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ABSTPACT 

Starting with the basic fatigue life fo~ula 

6£ • f + f ( 
N ) b (N )C 

6£T NT NT 
an inversion formula ;s derived in form 

1 

~. [I::J ~ + I::l]' 
where l is a function of strainrange and the ratio c/b. 

The inversion formula is valid over the entire life range of enaineering 

interest for all materials examined. COI,formity beb.'een the two equations 

is extre~ly close, suitable for all engineerinp problems. 

The approach used to invert the life relation is also suitab1! for the 

inversion of other fornulas involving the sum of two power-law terms. 

INTRODUCTION 

The availability of a formula expressing life directly in terns of 

strainrange and mean stress is a great convenience in cumulative damage 

analysis. Data for s~ch an analysis usually appear as a sequence of loading 

each characterized by a strainrange and mean stress, and the analysis proceeds by 

establishing the life for each loading condition, and suitably summing cycle 

ratios based on the number of cycles actually a9plied at each loadillg 

divided by the life that would occur if that loading persisted until 

failure occurred. Utlfortunately, however, the life relationship for each 
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loading condition is formulated by an expression containing two terms with 

life raised to a fractional exponent. No exact closed-form relation for 

life can be obtained because the transcendental equation does not lend 

itself to exact solution. 

A number of approximate methods have been ottained in the past for 

approximate, although accurate, inversion of the life relationship 

to obtain a direct expression for lif, Nf . Tt~se are di~cussed in 

Ref. 1. In one form the equation, defined in Ref. (1) as the Collocation 

Method, is recast to an entirely different fOrM, although numerically quite 

close to the actual life relation to be inverted. However, the numerical 

conformity can be achieved over only a few decades of fatigue life. therefore 

a "floating" relationship is required. changing the range for each application 

to insure that the life involved falls within it. While the procedure lends 

itself to easy computer progra~ing. it would obviously be preferable to 

avoid the need for such a "floating" system. 

A second approach, described in Ref. 1 as the spline point method, 

takes a step toward simplification by providing the inversion relationship 

in just two analytical expressions, one applicable bp.low the transition 

strainrange (the strainrange where the elastic and plast)c components are 

equal), the other above the transition strainrange. While quite accurate 

and simple to program, the inconveni~nce of having to account for a two­

part analytical expression is still present in this method. The authors 

have therefore continued the search for a single-expression closed-form 

relationship suitable over the entire life range of interest in common 

engineering problems. 
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In this report we draw on the experience gained in Ref. 1 with the 

development of the two-part inversion expression to establish such a single 

expression. The report describes the basis of the ~thod. and its applicability 

to a large number of materials ComMOnly used in en9ineerin~ deSign 

METHOD 

The Life Relation to be Inverted 

The form of the basi c 11 fe re 1.' ~ • Ilnshi p was fi rst proposed by f1anson 

(Ref. 2). Later the same basic equation was expressed by Morrow (Ref. 3) with 

a new notation which is now comonly used 

Here ~c = applied strainrange 

Uf = cycles to fai lure 

o· 
f (2N )b T f 

cf and of = material constants deSignated as ductility 

coefficient and strength coefficient,respectively. 

band c = material constants designated as the elastic 

and plastic exponents,respectively. 

(1) 

An alternate fonn of the life relation has been expressed by ~'anson (Ref. 4) 

~C • applied strainrange 

Nf • cycles to fail ure 

(2 ) 
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where NT and 6£T are transition life and strainrange given by 

(
0

1 ]/(C-b) 
6tT • 2(tf)b/(b-C) -t 

l/(b-c) 
N • 1 [Etl/o l ] T 2 f f 

(3) 

(4 ) 

t~dification of the relation to account for mean stress is discussed in 

[5]. In Ref. [6] it is shown that, basically. the form of the re'atiGn is 

still given by EQ. (2). except that: 

1. NT is replaced by Nf. where 

[ 
b 200 I

-lIb 
1 )-

Ni" 2 (2NT - E.~tT (5) 

where °0 " mean stress 

2. The transition strainrange ~(T is the sane as for co~pletely 

reversed loading, but can be replaced by k'AtT if experimental information 

is available to indicate that the cyclic stress-strain curve is affected 

by mean stress. 

as unity. 

