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ABSTPACT

Starting with the basic fatigue life formula

b 4y \C
s . Ne . Ne
aer |\ Ny &

an inversion formula is derived in form

1
z 2z
Ne ac | b Ac %
N—— = — + | —
T AeT AcT

where z is a function of strainrange and the ratio c/b.
The inversion formula is valid over the entire life range of enaineering
interest for all materials examined. Conformity between the two equations
is extremely close, suitable for all engineering problems.

The approach used to invert the life relation is also suitabie for the

inversion of other formulas involving the sum of two power-law terms.

INTRODUCTICN
The availability of a formula expressing 1ife directly in terms of
strainrange and mean stress is a great convenience in cumulative damage
analysis. Data for such an analysis usually appear as a sequence of loading
each characterized by a strainrange and mean stress, and the analysis proceeds by
establishing the life for each loading condition, and suitably summing cycle
ratios based on the number of cycles actually aoplied at each loading

divided by the life that would occur if that loading persisted until

failure occurred. Unfortunately, however, the 1ife relationship for each



loading condition is formulated by an expression containing two terms with
life raised to a fractional exponent. No exact closed-form relation for
life can be obtained because the transcendent2l equation does not lend
itself to exact solution.

A number of approximate methods have been ottained in the past for
approximate, although accurate, inversion of the life relationship
to obtain a direct expression for life Nf. These are discussed in
Ref. 1. In one form the equation, defined in Ref. (1) as the Collocation
method, is recast to an entirely different form, although numerically quite
close to the actual life relation to be inverted. However, the numerical
conformity can be achieved over only a few decades of fatique life; therefore
a "floating" relationship is required, changing the ranae for each application
to insure that the life involved falls within it. While the procedure lends
itself to easy computer programming, it would obviously be preferable to
avoid the need for such a "floating" system.

A second approach, described in Ref. 1 as the spline point method,
takes a step toward simplification by providing the inversion relationship
in just two analytical expressions, one applicable below the transition
strainrange (the strainrange where the elastic and plastic components are
equal), the other above the transition strainrange. While quite accurate
and simple to program, the inconvenicnce of having to account for a two-
part analytical expression is still present in this method. The authors
have therefore continued the search for a single-expression closed-form
relationship suitable over the entire 1ife range of interest in common

engineering problems.



In this report we draw on the experience gained in Ref. 1 with the
development of the two-part inversion expression to establish such a single
expression. The report describes the basis of the method, and its applicability

to a large number of materials commonly used in engineering design

METHOD
The Life Relation to be Inverted

The form of the basic life relc.onship was first proposed by Manson
(Ref. 2). Later the same basic equation was expressed by Morrow (Ref. 3) with

a new notation which is now comonly used

5o er (M) 4 c{- (2N )P (1)

n

Here Ac = applied strainrange

Nf = cycles to failure
c} and o; = material constants designated as ductility
coefficient and strength coefficient, respectively.
b and ¢ = material constants designated as the elastic

and plastic exponents, respectively.

An alternate form of thelife relation has been expressed by Manson (Ref. 4)

. €
R _’\f_g‘g_Tf.\ *| } (2)

As

where R = 2¢
€ AcT
ac = applied strainrange

Nf = cycles to failure
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where NT and bey are transition 1ife and strainrange given by

of €/ (c-b)
pep = 2(e™ () (3)
1 ]/(b'C)
N = 3 [Eep/ol) (4)

Hodification of the relation to account for mean stress is discussed in
[5]). In Ref. [6] it is shown that, basically, the form of the relaticn is
still given by Eq. (2), except that:

1. NT is replaced by N%. where
-1/b
-b 2o
v e ) 0
N7 [(2"1) - zzz;] )

where 0, = Mean stress

2. The transition strainrange beg is the same as for completely
reversed loading, but can be replaced by k'AeT if experimental information
is available to indicate that the cyclic stress-strain curve is affected
by mean stress. In the absence of such explicit information kc is taken
as unity.

