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PREFACE 

The  NASA  Office  of  Space  and  Terrestrial  Applications,  seeking  to 
strengthen  the  scientific  foundation  for  its  long-range  tropospheric  research 
program,  formed  a  Working  Group on  Tropospheric  Program  Planning  in 1978 with 
the  undersigned  as  Chairman.  The  first  task  of  the  Working Group was to iden- 
tify  the  major  scientific  questions  in  tropospheric  pollution,  to  point  out 
high  priority  scientific  areas  for  current  emphasis,  and  to  recommend  research 
tasks  which  could  be  achieved  in  a  joint  NASA/EPA  program.  That  task  was  accom- 
plished  in 1978. The  second  task  of  the  Working  Group  was  to  develop  the  scien- 
tific  rationale  and  recommend  research  activities  to  be  conducted  by  NASA,  the 
execution  of  which  would  increase our understanding  of  the  troposphere.  This 
task  is  now  complete. 

The  results  from  the  Working  Group  are  presented  herein.  The  body  of  this 
report  presents  the  scientific  rationale  and  research  activities  recommended  for 
NASA.  Appendix A  identifies  the  major  scientific  questions  in  tropospheric 
pollution,  points  out  high-priority  scientific  areas for current  emphasis,  and 
recommends  research  tasks  which  could  be  achieved  in  a  joint  NASA/EPA  program. 
Appendix  A  was  completed  in 1978,  and  some  of  the  material  became  obsolete  in 
the  ensuing  two  years  during  which  the  remainder  of  the  Working  Group  report 
was  being  drafted. This  appendix,  therefore,  has  been  updated  to  reflect  impor- 
tant  recent  results.  It  should  be  emphasized  that  appendix  A is not  intended 
to  be a  technical  review of the  state-of-the-art  in  tropospheric  pollution. 
Rather, it represents  a  summary  of  important  unresolved  problems  in  tropospheric 
chemistry  and  transport  as  perceived by  the  Working  Group.  Thus,  even  though 
new  data  in  this  rapidly  changing  field  have  become  available  since 1978,  the 
underlying  research  problems  outlined  in  appendix  A  have  not  changed. 

The  Working  Group  is,  of  course,  well  aware  that  other  groups  over  the 
years  have  compiled  lists  of  research  problems  and  associated  research  tasks  in 
atmospheric  pollution. To be  sure,  many  scientists  are  aware  of  most,  if  not 
all,  of  the  questions  that  have  been  raised.  Nonetheless,  the  list  of  research 
problems  and  recommendations  for  research  activities  contained  in  this  report 
fulfills  a  specific  need  that  has  not  been  previously  addressed.  A  useful  ref- 
erence  in  delineating  major  scientific  questions  was  the  NASA  Reference  Publica- 
tion 1022 entitled  "Man's  Impact on the  Troposphere - Lectures  in  Tropospheric 
Chemisty," Joel S. Levine  and  David R. Schryer,  editors. 

This  Working  Group  report is intended  to  serve  primarily  as  an  advisory 
document for NASA.  Attention is basically  confined  to  those  areas  in  which 
there  would  be  potential  NASA  interest,  and,  in  addition, is focused on scien- 
tific  (as  opposed  to  technical or engineering)  questions  relating  to  tropo- 
spheric  pollution.  Many  of  the  research  tasks  outlined  in  the  report  could  be 
carried  out  under  NASA  programs.  Others  could  be  of  interest  to  EPA  and  other 
agencies  which  conduct  tropospheric  studies. 
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Tropospher ic   po l lu t ion  is u l t i m a t e l y   r e f l e c t e d   i n   c h a n g e s   i n  climate, 
w e a t h e r ,   v i s i b i l i t y ,  human hea l th ,  and o the r  effects on  ecosystems.  Short-lived 
species, those  with  res idence times on t h e  order of hours  to days,  are gene ra l ly  
implicated i n   r e g i o n a l  effects such as v i s i b i l i t y  and human hea l th   degrada t ion .  
Long-lived  species may u l t i m a t e l y   c o n t r i b u t e  to changes   in  climate and  weather 
t h rough   t he i r   i n t e rac t ion   w i th   t he   Ea r th ' s   r ad ia t ion   ba l ance .   T roposphe r i c  pol- 
lut ion  resul t ing  f rom  both  short-   and  long-l ived species is c o n s i d e r e d   i n   t h i s  
r e p o r t  . 

The fol lowing Working  Group members con t r ibu ted  to t h i s   r e p o r t :  John H. 
S e i n f e l d ,   C a l i f o r n i a   I n s t i t u t e   o f  Technology,  Chairman;  Frank Allario, Langley 
Research  Center;  William R. Bandeen,  Goddard  Space F l igh t   Cen te r ;  William L. 
Chameides,  University  of Florida (now a t  G e o r g i a   I n s t i t u t e  of Technology); 
Douglas D. Davis ,   Georgia   Inst i tute   of   Technology;  E. David  Hinkley, Jet Propul- 
sion  Laboratory;  Robert  G. Lamb, U. S. Environmental   Protect ion Agency; 
Benjamin Y. H. L i u ,  Un ive r s i ty  of Minnesota;  and  Richard W. Stewart ,  Goddard 
Space  Fl ight   Center .  

The Working  Group wishes to acknowledge t h e   s i g n i f i c a n t   e f f o r t s   o f   F r e d a  
Nevias  Bloch  of  the NASA Langley   Research   Center   in   ed i t ing   th i s  NASA Reference 
Publ ica t ion .  

John H. Se in fe ld  
Cal i forn ia   Ins t i tu te   o f   Technology 
Chairman 
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EXECUTIVE  SUMMARY 

Based on the  acknowledged  coupling  between  atmospheric  and  biospheric  pro- 
cesses,  the  trace  gas  chemistry  of  the  troposphere  can  be  identified  as  a  key 
component of the  biogeochemical  cycles of elements  such  as  carbon,  nitrogen, 
oxygen,  sulfur,  and  the  halogens.  Tropospheric  chemistry,  therefore,  impacts 
on many  aspects  of  environmental  quality  relevant  to  human  health,  agriculture, 
climate,  and  weather. 

Recognizing  the  need  to  utilize  remote  sensing  techniques  to  further  our 
understanding  of  key  biogeochemical  processes  operating  within  the  tropospheric 
system,  and  given NASA's special  role  in  the  development  and  implementation  of 
these  techniques,  this  report  proposes  that NASA vigorously  expand  its  current 
tropospheric  research  program.  The  proposed  scope  of  this  expanded  program 
would  encompass  three  very  general  tropospheric  research  problems: 

I. What  are  the  principal  processes  governing  the  global  carbon/nitrogen/ 
ozone  system? 

11. What  are  the  principal  processes  governing  the  global  sulfur/ammonia/ 
trace  metal/carbon/aerosol  system? 

111. What  are  the  relative  roles  of  transport,  transformation,  and  removal 
processes  in  governing  the  behavior  of  regional-  and  urban-scale  polluted  air 
masses? (This problem is of  interest  to NASA in  responding  to  requests  from EPA 
and  other  agencies  for  the  development  and  application  of  space  technology  for 
monitoring  tropospheric  processes.) 

To make  major  advances  in  each  of  these  stated  problem  areas,  it is pro- 
posed  that NASA place  its  primary  emphasis  on  the  execution  of  a  well-defined 
field-measurement  program,  with  important  supporting  tasks  being  identified  as 
mathematical  modeling,  laboratory  measurements,  and  new  technology  development 
for  atmospheric  sensors. It is further  recommended  that  the  field-measurement 
program  involve  both  aircraft  and  space  platforms,  and  that  the  sampling 
strategy  in  each  case  reflect  our  growing  recognition  that  the  global  tropo- 
sphere  be  viewed  as  consisting  of  an  ensemble  of  composition  domains  coupled 
together  by  transport  processes. In  this  global  context,  each  composition 
domain  is  to  be  defined  in  terms  of  characteristic  sources  and  sinks  of  trace 
gases,  chemical  transformation  rates,  and  atmospheric  transport. 

The  proposed  program  initially  calls  for  in-depth  studies,  using  aircraft 
platforms,  of  representative  composition  domains,  both  basic  photochemical  and 
transport  processes  characteristic  of  each  domain  being  identified.  The  study 
of  these  representative  domains  will  then  be  followed  by  more  globally  oriented 
investigations,  especially  satellite  measurements,  that  will  elucidate  the 
coupling  between  various  domains  and  define  their  global  distributions.  This 
approach  should  eventually  lead  to  a  truly  global  understanding  of  tropospheric 



processes  with  sufficient  knowledge  of  the  horizontal  and  vertical  inhomoge- 
neities  to  successfully  predict  the  impact  of  anthropogenic  emissions  as  well 
as  natural  perturbations  to  the  tropospheric  system. 

The  specific  research  tasks  selected  for  implementation  are  divided  into 
four  basic  categories: 

1.  Field  measurements:  This  program  includes  a  tropospheric  aircraft  sam- 
pling  program  which  will  investigate  the  detailed  chemistry  and  surface  sources 
and  sinks  of  various  representative  concentration  domains.  The  aircraft  program 
should  be  followed by a  Lower  Atmospheric  Research  Satellite (LARS), which  will 
establish  the  global  distributions  of  several  key  tropospheric  species.  The 
final  design  of  this  program  will  be  determined  in  part by  the  findings  of  the 
aircraft  sampling  program.  Also  discussed is an  aerosol  sampling  program, 
coordinated  with  the  existing  NASA  Aerosol  Climate  Effects  (ACE)  special  study, 
which  will  take  advantage of present-day  satellite  and  remote  sensing  technology 
to  elucidate  key  parameters  in  the  global  aerosol  distributions. 

2. Modeling: This  effort  will  be  concentrated on the  continued  development 
of  global-scale  models  with  predictive  capabilities.  In  addition,  the  program 
includes  the  development of theory  applicable  to  the  assimilation  of  satellite 
and  aircraft  data  into  regional-scale  models. 

3.  Laboratory  measurements:  These  tasks  are  designed  to  aid  in  the  mea- 
surement  and  evaluation of atmospheric  properties  and  processes.  They  include 
spectroscopic  data  studies,  calibration  studies,  gas-phase  chemical  kinetic 
studies  under  atmospheric  conditions  of  pressure  and  temperature,  and  gas-to- 
particle  investigations. 

4. Technology  development:  These  tasks,  aimed  at  establishing  and  applying 
new  techniques  for  measuring  atmospheric  processes,  are  key  elements  of  the 
tropospheric  research  program.  Both  remote  sensor  (passive  and  active)  and  in 
situ  sensor  technologies  are  featured. 
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CHAPTER 1 - INTRODUCTION 
The  state  of  the  troposphere  impacts on  a number  of  areas  of  concern  to 

man  and  the  environment,  including  health,  weather,  climate,  and  agriculture. 
The  troposphere  consists of a  large  number  of  chemical  species,  some  long- 
lived,  such  as  oxygen,  nitrogen,  and  carbon  dioxide,  and  some  of  an  extremely 
transient  nature  that  are  rapidly  formed  and  destroyed  by  chemical  reactions. 
In  general,  the  chemical  transformations  that  occur  interrelate  the  individual 
biogeochemical  cycles  of  carbon,  nitrogen,  sulfur,  etc.  through  these  tran- 
sient  species.  The  transient, or trace,  species  exert  a  disproportionate 
leverage on tropospheric  chemistry  over  what  might  be  expected on the  basis  of 
their  absolute  concentrations.  They  may  influence  visibility  by  conversion  to 
light-scattering  and  absorbing  aerosols,  climate  through  their  effects on the 
radiation  balance, or the  ecosystem  through  effects  such  as  acid-rain  forma- 
tion.  Understanding  the  distribution,  sources,  sinks,  and  variabilities  of  the 
minor  and  trace  species  in  the  troposphere  is  a  fundamental  goal  of  the  NASA 
Air  Quality  Program. 

In  an  attempt  to  form  a  scientific  basis  for  a  long-term  tropospheric 
research  program,  NASA  convened  (in 1978)  a  Working  Group  on  Tropospheric  Pro- 
gram  Planning.  This  group  prepared  a  report  entitled  "Scientific  Research 
Objectives  in  Tropospheric  Pollution"  which  is  presented  as  appendix  A  to  this 
report.  This  appendix  has  as  its  objective  the  delineation  of  major  scientific 
questions  relating  to  the  troposphere.  Associated  with  the  scientific  questions 
are  a  series  of  research  tasks,  the  execution  of  which  will  increase  our  under- 
standing  of  the  troposphere.  The  research  tasks  include  field  measurements 
and  model  and  instrument  development.  The  scientific  questions  are  divided 
roughly  according  to  global  chemical  cycles  and  regional  air  pollution.  Thirty- 
nine  scientific  questions  were  posed,  followed by 38 operational  research  tasks 
and 12  instrument  development  tasks.  That  report  serves  as  the  scientific  basis 
for  the  present  recommended  program. 

The  body  of  this  report is devoted  to  the  scientific  rationale  and  recom- 
mendations  for  the  NASA  Tropospheric  Research  Program  Plan.  The  overall  goal 
of  the  research  program  is  to  increase our understanding  of  the  chemical  phe- 
nomena  occurring  in  the  troposphere,  with  particular  emphasis on those  aspects 
that  impact on  environmental  quality  such  as  health,  agriculture,  climate,  and 
weather. 

From  a  program  planning  point  of  view,  studies  in  tropospheric  chemistry 
can  be  divided  into  two  broad  categories: ( 1 )  Investigations  designed  to  deter- 
mine  the  detailed  chemical  interactions  of  atmospheric  species  and ( 2 )  investi- 
gations  designed  to  define  the  concentration  distributions  of  atmospheric  trace 
gases  and  aerosols.  In  the  first  case,  one  of  the  most  productive  approaches 
has  involved  studies  of  individual  elementary  reactions  under  controlled  con- 
ditions  in  a  laboratory  environment.  In  the  second  case,  field  studies  in 
conjunction  with  modeling  activities  have  been  the  principal  sources  of 
information. 

The  scientific  questions  posed  in  appendix  A  were  intentionally  broadly 
based  without  special  delineation  of  those  particularly  relevant  for  NASA  atten- 
tion.  Drawing on that  general  survey,  the  present  research  plan  concentrates 
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on those scientific  questions and research  tasks which could  take advantage of 
NASA's  unique capabili t ies and contribute to the  Agency's objective of devel- 
oping and applying  space  technology to  studies of the atmosphere. Because  of 
t h e  interrelated  nature of many of these  scientific  questions, it is possible 
to  encompass t h e  ent i re  set w i t h i n  three  very  general  tropospheric  research 
problems : 

I. What are  the  principal  processes governing the  global  carbon/nitrogen/ 
ozone system? 

11. What are  the  principal  processes governing the  global sulfur/ammonia/ 
trace  metal/carbon/aerosol system? 

111. What are  the  relative  roles of transport,  transformation, and  removal 
processes i n  governing  the  behavior of regional- and urban-scale  polluted a i r  
masses? 

These three qclestions form the  organizational  basis  for  the  present document. 
Those research  tasks  that have  been  recommended for implementation are divided 
into four  basic  categories: 

1 .  Field measurements 

2. Modeling 

3 .  Laboratory measurements 

4. Technology  development 

A matrix  structure is t h u s  developed consisting of three major scient i€ic  ques- 
tions and four categories of research t a s k s .  (Laboratory studies were not con- 
sidered i n  appendix A; such  studies  are included i n  the  present  plan.) 