In the absence of such explicit information k is taken 
t 

3. The term 00 in Eq. (5) may be replaced by kmoo if experimental 

evidence exists to provide a more accurate relation between cyclic life and 

mean stress [7] than that originally proposed by Morrow in [8] that mean 

stress can be accounted for by replacing of in Eq. (1) by of - 0
0

, 

Thus, whether ~an stress is or is not present, the same basic equation 

of the form of Eq. (2) applies. We shall therefore focus our attention on 

the inversion of this relation, recogn1z1n~ that NT definitely depends on 

mean stress and 6£T may be a weak function of mean stress. 
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Choice of the Fonm of the Inverted Relationship 

An intuitive choice of form of the inverted equation is 

1 1 

!taR b + RC 

"T t E 
(6) 

iq. (6) has the sane lS,YI'Iptotes as Eq. (2), so #" ... t it is a valid 

representation of Eq. (2) at extremes of life and strainrange, but 

unfortunately the two equations do not coincide for intermediate values 

in the vicinity of the transition point for the parameters associated with 

most ~terials. Fig. 1 shows, for example, the results for Ti-6Al-4V. The 

continuous curve is the proper life relation obtained by adding vertical 

strain ordinates at any value of 2Nf , while the dotted curve is determined 

from Eq. (6), which essentially adds horizontal abscises at any value of 

strainrange. Of course the sinplified inversion formula is correct at life 

extremes where the coordinate values on one line are neqligible compare~ to 

those of the other; in the region of the transitinn point. where the 

coordinate values associlted with both elastic and plastic lines are 

numerically Significant relative to each other, a considerable difference 

exists between the results of Eq. (2) and those of Eq. (6). 

The next logical step is to introduce the parameter z accordin!! to 

far R Z,' b + R Z/ c Z H J 1 
NT L t t 

(7) 

Again it is clear that the asymptotes of Eq. (7) are the same as those of 

Eq. (2), since they are 

• R lIb and 
E 

1 

N
f 

[ z'1 Z 
It R I I: Jr t 

T 

R llc 
t 

(8) 
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However. we now have an adjustable parameter z which Cln be chosen to 

produce good fit over a large range about the transition point while retaining 

t~e desired aSy"ptotes for all choices of z (except the trivial case of z • 0). 

DP.te~ination of the Parameter z 

The first approach was to determine whether z could be taken IS a single 

constant. In this case only a single pOint on the curve could be force­

fitted exactly. Consider. for example. the choice for fit at pOint (2) in 

Fig. 2 immediately above the transition point. Here R = 2 (since elastic and 

plastic strainranges are both equal to 6£T)' and "f/"T • 1. For this point, 

Eq. (7) becomes lIz 
(9) 

This equation cannot be solved exactly, but a very good approximation can be 

obtained using the experience gained in Ref. 1. For example. by re-writing 

the equation in the form 

(9a) 

it becomes clear that since the only two parameters in this equation are 

zlc and c/b, that the equation is really a statement z/c • f(c/b). Thus, 

choosing a series of values of clb and solving numerically for zlc fronl 

Eq. (9a), we can plot the resulting values of zlc vs. the chosen c/b. 

A linear relation results when the plot is on log-log coordinates, lfading 

to 

(10) 
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Another 10~ical pOint to consider for exact fit is point (l). where R£ • 1. 

The value of ~ at this point has already been determined in [1] as e6 
T 

where a. -Q.,l! (f.) 0.36 (11) 

Substituting these values ~nto \:. (7) and solving by the same technique 

IS used for solving Eq. (9) results in 

'I • -0.889c (~ ) -0.36 (12) 

Finally, a third point (3) in Fig. 2 can be used for fit. For this 

point Nf is as much lower than NT as it is higher than NT at point (1). 

In other words. NT is the geometric mean of the life values at 
N 

(3) and (1). Thus, since ~ • e-6 It this pOint, use of Eq. (2) results 
T 

in R
t 

• e-b6 + e- C6 • Again substitutin~ these coordinates into Eq. (7) 

and solving numerically, results in 

- 832 
z3 = -1.237c(li)· (13 ) 

Anyone of the three values of z from Eqs. (10), (12), or (13) would provide 

a first-approximation constant value of z that can be used in Eq. (7). 

