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INTRODUCTION 

Three-dimensional (3D) separated flow represents a domain of fluid 

mechanics of great practical interest that is, as yet, beyond the reach 

of definitive theoretical analysis or numerical computation. At present, 

our understanding of 3D flow separation rests principally on observations 

drawn from experimental studies utilizing flow visualization techniques. 

Particularly useful in this regard has been the oil-streak technique for 

making visible the patterns of skin-friction lines on the surfaces of 

wind-tunnel models (Naltby 1962). It is a common observation among 

students of these patterns that a necessary condition for the occurrence 

of flow separaticn is the convergence of oil-streak lines onto a particu- 

lar line. Whether this is also a sufficient condition is a matter of 

current debate. The requirement to make sense of these patterns within 

a governing hypothesis of sufficient precision to yield a convincing 

description of 3D flow separation has inspired the efforts of a number of 

Investigators. Of the numerous attempts, however, few of the contending 

arguments lend themselves to a precise mathematical fom~~lation. Here, 

we shall single out for special attention the hypothesis proposed by 

Legendre (1956) as being one capable of providing a mathematical frame- 

work of considerable depth. 

Legendre (1956) ~roposed that a pattern of streamlines immediately adja- 

cent to the surface (in his tersinology, "wall streamlines") be considered as 

trajectories having properties consistent with those of a continuous vector 

field, the principal one being that through any regular (nonsingular) point 

there must pass one and only one trajectory. On the basis of this postulate, 

it follows thai rne dlemcntary singular points of the field can be categorized 



mathematically. Thus, t h e  types of s i n g u l a r  po in t s ,  t h e i r  numher, and the  

r u l e s  governing t h e  r e l a t i o n s  between them can be  s a i d  t o  cha rac t e r i ze  t he  

pa t te rn .  Flow sepa ra t i on  i n  t h i s  view has been defined by t h e  convergence of 

wal l  s t reaml ines  onto a p a r t i c u l a r  wall s t reaml ine  t h a t  o r i g i n a t e s  from a 

s i n g u l ~ r  po in t  of p a r t i c u l a r  type, t h e  saddle  po in t .  We should note ,  however, 

t h a t  t h i s  view of flow sepa ra t i on  is no t  l in iversa l ly  accepted, and, indeed, 

s i t u a t i o n s  e x i s t  where i t  appears  t h a t  a  more nuanced d e s c r i p t i o n  of  flow 

separa t ion  may be required.  

L i g h t h i l l  (1963), address ing  himself s p e c i f i c a l l y  t o  viscous flows, 

c l a r i f i e d  a  n,,.sber of important i s sues  by ty ing  t h e  p o s t u l a t e  of a  con- 

t inuous vec tor  f i e l d  t o  t he  pa t t e rn  of s k i n - f r i c t i o n  l i n e s  r a t h e r  than 

t o  s t reaml ines  l y ing  j u s t  above the  su r f ace ,*  P a r a l l e l  t o  Legendre's 

d e f i n i t i o n ,  convergence of s k i n - f r i c t i o n  l i n e s  onto a p a r t i c u l a r  skin-  

f r i c t i o n  l i n e  o r i g i n a t i n g  from a saddle  po in t  was defined here  as t h e  

necessary condi t ion f o r  flow sepa ra t i on .  More recent ly ,  Hunt e t  a1 (1978) 

have shown t h a t  t h e  no t ions  of elementary s i n g u l a r  po in t s  and the  rules 

t h a t  they obey can be e a s i l y  extended t o  apply t o  t he  flow above t h e  

s u r f a c e  on planes of symmetry, on p ro j ec t i ons  of con ica l  flows (Smith 

1969), on crossf  low planes,  e t c  ( see  a l s o  Perry & F a i r l i e  1974). Further 

app l i ca t i ons  and extensions can be found i n  t h e  var ious con t r ibu t ions  

of Lcgendre (1965, 1972, 1977) and i n  t he  review a r t i c l e s  by Tobak & 

Peake (1979) and Peake C Tobak (1980). 

A s  Legendre (1977) himself has noted,  h i s  hypothesis  was but a  

re invent ion wi th in  a narrower framework of t h e  ex t r ao rd ina r i l y  f r u i t f u l  

l i n e  of research i n i t i a t e d  by Poincart! (1928) under t he  t i t l e ,  "On t h e  
3 . .. 

Cuntes Defined by D i f f e r e n t i a l  Equations." Yet another  branch of t h e  
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same line has been the research begun by Andronov and his colleagues 

(1971, 1973) on the qualitative theory of differential. equations, within 

which the useful notions of "t0p0108i~al structure" and "structural 

stability1' were introduced. Finally, from the same line stems the 

rapidly expanding field known as "bifurcation theory" (cf . the comprehen- 
sive review of Sattinger 1980). Applications to hydrodynamics are exem- 

plified by the works of Joseph (1976) and Benjamin (1978). It has become 

clear that our understanding of 3D separated f l w  may be deepened by 

placing Legendre's hypothesis within a framework broad enough to include 

the notions of topological structure, structural stability, and bifurca- 

tion. Bearing in mind that we still await a convincing description of 

3D flow separation, we may ask whether the broader framework will facili- 

tate the emergence of such a description. In the following, we shall 

try to answer this question, limiting our attention to 3D viscous flows 

that are steady in the mean. 

THEORY 

We consider steady viscous flow over a smooth three-dimensional body. 

The postulate that the skin-friction lines on the surface of the body 

form a continuous vector field is translated mathematically as follows: 

Let ([ ,n,c)  be general curvilinear coordinates with (C,n) being orthogo- 

nal axes in the surface and directed out of the surface n o m l  to 

( Let the length parameters be h ( ) ,  h ) .  Except at singul-ir 

points, it follows from the adherence condition that, very close to the sur- 

face, the components of the velocity vector parallel to the surface (ul ,ui) 

must grow from zero linearly with c .  Hence, a particle on a streamline ncor 



the surface will have velocity components of the form 

where (wl,w2) are the components of the surface vorticity vector. The 

specification of a steady flow is reflected by (ul,uZ) being independent 

of time. With c treated as a parameter and P and Q functions only 

of the coordinates, equations (1) are a pair of autonomous ordinary 

differential equations. Their form places them in the same categorv as 

the equations studied by Poinear4 (1928) in his classical investigation 

of the curves defined by differential equations. Letting 

be components of the skin friction parallel to 5 and q, respectively, 

we have for the equation governing the trajectories of the surface shear 

stress vector, from equations ( 1 ) .  

Alternatively, for the trajectories of the surface vorticity vector, which 

are orthogonal to those of the surface shear stress vector, the governing 

equation is 



Singular Points 

Singular points in the pattern of skin-friction lines occur at isolated 

points on the surface where the skin friction ( T ~ ~ , T ~  ) in equation ( 3 ) ,  
2 

or alternatively the surface vorticity ( w 1 , w 2 )  in equation ( 4 ) .  becomes 

identically zero. Singular points are classifiable into two main types: 

nodes and saddle points. Nodes may be further subdivided into two sub- 

classes: nodal points and foci (of attachment or separation). 

../ 
A nodal point (Figure la) is the point common LO an infinite number 

of skin-friction lines. At the point, all of the skin-friction lines 

except one (labeled A-A in Figure la) are tangential to a single line 

BB. At a nodal point of attachment, a11 of the skin-friction lines are 

directed outward away frorr; the node. .it a nodal point of separation, all 

of the skin-friction lines are directed inward toward the node. 

A focus (Figure lb) differs from a nodal point on Figure la in that 

it has no conmon tangent line. An infinite number of skin-friction lines 

spiral around the singulai point, either away from it (a focus of attach- 

ment) or into it (a focus of separation). Foci of attachment generally 

occur in the presence of rotation, either of the flow or of the surface, 

and will not figure in this study. 

At a saddle point (Figure lc), there are only two particular lines, 

CC and DD, that pass through the singular point. The directions on either 

side of the singular point are inward on one particular line and outward 

on the other particular line. All of the other skin-friction lines miss 

the singular point and take directions consistent with the directions of 

the adjacent particular lines. The particular lines act as barriers in 
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the field of skin-friction lines, making one set of skin-friction lines 

inaccessible to an ad jaceat set. 

