Renort 33452F
April 1981
(NASA=-CR-161748) ADVANCED N81-23186
OXYGEN-HYDROCARBON ROCKET ENGINE STUDY
Pinal Report (Aerojet Liquid Rocket Co.)
330 p HC A15/MF AO1 csciL 218 Unclas
G3/20 24076

ADVANCED OXYGEN-HYDROCARBON ROCKET ENGINE STUDY

Final Report
By

C. J. O'Brien

. &

“R. L Ewen
AEROJET LIQUID ROCKET COMPANY

Prepared For
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

NASA-Marshall Space Flight Center
Contract NAS 8-33452

Co? R




1. Report No, 2, Government Accession No. 3. Recipient's Catalog No,

33452F ,
4. Title and Subtitie - 5. Report Date
Advanced Oxygen-Hydrocarbon Rocket Engine . April 1981 -

Study, Final Report

6. Performing Organization Code

7. Authot't 8}

. c 8. Performing Organization Report No.
w C. . 0'Brien and R.- L. Ewen

10. Work Unit No.

9. Pertorming Organization Name and IAqdress

Aerojet Liquid Rocket Company

¢ "i I R

Post Office Box 13222 11, Contract or Grant No,
Sacramento, California 95813 NAS 8-33452
13, Type ot Report and Period Covered
12. Sponsoring Agency Name and Address Contractor Report ’ Final
National Aeronautics and Space Administration 14. Sponsoring Agency Code

Washington, D.C. 20546

15. Supplementary Notes’

Project Manager, R. J. Richmond, Propulsion Division
NASA-Marshall Space “light Center
Marshall Space Flight Center, Alabama 35812

16. Abstract [n the decade of the 1980's and beyond, an improved surface-to-orbit trans-
portation system using advanced booster vehicles may be required. The potential
performance advantages of using high-density-impulse rocket propellants such as
LOp/hydrocarbon have been cleariy shown for such large AV applications. This -
study identifies and evaluates promising LO2/HC rocket engine cycles, produces 1
a consistent and reliable data base for vehitle optimization and design studies, '
demonstrates the significance of propulsion system improvements, and selects
the critical technology areas necessary to realize an improved surface-to-orbit
transportation system, '

3
5
]
3
]

Parametric LO2/HC engine data were generated over a range of thrust levels
from 890 to 6672 kN (200K to 1.5M 1bF) and chamber pressures from 6890 to 34500
kN/m2 (1000 to 5000 psia). Engine coolants included RP-1, refined RP-1, LCHg,
LC3Hg, LO2, and LH2.

L02/RP-1 G.G. cycles were found to be not acceptable for advanced engines.
The highest performing LO2/RP-1 staged combustion engine cycle utilizes LO2as the
coolant and incorporates an oxidizer-rich preburner. The highest performing cycle
for LO2/LCH4 and L0O2/LC3Hg utilizes fuel cooling and incorporates both fuel- and
oxidizer-rich preburners. L02/HC engine cycles permitting the use of a third
fluid (LH2) ccolant and an LHp-rich gas generator provide higher performance

at significantly lower pump discharge pressures. The LO2/HC dual-throat engine,
because of its high altitude performance, delivers the highest payload for

the vehicle configuration that was investigated.

R R

17. Key Words (Suggested by Author(s) 18. Distribution Statement
L02/Hydrocarbon Engines .
LOZ;R%*‘ . LOZ’LC"M, |.02/|..C3|"|8 Eng1nes Unclassified Unlimited

High-Pressure Liquid Rocket Engine Design
High-Pressure Heat Transfer
LO2/HC Engine Performance

19. Security Classif, (of this réport) 20. Security Classit. (of this page) 21. No. of Pages 22. Price*

Unclassified Unclassified 313




FOREWORD

The work described herein was performed at the Aerojet Liquid Rocket
Company under NASA Contract NAS 8-33452 with Mr. Robert J. Richmond,
NASA-Marshall Space Flight Center, as Prdject Manager;‘ The ALRC Program
Manager was Mr. Jeffery W. Sa1moh, and the Project Engineer was Mr. Charles J. -
0'Brien,

The technical period of performance for the study was from 15 October
1979 to 28 November 1980.-

The following ALRC engineering personnel contributed significantly to
this report:

C. J. O'Brien (Engine System)
R. L. Ewen (Heat Transfer)
R. A. Hewitt (Thermal Geometry)
C. E. Taylor (Heat Transfer)
G. M. Meagher (Performance)
R. Salkeld (Consultant) (Vehicle System)
S. Kent (Parametric Weight/Envelope)
R. L. Sabiers (Turbomachinery)
G. R. Janser (Materials)
E. W. Carter (Materials)
J. V. Smith (Controls)
"P. E. Brown (Structures)
G. D. Aldrich (Structures)
B. R. Lawver (Combust ion Stability)
R. A. Boylan (Engine Layout)

Special thanks go to Mr. Rudi Beichel, ALRC Senior Scientist, for his
comments and assistance throughout the study effort. Special thanks also go
to Mr. Bob Richmond, the NASA Project Manager, and to Mr. Jim Martin, NASA
Langley Research Center, for their constructive criticism and assistance.

114




P RERTINTpTTEE O O T e e o e

TABLE OF CONTENTS

! Page

1. Summary 1
A.  Study Objectives and Scope 1

B. Results and Conclusions SR 3

IT.  Introduction 6
A. Background 6

B. Purpose and Scope 6

C. Approach 7

1. Task I - Engine Cycle Configuration Definition 7

2. Task Il - Engine Parametric Analysis 7

3. Task III - Engine/Vehicle Trajectory Performance - 13

Assessment (Engine Screening)

4. Task IV - Baseline Engine Systems Definition 13

II11. Engine Cycle Configuration Definition 16
A. Objectives and Guidelines ' 16

B.  Power Cycle Matrix . 16

C. Thrust Chamber Heat Transfer 24

1. Chamber Design Limits and Procedures 27

2. Chamber Cooling 32

3. Nozzle Cooling 57

D. Cycle Power Balance 62

1. CycleA 76

2. Cycle B ' 83

3. CycleC 89

4, Cycle C' 95

5. Cycle D 95

6. CycleE 100

7. Cycle F 107

8. Cycle G 107

jv

f




-\r_c,'\i--tl' i' )

b e

o Lo -k

Iv.

v.

Vi,

E.

TABLE OF CONTENTS (cont.)

9, Cycle G'
10. Cycle H
11. Cycle !
12. Cycle I'
13. Cycle d
14. Cycle K

15. Thrust Level Variation
Engine Cycle Rating System

1. Preliminary Cycle Ranking

2. Preliminary Cycle Comparison

Engine Parametric Analysis

A.
B.

C.

D.

Objectives and Guidelines

Engine Performance

1. Parametric Performance Data

2. Dual-Throat Engine Performance

Engine Weight

1. 1979 State-of-the-Art Engine Weight Parametrics
2. Selected Cycle Engine Weight Statements

3. Weight Improvement Through the Year 2000

Engine Cnvelope

Vehicle Analyses for Engine Assessment

A.
B.
C.
D.

Objectives and Guidelines
Vehicle Characteristics
Vehicle Results

Engine Cycle Ranking

Baseline Lngine System Definition

A.
B.

Objectives and Guidelines
parametric and Sensitivity Analyses

Page
112
114
114
119
119
124
124
128
130
132
135
135
135
136
150
152
155
158
182
197
204
204
204
206
209
213
213
214

I LI T
g <

P o dnd

- a0




c.

D.

E.

Fo

Ge

H.

TABLE OF CONTENTS (cont.)

"Heat Transfer Design Analysis

1. "Baseline LOX/RP-1 and LOX/CHy Designs
2. ' Cycle Life Sensitivity

3. Investigation of Coolant Channel
Fabrication Feasibility

Turbomachinery Design Analysis

1. Cycle C Turbomachinery

2. Cycle G Turbomachinery

3. Cycle I Turbomachinery
Combust ion Stability Design Analysis
1. Combustion Instability

2. Low-Frequency Stability

3. High-Frequency Stability

4. Required Stability Technology
Structures Design Analysis

1. Method of Analysis

2. Finite-Element Model

3.  Summary of Results

Controls Design Analysis

1. cyC]e C
2. CycleG
<+ Cycle 1

4. Technology Areas

Conceptual Designs

l« Cycle C Engine Configuration
¢« Cycle G Engine Configuration
3. Cycle I Engine Configuration

vi

Page

231
231
233
236

241
242
242
247
247
250
250
255
257
259
259
261
269
270
271
271
276
281
283
284
284
289




TABLE OF CONTENTS (cont.)

.VIt. Discussion of Results
-+ A, "Cycles

B. Fuels
C. Technology Requirements

VIIl. Conclusions and Recommendations
A. Conclusions
B. Recommendations

References

Page
292
292
297"
298
308
308
310
312




ST WY I SR VA SPEY I B

Table No.

I
IA
I8
Il
I
v
v
)
VII
VIII
IX

XI
X11I
X111
XIv
XV
XVl
XVI1
XVIII
XIX

XX
XX1
XX11
XXI1I
XX1v
XXV

LIST OF TABLES

© Study Guidelines and Constraints
. Properties of Candidate Propellants

Comparison of RP-1 and JP-7 Fuels
Candidate Cycles Investigated
Guidelines for Parametric Power Cycle Study

Coolant Inlet Temperatures and Heat ‘Transfer Correlations

Channe1-Layou£ Optimization for RP-1R Cooling
RP-1R Cooling Summary Without Carbon Deposition

RP-1 and RP-1R Cooling Summary With Carbon Deposition

Channel Layout Optimization for Methane Cooling
Methane Ccoling Summary

Propane Cooling Summary

Channel Layout Optimization for Oxygen Cooling
Oxygen Cooling Summary

Hydrogen Cooling Summary for LOX/RP-1 Engines
Hydrogen Cooling Summary for LOX/CH4 Engines
Baseline Nozzle Tube Bundle Designs

L0p/RP-1 Thrust Chamber Assembly Specification Data
LO2/LCHg4 Thrust Chamber Assembly Specification Data

LOp/LC3Hg Thrust Chamber Assembly Specification Data

Power Cycle Data Summary for LOX/Hydrocarbon Rocket
Engines

Engine Cycle A Parametric Data
Engine Cycle B Parametric Data
Engine Cycle C Parametric Data
Engine Cycle C' Parametric Data
Engine Cycle D Parametric Data
LO2/LCH4 Engine Cycle K Specification

viii

©
© ® k;
[

10
19
22
1
37
44

w

48
50
52
54
56
58
59
63
64
66
68
70

79
85
91
96

101
126




Table No.

XXVI
XXVII
XXVI1I
XXIX

XXX

XXXI
XXXI1

XXXIII

XXXIV
XXXV
XXXVI
XXXVI1
XXXVIII
XXXIX
XL

XL1
XLII
XLIII
XLIV
XLV
XLVI
XLVII
XLVIIL
XLIX

L

LI

LIST OF TABLES (cont.)

Thrust Level Effect on Performance
Engine Weight Definition
LOX/HC Baseline Engine Weight Breakdown

Nominal Point Design Engine Weight Breakdown for
Cycles C, G, and 1

Nominal Point Design Engine Weight Breakdown for
Cycles C', G', and I'

Typical 1979 State-of-the-Art Materials Selection

Advanced LOX/Hydrocarbon Baseline Engine Weight
Savings Breakdown

LOX/RP-1 Engine Envelope Parametrics
LOX/LCHg4 Engine Envelope Parametrics
LOo/HC Engine Cycle Rating

LOX/LCHgq Engine Cycle C Specifications
LOX/RP-1 Engine Cycle G Specifications
LOX/LCHq Engine Cycle 1 Specifications
Engine Sensitivity Analysis Summary
Baseline Design Heat Transfer Data
Cyvcle Life Sensitivity Study

Cycle C Boost Pump Design Parameters
Cycle C Main Pump Design Parmeters
Cycle G Boost Pump Design Parameters
Cycle G Main Pump Design Parameters
Cycle ! Boost Pump Design Parameters
Cycle I Main Pump Design Pdrameters
Controlling Combustion Time Lag

Sequence of Operations for LOX/LCH4 Gas-Generator
Cycle Engine C

LOX/LCH4 Engine Cycle C Start and Shutdown
Transient Data Summary

LOX/LCH4 Engine Cycle C Design and Off-Design MR
Performance

ix

Pagé
127
153
154
178

179

183
190

200
201
211
218
219
221
223
232
234
243
244
245
246
248
249
252
272

273

274




Ei.

Table No.

LIl
LIII

LIv

Lv
Lvi

LVII

LVIII

LIX

LIST OF TABLES (cont.)

Sequence of Operations for LOX/RP-1 Engine Cycle G

LOX/RP=1 Engine Cycle G Start and Shutdown Transient
Data Summary

LOX/RP-1 Engine Cycle G Design and Off-Design MR
Performance

Sequence of Operations for LOX/LCH4 Engine Cycle 1

LOX/LCHg Engine Cycle ! Start and Shutdown Transient
Data Summary

LOX/LCHy Engine Cycle I Design and Off-Design MR
Performance

Basic Assumptions Utilized for the Advanced
Oxygen-Hydrocarbon Rocket Engine Study

Oxygen/Hydrocarbon Rocket Engine Required Technology

Page
275
277

278

279
280

282
293

301

P T




Figure No.

H W N -

10
11
12
13
14
15
16

17

18

19

20
21

22
23

24

LIST OF FIGURES

Overall Study Program Summary
Task I - Engine Cycle Configuration Definition
Task Il - Engine Parametric Analysis

Task I11 - Engine/Vehicle Trajectory Performance
Assessment (Engine Screening)

Task IV - Baseline Engine Systems Definition

NASA Specified Candidate Cycles for Advanced
LO2/HC Engines

NASA Concept Array of Potential Cycle Choices for
Advanced LO2/HC Engines

LOX/Hydrocarbon Engine Cycle Components

LO2/HC Engine Cooling Summary

Cycle Life/Creep Wall Temperature Criteria

Zr-Cu Chamber Wall Strength Criteria

Chamber Length Variation with Thrust/Chamber Pressure
Channel Layout for Design Optimization Study

Barrel Land Width Optimization

Throat Channel Width Optimization

Effect of Carbon Deposition and Coking Temperature
on RP-1 and RP-1R Cooling

Comparison of Fuel-Cooled LOX/Methane and LOX/
Propane Chambers

Allowable Hot Gas-Side Wall Temperature vs Backside
Wall Temperature for Inconel 718 Tubes

Inconel 718 Tube Design Criteria vs Hot Gas-Side
Wall Temperature

RP-1 Fuel-Rich Gas Generator Cycle Schematic

LO2/RP=1 Engine Cycle A Pump Discharge
Pressure Requirements

LO2/RP-1 Engine Cycle A Performance
RP-1 Fuel-Rich Gas-Generator Cycle B Schematic

LO2/RP-1 Engine Cycle B Pump Discharge Pressure
Requirements

xi

18

21
26
28
29

34
40
42
47

53

60

61

77
81

82
84
87

SRS S WA G ea o




¥

Chdperes AT

b eed i S s T

.
(VTP
W

L g dl

. I N ,‘.\.gﬁ e

Figure No.
25

30
31

32
33
34
35
36
37
38
39
40
41
42

43

LIST OF FIGURES (cunt.)

LO2/RP=1 Engine Cycle B Performance
L.CHq Fuel-Rich Gas-Generator Cycle C Schematic

L02/LCHg Engine Cycle C Pump Discharge Pressure
Requirements

LO2/LCH4 Enyine Cycle C Performance

LUp/LC3Hg Engine Cycle C' Pump Discharge
Pressure Requirements

L0p/LC3Hg Engine Cycle C' Performance

RP-1 Fuel=-Rich Preburner Staged-Combustion Cycle D
Schemat ic

LOp/RP-1 Engine Cycle D Pump Discharge Pressure
Requirements

RP-1 Fuel-Rich Preburner Staged-Combustion Cycle E
Schemat ic

LOp/RP-1 Engine Cycle E Pump Discharge Pressure
Requirements

LOy/RP-1 Oxidizer-Rich Preburner Staged-Combustion
Cycle F Schematic

LO»/RP-1 Engine Cycle F Pump Discharge Pressure
Requirements

LO2/RP-1 Oxidizer-Rich Preburner Staged-Combustion
Cycle G Schematic

LOp/RP-1 Engine Cycle G Pump Discharge Pressure
Requirements

LOp/LC3Hg Engine Cycle G' Pump Discharge
Pressure Requirements

LCHq Fuel«Rich Preburner Staged-Combustion Cycle H
Requirements

LO /LCH? Engine Cycle H Pump Discharge Pressure
Scﬁemat c

LCHq Mixed Preburner Staged-Cembustion Cycle 1
Schemati¢

LO2/LCHg Engine Cycle 1 Pump Discharge Pressure
Requirements

xiid

94
97

98
99

104

105

106

108

109

110

1

113

115

116
117

118




NS
e T

Figure No.
44

45
46

' 47
48

49
50

51
52

53
54

55
56
57

58

59

60
61

62

63
64

LIST OF FIGURES (cont.)

L02/LC3Hg Engine Cycle 1' Pump Discharge
Pressure Requirements

LO2/RP-1 Engine Fuel-Rich LHp Gas-Cenerator
Cycle J Schematic

LOp/RP=1 + LH§ Engine Cycle J Pump Discharge
Pressure Requirements

LO2/RP-1 + LHp Engine Cycle J Performance

L02/LCHg Dual-Throat Engine Mixed Gas-
Generator/Staged Combustion Cycle K Schematic

Engine Cycle Rating Parameters
Chamber Pressure Ranking of LO2/HC Engine Cycles
Performance Ranking of L02/HC Engine Cycles

Comparison of Engine Cycles as a Function of
Chamber Pressure

Delivered LOX/RP-1 Engine Performance Versus
Chamber Pressure

Delivered LOX/RP-1 Engine Performan-e v, -. .,
Mixture Ratio

Delivered LOX/RP-1 Engine Perfomiunce Versus Thrust
Delivered LOX/RP-1 Engine Performance Versus Area Ratio

Delivered LOX/CHg Engine Performance Versus
whamber Pressure

Delivered LOX/CHg Engine Performance Versus
Mixture Ratio

Delivered LOX/CH4 Engine Performance Versus Thrust
Delivered LOX/CHq Engine Performance Versus Area Ratio

Delivered LOX/C3Hg Engine Performance Versus .
Chamber Pressure w

Deliverd LOX/C3Hg Engine Performance Versus
Mixture Ratio

Delivered LOX/C3Hg Engine Performance Versus Thrust

Delivered LOX/C3Hg Engine Performance Versus
Area Ratio

xifi

123
125

129
131
133
134

138

139

140
141
142

143

144
145
146

147

148
149




LIST OF FIGURES (cont.)

Figure No. : S Page
65 bual Throat Engine Performance 151
66 Engine Weight Comparison with Historical Data 156
67 Preliminary Weights Ranking of LO2/HC Engine 167
Cycles _
68 Typical AOHCWT Weight and Envelope Computer Program 159
Printout
69 %0X/RP-§ Engine Weight Versus Chamber Pressure 160
v = 20
70 LOX/RP-% Engine Weight Versus Chamber Pressure 161
+ = K0 _
71 %OX/RP-% Engine Weight Versus Chamber Pressure 162
v = 80
12 %OX/RPBI)Engine Weight Versus Chamber Pressure 163
¢ = 100
S 73 LOX/RP-1 Engine Weight Versus Area Ratio 164
b (Pc = 5000)
5 74 LOX/RP-1 Engine Weight Versus Area Ratio 165
s (Pc = 4000) '
4 75 LOX/RP-1 Engine Weight Versus Area Ratio _ 166
| (Pc = 3000) -
53 76 LOX/RP-1 Engine Weight Versus Area Ratio 167 ,
) (Pc = 2000) . ,
B 77 LOX/RP~1 Engine Weight Versus Area Ratio ' 168 3
; (Pc = 1000) _ |
£ 78 %OX/CHa)Engine Weight Versus Chamber Pressure 169 ‘
, A i
5 79 %OX/CHa)Engine Weight Versus Chamber Pressure 170 /
o L= |
; 80 %OX/CHS)Engine Weight Versus Chamber Pressure 17
3 ¢ =8
) 81 %OX/CHaogngine Weight Versus Chamber Pressure 172 !
- : v =1 ]
3 82 LOX/CHa Engine Weight Versus Area Ratio 173 i
- (Pc = 000? : : Lo

xiv




LIST OF FIGURES (cont.)

! Figure No. Page
, 83 LOX/CHz Engine Weight Versus Area Ratio 174
, i (Pc = 4000
k 84 LOX/CHg Engine Weight Versus Area Ratio 175
: (Pc = 3000
85 LOX/CHg Engine Weight Versus Area Ratio 176
(Pc = 2000 ?
. 86 LOX/CHﬁ Engine Weight Versus Area Ratio 177
(Pc = 1000 ?
? 87 LOX/LC3Hg Engine Weight Versus Chamber Pressure 180
& 88 LOX/LC3Hg Engine Weight Versus Area Ratio 181
2 89 Comparison of Structural Properties of Composites and 187
3 Other Afrcraft Materials
R 90 Increased Use Temperature Projected for Directional 188
' Structures for High-Stress, High-Temperature
3}3 Applications
;2 , 91 LOX/RP-1 Engine Envelope Parameters Versus Chamber 198
A Pressure
. 92 LOX/CHq Engine -Envelope Parameters Versus Chamber - 199
Pressure
93 LOX/LC3 HS Engine Envelope Parameters Versus 202
. Chamber Pressure
94 JSC Two-Stage Ballistic Launch Vehicle 205
1 Orbital Payload vs Stage 1 Vacuum Isp 207
96 Orbital Payload vs Chamber Pressure for Cycles A 208
Through K
97 Orbital Payload Ranking of LO»/HC Engine Cycles 210
(At Optimum Chamber Pressure)
98 Engine Cycle Conclusions 212
99 LCHq Fuel-Rich Gas Generator Cycle (C) LCHq-Cooled 215
100 L0o/RP-1 Oxidizer-Rich Preburner Staged Combustion 216
Cycle (G) LOp-Cooled
101 LCHa Mixed Preburner Staged Combustion Cycle (I) 217
LCHg-Cooled

102 Cycle C Turbine Inlet Temperature Sensitivity Analysis 226




o R R TR LA A AR b . 1IN e e 4 e S TN — N o ’

LIST OF FIGURES (cont.)

Figure No. Page

103A Cycle [ Turbine Inlet Temperature Sensitivity Analysis 227

1038 Cycle H Turbine Inlet Temperature Sensitivity Analysis 228

104 Effect of Cycle Life on Chamber Pressure Drop 235

105 Sections of Coolant Channel Layout for LOp/RP-1 237
Engine

106 Conceptual Electroformed Coolant Channel Design 239

107 Conceptual Brazed Coolant Channel Design 239

108 Conceptual Investment Casting Coolant Channel ‘ 240

- Design ’

109 Conceptual Photoetch Coolant Channel Design 240

110 Characteristic Combustion Time Lags 250

111 System Low Frequency Coupling - Cycle G ’ 253

112 System Low Frequency Coupling - Cycle I 254

113 Undamped Resonant Frequencies for a Large LOp/HC 256
Engine ’

114 Multiple Tune Resonator for Large Scale Engine 258

115 Preliminary Sizing of Required Jacket Thickness 260

116 Preliminary Sizing of Required Land Width, L 262

117 Predicted Strain Range for the Throat Section 263

118 Predicted Strain Range for the Cylindrical Section 264

119 Throat Section Finite Element Model ' 265

120 Cylindrical Section Finite Element Model 266

121 Finite Element Model Temperatures at Throat Section 267

122 . Finite Element Model Temperatures at Cylindrical 268
Section .

123 LOX/LCHy Engine (Cycle C) Conceptual Design 285
(Top View)

124 LOX/LCHa Engine (Cycle C) Conceptual Design 286 g
(Side View) .

125 LOX/RP-1 Engine (Cycle G) Conceptual Design 287 l
(Top View)

126 LOX/RP-1 Engine (Cycle G) Conceptual Design 288 i
(Side View) ‘

xvi




Figure No.
127

128
129

130

LIST OF FIGURES (cont.)

LOX/LCHg Engine (Cycle 1) Conceptual Design
(Top View)

LOX/LCHg4 Engine (Cycle 1) Conceptual Design
(Side View)

Technology Needs for Oxygen/RP-1 Staged-Combustion
Cycle Engine

Technology Needs for Oxygen/Methane Staged-Combustion
Cycle Engine

xvii

291

299

300




?}

I. SUMMARY
A.  STUDY OBJECTIVES AND SCOPE

The major objectives of this study program were to (1) identify
and evaluate promising 1iquid oxygen/hydrocarbon (LO2/HC) rocket engine
cycles, (2) produce a consistent and reliable data base for vehicle optimiza-
tion and design studies, (3) indicate the significance of prupulsion system
improvements, and (4) identify the critical technology areas necessary to
realize an improved surface-to-orbit transportation system. -

The four-task study program summarized in Figure 1 was conducted
to accomplish the stated objectives. Families of high chamber pressure
L0p/HC engine cycles were examined and their regions of operation (chamber
pressure, thrust level, etc.) were established from a general conceptual
matrix of potential cycle candidates. Thrust chamber heat transfer analyses
were performed over ‘the parametric range of thrust levels from 890 to 6672 kN
(200K to 1.5M 1bF) and chamber pressures from 6890 to-34500 kN/m? (1000 to
5000 psia). Engine coolants included RP-1, refined RP-1, LCHa, LC3Hg,

L0p, and LHy. In order to make use of the available design data from
previous studies, a preliminary baseline engine thrust was established.
Parametric scaling studies were conducted around this design point.

Engine performance, ¢ivelope, and weight parametric data were
generated over the above paramctric ranges of thrust and chamber pressure and
for selected mixture ratio and consistent area ratio values. Engine fuels
included RP-1, refined RP-1 (e.g., JP-7), LCHa and LC3Hg.

A preliminary comparison of the engine cycles was made by uti-
lizing a simplified vehicle trajectory performance model for a two-stage
heavy-1ift, ballistic vehicle.




oﬂhv.‘.

o

LS -

= ..

L
-

u

200 G I INNN ®
L e5152335T
AL RIS

WELK WA WL

[}

_w Hle TR LW
! LNE IT.a5 Pz O

2

W XZ VLT SITa.
1s27 LD O

LA 2l Jo. 2R ®

T 4T APIT 38 .

! T gi PN @

! STl i

! R AR IRt

. ‘2T ol O

Tt saic AT ®

TleTeny
FIRLIFRe S ADPSTR L 1

WO o

TN LT
Ll (830

Ll LR

i 3
i (ISR RPN
| ms MITTaE - 6l eTe.

«.. I\* .2, SI.A3 a5 30%

:

{

b

{

i

1

{

i

i

i
L
—
'

X

Aaeuung weuboad Apn3s L 1eUdAQ

SO sa M1LINIT

—

|

WA 30

33038 ¥inh ]

. OSSN i

*f 94nbLy

@l s @
SOIPUNL I S LMY ©

SInloAs W1INE @
(345 OX VARFR ST
S.adeze. i
AFHimeGil "I S

Iswge WiTNS

}
|

i
i
.
e
YRS ST LY ] j

PS¢ LI RSERLY 2 i
3afsszeis 3. - O

P IAn 1138
N S i

L1

¥z TN O
L Y W2 R

|

. ¥ e i

IRV 2 Ry S |
2 St PR A 4 !
|

P —
R
[}

Min3h.s e L3N
SMGhe 2835 8- 03T¥8
N33/ IMINI - 1 AN

.6 Sl18.B¥e¥3

ﬂL‘ 5 !
1 - —
. 1

|

ﬁ e, L2 g SeE

¥

———
R 2legis L.t L e
e t»lu.s&' [ ]

J IR N R ~

———— e

| PR N b :

. i

Yy
_ AR BN

Ti.3.06e . 3R @
bre et s e o ey

PR L IR AN B 4

e+ e e e ]

X LIER 2L h

ull..llh

i PR L e
{ M3, 0.

INAIN0 YOTVW CNV SHSVL AGNILS

; |
1

Y VAL R T APOaE RO

)

W ige a3 @
WLE ML e

} PR S
€K . ®

fsm, PMGMs 3838 @
_ X W M 3e2s. @

Tl UNT 9.63TTE M3

[}

PR ET R (IR A 4
Er ol g

' b ¢

' lite
u..ya.....}..ﬂ

Cis siedt e .tie ®

314«&1 uucﬂ.\
8.5 el 9 Wl el
L LTI 3N @
AR R

b.e.tm 3 Le, MM

3

[RICIPT AL IO Capee 2
el WA - e

et 3 v e

1A WM

3

o9 0 Sl WL e
P ST NE K PR AN 4

i
ok RPN !

— ‘
i -«e
! t.ve .
-y — ~y H
. ' KESR i
) L ) —
‘ ' hL S
; 2
. i PO 5 SRR 4
- v le
H ) »
. ! 2" @

| e ines

{ )

SINIVHISNOD ONV
SININIING ATUS WerIniNe




I, A, Study Objectives and Scope (cont.)

Prélimihary design analyses were conducted on the major cbmponénts
and subsystems of three engine cycles, and conceptual designs were prepared.
Sensitivity analyses were performed wﬁich included the effects of turbine
inlet temperature and number of usable life cycles.

Basic data gaps and areas requiring technology work were identi-
fied throughout the entire study effort.

B.  RESULTS AND CONCLUSIONS

The highest performing LOp/RP-1 engine cycle utilizes L0y or
RP-1R as the coolant and incorporates an oxidizer-rich preburner. The highest
performing cycle for LO»/LCHg and LO2/LC3Hg utilizes fuel cooling
and incorporates both fuel- and oxidizer-rich preburners. LOo/HC engine
'cycles permitting the use of a third fluid (LHy) coolant and an LHp-rich
gas generator-not only provide higher performance than the corresponding gas
generator and staged- combustion cycles (without LHp) but also require
significantly lower pump discharge pressures. The LOp/HC dual-throat engine,
because of its high Mode 2 (altitude operation) performance, delivers the
highest payload for the vehicle‘configuration that was investigated.