Fig. 3 shows the types of fit that can be achieved by usin~ successively 

pOints (1), (2), and (3) for the particular alloy Ti-6Al-4V. L'lhile all 

fits a\~ quite 900d, they are not adequate for applications reQuiring high 

accuracy over the entire life range. By taking z as a second-degree 

polynomial in lnR
t

, however, rather than a sin~le constant. three adjustable 

constants become available, permittins fit at all three points (1), 

(2), and (3), and producing, therefore, an exceptiona"y good fit over the 

entire life range. The choice of location of the three points is exce9tionally 

fortuitous, since it pe~its the final result to be expressed literally 
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in general terms of all the parameters involved. Details of the Drocedure 

are outlined in ADpendix A, the final result being 

(14) 

where 
2 

P • -.001277(&) + .03893 (~) - .0927 (15) 

c 2 c 
Q • .004176 (1) - 0.135 (l) + 0.2309 (16) 

S • In [-088ge (~)-036] (17) 

Final Formulation. The basic procedure is, therefore, as follows: 

Starting with the c~nly used form of the life relation Eq. (1) 

calculate the transition point coordinates frOM Eqs. (3) and (4), casting 

the basic relation according to Eq. (2). The inverted relation is Eq. (1) 

where z is given by Eq. (14) with the values of p.Q, and S given in Eqs. (15)­

(17). If mean stress is present. use the same procedure, except use 

Eq. (5) to obtain thp transition life. While in most cases the mean stress 

multiplier km' and transition life multiplier kc can be taken as unity. actual 

values of these multipliers can be used if experimentally determined. All the 

equations necessary for the inversion procedure are summarized in Table II. 
DISCUSSION 

While the inversion procedure described in Ref. 1 is more compact 

than that described in this report. its drawback is that it requires 

two formulas. one vali~ above the transition strainrange, the other 

below. The lnversion procedure described here is a single-expression 
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relation valid over the entire. life and strainrange of the ~teri.l. 

Several somewhat lengthy formulas are involved in the procedure. but 

n~rically there is littie difficulty involved since they can easily be 

programmed. even with simple hand-held calculators. The degree of 

confonmity between the basic life relation and the inverted relation is 

remarkably good. confo~ing to any reasonable engineering standard likely 

to be requ1 red. 

Table I has been prepared to determine the confOrMity for a large 

number of materials over the practical life range from 10 to 106 cycles to 

failure. The results are not shown for lives lower than 10 cycles or greater 

than 106 cycles. since agreement becomes even closer as the points inv01ved 

lie closer to the asymptotic elastic and plastic lines. Data for the table 

were obtained from Landgraf et al's compilation [9]. For each material the 

basic fatigue parall1eters are listed in c01umns 2 to 6. and the calculated 

transition point coordinates are shown in columns 7 and C. The strainrange 

required to produce lives of 10 to 106 cycles. in decade increments. were 

first calculated from the basic life equations of form as in either Eq. (1) 

or (2). These strainranges were then used in the inversion formula. 

Eq. (7) to obtain the lives that the formula would yield. as c~~ared to the 

"exact" values 10. 102• etc. These lives are shown in Columns 9 to 14. 

An entry of unity means that the inversion formula ~ives exact~y the same 

results as the basic equation. The degree of discrepancy between the 

"exact" equation and the inversion formula is indicated by the departure from 

unity of the number entered at each l\fe level. In mcst cases the error 

is only two or three percentage points in life. a degree of accuracy far 

exceeding the experimental scatter usually associated with the determination 

of th~ basic life relation. Only one entry in the entire table involves a 

difference of more than lOt - material no. 1 at the 10 cycles 11 fe level. In 
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most cases the conformity is extremely close. 

Figure 4 shows the life relations according to Eqs. (2) and (7) for the 

four matedals for which the discrepancies were the greatest among those listed 

in Table I. Even for these materials the difference between the two curves can 

not be discerned on a reasonable graph scale, except for the very lowest lives. 

Stil" the discrepancies are negligible for engineering purposes. It can reason­

ably be concluded that the inversions formula is sufficiently accurate for all 

materials for all engineering purposes. 

