantities cannot be obtained. 

In the present theory, to O(A-Z,), all of the results are obtained. in . 

closed . form. However, the presence of a complicated integral in the 

expressionfor the unsteady induced downwash (see (3.12b» precludes 

analytical determination of the behavior of the solution near the tips in 

the general unsteady case. Extensive numerical calculations for the 

present theory (presented in the following sections) indicate that, for 

elliptic and more slender planforms, for the unsteady motions considered, 
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there are no non1ntegrable singularities in the spanwise distribution of 

various linear and quadratic quantities. 

In order to evaluate the unsteady induced downwash, we first 

nOndimensionalize all physical quantities using 

x it = X / ( Co I A ) (3.30) 

. of . 

y ='·'1lb 

-c*" ==u i:. / l Co fA) 

*. WI = WI-lV (3.33) 

N* 
W~ 

N 

- W~ / If . 

- ..n.. IU (3. 3S) 

(3 .. 36) 

where ( ). denotes nondimensional quantities. The nondimensional form of 

the unsteady induced downwash of the present theory, (3.12a) and (3.12b),. 

is given by 

where 
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. \ "" ,.., 
_j ko S rho \,*1 - rho (y*) cl'f* 

-I \'1*-'1.\ 

+ ~j k. C.Q.;zo (y~) t I - '( -j"¥: - ~J-'. 

-t.eo, 4 \1-'f~Z.) 11 (3.37'-6) 

Similarly, in noridimensional form, the unsteady induced downwash of 
N. ,.J 

Reissner's theory, (3.28a) and (3.28b) (with JL replaced bY..o.), is given 

by 

where 

-I 

4rr . 

lK.(.f'o I 'f~- ~ *}) 

"'1*-1* 

(3.2sa) 

Numerical schemes for the evaluation of the unsteady induced downwash 

of the present theory and Reissner's theory are presented in Appendices B 

and C respectively. 

Comparison of Unsteady Induced Downwash of Unsteady Lifting-Line Theory and 

Reissner's Theory 

Since both theori.es predict an induced downwash· of the form 
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*' *" N* jk.olt'·-)(~) 
WI. <X IY~Jt'·) = W,9 ('t'k) e (3 .. 39) 

Nt 
it suffices to compare Wj from the two theories. Before presenting the 

numerical examples, we point out a general result of unsteady finite wing 

theory, namely that as the aspect ratio and/or the reduced frequency are 

increased, the induction effects diminish in intensity and the 

three-dimensional results approach the strip-theory values. In other 

words, I "'w;1 we expect J to tend to zerO as the aspect ratio and/or the 

. reduced frequency are incr eased. 
~'t '. 

Using the numerical schemes discussed. in Appendices B and C, . W,9 from 

the present unsteady lifting-line theory (ULLT) and· Reissner's theory are 

calulated for a rigid, flat plate elliptic wing in' harmnic oscillation. 

The wing planformis given by 

. 'v = ~(y) fA 4, J ( ) z. " - TT"A V,I":"-, 'fIb. 

In the numerical calculations,. without loss of generality, we always take 

b = 1. Two modes of oscillation are considered:, pitch and heave •. Since, 

in the present work, the positive 'direction of pitching and heaving'motions 

are defined contrary to the usual notation (see 'Figure 2.3b), all. linear 

quanti ties. presented herein will have an extra overall minus sign. As a 

characteristic reduced frequency for the wing, here. and throughout, we use 

the reduced frequency .based on the root semi chord, namely 

ko = (wIU) (colA) •. 

The first mode considered is pitching about the mid chord where the 

wing motion is defined by (2.4) with !o = 0 and S, = constant. We may also 

choose \ = 0 as a reference phase. Hence, 

c; j u.:t . A \'11 ~ b h(X,'f,t) = =>1 X e. txl ~Cl'f)1 
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Here, we define a normalized W!:) as 

94 

AI* The amplitude and phase of W,9p at the center section (1*= 0) of an 

elliptic wing of aspect ratio A = lOin pitch are shown in Figure 3.5 as a 

function of kg. Shown are the results for the original .aysmptotic version 

of the present unsteady lifting-line. theory, its improved version and 

Reissner's theory. It is interesting to note that the results of 

Reissner's theory agree more closely with those of the improved version of 

the present theory than the original asymptotic one, and that over a larger' 

range of ko. This is as one might expect. In the remainder of this work, 

we always use the improved version of the present theory. 

. In the. limit of steady flow, the pitching wing' tends to a wing at an 

angle of attack. ~I and all three results approach that of . steady 

lifting-line theory, namely 

It is seen from the above figure that for Reissner's theory , N* I w \ ~p 

tends to zero as ko is increased, as expected. On the other hand, as 

pointed out earlier, we expect the results of the present asymptotic ~heory 
r 

ul~imately to diverge, as ko is increased. This is clearly seen in the 

above . figure where, as ko 1:5 increased, first the phase and then the 

N* amplitude of w9pdiverge. The high-frequency behavior of the results of the 

two theories is directly related to the behavior of their kernel functions, 



95 

1T and 1< , for large vaiues ot their arguments, as seen in Figures 3.3 and 

3.4. It is noted that as their arguments increase, iK. tends to zero, but 

1T grows without bounds. 
Alt-

The amplitude and phase of W~'P at the center section of an elliptic 

wing of A = 5 in pitch are shown in Figure 3.6. Compared with the results 

of A = 10 in the above, here the agreement between the two theories is not 

as precise but' it occurs, over a much larger range of ko. The closer 

agreement between the two theories at higher A is due to the fact that both 

theories are more accurate at higher A. On the other hand, since 

ko N O(A- I." the lifting-line theory is valid for a smaller range of ko for 

larger ,aspect ratios and a larger range of ko for moderate'aspect ratios. 

The other mode ~f wing oscillation ,considered is heave where the wing 

displacements are given by (2.4) with ~I' = ~ = 0 and ~ = constant, i.e., 
'Z 0 

(3.43) 

I X \ ~ C(I.()/A \'11 ~ b 

, , 111,]( 

Here, we define a,normalized Wjas 

"'* N~ 
W j H -= W:; / ( -! j k.o lo) (3.44) 

where the quantity in the denominator is essentially the angle due to the 

heaving motion, namely 

. ",~, "'t ",* 
The main advantage of using W"H over Wj is that', whereas W-, tends to zero 

N* as ko'" 0, W~H remains O( 1), so that the behavior of the unsteady induced 

, downwash for small k 0 can be, studied more readily. 
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The amplitude and pbase ot Wj~ at the center section ot an elliptic 

wing in heave are shown in Figure 3. 7 tor A = 10 and in Figure 3.8 tor 

A = 5. As far as the agreement between the two theories is concerned, here 

we see the same trend' that we saw in the above for the pitching wing. In 

the limit ot steady flow, the result of both theories approach that of 

quasi-steady lifting-line theory for a heaving wing, namely 

( 3.46) 

which is the same as that for the pitching wing (see (3.42». This is 

because, as ko~ 0, both the pitching and heaving wings tend to a wing at an 

angle of attack ( ~I for the former and 0(", for the latter), so that 

In the next. section, spanwise distribution of section 11ft from the 

present theory and Reissner's theory are presented and compared with the 
'. 

strip-theory results. They clearly indicate the spanwise distribution' of 

"'* W ~ for both theories. It is seen that at otherspariWise stations, as at 

y*: 0 in the above, the present theory predicts a somewhat stronger induced 

downwash than Reissner's theory, especially near the wing tips. 

It must be noted, however, that, in the neighborhood of the tips, the 

three-dimensional unsteady flow field is. cOmplex and has not yet been 

studied in detail. Garrick (1957) has pointed out that the primary 

weakness of Reissner's theory is in treating the wing tips. Also, the 

results of the present theory, near the tips, are to be viewed merely as a 

rough approximation. Further remarks on the tip flow field are made in the 
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next seotion. 

Based on the above numerical examples andoorrelations, Figure 3.9 

roughly depiots the region in a ko - A diagram where we expeot the present 

theory to be valid. With increasing·ko ' the dashed and solid lines roughly 

depiot the values of k 0 beyond whioh respeotive1y the phase and amplitude 

of the unsteady induced downwash gradually start to diverge. We 

tentatively conolude that the theory is valid to the left of the dashed 

line for moderate to high aspeot ratios. On· the basis of may more 

oaloulations and oorrelations, this pioturewill be further refined in 

Seotion 4.3 • 

. In Figu.res 3.5 - 3.8, we note that,· as . k Q inoreases from. zero, 
-ViE ,.,. 

initially I W ~ I drops off: rapidly (k 0 < .2), followed by a mu.ch slower 

variation at hi.gher ko.The reason for the rapid initial deoline of 

is the ohange in the nature of the wake •. While in steady flow the wake 

oonsists of· trailing vortioes, eaoh· having constant strength, in·· unsteady 

flow, the trai1~ngvortioes have p~riodioa11y varying strength along their 

length. Also, the strength of the shed vorticity varies periodically. The 

self-cancelling effect of this periodic unsteady wake causes the reduction 
.. 

"'* in IW~ I. 

Therefore, even for small values of ko' the amplitude 

considerably . smaller than the corresponding steady valu~. This means that 

for small ko , quasi-steady theories underestimate the unsteady effects or, 

alternately, overestima te the thr.e~dimensional . - corrections. _ This 

indioates the importance of fully-unsteady aerodynamic theories, such as 

the present one, as· opposed to quasi-steady ones, even for relatively small 
. . 

reduced frequencies. 
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3.4 CalQulation of Airloads for Osgillatina Winl8 

In this section, to assess the ut~lity of the present theory, we use 

it to calculate the spanwise distribution of the unsteady induced downwash 

and section lift and moment coeffieients, as well as the total 11ft and 

moment coefficients for an oscillating wing. The calculations are carried 

out over a range of values of ko and A and for severalplanform shapes and 

modes of oscillation. In each case, ko and A are chosen within the region 

of validity of the theory as shown in Figure 3.9. 

The planforms considered are defined by (atter Van Dyke (1963» 

f112. 
X': C l'1) I A .= k", [\- t Y I b) Z J / A l3.48) 

It follows from the definition of aspect ratiO, (2.2), that 

. \,2- l s b [ \ - ('f I b).2. j n/:2. d'f }-' (3.49) k.t'\ = 
0 

so that· 

n k planform -
0 b rectangular 

1 (4/1T' )b elliptiC 

2 (3/2)b lenticular 

3 (16/31f)b cusp-tipped 

These planforms are shown in Figure 3.10 for A = 6. Most of the 

calculations presented· herein are for the elliptic planformwhichis of .. 

fundamental interest to us. To study the influence of planform shape, the 

lenticular and cusp-tipped planforms are also considered. For reasons 

already cited, we will not consider the rectangular planform. The planform 
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area for wings belO~ing· to the above family is 4b2 /A. 

In all numerical examples, the strip-theory results CST) are also 

shown to indicate the extent of the three-dimensional corrections and 

because, as mentioned earlier, we expect the three-dimensional results to 

approach their strip-theory counterparts as A and/or ko are increased. 

Whenever possible the results are correlated with Reissner's theory and 

numerical lifting-surface theories. 

In the numerical calculations, without loss of generality, we always 

take b = 1. Also, since the planforms considered are spanwise symmetric, 

all spanwise calculations are carried out for half of the span at eleveri 

stations, with the station closest to the tip located at y.= .• 999 •. In 

terms of the spanwise angular variable e = cos y. (see Appendix B), the 

station closest to the ·tip is 3° . fran the tip and the rest are equally 

spa.ced at 8.7
0 

along the' semi span. Numerical values for the steady limit 

are obtainedfo.r ko =1 0"';4 because, for' ko = 0,. some of the Bessei . functions 

invol ved are singular. Much smaller values of .ko could be used for the 

steady limit without any numerical difficulty but .10- 4. ~as found to be· 

adequate. The accuracy of the numerical results is three decimal:places or 

better. 

Two modes of oscillation are co'nsidered: . pitch and heave. For a wing 

in pi~ch, whose displacements are given by (3.40), we define sectional and 

total lift and moment coeffiCients as 

(3.50 ) 

--.J 

C rn plY *) - .~ ('I) / L t p U 2. (.2' <=; .):z. ~, 1. 
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(.3.52) 

(3 .. 53) 

Similarly, for a wing in heave, whose displacements are given by (3.43), we 

define 

(3 .. 54) 

N. 

CmH (y*) -= n\t'1) I [± PU;z. (2. ~):z. ~o 1 (3 .. SS) 

(3.5 6) 

Moments are measured about the mid-chord line (y-axis) and taken as 

positive in the nose-up direction. 

Before presenting the numeri.cal results, a few remarks are in order 

concerning the flow_ field near the wing tips. .As pointed out earlier, 

predictions of lifting-line theory near blunt tips"are to be taken only as 

a rough approximation. 

Starting with the exact solution of Kinner (1937) for a circular wing 

in steady flow, Jordan (1971a, 1971b) has carried out a detailed study of 
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the flow. field near a circular (or parabolic) wing tip. He finds that, 

contrary· to .the classical assumption· of (essentially) elliptic span 

loading, the actual loading contains a logarithmic term near the tip. As a 

consequence, the induced downwash contains a logarithmic singularity which 

gives rise to an infinite upwash at the tip. Also, in relation to an 

oscillating rectangular wing tip, Landahl (1968) has found a similar 

logarithmic term in the span loading. It might be possible to derive 

similar results for an oscillating circular (or parabolic) wing tip, using 

the exact solution of Schade and Krienes (1947) for· an oscillating. circular 

wing. Presumably, similar logarithmic terms in the span loading and 

downwash WOUld. be uncovered. 

Effect ofka on Wing AerodYnamics . 

Consider an elliptic wing of A =6 in pitching motion. Spallwise 
. IV 11: . 

distribution· of phase arid amplitude of W.9p are shown in Figure 3.11 for 

several values of ko' . In the steady llmit, the classical result is 

reproduced, namely ·un1from induced downwash across the span, of amplitude 

.2/A ·and zero· phase. As expected, with increasing ko,. ·the amplitude of 

induced downwash diminishes . everywhere along the span except in a small 

neighborhood of the tip where it becomes more intense (possibly infinite at 

the tip). The latter is due to the increase in the strength of . the local 

wake vorticity (at the blunt tip) which . grows stronger with increasing ko • 

Figures 3.12 and 3.13 depict spanwise distribution of lift and m~ment 

coefficients for ko = 0, 0.1, 0.2 and 0.3. The real and imaginary parts of 

each coefficient are denoted by ft and I respectively. We note that, in the 

steady limit, the results of steady lifting-line theory are recovered. 

Also, it is seen that, with increasing ko' three-dimensional section lift 
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and moment coefficients approach their strip-theory counterparts, as 

expected. 

Figures 3.14 - 3.16 depict spanwise distribution of the unsteady 

induced downwash and lift and moment cQeffigients for an elliptic wing of 

A = 6 in heave for ko = 0.1,0.2 and. 0.3. For ko = 0 both lift and moment 

are zero. With increasing ko, the heave-induced angle of incidence 

increases resulting in the growth of the lift and moment amplitudes. Also, 

the three-dimensional results approach their two-dimensional counterparts 

as in the above. In .passing, we note that a better way of presenting the 

heave data is to normalize lift .and moment coefficients with (112) jko ~o' as 

we did for the induced downwash in Section 3.3, rather than with 5. Here, 
o 

we have adopted the latter for ease of comparison with Reissner's results 

below. Examples of the former are . given later in this section in 

connection with tot~ lift and moment coefficients for the wing. 

Effect of AsPect Ratio on Wins AerodYnamics, 

Consider an elliptic Wing.' oscill:,ating in'pitch at ko = .2. Spanwise 

distribution of phase and "'* ' 
amplitude of W.9p ar~ shown in Figure 3 ~ 17 for 

s~veral values of aspect ratio. In each case, the steady res~ts (i.e., 

amplitude of 2/A and phase of zero) are a+so shown for comparison. It is 

seen that,_ w,ith increasing A and fixed ko' the amplitude of the unsteady 

induced downwash is reduced everywhere, rendering the problem increasing~y 

two-dimensional locally. 

Spanwise distribution of lift and moment coeffiCients 'for the same 

wing are shown in Figures 3.18 and 3.19 for ko = .2 and A = '4, 6 and 8. It 

is seen that, with increasing A and fixed ko, three-dimensional lift and 

moment coefficients approach their strip-theqry values, as suggested in.the 
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above. 

Effect of Planform Shape on Wins AerodYnamics 

To study the influence of planform shape on the aerodynamics of the 

wing, we consider three planforms: cusp-tipped, lenticular and elliptiC, 

defined i~ (3.48), (3.49) and the accompanying tabulation. 

The cusp-tipped planform is the ideal one fo·r theories of lifting-line 

type, because the chord distribution tends to zero infinitely slowly at the 

tips, thus, avoiding any oonuniformity. For the lenticular wing, the chord 

varies linearly near the tips which gives rise to a logarithmic singularity 

at the tips (at least in steady flow). The chord for the elliptic 

planform, on the other hand, varies infinitely rapidly near the tips. 

Fortunately, however, as we have seen in the above numerical examples, the 

elliptic planform does not give rise to any non1ntegrable singularities at 

the tips (at least for the examples considered), as in the steady case. 

Spanwise distribution of steady induced downwash for the above 

planforms is shown in Figure 3.20. They are in complete agreement with the 

classical steady results. Spanw~se distribution of the real and imaginary 
~* . 

parts of W3p for the same wings, oscillating in pitch (k 0 = .2), are shown 

in Figure 3.21. It is seen that, for the cusp-tipped wing, the amplitude 

of the unsteady induced downwash is finite everywhere along the span, as in 

the steady case. For the lenticular wing, it seems to have a weakly 

singular behavior at the tips. For the elliptic wing, the induced downwash 

is fairly constant across the span except near the tips where.it grows 

somewhat more intense but appears to remain finite (it might have a weak 

singularity· there). Determination of the exact nature of the latter would 

require analytic work on the integral expression for the unsteady induced 
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dowDWeh in the neighborhood of the tips, which, as was pointed out 

earlier, would be quite tedious. 

Spanwise distribution of lift coefficient for the three planforms is 

shown in Figure 3.22 for steady flow and in Figure 3.23 for pitching motion 

(k o = .2). Influence of the planform shape on spanwise load d;istribution 

is clearly seen in steady and unsteady flows, especially near the tips 

where 11ft varies as the chord (see (B.5». It is also seen that, in each 

case, the unsteady effects significantly reduce the amplitude of induced 

downwash except near the tips. 

Spanwise distribution of moment coefficient for the three planforms is 

shown in Figure 3.24 for the steady case and in Figure 3.25 for pitching 

motion (k o = .2). The above comments about the lift distribution apply to 

the moment distributions as well. All of the steady results here and in 

the above are in full agreement with those of steady lifting-line theory. 

Comparison with Beissner's Theory 

Beissner and Stevens (1947). have carried out extensive numerical 

calculations for Reissner's theory for rectangular and elliptic wings in 

various types of oscillatory motion. Here, we compare their lift 

distribution for an elliptic wing in pitch and heave with those of the 

present theory. Unfortunately, their calculationsare·only for A = 3 which 

is rather low for the present theory, but we find the agreement to be 

surprisingly good for the given conditoins. 

Spanwise distribution of lift coefficient for an elliptic wing in 

heave is shown in Figure 3.26 for A =.3 and k 0 = .212, .424 and .847. It 

is seen that the results of the two theories are in reasonably good 
. . 

agr.eement over most of the span except in a relatively small region near 
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the tips where the results of. the present theory change sign before 

vanishing at the tips. This is due to the stronger induced dwonwash 

predicted by the lifting-line theory under the conditions of relatively. 

large ko and small A, as pOinted out earlier. 

Spanwise distribution of lift coefficient for an elliptic wing in 

pitch is shown in Figure 3.27 for A = 3 and k 0 = ~212, .424 and .847. As 

far as the comparison of the results of the two theories is concerned, the 

above remarks for the heaving wing apply here as well. In t~e.light of· the 

discussion at the end of Section 3.3 (comparison of the unsteady induced 

downwash from the two theories), we expect the agreement between the two 

theories to be considerably better at higher aspect ratios •. 

Figure 3.28 depicts spanwise distribution of lift coefficient for an 

elliptic wing 1nste~y flow from the two ,theories. The reason for,the 

poor agreement lies in the fact that, in the steady limit, whereas the 

present theory approaches the form 

c ~ ( '1*) 0- 2 IT (1-, t )) 1- '/"" 2 + 0 (A- 2. ) 
,p , , 

(3 .. 58) 

of steady lifting-line theory (which is the direct result of the MAE 

analysis), Re1ssner's theroy approachesPrandtl's recast from of' the above, 

namely 

'-IT J i- y*J.. 

i.+ :2./A 

Asymptotically, the two forms are completely equivalent, to O(A-Z), with 

their difference' being a measure of the error band of steady lifting-line 

theory. The latter quickly diminishes at higher aspect ratios as seen in 

Figure N.3 of Van Dyke (1975), where it is also seen that the results of 
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numerical lifting-surface theory lie between the above predictions. . The 

above comparisons also indicate that, for fixed A, the error band of the 

unsteady lifting-line theory, which is equal to that of steady lifting-line 

theory for W = 0, diminishes with increasing ko. Further comparisons of 

the results of the two theories are presented below. 

In summary, we find the overall agreement .between the two theories to 

be reasonably good, considering the low A, and expect it to be much better 

for moderate to large A. The present asymptotiC theory, . thus, provides 

formal justification for Reissner's ad hoc theory. 

Total Lift and Moment Coefficients for Oscillating Wings 

To study the influence of ko, aspect ratio and mode. of oscillation on 

. total lift and moment coefficients for oscillating wings,we consider an 

elli~tic wing in pitch and heave. 

Spanwise integration of section lift and moment coefficients are 

carried out using Legendre-Gauss quadrature «B.l1) and (B.12», after a 

spanwise .cosine substitution to handle numerical difficulties arising from 

blunt wing tips (see Appendix B). It was. determined, through numerical 

experiments, that the sixteen-point Legendre-Gauss quadrature scheme is 

adequate to obtain accuracy of three decimal places or better. Taking 

advantage of the spanwise symmetry of lift and moment distributions, the 

spanwise integrals were carried out for half of the span and the results 

doubled. 

The total lift and moment coefficients for an elliptic wing in pitch 

are shown as complex vector diagrams in Figures 3.29 - 3.31 for A = 3, 6 

and 16. In each case the corresponding strip-theory results (ST) and the 

values of steady lift coefficient from numerical lifting-surface theory 
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(SLST) are shown for comparison. The latter are taken f'rom Figure N.3 of' 

Van Dyke (1975). Here again, it is seen that in general, with increasing A 

and/or ko' the results of the present theory approach. the corresponding 

strip-theory values, as expected. 

The calculations for A = 3, which is rather low f'or the present 

theory, were. carried out for the sake of comparison with those of 

Reissner's theory which are also shown in Figure 3.29. The agreement 

between the two theories is reasonably good (oonsidering 'the low aspeot 

ratio) except at very low ko• The latter is associated with the fact that, 

in the steady limit (as aireadY discussed in relation to spanwise lift 

distribution), the present theory approaches the form 

of steady lifting-line theory, whereas Reissner's theory approaches 
.' 

Prandtl's recast form of the' above; namely 

-2rr 
,+2./A 

In the figures, numerical results . from the latter form are shown for 

comparison and . denoted by SLLT2 (second form of steady lifting-line 

theory) • The difference . between the two forms is a measure of the error 

band of steady l1·fting-l1ne theory, which diminishes rapidly with 

increasing aspect ~atio, as seen in the above figures (for w = 0). We note 

that the rapid turn in the lift curve of unsteady lirting~line theory ror 

A = 3 .and low ko (Figure 3.29) is' reduced to a small kink for A = 6 (Figure 

3.30) and completely dissappears for large A, as seen in F:igure 3.31 for 

A = 16. It is also seen that the value of k 0 . at which the rapid turn 

occurs decreases with increasing A (k o ~ .2 for A = 3, ko ~ .06 for A = 6 
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and ko~' 0 for A = 16). This seems to be due to the change in the relative 

size of various terms in WI at different A, since only the first term in 
,.., 

(3.37b) depends on A explicitly., Further, for A = 16 and k > .5, the lift 

and moment curves gradually start to diverge from the corresponding 

strip-theory results,as seen in Figure 3.31. This is due to the 

divergence of the present theory at higher ko • 

Total lift and moment coefficients for an elliptic wing in heave are 

shown as complex vector diagrams in Figures 3.32 ,- 3.34 tor A = 3, 6 and 

16. The A = 3 case is again considered only for "comparison with Reissner's 

resul ts which are also shown in Figure 3.32. The agreement between the two 

theories, for the given conditions, is fairly good, especially at' higher 

As mentioned earlier, it is more enlightening ,to normalize the lift 

and moment coefficients for a heaving, wing with (1/2)jkoSo• Here, we 

present the rest of the heave data in this form. Since we have, already, 

normalized 'thes'e coefficients with c:' 
~o ' 

it' only remains to divide ,by 

(1/2)jko• Hence, 

The rest of the heave data is depicted in Figures 3.33 and 3.34. 

The rapid turn of the lift'curve for low ko and moderate A, observed 

in the above for the pitching wing, is also seen here in the heave data 

when normalized with respect to (1/2}jko~ • 
o 

For A = 6, the lift curve 
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displays an unexpected loop for low ko as seen in Figure 3.33. This 

behavior disappears completely for large A, as seen in Figure 3.34 for 

A = 16.· We also note that the related moment curves (pitch and heave) 

display a rapid turn (under the same conditions) which decreases in size 

and finally disappears with increasing A. This seems to be another 

manifestation of the same effect. 

This behavior of the results of the present theory may be due to the 

presence of the term k 0 log jlo in the expression· for the unsteady induced 

downwash (see (3.31a) and (3.31b».· This term has an infinite slope at 
. . 

w = 0 and. the behavior in question might be· the recovery o.f the results 

from this strong initial change. This behaVior, however, is. not· fully 

understood and calls for further investigation. 

In relation ·to the peave data, we . al·so note that, for A = 16 and 
AJ 

k >.5, . the 11ft and moment curves gradually diverge from the 

corresponding strip-theory ·results· (see Figure 3.34). This is due to the 

divergence of the present theory at higher ko •· We also note that, with 

increasing ko and/or A, the results of the present ~heory generally 

approach the strip-theory values, as expected. 
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CHAPTER IV 

ENERGETICS OF THREE-DIMENSIONAL FLAPPING 

FLIGHT USING UNSfEADY LIFTING-LINE THEORY 

4.1 Intruduction 

Until recently, most theoretical studies of the propulsive performance 

of three-dimensional wings were based on unsteady strip-theory calculations 

or quasi-steady lifting-line theory (see, e.g., Archer, ~apuppo and 

, Betteridge (1979», neither of which is completely adequate. 

Bennett (1970) accounted for three dimensionality and unsteadiness in 

an approximate way by extending the unsteady lifting-surface theory o( 

Reissner (1947) to calculate thrust '·and' hydrodynamic efficiency. ' His 

, ,theory, ,like that of Reissner, ,is an irrational approximation. Later, 

C1.iopra (1974), using superpos1tion (Fourier series) of sinusoidal 'lifting' 

ribbons of infinite, span, c,alculated the performance of a rigid rectangular 

wingin combined pitch and heave ~ His approach is' limited to the, 

rectangularplanform. 

Recently, 

lifting-surface 

a few investigators have employed numerical unsteady 

theory to study this problem. Chopra and Kambe (1977) 

employed thekernei function method for a family of rigid wings most of 

which are swept back. Lan (1979) has used the "quasi-vortex-lattice" 

method for rigid wings of reotangular and arrow planform inoluding a tandem' 

wing configuration. Agreement 'between the two works is not as good as 

expected and warrants further work on the lifting-surface approach to this 

problem. 

Lighthill (1970) suggested the use of unsteady lifting-line theory for 



111 

the study of performance of high-aspect-ratio lunate tails (or flapping 

wings). In this chapter, we employ the present unsteady lifting-line 

theory to study the energetics of three-dimensional flapping flight. The 

present approach has several advantages: i) All of. the results are 

obtained in closed form and, hence, are suited for optimization studies. 

ii) In comparison with unsteady lifting-surface theory, considerably less 

computation time is required. ·11i) . In the present acceleration potential 

formulation of the problem, the suction force is obtained exactly 

(linearized). This is in contrast with other methods (numerical) in steady 

and unsteady flows where the suction force is obtained approximately (see, 

e.g., Wagner (1969) and Lan (1979». 

Working within the framework of line.arized theory, we use the present 

unsteady lifting-line, theory to calculate bOth spanwise distribution and 

total integrated value of the following quantities: power required to 

maintain the wing OScillations; leading-edge suction force; thrust; and 

energy loss rate due to vortex Shedding. I~ is not meaningful to speak of 

sectional energy loss rate since this quantity is defined,only for the' 

entire wing. 

modified to 

The analysis in this chapter is for, a rigid wing but can be 

accomodate a spanwise-flexible wing. The total integrated 

quantities are needed for the optimization studies in Chapter V. Numerical 

examples for the abOve quantities are presented and correlated with 

lifting-surface results, where such data is available.. The overall 

agreement is found to be good. 

On the basis of the numerical examples in Chapters III and 'the present 

chapter, the range of validity of the present unsteady lifting-line theory 

is then discussed in more detail. It is found that the theory is valid 

over a larger range of' reduced frequency and aspect ratio that originally· 



112 

anticipated. This is, in part, due to the. improvement scheme discussed in 

Section 3.2. 

4.2 Ener;etics of Three-Dimensional Flapping Flight 

. Focusing attention on the unsteady part of the wing motion, we 

consider a rigid thin wing of relatively large aspect ratio in combined 

pitch and. heave: 

as shown in Figures 2.3a: and 2.3b. As we will see· below, all· of the 

energetic quanti ties turn out to be quadratic forms in (~o' ~I , {~). We 

start with the basic· definition of. the quantities in question and· derive 

closed-form expressions for them. Since, for harmonic motion, the time 

average of these quantities is of interest, we only calculate their time 

averages. 

The time average, denoted by ( ), is defined as 

. to+"r 

T = t f T(t) d·t (4.2) 

to 

where to ·is an arbitrary constant. For .harmonic motion, ~ is usually 

chosen as the period of oscillation. It can be shown that the following 

rules hold for' the time average of products of complex ·harmonic quantities. 
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If 

then, 

AS = ±CR.j [AS@1 -= i CRJ [B A®j 

~ <. AS) =0 

l4.3) 

(4~4) 

<4.6 ) 

where {]G j and ( )~ respectively denote the real Part and the complex 

conjugate of a complex quantity with respect to j. 

fower Required to Maintain Wing Oscillations 

The average sectional power required to maintain the wing oscillations 

·is given by 
Cl'l)/ A 

. Pl,{) =- S 
~Cl\f)IA 

b...b l "1., \.It.) ah {X, 'I, -i:} 
fll at .-

Substituting for h from (4.1) and using the averaging rule in (4.4), we 

obtain 

P W) - i (R j t j w ~ il '() - j ul o(® ml 'f) } 

This represents the rate of work of unsteady lift (done at the rate of 

heaving velocity) and the rate of work of unsteady moment (done at the. rate •. 

of angular pitching velOCity). 

Introducing the nondimensional coefficients 
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Cp(Y*) ~ P( 'f) / [ "* .PU ~ (*) J (4.8) 

~ , 

1: (V) / [± PU:2. (2 ~ )] , , C,t ('1*) - l4.9) -
A.a ' 

~<''1)/ [1 fU2. (2.. ~}:l.J C Wl t'1*). - (4.10) 

in (4.7), we obtain 

where 5& denot~s th~ imaginary part of a complex quantit~ with respect to 
, -.J I'J 

j and Ct. (Y*) and C", (~) are obtained, from the unsteady lifting-line theory 

{ se e (3'. 14 ) an4 (3. 15 » . 
, We now introdu,cethe following' notation for the linear quantities.' 

I ;' II , , ,,', , / ' , ~,' 
B = l80 +J ~Q ) ~Q + (6. +j'Bj )~, + (B2. +J S,2.) ~2. (4.iZ) 

, , ' NJf N ' N " N N 
where B denotes WS(y*), Ct(Y*), C",,(y*),CL.0r CMand the' coefficients'B~, 

,and B~' are real 'with respect to j. It tollows' from the second form of 

(4.1) that the following symmetry relations hold. 

~ /' 

8 1 '= - S;z. 

-.J N 

Expressing Ct(Y*) and C",(Y*) in (4.11) in the notation of (4.12) and 

using the above symmetry relations, we obtain C'(y*) as a quadratic 'form in 
, ' P 

( ~c , ~ I ,.s z ) • 
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r 1/ II]· 
+ t l 4 C!"'o <y*) - C.e

l 
l \f If') 2. ~o §, 

- ~ L 4C~o t'{*) + C!~, l'l~))2 ~o$2. (4 .. 14) 

The general form of a quadratic form in three variables is 

F = Q" '3; +~Q\l.~O~\ +2. Q r3 ~o§.2 

-+ Q 22 ~ ~ + 2. Q. Z "3 ~'~.2. (4.15 ) 

+. 

or, in matrix notation, 

T . 
F::: ~ Q ~ --

T where ( ) denotes a matrix, (...1 denotes the transpose of a matrix and 

~ = l~:l 
. ~. ;z, . 

Q" Q. \2. • Q\'3 

Q. - Q\2; Q'2:z. Q'Z3 

Q\~ G. %"3 Gl3~ 

~ is the matrix of the quadratic form which is symmetric by construction 

(for a discussion of quadratic forms see, e.g., Hildebrand (1965». A more 

general form of quadratic forms involves a non-symmetric ~. 

We saw in the above. that for the matrix of the quadratic form for 

Q-zz - Q 3"3 QOZ 3 = 0 (4.19) 
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which follow directly from the symmetry relations (4.13). As we will see 

below, in a similar way, the matrix of the quadratic form for all of the 

quantities in question (sectional and total) has the properties in (4.19) • 

It is noteworthy that, for the same reason, all of the quadratic forms for 

the two-dimensional motion of a rigid airfoil in pitch and heave also have 

these properties (see Wu (1971b». 

The· average total power required to maintain the wing oscillations is 

given by 

b 

(J> =·S P{'f) dy 
-6 

or, in nondimensional form, 

I 

- ~ l~) 5, C p ('1 It-) d.y~ 

Leadini-Edge Suction Force 

(4.20) 

Thrust consists of the suction force at the leading edge and a 

contribution from the normal force at the wing. First, we evaluate the 

suction force. In two dimensions, the' steady suction force is -derived 

rigorously (see, e. g., Robinson and Laurmann (1956), p. 126). It is .known 

that the suction force arises from the Singular pressure. at the leading 

edge and is pr.oportional to the square of the strength of the leading-edge 

squar~root singularity in velocity •. The suction force can be evaluated 
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using Blasius' theorem or the mOmentum theorem. Wu (1961, 1971a) has 

calculated the unsteady suction force in two dimensions using the 

acceleration potential. He shows that, in the neighborhood of the leading 

edge of an oscillating airfoil, the velocity potential and its time 

derivative remain bounded and, hence, do not cont~ibute to the suction 

force. The problem of determining the unsteady suction force thus reduces 

to that in steady flow, with time appearing only as a parameter. 

In three dimensions, we employ the present unsteady lifting-line 

theory, according to which, at each wing section, the three-dimensional 

effects are manifested as ·a convecting sinusoidal gust (the unsteady 

induced downwash). The interaction of this gust with wing sections 

modifies the local two-dimensional pressure field QY an amount of the Sears 

solution ~~~~S determined by the complex amplj,tude of the unsteady 

induced downwash. The Sears solution modifies the strength of the 

leading-edge sj,ngularity and thus modifie·s th~ suctioll force. Since the 

latter is a qu~dratic quantity, we can ~q~ ~j,mply co~bine the contribution 

from the two effe~ts. We must return to the three-dimensional pressure 

field in the inner region where the c.omplex aoceleration potential is given 

by 

(4.22.) 

~ ,: ".,., ,: 
Here, f20 and fS~arsare given by (2.46a) and (2.58a) respectively. Wu 

(196·1)·has. shown that, in .. two dimensions, .near the 1ead:ing edge ~the .co~plex 

velOCity 
. 

'" (. ~ 
- lA (X) -(. l4. z. 3) 

AI • 

behaves like f'. Ne. ..... '" 
Since both f ZD and f S""rs are (locally) two dimensional, 
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we may use this result. 
Nt· 1'111.' 