Families of LOX/RP-1, LOX/CHg and C3Hg engine cycles were
identified as being acceptable candidates for future Space Transportation
System (STS) application. Detailed trajectory analysis and a vehicle opera-
tional analysis, which includes engine life, reliability, safety margin, ease
of maintenance, etc., need to be conducted in order to select the optimum
LOX/HC engine.

Increasing the maximum allowable turbine inlet temperature for
both the fuel and oxidizer rich turbines was shown to provide a large perfor-
mance benefit for gas-generator and mixed cycles. A smaller benefit was shown
for high-pressure, staged-combustion cycles utilizing fuel- and oxidizer-rich
high-temperature turbines.
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I, B, Results and Conclusions (cont.)

The performance increase for the gas genefator cycles is due to
the reduction in the low-performance turbine-drive-fluid which is dumped into
the nozzle. The smaller performance increase for staged combustion'cycles
arises from a Eelatively small increase in chamber pressure.

The practical upper limit for both fuel-rich and oxidizer-rich
turbine temperatures neceds to be demonstrated before their benefit can be
realized in LOX/HC engines.

A 30% reduction in engine weight by 1985 was shown to be a
distinct possibility, and an even greater engine weight reduction of 40% is
foreseen by the year 2000 through the use of reinforced plastic composite
(RPC) materials.

MIL SPEC RP-1 cooled engines were shown to be cooling (coolant
side coking) limited to a chamber pressure of about 8960 kN/m (1300 psia)
for the cycles investigated. With a carbon deposit on the combustion chamber
walls, the cooling (coking) limit is about 13790 kN/m? (2000 psia). Refined
RP-1 (i.e., JP=7)-ccoled gas generator cycles result in a specific impulse
maxfmum at about 17230 kN/mZ2 (2500 psia); staged combustion cycles are power
(pump discharge pressure) limited to about 22060 kN/m2 (3200 psia). With a
carbon deposit the refined RP-1 gas generator cycle engine attains a specific
impulse maximum at a chamber pressure of about 18610 kN/m2 (2700 psia).

LOX-cooled (LOX/RP-1) gas generator cycle engines attain a
specific impulse maximum at a chamber pressure of about 17230 kN/m¢ (2500
psia); staged combustion cycle engines are power limited to about 21370
kN/m (3100 psia).

-
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1, B, Results and Conclusions (cont.)

LCH4 and (subcooled) LC3Hg-cooled gas génerator cycle
engines were shown to have a chamber pressure (specific impulse maximum) 1imit
of about 20680 kN/m? (3000 psia). Staged combustion cycle engines cooled by
LCHq and LC3Hg are power limited to chamber pressures of 24130 kN/mé
(3500 psia) and 24820 kN/mé (3600 psia), respectively.

LHp-cooled LOp/HC engines of this study were shown to have a
chamber pressure (power) limit of about 37920 kN/mé (5500 psia).

The technology recommendations resulting from this study include: %
(1) application of composite materials for weight reduction; (2) utilization '
of higher-temperature turbines for performance improvement; (3) incorporation
of a stoichiometric preburner for start transient control; (4) development of
the technology for high-pressure hydrocarbon and LOp turbopumps suitable for
the engine cycles of this study; (5) generation of supercritical LCHy heat
transfer data; and (6) further evaluation of the single-fuel, dual-throat

thruster,




1. INTRODUCTION
A.  BACKGROUND

In the decade of the 1980s and beyond, the nation's éxpanding
space operations may requirs an improved surface-to-orbit transportation sys-
tem using advanced booster vehiclés with comparatively greater performance and
capability than the current space shuttle concept. The mixed-mode propulsion
principle clearly indicates the potential performance advantages of using
high-density-impulse rocket propellants in such large AV applications (Ref.
1-9). For this reason, hydrocarbon fuels exhibiting increased density rela-
tive to liquid hydrogen (LH2)» though at the expense of lower specific
impulse, are now being consider:d for the booster propulsion system of space
shuttle improvements and derivatives as well as for single-stage-to-orbit and
two- stage-to-orbit heavy-payload vehitles.

It is considered essential to undertake a preliminary identifica-
tion and evaluation of promising 1iquid oxygen/hydrocarbon (LOp/HC) rocket
engine cycles in order to 1) produce a consistent and reliable data base for
vehicle optimization and design studies, 2) demonstrate the significance of
propulsion system improvements, and 3) identify the critical technology areas
necessary to realize such advances.

B. PURPOSE AND SCOPE

The purpose of this study is to generate a consistent engine sys-
tem data base for defining advantages and disadvantages, system performance
and operating limits, engine parametric data, and technology requirements for
candidate high-pressure L02/HC engine systems. The scope includes the
synthesizing of optimum LOo/HC engine power cycles and the generating of
representative conceptual engine designs for an advanced surface-to-orbit
transportation system.




11, B, Purpose and Scope (cont.)

The study guidelines dictated that the cngine cycles to be
examined must be compatible with advanced single~-fuel bi- or tripropellant
high-pressure LOy/HC booster engines. “"Single-fuel" refers to engines
burning only one propellant combination during ascent operation, i.e.,
"dedicated" hydrocarbon cngines. Dual-fuel engines were excluded from the
study; however, "Tripropellant" ehgines using a supplementary fluid (e.g.,
LH2) for cooling or pre-combustor power functions were included.

The general guidelines and constraints specified for the study are
given in Table I. Properties of the propellants evaluated in the study are
given in Tables IA and IB.

C. APPROACH

To accomplish the program objectives, an effort involving four
technical tasks was conducted. Tasks accomplished are as follows:

1. Task 1 - Engine Cycle Configuration Definition

Formulate and assess families of high chamber pressure
LOo/HC engine cycles (Figure 2).

2. Task Il - Engine Parametric Analysis

Generate performance, weight, and envelope parametric data
for viable concepts based upon historical data and conceptual evaluations
(Figure 3).
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TABLE 1
GUIDELINES AND CONSTRAINTS

Propellants

Thrust per Engine
(sea level)

Expansion Nozzle
Configuration

Nozzle Expansion

Limits (maximum)

General Technology
Level Assumptions

Coolants

Parametric Ranges:
Chamber Pressure
Engine Thrust
Mixture Ratio

Expansion Area Ratio

L0,/RP-1 and L0,/LCH, (1iquid methane) ,
with LH, as the supplementary fluid in tri-
propellant engines. LOZ/LC3H8 (sub-cooled
1iquid propane) was added during Task IV.

600,000 1bF and 1,000,000 1bF
Bell-type (not necessarily fixed expansion
ratio)

Consistent with booster engine mission,

Area Ratio including the avoidance of over-expanded
flow separation at sea level.

Minimum Engine Cycle Life 100 (usable)

Turbine Inlet Temperature 2000°R for fuel-rich turbine drive gases;

1600°R for oxidizer-rich turbine drive gases.

1979 state-of-the-art with yearly advance
factors to 2000.

RP-1, LCH4. L02 and LHZ' Purified RP-1
(e.g., JP-7 or JP-5) was added in Task I
and LC3H8 was added in Task IV.

1000 to 5000 psia (or power/cooling limit)
200,000 1bF to 1,500,000 1bF
2.0 to 3.5 (L02/RP-1); 3.0 to 4.5 (L02/LCH4)

15:1 to 100:1 (or sea level flow attachment
Timit)

Turbine Inlet Temperature 1600°R to 3000°R (selected in Task IV)

b
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TABLE 1A
PROPERTIES OF CANDIDATE PROPELLANTS

A

(]
onygentt! yarogent!! (1) P metnane™ prepanel?)
Fermula 0, N, (42,37 (CHyhe oy (XN
Mlecular Weight 31,9988 2.015%4 173,810 14.00x 16.043 .09
rmnn’ Point, °K 4,372 13038 24.0 20 %0.68 .47
(*h (-361.818)  (.4348.767) [-58) (-46) (-296.4) {~305.8)
lo!l'n' Point, °k 90.188 20,068 ~492.6 456-561 111.64 25.07
(%) (+297.348)  (-403.187) (+427) (360-850)  (-288.7) (-82.7)
Critical Terporature, °k 184,58} 32.9% 679 . 190.6 9.8
(*F) , (1003 (a0 ) (763) . (-ns.n (206.2)
Critical Pressure, Mv/n* 5.043 1,0928 2,344 - 4.60 4.24
(psta) (11.4) (187.%1) (340} . (667} (617.4)
Critten) Domsity, \g/a® 3.1 n.6 . . 160.43 ne.7
(1os023) (22.29) (1.982) . - (10.018) (!3.65)
Vapor anm
at 29R,18°%, kn/n’ . . 1.8 . . .
(at 77°F, psia) - - (.26) - . -
Oensity Liquid
at 298,18°x, ts /n? 1nao. & 70.78° 800 793 €22.6° 579.9% 729.¢°
(at 17°F, 1bjee (N.23) (4.419) (49.94)  (49.8) (26.38) (36.2) (45.3)
Heat Capacity, Liquid :
ot 298,155 R 1.69° 9.690" 1.98 - 3.50° 2.28% 1. 91¢
(u 779, Btu/1b o) {.405) (2.316) (.424) - (0.838) (o.m)(o.4se)
Viscostty, Liquid .
C Nt QIBLTSR, eyl aosd 0132 180 . 0.1s8% o 0.2138 7.45¢
(at 77°F, 1b fe-sec) (asao™t (aaninS) (1.08x10"%) (2.76x10°%) (1. mto-‘)(s 01x10+3)
Therma? Conductivity, Liq. b 5 > b q
at 298,15°K,H/m K a81s® 0089° Ay . 193 0.128% 0.242
(8 77°F, Btu/ft-sec-*F)  (2.4310°%)  (1.589r10°0) (2.2a¢% - (3:09x10°%) (. osxto-s)(s 88110-%)
Reat of Formation, Liquid » b ¢ N N
at 298 15°K, keal/mol  -3.093 2 5.2 -6.3 21,37 -29.n% .32.7
(at 77°F, Btu/1b) (-174.0) (-1905) (-795) (-808) (-2400) (- ma)(.tm)
Cost, $/1b 0.033 4.50 1.00 1.00+ 0.22 0.1
& Numbers in parentheses Indicate references,
b At N3P
€ kecal/g Ch untt
¢ At LOX NaB (-297°F)
9
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TABLE 1B
COMPARISON OF RP-1 AND JP-7 FUELS

Spacification Typical Value
RP-1, WP RP-1. JP-7
Compoasition:
Paraffins, % oo an '} 50-56
Naphthenes, % o .n 56 40-47
Aromatics, val % (max) 5.0 5.0 3, 40 2.8-3.4.'3.7
Olefini, vol ¥ (max) 1.0 .- nil, 0.77 o
Indans & Tetralins, % .- - - 0.5-0.7
Distillation
{nitia) boiling point, °F, (min) Report 360 349 388
10% evaporated, °F, (min) 365-410 380 379 401
20% evaporated, °F, (min) .- 403 .- 410
50% evaporated, °F Report Report 414 414
90% evaporated, °F, (max) Report 500 451 452
Fina) boiling point, °F, (max) 525 550 485 507
APl Gravity, (min) 42.0 4.0 43.2 47.0
APl Gravity, (max) 45.0 50.0
Existent gum, mg/100 m} (max) 7 5 1.4 1.2
Potential gum, mg/100 ml (max) 14 10 2.9 2.0
Sul fur, total, % wt, (max) 0.05 0.01 0.026 <.006
Nitrogen, ppm -- . -- .- None detected to
trace (<25)
Mercapton sulfur, ¥ wt, (max) 0.005 0.001 0.0007 <.0007
Flash point, °F, (min) 110 140 137 156
Freezing point, °F (max) -40 -46 «-40 -48
Heating value, net, Btu/1b (min) 18,500 18,700 18,640 18,767
Viscosity at -30°F, CS (max) 16.5 15 10.42 1¢.2
Copper strip corfosion, max ASTM 1 18 1A 18
clagssification
Smoke point, mm, (min) 25 .- 29.5 .-
Luminometer No., (min) . 75 - 88
Water separometer test, (min) - 85 - 95
Particulate matter, mg/¢, (max) ‘- 1 .- 0.1
Precipitation test, Munsell Color Code . «B1 - 81
High Temp. Research Fuel Coker Test
(300°F prestress, S00°F preheater, and
600°F filter)
Filter sP, in. Hy, (max) - 3 .- 0.1
Preheater deposit (Visual . «3 .- 1

. Comparison No.)

10
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11, C, Approach (cont.)

3. Task 111 - Engine/Vehicle Trajectory Performance Assessment

{Engine Screening)

Conduct a preliminary comparison of selected engine cycles by
utilizing a simplified vehicle, system analysis, and trajectory performance
model (Figure 4).

"4, Task 1V - Baseline Engine Systems Definition

Prepare preliminary designs of three baseline engine
configurations. Conduct heat transfer, turbomachinery, combustion stability,
structural, and controls analysis of the baseline engines and components.
Conduct a parametric sensitivity analysis which includes the effects of
turbine temperature and number of usable life cycles. This task is summarized
in Figure 5.

13
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111. ENGINE CYCLE CONFIGURATION DEFINITION

A. OBJECTIVES AND GUIDELINES

High chamber pressure LOz/HC engine cycles from the
NASA-specified cycles depicted in Figure 6 were to be evaluated. These
candidates are from the NASA general conceptual matrix shown in Figure 7. The
general matrix is seen to include the possibility of LHp cooling énd the use
of a fuel-rich LOp/LHp turbine drive combustor (T0C).

Engine power balances and cooling design assessments were made to
define chamber pressure limits. The various advantages and drawbacks of each
engine cycle candidate were investigated. Analyses were conducted on the
specified cycle candidates (A through I) given in Table II. Addit ional prom-
ising cycles (J thrqugh R) included in Table II were also examined, and two
were selected for complete analysis. For each candidate propulsion system,
engine balance analyses were conducted to establish engine operating condi-
tions, performance, and component design requirements.

B. POWER CYCLE MATRIX

Power cycle candidates were evaluated by a two-step process. In
the initial step, a preliminary baseline engine specification was established
for a selected cycle and propellant combination. Engine flowrates were
generated, coolant pressure drops were estimated (approximations based on past
studies), and a pressure schedule was ‘established for this baseline system.
Heat transfer, structural, and materials analyses were then conducted over the
parametric range of variables, utilizing the baseline engine as a reference.

In the second step, coolant channel pressure drop data from the
heat transfer analysis were used to generate a more realistic pressure
schedule for the various cycle candidates.

16
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Cycle  Propellants

o

T © m m

| *

M*
N*
o*
p*
Q*
R*

LO,/RP-1

LO,/RP-1
LO,/LCH,
LO,/RP-1

.LOZ/RP-1
L0,/RP-1
L0,/RP-1
L02/LCH4
L0,/LCH,
LO,/RP-1

L02/LCH4
Dual Throat

LOZ/RP-I
Dual Throat

L0,/RP-1
L02/RP-1
LO,/RP-1
L02/RP-1
LO,/RP-1
LO,/RP-1

TABLE 11

CANDIDATE CYCLES INVESTIGATED

Coolant

RP-1

L0,
LCH,
RP-1

L0,

RP-1

L0,

LCH,

LCH,

LH,

LH, & LCH,

LH, & L0,

LH,
LH,
LH,
LH,
LH,
LH,

* Preliminary screening only

Turbine Drive System

LO,/RP-1 fuel-rich (FR) nas generator
(GG) cycle
LOZ/RP-l FR GG cycle

LO,/RP-1 FR preburner (PB) staged
combustion (SC) cycle

LOZ/RP-l FR PB SC cycle

LO,/RP-1 oxidizer-rich (OR) PB SC cycle
POZ/RP'1 OR PB SC cycle

L02/LCH4 FR PB SC cycle

L02/LCH4 FR & OR PB SC cycle

LOZ/LH2 FR GG cycle

LO,/LH, FR GG & L0,/LCH, OR PB mixed cycle
(GG & SC)

L02/LH2 FR GG & LOZ/RP-1 OR PB mixed cycle
(GG & SC)

LO,/LH, FR PB SC cycle
LO,/LH, FR PB & LO,/RP-1 OR PB SC cycle

L02/LH2 FR PB & LO,/RP-1 FR & OR PB SC cycle

LOZ/LHZ OR GG cycle
heated H, expander bleed (EB) cycle

heated H2 & LOZ/RP-I OR PB mixed cycle
(EB & SC)




I1l, B, Power Cycle Matrix (cont.)

The LOp/HC engine cycles primarily consist of either a closed-
loop (staged-combustion) or an open-loop (yas-generator) system, as depicted
in Figure 8. The basic components of the power cycles are turbopumps, pre-
burners or gas generators, valves, lines, thrust chamber injector, and thrust
chamber coolant channel circuits. The guidelines utilized throughout the
parametric study for these components are given in Table III.

The initial power cycle evaluation included the nine NASA-
specified cycles describued in Figure 6 as cycles A through I, the five cycles
labeled J, M, N, 0, and P, described in Figure 7, and four additional cycles
(K, L, Q, and R) described in Table II. Cycle J is similar to the Alternate
Mode 1 engine concept studied in Reference 9; there it proved to be an excel-
lent LOp/RP-1 candidate when liquid hydrogen is available in the vehicle.
This cycle was selected for additional analysis in the study. Cycles M, N,
and 0 are chamber-pressure-1limited from 6895 to 20680 kN/m? (Pc = 1000 to
3000 psia) when the amount of hydrogen is limited to that for a corresponding
gas- generator cycle (cycle J). Cycles M, N, and 0 alsc do not meet the
definition of a tri-propellant engine, given as a requirement in Section
I1.C., as the pre-combustor fluid is also burned in the main chamber of the
engine. Consequently, these cycles were not evaluated after the initial
screening.

Cycle P (cf. Figure 7) was not studied further because the
oxidizer-rich LOy/LHy gas generator resulted in an engine performance
(specific impulse) loss of over 30 seconds (sea level and vacuum) when
compared to cycle J.

@

The four additional cycles initially evaluated were 1) (Q), a
LHz-cooled expander bleed cycle, where the coolant Jacket heated hydrogen is
utilized to drive the turbine and is dumped in the nozzle at low pressure;

20
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TABLE 111
GUIDELINES FOR PARAMETRIC POWER CYCLE STUDY

i PARAMETER
I NPSH at Engine Inlet, m (ft) LOX: 5(16)
LHZ: 31(100)
RP-1: 20(65)
LCH4: 7(23)
LC3H8: 16(54)
gro?e1;ant Pump Inlet Temperature, LOX: 90(163)
K (°R
LH2: 20(37)
RP-1: 289(520)
LCH4: 112(201)
(Subcooled - propane tank cooled by LO? LC4Hg: 90(163)
boiloff or in-tank submersion or inter-
mediate fluid)
Chamber Service Free Life, cycles ~ 100
Injector Pressure Loss (AP/Pupstream) Liquid: > 15%
Gas: > 8%
Valve Pressure Loss (AP/Pupstream) Shutoff: ~ 1%
Liquid Control: > 5%
Gas Control: > 10%
Line Loss (Ap/Pupstream) ~ 0.5%
Main Pump Suction Specific Speed ~ 20,000
;?f‘ ' Turbine Inlet Temperature °K (°R) Oxidizer-Rich: ~ 922(1660)
| Fuel-Rich: ~ 1033(1860)
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111, B, Power Cycle Matrix (cont.)

2) (R) a LHp-cooled expander bleed/staged-combustion mixed cycle, including
an oxidizer-rich L02/RP-1 preburner; 3) (L), a LHp-cooled LO2/RP-1
dual-throat engine with a LO»/LH» gas generator and a LOp/RP-1
oxidizer-rich preburner; and 4) (K), a LHo and LCH4-cooled dual-throat
engine with a LO»/LHy gas yenerator and an oxidizer-rich L07/LCHy
preburner.

From a performance standpoint, both expander bleed cycles (Q and
R) are competitive with corresponding gas-generator and mixed gas-generator/
staged- combustion cycles but they require more herogen or a coolant jacket
outlet temperature around 667°K (1200°R) for power balance. No further analy-
sis was conducted on the éxpander bleed cycles, since the heat transfer
results indicated bulk temperature values lower than the assumed 667° K, and
no channel optimization was conducted to increase the bulk temperature. The
hydrogen coolant exit temperature reported in Reference 9 at 811°K (1460°R)
indicates that cycles Q and R should be further evaluated.

Both dual-throat engines (K and L) appeared to be excellent can-
didates, but only the L0»/LCHa engine was selected for additional analy-
sis. Poth engines utilize LHp for cooling a portion of the engine and for
the LJ2/LHp gas-generator drive. Since only a small amount of LHp is
used, LO» is used to cool the remaining portion of the LOp/RP-1 engine and
LCHg is used to cool the remaining portion of the LO>/LCHg engine. It
was beyond the scope of this program to conduct a detailed heat transfer
analysis of either dual-throat engine. Similar dual-throat heat transfer
analyses cited in Reference 10 indicated a larger cooling requirement for the
dual-throat configuration compared to conventional bell nozzles. There

" appeared to be less uncertainty in selecting the LOp/LCHg engine as a

candidate, since both LCHg and L0y are available as coolants in the high
heat flux regions to complement LH, cooling and since only LOp is avail-
able for the LUp/RP-1 engine.
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111, Engine Cycle Configuration Definition (cont.)

Co  THRUST CHAMBER HEAT TRANSFER

Cooling system design studies were conducted for a slotted
zirconiumecopper (Zr-Cu) chamber liner to an area ratio of 8:1 and for a
two-pass Inconel 718 tube bundle for the rcomainder of a 40:1 nozzle. Al
chambers are single pass, with the cuolant entering at the €:1 area ratio.
The analysis was performed for a thrust range of 890 to 8896 kN (200K to 2M
1bF) and for a chamter pressure range of 6895 to 34474 kN/mC (1000 to 5000
psia). The following specific coolants for the various components and propel-
lant combinations were used:

Component Propellant Combination
LOX/RP-T LOX/CHy LOX/C3Hg
Chanber LHo LH» LC3Hg
Coolant LO2 LCHg (subcooled)
RP-1
Nozzle LO2
Coolant RP-1

RP-1 cooling was considered with and without carbon deposition
from the combustion products on the chamber wall. Coking temperatures used in
the analyses are 561°K and 700°K (550°F and 800°F). These temperatures indi-
cate the range in thermal stability breakpoint for RP-1 and more refined
petroleum fuels such as JP-5 (720°F) and JP-7 (760°F) cited in Reference 11.
The more refined fuel is specified as RP-1IR in this study to differentiate it
from MIL SPEC RP-1. Special emphasis was placed on channel layout optimiza-
tion to minimize pressure drop requirements for the propellant-cooled cases.




II1, C, Thrust Chamber Heat Transfer (cont.)

Approximate chamber pressure 1imits defined by the chamber cooling
analysis (at a pump discharge pressure limit of 55160 kN/m2 (8000 psia) and
ignoring specific impulse maxima for gas generator cycles) are summarized in
Figure 9 and are listed as follows:

Gas _Generator Cycles Staged Combustion Cycles

Coolant Pc, kN/m¢ Pc, psia kN/mé psia
RP-1, 550°F 8963 1300 8963 1300
coking

RP-1 with carbon 13790 2000 - ——-
deposit, 550°F

coking

RP-1R, 800°F 20684 3000 22063 3200
coking

RP-1IR with carbon 24132 3500 - ——-
deposit, 800°F

coking

Oxygen 28269 4100 21374 3100
Methane 29647 4300 24132 3500
Propane (sub- 31026 4500 24821 3600

cooled to LOX NBP)
Hydrogen 37921 5500 - —

25
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Itl, C, Thrust Chamber Heat Transfer (cont.)

1. Chamber Design Limits and Procedures

Al chawbers were designed for 100 thermal cycles with a
total hold time of 10 hours, using material properties and methodologies
identical to those previously used on Contract NAS 8-32967 (Ref. 10). The
resulting criteria for the gas-side wall temperature are shown in Figure 10.
In this figure, the difference between the maximum gas-side temperature and
the average nickel closeout temperature is plotted as a function of closeout
temperature. For closeout temperatures less than 239°K (-30°F), a ¢ycle life
of 100 cycles determines the allowable gas-side temperature. For ¢loseout
teqaperatures above 239°K, creep limits the maximum gas-side wall temperature
to 811°K (1000°F). The two line segments shown in Figure 10 are input to the
computer program, and the maximum gas-side wall temperature limitation auto-
matically determines the local channel depth, provided the resultant depth/
width ratio is within the 5:1 linit.

Wall strength criteria, taken from Ref. 10, are shown in
Figure 11.

Convergent section contour parameters are as follows:

Contraction Ratio 2.3
Entrance radius of curvature 3ry
Convergence angle 20°
Throat radius of curvature ry

Chamber lengths differed for propellant-cooled vs hydrogen-cooled designs and
are discussed in subsequent sections.
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111, C, Thrust Chamber Heat Transfer (cont.)
Channe!l dimension limitations are as folloWs:

Minimum wall thickness (t) .064 cm (.025 in.)
Minimum land width (L) .102 cm (.040 in.)
Minimum channel width (W) .102 cm (.040 in.)

Maximum channel depth/width or 5:1
aspect ratio (d/w)

Channel layout details for each coolant are presented in subsequent sections.

Coolant inlet temperatures and heat transfer correlations are
summarized in Table IV. An inlet pressure equal to twice the chamber pressure
was assumed in all cases, and the coolant Mach number was not allowed to ]
exceed 0.3. “

A1l chamber designs were generated by using the SCALER Pro-
gram, a program which has been developed specifically for parametric design
studies. With this program, it is economically feasible to generate a rela-
tively large number of parametric design points and still obtain a detailed,

- ' multi-station analysis of a rectangular channel at each design point. The
SCALER Program scales the chamber geometry and the local gas~-side heat trans-
) fer coefficients and coolant heat loads from reference input to other thrusts ‘
4 ; and chamber pressures. At each station, the program iterates to determine the :
3 ' channel depth required to satisfy a gas-side wall temperature limit (which can
be specified as a function of closeout wall temperature consistent with cycle
life and creep criteria) and an optional coolant-side wall temperature limit.
The only simplifying assumption is that gas-side wall temperature differences
between the reference input and scaled cases have a negligible effect on
. gas-side heat transfer coefficients and heat loads. Normally, gas-side wall
temperature 1imits are known well in advance, so that local reference gas-side
. heat transfer analyses can be run at appropriate wall temperatures. Two-
dimensional conduction effects are accounted for by using coupled fin solu-
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TABLE IV

COOLANT INLET TEMPERATURES AND HEAT
L TRANSFER_CORRELATIONS

%

\ CINLET

L TEMPERATURE HEAT TRANSFER

g COOLANT °K (°R) CORRELATION REFERENCE

3

4? Hydrogen 61 (110) Hess and Kunz 12

é Oxygen 111 (200) ALRC Oxygen 13

3 Methane 144 (260) ALRC Oxygen 13
Propare 111 (200) ALRC Propane 14
RP-1 and RP-1R 311 (560) Hines _ 15
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1il, £, Threst CnaTper Heat Yranster (cont,)

t1ons, which also allows some variation of the coolant heat transfer coeffie
cient around the channel perimeter.

2. Chamber Cooling

Chamber lengths for the propellant-cooled chainbers were basod
on correlations for staged-combustion cycles, i.e.,

L' = 4,178 (F/Pc)0.33

unless the chamber geometry, defined in the previous section, required a
greater length for the convergent section. In the latter case,

L' = 2.143 ry = 0.9137 (F/Pc)0+5  LOX/RP-1
= 0.9160 (F/Pc)0eS  LOX/CHq, LOX/C3Hg

The variation of L' with F/Pc for all chambers is shown in Figure 12,

Channel design optimization studies to minimize pressure drop
were conducted by using the channel layout of Figure 13, which features two
straddle-mill regions (constant land width) separated by a region of constant
channel width ending at the throat. Three parameters were used in the optimi-
zation studies: throat channel width (W¢), barrel land width (L), and
coolant flow fraction. As noted in Figure 13, the nozzle land width was set
at 0.102 cm (0.040 in.) for all cases. These optimization studies were con-
ducted for each coolant at selected design points (thrust and chamber pres-
sure), as described in detail in the following sections. The optimum designs
at these selected points were then used to define a channel layout prescrip-
tion for a thrust and chamber pressure survey. This prescription is of the
form

32
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I1I, C, Thrust Chamber Heat Transfer (cont.)
0.040 + W P.\" 6.\"
t 107
f - - c --g- e——
€ w (1000) (F)

in which the left side is derived from the coolant mass velocity (W/A = pv) in
a channel of fixed aspect ratio. A relatively constant aspect ratio near the
maximum allowable is desired to provide the maximum effective coolant surface
area. The coefficient C and the exponents n and m were obtained from the
optimized design points. It was found that m = 0.35 approximates all thrust
effects; values of C and n are as follows:

Ccolant C n

Throat Barrel Throat Barrel
RP-1 and RP-1R 14.1 11.4 0.72 0.57
Oxygen 3.84 4,89 1.00 0.59
Methane 7.76 5.39 0.79 0.79
Propane 6.24 6.86 1.17 0.84

Variations in n are to be expected in view of the effects of pressure and bulk
temperature on different coolants. Optimum coolant fliow fractions, defined in
the optimization studies, were used to yuide the thrust-chamber pressure sur-
veys, with additional checks made during these surveys.

In general it was found that channel widths must increase as
thrust increases in order to accommodate the additional channel flow, but must
decrease as chamber pressure increases in order to provide a higher mass velo-
city at an effective channel aspect ratio.

a. RP-1 Cooling without Carbon Deposition

An additional design criterion is imposed with RP=-1

- cooling: the maximum local coolant-side wall temperature must not exceed the




11, C, Thrust Chamber Heat Transfer (cont.)

coking or decomposition temperature of RP-1. This temperature limit is approx-
imately 550°F for commercial RP-1. With no carbon deposition from the combus-
tion products, it was not possible to obtain designs with reasonable pressure
drops for such a limit. For example, at 6895 kN/m (1000 psia) and 890 kN
(200,000 1bF), a pressure drop of 11030 kN/m2 (1600 psia) was required.