The remainder  of t h i s  document presents  the NASA Tropospheric Research  Pro- 
gram Plan recommended by t h i s  Working  Group. Chapter 2 contains a brief  discus- 
sion of major tropospheric  research needs. The research programs  proposed to  
meet the  research needs presented i n  chapter 2 are  detailed i n  chapter 3 .  Chap- 
ter 4 presents a summary of the major  recommendations  of the Working  Group. 
Appendix A presents  the  scientific  research  objectives i n  tropospheric  pollu- 
tion, appendix B presents a list of  acronyms, abbreviations, and  symbols used, 
and appendix C discusses  the measurement  of atmospheric state  variables  required 
to  achieve many of the recommended cesearch objectives. 
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CHAPTER 2 - MAJOR  RESEARCH NEEDS AND  TASKS 

2.1 INTRODUCTION 

In  this  chapter,  the  scientific  rationale  for  the  proposed  NASA Tropo- 
spheric  Research  Program Plan is  outlined.  Research  needs  based on the  scien- 
tific  rationale  are  then  summarized.  These  research  needs  form  the  basis  for 
the  recommended  program  plan  of  chapter 3.  The  discussion  in  the  present 
chapter  is  divided  roughly  according  to  three  different  spatial  regions.  The 
largest  scale  to  be  considered is the  "global"  one. On this  spatial  scale,  the 
detailed  coupling  between  land,  sea,  and  the  atmosphere  can  be  examined  in  terms 
of  the  biogeochemical  cycles  of  such  key  elements  as  carbon,  nitrogen,  phospho- 
rous, and  sulfur. 

Defining  subglobal  spatial  scales is considerably  less  precise,  but  histor- 
ically  at  least  two  additional  scales  have  received  much  attention.  The  first 
of  these is now  commonly  referred  to  as  the  "regional  scale,"  involving  dis- 
tances  of  a  few  hundred  kilometers  up  to 10 000 h. The  regional  scale  corre- 
sponds  approximately  to  the  area  influenced  by  many  types  of  synoptic  weather 
patterns, i.e., frontal  zones,  high-pressure  systems,  and  large  storm  centers. 
Past  regional  field  sampling  and  modeling  studies  have  generally  been  conducted 
over  continents,  where  trace-gas  and  aerosol  concentration  levels  have  been 
largely  under  the  control  of  anthropogenic  emissions  as  modulated by synoptic 
weather  patterns.  However,  regional-scale  studies  need  not  inherently  be 
labeled  as  pollution  oriented.  In  a  global  context,  regional-scale  studies  can 
be  defined  for  any  geographical  area (1 00 to 10 000 km) where  ,the  dominant 
sources  and  sinks  of  trace-gas  and  aerosol  species  can  be  shown  to  be  reasonably 
uniform. Thus,  a  study  of the  South  American  Amazon  River  basin  could  be  prop- 
erly  labeled  as  a  regional-scale  study.  In  like  manner,  studies  of  the  South 
Pacific  central  gyre or the  Sargasso  Sea  could  also  be  classified  as  regional- 
scale  field  studies. 

The  final  spatial  scale  that  will  be  discussed  is  the  "mesoscale."  The 
mesoscale  can  be  defined  in  terms  of  distances  of 10 to 100 km.  Meteorologi- 
cally,  this is the scale over  which  land-sea  breezes  and  thunderstorms  take 
place. As in  the  case  of  regional-scale  studies,  mesoscale  field  sampling,  as 
related  to  atmospheric  chemistry,  has  traditionally  been  identified  with  envi- 
ronmental  pollution - specifically  urban  pollution.  Once  again,  though,  meso- 
scale  sampling  need  not  be  considered  synonymous  with  urban  field  studies.  The 
geographical  size  and  the  intensity  and  uniformity  of  sources  should  be  the  major 
criteria  employed  in  defining  mesoscale  chemical  phenomena. 

In  the  text  that  follows,  sections 2.2  and  2.3  are  devoted  to  the  global 
chemical  cycles  of  carbn/nitrogen/ozone  (C-N-03)  and  sulfur/ammonia/carbn/ 
trace  metal/aerosol  systems,  respectively.  Pollution  effects  are  considered 
in  section 2.4.  
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2 . 2  THE  GLOBAL  CARBON/NITROGEN/OZONE  SYSTEM 

2.2.1 Tropospheric  Carbon/Nitrogen/Ozone  Photochemistry 

Tropospheric  global  photochemistry is fueled by a  combination  of  actinic 
solar  radiation,  which  leads  to  the  production  of  highly  reactive  free  radicals, 
and  the  release  of  reduced  species  from  the  biosphere,  lithosphere,  and  oceans 
into  the  atmosphere.  The  oxidation  of  reduced  gases  by  free  radicals  triggers 
the  complex  trace-gas  photochemistry  of  the  troposphere,  which  influences  the 
natural  abundance  of  methane (CH4),  nonmethane  hydrocarbons  (NMHC),  formaldehyde 
( H z C O ) ,  carbon  monoxide (CO), ozone (O3),  active  nitrogen (e.g., NO, N02, and 
HNO3), ammonia (NH3), sulfur  oxides,  and  many  halogen-substituted  halocarbons. 
As a  result,  tropospheric  photochemistry  plays  a  role  in  controlling  key  envi- 
ronmental  parameters,  such  as  global  temperatures,  visibility,  and  the  impact 
of the  atmospheric  composition  upon  respiration  and  other  biospheric  processes, 
and  is a major  mechanism  for  coupling  the  chemical  cycles  of  the  biosphere  and 
atmosphere. 

The  reaction  that  can be considered  to  initiate  the  tropospheric  photochem- 
ical  system  is  the near-W photolysis  of 0 3 ,  producing  molecular  oxygen (02)  and 
metastable  excited  oxygen  atoms (0 (’ D) ) 

(R1 1 0 3  + hV (x <, 31 00 !) + 0 2  + O ( l D )  

that  react  with  water  vapor  to  produce  the  hydroxyl  radical (OH) 

(R2)  O(lD) + H20 -+ 20H 

This initial  source  of  hydroxyl  radicals  leads  to  a  long  series  of  key  reactions 
involving OH and  other  radicals  before  chain-terminating  steps  such  as 

(R3) NO2 + OH + M -+ HNO3 + M 

and 

(R5) CH3O2 + H02 + CH300H + 0 2  

followed  by  heterogeneous  removal  and 

(R6) Hz02 + OH -+ H20 + H02 
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remove  free  radicals  from  the  system.  Figure 1 illustrates  several  of  the  HxOy 
radical-loss  paths. 

HCO, H 2 0  

t OH 

NO 

Washout 
o r  

4 
HBrM \ 

Multisteps 
4 Washout 

H 2 W 4  Rainout 
H z 0  Particle 

removal 

Figure 1.- Illustration of Hx%  radical-loss  paths. 

The  oxidations  of  many  of  the  reduced  tropospheric  gases  are  initiated by 
reactions  with OH, as  indicated  in  figure 2 .  A key  oxidation  is  that  of  meth- 
ane,  produced  by  fermentation  in  anaerobic  environments  such  as  swamps,  tropical 
rain  forests,  and  rice-paddy  fields: 

(R7) CH4 + OH + CH3 + H20 

Reaction  (R7)  initiates  a  complicated  series  of  steps  known  as  the  methane 
oxidation  chain,  which  includes  the  production  of  H2C0,  CO,  and  H2. A schematic 
representation  of  a  possible  tropospheric  methane  oxidation  cycle is illustrated 
in  figure 3. The  production  of  H2C0,  H2,  and CO is followed  by OH oxidation: 

(R8)  H2CO + OH -+ H20 + HCO 
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or, by  photolysis, 

( R l l  (a)) H2CO + hv -f H + HCO 

(R11 (b)) H2CO + hv + H2 + CO 

The final  product of the  gas-phase  oxidation of methane  is C 0 2 ,  though CO is an 
important  and  relatively  long-lived  intermediate.  Heterogeneous  removal  of  some 
intermediates  in  the  oxidation  chain,  such as CH300H,  may  lower  the  yield  of 
CO and C02 per molecule  of' CH4 oxidized.  Nonmethane  hydrocarbons  are also oxi- 
dized  by OH and  may  have  oxidation  chains  leading  to CO production  which  are 
equivalent,  in  many  respects,  to  the  oxidation  chain of methane. The  importance 
of nonmethane  hydrocarbons  in  the  C-N-03  system  remains  a  key  uncertainty  in  our 
understanding of tropospheric  photochemistry. 

Anaerobic  fermentation - CH4t - HZCO, HZ, CO 

Vegetation-NMHC  -HZCO, HZ, CO 

OH* 

OH* 

Combustion, CH4, NMHC oxidation - CO - OH* 
COZ 

Microbial  action, CH4, NMHC  oxidation- 

Photochemistry - HzCO -Hz, CO, H 2 0  

Volatization,  industrial  emissions - NH3+'I- 

OH* 
Hz- COz 

OH, hvt 

OH 
NO, 

OH I Combustion, soil emissions,  lightning, NH3 oxidation -NOx-  HNO APrecipi ta t iq  3 

Soil and ocean  emissions - HZS, CH3SCH3- So2 

Combustion, reduced S oxidation - 
OH 

Heterogeneous~~2~04t-~recipitatior OH 

processes OH 
Natural and anthropogenic  emissions - CxHuClvFwt -CO, HFr ,  HCIT 

Combustion, deforestation - COzt3* -Ocean  HCO; and CO; 

*Process in which F O P  radicals  are produced. 

tSpecies which absorb  terrestrial radiation and affect  the 

~ _ _ _  

atmospheric  radiative  equilibrium. 

tSpecies which  may affect pH i n  precipitation and visibility. 

Figure 2.- Oxidation  of  atmospheric  reduced  gases  and  their  products 
in  troposphere. 

8 



co 

Figure 3 . -  Possible  tropospheric  methane  oxidation  cycle. 

Although CO is produced  from  the  photochemical  oxidation of hydrocarbons, 
it  appears  that  anthropogenic  production  through  the  burning of fossil  fuels  and 
biomass  (for  agricultural  purposes)  comprises  a  significant  fraction  of  the  total 
global CO source.  Because  calculations  indicate  that  the  largest  single  photo- 
chemical  sink of tropospheric OH is  reaction  with CO (reaction ( R 1 0 ) )  and 
because  of  the  central  role OH plays  in  the  tropospheric  photochemistry,  a  major 
goal  in  the  tropospheric  program  is  the  quantitative  characterization  of  the 
importance  of  anthropogenic  sources of CO and  their  potential  for  perturbing 
tropospheric OH photochemistry.  Our  present  understanding  of  the  global  tropo- 
spheric CO distribution is shown  in  figure 4.  Although  the  measurements  on 
which  this  figure  is  based  were  taken  over  the  Atlantic,  the  few  available CO 
measurements  from  the Pacific tend  to  confirm  its  main  feature,  which is the 
large  interhemispheric  difference  in CO concentrations.  Even  though  the asyw 
metric CO distribution  in  figure 4 appears  to  imply  significant  anthropogenic 
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Figure 4.- General  distribution  of co (numbers  indicate  concentrations  in  ppm) 
in  marine  air  in  the  troposphere  and  lower  stratosphere  from  reference 1. 
(Seiler,  Wolfgang:  The  Cycle  of  Atmospheric CO. Tellus,  VOl. 26, 
nos. 1-2,  1974, pp. 116-135.) 

influence,  global CO measurements  are  needed to refine our understanding of the 
CO distribution  and  its  influence  on  tropospheric OH. 

A key  facet  of  the  methane  and  nonmethane  hydrocarbon  oxidation  chains  is 
the  conversion  of OH to peroxy  radicals (R02) .  The  production  of H02, for 
instance,  is  accomplished  via 

which  also  produces H2CO. In  addition, t h e  production of H atoms by reactions 
(R9) I (R1 0) , and ( R l l  (a)), as  well  as  by 

is  immediately  followed  by a three-body  reaction  which  produces H02: 
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Similarly,  the  production  of CH3 by reaction  (R7)  is  followed by 

(R15)  CH3 + 0 2  + M -+ CH3O2 + M 

thereby  producing  CH3O2.  It  is  likely  that  the  oxidation of higher  hydrocarbons 
leads to  the  production of peroxy  radicals  containing  two or more  methyl  groups, 
as  well  as  the  production  of H02 and  CH3O2. 

Peroxy  radicals  produced  as  a  result  of  hydrocarbon  oxidation  can  lead  to 
the  local  photochemical  production  and  destruction of tropospheric  ozone.  In 
the  presence of NO, (NO and  NOz),  peroxy  radicals  can  catalytically  produce 
ozone  via 

(R16)  R02 + NO -+ RO + NO2 

(R17)  NO2 + hv -+ NO + 0 

(R18) 0 + 02 + M -+ 03 + M 

Since  one O(l D) atom  can  produce  two OH  radicals,  sequences  such  as  reactions 
(Rl) , (R2) , (R1 0) , (R14) , (R1  7) , and  (R1 8) lead  to  a  net  source  of  ozone. 
(Reaction  (R16)  is  also  important  in  that  it  regenerates  OH  from H02, allowing 
further  oxidation of hydrocarbons, CO, and  other  gases.)  On  the  other  hand, 

H02 + 03 -+ 202 + OH 

in  combination  with  reactions  (Rl)  and  (R2)  represent  photochemical  sinks  for 
tropospheric  ozone. 

Iodine  compounds  may  also  act  to  remove  tropospheric  ozone  via  catalytic 
reaction  sequences.  Atmospheric  CH31,  produced  via  oceanic  and  also  possibly 
industrial  processes,  is  photolyzed to produce I atoms: 

(R19) CH3I + hv + CH3 + I 

Iodine (I) may  then  react  with 03 and  various  radical  species  to  produce  several 
inorganic  I  compounds,  such  as IO, HI, HOI, and ION02,  before  heterogeneous 
processes  remove  iodine  from  the  atmosphere.  Figure 5 illustrates  various  reac- 
tions of the  iodine  system.  Depending on the  rates  of  some  key  reactions,  the 
relative  partitioning of the  various  iodine  species,  and  the  abundance of tropo- 
spheric  iodine,  catalytic  cycles  such  as 
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Figure 5.- A possible  chemical  scheme for  iodine (I) in the tropospheric 
marine boundary layer. 

(R20)  I + 03 + 10 + 02 

(R21)  IO + IO + 21 + 02 

or reaction (R20) followed by 

(R22)  IO + H02 f HOI + 02 

(R23) HOI + hv f OH + I 

may need to be considered in tropospheric reaction mechanisms, especially in 
marine environments. The possibility that iodine, previously a relatively 
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ignored  component of the  atmospheric  photochemical  system,  may  lead  to  a  sig- 
nificant 03 sink  further  emphasizes  the  large  uncertainties  in  our  understanding 
of tropospheric  photochemistry.  The  implementation of the  NASA  Tropospheric 
Research  Program  Plan  will  no  doubt  bring  new  revelations to the  science  of 
atmospheric  chemistry,  and  the  program  should  remain  sufficiently  flexible  to 
adjust  to  and  act  upon  these  new  insights. 

Figure 6 schematically  depicts  the  photochemical  and  transport  processes 
responsible  for  the  production  and loss of  tropospheric  ozone.  Whether  photo- 

Hydrocarbon, CO 

Figure 6.- Schematic  diagram  of  the  major  sources  and  sinks  of 
tropospheric  ozone. 

chemistry  supplies  a  net  source or sink of ozone  in  the  troposphere  depends on 
the  rate  at  which  hydrocarbons  are  oxidized  and on the  concentration of NO 
relative  to 03. The  relative  roles  of  photochemistry,  injection of strato- 
spheric  ozone,  and loss at  the  surface  of  the  Earth  in  controlling  tropospheric 
ozone,  as  well  as  the  impact of increased  anthropogenic  emissions  of CO and  NOx 
upon  tropospheric ozone levels,  are  presently  subject  to  intense  scientific 
debate  and  are  key  issues  in  the  NASA  Tropospheric  Research  Program  Plan. 
Important  needs  in  this  regard  are  the  acquisition  of  a  global  data  base  for 
tropospheric  ozone  to  indicate  quantitatively  its  spatial  and  temporal  vari- 
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ability, an understanding  of  the  role  of  photochemistry  in  establishing  ozone 
concentrations,  and  more  complete  information on the  rates  and  mechanisms  of 
ozone  transport  through  the  tropopause  and  at  the  surface  of  the  Earth. 