Expanding t 20 and t s~C'.s near the leading edge, we 

obtain 

(4.24) 

~ . 
. where S(k) is the Sears function defined in (2.59), ao(Y) is' given by 

IV 

(2.38d) and ~(y) is given. by (3.12b). 

The suction force is then obtained by applying Blasius' theorem to ·a 

small. circle surrounding the leading edge. The result is 

Ts \'f,t)=:- ~P C~l {~J a,lY, t.l+ z $llr.) W~ Wdwt]f (4.15) 

T"3 is' the suction force per unit length of the leading edge, directed along 

the outward normal to the leading edge, as shown in Figure 4.1, and taken 

to be positive in that direction. Numerically, Ts is also equal to the 
. . 

streamwise component of the suction force per unit span. 

Averaging Ts over ti~e and keeping only the leading three--dimens1onal 

correction, we obtain 

_ .' a![""' 2 ® 
-T s l'f) = ! P ~ ~ \ a.o l'( J 1 + 4 S tic.) (4.26) 

where it is seen that the suction force is proportional to the local chord 
. . N Z 

length. The .neglecte.d higher-order term is pz:'oportional to I S(k)W.9(y) t • 
The nondimensional form of (4.26) is given by 

where 

(4.28 ) 
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(4.29) 

It follows from (2.38d) - (2.38f) and (4.1) that 

(4.30) 

where 

IU* N 

bo ty*) =. b~t'()/U - j ko ~o +:z (~Itj Sz) 

(4.3.2.) 

The quadratic form of CTs(Y.) is obtained from .(4.27) after 
N· . 

substi tuting for. a~ from the above and introducing the notation of (4.12) 
1'1 

for w; together with the symmetry relations (4.13). The result is 

c.,." ('lit) = \~) 1 [~ 00<.) + 4 ('II Cdhl ci l 1] ~: 

+ L 2 ko D ( k.) - k. o Ie.. ~ ( k) + .2 (Cl 1 C?, + a. '3 C I 

+ b, d 3 + 6 3 d.) J Z~o "z "} (4.33) 

where F and G are the real and imaginary parts of. Theodorsen's function 



120 

C (k) (see (2.42) and (2.44» ahd 

BO~.) _ I=' (k..) - 'D (Ie..) 

Further, 

a., LY*) - ko <4(lc..) 

Qzl'{*) -=- k·<4(Jc..)-ZF"(k) 

Q..3t'f*) =.2 G (k.) 4-k [F(k.)- \1 
h, t'f*") ~ -koF(k..} 

1:>2. (y.~) -= - 2. .~ (k.) - k. [F(k,.)- I) 

h3 ('1*) ::: }c. <1 Uc.) - z F (k..) 

C, ('f*) = ~.~ (k.) Wol l 'f-l-) ~ S I. (Ie..) W:' ('{ *) 
. / .. .. & . 

Cz l~·*)· = SR., (k.) ·W, <'1*) -- S1: (Ic.) 'w, ('1*) 
• • 0 Q 

. C3 <''1*). ~ Sit (k..)W~ ('(*) - 5r (lc.) \Vz. ('1*) 

o o. " • /0 

~Il'f*) = 5R(k.)Wo'lt't~) + ·~~lk)Wo ('f*) 
• 0 I· 

d. z l '1*) = ;:; R (k.) V.J t ('f *") + S I. (k.) oW I ('f ~) 

d 3 ('f*") = SR.(k) W;I CY *) + jS~(k.) W;C'I*): 

o where SR, and S 1. are the real and imaginary parts of the Sears function S(k) 
N 

and w~ and w~ are the coefficients of W;, namely 

IV*" r I • ~ 0 J Wj lY*) = L 'N~ ('1*) +) Wo ('1~) §c. 

+ l \V: l 'f*) +j VJ ,II ('1 *) J § I 

+ l 'tJ: ('I ~) ;- j \\1 ~ ('( .~) j ~ 2. 
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N 

In the absence of three-dimensional corrections (W~ = 0), the above 

expression for CTs(Y*) reduces to the two-dimensional result of Wu (1971b). 

The average total leading-edge ·suction force for the wing, in the 

streamwise direction, is given by 

~'P 

::7s - 5 T s (~) Cos (3 d 1-
-t,P 

where 'X. is the distance along· the leading edge and (3 is the local 

leading-edge sweep angle as shown in Figure 4.1. Since cos ~ d?<.= dy, 

(4.37) may be written as 

J s 

b 

=- JTslY) rA't· 
-6 

(4.38 ) 

where it is seen that the aver~ge suction force per unit span in the 

streamwise . direction· is just Ts{Y) as pointed out earlier. The 

nondimensional form of (4.38) is given by 

c~s - ~ / [ ~ PU
2 (± ~ ~ ) 1 

(Ll.39) 

Thrust from the Normal Force 

In addit1o.n to the leading-edge.· suction force, the streamwise 

component of the unsteady normal force at the wing also contributes to the 
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thrust. The time average of this contribution, denoted bY~, is given by 

~(Y)/A 

Tp lV) = J (4.40) 
-C(,()JA 

Substituting for h trom (4.1), we obtain 

(4.41 ) 

or, in nondimerisional torm, 

CT (y*) ~ Tp (Y)/[ ~ PUZ(]r)] 
P . . 

. (4 .. 4Z) 
. * IV 

- ~ (l j L ~. Ce ( y *) J 
IV . 

Introducing the notation of (4.12) tor Ct(Y*) togethe~ with the symmetry 

. relations (4.13), w~ obta1Dthequadratic torm for C'p(Y·) .• 

by 

C T p l 'Ill-) = -ff 1 c ~ (y *") (s~ + §:- ) 
+ [ t .c;. (Y *)J' 1. ~o ~ I 

+ [ i C;, (y* ~ 2. 3. S:L 3 
The average total thrust trom the normal force for the wing is given 

or, in nondimensional form, 
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/ 
(4.45) 

Thrust 

The average section thrust is the sum of the averages of the 

leading-edge suction force and the thrust from the normal force, i.e., 

or, in nondimensional form, 

where C
T 

(y*) and C,. (y*) are given by (4.33) and (4.43) respectively • 
.. s P 

The average total th~st for the. wing is given by 

(4.48) 

or, in nond1mens1onal form, 
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, 
~ ± (~) J CT (Y*"Y Jy* (4.49 ) 

-\ 

It can be shown that, in the limit of steady flow, the .above results 

for average sectional and total thrust reduce to one half of the sectional 

and total induced drag respectively. For example, for an elliptiC wing, we 

find 

~ J \- '1*2-
A 

c . / s ~. - -s/ A 
~ I 

(4.50) 

(4.51 ) 

which are one half of the known.steady results •. The ·extra factor of one 

·half i::, due to the time averaging (se.e. (4.4» which is not meaningful in 

steady flow and, hence, must be discarded. 

Energy LOss Bate 

As pointed out earlier, energy loss rate is not defined for individual 

wing sections. The average total energy loss rate for the wing, denoted by 

~ , is obtained from the principle of conservation of mechanical energy 

(derived rigorously in Chapter VI in two and three dimensions): 

or, in nondimensional form, 

c . 
~ 

(4.5 2.) 
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The hydrodynamic efficiency of the motion is defined as 

(4.54 ) 

This completes the derivation of the average ~ectional and total 

values of the energetic quantities for a rigid wing in combined pitch and 

heave. It is noteworthy, that, within the framework of the present 

linearized theory, the results are exact and contain three-dimensional 

corrections of order .WI • Only in the evaluation of the suction force we 

encountered 
. 2 . . 

a correction term of order WI (in addition to one of order WI) 

which we discarded as higher order. The implication of the latter near the. 

wing tips, where the amplitude of W~ can become large, is. discussed later 

in this section. 

Here, we have considered the purely unsteady motion of .the wing with 
. . 

no steady 11ft. In some applications, the latter is present and essential. . . . .. . ' 

For example, in birdflight where steady lift is required to overcome the 

body weight. The presence of steady lift in' the problem gives rise to 

additional steady components for the linear quantities (induced do~~ash, 

pressure, lift, moment etc.) which must be combined with their respective 

unsteady components before calculating the energetic quantities, as in this 

section. The average value of the quantities of interest, however, turn 

out to be simply the sum of the steady and unsteady components, since the 
lwt 

'., cross ·.product . terms, bei-ng proportional - to e ,average to zero.. For 

example, the average thrust is reduced by an amount equal to the induced 

drag. 

In this section we have considered the unsteady motion of a rigid 

wing. In some applications, such as in the unsteady undulations of lunate 
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tails, which 'are rather rigid structures, this model is quite adequate. 

But in other applications, such as in birdflight a model is needed which 

permits arbitrary variation of the amplitude of pitch and heave and the 

associated phase difference across the span, namely a spanwise-flex1ble 

wing model. The present unsteady lifting-line theory provides us with just 

such a model (see (2.3) and (2.4» through the choice of ho(y) and~(y) or, 

a1 terna tely, go ( y), {I ( y) and 5z ( y) • 

For numerical calculations, it is best to choose a number of suitable 

'spanwise modes (1) for each of ~o' 5. and ~;z, as we have done for the 

chordwise motion of the wing. The associated numerical schemes can be 

developed from those presented in Appendix B for the rigid wing, 'after 

straightforward modifica tiona. This also determines the size of the 

matrices of the quadratic forms for the energetic quantities. For example, 

if we choose three modes t.or each of So J ~I' and $z, the size of the 
, , 

resulting matrices will be 9x9 (in contrast to 3x3 for the rigid wing). 

Nymeriqal EXamples 

To study the influence of the three-dimensional corrections on the 
. . . . . . 

spanwise distribution of, the energetic, quantities, we consider a rigid 

elliptiC wing in pitch and heave. Since the wing is, spanwise symmetriC, 

the calculations are done for half of the span, at eight'stations with the 

station closest to the tip located aty· = .9999. The stations are the 

abscissas of the sixteen-point Legendre-Gauss· quadrature (for the,full 

span) for the normalized spanwise angular variable 
-I 

(2Iii cos y. - 1). , 

(1) 
The actual number depends on the particular modes chosen and the desired 
accuracy. 
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Calculations are carried out for kg = 0, 0.1 and 0.3. To indicate the 

extent of the three-dimensional corrections, in each case, the 

corresponding strip-theory result (ST) is also shown. 

The spanwise distribution of the average power required to maintain 

the wing oscillations for an elliptic wing (A = 8) in heave and 'pitch are 

shown respectively in Figures 4.2 and 4.3. The numerical results are 

obtained from (4.14). It is seen that the three-dimensional theory 

predicts less power than the strip theory. This is due to the fact that 

the three-dimensional effects normally reduce the amplitude of unsteady 

lift and moment, as was seen in Section 3.4. We also note that it takes, 

more power to oscillate a wing at higher kg, as expected. 

Before presenting the numerical results for the leading-edge suction 

force, it is instructive to consider the suction force for a 

two-dimensional airfoil. This is obtained from (4.33) with the unsteady 
N 

induced downwash, set equal. to zero (W; = 0). Figure 4.4 depicts the 

average suction force for a two-dimensional airfoil in heave ,and pitch as a 

function of the reduced frequency k. It is seen that, ~th increasing. k, 

for the heaving airfoil, the average suction,force increases monotonically, 

whereas for the pitching airfoil, it first decreases to about one half of 

. its steady value and' grows nomotonically thereafter. The unexpected 

behavior of the latter is due to the influence of unsteady effects on the 

flow around the leading edge. In the limit of steady flow, the average 

suction force~ for .the pitching airfoil approaches one half of its steady. 

value of 8 (the reason for the extra factor of 1/2 was given earlier). 

The spanwise distribution of the suction force for an elliptic wing (A 

= 8) in heave and pitch is calculated from (4.33) and shown respectively in 

Figures 4.5 and 4.6. It is seen from the figures that the 
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three-dimensional effeots reduce the suotion foroe. This is because the 

induced downwash norm8J.ly opposes the flow around the leading-edge, thereby 

reduoing the strength of the leading- edge square-root singularity and, 

henoe, also the suotion foroe. .The variation of the suotion foroe with ko 

for both wings is oonsistent with the basio two-dimensional results in 

Figure 4.4. 

We also note .that for both wings, for k a = 0.3 in a small neighborhood 

of the tip, the suotion foroe beoomes negative •. But we know, on physioal 

grounds, that the suotion foroe must be positive or zero everywhere along 

.the span. The eXplanation for this lies in the higher-order correction 

term of order I WI. \2. in. the expression· for CT'l(~) whioh.we discarded. This 

term is always positive~· The correCtion term of order WI whioh was 

retained, on the other hand, oan become negative. As we saw in Seotion 

3.4, near the tips and at higher ko ' the amplitude of Wl. can become large. 
z . . 

Under these oondtions (and in the absenoe of the H'1.\· term), the WI. term 

can become .large and· negative and overtake the two-dimensional term which 

is always positive,· thereby producing an overall·· negative result. 

Retaining. the, W \ z. "I. term will always p~event this 00 cur rence , but the 

related steady result willbeinconBistent with that of steady lifting-line 

theory which contains·only the WL term. As pointed out in Section 3.4, the 

lifting-line results near blunt tips are to be considered only as a rough 

approximation, since the actual flow field does not become two~d1mensional 

no matter how large the aspect ratio. Since the region of negative suction 

force constitutes only a small ·neighborhood of the tips (of the order of 1% 

of the semi span,in- the above examples) and since - the suction force is 

tending to zerd at the tips, we expect the effect of this on the total 

thrus·t to be negligible. 
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The spanwise, distribution ot thrust for an elliptic wing (A = 8) in 

heave is also shown in Figure 4.5 and was discussed in the above in 

relation to the suction force. This is because, for a heaving wing, the 

. normal force at the wing is always in the z-direction and hence all of the 

thrust is supplied by the suction force. The spanwise distribution of 

thrust for an elliptic wing (A = 8) in pitch is shown in Figure 4.7 for 

ko = 0, 0.1 and 0.3. For these values of ko , the pitching wing produces 

drag (see the corresponding two-dimensional results in Figure 6.7). It is 

seen that, in the steady limit, we obtain one half of the sectional induced 

drag for an elliptic wing at incidence, as pointed out earlier. In Figure 

4.7, the reason the magnitude of the three-dimensional results is larger 

than the corresponding ,strip-theory values is the additional 'drag 

associated with the trailing vorticity which is absent in the strip theory. 

All of the spanwise distributions presented in this section display 

the ,property that, with increasing ko , the' three-dime'nsional results 

approach their strip-theory values, as expected. 

Next, we consider the overall propulsive performance of an oscillating 

rigid wing and ask what level of thrust C~ the wing is capable of 

producing and at what hydrodynamic efficiency ~. It should be noted that 

the calculation of '1 , (4.54), requires the calculation of two of the three 

quanti tiesC ~, C @ and C e' with the third determined from conservation of 

energy, (4.53). 

In order to correlate the present numerical results with the. limited 

numerical lif.ting-surface results available, we temporarily adopt 

Lighthlll's description for the wing displacements (see Lighthill (1970», 

namely 
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l\fl'b 
(4.55) 

where hL. and <XL are real quantities with respect to j, signifying the 

amplitude of heave and pitch respectively. The phase difference between 

the two modes of oScillation is 90° and the position of the axis of pitch 

is given by x = bL, Z = 0 ~ This description of the wing motion is 

completely equivalent to that employed in the present work (see (2.3) and 

(2.4». The explicit relationships between the two are given in the next 

chapter. 

The total value of the energetic quantities for the wing are obtained 

by integrating the spanwise. distribution of these quantities using 

Legendre-Gauss quadrature together with a spanwise cosine substitution to 

handle numerical difficulties arising at blunt wing tips (as in Appendix 

B). Through numerical experiments, a sixteen-point Legendre-Gauss 

quadrature scheme· was found to be adequate to obtain three decimal plS;ces 

of accuracy. Taking advantage of the. spanwise symmetry, all of the 

necessary integrals are carried out for half of the span and the. results 

doubled. Further, all of the required spanwise integrals are evalua"ted 

simultaneously so as ·to save computation time. The integrands involve the 

unsteady induced downwash and various special functions, with most of the 

savings coming from fewer calculations of the former. 

Figure 4.8 depict~ the strip-theory results for C':J and -1 .. for- an 

elliptic wing in combined pitch and heave, with the axis of pitch located 

at 3/4 of the center-section chord, for several values of Lighthill's 

feathering parameter . 
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( 4.56) 

9
L 

is a measure of the deviation of the wing slope' from the tangent to the 

path traversed in space by the pitch axis. 9 L = 1 represents perfect 

geometric feathering and 9 L = 0 represents pure h~av1ng motion. The 

results closely resemble the corresponding two-dimensional ones of 

Lighthill (1970) with y] tending to 100% as ko-+O for all values of 9L , as 

expected. It should be noted that, as ko'" 0, all configurations with 

9L ~ 0 tend to pure heaving motion as can be seen from the following form 

of (4.56). 

(4.51-) 

. In the absence of numerical. lifting-surface results for oscillating 

. elliptic wings, here we correlate the results of the pr.esent theory .for an 

elliptic wing with those of Chopra andKambe (1977) for ~ rectangular wing. 

See Figure 4.9. Both wings are of A = 8, oscillating in combined pitch and 

heave, with the axis of pitch located at 3/4 chord (at the center section 

for the elliptic wing). 

Based on experience from steady flow, one might expect the elliptic 

wing to have better propulsive performance than the rectangular wing. 

Also, the calculations of Bennett (1970) for a linearly flapping wing 

indicate that- the elliptiC wing has better performance (C.7 -- and 1) than 

the other planforms considered including the rectangular one. While this 

may not be true for all modes of oscillation, it indicates that one might 

expect, .at least in some cases, better performance from the elliptic wing. 

In Figure 4.9, we find the elliptic wing to have. comparable and in.most 



132 

oases higher C!J and '1 than the rectangular wing, exoept for low k 0 where 

~ for the elliptio wing drops unexpectedly. As k o'" 0, we expect '1 to 

oontinue to inorease beoause, as pOinted out eariler, for all eL, the wing 

motion tends to pure heave (see the oorresponding two-dimensional results 

in Figure 6.7). This behavior seems to be directly related to the 
N 

unexpeoted behavior of the C~ ourve for low ko and moderate A disoussed in 

Seotion 3.4 (see, e.g., Figures 3.30 and 3.33). Figure 4.10, whioh depicts 

C ~ and '1 for an elliptio wing. of A = 16, also· gives support to this 

argument, in that,. for A = 16 the drop in '1 at low ko has all but 
I'J 

disappeared, in the same way that. the 'corresponding behavior of the C i. 

curve also disappears for A = 16 (see Figures '3.31 and 3.34). We also note 

that, with increasing ko . and/or A (within the range of validity of the 

unsteady lifting-line theory), the· present three-dime nS10 nal results 

approach their strip-theory oou~terparts, as expeoted. 
. . .... . . 

W~ end this seotion with a' comparison of the recently' published 

numerical lifting-surface results ot Lan (1979) with those of Chopra and 

Kambe (1977) •. Figure 4.11 depict s CD' and, ~ from the two theories for a 

reotangular wing. in combin~ pitch and heave, with axis of pitoh looated at 

3/4 . ohord. The values of '1 from the two theories agree quite well. 

However, the values of C~ predioted by Lan's theory are generally smaller 

than those of Cho pr a and Kambe • The same trend is observed in the 

com~rison of C!J fr~m Lan's theory and that of Bennett (1970) for a 

linea~lY flapping rectangular wing (see Lan (1976», where the values of 

C ~ predicted by Lan's theory are considerably smaller than those of 

Bennett. In the absence 'of an exact analytio theory with whioh. to oompare 

(for the rectangular wing), we conclude that there is need for further work-. 

on numerioal.lifting-surfaoe theories for the purpose of calculating the 
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propulsive performance of oscillating wings. 

4.3 Region of Validity of Unsteady Lifting-Line theory 

A tentative discussion of the region of validity of the present 

unsteady lifting-line theory (in a ko - A diagram) was presented in Section 

3.3 and shown in Figure 3.9. On the basis of the calculations and 

correlations presented in Chapter III and the present chapter, we now 

continue that discussion, seeking to refine that picture (1). First, a few 

remarks are in order concerning the order of magnitude of the errors. 

Since the present theory is an asymptotic one for large aspect ratio, 

the accuracy of the results improves with increasing A and vice versa. The 

order of magnitude . of the errors in the present theory is 0(.1
2
). This 

'represents an error of the order of 11 % for A= 3, 4% for .A = 5 and 1% for 

A = 10, as shown in Figure 4.12. Also shown in this figure is a curve 
I . 

corresponding to errors of O(A-) which may be' thought of as the errors 

involved in using the strip theory alone (for a high-aspect-ratio wing) or 

the Order of magnitude of the corrections to the latter by the present 
-3 

lifting-line theory.. A third curve represents errors of O(A ), namely 

those associated with the next higher-order lifting-line theory. It is 

seen that the first-order theory represents significant corrections to the 

strip-theory results, with small r,esidual ,errors of only a few per cent for 
,v 

A > 5. Further, on the basis of the order of magnitude of the errors, 

there seems to be little gained by developing a higher-order lifting-line 

theory (considering that we have neglected viscous and nonlinear effects). 

(1) 
Ideally, at least some of the present calculations should be carried out on 
a reliable unsteady numerical lifting-surface program for comparison. 
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However, such a theory may be advantageous in refining some of the details 

of the present theory, thereby also improving the region of validity and 

the accuracy of the theory. 

Figure 4.13 depicts the region in a ko- A diagram where the present 

theory is most accurate and useful. In the light of the above discussion, 
,." 

we have marked off the area for A < 5 as the region where aspect ratio is 

too small for the theory to give good accuracy. 

Another implication of the assumption of large A, in th~ present 

theory, is that the reduced frequencebased on the wing semi chord c(y)/A 

is small. As pointed out earlier, this means that the theory is restricted 

to lower values of k o•· This is roughly indicated in .Figure 4.13 by the 

broken and solid lines (taken from Figure 3.9) to the right of which, 

respectively, the phase and amplitude of induced downwash gradually. start. 

to diverge, with the latter causing larger errors in the results. In fact, 

the results are found to' be valid well. to the right of the broken line,. as 

shown in' Figure 4.13 by the crosshatched area. 

As mentioned earlier~ in the steady limit, the present theory reduces 

to .. the classical. steady lifting-line theory. We also saw, in Sections 3.4 

and 4.2, that, for small ko and moderate A, .some of the total aerodynamic· 

coefficients' for the wing display certain unexpected behavior (see Figures 

~ .30, 3.33 and 4.9). As pOinted out .in Section 3.4, this might be due to 

the term containing ko log ~o in the induced downwash, (see (3.37a) and 

(3 .37b). This behavior, however, is not fully understood arid calls for 

further investigation. Further numerical lifting-surface results will be 

helpful here. This behavior may turn out to be an inherent weakness of the 

present theory, in .which case, it might be necessary to carry: out the 

analYSis toone order higher in inverse aspect ratio to resolve it. 
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For the present purposes, we identify the region in question .(small ko 

and moderate A) in the ko - A diagram, Figure 4.13, as one where the error 

band of the present theory is wider than that at higher ko, though perhaps 

smaller than that for steady lifting-line theory, as suggested earlier. 

The unshaded area in Figure 4.13 roughly depicts the region where the 

present theory is most accurate and useful, with the accuracy improving 

with increasing A. This region encompasses a larger range of values of ko 

and A than originally anticipated and contains values o.f ko and A which are 

of greatest interest in applications. 
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CHAPTER V 

OPTIMUM MOTION OF THRUST-PRODUCING 

LIFTING SURFACES 

5.1 Introduction 

The optimum shape problems considered here involve the determination 

of those transverse displacements of a lifting surface which produce a 

prescribed level of thrust at minimum energy cost in maintaining the 

oscillations. .The primary motivation for these studies is to gain a 

clearer understanding of the high efficiencies observed in certain modes of 

animal propulsion in nat~e, ·such as bird flight and fish swimming. The 

general . theory. may also be. useful in other applications, such 'as in 

.aeroelasticity· and optimum energy extraction from fluid streams. 

Undoubtedly, the highly refined a~rodynamic shapes and motions of' the 

animal as a whole and "the thrust-pr~ducirig lifting surfaces in particular. 

playa key role in achieving. high efficiencies. In the current study, we 

are. concerned with wing motion.s of birds with high-aspect-ratio wings and 

small to moderate flapping amplitude,. such as gulls and albatross in 

cruising flight~ In the aquatic realm, we are concerned with similar· 

motions of high-aspect ratio lunate tails, "typical of many fast-moving 

fish, such as sharks and the cetacean mammals. Such wing and tail motions 

are typically associated with relatively high Reynolds numbers, of' the 

order of 
5 

10 and higher (based o"n a characteristic chord length). Under 

these conditions," viscous effects are confined to a thin boundary layer at 

the surface and a thin trailing vortex wake. Outside" the boundary layer 

and the wake, the flow may be trea"ted as potential. The inertial forces, 
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which are much larger than the viscous forces, are primarily responsible 

for the propulsive forces. The viscous forces are ·responsible for skin 

friction and creation of circulation around the wing (Kutta condition) and 

only in the latter role do they affect the propulsive forces. Thus, the 

aerodynamic quantities of interest can be obtained from a potential flow 

model based on linearized unsteady wing theory. 

In two diinensions, the only rigorous analysis of the optimum shape 

problem is due to Wu (1971b) (1) who considered a rigid and a flexible 

airfoil. His study is based on the aerodynamic theory of Wu (197 "a) and 

includes a detailed analysis of the optimum motion of a rigid airfoil in 

small-amplitude combined pitch and heave and a discussion of the general 

case of a flexible airfoil •. He finds that (in two dimensions) th·e optimum 

solution is n<?t uru.que. 

In three dimenSions, there has been no rigorous study of the optimum 

shape problem. This is in part due ·to ~ lack of an adequate 

three-dimensional unsteady aerodynamic theory· with closed-form results. 

Here, it is desirable to· determine the optimum shapes and motions of rigid, 

semi-rigid and flexible lifting surfaces·. 

In this chapter, Wu's solution for the ·optimum motion of a rigid 

airfoil is recast in terms of the normal modes of the matrix of the 

quadratic form for energy loss rate. This sheds some light on the 

structure of the optimum solution. Then, using the results of the present 

unsteady lifting-line theory in Chapter IV, the ()ptimum motion of ·a 

three-dimensional rigid wing is determined. Numerical results for the 

( 1 ) 
In a parallel study,Wu (1972) has determined the optimum mode of energy 
extraction from gravity waves by means of an oscillating rigid airfoil. 
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optimum are presented for an elliptic wing over a range of reduced 

frequencies and for several aspect ratios. 

5.2 Optimum Motion of a Rigid Airfoil 

The general problem of determining the optimum shapes and motions of 

an oscillating ·lifting surface may be stated ·as follows: from within a 

prescribed class of shape functions h{x,y,t), find the ·optimum one which 

minimizes the mean energy loss rate subject to the condition of fixed mean 

thrust. 

In this section, we focus attention on the optimum motion of a rigid 

airfoil oscillating in combined pitch and heave: 

h (X/t:) '= [l c. ~o +(-~i + j ~2.) X'] e. jtOt .. lX' ~ <::. 

This is the same as (2.4) w~th c(y)/A replaced by c. The. energetic 

quantities for this case can be obtained from the thre~dimentional results 

of Section 4.2, after replacing. c(y)/A by c ·and setting the induced 

downwash WI = O. In two dime~s1ons, we ·denote the average value of the 
.. 

energy loss rate, the power required, the thrust and the suction force, 

respectively, by· E, P, Teind Ts'· and define the non-dimensional 

coefficients· 

(5.2) 

(5.4) 
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In matrix notation, the corresponding quadratic forms are given by 

C e - ST E. ~ 

C p - 3' p S ( 5.·~) 

cT "= gT T S - - (5" .8) 

c. T - §T K ~ 5 - - (5.9) 

~T__ c .;; where; { ~o , 3, , :>2.} and from Section 4.2 

k"Z. k.'- zk.. 

E B(lc.) 
k"!. 4+k. "Z.. 0 -
zk. 0 4+k. 2-

lc.F K{Z. + G 

E - k . k.12 + ~ k(l-~) - ZG o (5. II) 

F -k~ ·0 k. U- F)- Z G 

T= P -E (S.IZ) 

-IC6 
k.2-t t41" k.2.) D-Lk.Z.F -4k. q (5 ~ 13) 

o 

where D(k) and B(k) are defined in (4.34) and F and G are the real· and 

imaginary parts of Theodorsen's function (see (2.42) and (2.44). k is the 
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reduced frequency k = W c/U. The above results are in full agreement with 

those of Wu (1971b). 

The optimum problem under consideration is to minimize the quadratic 

, form CE subject to the constraint 

(5. i4) 

This variational problem is equivalent to minimizing a new function 

C~ = Ce - ~ C P . subject to the same constraint, A being a Lagrange 

multiplier. Wu (1971b) has pOinted out that application of variational 

methods to this problem fails to yield the optimum because the quadratic 

formC E is singular (1) , since of the ,three eigenvalues of !: 

u -=0 rl ' 1'12., 0:: B(Ic.). (4 + k,l.) 

one is identically. zero. He points out that the quadratic form C e: must 

first be reduced to a . nonsingular one of a lower o'rder which is then 

tractable by the usual variational methods. 

Here, we first indicate the general method of reducing the singular 

quadratic form CE.. This also points out ,the advantage of Wu' s approach to 

the problem. Wu' s solution is then presented and recast in terms of the 

eigenvectors (normal modes) of E to shed light on the structure of the 

optimum solution.'. 

The reduction of the 'singular quadratic form C E is formally 

accomplished through the orthogonal transformation 

S' - S ! --
(1) 
Cp is indefinite in two and three dimensions. 
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where! = {!g, II' !:z.} and §. is the orthonormal modal matrix of E. The 

successive columns of ~ consist of the normal modes of ! (in normalized 

form). Putting (5.15) in (5.6), we obtain 

Ce -= :r\' E' j - - -
- Btl) L (4+ k.z) S, z. + (4 + z Ie. 2) "S-z."Z. J 

where 

(S·I~ ) 

is a diagonal matrix consisting of the respective eigenvalues of!. The 

singular quadratic form Cs. is thus reduced tQ the canonical form involving 

two variables. After writing· Cp in terms of the new variables, we proceed 

with the usual variational approach. This, however, le~s to an 8th.degree 

algebraic equation in ::\. For given k, the roots can be determined 

numerically. The optimum solution is the OJle corr~spo~ing to the hj,ghest 

~. In thi,s way, various aspects of _the optiIllUlll solution can be determined 

numerically, but it . requires. a con¢q~rable amQunt of work. 

demonstrates the . apvantage· of Wu' s (1971b) ~ethod whi<;lh l,.eads to a 

quadratic equation in '" which can Qe solVed analytic~~ly, with the 

subsequent study of the optimum problem requj,.ri.ng much le·s~ wori<:. 

Before considering Wu's solution, we first dj,.s9~sS the normal modes of 

~, in terms of which, the solution will be recast. These are given by 

. ~. 

t
4+~ '>l4 + Zk..-z.)} 

~,- [\4+k.'-ll4+ Zk"'-lY'/2. ~k.~ .. foYf', 

.-2... k. t s .18) . 

<\>~ - (4+ k '-r'/;t Ek 1 -h,.,. »-1. (5.\ '1) 
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(~.20) 

The first and third modes consist of combined pitch and hea:ve whereas the 

second mode represents pure pitching motion. The first mode has some very 

interesting properties and plays a central role' in the present optimum 

solution. Hence, we discuss its properties in some detail. 

It can be shown, from (5.6) - (5.9), that for ~= <P. 

E - P -::., ='0 (s.z i) 

CPt is, in fact, the same as the special set of values of· Wu 

(1971b),· wqo points out that these are a direct result of the condition 

;v. N 

boo .+ 6, -= 0" 

where bn are the coefficient of the chordwise Fourier cosine series 

representation 'of the downwash at .th.e airfoil Wo (as in (2.38e) and 

(2.38f». Condition (5.22) also corresponds 'to zero circulation around the 

airfoil. This can be seen from (2.38e), (3.25) 'and (3.29) (after repalcing 

cIA by c), namely that 

(5.2.3) 

and, hence, no vorticity is shed from the airfoil. In' passing,' we note 

that (5.22) and (5.23) are also valid for a flexible airfoil. 

In the light of the above considerations, we will refer to 4>, as' the 

invisible mode. It must be rioted that, due to the unsteadiness of the 



143 

airfoil motion, the leading-edge suction force is nonzero and, hence, the 

thrust from the normal force is also nonzero (T' p = -Ts .;. 0). Further, the 

unsteady lift and moment are nonzero due to the added mass effects. 

Wu (1971a, 1971b) has shown that CE ~ Ibo + "brl2. and Cp~ (bo + b l ). 

It follows that the hydrodynamic efficiency of the invisible mode is 100%. 

This is analogous to the Froude efficiency of a propeller which tends to 

100% as the disc loading vanishes. Since the invisible mode violates the 

condition of fixed positive thrust, (5.14), by itself it does not 

constitute the optimum •. 

The invisible mode is perfect unsteady feathering. It can be shown 

that, as k ~ 0, the invisible mode tends to perfect geanetric feathering 

(or quasi-steady feathering)wliere the airfoil pitching motion is suQb that 

·.t·he airfoil stays tangent to the path traversed in space by the' heaving 

motion of the pitch axis • 

. The amplitude ratio and the phase advance of pitch relative to heave, 

defined respectively as 

(5.24) 

(S. 25) 

are shown for the three normal modes of !. in Figures 5 .1 and 5.2. For 

obvious reasons, Z~ is not defined for the second mode. The quaSi-steady 

feathering results are also shown for reference. It is seen that, . as 

suggested in the above, the invisible mode tends to quasi-steady feathering 

as k- O. 

Wu's (1971b) solution for the optimum problem at hand. is presented in 

Figures 5.3 - 5.7. 
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versus k c: (defined below). The numerical results are obtained from a 

computer program which employs Wu's method •. Wu's analysis shows that ~o is 

a free parameter in the problem and, hence, the solution is not unique. 

- 2-CI •
O 

= CT,o/ ~o ' . the proportional loading parameter, is also a free 

parameter. In Figures 5.3 - 5.5,.the lines designated k = kc: and k = k m 

denote respectively the value of k below. which no optimum exists and the 

value . of k for which the fraction of thrust coming from the leading-edge 

suction force is a minimum as determined from Figure 5.6, where it is seen 

that outside a small range of·k surrounding k = k
M

, the contribution of the 

suction force becomes so large as to be difficult to realize in practice 

- . 
without leading-edge stall •. We will .refer to the optimum motion fo.r ~ = km 

as the superoptimum. Wu has pointed out that, in practice, it is 

preferable·· to. operate at values of k slightly larger than k", whereZ., and 

.. Ol.? vary relatively slowly and ~ is somewhat higher.· . The sup~roptimum 

line in Figure 5.3· indicates the advantage of operat~ng at low C~o 

corresponding to lar~e heave ·amplitude ~ Small values of" CT,orender the 

optimum valid· to lower k and make. ~ larger at ~he same k. Figure 5 ~4 

indicates that the optimum normally involves a small amount of pitch 

relative to heave, of the order of· 10%. Fisure 5.7 depicts k c as· a 

function of CT;o. For given CT,iI' the optimum· exists for k ~ kc • For 

further details of the present optimum problem see Wu (1971b). 

In Figures ~.3 - 5.5, Y},. Z f and 0(1' for the lnvisible mode are also 

shown, superimposed on Wu' s solution. It is seen that, with decreasirig CT,o 

and/or increasing k, the optimum solutio,ns approach the invisible mode 

which forms an upper envelope for the family. This leads us to believe 

that the invisible mode must playa' central role in the optimum solution. 

In order to understand the structure of the optimum and the role of, 
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the invisible mode in it, we recast the solution in terms ot the normal 

modes of ~ (one of which is the invisible mode). Thus, denoting the known 

optimum solution by ~., we set 

'3 

S~= L "'t: i 4>~ (s.Z{;) 
t=1 

where the weighting functions Yi indicate the amount of each of the modes 

in ~. and ~c." are given by (5.18) - (5.20). To determine ii, we 

,l.,JT. premultiply both sides of (5.26) by ~ and use the orthogonality property 

q;: .d. CPc.' =~i.j , .to obtain 

(5. z:r) 

The three equations in (5.27)· determine only two of -the three-

functions· "'" 't 2. and '(3 bE!cause, as mentioned earlier, 'So is arbitrary. 