K This pressure drop exceeds the usual design practice for regenerative cooling,

: where the coolant Jjacket inlet pressure is maintained below 2.25 times the
chanber pressure. Therefore, the use of deoxygenated and refined RP-1 (RP-1R)
was investigated. This fuel would be similar to JP-7 or JP=5, both of which
have decomposition temperatures approaching 700°K (800°F). Consequently, all
results presented in this section are for a 700°K (800°F) coolant-side wall
temperature limit. However, a special study was conducted to investigate the
effects of carbon deposition at the 2669 KN (600K 1bF) thrust level at both
decomposition temperatures limits. This study is described in the next sec-
tion.

An extensive channel layout optimization was conducted
for RP-1R cooling with no carbon deposition on the gas-side surface. Table V
summarizes the cases run and the resulting coolant pressure drops for the five
operating points considered. A detailed parametric study was conducted at 890
kN (200K 1bF) thrust and 6895 kN/m2 (1000 psia) chamber pressure, particu-
larly for a coolant flow fraction of 0.9. The latter results are shown in
Figure 14 as a function of barrel land width for various throat channel
widths. As the barrel land width increases initially, a more effective,
higher aspect ratio channel results until the aspect ratio limit is reached
over much of the barrel and convergent section. Note that the decrease in
pressure drop in this region is relatively small since the equivalent diameter
reduction tends to offset the reduction in required coolant mass velocity.
After the aspect ratio limit is reached, further increases in barrel land
width result in overcooling and a rapidly increasing pressure drop. For a
throat channel width of 0.102 em (0.040 in.), all results are aspect-ratio-
limited, whereas the‘aspect ratio l1imit is not reached for a throat channel

width of 0.20 cm (0.080 in.) even with a 0.20 cm (0.080 in.) barrel channel
width.
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TABLE v () of 3)
CHANNEL LAYOUT OPTIMIZATION FOR RP-1R COOLING

Coking Temperature 700°K (800°F) ,‘ No Carbon Deposition
Thrust Pc Coolant wt Lb AP
kN_(106 1bF) kN/m? (psia) Fraction, fc _in, in, pst
890 (C.2) 6895 (1000) 1.0 .040 .040 293
.054 368
.060 .040 250
.054 225 ‘
.068 2n
; .082 202 '
.080 .054 261
- .068 246
©.082 237
) 094 23
- 0.95 .040 .040 2n
N 054 333
3 - .068 478
i .060  .054 . 217
3 ' .068 204 X
N . 082 197 |
H .080 .068 237
\ .082 230 |
3 094 225 ‘
0.90 .040 .040 255 : |
: .054 305 ‘
) .068 432 5
\ .045 .040 225 %
: .050 221 ,
.060 234 |
.050 .050 206 '
.060 199 |
.070 203 |
.080 24

!
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Thrust
kN _(10° 1bF)

2669 (0.6)

TABLE V (cont.) (2 of 3)

Pc Coolant Nt Lb AP
kN/mé (psia) . Fraction, fc _in, in,_ psi_

055 .065 197
.074 192%

.082 201

.089 235

.060 .054 215

.068 202

, .082 195

’ .089 206

.080 .068 236

.082 229

.090 225

.102 223

0.85 .040 .040 265

.054 300

.068 388

.060 .040 270

.054 244

10340 (1500) 0.9 .040 075 697

.045 .060 657
.070 641*

.080 645

.050 .054 " 692

.068 666

.082 651

.087 661

.060 .082 704

13790 (2000) 1.0 .040 .060 1213
.068 1210*

.075 1221

6895 (1000) 0.9 .060 .040 305
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TABLE V (cont.) (3 of 3)

_Thrust Pc Coolant We - by AP
. kN_(106 1bF) kN/m2 (psia) Fraction, fc _in. in, ~ _psi
.054 325
.068 372
.082 488
.075 .070 245
.082 247
.094 272
.080 .082 243
.094 237*
102 262 J
100 .096 255 |
.103 252
110 251
.120 .103 274
13790 (2000) 0.9 .055 .070 1217
080 121
.089 1297
.060 .068 1215
.082 1210
.092 1212
.080 .089 1261
.094 1260
.099 1259
.100 .096 1461
1.0 .060 .068 1295
i .092 1276
.080 .094 1335

* Optimum Designs

bl )
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111, C, Thrust Chamber Heat Transfer (cont.)

Figure 15 presents the locus of minimum'pressure drops
from Figure 14. At low values of the throat channel width, the throat region
is aspect-ratio-limited and overcooled, so the pressure drop decreases rapidly
with increasing channel width. At high throat channel widths, the aspect
ratio decreases. and the less effective cooling (less fin®effect) required an
increase in pressure drop. In this case, the optimum throat design i.e., a
high aspect ratio channel near the limit, occurs at a throat channel width of

0.14 cm (0.055 in.).

Although the optimization studies at other coolant flow

e not as detailed, it appears that the effect of coolant flow

fractions wer
ctions between

fraction on optimum pressure drop is fairly small for flow fra

0.9 and 1.0:

Coolant Flow Optimum
Fraction AP, kN/me_(psi)
1.00 1393  (202)
0.95 1358 (197)
0.90 1324 (192)

RSN SUSR

Limited results at lower coolant flow fractions indicate higher pressure

drops.

The optimum designs for the five operating points in i

Table V (denoted by an asterisk) were used to define the parameters n, m, and J

C in the channel layout wmodel described previously. As the chamber preéssure .
is increased at the 890 kN (200K 1bF) thrust level, the throat channel width

must decrease in order to provide an increased mass velocity at an effective i

{

aspect ratio. At a chamber pressure of approximately 13100 kN/me (1900

psia), the optimum channel width reaches the minimum allowable value of 0.102
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PRESSURE DROP, psi

RP-1R COOLING COOLANT FRACTION = 0.9

F = 200K 1bF Pc = 1000 psia

260 ~ 1800 ;-
240 |
1600
220 -,
<
=
B4
200 | 1400
180 -
1200 |-
160 | | n
.10(.04) .15(.06) .20(.08)

THROAT CHANNEL WIDTH, cm (in.)

Figure 15. Throat Channel Width Optimization
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111, C, Thrust Chamber Hcat Transfer (cont.)

cm (0.040 in.). For chamber pressures above this value, a coolant flow frac-
tion of unity was used in order to provide as high an aspect ratio as
possible. ;

Table VI presents the complete thrust and chamber pres-
sure parametric study results for RP-IR cooling with no carbon deposition.
Note that the effect on pressure drop of, increasing thrust from 890 to 2669 kN
(200 to 600K 1bF) changes with chamber pressure. These trends are influenced
by the 0.102 cm (0.040 in.) minimum channel width limit at the higher pres-
sures for 890 kN (200K 1bF), as noted above, and by the more detailed channel
optimization at 6895 kN/m? (1000 psia). RP-1R cooling is practical to a
chamber pressure of about 20680 kN/m2 (3000 psia) for a coking temperature

of 700°K (800°F).
b. RP-1 and RP-1R Cooling with Carbon Deposition
The effects of gas-side carbon deposition were studied
at 2669 kN (600K 1bF) thrust with coking temperature 1imits of 561 (550°F) and
700°K (800°F). The thermal resistance of the carbon layer was taken from the
model of Ref 16. For LOX/RP-1 at a wixture ratio of 2.8, this yields

(t/K)carbon = 9-0-0.51G in.2-sec-°F/Btu

in which G is the local combustion product mass velocity (w/A) in

‘Ibm/in.2-sec. Thus the axial variation of the carbon deposition is very

significant. Ffor example, at 2669 kN (600K I1bF) thrust and 17237 kN/me

(2500 psia) chamber pressure, the carbon resistance at the throat is only 6%
of the convective resistance, while, in the barrel, it is 182% of the convec-
tive resistance. As a result, the optimum channel design required the minimum

‘barrel land width of 0.102 cm (0.040 in.) in order to provide as wide a barrel
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TABLE VI |
RP-1R_COOLING SUMMARY WITHOUT CARBON DEPOSITION

Coking Wall Temperature Limit = 700°K (800°F)

=] Thrust Pc Coolant AP 6Ty, L
: kN (106 1bF) psia Fraction psi °F _in.
890 (0.2) 1000 0.9 192 191 14.14
1500 641 203 12.88
2000 1.0 1210 195 12.05
2500 2322 200 11.45
3000 4278
2669 (0.6) 1000 0.9 237 165 22.38 |
1500 614 165 18.27 |
2000 ' 1210 168 15.83 ‘
2500 2063 169 14.74
3000 3284
' " 8896 (2.0) 1000 332 147 40.86
1500 794 148 33.36 '
2000 1466 150 28.89 |
2500 1.0 2517 135 25.84
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111, €, Thrust Chamber Heat Transfer (cont.)

channel as possible. Since the coolant flow fraction was fixed at 0.9, the
channel layout optimization was simplified to allow for a variation of the
throat channel width. Table VII summarizes the results obtained tor the
optimum channel geometries.

Figure 16 compares the various RP-1 cooling results at
2669 kN (600K 1bF) thrust. The large reduction in required pressure drop due
to carbon deposition is evident from the curves for a coking temperature of
700°K (800°F). Also indicated is the dramatic increase in pressure drop when
the coking temperature is reduced to 561°K (550°F), particularly at higher
chamber pressures. At 13790 kN/m2 (2000 psia), the pressure drop with
carbon deposition and a coking temperature of 561°K (550°F) exceeds that for
one with no carbon deposition and a coking temperature of 700°K (800°F).

¢. Methane Cooling

Table VIII presents the channel optimization study for
methane cooling. A preliminary study with a slightly different channel layout
defined approximate throat channel widths for minimum pressure drop, thereby
limiting the number of cases required for the final optimization study. For
example, the preliminary study indicated that reducing the throat charinel
width below 0.23 cm (0.090 in.) for the first operatina oint of Table VIII
was of no benefit. It should also be remembered that the barrel land width
has an upper limit defined by the case of a uniform channel width in the
convergent section. This limit is pertinent in the case of a 0.25 cm (0.100
in.) throat width for the first operating point, for which the pressure drop
is still decreasing with a barrel land width as large as 0.28 cm (0.110 in.).

Since the limiting land width is 0.29 cm (0.113 in.), no additional cases were
runs
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TABLE VII
RP-1 AND RP-1R COOLING SUMMARY WITH CARBON DEPOSITION

Thrust = 2669 kN (600K 1bF)

Coolant Flow Fraction = 0.9 Lb = 0.102 cm (0.040 in.)
Teoke Pc Wy AP ATy
°K_(°F) psia in. psi °F
561 (550) 1500 .090 296 58

2000 .080 1415 75
700 (800) 1500 10 65 58
2000 .085 284 75
2500 .055 821 90
3000 .045 1801 105
l
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TABLE VIII
CHANNEL LAYOUT OPTIMIZATION FOR METHANE COOLING

Thgust Pc Coolant Nt Lb AP
kN_(10° 1bF) psia Fraction _in, _in, _psi_

2669 (0.6) 2000 1.0 .090 .080 285
.090 275*%

.100 287

.100 .080 325

.095 293

. 110 278

4000 1.0 .060 .070 2545
.080 2337*

.090 2412

.070 070 3402

.080 2990

.090 2718

8896 (2.0) 2000 1.0 110 .100 593

.130 .100 407
.10 388*

-.120 413

©.150 .100 489

0.9 .10 497

.130 400

150 484

0.8 110 425

.130 423

.150 534
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111, C, Thrust Chamber Heat Transfer (cont.)

Design point parametric results for methane cooling are
given in Table IX. Pressure drop requireménﬁs are well below those for RP-1R
and indicate that a chamber pressure as ‘high as 31030 kN/mé (4500 psia) may
be practical. As with RP-1R (Table V1), the effect of increasing thrust from
890 to.2669 kN (200 to 600K 1bF) is dependent on chamber pressure. At low
pressures, the pressure drop increases with thrust in this range, while, at
high pressures, it decreases. However, a thrust increase from 2669 to 8896 kN

(600K 1bF to 2M 1bF) results in a pressure drop increase at all chamber pres-
sures.

d. Propane Cooling

Chamber cooling studies for a LOX/propane engine (MR =
3.1) were limited to subcooled propane cooling (111°K:200°R inlet temperature)
with no gas-side carbon deposition. Channel layout optimizations were con-
ducted for chamber pressures of 13790 and 27580 kN/m2 (2000 and 4000 psia).
No coking temperature 1imit was imposed, since it was noted that the cool-
ant-side wall temperature did not exceed the accepted propane coking limit of
700°K (800°F), except at one or two stations near the injector (coolant out-
let) for 13790 kN/m (2000 psia). Once the optimum channel width model was
established, a coolant-side wall temperature 1imit of 700°K (800°F) was
imposed to obtain designs at 6895 and 13790 kN/m€ (1000 and 2000 psia). In
the latter case, the design represented a trivial modification of the previous
designs. Since pressure drops are SO low at a chanber pressure of 6895
kN/m2 (1000 psia), a crude optimization of a uniform convergent section
channel width was considered adequate. The above channel layout modet indi-
cated that as the chamber pressure is reduced, a uniform channel width is
aporoached.

Recent long-duration heated tube tests with commercial
grade propane (Ref. 14) indicate coking at wall temperatures well below 700°K
(800° F). Although the data on decomposition rates are limited, especially at
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I1T, C, Thrust Chamber Heat Transfer (cant.)

the high coolant velocities of interest, it appears that the coolant-side wall
temperature limit for commercial grade propane should be no higher than 644°K
(700°F). Therefore, designs for this coking limit were developed for chamber
pressures of 13790 and 20680 kN/mé (2000 and 3000 psia)s At higher prese
sures, the designs noted above had coolant-side wall temperatures less than
644°K (700°F). A1l of the designs are summarized in Table X. Note that the
use of subcooled propane provides a fairly large temperature difference
between coolant-side wall temperatures and coolant bulk temperatures. There-
fore, the 56° (100°F) reduction in coking temperature did not have o drastic
effect on channel designs and pressure drops. The use of NBP propane could

}ead to a significant loss in the cooling capability because of the coking

temperature limit.

The propane pressure drop data for both coking tempera-
tures are compared in Figure 17, with the methane pressure drop data obtained
by using the ALRC oxygen correlation. Also shown is a methane data point at a
chamber pressure of 13790 kN/m (2000 psia) for which the new propane corre-
lation was used. The propane correlation predicts higher methane heat trans-
fer coefficients than the oxygen correlation and, therefore, a lower pressure
drop requirement. However, the m hane pressure drop remains above the
corresponding propane pressure drop. It should be noted that the methane
channel layout was not reoptimized for the propane correlation. Gas-side heat
fluxes for a LOX/propane chamber are slightly Tower than for a corresponding
LOX/methane chamber. Table X indicates that a chamber pressure of about 31030
kN/m (4500 psia) should be practical for LOX/propane engines.

es Oxyygen Cooling
Table X1 presents the channel optimization study for

oxygen cooling. As in the case of methane cooling, this study was guided by
the results of a preliminary study for a slightly different channel layout.
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TABLE X
PROPANE COOLING SUMMARY

F = 2669 kN (600,000 1bF) Coolant Fraction = 1.0

Tin. © 111°K (200°R)

Coking Pc Throat Channel Barrel Land AP ATy,
Temp., °K (°F) psia Width, in. Width, in. psi °F
700, (800) 1000 170 .149% 29 223

' 2000 o .100 .100 155 21

3000 070 .088 569 213

4000 .055 .078 1629 . 216

5000 .046 .074 3976 218

644 (700) 2000 .100 .100 204 2N
3000 .070 .088 608 213

* Uniform channel width in barrel and convergent settion
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TABLE X1
CHANNEL LAYOUT OPTIMIZATION FOR OXYGEN COOLING

Thrust Pc Coolant wt Lb AP
kN (106 1bF) psia Fraction in, in. psi
2669  (0.6) 2000 1.0 120 .120 473
.140 .100 462
120 412
.130 395+
.160 .130 473
3000 1.0 .080 .090 2018
.100 .090 1283
. .100 1203*
. .110 1280
N 120 .10 1452
8896 (2.0) 2000 1.0 150 .130 1048
170 .130 530
.190 130 593
2 .87 .150 .130 811
= .70 .120 588
=5 .130 559
1 . 140 553%
. o .150 598
E .190 .130 617
. 75 .150 .130 622
@{ 170 .130 571
—

.190 130 675
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111, C, Thrust Chamber Heat Transfer (cont.)

At 8896 kN (2M 1bF) thrust, a small reduction in pressure drop was obtained by
using 87% of the total oxygen flow for cooling. The channel layout model
resulting from the optimum cases of Table XI yiélds a uniform convergent sec-
tion channel width for chamber pressures of 12410 kN/m2 (1800 psia) and

below.

Design point parametric results for oxygen cooling are
given in Table XII. Thrust effects are similar to those noted previously for
RP-1 and methane, except that the reduction in pressure drop at high chanber
pressure, associated with increasing thrust from 890 to 2669 kN (200 to 600K
1bF), is much less significant. Pressure drop requirements in general are
somewhat higher than for methane cooling, even though the LOX/RP-1 gas-side

boundary conditions considered here are slightly less severe than the
Table XII indicates that a chamber pressure of approximately

LOX/CHg case.
27580 kN/m¢ (4000 psia) should be practical.

f. Hydrogen Cooling

The initial cooling studies considered hydrogen cooling

at chamber pressures of 5895, 27580, and 34470 kN/m¢ (1000, 4000, and 5000
psia). Detailed channel optimization studies were not conducted. Instead, a
selected for each chamber pressure, and the hydrogen flow-
Nozzle land width was fixed at

channel layout was
rate was varied to minimize pressure drop.
0.1% cm (0.060 in.), and the throat channel and land widths were fixed at
0.102 cm (0.040 in.). At 6895 kN/m¢ (1000 psia) chamber pressure, a barrel
land width of 0.15 cm (0.C60 in.) was used. For the higher chamber pressures,
a uniform channel width of 0.010 cm (0.040 in.) was used in the barrel and
convergent sections. The chamber length prescription used above for the
propellant cooling studies was not selected until after the hydrogen cooling

A length (L') of 40.6 cm (16 in.) was used in the hydrogen studies,

analyses.
unless the convergent section length dictated a larger

as shown in Figure 12,
value.




Thrust
kN (106 1bF)

890 (0.2)

2669 (0.6)

8896 (2.0)

Pc
psia

1000
2000
3000
4000

1000
2000
3000
4000

1000
2000
3000
4000

TABLE XII
OXYGEN COOLING SUMMARY

Coolant AP ATb
Fraction psi °F
1.0 .78 82
376 95

1122 103

2889 107

108 12

.450 73

1128 76

2874 79

0.87 125 73
553 74

1672 73

4424 73

14.14
12.05
10.98
10.28

22.38
15.83
14.14
13.23

40.86
28.89
23.59
20.43
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It1, C, Thrust Chamber Heat Transfér (cont.)

Design point parametric results for hydrogen cooling are
presented in Table XIII for LOX/RP-1 and in Table XIV for LOX/Methane. Hydro-
gen flowrates range from 3.4 Kg/s (7.5 1bm/sec) at low thrust, low chamber
pressure to 27 Kg/s (60 1bm/sec) at high thrust, hioh chamber pressure.
Although required pressure drops are somewhat higher for the LOX/Methane sys-
tem, operation at a 37920 kN/me (5500 psia) chamber pressure appears to be
feasible for all thrust levels.

3. Nozzle Cooling

Two baseline tube bundle designs were developed for 2669 kN (600K
1bF) thrust at 27580 kN/m (4000 psia) chamber pressure: one for RP-1
cooling, and one for oxygen cooling. In both cases, a two-pass design using
Inconel 718 tubes and the total propellant flow was employed. Scaling rela-
tions are proposed for extending these results to other design points.

Wall temperature criteria based on cycle life and creep are
shown in Figure 18. Using the coolant inlet temperature as the limiting back-
side wall temperature resulted in gas-side wall temperature limits of 878°K
(1120°F) for oxygen and 922°K (1200°F) for RP-1. Tube strength criteria,
shown in Figure 19, were used to establish the tube wall thickness at the
forward end and the axial rate of increase for a linearly tapered tube wall.

Round tubes were used for the RP-l-cooled design, so the
design parameter for satisfying the wall temperature 1imit was the number of
tubes. Because of the large flowrate involved, flattened tubes were used for
the oxygen-cooled design. Therefore, alony with the number of tubes, the
undeformed tube diameter at the forward end was a design parameter. A
linearly tapered tube (undeformed) was assumed, with the aft end diameter
equal to twice the forward diameter. Designs were generated for 200 and 250
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TABLE XIII
HYDROGEN COOLING SUMMARY FOR_LOX/RP-1 ENGINES

Thrust Pc Coolant AP ATb
kN (106 1bF) psia Flow, 1b/sec psi °F
890 (0.2) 1000 7.5 53 655

4000 15 440 445
5000 20 799 355
2669 (0.6) 1000 15 137 787
4000 25 405 491
5000 30 680 429
4448 (1.0) 1000 20 256 946
4000 30 429 559
5000 35 770 498
8896 (2.0) 1000 40 607 879
4000 50 75 594
5000 60 850 478




TABLE XIV
HYDROGEN COOLING SlIJMMARY FOR LOX/CH, ENGINES

Thrust Pc Coolant AP ATy,
kN (105 1bF) psia Flow, 1b/sec psi oF
890  (0.2) 1000 7.5 72 740
4000 14.6 611 495
5000 19.4 1105 395
2669 (0.6) 1000 15.0 199 900
4000 24.7 563 558
5000 29.5 1081 484
Kt 4448 (1.0) 1000 25.0 334 852
. 4000 29.7 767 642
5000 4.6 1369 568
8896 (2.0) 1000 40.0 893 1004 |
4000 49.6 " 983 684 ‘
5000 59.4 122 551
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ITl, C, Thrust Chamber Heat Transfer (cont.)

tubes, with the latter providing a lower pressure drop. Details of the base-
line tube bundle for both coolants are given in Table XV.

Previous nozzle tube bundle design studies, particularly
those of Ref. 10, were used to develop the following scaling relationships for
coolant pressure drop and bulk temperature rise:

' p 0.05,.0.075
aT, ~ P °/F

D.  CYCLE POWER BALANCE

Utilizing the parametric heat transfer and performance data from
this study, power balance data were generated for the eleven engine cycles (A
- K) given in Table II. The cycles labeled A through I (shown in Figure 6)
are those specified by the contract. Cycles J and K were selected as the most
promising additional candidates from the preliminary cycle studies previously
cited in Section III,B.

Engine specification data based on the parametric performance data
for LOz/RP-1, LOp/LCHq, and LOp/LC3Hg are given in Tables XVI,
XVIT, and XVIII, respectively. These data were used for the power balance
evaluation of staged-combustion cycle engines and for the thrust chamber
portion of open-loop (e.g., gas-generator) cytle engires. In many cases,
power balances were not achieved at the higher chamber pressures (Pc = 20680
to 34470 kN/m2 (3000 to 5000 psia)) due to cooling limitations (i.e., high
coolant channel pressure dropc). Split flow pumps were utilized in the
analysis where they proved beneficial in Towering the horsepower requirements.
The power cycles and the power balance data are summarized in Table XIX and in
the following paragraphs.
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TABLE XV
BASELINE NOZZLE TUBE BUNDLE DESIGNS

F = 2669 kN (600K 1bF) Pc = 27580 kN /me (4000 psia)
Coolant RP-1 Oxygen
No. of Tubes 326 250
Type of Tubes Round Flattened
Undeformed Diameter, cm (in.)
Forward .73 (.287) 2.01 (.790)
Aft 1.63 (.643) 4.01 (1.580)

Wall Thickness, cm (in.)

Forward .04 (.017) .05 (.020)

Aft .12 (.046) .14 (.054)
Pressure Drop, kN/m2 (psi) 3034 (440) 531 (77)
Bulk Temperature R{se, °K (°F) 314 (106) 287 (56)
Max. Wall Temperature, °K (°F) 922 (1200) 878 (1120)

Vot o 3
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TABLE XVI
L02/RP~1 THRUST CHAMBER ASSEMBLY SPECIFICATION DATA

(SI Units)
PARAMETER
. Chamber Pressure, kN/m? 34470 27580 20680 13790 6890
j Thrust, S-L. kN 2669 2669 2669 2669 2669
Thrust, vac, KN 2947 2964 2987 3022 3094
Mixture Ratfo 2.8 2.8 2.8 2.8 2.8
Area Ratio 61.7 51.9 41.3 29.8 17.2
. ODE Is,S.L. sec 334.4 330.7 325.3 313.6 293.5
ODE Is, vac, sec 368.1 365.9 362.5 353.7 339.5
Is Efficiency, %(V) 96.7 96.6 96.4 96.8 96.7
Deliv. Is,S.L. sec 322.3 318.2 312.2 302.4 283.0
Deliv. Is, vac, sec 355.9 353.4 349.4 342.4 328.1
Total Flowrate, Kg/s 844.4 855.3 871.8 900.0 961.7
LOp Flowrate kg/s 622.2 630.2 642.3 663.2 708.6 !
Fuel Flowrate kg/s 222.2 225.1 229.4 236.8 253.1 -
c*, m/s 1816 1812 1805 1797 1783
Throat Area, cm 446 561 762 1173 2487 ;
Thnat Diam., cm 23.8 26.7 31.14 38.6 56.3 |
Exit Area, cm’ 27477 29161 31458 34955 42781 ?
Exit Diam., cm 187 193 200 211 233

Exit Pressure, KVme M a1 a1 a1 a1




TABLE XVI (cont,)

L02/RPa1 THRUST CHAMBER ASSEMBLY SPECIFICATION DATA
' ~ {English Units) S

PARAMETER

Chamber Pressure, psia 5000 4000 3000 2000 1000

Thrust, S.L. 1bF 600,000 600,000 600,000 600,000 600,000
Thrust, vac, 1bF 662,617 666,433 671,605 679,365 695,618
Mixture Ratio 2.8 2.8 2.8 2.8 2.8

Area Ratio , 61.7 51.9 41.3 29.8 17.2

ODE Is,S.L. sec 334.4 330.7 325.3 313.6 293.5

0DE Is, vac, sec 368.1 365.9 362.5 353.7 339.5

Is Efficiency, %(V) 96.7 96.6 96.4 96.8 96.7

Deliv. 1Is,S.L. sec 322.3 318.2 312.2 302.4 283.0 !
Deliv. Is, vac, sec 355.9 383.6  349.4 342.4 328.1 ;
Total Flowrate, 1b/s 1861.62  1885.61  1921.84  1984.13  2120.14 )
L0, Flowrate, 1b/s 1371.72 1389.39  1416.10  1461.99  1562.2] |
Fuel Flowrate, 1b/s 489.90 496.21  505.75 522.14 557.93 i
c*, ft/s 5958 5945 5922 5897 5850

Throat Area, in? 69.10 86.92 118.05 181.8 385.5 g
Throat Diam., in. 9.38 10.52 12.26 15.21 22.15 :
Exit Area, in® 4259 4520 4876 5418 6631 y
Exit Diam., in. 73.6 75.9 78.8 83.1 91.9 ?