3. The term o in Eq. (5) may be replaced by kn%o if experimental
evidence exists to provide a more accurate relation between cyclic life and
mean stress [7] than that originally proposed by Morrow in [8] that mean
stress can be accounted for by replacing of in Eq. (1) by o% - 0,

Thus, whether mean stress is or is not present, the same basic equation
of the form of Eq. (2) applies. We shall therefore focus our attention on
the inversion of this relation, recognizing that NT definitely depends on

mean stress and Acy may be a weak function of mean stress.



Choice of the Form of the Inverted Relationship

An intuitive choice of form of the inverted equation is

(6)

tq. (6) has the same asymptotes as Eq. (2), so * .t it is a valid
representation of Eq. (2) at extremes of life and strainrange, but
unfortunately the two equations do not coincide for intermediate values

in the vicinity of the transition point for the parameters associated with
most materials. Fig. 1 shows, for example, the results for Ti-6A1-4V. The
continuous curve is the proper 1ife relation obtained by adding vertical
strain ordinates at any value of ZNf. while the dotted curve is determined
from Eq. (6), which essentially adds horizontal abscisas at any value of
strainrange. Of course the simplified inversion formula is correct at life
extremes where the coordinate values on one line are neqligible compare” to
those of the other; in the region of the transition point, where the
coordinate values assocfated with both elastic and plastic lines are
numerically significant relative to each other, a considerable difference
exists between the results of Eq. (2) and those of Eq. (6).

The next logical step is to introduce the parameter z accordino to

Nf 2'b 2/c %
F.F = [Rc + RC (7)

Again it is clear that the asymptotes of Eq. (7) are the same as those of

Eq. (2), since they are

1 ]
N '3 N z
T € € T € €



However, we now have an adjustable parameter z which can be chosen to
produce good fit over a large range about the transition point while retaining
the desired asymptotes for all choices of z (except the trivial case of z = 0).

Datermination of the Parameter 2

The first approach was to determine whether Z could be taken as a single
constant. In this case only a single point on the curve could be force-
fitted exactly. Consider, for example, the choice for fit at point (2) in
Fig. 2 immediately above the transition point. Here R = 2 (since elastic and
plastic strainranges are both equal to AcT). and Nf/NT = 1. For this point,
Eq. (7) becomes

/2
1= 22/ 4 22/ (9)

This equation cannot be solved exactly, but a very good approximation can be
obtained using the experience gained in Ref. 1. For example, by re-writing
the equation in the form
z. ¢ 2

1202¢ Pao (9a)
it becomes clear that since the only two parameters in this equation are
z/c and c/b, that the equation is really a statement 2/c = f(c/b). Thus,
choosing a series of values of c/b and solving numerically for 2/c from
Eq. (9a), we can plot the resulting values of Z/c vs. the chosen c/b.
A linear relation results when the plot is on 10g-1og coordinates, leading
to

-.632
z, * -1.117 ¢(f) (10)



Another logical point to consider for exact fit is point (1), where Re = 1.

The value of &L at this point has already been determined in [1] as e6
T
-0.78 [c | 0.36
where = e 'E) (M)

Substituting these values into Eq.' (7) and solving by the same technique
as used for solving Eq. {9) results in
z, = -0.889c (§ (12)

Finally, a third point (3) in Fig. 2 can be used for fit. For this

)-0.36

point Ne is as much lower than NT as it is higher than N; at point (1).
In other words, NT is the geometric mean of the life values at

N
(3) and (1). Thus, since N% = e at this point, use of Eq. (2) results
inR = e D8 4 g7Ct, Acain substitutino these coordinates into Eq. (7)

and solving numerically, results in
- <\’
2, = -1.287¢( £) (13)

Any one of the three values of z from Eas. (10), (12), or (13) would provide

a first-approximation constant value of z that can be used in Eq. (7).