-Thus, we find 

<P2l +~zz (~~/3o) + cpz~(~; / ~o") -

CPII+ ~IZ.-~~t/Jo)_+ +I~ (~~/~~) 

-cl>3i + 4>32. (~I* / ~ ol + ~33 t ~2'*'1§ 0") 

4>,\ + cp,1. (~i~/ 50) + ~13 t ~:/ S:o r -

and rewrite (5.26) as 

(5 .. 28)-

(~.Z.9) 

where we have chosen the amount of the invisible mode ", to be the free 

parameter rather than ~o. Accordingly, we replace Wu's proportional 
N 2-

loading parameter C".o with a modified loading parameter Ci,o = Ci-.o/ 'it which 
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is related to the former through 

(5.'3') 

The numerical results for the recast optimum are obtained from the 
~ ~.. 

numerical values of ~I 1 30 and ~z 1 ~o, which are obtained from the ·above 

mentioned computer program for calculating Wu's solution. The amount of 

the second and third modes, relative to the invisible mode, present in the 

solution, are shown in Figures 5.8 and 5.9. It is seen that in general, 

with decreasing CT 0 and lor increasing k, both "%,.1"', and "?J'1, diminish, and 
I 

the invisible mode increasingly dominates the solution. Figure 5.10 

/OJ 

depicts CT,o as a function of k and CT,O. We note that, for small values of 

k and CT,o' This is due to the fact" that, under these 

conditions, the solution is dominated by the invisible mode which tends to 

pure heave as k~ 0 (see (5.18)). 

The results for the· recast optimum are summarized ·in Fi.gure 5.11 

5.13 for CT,o = 104, 5 x ·10'3 and" 10'. The figures depict 11 as a function 

It is seen that in 

general the optimum consists primarily ~f the invisible mode with a small 

amount of the third mode (of the order of 10%) and even a smaller amount of 

the second mode (of the order of 1%). The invisible mode is responsible 

for the high "1 achieved by the optimum, whereas the other modes are 

"necessary to attain the prescribed level of thrust. We also note that the 

superoptimum achieves higher, at lower values of CT,o' as was p01nted out 

earlier. From the recast form of the optimum, it becomes clear that the 

reason for the nonuniqueness of" the present solution is the invisible mode, 

an arbitrary amount of which (~I) is present in the solution. 
N 

Strictly speaking, the recast results should be presented with CT,o as 
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a parameter rather than cT,O'· as in the above. However, since there is a 

one-to-on~ correspondence between ~o and .'6 i (as seen fran (5.27) with 

'" j = 1) and, hence, also between CT,o and CT,o (as seen in Figure 5.10), the 

above presentation is adequate. 

Wu (1971b) has also considered the general optimum shape problem for a 

two-dimensional flexible airfoil (infinite degrees of freedom). He finds 

that CEis singular (1), as one would expect, and that the nonsingular form 

of CE is again of order two. He finds that the optimum shape h(x,t) can be 

determined only to a certain degree but not to the extent of finding a 

unique h(x, t). This lack of complete determinateness of ·the optimum shape 

problem, he points out, is an intrinsic feature of the problem. 

5.3 Optimum Motion of a Rigid Wing 

In this section we employ the present unsteady lifting-line theory 

(Chapters II - IV), to study the optimum motion (2) of a high-aspect~ratio 

rigid wing in combined pitch and heave: 

\X\~C.l'1)/A <'5.31.) 

(see Figures 2.3a and 2.3b). The use of lifting-line theory restricts ~he 

(1) 
For a flexible airfoil, the condition (5.22) corresponds to an infinite 
family of invisible modes. 

( 2) 
Here, we could alternately use the results of Chapter VI which are valid 
for all wing shapes and motions and all reduced frequencies. However, the 
subsequent analysis and computation of the optimum motion would be 
considerably more tedious. 
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analysis to wings of large aspect ratio, with slender planform (see Section 

3.3) and relatively low.reduced frequencies (based on semi chord). 

The needed energetic quantities have been calculated in Section 4.2. 

In matrix notation, they are given by 

Ce - ~T E ~ (5.33 ) 

C@.= ST(j>'S - -- (s. '34) 

C~ = ST 7" S - -- (5. '35) 

C:Js - ~Tl(, 5 (S.3~) - -

where'§. , (jJ , Z and ~ are the respective matrices of the quadratic 

forms. They are symmetric by construction and have the properties in 

(4.19). 

Here, .as in two dimensions, the quadratic form C (JJ is indefinite and 

it is crucial first to identify the type -of the quadratic form Ce . To' 

this end we temporarily adopt the strip-theory viewpoint and investigate 

the possibility of distributing two-dimensional invisible modes across the 

span. It follows from (5.22), (5.32), (2.38e) and (2.38f) that the 

invisible mode at station y is given by 

.;; / g <:> . _ - ko k I (4 + k. z. ) 
(S.3~) 

Here, the right hand sides are functions of y because k = k(y), but the· 

left hand sides are fixed since the wing is rigid. Therefore, (5.37) can 

be enforced at one or more '. spanwise stations 
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(depending on the plantorm) but not at all stations (for reasons already 

mentioned, we exclude the rectangular plantorm). Wherever (5.37) is 

violated, spanwise vorticity is shed and the circulation is nonzero and 

varies with y which gives rise to trailing vorticity. Including the 

three-dimensional effects modifies this picture slightly, but, since the 

corrections are of higher order, the basic picture remains the same. 

Physically, this means that there exists no nontrivial unsteady motion of a 

rigid wing which does not produce a wake of vorticity. In other words, 

. there exists no invisible mode for the rigid wing of finite span and Cl; is 

positive definite. 

The optimum problem at hand may be stated as: minimize the quadratic 

form C e subject to 

(5.38)· 

As in two dimensions, this is equivalent to minimizing a new function 

Cit; = C e. - A C@ subject to the same 

multiplier. Denoting the elements of 

respectively, we have 

condition, ?. 

c and @. -
being a Lagrange 

by· E" c.; and P-I.J 

CE - Ell So2 + E zz (~IZ.+ ~2.2..) + Z EIZ 30 ~,+ Z. E,'3~o'§"Z. lS.39) 

C P. ~2. (Z."Z. P s: -.;- p <;: -@ - II 50 + PZ2 ~. + ~2) + Z. 12 >0>';- Z 13 :>o~-z. (5·40) 

Since Ce is positive definite, the optimum is obtained. using the usual 

variational methods. Thus, we set 

(s.41) 
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(s.4z) 

A is the solution of the cubic secular equation 

It. -A<PJ =0 - -
or 

(EZz.-A,PZ"Z.) [<E"-'AP,, )(E2'2.~~ PZZ ) -(E,z.-A PIZ)', 

- ( E. 13 - A Pl3 ) Z J = 0 ( 5.4'3) 

, The root A3= EZ2.lP2.2. corresponds to pure pitChi~ motion which clearly is 

not the optimum. The remaining roots, 1. I, and A2.' are the solutions of 'the 

quadratic equation 

a.. 'A't..+ ,b A, + c.= 0 

where, 

(5.45) 

"Z. '2.. 
C. = E~, E z.z.. - E,"l.. E 13 

i\ I and A,,, would be real, as required for physically meaningful solutions, 

if b2. - 4ac ~ O. 

Substituting ?l in (5.41), we obtain 

( 5.46) 
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The hydrodynamic efficiency is given by 

The ~ corresponding to the larger y) (0 ~ 't\ " 1) is the optimum. 

then obtained from condition (5.42). 

(5.470) 

~o is 

go'-= C~ 0 I (P" '- E \I ) + (Pi"Z. - E 22) L ~~d~o\L. + (~2.1 ~o }2] 

+ 2. ( P'2 - E I Z. ) ( ~ i / ~ 0 ) + z. ( P 13 - E 13 ) t ~2.. / ~ 0) }- i (5'.4'1) . 

In analogy with the twO-dimensional optimum, we may rewrite this as an 

expression for the proportional loading parameter CI"TO = C,.... / S 7.. It is seen 
JJ, ..,,0 0 

that, in contrast with the two-dimensional case, the present optimum 

,solution,is u~que. This is a direct result of being positive 

definite. 

The amplitude ratio and the phase advanqe of pj,.tch relatj,.ve to heave 

are obtained from (5.24) and (5.25). The fract:i,on of thrust com~ from 

the leading-edge suction force is given by 

where K·· denotes elements of 3(._ (see (5.36». 
'J 

( 5·S-0) 

In understanding the present optimum, it is helpful to express the 
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solution in terms of both· the· present description of wing displacements, 

(5.32), and Lighthlll's alternate description, (4.55) (Lighthill (1970». 

As mentioned earlier, Lighthill's description is completely equivalent to 

the present one. In fact, it can be shown that in the present notation 

hL / (Co/A) = - t Jo Sitl 0(1' 

O(L '= J 3/- + ~ ~ - . §o ~ l' . (5.S·Z) 

Further, Lighthlll's proportional feathering parameter, (4.56); becomes 

(5.54) 

. . . . . . 

Numerical results f?rthe optimum are obtained fran. a program that 

employs the' present unsteady liftiD$-:-l1ne theory and the above analysis. 

Figures 5.14- 5 .• 18 depict the optimum motio~ for an elliptic wing in terms 

of the present notation and also that of Lighthill. Calculations are 

carried out for 0 ~ ko ~ 1 and A· = 8 and 16 •. Strip-theory calculations are 

also shown. for comparison. For each A, the results are cut off at the· 

value of ko corresponding to the range of validity of the lifting-line 

theory at the given A (see Figure 4.13). It is seen that, with increasing 

A, the three-dim~nsionai res~lts approach the corresponding strip-theory 

values as expected. The strip theory optimum was, alternately, obtained 

using Wu' s aerodynamic theory CWu (1971a». Numerical results for an 

elliptic wing show complete agreement. This serves as a check for the 

present analysis. Figure 5.14 shows that the highest, is achieved by the 

strip-theory case. This is due to the absence of the unsteady induced 
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downwash which normally increases Ce , decreases C@ and, hence, reduces 

., = 1 - Cl; IC@ (as explained in Section 4.2). 

Also shown in Figure 5.14 is the optimum motion in terms of 

Lighth1l1's notation. We note that the optimum position of the pitch axis 

is at about 73%-root chord and remains fairly constant with increasing ko. 

,In relation to ~L' first we recall that 9L = 0, and 91.. = 1 represent pure 

heave and perfect geometric feathering respectively. To understand the 

behavior of aL for the optimum, we consider the two-dimensional 

quasi-steady case where for positive (average) thrust 0 < 91.. < 1; for zero 

thrust at. =1; and for nega ti ve thrust 91.. > 1. These ideas can be seen in 

Figure 5.19, recalling that, in quasi-steady flow, thrust is just the 

horizontal component of lift. In three-dimensions, the induced downwash 

normally reduces the effective incidence of wing sections, thereby redu~ng 

the thrust. In order to restore the thrust, we increase the effective 

incidence of the wing by lowering 9... fUrther below unity. This, on the 

one hand, represents a greater angular deviation of the wing from ge~etric 

feathering in the direction of positive thrust (0 < 9t. < 1), and, on the 

other, is a reduction in pitch amplitude (measured from the horizontal). 

We see the same trend in rigure 5.14 where 9L for cases of finite A are 

farther below, unity than the strip theory values. Presumably, the same 

trend holds at higher ko (as seen in Figure 5.14), where the problem is more 

complex due to the unsteady effects. 

Figures 5.15 - 5.17 depict the opti~ motion in terms of the present 

notation. ' With decreasing aspect ratio, Figure 5.15 indicates a sligbt 

reduction in the amplitude of pitch relative to heave; Figure 5.16 shows a 

slight increas in phase advance of pitch relative 'to heave; and Figure 5.17 

shows an increase in the proportional loading parameter. As mentioned 
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earlier, since C~ois prescribed (see (5.38», Figure 5.17 is to be· 

interpreted as giving ~o (nondimensional heave amplitude) which decreases 

with decreasing A and/or increasing ko ' It is, thus, seen that, with 

decreasing A, both pitch and heave amplitudes are reduced. Further, the 

behavior of 91. in Figure 5.14 and Z., in Figure 5.15 indicate that the 

amplitude of pitch is reduced more than that of heave (nondimensional). 

From the above considerations, the three-dimensional optimum can be 

described as follows. Compared with the strip-theory case, the wing of 

finite aspect ratio oscillates with smaller heave amplitude. This is 

because, for fixed ko , the larger the heave amplitude, the stronger the 

trailing and shed vorticity and, hence, the stronger.the unsteady induced 

downwash which 'tends to reduce ~ as explained in the above-. With smaller 

heave amplitude, we ask how the wing maintains the prescribed level of 

thrust. The answer .lies in the pitch amplitude which, measured from the 

position of perfect geanetric feathering (91.. = .1), is increased in the 

direction of increasing thrust (9l,. < 1). 

Figure. 5.18 depicts -the fraction of thrust coming from the 

leading-edge suction force. The ratio decreases with decreasing A, as 

expected, .since -the unsteady indu·ced downwash then grows stronger and this 

reduces the suction force (as pointed out in Section 4.2). We note that, 

in contrast with the two~imensional optimum, here there is no superoptimum 

(ko = 0 is a trivial solution). Figure 5.18 indicates the range of ko 

where Cg -:. IC"J 1s acceptably small. ~ For example, for (C'J's IC?)< 40%, 
,.. 

ko < 0.2 which is a somewhat small range. Chopra and Kambe (1977), using a. 

numerical unsteady lifting-surface theory, have found that, for fixed 

thrust, leading-edge sweepback reduces C~s ICa for sweep angles up to about 
o 

30 , beyond which· efficiency drops markedly. Leading-edge sweepback, thus, 
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increases the range of ko where C'-s IC'J is acceptably small. 

In summary, we notice the following differences between the two- and 

three-dimensional optimum solutions (rigid airfoil and rigid wing). The 

three-dimensional optimum solution is unique while the two-dimensiOnal one 

is nonunique. The numerical examples considered indi~ te no k c:: and k Yl'\ for 

the three-dimensional optimum. Hence, contrary to the two-dimensional 

case, in three-dimensions there is no superoptimum and the solution seems 

to exist for all reduced frequencies. The above differences also make 

Wu's strip-theory application of the two-dimensional optimum to a 

three-dimensional rigid wing questionable (Wu (1971b». 

We end this section with a few comments on the optimum shape problem 

for flexible wings. In particular, we consider the semi-rigid wing defined 

by 

\'f\$b (5.55) 

(see Figures 2.3a and 2.3b). As pointed out in Section 4.2, here it is 

best to assume a number of suitably chosen spanwise modes for each of 

Se(Y)' $,(Y) and ~2(Y). The present unsteady lifting-line theory can then 

be used to calculate the energetic quantities needed for optimization (as 

in Section 4.2). Here, C(}· is indefinite. To determine the type of the 

quadratic 'form Ce ' again, we temporarily adopt the strip-theory viewpoiilt· 

and investigate the possibility of distributing two-dimensional invisible 

modes across the span. It follows from (5.22), (5.55), (2.38e) and (2.38f). 

that the invisible mode at station y is given by 
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(5.S6) 

Since for the. semi-rigid wing, §o (y), ~I (y) and §2..(y) are arbitrary 

functions of y, (5.56) can be maintained at every spanwise station y •. This 

means that sectional thrust and power required as well as the circulation 

are identically zero across the span. Hence, no spa·nwise or . streamwise 

vorticity is shed from the wing. Physically, this means that, for the 

semi-rigid. wing, ~here exists a nontrivial .unsteady motion (defined by 

(5.56» for. which Ce,= C@ = C~.= r(y,t) = O,i •. e., there exists an 

invisible mode, . and C e is positive semi" definite. 

distribution of heave amplitude ~ (y)remaines arbitrary. o . . 

The spanwise 

Since C e is positive semi·. definite, the· subsequent oPtimization 

requires. that the singular quadratic form C e first be reduced to a 

nonsingular one ·of a· lowe.r order which. can' be handled by the usual 

variational methods (see Wu (1971b». 

It is also seen from the above discussion that there exists an 

inviSible mode for a flexible wing (chordwise and spanwis·e) and, hence, C.; 

is positive semi definite. Here, there is need for a lifting-line or 

surface theory with closed-form results capable of handling a completely 

flexible wing. 
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CHAPTER VI 

ENERGETICS OF FLAPPING FLIGHT USING 

INTEGRAL FORM OF CONSERVATION LAWS 

An alternate approach for calculating the energetic quantities for an 

oscillating lifting-surface in two or three dimensions is to employ the 

integral form of the conservation laws. Here, we calculate the thrust 

using 'the momentum theorem. Then, we employ the principle of conservation 

of mechanical energy to Calculate the energy los~ rate (wake energy) and' 

the thrust., 

This approach requires the', distribution of bound vorticity and 

pressure on the lifting surface. In two dimensions, we employ the unsteady 

airfoil theory of Schwarz (1940) and thus obtain the energetic quantitie's 

in closed form. The results for an airfoil in combined pitch and heave are 

found to be ,in complete agreement with the 'known results. For more complex 

shapes and motions' of the airfoil, however, the method involves tedious 

integrals. In three dimensions, in the absence of an exact analytic wing 

theory, the final results 'must be obtained by use of numerical unsteady 

lifting-surface theory or an approximate wing theory, such as that of 

Reissner (1947). 

The proposed method has several advantages. i) It is quite general, 

being valid for arbitrary wing planform, aspect ratio, reduced frequency 

and mode of oscillation (small amplitudes). ii) It is physically 

enlightening, in that it relates the thrust and the energy loss rate to the 

properties of the far wake. 11i) It avoids the direct calculation of the 
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leading-edge suction force. 

A survey of the literature on the energetics of three-dimensional 

flapping flight is presented in Section 4.1. A survey of the literature on 

the two-dimensional case is presented below. 

The·first calculation of the energetic quantities for an oscillating 

airfoil is due to von Karman and Burgers (1935) who considered the simplest 

case of an airfoil in heave.' 'They calculated the thrust in two ways: i) 

using the balance of energy and ii) by direct· calculation of the force. 

Garrick (1936) carried out a similar analysis for an airfoil in combined 

pitch and heave with an osc111ating aileron. Later, Wu (1961), using the 

acceleration potential' and the unsteady airfoil theory of Kiissner and 

~chwarz (1940), calculated the energetiC quantities for an airfoil with 

chordwise bending (traveling waves with arbitrary amplitude envelope). His 

Fourier series method is. quite laborious. Siekmann (1962, 1963) used a 

vortex model and the Sohngen inversion formula to calculate the energetic. 

quantities for an airfoil with cbordwise bending (traveling waves with 

quadraticallr-varying ~pl1tude envelope)!. Another calculation for an 

airfoil ill combined pitch and neave is due to Lighthill (1970) who employed 

the accelera~i()n potential •. 

The most gener~ and extensive study of tpis type is due to Wu 

(1971 a) • His work 

flexible airfoil in 

includes a general unsteady 

variable forward-speed motion. 

airfoil theory for a 

He calculates the 

unsteady 11ft, moment and the energetic quantities •.. Results for the . ..... . 

special case of steaciy-state harmonic oscillation are also. given. 

The above works are in full agreement with each other. They are all 

based on linearized aerodynamic theories and, hence, are restricted to 

small-amplitude oscillations. Chopra (1976) has carried out an analysis of 
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an airfoil-in large-amplitude heave combined with small-amplitude pitch 

with respect to the local flight path. The theory is based on a vortex 

model and a rigid wake and- is applicable to regular or irregular heaving 

motion. His numerical results clearly indicate the influence of heave 

amplitude on thrust and hydrodynamic efficiency. 

6.2 Calculation of Thrust Using Momentum TheQrem in Two Dimensions 

Consider a thin, two-dimensional flexible airfoil in small-amplitude 

transverse oscillatfon in a uniform stream of inviscidincompressible 

fluid. Thrust can be calculated by applying the momentum theory to the 

fluid contained _ within a fued control volume V which is bOunded on the 

inside ,by the airfoil surface cr,' and the wake surface Sw and on the outside 

by a far boundary S consisting of S. ,S.z.' S3 and S4as sho,wn in Figure 6.1. 

The coordinate system (x,z) is placed at the mean position of the airfoil, 
, ' 

c is ,theairfoi! semi chord and L is the abscissa of the downstream end: 0.( 

the wake. Whenever the wake exi:endsbeyond S3' L is taken as the abscissa 

The free stream velocityU is in the direCtion of thepos1tive 

x-axis. The control 'volume V is stationary in the (x, z) frame. 

With body forces neglected, the momentum theorem states that 

F. It) =-S-pnds - S PQ (Q.ii)dS-S~ (pQ.) dV 
B, -

S - ' S+S ~~ V 
,W, (6".\) 

where F$ is the force exerted by the fluid on the airfoil, Q is the 

velocity vector and n is the unit normal vector at the boundaries pointing 

away from V. 

Since we assume that the airfoil thickness does not vary with time, 
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the effects of thickness and steady camber and angle of attack can be 

treated separately by steady airfoil theory. These effects do not 

contribute to thrust in two dimensions. Hence, in the following, cr refers 

to the flexible mid-camber line of the airfoil. Since thrust is a 

quadratic quantity; all quadratic terms will be retained in the analysis. 

Physically, this means that the actual airfoil and wake geometry must be 

considered, except where such considerations contribute only higher-order 

terms. 

It is convenient to introduce into (6.1) the perturbation velocity 

~.-:... -"" .... 
~= Q'~U ( 

. - ~ 

. = liL + w\c.. t6.2) 

where u and ware the perturbation velocity components in the x' a~d z 
.... .-

·directions respectively. i and k are the corresponding un! t vectors •. 

(6.1) can be simplified sOmewhat through the use of the continuity equation 

Introducing (6.2) and (6.3) into (6.1) and considering that S is a closed 

surface; we obtain 

F D l t) - - 5 (-p: - -f ct> ) r\ d ~ - p S ~ t ~ • n) d f> - P S ~t ~ d \J 
s S+~v.,+cr . V . 

-Thrust is the x-component of Fs' i.e., 

T It) = - 5 (.1'- fcc ) ~ S + 5 t f - 1> (Xl ) d S + f 5 \A < Q .-;\) d ~ + 
. 5, S ~+sw +0-

3 
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In the first two integrals we use the Bernoulli equation:' 

(G. S) 

where ( )t denotes the partial derivative with respect to time and ~ is 

the perturbation velocity potential (q = "7 cp ). The volume integral in . 

(6.5) can be converted to a surface integral by use of the gradient 

theorem: 

(6.1- ) 

where S' is the surface(s) bounding the volume V' and ~ has continuous· 

par~i8.l. derivatives in V' and on S'. Hence, ·the volume integral- becomes 

s ~ ~V ~L. JV'(<Pt) dV 
V .. V 

--J CPt cts + 5 ~tcl S 
. S . 

3 

(b. 8) 

-:- -
<... .. (\ ds 

where . b.~ = 4»"" -<Pi is the jump in the velocity potential. across the 

airfoil or the wake. The last integral on the right hand side of (6.8) is 

around the leading edge. As pointed out ~n Section 4.2, near the leading 

edge of an. oscillating airfoil 4>' and cPt remain bounded. Hence, the 

integral around the leading edge which is. over a vanishingly small region. 
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is identically zero. A similar integral around the trailing edge of the 

wake is also zero. 

The integral over a- + Swin (6.8) is to be carried out only on the 

upper side of these surfaces. Figure 6.2 depicts a segment of the airfoil 

or wake vortex sheet. "I- is the distance along the sheet and h(x; t) is the 

lateral displacement of the sheet from the x-axis. It follows from the 

definition of the velocity potential that 

'X. 

Acp - J 'YC'X1)t) d'X., 
LE 

X 

- S ~ (~J t) cl-S + o (€ 'Z) 

-CO 

where'( is the vorticity per unit length •. The approximate form is to be . 

carried out along .the linearized vortex sheet which lies on the x-axis. 

The unit normal vector at the sheet is given by 

where ( )~ denotes the partial derivativ~ with respect to x. 

Substituting (6.9) and (6.10) into the third· integral on the right 

hand side of (6.8) and integratlng by parts, we obtain 

L 

_. J ~ ['t()(,t)l htxJt) J.. X 

-Co 



where ( )w denotes the wake and 

L 
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r(L"t) - S ~(~, t) cL ~ 
-c 

The volume integral 1n (6.5) then becomes 

(G. 12.) 

5 ~~ dv = - 5 <Pi: d ~ .+ S cPt cls + hw tLI-t:)~t reL,t) 
V· 5, $3 

L 

J ~[o(X,tf] h(x/t) d.x. (' .. \3) 
-c 

Next, we consider the momentum flux· integral over S + S w + (J" in 

(6.5). In terms of the perturbation velocities, (6.2), the part ot the 

integral which is over S becomes 

5 u. {Q ~~.) cl <5 = ~.S (U u+u.Z ) d s.-5 LlW cl S 
.S .. 5, .. . . 5.2,.· 

:+ r· \.V L\ + l.\"z. l. d. OS -+ S u. w at. S 
j" . S 
S3 . ~. 

(6".\4) 

It follows froin (6.2), (6.10) and the downwash at (J' and S , namely 
w· 

(b. \5) 

that, on these surfaces, 

(<;;.i6) 

Using this result, the momentum flux integral over (J" and Sw becomes 
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where b. u = u",":" ut • The integral around t~e leiidip.g edge, being over a 

vanishingly small region, is identically zero since, at the leading edge, . '. ". '. . 

(Q-n) is fin1t~ and u has a squar~root s;~~larity Wpich is ;ntegrable. A 

sim~a.r- ~ntegral ~ou~ tpe trailing edge of the ."ake is likew~se zero. It 

cap. g~ ~h.own~ ~si~ tp~ ~ntr1n~c c~~rdip.~te srste~ (s,n) (see Figure 6.2), 

that 
• ~ 6 '_ .. ~ 

(6.\S) 

Hence .. . ... ',' 
L 

S ~~~~1\) pl~ ~ r ~ (;X~t) 
~'c. 

?W"+rr 

T<.t) ~ 
, " ~~', 

p S z: 
'5 
"~'I 

~ -'.-

~w~~~;) 4p ~~. S ~W"b~ ~~) d.§ 
. "' §? 

pJ 
§~ 

L 

ct5 . - ...... (~. ~g), 

P J ~t b~~)(~t) h~)(Jt)l c:A~ 
~c. .. 

Next, we move the far boun4ary S ~o infi~ty. It ~s sh~wn in Appendi~ D 

that, in this limit, the integrals over S" S2.~nd S,+in (6.20) van1s~. 

Hence, 
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,tt) -::. - ~ pSt w7..._ u"Z.) c:t 5 (6'.2') 

53 
L 

,. P hw (LIt) ?i r t L)t) - P S ~ L"~,,,t) he x, i:)J d. ~ 
-c::.. 

This result is quite general, being valid for any small-amplitude 

transverse motion of the airfoil and vanishes for steady flow in accordane 

with d'Alembert's paradox. 

In the remainder· of this seotion, we consider the case of steady-state 

harmonic OSCillation, where, in analogy with steady flow ,we refer to S'3 as 

the Trefftz plane. t. is then the abscissa of that plane (L _co). Here, we 

use the unsteady airfQil theory of Schwarz (1940) (1). to calculate the 

thrust from·(6.21) •. 

The amplitude of .. the airfoil circulation and wake vorticity are 

r~spectively given by 

AI e.-jk ·?\ r = c ~L.. 
(b-2Z. ) 

,... 
where k = ~ c/U .is . the reduced fr~quence and..n. is the reduced circulation. 

From Schwarz 

c. 

J.. [C+~ 

4 -c c- ~ 
. k [. I' <'Z) • i I (2} 1 

iTJC M, tk.)+J Mo (k.)J 

(1) 
Schwarz's theory is presented in·Bisplinghoff, Ashley and Halfmann (1955). 
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IV 

where Wo is the prescribed linearized downwash at the airfoil: 

Wo lX ,t) 
(6. ZS) 

\x\ ~ C :e=o± 

( )« denotes the airfoil. 

It follows fro~ (6.12), (6.22) and (6.23) that 

~ ~jUi L 
_ <:. ~L- e' 

and 

:£.. r (L -i::.) _ - V "V h', lL. } *:) 'O-t ) - j) 'tV -

·Substituting t~is result into (6.21), we obtain 

TLt) ~ - ~ 5 (Wz~ j).Z) ct S PU ~w ~Llt)''\(~ (LIt) 

53 
L 

-p S ;t ["'()CIt) h(X,,"i:)1 J~ \5.28) 
-co 

The average thrust is obtained from (6.28) u~ing tlleaveraging rules 
, , , 

'in (4.4) and (4.5). 

It is shown in Appendix E that for the case of steady-state ,harmonic 
, . . 

oscillation 

(6'.30) 
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in the far wake. Hence, the integral term in (6.29) is identically zero 

and the expression for the average thrust reduces to 

In the absence of the mechanism of diffusion, the wake vorticity is 

convected downstream without. change. Hence, '(,,(L, t) is obtained from 

(6.23). The dete~ination of hw(L,t), on the. other hand, requires some 

work, since the. ultimate displacement of an element of the deformable wake 

is determined by its entire past history, in which it is subjected to a 

varying field of do wnw ash along· its path fran the trailing edge to the 

Trefftz plane. This asymptotic displacement of the wake is determined' in . . 

the next section. 

It is enlightening to' examine the phase difference 

displacement arid vortiCity of the far wake.· Let, 

. \ h \ j~ jUlt h t Lit) - w ~.. -e . 
w. 

of the 

. (6.33) 

where the ampl1 tude. and phase of hw( L, t,) 

denoted by Ihwl and ''''wl, and 0( and' ~ 

and ." (L, t) are respectively 
IN 

Substituting these in (6.31), we 

obtain 

- I . 
T -= -2" PU. \hwl \'('.11\ .CoS lCl-~) 

For the sake of discussion, we as sum~ that I hw i and I)' w I are fixed and 

consider the following special cases. 
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i) If 0( - (3 = 1f /2, T = 0 (1) . 

ii) If Q( - ~ = it , we have the case of maximum average thrust 

(for fixed 'hw \ and \~w \ ). This does not necessarily correspond to the 

optimum motion which is the solution of a constrained variational problem 

(Chapter V). 

iii) If 0( - ~ = 0, we have the case of maximum average drag (for' 

fixed \h..",\ and ''€w\). 

iv) Cases wit~ 0 < (ot.. - (3 ) <IT /2 correspond to those shapes 

and m0t.1o~s of the airfoil which, in the average, produce drag, whereas 

cases with 1T /2 < (0( ~ f.,) < 1T cor~espond to thrust-producing 

CO~igurClt.ions~ Figure 6.3 depicts a thrust- and a drag-type far wake 

cC?r,r~~popc:l~1lg to case~ (ii) and (11i) in th~ apove. 

TeJDJ>bf,arUy, we adopt tile vi~poillt of an observer fixed in the fluid. 

From'the principle of action an~ reaction we conclude that (6.31) 

represeIlt.s the average fl~ of momentum Cl~s'ocif1ted with the wake vort1<?es 

cro~sipg the Trefftz p'l~e. In the case' of thrust-prod\lcing 

'q0nf~gurati8~s, th~'wake yort~~ity is so oriented as to give rise to a net 

flux of moment\lm in th~ downstream direction~ S1mi~arly, the 

drag~produ~i~ qo~iguratioIl~ give rise to a net flux of momentum in the 

upstreaJJl ~~rectioIl~ The commonly observed Karman vortex ~treet is a 

drag-type wake. 
- '.- > 

(1) 
It can be seen from the results of Appendix E (see (E.1), (E.2) and (E.9» 
that the self-induced downwash ,of a "linearized wake with sinusoidally 
varying strength is out of phase with the vortiCity dis'tribution by IT /2. ' 
Hence', the self-indu,ced displacement of such a wake is also out of phase 
with the vorticity by ~ /2 and the corresponding contribution to the 
average thrust is zero. 
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6.3 Asymptotig Wake Displagement in Two Dimensions 

In the preoeding seotion we found that the average thrust of a 

harmonically-oscillating airfoil· is proportional to the time average of the 

far-wake displacement and vortioi ty. Since thrust is O( E.2.) and the wake 

vortioity is O( E ), we need to determ1.rle the wake displaoement to O( E ). 

This can be. aocomplished using a linearized (planar) wake model as shown 

below. 

The wake consists of free vortices which move with the fluid.· The 

linearized downwash at the wake is given by 

~=O± 

or 

(6. "36) 

~=o+ 

--x 
To invert this equation, we multiply through by i W 

arid integrate from the 

traiiing edge up to x (x > c). The solution which passes through· the 

trailing edge is given by 

.. . X 
N .A,J -JwlX-c) -'J '-J . -jwU(-~) Is . 

. h w tX) = h <. c) e + U "IN w l ~ ) e. . ~ > 
·Co 

x ~.c. 

The determination of the wake displacement from {6.37} requires the 

downwash a.t the plane of the wake which is given by 
C"" . 

N. • _\ S Ya,(X) 
(~) d..X + Ww = 2Jf· ~ _ X 

-c . 
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'-
f{ JeD - J u,) x. 

Jk .lL -eo 
+ 2. IT -~---X-

c 

(tr. 38) 

The first term here is the contribution of the airfoil and the second is 

that of the wake. The vorticity distribution on the airfoil is given by 

Schwarz (1940) as 

IV . . Z [c-X ] ~Z {r<:' r, C+A J""L 
'Co.. (X) -::: IT c+x .!c:. LC-A J 

IV 

Wo(A) 

X-~ 

\X\~c. 

Substituting (6.39) into (6.38), interchanging the order of 

.integration in the first· two terms and making use. of the following 

. integrals from Appendix'A 

{l ~~~ 11/2~ U~~ =ji/1.} 
.. ), 3 ~ c.' (6.40) 

c 
~ r. c -)( l'tz __ J x __ 
J" L<:+xJ (X-~)(3-X) -c:::. \. 

we find 

I . C 

N·' . _ ::.!..[3-C.-1/~ ~.s [C+~) 
WW t%) - IT § +c:.. 'C'-A 

. -c. 

[ 
~ - c. J \/2. \ ,,\ ~ c 
~'r c.-J 

(X) \ _j US >. 
+ jlc:. 1i ,C. ["'+c 1'1.. .. _e __ 

.~ ~ ~-cl. ~-~ 
c. 

(6. 4Z) 
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where the first term is the quasi-steady contribution and the second term 

represents all direct and indirect contributions from the wake. 

Substituting (6.42) into (6.37), we obtain 

Qo (A) ejw~ 
~-~ 

(~ .43) 

Here, the first term is the displacement of· a rigid. wake which is the . 

. sinusoidal . trace of the trailing edge. ·The second term is due· to the 

quasi-steady effects and the third term represents all direct and indirect 

contributions from the wake. '. 

The asymptotic displacement of the. wake is obtained from ("6.43) by 

setting' x = co in the upper limit of the integrals. In the notati~n of 
, ,." 

Section 6.2, this is h( L) where L is the abscissa of the Trefrtz plane 

. (L~CO). 

(b. 44) 

, --·rru 

,-w 00 00 t' I 

+ j kitS d ~.f cl" [i ~ ~ ]I:L L ~ ~ ~1/l. 
lTV· c c.. 

The double integral in the last term is a universal one.· It is evaluated 
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in Appendix A and found to be equal to 

In passing, we· note that, in the limit of steady flow, the asymptotic 

displacement of the wake contains a logarithmic singularity which arises 

from the second term of (6.44) and can be expressed as log L or log k. 

For future work, it would be of interest to calculate the· near-wake 

displacement for a heaving airf~il from (6.43) and to compare (at least 

qualitatively) with the experimental results of Bratt (1953) and Oha.shi and 

Ishikawa (1972), and the computationai results of Giesing (1968). Some of 

the integrals in (6.43) may need to be evaluated .numerically. Further, it 

would be of interest to calculate the far-wake displacement ofa heaving 

airfoil from. (6.44) and to correlate with the analytical results of Weihs 

(1972) who studied the behavior of semi-infinite double rows of vortices. 

Substituting (6.45), (6.~4) and (6.23) into the expression for the 

average thrust, ·(6.31), and introducing the nondimensional quantities in 

(5.4) and 

x*" = X/co 

* h = h Ie. 

*' 'Wo == \No / U 
.~ 

fl.=- .Q IV 

we obtain the following expression for the thrust coefficient of a 
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harmonically oscillating airfoil. 