Exit Pressure, psia 6.0 6.0 6.0 6.0 6.0
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TABLE XVII
LOZILCH4 THRUST CHAMBER ASSEMBLY SPECIFICATION DATA

(ST Units)
PARAMETER
Chamber Pressure, kN/m2 34470 27580 20680 13790 6890
Thrust,S.L., kN 2669 2669 2669 2669 2669
Thrust, vac, kN 2958 2973 2996 3035 nz
Mixture Ratio 3.5 3.5 3.5 3.5 3.5
Area Ratio 63.9 53.2 42.2 30.5 17.6
ODE Is,S.L. sec 343.1 338.3 332.4 321.5 301.2
0DE Is, vac, sec 378.8 375.4 371.6 363.8 349.8
Is Efficiency, %(V) 96.4 96.6 96.5 96.7 96.5
Deliv. Is,S.L. sec 329.6 325.4 319.4 309.4 289.0
Deliv. Is, vac, sec 365.3 362.5 358.5 351.7 337.5
Total Flowrate, kg/s 825.7 836.4 852.1 879.6 941.7
LO2 Flowrate, ka/s 642.2 650.5 662.7 684.2 732.5
Fuel Flowrate, kg/s 183.5 185.9 189.4 195.5 209.3
c*, m/s 1865 1861 1856 1848 1834
Throat Area, cm2 446 565 765 1179 2505
Throat Diam., cm 23.9 26.8 31.2 38.7 56.5
Exit Area, cm2 28548 30032 32258 35955 44084
Exit Diam., cm 191 196 203 214 237

Exit Pressure, kN/m2 4 41 41 41 41




TABLE XVII (&ont.)
LOZ/LCH4 THRUST CHAMBER ASSEMBLY SPECIFICATION DATA
(English Units)

PARAMETER
t Chanber Pressure, psia 5000 4000 3000 2000 1000
L Thrust, S.L. 1bF 600,000 600,000 600,000 600,000 600,000
R Thrust, vac, 1bF 665,090 668,416 673,553 682,193 700,698
Mixture Ratio 3.5 3.5 3.5 3.5 3.5
Area Ratio 63.9 53.2 42.2 30.5 17.6
ODE Is,S.L. sec 343.1 338.3 332.4 321.5 301.2
ODE Is, vac, sec 378.8 375.4 ~  3N.6 363.8 349.8
Is Efficiency, %(V) 96.4 96.6 96.5 96.7 96.5
Deliv. Is, S:L. sec 329.6 325.4 319.4 309.4 289.0
Deliv. Is, vac, sec 365.3 362.5 358.5 351.7 337.5
Total Flowrate, 1b/s 1820. 39 1843.88  1878.52 1939.24 2076.12
L0, Flowrate, 1b/s 1415.86 1434;13  1461.07 1508. 30 1614.76
* Fuel Flowrate, 1b/s 404.53 409.75 417.45 430.94 .461.36
4 c*, ft/s 6119 6107 6088 6063 6017
3 Throat Area, in’ 69.2 87.5 118.5 182.7 388.3
- Throat Diam., in 9.39 10.56 12.28 15.25 22.24
¥ Exit Area, in? _, 4425 4655 5000 5573 6833 ‘
1 Exit Diam., in. 75.1 77.0 - 79.8 84.2 93.3 !
X Exit Pressure, psia 6.0 6.0 6.0 6.0 6.0

-

67




TABLE XVIII
L0,/LCqHg THRUST CHAMBER ASSEMBLY SPECIFICATION DATA

(ST Units)
- PARAMETER
1 Chamber Pressure, kN/m’ 134470 27580 20680 13790 6890
1 Thrust, S.L. KN 2669 2669 2669 2669 2669
Lo Thrust, vac, kN 2949 2968 2993 3030 3112
Mixture Ratio 3.1 3.1 3.1 3.1 3.1
Area Ratio 61.9 52.4 4.7 30.1 17.3
ODE Is,S.L. sec 340.0 334.9 328.2 7.9 297.2
ODE Is, vac, sec 374.6 7.3 366.8 359.5 344.6
1s Efficiency, %(V) 97.2 97.2 96.9 97.0 96.6
Deliv. Is, S.L. sec 329.6 324.5 317.1 307.2 285.3
Deliv. Is, vac, sec 364.2 360.9 355.6 348.8 332.7
Total Flowrate, kg/s 825.7 838.7 858.3 885.9 953.9
: L0, Flowrate, kg/s 624.3 634.1 648.9 669.9 721.3
2 Fuel Flowrate, kg/s 201.4 204.6 209.3 216.1 259.9
i c*, m/s 1864 1857 1850 1843 1828
= Throat Area, cn? 446 565 268 1184 2530
= Throat Diam., cm 23.9 26.8 31.3 38.8 56.7
: Exit Area, cm® 27632 29587 32006 35645 43761
Exit Diam., cm 188 194 202 213 236

Exit Pressure, KN/m® a1 a1 a1 a1 a1




TABLE XVIII (cont.)
L02/LC3H8 THRUST CHAMBER ASSEMBLY SPECIFICATION DATA

Lt wy "
e T

b — —_—
.ﬁi (English Units)
.
i PARAMETER
53\ Chamber Pressure, psia 5000 4009 3000 2000 1000
A Thrust, S. . 1bF 600,000 600,000 600,000 600,000 600,000
3 Thrust, vac, 1bF 662,985 667,308 672,808  681.250 699,685
Mixture Ratio 3.1 3.1 3.1 3.1 3.1
Area Ratio 61.9 52.4 a.7 30.1 17.3
ODE Is,S.L. sec 340.0 334.9 328.2 317.9 297.2
ODE Is, vac, sec 374.6 371.3 366.8 359.5 344.6
Is Efficiency, %(V) 97.2 97.2 96.9 97.0 96.6
1 Deliv. 1s,S.L. sec 329.6 324.5 317.1 307.2 285.3
: Deliv. 1s, vac, sec ° 364.2 360.9 355.6 348.8 ° 332.7
:gé Total Flowrate, 1b/s 1820.39  1849.00  1892.15  1953.13  2103.05
3] L0, Flowrate, 1b/s 1376.39  1398.02  1430.65  1476.75%  1590.11
' Fuel Flowrate, 1b/s © 444,00 450.98  461.50 476.37 512.94
c*, ft/s 6115 6092 6069 6047 5998
Throat Area, in‘ 69.2 87.5 119.0 183.5 392.1
Throat Diam., in, 9.39 10.56 12.31 15.29 22.34
Exit Area, in° 4283 4586 496 5625 6783
Exit Diam.. in, 73.9 76.4 79.5 83.9 92.9
Exit Pressure, psia 6.0 6.0 6.0 6.0 6.0
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[11, D, (ycle Pawer Balance ;cont.)

1.  Cycie A

The schematic for engine cycle A is civen in Figure 20. As
shown in the figure, the engine is fuel-cooled from a low area ratio (8:1) to
the injector. The coolant then enters the nozzle (. = 8:1 to about 40:1). A
small portion of the fuel bypasses the coolant jacket and flows directly to
the gas generator, and a small portion of the oxidizer bypasses the main
injector circuit and flows to the gas generator. The fuel-rich gas generator
provides the drive fluid for the two turbines shown in series in the sche»
matic. Other turbine arrangements are possible, depending upon the horsepower
requirements and speeds of the pumps. Since the series turbine arrangement
of fers a slight horsepower advantage over a parallel turbine arrangement, it
was selected for the purposes of obtaining the parametric cycle datas Split
flow pumps were also utilized to minimize horsepower requirements. The pump
discharge pressure for the gas generator fluids was chosen equal to that for
the oxidizer pump.

Another cooling scheme was investigated to further optimize
the engine cycle power balance. Liquid oxygen was substituted for fuel as the
nozzle coolant from 8:1 to the nozzle area ratio. The differences in fuel
pump discharge pressure and performance are seen to be small when oxygen is
used as the nozzle coolant:

Chamber

Pressure 3PBF AIsiS.L.) Als(vac)
kN/m¢_ (psia) kN/mé (psi) sec) ec
13790 2000 -269 (-39) 0 0
20680 3000 -1124 (=163) 0.2 0.2
27580 4000 -3082  (-447) 0.4 " 0.3
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111, D, Cycle Power Balance (cont.)

A small thrust contribution is obtained by dumping the tur-
bine exhaust into the nozzle and expanding the gas along with the exhaust from
the thrust chamber. This thrust contribution and the overall engine specifi-
cations are sunmarized in Tables XIX and XX for the LOX-ccoled nozzle cases,
as these represent a slightly higher chamber pressure capability for this
cycle. The pump discharge pressure requirement as a function of chamber pres-
sure is illustrated in Figure 21, and the delivered performance versus chamber
pressure is plotted in Figure 22.

Calculations were initially made from coolant pressure drop
data, obtained by assuming no carbon deposit on the hot gas-side chamber wall,
and by assuming a maximum local coolant-side wall temperature of 550°F (the
decomposition temperature for MIL SPEC RP-1). With no carbon deposition, the
RP-1 coolant pressure drop at a chamber pressure of 6895 kN/mé (1000 psia)
and an engine thrust level of 890 kN (200K 1bF) is 11030 kN/m (1600 psia).
Since it would not be possible to achieve an engine power balance with RP-1 at
much higher chamber pressures (cf. the slope of curve 5 in Figure 21), a more
refined petroleun fraction (RP-1R) was utilized in most of the calculations.
The more refined fuel is similar to JP=-5 or JP-7, which have breakpoint temp-
eratures approaching 700°K (800°F).

The conclusions to be drawn from examination of Figure 2! are
as follows: (1) MIL SPEC RP-l-cooled engines (curve 5) are limited to a
chamber pressure slightly above 6895 kN/m¢ (1000 psia) when there is no car-
bo:t deposit on the wall; (2) MIL SPEC RP-l-cooled engines (curve 3) can
achieve a chamber pressure in excess of 13790 kN/m2 (2000 psia) if a uniform
carbon deposit is maintained on the chamber wall; (3) an RP-1R-cocled engine
(curve 2) is limited to a chamber pressure slightly in excess of 20680 kN/mé
(3000 psia) without a carbon deposit; (4) an RP-1R-cooled engine (curve 1) can
achieve a chamber pressure in excess of 24130 kN/me (3500 psia) if a carbon
deposit is maintained on the chamber wall; and (5) the LOX pump discharje

pressure (curve 4) is not the controlling element in the power balances for
this cycle.
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FUEL-COOLED, FUEL=RICH GAS GENERATOR

F = 2669 kN (600K 1bF) LO,~COOLED NOZZLE -
Q@) Twc = 700°K (800°F), CARBON DEPOSITION
@ Twe = 700°K (800°F), NO'CARBON DEPOSIT | FUEL PUMP
(3 Twe = 561°K (550°F), CARBON DEPOSITION
@ Loy PuMP
5000 (®) Twe = 561°K (550°F), NO CARBON DEPOSIT: FUEL PUMP
40,000}
5000 |
© 30,000p
o
clL
= 4000 |-
&
2
N
w Y4
g 3000
g zo,ooo#— Twc = 700°K (800°F) IS ASSUMED
g COKING LIMIT FOR RP-1R
= Twe = 561°K (550°F) IS ASSUMED
COKING LIMIT FOR MIL
;. SPEC RP-1
10,000}
1000 |
oL 1 1 |
10,000 , 20,000 30,000
_ N/m
L J | i | |
0 1000 2000 3000 4000 5000
CHAMBER PRESSURE (psia) ‘

Fiqure 21. L02/RP-1 Engine Cycle A Pump Discharge Pressure Requirements
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111, D, Cycle Power Balance (cont.)

Figure 22 depicts the performance for the various cycle A
engines in comparison to a staged-combustion cyclé engine (shown in Table
XV1). The conclusions trom Figure 22 are that (1) a carbon deposit slightly
influences (increases) the performance of the LOX/RP-1 gas-generator cycle
engine (due to a reduction in gas-yenerator flowrate); (2) the turbine inlet
temperature has a large effect on gas-generator engine performance (due to the
variation in gas-generator flowrate); and (3) it is the gas-generator cycle
losses which determine the chamber pressure operation (e.g., Pc = 3000 psia
for'curve 1 gives maximum performance) rather than the pump discharge pressure
limit (e.g., Pd = 35160 kN/m? (8000 psia), which represents the current
state of the art in rocket engines).

2, Cvcle B

Engine cycle B differs from cycle A in that LOp is used as
the coolant. The schematic is given in Figure 23. The power balance results
are summarized in Tables XIX and XXI and in Figures 24 and 25.

Figure 24, when compared with Figure 21, shows the potential
benefit of using LOp, rather than RP-1, as the coolant. If the 1980 state-
of-the-art of rocket engine turbopumps is assumed to be 8,000 psia pump dis-
charge pressure, then LOp is capable of cooling a LO2/RP-1 engine with a
chamber pressure of 27580 kN/mS (4000 psia) (curve 2) compared to 1000 psia
for RP-1 and to 2500 for RP-1R, respectively. When a carbc: deposit is
assumed, LOp is capable of cooling an engine with a chamber pressure of
about 30340 kN/m (4400 psia) (curve 1). '

Similar trends in performance as were seen in Figure 22 are
shown in Figure 25. A carbon deposit provides a smail increase in performance
(about 1 second), and an increased turbine inlet temperature shows a large
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Figure 24. LO?/RP-I Engine Cycle B Pump Discharge Pressure Requirements
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111, D, Cycle Power Balance (cont.)

increase in performance (from 4 to 20 seconds). It should also be noted that
the uncoated chamber reaches its maximum sea level performance at a chamber
pressure of about 20680 kN/mé (3000 psia), which is essentially the same for
cycle A. A carbon deposit and/or an increase in turbine inlet temperature is
seen to shift the maximum performance to higher chamber pressures. The same
trend was indicated in Figure 22 for the RP-1-cooled gas-generator cycle
engine,

3. Cycle C

Cycle C is identical to cycle A, with the exception that
methane is used as the fuel. The schematic of the cycle is given in Figure
26. Power balance data for the methane-cooled gas-generator cycle are sum-
marized in Tables XIX and XXII and Figures 27 and 28. For an assumed pump
discharge pressure limit (1980 state of the art) of 55160 kN/m2 (8000 psia),
a methane cooled gas-generator cycle engine is limited to a chamber pressure
of 29650 kN/me (4300 psia). A carbon deposit on the chamber wall, as seen
for cycles A and B, would allow an even higher chamber pressure.

Modification of cycle C to include an oxygen-cooled nozzle
has essentially no effect on the fue! pump discharge pressure {-386 kN/m
[-56 psia] at Pc = 4000 psia) and no effect on performance.

Performance data for three turbine inlet temperatures are
given in Figure 28. The initial increase in turbine inlet temperature from _
1033 to 1256°K (1860 to 2260°R) offers an increase in performance of about 4-8
seconds. Further increase in temperature to 1644°K (2960°R) is seen to give
only about 2-4 seconds in additional ergine performance.
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NO CARBON DEPOSIT ASSUMED
CHy~COOLED, CH4-RICH GAS GENERATOR
LOz”COOLED NOZZLE EXTENSION

F = 2669 kil (630K 1bF)
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Figure 27. LO,/LCH, Engine Cycle C Pump Discharge Pressure Requirements
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111, D, Cycle Power Balance (cont.)

The maximum in sea level performance for cycle C occurs at
about 24130 kN/mé (3500 psia) chamber pressure and the maximum in vacuum
perfofmance at about 20690 kN/m2 (3000 psia). The change in performance
between 20680 and 27580 kN/m¢ (3000 and 4000 psia) chamber pressure is
small, however, because of the increased amount of turbine-drive fluid
required. The performance at sea level and the performance at vacuum between
3000 and 4000 psia must, therefore, be compared with the engine factors that
influence life and reliability in order to optimize the engine system.

4. (Cycle C'

Subcooled propane replaces 1iquid methane in cycle C', other-
wise the schematics for cycle C' and cycle C are identical (cf. Figure 26).
Subcooled propane is stored in the vehicle at the 1iquid oxygen normal boiling
point (NBP) to take advantage of its increased density (729 Kg/m3: 45.5
1b/ft3) compared to NBP propane (578 Kg/m3: 36.1 1b/ft3). Because the
propane is subcooled from its NBP temperature of 231 to 91°K (416 to 163°R),
its heat transfer capacity is also increased. Methane, with a much smaller
liquidus range than propane, cannot be utilizeq in such a subcooled manner.

Tables XIX and XXIII and Figure 29 and 30 summarize the para-
metric data generated for the LOX/LC3Hg gas-generator cycle engine C'.
Figure 29 shows that this engine can achieve a chamber pressure of 31030
kN/m2 (4500 psia) with a 55160 kN/m2 (8000 psia) pump discharge pressure
limit. As shown in Figure 30, the maximum in sea level performance is
achieved at 27580 kN/mZ (4000 psia) (or higher) chamber pressure. The

" figure also indicates the maximum in vacuum specific impulse at a chamber

pressure of about 20690 kN/mZ (3000 psia).

5. CycleDd

The schematic for the LO,/RP-1 staged-combustion cycle D
engine is given in Figure 31. The figure shows that the engine, 1ike the

95
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PUMP DISCHARGE PRESSURE - psia

Wy - e e v
4,50 v
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NO CARBON DEPOSIT ASSUMED

LC4Hg COOLED C;Hg - RICH GAS GENFRATOR
LO,~COOLED NOZZLE (¢ 2 8:1)

F = 2669 kN (600K 1bF)

LC3H8

L0,

i | 1

|
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1 1 1 1

1000 2000 3000 4000
CHAMBER PRESSURE (psia)

Figure 29. LO?,’LC3H8 Cnaine Cycle C' Pump Discharge Pre.sure Requirements
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111, D, Cycle Power Balance (cont.)

previously described cycles, is fuel-cooled through two circuits. All of the
fuel returning from the two-pass nozzle coolant circuit enters the preburner
and is partially burned with a small amount of oxidizer. The preburner
exhaust drives the turbines (in series) and flows to the main combustion
chamber where it is further burned with the remaining oxidizer to generate the
engine thrust.

Substitution of oxygen for the fuel in the nozzle coolant
circuit provides a slight benefit by lowering the fuel pump discharge pres-
sure. This benefit is 1731 and 3861 kN/m® (251 and 560 psi), respectively,
at chamber pressures of 20680 and 27580 kN/mZ (3000 and 4000 psia).

The power balance data for cycle D are summarized in Tables
XIX and XXIV and in Figure 32. Since the staged-combustion cycle is a
closed-loop cycle, all its variations at the same chamber pressure deliver the
same performance. The performance data have previously been summarized (cf.
Figures 22 and 25 and Table XVI).

As shown in Figure 32, the LOp/RP-1, RP-1-cooled, staged-
combustion cycle D is limited to chamber pressures between 17240 and 22750
kN/m2 (2500 and 3300 psia) if an upper limit of 55160 kN/mé (8000 psia)
pump discharge pressure is assumed. '

6. CycleE

Cycle E (Figure 33) differs from cycle D by utilizing LO2
rather than RP-1 or RP-1R as the coolant. A modest increase in chamber pres-
sure from 2500 (curve 1, Figure 32) to 2900 psia (curve 1, Figure 34) is
achieved by changing coolants. The effects of carbon deposit and turbine
inlet temperature are also indicated in Figure 34 and in Table XIX.
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; CYCLE D: FUEL-COOLED, RP-1-RICH PREBURNER
F = 2669 kN (600K 1bF) L0,-COOLED NOZZLE
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Figure 32. LOZ/RP-I Engine Cycle D Pump Discharge Pressure Requirements
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L02-COOLED, RP-1-RICH PREBURNER
F = 2669 kN (600K 1bF)

Q) RP-1 PUMP NO CARBON DEPOSIT TT = 1033°K (1860°R)
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= l Figure 34. L0,/RP-1 Engine Cycle E Pump Discharge Pressure Requirements




v 111, D, Cycle Power Balance (cont.)

7. Cycle F

Cycle F differs from cycle D in the use of a LOz-rich pre-~
burner in place of the RP=l-rich preburner. The cycle schematic is depicted
in Figure 35, and the power balance summary is given in Figure 36 and lable
X1X. The required pump discharge pressure for the three staged-combustion

cycles (cycles D, E, and F) at a chamber pressure of 17240 kN/mé (2500 psia)
are as follows:

Pp
Cycle  kN/m? (psia) Coolant Preburner
D 56540 (8200) RP=-1R RP=1=rich
£ 39990 (5800) L0y RP=1-rich
F 35160 (5100)  RP-IR LOp-rich

Because of its high mass flow, the LOp-rich preburner provides more horse-
power, resulting in a lower pump discharge pressure requirement. The maximum
chamber pressure tor this cycle js seen to be 22410 kN/m¢ (3250 psia) for a
pump discharge pressure of 55160 kN/m¢ (8000 psia).

The influence of carbon deposit and turbine inlet temperature
was not computed for this cycle. The effect of these variables should be
similar to that previously shown.

8. (CycleG

The utilization of both a LOp-rich preburner and LO2
cooling is indicated in the schematic (Figure 37) for a cycle G, L0y/RP-1
staged- combustion cycle. Figure 38 and Table XIX present the power balance
results for this cycle. At a chamber pressure of 17240 kN/m¢ (2500 psia),
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FUEL-COOLED, LO,~RICH PREBURNER
F = 2669 kN (600K 1bF)
(:) RP-1R PUMP NO CARBON DEPOSIT TTI = 922°K (1660°R)
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Figure 36. LOQ/RP~1 Engine Cycle F Pum» Discharge Pressure Requirements
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LO2=COOLED, LOp-RICH PREBURNER
F = 2669 kN (600K 1bF)
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Figqure 38. LOZ/RP-I Engine Cycle G Pump Discharge Pressure Requirements
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111, D, Cycle Power Balance (cont.)

the pump discharge pressure requirement is 35850 kN/mzA(5200 psia), similar
to that for ctycle F. The maximum chamber pressure allowed by this cycle is
21720 kN/m2 (3150 psia) if a 1980 state-of-the-art pump discharge limit of
55160 kN/m? (8000 psia) is assumed.

The effects of a chamber wall carbon deposit and of a higher
turbine inlet temperature are also shown in Figure 38 at a chamber pressure of
27580 kN/m (4000 psia). The state-of-the-art turbine inlet temperature for
rocket engine oxidizer-rich preburners is 932°K (1678°R) at a pressure of
31410 kN/me (4556 psia) based on the ARES program (Ref. 17). However, an
advanced ARES program (Ref.18) utilized an oxidizer-rich monopropellant (98%
Ha202) preburner (no turbine) operating at 31030 kN/m2 (4500 psia) and
1244°K (2240°R). Since the upper limit of feasible oxidizer-rich turbine-
inlet temperatures has not been established, a temperature of 1444°K (2600°R)
was selected for the one example shown in Figure 38.

9. Cycle G'

Subcooled propane is used in cycle G*, replacing the RP-1 of cycle
G. Otherwise these cycles are identical. The power balance results are sum-
marized in Table XIX and in Figure 39. The allowable chamber pressure for a
pump discharge pressure of 55160 kN/mé (8000 psia) is seen to be 22060
kN/m2 (3200 psia).

The conclusions to be made concerning staged-combustion
cycles D through G' are: (1) an oxidizer-rich preburner offers a significant
improvement (lower pump discharge pressures lead to Tonger life turbopumps);
(2) LOp cooling significantly reduces the pump discharge pressure require-
ments of a fuel-rich preburner cycle; and (3) higher turbine inlet tempera-
tures can lead to a lower pump discharge pressure (longer life) and/or to a
higher chamber pressure.
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Figure 39. LOZ/LC3H8 Engine Cycle G' Pump Discharge Pressure Requirements
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“cycle H is 20680 kN/m2 (3000 psia) (see Figure 41). This limit is increased

111, D, Cycle Power Balance (cont.)

10. Cycle H

The schematic for the LO2/LCH4 staged-combustion cycle H
{s shown in Figure 40. The schematic is identical to that for cycle D, with
methane replacing RP-1. The results of the power balance analysis are sum-
marized in Table XIX and in Figure 41.

If a pump discharge pressure limit of 55160 kN/m (8000
psia) is assumed to be 1980 state of the art, the chamber pressure limit for

to 26200 kN/m2 (3800 psia) if the turbine inlet temperature can be increased
to 1644°K (2960°R).

No calculations were made for cycle H assuming a carbon
deposit on the chamber wall. Although some deposit probably exists, it is

expected to be much lighter than that found from the combustion of LO2 and
RP-1. '@

11. Cycle |

Cycle 1 differs from cycle H in the addition of an
oxidizer-rich preburner, as shown in Figure 42. The power balance data are
summarized in Table XIX and Figure 43. The chamber pressure limit is seen to
be 24130 kN/m2 (3500 psia) (curve 1 in Figure 43) compared to 20680 kN/m¢
(3000 psia) (curve 1 in Figure 41). The benefit of the addition of an
oxidizer-rich preburner to cycle H is directly translatable into a performance
increase of 3.2 seconds (sea level) and 2.3 seconds (vacuum) because of the
chamber pressure increase to 24130 kN/m2 (3500 psia).
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CHg=COOLED, CHs=RICH PREBURNER

F = 2669 kN (600K 1bF) LO2~COOLED NOZZLE
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Figure 41. LOZ/LCH4 Engine Cycle H Pump Discharge Pressure Requirements
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111, D, Cycle Power Balance (cont.)

The influence of turbine inlet temperature is indicated in
the figure at a chamber pressure of 27580 kN/me (4000 psia). An increase in
the fuel-rich turbine inlet temperaturc to 1644°K (2960°R) significantly
Towers the fuel pump discharge pressure. However, if the oxidizer-rich ture
_3 bine inlet temperature is maintained constant at 922°K (1660°R), as shown in
Figure 43, the reduction in flow through the oxidizer-rich turbine results in
a higher L0, pump discharge pressure (curve 6) corresponding to the lower
fuel discharge pressure (curve 5). Consequently, a modest increase in fuel-
rich turbine inlet temperature (curvés 3 and 4) is preferable in this case.
The other option, i.e., to increase the oxidizer-rich turbine temperature,
will be discussed in Section VI,H.

12, Cycle I'

Cycle I' is the subcooled propane version of cycle I, where pro- !
pane is substituted for methane fuel. The summary of the power balance data
for this cycle is given in Table XIX and in Figure 44. The maximum chamber
pressure achievable at a pump discharge pressure of 55160 kN/m2 (8000 psia)
is seen to be 24820 kN/m2 (3600 psia).

13,  Cycle J

The schematic for a LHp-cooled, LHp fuel-rich gas-generator,
LOp/RP-1 engine cycle is depicted in Figure 45. The results from the power
balance analysis for this cycle are summarized in Figures 46 and 47 and in
Table XIX.

Cycle J is capable of generating a chamber pressure of 34470
kN/mé (5000 psia) at a pump discharge pressure 46200 kN/m2 (6700 psia),
well below the 55160 kN/md (8000 psia) 1980 state-of-the-art value. The
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] Figure 46. LOZ/RP-l + LH2 Engine Cycle J Pump Discharge pressure Requirements
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II1, D, Cycle Power Balance (cont.)

delivered performance for the engine slightly exceeds that for a staged-

combust ion LOp/RP-1 engine because of the addition of the Hp fuel-rich
turbine exhaust in the thrust chamber nozzle.

14, Cycle K

A LO2/LCHg4 dual-throat engine schematic is shown in
Figure 48. This engine utilizes both LHz and LCH4 as coolants and both an
oxidizer-rich preburner and a Hp fuel-rich gas generator. The cycle shown
in the schematic is representative of this class of engines, but a detailed
heat transfer and thrust split analysis is required to fully optimize this
type of engine for a two-stage mission. Sufficient data exist for similar

" tri-propellant engines to allow a power balance and performance analysis of

this bipropellant engine with a hydrogen-rich gas-generator drive. The
specification for cycle K is given in Table XXV.

15. Thrust Level Variation

The parametric heat transfer data and the parametric
performance data generated in this study snow some variation with thrust _
levels from 890 to 6672 kN (200K to 1M 1bF). Some of this variation is real,
and some of it is the result of approximations used in the parametric scaling

relationships required to facilitate the generation of a wide variety of
design data.

Past experience has shown that engine cycles can ba'rated at
a8 given thrust level (e«q., 600K 1bF) and that the rating will be valid for
other thrust levels (i.e., 200K to IM 1bF). To validate this premise, power
balance calculations were made for cycle C at thrust levels of 890, 2669, and
6672 kN (200, 600K, and 1M IbF). The results are given in Table X/(X. Table
XXVI summarizes the pertinent data.
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TABLE XXV
L02/LCH4 ENGINE CYCLE K SPECIFICATION

PARAMETER MOPE I MODE_II
Sea Level Thrust, 1bF 610,745 --
Vacuum Thrust, 1bF 685,270 225,960
Sea Level Is, sec 319.0 .-
Vacuum Is, sec 357.9 380.2
Mixture Ratio (LOZ/LCHa) 3.5 3.5
Mixture Ratio (L02/LH2) 0.8 0.8
Chamber Pressure, psia 2800/4000 4000
Area Ratio 42 187
TCA Sea Level Is, sec 320.9 -
TCA Vacuum Is, sec 359.3 383.6
GG Sea Level Is, sec 238.8 --
GG Vacuum Is, sec 300.7 338.1
Flowrate, 1b/sec 1914.61 594.36
TCA LO, Flowrate, 1b/sec 1454.14 427.28
TCA LCH, Flowrate, 1b/sec 415.47 122.08
GG LO2 Flowrate, 1b/sec 20.00 20.00
GG LH, Flowrate, 1b/sec 25.00 25.00
Throat Area, in2 115.22 26.06
Exit Area, in? 4869.72 4869.73
Exit Pressure, psia 7.3 1.5
LCH4 Pump Dischg. Pressure, psia 7429 7429
L02 Pump Dischg. Pressure, psia 7429 7429
LH2 Pump Dischg. Pressure, psia 1655 1655

|
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TABLE XXVI

THRUST LEVEL EFFECT ON PERFORMANCE

Chamber
Thrust Pressure
kN (1bF) kN/m2 (psia)

890 (200,000) 27580 (4000)
2669 (600,000) " (4000)

6672 (1,500,000) " (4000)

Pump Dischg.
Pregsure
kN/me¢ (psia)

48470 (7030)
47720 (6921)

52830 (7662)
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Sea Level Vacuum
Is Is
(sec) (sec)
315.8 353.5
316.5 354.1
316.5 354 .1
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[11, Engine Cycle Configuration Definition (cont.)

It is seen that there is little variation in the performance
of the engines over this wide range of thrust levels. There is a variation in
pump discharge pressure on the order of 10%, but some of this variation can be
reduced through thrust chamber design changes to decrease the coolant pressure
drop.

E. ENGINE CYCLE RATING SYSTEM

In order to select two of the candidate cycles for preliminary
design analysis and engine definition in Task IV of this program, it was
necessary Lo establish cycle rating criteria. These criteria, summarized in
the following paragraphs, also include the LOX/propane propellant system added
in the conduction of Task IV. Final ranking and selection of the cycles is
deferred to Section V.D. where the mission analysis results will be presented.

Engine cycle rating parameters were established according to the
system shown in Figure 49. The desired condition and the effect of the param-
eter on the engine and/or vehicle are listed in the figure. The listed rating
points for each parameter are subjective and depend upon the assumptions
chosen for the study. In general, the assumptions reflect good design practice
for a reusable, long-1ife rocket engine system that makes maximum use of the
chemical energy of the propellants to obtain an optimum power cycle.

Engine performance is given the highest rating point potential of
fifteen because of the impact of Stage 1 performance on the mission capability
(payload) for a two-stage vehicle. Engine weight does not affect the mission
results to a great degree, and, accordingly, is assigred a one-point maximum
rating for the lowest engine weight.
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111, E, Engine Cycle Rating System (cont.)

Pump discharge pressure and chamber pressure were viewed as life
cycle influencing parameters, and, as such, lower pressures were awarded
higher points. Hydrocarbon coking on the turbine blades was envisioned as an
unacceptable commodity. No coking, therefore, was assigned three points.

Interpropel lant seals in turbomachinery require large amounts of
inert gas, such as heljum, and significantly increase the weight of the
turbopump system. Therefore, two rating points were assigned to a cycle
without the requirement for an interpropellant seal.

A shift in mixture ratio from the optimum staged-combustion cycle
value, such as required by a gas-generator cycle, was penalized slightly, with
optimum mixture ratio assigned one point. Coolants such as LOp, LCHg, and
LC3Hg were assigned two points, and LHp coolant was assigned three
points. The questionable coolant RP-1R was given one rating point.

Both Tow- and high-temperature turbines are listed as desirable in
the figure in view of the fact that this study indicates a marked benefit of a
high-temperature turbine temperature on some cycles. Since the cycle ranking
was based on turbine temperatures of 1033°K (1860°R), no point rating was
assigned to this parameter.