For each of :he patterns in Figures la to lc, the surface vortex 

lines form a system of lines orthogonal at every point to the system of 

skin-friction lines. Thus, it is always possible in principle to describe 

the flow in the vicinity of a singular point altcrnatively in terms of a 

pattern of skin-friction lines or a pattern of surface vortex lines. 

Davey (1961) and Lighthill (1963) have both noted that of all the 

possible patterns of skin-friction lines on the surface of a body, only 

those are admissible whose singular points obey a topological rule: the 

number of nodes (nodal points or foci or both) must exceed the number of 

saddle points by two. We shall demonstrate this rule and its recent 

extensions to the external flow field in a number of examples. 

Topogriiphy of Skin-Friction Lines - 

The singular points, acting either in isolation or in combination, ful- 

fill certain characteristic functions that largely determine the distri- 

bution oi skin-friction lines on the surface. The nods1 point of attach- 

ment is typically a stagnation point on a forward-facing surface, such 

as the nose of a body, where the external flow from far upstrc.12 attaches 

itself to the surface. The nodal point of attachment thereby acts as a 

source of skin-friction lines that emerge from the point and spread out 

over the surface. Conversely, the nodal point of separation is typically 

a point on a rearward-facing surface, and acts as a sink where the skin- 

friction lines that have circumscribed the body surface may vanish. 
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The saddle point acts typically to separate the skin-friction lines 

issuing from adjacent nodes; for example, adjacent nodal points of 

attachment. An example of this function is illustrated in Figure 2 

(Lighthill 1963). Skin-friction lines emerging from the nodal points of 

attachment are prevented from crossing by the presence of a particular 

skin-friction line emerging from the saddle point. Lighthill (1963) has 

labeled the particular line a line of separation and has ideniified the 

existence of a saddle point from which the line emerges as the necessary 

condition for flow separation. As Figure 2 indicates, skin-friction 

lines from either side tend to converge on the line emerging from the 

saddle point. Unfortunately, the convergence of skin-friction lines on 

either side of a particular line occurs in other situations as well. It 

can happen, for exdmple, that one skin-friction line out of the infinite 

set of lines emanating from a nodal point of attachment may ultimately 

become a line on which others of the set converge. All researchers agree 

that the existence of a particular skin-friction line on which other 

lines converge is a necessary condition for flow separation. The seeming 

nontiniquenrlss of the condition identifying the particular line has 

encouraged the appearance of alternative descriptions of flow separation 

that, in contrast to Lighthill's, do not insist on the presence of a 

saddle point as the origin of the li.~e. Wang (1976), in particular, has 

argued that there arc two types of flow separation: "open," in which 

the skin-friction line on which other lines converge does not emanate 

frou a saddle point, and "closed," in which, as in Lighthill's definition, 

it docs (see also Wang 1974, Han 6 Pare1 1979). In what follows, we 

shnll address the question of an appropriate description of flow separation 
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by an appeal to the theory of structural stability and bifurcation. Like 

Wang, we shall find it necessary to distinguish between types of separa- 

tion, but we shall adopt a terminology that is suggested by the theoreti- 

cal framework. We shall say that a skin-friction line emerging from a 

saddle point is a ~lobal line of separation and leads to global flow 

separation. In the contrary case, where the skin-friction line on which 

other lines converge does not originate from a saddle point, we shall 

identify the line as being a local line of separation, leading to local 

flow separation. When no modifier is used, what is said will apply to 

either case. Thus (in either case), an additional indicator of the line 

of separation is the behavior of the surface vortex lines. In the vicin- 

ity of a line of separation the surface vortex lines become distorted, 

forming upstream-pointing loops with the peaks of the loops occurring on 

the line of separation. 

The converse of the line of separation is the line of attachment. 

Two lincs of attashrncn: are illustr-ted in Figure 2, emanating from each 

of the nodal points of attachmcnt. Skin-friction lines tend to diverge 

from lines of attaclmcnt. Just as with the line of separation, a grap5ic 

IndicaLor of the presence of a line of attachment is the behavior of the 

surface vortex lincs. Surface vortex lines fortn downstream-pointing 

loops in the vicinity of a line of attachmcnt, with the peaks of the 

loops occurring on the line of attachment. 

Streamlines passing very close tc~ the surface, that is, those defined 

by equations (l', are called limiting streamlines. In the vicinity of a 

linc of scp~ration, limiting streamlines must leave ti.* surface rapidly, 

as a simple argument due to Lighthill$ (1963) explains. Referring to 
*.  
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equation ( 3 ) ,  let us align ([,TI) with external atreamline coordinates so 

that T, ,T are the respective streamwise and crossflow skin-friction 
1 "2 

components. If n is the distance between two adjacent limiting stream- 
{ 

,-j 
lines (see Figure 3) and h is the height of a rectangular streamtube I 

(being assu~~ed small so that the local resultant velocity vectors are 
\ .  

,: 
coplanar and form a linear profile), then the mass flux through the 

f 
1 

streamtube is 

h = phnc 

- 
where p is the density and u the mean velocity of the cross section. I D: 
But thc resultant skin friction a t  the wall is the resultant of T 

Wl 

and T , or 
w2 

so that d 

Hence, 

2 h nrw 
& - -  

2v = constant 

yielding 

Thus, as the line of separatinn is approached, h, the l~eight of the 

limiting streamline above the surface, increases rapidly. There are two 

reasons for this increase in h: first, whether the line of separation 

is global or local, the distance n between adjacent limiting streamlines 

falls rapidly as the limiting streamlines converge towards the line of 
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separation; second, the resultant skin-f riction rw drops toward o mini- 

mum as the line of separation is approached and, in the case of the 

global line of separation, actually approaches zero as the saddle point 

is approached. 

Limiting streamlines rising on either side of the line of separation 

are prevented from crossing by the presence of a stream-surface stemming 

from the line of separation itself. The existence of such a stream-surface 

is characteristic of flow separation; how I: originates determines whether 

the separation is of global or local form. In the former case, the pres- 

ence of a saddle point as the origin of the global line of separation 

provides a mechanism for the creation of a new stream-surface that orig- 

inates at the wall. Emanating from a saddle point and terminating at 

nodal points of separation (either nodes or foci), the global line of 

separation traces a smooth curve on the wall which forms the base of the 

stream-surface, the streamlines of which have all entered the fluid 

through the saddle point. We shall call :his new stream-surface a 

dividing surface. The dividing surface extends the function of the global - - 
line of separation into the flow, acting as a barrier separating the set 

of liariring strea~!+nes thst have risen from the surface on one side of 

the global line of separation from the set arisen from the other side. 

On its passage downstream, the dividing surface rolls up to form the 

familiar coiled sheet around a central vortical core. Because it has a 

well-defined core, we shall invoke the popular tednclogy and call the 

flcw in the vicinity of the coiled-up dividing surface a vortex. Now we 

consider the origin of the stream-surface characteristic of local flow 

separation. We note that if a skin-friction line emanatirg from a nodal 



poin t  of attachment u l t imate ly  becomes a  l o c a l  l i n e  of separa t ion ,  

then there  w i l l  be a point  on the  l i n e  beyond which each of t he  

orthogonal sur face  vortex l i n e s  c ross ing  the l i n e  forms an  upstream- 

point ing loop, s ign i fy ing  t h a t  t he  s k i n  f r i c t i o n  along t h e  l i n e  has 

become l o c a l l y  minimum. A su r f ace  s t a r t i n g  a t  t h i s  point  and stemming 

from the  sk in - f r i c t i on  l i n e  downstream of t h e  point  can be  constructed 

t h a t  w i l l  be  the  locus of a  s e t  of l imi t ing  s t reaml ines  o r i g i n a t i n g  

from f a r  upstream; t h i s  su r f ace  may a l s o  r o l l  up on i ts  developinent 

downstream. 

This s ec t ion  concludes with a d iscuss ion  of t he  renaining cype of 

s ingular  point ,  the  focus ( a l so  c a l l e d  s p i r a l  node). The fccus invar iab ly  

appears on the  sur face  i n  company with a  saddle  point .  Together they 

allow a p a r t i c u l a r  form of global  flow separa t ion .  One l e g  of the  (globzl)  

l i n e  of separa t ion  enanating from the  saddle point  winds i n t o  the  focus 

t o  form the continuous curve on the  su r f ace  from whFch t h e  d iv id ing  sur-  

face stems. The focus on the  wa l l  extends i n t o  the  f l u i d  a s  a  concen- 

t r a t e d  vortex f i lament ,  while  the  d iv id ing  su r f ace  r o l l s  up wi th  the  same 

sense of ro t a t ion  a s  the vortex f i lament .  When the  d iv id ing  sur face  

extends downstream i t  quickly ciraws t h e  vor tex  filament i n t o  i ts core.  