C Z· /i) {. ;\'X-@ ~+ jk,. 
, T = =- k ~.. JJ.L Yl (I) e rr j. 

. .. -

This form has the advantage that it relates the thrust to the, airfoil 

shapes and motions (see' (6.24) and (6.25». We also note that, in the 

steady limit, CT~ 0 as expected. 

As ~ exam,~le, and a cbeck" we consider an airfoil' in heaving motion, 

where 

IXI ~ C 

=~=O± 

Substituting (6.49) into (6 .24) and ' (6.47)' and using the following 

integrals from Ash1ey and Landahl (1965) 

S jk 
le/(jk) 

(6.50) 

(6.51 ) 
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we obtain the following known result for the thrust coefficient of a 

heaving airfoil (see, e.g., Wu (1971b». 

. ~ hll- Z. C
TH 

~ 4 k. D(k.) 0 

where D(k) is defined in (4.34). 

Kelly, Rentz and Siekmann (1964) have carried out experiments to 

measure the thrust of oscillating flexible plates. They found good 

agreement with existing theories, atter adding turbulent skin friction drag 

to the theoretical results. Figure 6.4 depicts their results for the case 

of heaving motion. Also shown are the result of Smith and Stone (1961) who 

neglected the influence of the unsteady wake, resulting in gross 

overestimation of the thrust. This indicates the impo~tance of the 

unsteady effects in calculating the thrust .. 

6.4 Calgulation of Wake Energy and Thrust Using Conservation of Energy 

in Two Dimensions 

Consider a thin, two-dimensional flexible airfoil moving at constant 

velocity U along a rectilinear path in unbounded, inv1scid incompressible 

fluid which is at rest at infin1ty. The airfoil executes small-amplitude 

transverse OSCillations, thereby producing thrust and a wake of vorticity. 

Since the fluid is nondissipa ti ve and incompressible, it can store energy 

only in kinetic form. Hence, the work done by the airfoil on the fluid 

ultimately shows up in the far wake in the form of kinetic energy. In 

order to determine this relationship quantitatively, we apply the pri~ciple 

of conservation of mechanical energy to the fluid contained in a fixed 

control volume V bounded on. the inside by the airfoil and wake surfaces, CT 

" 
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and Sw' and on the outside by a far boundary S (con81sting of S" S2' S"3 

and 54) which is located infinitely far from the airfoil and the wake, as 

shown in Figure 6.5. The fluid contained in V is . thus free from 

discontinuities. The coordinate system (X,Z) is at rest with respect to 

the undisturbed fluid while the coordinate system (x,z), which is parallel 

to (X,Z), is fixed to the mean position of the airfoil and, hence, moves in 

the. negative .X-direction with velocity u~ Both coordinate systems are, 

thus, inertial and obserbers in both frames measure the same forces. The 
. . ..a. ~ 

(x,z) 'observer, measures a velocity field Q consisting of a free stream Ui 
.~ ..... ~ 

and a perturbation field q = u i + w k. The' (X,Z) obserVer, on. the other 

-hand, measures q. The control volume V is stationary with respect to the 

(X,Z) frame. 

, Here, as in S~ction 6.?,·we assume that the airfoil thickness does not' 

vary with t.ime and consider the purely unsteady motion' of the flexible 

mid-camber line of the airfoil •. With body forces neglected, the balance of 

energy for the fluid in V is given by 

where'we have adopted the viewpoint of the. (X,Z) observer because the (x,z) 

observer measures an infinite amount of energy for the fluid in V. (6.53) 

states that the rate of change of the total kinetic energy of the fluid in 

V is equal to the rate of work of the external forces on the same fluid. 

Since pressure is continuous across the wake, 

~ J -pYl. r;j.' d 5 = 0 
(6.54) 

Sw 



Also, it oan be shown that, for S infinitely removed from the airfoil and 

the wake, 

-]-1'n.~·dS=o 
S 

. (b.SS) 

The integral over the airfoil surfaoe oan be written as the sum of 

integrals over the upPer and lower surfaoes and the leading and trailing 

edges of the airfoil, namely 

(6'.56) 

[ J + S + S + f ] i' n· ~ d s· 
~ ~ (LE) (Te) . 

where (LE) and (TE) denote respeotively integrations around the leading and 

trai.ling edges of the airfoil, both of which are· of vanishingly small 

extent. The latter integral is identioally zero due to the Kut ta 

condition. The former is the rate of work of the leading-edge suction 

force Ts on the fl~d, i.e., -UTs -

In (6.56),. q is the velocity of the airfoil mid-camber line 

and n is the unit normal vector at the airfoil, with respect to the (X, Z) 

frame, which is given by . 

..... () . - ~ 

VliA - oX ha. i - k. + 0 (€z.) 

(b.se) 
~ 

Y1~ - i1 u 
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Using (6.57) and (6.58), the integrals over the upper and lower surfaces of 

the airfoil may be combined to obtain 

- (S + S 1 ~ ~ 

dS 1'n -1- - (b.S9) 

CTCA c:J{. 

TE 

-UTp J 61' .Q.. ha. dX - eX 
LE 

where 

TE 

Tp ,-- J ., Ilf{x ha dX' (6060) 

LE 

is the thrust contribu.t1on from the normal force at the airfoil • 

. Combining the above results and n,ot1ng,tbat. T =T 5 + Tp' (6.53)' 
:: " 

becomes 

TE 

J ~ (1- I'I~r) d.,V :::: - U T - f A1' Jt ha. c1.X (b.61) 

V ' LE 

where it is seen that, in the 'limit of steady flow, thrust. tends to zero,' 

as 'expected •. Averaging (6 ~61) over the time interval 1:', we obtain 

TE 
, . 

I ~(KE) z == -UT - J, (6.62.) 
LE 

where 

.. i- MKE)"" {f [J i PI~lz,N] ~- [S ~ PI~12 JVl 1 
, .'. V t:toi" ~.. V· . t= to J 

(b. b3) 
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is the average rate of the total kinetic energy of the fluid in V during 

to. to is an arbitrary constant. 

(6.62) can be rearranged as 

TE ------S 61" ~ ha. aX - VT +t ~(KE") 
LE 

(6".64 ) 

which states that the average power required to maintain the airfoil 

oscillations is equal, to the average rate of work of thrust plus the 

average rate of increase of the kinetic energy of the fluid. The latter is 

the average energy loss rate since it represents energy imparted to the 

fluid which cannot be recovered. As we will see later, this quantity can 

be de termined from the properties ,of th e far' wake. In terms of the 

notation of Section 5.2, (6.64) may be written as 

P oUT + E ( b:6S) 

which is 'a statement'of conservation of energy for the 'present problem. 

Thus, the input power is partly used to produce thrust; and thereby useful 

w9rk, and partly wasted in generating a wake of vorticity. The 

.hydrodynamic efficiency of the motion is defined as the ratio of the useful 

power to the input power, i.e., 

which indicates that, for given iriput power; one must minimiZe the energy 

loss rate in order to m,aximiZe the hydrodynamic efficiency. 

In the remainder of this section, we consider the case of steady~state 

harmonic oscillation of radian frequency w We choose ~ to be the period 
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2Tr Iw, during which one wavelength It = 211' U/w of the periodic wake is 

generated. Here, A (KE) is the kinetic 'energy content of one wavelength of 

the far wake. This can be seen by comparing the flow field at times t and 

t + 1:'. The flow field near the airfoil is the same in both cases. But 

the far wake for t + ~ is one wavelength longer than that for t. Hence, 

A (KE) is the kinetic energy content of a slice of the far wake of length 

~' as shown in Figure 6.6. From potential flow theroy, the kinetic energy 

of the flu1din this volume, say V', is ,given by 

where S' is the surface bounding V'. 
, . . 

and SWt, Due ,to the periodicity of flow properties in, the far wake (see 

, Appendi~ E), th~ integrals ov~r S: and S~cancel 'each other out. As the' 

lateral b~un~aries ,S~ and, S 4. are removed to infin1 ty, the integrals over 

these surfaces variish since from Appendix E 

(€;". 68) 

The integrals over the upper and lower wake surfaces can be combined ,using 

(6.58) to obtain 

where Xo is an arbitrary constant and we have neglected termaof O( e 3 ). 

The waviness of the wake, thus, does not appear to this order. It is 

noteworthy that, while a planar wake is adequate for calculating the wake 
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energy, the actual wake geanetry has to be considered for calculating the 

th~st using the momentum theorm (Section 6.2). This is because energy is 

a scalar quantity, whereas momentum is a vector quantity which is 
sensitive to changes in direction • 

. (6'.69) is essentially the spatial average, with respect to X, over the 

interval" (defined in a manner analogous to the time average in (4.2» of 

~.~ and ocp Fe> Z. Denoting this spatial average by ( ), we have 

~(KE ) =- _..L p).. 
.2 

It is conven1~nt to evaluateAcp and ()q, /0 Z with respect to the moving 

frame and then transform the results to the stationary frame. Thus, with 

respect to the (x,z) frame, using (6.9), (6.22) and (6.23), we find 

T~e self-induced downwash at the plane,of the wake is given by (E.10) as 

The above result~ are transformed to the stationary frame using the 

transforma tion 

)( =- X + l.rt 

The results are 
r-J 

~ c:p (X+·ut) = c n 
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It is noteworthy that the (X,Z) observer sees a steady flow field in the 

far wake. 

It follows from (6.74), (6.75), (6.70) and (6.64) that the average 

energy loss rate is given by 

, AI 

- I 'I' IIlI Z 
, E, :: -;p 6 U~E) = B PU c k ~L 

Since 6. p and d h/'O t are physically the same in both frames, the av~rage 

power required may be expressed in the moving frame as 

c: 

p== - J. A1' (X"t) ~ ha..( X,~) d x. 
-c 

Introducing the nondimensi6nalquailtit1es in (5.2), (5.3), (6.46) and 

+ 'to ~ el,C 

t* '= t / (CIV) 

LlCr :: llt/ (t PU Z ) 

in (6.76) and (6.77), we'obtain 

1 ______________ ~------

Cp ::. -=--rrZ J'I1C (X ~ t.*) ].... k~ ( ,,*, t *) dX ~ 
. p,' ()t~ . 
-I 

CTls then found from (6.65). 
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To calculateCp' we need the unsteady pressure distribution on the 

airfoil. Ashley and Landahl (1965) give an efficient method for 

calculating ~Ct. Their equation (13 - 54)" contains a misprint which has 

been corrected below. In the present notation A C-f' is given by 

I _ ~ f f/-x 11-] I/~ J [r+ ~.~J~:z. 
IT LI+X1l" J- I-l--

. -I 

IV 

where f is. the auxiliary' function 

)Colt 

- J Wo*< 5/') 
-I 

We end this section with two numerical examples: an airfoil in heave 

and pitch. These will also serve as a check of the above analysis. First, 

we consider an airfoil in heave where 

.~ *== o± (b.8 3) 

The Pressure distribution on the airfoil is obtained from (6.81). 

(6'.84 ) 

where we have made use of the following integrals form Van Dyke (1956). 
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=0 (6'.85) 

i ~""al!* 
-/ J /- ~ * z. l x*- ~"*) 

- 0 

The input power is then obtained from (6.80). 

where ( )H denotes the heaving motion. Using the identity 

from Gm.r!ck
o 

(1936), the energy loss rate is obtained fran (6.
0

79 ). 0 

o 0 0 0 'z. 
Co: 4k.' BOd h* " =1-1 0 " 0 

(6.8 CJ ) 

The argument of all Bessel°functions i~ 0"0 (6.88) is .k. The thrust is 

obtained from (6.65). 

The hydrodynamic efficiency for the motion is given by 

1 =. 1)(Ic.)/F(k) 
Ii 0 

For oan airfoil in pitching motion about the mid chord 

I X '" c. 

(6.9i) 

(b. 92) " 

(6.93) 



and 

AC~ 5' [.1. . L ( l' ' ) C( L • k. *'] L'-x~ :1 i/%. 
l.l :.p t X "*) = -40( l :l.. J If- + '+":i" J Ie. ~) + J )( L I + )( k-J 

where we have made use of the integrals in (6.85), (6.86) an~ the following 

one also from Van Dyke (1956). 

( b".9S) 

The input power is then obtained from (6.80), 

where ( )p denotes pitching motion and we have made use of the following 

integrals. I ' , 

J' *" ['-X.] '1% 
X I+X~ 

-I 
dX*::: -lf/.20 

I 

J 
-I 

..\,' 'Z. ['- x}to 1 iJ'L * )( ~ c:I. X -::; _ IT / .2-
1+ X* , 

The energy loss rate and the :thr.ust are obtained from (6.19) and (6.,65) 

respectively. 

CTp -= 4k"z' [(I/k.~+,V4) 0(1,.) - (1/k.."Z.+1I2) F(k) 

_ (I/z k) q (k.) -+ J 14 ] 0< 7. 
(~. 99) 
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( b./OO) 

The corresponding hydrodynamic efficiency ~ is obtained from (6.99) and 

(6.96) • 

The above results for an airfoil in heave and pitch are in complete 

agreement with the known results (see,e.g., Wu (1971b». ,The thrust and 

the hydrodynamic efficiency of heave and pitch are' plotted in Figure 6.7. 

It is seen, that the heaving motion always- produces thrust. Pitching 
!'oJ 

motion, on the other hand, usually produces drag, except for' k > 1.781. 

The efficiency of ,the heaving motion approaches 100% as k ~ 0 and dropps 

off rapidly with increasingk, , approaching 50% as k -+CD. The efficiency of 
, , ..... 

the pitching motion is defined only for k > 1.781, where it increase 

monotonically and -apProaches - 50% as k ~Q) • In the study of the optimum 

motion ofa rigid airfoil in Section 5.2" we saw, that a suitable 

c~mbination of pitch and heave can achieve, remarkably higher effioiencies. 

6.5 Extension to TbreeDimensions 

In this section, we extend the analyses of Sections '6.2 - 6.4 'to three 

dimensions and study'the energetics of oscillating flexible finite wings. 

First, we' use the momentum theorem to calculate the thrust. Then, using 
, ' , 

the prinCiple of conservation of energy, we determine the energy loss rate 

and the thrust. 

Calculation of Thrust Using Momentum Theorem 

Consider a thin, almost-planar flexible wing of finite span undergoing 

small-amplitude transverse' oscillations in a uniform stream as, shown in 
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Figure. 6.8. Total thrust can be determined from the momentum theorem, 

(6.1). Here, the far boundary 5 consists of the right circular cylinder 52-

which is parallel to the main flow and the circular disks 5, and 53 of 

radius R. 
~ 

We introduce the perturbation velocity q 

(~. lO\) 

and the continuity equation into (6.1), take the x-component of the result 

and use the Bernoulli equation ·and the gradient theorem, to obtain the 

total thrust. 

~ 

:J (1:) - t p J (V %. -t- W Z - lk z) d 5 
~, 

~p J (uv Case -t- u. w 51" e) cJ.. S 
;52 

.1. p. 
-;L 

.+ pJ 
Sw+ CT 

v and j .are the perturbation velocity component and the unit vector in the 

y-direction respectively and the angle a is measured from the y-axis in the 

yz-plane in the pos! ti ve direction of rotation about the x-axis. 5ee 

Figure 6.8. In arriving at (6.102), integrals of cp-i: .. r.~ and u(Q.n) 
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around the edges of the wing and wake vortex sheets vanish. 

and 

Using (6 .16) , 

~ -- -
Yl h / + h - k.. + 0 Ce Z \ IA-== x'" yJ .I 

-0. ~ 

n~ - - (\I.l 

x 
~<P(X,'f/t) = J "'(~'YJt) d.~ .+ O(E

Z
) 

X~('f) 

(6'.103 ) 

(6.102) becomes, after an integration by parts in the next·· to the last 

term, 

Here, 

7(i) = ~ J (v~+ w-z. .... u2.) ds .. 
5, 

-i J (Vz+w"'_lAzYds 
53 

+ pJ t.{ ( v Cos e + W S\", e.) d s 
S.z. 

b 

+ p j. h w (Ll '( ») Y J t r ~ r ( L ( y), Y,1:) d.. 'I 
-6 

b LtV) 

-pS- rJ.~ S c!x ~ [1:(X,'1jt) htx.lv,-t:lj· 
-b XtlY) : 

(6'. f os) 
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Lty} 

r{L('()J ".It) - J. ¥(~; '1)1:) d.~ 
Xe(Y) 
Ll'l ) 

= r(y, t) + J Yw (~~ 'I) t)d.s 
Xt('1 } 

(S.\OG) 

where ·x€" xt and L ar.e respectively the abscissas of the wing leading and 

trailing edges and the abscissa of the wake trailing edge. rt y,t)is the bound 

circulation. Whenever the wake extends beyond 53' L( y) is to be· taken as 

the abscissa of 53. It is shown in Appendix F that, as the far boundary 5 

is removed to inf in! ty, the integrals over 5, and 5:z. vanish. The integral 

over 5g in general must be retained since, in the long-time limit·, the wake 

usuall! crosses 5 g and the integral is expected to be nonvanishing. 

(6.105) then reduces to 

~(1:).= -ip J lV'+Wz - \A'Z.) ~ S 

~3 

b 

+pf h",lL(y)!V)t) 
-6 

. . b L(V) 

- P S dy S ·dx 
- bX~ ('I) 

(6.\01) 

This result is quite general, being valid for any small-amplitude motion of 

a lifting· surface including transient· motion •. Also, it is valid for 

arbitrary planform (straight or swept back), aspect ratio and reduced 

frequency. It can be shown that, as the wing semi span b tends to 

infinity~ (6~107) reduces to its two-dimensional counterpart, (6.21). 

Also~ in the limit of steady flow, the classical result for vortex drag is 

) 

) 

) 
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recovered. 

Next, we const'der the case of steady-state harmnic oscillations. 

Here, the wake extends far beyond S3 (L~aa). From Reissner (1947) 

where Co is the root semi chord. Reissner has shown that the spanwise 

component of wake vorticity is given by 

N. . .N -J Ui X 
't: w (X/V) = -j "'0 Jl, (y) -e. X~ XtlY) (G.lO 9) 

where ko is the reduced frequency at the wing center section ko = wCo/U. 

Substituting (6.108) and (6.109) into' (0'.106), we obtain 

and, . hence, 

~ r (L· 'f t) -- .:.. U 'tw·.· .( L, 'I. ; t ) ... 
J .I ' C)t 

Substituting this into (6 ~ 107), we obtain the thrust of a harmonically 

OSCillating wing. 

-p 

Jtt) = ~f- f (V'+W Z -~ 2) ci. S 
2.5 

. 3 

b 
- PU S·· h w l L I '/ It) 'Y w (L.I 't, t) rJ.. 'f 

-6 

b 

S 
-b 

This is the three-dimensional counterpart of (6.28). 

(b. " 2.) 
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The time average of thrust is obtained using the averaging rules in 

(4.4) and (4.5). 

b 

- PU S hw tL, 'I, t) 'Yw (L, '1,-c) J.y 
-b 

where both integrals are over the Trefftz plane. This is the 

three-dimensional counterpart of (6.29). Evaluation of the first integral 

in (6.113) requires knowledge of u1., ;;. and w2. in the far wake. These are ,.., ,.,. 
calculated in Appendix G in terms of integrals involving ..ft and d ft /dy 

which, in general, must be evaluated numerically. Evaluation of the second 

integral in (6.113) requires the spanwisevorticity and the lateral 

displacement of the far wake •. The wake vorticity is given by (6 .1 09). 

To. determine the asymptotic displacement of the wake, for reasons 

already cited, it suffices to consider a linea~ized wake model. The 

linearized downwash at the wake is give~ by 

\'11 ~ b 

As in two dimensions, this can be inverted to obtain the wake displacement. 

x 
+V-1J 

Xt ('I) 

(6'. I' 5 ) 

x ~ oX t ('I) 
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The asymptotic displacement of the wake is obtained from this by setting 

x = (X) . in the upper limit of the integral. 

Evaluation of (6.115) requires the downwash at the plane of the wake 

which is induced by the wing and wake vorticity. For (x,y) on the 

projection of the wake on the xy-plane, 

\b'.lIb) 

where ( ) a. denotes the wing and ~ is the streamwise component of vorticity 

which· is taken to be posi·tive ·in .the negat.iy~. direction of. rotation about 

. the x-axis. 

Reissner (1947) 'has shown that· 
.v . ~ _jw)(.., 
~w tX, 'f) = <=0 d JL /dY-E· 

It follows from (6.108) that 

(6".118) 

. Sa. is obtained from the continuity of vorticity on the· wing. 

x 

S (6.119) 

Hence, once the bound vorticity '{a. is determined, everything else can be 

determined (at least numerically). In the absence of an exact theory to 
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calculate Ya , we can use numerical unsteady lifting-surface theory or 

Reissner's approximate theory (Re1ssner (1947}). The latter gives a 

closed-form expression for "'6 a. which contains the results of unsteady 

airfoil theory and steady lifting-line theory as special cases. 

Calculation of Wakt Energy and Thrust Using Conservation of Energy 

Here, we adopt the viewpoint of the observer fixed in the fluid and 

consider the same wing moving with velocity U along a rectilinear path in 

the . negative X-direction while executing small~amplitude transverse 

oscillations, as shown in Figure 6.9. The balance of energy for the fluid 

in V is given by (6.53) whe~e the cylindrical far boundary S is located 

infinitely far from the wing and the wake. 

As in' two' dimensions, it can be shown that. the right band side of 
'. . 

(6.53)· is the rate of work of thrust and unsteady' lift, i.e.,·· 

. (6./20) 

Taking the time average of' (6.120) over . the time interval T and 

rearranging, we obtain 

= U ~+ 1- A(KE). 
.. 'L . 

(6.IZ,) 

where -l A (KE)- . is . defined in· (6.63).-, (6.121) is 'a statement . of 
L 

conservation of energy for the present three-dimensional problem. In the 

notation of Section 4.2, it becomes 

(6.122) 
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The corresponding hydrodynamic efficiency is defined in (4.54). 

Next, we con8ider the case of steady-state harmonic oscillations and 

choose 'r to be the period 21T/w. As is two dimen8ions, a (KE) can be 

determined from. the properties .of the far wake, namely 

b 
AtKE) :: - ~ A S ~A. Q.. J.. \ &\1 . __ -b i ()~ l' s=o I 

(6.\23) 

With respect to the moving frame (x,y,z), ~~ is determined u8ing (6.104), 

(6.108) and (6.109). 

(b.JZ4) 

Downwash at the plane of the wake is obtained from (G.11) as z-o±. 

IV : b , !! (X,~,o)= -.2~ e-J;oX! E (, )55" (y-~) 1(, liii 1 v- '11) 011 

. b 

- k; 'e~jUi X J ~ t1) Ko (w' '1-111 d 1 
2.ITCo ,-b 

(6" .. 125) 

'In the limit of steady flow, <'6.124) and (6.125) reduce to'the clas8ical 

steady results. 

The above results for ~cI> and -04> /6 z can be transformed to the 

(X,Y,Z) frame using the transformation (6.73) with y = Y. The results are 

N _j Uj X 
ll<P (X+UtJY) = Co !L (y) -e. ' (6 .. 12.C;) 

, b 

o<i> (X +U~ y)'\ '.=' -=.k. ej jjjX! ]; (n) ~l'\ (1-~) K, ( La 1'1-1') 011 
o~ ) 'l:=o 1. rr .l f. . 

b"" 
k.~ 'e- jUlX S Jt(1) Ko (U5 l'f-~I) d1 (~.IZ.1-) 

2.(fCc ,- b 
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Using {6.126} and {6.127}, the average energy loss rate is obtained. 

5 b b /'oJ ® ~I 
E = irr PU 1:..0 {j(j l c" i t ..fi. 11,l.fi. ('1) ~., (~,-'l). 

b b N® .v 

ol<,1wI1,- '1Il.l, 01, I + 1<.1 ~b JL ('1,) lL ('II K. (wi ,,-'11) .I, .111 } 

(6.\28) 

The average total power required to maintain the wing oscillations is given 

by 
b Xt('O 

(J =-J J1 J d.! ~1'(s,?,;t) ~ ha.(~,YJ/t)d~ 
. -b X-t('fJ 

(6'.\29) 

The, total thrust is then obtained from (6.122). The present method 
..... 

requires b' p and JL which can be, obtained froiD numerical' unsteady 

litting-surtace theory or Reissner's theory. 

In the limit ot steady tlow, the above results ,yield one halt of the 

known value of the induced drag, as expected. 
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CHAPTER .VII ' 

SUMMARY AND RECOMMENDATIONS 

In summary, a low-frequency unsteady lirting-line theory has been 

developed, using the MAE method, ror a harmonically-oscillating straight 

wing of large aspect ratio. The wing is assumed to be ch~rdwise rigid but 

completely flexible in the span direction. The wing displacements are 

prescribed and the unsteady pressure field, airloads and induced downwash 

are obtained in closed form. To leading order, the latter consists of a 

convecting sinusoidal gust whose amplitude is constant across the chord but 

varies in the span direction. The unsteady induced downwash is 0(A-1
), as 

.in the steady case. The theory is sufriciently general to permit 

quantitative treatment or a range of interesting problems involving 

unsteady motions of spanwise-flexible wings in incompre~sible rlow. 

Numerical examples clearly show the influence or ko ,A,. plant'orm shape 

and mode· or oscillation on the wing. aerodynamics. They also indicate that, 

for elliptic and more slender pianforms, the theory yields convergent total 

results (at least ror the examples considered). Comparison with Reissner's 

theory (Reissner (1947» and limited numerical lifting-surrace results show 

good overall agreement. The present theory, thus, provides formal 

justification for Reissner's ad hoc theory. Compared with l1rting-surrace 

theory, computation time is reduce~ significantly. 

The present theory also identiries and resolves the errors. in. the 

unsteady lifting-line theory of James (1.975) who used a semi-intuitive MAE 

approach. His unsteady induced downwash.isround to be iri error which 

renders his results incorrect. He also suggests that his theory is valid 
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for all reduced frequencies, but his formulation clearly assumes low 

reduced frequencies. Further, he does not treat and resolve the inherent 

nonuniqueness of the solution in the acceleration potential formulation of 

the problem. The pr·esent work also raises questions about the complete 

validity of the unsteady lifting-line theory of Van Holten (1975) who 

suggests that his theory is valid for all reduced frequencies but finds the 

unsteady induced downwash to be constant across the chord, a condition 

which holds. only in the steady flow limit. The theory of Cheng (1975) who 

determined the velocity potential to O(A%) does not include calculation of 

the aerodynamic loading, the unsteady induced downwash and some of the 

important details. 

Using the present theory, the effects of three-dimensionality on the 

energetic quantities have been determined for a finite wing oscillating in 

combined pitch and heave. This is the first closed-form analysis of 

three-dimensional flapping flight. In the present. approach, the 

leading-edge suction force is obtained exactly. Numerical examples for the 

spanwise distribution of the energetic quantities arid the overall 

propulsive performance of an elliptic wing in combined pitch and heave are 

presented. 

Based on the numerical examples and correlations presented in tpis 

work, the region of validity of the present theOry has been identified in 

terms of ko and A. It is seen that the theory is valid over a considerably 

larger range of ko than originally anticipated. The region of validity 

contains the values of ko and A which are of greatest interest in most 

applications. F~r small ko and moderate A, the total lift and moment 

coeffiCients for an elliptic wing in pitch and heave display an unexpected 

behavior which is not well understood and calls for further investigation. 
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Numerical lifting-surface results would be helpful in understanding this 

behavior. If it is found that this is an inherent weakness of the present 

theory, carrying out the asymptotic analysis to one order higher in A-I 

might resolve it. In order to better assess the utility and range of 

validity of the present theory, there is need for further correlations with 

lifting-surface theory .and also experiments. 

The optimum solution of Wu (1971b) for a rigid airfoil has been recast 

in terms of the normal modes of the quadratic form for the energy loss rate 

to shed light on the structure of the optimum solution. It is found that 

one of the normal modes, termed the invisible mode, plays a central role in 

the solution. The invisible mode is interesting in its own right, since it 

. consists ofa combined pitch and heav~ mot1o~ of the airfoil 'which sheds no 
. .. 

vorticity and for which the energetic quantities are identically zero and 

the hydrodynamicefri,ciency is 100%.' The existence of the· invisible mode 

is a direct result of the fact that the quadratiC form for' the energy loss .. 
". 

rate is positive semi def1ri1te. Since an.arbitrary 'amount of the invisible 

mode is present in the solution, the latter is rionunique. 

The optimum motion of a finite wirig in combined pitch . and heave has 

been analyzed rigorously for the first time. It is found that, in contrast 

with the two-dimensional ca~e, here the quadratiC form for the energy loss 

rate is positive definite. As a result, there does not exist an invisible 

mode for the . finite rigid wing and the corresponding optimum solution is 

unique. Numerical resultsfor.the optimUm motion of an . elliptic wing are 

presented. 

Finally, 'an alternate approach has .been presented for the calculation 

of the energetiC quantities in two and three di~ens1ons, namely the use of 

the integral form of the conservation laws. This . approach has several 
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advantages. i) It is· quite general, being valid for arbitrary wing 

planform, aspect ratio, reduced frequency and mode of oscillation (small 

amplitudes). ii) It is physically enlightening, in that it relates the 

thrust and the energy loss rate to the momentum flux and the kinetic energy 

content of the far wake. iii) It avoids the direct calculation of the 

leading-edge suction force. However, the method requires the distribution 

of bound circulation and pressure on the wing and is found not to be well 

suited for optimization studies. In two dimensions, using unsteady airfoil 

theory, the -results are obtained in closed form; although more complex 

shapes and motions of the airfoil give rise to tedious integrals. In three 

dimenSions, in the absence of an exact wing theory with closed-form 

results, one has to resort to numerical lifting-surface· theory or 

Reissner's theory (Re1ssner. (1947». 

The following extensions are suggested by the present investigation. 

In order to take full advantage of the capabilities of the present unsteady· 

lifting-iine theory, it. would. be of interest to modify the present 

numerical schemes, which are for oscillating rigid wings, to handle 

spanw:lse-f1.exible wings as well. This. can be accomplished by choosing a 

. number of suitable modes for the span distribution of heave and pitch. 

Similarly, the present analYSis of the energetiCS of an OSCillating rigid 

wing can be extended to include spanwise flexib;lity. In· turn, these 

calculations can be used to analyze the optimum motion of a semi-rigid 

wing. This would be of interest in studying wing motions __ of birds with 

small to moderate flapping amplitude and relatively large aspect ratio. 

Another extension Of. the present theory is to determine the 

(aerodynamic) response of an oscillating semi-rigid finite wing to an 

oblique convecting sinusoidal gust, from which the response to any 
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arbitrary localized gust or continuous atmospheric turbulence can be 

obtained by Fourier superposition. This can be obtained from the present 

analysis by including in the lowest order inner solution the p~essure fie~d 

due to the interaction of a two-dimensional airfoil with the oblique gust. 

The latter can be obtained from the solution of Filotas (1969) by use of 

Green's functions (pressure doublets). This extension of the present 

theory might be useful in aeroacoustics as well. 

Another extension is to include the effects of compressibility (using 

one of the existing compressible unsteady airfoil theories and Green's 

functions) and curvature and/or sweep of the plantorm. Developnent of a 

. unified theory valid for all reduced. frequencies would also be of interest' 

(Section 2.1). 

The"present theory will also· be . useful in other areas, such as 

aero~la~tic1ty andth'e analysis of energy extraction from fluid streams. 
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APPENDIX A 

EVALUATION OF CERTAIN INTEGRALS 

1. From Section 2.4 

(A.I) 

The integration. is along the real axis from .~ = -c(1) to x = C(1) with the 
. . ... . ,... "'. "-
complex parameter r = x + i z. 

Using the transformation 

z. ." ... " .. .., =. (c -to ~ ) / ( c - § ) 

Q" becomes 

(\'I +d 
1\ 4c. 

Q n (:r) 'I) = c ,... 
-'$ 

where 

·(A. Z) 

(A';3) .. 

. ~ 1\ ) 
0( -= ( ! + C ) / ( ! _. C.) ( A .4 . 

For given Ii, Q n can now be evaluated using the method of partial fractions 

which reduces (A.3)to a sum of the following integrals. 

J 
o 

rn = 1 

1·3.5 ••• (2rn-3) 1t". 

2.4.6' ••• (2"'~.z) T 

(/~.5) 
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( ,4 .s) 
o 

The first five Q" 's, evaluated in this manner, are listed below. 

" r "4 ." 3 \ 'Z. "2.. \ c 3 ~ + ~ c 4 
Q4(JJ'I)= IT L j +C!. +.2,. C ! +r e 

. where 

2. In Section 2.6, we make use of the following integrals. 

. IT I I ',(1.) ( k) 
·-J 2 T t"1 

(A.f.) 

. tA. 8) 

(A. 9 ) 

(A.lo) 

(A. l\) 
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ol - _ 1T ,,(:;2.) (kJ , - k:z. n, 

(A. 13) 

The first two integrals are found in Watson. (1966). The integral in 

(A.11), after an integration by par~s, can be expressed in terms of (A~9). 

The integral in (A.12) can be obtained from (A.l0) by an integration by 

. parts. The last integral, after 'integrating by parts twice, can.be 

expressed in terms of (A.9) and (A.12). 

Some of .the abOve. integrals, when considered individually, are 

divergent for· realval,ues of k. In such cases we assi"gn a small negative 

imaginary part to k. Later,. for use in' Section 2.6', we analytically 

continue the resuits to real values of k.· 

3.' From Section6.3, 

c 

I·:: J . I [ 
c-'x 1'/2 .. c1.x 
c + x oJ. ( )( - )d ( ~:.. X ) 

(A. i4) . 
-c 

This integral can be evaluated from the following contour integral. 

(A .15) 

where ! = x +'i z and the integration contour C cons! ts of C. ' C2.' C 3 and 

C
R

, as shown in Figure A.l. . For the integrand we choose the branch cut' 
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. from l' = -c to 'S = c defined by 

(A.I6) 

The integral along CR vanishes as R-co and the integrals along C 7- and Cg 

cancel each other out •. As C, shrinks down to the branch cut, it can be 

shown, using some of the analytic properties of .~ (:s - c)/( 'S + c) in 

Table 2.1 (p. 57), that (A.fS) leads to t~e following result. 

I = , . 

4.. From Section 6.3, 

c: 
.c [. c·-: Xl i/:z. fix . \ 

I z =.:r c+·x 'J (x:. ~)C~·-)() . A\ ~<; 
"';'c 

(A. \~) 

(A.l8) 

This integral ~s similar to the one in the above. It oan be evaluated from 

the fol~owing . contour integral. 

f 
i dS Res (~) [S~ c 1 ~2. :z.rr ,: LAo 19) -

c . '5+ c . ( !, - ). ) l s· ~g ) 

/i\1 ~c. ~~c: 

'Here, we-choose the' branch cut defined in. (A.·16). - The integration contour· 

C consists of C" C.z.' C3 , Cp and C R as shown in Figure A.2. CR and Cp are 

circles of radius Rand p respectively. Again, the integral along CR 

vanishes as. R ~oo and the integrals along C:z. and Cg cancel each other out. 

The integrals along the upper and lower halves of Cp cancel each other out 
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due to the sign change of J.<! - c)/( s + c) across the branch cut (see 

Table 2.1). (A.19) then leads to the following result. 

1f, 

A- ~ 

5. From Section 6.3, 

IAI ~C 

I = { d. ~ f d'A [~ - C J IIi [ A + c: 1 h. _e_j_~_(_S_-_A) 
3 c., c ~+c. ~ -c. J 3- A 

(A • .2.0) 

(A.zl) 

Differentiating this equation with respect to k = w c uncouples the 

integrals. 

(A.zz) 

These integrals can be expressed in terms of certain, known integrals 

(found, e.g. " in Ashley and Landahl '( 1965». 

(A.Z4) 

Substituting these results in (A.22) and expressing the Hankel functions in 

terms of Bessel functions (see (2.43», we find 

tA. z 5) 
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where the argument of all Bessel functions is k. 

I3 is obtained from this result by integration. 

rr 2, [:z. .2.:z. 2. 
.I 3 = (2:) c Jo -t- Yo - Jo (0) - Yo (0) 

k. 
+ j J (J,'l. + Y,Z._ Jo

Z 
- Yo2.} d. k. i +D J 

(A .2(,) 

o 

where D is the complex constant of integration and we h~ve ~~~~ .~~ vt the 
i 

following identities. 