1. Preliminary Cycle Ranking

A chamber pressure ranking of the cycles is given in Figure
50. The ranking is based on an upper limit of pump discharge pressure of 55160
kN/me (8000 psia) for staged-combustion cycles and the optimum performance
for gas-generator cycles. The pump discharge pressure limit is the 1980 state
of the art for rocket turbopumps. The ranking is also based on 1980 state-
of-the-art fuel-rich and oxidizer-rich turbine temperatures of 1033 and 922°K
(1860 and 1660°R), respectively. The RP-l-cooled engines (cycles A, D, and F)
are seen to be limited to very low chamber pressures.
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111, €, Engine Cycle Rating System (cont.)

The chamber pressure ranking from Figure 50 can be converted
into a performance rarking for the cycles, as shown in Figure 51, The perfor-
mance values show less variation than the chamber pressures due to the high
delivered performance for the staged-combustion cycles, even at lower chamber
pressures. The cycle with the highest performance potential is seen to be the
dual-throat cycle. The variable geometry (without moving parts) allows the
achievement of a high performance at altitude.

2. Preliminary Cycle Comparison

It is interesting to compare the best-performing cycles (dual
throat not included) as a function of chamber pressure and power limits, as
shown in Figure 52. The lowest-performing cycle (B) achieves its maximum per-
formance at a pump discharge pressure of 33090 kN/mé (4800 psia). If the
best staged-combustion cycle (F'), utilizing the same LOX/RP-1 propellants, is
compared with cycle B at the same pump discharge pressure (Pc = 16550 kN/m2
[2400 psial), it is seen that a performance difference of about 12 sec existse
Operating cycle F' at its pump discharge pressure 1imit of 5516C kN/me (8000
psia) results in a difference of 18 sec between the cycles.

The gas-generator cycles C and ', using LOX/methane and LOX/
propane, respectively, are seen to compare favorably with the LOX/RP-1
staged-combustion cycle F'. Additional performance can be gained through the
utilization of the staged-combust ion cycles 1 and 1' for these propellant com-
binations. The gains amount to about 12 to 16 sec in specific impulse between
cycles C, C' and 1, I'. Selection of one of the fuels, methane or propane, on
the basis of performance is difficult, as the differences amount to about 3
sec for gas-generator cycles C and ¢' and to about 2 sec for staged-combust ion
cycles 1 and I'e

The liquid-hydrogen-cooled cycle J is seen to be competitive with
cycles 1 and I' when sea }evel performance is compared. The vacuum perfor-
mance shown in Figure 51 slightly favors cycles 1 and I'.
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V. ENGINE PARAMETRIC ANALYSTS

A.  OBJECTIVES AND GUIDELINES

Performance, weight, and envelope parametric data were to be
developed for the high-pressure LOp/HC engine systems derived in the pre-
vious section. The following parameter range guidelines were utilized:

Propellant mixture ratio (0/F):

LO2/RP=1 2 to 3.5
LOp/LCHy 3 to 4.5
LO2/LC3Hg 2 to 4

Engine Thrust: 890 to 6672 kN (200K to 1.5M 1bF)

Chamber Pressure: 6895 to 34,470 kN/m2 (1,000 to 5,000 psia)
(or power/cooling limit)

Area Ratio (¢): 15:1 to 100:1 (or sea level flow attachment
limit)

Performance prediction methods were consistent with the JANNAF
simplified methodology. Engine weight estimates were based on the 1979 state
of the art, with yearly improvement factors through the year 2000.

B.  ENGINE PERFORMANCE

The first step in the JANNAF performance prediction procedure is
to determine the one-dimensional equilibrium specific impulse (Ispgpg) which
is a function of propellant combination and mixture ratio, nozzle area ratio
(e), chamber pressure, and the propellant temperature (tank conditions).
Ispope data were obtained by using the TDK program (Ref. 19).
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IV, B, Engine F2rformance (cont.)

The predicted delivered specific impulse (IsppgL) is obtained by
calculating the efficiency of the known loss mechanisms that degrade the ideal
(Ispgpg) performance. For this analysis, these loss mechanisms were divided
in four major categories: 1) energy release efficiency (ngre)s 2) reaction
kinetics efficiency (nk); 3) two-dimensional divergence efficiency (n2p)s
and 4) loss due to the thrust decrement within the boundary layer,

A computer program was developed to help facilita.e the parametric
analysis by representing each loss mechanism in a subroutine with the appro-
priate data base, except for the energy release efficiencies which were
specified as 99% for LOX/RP-1 and 98.5% for LOX/LCHg and for LOX/LC3Hg.

The kinetic efficiency was obtained by comparing the one dimen-
sional kinetics specific impulse (Ispgpk). calculated using the TDK computer
program (Ref. 19), to the Ispopg (nk = Ispopk/IspoDE). The two-
dimensional efficiency was obtained from charts which gave the n2p for opti-
mum Rao nozzles as described in Reference 20. These charts were tabularized
to facilitate their use in the performance program. The boundary loss was
obtained by implementing the turbulent boundary layer chart procedures also
given in Reference 20. The boundary layer efficiency was calculated by
assuming an adiabatic wall and propellants at the tank enthalpy. Past analyses
have shown this approach to be quicker and to result in the same efficiency as
the more rigorous method of calculating the enthalpy transfer to the regenera-
tive coolant and then finding a new Ispgpgp by using the increased propellant
enthalpy.

1. Parametric Performance Data

Al1 of the parametric performance data presented in the this
section are for staged-combustion cycle engines or for the thrust chamber of
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v, B, Engine Performance (cont.)

open-locp (€.9¢, gas-generator) cycle engines. Corrections such as described
in section {11.D. must be made for open-loop cycle engines.

The performance data for LOX/RP-1, LOX/LCHg, and
LOX/LCgHg are sumnarized in Figures 63-64. Figures 53, 57, and 61 show
the influence of chamber pressure on engine performance. An expansion to a
constant one dimensional exit pressure of 41 kN/mé (6 psia) was assumed for
all cases to ensure that flow separat ion would not occur under sea level oper-
ating conditions. The pressure selection affords a reasonable tradeoff in sea
level and vacuum performance for booster engines. This resulted in an area
ratio change with chamber pressure and an increase with chamber pressure of
both vacuum and sea level specific impulse. In general, methane and propane,
respectively, provide approximately a 3% and 2% improvement in maximum spe-
cific impulse compared to RP-1, as can be seen in a comparison of Figures
53-56, 57-60, and 61-64.

The effect of mixture ratio on specifit impulse is shown in
Figures b4, b8, and 62 for the propellant combinations. In all cases, chamber
pressure is constant at 276580 kN/me (4000 psia), thrust is constant at 2669
kN (600K 1bF), and the area ratio is varied to provide an expansion to an
exit pressure of 41 kN/me (6 psia). The maximum specific impulse for
LOX/RP-1 occurs at a mixture ratio of approximately 2.8 while that for
LOX/CHg and LOX/C3lg vecurs at a mixture ratio of approximately 3.5 and
3.1, respectively. At any mixture ratio shown, the svecific impulse values of
LOX/LCHY and LOX/LC3Hy are about equal to, or greater than, that pro-
duced by LOX/RP-1.

As seen in Figures 55, %9, and 63, the effect of thrust level
variations over the range from 890 to 6672 KN (200K 1boF to 1.5M 1bF) on spe-
cific impulse is relatively smalle  Over this range of thrust, specific
fmpulse values increase less than 0.5%.
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Figure 62. Delivered I.OX/C3H8 Engine Performance Versus Mixture Ratio
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IV, B, Engine Performance (cont.)

The effect of area ratio on specific impulse is shown in
Figures 56, 60, and 64 for the three fuels, respectively. The vacuum specific
impulse increases with increasing area ratio for any chamber pressure. The
sea level specific impulse, however, is maximized when the exit pressure is
equal to the ambient pressure 101 kN/mé (14.7 psia). For each fuel, this
point is reached at an area ratio of approximately 26:1 at a chamber pressure
of 27580 kN/m2 (400U psia). Below this value, the combustion gases are
underexpanded with respect to the ambient pressure, and thus performance
increases with increasing area ratio. Conversely, above this value, the
combustion gases are overexpanded with respect to the ambient pressure, and
thus performance decreases with increasing area ratio. The area ratio for
optimum sea level is, of course, a direct function of the chamber pressure and
will increase with increasing Pcs

7. Dual-fhroat Engine Performance

The previous analysis was for a conventional ehgine system.
Engine performance was also predicted for the dual-throat engine conf iguration , |
using LOX-methane in both the primary and secondary circuits. ALRC's Dual '
Throat Engine Performance and Geometry Program (FD 0169) was used to calculate
engine performance. The program output is shown in Figure 65. During Mode 1,
the engine is similar to a convent ional engine, thus its performance can be
calculated by using the JANNAF simplified methodology. The Mode 11 perform-
ance was initially calculaged by using the simplified methodology for a con-
_ventional nozzle and then m. «ified as descrjbed in Reference 10.

el -

The calculations shown in Figure 65 were made for an assumed
chamber pressure of 19310 kN/mé (2800 psia) during Mode 1 (Boost Phase) and
27580 kN/me (4000 psia) during Mode 11 (Susteiner Phase). The secondary
area ratio (Mode 1 Effective Area Ratio) was fixed at 40:1 to provide an exit
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v, B, Engine Performance (cont.)

pressure of 41 kN/mé (6 psia). This resulted in an area ratio during Mode
11 operation of approximately 187:1. The followiny table shows the specific
impulse values calculated for the dual-mode engine and compares them to the
prpviously discussed conventional engine results.

Dual-Mode Engine Convent ional
Mode 1| Mode Il Engine
Sea Level Specific 331 N/A 331
Impulse, sec .
Vacuum Specific, 361 379 361

Impulse, sec

As seen, the dual-mode engine does offer a performance advantage under high-
altitude operating conditions.

C. ENGINL WEIGHT

For the purpose of the parametric study, it was necessary to
establish the elements of engine weight statements. Table XXVII lists the
engine components included in the parametric analyses. Those items not
included are also listed. ’

It was also necessary to establish preliminary baseline weight
.statements tor a typical staged-combustion cycle and for a typical
gas-generator cycle engine. Tiiese are presented in Table XXVIII for both
LOp/RP=1 and for L02/LCHg engines. The component weights were based on
scaling of historical weights ot similar componenis and/or estimates obtained
From conceptual designs such as those given in References 9 and 10.




TABLE XXVII

ENGINE WEIGHT DEFINITION

Included

Regeneratively Cooled Combustion
Chamber

Regeneratively Cooled Thrust Chamb
Nozzle(s)

Thrust Chamber Nozzle Extension
Main Injector

Main Turbopumps

Boost Pumps

Preburners (or Gas Generator)
Propellant Valves and Actuation
Gimbal

Hot-Gas Manifold (if required)
Propellant Lines

Ignition System

Miscellaneous (Electrical Harness,
Instrumentation, Brackets,
Auxiliary Lines and Controls)

Engine Controller

Tank Pressurant Heat Exchangers
and Associated Equipment

er
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Not Included

Gimbal Actuators and Actuation
Pre-Valves
Contingency (a total contingency

is normally included in the vehicle
weight statement)

e mamidh o




TABLE XXVIII
LOX/HC BASELIME ENGINE WEIGHT BREAKDOWN

LOX/RP-1 LOX/CHy
" STAGED GAS STAGED GAS
- COMBUSTION  GENERATOR  COMBUSTION GENERATOR
) FB (Thrust, 1b) 600,000 600,000 600,000 600,000
3 Pcg (Chamber Pressure, psia) 4000 4000 4000 4000
‘g (Area Ratio) 50:1 50:1 50:1 50:1
"ATTB (Attached Area Ratio) 8:1 8:1 8:1 8:1
Arg (Throat Area, in.?) 85.66 85.66 86.14 86.14
(A1l Weights in 1bs) ~
WGR (Gimbal 207 . 207 207 207
WMISCB (Miscellaneous) 296 296 296 296
WINJB (Injector) 656 - 656 656 656
WTCNB (Nozzle) 420 420 422 422
WCCB (Thrust Chamber) 226 226 227 227
WPBOB (0Ox-Rich Preburner) 224 - 224 -
WPBFB (Fuel-Rich Preburner) 181 50 181 51
WVOB (Oxidizer Valves & Actuators) 325 325 331 331
" WVFB (Fuel Valves & Actuators) 82 82 131 131
WBPOB (Oxidizer Boost Pump) 307 307 313 313
WBPFB (Fuel Boost Pump) 52 52 83 83
WMPOB (Main Oxidizer Pump) 862 623 878 638
WMPFB (Main Fuel Pump) 327 366 521 567
WLPLB (Low-Pressure Lines) 201 201 243 243
WHPLB (High-Pressure Lines) 268 268 324 324
WPSSB (Pressurization System) 133 133 133 133
WHGMB (Hot-Gas Manifold) 207 207 207 207
WIGNB (Igniters) 60 60 - 60 60
WCNTRB (Controller) 130 130 130 130
TOTAL 5164 4609 5567 5019




IV, C, Engine Weight (cont.)

With the preliminary baseline engine weight statements estab-
lished, engine component weight scaling relationships were derived as func-
tions of thrust, chamber pressure, and nozzle are ratio. These scaling rela-
tionships, used to calculate the weights over the parametric ranges of inter-
est, are similar to those given in Reference 10. The scaling equations were
established through geometry considerations and empirical data fits of histor-
ical data. The engine weights derived from the equations represent 1979
state-of-the-art technology, as indicated in Figure 66. The highest thrust-
to-weight engine (141 at 600K 1bF) shown in the figure is for a LOp/RP-1
gas-generator cycle engine. This compares well with the 1960's technology
Titan I and Atlas booster (lst-stage) engines.

The Towest thrust-to-weight engine (108 at 600K 1bF) derived from
this study represents the dual-throat engine cycle K. As can be seen by
examining Figure 66, the band of (AOHRES) engines from this study follows the
trend of the historical engines, and, if anything, is too conservative for
1979 technology.

Scaling relationships based on volumetric flowrates and pump dis-
charge pressures were used to obtain an estimate of the variation in engine
weight with power cycle. This evaluation primarily involved turbopumps and
preburners (gas generators). The resultant variation in engine weight with
power cycle is shown in Figure 67. The lightest-weight engine is seen to be
the LOX-cooled gas-generator cycle B, and the heaviest engine is seen to be
the dual-throat engine cycle K.

1. 1979 State-of-the-Art Engine Weight Parametrics

Because most of the cycles studied are similar, as are the
weight trends with chamber pressure, thrust, etc., parametric data are pre-
sented only for a typical gas-generator cycle engine. A sample computer out-
put for this enyine (an LOp/RP-1, fuel-rich gas-generator, RP-1l-cooled,
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1V, C, Engine Weight (cont.)

cycle A engine) is illustrated in Figure 68. The parametric engine weight
data are summarized in Figures 69 through 77.

Engine weight data for the corresponding L02/LCHg gas-
generator cycle C engine are presented in Figures 78 through 86.

2. Selected Cycle Engine Weight Statements

_ Three engine cycles were selected for preliminary design
analysis in Task IV. These cycles are C, G, and 1. In addition, the
L0p/LC3Hg propellant combination was included in the Task IV studies.

This section summarizes the baseline engine weights established for these six
engine cycles. o

The nominal point design engine weight breakdown for each of
the L0p/LCHg cycle C, the LOp/RP-1 cycle G, and the LO2/LCHgq cycle 1
engines is given in Table XXIX. The corresponding weight breakdown for the
L0p/LC3Hg engine cycles ¢',G', and 1' is given in Table XXX. Parametric
weight data for the L02/LC3Hg engine cycles are depicted in Figures 87
and 88. It is seen in Figure 87 that the engine weight is at a minimum at
about 13790 kN/m2 (2000 psia) chamber pressure. A similar result was seen
with methane at a low area ratio in Figure 78. The more dense fuel RP-1 has

its minimum weight at a slightly higher chamber pressure, as seen in Figure
69.

The engine weights given in Tables XXIX and XXX reflect more
accurate component weights than those used in the preliminary weight analysis
given in Table XXVIIL. The engine weights, however, still fall inside the
band of AOHRES engine weights illustrated in Figure 66. ]
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1V, C, Engine Weight (cont.)

3. Weight Improvement Through the Year 2000

The potential for weight improvement and increased component
maximum tcmpérature for advanced LOX/HC enygines lies in the application of
advanced materials. . In order to place the advanced materials in propef per-
spective, a listing of 1979 state-of-the-art engine materials is yiven in
Table XXXI. The selections are based on the usual criteria for material
“strength under the operational enviromments and fabricability. Since material
strength requirements and detail designs were out of scope for this proygram,
selections were based on; and are very similar to, those of previous rocket
- technology programs.

Advanced materials were studied to determine the feasibility
of their application to liquid rocket engine design and to assess the poten-
tial for performance improvement associated with their use. The materials of
construction, design parameters, and engine component weights for the prelimi-
nary design engines of this study were used as a baseline to establish overall
weight reductions and increased service temperature capabilities of the engine
hot-yas system. The status and the prospects of materials development and
their manufacturing technology development were used to make these assessments
on a near-term (1980-1985) as well as long-term (1985-2000) basis.

a. Background for Advanced Materials Application

Aerospdace application of advanced materials, mainly
fiber-reinforced composites, has been previously limited to reinforcement
panels and frames in airframe structures. The application of these composites
to aircraft turbojet enyines, which are similar in many respects to liquid
rocket engines, has been underway for at least a decade. One of the problems
that is being vvercome is the use of these materials at elevated temperatures.
This problem, along with the unknowns concerning the applicability of the

i
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i TABLE XXX1 (1 of 3)
TYPICAL 1979 STATE-OF-THE-ART MATERIALS SELECTION

Component
1. Low~Speed LOX TPA

a. Shaft Inconel 718
A , 15-5 PH H1150M
; b. Impeller & Turbine 7075 T-73
‘ , ‘ Al Alloy
: c. Housing - A356 T6
: Al Alloy
) d. Bolts A-286
; e. Housing Liner FEP Teflon
| . Fused Coating
L f. Bearings CRES 440C; ~ i
- _ : Haynes Star J Alloy PM
2. Low-Speed RP-1 TPA A1l materials the same as low speed LOX
TPA except Teflon coating is not required. ‘
3. Low-Speed LH2 TPA A1l materials the same as low speed LOX 1?
5 TPA except Teflon coating is not required. ﬂ
i ' 1!
3 4, Low-Speed CH4 and C3H8 TPA A1l materials same as low speed LOX TPA ]
§ " except Teflon coating is not required. &
5. High-Speed LOX TPA
a. Shaft A-286 L
b. Impeller ‘ Inconel 718
c. High-Pressur? Pump ARMCO
& Turbine Housing Nitronic-50
BE .. d. Inducer Housing Inconel 718
. e. Turbines Inconel 718
£.  Bolts (pump) A-286
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TABLE XXXI (cont.) (2 of 3)

Component
- 5. High-Speed LOX TPA (cont.)
_ g. Bolts (turbine)
;§ ) -, h.  Bearings

6. High~Speed RP-1 TPA

a. Inducer Housing

7. High-Speed CHy and C3H8 TPA

8.  High-Speed LH, TPA
a. Inducer Housing
b. High-Pressure Pump Housihg
¢. Turbine
d. TImpeller
e. Turbine Housing
f. Shaft v
a. Bolts (pump)
h. Bolts (furbine)
i. Bearings
9. LOX/RP-1 Ox~-Rich Preburner
a. Injector Body

b.  Chamber

184

Waspaloy

CRES 440C
or Alternate

5A1-2.5 SnELI

Titanium Alloy

A1] other materials the same as high speed
LOX TPA.

5A1-2.5 SnELI Titanium Alloy

A1l other materials the same as high speed
LOX TPA.

5A1-2.5 SnELT Titanium Alloy
5A1-2.5 SnELI Titanium Afloy
Inconel 718

A-286

ARMCO Nitronic-50

A-286

A-286

Waspaloy

CRES 440C

ARMCO Nitronic-50

Inconel 625

-~
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TABLE XXXI (cont.) (3 of 3)

LR

)

Component

| ii 10.  LOX/CH, and LOX/C,Hg Ox-Rich
3 Preburner '
a. Injector - ARMCO Ni tronic-50
b. Chamber Inconel 625

. Lox/cu4 and Lox/c3u8 Fuel-Rich
Preburner or Gas Generator

a. Injector Body ARMCO Nitronic-50
b. Chamber Inconel 625
12. Thrust Chamber Injector

a. Body Inconel 625 or ARMCO Nitronic-50
b.  Manifolds CRES 347 or ARMCO Nitronic-50
c. Injector Face ‘ Inconel 625

13. Combustion Chamber Zirconium-Copper

14. Tubes Nitronic-40 or A-286

15. Nozzle Extension Columbium Alloy

16. Hot-Gas Manifold Inconel 625
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‘plastic composites (RPC) inﬁliquid'rocket engines. The amount of RPC

1V, €, Engine Weight (cont.)

polymer matrix composites at cryogenic temperatures and with LOX compatible
systems, requires further investigation before major applications can be made
to high- and luw-temperature rocket engine components. The more benign
envirdnment of the RP-1 propellant system provides the most straiyghtforward
app1icatioh of advanced materials to rocket engine design.

There are many potential applications for reinforced

substitution in these applications varies with each engine component. It is
estimated, for example, that about 80% of the Titan IlI engine frame and 60%
of the Titan valve body are candidates for RPC substitution. The effect of '
substituting RPC for metals can result in a significant weight savings because
of the higher specific strength and specific ‘modulus properties of RPC (see . :
Figure 89, -Ref. 21). The General Electric Company is currently developing an ‘

advanced composite engine frame and inner cowl for engines (Ref. 21). The

remaining turbojet engine lightweight composite application found in the

literature search and review of this study is the replacement of stainless

steel and titanium with a boron/aluminum fiber'composite as the material of

construction for turbofan blades. Although liquid rocket énginés do not

possess a component equivalent to a fan, this technology, as well as RPC

technology, could be utilized in the design of turbines. The metal matrix 1
composites with the superalloy-refractory met al fiSers, the directionally
solidified refractory oxide eutec;ics, and improved ceramics that are being
developed to increase turbine operating temperatures are directly applicable
to rocket enygines. As an example, the improvemeht in temperature capability
with time for the various advanced materials for turbine blades is shown in
Figure 90 (Ref. 22). ‘

Advances in materials science affecting RPC are expected
to ease the manufacturing of parts and slightly increase the temperature
capability. These effects will not change the weight of the engine as much
as the cost of manufacture. These improvements should be in place in 10 to 15
years.
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Tiasiem (182 k)
\

pary
Goh:

5

-

Steed (180 13l)

—
mw,mm;

oL 1§

A comparison of composites and metals by specific strength (ultimate tensile

strength! density)
{. .
i :. : : i
{ Tl

A comparison of composites and metals by specific stiffness (modulusidensity).

Composite data shown ave for 0° umdireciionas iamunates. Source. Advanced Composite Design Guide. Air
Force Flight Dvaamics Laboratory, Wright Patterson Awr Force Base. Aramid is Du Font's Keviar 49,

Figure 89. Comparison of Structural Properties of Composites
and Other Aircraft Materials
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IV, C, Engine Weight (cont.)

b Application of ﬁPC to a.Baseline Oxygen~-Hydracarbon
Engine ' ‘ i o

Individual enginc components have been studied to
estimate weight savings that could be realized by the substitution of RPC
materials. Etach component configuration and service environment was evaluated
with regard to the materials, their development status, and the design
concepts identified in this study. In some instances, RPC provided a complete
material substitution. In components where either clevated temperatures or
component configuration restricted their use, RPCs were applied only to
portions of the assembly or not at all. The results of this study are shown
in Table XXXII, which lists the baseline engine weight by component and
compares them with the weights obtained by the use of RPCs on a near~ and
long-fenn basis. A 40% weight savings was identified (939 kg/2071 1bs). The
individual RPC applications are as follows:

GIMBAL

94 kg (207 1b.) baseline engine

27 kg (60 1b) 85% RPC substitution
24 1b PI-carbon
36 1b aramid-cpoxy

Bearing surfaces of the gimbal beariny assembly can be
replaced with polyimide-bonded carbon fabric. It is estimated that 55% of the
Ti=-alloy can be replaced with molded fabric composite and still retain the
attachment and rigidity characteristics of the original bearing assembly.

Other desiygn refinements in which portions of the

remaining shell are replaced with High Strength (HS), High Modulus (HM) epoxy
matrix composite are possible. In these designs, a laminate of titanium and
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TABLE XXXIT

WEIGHT SAVINGS BREAKDOWN

.._..Engine Component

Gimbal

Miscellaneous (Frame, Fasteners)
Injector

Nozzle

Thrust Chamber

Preburners (Ox-and Fuel Rich)
Valve Bodies (Ox and Fuel)
Boost Pumps (Ox and Fuel)
Main Pump (Ox and Fuel)
Low-Pressure Lines
High-Pressure Lines
Pressurization System

Hot-Gas Manifold

Igniters

Controller

WEIGHT TOTALS
ENGINE THRUST/WEIGHT

Baseline
“tbs.

207
437
656
420
226
405
407
359
1189
201
268
133
207
60
130

5305
113

190

RPC Substitution

1980-1985

.. _1bs,

60
251
425
420
152
370
379
340

103

95
126

&%
¢

60

51

4035
149

Kitl dauats otition

1985-2000

o dbs.

3254
186
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IV, C, Engine Weight (cont.)

HS/HM composite would be used for the attaching surfaces, and the shell would
e replaced on a stiifness and strength basis with HS/HM composite. This
material substitution would introduce several additional manufacturing steps:
(1) the attaching surface would be laminated, (2) the bearing surfaces would '
be molded, (3) the attaching surfaces and bearing surfaces would be joined,
and (4) the HS/HM composite shell would be wrapped and molded. The
configuration of the part would be guided by a detailed structural analysis of
the loads on the thrust~mount bearing éssembly in service. .

The‘poly§mide-qarbon (Pl-carbon) fabric material for the
bearing surfaces has a temperature limit of 603°K (625°F), a compressive
strength of 686,000 kN/m2 (85,000 psi), a flexual strength of 344,700
| kN/m2 (50,000 psi), a density of 1.5 g/cc, a coefficient of thermal
; expansion of 5 x 10~6 in/°F, and a modulus of 48,260 MN/m2 (7 x 106
psi).

A hybrid composite of Kevlar and graphite reinforcement
in an expoxy matrix would be used for the shell and attaching surface laminate
of the bearing assembly. The composite would have a temperature limit of
422°K (300°F), a modulus ranging from 31,000 to 69,007 iN/mé (4.5 x 106 to
10 x 1u6 psi) at a fiber volume of 55%, and a crossplied strength of 482,600 |
kN/m2 (70,000 psi). The hybrid composite would have a density ranging .
between 1imits of 1.3 and 1.59 g/cc, depending on the mixture of Kevlar and
gfaphite, respectively.

MISCELLANEOUS (FRAMES, FASTENERS, ETC)

1 * 198 kg {437 1b) baseline engine (HSLA steel)
114 kg (251 1b) 52% RPC substitution

The baseline engine frames are constructed of high-
strength low-alloy steel tubes welded to forged end fittings. It is estimated
that 80% of the miscellaneous weight is frame structure.
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IV, C, Engine Weight (cont.)

Wrapped Kevlar-epoxy crossplied composite is suggested
as the replacement material for the tubular sections of the frame.
Kevlar-epoxy composite has the highest specific strengtr‘af the candidate RPC
materials. The tubes would be adhesively bonded to the coupling fittings.
Material substitution was calculated on a specific stfength basis.

A laminate of steel and hybrid composite is suggested
for the couplings. The hybrid would be Kevlar and graphite in epoxy matrix.
The graphite composite has the highest specific modulus of the candidate
materials. The spec1f1c configuration of metal, Kevlar, and graphite will
depend on the structural requirements of the Jo1nt. A 50% substitution of
hybrid composite for HSLA steel is considered feasible.

INJECTOR

298 kg (656 1b) baseline engine (stainless steel)
193 kg (425 1b) 57% RPC substitution
120 kg (265 1b) 87% RPC. substitution (1990)

The inlet manifolds (LOX and fuel) of the injector can
be constructed of HS/HM composite material. Stamped metal liners are required
to protect the composite from the corrosive effects of the hot propellant
gases and liquid oxygen. These thin liners would be structgra\ly supported
with HS/HM plastic matrix composite. The choice of matrix material depends
upon the service temperature. Epoxy resin would be used to 422°K (300°F),
polysulfone or polyamide-imide would be used to 478°K (400° F), and polyimide
resin would be used to 617°K (650°F). Reinforcement would be hybrid selection
of crussplied prepregs and chopped tibers of Kevlar, graphite, and tiberglass,
depending on local strength and stiffness requirements.

192




IV, C, Engine Weight (cont.)

The primary and secondary plates of the injector are
laminated of metal and HS/HM composite. These structures would have metal
faces and HS/HM composite cores. Selection of resin and reinforcement would
be based on the same criteria used with the manifold details.

‘ With the exception of thehinjecfor face, the injector body
i can be molded from a potentially LOX-compatible material, a PI-RPC. It is
anticipated that this material will be available in ten years or souner.

THRUST CHAMBER

"y : 103 kg (226 1b) baseline engine (nickel/copper)

" , 69 kg (152 1b) 46% RPC substitution
;; ' The chamber liner wall is machined copper. Electro-

formed nickel or copper provide the closeout for coolant channels. The outer
5; surface reinforcement is molded RPC. Epoxy and PI resin matrices will be

: ‘ used, depending on the temperature. Graphite, fiberglass, and Kevlar will be
used as reinforcement, depending on structural requirements. '

' The coolant inlet and outlet flanges, manifold covers, ‘n
Jjacket reinforcements, and nozzle attachment flanges are constructed of com- '

posite and metal laminate. Thin metal facings will protect the composite from
any adverse effects resulting from direct contact with the propellant. Stiff-
ness, strength, and temperature will determine reinforcement and matrix selec-
; 1 tions in these details. Bearing strength will determine the amount of metal

& reinforcement needed in the injector attachment flange.
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IV, C, tngine Weight {cont.)
PRLBURNER (0X- AND FUEL-RICH)

184 kg (40% 1b) baseline engine
168 ky (370 1b) 15% substitution

The inlet manifolds appear to be the only feasible
application of HS/HM RPC because coolant is not circulated through the struc-
ture to limit temperature rise. The proposed manifeld is a metal-lined struc-
ture externally supported with RPC. The_métal Viner protects the RPC from any
corrosive effects that might result from direct contact with the propellant.