Active-nitrogen  compounds  play  a  central  role  in  the  tropospheric  photo- 
chemistry. As indicated  previously, NO, may  lead  to  the  photochemical  produc- 
tion  of  tropospheric  ozone  and  may  act  to  recycle OH through  reaction ( R 1 6 ) .  
Atmospheric  active-nitrogen  compounds  are  initially  produced  in  the  form  of NO 
or NO2 by lightning,  soil  emissions,  and  ocean  processes.  Anthropogenic 
combustion  emissions  of NO, may  be  an  important  source  of  atmospheric  active 
nitrogen. It is  not  known  if NH3 oxidation,  initiated by 

( R 2 4 )   N H 3  + OH + NH2 + H 2 0  

significantly  affects  atmospheric No,. The  major  sink  for  active  nitrogen 
involves  formation  of  nitric  acid 

( R 3 )   N O 2  + OH + M -P HNO3 + M 

followed by heterogeneous  removal  in  precipitation.  Observations  indicate  that 
the  dissolution  of HNO3 in  cloud  water  droplets  is  often  a  major  source  of H+ 
ions  in  rainwater  and  thus  a  contributor  to  acid  rain. 

The  relative  abundances  of NO and NO2 are  approximately  determined by the 
rapid  cycle  of 

followed by reactions ( R 1 7 )  and ( R 1 8 ) .  If  these  reactions  occur  at  equal  rates, 
the  photostationary  state  predicts  that 

where [ 1 denotes  the  concentration  of  the  appropriate  constituent  and J 1 7  and 
k 2 5  are  the  rate  constants  for  reactions ( R 1 7 )  and ( R 2 5 ) ,  respectively. Local 
photochemical  ozone  production  may  be  indicated  by  the  extent  to  which  this 
photostationary  state  relation  does  not  hold  because  of  reactions  such  as  reac- 
tion ( R 1 6 )  that  convert No to No2 without  consuming  a  molecule  of  ozone. 
Despite  the  importance  of  active N in  the C - N - 0 3  system,  the  global  distribution 
of NO and NO2 and  the  processes  that  control  their  abundances  remain  a  major 
source  of  uncertainty. 
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2.2.2 Global  Carbon/Nitrogen/Ozone  System  Summary 

As outlined  in  the  previous section, the carbon/nitrogen/ozone species  are 
coupled by a  complex  series  of  photochemical  reactions  involving  free radicals. 
Figure 7 sumarizes the  various  interactions  that  occur in the  overall photo- 
chemistry by indicating  the  chemical  lifetime for each  species  to  react or 
photolyze. An  important  observation  from  this  figure is the  large number of 
coupling time constants  that are calculated  to be less than 1 or 2 days.  Thus, 
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aLifetime based  on f12 and 02 concentrations  present i n  the  lower troposphere. 
bLifetime based  on diurnally averaged radical concentrations. 
'Estimated J values with  a  possible  uncertainty o f  a  factor  of 5 .  
dLifetime based  on estimated rate constant.  Possible  uncertainty i n   l i f e t i m e   i s  a  factor  of 3. 

Figure 7.- Daytime  coupling  constants for several carbon, oxygen, and nitrogen 
species for  25% latitude and the  marine  boundary layer. Numbers in each 
box  refer  to chemical  lifetime in days  of  species on the  left  to  react  with 
species above  box; negative  numbers in parentheses  represent  negative  powers 
of 10. 
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spatial  and  temporal  variations  in  such  key  variables  as  solar  flux,  water 
vapor,  ozone,  and  nitrogen  oxide  levels  can  result  in  significant  changes  in  the 
levels of numerous  other  species  in  the  system. It must  be  concluded,  there- 
fore,  that  to  have  a  reasonably  complete  chemical  understanding  of  why  specific 
concentration  levels  of  photochemical  species  are  observed  in  the  atmosphere, 
one  must be prepared  to look simultaneously  at a very  large  fraction  of  the 
total  system.  Furthermore,  since  many  of  the  chemical  lifetimes  are  equivalent 
to or shorter  than  the  characteristic  tropospheric  transport  times of 30 to 60 
days,  global-scale  observations  of  many  key  species  will  be  needed  to  map  their 
distributions  accurately. 

Appendix A contains,  in  table 18 ,  an  extensive  list  of  szientific  questions 
related  to  the  global  carbon/nitrogen/ozone  system.  All  these  specific  ques- 
tions  can  be  encompassed  within  the  single  general  query:  What  are  the  prin- 
cipal  processes  governing  the  global  carbon/nitrogen/ozone  system?  Several 
research  tasks  will  be  proposed  to  answer  this  question. 

2 . 3  THE GLOBAL SULF~R/AMMONIA/CARBON/TRACE METAL/AEROSOL SYSTEM 

2 .3 .1  Tropospher  ic  Sulfur 

One of the  central  questions  about  this  system  is  how  gaseous  sulfur 
released  from  the  biosphere or from  anthropogenic  sources is ultimately  con- 
verted to its  final  chemical  form  (aerosol)  and  subsequently  returned to the 
biosphere.  Extensive  documentation  exists  in  the  literature  that  suggests  the 
importance of both  homogeneous  and  heterogeneous  mechanisms.  In  no  case,  how- 
ever,  have  quantitative  field  experiments  been  carried out that  show  the  abso- 
lute or even  relative  importance  of  these  two  different  generaiized  mechanisms. 
In  this  section,  a  general  outline  of  the  coupling  between  gaseous  sulfur 
species,  ammonia,  carbon,  trace  metals,  and  atmospheric  aerosol is presented. 
As suggested  above,  this  outline  will  be  subdivided  into  a  discussion  of  homo- 
geneous  and  heterogeneous  mechanisms. 

2 .3 .1 .1  Homogeneous  sulfur  oxidation  mechanisms.-  For  the  reduced  forms 
of  sulfur  such  as H2S, CH3SCH3, and CH3SH, the  major  homogeneous  reaction  pro- 
cess  leading  to  the  formation  of S+4 is  that  of  reaction  with  atmospheric OH. 
Although  the  initially  formed  radical  fragment (i.e., HS or CH2SCH3) must 
undergo  several  additional  elementary  reactions  before  conversion  to S02 ,  the 
rates  of  these  processes  are  predicted  to  be  fast  compared  with  the  initial 
reaction  with OH. Of equal  importance,  however,  is  the  fact  that  the  chemical 
lifetime  of SO2 is almost  certainly  longer  than  that  of  the  reduced  sulfur 
species. 

Before  discussing  the  oxidation  of SO2 to sulfate,  comments on two  addi- 
tional  gaseous  sulfur  species, COS and CS2, are  necessary.  At  this  time,  it  is 
not  clear  whether  all COS is formed  from CS2 or whether  part  of  the  atmospheric 
burden is derived  directly  from  primary  sources - natural or anthropogenic. Gas 
kinetic  data  and  field  data,  however,  tend  to  support  the  idea  that COS does 
have  a  long  tropospheric  residence  time  and,  in  fact,  it is quite  likely  that  a 
major  sink  for  this  compound  is  transport  to  the  stratosphere  where  both  photol- 
ysis  and  reaction  with  atomic  oxygen  result  in  its  conversion  to S02.  CS2 has 
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been shown to have  both  biospheric  and  anthropogenic  sources  and  appears to have 
a modera te ly   long   chemica l   l i fe t ime  d ic ta ted   p r imar i ly  by its reac t ion   w i th  
atomic oxygen. The SO and C S  radicals r e s u l t i n g   f r o m   t h i s   r e a c t i o n  would  subse- 
quent ly   undergo  react ion  with 0 3  to produce S O 2  and COS molecules. As discussed 
previous ly ,  COS is probably   degraded   on ly   a f te r   mix ing   in to   the   s t ra tosphere .  

One of t h e  cr i t ical  l i n k s  between  gaseous  sulfur species and aerosol s u l f u r  
involves   the  mechanism by which S O 2  is converted to  H 2 S O 4  or o the r  S+6 ox ida t ion  
forms. Under na tura l   t ropospher ic   condi t ions ,   one   can   readi ly   reduce   the  impor- 
t a n t   i n i t i a t i n g  homogeneous r e a c t i o n s   p o s s i b l e  to three :  

( R 2 6 )   H 0 2  + S O 2  + S O 3  + OH 

( R 2 7 )   R 0 2  + S O 2  + S O 3  + RO 

M 
( R 2 8 )  OH + S O 2  + HSO3 

I n   t h e  case of r e a c t i o n s  ( R 2 6 )  and ( R 2 7 ) ,  t h e   r e s u l t i n g  S O 3  species has  been 
shown to  r e a d i l y  react with H 2 0  to form a complex  which subsequent ly   rearranges 
to  form H 2 S O 4  : 

( R 2 9 )   S O 3  + H 2 0  + H 2 O - S O 3  

M 
( R 3 0 )   H 2 O - S O 3  -* H 2 S O 4  

React ion ( R 2 8 ) ,  u n l i k e   r e a c t i o n s  ( R 2 6 )  and ( R 2 7 ) ,  does  not  appear to r e s u l t   i n  a 
s u l f u r  radical species tha t   immedia te ly   conver t s   in to  H 2 S O 4 .  S i n c e   e x i s t i n g   g a s  
k ine t i c - r a t e  data combined w i t h   f i e l d  measurements   suggest   that   react ion ( R 2 8 )  
could be the  most s ign i f i can t   p rocess   o f   r eac t ions  ( R 2 6 )  to ( R 2 8 ) ,  it is impor- 
t a n t  to e x p l a i n   t h e   d e t a i l s   o f   t h e   f a t e  of t h e  HSO3 radical. 

Labora to ry   and   f i e ld   r e sea rch   needs   i n   t he  area of homogeneous s u l f u r  chem- 
i s t r y  are ex tens ive .  The most p res s ing   needs   i n   t he   l abo ra to ry  are those  of  
ob ta in ing   be t t e r   r a t e -cons t an t   va lues   fo r   r eac t ions  ( R 2 6 )  to  ( R 2 8 )  ( in   each  case 
a t  atmospheric   pressures   of  0 2  and H 2 0 )  and  of   determining  the  fa te   of   the  HSO3 
radical. Field-data  needs  cover a broad spectrum ranging  from  flux  and  concen- 
t r a t i o n  measurements  of H 2 S ,   C H 3 S H ,   C H 3 S C H 3 ,   ( C H 3 ) 2 S O ,   C S 2 ,  and S O 2  over   an 
ex tens ive   r ange   o f   l a t i t ude  as well as over   highly  var ied  cont inental   and  ocean 
surface  types.   Sulfur-aerosol   concentrat ion  measurements  as a func t ion  of s i z e  
are needed  under  the same cond i t ions  as for   the   a forement ioned   su l fur  species. 
I n  order to assess the  importance  of  homogeneous r e a c t i o n  processes i n   c o n t r o l -  
l i n g   t h e   d i s t r i b u t i o n   o f  H 2 S ,   C H 3 S H ,   ( C H 3 ) 2 S ,   ( C H 3 ) 2 S O ,  S02, and  H2SO4-aeroso1, 
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concentrations of the  radical  species OH, H02,  and R 0 2  should be  measured simul- 
taneously wi th  those of the  sulfur  species. 

2 . 3 . 1 . 2  Heterogeneous sulfur  oxidation mechanisms.-  The most important 
heterogeneous pathway for  oxidation of SO2 on a global  scale is presently 
believed to involve diffusion of gas-phase sulfur  into  liquid cloud droplets, 
wherein the  liquid-phase  oxidation of sulfur occurs. Thus, although  the 
overall  process can be  viewed as heterogeneous, the  actual chemical reaction 
i tself  occurs entirely i n  the  liquid phase and is t h u s  homogeneous. This  being 
the  case, one migh t  expect  reasonably reliable  rate  data  to be available from 
liquid-phase kinetic  studies.  Unfortunately, experiments carried  out u s i n g  
rainwater appear to  give  results  quite  different from those  involving d is t i l l ed  
water. Minute  amounts  of organics and inorganics can  have a significant impact 
on the measured liquid-phase rate  constants. Even so, there now seems to be 
growing evidence that only a limited number  of trace metals  or  combinations of 
trace metals have  an appreciable  catalytic  effect on sulfur  oxidation by dis- 
solved 02.  I t  is generally agreed that  sulfur  oxidation by 0 2  i n  the  liquid 
phase i n  the  absence of a catalyst is far too slow to account for observed oxi- 
dation  rates.  Finally, whereas some metals do appear to have catalytic  activity 
that  increases  the SO2 oxidation  rate by orders of magnitude over the  rate when 
they are  absent,  the  levels of these  metals i n  natural-background tropospheric 
areas appear to be too low to be significant i n  oxidizing S+4 to  S+6. 

Dissolved ozone and hydrogen peroxide i n  cloud droplets have  been actively 
explored as a means of explaining  liquid-phase sulfur  oxidation. Although the 
ozone-sulfur oxidation  rate  appears  to be a t   l ea s t  two to  three  orders of  magni- 
tude faster than that of the 02 system, the  rate of the 03-S system ( l ike 0 2 )  is 
sensitive  to  the pH of the  liquid medium.  For example, i n  s h i f t i n g  from a pH of 
7 to a pH of 4 ,  the  rate of sulfur  oxidation  via  the 0 3  mechanism decreases by 
approximately l o 5 .  T h i s  then raises  the important question of neutralization of 
acidic cloud droplets, and the  principal  species  that mus t  be considered  here is 
ammonia . 

A third important liquid-phase SO2 oxidation mechanism is that involving 
hydrogen peroxide. T h i s  reaction can be  of major importance due to  three fac- 
tors: (1 ) The h igh  solubili ty of Hz02 i n  cloud droplets, ( 2 )  the moderately 
h i g h  H202 levels expected i n  clean, s u n l i t  tropospheric a i r ,  and ( 3 )  the  fact 
that the rate  for t h i s  reaction is not  inhibited  as pH decreases. ( I n  fact ,  
the  rate  increases w i t h  decreasing pH.)  For these  reasons,  the  liquid-phase 
heterogeneous hydrogen-peroxide reaction scheme could be  of equal importance 
as the gas-phase oxidation of  S02. I t  should be noted, however, that  since  the 
level  of H202 is strongly  controlled by the  intensity of fas t  photochemistry, 
both t h i s  mechanism  and the gas-phase homogeneous  mechanism w i l l  be important 
under similar  climatological  conditions. T h i s  again  underscores  the fact  that 
the ozone liquid-phase  cloud-droplet mechanism may  be the dominant  one i n  many 
parts of the  global atmosphere at   specific times of the  year. 

A final  point to be stressed concerns the  role of NH3 i n  sulfur  aerosol 
formation. A s  discussed  previously, NH3 can play a direct  role i n  controlling 
the  rate of the 03 cloud-droplet SO2 oxidation mechanism because of the  strong 
dependence  of its rate on  pH.  Ammonia  would  seem to have a smaller impact on 
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t h e  rate of   the  l iquid-phase H202 ox ida t ion  mechanism  and  would appear to  have 
v i r t u a l l y  no impact o n   t h e  rate of homogeneous gas-phase SO2 conversion (i.e., 
involv ing  OH, HO2, or R02). I n  a l l  cases, though, NH3 is the  dominant species 
re spons ib l e  for n e u t r a l i z i n g   a c i d i c   s u l f u r  species (i.e. , H2SO4,  H2SO5, H2S208, 
and (NH4)HSO4) , s u g g e s t i n g   t h a t   i f   t h e   g l o b a l   s u l f u r   b u d g e t  were to  inc rease  a t  
a f a s t e r  rate than   t he   g loba l  NH3 budget ,   there  could resu l t  a sys t ema t i c  
i n c r e a s e   i n   g l o b a l   r a i n   a c i d i t y .   T h i s  phenomenon, i n   f ac t ,   has   a l r eady   been  
obse rved   i n   h igh ly   i ndus t r i a l i zed   r eg ions  of t h e  world. 