(A.2~) 

The constant of integration is determined by evaluating I3 in . (A.21) for 

some value of W (or k) directly. Using the method of ~tatio~ary phase 

(see, e.g. , Carrier, Krook and Pearson (1966», it can be shown that I3 

tends to zero as W (or k)~ CD. Using this condition in (A.26) , the 

ocnstant of integration is found to be 

tA.28) 

o 

Substituting this into (A.26), we obtain 
co 

1. 3 = (~)2. C { [J~ (k)+ y;1. (1c.J) - j S [1,2+ 'I, Z - J.2..;. y. Z )elk, 1 
.. k . 

(A.29) 
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It is seen in Section 6.3 that the imaginary part of Is drops out of the 

expression for the average thrust and, hence, there is no need to eValuate 

it. 
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APPENDIX B· 

NUMERICAL EVALUATION OF INDUCED DOWNWASH 

OF UNsrEADY LIFTING-LmE THEORY 

In this appendix, we describe numerical schemes for the evaluation of 

the unsteady induced downwash of the present unsteady lifting-line theory· 

given by (3.37a) and (3.37b). 

From among the planforms considered' in this· work, we are most 

interested in the elliptic one. The elliptic planform, however, gives rise 

to infinite slopes at the ~ips in the s~nwise variation of some of the 

physical quantities. This, in turn, gives rise to difficulties in' the 

numerical evaluation of integrals .containing such terms.' These 

. difficulties can. be resolved by introducing the spanwise angular 

substitution 

(:s. n 

which transforms a planform with blunt tips. into a' planform with more 

slender tips by stretching out the tip regions. For example, the elliptic 

planform which has infinite slopes at the tips is transformed into one with 

finite slopes at the tip, as shown in Figure B.1. 

In terms of the angular variables, the first integral'in (3.37b) may 

( B.2) 
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~e/ - e~)2 SIt'; e: 
\~oSe'-coS ~n2. 

(g.3) 

2. 'Z. 
We have introduced the factor (e'- ep /(9'- ep in the integrand. As we 

will see later, this greatly facilitates the numerical evaluation of the 

integral in the neighborhood of the singularity. 

Before describing the numerical integration of A(S'), we first discuss 

evaluation of various parts of the integrand. It follows from (3.11) and 

(3.36) that the strip-theory section lift coefficient is given by 

+ [(2. + jk.) " + :z.j ic.( 1:)] !C (k.)} 
(B. 4) 

Numerical values of Theodorsen' s function d: (k) are obt·ained· fr'om (2.42) 

and (2.44) using library subroutines for the Bessel functions involved (1), • 

. ~ (k) is plotted as a complex vect,or in Figure 2.4. Listing of the 

primary programs used in this work are given in Appendix H. 

For later use, we point out that it can be shown, using (2.62), that, 

near the wing tips, (B.4) has the behavior (for fixed aspect ratio) 

;.I 

Ce 2.D l '1'Yt) N - IT (~o) L a. \ + ""2 ( ~o) + q 3 l ~.J .Q~ ( ~<,) 

+ol~~)2. J (C iC Q ) ~ ( &.5) 

( 1 ) 
Numerical values of Jo , J" Yo and YI ' are obtained respectively from 
subroutines .DBJO, DBJ1, DBYO and DBYl which are part of the IBM mathematics 
subroutine library SL-MATH. 
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.where a" a2, and a" are O( 1) and well behaved near the tips. It is seen 
... . 

that in the vicinity of the tips, to leading order, Cn is proportional to 
~;tD 

the local chord. This is' expected since, as we approach the tips, the 

local reduced frequency tends to zero and the unsteady lift takes on its 

quasi-steady value. 

It can be shown that the function M,(e',e:), (B.3), has the following 

properties (see Figure B.2): 

, i) MI ~ 0 for O~ e' I ~lr 

ii) .H, = 0 for at = O~ 1\ and a' # 0, IT . I 
' , 

iii) the maximum of H ,occurs at a' I = at and its 

,'locus is given by 

\ 

iv) for gt = O,'rr near the tips, to leading order, 

JI-",~'Z. . 

where '( is the angular dis tance form the tips 

(that is, a~ or li- a:)j 

v) symmetry property: HI for -y. is the mirror image 

of that for y. in ,the line a: = 1t' /2. 

Hence, H, has a square-root singular behavior at ,the tips (at = O,1T ). 

For elliptic and more slender planforms, howev~r" the lo'ading at the tips 

drops off fast enough to cancel.out this, singularity. (see (B. 5». , .. 
The kernel, function 1f (}-I.) in (B.2) is defined in (2.155b). Numerical 

values of K, are obtained from a library subroutine (1). The rest of· the 

(1) 
The subroutineus~ is DBK1 of SL-~.ATH. 

- , 



210 

kernel is evaluated using the closed-form approximation derived by Watkins, 

Woolston and Cunningham (1959), namely 

.4'48 + .9ISCf p. 

\ • 3~ \ 0 + .fo 2 
<. B. 8) . 

We now describe the numerical integration of A( EP ); (B. 2) • First, we 

write the integral in the general torm 

A(e") -:f (B.9) 
o 

Due to the presence of the singularity at a: =. at, we· break up the· integral 

irito three parts as follows. 

·e~.r e"+3' iT 

. A(e~) -= [.J + S + J ] t- (e~ er, 
d. 9: 

0 S~j 
(e"-e~)%. 

a+~ (8. \01 

= AI (9'\ + A:r (6") + A2.(S" ) 

.. where! > 0 represents a small neighbOrhood of· the singularity. The 

integrals A, (9') . and A:z.(at) are nonsingular and span a finite interval. 

After a change of variables to transform the intervals of integration to 

•... - ,,, (-1, 1)~, they can be evaluated efficiently.using Legendre-Gai.tss.-quadrature: 

6 I J +('1) rJ.. '/= (b - 0.. ) /2 J f ('1) J.. X 
~ .. ·-1. 

n 

~ (b -o.)/z. ~ We: f('Ic.') 
£,=1 



where 

b-a. 
;z. 
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+ (B.\2) 

The weights W ~ and the abscissas Xt are listed, e.g., in AbraIOOwitz and 

Stegun (1970). In the computer program, the number of integration stations 

n is determined through an iterative procedure aimed at achieving a 

prescribed level of accuracy. 

We evaluate the' integral Ar(e} which contains the second order 

si~larity using the method of Watkins, Woolston and Cunningham (1959). 

For cO~Pleteness, the highlights of the method are discussed below. First, 

we approximate the functionF(e',e;} with a sixth degree. polynomial which 

can be obtained from Lagrarige'sinterpolation formula (see, for example, 

Abramowitz and Stegun (1970}). With th~ approximation AS{e') becomes 

e"+ ! 4 ' 
A~ te") ~ S-G ~ ~lle')' h,i S (9/-e~ )(4-t) de.' 

L-O e(-'! (,8.13) 
e~l . .e~r 

. + ~-'~5 (9')' ~ (e~e~)-Ide,/'+ 9,<S') J' (e~e~f2.Je; 
. e~r e~J 

where b = ! 13 and g~ {e') are linear combinations of' F(e' ,S:) at the seven 

interpolation stations and can be found from Lagrange's interpolation 

formula. 

integrals 

It now becomes clear that, had we not introduced the factor 

e~)2 in (B.2), here we would have encountered the 

, , 
de, 

(Cos e" - Cos et ) 2.. 
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which are much more difficult to evaluate than those in (B.13). 

It can be shown that the Cauchy principle value integral in (B.13) is 

= 1,yf1 
E~o 

-::0 (g.!4 ) 

The "integral with the second-order singularity in {B. 13) is evaluated 

according to the "principle value defined in (2.146). Its value can be 

shown ~o ~e 

-~] 
- 2./J ( IS~ \S ) 

SI,lbst1tut1ng (B.14), (B.15) and the expressions for gice,> - into 

(B.1~), We obta1~ t~e fotl()wi~ approximation for A]'(9' l. 

~ -'" \ -! 5 r~ L F (~/.J ~ ~ 3 S) + F ~ t1 '.1 ~ /+ "3 ~ ) J 
100 L -

+"12 L F (e: e/-.2~) + F (~") e<+-.4 S)") 

+ 4 t:t ~ [ F ( ~"~ e (~ cg) + l== (e') e' + ~ ) 1 
- 1360 ~ (e~, e')} (\5.16) 

In the numerical calculations presented in this work, ~ is chosen throug~ 

numerical experiments (1) to be J ~ a .08 to obtain three _ decimal pl~oes 

(1) 
r is chosen by applying the numerical scheme for A(e') to certain known 
integrals for various values of St. 
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otaccuracy or better tor the results. 

Next, we discuss the numerical eValuation ot the second integral in 

(3.37b) which contains a removable singularity at "'1 = Y. In terms ot the 

angular variables, this 'integral may be written as 

TT" -
B(~t') = 5 

Ct:%D <1'\» - Ct20 (~~) 

o \9 /- at' 
(8,\1-) 

where 

.. e ~\ / \e -, 'S,~ e I 
\ CoS e" - COS en (B.\8) 

We have introduced the fact or '9' ~ 9" / , 9 '--9' , I , in the integrand' to 

facilitate later evaluation of the integral in the nieghborhood of the 

singularity •. It can be shown that M%,(9' ,9P ha:s the following properties 

(see Figure B.3):, 

i) 

ii) 

iii) 

, iv) 

M20 N 0(1) for o ~ (9', 9p ~lT 

Mi ~ 0 for o ~ (9', 9p ~Tr . 
~ , 

M20 = 0 for 9: = 0,1\ , 9'* 0', if 

M20 = 1 is the locus ot the points 

9' -I - 9' for 0 ~ ( 9', 9;) ~ 1i ; 

v) symmetry property: M2 for -y. is the mirror image 

of that for y. in the line 9: = n /2. 

The integral B(9') is of the general form 

"'IT /" 
B a') -= r ~ le ~ e I) cle/ 

t , J \ e ,_ e ' \. I 
, 0' ", 

(8& \9) 

To evaluate Bet;}'), we first' write it as the sum of three integral's. 
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(B.2.0) 

where E ) 0 represents a small neighborhood of the singularity. In th~ 
~ .' .' . .-' - . . - .. ", ~ -. .". ..".... . - ,. 

I'J 

integral~ BI (9!) and B~{9,),the parts cq~taiping Ct~p(Y.) cap b~ 

i~tegr~1;~~ in qlosed for~, w;lth respect to 1.' to optain 

e~E 1f IV, 

~\ WI '*' h (6') - l S + L 1Q~:D (}~) Mz, (a', (3/) de,' 
. 0 !?t€· \E:}~E?!\ 

N )~ 

",. C~~D ('I l'-) ~~ l-~;;i--j (13, 21 ) 

~e ~at~~~ r-~!~~!9~~ a,pe g~p:l~~~d ~rap~!~~±±y ip ~!~r~ ~!4~ rhe r~e~!ng 

integr~~ in ~~~?1) a,re non~pgul~~ apg Q~q be ~v?+~~tegH~i~ 

Legendr~Gauss quadrature, (B.ll) and (B.12). . . -" '. '. ' '.. .~ '. .. .. ~ '. .' " .' 

"" N evaluate Be' we f.irst expa,nd [Ct
ZQ 

( ,,*) - C
tzD 

(:r*~ ~ pear ~: = 9! to -remove 
~ '~'.' . 

the'singularity~ 

.,.J N 

C~,tD (CoS e;) - Ct.to {COS e'} 



Using this expansion, B£(9'> 

B€ lei) -

where 

E~ te') _ ..L 
n~ 

co 

I E", te') 
1\=1 

, 
e +€.. 

J 
I . 

9-E· 
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becomes 

IV 

d~ c~ (Co'S e'} 
0&' r\ ;20 

The general.iz~d function sgn(9':- 9' lis defined as 

'. /. 1 _ )_: \, . S!'l~. leI - 61 ) l e./> a' 

lB. 25') 

(S.26) 

(13.2':" ) 

IV 

In relation to (B.25) we remark that, while the derivatives of Cft (y.) 
"t.zo 

with respect to y. may become infinite at blunt wing tips (e.g., for the 
. .' '~ 

elliptic planform), the derivatives of. Ctzo(cos 9') with respect to' at are 

finite' everywhere including .at blunt tips (see (B.5) and the discussion at 

the beginning of this appendix). 

The integrals E",(9'), (B.26), are nonsir1gular, 8J.though each 

integrand has a finite discontinuity at 9:= 9'. They can be evaluated 

using Legendre-Gauss quadrature after breaking up each integral into two 

parts at the discontinuity. In the following, however, after 

examining the order of magnitude of En(a t ) ,we will see .that for a suitably 

small value of e we may neglect BE(a') altogether. 

Since M2.(a'tap is well behaved near a:= S', for at. not very close to 
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the tips (see Figure B.3), we may expand M Z. near 9:= 9' as 

(B. 2.8) 

where 

(s. Z 9) 

Substituting this expansion into (B~26) and integrating, we obtain 

E l.o ' ,) ::: .L S oJ... r E; 't\ -+ ( - E ) ~ 1 
,'" '" l"\ t LY\' 0 L· 0' 

\8.30 ) 

Fore' not very close to the tips fce') ~ 0(1) C~eeFigure B.3) and it 

follows that 

(B.3\) , 

• 
Hence, • 

(B. :3 '2. ) 

~A~ we approach the tips, for distances of O{ E ), it can 1;>e shown that 0' 

° En l e ") N a ( E:I\ ) 

and, hence, 
(g. 34) 
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For values of S' closer to the tips than € , € is redefined as the 

distance from the tip. Hence, B~(a') vanishes at the tips. Variation of 

B.(a') with at is depicted qualitatively in Figure B.5 for half of the 

span. 

Therefore, if E; is chosen as a suitably small quantity, we can 

neglect Be(a') then represents an error in . the numerical 

'evaluation of B(a'). In terms of the physical variable y*, the ,maximum 

error,.1.e .• , Be(et') ~,O(€), occurs at a distance of 0(62.) from the tips, 

as can be seen from 

COS € _ \ - O(e~) (S.3S) 

for the tip at y* = 1. ' 

In the ~Umericalcalculations presented in this work, E is chosen 

through . numerica~' experiments tO'be E ~ 0.006. For an elliptic wing in 

steady flow, using' this value ofe , the maximum relative error was found 

to be approximately 0 .03~ occuring at. a distance of about 0.01% of the semi 

span' from ,the: tip. ~hi~ is .typical· of the . calculations' presented herein' 

and corresponds to better than three decimal places of accuracy for the 

resu!'ts. With the loads dropping off to zero at the tips, the effect of 

the above error on the overall calculations is expected to be negligible. 

'It should be noted that, for all practical purposes, the above schemes 

for the ,evaluation of A(e') and B(a') are valid for all points along the 

span including those very close to the tips, but exclude the tips. .These 

schemes can be modified to accomodate the tips as w~ll, but this is not 

necessary. The spanwise integrals for the calculation of the total 

aerodynamic quantities employ Legendre-Gaus~ quadrature which excludes the 
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end ·po1nt s . 

• 
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APPENDIX C 

NUMERICAL EVALUATION OF INDUCED DOWNWASH 

OF REISSNER' S THEORY 

In this appendix, we describe a procedure for the numerical eValuation 

of the unsteady induced downwash of Reissner's·theory given by (3.38a) and 

(3.38b)~ In order to accomodate blunt wing tips again we introduce the 

spanwise angular transformation (B.1), in terms of which (3.38b)may be 

written as . 

where· 

··d£L~ 
d~~ 

(C.. 2 ) 

, . / 

M· l" I e /) . e - e, 'S1r\ ",.'; ~ C'} I·::' c.r 
~ Cos 9/- Cos e~ 

(C. 3) . 

. . . . .. . N* .~ 

For given wing displacements, dJl/ d~ can be evaluated from (3.29) using 

the following derivative·formulae· from Abramowitz and Stegun (1970) •. 

AI A . ~ A 
"J (e) == 'Y-I Ce) - ~ it (~) (C.4) 

A~ (~) - - A"I+' (~) + {- Ay (:C) C.S)· 

where A~ denotes Bessel functions of the first and second kind, J""I and Y"/' 

or Hankel funotions of the first and seoond kind, H::) and HlZ
) , ~. 
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Numerical values of the modified kernel function I( (q) are obtained 

from polynomial approximations which are obtained from the tabular data in 

Table 3.1 (p. 33~) using a least square criterion (1). Different 

polynomials are used for different ranges of values of the argument q. The 

accuracy of the- numerical values is three decimal places. The real and 

imaginary parts of iK are shown in Figure 3.4. 

The function .~(e' ,ep is the negative' of Hz.(e' ,ep. Hence, apart 

from a minus sign, H3 has all the properties of Hz mentioned in Appendix B 

(see the discussion following (B.18) and Figure B.3) • 

. The integral C (e') ·is of the general form 

CC$') - (C'b) . 

In order to evaluate C(e') numerically, we first write it as the sum of 

.three integrals. 

e~! 

C(e~) .~ [ 5 
o 

,. . 

6 +! 

+.J 
e'-'S 

1-\ < e.ll e/) 
(9"-e() 

(C.r) 

where! > 0 represents a small neighborhood of the singularity. The 

integrals C,{e') and Cz(e') are nonsingular and span a finite interval. 

They can be ev,!-luated using Legendre-Gaus~ quadrature, (B.11) and (B.12). 

The integral C
E 

(e' ), which' contains the Cauchy singularity, can be 

(1) 
The subroutine employed is LSFIT which is currently part of the library 
MATHOBS at the MIT-IPS. 
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evaluated in a manner similar to that for A£C9') in Appendix B. The method 

is summarized below. We approximate the function HC9' ,a:) with a sixth 

degree polynomial, using Lagrange's interpolation formula, in terms of 

which C~C9') becomes 

C I) (,,-6 
. E (e . ~ 0 

+ 5G (9') -\ d c ," (5 '-$ .... ) . v «(!. 8) 

where ~ = ! /3 and gi(S')are linear combinations of H(a' ,ep at the seven 

interpolation stations and can be found" fran "Lagrange's interpolation 

formula. According to (B.14)" the last integral in (C.8) ""is identically 

zero. Carrying o~t the remaining integrals and substituting for gi(a'), we 

obtcl1n the following approximatio"n for C(e' )"." 
" " " • e" 

Ct (6') ~ 2~O f23 L H te '} e' - 3"~)- H (e/,~/+ 3 ~ )") 

-42 [\-\(9', a/_zOe;;) - \-\ (e', 9+ Zb)] 

" + G \ 5 [\-\ {e I, e" - b) - \-H el', e / + ~) j"J (C. 9 ) 

The above procedure for evaluating C(9'), 11ke those for A(e') and 

B( a') in Append"ix B, are valid for any point along the span except for the 

wing tips. However, for reasons already mentioned in relation to A(e') and 

B(e'), the above scheme is adequate for the present purposes. 

The nuinerical examples of Reissner' s unsteady induced downwash 

presented in this work are carried out using an earlier numerical scheme 

which, although different in some of the details, is similar in overall 
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features to the one described in the above which is a more efficient one. 

The accuracy of the results are three decimal places or better. 
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APPENDIX D. 

DETERMINATION OF FAR-FIELD INTEGRALS IN TWO DIMENSIONS 

In this appendix we show that the following far-field integrals which 

arise in the momentum-theorem approach to calculating the thrust in two 

dimensions (Section 6.2) tend to zero as the far boundary S is removed. to 

infinity (see Figure 6.1). 

i ·(wz._u. Z ) d..S 
J5, 

J Uw ciS 
. ·S.z. 

·f IA W ·d.:S 
54 

In order to determine an tipper bound·for these integrals, it sufficies 
. . . 

to study the following simplified model. Consider a cylindrical far 

boundary S' of· radius R, centered at the origin, representing S" Sz and 

S4' as shown in Figure D.1. As R tends to . infinity, . using multipole 

expansions, we can represent the airfoil and wake vortiCity as a series of 

vortex multipoles located at the origin and along the wake. If the problem 

contains a steady lifting component, the leading term of the mult1pole 

expansion for. the airfoil will be a vortex, otherwise a vortex dipole which 

produces even smaller distrubance in the far .field. This is what we expect 

on physical grounds, since a steady lifting airfoil produces larger 

distrubances in the far field than its purely unsteadt (small amplitude) 
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counterpart. 

Hence, to find an upper bound for the integrals in the above, it 

suffices to consider a concentrated vortex at the origin for which the 

velocity potential is given by 

4> N e (D.2) 

and the perturbation velocity component in the S direction, say we' on S' 

·is given by 

We (R,e) - ..L ~ l. AJ 0(1<-') r as r~R· . 
OL3) 

The polar coordinate system (r,S) is shown in Figure D.1. The perturba.tion 
..... ..... -- ' 

velocity components u and w (also q :. U i + w k) on S'. are of the same 

order as we. Hence, the integrals in question are of the order 

S' 1~I:z.J S N S. ~:z. R de IV 0(1< -I) 
5', 5' . 

(D.4) 

and, ~e~c~, vanisQ as R t~nds to infinity. 
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APPENDIX E 

CALCULATION OF PER'lURBATION VELOCITIES IN THE FAR WAKE IN 

TWO DIMENSIONS 

In this appendix, we calculate the perturbation velocities u and w in 

the far wake of a harmonically oscillating. airfoil. These are needed for 

calculating the average thrust, see (6.29). Since u and.w appear only in 

quadratic form, it suffices to calculate them fran a linearized (planar) 

wake model. The effects of the' lateral displacement of the wake have' 

already been taken into account in de~iving (6.29). 

Here, the contribution of the airfoil to u and w is negligible, since 

the airfoil is located infinitely far uptstream. We consider a wake 

extending infinitely far upstream and downstream of the Trefftz plane. For 

convenience, we employ . a cartesian coordin~te system (x. ,z) which is 

attached to the Trefftz plane at the plane of the wake and is stationary in 

the (x,z) frame. The trefftz plane is given by. XI = o. The str.ength of 

the wake v.orticity is given by (see (6.23» . 

(E.I) 

where 
~ 

~(k.) - -j k- n (E. 2.) . 

The perturbation velocity potential in'the far wake is given by 

( E.3) 
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Making the ohange of variables 

(E.4) 

and integrating by parts onoe, we find 

(2.5) 

The imaginary part of the integral 1s identioally zero due to symmetry. 

The real part is the known integral 

co 
-i:O I=!I zJ COS (W ~) 1\ 

"'1 - \rl 
e ~ =/:0 (E.6) 

~4+ ,2-
0 

whioh. 1s found in Dw1gnt (1961). The perturbation potential then beoomes 

N '. ..w '-v -, 
J;. . r\ -J IJJ~. -~ l1: 
~ (~I J ~) ~ C ~ L. e e' . . s~~ ( ~) 

~here t~e sgo funot1o~ 1s def1ned 1n (B~ 27 ) • 

The perturbat10nvelooity oomponents in the far Plake are obtained fran 

(E~7) by d1fferept1~~ion~ 

and 

(E.9) 
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As a check we note that, as z ~ O±, 

,.. 

u: ~ +~ j Ie. .n. 
(~. 10) 

which are consistent with the symmetry properties of vortex sheets in 

unsteady motion. 

The average of the square of the perturbation velocities in the far 

wake is determined by applying. the averaging rule (4.4) to the above 

results. 

(E. if) 

It is· noteworthy that, in the far wake, ~ and ;I, with reprect to the body 

frame, are independent of x. 



228 

APPENDIX F 

DETERMINATION OF FAR-FIELD INTEGRALS IN THREE DIMENSIONS 

In Section 6.5, in calculating the thrust from the momentum theorem in 

three dimensions, we encountered the following far-field integrals 

I.I - S ( V z. + w .Z _ U. z.) d.'S 
S. 

I;t.. J u. (V coS e -+ w S,n e) clS 
S:z. 

(see' Fi~re 6.8). In this appendix; we show that· the above integrals 

vanish as the far boundary S is removed to inf in1 ty. 

Since the far-field disturbances caused by' a wing in steady flow are 

stronger than those caused by a wing in small-S:JIIplitude unsteady motion, in 

the present case we can find an upper" bound for the far-field disturbances 

by considering the following simplified steady case. We consider. a wing 

with uniform loading across the span •. For the far-field calcula tiona, the 

wing may be represented by a horseshoe vortex of . uniform strength r of 

width2b as' shown in Figure F.1. The perturbation velocity components at a 

field point (x, y, z) , have been calculated by Glauert (1947). They are 

given by 

r u. = -
411" 

(F.3) 

v = 
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r e [ x· 1 (F.4) + 40" -i!:z + l'f+b)~ 
l·+ V x. ~ + ('f -+ b) %.+ ?: 1-

W = -f' X L y+b "'f- b 1 
4rr )('+c.z, V X Z. + ('f +b) z. + 7!;Z- - -.)'1-%.+ l'{-b)z'+cZ. 

r 'f- b [ \ + X] 
+4Tf rz.+ (y_ b)Z. ·J-)t..Z.+<'f-b)Z. +2-~ 

r Y+b L\+ )C. 

] (F.S) - ---4IT ~z. + ("f +b) Z VX'+(Y+b)"Z.+ cz. 

It can be shown, by sui.table expansions of (F .3) - (F.5), that as S is 

removed to infinity; u, 
. -2. 

v andw are at most of OCR ) on 5, and 5~. 

Accordingly; using the polar coordinate system (r,e). in the ··yz-plane (see 

Figure 6.8), we find 

and 
2Tt R. 

I.z. - J de f u (v Cos e + w Sl~ e) g de dx. 
o -R. 

/\J 0 (1<.- z ) (F. 9-) 

.both of which vanish as R tends to infir~ty. 



230 

APPENDIX G 

CALCULATION OF PERTURBATION VELOCITIES IN THE FAR 

WAKE IN THREE DIMENSIONS 

In this appendix, we calculate the perturbation velocities, u, v and w 

in . the far wake of a harmonically-oscillating finite wing. These are 

needed for calculating the average thrust, see (6.113) •. Since u, v, and w 

appear only in quadratic form, itsurfices to consider a planar wake. The 

effects of the lateral displacement of the wake have already been taken 

into 'account in deriv!rig (6.113). 

As in two dimensions (Appendix E), we consider a wake extending 

infinitely far upstream and downwstream of the Trefrtz plane and choose a 
" ' 

cartesian coordinate system (x, ,y,z) which ,is 'stationary in the (x,y,z) 

frame' and parallel to it.· The ·Trefrtzp.lane coihcides with the yz-plane' 

and the wake is the strip 

lYI <b -==0 (~.I ) 

The components of wake vorticity are given by (6.109) and (6 '-117) for the 

wing in Figure 6 .8. 

Calculation of u 

u is entirely due to ~~. It follows from the Biot-Savart law and 

(6.109) that u.is given by 

(~.z) 
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wher.e 

. With the chage of variables '! = x I - ~, the integral over ~ can be .. 

expressed in terms of modified Bessel function of the second kind KI (see 

Abramowitz and Stegun (1970»: 

-Q) 

where 

Rz. == J ('1-r'})z. + ~z. 

Substituting (G.4) into. (G.2), we obtain 

'- b IV . I 

e-JWX1 J tL (7) R~ 
-b 

kaJcuJatiQo of y 

(~.4 ) 

(~. 5) 

KI (w I<z)d1 

('4. b) 

v is entirely due to ~W. Using the Biot-Savart law and (6.117), we 

find 

where( ) r denotes differentiation with respect to the indica ted argument. 

Using (G.4), (G.7) reduces to 
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(c.=).8) 

Using the asymptotic expansion for K I in (2.142), it can 'be shown that, as 

z"'o±, the integrals in (G.6) and G.8) each contain a second-order 

singularity (y - '1 )-z and must be interpreted according to the principle 

value in (2.146). 

~al eul at; 00 of w 

. Both components of wake vorticity contribute to w. It follows fran 

the Biot~Savart law, and (6.109) and (6.117) that w.is given by 

" (~ • .9) 
". b . CD. N·. _ j.:Aj 5-3 

. + frr j ko J d'l S d.j (X,- ~) tL (1) e K, 
'. '. - b . -co . " . . . 

The integral over ~ in the firstterlil is given by (G.4). In· the second 

term, atter the chqe of variables .'S =x I - ~, the integral over ~. can 

be expressed in terms of. modified Bessel function of the second kind Ko 

(see Abramowitz and Stegun (1970»: 

(G.IO) 

substituting (G.4) and (G.10) into (G.9), we obtain 

. . _ b ,... I 

W <-XI, Y,-e) ~ ".i~ ko .eJWX
, J6 ~'f_rn ~ (1) R~ K \ lwK, ) J ~ 

• - b,->oJ. '." 

_.1:...- k; i JWX
, S .fl,(1) Ko (wR.z.) J, (til. it) 

,<TfCc -b' 
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Using the asymptotic expansion for K, in (2.142), it can be shown that, as 

Z~O~, the integral in (G.11) which contains K, has a first-order 

-I 
singularity (y - '\) and must be interpreted in accordance with the 

Cauchy principle value (see (B.14». 

It follows from (G.6), (G.B) and (G.11), and the averaging rule in 

(4.4) that 

·v'Z.--. -! \V(XI,'f / e)\2. 

- :z. 
v/:z.=~ }wtX .... '1 ... =?:)} 

--
(G .13") 

((4. 14) 

. It is seen from the results of this appendix that in the far wake u, v . 

and w have a sinusoidal dependence onx but ~, -;;. and 7 are independent 

of x. For actual numerical calculations, for h1gh-aSpect-rat10.wings, we 
-.J 

may replace the three-dimensional reci"uced circulation tt with its 

strip-theory counterpart..a, <3.29) (see the discussion preceding <3.29». 

Also, in the limit of. steady. flow (w- 0), the above results for' u, v and. 

w reduce to the known steady results. 
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APPENDIX H 

LISTING OF FORTRAN PROORA!05 

This appendix consists of the primary computer programs used in this 

work for the applications of the present unsteady lifting-line theory. The 

programs are for a rigid fin1 te wing osc1lla ting in combined pitch and 

heave. For additional details regarding the programs see Chapters III - V 

and Appendix B. A list of the primary symbols for the programs are given· 

below~ All coding is in FORTRAN IV. The programs were execut~ on the IBH 

370 - 168 of the InforIllation Processing Services at H.I.T. 

Thefoltowing programs are listed· (.1) : 

i) Program 1 calculates the 'optimum motion of a finite wing in 

combined pitch and heave. The listing· for this 'program includes the· 

subprograms DNW ASH, FN2 (LG2, FN1, FN3, LG3 t· L2., FRS, STHEOD,. KER, . CL 1 , 

CH1 and BROOTS. Subroutine' DNWASH calculates the unsteady induced 

downwash. . Program 1 also·· generates the spanwis'e distribution of ·the 

energeti.c quantities at 8 stations along the semi span and the propulsive 

Performance of a wing in several non-optimum modes of osc111ation~ 

11) Program 2 calculatesspanwise distribution of unsteady induced 

downwash and section lift and moment coefficients for the wing at 11 

stations along the semi span. 

iii) Program 3 calculates total lift and moment coefficients fo~ the 

wing. 

(1) 
Duplicate subprograms are not listed. 



ALPHP 

AR 

B 

ceo 

CE 

I'J 

C.t S«lYS 

. AI 

. CL . :l.D 
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LIST OF PRIMARY SYMBOLS 

B 

Ce 
= CL3DR + J CL3DI 

= (CLOO)? +j CLOODP) ~o + (CL11P + j CL11DP) 'S, 

+ (CL22P + j CL22DP) SZ 

=CL2DR + j CL2DI (strip~theory value) 

= (CLOP + j CLODP) ~o + (CL1P + j CL1DP) ~, 

. + (CL2P + J CL2DP) ~z 

.. = (CLSOP + "jCLSODP) !o + (CLS1P + J CLS1DP), ~I 

+ (CLS2P+ j CLS2DP) !z 
= TCL3DR + j TCL3D! 

= TCL2DR + j TCL2DI (strip-theory value) 

(similar notation is used for sectional and total moment coefficients) 

CP C@ 

CT C~ 

crOB C~o 

CTP C~p 

CTS C~s 

CTSCT C?'s 1C'J 

D D 

DELTA S- in functiori FN2 
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DELTA1, DELTA2 i, and i z in function FNS 

EN 

END 

ETA 

F, G 

kn with b = 1 (see (3.48» 

= 0 or 1, dummf index to indicate end of dataset 

Hydrodynamic efficiency~.; argument of the kernel function 
If(J-lo l1* - yt *" 
F, G 

JJ = 1,2, ••• 6 dUmmf index denoting consecutively the real and imaginary 
parts of coefficients of ~o' 51 and Sz in the linear 
quantities 

NN = 1,2,3 

PAXIS 

PFP 

PIP, PlOP 

PSl10, PSI20 '. 

S, S1 

SIGMA, SIGMAO 

SR, SI 

T, T1 

THETA 

VAMP, VPHASE 

'" W* 
!J 

WI(I,N) 

WT(I,N) 

ZP 

denotes elliptic, lenticular and cusp-tipped planforms 
respectively 

real and imaginary parts of the kernel function 
1T (~o , y* - ,,*1> 

~I I 30 and ~z I §o 

y, YJ 

real arid imaginary parts of the Sears funct-ion 

ar , ar 
I 

ar 

"" amplitude and phase of w; 
= (VOP + j VODP) ~o + (V1P ... j V1DP)~,+(V2P + j V2DP) ~:z. 

Ith abscissa of N-point. Legendre-Gauss quadrature 

Ith weight of N-point Legendre-Gauss qu"adrature 

Z.." 
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C 
C neG Ell! 1 
C 
C CE'!t;;l!lllATICli C.F C!'":IIIU:! ~Gr:oll ~p .\ n,,:J PIllI~E WING III COItBIII!D 
C P1:CH lIID HUn: OSING OIlSr!AD! LIl'TIIlG-U!iE '!H!ORY 
c: 

L'!FU<;I'!' iEAL*R (A-ZI 
CC:!<'LZX.' & FiZ (3) 
CIllEllSIOK XI(: .. ,::II),IIT(::!J,2~I,l("I,1' (J,J) ,a (J,l) ,K(l,J),'!(J,3), 

, !( J.l), DENCII (3 I ,1'SI1 0 (JI • 1'5120 (3 I, XX1 (31 .!X2 (31 .XXl (3) .!.AIl (3) • 
& CTOS (31, ETl (3) ,i:? (3), .\I.rKi' (3) ,CT::;C: (3) 

I'TEGE! Aa,lllD.:,s,NN,a,Hr~,Jl,J2,JJ 
CC!!IIClf/lllU llXl, li'l/AEtAl/GAll lIA, EN/l!tElil/SlyllAO ,ill, Nil ,·u 
1'I·l.lI11S~26S3sa97900 
GAaft1·.S77~15661190153I1CO 
PIIlIV.' • no /l'I 
P1::tIv·2·1':Iliv -PIIN' 
EE11)I601, ((XI·p.,111 ,:.',Ii) ,a:~",211,4) 
;UDIIO', ((lIT (!.1I) ,lOll ,Ii), ~,"",211,,,) 

1101 rCIII1T(20X,!'20.15, ::21) 
88 EElOII02,SIGIIAO,AR,ElID,HN 

1102 fCil'.AT (r9. 6,12,ax,: 1, 4X,Il) 

C IDEh'tI7! PLANPC!!! 
C 

C 

GO TO (200,2 a 1,2 02) ,n 
200 U-II. DO/PI 

iEiliTlOO,.31G:UO,.U. HII. 
300 ·,CE M 1: (' l' • 'SIG1UO.', 18. 5, 2X, 'u- ',13, 2X, ''S);.'·,IJ, 2X, 'ELLIPTIC 

&lIISG') . 
GO 'IO 303 

201 INa 1.500 
PUlIT 301,SIGII10. U ,Ill . 

301 ECE!!I'Z ('.1',' SIG!!IO.', ra. 5, 2X,' U.·, 13~2I. '''14.' ,13,21. 'LENTICULIR 
'illiG') . 

GO 'I:l 303 

202 E5.'6.DO/(3~CO~n) 
PBllIT 302,SI::; IIAO, n.,NII 

30'2 FOUIl! (' 1', • SiG!!IO.' ,1'8. 5, 2X, • ... a.' ,13.21.' 1111'" ,13,21. 'COSP-TIPPED 
&WIliG') . . 

303 COI'I!!lO! 

C C1I.COLUIOK op 'ZHZ QOlDU'l:!C rCll!!S P.US!SZlC':lIIG TBI Enf.GEtIc: 
C QO ART ITl!!S . 
C 
C SIIIDLTA.LOOS INTEGUTIOIl· 01'. 18 I:I'tEGf.HS (COUP'S or 'tilE QOADRATIC 
C feUS) USIIIQ 16-i'OIN'l: LEG!lIDU-yl:JSS QOU)3A'rUEE 
C 

.-16 
HIIT33,. 