The manifold is fabricated by compression-molding the
composite directly to the metal shaped liner. Reinforcement and resin
selection will ‘be based upon strength, stiffness, and service tembérature.

VALVLS AND ACTUATORS (UX AND FUEL)

185 kg (407 1b) baseline engine (aluminum)
172 kg (379 1b) 40% RPC substitution (1980-1990)
122 kg (268 1b) 60% RPC substitution (1990)

Actuation parts and valve body parts can be compression-
molded of chopped fiber molding compound. Polysulfone or polyamide-imide
thermoplastic‘resins are capable of molding precision parts that will operate
- successfully under the dcmanding'conditions required by these sensitive rocket
engine control mechanisms. These resins are compatible with RP-1, LHp,

LCHq, and LC3Hg rocket engine fuels. Selection of reintorcements for
use with these resins will be based on strength and rigidity requirenents.
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IV, C, Engine Weight (cont.)

Res1ns resistant to LOX are anticipated in the next ten
) years. These resins will be required to design satisfactory valve components
for the ox-circuit.

BOOST PUMPS (OX AND FUEL)

; 163 kg (359 1b) baseline engine (aluminum)
154 kg (340 1b) 10% substitution
103 kg (227 1b) 75% RPC substitution (1990)

Fifteen percent of the pump structure (mostly housing)
is estimated to be moldable from chopped fiber molding compound and continu-
ous fiber prepreg. The balance of the housing and the rotating parts (v45%)
can be reaction-injection-molded (RIM) by using epoxy resin and hybrid rein-
forcing fibers.

3
MAIN PUMP (OX AND FUEL) 4

539 kg (1189 1b) baseline engine (aluminum)
468 kg (1031 1b) 45% RPC substitution (1980-1990)
279 kg (614 1b) 75% RPC Substitut10n (1990)

This weight estimate was arrived at by substitution of.
epoxy-Kevlar composite for titanium in the housing. The major internal parts
are molded of RFP and substituted for metal on a volumetric basis. Metal-RPC
laminate will be used at attachment points, and HS/HM RPC will be used on
internal parts requiring a higher level of structural efficiency.

LOW-PRESSURE LINES

1
- 91 kg (201 1b) baseline engine (stainless steel)
' 43 kg (95 1b) 60% RPC substitution

-
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IV, C, Engine Weight (cont.)

The Martin Marietta Corporation has investigated the
development of composite propellant lines for cryogenic space vehicles. These
lines are lined with metal and overwrapped with fiberglass epoxy for
structural support. The weight estimate is based on scaling the weight
savings reported in this work which was directed at the space shuttle main
éngine.

HIGH-PRESS!<L LINES

122 kg (268 1b) baseline engine (nickel base alloy)
57 kg (126 1b) 60% RPC substitution

The weight estimate for the righ-pressure lines
fabricated in composite material is based on scaling described for the
low-pressure lines.

CONTROLLER

59 kg (130 1b) baseline engine (aluminum)
23 kg (51 1b) 75% RPC substitution

The controller system box will be molded of fiberglass,
epoxy, chopped-fiber material. Microcircuitry applications will further
reduce the weight.

PRESSURIZATION SYSTEM

60 ky (133 1b) baseline engine (titanium)
31 kg (68 1b) 37% RPC substitution

The pressure vessel is similar in construction to the
high- and low-pressure lines. The tank is lined with metal and overwrapped
with fiberglass epoxy for structural support.
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IV, Engine Parametric Analysis (cont.)

¢, Conclusions and Recommendations Regarding Advanced
Materials Application

The application of advanced metal matrix components,
ceramics, carbon-carbon composites, coated refractory metals, and thermal
barrier coatings in 1iquid rocket engine design affords improvements in

performance through increased service temperature capability for the hot-gas
system.

The application of reinforced plastic composites to
1iquid rocket engine design affords a potential weight savings of 40% over
current designs.

Programs should be initiated to characterize potential
advanced materials for rocket engine designs, particularly with regard to

their cryogenic mechanical and physical properties and their propellant
compatibility behavior.

Advanced materials and processes should be utilized to
produce prototype hardware for proof-, cold-, and hot-flow cyclic and
destructive testing followed by comprehensive performance analyses.

0.  ENGINE ENVELOPE

Envelope scaling equations based upon geometric considerations
were formulated as functions of thrust, chamber pressure, and area ratio.

Typical geowmetry variations with chanber pressure and thrust are depicted in
Figures 91 and 92 for LOX/RP-1 and LOX/LCH4 for an area ratio of 50:1. Data

for other area ratios are included in Tables XXXIII and XXXIV, respectively.

LOX/LC3Hg engine envelope parametrics are shown in Figure 93 as a function
of chamber pressure for cycles C', G', and ",
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IV, D, Engine | nvelope (cont.)

The diameter and length parametrics for the engines were calcu-
lated by using the envelopes established for similar engines in References 9
and 10. This assumption proved satisfactory when the engine layouts were pre=
pared (see section VI.1.). The parametrics assume a similar enginé packaging
arrangement for all power cycles. Diameter parametrics include an estimation
of the powerhead diameter (pump envelope) to cstablish whether the nozzle exit
or this envelope is greater. In essentially all cases the nozzlc diameter
exceeds the powerhead diameter. :
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Vo VEHICLE ANALYSES FOR ENGINC ASSESSMENT

A« OBJECTIVES AND GUIDELINES

Ascent trajectory calculations and vehicle design analyses were
enployed in order to produce a preliminary comparison of the more promising of
the selected engine cycles derived in Task I. The specific application was
designated to be a Heavy-payload, two-stage-to-orbit vehicle. The simplified
vehicle/study results were used to provide a preliminary engine ranking based
on vehicle payload capability, weight, size, and new technology requirements
criteria. More detailed trajectory analysis with several vehicle concepts is
required before a final engine ranking can be made.

Be  VEHICLE CHARACTERISTICS

A tandem-mounted heavy-1ift launch vehicle (HLLV) was selected
over parallel-mounted vehicles that utilized propellant cross-feeding. This
selection simplified the trajectory calculations and led to a straightforward
evaluation of the engine cycles. The smaller of two NASA/Johnson Space Center
(JSC) vehicles cited in Reference 23 was selected for this analysis. The
basic characteristics of the two-stage vehicle are given in Figure 94 for both
a LOX/RP-1 and a LOX/propane propellant combination. The LOX/RP-1 booster
from the figure delivers a 454 metric ton (1,000,900 1bm) payload into a 90 x

500 km orbit. Both stages of the vehicle return ballistically for water
recovery.

Since the sole purpose of this analysis was to rank the various
LOX/HC enyine cycles, it was considered satisfactory to assume typical charac-
teristics regarding the JSC vehicle. The Stage I LOX/RP-] vacuum;specific
impulse used was 350 seconds, and the Stage 11 LOX/LH2 vacuum specific
inpulse used was 464 seconds. The Stage I thrust-to-weight ratio was 1.3, and
the Stage Il thrust-to~weight ratio used was 1.0. The ideal velocity incre-
ments calculated for the two stages from the data in Figure 94 are 3036 to
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V, Vehicle Analyses for Engine Assessment (cont.)

6096 m/s (9,960 and 20,000 ft/sec), respectively, for Stage I and Stage Il. An
. averaged specific impulse (to account for altitude compensation) was utilized
for Stage 1 to simulate integrated trajectory results, modifying the above
ideal vé1ocity values for each fuel.

C.  VEHICLE RESULTS

Vehicle parametric performance data were generated»forvboth
LOX/RP-1 and LOX/CHs engines assuming a constant gross 1iftoff weight (GLOW)
and constant conditions for Stage II. The basic number of LOX/HC engines used
in Stage I was thirty-six in order to keep the engine thrust consistent with
the nominal value of this study (2669 kN or 600K 1bf). The tanks were resized
as required to accommodate the propellant volume changes in Stage I. Tank |

> weight was assumed to vary linearly with volume as derived from previous SSTO
;3 : studies. The number of Stage I engines and/or their thrust level was also

if ' varied to provide the required liftoff thrust. The payload results for

3 ‘ LOX/RP-1 and LOX/LCH4 engines are summarized in Figure 95. Similar data

were generated for LOX/C3Hg engines.

Given the Stage I engine cycle performance and engine thrust-to-
weight ratio data from Sections IV.B. and IV.C., the relative payload ranking
of each cycle can be obtained from the figure. The payvload data for the vari-
ous cycles over the pressure ranges indicated are summarized in Figure 96.

Observations from this analysis are as follows: (1) vehicle per-
formance depends heavily on Stage I specific impulse and is relatively insen-
sitive to engine weight; (2) the payload gains for CHg are considered real, g
but may be altered downward when a deta{led vehicle design analysis is per- ‘
formed; and (3) dual-throat nozzles appear to offer orbital payload gains of !
about 3%, but this yain may be reduced slightly when optimized integrated
trajectories are used to fully account for the gravity losses with thrust
reduct ion. '
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V, Vehicle Analyses for Engine Assessment (cpnt.)

D.  ENGINE CYCLE RANKING

The preliminary orbital payload ranking of the LOX/HC engine
cycles is summarized in Figure 97 for each cycle, including the LOX/C3Hg
engines. Only the optimum chamber pressure points are included in the figure.
It can be seen that cycle K offers the highest payload capability because of
its altitude compensation (variable performance) feature. Cycles I (and I')
and C are the best staged-combustion and gas-generator cycles, respectively.
If CHg is substituted for RP-1 fuel in Cycle J, this cycle will be closely
competitive with Cycle I. '

Table XXXV summarizes the engine cycle rating based on the cri-
teria established in Section III.E (Figure 49) and the results of the vehicle
applications analysis. It is seen that the preliminary cycle fating in Table
XXXV closely follows the orbital payload ranking of Figure 97 because of the
emphasis on payload performance in the rating. : |

From these results, the conclusions of Figure 98 can be made:
(1) Cyéles that perform poorly are A, A', B, D and F;

(2) Acceptable performing cycles are D', E, F', G, C and C';
(3) Good performing cycles are G', H, I, I', J, (J', J") and K.
Cycles C, G, and 1 were"jointly selected by NASA and Aerojet for

continued analysis in Task IV of the study, as these cycles are representdti#é
of typical engines that might be required for advanced launch vehicles.
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vI. BASELINE ENGINE SYSTEM DEFINITION

A. OBJECTIVES AND GUIDELfNES '

The objective is to conduct a preliminary design analysis of the '
major components and subsystems of the baseline engines'selectéd from the
results of,Tasks I through 11I. The analysis is to 1nc1udevgng1ne heat tradé-
fer, combustion stability, and structural apaly;eé. The primary control
points of the engine are to be defined, including startup and cutoff

sequencess The major technology requirements to implementing the engine
designs are to be indicated.

Detailed paramétffc and sensitivity analyses of the selected base-
line,engihe concepts are to be carrie& out to include a complete power cycle
balance for every data point. The sensitivity of engine performance'and‘
weight to mixture ratio, thrust, chamber pressure, and area ratio are to be
examined. In addition, the effects of increasing max imum allqwable‘turbine
inlet temperature is to be investigated to determine the botential of fuel-
cooled turbine blading or the use of higher temperature materials. The
effects of increasing the number of usable sfart/shutdown cycles (from the

minimum 100 to 200 and 300) on enginé performance and weight are to be
examined.

The following parametric and sensitivity analysis ranges were
selected for guiding this effort:
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VI, A, Objectives and Guidelines (cont.)

Parameters Range

Specific impulse and engine weight as a function of:

Mixture ratio Nominal + 10%

Thrust ‘ 600,000 and 1,000,000 iof

Chamber Pressure Nominal + 500 psia

Area Ratio Nominal, Opt. sea level, € 10 psia

Turbine 'Inlet Temperature _
Fuel-Rich 1660°, 1860°, 2260°, and 2960°R
Oxidizer-Rich © . 1660° and 260C°R

Cycles 100, 200, and 300

B. PARAMETRIC AND SENSITIVITY ANALYSES

Déta11ed parametric and sensitivity analyses of the selected base-
line engine concepts (Figures 99-101) were conducted, including a power
balance for each data point. The power balance/engine specifications are
given in Tables XXXVI, XXXVII, and XXXVIII. The engine weight breakdown for
each nominal engine cycle design point is given in Section IV,C (Table XXIX).

Data for the engine sensitivity analysis are summarized in Table

XXXIX. The variation in sea level and vacuum engine performance and the vari=-
ation in engine weight with the various sensitivity parameters are shown. At
one million pounds thrust level, each engine cycle exhibits a very slight per-
formance gain (0.3-0.5 sec), but there is a reduction in the engine thrust-to-
weight value. The increase in weight is about 80% compared to a thrust
increase of 67%, primarily because of the increase in wall thickness required
for the larger diameter components.

Variations in mixture ratio of -10% and +#10% from the nominal
design point are seen to result in a loss in performance (=1 to -3 sec for
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VI, B, Parametric and Sensitivity Analyses (cont.)

staged combustion cycles G and I, and -0.2 to -0.6 sec for the gas-generator

cycle C) and a slight change in engine weight depending upon the volumetric
flowrate (propellant density) change.

A decrease in chamber pressure of 500 psia from the nominal design
value is seen to cause about 1% loss (2.5-4. 5 sec) in specific impulse for the
staged-combustlon cycles G and I. The chamber pressure decrease for the gas-
generator cycle C results in a slight performance gain (+0.4 sec) because of
the reduction in gas generator flow required by the turbines. In all cases, -

there is a decrease in engine weight corresponding to the reduction in pres-
sure level in the engine cowponents.

An increase in chamber pressure of 3450 kN/m (500 psia) is
listed in Table XXXIX. The sens1tiv1ty values, however, are not consistent
with the approximately 55160 kN/me (8000 psia) pump discharge pressure
limit that is used throughout the study as representing 1980 state of the art.
The +500 psia chamber pressure calculations require a pump discharge pressure

between 68950 and 75840 kN/ml (10,000 and 11,000 psia) for the cycles
analyzed.

Variations in area ratio are based upon variations in nozzle exit
pressure from the nominal 41 kN/m2 (6 psia) value to 69 kN/m2 (10 psia)
and to the optimum sea level value of 101 kN/m2 (14.7 psia). In all cases,
the sea level performance improves significantly at the exbensé of vacuum per-
formance when the area ratio is reduced. There is a corresponding weight

reduction with a reduction in engine area ratio (nozzle size), as shown in the
table.

The effects of increasing the number of usable start/shutdown
cycles (from the minimum 100 to 200 and 300) on engine performance and weight
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VI, B, Parametric and Sensitivity Analyses (cont.)

are given in Table XXXIX. In all cases, there is a slight reduction in engine
performance resulting from a reduction in engine chamber pressure to limit the
pump discharge pressure to about 55160 kN/m2 (8000 psia). A corresponding
weight reduction follows the reduction in chamber pressure.

The effects of increasing maximum allowable turbine inlet tempera-
ture was investigated to determine the potential of fuel-cooled turbine
blading or the use of higher temperature materials. The nominal fuel-rich
turbine inlet temperature utilized in the study is 1033°K (1860°R) and the
oxidizer-rich turbine inlet temperature is 922°K (1660°R). The data for gas-
generator cycle C are summarized in Table XXXIX and Figure 102. o

The increase (see Figure 102) in turbine inlet temperature from
922 to 1256°K (1660 to 2260°R) is seen to result in an increase in vacuum spe-
cific impulse of about 10 sec. The increase results from the requirement of
less turbine drive fluid which must be dumped into the nozzle at a low spe-
cific impulse. The benefit from increasing turbine temperature beyond 1256°K
(2260°R) is seen to be much less (about 4 sec of vacuum specific impulse).

As shown in Figure 102, the maximum sea level specific impulse is
achieved at a turbine inlet temperature of about 1556°K {2800°R).

Figure 103(A)'and Figure 103(B) present the results of increasing
the turbine inlet temperature for staged-combustion cycles 1 and H, respec-

tively. The gain in specific impulse for the staged-combustion cycle I is

much less between the temperatures of 922 to 1256°K (1660° and 2260°R). The

gain is seen to be 2.2 sec in vacuum specific impulse, with very little gain
above 1256°K (2260°R).

The sea level specific impulse gain for the staged-combustion
cycle 1 is larger than the vacuum gain shown in Figure 103(A). This results
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V1, 8, Parametric and Sensitivity Analyses (cont.)

from the uower balance state-of-the-art guideline (given in Table XXXVIII)
1imiting the pump discharge pressure to 55160 kN/mé (8000 psia). The sea
level performance is much more sensitive to an increase in chamber pressure
from 22060 to 25510 kN/mé (3200 to 3700 psia) allowed by an increase .in
turbine inlet temperature from 922 to 1644°K (1660° to 2960°R) .

Another factor influences the results'of the power balance data
for cycle 1. - 'Since two preburners are utilized (fuel-rich and oxidizer-rich),
both fuel and oxidizer pump discharge pressure 1imits must be considered. At
a turbine inlet temperature of 1256°K (2260°R), the fuel pump discharge pres-
sure of 54420 kN/m2 {7893 psia) (see Table XXXVIII) limits the chamber pres-
sure to 25510 kN/m2 (3700 psia). Because of the shift in mixture ratio
(and resulting oxidizer-rich flowrate to the oxidizer turbine), the fuel-rich
turbine-inlet temperature design point at 1644°K - (2960°R) is also limited to a
chamber pressure of 25510 kN/m& (3700 psia). This is due to the oxidizer

pump discharge pressure reaching about 55160 kN/mé (8000 psia) (8314 psia in
Table XXXVIII). A solution to this problem is to increase the oxidizer-rich

turbine inlet temperature to achieve a higher chamber pressure and resultant
higher engine performance (see Figure 103 and Table XXXVIII). In other words,
with both fuel-rich and oxidizer-ricn preburners, increases in turbine inlet
temperature for both preburners should be pursued.

The magnitude of the change in specific impulse with turbine inlet
temperature increase is dependent upon the baseline chamber pressure for
staged combustion cycles. This is i1lustrated by comparing cycle H (single
fuel-rich preburner) with cycle I (mixed preburners). As shown in Figure
103(B), 5.5 seconds (sea level) and 3.6 seconds (vacuum) improvement in spe-
cific impulse are achieved with cycle H, compared with the smaller improvement
shown in Figure 103(A) for cycle I. The reason for the larger improvement
with cycle H is that the imposed pump discharge pressure limit of
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V1, B, Parametric and Sensitivity Analyses (cont.)

approximately 65160 kN/m? (8000 psfa) is reached at a chamber pressure of

. 20685 kN/m? (3000 psia) in cycle H and at a chamber pressure of 24130

kN/m@ (3500 psia) in cycle 1. Cycle H does not utilize the chemical energy
of both propellants to obtain power, and, therefofe. can benetit more from a
temperature increase.

Increasing the turbine inlet temperature of cycle H from 1033°K
(1860°R) to 1256°K (2260°R) allows a chamber pressure increase of 3450 KN/mé
(500 psia). The corresponding temperature increase for cycle I allows only a
1380 kN/m2 (200 psia) increase in chamber pressure. An increase in turbine
inlet temperature from 1256 to 1644°K (2260 to 2960°R) allows a chamber pres-
sure increase for cycle H of 2070 KN/m2 (300 psia), but no increase for
cycle I, as previously cited.

To summarize, the specific impulse benefit for increasing turbine
inlet temperature for staged combustion cycles is dependent upon the cycle and
the baseline chamber pressure attainable with an 1033°K (1860°R) turbine inlet
temperature. In all cases examined, it is lower than the benefit achievable
for gas generator cycles.

Cycle G utilizes an oxidizer-rich turbine at the nominal tempera-
ture of 922°K (1660°R). One additional turbine inlet temperature is shown in
Table XXXIX to indicate the benefit of raising the oxidizer-rich turbine inlet
temperature. ‘A vacuum performance increase of 2.2 sec can be achieved with
this cycle through the use of a 1444°K (2600°R) turbine-drive gas. This
improvement corresponds to that for fuel-rich staged-combustion systems, as
shown in Table XXXIX.

The major conclusion to be drawn from the sensitivity analysis is
that high-pressure gas-gen:rator cycle engines can approach the performance of
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VI, B, Parametric and Sensitivity Analyses (cont.)

high-pressure staged-combustion cycle engines through an increase in turbine
inlet temperaturc. Another important conclusion is that oxidizer=rich turbine
inlet temperatures as well as fuel-rich turbine inlet temperatures can benefi-
cially be increased. These two conclusions offer the engine designer a great
deal of potential to improve future engines with technology advancements.

C.  HEAT TRANSFER DESIGN ANALYSIS

Parametric heat transfer data were previously reported in Section
I11,C. Task IV studies extend the chamber cooling analyses as follows:
(1) Definition of the selected baseline designs for an oxygen-cooled LOX/RP-1
chamber (cycle G) and for a fuel-cooled LOX/methane chamber (cycle 1);
(2) Determination of the design sensitivity to the cycle life requirements;
and (3) Investigation of coolant channel tabrication feasibility. -

Channel design procedures for the effort are consistent with those
previously used. None of these results consider gas-side carbon deposition,

which has been shown to reduce the coolant requirement in Section I1I,C.

1. Baseline LOX/RP-1 and LOX/CHs Designs

The coolant pressure drop and temperature rise data for the
baseline designs are given in Table XL. Results at the 2669 kN (600K 1bF)
thrust level were obtained by interpolation of the Section III,C pressure drop
data using 1n 4P versus chamber pressure plots. Since thrust interpolation is
difficult, computer runs were made for the one million 1b thrust designs using
the channel layout models of Section IlI,C.
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BASELINE DESIGN HEAT TRANSFEK DATA

Cycle
Propellants
Coolant
" Coolant Flow Fraction
Chamber Pressure, kN/m2 {psia)
Pressure Drop, kN/m2 (psta)

F = 600K
F=1M

Bulk Rise, °K (°F)
F = 600K
F=1M

g - "

TABLE XL

G
LOY/RP-1
LOX
1.0
21370 (3100)

8620 (1250)
10560 (1532)

298 (76)
294 (69)

I
LOX/CH4
CH4
1.0
24130 (3500)

9310 (1350)
10580 (1535)

339 (150)
330 (134) t
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VI, C, Heat Transfer Design Analysis (cont.)

2. Cycle Life Sensitivity

A 2669 kN (600K 1LF) thrust oxygen-cooled LOX/RP-1 chamber at
20680 kN/m¢ (3000 psia) chamber pressure was selected for the cycle life
sensitivity study. This operating point is very close to one of the baseline
designs of Table XL and is one of the cases which was optimized in detail in
Section III,C for a 1ife (Ng/4) of 100 cycles. The number of allowable
cycles, N¢ includes a scatter factor of 4. Additional designs were devel-
oped for 204 (nominally 200) and 300 cycles using the wall temperature cri-
teria from a previous study (Ref. 10). In each case, the channel layout was
optimized in a two-step procedure:

(a) The throat channel width was varied to obtain the mini-
mum pressure drop with the interface between the constant channel width sec-
tion and the straddie-milled section fixed at the area ratio defined by the
optimum design for 100 cycles.

(b) The barrel land width was varied for the throat channe!
width determined in (a) to minimize coolant pressure drop.

In the 300 cycle case, the resultant pressure drop for an
assumed inlet pressure of 41370 kN/m (6000 psia) was so large that the
coolant outlet pressure was less than the desired chamber pressure. There-
fore, additional inlet pressures were considered using the same channel lay-
out. The results are given in Table XLI. Figure 104 shows the required
coolant pressure drop as a function of cycle life, with the outlet pressure
for 300 cycles consistent with that for 200 cycles. It is seen that the

pressure drop is approximately directly proportional to the specified cycle
life for this cooling system.

These results indicate that increased-life design require-
mgnts will result in reduced chamber pressure at a given pump discharge
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Figure 104. Effect of Cycle Life on Chamber Pressure Drop
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VI, C, Heat Transfer Design Analysis (cont.)

pressure or wil! require increased pump discharge pressure. Further study is
required to determine the optimum design life for a particular application.

3. Investigation of Coolant Channel Fabrication Feasibility

Pfeliminary design analysis of the heat transfer subsystem
was performed to establish major technology requirements. Chamber coolant
slot layouts for two LOp/RP-1 engines were prepared. The engines are of a
2669 kN (600K 1bF) thrust level, utilize RP-1R or L0, coo]ing, and operate
at either 20680 or 27580 kN/ml (3000 or 4000 psia) chamber pressure._ Figure
105 illustrates typical sections of the slot layout for the 27580 kN/m2
(4000 psia) LOX-cooled chamber.

Coolant channel fabrication feasibility was checked by con-
sidering étate-of-the-art approaches as well as advanced manufacturing pro-
cesses. The design can be manufactured conventionally, i.e., with a slotted
zirconium copper chamber with an electroformed nickel closure similar to that
of the Space Shuttle Orbit Maneuvering System (OMS) chamber. However, the
cost of the slotting operation of the chamber will not only be proportionately
greater than the OMS because of the size difference, but also because of two
significant channel parameter differences. The greatest cost impact is the
1.68 cmn (0.66 in.) maximum depth of channel as compared to the 0.41 cm (0.16
in.) on the OMS chamber. Not only will a yreater diameter slitting saw be
required, but, at the two chamber extremes, where coolant enters and leaves
the chamber, the slots will also have to be deepened locally. This is
required because the larger radius cut leaves a greater chamber wall thick-
ness. Deepening the channels locally will probably have to be performed with
the more expensive Electrical Discharge Machining (EDM) process.

The second cost impact is the very narrow but constant

channel wall land width of 0.10 cm (.04 in.) from the throat to the aft ehd of
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VI, C, Heat Transfer Design Analysis (cont.)

‘the chamber. It is possible to redesign the aft end of the chamber to avoid

this narrow land, but optimization of the design was beyond the scope of the

., study. Constant width wall lands are normallx machined by straddle milling,

but it is doubtful that a 0.10 cm (0.04 in.) wall can be machined to a depth
of over 1.52 cm (0.6 in.). For this reason, it i$ more likely that every
other channel will be cut and then filled with Rigidax prior to machining the
remaining channels.

Alternate fabrication coﬁcepts considered for these advanced
engine cooling system designs are shown in Figures 106 through 109. The first

concept, shown in Figure 106, shows the cross section of an all-electroformed
chamber configuration. In this concept, individual tubes are first electro-
formed around a wax preform simulating the flow channel. These tubes are then
assembled onto a mandrel, forming every other coolant passage. The vacant
spaces between the tubes are then filled with wax, permitting a closeout shell
of electroformed nickel to be formed. The chamber mandrel is then removed,
permitting the copper liner to be electroformed to the inside, thus completing
the all-electroformed assenbly.

A second concept is shown in Figure 107. In this concept,
preformed U-tubes are brazed to the copper liner forming every other coolant
passage. The vacant spaces between the U- tubes are filled with wax prior to
electroforming the nickel closeout structure.

The third alternate fabrication concept is shown in Figure
108. Individual copper ribs are manufactured by either the investment casting
process cr by swedge forming to produce an opt imum heat transfer configuration
fin. These preformed copper ribs are then assembled on a mandrel to form the
coolant channel circuit as shown. The electroformed nickel closure is then
deposited, followed by electroforming the copper liner.
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Figure 107. Conceptual érazed Coolant Channel Design
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| VI, C, Heat Transfer Design Analysis (cont.)

The fourth alternate fabrication concept is shown in Figure
109. In this concept, the chamber ribs are fabricated by the photoetch pro-
cess. The 0.04-in.-thick; through-etched rib edges are squared off on a drum
sander and assembled into the forward and aft flange which serves as the fix-
ture to achieve proper radial and circumferential alignment. The vacant
spaces or flow passages between the r1bs are filled with wax, permitting both

_the closure wall and liner wall to be electroformed. The photoetched ribs

could also be brazed into a premachined copper liner, requiring only the clo-
sure wall to be: electroformed.

Before a final design can be recommended and selected, the
overall chamber cooling concept configuration must be analyzed in more depth.
For instance, a feature which may eliminate excessive channel depth is to put
the inlet torus just downstream of the throat, i.e., at an Ae/At = 2. This
would also increase the rib width from 0.10 cm (0.04 in.) to a more acceptable
width, required not only for ease of manufacturing but also for structural
adequacy. Another approach to be considered would be to segment the coolant
circuit of the chamber into four or more axial sections, each having its own
inlet and outlet torus and each flowing only a portion of the available
cooling. This scheme would reduce the required coolant channel cross-
sectional area (reduced channel depth) and would be structurally superior
because of the increased number of tori which would act as hoop bands around
the high-pressure chamber.

D.  TURBOMACHINERY DESIGN ANALYSIS

The turbomachinery designs for the three enginé cycles C, G, and 1
are similar. Each cycle utilizes hydraulically driven boost pumps effectively
to obtain higher main turbopump speed. The primary difference stems from the
cycle 1 turbomachinery which eliminates the need for an interpropellant shaft
seal through the use of both an oxidizer-rich and a fuel-rich preburner.
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. rotor blade heights and efficiency. The design parameters are given in Table

V1, D, Turbomachinery Design Analysis (cont.)
The hydraulic turbines are multistaged and drive single-stage
boost pumps. The main turbopumps have single-stage gas turbines that drive

multistaged pumps.

1. Cycle C Turbomachinery

The fuel and oxidizer boost pumps are single-stage, driven by
four staged turbines. The multistaged turbines were selected to provide good

XL11.

The high-pressure 1iquid methane turbopump assembly utilizes:
five stages: an inducer stage, three jdentical stages to achieve the gas--
generator pressure level, and an additional stage to generate the pressuré‘for
the main flow used to cool the thrust chamber. The design parameters are
given in Table XLIII.

The high-pressure liquid oxygen turbopump assembly (Table
XLIII) utilizes one inducer stage and one additional stage. The oxidizer
requires fewer stages than the fuel (for the same discharge pressure) mainly
due to the higher density of the oxidizer.

Both hiéh-pressure turbopump assemblies are driven by single-
stage, series-flow turbines.