Two gene ra l  classes of materials have  been  suggested as hav ing   po ten t i a l ly  
i m p o r t a n t   c a t a l y t i c   a c t i v i t y   f o r   t h e   o x i d a t i o n   o f  SO2 on p a r t i c l e   s u r f a c e s :  
(1 ) Trace metals or metal oxides   and  (2)   e lementary  carbon  in   the  form  of  soot 
particles. With  regard to the   na tu ra l   t roposphe re ,  however, it is now g e n e r a l l y  
ag reed   t ha t   t he  somewhat e l e v a t e d   r e a c t i v i t y   o f  trace-metal or metal-oxide  par- 
ticulate material probably  does  not   compensate   for   the low c o n c e n t r a t i o n   l e v e l s  
of t h i s  type of  aerosol i n  terms of SO2 oxidat ion.   There is somewhat g r e a t e r  
unce r t a in ty  as to  t h e   r e l a t i v e   i m p o r t a n c e  o f   ca rbon   pa r t i c l e s   i n  SO2 oxida t ion .  
Although  there is evidence   tha t   carbon  par t ic les   can  be i m p o r t a n t   i n   s u l f u r  
ox ida t ion   in   u rban  areas, t h e i r  l o w  concen t r a t ion   i n   t he   na tu ra l   t roposphe re  
would seem to preclude a s i g n i f i c a n t   g l o b a l  role. However, new data on  carbon 
par t ic le   format ion   f rom w o o d  burn ing   (na tura l  or c o n t r o l l e d )  c o u l d  a l t e r  t h e  
above  point  of  view  during  the  next few years .  

A s  i n   t h e  case of homogeneous gas-phase SO2 chemistry,  an  improved  under- 
standing  of  the  importance  of  heterogeneous  sulfur  oxidation  mechanisms requires 
bo th   f i e ld   and   l abo ra to ry  s tudies .  Of major importance  in  new f ie ld-da ta   needs  
is measurement  of t h e   c o n c e n t r a t i o n   l e v e l s  and f l u x e s  of NH3, H202, 03,  
(NH4) 2S04 aerosol, ( N H q ) H S 0 4  aerosol, and H2SO4 aerosol. The l e v e l s  of carbon 

p a r t i c l e s  and trace metals i n  aerosol spec ies   requi re   examinat ion   bu t  a t  a some- 
what lower p r i o r i t y .  F i e l d  data should be co l lec ted   over   an   ex tens ive  l a t i t u d e  
range   and   over   wide ly   d i f fe r ing   cont inenta l  and  ocean  surface-area types. 

Laboratory  needs  should  focus  on  the role of trace o rgan ic s   and   ca t a lys t s  
on the  03-sulfur  and  H202-sulfur  liquid-phase  oxidation  mechanisms,  the ultimate 
goa l   i n   each  case b e i n g   t h e   i d e n t i f i c a t i o n  of t h e  mechanism  and t h e  measurement 
of reliable absolute ra te  c o n s t a n t s   f o r   t h e s e   r e a c t i o n s .  S t u d i e s  are needed t o  
determine  whether   the  ra te-constant  data genera ted   in   ba tch  l i q u i d  reactors are, 
i n   f a c t ,   a p p l i c a b l e  t o  c loud-drople t - s ize   l iqu id   spheres .  

2.3.2 Tropospheric  Ammonia 

In   r ecen t   yea r s ,   cons ide rab le   r e sea rch   has  been  devoted to  atmospheric  
n i t r o g e n   s p e c i e s ,   t h e   n i t r o g e n   c y c l e ,  and the   impac t   o f   an th ropogen ic   ac t iv i t i e s  
i n   a l t e r ing   n i t rogen- spec ie s   concen t r a t ions   i n   t he   t roposphe re   and   s t r a tosphe re .  
To date, most o f   t h e   r e s e a r c h   i n   n i t r o g e n  species has   focused   on   n i t rous   ox ide  
(N20) and  the  ni t rogen  oxides  (NO and NO2) .  Anunonia (NH3) , however, is the  most 
abundant   ni t rogen species a f t e r  N2 and N20, with a h ighly   var iab le   mix ing  ra t io  
ranging  from 1 to  20 ppb. 

On a worldwide basis,  t h e  major f r a c t i o n  of  atmospheric ammonia is produced 
by bac te r io log ica l   ac t ion   on  biological waste. The pr imary  anthropogenic  source 
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of ammonia  is  combustion,  especially  combustion of coal. In addition,  ammonia 
can  be  emitted  in  automobile  exhausts  and  produced as a  result of agricultural 
operations. 

Reaction  with  the  hydroxyl  radical  is  thought  to  be  the  major  gas-phase 
reaction of ammonia  in  the  troposphere: 

NH3 + OH' + H z 0  + NH2' 

The  rate  constant  for  this  reaction  has  been  recently  measured;  however,  the 
fate  of  the NH2 radical  thus  formed  is  essentially  unknown. 

Ammonia  is  thought  to  play  a  major  role  in  aqueous  aerosol  formation. 
Preliminary  epidemiological  results  suggest  that  ammonium-containing  particles 
may  have  adverse  health  effects.  Data  indicate  that  ammonium  salts - NH4NO3, 
NHdHS04, and (NH4)2SO4 - account  for  most of the  nitrate  and  sulfate  particu- 
lates  present  in  airborne  aerosols  in  the  South  Coast  Air  Basin  of  California. 
Reactions of NH3 with HNO3 and H2SO4 are  thought to be  major  gas-to-particle 
conversion  processes:  that  is, 

NH4N03 aerosols  can  be  formed  in  the  atmosphere  by  direct  reaction  between NH3 
and HNO3, by direct  reaction  between NH3 and 0 3 ,  or by NH3 oxidation on soot 
particles.  Although  appreciable  amounts  of  nitric  acid  are  formed  in  photochem- 
ically  polluted  atmospheres,  the  high  vapor  pressure of HNO3 (about 45 torr  at 
25OC ( 1  torr = 1 3 3 . 3  Pa))  precludes the  formation of nitric-acid  aerosol. 
Therefore,  nitrate-aerosol  formation  may  be  limited  by  ambient  ammonia  levels 
rather  than  by  the levels  of  nitrogen  oxides.  Determination  of  the  role  of 
ammonia  upon  nitrate-aerosol  formation  requires  measurement  of  ambient NH3 
levels.  Most  of  the  destruction of NH3 occurs in  the  troposphere,  with  about 
one-half  being  removed  heterogeneously  and  one-half  homogeneously,  presumably 
by  reaction  with OH. The  estimated  time  constant  for  each of these  processes 
is  about 1 month. In addition  to  aerosol  formation, NH3 is  removed  by  precip- 
itation  scavenging  and  absorption  at  the  surface  of  the  Earth. 

It has  been  suggested  that  the  oxidation of ammonia as a  result of photol- 
ysis and  reaction  with OH may  represent  an  important,  hitherto  neglected  source 
of  nitric  oxide (NO) in  both  the  troposphere  and  stratosphere.  Recently,  it 
has  been  suggested  that  the  oxidation of NH3 in  the  combustion  of  coal or in 
oxidizing  catalytic  converters  may be a  source of N20. A potentially  important 
anthropogenic  source of NH3 is  the  volatilization  of  ammonium  contained  in 
nitrogen  fertilizers  applied  to  agricultural  soils.  Moreover,  since NH3 has  an 
absorption  band  at 1 0 . 5 3  ).un within  the  "atmospheric  window,"  it  may  affect  cli- 
mate,  particularly  if  the  anthropogenic  production of NH3 continues  to  increase. 
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To date  there have  been  no long-term, systematic measurements  of tropo- 
spheric ammonia.  The  few measurements that have  been reported  (e.g., i n  s i t u  
sampling and IHR measurements) indicate  that NH3 exhibits  strong  spatial and 
temporal variations. The  few available  surface NH3 measurements e x h i b i t  a large 
variation i n  mixing ra t io  (from 1 to 20 ppb). The first   objective of  a tropo- 
spheric NH3 measurement  program should be to  measure t h e  diurnal and seasonal 
variations of t h e  tropospheric NH3 profile. The second objective should be to  
measure the  diurnal and seasonal  variations over different  types of terrain 
(e.g., swamps, forests,  various  types of grasslands, open  Oceans, along the  
coast, and over  urban areas). The role of NH3 i n  tropospheric photochemistry 
cannot accurately be assessed u n t i l  t h e  vertical  distribution of tropospheric 
NH3 and its daily,  seasonal, and lati tudinal  variabil i ty  are determined. 

2.4 TROPOSPHERIC POLLUTION 

Atmospheric chemical components  can be characterized by their mean resi- 
dence time, which is determined by chemical transformation and  removal rates. 
The lifetimes of atmospheric trace  constituents  emitted  as a result of  man's 
act ivi t ies  range from  a  few seconds for t ire  debris from  an automobile to many 
years  for  fluorocarbons and C02.  The  common gaseous pollutants  emitted  into 
the lower troposphere, such as SO2 and NO,, reside i n  the  troposphere  for time 
periods on the  order of  a few days. Figure 8 depicts  the  spatial and temporal 
scales  relevant  for  tropospheric  air  pollutants. The "Mesoscale,"  "Regional 
scale," and "Global scale" were described i n  the  introduction  to t h i s  chapter. 
The "Microscale" represents a spatial  scale of 1 km or less. There are only a 
few primary pollutants  for which  mean residence time is w i t h i n  the  microscale. 
Heavy particles from sources such as  automobiletire  erosion  fall  into t h i s  
category . 

There are  several important man-made pollutants  for which residence time 
is restricted  to a few days or  a week  and transport  distance is w i t h i n  a few 
thousand kilometers. These include  the gaseous and particulate  sulfur com- 
pounds, oxides of nitrogen, nitr ic  acid,  and  ozone. 

The urban troposphere can  be characterized  as  those  regions of the tropo- 
sphere wherein large  quantities of concentrated man-made pollutant emissions 
exceed natural emissions by several  orders of  magnitude, leading  to  pollutant 
concentration  levels  that exceed natural  levels by comparable orders of magni- 
tude. Because  of the spatial  scale  typically  associated w i t h  such regions,  the 
applicable  meteorological phenomena are those of the  microscale and mesoscale. 
Although there  are no chemical reactions  peculiar  to  the urban atmosphere, the 
relative importance of the  various  reactions may s h i f t  substantially from that 
i n  the  global  troposphere  as a result of t h e  orders-of-magnitude higher concen- 
trations. For  example, oxidation  reactions  involving  higher molecular weight 
hydrocarbons assume  paramount importance i n  the urban atmosphere. 

Chemically, t h e  regional  troposphere w i t h i n  the  planetary boundary layer 
differs from the  polluted urban  atmosphere i n  that  the  contributions from  major 
source  types s u c h  as urban automobile emissions and power-plant plumes  have 
sufficient time to mix and interact chemically. Such multiple-source chemical 
interaction is most dis t inct  during  stagnating  anticyclones, when there is cir-  
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F igure 8.- S p a t i a l  and temporal scales r e v e l a n t  to t ropospher ic  
a i r   p o l l u t a n t s .  

c u l a t i o n   w i t h i n  a h igh -p res su re   sys t em  bu t   w i thou t   ove ra l l   ven t i l a t ion   o f  a 
given  region.   In   the  Eastern  United States,  for example ,   such   s tagnat ing   an t i -  
cyc lones   have   resu l ted   in   the   deve lopment   o f   l a rge-sca le   hazy  a i r  masses con- 
t a i n i n g   h i g h   l e v e l s  of su l f a t e ,   ozone ,   and   o the r   s econda ry   po l lu t an t s .  

Much of the   cu r ren t   conce rn   i n   t r anspor t   and   chemis t ry  of t r o p o s p h e r i c   a i r  
p o l l u t a n t s  is due to  t h e  more recent   recogni t ion   o f   " long-range   t ranspor t In  
t h a t  is, a i r - p o l l u t i o n   t r a n s p o r t  beyond the   boundar ies  of a i r -qua l i ty -cont ro l  
r eg ions ,   S t a t e s ,  or, for t h a t  matter, countr ies .   In   Europe,   the   long-range 
t r a n s p o r t  of s u l f u r  and   n i t rogen  compounds h a s   r e s u l t e d   i n   a n   a p p r e c i a b l e  acid- 
i f i c a t i o n   o f   r a i n   i n   S c a n d i n a v i a .   S i m i l a r   e v i d e n c e   o f   a c i d i f i c a t i o n   o f  lakes 
i n  upper New Y o r k  and  Canada is now a v a i l a b l e .  

The p e r t u r b a t i o n  of the   a tmospher ic   rad ia t ive  properties by la rge-sca le  
reg iona l   hazes   has  also been   rece iv ing   increased   a t ten t ion .  The v e r t i c a l   o p t i -  
cal  depth   o f   such   reg iona l   hazes  is genera l ly   such   tha t   about   one-ha l f   o f   the  
i n c i d e n t  solar r a d i a t i o n  is scattered wi th in   t he   haze .  Most o f   t h e   l i g h t  
reaches  the  ground  but   about  1 0  p e r c e n t  of t h e   s c a t t e r e d   l i g h t  is re f lec ted   back  
toward space, thus   r educ ing   t he   r ad ia t ion   r each ing   t he   su r f ace .  The correspond- 
i n g   i n c r e a s e   i n   t h e   s u r f a c e   a l b e d o   c a n  be d e t e c t e d  by satell i tes i n   t h e   v i s u a l  
band. (See f i g .  9.) Such satel l i te  photographs of la rge   reg iona l -sca le   haz i -  
ness   have   in   fac t   p roduced   the  most convincing  evidence  of  long-range aerosol 
t r anspor t   f rom  indus t r i a l   sou rces .  The p e r t u r b a t i o n  of the  a tmospheric  radia- 
t i ve   ba l ance   has  also received a t t e n t i o n .  
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The  key  research  problem  associated  with  the  urban  troposphere is to 
develop  a  quantitative  understanding  of  the  chemical  and  physical  processes  that 
govern  the  transport  and  transformation of pollutants. A quantitative  under- 
standing  of  these roles may then  lead  to  mathematical  models  for  relating  pri- 
mary  emissions  of  gases  and  particles  to  airborne  concentration  levels  of  both 
primary  and  secondary  gases  and  particles. The U . S .  Environmental  Protection 
Agency  (EPA)  has  devoted  a  major  effort  toward  explaining  the  chemistry  and 
physics  of  urban  atmospheres  and  toward  developing  emission/air-quality  models. 
This  effort  has  involved  extensive  field-measurement  programs as well  as  theo- 
retical  studies. The vast  majority  of  the  measurement  programs  conducted  by 
EPA  and  by State and local agencies  have  been  based on ground-based  point  mea- 
surements. There is  a  continuing  need  for  data on the  vertical  and  horizontal 
distributions  of  pollutant  concentrations. 

In its  primary  role  as  a  developer  of  space-derived  technology,  NASA  is 
assisting  EPA  in  urban  and  regional  atmospheric  research  through  the  develop- 
ment  and  field  application  of  airborne  remote-sensing  systems  under  an  existing 
Memorandum  of  Understanding  between  the  two  agencies.  Attention  is  confined, 
therefore,  to  this  aspect  of  research on the  urban  atmosphere  in  the  present 
recommended  research  plan. 

Relative  to  the  regional  troposphere,  the  major  scientific  question  can  be 
posed  as:  What  are  the  relative  roles of transport,  transformation,  and  removal 
processes  in  governing  the  behavior  of  regional-  and  urban-scale  polluted  air 
masses? 