33 lORBAT"O','.-',I3) 
50:11 ... 0. Oil 

.50:l2aO.1:0 
SO~J"'O.OO 
snll"aO.DO 
SOIlSaO.DO· 
50:16 ... 0. DO 
sOlnaO.til 
SUIIO"O.OO 
SU!! Sa O. CO 
SUB10·0.DO 
SU:'Il1·0.00 
SO:!12-0.1:0 
SU!l13 a O. DO 
SOIl1t:-0.Cl 
50111,)-0.1:0 
501116 .. 0. DO 
~O!l17.0.00 
SUII19"'0.&0 
2a 5/2 
tc 10 1-',.' 
'IIiZ'I.\ a. SM'1'I- (1. CO+JCI(I,:I) 

PG/ll0001 
1'Glll0002 
PGlll0003 
l'Glll0004 
PG!ll0005 
PGlIl0006 
1'GIll0007 
PG!! 10008 
PG!ll0009 
PGftl0010 
1'Glll0011 
PGI!10012 
PGal0013 
1'Glll001Q 
POll1001S· . 
1'GIll001b 
l'G1'I 100 17 
PGlll0018 
PGlll0019 
1'Glll0020 
1'GlIl0021 
&l(;l!10022 
1'G!ll0023 
i'GlS 1002ea 
1'Glll0025 
£'Glll0026 
PGlll0027 
PGlll0028 
PGlll0029· 
£'Glll0030 
1'G810031 
PG!100J2 

. ~1l'0033 
PGlll0034·· 
i'Glll003S· 
PGll10036· 

1'Gll10037 
1'Glll0038 
PGa10039 
PGlll0040 
PGlI10041 . 
1'Glll0042 
1'G!ll00"3 
£'Glll00114 
1'Glll00115 
1'Glll0046 
PC lSl 0 0117 
PGlll001l8 
l'GlIl00119 
PGlll00S0 
PGlIl0051 
1'Glll0052 

.PGlll0053 
i'Glll0051l 
1'GlSl0055 
PGlll0056 
PGll100S7 
1'Glll0058 
1'(;1110059 
1'Glll0060 
1'Glll0061 
PGII'0062 
1'Glll0063 
PGlIl00611 
PGll10065 
PGlll00b6 
PGlll0067 
PGlll0068 
i'Glll0069 
PGlll0070 
PGlll0071 
PGII 1007 2 



s-ocos (':HU11 
CeO.(l.DO-S.~)'· INN/2.00) 
SIG~1-SIG31~·CCO 
!IG2-SIG1U·S:"lB 
CA1.L STHEeD(SIC:1A.l.G.I:.B.SI\,SI) 
SZ-S:l·SI;'S16 s: 

238 

CA1.1. DIIVASII (S .'10".'I;)D1'," P.' 1 DI', '121'. '2Ilt') 
C1LL C!.l (5. '101', '001', "P, '11Dp, '::1', V~:lP. 

& CLOP.CLODP.CL1".CL1Dp.CL2P.CL2DP. 
& CL SOP ,CLSODP ,CI.::;l:', e:.s 1 02 ,etS 2::>. CLS2D? 
& CLOD" .CLJODP.= 1. 111' ,eL l1DP ,;:1.22" ,C"22DI'I 

CALL Cft 1 (5. 'lOP, Y')Dp, " p. '11 OP. 'Ill'. ';:01.', 
& C30P.C'OOI'.C~l1',C~10?,C~lp,=!2DP, 
& C!lSOP,ClI $:)OP ,C~S1!? C3S11lP .C!S2P, ClIS20P, 
& OlOO1' ,CIIOOO P ,C1I112. Clll 1IlP.C l!22i', C1I220?, 

QQ-OSIlI (THETA) , 
C 
C HUtlB!BS 011 CP. C'IP. CT5 AIIO CT 'CC!&ESPC~il ro :tATBlX POSUION5 
C (1.11, (2.2). P,31. (1.21. (1.31. (2.31 at5i'ECTIVZLt 
C 
C Sl!C'tIClI11. POIIEII IiEQOIllED 
C 

C 

lCl-SIGltAO·P':IIIV 
C?l=CLOOOp·lCl 
C1' 2- II. C O*Cllll0p. AC 1 
C1'3a4.00-CII22p4 1C1 
CPII- (Cl.l10E'-IJ.tC*CI!OOOi'I- .500-", 
C1'5-(CL22D&'+IJ.nO.C:t00PI*.SDO·ACl 
(P6-2.00*(CS11p-CI!220p)·AC1 
UIKT17 

17 101l1lA1'(,O','SEC'!lCIIAL POll!!! a!~OIRED IS:') 
iliIHT20 .S.Ci 1.cp2 .C?J. C .. II.e? S,C:?6 , 

20 10illlT'·O·.·S.·.F6.3.1X.'Cl'l··,010.1l.1X.'CP2 .. ·.0 10.1J.1X,·CPl.·, 
& D 10. Il. lX. 'CPi4.' , Dl0. q, 11. • a5-', 01 O. i4.1 X.' CP6 .. • ,010.Il'1 

C SECTIOll1L TaiOS': !3C5 'CR!IL FOBCZ l~ tat iIlG 

c 

c 

lC2-2.00*nl" 
CTP1-0.1l0 
C'IP2-C!.11P.1C2 
CTPJaCL220P" AC2 
C'IP""CLOO" •• seo* IC 2 
CTl'5-Cl.OOOp·.SI:O*AC2 
C'rP6a (CL 11D1'+CL221') *. 500* lC2 

C SECT10llil tIl tlIlG- EDG! SUCTIOS' !'oaC1! 
C 

11-G*SIGSAO 
12-C·5IGII1-2.00*t 
JJ-2. to*G+5 IG itA- (f -1. CO) 
1!1--r. SIC1UO 
E2-- (2. OO.C +1'*SIC:!A-5IGl'lAI 
B3--2.DO·'+5IGal. G . 
Cl. sa. V')1'-51. YOOP 
C2-SR.' 11'- 51'" 1;)P , 
C3a SS. V2P-SI" V20p 
Cl-SI!*VODP·51-V:)P 
C2~Sa·V1DP·S!·Vlp 

C3*Sa*'20p+SI*'2&' 
C'IS,·CCO·(SIGIIAO*SIClIAO*D +11.00* (AleCl 

& +81.C111 
CTS2 .. CCO·(SIG2.(".tO+SIG21·D-Z.DO·S!G2·~-~.CO·SIGl!A·C 

& ./I.OO"(~2*C2+3Z·DZII 
CTSl*CCO*(SlC2+(II.00+SIGZI·O-2.00*SIGZ t l-".CO*SIGIIA*G 

«; +/1.00- (AJ*CJ+33"DJII 
CTS "aceo" (-S IGaA" SIC!! 10* B +2.1l0-

& (A1·C2+12-C"e1·~2+B2-011) 
CTSSaCCO* (2. DO·SIGIUO. D-S ICl! ;'-SIG:1AO* G 
&+2. DO* (A l*CJ + A~*C" ill-i) J.83' D'I) 

(;456-CCO· ( 2.ll0- (A;Z*CJ+U.C2+B2*03 
«; +83"C21) 

i'l!I trr 1 a 

pCllio07j 
pG1I1007/1 
PGlll0075 
PGI'l10076 
PClll00?? 
PGftl0078 
PC1I1007IJ 
pG!10080 
PGlll008l 
1'Glll0082 
PGlll0083 
"GIS1008/1 
PGlll0085 
PGlll0086 
PGlll0087 
pGIS10088 
PG1S1008'J 
pGftl0090 
PGII10091 
l'G!10092 
1'Gftl0093 
PGII10091l 
pGS10095 
1'GIS10096 
PGII10097 
PGlll0098 

. PGII10099 
PGlll 01 00 
PGIS 11110 1 
PGIS 10102 
PGII10103 
pGlll01011 
PGlll0105 
l'Glll0 106 
PGII10107 
PGII10108 

1'G1I10 109 
PGlll0110 
PG!ll0111 
pGIS10112 
PGIS10113 
1'G1I1()114 
PGS10HS 
PGIS10116 
PGS10117 
pGS10l18 
pG1S101.19 
.PGI!10120 
PGlll0121 
PGlll0122 
pGIS10l2l 
pCS1012/1 
pG510125 
pCS10126 
PGS10127 
PGlll0128 
PClil0 129 
pGlll01)0 
",CS10 131 
PG1110132 
PGS101JJ 
PClll01 lit 
PGIS10135 
pcs,!) 136 
pGlil0137 
PG1l10138 
PG~101J9 
PGftl0l110 
pClll01161· 
PG el0 1IJ 2 
",Clll0;16J 
pGS10116" 
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18 !OSIIJ.T('O',·SECTIC.:IAL U·SUCTICli IS:') 
PEIII':'21 ,S,C'ISI ,C'J:S2,CrS3.C:Sij,C'!'SS,C:S6 . 

21 tOi:!AT ('J', '~-'. F6.J.1X. 'C':':"-', Dl0.1£. IX, 'crS:!-' ,Dl0.1I, ",' C'ISl-·. 
, t10.II,lX.'C:Sija',Dl~.~,IX,'~.~5z',~10.~.IX.'C:S6.'.Dl0 .11) 

C 
C SZC:IOlIlL :SROST 
C 

C 

C'I1·C'Ipl+C'ISl 
CT2·~phCTS2 
CTlIICUl+C'IS J 
C:~aC!pij +C:5'1 
C'IS-C:n'5+C'IS5 
C'I6aC'Il'6 +C'l:S6 
pl!I:JT19 

19 fO£81'4('0','SEC:I01UL '!!!SOSr IS:') 
piI 1IT22,S .CT " CT ~ .CT3. !;'!:!, c: 5, CT6 

22 rCSIIA't'('v·,'S.',F6.3,IX.·c:l .. ·.Dl0.4.1X.·CT2.·,Dl0.1I.1t.·CTl.·, 
5 Dl0.ij.1X.'C'Iij:a·,D10.ij, lX, ·C'tS-·,D10.1I,IX,'C'I6a ' ,Dl0 .. 4) 

SU81·SU!1+QQ·w:(I.II)·C?1 
SOl!2-SU32+QO*wT (1,:1) -CP2 
SUlI3-S01l3+QO*i'!(I.II).CP3 
SUl!lIaSUl!4+00aVT(I.8)-Cfll 
~IIS.S0a5+QQ· i'I (I, II) .CP5 
SOIl6aS O:l6+QQ* iT (I, II) -C?6 

. S087.S0117+~Q· i'I (I, lI) ·CTP 1 
S03800S088+QQ:ailT (1,II)·C:0'2 
SOl!9-SUII9+QQ-V'I(1.II) ·CTP3 
SOa10a SOlllJ+QO*VT 11,(1) -C:P4 
SOli 11-SU311+QQ-IiT (I,ll) "c'!'f5 
SO!l12-SU812+QO"'V'I (I,H)"C:P6 
SUII13aSOI'!13+QO*''! (I,!!) ·CTSI 
SOiSll1-S0111I1+QQ* V't (1.:1) "C:S2 
SO:lISaSUlII5+QO*iT (I.II)~C:S3 
SU816-SU!l16+Q~*Ii'I (I,N) "CTSij 
SOIl17-SUIl17+QO.aT (I,II)-C·TS5 

10 SOIl18-Sn18+00*n (I,ll) "CTS6 

C UTIlI ·OF QOADUTIC tca8 roa 1o'IAL POtiER REOOIUD 
C 

C 

Ul-. 5DO-PI-!II 
J (1,1) .1J11·S0l! I 
P (2,2)-181-50112 
(I P.3) -Ul·S0113 

. Hl.2) -1B1-50IU 
(I (1,3) aU '.50 115 
H2,3) -lBl·S01!6 
l' (2,1) ap (1 ,2) 
ill. I) ai'(1,3) 
i (l ,2) -1' (2.3) 
UI&T2J 

23 rOll:!AT('O','lIl'IIIX or OOlDl!lTIC rOll!! rqa TOTlL(lOVU II£OUIP,£D:') 
CO 13 I-1,3 

13 fBI!'!3, P(!,I), P(I. 2),P (I, 3) 
3 rOi.!lAT ('a' ~3 (11Q.8.3X» 

C· IIAUU' or QUADUUC rO!/I I'O! TeTAL TSEOST !'RCII lCoaUL rOICE AT 
C 1HE lING 
C 

·C 

R (1.1) a18 ,·SDII7 
f(2,2) =lBl-SU:l8 
Ii (3,3) aAE1·S0!l9 
Hl.2) -18'· SOl'! 10 
E (1.3) aAE1.S01lll 
I(2,l)-'81·5UI'I12 
f (2,1 )aa (1,2) 
1\ (3,1) -a (1,~) 
f (3,2) aa (2, 3) 

C BUilX or OOADU'!lC rCill rca TOUL LUDIlI~!DGE SaCrtCK ro'c! 
C 

·~(1,1) -Ul.S!!!!13 
.K(2,2)aAB1·SUllll£ 

PGII;O 1115 
PGPl10111f1 
pGal0l'" 
PClll01Q8 
PGlll01Q9 
.01110150 
pGlll0 151 
pClll0152 
PGII10153 
.Glll0 IS. 
'Gl'll01SS 
PGI!101S6 
1'01110157 
pGlll0158 
(lG1I10159 
pGI!10160 
pG1510161 
POllIO 162 
pGI!10163 
.Glll01611 
(lGlll0165 
PGlll0166 
.0810167 
pGlll0168 
(lGlll0 169 
(10810170 
(lG810 171 
(lGlll0172 
(lGlll0173 
(1011101711 
'G810175 
PGlll0176 
PGlIl0177 
PGlll0178 
PGlll0179 
(lGal0180 

PGal0181 
. PGal0182 
(lGal0183 
PGal01811 
PGI!10 185 
PGal0186 
PG810187 
.G1510188 
pGlll0 189 
(lG1!10190 
PGal0191 
PGlll0192 
PGlll0193 
pGIll0 1911 
(lGlll0195 
PG8;0196 
(101'110197 
pGI!10198 
PGIll0199 
PG1I10200· 
(10810201 
pOll10202 
PGlI10203 
PG8102011 
PO 1110205 
&'01110206 
.Glll0207 
pGI!10208 
PGlll0209 
PG1!10.210 
POlll0211 
PGlll0212 
PGlll0213 
PClll02,. 
PGlll0215 
P(;1I10216 



C 
C 
C 

C 
C 
C 

C 
C 
C 
c: 

c 
c 
c 
c 
C 

1(],J,aAE~·SU~15 
It (1, 2, ala ,. SUI! 1& 
1(I,J,cAal·SUft17 
II (2 ,J, -,lD ,·SiJ!! 16 
'(2·, " c, (1.:, 
II (3~ 1, -It (1 ,~, 
II (3,::, -K(2, J, 
PtINT 21l 
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2' 'CRI'~T('O','IIA'I!!IX or QUADU!IC 10al! FOB TO':'AL l! SUCTIOII:', 
tC 11l 1-1,3 . 

III u: li:3,1t ,: .1, ,K (1.2, ,It (I, 3) 

unIX cr QUUFl'IIC rCRII lOR mUL tUr,OST 

T (1,1, aPo I' ,1, + K (1.1, 
'1:,2,2'-"(2,2) +K(::,~) 
'1:(3 ,3,-S (3 ,l, +1(.(3 ,l, 
'1:(1 ~2) -S (1,~'+K (1,2, 
'Ill ~ 3 ) ,. Ii ,1 ,3, .. i\ (1 , 1 , 
T 12 ~3' ail 12,~, +K (~, 3) 
:(2,H-':('~2' 
~ (3.1) at I' ,l, 
'l(J ,2' ·T I 2,3, 
i2:IIT25 . 

25lCal!A'I(!0','aA'lllIX or QuADIiUIC FOalS roa TOUL TRiOST:') 
to 15 1-1,3 

,~ ~8p~J.T(I,1' .'I(I.2,.TII,3) 

·!Iuau or QIUDUUC rCEII fOR TOUL EIIDG! lOSS RATE 

1(1,1)-P(1,1)-':(1," 
1(2~2):P(2;2) -'I(2, 2) 
1(3,3,-P (3,3) -: (3.3) 
! n ~ 2, a i? (1 ; ~)-T (1 ~ 2j 
1(1,3) ap (1 ,3) -:( 1, 3, 
~(2.3)·PI2,3)-:12,3) 

1(2,1)aZ(l,2) 
113~lIa!i1~3) 
1(3 ~2) a! 12, 31 
iaIn26 .. 

26 'CI!:!u('o'.'~1'IaII or QU1DBlTIC Foall Eoa TOUL U!P.Gt LOSS un:'.)· 
to 16 l~l,3 . 

16 PItI~T3~B(~.n .Z(I,2ht:(I.3) 

CH1~lCTE!tsTICS cr 1 alGID ELLI?TIC VISG 1M POlE PITca AID PORE 
IlEl'E . 

cu-e (1, H 
C~II-" (1 ~ 11 
CEl'~e (2 ~2~ 
Cii'a? (2~ 21 
PEINT1SS;CiH,CPH,CE?,C~P 

168 ,OlUI"T 1'0', !CElia ~, i: 10. 3,.2X,' CPII'" , ,010.3, 2X",' CEl''"! , 010.3,21, 
,. ! cn-' ,010.3) . . ". 

CTRaT(1,I, .. '" . 
C':1''': (2,21 
CTS \i-K (1,1) 
C'ISP=K (2, 2, 
crSCTII"P; 11.1)" (1,1) 
C1sctl'=r.I2,2) 1.(2,2) 
P!IR"'99,C:U~C:i?,C:SH,C:S~,::SCTH,CTSC:P 

199 lcalllT('O", 'C:O;,,', r:10~ 3~2X.' C"l'?a' ,D10.3,2X,'C'rSO=',D10.3,2X, 
,.. . 'CTSi?' ,D1.).3. 2X, 'CSCtH=' ,,.10. 3.2X~ 'CTSC!.".' ,1'1).3) 

1TAO'"'.00-:; (1,1)/~ (1,1) 
!'IA~·'.DO-!12.21/P(2,2'. 
P&INT177,t:AM,E:li 

177 fC.RIIAT('0','!'!AH-',r'0.3,2X,'E:'AP.',r10.3) 

ct'IF.l!!!IlIlTIOR c.r 'IH! OPTIIIOI! 1I0nOll 

CCE"S or S~CULlf £Q 
A (1)*Z •• 3+A (2) .;:'·'2+-' (JI.ZH (1&)=0 

POlll0217 
POlll0218 
PO/S10219 
PGlll0220 
POlll0221 
PGIll0222 
PGlll022J 
i?01l10224 
PGlll0225 
&101110226 
POll10227 
P61110228 
PGlll0229 
PG/Sl0230 
pGlli0231 
pGlll0232 
pGlll0233 
PGlll0234 
PGl!10235 
PGIl10236 
PGlt10237 
PGlti0238 
POll10239 
PGltl02QO 
POll1021l1 
PGIt102'2. 
Nlll0Z ... 3 
PGlll0211Q 
POlll021l5 
POlll02la6 
pOlll02f17 
.. 081021l8 
.. 0111021&9 

, PGlll02S0 
PGII102S1 
POll19252 

POll10253 
. P0510251& 
POlll0255 
PGlll0256 
&'01110257 
PGlll0258 
P0810259 
PGII10260 
PGII10261 
PGlll0262 
PGII10263 
FGlli026Q. 
p(;lil0265 
PGlli0266 
PGIll0267 
PGlll0268 
PGl'll0269 
PGlll0270 
PG810271 
PG1I10272 
&'(011 10 273 
P0510271l 
P(oI!10275 
t'G1!10276 
PGII10277 
PG810218 " 
PGII10279 
PGII10280 
PGII10281 
PGft10282 
1'10",0283 
PGII1028Q 
1'Glll0285 
"101110286 
PG"10287 
PG"'026S 



C 

C 
C 
C 
C 
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1 (1' a-p (1,1, • P (2. ~, *1' (3. 3, -~ .1:0' P (1. 21*P (1,3, * ~ (2,3' +l" (1 .1, • 
& l" (2 .l" P (2,1) +t' l1.l) '" (1, J, "I' (2,:!1 +P (1,.:!) - F ('1.':1 • P (3, 31 

1 (:, a [' (1. 'I ,.!' (;Z. 2) • Z (J, 3, + Fo( 1. I) • i' (2,:) -l' (J ,J) +:s (1 , I, -:: (2,2 I • 
5 P (3,3) +2.1:0-:.> (1,2,·" (I.J) A£ (l,J)-2.DO-P( 1.2).£(1, 3) 'l"U,3) + 
S 2. DO *£ ( 1. 2, "P ( I, 1) -" (2,3, -It ( I, I, - .. (2. J) IP (2.J )-2. D"-V (1 • I) a 
5 t (2 ,l) ':> (2 .J) -P (1. J )'" (1. J) ,~ (2.2'- 2. co-r; (1. 3' • ? ( l.l' - P (2,2) 
& -1' (1.2, .!' (1,2) • E (3. 1) - 2. D o-! ( 1 • .2, • P I' • .!).p (J.J' 

1 (3) .-1: (1 • ," £ (2.:.!)·P (3.J) -s (1,1, *l" (::.2) • E (J, J, -? (1. 1) - 8 (2, 21' 
& 8 (l. 3,-2. coal" ( 1. 2) ~ E (1.3, - ! (l, J) -2. D)· :: P.2,*? (1.3, '! (2,3,-
S 2. toe!: (1.2)";: (1 ,3) I? (2,1,+? (1, 1)·E (::.l)'E (~. J). 2. 00"'.11(1, lI-
s E (2.3, '? (2.3) +:: (1. J) 'E (1. J) I.P (2.::) +2. CJ- It (1 .3) .p (1 ,3) -! (2,2) 
I: +£(1.2)'£ (1 • .2)"'P(l.3,+2.DO*::(1.2)'P(I.2)'1:(3.3) 

A (0) al: (1. I) ·Z (2.2, -! (3. 3) +2. DO' E (1.2, • I: (1. J)" t: (2 .J, -! (1 .1) *! (2 .J)' 
S· E(2.3)-E(2.2)*Z 11,3)1It: (I.J)-1:(1.2) -E(I.2)*£ (J.3) 

tl:'!lt~:JU."ICl'I CF til!· !\CC'l'S OP :'!lE .SECUUR EQ. AlfD :'RE SOLUTIO. Foa 
Ilea ilOOT 

Jl·1 
Cit I. aECO~S(l,iZ.N~B' 
to 04Q I a l,NaB 
1111 (I) -az (I) 
D8lfOit (1'- (E (1.2) -Uti (I) *p (1.2),· (E (2 ,3) -LAli (I) -P (2.l) )-

& (2 (1.3) -l.A;' (1)'£1 (1,3)· (2 (2. 2) -LAII (I)'P (2,2) , 
PSI 1 0 (+)- «! (1.2) -L11I (II * l' (1 ,2) ). (8 (1.1) - LA II (I) ,. {I (1, 311 

S - (E (2. 3)-LAI! (I,*P (2.3),* (1(1.1'-UII (I) el" (1 ,1) )) 10£11011 (I) 
P$I20 (4)- ((E (2.2) -t.AI! (I)*P (2.2))' (Z (1.1)-LAII(I).P(1. III 

& - (Z (1.2) -LA II (I) *::>(1.2)) * (E( 1 .2) -t.1.1! (Z) *P (1.2))) /DBlOII (I) 
111 (1)-PSll0 (I)*PSll0 (I) 
JX2(I)-PSI2C(I)-~SI20(I) 
III (I) .PSI'" (I) *PSI20 (I) . 
eT08 (I) r; (1.1) +T (2,2' 'XXl (I) +T (j .3) -XX2 (I) +2.00-'% (1.2) ·PSll0 (I) + 

& 2.DO"'!(1,3) *PSI20 (I) +2. DO*'I: (2,3)-XXl(I) 
PlIlI1:1.I.PSl10 (1, O&'S12 0 (I) ,coroa (I) . . . 

,. fCI!1I1T(·0',·Ia·,1l.1X.·pSI10 (I).·.D10.1I.2X· .. ·PSI20(I!.· .Dl0.Q.2X·. 

, 'C'I08(I)- ·,Dl0.~' 
I!' (C':08 (I)) 112.113 .113 . 

11l EU (I) -1.110- ((E( 1,1) +E(2.2)* XXl (I) +'E(3,3,-U2 (I) +2.DO·2 (1 ,2" 
& pSI10 (I) +2.00*:; (1.l)" ::>:>120 (!) + 2. DO-2 (2,3) -XXl (I)) Ill' (1. 1) + 
S 1'(2.~'.IX1(I'+P(~,~.II2(I)+2.DOAp (1.2)*1'Sll0(I,+2.00· 
& l' (1.3) *1'S120 (I, +2. DO- P (2.3) aU3 (I) I 

ZlI (I) -DSQBT (XX 1 (I) +IX 2 (I) ) 
lt1'lll' (I)aDl'IAN2(i'SI20 (I),1'Sll0 (I) 
If (lLplIp (I)) 217.418.218 

217 lLi'lIp(I~a2.DO&PI+AL.?il1' (I) 
218 ALPH? (I) .'80.tO-H!'iI?(I) IPI . 

C'IScor (1)" (It (1,') +I'( (2,2) • Xl 1 (I) +11:(3,3) -'lX2 (I) +2. DO-It (1,2) -pSll0 (I) + 
S . 2. t O.1t (1 .3) - !?SI2 0 (I) +2 • DO-It (2.3) .. XX3· (I) ) leTO 8 (I) 

GC 'IO (110,220,J30) ,~1 
110 U!!l=LA/t(II . 

C~08 1 -C'I08 (1) 
IUl-EU(I) 
%1'1 2 Z&' (I) 
lL1'Hl1-A11HP (1) 
tTSCt1.~SCT (I) 
J1-J1- 1 
GO ~O 1I!l4 

220 LAIIZ-t.A!I (:) 
C'tOD2-CtOB(X) 
ETl2-~A (I) 
Zi2-Z?(I)· 
At1'HP2-Ui'Hi' (I) 
C1SC:'2"C'! SC'I (I) 
Jl-Jl+' 
GC 10 11411 

llO UIIJ-U3 (I) 
C'!'()83-Cor08 (I) 
Z':A3-r.:l(I) 
%1'3-%i' (I, 
UPH:>3:t.Ui'IIP(I) . 
C'IS CT J- C'ISC': (I) 

'Glll0289 
1'01110290 
'Glll0291 
PrH!10292 
1'01110293 
PO 1110 291f 
.Glll019S 
PGlll0296 
PGlll0291 
POlll0298 
POlll0299 
PGlll0l00 
PGlll0]01 
PGlll0302 
1'G810303 
1'GII10304 
PGlll0305 
PGlll0l06 
PGlll0301· 
PGlll0.30H 

. PGII10309 
1'GII10l10 
PGlll03"· 
PGlll03.12 
POlll0313· 
PG1I10]111 
1'01110315 
PGltl0ll6 
PGlil0317 
PGlll0]18 

. POlll0l19 
PGlll0320 
POlll0 321 
PGIS10322 
POlll0323 
POlSl03211 

POll10325 
PG1S10J26· 
·K1!10327 
POlll0328 
POlll0329 

.. PGlll0ll0 
POlll0l31 
.01110332 
POlll0ll3 
POlSl0llll 
PO.1I10335 
PGlll0336 
PGIS10l37 
.Glll0338 
POlll03)9 
PGII103QO 
PG!l103111 

.. PGlll0342 
PGlll0l1U· 
.PGlll03114 
·POlll03115 
PGlll0l116 
PGlll0307 
1'Glll0l118 
PGB10349· 
POl'll 0350 
PG 1110351 
POlll0352 
pGlll0l5J 
PGlll035~ . 
PGlll0l55 
PGl'll0l56 
pGlll0l57 
pG"'0358 
PGlll0359 

. PG!tl0360. 



e: 
e: 
c 

c 
e: 
c: 

C 
C 
C 
C 

. Jl-J1+1 
GO 'to ""4 
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112 ~EI~~ll",~f.t,I 
11~ '0;;11'\":('0', ':IC OPT. FOIi T8.S "AIlEC1,CTIlDAi IS Nt:G.' ,2X,'IfIiE-' ,11, 

, 2X,'t-' ,11) 

"" e:ClITrMUE 

109 

219 
208 

329 
1108 
1107 

-1109 
555 
511 

210 

211 

PICl CUT TH! (PT. SCLUTIOIf 

,,2-"'-' 
Il (J2. EQ. 0) .. 0 ro 666 
GO :c (109,219,329) ,J2 
l!Ul!aU:ll 
1!e:~08-C~081 
UO: A-ETll 
E%&,-Z1'l 
ULPU.,-U?H1' 1 
!CT sc: T-e: tSC T 1 
GU :0 555 
11 (EtA 1-ETA~) 208,208, 109 
ELl:S-U32 
2aOil-C'NE2 
!E'U-E'U2 
EZ1'-Z1'2 
B1UHP-1LPflt2 
EC'!'SCT"C'!SCt 2 
GO TO 555 
IP(£=11-E':'_,2) 1108,1108,409 
11 (ET12-ETA3) 401,1101,208 
U1S-Ll.:tJ 
fCT OaaCTOS3 
U:i-EUJ 
EZP-ZC> 3 .. 
BllP8Pa lUBP3 
EC':S~aC'l:SC'IJ 
GO TO 555 

Il(!tli-!'UJ) 1I01,~07,109 
taIICt511 
IOI!UT('O',''l:B! CiT!!lUII SOLUT1011 IS:'j 
PBIHt210,BLAI'I,aC10e,aZTA . .. 
fC!nlT('O"'lA~."D10.3,2X.'CT08-';D10.J.2J"ETi-'.r10.J) 
fiIll!~11,eZp,ULPHp'BcrSC'!' .. . 
'Of. :111' (' 0' • 'Zp'" , J: 1 0. J, 21. 'lLPIlP-' , P1 O.J, 2Ii' C1'S CT·' ," O~JJ 

CHI!lUlI·U lIGHTI11LLiS NOTlT101l. 

EALPHpsPI9 silPHP/180.CO 
PlUS- (-. 5CO-llCOS (EALpMP) I/BZ1' 
P!'P --2. DO"'BZ PI (SIGIIAO- CSI. (BAUH 1') 
fJIN1'2,PF?~PIX:S . 

2.l'Colt.\T (to' ,'CPT IN tlCHTHILL 1I0'U'!'IC!I: PF.OPOfi'tIO!lAL-!"tA!H!lIIHG 1'1 
&U.II.ETElla',Dl0.J, lX, 'PItCH UIS PEl' S1::l1 200T CHOIIO·· ,ill·0.l) 

nOPOLSIVZ ~ZI!iOB~l!1CE OF A PI!UTE itNG IN COill!INEO PIZCR AND 
8U.E IH LIGHT81L1.' S NO'I.l:IO S, PITCR AI!S LOCA'!'[D AT l/ll CHO!D. 

nU-:1I 
II !O£:lAT('O','" tAlIILY OP SOLOTICNS III LIaHTRILLiS NOTlTIOll'). 

UXIS.a.SDO 
,pp -. 2DO 

5 COO.1. CO/(SIGl!lO - SIGHO'"P lop. PF~L 
P1XIS2·PAI1S~PAXIS 
tD-UXIS2+DOD 
CPSll0--.5J:0-PAXIS/00 
CPSI20--. 5001 (ilO- SIGlIAO-PPP) 
CXIl a CPSI10·CPS:10· 
e:XX2-CPSI20-C?SI20 
CXXJaC.,SI10·C?5I20 
CtTl. 1, 00- ( (! (1,1) + Po (2,2) "CX I l+e (3, J) -CU2 +2. DO· E (1,2 I ·CPSI1 0+2. DO 

, .£(1,J).C?SI20+2.00a!(2,3).:XXJI/(?(1,1)+P(2,2)+CII1+P(J,l)· 
. & CXI 2+ 2. DO· r (1 , 2) ~Ci' 5110.2. co-" P (1 ,3) • C.;; 120 +2.00·" (2,.3) ·CXIJ) I . 

cC-:Oi3-r (1,1) +'! (2,2 I ·CU 1+7 (J, l)·CU 2+. 2. :;O*T (1,2) ·C I'st 10+2. DO-

POlll0361 
PGlll0362 
1'Glll0363 
1'Glll03611 
PG",0365 
1'Illll0J66 
1'GI!10l67 
1'011103611 
1'01110369 
PGI!10310 
PGlll0371 
1'Glll0312 

. PG1I10l13 
1'Glll03111 
PGlll0315 
1'G!S10316 
1'Glll0377 
PGlll03711 
1'0810379 
PGII10380 
1'0810381 
PGlll0382 
1'01110383 
PGlll0384 
PGlll0385 
PGlll0386 
POll10387 
POlll0388 
PGlll0389 
PO!!10390 
PG!Il0391 
PG1!10392 
PGlll0393 
1'011103911 
PGlll0395 
PGII10l96 

PGII10391 
PGlSl0398 
PGII10399 
POlll0"00 
PGI!10liOl 
1'01110402 
Pall 101103 
PGlll0ll011 
PGlll0ll05 
.. Glll0406. 
?G1!101107 
1'Olil04011 
1'<011101109 
1'01110410 
POlll0"'1 
1'Glll0412 
1'Gi!1041l 
Palll0"'4 
PG1S101115 
PGlll0416 
PG!S101117 
PO:Sl01118 
1'Glll0419 
l'Glll01120 
PGlll01121 
P0310422 
PGl'll01123 
PG1I101124 
POlll01125 
1'G5101126 
POll 101127 
PGlll01128 
PG1I101129 
PGlll0lll0 
PG1I10'31 
PG1l1011l2 



c 
C 
C 
C 

·c 
C 
C 

C 
C 
C 

C 

243 

, t(l,J).CpSI20+2.DOaT(2,l) "CXXJ 
CCTSCTa :K (1,1) +K (2,~) ·cn 1 ~ (J,..!) .CXX:Z"Z. OO-K (1 ,2) .C?S 110 +2 .00. 