2. Cvcle G Turbomachinery

The design operating specifications for cycle G turbomachnery 1
are given in Tables XLIV and XLV. The turbomachinery is similar to that for
cycle C except for the following differences: (1) the high-pressure oxidizer
pump utilizes three stages, with the additional stage required to meet the '
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PUMPS

Stages

Propellant

Propellant Temperature

Propellant Density

Shaft Speed

Total Discharge Pressure

Total Suction Pressure

Total Pressure Rise

Total Head Rise (Stage)

Weight Flow

Capacity

Specific Speed (Based on
Stage Head)

Efficiency

Fluid Horsepower

Shaft Horsebower

Net Positive Suction Head

Suction Specific Speed

Vapor Pressure
Diameter

TURBINE
Stages
Liquid
Shaft Fower

“night Flow/Percent
Engine
Pressure Drop

Static Back Pressure
Shaft Speed
Efficiency

Inlet Total Pressure
Diameter

TABLE XL
CYCLE C BOOST PUMP DESIGN PARAMETERS

DIMENSIONS

°F
1b/t>
rpm
psia ~
psia
psi

1/2
!KHEMXE%QFE-.
ft
psia
in.

h.p.
1b/sec

psi/ft
psia
rpm

psia
in.
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FUEL

1
CHy
-263.5
26.2
5322
135
24
m
609
495.4
8490
4000

17

549
n2

3
37,500

18.5
12.2

4
CH4
734

99/20

989/5436
135
5322
75
1124
6.9

OXIDIZER

1
0,
-293.6
70.6
4080
231
15
216
440
1396.5
8882
4000

77
117
1451

30

30,000

18.5
13.5

4

0,
1494
215/15.3

2499/5079
23
4080
75
2730
7.0
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PUMPS

Stages

Propellant

Propellant Temperature
Propellant Density

Shaft Speed

Total Discharqe Pressure
Total Suction Pressure
Total Pressure Rise
Total Head Rise (Stage)

Weight Flow
Capacity

Specific Speed (Based on
Stage Head)

Efficiency

Fluid Horsepower

Shaft Horsepower

Net Positive Suction Head
Suction Specific Speed

Diameter Impeller

TURBINE

Gas

Shaft Power

Gas Weight Flow

Gas Inlet Total Tempef—
ature

Pressure Ratio

Static Back Pressure
Shaft Speed

Efficiency

Gas Inlet Total Pressure
Exhaust Temperature
Specific Heat

Specific Heat Ratio

Gas Constant

Diameter Rotor

TABLE XLIII
CYCLE C MAIN PUMP DESIGN PARAMETERS

CHAMBER  INDUCER  MAIN INDUCER  MAIN
DIMENSIONS  FUEL FUEL FUEL OXIDIZER OXIDIZER
] 1 3 1 1
CHy CHy CHy 0, 0,
°F -253.5 -293.6
1/t 26.2 26,2  26.2  70.6 70,6
rpm 25212 26212 25212 19942 19942
psia 7953 1249 5262 3033 5262
psia 5262 135 1249 231 3033
psi 2691 1114 4013 2802 2229
ft 14790 6123 22056 5715 4546
(7352)
1b/sec 407.7 594.5  495.4 161 1396.5
gpm - 6988 10188 8490 10249 8882
rpm x gpm - 157 3676 2926 307 3395
ft ‘
% 76 77 77 77 77
h.p. 10965 6618 19866 16740 11543
h.p. 14427 8595 25802 21740 14991
ft : 640 470
rpm x gpm”2 20000 20000
38
in. 9.4 7.8 7.7 8.7 8.1
0,/CH, @ 0.65 M.R.
h.p. 50,289 37,833
1b/sec 115.8 115.8
°F/°R 1800/2260 1568/2028
3.2 3.4
psia 1308 363
rpm 25,212 19,942
9 70 80
psia 4186 1233
°F/°R 1568/2028 1319/1779
Btu/1b°R 0.926 0.926
1.158 1.158
ft/°R 98.4 98.4
in, 12 21.7
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TABLE XLIV

CYCLE G BOOST PUMP DESIGN PAPAMETERS

PUMPS _

Stages

Propellant

Propellant Temperature

Propellant Density

Shaft Speed

Total Discharge Pressure

Total Suction Pressure

Total Pressure Rise

Total Head Rise (Stage)

Neight.F1ow

Capacity

Specific Speed (Based on
Stage Head)

Efficiency

Fluid Horsepower

Shaft Horsepower

Net Positive Suction Head

Suction Specific Speed

Vapor Pressure
Diameter

TURBINE
Stages
Liquid
Shaft Power

Weight Flow/Percent
Engine

Gas Inlet Total Temperature

Pressure Drop
Static Back Pressure
Shaft Speed
Efficiency

Inlet Total Pressure
Diameter

DIMENS TONS

°F

1b/t3

rpm

psia

psia

psi

ft

lblééd‘

gpm

vpm _x gpm
ft5/4

1/2

%

h.p.

h.p.

ft

rpm x_apm
ft3/4

psia

in.

1/2

h.p.
1b/sec/%

OF/OR
psi/ft
psia
rpm

%

psia
in.
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FUEL
1

RP-1
60

~ 50.6

6061
181
14.7
166
473
504.8

4479

4000

77
434
564

39

26000

1.0
8.9

4

RP-1
581

101/20

1567/4459
181
6061
n
1748
30

OXIDIZER
1
)
-293.6
70.6
4067
250
33.6
216.7
442
1413.5
8989
4000

77
1136
1623

N

30060

18.5
13.6

4

0,
1671
320/22.6

1760/3590
250 :
4067
80
2010
9.3




TABLE XLV
CYCLE G MAIN PUMP DESIGN PARAMETERS
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5.

PREBURNER INDUCER  MAIN
PUMPS__ DIMENSIONS _FUEL _ FUEL  FUEL
Staqges | 1 1
Propellant RP-1 RP-1 02
Propellant Temperature °F 60 60 60
Propellant, Density b/ ot 50.6 50, 50.
Shaft Speed rpm 29357 29387 29357
Total Oischarge Pressure psia 6400 1942 3703
Total Suction Pressuve psia 3333 181 1942
Total Pressure Rise psi 3067 1761 1761
Total Head Rise (Stage) ft 8728 5012 5012
Weight Flow 1b/sec 31.4 606 504
Capacity gnpm 279 5377 4479
specific Speed (Based on rom x gpm' /2 543 3614 1298

Stage Head) ft3/4
Efficiency % 57 77 77
Fluid Horsepower h.p. 498 5522 4600
Shaft Horsepui.er h.p. 874 7172 h974
Net Positive Suction Head ft 172 512
suction Specific Speed rpm x %gm 8 20000
ft
Diameter in. 5.8 5.9
TURBINE _
Gas A
Shaft Power h.p. 14,441
Gas Weight Flow 1b/sec 1445
Gas Inlet Total Tempera- °F/°R 1096/1556
ture
Pressure Ratio 1.1034
Static Back Pressure psia 3243
Shaft Speed rom 29,357
Efficiency % 75
Gas Inlet Total Pressure psia 3578
Exhaust Temperature °F/°R
Specific Heat BTU/1b°R 0.263
Specific Heat Ratio 1.3
Gas Constant ft/°R 48.4

INDUCER MAIN
OXIDIZER ~ OXIDIZER -
[ 2
0, 0,
~293.6 ~293.6
6 70.6 70,6
19322 19322
2233 7733
250 2233
1983 5500
4045 11218(5609)
.8 1733 1413.5
11021 8989
4000 2826
77 77
12745 28830
16552 37442
473
20000
7 8.2 10.5
02/RP-1
@“45 M.R.
55,614
1445
1200/1660
1.4088
3614
19,322
80
5091
0.263
1.3
48.4
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VI, D, Turbomachinery Design Analysis (cont.)

coolant jacket pressure drop, and (2) the higher density of the RP-1 fuel,
plus no use of RP-1 as a coolant, allows the use of only three pump stages

compared to five for the 1iquid methane pump. Series-flow turbines are utf-
lized.

3. Cycle 1 Turbomachinerz

, Tables XLVI and XLVII provide the design parameters for the
boost pump and main (high-pressure) pumps for cycle I. All components reach
maximum pbténtial desigr efficiencies because of the paralliel flow arrange-
ment. The pumps are similar to those utilized for cycle C, except that the

1iquid oxygen boost pump turbine is a three-stége design and the liguid

methane main pump incorporates six stages.

E.  COMBUSTION STABILITY DESIGN ANALYSIS

The combustion stability that may be expected with large advanced
LO2/hydrocarbon rocket engines was evaluated. Anticipated stability prob-
lems are defined, and stability damping devices and design practices that
would ensure stable operation are recommended. The evaluation was made for
the two staged-combustion cycle engines, cycle G and cycle I (Figures 100 and

101). The gas-generator cycle C (Figure 99) may require similar stability
design features in the main combustion chamber ‘

The results of the study show that the high-frequency transverse
modes could be effectively damped with multiple-tune quarterwave-tube acoustic
resonators. The possibility of chug instability exists within the preburner
combustors with turbopump feedback. Precautions will have to be taken to
design the preburner 1hject¢r§ to provide adequate pressure drop and to tailor
the combustion time lags to prevent coupling with the feed system.

247

[N S S




y

5
.
$
3

>

TABLE XLVI

CYCLE I BOOST PUMP DESIGN PARAMETERS

PUMPS.

Stages

Propellant

Propellant Temperature
Propellant Density

Shaft Speed

Total Discharge Pressure
Total Suction Pressure

Total Pressure Rise (Stage)

Total Head Rise (Stage)

Weight Flow

Capacity

Specific Speed (Based on
Stage Head)

Efficiency

Fluid Horsepoweﬁ

Shaft Horsepower

Net Positive Suction Head

Suction Specific Sneed

Vapor Pressure
Diameter

TURBINE
Stages

Liquid
Shaft Power

Weight Flow/Percent Engine

Pressure Drop

Static Back Pressure
Shaft Speed
Efficiency

Gds Inlet Total Pressure

Diameter

DIMENSIONS -

°F
1b/£t>
rpm
psia
psia
psi

ft
1b/sec
gpm

1/2
rpm_x gpm
£t/

%

h.o.
h.p.
ft/psi

fﬂﬁl&%g?ﬂ[?
ft3

psia
in.
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FUEL
1
Methane
-253.5
26.2
4198
94
72
22
393
412.67
7072
4000

17
295
383

20/3.6

37,500

18.5
n.7

4
Methane
394 .
82.6/20
628/3452

94

4198

76

722
8.8

OXIDIZER
]
Oxyaén
-293.6
70.6
172
261
34
227
464
1444.34
9186
4000

77
1218
1582
32/15.5

30,000

18.5
12.8

3 .
Oxyaen
1630
289/20
1909/3878

261
4172

80

2170
7.5




TABLE XLVIL

-

CYCLE T MAIN PUMP DESIGN PARAMETERS

PRE-BURNER INDUCER MAIN INDUCER  MAIN
PUMPS DIMENS TONS FUEL _FUEL FUEL OXIDIZER 0XIDIZ
Stages 1 ] 4 1 |
Propellant CH4 CH4 CH4 02 O2
Propellant Temperature F g
Propellant Density 1b/ft3 26.2 26,2 2.2  70.6  70.6
Shaft Speed rpm 19888 19888 19888 20023 20023
Total Discharge Pressure psia 8272 898 6504 2121 6847
Total Suction Pressure  psia 6504 94 898 261 2121
Total Pressure Rise psi 1768 804 5606 1860 4726
Total Head Rise (Stage) ft 9717 4419 30812 3794 9639
(7703)

Weight Flow 1b/sec 383.58 495.3 412.67 1733 1444
Capacity gpm 12 6574 8488 7072 11021 9186 -

) 2 2 -
Speg::;g agsgg (Based on ggm}: u%m 1647 3380 2034 4348 1972
Efficiency % 76 77 77 76 77
Fluid Horsepower h.p. 6777 3979 23118 11954 25313
Shaft Horsepower h.p. 8917 5168 30024 15730 32874
Net Positive Suction Head ft 5/2 a3 496 i
Suction Specific Speed rpm x ?gm 20000 20000

ft~
Diameter in 10.6 7.8 9.2 7.7 10.1
TURBINE OZ/CH4 @ 02/CH4@
Gas 0539 M.R. 4475 M.R.
Shaft Power h.p. 45,432 50,062
Gas Weight Flow 1b/sec 533.17 1323.84 )
Gas Inlet Total Tempera- ©°F/°R 140071860 120071660 l
ture

Pressure Ratio 1.444 1.39
Static Back Pressure psia I 3722
Shaft Speed rpm 19,888 20,023
Efficiency % 80 80
Gas Inlet Total Pressure psia 5446 5173
Exhaust Temperature “F/°R 133171791 110271562
Specific Heat BTU/1b°R 0.875 0.273
Specific Heat Ratio ' 1.148 1.303
Gas Constant ft/°R 87.8 49.4
Diameter in. 13.4 14.4
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VI, E, Combustion Stability Design Analysis (cont.)

1. Combustion Instability

Combustion instability is a consequence of coupling of the
combustion process with the propellant injection process (1ow frequency) or
with the chamber acoustic modes (high frequency). The propensity for combus=
tion process coupling is determined by the combust jon time 1ags associated
with the various combustion processes.

As shown in Figure 110, the characteristic combustion time
lags for liquid propellant combustion include 1) propellant flight time,
2) atomization time, 3) vaporization time, 4) mixing time, and 5) chemical
reaction time. Methods for analytically predicting these combustion delay
times in terms of the injector design and propellant properties are available
for specific injector designs. A qualitative evaluation of the importance of
cach of these time lags for the two staged-combustion cycles is given in Table
XLV1IT.

2. Low-Frequency Stability

The possible modes of system-coupled instability for systems
G and 1 are outlined in Figures 111 and 112, The forward perturbation flow-
rate and pressure relationships between the various components are indicated
by the wide arrows. For example, the chamber preséure influences the fuel
turbine and oxidizer turbine outlet pressure which, in turn, influences the
fucl and ox pump outlet pressures which, in turn, influence the oxidizer-rich
preburner. Feedback occurs in terms of préssure and flowrate oscillations
indicated by the narrow arrows. Both cycle G and cycle I are sensitive to
coupling of preburner pressure vscillations with the turbopumps. Therefore,
il is imperative that the preburners be designed to avoid 1ow=-frequency
instability.

250

LS A E L

e .




= Tchem

= _ F'lgure, 110. Characteristic Combusfion Time Lags




Y/

¥/N

V/N

v/N
gEg)

e e
LTI AT e TN ST T T

v/ X0 X0 X0
YN {any {and {and
xo/1and YN /N N
¥/ {ang WIN v/N

DULXLK a0dep ‘woly bt 14

. b3

I 31Ky

5 9124)

1 3195

5 3124)

9y1 IWIL NOILSNEW0D 9NITI04LNGD

I1IATX 378vL

it

Jaquey) J3u4ngald

Jaquey) uLeW




Forward
Feedback Process

FUEL
TURBINE

W
Y (o]
< 5“&#

0X :
TURBINE

REGEN

Forward
Closed«Loop
Coupling of
oP ORPB. Preburner-

Rich Propellant

oT

Figure 111. System Low~Frequency Coupling - Cycle G

——

253




Forward
Fee_d back Process

THRUST
CHAMBE®

FUEL

]
I , REGEN
Forward
oP : ' . Closed=Loop
) ' Cougling of
Preburner-
ORPB FRPB FP Rich Propellant
oT
o FT
3 o ]

Figure 112. System Low=-Frequency Coupling -~ Cycle |

o e s

254




1

ey

VI, E, Combustion Stability Design Analysis (cont.)

Stable preburner operation is achieved by providing adequate

i pressure drops across the preburner injector to achieve isolation from the
h injection process. Pressuré drops are generally normalized to. the chamber
pressure (APy/P.) for the purpose of specifying low-frequency stability.
Experience has shown that the AP/P. ratio required is generally on the order
of 10-20%.'depend1ng on propellants an: injector design. Generally, gas
injection elements are stabilized with as little as 10%, whereas liquid injec-
tors require 15-20%.

3

3. High-Frequency Sfability

The high-frequency stability damping requirements are esti-
g mated by evaluating the undamped acoustic mode frequencies and by comparing
these to estimated combustion time lag sensitive frequencies. The estimated
chamber resonant frequencies are shown in Figure 113. The assumed chamber
diameter and combustion gas properiies are also included in the figure.

The transverse mode frequencies range from about 1400 Hz to
5000 Hz, representing a wide range of potential coupling. Stabilizing engines
is accomplished by either (1) damping the acoustic mode, (2) shifting the
acoustic mode frequency away from the injector response, or (3) shifting the
injector response away from the acoustic mode. Acoustic reéohators and
baffles accomplish boch (1) and (2) and are therefore -ideal solutions to the
problem. Item (3) is accomplished with injector design changes and is limited
in applicability.

Acoustic resonators are preferred since they do not protrude
into the combustion field and hence are easier to cool. Design of an acoustic
resonator to damp all of the possible modes expected in advanced LO»/
hydrocarbon engines may require demonstration ot a multiple-tune resonator,




CHAMBER PARAMETERS

Chamber Pressure = 20680 kN/m® (3000 psia)
Chamber Diameter = 5) cm (20 inches)
Combustion Gas Molecular wt. = 20

Combustion Gas Sound Speed = 1189 m/S (3900 ft/sec)

CYCLE G CYCLE I
Cycle Propellants Lo, RP-1 Lo, LCH, L0,  LCjHg
Main Chamber Propellants ORPB RP-1 ORPR  FRPE  ORPB  FRPB
Gases Gases ~ Gases (Gases Gases
Pfopé11ant Injection State Gas Liquid Gas - - Gas - Gas Gas

N7

Mode Order

Required Accustic Cavity Depth, in.

‘—i
0 1000 2000 3000 4000 5000
Undamped Resonant Frequency, HZ

R

Figure 113. Updamped Resonant Frequencies for a Large LOZ/HC Engine
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V1, E, Combustion Stability Design Analysis (cont.)

as shown in Figure 114. Analytically, a multiple~-tune resonator will provide
the necessary damping. However, resonators having more than two tune depths
have not been experimentally demonstrated. ‘

, The brimary mode to be damped will depend on the injector
design and the propellant combustion time lags. In general, cycle I, having
gas/gas injection into the main chamber, will have significantly shorter
sensitive time lags'than cycle G which has liquid RP-1 injection. Conse-
quently, the suspectible modes of the cycle I injector will favor the higher
frequencies, whereas the cycle G injector will favor lower frequencies. Cycle
G is expected to be more difficult to stdabilize than cycle I.

4. Required Stability Technology

Development of new large-thrust advanced LJ-hydrocarbon
engines may require the demonstration of multitune acoustic resonators for
damping wide frequency ranges in large-diameter engines. Earlier large-
diameter engines have resorted to injector face baffles to provide the
required damping. Our analvsis would indicate that multitune acoustic reson-
ators would provide equally effective damping and avoid baffle cooiing prob-
lems. The largest engine to incorporate only acoustic resonators is the ALRC
ITIP engine. It is 30.5 cm (12 in.) in diameter. It has been démonstrated to
be dynamically stable per the CPIA #247 stability test requirements. The
engine stability is man-rated.

Another area requiring demonstration is resonator cooling
techniques. Current acoustic resonators are regeneratively fuel-cooled. It
would be desirable from a design and fabrication standpoint to filmecool the

resonator by bleeding gaseous oxygen or gaseous fuel into the cavities. This
technique needs to be demonstrated.
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VI, E, Combustion Stability Design Analysis (cont.)

Finally, methods for accurately predicting combustion time
lags for high-pressure LOp/hydrocarbon injector: need to be developed.
Analytical methods now exist for storable propellants. These methods need to
be modified and verified for LOp/hdyrocarbon propellants.

F.  STRUCTURES DESIGN ANALYSIS

Stress and low-cycle fatigue analyses were conducted for the base-
1ine LOX/HC thrust chamber design. - The stress analysis results indicate that
the chamber will require an electroformed nickel thickness greater than 1.5 cm
(0.6 in.) in the cylindrical region to sustain the predicted pressure regime.
Consideration should, therefore, be given to some form of wrapping (boron,
glass, or steel filaments) to reduce the amount of nickel for weight savings.

The low=-cycle fatigue (LCF) analyses indicate that a maximum
strain range equal Lo 2.5% is predicted for the zirconium copper liner. This
maximum strain occurs in the throat section liner directly beneath a web
(1and). The number of allowable cycles (Nf) corresponding to this strain
range is 100 cycles, and this number includes a scatter factor of 4 and is
based on 756°K (900°F) 10-hour hold time data.

1. Method of Analysis

The initial step in the analysis procedure consists of estab-
1ishing the minimum thickness of electroformed nickel (EFNi) closeout required
to sustain the hoop membrane forces due to thrust chamber pressure and coolant
pressures, as illustrated in Figure 115, Fy and F¢ are the yield
strengths of the jacket and liner material, respectively. For the extreme
case, when the liner is hot and yields, the jacket must take all of the load.
Therefore, the minimum required yall thickness is based on the assumption that
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Figure 115. Preliminary Sizing of Required Jacket Thickness
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VI, F, Structures Design Analysis (cont.)

the hoop membrane pressure loads are carried entirely by the nickel structure.
The minimum thickness also includes a design safety factor to account for
proof pressure loads. These minimum thicknesses are utilized in the finite-
element model for the throat and cyiindrical regions of the chamber.

Preliminary sizing of the required land width is illustrated
in Figure 116. This sizing is checked for a prefiring condition at ambient
temperature and also at steady-state temperatures, assuming the coolant flow
is maintained after firing. g

‘ With the basic model geometry defined, a detailed elastic/
plastic plane strain analysis is performed for thermal plus pfessure, aﬁd
thermal and pressure alone loading conditions. A sufficient number of itera-
tions is made to ensure a convergent soiution. The principal‘analytical tool
used for this phase of the analysis is the ABSU finite-element computer pro-
gram which utilizes a bilinear stress strain procedure for the elastic/plastic
solution.

The program output includes effective stress and effective
strain for each element centroid for each iteration. These data are utilized
for plotting the curves shown in Figures 117 and 118.

2. Finite-Element Model

Finite-element model representations of the chamber throat
and cylindrical wall sections are depicted in Figures 119 and 120, respec-
tively. The model contains 110 quadrilateral elements and 141 nodal points.
The orientation is chosen so that one boundary coincides with a mid-land
radial and the other boundary coincides with a mid-channel radiai. The
included angle between the boundaries is defined as o= 360°/2N, where N is
the nunber of coolant channels. The temperature distribution determined for
the throat and cylindrical sections is given in Figures 121 and 122.
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VI, F, Structures Design Analysis (cont.)

Boundary conditions along the two radials are designed to
~permit only radial deformation. Out-of-plane forces (Poisson Effect) are
accounted for by adjusting the out-of-plane strain (EPST) magnitude until the

normal forces are essentially zero.

3, Summary of Results

The minimum watl thickness va1ues'determiﬁed for the mechan-
ical (pressure) loading are as follows: '

Location
c;hro;? gél1nder
LEFNY 0.8 (0.3) 1.5 (0.6)
t7r-Cu 0.16 (0.0616) 0.16 (0.0623)

The values above are adequate -to meet the anticipated proof pressure regimes. x

Component low-cycle fatigue life is predicted on the basis of
computerized plane strain results and appropriate fatigue and creep rupture
data for the material being considered. service life (Nf) is found by uti-
lizing the maximum effective strain, €g, from Figures 117 and 118, together
with the lesser of (1) the Nf from a 10-hour hold time data divided by a
scatter factor of 4 or (2) the Nf from zero hold time data divided by 10. The
following table presents the findings:

269




VI, F, Structures Design Analysis (cont.)

TGS TBS t ‘T Ne* Nf¢

°F °F EFN{ % (Al1owable) Required
Throat - Mid-Land 893 =220 0.3 2.5 100 100
Cycle - Mid-Land 886 -185 0.6 2.14 130 100

*Includes Factor of 4

The highest operational strain levels were found in the
throat section zirconium copper (Zr-Cu) coolant channel geometry, and
accordingly, this area has the minimum predicted service life. As expected,
the maximum strain occurs at the Zr-Cu liner hot gas-side wall in an area
directly below a land and is due to the effects of combined pressure and
thermal loading."

The high-pressure regime proposed for the advanced oxygen/
hydrocarbon engine design concept dictates the need for a relatively thick=
wall electroformed nickel cylinder. Meeting this requirement may be possible
by using a lesser thickness of nickel augmented with wrapping (boron, glass,
or wire filaments) to carry the predominant pressure hoop membrane forces.

G.  CONTROLS DESIGN ANALYSIS

The primary control points of the three engine systems (cycles C,
G, and I) are defined, including startup and cutoff sequences. The sequence
of operation for these LOX/hydrocarbon engines is patterned after engine
experience with the F-1 ("Mddel Specification 1,500,000 1b Thrust Liquid
Oxygen RP-1 Liquid-Propellant Engine," Rocketdyna Model F-1, Rocketdyne Report
R-1420cS, 15-January 1963) and the Titan I ("Titan Engines and Applications,"
Aerojet-General Corporation Report Number CR128, 31 October 1960).
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VI, G, Controls Design Analysis (cont.)

1. Cycle C

The engine control requirements for cycle'C (Figure 99) are

primarily governed by the engine start and shutdown scquences. The start and
shutdown sequences are given in Table XLIX.

The sequence of operations listed is assumed to occur after
the engine has been bled-in and the methane and oxygen components have been
chilled down to the main propellant shutoff valves prior to receipt of the
start signal. The thrust, total impulse, and propellant consumptions during
operation are summarized in Table L from start to 90% of rated thrust down to
shutdown at 5% of rated thrust.

Engine performance at the design thrust level ‘over a mixture
ratio range encompassing the design point mixture ratio + 10% is summarized on
Table LI.

2. Cycle G

The LOX/RP-1 modes of operation for cycle G (Figure 100) are
patterned after F-1 and Titan I engine experience. The primary concern with
these propellants is to keep contaminants out of the LOX manifolds. There-
fore, all LOX/RP-1 combustors are started oxidizer-rich to reduce the chance
of RP-1 entering the oxidizer circuits.

The engine start and shutdown sequence is presented in Table
LII. The sequence of operations listed is assumed to occur after the vehicle

prevalves have been opened and the cryogenic components have been chilled down
to the main engine shutoff valvis,
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TABLE XLIX

Lﬂ SEQUENCE OF OPERATIONS FOR LOX/LCH4
i GAS~-GENERATOR CYCLE ENGINE C

! .

A Start

y ‘ 1. Purge Gas Generator and Thrust Chamber Oxidizer Lines and

Manifold.,
2. Enerqgize Spark Igniters.
3. Open Main Ox. Valve (#1)*.
4, Open Gas Generator Igniter Valves. -
5. Open Main LCH, Valve (#2).
6. Open Gas Generator Ox. Valve (#3).
) 7. Open Gas Generator Fuel Valve (#4).
8. Open Thrust Chamber Igniter Valves.
Shutdown

Cut off Gas Generator Spark Energy.
Close Gas Generator Igniter Valves.

Close Ox. Gas Generator Valve (#3).

Close Main Ox. Valve (#1).

Initiate Ox. Purge.

Close Gas Generator Fuel Valve (#4).
Close Main CH, valve (#2).

Close Thrust Chamber Igniter Valves.
Cut off Thrust Chamber Spark Energy.

WO 00 ~N O O B W N~
e e e e e e = s .

*Numbers refer to the valves in Figure 99.
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TABLE L

LOX/LCH, ENGINE CYCLE C START AND
SHUTDOWN TRANSIENT DATA SUMMARY

Start to 90% F

Time, sec.

Total Start Impulse, kgesec (1b-sec)
LOX Consumption, kg (1b)

CH4 Consumption, kg (1b)

Shutdown to 5% F

Time, sec

Total Shutdown Impulse, kg-sec (1b-sec)
LOX Consumption, kg (1b)

CH, Consumption, kg (1b)
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0.80
68,150
129
124

0.50
79,900
163

75

(150,250)
(285)
(273)

(176,150)
(358)
(166)




TABLE LI

LO)(/LCH4 ENGINE CYCLE C DESIGN AND OFF-DESIGN

T

Engine,
Sea Level Thrust, 1b
Vacuum Thrust, 1b
Sea Level Specific Impulse, sec
Vacuum Specific Impulse, sec
Total Flowrate, Ib/sec
Fuel Flowrate, 1b/sec

Oxidizer Flowrate, 1b/sec

Chamber Pressure, psia

MR PERFORMANCE

2,57

g e

600,000
672,515
307.8
345.0
1949.3
546.0
1403.3
4350

Mixture Ratio

Sl

600,000
671,239
309.1
345.8
1941 1
508.1
1433.0
4300

3.06

600,000
671,891
308.8
345.8
1943.0
478.6
1464.4
4232
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TABLE LII

SEQUENCE OF OPERATIONS FOR LOX/RP-1
ENGINE CYCLE G

= N

] start -
L 1. Purge Oxidizer Lines and Manifolds in Ox.-Rich Preburner.
ii; ﬁ -2, Energize Spark Igniters.
3. Open Main Ox. Valve {#1)*.
ét i 4, Open Igniter Valves on Ox.~ Rich Preburner.
5 5. Open Main (RP-1) Fuel Valve (#2).
6.  Open Control Valves (#3 and #4) on Ox.-Rich Preburner

Shutdown

1. Close Main Ox. Valve (#1).
Initiate Ox. Purge.
Close Main (RP-1) Fuel Valve (#2).
Close Control Valves on Ox.-Rich Preburner
Close Igniter Valves on Ox.-Rich Preburner.
‘Cut off Igniter Spark Energy.

(= N & 2 T~ S 7S T AN

te: Numbers refer to valves on Figure 100.
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VI, G, Controls Design Analysis (cont.)

The engine start” and shutdown transients are also estimated.
The staged-combu;tion cycle engine is assumed to be chilled down and bled-in
to the main chamber valves prior to receipt of the fire signal. The engine is
then assumed to be started under tank head. The transient estimates are based
upon the analytical modeiing of similar engine configurations on the ALRC ¥
Liquid Engine Transient Simulation (LETS) model. '

The start and shutdown transient data are sunmarized on Table
LITI. Start to 90% of rated thrust and shutdown down to 5% of rated thrust

are generally specified vaiues to establish transient times.!