Fig. 3 shows the types of fit that can be achieved by using successively

points (1), (2), and (3) for the particular alloy Ti-6A1-4V. \hile all

fits ave quite qood, they are not adequate for applications reauirino high
accuracy over the entire life range. By taking z as a second-degree

polynomial {n 1ch. however, rather than a sinqle constant, three adjustable
constants become available, permitting fit at all three points (1),

(2), and (3), and producing, therefore, an exceptionally good fit over the
entire life range. The choice of location of the three points is excentionallv

fortuitous, since it permits the final result to be expressed literally



in general terms of all the narameters involved. Details of the orocedure

are outlined in Appendix A, the final result being

2 = exp[P(In R)Z + 0(1n R_) 45] (14)
where )
P= -.001277(§) + .03893 (g) - .0927 (15)
2
Q = .004176 (g) - 0.135 (g) + 0.2309 (16)
-.36
S = 1n [-.889c (§) ] (17)

Final Formulation. The basic procedure is, therefore, as follows:

Starting with the commonly used form of the life relation Eq. (1)
calculate the transition point coordinates from Eqs. (3) and (4), casting
the basic relation according to Eq. (2). The inverted relation is Eq. (7)
where Z is given by Eq. (14) with the values of P,Q, and S given in Eqs. (15)-
(17). If mean stress is present, use the same procedure, except use
Eq. (5) to obtain the transition life. While in most cases the mean stress
multiplier km. and transition 1ife multiplier kc can be taken as unity, actual
values of these multipliers can be used if experimentally determined. All the

equations necessary for the inversion procedure are summarized in Table II.
DISCUSSION

While the inversion procedure described in Ref. 1 is more compact
than that described in this report, its drawback is that it requires
two formulas, one valid above the transition strainrange, the other

below. The inversion procedure described here is a single-expression
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relation valid over the entire. life and strainrange of the material.
Several somewhat lengthy formulas are involved in the procedure, but
numerically there is littie difficulty involved since they can easily be
programmed, even with simple hand-held calculators. The degree of
conformity between the basic 1ife relation and the inverted relation is
remarkably good, conforming to any reasonable engineering standard likely
to be required.

Table I has been prepared to determine the conformity for a large
number of materials over the practical 1ife rance from 10 to 106 cycles to
failure. The results are not shown for lives lower than 10 cycles or greater

than 106

cycles, since agreement becomes even closer as the points involved
lie closer to the asymptotic elastic and plastic lines. Data for the table
were obtained from Landgraf et al's compilation [9]). For each material the
basic fatigue parameters are listed in columns 2 to 6, and the calculated
transition point coordinates are shown in colurns 7 and £. The strainrange
required to produce lives of 10 to 106 cycles, in decade increments, were
first calculated from the basic 1ife equations of form as in efther Eq. (1)
or (2). These strainranges were then used in the inversion formula,

Eq. (7) to obtain the lives that the formula would yield, as conpared to the
"exact" values 10, 102. etc. These lives are shown in Columns 9 to 14.

An entry of unity means that the inversion formula nives exactly the same
results as the basic equation. The degree of discrepancy between the
"exact" equation and the inversion formula is indicated by the departure from
unity of the number entered at each life level. In must cases the error

is only two or three percentage points in life, a degree of accuracy far
exceeding the experimental scatter usua:ly associated with the determination

of the basic life relation. Only one entry in the entire table involves a

difference of more than 10% - material no, 1 at the 10 cycles 1ife level. 1In
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most cases the conformity is extremely close.

Figure 4 shows the life relations according to Eqs. (2) and (7) for the
four materials for which the discrepancies were the greatest among those listed
in Table I. Even for these materials the difference between the two curves can
not be discerned on a reasonable graph scale, except for the very lowest lives.
Still, the discrepancies are negligible for engineering purposes. It can reason-
ably be concluded that the inversions formula is sufficiently accurate for all
materials for all engineering purposes.

The monotonic and cyclic stress-strain curves represent other examples of
relations that can be inverted by similar procedures. Appendix B outlines the
application to the cyclic stress-strain curve. Since stress is expressed
directly in terms of strain, closed form analytical expressions can easily be
obtained for stress in terms of strain for double amplitude stress strain curves,
for both increasing and decreasing directions. With the proper rule for
incorporating memory, it is possible to find the str ,s response of a material

for a given complex strain history.