2.5 MAJOR  RESEARCH  NEEDS  IN THE TROPOSPHERE 

In  this  chapter,  the  scientific  basis  for  several  general  questions  relat- 
ing  to  the  troposphere  has  been  briefly  discussed.  Additional  discussion  is 
contained  in  the  Scientific  Research  Objectives  in  Tropospheric  Pollution  in 
appendix A. In response  to  the  detailed  list  of 39 scientific  questions  posed 
by  the  Working Group, 38 operational  and 1 2  instrument-development  tasks  were 
identified. The 39 specific  questions  posed  by  the  Working  Group  were  found  to 
be encompassed  by  the  three  very  general  tropospheric  research  problems  of  this 
chapter: 

I.  What  are  the  principal  processes  governing  the  global  carbon/nitrogen/ 
ozone  system? 

11. What are.the principal  processes  governing  the  global  sulfur/ammonia/ 
trace  metal/carbon/aerosol  system? 

111. What  are  the  relative  roles  of  transport,  transformation,  and  removal 
processes  in  governing  the  behavior  of  regional-  and  urban-scale  polluted  air 
masses? 
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Table 1 i n d i c a t e s  how the   r e sea rch  t a s k s  i d e n t i f i e d  by t h e  Working  Group 
correspond to t h e   t h r e e  major ques t ions   and   t he   fou r   r e sea rch   ca t egor i e s  of 
modeling,  laboratory  measurements,  field  programs,  and  technology  developnent. 
The tables referred to i n   t h e   f i r s t  column are those   in   appendix  A and  the  t a s k  
numbers shown i n d i c a t e   t h e  number of t h e  t a s k  i n   t h e   a p p r o p r i a t e   t a b l e .  

TABLE 1 .- SUMMARY OF RESEARCH TASKS 

[Tab les   r e f e r r ed  to  i n   p a r e n t h e s e s  are i n  appendix A] 

R e s  ear ch cat egor i es 

_.. . . ~ . . . ~ ~ . . - 

Modeling  ( table  1 9 )  

Laboratory  measurements 

F ie ld   p rog rams   ( t ab le   19 )  

Technology  development 
( t a b l e  20)  

Research t a s k  number a x r e s p o n d i n g  t o  
major ques t ion  - 

2,  4, 11,  12, 
'1 3, 1 5, 1 6, 
18, 23,  24, 
25, 31, 38 

I1 

a27,  a33 

7,  12,  c13, 
20, 21,  26, 
31, 38 

3,  5,  6, 7, 
10,  11,  12 

I11 

a27, a33 

(b) 

29, 31 , 32 

ause, i n t e r p r e t a t i o n ,   a n d   a s s i m i l a t i o n  of remote sens ing  data i n t o  tropo- 

b p t i c a l  properties of aerosols. 
%ate l l i t e  monitor ing of g loba l   l and  types and  resources. 

s p h e r i c  models. 

I n   t h e   n e x t   c h a p t e r   t h e   r e s e a r c h  t a sks  i d e n t i f i e d  by t h e  Working  Group are 
formula ted   in to  a series of  coherent  programs of modeling,  laboratory  measure- 
ments, f i e ld  programs,  and  technology  development. 
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CHAPTER 3 - PROPOSED RESEARCH PROGRAMS 

3.1 INTRODUCTION 

I n  t h i s  chapter,  the programs  proposed to  meet the major research needs of 
chapter 2 are  outlined. Four classes of programs are proposed: 

(1 1 Field measurements 

( 2 )  Modeling 

( 3 )  Laboratory measurements 

( 4 )  Technology  development 

Each of the major problems posed i n  chapter 2 has components that  suggest theo- 
re t ica l  and experimental  research  studies. The experimental studies  are 
divided  according to  those conducted i n  the f ie ld  and i n  the  laboratory. I n  
view of the  role of NASA as  a developer of space-derived technology and as  a 
catalyst  for the  adoption of t h i s  technology by operational U.S .  agencies and 
agencies of other  countries, emphasis is also given to  a number  of technology 
development tasks. T h i s  aspect is important because of the need for  the  contin- 
ued development of advanced technology to achieve  a  global monitoring capability 
for  the  natural and perturbed  troposphere. The technology development, i n  turn, 
requires  a  laboratory and f ie ld  program, supported by models, i n  order to  deter- 
mine the  parameters needed for  a measuring instrument. 

Among the  four  classes of programs, field-measurement programs  and 
technology-developent programs are the  areas of primary emphasis i n  the 
research plan because of the unique role of NASA i n  orbi ta l  remote sensing and 
instrument development. The f ield-measurement  programs  proposed consist  pri- 
marily of orbital  remote sensing and airborne  monitoring. Airborne and, t o  
some extent, ground-based  measurements are being proposed as  high-priority  pro- 
grams early i n  the NASA tropospheric program since  the i n  s i t u  data  to be 
obtained w i l l  be essential  for improving  our understanding of tropospheric  pro- 
cesses,  a  necessary step  for development of  optimum  measurement techniques. 

Two specific modeling tasks  are  herein  delineated: 

1. Continued development of chemical-transport models of the  global 
troposphere 

2. Developnent of methods for the use, interpretation, and assimilation of 
remote sensing  data  into  tropospheric models for both the  global  tro- 
posphere and for  regional  air  pollution 

NASA has played a  central  role i n  the development of mathematical models of the 
global  troposphere, and continued  refinement of such models is essential for the 
proper interpretation of tropospheric measurements.  Because of the need to  
interface remote sensing  data w i t h  the  prediction of models (both for  the  global 
troposphere and regional  air  pollution), the development  of techniques for such 
integration is an important  task. (Because of the  role of EPA i n  developing 
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models for   synopt ic-regional-scale   and  urban-scale  a i r  p o l l u t i o n ,   t h i s  aspect is 
not   p roposed   for  NASA involvement.) 

A v a r i e t y   o f   l a b o r a t o r y   s t u d i e s  are needed to  suppor t   t he  major components 
of f i e ld  programs  and  technology  development.  The  laboratory  programs proposed 
are divided  according to  suppor t ing  tasks and  fundamental  kinetic  measurements. 
Supporting t a s k s  are s t u d i e s  of t h e   i n t e r a c t i o n  of e l ec t romagne t i c   r ad ia t ion  
w i t h  matter, c a l i b r a t i o n ,  and cha rac t e r i za t ion   o f   t he   p rope r t i e s   o f   a tmosphe r i c  
constituents.  Fundamental  kinetic  measurements  include  the  measurement  of rate 
cons t an t s  under t roposphe r i c   cond i t ions  and  measurements aimed a t  expla in ing   the  
process of gas- to-par t ic le   conversion.  I t  is a n t i c i p a t e d   t h a t  NASA programs i n  
t h i s  area w i l l  be   p r imar i ly   concerned   wi th   those   tha t  are i n  direct suppor t  of 
t h e  f ield-measurement,  modeling, or instrument-development  programs. 

Technology  development  has  been a corners tone   o f  NASA's m i s s i o n .   I n   t h i s  
c h a p t e r ,   a v a i l a b l e  remote and i n  s i t u  instruments  ( those  developed  both  with  and 
wi thout  NASA suppor t )   app l i cab le  t o  t ropospher ic   research   and   cur ren t  NASA pro- 
grams in   t echnology  deve lopnent  are summarized.  Then s e v e r a l  proposed programs 
are out l ined   for   t echnology  deve lopment   in   suppor t   o f   t ropospher ic   research .  

3.2 FIELD-MEASUREMENT MISSIONS - INTRODUCTION 

As d i s c u s s e d   i n   c h a p t e r  2, t w o  s c i e n t i f i c   g o a l s  toward  which NASA's program 
should   a t tempt  to  make  major ga ins   du r ing   t he  coming t w o  decades are t h a t   o f  
e s t a b l i s h i n g   t h e   g l o b a l   a t m o s p h e r i c   d i s t r i b u t i o n s  and budgets   of   those ele- 
ments  believed to be of key impor tance   in   g loba l   b iogeochemica l   cyc les   and   tha t  
of   determining  the  cause-and-effect   re la t ionships   between  these  observed  dis t r i -  
bu t ions   and   the   dominant   cont ro l l ing   fac tors   such  as atmospheric  chemical 
t ransformations,   b iospheric   and  a tmospheric  source and s i n k   s t r e n g t h s ,  and atmo- 
s p h e r i c   t r a n s p o r t .   S i n c e  an ex t r ao rd ina ry  amount  of f i e l d   s a m p l i n g  a t  a consid- 
erable cost w i l l  be required t o  s a t i s f y   t h e  above  goals,   the  decision  on  what 
type  or types  of   sampling  platforms to u s e  i n   e a c h  case is obvious ly  a c r i t i ca l  
one. Es t ab l i sh ing   t he  detailed r e l a t i o n s h i p s  between c o n c e n t r a t i o n   l e v e l s  and 
source and   s ink   s t rengths ,  as well as chemical-transformation rates, w i l l  best 
be accomplished  using a combinat ion  of   a i rcraf t ,   ground-base,   and  ship  sampling 
platforms  coupled  with limited sa te l l i t e  observa t ions .  The f i r s t   g o a l   ( g l o b a l  
d i s t r i b u t i o n s ) ,  on the   o the r  hand,  conceptually could be most e f f e c t i v e l y  
reached  via  sa te l l i te  and/or Space Shut t le   sampl ing   p la t forms .   Unfor tuna te ly ,  
t h e  basic l i m i t a t i o n s  of these   p la t form types (i.e., phys i ca l  space, payload 
weight ,   and  avai labi l i ty   of  electric power) now and i n   t h e  immediate f u t u r e  make 
t h i s   o p t i o n   i n i t i a l l y  appear to  be impractical. T h i s  is p a r t i c u l a r l y   t r u e   i f  
one takes t h e   p o s i t i o n   t h a t   a r o u n d  100 d i f f e ren t   chemica l  species are p r e s e n t   i n  
the   c lean   t roposphere  and many of   these  w i l l  need to  be monitored  with  high res- 
olut ion.   Taking a more real is t ic  p o i n t  of  view,  though, t h i s   s i t u a t i o n   o b v i -  
o u s l y   r e p r e s e n t s  an extreme case since,   even  with o u r  p r e s e n t  limited knowledge 
of  tropospheric  chemistry,   one-half  t o  two-thirds  of t h i s  t o t a l  number of 100 
species c o u l d  probably be rejected as being of only  minor  importance. The real 
d i f f i c u l t y   t h e n  is t r y i n g  to select a cri t ical  subse t   o f  10  to 1 5  species f o r  
which  chemical  coupling  and source and s i n k   r e l a t i o n s h i p s   w i t h   o t h e r  tropo- 
s p h e r i c  trace gases  and aerosols are understood well enough tha t   t he   measu red  
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global-distribution  profiles w i l l  permit a reliable assessment of the  global 
distributions of numerous other major as  well  as minor tropospheric  trace gases. 

I n  conjunction w i t h  the  task of identifying a c r i t i c a l  subset of tropo- 
spheric  species  for  satellite viewing, there is also  the very d i f f icu l t  problem 
mentioned earlier of establishing the spatial  resolution  that w i l l  be required 
of these new measurements. I n  the  horizontal  direction,  for example, resolution 
on the  order of tens of kilaneters w i l l  be needed for some species, whereas 
resolution of several thousand kilometers w i l l  probably be adequate  for  others. 
I n  the vertical  direction, the resolution limits w i l l  be much smaller, ranging 
from 1 Ian to  as much as 15 km. I n  general, our present  ability  to  predict  the 
vertical and horizontal  resolution requirements for  monitoring a tropospheric 
trace gas via a s a t e l l i t e  platform ranges somewhere  between  poor to   fa i r .  (The 
obvious exception to  t h i s  statement  involves the  very long-lived  species such 
as N 2 0 ,  CF4, CFC13, CF2C12, and (202.1 

Based  on the above discussions, it is concluded that   i f  a cost-effective 
tropospheric-research orbi ta l  platform is to be developed by NASA, a con- 
siderable amount  of "front-end"  information w i l l  be required. I t  is the recom- 
mendation of t h i s  research  planning document that  the most eff ic ient  means  of 
obtaining t h i s  advance information w i l l  be through the ini t ia t ion of a well- 
conceived global  tropospheric  aircraft sampling program. Unlike the  blanket 
sampling coverage expected from a s a t e l l i t e  platform, such an a i rc raf t  program 
would  encompass a "select"  global sampling strategy. Thus,  the  objective w i l l  
be that of carrying  out  detailed atmospheric field  studies on a global  scale, 
bu t  involving a carefully  selected  set of "representative"  global  regions. 

Since  the proper identification of these  "representative"  regions w i l l  dic- 
tate,   to a large degree,  the  success of the proposed tropospheric  aircraft sam- 
pling program, the authors have attempted  here to  provide a modest review of 
t h i s  subject.  Central  to t h i s  approach for measuring global  trace-gas d is t r i -  
butions is the idea  that  the  global  troposphere can  be defined i n  terms of an 
ensemble  of "unique atmospheric composition domains." The basis upon which one 
domain is terminated and a new one ini t ia ted is dictated by the  existence of 
multichemical concentration  gradients i n  a specific  region of the  troposphere. 
These gradients, i n  turn,  are taken to  be a reflection of the chemical i n f l u -  
ences exerted by four key tropospheric  factors: (1)  Atmospheric transport, 
(2 )  chemical transformation  rates, ( 3 )  the  distributions of sources and s i n k s  
for  tropospheric  gases, and ( 4 )  the  distributions of sources and s i n k s  for 
tropospher i c  aerosols. 

From t h i s  approach, it becomes possible  to develop several  different 
"domain"  models having varying  degrees of spatial  resolution. I n  general, the 
more extensively  the  four  control  factors  are  permitted  to  influence  the chem- 
ical  composition of the troposphere, the  higher  the resolution of the model. 
The simplest of these models, representing  the lowest possible  resolution of the 
global  troposphere, is shown i n  figure 10. I n  t h i s  case, a t o t a l  of 12  unique 
composition domains  have  been defined. Most field  data now reported i n  the lit- 
erature  are  classified i n  a manner similar  to t h i s  low-resolution  profile. The 
low-resolution model is based on the  inclusion of  two atmospheric transport 
characteristics  (i.e.,  interhemispheric mixing  and boundary-layer/free- 
tropospheric mixing) and three very low resolution  natural t.race gas source 

28 



Tropopause 

Stratosphere  Stratosphere 

Free troposphere Free troposphere 

Anthropogenic-impact  land areas, Southern  Hemisphere - boundary  layer 

@Remote  natural  land areas, Southern  Hemisphere - boundary  layer 

@Remote  natural  oceanic areas, Southern  Hemisphere - boundary  layer 

@Anthropogenic-impact  oceanic areas, Southern  Hemisphere - boundary  layer 

@Anthropogenic-impact areas, Southern  Hemisphere - free  troposphere 

@Remote  natural areas, Southern  Hemisphere - free  troposphere 

@Remote  natural  land areas, Northern  Hemisphere - boundary  layer 

@Anthropogenic-impact  land areas, Northern  Hemisphere - boundary  layer 

@Anthropogenic-impact  oceanic areas, Nor then   Hemisphere  - boundary  layer 

@ Remote  natural  oceanic areas, Northern  Hemisphere - boundary  layer 

0 Anthropogenic-impact areas, Northern  Hemisphere - free troposphere 

@ Remote  natural areas, Northern  Hemisphere - free troposphere 

Figure 10.- A low-resolution  scheme  for  defining  global  tropospheric 
distributions. 

regions  (labeled  in  fig. 10 as  "Remote  natural  land  areas,"  "Remote  natural 
oceanic  areas,"  and  "Free  troposphere").  Finally,  it  has  been  recognized  that 
anthropogenic  emissions  can  also  have  an  impact on the  concentration  levels 
of  tropospheric  gases.  Thus,  a  total  of 6 different  source  types  was 
combined  with  two  transport  characteristics,  resulting  in 12 independent  compo- 
sition  domains.  In  this  simple  model,  no  consideration  was  given  to  the  pos- 
sible  influence of either  chemical  transformations or tropospheric  sink 
processes. 