I n  e f f e c t ,  then, the extension i n t o  t h e  f l u i d  of t he  focus on the  wall  

se rves  a s  the  v o r t i c a l  core about which the  d iv id ing  su r f ace  c o i l s .  This 

flow behavior was f i r s t  hypothesized by Legendre (1965), who a l s o  noted 

(Legendre 1972) t ha t  an experimental confirmation ex is ted  i n  the r e s u l t s  

of e a r l i e r  experiments ca r r i ed  out by Werl6 (1962). Figure 4a shows 

Legendre's o r i g i n a l  sketch of the  sk in - f r i c t i on  l i n e s ;  Ffgure 4b is a  

photograph i l l u s t r a t i n g  the  experimental cocfirmation. The d iv id ing  
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s u r f a c e  t h a t  c o i l s  around t h e  e x t e n s i o n  of t h e  focus  (F igure  4c) w i l l  be 

termed here  a "horn-type d i v i d i n g  sur face . "  On t h e  o t h e r  hand, i t  can 

happen t h a t  t h e  d i v i d i n g  s u r f a c e  t o  which t h e  focus  is connected does 

n o t  extend downstream. I n  t h i s  c a s e  t h e  v o r t e x  f i l ament  emanating from 

the focus  remains d i s t i n c t ,  and is seen  as a s e p a r a t e  e n t i t y  on c ross f low 

planes  downstream of i ts  o r i g i n  on t h e  s u r f a c e .  I n  an i n t e r e s t i n g  addi-  

t i o n a l  i n t e r p r e t a t i o n  of t h e  focus ,  we beg in  by c o n s i d e r i n g  t h e  p a t t e r n  

of l i n e s  o r thog .wal  t o  t h a t  of t h e  s k i n - f r i c t i o n  l i n e s ;  t h a t  is ,  t h e  

p a t t e r n  of s u r f a c e  v o r t e x  l i n e s .  We s e e  t h a t  what was a  focus  f o r  t h e  

p a t t e r n  of s k i n - f r i c t i o n  l i n e s  becomes ano ther  focus  of s e p a r a t i o n  f o r  

t h e  p a t t e r n  of s u r f a c e  v o r t e x  l i n e s ,  marking t h e  apparen t  t e rmina t ion  of 

a  s e t  of s u r f a c e  v o r t e x  l i n e s .  I f  we imagine t h a t  each of ~ h e s e  s u r f a c e  

v o r t e x  l i n e s  is  t h e  bound p a r t  of a horseshoe v o r t e x ,  then t h e  ex tens ion  

i n t o  t h e  f l u i d  of t h e  focus  on t h e  w a l l  a s  a  concen t ra ted  v o r t e x  f i l ament  

i s  seen t o  r e p r e s e n t  t h e  combination i n t o  one f i l ament  of t h e  horseshoe 

v o r t e x  l e g s  from a l l  of  t h e  bound v o r t i c e s  t h a t  have ended a t  t h e  focus .  

One can envisage t h e  p o s s i b i l i t y  of i n c o r p o r a t i n g  t h i s  d e s c r i p t i o n  of the  

flow i n  t h e  v i c i n i t y  of 3 focus  i n t o  an  a p p r o p r i a t e  i n v i s c i d  flow modcl. 

F o m  of Dividing Sur faces  

We hsve seen how t h e  combination of a  focus  and a  s a d d l e  po in t  i n  t h e  

p a t t e r n  of s k i n - f r i c t i o n  l i n e s  a l lows  a p a r t i c u l a r  :arm of g l o b a l  flow 

s e p a r a t i o n  c h a r a c t e r i z e d  by a  "horn-:ype d i v i d i n g  sur face . "  The ngdal  

p o i n t s  of a t t achmer~ t  and s e p a r a t i o n  may a l s o  combine wi th  s a d d l e  p o i n t s  

t o  a l low , ~ d d i t i o n a l  forms of g l o b a l  f low s e p a r a t i o n ,  a g a i n  c h - r a c t e r i z e d  

by t h e i r  p a r t i c u l a r  d i v i d i n g  s u r f a c e s .  The c h a r a c t e r i s t i c  d i v i d i n g  



su r f ace  formed from the  combination of a nodal point of attachment and a 

saddle point  is i l l u s t r a t e d  i n  Figure 5a. This form of d iv id ing  su r f ace  -./ A-e---- 

F i g .  5 
t y p i c a l l y  occurs i n  the  flow before  an obs t ac l e  ( c f .  Figure 34 i n  Peake 1: 
C Tobak 1980). I n  the  example i l l u s t r a t e d  i n  Figure 5a i t  w i l l  be  noted 

t h a t  t he  d iv id ing  su r f ace  admits of a point  i n  the  ex t e rna l  flow a t  which 

the f l u i d  ve loc i ty  is i d e n t i c a l l y  zero. This is a 3D s ingu la r  po in t ,  

which i n  Figure 5a a c t s  a s  t h e  o r i g i n  of the  s t reaml ine  running through 

the v o r t i c a l  core  of t h e  ro l l ed  up d iv id ing  surface.  

The c h a r a c t e r i s t i c  d iv id ing  su r f ace  formed from the  combination of 

a nodal point of separa t ion  and a saddle  point  is i l l u s t r a t e d  i n  Fig- 

u re  5b. This form of d iv id ing  sur face  o f t en  occurs i n  nominally 2D 

separated flows such a s  i n  t he  separated flow behind a backward-facing 

s t e p  (c f .  Figure 34 i n  Tobak 6 Peake 1979) 2nd the  separated flow a t  a 

cy l inder - f la re  junct ion (both 2D and 3D, c f .  Figures  47 and 48 i n  Peake 

6 Tobak 1980). We note  i n  both Figures 5a and 5b t h a t  t he  s t reamlines on 

the d iv id ing  sur face  have a l l  entered the f l u i d  through the  saddle  point  

i n  the  pa t t e rn  of sk in - f r i c t i on  l i n e s .  

Topography of Streamlines i n  Two-Dimensional Sect ions 

of Three-Dimensional Flows 

After  an unaccountably long lapse  of time, i t  has only recent ly  become 

c l e a r  t h a t  t he  mathematical bas i s  f o r  the  behaviar of elementary s ingular  

po in ts  and the topological  ru l e s  t h a t  they obey is general  enough t o  

support a much wider regime of app l i ca t ion  than had o r i g i n a l l y  been 

rea l ized .  The r e s u l t s  reported by Smith (1969, 1975), Perry & F a i r l i e  

(1974). and Hunt e t  a 1  (1978) have made i t  evident  t h a t  the r u l e s  governing 



s k i n - f r i c t i o n  l i n e  behav io r  are e a s i l y  adapted and extended t o  y l e l d  

s i m i l a r  r u l e s  governing behav io r  of t h e  f l o ~  i t s e l f .  In  p a r t i c u l a r ,  Hunt 

et a1 (1978) have noted t h a t  i f  1 = [ u ( x , y , z o ) ,  v ( x , y , z o ) ,  w ( x , y , z o ) ]  

is t h e  mean v e l o c i t y  whose u , v  components a r e  measured i n  a  p lane  

z = z o =  

then  t h e  

c o n s t a n t ,  above a s u r f a c e  s i t u a t e d  a t  y  = Y (x;zo) (see F i g u r e  61,  

mean s t r e a m l i n e s  i n  t h e  p lane  are s o l u t i o n s  of  t h e  e q u a t i o n  

which is  a  d i r e c t  c a u n t e r p a r t  of equa t ion  (3) f o r  s k i n - f r i c t i o n  l i n e s  on 

t h e  s u r f a c e .  Hunt e r  a 1  (1978) cau t ioned  t h a t  f o r  a  g e n e r a l  3D f low t h e  

s t r e a m l i n e s  de f ined  by e q u a t i o n  (5) a r c  no more than t h a t  - they a r e  n o t  

n e c e s s a r i l y  t h e  p r o j e c t i o n s  of t h e  3n s t r e a m l i n e s  o n t o  t h e  p lane  z = z,,, 

nor  a r e  they  n e c e s s a r i l y  p a r t i c l e  pa ths  even i n  a s t e a d y  flow. Only f o r  

s p e c i a l  p lanes  - f o r  example, a s t rea~irwise  p lane  of symmetry (where 

w ( x , y , z o )  Z 0) - a r e  t h e  s t r e a m l i n e s  dc f ined  by e q u a t i o n  (5) i d e n t i f i a b l e  

wi th  p a r t i c l e  pa th  l i n e s  i n  t h e  p lane  when t h e  f low is s t e a d y ,  o r  w i t h  

i n s t a n t a n e o u s  s t r e a m l i n e s  when t h e  f low i s  unsteady.  I n  any c a s e ,  s i n c e  