The basic inversion approach has utility for other applications, as well,
whenever one variable is expressed as the sum of two negative power-law
expressions of a second variable. The Smith-Watson-Topper [10] relationship for
treating mean stress effects also involves such a formulation, and is therefore
amenable to treatment by the method of this report. Appendix ( presents the
basic outline of the approach. Other potential applications are creep strain
analysis, wherein a creep or creep-rupture curve is sometimes represented by
the sum of two power-law relations. Numerous other applications can be

envisioned.



n

CONCLUDING REMARKS

The method presented in this report for inverting the 1ife relationship
provides extremely accurate results for all materials examined over the entire
range of fatigue lives of interest in common engineering applications. The
formulas involved can easily be programmed on a computer or hand-held calculator.
No trial-and-error calculations are involved. All the relations involved are
summarized for convenience in Table I1. The basic inversion method may also
find utility in other applications such as invertiny the stress-strain curve,
analytical treatment of alternative methods of calculating mean-stress effects
on fatigue life -- such as the Smith-Watson-Topper parameter, and inverting
creep and creep-rupture relations involving two power-laws. The approach is
even suggestive of how to treat relationships involving three or more power-law

terms, although details would require further study.



TABLE 1
APPLICATION OF INVERSION FORMULA FOR FIFTY CHARACTERIZED MATERIALS OF ENGINEERING INTEREST

1 2 ) ) s 6 ! s INVERTED LIFE AY

TERIAL a; ‘; . . . . L ’ 10 1n 12 13 14

.t rot T leyetes | mo | xof | mo’ | mo® | mo® | mo®
#1  SAZ1003-100% waLC | 78 A1 | -.073 | -.a1 | 29000 z.ux;J 30300 | .9 .99 {1.00 .9 .95
2 GAMX (WmLO) 17 86 [ -.on [-.65 | 29200 [a.15md 5322 6| .92 | 100 .97 »] 10
0 MAR-TEN-1508M 161 s | -1 -39 [0000 |2.88md 25219 .| .9 .97 | 1.00 .9 ..
#4  SAR1045-223 DM 178 1.0 | -.005 | -.e6 | 20000 |5.21m1d aaa ] % o] .wm | 1.00
05 SAKI043-790 B 2% a5 | -.018 | .0 | 30000 |9.30md a1 .93 ) 1.07 9 [ 100 | 3.05]| 1.0
#6 SATI043-410 B 70 60 1 -.073 | -.70 | 20000 | .o1144 184 RINW 95 | 1.00 | 1.08| 1.02
07 SAR1043-430 B 260 .35 | -.07 | -.e9 | 30000 .oan 195 97| 1.08 9% l1os | 1.06) 101
8 SAZI043-595 Bem 395 .07 | -.081 | -.60 230000 | .0203] 12,5 100 .95 | 1.00 | 1.00 .99 .9
09 10842-430 DN 258 .32 | -.067 | -.56 | 26000 | .0114 | 667 9! 1.08 .9 9 | 1o 1.03
910 AISI4130-365 Bumt %6 .89 | -.081 | -.69 29000 9.16x; 1041 931 1.0 1.01 -9 1.0 1.02
211 SARL142-475 BN ns .09 | -.081 | -.61 [30000 | .01513) 29 106} .96 | .98 | 100 1.00 .9
112 SAEAL42-560 BeW 385 .07 | -.089 | -.76 30000 | .0205] 6.27 98] .99 | 100 | 100 .9 1.00
13 Ti-eAl-4v $52.4 | 1.0%3] -.1052 -.6903[ 17000 | .03s | 1M .9 | 1.00 .9 .9 .9 KT
#14 SAEL142-400 BUN 18 5 f-.00 |-.75 29000 | .om1 | 203.3 95| 1.06 .9 1 1.02 [ 102 .9