The  proposed  medium-resolution  model  with  a  total  of 37 composition  domains 
is  too  complex  to  illustrate  in  graphic  form  as  in  figure 10. Instead,  the  key 
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elements  of  this  scheme  are  presented  in  the  form  of  a  flow  diagram  (see 
fig. ll), the  lowest  resolution  elements  typically  being  positioned  near  the  top 

Global  Troposphere 

Northern  Hemisphere 
I 

Free trobosphere Boundady layer 

Figure 11.- A medium-resolution  tropospheric  distribution  scheme. 

of  the  figure.  In  this  scheme,  as  well  as  in  the  high-resolution  one  (fig. 12) , 
the  temporal  averaging  period  was  taken  to  be  one  calendar  year.  Under  these 
conditions,  concentration  gradients  resulting  from  diurnal  and/or  seasonal  vari- 
ations  are  significantly  dampened.  Even so, the  medium-resolution  distribution 
scheme  does  provide  two  important  new  elements  not  present  in  the  simple  model: 
(1) Geographical  specification  for  source  regions  and (2) a  geographical  frame- 
work  for  considering  the  effects  of  chemical  transformations  and  atmospheric 
sinks. In the  latter  case,  the  strong  latitudinal  dependence  of  the  solar  flux 
and  the OH concentration,  both  of  which  have  a  pronounced  effect on chemical- 
transformation  rates,  have  been  estimated  in  terms  of  four  latitudinal  zones: 
Oo to 20°,  20° to 3S0, 35O to 60°, and 60° to 90°. These  same four  zones  have 
also  been  used  to  provide  some  geographical  specification  for  wet  and  dry 
removal  processes. 

Figure 12 shows  the  high-resolution  global  distribution  model.  The  number 
of  independent  composition  domains  in  this  presentation  has  now  increased  to 
132. Most  of  this  increase  reflects  the  much  higher  density  of  sources  which 

30 



tropl 

regions 
Ocean Continental 

regions 

Global  Troposphere 

Hemisphere 
Southern 

Hemisphere 
Northern 

+l 1 aye  r troposphere Free r - 5  Boundary 
Free 
,sphere 

Boundary 
1 ayer 

v 
f i g .  12(b)  

See 
f ig .   12(c)  

See 
f ig .   12(d)  

See 
f i g .  E ( e )  f i g .   1 2 ( f )  

See 
f ig .   12(g)  

See See 

(a) Entire scheme. 

1 
Free troposphere 

(Southern Hemisphere) 

I 
Tropical- 

subtropical 
lati  tudes 
(0-35') 

I 

Mid-laii tudes 
(35-50') 

I 
1 

Maritime  Maritime  Maritime 

regions 
Ocean Continental 

regions 

I 
latitudes 

Polar 

(50-goo) + Maritime 

polar 

Free troposphere,  Southern  Hemisphere. 

Figure 12.- A high-resolution  tropospheric  distribution scheme. 
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Figure  12 . -  Continued. 
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F igure  12.- Concluded. 

have  been used for bo th   con t inen ta l  and  marine  boundary-layer  regions. Each 
continental   zone,  for  example,   has  been  subdivided  into  source  domains which 
r e f l e c t  major n a t u r a l   v e g e t a t i o n  types growing i n   t h a t  area. (See f i g .  13.) 
Although f i e l d  data are now lacking  to  f u l l y   s u p p o r t   t h i s   e x t e n s i v e  breakdown 
of n a t u r a l  source d o m a i n s ,   t h e   j u s t i f i c a t i o n   f o r   t h i s   a p p r o a c h  is based on the  
hypothesis  tha t  major d i f f e rences   i n   t he   p l an t   communi t i e s   o f  two regions  will 
r e s u l t   i n  major d i f f e r e n c e s   i n   t h e  release and uptake rates of  numerous  tropo- 
sphe r i c  trace gases .  If correct, it f o l l o w s   t h a t   t h e r e  w i l l  be observed  dif-  
fe rences   bo th   in   the  absolute concent ra t ion   l eve ls   o f   these  same gases  and i n  
t h e   o v e r a l l  chemical composition of the  atmosphere  within  each domain type. 
The s t r o n g   c o r r e l a t i o n  between vege ta t ion  types and   annual   p rec ip i ta t ion   pa t -  
t e r n s  also permi ts  the  use  of  the  former to label composition  domains accord- 
ing to the p o s s i b l e  impact of  atmospheric  washout  and  rainout  in  each  region. 

Another source type considered is shown i n   f i g u r e  12 as "Cult ivated  land."  
The argument  given  here is t h a t ,   w i t h   t h e   a p p l i c a t i o n   o f   l a r g e  amounts  of f e r t i -  
l i z e r   i n  modern farming  technology,  trace-gas releases from cu l t iva t ed   l and  are 
l i k e l y  to be s u b s t a n t i a l l y   d i f f e r e n t  from those   f rom  na tura l   vege ta t ion   in  t h e  
same area. 

A s  a f i n a l   a d j u s t m e n t  to t h e   c o n t i n e n t a l  breakdown of  composition  domains, 
t h e  p o t e n t i a l  role of anthropogenic sources i n   v a r i o u s   l a t i t u d i n a l   z o n e s   h a s  
been   i nd ica t ed .   In   t h i s  case, g l o b a l   p o p u l a t i o n   d e n s i t y  and  per  capita  energy- 
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Figure 13.- P r inc ipa l   p l an t   fo rma t ion  types of  the  Earth  from  reference 2 
(Tricart ,  J.; and Ca i l l eux ,  A.: I n t roduc t ion  to Climatic Geomorphology. 
S t .  Mar t in ' s  Press, c.1973.) 

consumption  char ts   ( f igs .  14 and  15) in   combinat ion  with  general   a tmospheric-  
c i r c u l a t i o n   p a t t e r n s  were used as a guide.  

The approach  taken  in   def ining a higher   densi ty   of  sources for   the  marine 
environment was n e c e s s a r i l y  more i n d i r e c t   t h a n  that used   for   cont inenta l  areas. 
I n   t h i s  case, we have s p e c i f i e d   t h e  major ocean   sur face   cur ren ts  and t h e   c e n t r a l  
gyres   of   each Ocean as domain  boundary limits. The j u s t i f i c a t i o n   f o r   t h i s  
approach  has  been i l l u s t r a t e d  i n   f i g u r e s  16 and  17. From t h e s e   f i g u r e s  it can 
be s e e n   t h a t  a reasonably good c o r r e l a t i o n   c a n  be made between many of   the  phys- 
ical  fea tures   o f   the   ocean  and biomass p roduc t iv i ty .   In   gene ra l ,   t he   h ighes t  
n u t r i e n t   l e v e l s   i n   t h e  Ocean are found in   upwell ing  regions  and  in  Ocean su r face  
cu r ren t s   l ead ing  away from these  upwelling  regions.  The lowest n u t r i e n t   l e v e l s  
are t y p i c a l l y   f o u n d   i n   c e n t r a l  Ocean gyres .   Since  the number densi ty   of   phyto-  
plankton and zooplankton   ( these   spec ies   be ing   the  major source of  ocean biomass) 
s t r o n g l y   p a r a l l e l s   n u t r i e n t   l e v e l s ,   t h e  use  of Ocean cur ren ts   and   gyres  as 
l a b e l s  for different   composi t ion  domains was taken to be a r e a s o n a b l e   f i r s t  
approximation.  Again, as i n   t h e  case of cont inenta l   vege ta t ion ,   the   working  
hypothesis  was t h a t  major changes   i n   b io log ica l  types and number d e n s i t y  have a 
s ign i f i can t   impac t  on the  ra te  of  release and  uptake of trace atmospheric   gases .  

The l as t  ad jus tmen t   i nco rpora t ed   i n to   t he   h igh - re so lu t ion  scheme shown i n  
f i g u r e  1 2  involved a r eeva lua t ion   o f   t he   dens i ty  of domains i n   t h e   f r e e   t r o p o -  
sphere.   This number was increased  f rom 10 to 37 ,   r e f l ec t ing   t he  role t h a t  long- 
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Figure 14.- Global  population  density  as  of 1971. Tallest  peaks  are  for  Japan, 

having  a  population  density of 283 per  square  kilometer;  lowest  plateau  is 
for  Greenland,  where  density is nearly  zero.  Figure  is  from  reference 3 
(Freedman,  Ronald;  and  Berelson,  Bernard:  The  Human  Population.  Sci. 
American,  vol. 231, no. 3, Sept. 1974, pp. 31-39. Copyright 01974 by  Scien- 
tific  American,  Inc.  All  rights  reserved.) 



Figure 15.- Global  energy  consumption as of 1968. Units  of  energy are equiva- 
lent  kilograms  of  coal  burned  per  capita.   Highest  plateau is the  U.S.A., 
with a figure  of  10,331; lowest is western  Africa  with 51. Figure is from 
reference 3 (Freedman,  Ronald;  and  Berelson,  Bernard: The Human Population. 
Sci. American, vol. 231,  no. 3,  Sept.  1974,  pp. 31-39. Copyright 01974 by 
S c i e n t i f i c  American, Inc. A l l  r ights   reserved.)  
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Figure 16.- Major surface ocean currents. 



Figure 17.- Biomass  productivity  in  coastal  regions  and  the  open  Oceans  from 
reference 4 .  (Koblentz-Mishke,  Olga J.; Volkovinsky,  Vadim V.; and 
Kabanova,  Julia G.: Plankton  Primary  Production  of  the  World  Ocean. 
Scientific  Exploration  of  the  South  Pacific - Proceedings  of  a  Symposium, 
Warren S. Wmster, ed.,  Natl.  Acad.  Sci., 1970, pp. 183-193.) 

range  transport  may  play  in  controlling  trace-gas  and  aerosol  distributions.  In 
figure 12 the  new  composition  domains  resulting  from  this  reevaluation,  of  the 
transport  characteristics  of  the  free  troposphere  have  been  labeled  in  terms 
of  air  mass  types,  which,  in  turn,  are  identified  in  terms  of  their  geographical 
source  of  origin. 

In  summary,  if  the  results  from  the  high-resolution  model  are  accepted  as 
being  generally  well  founded  (based  on  reasonable  assumptions),  the  implications 
for  future  global  tropospheric  sampling  programs  are  twofold: 

(1) The  troposphere is indeed  very  complex  with  regard  to  the  global  dis- 
tributions  of  numerous  trace  gases  which  collectively  define  the  bulk of the 
chemistry  of  the  troposphere;  thus,  satellite  monitoring of many of these  gases 
is  considered  to  be  essential. 

(2)  Although  the  number of regions  in  the  troposphere  that  might  be  labeled 
as having  a  unique  chemical  composition is very  large (i.e., 132 and  possibly 
much  higher),  there is at the  same  time  considerable  redundance  in  domain  types 
when  the  global  troposphere  is  viewed  in  a  fully  partitioned  format.  This 
observation,  when  taken  in  combination  with  the  fact  that  not  all  composition 
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domains  are  predicted  to  be  of  equal  importance  and  therefore  in  need of equal 
sampling  time,  leads  to  the  conclusion  that a "select"  global  aircraft  sampling 
program is both  scientifically  and  logistically  feasible. 

As  related  to  NASA's  long-term  tropospheric  goals,  the  justification  for  an 
aircraft  sampling  program  is  based on the  fact  that  it  will  provide  definitive 
chemical  information on the  troposphere  which  will  be  invaluable  to  the  success- 
ful  planning  and  deployment  of  a  tropospheric-research  satellite  monitoring  sys- 
tem  and,  as  a  proven  mobile  sampling  platform,  it  will  provide  the  single  most 
important  source  of  ground-truth  measurements  for  comparisons  with  satellite 
observations. 

3.3 FIELD-MEASUREMENT  MISSIONS - THE PROGRAM 
3.3.1 Tropospheric  Aircraft  Sampling  Program 

In  section 3.2, the  basic  guidelines  for  improving our scientific  under- 
standing  of  the  troposphere  via  field-measurement  programs  were  defined.  In 
particular,  arguments  were  presented  which  strongly  suggested  that  the  most 
effective  means  of  establishing  the  global  distributions  of  numerous  tropo- 
spheric  trace  gases  and  aerosols  would  be  through  the  use  of  satellite  research 
platforms.  At  the same  time,  the  point  was  made  that  the  successful develop 
ment  of  such  a  satellite  system  could  depend  critically on the  availability  of 
new  chemical  information on the  troposphere.  Thus,  it  was  proposed  that  a 
select  global  tropospheric  aircraft  sampling  program  be  initiated,  the  results 
from  which  could  provide  this  necessary  front-end  information.  In  the  text 
that  follows,  the  authors  have  attempted  to  examine  some  of  the  more  practical 
aspects  of  defining  this  global  sampling  program  and  thus  have  extensively  used 
the  information  presented  earlier  in  section 3.2  (i.e.,  figs.  12  to  17). 

One  of  the  important  factors  that  dictates  the  spatial  resolution  required 
in  making  measurements  of  a  specific  chemical  species  on  a  global  scale  is  its 
atmospheric  residence  time.  (See  table 2.) In  general,  the  longer  the  resi- 
dence  time,  the  lower  the  spatial  resolution  required  for  the  measurement. In 
the  case  of  CFC13,  CF2C12,  and  N20,  the  respective  residence  times  in  the  tropo- 
sphere  are  sufficiently  long (i.e.,  '20 years)  that  a  single,  well-placed  ground 
station  in  the  Northern  and  Southern  Hemispheres  would  suffice  for  purposes  of 
establishing  the  distributions  of  these  species. 'I It would  also  suffice  for 
establishing  long-term  secular  trends  in  the  concentration  levels  of  these  same 
species. 

When  the  residence  time  of  a  chemical  species is reduced  from 220 years  to 
a  time  of 1 to  several  years,  the  spatial  resolution  required  for  field  measure- 
ments  approaches  that  suggested  by  the  low-resolution  model  given  in  figure 10. 
For  species  with  still  shorter  residence  time  (several  days  to 1 year),  the 
existence  of  local-regional  sources  and  sinks  in  combination  with  the  variable 

lThis  statement  should  not  be  interpreted  to  mean  that  one  could  understand 
the  source  flux  strengths  of  these  molecules  globally  from  two  monitoring  sta- 
tions.  The  latter  problem  would  require  far  more  extensive  measurement. 
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Residence 
t i n e  

la) 

Very S b K t -  
l ived species 
( < I  sec  to 
1 day) 

Short-lived 
species 

2 weeks) 
(1 day to 

Uoderate-liwd 
species 
( 2  weeks  to 
1 yr)  

Long-llved 
species 

years) 
(1 t o  several 

Very long- 

(220 y r )  
l ived  species 

1 

aEstimated  residence times for a l a  

Nitrogen 
species 

NO 
NO2 

N205 
m3 

Mi02 

Chlorine 
species 

c1 
c 10 
ClONO2 

3x1 
' H E 1  
32HC13 

c2p3c13 

CF2Cl2 
CFClJ 
c2F4c12 

CC14 

Sulfur 
species 

A 
tude of 30° where average (XI mncentcation w a s  taken to be 

chemical  reactions. 

atomic oxygen recombines with  molecular oxygen instantaneously  to reform 03; thus, l i f e t i m  of 
0 3  is more l i k e  10-30 days. 

assignment of this  mmpund must be m n s i d e r e d   s m w h a t   S p c u l a t i w   a t   t h i s  time. 

blifetime  of  these species may be controlled by washout-rainout rather than  gas-kinetic or  photo- 

CAlthough the time required for 0 3  to be photodecmposed is 51 day, 958 or more of  the resulting 

dconsiderable  uncertainty  in  the  rate  coefficients for reaction of t h l s  species with (XI, l i fe t ime 

l e v e l s   o f  H S y  radicals d i c t a t e s   t h e  need f o r  an even   h igher   l eve l  of spa t ia l  
r e s o l u t i o n   i n  a f ie ld-measurements   program.  In   this  case, the  medium r e s o l u t i o n  
shown i n   f i g u r e  1 1  may be required. For r a p i d l y   r e a c t i n g  species ( r e s idence  
times of less than 1 minute to 2 d a y s ) ,  local sources, sinks,  and  chemical- 
t ransformat ion  rates are expected to  create l a r g e   v a r i a t i o n s   i n   t h e   o b s e r v e d  
c o n c e n t r a t i o n   l e v e l s  of these  compounds.  Thus, t h e  minimum field-sampling 
r e s o l u t i o n  required would be t h a t  shown i n   f i g u r e  12.  