[ u ( x , y ) , v ( x , y ) ]  is n con t inuous  v e c t o r  f i e l d  x ( x , y ) ,  w i t h  on ly  a  f i n i t e  

number of s i n g u l a r  p o i n t s  i n  t h e  i n t e r i o r  of tl-rc f low a t  which = 0,  

i t  fo l lows  t h a t  nodes and s a d d l e s  can be  de f ined  i n  t he  p lane  j u s t  a s  they 

were f o r  s k i n - f r i c t i o n  l i n e s  on t h e  s u r f a c e .  Nodes and s a d d l e s  w i t h i n  

t h e  f low, exc lud ing  t h e  boundary y  = Y ( x ; z o ) ,  a re  1abelc.d N and S ,  

r e s p e c t i v e l y ,  and a r e  shown i n  t h e i r  t y p i c a l  form i n  F i g u r e  6.  The on ly  

new f e a t u r e  of t h e  a n a l y s i s  t h a t  is r e q u i r e d  is t h e  t rea tment  of s i n g u l a r  

p o i n t s  on t h e  boundary y = Y(x;zo) .  S ince  f o r  a v i s c o u s  f low,  2 is 

z e r o  everywhere on t h e  boundary, t h e  boundary i s  i t s e l f  a s i r l g u l a r  l i n e  
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i n  t h e  p lane  z = z,,. S i n g u l a r  p o i n t s  on t h e  l i n e  occur  where t h e  com- 

ponent of  t h e  s u r f a c e  v o r t i c i t y  v e c t o r  normal t o  t h e  p lane  z = z o  is 

zero .  Thus, f o r  example, i t  i s  ensured t h a t  a s i n g u l a r  p o i n t  w i l . 1  occur  

on t h e  boundary wherever i t  passes  through a s i n g u l a r  p o i n t  i n  t h e  p a t t e r n  

of s k i n - f r i c t i o n  l i n e s ,  s i n c e  t h e  s u r f a c e  v o r t i c i t y  Is i d e n t i c a l l y  z e r o  

t h e r e .  A s  in t roduced  by Hunt e t  a 1  (1978), s i n g u l a r  p o i n t s  on t h e  bound- 

a r y  a r e  d e f i n e d  as hal f -nodes  N'  and h a l f - s a d d l e s  S' (F igure  6) .  With 

t h i s  s imple  amendment t o  t h e  types  of  s i n g u l a r  p o i n t s  a l l o w a b l e ,  a11 of 

t h e  p rev ious  n o t i o n s  and d e s c r i p t i o n s  r e l e v a n t  t o  t h e  a n a l y s i s  of sk in -  

f r i c t i o n  l i n e s  c a r r y  over  t o  t h e  a n a l y s i s  of  t h e  flow w i t h i n  t h e  p lane .  

I n  a  p a r a l l e l  v e i n ,  Hunt e t  a1 (1978) have recognized t h a t ,  j u s t  as 

t h e  s i n g u l a r  p o i n t s  i n  t h e  p a t t e r n  of  s k i n - f r i c t i o n  l i n e s  on t h e  s u r f a c e  

obey a  t o p o l o g i c a l  r u l e ,  s o  must t h e  s i n g u l a r  p o i n t s  i n  any of t h e  sec-  

t i o n a l  views of 3D f lows obey t o p o l o g i c a l  r u l e s .  Although a  very  g e n e r a l  

r u l e  app ly ing  t o  m u l t i p l y  connected bod ies  can be  d e r i v e d  (Hunt e t  a1 1978) 

we s h a l l  l i s t  h e r e  f o r  convenience o n l y  those  s p e c i a l  r u l e s  t h a t  w i l l  b e  

~ ~ s e f u l  i n  dubsequent s t u d i e s  of t h e  f low p a s t  wings,  bod ies ,  and o b s t a c l e s .  

I n  t h e  f i v e  t o p o l o g i c a l  r u l e s  l i s t e d  below, w e  assume t h a t  t h e  body i s  

s imply connected and immersed i n  a  f low t h a t  is uniform f a r  upstream. 

1. S k i n - f r i c t i o n  l i n e s  on a  three-dimensional  body (Davey 1961; 

L i g l a t h i l l  1.; . \ ) :  

2. S k i n - f r i c t i o n  l i n e s  on a three-dimensional  bouy B connected 

s imply (without gaps)  t o  a p lane  w a l l  P t h a t  e i t h e r  ex tends  t o  i n f i n i t y  

bo th  upstream and downstream o r  is t h e  s u r f a c e  of a t o r u s :  



3 *  S~reamlines on s two-dimensional plane cutting a three-dimensional 

body: 

4. Stieamline~ on a vertical plane cutting a 5urface that extends 

to infinity both upstream and downstream: 

5. Streamlines on the projection onto a spherical surface of a 

conical flow past a three-dimensional body (Smith 1969): 

'X'opologici~l Structure, Structural Stability, and Bifurcation 
----. --- 

The question of an adequate description of 3D separated flow rises with 

particular sharpness when one asks how 3D separated flow pattcrns origi- 

nate and how they succeed each other as the relevant parameters of the 

problem (angle of attack, Reynolds number. Mach number, etc) are varied. 

A satisfactory answer tc the questim say emerge out of the framework 

that we s h a l l  try to create in this section. Wc shall cast our formula- 

tion in physical terns ~lthough our definitions ought to be compatible 

with a more purely mathematical trcb,itment based, for example, on whatev~sr 

system of partial differential equ3tions is judged to govern the fluid 

motion. In particular, we shall hinge our deiinitions of topological 

structure and structural stability dirpctly to the properties of pattcrns 

of skin-friction lines, since this will enable us to make masinurn usc of 
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r e s u l t s  from t h e  p r i n c i p a l  s o u r c e  of  exper imenta l  in fo rmat ion  on 3D sepa- 

r a t e d  f low - f l o w - v i s u a l i z a t i o n  exper iments  u t i l i z i n g  t h e  o i l - s t r e a k  

technique.  

Adopting t h e  terminology of Andronov e t  a1 (1973), w e  s h a l l  s a y  t h a t  

a p a t t e r n  of  s k i n - f r i c t i o n  l i n e s  on t h e  s u r f a c e  of a body c o n s t i t u t e s  

t h e  phase  p o r t r a i t  of t h e  s u r f a c e  s h e a r - s t r s s s  v e c t o r .  Two phase por- 

t r a i t s  have t h e  same t o p o l o s i c a l  s t r u c t u r e  i f  a  mapping from one phase 

p o r t r a i t  t o  t h e  o t h e r  p r e s c r v e s  t h e  p a t h s  of t h e  phase p o r t r a i t .  It is 

u s e f u l  t o  imagine having imprinted a  phase p o r t r a i t  on a s h e e t  of rubber  

t h a t  flay be deformed i n  any wsy wi thou t  f o l d i n g  o r  t e a r i n g .  Every such  

deformat ion i s  a pa th -p rese rv ing  mapping. A t o p o l o g i c a l  p roper ty  i s  any 

c h a r a c t e r i s t i c  of t h e  phase p o r t r a i t  t h a t  remains i n v a r i a n t  under a l l  

pa th -p rese rv ing  mappings. The number and t y p e s  of s i n g u l a r  p o i n t s ,  t h e  

e x i s t e n c e  of p a t h s  connec t ing  t h e  s i n g u l a r  p o i n t s ,  and t h e  e x i s t e n c e  of 

c l o s e d  p a t h s  a r e  examples of t o p o l o g i c a l  p r o p e r t i e s .  The set of a l l  

t o p o l o g i c a l  p r o p e r t i e s  of t h e  phase p c r t r a i t  d e s c r i b e s  t h e  t o p o l o g i c a l  

s t r u c t u r e .  