TABLE 1 - continued

1 2 3 N 5 . ) . INVERTED LIPE AT
_— oo X . I I s 1 u 1 T
i ot T lepcten| 10 | 30’ | mo’ | me® | me® | me®
013 3AB4102-430 Dem 290 | .40 |-.08 [-.713 w000 | .o122) 156 | e f106 | .96 [200 | 103} 100
116 SARAL42-473 B 200 | .20 |-.082 [-.77 J20000 | comas] 3 | r.06] .96 [1.02 |2.08 | 200} 108
N7 asterso-203 s | 176 | a3 [-.095 [-.54 | 26000 h.nx;;y s | o2 4 {100 | | e .o
nsatstemo-sos s | 290 | .40 |-0m [-.00 [20000 [ o0 1005 | e2[3.00 [1.00 | 06 | e .9
19 3425160-430 N 20 | .40 }-on [-57 [20000 | oms} s2 | 92}1.05 J1.00] .95 | 1] 1
020 5a89262-250 B st | ass|-om |- [s0000 [s.emc 2608 | 9 f1o0 102 ] | ] .
121 2489262410 S 209 | .3 |-.07 |-65 J29000 | o3 | 262 | .oe)r.08 | 92 Jr.08 | 12 108
22 A131304-160 Sa 20 | 102 |-a5 |17 |2000 |s0md snal s | m | | | .
723 AISINI0-145 o 200 | .0 f-as [-57 |2m000 [soemdrzser | a5 2 | o9 100 | ] e
126 NOS  Ammcsled s | .93 ]-24 [-06 20000 | o6 | a3.4f 200 .98 [ 99 | 90 | .o9| 1.00
025 168 mmceptas 460} 310 | 00 |- |0 faroon |oois | oaes | s nes | s e e | s
926 103 msecagtng 00} 325 | 60 |0 o35 fasoco | ow | e | ) le ) oLes f s | Loe | Lo
30 2014-a1-18 123 | .42 |-108 [-.65 J1o0o0 | aze) 329 | .eslror | en | e ] .es]| e
91 2018-A1-T4 w | o f-u |52 |00 | oo e | erfroo | s | e | | e




TABLE I - continued
1 2 3 ° ? 8 INVERTED LIFE AT
o :; c r e L L] 10 1 12 1 14
| T
1
MATERIAL et Lot Cycles | M0 xo’ | xo’ | ue* | me® | mo®
-
#32 545 Aluetous 105 46 | -.11 | -.67 | 10000 | 9.99m1d s27 10 .9 .9 .9 .9
#3) SAZ1015-80 WM 120 .95 | -.11 | -.66 | 30000 | 2.57x10 1518) 7} .9 .98 | 100 .97 .
3% SAEYSOX-150 DI ”n .35 | 075 | .56 | y0000 | 2,021 13004 5l .9 |10 |10 .95 .”
935 VANSO-225 ot 15 .21 | -.08 | -.53 | 28200 [ 5.67x1q 1688 .91{ 1,00 | 1.01 9% . .99
13 MC100-296 Bem 147 .60 | -.076 | -.67 | 29400 | s.42xad 1582 931 .99 | 1,00 K. 1,03 1.03
#37 SARI043-500 DU 330 23| -.08 | -.68 | 30000 | .0143% | 1.02] 1.00 9% | 1,0 1.0 993
-]
38 AISIA130-258 Do 103 .92 | -.083 | -.63 | 32000 | 5.3maq 5298 ) 9] 1.0 .98 .9 1.0
939 SARA142-300 DWW 23 45 ] -.0o8 ] -.75 ] 0o | .o110y 177 9] 1.05 .95 1 1.06 1.03 1.00
$40 SARALAZ-450 DaM 305 .60 | -.00 | -.76 | 29000 § .0M22 209 95| 1.06 .9 | t.02 1.01 9%
$41 SAZAJAO-I50 DO 20 23| -.076 | -.62 | 28000 o.mlj 1767 92| .99 | 1.0 .95 1,00 .02
#42 AISI52100-518 S s A8 | w9 | -.5 | 30000 | .015 146 .91 1,00 9% . .99 .98
-3
#43 $2£9262-200 BN 177 .41 | -.013 ] -.60 | 20000 | 7,004 1372 anl 102 | 102 .95 1.00 1.03
44 W-11 660 BAR 460 .08 | -.077 | -.7¢ | 30000 | .025) . 98| 1,00 | 1.0 | 1,02 1.00 1.00
045 AIS104-327 BHN 10 .89 | .12 | -.69 | 25000 | .0109 808 93] .99 .99 .97 K .98