, K (1 ,J)·CrSI:'Il.2.tO~1t (2,ll .CXXl)/CC'!'OB 
CTZa~.OO·rt·cCtOS 
n:X:''),:'AXIS, ?FP, C!'!'A, C'!'Z,CC'!'SC'!.',C",SI1il,CPSI20 

9 fO~"A~(·J·.'Pl~IS·',C10.l,lX,'?FP.·,D10.l.1X.·ET1.·,Ol0.l,11. 
S ·C'!'2-·,t10.3,1X,'C,!,SC'!"',011.3.1r,'?~t10.',010.3,lX.·PSI20"', 
S C1a.3) 

IF(PFP.G: •• 995DO) GO ~o 666 
I'(PtP.~T •• 95CO) GO TO 7 
Il(i'Fi'.Ii ••• 7COI GO :0 6 
prp -., Ph. ZtO 
GC '10 5 

6 PF~-PFh. 001:0 
~ 'to 5 

7 iUa,,!'? ... 0 11:0 
GO TO 5 

666 Il'(EIt0.1I!.1) .. e ~O 88 
STOP 
UD 

SOBlOOU n oalilsa (S,fOp. YODp i"?, Y1 DP, f2P. ,,2DP) 

CALCOLATlOI OF IUlS'l'lADt I1fDJCID DOIlllIlASK OF OISTEADt LltTIBG-LIU 
'IBEeRt 

&E1L"8 s.voP.'onp,Vlp,V1DP,f2P,V2DP,SIG~AO.EPSl5.G15~1,PISQa,rERS1 
& .TERa2.T!!53.COHS!.t82,L1.YEL,FH3.PI.l'H5.CCO.SIG3A.EH,T 

IBTE(lEll All 
COll5CH/ABU2/SIGIIl ,CCO ,olol/l!!13/Gll1ll1 ,Ei/1B!1/1/SIGIIAO, PI, 1fI, AI 
CCO- t 1. DO-S~S).· (11 N/2. to) 

.SIGIIA .. SXGIUO*CCO 
'I-OA!COS (5) 
DC 9 JJ a 1.6 

lOa PURE BEIV!. to Sl"! CCftPOT1TIOlt TIS!, i!PLlca DO 9 ol.l"'.6 Bt 

Vlp-O. DO 
.1l0fa O.DO 
'21' .. 0.DO 
'20ia O.DO 
1:0 9 ol.l.',2 

;oB PURE PITCH. !O SlfE CCSUT1:ION TIa!, 2EPLACE DO 9 olJa 1.6 Bt 

VOP-O. no 
10DP-0.00 
12paO.DO 
'2DP-0.DO 
to 9 .lol-), ~ 

tIBS1--EN·rN2(~)/(q·DO·~RI 
Uf s3--SIGIIAi).U J (T, E&>SLII) Iq. CO 
'OUI\2=.SC').SIC:lAJ 4 r:;s (T,EPSLN). 
V!L·T~B"1.tE51\2.t!R~J 
GO to (1,2,J,~,5,61.Jol 
'OP-VEL· 

PGIS10U3 
PGII10'Uq 
PGIS10/l35 
pGlll0Q36 
PC"'0~37 
PG ft 101138 
PG!'Il0~19 

PGIS10UO 
i'GIl10~/l1 

PGI! 10/lra 2 
PGlll0~Q3 

PG1l10/l1lQ 
l'G1I1 0~/l5 
pG!!10/l/l6 
PG5'0~/l7 
PGll101a118 
PGIl10./l9 
pGll104S0 
pGll10451 
PGft10raS2 

o L1.TO 00 1 
.. OLLr0002 

OLtT0003 
01.1.':0004 
OttTOOOS 
O1.LT0006 
OLLT0007 
OL1.:OOOO 
ULLT0009 
OL LTO 0 10 
OLLT0011 
IILLTOO 12 
OLL'1'0013 
0l.LT00111 
OLLT0015 
OLL'1'0016 
OtLTQ017 
OLU0018 
OLLT0019 
OttT0020 
OLLT0021 
OLLT0022 
OLL'=002l 
OLLT0024 
OLtT0025 
ULL'1'0026 
OLLT0027 
OLL'1'0028 
OLLT0029 
OtLT0030 
OLLT0031 
OlLT0032 
OLLT0033 
ULLT003/1 
IILLT0035 
OLLT0036 
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GC TO 9 
2 "ODl'a'!L 

GG '1'0 ~ 
l V1?-'!L 

cC TO 9 
" ,'Op·Y!L 

cC ':0 9 
5 ,2i a f!L 

GO !O 9 
6 V2DPs'Et. 
9 .CCMUlIO! 

aETUili 
UO 

toOBt.! PaEqSIOII 1UIIC':IOII F112 (T) 
C 
C IOIIERIClL Ilf":!GR1';!CN 0: THE ItIrEGEAL H"-II SECOND-oaDU SPl!i 
C SIIGULUITY II.ii.T. SUIIVISE UaUlAB VAiUuiL! T •. 
C %1I'U DENO'US 'tIlE SIZE or TIIa REGIe" liEU TilE SINGUU UTY 
C 

C 

!!lL-& S,!P$LB,ZET1,D!LTA,tG2,!~TEG"I.TZG2,II'1'!G3,/H"Xl,I',12, 
i D!Ll,SUII,r,PI,DfLX . 

PI-l.lI1159265359979tO 
IPSLN=?I/200.J:O· 
UTA. (?l/20, CO) ". StO 

C IS 'I' U:U TaE IIUG UPs oa AVU PRall ':BE UPS 
C 

c 

If(":-Z!TA)1',l',13 
;3 Il (t-ZE'U. LE. [ .. SUI UO 1'0 11 

IP(PI-T-Z!~A)1J,10,16 
16 I1'(PI-t-ZZT1.ti..EfSLIII GO T:) 10 

C lOS l' 1101' NUS 0 OR n (HAT PROIl IIUG 'rIPS) 
C 

tU:~"ZE:A/3.iiO 
11=!-ZL!A 
Il(tABS(11) .LE.PI/l.DO) GO !O 5JO 
IHTZU1·t.G2(O.tO,.5CO*X1,T,Nl1)+LG2(.5DO·11,Xl,1.H12) 
GO TO 501 

500 IIiTEG1-LG2 (0.tO,Il,T,!!11) 
112"0 

501 COIl'!INUE 
11·-:+ZETA 
tELX.(?~-X1)·.SDO . 

.Il(OlBS(?!-X1).LE.PI/l.DO) ~O TO 502 
INTEG2.LG2 (:C 1, 11+0ELX,! ,1122) +LG2 (X l+DELX, PI,T, 1121) 
GO·TO 5ol3 

502 IN~EG2-LG2(X1,~I,,:,~21) 
122-0 

OLLtOO17 
GLLIOOl8 
OLLT0039 
OLL1'OO"O 
OLLTOOll1 
ULLTOOll2 
ULLTOOlll 
OUTOO Illi 
OLtTOOll5 
OLt.TOOca(' 
OLLTOOIl7 
01.1.'1'00118 
OLLTOOll9 

OLLTOOOI 
OLLT0002 
01.LTOOOJ 
01.1.'1'000 Il 
01.1.':0005 
01.LT0006 
DLU0007 
01.1.'1'000& 
OLL'1'0009 
01.1.'1'0010 
OLI.'r0011 
01.LT0012 
01.1.'1'0013 
oLUOO 111 
OLL'1'0015 
OLn0016 
OUToon 
01.1.'1'0018 
OLL'l'0019 
OUT0020 
OLI.T0021 
OLLT0022 
OLLT002J 
OLLt00211 
OLLT0025 
OLL:0026 
ULLT0027 
OLLT0028 
OLLTOOH 
OLLTOOlJ 
oLLr0031 
01.1.'1'0032 
OLLI0033 
OLLT00311 
OLLTOOJS· 
a Lt.TOO J& 



c 
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50 1 (OlrUNO! , 
IITtG]" (1.1)01 (300. OO-O!L: A) I. (13. DO"'1"1I1 (7, T-l. CO-DEL-:-_) .72. DO' Fll 

& (r, 7-2. CO- O:::''U) ."9S. Lil'FKl (T, I-DEL ':'1.1 -1360 .Oil- Flil (1'.1'1.4'*5.1)0 
1# -P'1I t (:, -:0+ n:':'A 1 +7:!. ~Ot FIll (: .:+2. OO~O;:LTA 1 + 1 l. 00- PON 1 (T, T+ 1. DO. 
& DELTAI J 

!Ill 'III: EiO 1 + IN'!' ~G2. I111'EGJ 
lETO:!!! 

c rCt! or liEU PI (HUll en IIIIG' TIPI 
C 

c 

10 Itl~!,j::.O.CO 
ZETA-t'I-T 
CELIA "%~l 1].00 
IlltEG]" (1. eCI (JJO. CO-D£1.1' AI) .. (1]. OO'FH 1 (':. I-]. to-DELT _1.72. oO'l'II 1 

& (!,t-2.DO.~£L:~)+49~00.~~1~,T-OELrA)-lJ60.00·P'Hl(=,T)+495.,DO 
& ·!ll(T,T+DE~TA)+72.CO*!l(1 (1',T+2.CO'0~:.rA)+1J.DO'!"H1(1',T+l.DO' 
& tEL':A)) 

11-1'-%ET1 
IIT!01·LG2(0.:lO.11-~I/20.DO.T.l(1) 

1# +LG2 (X 1-?I!20.DO,X 1-PI/2JJ. DO, T,II11) • 
& L02(11-PI/200.00,11,T,II12) 

11l2'IIITEG1+1HTZGi+IHTEGl 
EI10111 

c !ea T liEU 0 (!lEU 'tHE O"rREa ,IIIHG TIP), 
C 

11 lI'UG1 a O.'CO 
%Z':l-t 
tlLIA -ZETA IJ.DO 
U11'EG3- (l.DCI (300. CO*DEL"rl)) • (1l.DO-n 1 (: .r-3. CO-OEU1) +72. DO-!'!" 

I; (1' ,1'-2. CO-DEL!A) +495. DO-!' 111 r- "I'-O!Lt~) -1 360. DO*Flll ("r,1'I + ,,95.00 
I; ,'!lI,l ("r.r.CILTAI +72.tO*1'lI1 (1',:+2.;0.OZLTII +1~.DO'P'!f' (1' ,1'+3.DO" 
& ctLnn 

11·'t+ZE"rA 
I.1'EG2·LG2(~1,X1+PI/200.tO,I,1I22)+ 

1# iG2 (i 1 +il/lOO.tO,x 1+;;1/20. DO. 1'.112,') + 

."-. 

& 'LG2(I1+PI/2'0.DO,1'!,1',32) 
, fI2'IIT!G1+I!lTtG2+IB,!~GJ 

U'rOllll 
110 

OLL'1'0037 
OLLT0038 
OLL"r0039 
IJLLT0040' 
OL1.'1'OO" 
ULLTOO"2 
IJLLTOO"3 
ULL':004" 
OLL'1'0045 
I1LL':0046 
I1LL1'0047 
OL1.T0048 
OLLT0049 
I1LLT0050 
OLL':0051 
OL1.T0052 
OLL':0053 
OLLT0054 
OLLTOOS5 
OLL1'OOS6 
OLL"r0057 
OLL'1'0058 
111.1.'1'0059 
OtLT0060 
OLL"r0061 
I1LL'r0062 
OLI.T0063 
lJLLTOOU 
OLLT0065 
OLL"r0066 
01.1.'1'0067 
I1LL1'0068 
OLL1'0069 
I1LLT0070 
ur.LT0071 
01.11'0072 

aLL"r0073 
I1tLT0074, 

'lJLU0075 
OLLT0076 



C 
C 
C 
C 

C 
C 
C 

C 
C 
C 
C 
C 
C 

C 
c 
C 

C 
C 
C 

C 
C 
C 

C 
C 
C 
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COOBLI PlIteIsICli FUIIC'UO!l ~2 (A .B ,'1 ,., 

UGUC:\E-l!'\OSS QUADSAl'Ul,.:. (J.n;!) 1M CALCOLA:'IIIG F!42 (:1 OIlLT 
U11I" FIJ":S:> ;!I'"i\YAL or !:,:u,ou-::cu ~ .. c.1t (A, ill 1:0 (-1.1) 

Bla L-S At'. IlP. A. a. AA. :lo.sa :'.1:Hf:T.\, 5.1114. L .. 2P. II (21& ,21&) ,ilT (214,21&) 
& ,5' , ?1I1 , S IG!' .\0, P 1. eCQ, 5 llilU, :' • ~ 1 

call IIC. Ii/ A£f:A 1/1 4. W ':/ AB!A2/ 51 .. :'A ,~C 0, .lol/AIl £A/l/5I GIUO , l'I ,1III • .Ui 
un..:£j; AS 
rill (-:,1'1)a'lIl (1:,1'1)/((:-1',,* (t-T1) 
!·DC~S(~ . 
U. (0-AI/2.CO 
BBa (BU) /2.1l0 
LG2p·'00.CO 

IUUTE 011 II ONTIL CESIUi) CCIVEIiGUCE IS ACHIEVED 

DC 11 11-11.21&,11 
501laJ.CO 
DC 10' I.', 1I 
11 -U-XI (I,ll) ~eB 

10 SU~·SOI:+i!I/l('I,'I11.IIt(I,lIl 

tG2-U*SlI!1 
IP(D.\BS(L~2-LG2~) • Ll. 1. D-5) anuBII 
U(H~EQ.21&1 GOl'Q 13 

11 tG24'''LQ2 
13 ~IiIKTIIOO 

'00 POl! !I AT (. O· ,'ACOJ RAC'! OP 1. D- 5 HOT ACHIIVED Iii LG2') 
~aI!ll'100,A ,8 ,~,LG2P,LG2,S,olJ . '. 

100 lQEIIAT('O','A ·',F8.II,2I;'9 -·,~8.I&,2I,'H~·,I6,2X,'LG2P.',l18.8, 
, 2X,'LG22',118.8,2I~'S 2',118.8~2I,'JJ~·,I") . 

iETUiH . ' 
!liD . 

tOUBLE UECISICH fO IICUOH 1II1 (T·,1'l) 

IULlIA:IOH Ol!' IN'UG1!.lIlD 01 tHt!~UL lIlTll Sr:COIIO-:OBDlUt SPlH 
SInGlILllUti nmcos SOBSTITOUCli. IT CONSISTS or snU~TllBon CL 
1110 K!!lItL FUIIC'rIOH 'or ONS!!ADY IIIDUCED DO~MiA5R. ~OD IS l!'ACTOB 
lHnODOCED at 'cos SUBStITOtIOS,Hl!!LY III cr,':1) '" 

12A1"8 5,5 1 ,C'~SIG ~A 1, SIG IIAO, 2'U, 1'1, Gl, Dl, 81, PIP, £lID? ,Si 1,511 ,PI, 
~ eco,stGaa.c'CO~GA"~l~EH.t,,:,,~ER,~OD. . -"-. 

Ill"l'EilEp. AR' . . 
CC!!:tON/AlIU2/SIGII A. CCO .JJ/U UJ/GAlI~}. .U/A!!E1 G/S!GItA 0, PI,lIN,AlI 
5.0COS(~)·· . . . . . . . 

51-DCOS(Tl1 
c,co>o (1.DQ-S'''Sl)''· (NII/2.DO) 
SIGal 1-SIGIIAO-C1CO .. 
CALI. S:H10D (SI(;~ 11,:'1 ,G1 ,D 1. B 1 ,Sl! 1,S Il) 

UGUlSElI'I C1' KZ;'liE~ ,OHCION or [JIfS:ElDt UDOCl:D DOIUIIASB 

!Tl#11·SIGftAO*Ol!S(S-S1)/EN 
CALL us. (!TA,PI~;UCPI . 

CALCULATICII CF !lCt, 51 IS AT OIlE ilUG TIP 

I1(DA8S(:1).LT.1.0-5) GO TO 18 
,Il(DABS(PI-Tl,..r.O:.1.;)-5) GO TO 18 

CALCOLAtICN CF !lOt, S1 15 AT THE SIlfGOL1&ITI IT S 

11'(DABS(1'-T') .LT.1.D;'5) GO TO 19 

CALClIU:IOIi O~ IICO PO! ALL 018:B "'LUES C1' 51 

tIN- ( (':-'1'1) / (oeOS ('!) -DCC:; ('1' 1» ). ( (T-'!'1)/ (OCOS (T) -DCOS 1'=') )) 
~CD·Dr:lf"DSIII(T11 . 
GO .. 0 20 

OLLT-OOOl 
01.1.1'0002 
ULLTOOOl 
OLL1'OOOl& 
OLLT0005 
OLL1'OOOb 
ULLT0007 
ULLTOOOS 
OLLT0009 
OLLT0010 
01.1.1'0011 
OLLT0012 
OLnOO'3 
OLLTOO'/l 
OLnoo 1 5 
ULL'::0016 
01.1.1'0017 
OLloTOll18 
111.1.1'0019 
OLLT0020 
111.1.1'002, 
01.LT0022 
UL1.'r0023 
OLLt002' 
01.1.1'0025 
OLLT0026 
111.1.1'0027 
OL1.T0028 
lILLT0029 
01.1.1'0030 
lILLT0031 
OLLT0032 
tJLLT0033 

. OLLTOOO 1 
OLLT0002 
OLLT0003 
ULLTOOOl& 
OLLTOOQ5 
ULI.T0006 
01.1.1:0007 
OLLT0008 
OLL'r0009 

'OLLT0010 
OLU0011 
OLLt0012 
OLLT0013 
OLLT0014 
01.1.70015 
ULLTOO'6 
o 1.LTO 0'17 
OLLT0018 
O1.LT0019 
lILLT0020 
OU,:0021 
OLLT0022 
lILL1'002J 
OLLT0024 
0.1.1.10025 
01.1.1:0026 
UL1.T0021 
OLLT0028 
OLL'I0029 
01.1.1'0030 
OU~0031 
ULLT0032 
OLL1'0033 
01.LT003t4 
OLLT0035 
OLLT0036 



,. -

18 !!OO-J.el 
GO TO 20 

19 IICD.'.DO/DSIN(:l) 
20 (OIiTIHUE 

GC 1J (1.2.]. «&. S. 61 • .JJ 

247 

llIi ,. - (S IGI!_ u. (lil +.5 CO· SIU:1A 1 ,. PI i'+ SIGI\A;J.1' '''£11 Di'l • Cleo. 1100 
fE":ORN .. 

2 Flil. (S: .. ltAl·tl~t'I=,-SI;;::AJ' (;; 1+.5::J'~IC!A ', .... 10 .. ) ~C'C~· .. HiD 
RETUill 

] 1H 1 * ( (2. DO.1'l-SIGlIll*G 1)· P I?- (2. OJ *G,.s 1 .. )\ A ,. ( 1. 00+ 1"1) , • PlOP) * Cl cO 
I: -!lCD 

E!IUIiN 
~ IN1*«2.CO*Gl.SIG811*(1.CO+1'1),·PIP+(2.0"arl-SIGI\11*Cl)*PIDP).ClCO 
"'"!tOD . 

n:TUaN 
5 rlfl-- «2.00-G1+S1GIU1· (1.00+1") I.PIPe (2. CO*l'l-SIGIIA l-Gl) -PIDP). 

& C1CO-IICO 
fETOl3 . 

6 1111- ( (2. CO-F1"S::GIIA l-Gl) - I?IP- (2. DO-Gl +SIG!lA 1- ( 1. DO+ 1"1) , sPlOp) *Cl co 
" *IIOD '-

ilTOn 
UO .. 

DOO!L! plICISICIi 1U IICt!C!. 1lI3 (.t. EPSLII, 

e .0uneAL U'!l:GU'!ICN 01' 30IlSU:;OUE PAUS 01' til! UT!GUL itt!! 
e (BEl!Ofl8LB) 185(5-51, SUGOl.1BIT·T i.R.T. SUlllllSilllGOLlI 
e UlIIlBU t. EPSLII DElIOOZ£S TU SIU or fn BECIOII :fEAI taE SIIG. 
e 

c 

PEU.8 '5. IBT!Gl. :lITEa2. La3 .EpSLI.ll.12.-r .PI 
PI*3.14159265358979DO. 
EPSLII*(PI/«&00.00)·.7500 

e IS ! HUI THE IIING TIPS OR Aut raol! THE TIPS 
C 

IF (T-EpS!.!!, 310. J 10.3 13 
313 IF(:-Ei'Sx.:r.L!:.?I/2000.00, GJ 1'0 310 

IP{PI-T-EPSlH) 311.311.316 
316 UtpI-'l:-EPSLN.U. n/2000. 00, GO !O 311 

e 
e t leT HUll 0 011 PI (lllAt !'BOII .. 1'II! SlIIIG rIPS, 
e 

c 

11-T-EPSLII 
12--: + Ei' SL:f 
11' (~1-12.DO."I/200.DO.G1. O.DO, .. 0 TO '01 
Il11'EG1.LG3(0.DO.Xl,I,Ml11 
1112-0 
GO ~o «&02 

'01 IHTIQl a LG3(0.OO.Il-i'I/20.00.T,N11)+LG3(X1-PI/20.DO.X1.T.1I121 
«&02 IF(Xl+12.DO*t'I/200.tO.LT.PI, GO TO 403 

I.TEG2-LG3(X:.~I.r.N21) 
122-0 
GO TO 778 

ClO] I liTE'::; :z -LG 3 (12. X2+ PI/2 O. DO. '1:. N 221 +LG3 (X2.P 1/20. CO.1' 1.1' .821) 
778 1'K3*II.£Gl+I'TZ::l2 

fETORN 

C T sEAi ~ (IIAa O.E iI'G'TI~ 
C 

OLLT0031 
VLLTOOl8 
ULLTOOJ9 
OLLTOOl&O 
OLUOO .. , 
OLL'l:00/i2 
OLLTOO«&3 

.OLLTOOU 
OLLTOOla5 
OLLtOO'6 
OLLTOOII7 
ULL:001l8 
o LL'l:OO 119 
01.1.1'0050 
OLLT0051 
OLLT0052 
OLLT0053 
OLLT00511 
OLLT0055 
OLLT0056 
OLLT0057 
OLLT0058 

'OLLTOOOl 
. OU:0002 
·1I!.L1'0003 
01.1.1'0004 
OLtt0005 
OLLT0006 
OLLt0007 
01.1.':0008 
OLU0009 
OLLt'0010 
01.1.1'00 " 
OLL'l:0012 
IILLT0013 
OLLT001/i . 
OtLT0015 

.OtL!0016 
01.1.1'0017 
OLL'l:0018 
OLUOO'9 
OLLt'0020 
OttT002l 
01.1.'1:0022 
OLLT0023 
OLtT00211 
OLL'l:0025 
DLLT0026 
OLLt'0027 
IILLT0028 
01.1.1"0029 
OLLT0030 
01.1.1'003 , 
OLtT0032 
OLLT003J 
OLLT003«& 
OLLT0035 
OLL1'0036 



c 
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310 IIi'l'EG1-0.DO 
!PSt,,-: 
12a'I.EP:H.H 
III': [32 a LI.iJ (X2, U + P t/:l JIl. i) 0 ,r ,II.!J) +LGJ (X l+ ... /200. DO, xl +1'1/20.00. 

, T •• Z2)+L~J(Xl.Pl/21l.DO,Pt,t,j21) . 
f"l-t.:Z~I·I~:~1.i4 

aETOil" 

T !If'" &II (li EA i< T U E eTHEl-. VIIIG tIP, 

311 11/':'1:;2-0.00 
EPSLII-PX- t 
11.~- EPSLIf 
lIlT E .. l-L .. 3 (0. PO, X·'-PI/20. CO, T, !ill) +LGl (11-1'1/2 O. DO, Xl-l'I/200 .00. 

& 'I,1i12)+LGJ(Xl-PI/200.LO,Xl,:,lIll) . 
UJ- IIIT EG 1 + I:IT EG 2 
fuau 
150 

tOO1!I.l i'I!CISICN fOliCTICIl L33(1,B ;t,lI) 
C 
C UG!lD6E-GAOSS QOAtBA'IOSE, USED Ilf CALCOLATICt;G ?lIl (t,!PSLlI) OILY 
C U:'ISPoaIlS I!I'tEliYll. 02' IJiTEGIlATIOI riCII (l,B) TO ( ... 1, n 
c 

C 

CCIIUO"/lB~11/X~,Wt/11!12/SI'3A,CCO,~J/laEl~/s:GUAO,i?I;3M,11 
iLU •• S li' ,BP. A, a, U,BB,SOll,r BZ!.',S, L2p· , LG 3P,XI (211,211) ,liT (211. 211) 

, .L2,S l,SlGI!AO. PI, CCO, S IG:! I, or, Tl 
llUG ra 1lI . 
12P (T,T HaL:nT,T 1) IllUS(t-Tl) 
S-DCOS('!:) 
U. (lI-A) •• SC 0 
IBa (BU) *.500 
ttOl"-l:)\).C\) 

C t'IIE.lTE 011 1/ OIiTIL D!SIl\ED ;ClIVUGENCE IS ACHIEVZD 
C 

to 11 •• 11,211, II 
SO'!!-O.CO 
CC 10 I-l,lI 
11 211*ll(I,II)+3B 

10 SUllaSO:lH2?(t,tl) .111'(1,11) 
IGl-,a-SOIl 
11' (018S (LGJ-!.GJ?). U!.1.D-5) !lUOU 
I'(II.%Q.211) GO :0 Il 

11 IGJP-LGl . 
13 t=!III'l'IIOO 

1100 l'CIa!!AT('O','ICCtJP.ACl Ot' 1.D-5 1I0T ACHI!V::O IN LGl') 
ifIlI.l00, A,!, II,LG3P, LGJ,S,JJ 

100 'OIlIlIT('J','1 a',EB.Il,2X,'1I -',!'t!.II,2J!,'N'"',I6,2X,'L~JP·',1'18.S. 
, 2X,'L~J.',F18.a.2X.'S .',2'18.8.2X.'JJ2',:II) 

S!TOaN 
!liD 

IJLtT0017 
IJLt'rOOl8 
OLLTOOJ9 
OLLTOOIIO 
OLLTOO.CIl 
OLL":'001l2 
o LL'1'OOIIJ 
OLLTOOIill 
IJLLTOOll5 
OLLTOOll6 
OLUOO"7 
OLLTOOll8 

·OLLTOOll9 
OLLtOOSO 
OLL'1'0051 
OLLtOOS2 
OLL!0053 
OLLtOOSil 

OLLT0001 
OLL't0002 . 
OLLTOOOJ 
tJLLTOOOII 
OLLt0005 
DLLT0006 
OLU0007 
IJ1.LT0008 
OLLT0009 
OLLTOO 10 
O1.LT0011 
OnTOO 12 
OLtTOOll 
OLLTOOlll . 
OLLt0015 
OLLtOOHl 
OLLTOO 17 
OLL10018 
OLLT0019 
OLT.'r0020 
OLLT0021 
OLLT0022 
OLLT002J 
OLLT00211 
OLLT0025 

·OLLT0026 
OLL10027 
OLLT0028 
OLLT0029 
OLLt0030 
O1.LT0031 
OLLt0032 
OLLIOOJ] 



c 
o 
o 
c 

o 
C 
C' 

o 
C 
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tOUEt.! t'UClSION .UNC'ttOIl t.:! (t,1'1) 

!U X?-TUiC:a SEC.IC:! or. '!'!I\E,; J (SQE'f CF -11. USi::O IN C.\l.CUt.A1'I5G 
!HJ(7,EPSLNI CIoLY. ~otZ IS lAC':'Cii INfF-ODOC1D B'f COS SUB., 112(T,tll 

£EAL'8 SI.Lt.S!~"AO.SIG~1.SI~I!Al,CCO,C1CO.PI.Fl.G1,Ol.al.SE1.511 
& .,:.or1.ft002· 

OC:!l:; II/ A,,5:A2/S1~IIA,CCO,JJ /A.'l. ::J.~/~IiO~10, 1'1,1111, A1' 
IlI':!"!I! AR 
51-tees ('l' 'I 
01CO-(1.00-S19 51) •• (N!f/2. 00) 
SIG~Al-SIG~AJ·C1CO 
t1LL 5THZOD(SIGft",Fl.G',Ol.31,SB1.S1ll 

ClLClL1TION OF ~Ct2. 'II IS AT O~! VIN~ :Ii 

n ([llBS (T1) .LT. 1.0-5) GO 'IO 19 
IF(!) .. BS(?I-'tl).1.:.1.0-5) GO TO 19 

OALtUU"rICIi or !lOC2, 'II ISAU OTHEI &JOUT 

!CD2a OlBS«T-'Il) I (OCOS (t) -DCOS (Tl)) ).OSIIi (Tl) . 
GO :0 20 

19 !CD~.O.OO· 
20 CON:nU& 

GO ::> (11 •. 12. 13. 11l, 15, 16) ,JJ 
·11 L2-SlG3AO*Fl*Cl00*150D2 
" UTOP.N .' '. .. 

'12 L2"SIGUO* (01 +.5D09SIOlU l)·C lC·).IIOD·2 
BETUn . . 

13 L2- (2.00901+51011 ,,- (1. :l0+!'1) )-Cl00-150D2. 
BE'rOH '. . . 

1, x2- (S1Cllll*C 1-2. DO*Pl) ·C1CO-1I0;:)2 
1!!0~1I .' . . 

15 U-12.00.'1-SIClUl*C1).C1C~1I0D2 
1l'1:0Rll. . .. 

16 12- (2.DO*Cl+SICaA 1* (1.00+11) ) "C1CO*15002 . 
InO!!1 
1110 

IItLt0001 
OL1.-:0002 
OLLT0003 
OLL'1'OOOIl 
ULLT0005 
01.LT0006 
OL1.T0007 
ULLT0008 
OLL'I0009 
OLLT0010 
ULLT0011 
ULLTOO 12 
OLLT0013 
OLLTOOlll 
OLLT0015 
OLL'1'0016 
OLL"r0017 
OLL':'0018 
01.LT0019 
ULL':0020 
OLL':0021 
OLL'r0022 
OLLT0023 
OLLTOC2Q 
OLLT0025 
OLLT0026 
OLtT0027 
OLL'1'0028 
01.1.'1'0029 
OtL':0030 
OLtT'J031 
OL1.'1'0032 
01.1.'1:0033 
01.1.':00314 
OLU0035 
ULLTOOJ6 

OLLT00'37 
OtI.T0038 
OtI.T0039 



C 
C 
C 
C 

C 
C 
C 
C 
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tOOELE PiECISICN lUiCTION FNS(r.EPSL~ 

EVALU~:~OM CP :E~~2. :ilE NC~I9TEG&~L PAS: or ~HS1'E~Dt INDUCED 
CCiili.iA:ia. lI:C .. UUl.S S'l'Hc-til;';Oi'l HC'l'l~' CL ·ruus J (SlOat at -I) 

RZ1Lyd SIG~A.SI~~AC.~,S.E~SL~,Gl!ftl,PI.11.12",G,~.a.sa.SI,cc0,£. 
C .!.O!LTA1,~tL:A~ 

IIITr;.;[l Ai 
COIlItCN/UE "liS:;;/!" .CCJ.JJI ~ Z AJ/G11I1I1.::N/1P.!11l/SIGIIAQ. PI, III. AB 
C~LL srBEC:(SI~~A.F,J.D.e,sf.sQ 
l!- CC;;S (.) 
CELTl12S-DCOS(T+IPSL~) 
tIL!12 a OCOS(!-£?SLN)-S 
11-1.CJ-GA~~~-~LCG(2.:~·OSQ~'!'(O~LT11·D!L'!'A2)·lB·SIG~101~~) 
12--.500*"1 . 
GO T;J (1,2.3.".5.6) .JJ 
fNS- (-12*SIGlll0· (G •• S~O-S:G~11+11.srG!10'F).CCO 
li:E:U2 N 

2 1115* (12-SlGI!AO-:+l1.SIGIIA~. (G+.SOO-SIGlll) ).CCO 
flTOll1I 

J 1115- 112* (2.I:O*!-SlGIt.'''G) +11*(2.DO·G.S:"l!!". (1.00+1)) I-ceo 
&Z:UBlf 

'!IIs~ (A2. (2. to*G +SIGU. (l.DO+!,) ) -11* (2 .llO'-1'-SIG1U*G) ) -ceo 
Ii!tDBN 

5 uSa (-A2* (2. to- G+SIGM. (1. CO+') ) +A t· (2 .oo*r-SIGU.G)) -ceo 
fETORM . 

6 ,.5- (A2- (2. to'" t-SIGIIA-G) +, 1- (2. OO-G +SIG:U. (1.00+ t) ) ) -CCO 
fUDitH 

100 

200 

!liD 

SOB.ODTISE STHZOD(SIG~I,F,G;D,e.SR.S:) 

C.uCULUIOIi CF TH! IillL AIIO IUGIUn PlaTS or 'l'fl!ODOBSElI'S PIf. 
IHI: till SURS .lIf. 

lliPtICIT !Ute 8 (J-Z) 
UfIGE!! IEB.JJ.U.lII . 
ll11'l PI/J.141S92653589191 
lU-O 
1l(S!GIII.Lt.1.D-11) GO ,T'J 55 
ClLt OBJtO (SIG!U,JO,IO,IEill 
ll' (IES.IiE.O) ViiITI (6.1001li.:£ 
fOillA:('EUCf. IN t2JIO. I~- ',:5) 
CUI. OBJll (SIGU.Jl.t1.I!R) 
Il'(I!:P.. Ii!. 01 IiH":E (!I;200) . IE: 
IOIiIlAT C' [IIIIOE. II> OBJT1, n:ii:o '.15) 
11- (J1+TO)*'Jl+rO) + (JO-tll*(JO-rtl 
n-Jt -J 1+t ,*y 1.2. t 01 (PI" S:(;:,\ Al 
CC--(JO*Jl+yo*r11 
r-U/h 
GaCC/U 
!f·J~·!,,+J1*G 
!I -J 1+JO *G-J 1* F 
1:- p* !+G*G 
2-P-0 
fE'4DU 

55 '-l.CO 
GaO.DO 

.; 

SE-l. co 
l!IaO. DO 
C-1.DO 
e-o .D~ 
f!TURN 
110 

OLL1'OOO 1 
OLtr0002 
OLLTOOOJ 
ULLT00014 
a LLTOOOC; 
OLLTOOOb' 
OLL'!'0007 
OLLTO008 
ULL'!'0009 
OLLTOO 10 
ULLTOO', 
DLU0012 
OLLT0013 
OLL'!'OO'14 
OLL'!'0015 
OLLT0016 
flLLT0017 
OLLT0018 
OLLTOO'9 
flLLT0020 
IJLU0021 
OLLT0022 
flLl.'r002J 
OLL1'00214 
IJtLt002S 
OLI.'!'0026 
IJI.LT0027 
DLLT0028 
OLLT0029 

DLLTOOOl 
DLLT0002 
Dtt.T0003 
DLLTOOO/l 
DLUOOOS 
OLLT0006 
IJUT0007 
fltU0008 
DLLT0009 . 
nuoo 10 
flLl.T0011 
flLLT0012 
DLL'!'0013' 
IJLLt001/l 
flLtTOOls 
DLLT0016 
OLLT0017 
IJLLT001a 
O1oLT001' 
DLLT.0020 
DLLT0021 
DLLT0022 
DLLT0023 
OLLT00214 
OLLT0025 
DLL'l'0026 
DLLT0027 
DLLT0028 
OLLT0029 
DLLTOOJO 
OLLTOOJ1 
flLLTOOJ2 
DLLT0033 
DLLTOOJII 



C 
C 
C 
C 

C 
C 
C 
C 

C 
C 
C 

c: 
C 
C 
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CALCULATICN CF 'rH! K£U!t !'S. OF UlfS':EADt IIIOOC!O OOVtlV1SR Or' 
CNS':UOt tIi'U~G-LIilE :OiltOn 

!~~1.'C!: RElt.O (A-Z) 
cel! lie N/ '&lU2/S 1 .. ~A.cca.JJ/AE fA"/StGIUO.?I. n. Aa 
IlltE·;EP. I!'!S.JJ. At:.!ill 
lEE -J . 
Il'(t71.t.t.1.I1-11) GO to 65 
CALL can (IU.Kl,I!!) 
If (I';;; .• liE. 0) .an (b, 100) ru 

100 fOf!!A: (' EHCi IN 03Kl, IU- '.15) 
U P:zl":l. Itt 
!- (~I/" • CO-. 867'5 t 0" E:'\· ( ('. q~ ,,80l+. 915 90'). !:1'A) /( 1.311 1 0 OOt-ETA. 

& £:A)))-Oll?~!:l) 
C-S+ (1 • OJ85C 0- E! A) / (1.311 1000.·1. J05000 "'E::,,&£:A) 
Itt 1- «2. to/PI) "EtA) "C 
nIl P- (1'1/2. ilOi"E'U. 111. 1 
iiTOaH 

65 iIl'-1.00 
HOP-O.tO 
fETOBll 
UO 

susaODTIllE 
& 

Ct'(S.'OP.VODf"1l"',b~.V21'.V20P. 
CLOP. CLOOP. CI.l P ,Ct 101' , CL2? ,Ct.20P i , 

S 
CLSOP .CLSOO P.C t.Sl l' ,CtSl0P ,CtS2P. C!.S20P. 

.' C1.0CP, C1.000P .C1. 11l'. CL 110P .Ct2:!!' .C!.220?) 

OBlV!RS1I COil'S cr S!!IP-TREC8t lKD lD SECtlOR CL ABO THB lD 
(SlliS) CC!lllEC!IClil 

!. VOF. VODP, V1P.V10p.'2P, '2I)P. 
·Cl.Oi.CtOOP.Ct1i,CL10P.CL~?CL2Dp. 
eI. SCP .eI. SOCP .CLS1£' • Cl.S l:lP , CLS 21', C1S2 Ol' , 
SIC~AO.S:G~1.C.1.J.:l.B.SP.SI,P1.CCO, 
CLOOP,CLOOOP,Ctll?Ctl1:lP.ct22p,Ct220P 

InEG!! lB 
OOS~ON/AREAq/SIG!AO,PI,NK.la 
eCDa(1.00-S"S).· (111'12.00) 
SIGaA-SIG~AO*CCO 
01.1. StREOO (SIGl!l.r'.G,O, BiSa.SI) 

!UU-'l:REOn SEC'tIOll C1. 