We s h a l l  d c f i n c  t h e  s t r u c t u r a l  s t a b i l i t y  o f  a  phase p o r t r a i t  r e l a -  

t i v e  t o  a parameter X a s  fo l lows  ( c f .  Andronov e t  a 1  1971): A phase 

p o r t r a i t  is s t r u c t u r a l l y  s t a b l e  a t  a  g iven v a l u e  of t h e  parameter  X i f  

t h e  phase p o r t r a i t  r e s u l t i n g  from a n  i n f i n i t e s i m a l  change i n  t h e  param- 

e t e r  has  t h e  same t o p o l o g i c a l  s t r u c t u r e  a s  t h e  i n i t i a l  one. The p r o p e r t i e s  

of s t r u c t u r a l l y  s t a b l e  phase p o r t r a i t s  can b e  e l u c i d a t e d  v i a  mathemat ica l  

a n a l y s i s  (Andronov e t  a 1  1971) a l though  they depend t o  some e x t e n t  on 

whether s p e c i a l  c o n d i t i o n s  such a s ,  f o r  example, geometr ic  symmetries,  a r e  

t o  b e  considered t y p i c a l  ( i . e .  "generici ' ;  c f .  Ben jas in  1978) o r  untypicczl 
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("nongeneric"). Here we s h a l l  wish  t o  r e s p e c t  t h e  c o n d i t i o n s  imposed by 

g e o s e t r i c  symmetries whenever they  e x i s t .  I n  t h i s  c a s e  s t r u c t u r a l l y  

s t a b l e  phase p o r t r a i t s  of t h e  s u r f a c e  s h e a r - s t r e s s  v e c t o r  have two pr in -  

c i p a l  p r o p e r t i e s  i n  common: (a) t h e  s i n g u l a r  p o i n t s  of t h e  phase por- 

t ra i t  are a l l  e lementary  s i n g u l a r  p o i n t s ;  and (b) - t h e r e  are no sadd le -  

p o i n t - t o - s a d d l e - ~ o i n t  connec t ions  i n  t h e  phase p o r t r a i t .  (We should  n o t e  

t h a t  c o n d i t i o n  (b )  - i s  a p roper ty  on ly  of t h e  phase p o r t r a i t  r e p r e s e n t i n g  

t h e  t r a j e c t o r i e s  of t h e  s u r f a c e  s h e a r - s t r e s s  v e c t o r .  Saddle-point-to-  

sadd le -po in t  connectiorls  o f t e n  occur  on 2 D  p r o j e c t i o n s  of t h e  e x t e r n a l  

f low$but  t h e s e  a r e  a r t i f a c t s  of t h e  p a r t i c u l a r  p r o j e c t i o n s  and do  no t  

r e p r e s e n t  c o n n c ~ t i o n s  between a c t u a l  (3D) s i n g u l a r  p o i n t s  of t h e  f l u i d  

v e l o c i t y  v c c t o r ) .  

S t a b i l i t v  of t h e  e s t e r n a l  t low a l s o  can be d e f i n e d  i n  terms o f  i t s  

t o p o l o g i c a l  s t t u c t u r e .  There is, however,  a u s e f u l  d i s t i n c t i o n  t h a t  

s l ~ o u l d  be  made betweer~ -- l o c a l  and ~ 1 o b a 1  - i n s t a b i l i t y  of t h e  e x t e r n a l  t iow.  

We s h a l l  say  t h a t  i f  an  i n s t a b i l i t y  o i  t h e  e x t e r n a l  f low occurs  t h ~ t  does  

no t  r e s u l t  i n  t h e  appearance of a  new (3D) s i n g u l a r  po in t  ;f t h e  f l u i d  

*;t-locity v c c t o r ,  then the t o p o l o g i c a l  s t r u c t u r e  of t h e  e x t e r n a l  flow has  

bccn unn l t c rcd  clnd t h e  i n s t a b i l i t y  i s  l o c a l  onc. On t h e  o t h c r  hand, 

t h c  dppe.lrnncc of a nc\J (3D) s i n g u l a r  p o i n t  mt.:lns t t la t  t h e  topo log ica l  

s t r u c t u r e  of t h e  e x t e r n a l  f low has bccn a l t e r e d  and the  i n s t a b i l i t y  is s 

~ 1 1 l b ~ i I  one. I n  c o n t r a s t ,  we s h a l l  not  make t h i s  d i s t i n c t i o n  f o r  t h e  

s u r f a c e  s h e a r - s t r e s s  v e c t o r .  We s h a l l  s a y  t h a t  t h e  s u r f a c e  s h e a r - s t r e s s  

v e c t o r  experierlccs slob;11 - i n s t a b i l i  t i c s  only;  those  i n s t a b i l i t i e s  occur  

when t h e  t c ~ p o l o g i c a l  s t r u c t u r t  of i t s  phase p o r t r a i t  is a l t e r e d .  

-.----- --- 
*By e x t e r n a l  flow wc mean t b e  e n t i r e  flow e x t e r i o r  t o  t h c  s u r f a c e .  
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The introduction of distinctions betwren local and global cvcnts 

helps to explain why we were led earlier to distinguish between local and 

global lines of separation in the pattern of skin-friction lines. If dn 

instability of the external flcw (either local or global) does not alter 

the topological structure of the phase portrait representing the surface 

shear-stress vector, then the convergence of skin-friction lines onto one 

or several particular lines can only be a local event so far as the phase 

portrait is concerned; accordingly, we label the particular lines local 

lines of separation. On the other hand, if an instability of the external 

flow changes the topological structure of the phase portrait, resulting 

in the emergence of a saddle point in the pattern of skin-friction lines, 

then this is a global event so far as the phase portrait i5 concerned; 

accordingly, we label the skin-friction line emanating from the saddle 

point a global line of separation. 

Instability of the cxtrrr,al flow leads to the notions of bifurcation, 

syrmnctry-breaking, and dissipative structures (Sattinger 1980; Nicolis 6 

Prigogine 1977).  Suppose that the fluid motions evolve according to 

time-dependent equations of the general form 

u = G(u,X) 
t 

where X again is 3 parameter. Soluticlns of G(u,X) = 0 represent 

steady mean flows of the kind 2 have been considering. A mean flow uO - 
is an asymptotically stable flow if small perturbations from it decay to 

zero as t -+ a. When thr? parameter h is varied, one mean flow may 

persist [in the mathematical sense that it remains a valid solution of 

G(u.1) = 0] but hecome unstable to small perturbations as X crosses a 

critical value. At such a transition point, 3 new mean flow may bifurcate 
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from t h e  known flow. The behavior  j u s t  d e s c r i b e d  is conven ien t ly  por- 

t r a y e d  on a  b i f u r c a t i o n  diagram, t y p i c a l  examples of which a r e  i l l u s t r a t e d  

i n  F i g u r e  7. Flows t h a t  b i furcate  from t h e  known f low a r e  r e p r e s e n t e d  by /' 

t h e  o r d i n a t e  9,  which may be any q u a n t i t y  t h a t  c h a r a c t e r i z e s  t h e  b i f u r -  

c a t i o n  flow a lone .  S t a b l e  f lows a r e  i n d i c a t e d  by s o l i d  l i n e s ,  u n s t a b l e  

f lows by dashed l i n e s .  Thus, o v e r  t h e  range of X where t h e  known f low 

i s  s t a b l e ,  $ is z e r o ,  and t h e  s t a b l e  known f low is  r e p r e s e n t e d  a l o n g  t h e  

a b s c i s s a  by s s o l i d  l i n e .  The known flow becomes u n s t a b l e  f o r  a l l  v a l u e s  

of X l a r g c r  than X c ,  a s  t h e  dashed l i n e  a long  t h e  a b s c i s s a  i n d i c a t e s .  

New mean flows b i f u r c a t e  from X = X c  e i t h e r  s u p e r c r i t i c n l l y  o r  

s u b c r i t i c s l l y .  