The monotonic and cyclic stress-strain curves represent other examples of 

relations that can be inverted by similar procedures. Appendix B outlines the 

application to the cyclic stress-strain curve. Since stress is expressed 

directly in terms of strain, closed form analytical expressions can easily be 

obtained for stress in terms of strain for double amplitude stress strain curves, 

for both incr!aSing and decreasing directions. With the proper rule for 

incorporating Memory, it is possible to find the str ~s response of a material 

for a given. complex strain histo,-y. 

The basic inversion approach has utility for other applications, as well, 

whenever one variable is expressed as the sum of two negative power-law 

exp,'essions of a second variable. The Smith-Watson-Topper [10] relationship for 

treating mean stress effetts also involves such a formulation, and is therefore 

amenable to treatment by the method of this report. Appendix C presents the 

basic outline of the approach. Other potential applications are creep strain 

analysis, wherein a creep or creep-ruptu~e curve is sometimes represented by 

the sum of two power-law relations. Numerous other applications can be 

envhioned. 
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CONCLUDING REMARKS 

The method presented in this report for inverting the life relationship 

provides extremely accur.te results for all materills examined over the entire 

range of fatigue lives of interest in common engineerir.g applicltions. The 

formulas involved can .asily be programmed on a computer or hand-held calculator. 

No trial-and-error calculations Ire involved. All the relations involved are 

summarized for convenience in Table II. The basic inversion method may Ilso 

find utility in other applicltions such IS invertin~ the stress-strain CUrVI!, 

analytical treatment of alternative methods of calculating mean-stress effects 

on fatigue life -- such as the Smith-Watson-Topper parameter, and inverting 

creep and creep-rupture relations involving two power-laws. The approach is 

even suggestive of how to treat relationships involving three or more power-law 

terms, although details would require further study. 
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TABLE II 

LIST OF FORMULAS USED IN INVERSION MET~OD 

For completely reversed cycling: 

( b ) (01) 
Transition strain-range AET • 2(£f) b=C. ,t 

c/(C-b) 

(
E (1) 1 

Transition life NT = i Off T6=CT 

If the mean stress of 0
0 

is present, transition life 

NI = 1 [(2N )-b _ 2°0 ]-l/b 
T 1 T E~(T 

Inverted relation: 

[ 
Z Z] 1 

N
f 

= NT. Rr; b + R[: C Z 

where 

Z = exp[P 1n2R + Q lh~ • s] 
[: [: 

c 2 c 
P = -.001277(£) + .03S93(l») - .0927 

c 2 c Q = .004176(li) - .135(li) + .2309 

[ 
c -.36] S = 1n -.889C(l)) 

.. 
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Fig. 1. Actual and Inverted Strain-life curves for Ti-6Al-4V by equations shown above. 
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Fig. 2. Selection of points on life curve which can be forced fit to determine z 
as a single constant. 
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Fig. 3. Exact and inverted life relations which are forced fit at loc~t1ons (1), (2) or (3) 
for Ti-6Al-4V (170°F). 
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Appendix A 

DETERMINATION OF THE Z ... PARAr.ETER 

To fit z through three known points represented by Eqs. (10), (12), 

and (13), we start by noting that the values of zic for each of these equations 

is a function of only (i). Furthermore, the values of R
t 

at points (1) 

and (2) are constants, while at point (3) it also depends on only clb 

(slntH' -0. ~8 (~t 36 froM Ref. [1 J • .-b! • "/0. 78 (~rO.6~ and 
-C6 r c o.36l .... 

e • exoLo.78 ("6) Jt thus both terms are functions of only c/b). As a 

result. if we fonmulate the relation 

ln ~ c P (In R )2 + Q(ln R ) + S' 
C t t 

(A-l) 

it is clear that satisfying the three equations at point (1), (2) and (3) 
I 

of Fiq. 2 will produce relations for P, Q and S that will be functions 

of only c/b. However. since these functions are rather complicated because 

of the exponentials involved, we proceeded in more simplified fashion. 