I n  order to i l l u s t r a t e   t he   u se fu lness   o f   t he   r e s idence - t ime   concep t ,  we 
have  examined a spec i f i c   chemica l   sys t em  in  terms o f   t he  spa t ia l  r e s o l u t i o n  
which  might be required  of   any  global   f ie ld-sampling  experiment .   This  prelim- 
i n a r y   a n a l y s i s  is t h e r e f o r e   c o n s i d e r e d   e q u a l l y   v a l i d   f o r   e i t h e r   a i r c r a f t  or 
satel l i te  sampling  platforms. The chemical  subsystem selected is one t h a t  
d e f i n e s  much o f   t he   f a s t   pho tochemica l   cyc le   i n   t he   t roposphe re ,  namely t h a t  
involving  carbon,  nitrogen,  ozone,  and HxOy species. For completeness, table 2 
summarizes the   e s t ima ted   r e s idence  times f o r  a l l  major NO,, carbon,  and HxOy 
species. These  res idence times, in   con junc t ion   w i th   t he  medium- and  high- 
r e s o l u t i o n  spa t ia l  models i n   f i g u r e s  11 and 1 2  have  been  used to g e n e r a t e   t h e  
results g i v e n   i n   t a b l e  3. T h e s e   r e s u l t s   s u g g e s t   t h a t   f o r   t h e   c l e a n   t r o p o s p h e r e  
t h i s  class of species would dictate a hor izonta l   sampl ing   reso lu t ion   ranging  
from 200 to 6000 km. I n   g e n e r a l ,   l a n d  areas r e q u i r e  somewhat higher  sampling 
r e so lu t ion   t han   t he   oceans .   I f   t he  airspace over  major i n d u s t r i a l   c o u n t r i e s  
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TABLE 3 . -  SPATIAL RESOLUTION  REQUI-S FOR AIRCRAFT HEASUREMENTS 

OF CARBCN, NITROGW, OZONE, AND lisy RELATED SPECIES 

1 T 
~. ~ ~~ 

Horizontal  resolution, km, for - 
"" ~ ~~ 

Vertical  resolution, km, for - 
t T I ~ - r  

Ocean areas Land areas 

t spec ie s  1 - 

Av. 
(a)  
- 

1 . 5  

/ 
2.5 

1 
3 
1 .o 
5 
7 
I . o  
- 

- 

Av . 
(a) 
- 
1 . 5  

/ 
2.5  + 
3 
1 .o 
5 
7 
1.0 
- 

Latitude Latitude 1 Longitude I 
High High 

__ 

0.5  

I 
1 . 5  

1 
2 
0 . 5  
3 
5 
1 . 5  

~ 

~-~ 
High Low 

200  600 

1 ! 
500 1000 

1 1  
500 1000 
300  600 
500 1500 

I 5 0 0  3 0 0 0  
3 0 0  600 

High 
~ 

200  

1 
500 

1 
500 
300 
IO00 
IO00 
300 

Av. 
(a ) 

~ 

300 

I 
700 

I 
IO00 

I 5 0 0  
600 

3000 
500 

Av. Bigt 
( a )  

400 2 0 0  

I 

t 1 
700 500 

1 1  
700 500 
500 300  

!OOO 1500 
000 500 

500 3 0 0  

Low Av. 
(a)  

2 0 0 0  1000 

I I 
2 0 0 0  1000 

1 1  
1000 600 
2 0 0 0  1000 

2 0 0 0  1500 
6000 3 0 0 0  
1000 600 

L O W  

~ 

2 0 0 0  

I 
2 0 0 0  

I 
1000 

600 
1500 
3000 
600 
- 

Av . 
(a )  

~ 

400 

I 
1000 

I 
500 
700 

1500 
1000 

500 

2 0 0  600 

1 1 
500  1000 

1 1  
3 0 0  1000 
500 2 0 0 0  

3000 6000 
500 2 0 0 0  

3 0 0  1000 

0 . 5  

I 
1.5  

I 
2 
0.5  
3 
5 
0 .5  
- 

a s t a t i s t i c a l l y  weighted  average. 
aAverage va lue   in   th i s   case  is not  the  arithmetic  average  of  the  high and low values, but rather  represents 

was to be sampled, much higher sampling resolution would necessarily be 
required i n  these land areas than over the  oceans. I t  is also noteworthy that 
for many species  (e.g.,  transients) higher resolution w i l l  be required  for  lat- 
itudinal changes than for  longitudinal changes. The la t te r  trend reflects the 
strong dependence of several fast-photochemical  species on the  absolute  levels 
of solar f l u x  and H20, both of  which  have strong  latitudinal dependences. For 
the  vertical  coordinate,  the sampling resolution  required ranges of 0.5 to  
10.0 km. No significant  differences  are  indicated  for land areas  versus the 
ocean areas. 

Although the sampling strategy is discussed  previously i n  terms of  atmo- 
spheric  trace-gas  species, a field-measurement strategy  for  aerosols can  be 
developed us ing  a similar approach. Also, the aerosol field-measurement s t ra t -  
egy should be developed i n  conjunction w i t h  the Aerosol Climate Effects (ACE) 
special study currently being conducted as  part of the NASA Climate Program. 
The objectives of the ACE special s tudy  are  to help  assess  the impact of  atmo- 
spheric  aerosols on climate and to use the special circumstances of a volcanic 
injection of stratospheric  aerosols  to  test our ab i l i ty  to understand and  model 
climate change. Coordination w i t h  the ACE special study could result  i n  cooper- 
ative missions between the two programs,  mutual  use of instruments and sampling 
platforms, and joint  theoretical and laboratory  studies. 
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As d i s c u s s e d   i n   s e c t i o n  3 . 2 ,  a second major p r e r e q u i s i t e   t h a t  must  be 
s a t i s f i e d   b e f o r e   i n i t i a t i n g  any major g loba l   a i rc raf t   sampl ing   program is t h a t  
of   def in ing  a set  o f   " r ep resen ta t ive"   r eg ions   o f   t he   t roposphe re   t ha t ,  upon 
being  sampled, w i l l  p r o v i d e   t h e   l a r g e s t   p o s s i b l e   s c i e n t i f i c   r e t u r n   f o r   f l i g h t  
hours  invested.   Again,  as a pre l iminary   p lanning   exerc ise ,  we have  taken  the 
in fo rma t ion   p re sen ted   i n   s ec t ion  3 . 2  and developed two p o s s i b l e   g l o b a l  sampl- 
ing   scenar ios .  In each case, the   r ep resen ta t ive   r eg ions  l isted have  been 
l a b e l e d   i n   t h e   n o t a t i o n   p r e s e n t e d   i n   f i g u r e  12. These r e s u l t s  are summarized 
i n   t a b l e  4 .  From table 4 (a) it can be s e e n   t h a t   t h e   s o - c a l l e d   " r e s t r i c t e d "  
format encompasses a t o t a l  of 27 independent  regions,  whereas  the  "expanded" 
format ( table  4 ( b ) )  is de f ined   i n  terms of 43 d i s t i n c t   r e g i o n s .  I n  both cases, 
however,   an  element  of  redundancy  appears  in  the  form  of  specifying  both  north- 
e r n  and southern  hemispheric   sampling  for  similar domain types. Thus, a mre 
cr i t ical  ana lys i s   o f   each  of these  sampling  scenarios  could p o s s i b l y  resu l t  
i n  a f u r t h e r   r e d u c t i o n   i n   t h e  total  number of   regions to be sampled by 30 to 
40 percent .  

A s  a f i n a l   p l a n n i n g   e x e r c i s e   f o r   f u t u r e   a i r c r a f t   s a m p l i n g   p r o g r a m s ,   t h e  
information  from  the  sampling  formats  presented  in table 4 has  been  combined 
wi th   o the r   ope ra t iona l / l og i s t i c   cons ide ra t ions   fo r   pu rposes   o f   eva lua t ing   t he  
timetable required f o r   c o m p l e t i n g   s e v e r a l   d i f f e r e n t  types o f   a i r c r a f t   s a m p l i n g  
programs.  Other major p rogram  va r i ab le s   cons ide red   i n   t h i s   ana lys i s  were the  
number o f   r e s e a r c h   a i r c r a f t   p a r t i c i p a t i n g ,  one  versus two, and t h e  number of 
seasons  of   the  year   during which  each  "representative"  region would be sampled, 
again  one  versus two. In  each of the   f ie ld   p rograms  presented  below, it has 
f u r t h e r  been assumed tha t   t he   ave rage  time required to sample  an  individual  
composition domain  would be approximately 2 weeks  (6 or 7 f l i g h t s )  and t h a t  no 
more than 8 w e e k s  o f   cont inuous   f ie ld   sampl ing  would be scheduled   in  a given 
year  : 

No. of Time f o r  
a i r c r a f t   s e a s o n s   c a p l e t i o n ,   y r  

. - - -. . . . 
Restricted format I 

I -A- 1 
1 4 - 2  
I-B-1 
I-B-2 

. 

2  2 
.. . 

Expanded format 

I1 -A- 2 2 3 . 0  
11-B-1 6 . 3  
I1 -B- 2  2  2 1 1 . 5  

~~ 
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TABLE 4.- POSSIBLE  SAMPLING  SCENARIOS FOR A "SELECT"  TROPOSPHERIC AIRCRAFT 

SAMPLING PROGRAM 

(a)  "Restricted" sampling f onnat 

I Representative  regions  to be sampled for - 
Free  troposphere Boundary layer, Ocean Boundary layer, 

continental 

00 t o  350 

Mari time t ropical  

Continental  tropical 

35O to  60° 

Maritime tropical  

Maritime polar 

oo to  350 

Maritime t ropical  

Continental  tropical 

35O to  60° 

Maritime t ropical  

Maritime  polar 

Southern Eenisfiere 

00 to  350 

Central   Atlantic Gyre 

Central  Pacific G y r e  

Equatorial  Pacific C u r r e n t  

35O t o  55O 

Peru Current  

00 t o  200 

Evergreen tropical  forest  

Tropical  seasonal 
deciduous forest  

Savanna 

Northern Hemisphere 

00 t o  350 

Central  Atlantic Gyre 

Central  Pacific Gyre 

Gulf Stream 

Kuroshio Current 

35O to  60° 

North Pacif ic   Drif t  

North Atlantic  Drift 

200  t o  350 

1 
00 t o  200 

Tropical  seasonal 
deciduous forest  

Savanna 

200 to  350 

Desert 

Steppe and grasslands 

35O to  50° 

Needle-leaf fores t  
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TABLE 4.- CONCLUDED 