TABLE 1 - continued

1 2 b ] [ 5 [ 7 [} INVERTED LIPE AT
. , R c . " 9 10 1 12 1 1
MATERTAL [ [ Ac
! t T | eycren| M0 | m0° | mo® | mo* | xmo® | mo®
ol kot
#66 ANISO-496 BN 0 .0% -, 102 -. 42 26000 D164 183 .99 .99 .9 .90 . 9%
947 1602 micke! Marraging 260 | .3 [ -.065 |-.62 [27000 | .on1e| 284 {10 9 |1.00 | 1.00] 1.09
450 o
#48 2026-7351 Aluntnem | 160 | .22 |-.126 | -39 10600 | ores| 157 | .sa] 99 | .90 ] .9 .9 .9
#49 7075-T¢ Alusimue ) a9 | -126 {-.52 10300 | .otve] uss} o9 100 | .e9 ] .ee KY) %%
-N
#50 3A21005-RLE 9 | 1 [-.100 [-39 [20000 |1.60mcd10%08| 95| .92 | .99 |1.00 | 1.00] 1.00




TABLE 11
LIST OF FORMULAS USED IN INVERSION METHOD

For completely reversed cycling:

¢)
b= Fang® « epang)©

b .\ ¢/(c-b)
(5. | o
Transition strain-range beq = 2(5}) |\
1 E E% lBlci
Transition 1ife N, = -
T2 of

If the mean stress of A is present, transition life

)b 20, _.1/b

ELCT

Np = % [(2N,

z = exp[P InR_ + Q R+ §]
C2 C
P = -.001277(F) + .03893(F) - .0927
2
Q= .004176(%) - .135(%) + .2309

c -.36
S = 1n[—.889c(s) ]
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Fig. 1. Actual and Inverted Strain-life curves for Ti-6A1-4V by equations shown above.
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Selection of points on 1ife curve which can be forced fit to determine 2z
as a single constant.



cm—————— [ x3ct Equation

o= == = == Fit through point (1), Eq. (12)

= ¢+ —me Fit through point (2), £q. (10)

——— = —Fit through point (3), £q. (13)

8¢

1072

10°

10

Fig. 3. Exact and inverted 1ife relations which are forced fit at locztions (1), (2) or (3)
for Ti-6A1-4V (170°F).
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Appendix A

DETERMINATION OF THE Z-PARAMETER

To fit z throuch three known points represented by Eqs. (10), (12),
and (13), we start by noting that the values of 2/c for each of these equations
is a function of only (ﬁ). Furthermore, the values of Re at points (1)
and (2) are constants, while at point (3) it also depends on only c/b

0.36 . )
(sinces = ) from Ref. [1], e bs , exprb.78 (%) 0.64 and

-0.78 (¢
c 'b

-cs c.0.36

e = EXDLP.78 (B) » thus both terms are functions of only c¢/b). As a

result, if we formulate the relation
mZep (nR)Z+QnR)+S (A-1)
[+ € €

it is clear that satisfying the three equations at point (1), (2) and (3)

of Fig. 2 will produce relations for P, Q and S' that will be functions

of only c/b, However, since these functions are rather complicated because
of the exponentials involved, we proceeded in more simplified fashion.
Choosing specific values of c, ¢c/b for actual materials, we applied the
coordinates expressed in Eqs. (10), (12) and (13), to substitute into

Eq. (A-1) and solved for P, Q, and S . The value of S could easily be
determined in closed form, since at Rc =1, In Rc = 0, SO S' depends

only on ¢/b, resulting in

' ¢.-0.36
S =1n l- .889c(5) (A-2)