Choosing specific values of c, c/b for actual materials. we applied the 

coordinates expressed in Eqs. (10). (12) and (13), to substitute into 
, , 

Eq. (A-l) and solved for P, Q. and S. The value of S could easily be 
I 

determined in closed form. since at R • 1. ln R • O. so S depends 
t t 

only on c/b, resulting in 
I l c -0.36] 

S • ln - .889c("6) (A-2) 

However, for determination of P and Q the graphs shown in Fig. A-l were 

used. Calculations for P and Q Ire shown for various meterials. and are 

plotted against (c/b). As expected, a single curve results. PaSsing a 



second degree polyn~nial through each of these two curves, uSing least-squares 

Inl1ysic resulted in t~e relations shown in Eqs. (15) Ind (16). 81 combining 

~~e 1nt term of Eq. (A-l) with the S' tlnn of Eq. (A-2), the resulting 

vilue of S shown in Eq. (17) was obtained, leading to the equation for z in 

Eq. (14) ~s a direct consequence of Eq. (A-1). 

Although the above method was adopted for final use, other approaches 

were investigated during the study. Among th~ was one in which expressions 

for z similar to Eqs. (10), (12) and (13) were writt.en for a n~r of 

additional points along the curv~. Least squares Inalys1s was then applied 

to obtain a fit of an equation iimilar to Eq. (14) through the redundancy 

of points. The resulting equations were less accurate than the 

method finally adopted. Other approaches were more complicated but not 

more accurate. The ~thod adopted provides a high degree of accuracy with 

a relative Simplicity of underlying basis and ease of final application, 

as discussed in the report. 
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~PPENDIX B 

INVERSION OF Ttf CvtLIC STRESS-STRAIN CURVE 

Thr cyclic stress-strd1n curve can De expressed by the following: 

60· 6te E (B-1 ) 

G'e • (~)b . A'T (B-2 ) 

Aoo EA'T (~ j (B-3) 

Nf (r,-) can be expressed in terms of R by Eq. RT t 
(7). Here Eq. (B-3) becomes, 

b 

[z ~z 
Ao • EA'T~,b • R,~ (B-4 ) 

where z is COl.,puted by Eqs. (14) to (17). 

Fig. (8-1) shows the basic cyclic stress-strain curve for Ti-6Al-4V. and 

the inverted relation by £q. (8-4), which are essentially identicai. Hence 

stress is known directly in terms of applied strain-range. 
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Actual cyclic stress-strain curve is indistinguishable 
from inverted relation to scale shown. 
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Comparison of basic cyclic stress-strain curve and 
inverted relation for Ti-6Al-4V (170°F). 



APPENDIX C 

INVERSION OF SMITH~WATSON-TOPPER RELATIONSHIP 

Life associated with a given hysteresis loop with mean stress can be computed 

by the knowledge of maximum stress and strain range by the SWT procedure [7]. 

According to this method a universalized curve results when we plot (~ • 0max) vs. Nf 

for all combinations of ~£ and mean stress. Thus if we start with case for 

completely reversed loading. 

Using Eq. (1). we get 

(C-l ) 

Expressing Eq. (C-l) in the form of Eq. (2), 

( tlr. EO) (N )2b (N )(C+b) 2 max = ...f +...f 
( t:.r. E \ NT NT 

2 °max'T 
(C-2 ) 

where NT is given by Eq. (4) 

(C-3) 

Eq. (C-2) can be easily inverted by using the procedure described for 

inverting strain-life relationship 

~
£EOmax 

Let R z 2 

CE ;NX)r 
Then 



z z ]1 ~~+RC+b z \C-4 ) 

Z :: exp[P ln2 R + Q ln R + 5] 

P :: c+b 2 c+b 
-.001277[~] + .03893[2b] -.0927 

2 
Q = .004176 [~~b] .135[~+bb] + .2309 

S = In[:.SS9(c+b)(:;:)-·
36:J 

Actual (~£ E 0max) vs. Nf curve and inverted curve for Ti-6Al-4V 

as shown in Fig. e-1 are essentially indist;n~u;shab1e. For a given material 

(" E20
max)T: NT' P,Q,S can be easily calculated. Then for any given hysteresis 

loop, if 0max and ~£ are known, Nf can be determined by Eq. (C-4). 
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Fig. C-l. Comparison of actual and inverted curve used in Smith-Watson-Topper method 
for estimating life under mean stress and strainrange. 
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