A t  a  s u p r r c r i t i c a l  b i fu rca tLon  ( F i g b r e  7 3 ) ,  as  t h e  parameter I 

i s  i n c r e a s e d  j u s t  beyond t h e  c r i t i c a l  p o i n t  Xc ,  t h e  b i f u r c a t i o n  flow 

t h a t  r e p l a c e s  t h e  u n s t a h l p  known flow can d i f f e r  on ly  i n f i n i t e s i m a l l y  

from i t .  The b i f u r c a t i o n  flow brc.iks t h e  sqmn:t.try of :he known flow, 

adop t ing  a form of l c s s c r  s p m t r ) ;  i n  which d i s s i p a t i \ * c  s t r u c t u r e s  a r i s e  

t o  absorb  j u s t  the  Jmount of excess  a v a i l a b l e  encrgy t h a t  t h e  n o r c  SF- 

m p t r i c a l  known flow no lnnger  was a b l e  t o  absorb.  Because t h e  b i f u r c a -  

t i o n  flow i n i t i a l l y  d e p a r t s  on ly  i r l f i n i t c s i r n a l l y  from t h e  u n s t a b l e  known 

flow, t h e  g l o b a l  s t a b i l i t y  of t h e  surf: lcc s h e a r  s t r e s s  i n i t i a l l y  is 

unclffectcd. Howcver, 3s 1 c o n t i ~ l u e s  t o  i n c r e a s e  beyond I C ,  t h e  

b i fu rcn t i -on  flow d e p a r t s  s i g n i f i c a r ~ t l y  from t h e  u n s t a b l e  known flow and 

b e g i n s  t o  a f f e c t  t h c  g l o b a l  s t a b i l i t y  of  t h e  s u r f a c e  s h e a r  s t r e s s .  

U l t i m , ~ t c l v  3 v a l u e  o f  \ is  reack.c.d a t  which t h e  s u r i n c e  s h e a r  s t r e s s  --- -.- A 

becomes g l o b a l l y  unstable, tlvidr-:need e i t h e r  by one of t11. elementary 

s i n g u l a r  p o i n t s  of i t s  phase p o r t r a i t  becoming a s i n g u l a r  po in t  of (odd) 
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multiple order or by the appearance of a new singular point of (evcn) 

multiple order. In either case, it is useful to consider the si::gulnr 

point of multiple order as being the coa~escence of a nunber of ele~:lt~lt~il-y 

singular points, with the number divided among nodal and saddlc points 

such as to continue to satisfy the first topological rule, equation (6). 

An additional infinitesimal increase in the parameter 1 results in the 

splitting of the singular point of multiple order into an equal number of 

elementary singular points. Thus there emerges a new structurally stable 

phase portrait of the surface shear-stress vector and a new external flow 

from which additional flows ultimately will bifurcate with further 

increases of the parameter. 

At a subcritical bifurcation (Figure 7b). when the parameter is 

increased just beyond the critical point Xc, there are no adjacent 

bifurcation flows that differ unly infinitesimally from the unstable known 

flow. Hew, there must be a finite jump to a new branch of flows that nay 

represent a radical change in the topologica: structure of the external 

flow and perhaps in the phase portrait of the surface shear-stress vector 

as ~ 1 1 .  Further, with on the new branch, when X is decreased just 

below l c  the flow does not return to the original stable known flow. 

Only wllcn 4 is decreased far enough below X c  to pass X o  (Figure 7b) 

is the stable known flow recovered. Thus, subcritical bifurcation alwnvs 

implies that t h e  bifurcation flows will. exhibit hysteresis effects. 

This complttcs a framework of terns and notions that should suffice 

to describe haw the structr;r,ll forms of 3D separated flovs originate and 

succeed each other. The following section will be devoted to illustra- 

tions of the use of this fraaework in two examples involving supcrcritic.11 

and subcritical bifurcations. 



Round-Nose Body of Revolut ion a t  Angle of At tack  

Le t  u s  f i r s t  c o n s i d e r  how a s e p a r a t e d  f low may o r i g i n a t e  on a s l e n d e r  

round-nose body of r e v o l u t i o n  a s  one of t h e  main parameters  of  t h e  prob- 

lem, a n g l e  of a t t a c k ,  i s  i n c r e a s e d  from z e r o  i n  increments .  Focusing on 

t h e  flow i n  t h e  nose reg ion  a l o n e ,  we adopt  t h i s  example t o  i l l u s t r a t e  a 

sequence of e v e n t s  i n  which s u p e r c r i t i c a l  b i f u r c a t i o n  is t h e  agen t  lead-  

i n g  t o  t h e  format ion of l a r g e - s c a l e  d i s s i p a t i v e  s t r u c t u , e s .  

A t  z e r o  a n g l e  of a t t a c k  (Figr:rc 8a )  t h e  flow is  everywhere a t r a . h e d .  .----' 

A l l  s k i n - f r i c t i o n  l i n e s  o r i g i n a t e  a t  t h e  nodal  p o i n t  of a t tachment  a t  

t h e  nose and,  f o r  a  s u f f i c i e n t l y  smooth s l e n d e r  body, d i s a p p e a r  i n t o  a 

nodal poin: of s e p n r a t i o n  a t  the t a i l .  The r e l e v a n t  t o p o l o g i c a l  r u l e ,  

equa t ion  ( 6 ) ,  is s a t i s f i e d  i n  t h e  s i m p l e s t  p o s s i b l e  way (N = 2 ,  S = '7). 

A t  a very s m s l i  a n g l e  of a t t a c k  (F igure  8b) t h e  t o p o l o g i c a l  s t r u c t u r e  

of t h e  p a t  t cl-n o f  s k i n - f r i c t i o n  l i n t s  remains u n a l t e r e d .  A l l  s k i n - f r i c t i o i i  

l i n c s  a g a i n  o r i g i n a t e  a t  3 ncda l  p o i n t  of a t tachment  and d i s a p p e a r  i n t o  a 

nodal  po in t  of s e p a r a t i o n .  However, t h e  f a v o r a b l e  c i r c u m f e r e n t i a l  pres-  

s u r e  g r a d i c n t  d r i v c s  t h e  s k i n - f r j c t i o n  l i n c s  leeward whcrc they tend t o  

converge on t h e  s k i n - f r i c t i o n  l i n c  running a l o n g  t h e  leeward ray .  

Fmanating from a  node r , l t h e r  than a s a d d l e  p o i n t  and b e i n g  a l i n e  on to  

which o t h e r  s k i n - f r i c t i o n  l i n e s  converge ,  t h i s  p a r t i c u l a r  l i n e  q u a l i f i e s  

a s  a l o c a l  l i n e  -- of s t ~ : ~ r a t i o n  -- accord ing  t o  our  d e f i n i t i o n .  The flow 

i n  t h e  v i c i n i t y  of t h e  l o c a l  l i n e  of s e p a r a t i v n  p rov ides  a  r a t h e r  innocuoas 

fonn of  l o c a l  f low separation, t y p i c a l  of t h c  f lows l e a v i n g  s u r f a c e s  nea r  

t h e  sycanetry p l a n e s  o i  wakes. 
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appearance of a corresponding a r r a y  of a l t e r n a t i n g  l i n e s  of a t tachment  

and ( l o c a l )  s e p a r a t i o n .  The b i f u r c a t i o n  b e i n g  s u p e r c r i t i c a l ,  howevcr, 

3 3 

A s  t h e  a n g l e  of a t t a c k  is  inc reased  f u r t h e r ,  a c r i t i c a l  a n g l e  sc 

i s  reached j u s t  beyond which t h e  e x t e r n a l  f low becomes l o c a l l y  u n s t a b l e .  