However, for determination of P and Q the graphs shown in Fig. A-1 were
used. Calculations for P and Q are shown for various materials, and are

plotted against (c/b). As expected, a single curve results. Passing a



second degree polynomial through each of these two curves, using least-squares
analysiz resulted in the relations shown in Eqs. (15) and (16). By combining
*he Il term of Eq. (A-1) with the S' term of Eq. (A-2), the resulting

value of S shown in Eq. (17) was obtained, leading to the equation for z in
Eq. (14) as a direct consequence of Eq. (A-1).

Although the above method was adopted for final use, other approaches
were investigated during the study. Among them was one in which expressions
for 2z similar to Eas. (10), (12) and (13) were written for a number of
additional points along the curve. Least squares analysis was then applied
to obtain a fit of an equation similar to Eq. (14) through the redundancy
of points. The resulting equations were less accurate than the
method finally adopted. Cther approaches were more complicated but not
more accurate. The method adopted provides a high degree of accuracy with
a relative simplicity of underlying basis and ease of final application,

as discussed in the report.
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Fig. A-1. Determination of Constants P and Q in Eq. (A-1) for



APPENDI X B

INVERSION OF THE CYCLIC STRESS-STRAIN CURVE

The cyclic stress-strain curve can pe expressed by the following:

bo = &c, E (8-1)

N b
f
deq * (ﬂ;) * bey (8-2)

N¢
bo = EA:T W (B-3)

N
(ﬁi) can be expressed in terms of R: by Eq. (7). Here Eq. (B-3) becomes,
T

2 z

b

2
¢

+ R
€

Lo = EACT R‘ (804)

where z is conputed by Egs. (14) to (17).
Fig. (B-1) shows the basic cyclic stress-strain curve for Ti-6A1-4V, and
the inverted relation by tq. (B-4), which are essentially identicai. Hence

stress is known directly in terms of applied strain-range.
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Fig. B-1. Comparison of basic cyclic stress-strain curve and
inverted relation for Ti-6A1-4V (170°F).



APPENDIX C
INVERSION OF SMITH-WATSON-TOPPER RELATIONSHIP

Life associated with a given hysteresis loop with mean stress can be computed
by the knowledge of maximum stress and strain range by the SWT procedure [71.
According to this method a universalized curve results when we plot (5%5 . °max) vs. N;
for all combinations of Ae and mean stress. Thus if we start with case for

completely reversed loading,

of' b
Cmax = "E“ (ZNf)
Using Eq. (1), we get
(B B opy) = of 22N+ ectoc E(aN)E* (c-1)
Expressing Eq. (C-1) in the form of Eq. (2),
( E 9max ) A 2o Ne (c+b)
=] *N\x (c-2)
(5 Eo l Nr M
max

where NT is given by Eq. (4)

IR R

2b
and(AE E omax)Y ) 9 Eef’ {b-c)
— 2 L7 % | oy
f

(C-3)

Eq. (C-2) can be easily inverted by using the procedure described for

inverting strain-life relationship

(Ac £ Omax )
Llet R = 2

(Ac E Omax )
2 N

Then




1
Ne 1 E
- E +REC \C-4)
.
z = exp[P 1n2 R +QInR + 58]
P = - oo1277[°*b] + 03893[C+b] -.0927
Q = .004176 [C*b] - 135[“*”] + .2309
.36
s = ln[; 889(c+b)(C+b) :]

Actual (%f E °max) vS. Nf curve and inverted curve for Ti-6A1-4V
as shown in Fig. C-1 are essentially indistinauishable. For a given material

te E o
<}__-irﬂﬁl) Ny P,Q.S can be easily calculated. Then for any given hysteresis
.

loop, if o and 3; are known, Nf can be determined by Eq. (C-4).

max
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Fig. C-1. Comparison of actual and inverted curve used in Smith-Watson-Topper method
for estimating life under mean stress and strainrange.
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