CLOP·?I·SIGaAO·(G+.5tOaSIG~1).CCO 
CLOO.,--?1. SIGII 1.0 .Fa eco 
C1.1"s-PIa(2.tO.F-SIG~A.G) ·CCO 
ell OPa- ?I* (2. CO* G + 51:::\1* (1.11 0+1) ) "ceo 
CI.2PspI& (2. to*G+SIG:!A. (1 • tJH» -CCO 
CL2DP-- PI- (2. co· r-S1GIU-G) acco 

~o S!C":IOH1L (SEllS) CORRECTION 

. CLSOP-2.DO*n* (VCiaS&-VODpaSI) "CCO 
CLSODp-2.00· .. I*(VODP-SEtVOp·SI)"CCO 
CLS1P-:.CO·Pl-(Vl.-SS-91Dp·SIl·CCO 
eLS1DP-2.00·PI"(Vl0?aSP t Vlp·SI)·CCO 
eLS2P-2.00·PZ* (V2i"S&-V2Dp·SI) 'CCO 
CtS2:)P-2. 00- eI," (vap. SR+ v 2P- SI) .CCO 

ULLT0001 
!JLLT0002 
ULLT0003 
Ut.t.TOOOq 
ULLTOOOo; 
!Jt.LT0006 
ULt.T0007 
01.1.':'000" 
01.1.':0009 
01. L'l'0 0 1 0 
ULt.100 11 
UL1.T0012 
01.1.'1'0013 
OLL'f00111 
OLLT0015 
Ot.LT0016 
OLLT0017 
OLLT0018 
01.t.T0019 
OL1.T0020 
Ot.LT0021 
OLLT0022 . 
01.1.T0023 
OLLf002q 

30CL0001 
lOC1.0002 
30C1.0003 
lOC1.0001l 
30C1.0005 
30CL0006 
30C·L0007 
JDCt0008 
3DC1.0009 
jOCt.0010 
lO(:t.OO 11 
lOCL0012 
30Ct0013 
30CL00111 
30Ct0015 
30Ct.0016 
lOCL0017 
lOC1.0018 
30C1.0019 
30C1.0020 
30Ct0021 
30CL0022 
30Ct002J 
30Ct002" 
3DCL0025 
.3DC1.0026 
JDct0027 
3DC1.0029 
30CL0029 
30CL0030 
30ctOO 31 
30C100l2·· 
lOC1.0033 
30C1.003" 
30Ct0035 
lOC1.0036 



C 
C 
C 

C 
C 
C , 

C 
C 
C 

C 
C 
C 
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lD stCnCII CL 

CLJCP·CL01'.C~SOP 
C1000P-CtOCi+CLSOCP 
CL11~zCL1~.CLSlp 
Cll1;)P"Ct 10i .CLS 1 Cil 
CL22P-CL2P.CLS2? 
CL:::~:' sei.:: cr +CLS2Ci' 
fETUR:! 
liD 

SUBlOOTlHE 
& 

elll (S, VOl'. VOIIP, '11 tI, '11 01'. V21'. f20P, 
c~op,caOOP,C~lP,C~lDP,e~2p,Cl20P, 
C5S0P.C~SOOi,C~SlP.C!SlDP,C!lS2P,C~S20P, 
caoop,C!OOOP,C!11P.~110P,C~22P,C!22DP) 

,. ,. 
OIIV!llSlL COH'S Cf STll.IP-THEOst AND 3D S~CTIOII CIS AIID TBZ 30 
(SUBS) COllUC!IOIi 

S.VO~.VOOP,V1P,flDi,V2P,'201', 
C~OP,C~OD1',C:l11',C~10?,C:l2?,C!!20P. 
CIISC1'.C~SODP.C~S1i' ,C!lS' DP,C!lS 2i' ,CIIS2DP, 
SIG51,SIG:lAO,C,p,G,0,e,Sr,S!,fI.ceo.eC02. 
CIIOO1',C5000P,CII111',CII110P,':l22P,CII220P 

III':!GI£ U 
cc:!aON/U!.lLlISiG!!AO,?I, NN, 111 
CCO_(1.00-S·~·*(NN/2.00) 
Sl\l1l""SIG!!"'Oycca 
CC02-ceo-cco 
CALL STRr;oo (SlGI'IA,P,G,D,S.SII,SI) 

!!ll:?-TH£OR! SECTION e~ 

eBOP~.2S00·Pl*SIG!AO.G·ce02 
C!OOpe-.2StO·Pi·SlG~AO·~·CC02 
C!!lP~.25DO'PI·(SIG~1.G-2.CO'~-.2S00·S:G~A·SIGI!A).ce02 
ClIl CP-. 25CO' PI' I! lCIIA-SIC ~.v !'-~ .DO-G) 'CCO 2 
eIl2p_.2500'PI.(SIG3A·!'.2.00'~-3IGal)·CC02 
ca2C?* .25CO- i'i* (S IG! .... G-2. DO .p-. 25DO" SIGlIA' SlG~A) -CC02 

3D SZC:IOIUL (SUES) cC?EEcrIC!I 

CIISO" •• SOO*PI* (vOP- sa- VO.o p·s I) 'ce02 
CBS OD?z. 500- pro (V ODie 5 9+11 JP' st) 'CCJ:! 
CIIS1P •• SOO·PI·(V'~·S3-1'~?·S!)·CC02 
·C1ISl Ol'z. 5D~'? P (Vl ;;"'SS"v 1 ('~ :;1) 'ce02 
CI'IS2P_.5DO'PI·(V2i·~a-V2Dr·SI)·CC02 

JOCL0037 
30C10038 
10Ct0039 
10C100ll0 
3DCtOOll' 
30ctOOll2 
10C100113 
3DctOOllll 
30CtOO,,!! 
lDCt0046 
311C10047 

30CZlOOO 1 
30C50002 
3DCIIOOOJ 
30'"00011 
30C50005 
JOC50006 
30ClI0007 
30CI!0008 
30CI!0009 
30CII0010 
30CII00 11 
30CII0012 
30CII0013 
30CI'I001Li 
30CII0015 
311CI!0016 
31)CII00 17 
3DCII0018 
3DCI!0019 
31)CII00 20 
30CII0021 
30CI!U022 
30CII0023 
30C1I002L1 
30C:l0025 
3DCII0026 
30C!!0021 
30C1I0028 
31)CII0029 
10C!!0030 
30CI'I0031 
3DCII00J2 
3DC!l0033 
3DC1I00311 
30CII003!! 
30CI!0036 



C 
C 
C 

C 

1& S!CTIC!I C!\ 

C~OOP-C!OP·C~SOP 
C800~paC8~~f+C8~Ot2 
C!llP-C!lP+C!Sl? 
C~llCF·Cjl~E.C~Slt~ 
C!22p·C!2p·cas~p 

C!2~"" =C1I20F +ClfS 2I:P 
F!~U2N 
UD 

'SOSEOO'III! 1iB00'I~. (1. BZ.lIE8) 
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C C1LCULA'II05 CF tSE REAL 200:S 01 !RE'CUBIC SECDLAR !Q. II 3D OPT. 
C THE 2COT5 AU tz'IU!IIlED USItiG sUnOU'UIIE ZIlPOLY ,OP IltSL 
C 

C 

FEAL·S AI').AA,BB,CC 
CCllfLEX-16 Z(3),&%(3) 

C 'IHE GIfEI CUBIC SIeaLA8 IgDATION 
C 

c 

,fRl5Tlli7 
1117 ICP.l!1t('O','!ECUtAII EQ IS:') 

U::Ii,,'119,A (l),A (Z) ,A (3),A (II) • 
111S fC!iIlAt('O,' ,Cl0.II, ·Z.-3.', Dl0.1I, ·Z.-2+' ,010.11,' Zt' ,Dl0.II,'-0') 

U-C .. 85 11(1)1 , ' 
1l (U • I.T • '.0-12) GO to 151 
)iDEG-] 
CALL za:CtT(A,~D!G,Z,IER) 
Ir(ns.IiE.O) GC 'IC 103 

C IBIHT &OCtS cr CDeIC, SELECT lEAL BOOTS 
C 

to 161 Ia 1,3 
161 UiIII!'162,Z (Ii 
162 rOl\:!A":(")','!!CCT Cf SECOLAB EQ., %-',2(010.II,2X)) 

J-' 
to 163 1-1.3 
SS-DaAG (Z (I) 
cc- cus (ea) 
IF(CC.GT.l.D-l~)GO to 163 
SZ (':)-Z (I) 
Ul\aol 
UI5t1611, liZ (ol) 

16111CF.~U·('oJ','l\Ut SCCT CF sZ:::Jua EQ, RZ-',2(010.II,21») 
J·ol·' 

163 CONTINO! 

3DCII0037 
3DC!l0038 
3DCII0039 
311C!!001i0 
1DCIIOOil1 
30CII001l2 
10CI\001l3 
30C:lUOIIII 
30CII001l5 
JDCI\OOll6 
JDC!!OOIl7 
30CII001l8 

1I00TOOO 1 
!00T0002 . 
ROOT0003 
BOOTOOOIi 
800":0005 
800T0006 
aOOT0007 
aOOTOOO'S 
aOOT0009 
ROOT0010 
ROOTOO'1 
ROOT0012 
BOOT0013 
BOOTDOlla 
ROOT0015 
aOOT0016 
ROOT0017 
ROOT001S 
800t0019 
aOOT0020 
100T0021 
ROOT0022 
100T0023 
aOOT0021i 
ROOT0025 
P.00T0026 
BOOT0027 
P.00T0028 
BOOT0029 
aOOT0030 
ROOT0031 
ROOT0032 
8001'0033 
800T003Q 
SOO'!00J5 
&OOTOOJ6 



C 
C 
C 

c 
c 
'c 
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l'UlI1'167,NU 
167 iC&~At('0'~'~O~8za or P.!AL aeOTS or CUftC SECULAR !J, Ria-',I1) 

anUf.1I 

IF LEADIIG T!i8 cr COBIC IS Z£iO, CO.Sla~a IT AS A ~alD~ATIC 

151 H')aA(2) 
A (~).A (3) 
A(3Ia~(111 

165 

u- i:.\BS(A (1) 
tr(ll. LT.".D';' 121 GO to 152 
!It!Ga~ , 
C1L~ ZEPCL1(1.~O~G,Z.IEi) 
IF(aa.Ifl~O) 'GC'!C 10J -, . ..' --. ~ -.. . , . 
f!IM~ aCO~SOl QUIDRATIC, SZLZC: REAL E~CT~ 

tc 165 1~~,2 
liP! lIT 162, Z(l) 
J-1' '. .". 
to 166 1-1,2 
IIS a CIIilG 'IZ (I) I 
CC~IIUS teel ., 
IF (cC:;IOT~T.D~12) ac 
fZ (Jr-tlll ,. < ' 

lIaa~.f''' i 

iU ~tl~4. az (J) 
~H" .... -
CQMTIIIQ! 
ei1ll1167,1I1i 
~~;?aR· ,.," 

TO 166 

;f L.~ADIII~ Tl!lI~ g~ QD~D.3~;I<: I~ ;;so. cOKS.~P~! !T 1~ + H~H~ !q~ 
1~~ J"I~~(21 

~~21·~q! 

ROOfl037 
1001'0038 
5001'0039 
a00100 .. 0 
Roaraoci1 
1i00tOOll2 
aOO1'U04] 
i00100411 
8001'00ci5 
ROOTOOIi/! 
100TOO .. , 
&00TOO1l8 
aOOTOOll9 
1001'0050 
iOOt0051 
aOOt0052 
BOOToes] 
IiOOTOOS4 
ROOT0055 
aOO~0056 
aoo~0051 
a0010058 
aOOT0059 
iOoT0060 
aOOtOQ61 
aOOtOO~2 
aOOTOO~3 
IOOT0064 
ROOt0065 
aOO'l0066 
ROo"!O067 
1i00'lQ061J 
ROOTd069 
aOOT0010 
lioo'roo11 
~o~Tg912 

IPOTOOl] 
~OOtPC)7~ 
1\00%QQ15 
lioch:Q016 . 
1I1l0T0011 
1100':0018 
aqcit();)19 
aootooao 
Rg9to,e~i . 



c 
c 
c 
C 
C 

:.C 

C 
C 
C 

c 
C 
C 

C 
C 
C 

C 

401 
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PEOCllll 2 

O;'C;JUTIOII CF SfAliVISE CI~TtrJ;J'!I(I~1 C! UNS'tUOY I:fUUC!O OOIlIlVASR. 
~ECTIOIi utT A:iD S:::CTIOIi I!O~ElIt USiliC UlIStllDY 1.IFtIlIC-LIU THEORY 

Ftl Loa XI (211, :;:~) .IIT (:!q ,21;) ,5IC:Uil,?1, ':Rt.TI •• PSlO, ?SI1 ,1'S12, '01'. 
C .,JCC'. '111'. V to?, ~2:>, v lOP ,V~ .VDI:', VA:1l'.V "HAS&.::~;:'t: .. t. Jell. 
C CLOp,CLODi.CL1F.Ctl0~,C~lp,CL2DP. 
& ct.SOP.CLSOti, CIS lp ,eL:' lOP .cu; 21' .eLS2DP. 
t; c:1il r ,C:O:OO:' ,C:I1£ ,c:: 10!', C:O:2P, C:! ::00', 
C C3SIlp .Cll! nO', C:S 1? .C:1S 10:> • ells 2P,C 1tS:;:0". 
C CL201\.CL2:li,CLJCl'. CL301,ClI20a. C:120I, C:llOe. ,el13 01. :;1'IIIU ,ceo, 
& 5IC~1.E».CLJOP,CLOOO?,CL11P,CL1'OP;~L2~P.CL220P.C~OOP.CP.OOOP. 
, ellllF,Clll10r.C~:2p,C~22DC' 

cell!!C H/;"U 1/X;. V ':/lliU2lS I":U.CCO.JJ/UE.\)/CA a:lA. E:I/AEEAiI/SIC!UO, 
&pI.N~,AE . 

Ili'=i:~Iii. 11.111C 
PIa). 1"'5n£~JSa979tO 
GlallA-.S7721S66,,901S3C100 
EZAOII01, I (XI II,H) .1*1, H). N*II ,211. 11 ) 
F<:AIl"01, «(lI'I(I,II) ,1*1,11) .N-II,2".") 
FOI\IIA~(20X.120.15,32X) 
eEL 1-1'1/60. 00 
CEL2-a.7to*pI/tBO.tO 
FEAOq02~SlGIIAO.1i.EiD.I\N 
lCalLl'I(t9.6.I2,al,I1.III.I1) 

IDEHtIFY ?LlBlCaa 

GC 'IO (200.~01.20~).NN 

200 !II-". CO/PI 
UI'lIt300 ,SIG~lO.U.:lN 

)00. fOliaA: (' 1'.' SIClUO-' .la.5 ,2l,'U a ' ,I3.2X, 'liN.' ,Il, 2X. 'ELLIPTIC 
. nlBG') 

GO '10 303 

20' u-,. SOO 
paIJT301.5IG~lO,l&,NN 

)01 fe 8111 ':' (. 1 ' , , SIGIUO-' , F8. S , 2%. '11.-', Il, 2X, 'I"'. '·,Il. 2%, 'L!II'l'ICutlB 
'. CIIIIG') 

GO '!C )0) 
202 ZI.,6.DO/().tC-PI) 
. ili.15t302,SlGIIAO,Aa,IN 

302 10all.\1' (. \' .' SIG:iA o~, • F8.5, 2X. 'Aa,.' ~I3.21. "II·' .I3 •. 2X, 'CUSP-TIPPED 
CliING')' . 

303 CCNTI llat 
'IH.I:.\aDZLl 
DO 191 II-l,lt 
S-DCOS (THETA) 
CALL OHiASH(S.VOi.VOOP,Vl~.V1Dp.V2P.V2DP) 

Faa· PORE BEAV! SIT (NOII-O. i.R.T. IIEGA'=IH 01 BEAVE ANGLE) 

V?a2.C~VODP/SIG~10 
VCP-- 2.00·' oP/Stcrno 

Faa ?ORE PITCS Sit 

u- V1 P 
VDP-V lOP 

9AlSP*DSQi'l' (V1'~VP+VCf.VCP) 
'PH1SZ a OA'IAII2('DP,Vf) 
If'(VpRASE)·"'.~2,"2 

41 VPKASt=2.DO*Pt.VPHlS! 
"2 VPKASC:=1aO.CO-VPIiASZ/PI· 

Pi I5: ClO.:l.5. V a?, v H. 12 .. , vo DP. V1 C? V20P 
"00 Fe RIIA T (' 0' , , 3=' , F8. J, 21, • VOP=' , ~ 10. 7,:!X , 'V 1 P-' • F 10. 7. 27:. "21'-'. 

C 110.7.2X. 'VOIlI'a' ,ltil.7,2X, ·Y10P .. ·.ttO.7.2X.·V2DC'.,· ,~'O.7) 
If IU II: 5 J I). S , v :.> , v CC' • V 1:12 , H' R AS Z 

500 lCBI!.\I('O·.·S.·,f8.3,2X.'VPa',Fl0.7.2X,·VOPa',Fl0.7,2X.·V1I1p .. •• 
/; Fl0.7.21.' 'IC'HASE=' ,r13.8) 

PGII20001 
. PCII20002 

pG:oI2000J 
PC:II2000Cl 
PGII2000S 
pCII20006 
PG~20007 
t'G1I2000tl 
l'G1!20009 
PGI!20010 
pGII2001' 
PGI!20012 
PC 11200 13 
pG1I2001. 
pGII2001S 
pGl'I20016 
PGI!2001' 
PGII20018 
?G1I20019 
?G1I20020 
PCII20021 
PGII20022 
PGl'I2002l 
PGII20024 
PGIl20025 
PGII20026 
PGlI20027 
l'G1I20028 
PGII20029 
PGl'I20030 
PG1I2003' 
PGIl20032 . 
PGII200J3 
PG1I2003. 
PGll2003S 
PGll20036 

PGII20037 
l'G1I20038 
PGl'I20039 
PG1I200"0 
PG1I200111 
PGII200112 
pG1I200.3 
pG1I200:u 
pCII200llS 
PG1!200"6 
pG!l200"7 
l'G1I200"a 
PG1I200"9 
PGII200SQ 
PG1I200S" 
pGII20Q52 
pGII200S3 
PGII200SIl 
PGI!2QOS5 
PGI!20056 
PGlI20057 
PGII2005a 
PGII20059 
pGI!20060 
"G1I2 006 1 
PCI!20Q62 
pG1l2006) 
pG1I20Q6" 
pCI!2006S 
pCII2QQ6& 
PGII20067 
PCII20068 
pGII2Q069 
PGII20070 
PG1I200" 
l'CII20072 



C 
C 
C 

C 
C 
C 

C 
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CALL , CLl (S,V\)P,'IOOF,'II p,Yl0r.np.'2:>', 
CL 01', CL OCP, C:' 1 .. , e:. lOP, eL2l' , eL.!D:? , 
eLs:>~,CLZODr,:LSli,CL~'O~,CLS;~,CLS~~P, 
CLOCr,CLaJu •• c:",?,C:"'0.,e:.~~r,CL~~DP) 

, , 
cal. , ClIt (S,'I]&','100P ,V,?,, 10P,Y2P,V20", 

c~aF,c~a~~,C~1?,C~ID~,e~2p,C~~DF, , 
~ 

clIsor ,C~S'JO 1',e ~S 1;>, ClIS':>",e jS :!1',Cl'I!: 20i', 
CII 00i?, CIS OODP ,C:111?, Cl! 11 OP, CII~~? , ClI~:lj)P) 

lOa "UII HUH sn 

Cl.2Da-CtOP 
CL:!D1sCLQOP 
C1J 1:,,-ctOJP 
ctJtI aCtOJOP 
ClS2 Oil-CliO i? 
ClS2D1-CII00P 
CI!JDa-CIiOO P 
C3JDi-C:sQJOi 

lOB 1a!! ?ITCH Sl: 

C12DP-CL 11' 
eL2!:I-CL lOP 
C1JO!lsCL II? 
CL301-C1 11 OF 
CII20R-Clll., 
CIl2!:!aC!!t 01' 
CItJClI <11111' 
CIIJOlaCl! 1101' 

PRIST 600,s,CL~Da,eL2DI,etJ08,C:'JD1 
600 lC8!AT('0','Sa',Fe.J,21,'CL20Ra',Fl0.S,2X,'CL20Ia',?10.S,2I, 

e 'C130a'"',!'10.S,21,'ClJOt~·,!'10.5) 
pliI IT 700,S, CM 20ll,C! 2IlI, el! 3DI!, Cl! 3 01 

700 108111%('0','Sa',18.3,21,'C:120Ba',110.5,21,'CII201a ',110.S,21, 

,; 
191 'IB!'U"TR!lA+i)EI.2 

11 (!lIo.lI!.1) ac :0 88 
STOP 
UD 

'C!JDlla' ,110.5,21, 'C:lJD1"',110. 5) 

PGlt20073 
PG1l200711 
PG1l20D7~ 
1':011200", 
PG1I20077 
P<l1l20078 
PG!t20079 
l'G!!20080 
PGII20081 
PGII20082 
PG1I20'JfJl 
P31121l08Q 
PGIl20085 
PGII20086 
PGII20087 
PGII20088 
PG!!2!l089 
PGIl20090 
PGII20091 
PGII20092 
PG!l20093 
PG1l2009. 
P':;1I20095 
PG!!200<J6 
PGIS20097 
?Gl!20098 
PG1l20Q99 
PGII20100 
PGII20101 
PGS20102 
PG:!2010J 
PGI!20101t 
?G!!20105 
PG!!20106 
PO!!20107 
PGII20108 

PGII20109 
PG1!20110 
PGIl20111 
PGII20112 

.PG1!20113 
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C 
.; nOGlAlt J 
C 
C CA~C~LA~ICS cr :CTAL CL ~N: Cit :C~ AS O~~ILLAtING FINITE gl~G 
C OSIa; OICS-:UOT LIf'UIiG-LIU TH!Cn 
C 

C 

P.Ut w 9 XI (2"" ::Ia) ,11'1' (2~, ;:") ,SIii:UO, .. :, 'rftE'U,PSIO, PSIl ,11'512, fO P, 
& YJDP.' lP. V HiP. V2P, V201', Vi', YOo', V~/!i'.' i'lI'\S E.S, Di:L 1, Ji::Ll, 
,. CLOP,C~uDI',CLli,CL10?C~2'~Cl:O? 
& CLSOP.CLSJtP.ClS1P.CLS10P,CLJ:?,C1S2uP. 
& C~J".C~OCi,C:·:H.'::!lC:"C:t"P,C::2t". 
& c.tS.Jp,C:'IS.Jt&'.C:!S1&',elt~lDP ,C;1~:':i',C:tS2DP. 
& CL2Di,Ct2CI,CL;oa.CL3uI.C:!Zll:,C:'l20I,C~3D'.CItJOI.~.\ftIt1.ceO. 
,. S:G!A,ZIi , CC ,$O!ll .SUIt2 .SU:'IJ ,SU It", SO ~C;.SU 116,$U 1\7. sa ,8. 
& 'rCL:lOE.TCL:D:. ':CL3D5. TCLl 01. :C:'I2DE. ~!;a20I.TCItJil~ .1C:l30I. FACT. 
& ·CLO~P,CLOu~P.CLll?CLll0P.CLZ:.:~,CL2:0P,C~OOI',C~~JDp,C:ll1P, 
,. C:'Il1Di',CII42i.C:'I2:<DP 

COl!ftCIi/AiU l/·X:, 1o':/AiZAJ/GAIlIIA ,ZII/UUij/SIGIIAO ,PI,n. Ai 
UT.t;E£ AiI,,:iD 
iI-J.lijlS926SJSS979CO 
GA!~~·.S772156Eij9Cl~J4CO 
!!AD:J01. ((XI(I.:I).:;:-l.lI) ,lI-Ia.211,1I1 
IUI:IaOl, ((ilT 11,11) ,1-1 ,11), llaij ,21a,ij, 

1101 fCa!n(20X,1'20.1S.~:<I) 
88 &!At~02.SIG:tAu,A&,150,HH 

1102 !Cl\!1'I(i9.6,I2,81,Il.U,Il) 

. C lDEJI'l'Ilt PUlltClI! 
C 

GO TO (200,201,202),8B 
200 !II-o. DO / PI 

iiI3!JOO,SlG~AO,Al,SK 
300 'CElIA T ('1',' SIGIUO-'. 18. S, 21,'~'" ,13 .21. '1IJ(.' .Il, 21,' ELLll'':IC 

&1iIHG') . 
Gll TO .303 

201 11.1.500 

faIBTJ01,SIG~10,lF,NtI 
301 lea lIAT ('1', 'SIG!lC- " lS. 5, 21, '&;\.', IJ,21, 'SK-' ,13,21,' LEtlTlCOt.ll 

&5!1G' ) 
GO TO JOJ 

202 n-16. 00/ (J.oo*?I) 
PIIIlITJ02,SIGII10.le,5R . . . . 

J02 rC!!!l: (' 1'. 'SIGlt10-', !OS. 5, 21. 'li-'. I3 ,21. 'BB-' .1 J, 21, 'CUSP-TIPP~D 
&11i1G') .. 

JOJ Cell'!I Ii OE 
C 
C lMTEGF.ltIOH 01 SECTION LIl:· AND lIea!N: COErr'S,.OSING 16-P01Ht 
C tEG!.oaZ-GlOSS QOlcaAT~aE, Ie rlao TOTAL COElr's 
C 

C 

.. 16 
SU~l"O.CO 
!OlU- O. CO 
SOlllaO.tO 
SOIlOaO.IIO 
SOIl5-0.CO 
SO!!62 0.DO 
SOIt 7,. O. to 
505S"0.I:O 
2-!l/2 
to 10 I-l.a 
tHE U •• SOO-PI. (1. CaUl (I,ll)) 
SaCCOS (':HEtA) 
CALL ONW1SH(S,VOP,VOOP,V1P,'10F.'2?,V2~?) 
CALL CLl (S,'OP,VOD~.V1P,'10 .. ,V2P.V2D". 

,. CLOP.CLOO".CL1P.cilDP.C~2P.CL~01'. 
& CL SOP, CLSODP ,CLS 1." CLS l:lP .CL'> 2£1 ,CLS 20P, 
.. CLOC?,CLOOC P.C L 11? CL 110P,CL4:2P,CL220P) 

CALL CII'(S·,~OP,VuD:?,11P.Y1J~,V21'''/2DP. 
& c.,OP.C!tODC',Clt1 P,C:11DP,CII21',C!'!2DP, 
.. C!tSOP,C' SODP ,CItS1? ells 1 Dt' ,Cl!S 2~, CItS2D? 
,. CltOOP,'300D",:1Il1P .CltllD?C!!l2P,Cl'!22J?) 

PGill0001 
1'01130002 
PGIIJOOOJ 
PG1I300011 
PGSlOOOS 
PGIIJOOO., 
PG!l30007 
PGIlJ0008 
PGIIJ0009 
PGIU0010 
PGIIJOO 11 
PG:l30012 
PGIIJ0013 
PGlIl00111 
PGIl30015 
PGI!30016 
PGIIJ0017 
PGIIJ0018 
PGlt30019 
?GIIJ0020 
PGII30021 
PGI!J0022 
PGIIJ002J 
PGII300211 
1'G5J0025 
PGIIJ0026 
11'0530027 
PGIIJ0028 
pGS30029 
1'G53\)030 
PGSJOOJl 
PGIIJOOJ2 
pGIlJ0033 
pGSJOOJo 
PGaJOOJ5 
1'GSJ0036 

pGU0037 
1'01130038 
PGlU0039 
PG5J0040 
PGIIJOOll1 
PGa30002 
PGIlJOOll3 
POIIJ00411 

·PG1I300115 
PGII30046 
PGIIJOOij7 
1'GIIJOO 1a8 
PG1t30049 
pGIIJOOSO 
PGltJ0051 
PGIIJOOS2 
PGIIJ0053 
PGIIJ00511 
PGIIJOOSS 
PGIIJOOS6 
PGltJ0057 
PGI!30058 
PGlt300S9 
PGIlJ0060 
PGItJ0061. 
PG~J0062 
PGIIJ0063 
PGIIJ0061a 
PGIIJ006S 
PGIIJ0066 
PGIIJ0067 
PGll10068 
PGft30069 
PGII.10070 
·PG~3007' 

PGIIJ0072 



C· 
C 

C 
C 
c 

C 

10 
C 
C 
C 
C' 
C 

C 

Ie! 1I08E HUVE SU 

C12tl: -CI.G? 
C1;:OI-CLOOL' 
CJ.30i -C LIl 0 P 
CI.JO.·CLOOD1' 
CII2Dl-CI!OP 
CIIlOI-C~OD" 
C1I3Di-ClIOO" 
CIIJDI-C:tOOOP 

foa PUR! PI'I:CII SIT 

CI.20 .. -C1 '" 
Ct2l)IaCJ.l0P 
CJ.llIl>-CL 11? 
CLJDt -CL 11Di 
CIIll)l> -Clll? 
C!S2Dt-ClI'O, 
CIIJDS-Clll1P 
CSlOIaClll101' 

cea un (THUA) 
SUS 1-SUII'+CL2D'-CC-WT (I,.) 
sua2-SUlI;:+CL2DI· CC- iiT 1I,1i) 
SUIIJ-SU:tl+CL3.ca-cc·wt(I,H) 
!U1I'-5UII"+CL3IiI.CC.iI~ n,li) 
SUIIS-SIJ 115+CII2Dp,·CC-WT (I, H) 
!1J1I6a 50116+CII2DI-CC* WT (1, H) 
!Ul!7-SUII7+C1I3DA·CC·~t(4,N) 
SDIIS-S01l8+C!l3D:*CC-"T (I,X) 

TO'UL. C1 lie CII 

101 BlAY! SIT (IICII!AUZZD 

flC'Iall.OO,SIGUO 
'fCL2DaaSIJ!l2*PAC'r 
'tCL201--SDlll· ~AC'I 
'tCL3Ca-SIJ~"*PAC: 
'fCL-lO I -- SIJ:S J. PAC 'I 
tCS20!·SD~6·PAC: 
TCII2DI--SOIl5*.ic: 
'tCII30a-SIJItS- HC':. 
'fCII3~1--SIJ1I7*PACt 

258· 

V.I.T. XEGUIlE or HEAV! AlIGLE) 

C roa P1~C8 Sit 
C 

'tCt2Da-SOIl1* 2.1:0 
tCL2ilIaSIJ!!2- 2.1:0 
'tCL lin. SU! 3* 2. DO 
'tCl.30IaSIJ:1"'"2.IJ 
'tCIl2DBaSIJ~5-~.1)0 . 
'tC!l201aSU 36- 2. co 
'!C!l3D&aSU~'" 2. to 
'ICII30IaSD!!S* 2. co 
iiI utSJO ,:CL 20a, 'tCL20r, 'raJCt., ':Ct30! 

800 10£:t1':('O',10X ,'':CL20Ra,,!1Q.5,2X,'~C1~012·,Fl0.S,2X, 
, 'TCLlt:J.',!10.S,2X, 'TCLlOI-' ,110.5) 
Pl!I1~'OO ,TC!l20R ,TC1l20!,!C:SJOli,:'C!!JOI . 

900 rCgS1T('O',10l ,'t~20f.·',Fl0.5,~l,'TCI!20:··,!10.5,2X, 
, . 'TCIIl08a' ,Fl0 .• 5,:lX, '':C!lJOla'.t10. 5) 

Il(EHO •• !.l) 00 '10 SS 
stOP 
UD 

1'1:113007 J 
1'Gll1007. 
1'GIU0075. 
1'GII30076 
11\;1130077 
.GIUOO78 
1'GII30079 
PGll10080 
PGa30081 
"Ga30082 
PG1I3008J 
1'Ga3008Q 
1'G1I30085 
'GII300S6 
1'G1I30087 
"G1I300S8 
1'Gl!300S9 
PGII30090 
PGII30091 
1'Gll10092 
1'GaJ0093 
"G8JOO" 
PGIlO09S 
"G830096 
&'G8J0091 
"GalO098 
"G1I30099 
PGaJ0100 
1'GI'130101 
1'GII30102 
"GaJ010l 
1'GII301011 
1'GalO 10 5 
1'G"3.0106 
PGSl0107 
PGII30 lOS 

'Ga30109 
1'GII30110 
PGII30111 
1'GII30112 
1'GalO 113 
PGalOll11 
IIG530115 
POalOl16 
PG530117 
PGII3011S 
PGISl0119 
1'GIS30 120 
1'Ga30121 
1IG1I30122 
1'Ga3012J 
PGIl3012Q 
POll30125 
PGIIJ0126 
1'1:1130121 
1'GIIl0128 
1'GIIJO 129 
pGa30130 
PGII30 1 J 1 
pG:l30132 
1'G1I3013J 
PGII3013" 
pGII30135 
&'01130136 
PG!10137 
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The three characteristic length. scales for a .harmorii
cally-oscillating wing~ 
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Fig~re 2.2 .. The five domains of unsteady three-dimensional effects. 
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Figure 2.3a. Schematic of "a wing in unsteady motion. 
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Figure 2.3b. Positive directions of pitch and heave for a wing 
section. 
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F(k) 
~~~ __ ~.~2~S ______ -U~~ ______ ~~ ______ --?1.0 
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G(k) 

.z. 

Figure 2.4." Theodorsen's function plotted as a complex vector, 
(. (k) ~F (k) + j G(k)." 

.5 

.5 

-.5 

Figure 2.5. The Sears function plotted as a complex vector, 
S(k) = SR(k) + j SICk). 
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Figure 2.6. Schematic of matching order for inner and outer 
expansions. 
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Figure 2.7. Linearized paths of integration for calculating downwash 
at the wing. 
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a) Xo > 0 

simple 
pole 

c)· Xo < 0 

b) Xo - 0 

simple . 
. pole 

simple 
pole 

[~l 

Figure 2.8. Integration contours for the first integral in (2.166). 
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a) Xo > 0 

.. b) xo:a 0 

c) xo< 0 + jxo ).' 

Figure 2.9. Integration contours for the second integral in (2.166). 
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Figure 3.1. Physical interpretation of unsteady induced.downwash {after Van Holten (1976». 
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Figure 3.2. Physical interpretation of steady induceq downwash (after Van Holten (1976». 
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.Figure 3.3. The realand .imaginary parts of..the.kernel. ;'func:ti~noi 
unsteady lifting-line theory 1T' (li) .. :II 1\ R (~) '+j 1f'I(lJ) .•. 
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Figure 3.4. The real and imaginary para of the m~ified kernel func
tion of Reissner 11(, (q) = JI(, (q)' -+- j ~ (q) . 
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Amplitude and phase of W for an elliptic wing in pitch 
(A = 10, y* = 0)·.· gp 
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Figure 3.6. 
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Amplitude and phase'of W for an elliptic wing in pitch 
(A = 5" y* = 0). . 8p 
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Figure.3.9. Region of validity of the present unsteady lifting-line 
theory. 
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Figure 3~lO. A family of wing p1anforms (A = 6). 
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Figure 3.11. Amplitude and phase ofW for an elliptic wing in pitch 
gp (A = 6). 
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~ IIG
R -it I ~ ~R. -NGZ 

0.00 1.000 0.000 3.2 .024 .176 
.05 .927 .138 3.4 .017 .163 
.10 .863 .211 3.6 ~014 .155 
.20 .750 .298 3.8 .012 .148 
.30 .656 .347 4.0 .008 .140 
.40 .576 .374 4.2 .005 .130 
.50 .507· .389 4.4 .006 .123 
.60 .447 .395 4.6 .002 .120 
.70 ~395 .395 4.8 .002 .115 
.80, .350 , .'391 5.0 .000 .110 
.90 .309 .384 5.2 .002 ,.104 

1.0 .274 .376 5.4 .001 .097 
1.1 ' .242 .366 5.6 '-.002 .095 
1.2 .215 .356 5.8 .002 .093 
1.3 .189 .345 6.0 -.002 .090 
1.4 .170 .333 6.5 .000 .083 
1.5 .150 .321 7.0 .077 
1.6 .136 . .310 7.5 ,.070 
1.7 .,121 , .299 8.0 .066 
1.8 ' .107 .288 ' 8.5 .062 
1.9 .098 .277 9~0 .058 
2.0 .084 .268 9.5 .055 
2.2 .065 .249 10.0 .052' 
2.4 .052 .233 10.5 .049 
2.6 .041 .216 11.0 .046 
2.8 .034 .202 11.5 ,.044 
3.0 .028 .189 12.0 .042 

00 1/ (2q) 

Table 3.1. NumeriCal values.2.,f the real and im~inary parts of the'modified 
kernel function of Reis sner 11( q) = IIG

R
( q) + j HG1( q). , ' 
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