Coming i n t o  p lay h e r e  i s  t h e  well-known s u s c e p t i b i l i t y  of -- infleuior. : i1 

boundary-layer v e l o c i t y  p r o f i l e s  t o  i n s t a b i l i t y  (Gregory e t  a i  7955, 

S t u a r t  1963, Tobak 1973). The i n f l e x i o n a l  p r o f i l e s  deve lop  on c r o s s f l o w  

p lanes  t h a t  a r e  s l i g h t l y  i n c l i n e d  from t h e  p l a n e  normal. t o  t h e  e:.ternal 

i n v i s c i d  flow d i r e c t i o n .  Ca l l ed  a c r o s s f l o w  i n s t a b i l i t y ,  t h e  cqk7ent i s  o f t e n  

a p r e c u r s o r  of bol~ndary- layer  t r a n s i t i o n ,  t y p i c a l l y  o c c u r r i n g  a t  k e y n ~ l d s  

numbers j u s t  e i ~ t c r i n g  t h e  t r a n s i t i o n a l  range (McDevitt 6 M e l l e ~  1969, 

Adams 1971). R e f e r r i n g  t o  t h e  b i f u r c a t i o n  diagrams of F i g u r e  7 . 

i d e n t i f y i n g  t h e  p:irarl;eter X w i t h  a n g l e  of a t t a c k ,  we have t h a t  t h e  

i n s t a b i l i t y  occurs  a t  t h e  c r i t i c a l  p o i n t  a=, where a  s u p e r c r i t i c a l  

b i f u r c a t i o n  (Figure  7a )  l e a d s  t o  a  new s t a b l e  mesn flow. Within t h e  

l o c a l  space  in f luenced  by t h e  i n s ' a b i l i t y ,  t h e  new mean flow c o n t a i n s  an  

a r r a y  of d i s s i p a t i v e  s t r u c t u r e s .  The s t r u c t u r e s ,  i ! l u s t r a t e d  schemati-  

c a l l y  on F igure  8 c ,  a r e  i n i t i a l l y  of ve ry  small s c a l e  w i t h  spac ing  o l  

t h e  o r d e r  of t h p  boundary-layer t h i c k n e s s .  Zesembling a n  a r r a y  of strearc- 

wise  v o r t i c e s  having axes  s l i g h t l y  skewed from t h e  d i r e c t i o n  of t h e  

e x t e r n a l  f low, tt;e s t r u c t u r e s  w i l l  be  c ~ l l e d  v o r t i c a l  s t r u c t u r e s .  Although 

t h e  r e p r e s e n t a t i o n  of t h e  s t r u c t u r e s  on a  c r o s s f l o w  p lane  i n  F igure  Bc 

is intended t o  be merely s c h c m t i c ,  n e v e r t h e l e s s ,  t h e  s k e t c h  s a t i s f i e s  

t h e  t o p o l o g i c a l  r u l e  f o r  s t r e a m l i n e s  i n  a c r o s s f l o w  p l a n e ,  equa t ion  (8) .  

A s  i l l u s t r a t e d  i n  t h c  s i d e  view of F i g u r e  8 c ,  t h e  a r r a y  of v o r t i c a l  

s t r u c t u r e s  is  reflected i n  t h e  p a t t e r n  of s k i n - f r i c t i o n  l i n e s  by t h e  
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t h e  v o r t i c a l  s t r u c t u r e s  i n i t i a l l y  a r e  of i n f i n i t e s i m a l  s t r e n g t h  and 

cannot a f f e c t  t h e  t o p o l o g i c a l  s t r u c t u r e  of t h e  p a t t e r n  of s k i n - f r i c t i o n  

l i n e s .  There fo re ,  once a g a i n ,  these  a r e  - l o c a l  l i n e s  of s e p a r a t i o n ,  each 

of which l e a d s  t o  a l o c a l l y  s e p a r a t e d  flow t h a t  is i n i t i a l l y  of ve ry  

s m a l l  s c a l e .  

Although t h e  v o r t i c a l  s t r u c t u r e s  a r e  i n i t i a l l y  a11 v e r y  s m a l l ,  t hey  

a r e  no t  of equa l  s t r e n g t h ,  b e i n g  immersed i n  a nonuniform c ross f low.  

V i c ~ e d  i n  a c ross f low p lane ,  t h e  s t r e n g t h  of  t h e  s t r u c t u r e s  incre: 2s 

from z e r o  s t a r t i n g  froin t h e  windward r a y ,  reaches  a maximum n e a r  halfway 

around, and d imin i shes  toward z e r o  on t h e  leeward ray.  k e c a l l i n g  t h a t  

t h e  paramctrr  !:I i n  F i b a r e  7 was supposed t o  c h a r a c t e r i z e  t h e  b i f ~ s - c a -  

t i o n  f lows,  we s h a l l  f i n d  i t  convenient  t o  l e t  $J d e s i g n a t e  t h e  maxinun 

c ross f low v c l o c i t y  induced by t h e  l a r g e s t  of t h e  v o r t i c a l  s t r u c t u r e s .  

Thus, w i t h  f u r t h e r  i n c r e a s e  i n  a n g l e  of  a t t a c k ,  i n c r e a s e s  a c c ~ r d i ~ i g l y ,  

a s  Figure  7 3  i n d i c a t e s .  P h y s i c a l l y ,  $ i n c r e a s e s  because  t h e  dominant 

v o r t i c i l l  s t r u c t u r e  c a p t u r e s  t h e  g r e a t e r  p a r t  of t h e  oncoming flow feed ing  

t he  structures, the reby  growing whi le  t h e  nearby s t r u c t u r e s  d imin i sh  and 

a r e  drawn i n t o  t h e  o r b i t  of t h e  dominant s t r u c t u r e .  Thus, a s  t h e  a n g l e  

of a t t a c k  inc:-cases, t h e  ntunbcr of vertical s t r u c t u r e s  n e a r  t h e  dominant 

s t r u c t u r e  d imin i shes  whi le  t h e  doninant  s t r u c t u r e  grows r a p i d l y .  ?lean- 

whi le ,  w i t h  t h e  i n c r e a s e  i n  a n g l e  of a t t a c k ,  t h e  flow i n  a  r e g i i n  c l o s e r  

t o  the  nose bocomes s u b j e c t  t o  t h e  c ross f low i n s t a b i l i t y  and develops  a n  

a r r a y  of smal l  v o r t i c a l  s t r u c t u r e s  s i m i l a r  t o  those  t h a t  had developcd 

f u r t h e r  dohnstream a t  a lower a n g l e  of a t t a c k .  The s i t u a t i o n  is i l l u s t r a t e d  

on Figure  8 d .  We b e l i e v e  t h a t  t h i s  d e s c r i p t i o n  i s  a  c ruc  r e p r e s e n t a t i o r ~  

of  t h c  type  of f low t h a t  \ J~rrg  (1974,  1976) has  c h a r a c t e r i z e d  a s  an  "open 
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s e p a r a t i o ~  ." We note  t h a t  although t h e  dominant v o r t i c a l  s t r u c t u r e  now 

appears t o  represen t  a  ful l - f ledged case  of flow separa t ion ,  never the less  

t h e  su r f ace  shea r - s t r e s s  vec to r  has remained g loba l ly  s t a b l e  s o  t h a t ,  i n  

our terms, t h i s  i s  st i l l  a  case  of a  l o c a l  flow separa t ion .  

With f u r t h e r  increase  i n  t h e  angle  of a t t a c k ,  t h e  crossf low in s t a -  

b i l i t y  i n  t h e  region upstream of t h e  dominant v o r t i c a l  s t r u c t u r e  prepares 

t he  way f o r  the  forward movement of t h e  s t r u c t u r e  and i t s  assoc ia ted  

l o c a l  l i n e  of separat ion.  Eventually an angle  of a t t a c k  is reached a t  

which rhe i n f F  a c e  of the  v o r t i c a l  s t r u c t u r e s  is g r e a t  enough t o  a l t e r  

t h e  g loba l  s t a b i l i t y  of t h e  suvlace shea r - s t r e s s  vec to r  i n  t he  immediate 

v i c i n i t y  of the  nose. A new (unstable)  s i n g u l a r  point  of second order  

appears a t  t he  o r i g i n  of each of t h e  l c c a l  l i n e s  of separa t ion .  With a  

s l i g h t  f u r t h e r  increase  i n  angle  of a t t a c k ,  t he  uns tab le  s i n g u l a r  point  

s p l i t s  i n t o  a p a i r  of elementary s i n g u l a r  po in t s  - a  focus of separa t ion  

and a  saddle  point .  This combination produces t h e  hcrn-type d iv id ing  

su r f ace  described e a r l i e r  (Figure 4)  and i l l u s t r a t e d  again i n  Figure 8e 

(cf .  a l s o  Figures 11 and 12 i n  WerlC 1979). Ke now have a  g l o b a l  form 

of flow separat ion.  A new s t a b l e  mean flow has emerged from which addi- 

t i o n a l  flows u l t imate ly  w i l l  b i f u r c a t e  with f u r t h e r  i nc rease  of the  angle  

of a t t ack .  