The design and off-design engine performance at the design
thrust level for + 10% MR excursions are presented in Table LIV. The nominal
engine operating mixture ratio is 2.8.

3. Cycle 1 f

The engine control requirements for cycle I are indicated in
- Figure 101, and the start and shutdown are given in Table LV. As with cycle
G, the combustors are started oxidizer-rich. This practice is maintained for
the LCHy engine, although the gaseous nature (high vapor bressure) of

methane reduces the possible accumulation of a liquid and its potential deton- L
ation, as in the case of RP<1. The sequence of operations is assumed to occur |
after the vehicle prevalves have been opened and the cryogenic components have .
been chilled down to the main engine shutoff valves. o

The engine start and shutdown transients are summarized in
Table LVI. The engine is assumed to be chilled down and bled-in to the main
chamber valves prior to receipt of the fire signal. The engine is assumed to
be started under tank head.
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i TABLE L1I1
T LOX/RP~1 ENGINE CYCLE G START AND SHUTDOWM
g TRANSIENT DATA SUMMARY
j Start to 90% F
Time, Sec 2.52
Total Start Impulse, kg-sec (1b-sec) 68,150 (150,250)
3 LOX Consumption, kg (1b) 131 (289)
‘ RP-1 Consumption, kg (1b) 126 (278)
Shutdown to 5% F
N Time, Sec 0.50 Q
Total Shutdown Impulse, kg-sec (1b-sec) 79,900 (176,150) :
LOX Consumption, kg (1b) 165 (363)
RP-1 Consumption, kg (1b) 77 (169)
|
!
!
1
" |
) ‘\
Lo
217




TABLE LIV |
LOX/RP-1 ENGINE CYCLE G DESIGN AND

i

OFF-DESIGN MR PERFNRMANCE

;j} € = 42,5

' Mixture Ratio

U Engine 2.82 2.80 3.08

§§f Sea Level Thrust, 1b 600,000 600,000 600,000 |
Vacuum Thrust, 1b 670,700 670,800 671,700 1
Sea Level Specific Impulse, sec 310.5 312.8 309.7
Vacuum Specific Impulse, sec 3471 349.7 346.7 3
Total Flowrate, 1b/sec 1932.4 1918.3 1937.4
Fuel Flowrate, 1b/sec 549.0 504.8 474.8
Oxidizer Flowrate, 1b/sec 1383.4 1413.5 1462.5
Chamber Pressure, psia 3155 3100 3092
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TABLE LV
SEQUENCE OF OPERATIONS FOR LOX/LCH,
ENGINE CYCLE I

1 Purge Oxidizer Lines and Manifolds in Fuel and Ox.-Riéh
preburners.

2 gnergize Spark Igniters.

3 Open Main Ox. valve (#1).*

4, Open Igniter valves on Fuel-and Ox.-Rich Preburners.

5 Open Main(LCH45Fue1 valve (#2).

6 Open Control valves (#3, #4, #5 and #6) on the Fuel-and
Ox.-Rich Preburners.

Shutdown

1. Close Main Ox. Valve (#1).

2 Initiate Ox. Purge.

3 Close Main (CH4) Fuel Valve (#2).

4. Close Control Valves on Fuel and Ox.-Rich Preburners.
5 Close Igniter Valves on Fuel-and Ox.-Rich Preburners.
6. Cut off Igniter Spark Energy.

*Note: Numbers refer to valves on Figure 101.




TABLE LVI

LOX/LCH4‘ENGINE CYCLE I START AND SHUTDOWN
TRANSIENT DATA SUMMARY

Start to 90% F

Time, sec 2.52 o
Total Start Impulse, kg-sec (1b-sec) 68,150 (150,250) -
LOX Consumption, kg (1b) 134 (295)

LCH, Consumption, kg (1b) 103 (227)

Shutdown to 5% F

Time, sec 0.50
Total Shutdown Impulse, kg-sec (lb-sec) 79,900 (176,150)
LOX Consumption, kg (1b) 168 (371)
LCH, Consumption, kg (1b) 63 (138)
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Vi, G, Controls Design Analysis (cont.)
_ - The design and off-design engine pgrfqrmpnce'at the design
thrust level for + 10% MR excursions are presented on Table LVII. The nomi-

nal engine operating mixture ratio is 3.5.

4. Technology Areas

\

Based upon review of the system schematics, several technol-

ogy areas related to valves and engine control are briefly described as
follows:

a. Shutoff and Dynamic Seals

High cycle 1ife and low leak rates for dynamic seals
over a wide temperature range present a significant valve design problem.
Seal design is hampered, to snme extent, by lack of material properties data
needed to predicf leak rates and wear life. This is particularly true for
temperatures other than normal ambient temperature. A program to obtain
needed data for candidate seal materials, followed by a prediction-validation
program, would provide a higher confidence level that desired leak rates and
cycle life will be achieved without time-consuming development programs.

" be Materials of Construction

Several of the valves required for these systems are
fairly large (about 4-5 in. diameter). Potential weight savings may be

achieved by evaluation of high-strength, low-weight materials not currently in
use for high- pressure engine valves. Valve housings and shutoff elements are
two valve components that may provide worthwhile weight savings.
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:%ﬁ , TABLE_LVII

LOX/1.CH, ENGINE CYCLE 1 DESIGN AND OFF-DESIGN
MR PERFORMANCE

e = 48
Mixture Ratio
Sea Level Thrust, 1b 600,000 600,000 600,000
Vacuum Thrust, 1b 670,600 670,400 670,200
Sea Level Specific Impulse, sec 322.1 323.1 322.1
Vacuum Specific Impulse, sec 360.0 361.0 359.8
Total Flowrate, lb/sec 1862.8 1857.0 1862.8
Fuel Flowrate, 1b/sec 448.9 2.7 384.1
Oxidizer Flowrate, 1b/sec 1413.9 1444.3 1478.7
Chamber Pressure, psia 3549 3500 3451
8,
::w! .
!
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VI, G, Controls Design Analysis (cont.)
Ce Engiﬁe Controller

Present-day rocket engine flight controllers were
designed and developed in a time frame when discrete compOnents or medium-
scale integration (MS!) components were used. The rapid advance in elec-
tronics during the late 1960's and through the 1970's resulted in Iarge-scale '
integration (LSI) combonents -~ microprocessors in particular. The reduced
size and increased memory density of electronic control elements offers the
potentiai for reduced size, weighf; power consumptien, and hardware cost of
engine controllers. A program to evaluate the applicability of these new
electronic components to engine control may provide greater control and diag-
nostic capability with a smaller, lighter controller.

He  CONCEPTUAL DESIGNS

Preliminary assembly drawings were prepared for each of the three
engine cycles C, G, and I. The engine designs feature fixed boost pumps for
each propellant circuit clustered around the engine gimbal center. The turbo-

pump assemblies (TPAs) are side-mounted in order to obtain a faverable center
of gravity location.

The TCA designs incorporate slotted zirconium copper channels from
the injector face to a nozzle area ratio of 8:1. A two-pass Inconel 718 tube
bundle is used from an area ratio of 8:1 to the nozzle exit area ratio. The
chamber coolant is introduced at an area ratio of 8:1 and flows countercurrent
up to the plane of the injector face. The nozzle coolant is introduced at an

area ratio of 8:1, cools the nozzle, and then exits the return manifoid at the
8:1 area ratio.

The gimballed envelope was evaluated for a 10° square pattern.
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Vi, H.'COnceptuaI'Designs (cont,)

1. Cycle C Engine Configuration

The flow schematic for engine cycle C is given in Figure 99
(Section VI,B). The conceptuaf désign layout fur this gas-generator cycle
engine is depicted in Figures 123 and 124 (Dwg. 1193242). The configuration,
as shown, utilizes a LCHq-cooled chamber and a LOX-cooled nozzle. It was
previously shown in Section 111,D that LCH4 can adequately cool the entire
engine with only a small penalty in pump discharge pressure. The overall
engine dimensions do not change {f methane replaces oxygen as the nozzle
coolant, and there is only a slight change in the general configuration
depicted in the figure.

The engine envelope data are:

gngine'Length, cm (in.) 358 (141)
Nuzzle Exit Diameter, cm (in.) 194 (76.4)

2. Cycle G Engine Configuration

The LOX/RP-1 cycle G engine utilizes a sii ‘le-preburner
staged-combustion cycle with a LOX-cooled thrust chamber and nozzle, as shown

in the schematic of Figure 100, The preliminary assembly drawing of the base-
line engine is shown in Figures 125 and 126 (Dwg. 1193240).

The engine envelope data are:

Engine Length, cm (in.) 351 (138.0)
Nozzle Exit Diameter, cm (in.) 210 (82.5)
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VI, H, Ccnceptual Designs (conf.) |
|

3. Cycle I Engine Configuration

The LOX/LCH4 engine cycle I engine design is a
dual-preburner staged-combust ion cycle with a LCH4-cooled chamber. The
engine schematic is shown in Figure 101. The preliminary assembly drawing of
the engine is given in Figures 127 and 128 (Dwg. 1193241). Hot-gas ducting is
minimized through completely integrated TPAs which are mounted to the engiqé
by means of the hot- gas crcssover ducts. A LOX-cooled nozzle is shown in ﬁhe
figure in order to reduce the methane pump discharge pressure. Should an/
all-methane-cooled engine be desired, essentially no dimensional changes would
have to be made to the drawing aside from re-routing the nozzle coolant line.

The engine envelope data are:

Engine Length, cm (in.) 351 (138.0)
. Nozzle Exit Diameter, cm (in.) 209 (82.4)

289

o b
2

N e+ s Koy g i
’ RIS L TR .
g SRR




. s i!A 11,1 14 T —
...II‘ —— e . . s R
(ata dor) ubysag fen3deouod (I 8194) autbuz YHy1/x01 -zzL @anbiry
S S 14 + 3 ¢ 8 .
o8 - ‘
r -, o
ASTY O WONIIDD ~CURIS FYPus
O N
- 8
//,,
) t-r —
N 2
. ) N\ \
AY
\
NN B
i | / - o
1 o — O3B mO® ]
o
™~ o
- - - o~
. : ]
B N )
= ! — I oy
. e Tm% / |
] o4 .
Ve
7 |A|; (LI -
r . ST Udllﬁn\%W“
s ; : - o
h w _ | ’ ; ‘ -
\\ ”
o -~
“ | L "
i ﬁﬂuﬁﬁ”.w.ﬂ ,;
T z € [ v L 9 I3 ]

.

s

LR ey




(watA 9pLS) ubisag [en3daduo) (1 312£)) autbu3l Yuy1/%01 gzl aunbyy
€ .|.I.||«|l|||+||||l T R i -

~

<

= e e e s e mmna o — P OBEl — .- P . -
J _ .
g _
—
r —
)
N
.m -
— i
|| ..
- «0
»Te »
aﬁ o
e ~N
tj ()=
! i
i
—
! :
4 Um.mu
t
+ i >
_ 3§
. |
> M
" I
“
L ]
— (]
||U.Hﬂ
S 3 T G T 7 ¥ 3 T ) 7 s
{ b
——n e
Sw——y . . - e . ; y e —— enew OmB EER
Iaadan 4 R 4 - e ey oo !

e o0 T
y 11 .‘ o ,m\vq.! ‘ﬁh..t\(\i&{\'\\‘(




"WVJ-‘&':UQ U \,.JL.J (A% [}

ki acod e

. mavern—

VII. DISCUSSION OF RESULTS

The pertinent findings from tnis study are placed in perspective in

this section. Items to be discussed include cooling, power generation, carbon -

depésftion, ‘power cycles, fuels, etc. While these findings are presented here
in a positive and Vogical manner, it must be remembered that the relative
merit of a given ¢ycle or coolant, for example, could possibly change if the
ground rules and assumptions were changed. Therefore, the assumptions uti-
1ized throughout the study are summarized in Table LVIII.

Reference is made in the following discussion to cooling limit, power
1imit, etc. where these limits are necessarily a function of the assumptions
given in Table LVIII. Since it is the purpose of this study to rank the vari-
ous cycles, basic ground rules were set to 1imit the number of variables. It
is believed that the relative ranking of the cycles is not biased by these
assumpt ions, except as outlined in the following discussion.

A.  CYCLES

Engine cycles for a space transportation system (STS) must be
ranked by a number of factors including performance (payload capability),
weight and packaging volume, life, reliability, safety margin, and ease of
maintenance. Engine cost is not considered a major factor, sinte the engine
will be reusable and the cost amortized. Operational cost is the significant

driver for an STS, but this factor is usually considered as part of vehicle
studies. '

In this study the LOX/HC cycles have been ranked primarily by
their specific impulse (see Figure 97) and by features that imply life,
reliability and ease of maintenance (see Table XXXv). As might have been
expected, the RP-1 cooled engine cycles (A, D, and F) turned out to be the
poorest performers (cf. Figure 97). These cycles are poor primarily
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TABLE LVIII
BASIC ASSUMPTIONS UTILIZED FOR THE ADVANCED OXYGEN-HYDROCARBON ROCKET ENGINE STUDY

l; Pump diScharge limit at approximate 1980 state-of-the-art: 55160 kN/m2
(800 psia)

2. Chamber 1ife mihimum at 100 cycles and 10-hour hold time (see Figure
10, p. 24)

3. Coolant Mach number Timit at approximately 3.0
4. Coolant channel dimension limitations (see p. 25)

5. Propane is subcooled to LO2 NBP in the tank by LO2 vapor or by submerging
the propane tank inside the LOX tank

6. L02 cooling correlation utilized for methane (see p. 27)

7. Coking limit for RP-1 in the cooling jacket is 561 °K (550 °F)
8. Coking 1imit for RP-1R in the cooling jacket is 700 °K (800 °F)
9. Carbon deposition on chamber walls is zero (except as noted)

10, Turbine inlet temperature limit (fuel-rich) at 1033 °K (1860 °R) except as
indicated

11. Non-equilibrium fuel-rich properties for LOX/RP-1 determined from kinetic
model and extrapolated to high pressure

12. Non-equilibrium fuel-rich properties for LOX/CH4 and LOX/C3H8 modeled from
LOX/RP-1 data using equilibrium data for extrapolation

13. High temperature turbine effi cieacy'coo’ing losses are zero

14. Power cycle optimization uses split flow pumps to minimize horsepower
requirement :

15. Injector, valve and line pressure drops from Table III, p. 19

16. Vehicle payload assessment used JSC two-stage vehicle and approximate tank
scaling relationship for different cycles and fuels
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VII, A, Cycles (cont.)

because of the cooling (coking) limit which severely llmits the attainable '
chamber pressure to about 8963 kN/m2 (1300 psia) Even the assumption of a
higher turbine temperature and/or a higher pump discharge pressure limit
cannot significantly improve the ranking of the RP-1 cooled engine éycles.

Gas generator cycles A' and B, utlizing a refined RP-1 (RP-1R) as
coo'ant or LOX as coolant, are poor performers when compared with their staged
combustion cycle counterparts D', E, F' and G (see Figure 97). Cycles A' and
B are not cooling 1imited (as shown in Figures 22 and 25). These cycles are
“performance (specific impulse) limited" by the poor fluid properties of the
LOX/RP-1 fuel-rich, gas-driven turbin- and the resultant gas generator exhaust
performance. The vacuum specific impulse reaches its maximum at a chamber
pressure of 15168 kN/m2 (2200 psia) and 19305 kN/m2 (2800 psia),
respectively, for cycles A' and B.

The effect of increased turbine inlet temperature and/or carbon
deposit on these gas generator cycles is to bring their specific impulse
levels - loser to that for corresponding staged combustion cycles (see Figures
22 and 25).

Unless it can be shown that a carbon deposit can be achieved at
the higher mixture ratio and high chamber pressure of this study, or that the
high pressure LOX/RP-1 fuel-rich turbine-drive-gas properties are better than
those assumed for this study, all of the gas generator cycles involving RP-1
and RP-1R fuels will not be competitive with the other cycles of this study.

The methane-fueled and propane-fueled gas generator cycles C and
C' are performance (specific impulse) limited. They show a maximum in vacuum
specific impulse versus chamber pressure (see Figures 28 and 30). The
delivered payload for these cycles (see Figure 97) is nearly competitive
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VI1, A, Cycles (cont.)

with the staged combustion cycles using LOX/RP- 1, but the payload is quite’
inferior to the staged combustion cycles utilizing methane or propane fuels.
There is a marked improvement in specific impulse for these cycles when a
higher temperature turbine is utilized (cf. Figures 102 and 28). It is -
possible that experimentally gathered fuel-rich LOX/CHy and LOX/C3Hg
turbine-drive-gas data may be superior to the data used in this study. Such
data could make thase cycles even more compet?five.

The families of staged combustion cycles for RP-1 (D', E, F' and
G) and for CHq and C3Hg (G', H, 1 and I') are good performers, as shown
in Figure 97. These cycles are all "power limited" as indicated by Figures
32, 34, 36, 38, 39, 41, 43 and 44. Higher pump discharge pressures than the
assumed 1imit of 55160 kN/m2 (8000 psia) are seen to be possible. The slope
of the Pp vs Pc curve has become so steep, however, that very little is
gained by pushing Pp much higher.

The least competitive cycle in the RP-1 family is cycle D', which
utilizes the fuel as coolant and as turbine-drive-gas, when partially burned
in the preburner. Cycle E splits the work load between the two propellants,
allowing the LOX (a better coolant) to act as chamber coolant, and the fue!l
(as fuel-rich preburner gas) to power the cycle. This usage promotes a
payload gain (Figure 97) of about 40 metric tons.

The best LOX/RP-1 cycle is cycle F', which utilizes RP-1R as
coolant and the LOX (as oxidizer-rich preburner gas) to power the cycle.
Cycle G which requires the LOX to accomplish both the cooling and power drive

functions is slightly inferior in payload capability to cycle F' (see Figure
97).

Cycles I and I' offer the highest payload capability of the LOX/HC

engine cycles (see Figure 97). Both cycles deliver the same payload
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VII, A, Cycles (cont.)

(466 metric tons) despite the higher performance of methane (Als = 2 sec).
Because subcdbled.propané s a better coolant than methéne. cyclg I' can
operate at a slightlj higher chamber pressure. The higher chamber pressure
and the highér-éngine thrhst-to-weight ratio for cycle I' compensate for its
lower performance. Both ¢ycles I and I' make maximum use of the chemical
energy in the bropeliants'through oxidizer-rich and fuel-rich preburners.

"

[ B R}

[ B R

Cycle H affords 1ower payload capability than cycle I because it
requires the fuel to both cool and power the engine. Cycle G* primarily
illustrates the benefit from switching fuels (RP-1 from cycle G to C3Hg).
| An improvement in cycle G' would be cycle H' (not shown in Figure 97), which
. would utilize C3Hg for both cooling and engine power.

Qe

i
—— D

Cycles J and K are hybrid_LOX/Hc cycles, which use a small amount
% (about 11-14 kg/s [25-30 1b/sec]) of 1iquid hydrogen for cooling and turbine
: drive fluid (when burned fuel-rich in the gas generator). Cycle J, a gas
generator cycle, provides higher payload capability than any "pure® LOX/RP-1
cycle (see Figure 97) because of the higher chamber pressure capability. This
B cycle has no power 1imit within the constraints imposed by the assumptions.
j As indicated in the note in Table XXXV, cycle J with CHg or C3Hg fuel
., (termed cycles J' or J") would be ranked in the top three cycles.

Examination of Table XXXV and Figure 97 shows the dual throat
engine cycle K with the highest ranking. This ranking results primarily from
the high specific impulse achieved at the mode 2 area ratio. A more accurate
trajectory integration would be required to properly assess the effect of the

[ TS )

;
‘3 thrust reduction of cycle K with mode 2 operation. Liquid hydrogen is used as
o a partial coolant and as the gas generator fuel component, but not as a fuel
' 3 in the main combustion chambers.
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VIiI, A, Cycles (cont.)

~ Only the point design in Table XXV is presented fof’this-cyc\e.
Analyses of other dual-throat engines in Reference 10, however, indicate that
the point design may be close to the cooling limit for a fully regeneratively
cooled engine. Other cooling options are, of course, available.

simplifying assumptions were made in assessing the payload poten-
tial of all the candidate engines, in particular, the dual throat cycle K. It
is, therefore, not practical from the results of this study alone to select
the LOX/HC engine cycle for NASA to pursue. Detailed trajectory analysis
using the parametric data from this study, and a propulsion system evaluation
involving development time/cost/risk, recurring costs, and reliability consid-
erations are required before a cycle can be selected with confidence.

B. FUELS

Fuels were ranked in this study for their cooling capability,
their wrbine-drive-gas power generation, and their engine performance. Other
factors that should be included in the ranking, but were beyond the scope of

" this study, are availability, cost, safety, operational handling, and engine

maintainability.

Methane is an excellent candidate fuel. It is a good coolant,
provides high specific impulse, and is probably the best HC turbine-drive-
fluid when burned fuel-rich with LOX. Fuel-rich methane is relatively free of
coke, when compared to other HC fuels.

Subcooled propane is the best HC coolant. This fuel also provides
high engine specific impulse and the estimated fuel-rich properties provide a
good turbine-drive fluid. The bulk density of LOX/propane is nearly as high
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VII, B, Fuels (cont.)

as that of LOX/RP-1 and is significantly higher than that of LOX/methane.
While subcooled propane has not been handled in appfeciable quantities outside
of the laboratory, tankage design should be straightforward{ "Propane can be
maintained in the subcooled s..te in the vehicle by at least two approaches.
One design incorporat.c the propane tank within the LOX tank, thus maintaining
the fuel at the temperature of the LOX. Another design utilizes a jacket

around the propane tank, where the jacket temperature is maintained at the LOX
NBP by boiloff from the LOX tank.

As stated in the previous section concerning engine cycles, RP-1
fuel coking in the coolant channels severely limits the achievable chamber
pressure. Thus the engine performance and the engine size are unacceptable
for the stringent STS mission. The more refined RP-1 is a capable coolant for
a fuel-cooled engine. Although more refined RP-1 (e+«ge, JP=-7) is considered
an operational fuel for military aircraft, it is not presently available in
the quantities required by the STS.

Subcooled propane, with its high density, is the most promising
hydrocarbon fuel candidate when compared with the low density methane,
assuming all other properties are essentially equivalent.

C.  TECHNOLOGY REQUIREMENTS

Areas requiring technological investigation can be separated into
two categories: (1) those specifically needed to develop a LOX/HC engine, and
(2) those that improve the state of the art of high-pressure engines in
general. Those areas critical to the development of LOX/RP-1 and a LOX/LCHq

engine are described in Figures 129 and 130, respectively. Both categories
are summarized in Table LVIX.
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Vi1, C, Technology Requirements (cont.)

The known state of the art of LOX/HC engines in Figure 129 is
about 8270 kN/m? (1200 psia) chamber pressure. Any engine development much
beyond this pressure will require a substantial data base prior to initiation,
: since high-pressure engine design criteria are markedly different from low-

o pressure design criteria. The selection of the engine cycle is all-important
3 in reducing the hazards that can occur with marginal cycles.

The technology requirements in Figure 129 include the following:

Quantification of carbon deposition on chamber walls at high
pressures and high mixture ratios; '

Demonstration of the cooling capability of refined RP-1 and
the elimination of coolant coking during engine operation and

during the heat soakback on engine shutdown;

Demonstration of LOX cooling in high-pressure LOX/RP-1
engines;

Demonstration of a LOX-rich preburner, such as required for
cycles F' and G;

Development of design criteria for a high-speed RP-1
turbopump;

Establishment of design criteria for a high-speed LOX
turbopump with LOX-rich turbine-drive fluid;

Evaluation of high-temperature turbines (cooled or uncooled);
Development of high-pressure LOX/RP-1 injector design

criteria.
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VII, C, Technology Requirements (cont.)

The technology requirements listed in Figure 130 for a LOX/LCHg .
staged-combustion cycle engine are similar to those from Figure 129. Addi-
tional items include (1) demonstration of a LOX/LCHa gas-gas injector as
required for cycle I; (2) development of 1iquid methane cooling at super-
critical pressures; (3) development of LCH4 turbopump design criteria; (4)
demonstration of fuel-rich and oxidizer-rich LOX/LCHq preburners; and (5)
evaluation of high-temperature turbines.

The above technical requirements for LOX/HC engines are summarized
in Table LVIII. The data listed delineate both a justification and a typical
program approach for each technology. Three additional technologies that are
included in the table are (1) a stoichiometric preburner, (2) advanced mater-
jals, and (3) a single-fuel dual-throat engine. The justification for
including the advanced materials is described in detail in Section IV,C,3.

The justification for including the single-fuel dual-throat engine is des-
cribed in more detail in Section V,D.

Although the stoichiometric preburner is not discussed elsewhere
in this document, it is added here as the outgrowth of Aerojet's experience
with high-pressure staged-combustion cycle engines. A similar device is
reportedly utilized on the first-stage Ariane engine. Its use on a LOX/HC
staged- combustion cycle engine (cycles G or 1) should eliminate the potential
for hard starts in case a slight malfunction in the start sequence were to
occur.
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VIII. CONCLUSIONS AND RECOMMENDATIONS

A.  CONCLUSIONS : ;

This study presents data on gas generator and staged combustion
engine cycles for LOX/RP-1, LOX/refined RP-1, LOX/LCHq, and LOX/LC3Hg
propellant combinations, as well as data on hybrid cycles using LHp as a
coolant and turbine-drive fluid. Since the LOX/HC application will be for a
reusable, economic launch vehicle, engine selection should be made after a
thorough operational cost evaluation has been conducted. Studies conducted to
date by and for NASA (Refs. 4-8 and 24) have emphasized high engine
performance and long enyine life as major requirements for the propulsion
. } system. These requirements are best met with an engine that makes maximum
utilization of all propellants for cooling and for power system drive.
Further investigation is required in order to select the optimum hydrocarbon
fuel.
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The specific conclusions (based on the assumptions given in Table
LVIII) derived from this study are as follows:

YT

(1) RP-1-cooled engines are limited to a chamber pressure of
about 8960 kN/m2 (1300 psia) because of fuel coking in the coolant jacket at
higher pressures.

(2) RP-l-cooled engines with carbon deposit on the chamber walls
; are limited to a chamber pressure of about 13790 kN/m¢ (2000 psia) because
3 of coking of the fuel in the cooling jacket.

QQK ; (3) Refined RP-1 (e.g., JP-7) cooled engines are limited to a
| chamber pressure of about 17230 kN/m¢ (2500 psia) because of specific

i impulse (gas generator cycle) and to about 22060 kN/m (3200 psia) because
| of power limit (staged combustion cycle).
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'Vlli, A, Conclusions (cont.)

(4) Refined RP-1-cooled gas generatdr cycle engines with carbon
deposit on the chamber walls are specific impulse iimited to a chamber pres-
sure of about 18610 kN/m (2700 psia).

(5) LOX-cooled engines are specific impulse Timited to a chamber
pressure of about 17230 kN/m? (2500 psia) and 21370 kN/m (3100 psia),
respectively, as gas generator and staged combustion cycles.

(6) LOX-cooled gas generator cycle engines with carbon deposit on
the chamber walls are specific impulse limited to a chamber pressure of about
18610 kN/m2 (2700 psia).

(7) LCHg-cooled engines are specific impulse limited to a
chanber pressure of about 20680 kN/m2 (3000 psia) and 24130 kN/m? (3500
psia), respectively, as gas generator and staged combustion cycles.

(8) LC3Hg-cooled engines are specific impulse limited to a
chamber pressure of about 20680 kN/m2 (3000 psia) and 24820 kN/m2 (3600
psia), respectively.

(9) LHp-cooled LOX/HC gas generator cycle engines are power
limited to a chamber pressure of about 37920 kN/mé (5500 psia).

(10) Increased turbine inlet temperatures (fuel- and oxidizer-
rich) offer a large benefit for gas-generator and mixed-cycle engines and a
smaller benefit for staged-combustion cycle engines.

(11) Application of reinforced plastic composite materials could
result in an engine weight reduction of 30% by the year 1985 and a weight
reduction of 40% by the year 2000.
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VIII, A, Conclusions (cont.)

(12) LOX=RP-1 stagedécombustioh cycle engines with LOX-rich pre-
burner and LOX or refined RP-1 cooling provide the highest specific impulse
potential for an RP-1 (or refined RP-1) fueled engine.

(13) The LOX/LCHg dual-throat engine with LHp cooling and a
mixed gas-generator/staged-combustion cycle offers the highest specific
impulse potential of the cycles included in this study.

(14) The highest payload capability for the two-stage ballistic
recovery vehicle considered was achieved with the dual-throat engine. With
conventional nozzles, the highest payload capability was achieved with staged
combustion engine cycles incorporating dual-preburners or with gas generator
engines using hydrogen-cooling and hydrogen-rich turbine drive.

(15) The LOX/LCH4 gas-generator cycle engines offer the highest
specific impulse for a LOX/HC gas-generator engine.

B.  RECOMMENDATIONS

The majority of the technology requirements defined in this study
are common to all LOX/HC engines. Because the NASA mission and the engine
cycle selection may not be made for several years, and because it requires at
least eight years to provide the technology base for the economical develop-
ment of a LOX/HC engine, it is recommended that the major technology items be
demonstrated as early as the budget permits. These include the following:

(1) Fuel and LOX turbopumps

(2) Stoichiometric preburner

(3) High-temperature turbines

(4) LCHg supercritical heat transfer data
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Vi1, B, Recommendations (cont.)

(5) Refined RP-1 supercritical heat transfer data
(6) LOX/HC injectors

(7) Advanced material application to valves, pump housings,
lines, etc.

(8) Carbon deposit evaluation
(9) Dual throat evaluation

Vehicle applications analyses similar to those performed by
NASA/LaRC (Ref. 4) should be conducted to determine the comparative merit of
the LOX/HC engine cycles for several NASA missions.

More definitive engine design studies should be conducted for the
more promising cycles in order to establish the design methodology for
achieving optimum reusability and ease of maintenance.
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