Asymmetric Vortex Breakdom on Slender Win1 

I n  ccl :+rast  t o  s u p e r c r i t i c a l  b i fu rca t ions ,  which a r e  normally benign 

eve?;:.  eginning a s  they must wi th  t h e  appearance of only i ~ t i n i c e s i m a l  

- - .- ,.' , bat!'.ve s t  ~ u c  trrres , s u b c r i t i c a l  b i fu rca t ions  may be d r a s t i c  events ,  

i n :  : . , ing  sudden and dramztic changes . flow s t r u c t u r e .  Although we a r e  
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only beginning t o  apprec ia te  the r o l e  of b i fu rca t ions  i n  t h e  study of 

separated flows, we can a n t i c i p a t e  t h a t  sudden large-scale  events ,  such 

as those involved i n  a i r ~ r a f t  b u f f e t  and s t a l l ,  w i l l  be descr ibable  i n  

terms of s u b c r i t i c a l  b i fu rca t ions .  Here we s h a l l  c i t e  one o,xample where 

i t  is  already evident t k t  a f l u i d  dynamicdl phenomenon involving a sub- 

c r i t i c a l  bifurcat-Lon can s i g n i f i c a n t l y  inf luence  the a i r c r a f t ' s  dynamical 

behavior. This is the  case of asymmetric vortex breakdown which occurs  

with s lender  swept wings a t  high angles  of a t t ack .  

We leave a s ide  the  vexing quest ion of the  mechanisms underlying 

vortex breakdown i t s e l f  (c f .  Hall 1972), a s  we l l  a s  i t s  topological  

s t r u c t u r e ,  t o  focus on events  subsequent t o  t he  breakdown of t he  wing's 

primary vo r t i ce s .  Lovson (1964) noted t h a t  when a s lender  d e l t a  wing was 

slowly pitched t o  a s u f f i c i e n t l y  la rge  angle of a t t a c k  with s i d e s l i p  

angle held f ixed a t  zero,  the  5reakdown of t he  pa i r  of leading-edge vor- 

t i c e s ,  which a t  lower angles had occurred symmetrically ( i . e ;  s i d e  by s i d e ) ,  

became asymmetric, with t he  pos i t ion  of one vortex breakdown moving c l o s e r  

t o  the  wing ap lx  than the  other .  W!lich of t he  two poss ib le  asymmetric 

pa t te rns  was observed a f t e r  any s i n g l e  pitchup was p r o b a b i l i s t i c ,  but  

once e s t a b l i s i ~ e d ,  t he  r e l a t i v e  pos i t ions  of the  two vortex breakdowns 

would p e r s i s t  over the  wing even a s  t he  angle of a t t a c k  was reduced t o  

values a t  which the  breakdowns had occurred i n i t i a l l y  downstream of the 

wing t r a l l i n g  edge. Af te r  iderctifying t e rns ,  we s h a l l  s e e  t h a t  these 

observations a r e  pe r f ec t ly  compatible with our previous descr ip t ion  of a 

s u b c r i t i c a l  b i fu rca t ion  (Figure 7b). 

Let us denote by Ac the  d i f f e r ence  between the  chordwise pos i t ions  

of tho left-hand and right-hand vortex breakdowns and l e t  Ac be pos i t i ve  



when the  left-hand breakdown pos i t ion  is the  c l o s e r  of the two t o  t he  

wing apex. Referr ing now t o  the  s u b c r i t i c a l  b i fu rca t ion  diagram i n  

Figure 7b, we i d e n t i f y  the b i f u r c a t i o n  parameter $ with Ac and the  

parameter X with angle  of a t t ack .  We s e e  t h a t ,  i n  accordance with 

observat ions,  t he re  is a  range of a, a  < ac, i n  which the  vortex break- 

down pos i t ions  can coexis t  s i d e  by s i d e ,  a s t a b l e  s t a t e  represented by 

I A C  1 = 0. A t  the  c r i t i c a l  angle  of a t t a c k  ac, the breakdowns can no 

longer s u s t a i n  themselves s i d e  by s i d e ,  s o  t h a t  f o r  a > ac, I AC I = 0 

is no longer a s t a b l e  s t a t e .  There be ing  no ad jacent  b i fu rca t ion  flows 

j u s t  beyond a  = ac, ldc]  must jump t o  a  d i s t a n t  branch of s t a b i e  flows, 

which represents  thc  sudden s h i f t  forward of one of t he  vortex breakdown 

pos i t ions .  Further ,  wi th  I AC 1 on t h e  new branch, a s  the  angle of 

a t t a c k  is  reduced [ A C ~  does not r e t u r n  t o  ze ro  a t  ac but  only a f t e r  

a  has pzssed a  smal le r  value a o .  A l l  of t h i s  is i n  accordance with 

observat ions (Lowson 1964). A t  any angle  of a t  t ack  where 1 AC 1 can be  

nonzero under symmetric boundary condi t ions ,  t he  v a r i a t i o n  of Ac wi th  

s i d e s l i p  o r  r o l l  angle  must neces sa r i l y  be hys t e re t i c .  Th is  a l s o  has 

been demonstrated experimentally ( E l l e  1961). Fur ther ,  s i n c e  Ac must 

be d i r e c t l y  proport ional  t o  the  r o l l i n g  moment, the  consequent h y s t e r e t i c  

behavior of t he  r o l l i n g  moment with s i d e s l i p  o r  r c l l  angle  makes t he  

a i r c r a f t  suscep t ib l e  t o  t h e  dynamical phenomenon of wing-rock (Schiff 

e t  a 1  1980). 

Holding s t r i c t l y  t o  the  not ion t h a t  pa t t e rns  of s k i n - f r i c t i o n  l i n e s  and 

ex te rna l  s t reaml ines  r e f l e c t  the p rope r t i e s  of continuous vec tor  f i e l d s  
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enables us to characterize the patterns on the surface and on particular 

projections of the flow (the crossflow plane, for example) by a restricted 

number of singuiar points (nodes, saddle points, and foci). It is useful 

to consider the restricted nmber of singular points and the topological 

rules that they obey as components of an organizing principle: a flow 

grammar whose finite number of elements can be combined in myriad ways to 

describe, understand, and connect together the properties common to all 

steady three-dimensional viscous flows. Introducing a distinction between 

local and global properties of the flow resolves an ambiguity in the 

proper dtfinition of a 3D separated flow. Adopting the notions of topo- 

logical structure, structural stability, and bifurcation gives us a 

framework in which to describe how 3D separated flows xiginate and how 

they succeed each other as the relevant parameters of the problem are 

varied. 
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FIGURE CAPTIONS 

Figure 1 Singular  points :  (a)  node; (b) focus; (c) saddle .  

Figure 2 Adjacent nodes and saddle  po in t  ( L i g h t h i l l  196. ). 

Figure 3 Limit ing s t reaml ines  near  3D separa t ion  l i n e .  

Figure 4 Focus of separa t ion :  (a) o r i g i n a l  ske tch  of sk in - f r i c t i on  l i n e s  

by Legendre (1965); (b) experiment of Werle (1962) i n  water tunnel;  

(c) extension of focus,  Legendre (1965). 

Figure 5 Dividing su r f aces  formed from combinations of :  (a) nodal po in t  

of attachment and saddle  po in t ;  ( b j  nodal point  of separa t ion  and saddle  

point .  

Figure 6 S i r~gu la r  po in ts  i n  c ross  s e c t i o n  of flow (Hunt e t  a 1  1978). 

Figure 7 Examples of (a) s u p e r c r i t i c a l  b i fu rca t ion ;  (b) s u b c r i t i c a l  

b i fu rca t ion .  

Figure 8 Scqucnce of f lows leading t o  g loba l  3D flow separa t ion  on 

round-nose body of revolut ion a t  angle  of a t t ack .  
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A - NODAL ATTACHMENT POINT 
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SECTION A-A 
(c) n = a* 
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SECTION 6-6 
(dl a = a3 

SECTION C-C 
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