Free  troposphere 

" - 
00 t o  350 

Maritime t ropical  

Continental  tropical 

35O t o  60° 

Maritime t ropical  

Continental  tropical 

Maritime polar 

60° t o  90° 

Maritime polar 

(b) "Expanded" sampling  format 

~ ~~ 

Representative  regions  to be sampled for - 

~~~ 
~ 

0 0  to  350 

Maritime tropical 

Continental  tropical 

35O t o  60° 

Maritime t ropical  

Continental  tropical 

Maritime polar 

60° to  90° 

Mar i time polar 

Continental  polar 

Boundary layer, Ocean Boundary layer, 
aontinental 

. ~~ " " ~ . ~ .  

!Southern Hemianhere 

0 0  t o  350 

Central  Atlantic Gyre 

Central  Pacific Gyre 

Equatorial  Pacific  Current 

Peru Current 

350 to  550 

Central  Indian Ocean Gyre 

Central  Pacific Gyre 

550 t o  900 

West  Wind Dr i f t  

Northern Hemisphere 
-~ .~ ~ ~ 

0 0  t o  350 

Central  Atlantic Gyre 

Central  Pacific Gyre 

Equatorial  Pacific  Current 

G u l f  Stream 

Kuroshio  Current 

Equatorial  Indian Ocean 
Current 

35O t o  60° 

North Pacif ic   Drif t  

North Atlant ic   Drif t  

Central  Pacific Gyre 

-~ ~~~~ ~~~ 

0 0  t o  200 

Evergreen tropical  forest  

Tropical  seasonal 
deciduous forest  

Savanna 

Cultivated  land 

Desert 

200 t o  350 

Steppe and grasslands 

0 0  t o  200 

Tropical  seasonal 
deciduous forest  

Savanna 

Cultivated  land 

200 t o  350 

Desert 

Steppe and grasslands 

Evergreen  temperate fores t  

35O t o  50° 

Needle-leaf forest  

60° t o  90° 

Tundra 
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From this  array of sampling schemes, it can be seen that  the  timetable  for com- 
pleting  the  various  possible programs ranges from  3.3 to  23.0 years. Of these 
possibil i t ies,  program I-B-2 is one that appears to  be practical both i n  terms 
of execution time and funding dollars, and one that  also has a h igh  potential 
for a major sc ien t i f ic  payoff.  Requiring 6.5 years2  to complete, t h i s  program 
involves  the use of  two research aircraf t   to  take samples i n  27 "representative" 
tropospheric  regions i n  the Northern and Southern Hemispheres for two different 
seasons of the  year. 

3.3.2 Lower Atmospheric Research Satel l i te  (LARS) 

The large  spatial and temporal heterogeneities of tropospheric source and 
s i n k  regions  as  well  as  the  variability i n  s ta te  parameters make it imperative 
that a comprehensive global s tudy  of the C-N-03  and  S-NH3-aerosol systems 
include  the  application of  remote sensing  technology on  one or more orbi ta l  
platforms. Although a i rc raf t  measurements  can  be quite important for  character- 
izing  various  concentration domains, measurements  from space are  likely  to be 
the  best method to  accurately map the  global  distribution of many species whose 
abundance is affected by both transport and photochemistry. Space  measurements 
are probably also  best  to determine whether a concentration  variation i n  a given 
location is due to  Eulerian  or Lagrangian effects. 

Thus,  a goal of the NASA Tropospheric  Research Program Plan is the  eventual 
implementation of a Lower Atmospheric Research Sa te l l i t e  (LARS). By chronologi- 
cally following  the  tropospheric a i rc raf t  sampling program, it is believed that 
many of the  mission and design  specifications  for atmospheric  chemistry experi- 
ments on LARS can be formulated on the  basis of the f i n d i n g s  of the a i rc raf t  
studies. The long-term global coverage that could be obtained by LARS w i l l  com- 
plement the  data  obtained by the a i rc raf t  program, which w i l l  be  more detailed 
and precise b u t  also more spatially and temporally limited than L A R S .  Thus ,  the 
long range orbital  and intermediate range a i rc raf t  programs suggested  here are 
complementary i n  nature and, w i t h  the  appropriate development and planning of 
both missions, it is probable that many of the key scientific  questions  discus- 
sed i n  appendix A of this  publication w i l l  be answered and that  several new and 
important problems w i l l  be identified. Appropriate  atmospheric  chemistry mis- 
sions  for LARS could  include: (1 )  The detailed  global mapping  of species dis- 
tributions and major source and s i n k  regions; ( 2 )  a better understanding of the 
global importance of anthropogenic  sources of  key trace  species; ( 3 )  the  devel- 
opment  and verification of detailed  global and regional models of tropospheric 
trace-gas composition and air  quality w i t h  capabilities  to  predict  the impact of 
various anthropogenic  emissions; ( 4 )  a comprehensive record of the  present 
global  tropospheric  trace-gas composition, which may ultimately be used i n  iden- 
tifying long-term secular  or  cyclic  variations i n  parameters  relevant  to 
regional and global  air  quality; and (5) a determination  via a technology trans- 
fer  program i n  which instruments should be  implemented for  continuous, long-term 
monitoring of air   quali ty and the  effectiveness of pollution  control  strategies. 

2Eight  years would probably be a more rea l i s t ic  time period  since some 
extra time would probably be  needed after 2 or 3 years of f ie ld  sampling for 
more extensive  data  analyses. 
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These potential chemical  missions for LARS could be conducted i n  conjunction 
w i t h  other  potential  missions  to s tudy  atmospheric structure, dynamics, and cli- 
mate and to  develop operational  meteorological sounding techniques. 

Because  of the h ighly  coupled nature of tropospheric photochemistry, s imul -  
taneous measurements  from LARS of as many species  as  realistically  possible 
should be a major objective. Thus, implementation of t h i s  mission w i l l  depend 
on a  vigorous program to develop remote sensing  technology as well as  an intense 
field-measurements effor t  u s i n g  ground-based instruments and a i rc raf t  measure- 
ments. T h i s  program w i l l  be  complemented by modeling calculations  to determine 
which configuration of species measurements  from a space platform would  be  most 
valuable and the  concentrations  likely  to be observed i n  the  troposphere. 
Although the  ultimate  goal of the orbi ta l  program for  the  troposphere is the 
implementation of a comprehensive, multiple-species measurement  program  from 
space (i.e.,  aboard LARS), smaller  data-gathering  missions u s i n g  remote sensors 
either from space, from ground-based stations, or from aircraf t  should be 
included i n  the  tropospheric program. By demonstrating the feasibi l i ty  of var- 
ious remote sensing  instruments and addressing one or two  key scient i f ic  ques- 
tions,  these  smaller  missions w i l l  be quite  valuable i n  eventually  leading up to 
the comprehensive LARS mission. For example, projects such as  the Measurement 
of  Air Pollution from Satel l i tes  (MAPS) experiment, which w i l l  measure tropo- 
spheric CO from the Space Shuttle, and the ground-based  remote  measurement  of 
atmospheric NH3 are i n  accord w i t h  the  overall  goals and directions of t h i s  
NASA Tropospheric Research Program Plan. The appropriateness and value of other 
remote sensing  missions  preliminary to LARS w i l l  have to be judged on a case-by- 
case  basis. 

A tentative l ist  of  key atmospheric species and the  required limits of 
detectability  are  listed i n  table 5. ( A  f ina l  determination of the most impor- 
tant  species and their  concentrations w i l l  have to await  the f i n d i n g s  of the 
tropospheric a i rcraf t  sampling program and other remote sensing  missions.) The 
tentative list of species  that would  be desirable  to measure from space 
includes  03,  active N (NO, N02, and HNO3) , CO, CH4, HzCO, nonmethane hydrocar- 
bons (NMHC), HxOy (OH, H02,  H202,  and H 2 0 ) ,  NH3, S02, and reduced S species 
(HzS, CH3SCH3, CS2,  and COS) .  The optical  properties of aerosols and  atmo- 
spheric  state  variables should also be measured. (See appendix C for  a  discus- 
sion on the measurement  of atmospheric state  variables.) Spot measurements 
from aircraf t  and balloons of the  chemical  composition of aerosols under a  sat- 
e l l i t e   f l i gh t  track should also be important components  of the  mission. 

To a  large  extent,  the  final  specifications  for any atmospheric  chemistry 
sa t e l l i t e  measurements w i l l  have to await  the f i n d i n g s  of the aircraf t  sampling 
program and the  further development  of  remote sensing  technology. For instance, 
data from the aircraf t  program may indicate  that because of the validity of 
various  photostationary-state  relationships it is necessary to measure only a 
subset of the active-N and HxOy species  to determine the  local abundances of a l l  
the  species of interest  w i t h i n  these  families.  Similarly,  a  determination of 
which NMHC and reduced-S compounds should optimally be measured from LARS to  
adequately  characterize  the chemical system w i l l  have to await  the results 
obtained from preceding  missions, especially  the  aircraft program. The prelimi- 
nary list of species  for measurement on the LARS mission includes  a measurement 
from space of CH4. The long residence time of CH4 causes  the abundance to be 
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TABLE 5 . -  PRELIMINARY ~ U ~ W  REQUIREMENTS I N  TROPOSPHERIC  CHEMISTRY 

A. Resolution: 

Vertical: A minimm of two measurements,  one  within 

mid-troposphere. 
the  boundary layer and t h e   o t h e r   i n   t h e  

Horizontal:  Averaging  over  approximately 200-kin- 
diameter circles. 

B. Species: 

L i m i t s  of d e t e c t a b i l i t y  

Acceptable 

10  PPb 

50 PPb 

1 . 5  PIm 

10 PPt 

.10 ppb 

10 PPt 

1 0  PPt 

100 ppt 

5 x 105 m-3 

108 an-3 

1 . 0  ppb 

100 ppm 

. 1 0 ppb 

50 PPt 

5 PPt 

5 PPt 

5 PPt 

50  PPt 

i Precis ion,  
percent  

20 

20 

5 

20 

20 

20 

20 

20 

1 0  

20 

20 

20 

20 

20 

20 

20 

20 

20 

*Determination of which NMHC a r e  to  be measured w i l l  be based 

+I t  may be p x s i b l e  t o  measure a s e l ec t ed   subse t  of the  active-N 
upon r e s u l t s  of  preceding  missions. 

families, depending upon resul ts   of   preceding  missions.  
and H& s p e c i e s  and infer   the   abundances   o f  a l l  t he   spec ie s   o f   t hese  

preceding  missions.  
$'Measurement of  reduced S canpounds w i l l  depend upon r e s u l t s  of 

C. State   var iables:   Include  temperature  (t5 K), pres su re   o r  
number d e n s i t y  ( ? l o % ) ,  cloud  cover  and 

d i s t r ibu t ion   o f   l i gh tn ing .   (See  
cloud  height,  and the  frequency  and 

appendix  C.) 

D. Aerosol measurements:  Optical  properties  frcm space, and 
a i r c r a f t  and balloon spot measurements, 
under t h e   f l i g h t  t ract ,  of chemical 
Composition  and s i z e   d i s t r i b u t i o n  of 
aerosols. 
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relatively  uniform.  Fixed-base  measurements are thus   o f ten   adequate   for  mea- 
surements  of CH4 concent ra t ions .  However, t h e  CH4 measurement  from space is 
sugges ted   for  LARS as a p o t e n t i a l  means o f   i den t i fy ing  any in t ense  CH4 sources 
t h a t  may e x i s t ,   b u t  which are p r e s e n t l y  unknown. 

Though n o t   s p e c i f i c a l l y  l is ted i n   s e c t i o n  3 . 3 . 1  or i n  table 5,  a key com- 
ponent   of   both  the  t ropospheric   a i rcraf t   sampling  program and LARS missions 
should be a d i a g n o s t i c  and predic t ive   model ing   capabi l i ty  to analyze and simu- 
l a te  t h e  data gathered.  Because  of  the  complexity  of  the  photochemical  system 
of the   t roposphere ,  a t ruly  complete   understanding  of   the data r e q u i r e s   d e t a i l e d  
numer ica l   ca lcu la t ions ;  on the   o the r  hand, s i n c e  no measurement  program  can 
e n t i r e l y   d e f i n e   t h e   c h e m i c a l  and phys ica l  s ta te  of   the  t roposphere,   numerical  
models must be r e l i e d  upon to provide data fo r   pa rame te r s   t ha t  are n o t   d i r e c t l y  
measured.  Thus, it is env i s ioned   t ha t   mode l ing   e f fo r t s  w i l l  be included  in   both 
the   a i rc raf t   sampl ing   program and LARS missions to complement the   exper imenta l  
packages. I t  is recommended t h a t  a cen t r a l   da t a -hand l ing  and  computing f a c i l i t y  
a v a i l a b l e  to a l l  inves t iga tors ,   bo th   exper imenta l  and theore t ica l ,   be   adopted  
for   these   miss ions  to f a c i l i t a t e   t h e   f l o w   o f   d a t a  and t h e   e s s e n t i a l   i n t e r a c t i o n  
required. 

3.4  MODELING 

3 . 4 . 1  Global-Scale Modeling 

The object ives   of   global-scale   model ing are to expla in   the  detai led fea- 
tures of   the   chemica l   in te rac t ions   in   the   t roposphere  and to support   the   devel-  
opment of observing  systems  appl icable  to  t ropospher ic   po l lu t ion .  Models 
p r o v i d e   i n s i g h t   i n t o   t h e   r e l a t i o n s h i p s  between  trace-species  concentrations and 
the  chemical ,   physical ,  and b io logica l   p rocesses   tha t   de te rmine   those   concent ra -  
t i ons .  The c a p a b i l i t y   o f  models to explore t h e   e f f e c t s  of a wide range  of  fea- 
s ible  parameter  values  such as chemical-reaction rate cons tan ts   permi ts   an  
assessment  of our  degree  of   understanding  of   natural   t ropospheric   processes  and 
p o i n t s  o u t  those  problem areas most i n  need of   fur ther   s tudy .  Models allow t h e  
e s t ima t ion   o f   t he   spa t i a l  and  temporal scales of   impor tance   in   bo th   na tura l  and 
anthropogenic- inf luenced  t ropospheric   processes ,   thus   contr ibut ing to the  devel-  
opment  of  sensor  requirements  for  observing  systems.  Finally,  human a c t i v i t i e s  
tha t   might   p lay  a major role in   per turb ing   the   chemica l   budgets   o f   the   t ropo-  
sphere  can be s tudied  through  var ious  model ing  scenarios ,  and the  future   conse-  
quences   o f   bo th   indus t r ia l   emiss ions  and   proposed   cont ro l   s t ra teg ies  may be 
estimated. 

NASA has  played a c e n t r a l  role in  the  development  of  mathematical  models  of 
the   g loba l   t roposphere ,  and cont inued  ref inement   of   such models is e s s e n t i a l   f o r  
the  proper   interpretat ion  of   t ropospheric   measurements .   In   the  current  NASA 
program,  global   t ropospheric   model ing  act ivi t ies   include one-  and two- 
dimensional  photochemical  modeling, a mean-tropospheric  photochemical box  model, 
and a three-dimensional  chemical/dynamical model to s t u d y   t h e   g l o b a l   d i s t r i -  
but ion  of  CO and CH4. Present   chemica l - t ranspor t  models should be used to guide 
and to set  pr ior i t ies  fo r   t he   s e l ec t ion   o f   a i rbo rne   mi s s ions   i n   t he  NASA imple- 
menta t ion   s t ra tegy   for   the   g loba l -sca le  and synopt ic-regional-scale  s tudies  of 
the  t roposphere.  The f i e l d  measurements, i n   t u r n ,  w i l l  be impor t an t   i n   r e f in ing  
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current concepts i n  the  chemical-transport models through verification of the 
dominant  mechanisms and chains  active i n  the  troposphere. I n  t h i s  i teration of 
f ie ld  measurements and mathematical modeling, the  foundation w i l l  be established 
for development  of predictive models  of the  global-scale and synoptic-regional- 
scale troposphere.  Ultimately, well-developed predictive models w i l l  serve  as 
the  basis  for  selection of scientific  investigations  for  a  series of lower atmo- 
spheric  research sa t e l l i t e  missions. 

The global-scale models being developed and applied i n  the  tropospheric 
research program are  primarily designed to  explain  the  features of the  various 
chemical budgets. Typically  these models contain  a  detailed  description of tro- 
pospheric photochemistry,  adopt an  eddy diffusion approach to  transport, and 
specify  meteorological  parameters (such as temperature and relative humidi ty)  
and physical  source  functions  required by the model.  The output of such models 
is the spatial  and temporal distributions of the  concentrations of selected  tro- 
pospheric  species and the  estimates of the  global photochemical sources and 
s i n k s  of key chemicals. 

Because  of the  large number  of species involved i n  the chemical budgets, 
f u l l y  three-dimensional models are not yet computationally practical. There- 
fore, it is unlikely  that f u l l  operational u t i l i t y  of a  general  circulation 
model (GCM) containing  a  detailed chemical component w i l l  be realized w i t h i n  
the 5-yr  purview of t h i s  plan. Thus,  one- and two-dimensional  models are 
likely  to continue to be relied on. 

Most effor t  to  date i n  the Air Quality Program on global modeling has been 
placed on the development and use of box  and one-dimensional models. Box models 
represent the simplest approach to  global modeling and are capable of describing 
the  gross  features of tropospheric chemical structure. These  models  have gener- 
a l ly  been successful i n  representing average background levels of tropospheric 
species, a t   least   for  those few species  for which such  a  level may  be inferred 
from observations. Because  of its simplicity,  a box  model is particularly use- 
f u l  for  carrying  out  a wide range of sensitivity  studies and for  investigating 
the response of the  troposphere to assumed perturbations. 

Such  models cannot, of course,  represent any  of the spatial  structure 
observed for  tropospheric  species. The next step i n  the model hierarchy is the 
one-dimensional model,  which may be either  a  zonally and meridionally averaged 
vertical  model or a  zonally and vertically averaged latitude-dependent model. 
Several  results have  been obtained w i t h  one-dimensional vertical  models, which 
are  particularly  suited  to s tudying the effects of stratospheric and surface 
fluxes on tropospheric composition. These  models are  similar i n  concept and 
structure  to the  radiative-convective models  used i n  climate  studies. I t  may 
be anticipated  that many of the  techniques  presently employed i n  radiative- 
convective models w i l l  be incorporated i n  the vertical  tropospheric models per- 
mi t t i ng   s tudy  of the  coupling between chemical perturbations and their  climatic 
consequences to  a degree  not yet  realized. 

Latitude-dependent models are  also  currently being used. Such  models are 
particularly s u i t e d  to s tudying  the variation of tropospheric chemical structure 
resulting from the latitudinal  variation of physical  sources and s i n k s  and vari- 
ation of meteorological  inputs such as temperature and relative humidity.  These 
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models are similar i n   c o n c e p t  and s t r u c t u r e  to the  energy-balance climate models 
used i n  climate research .  I t  may aga in  be a n t i c i p a t e d   t h a t   t h e   t e c h n i q u e s  pre- 
sen t ly   used   in   energy-ba lance  climate models w i l l  be   i nco rpora t ed   i n   l a t i t ude -  
dependent  chemical models, l ead ing  to a more detailed understanding  of   the role 
o f   chemica l   pe r tu rba t ions   i n  climate. 

The  two-dimensional  diagnostic model w h i c h   i n c l u d e s   l a t i t u d i n a l  and v e r t i -  
cal v a r i a t i o n s   h a s  also p r o v e d   u s e f u l .   I n   t h i s  model, empirical data are used 
t o  spec i fy   t he   d i s t r ibu t ions   o f   l ong- l ived  species, such as 03, CO, and CH4; t h e  
concent ra t ions   o f   shor t - l ived  species, such as f r e e  radicals, are c a l c u l a t e d  
using  assumptions  of  photochemical  equilibrium.  Although  these  models  do  not 
i nc lude   t r anspor t  and are no t   t he re fo re   p red ic t ive ,   t hey   p rov ide  detailed infor -  
ma t ion   conce rn ing   t he   g loba l   d i s t r ibu t ion   o f   f r ee  radicals, such as OH, and 
s ta te -of - the-ar t  estimates of   g loba l   photochemica l   source   and   s ink   s t rengths   o f  
key chemicals,   such as CO and CH3CC13. 

The p resen t   gene ra t ion  of models  being used i n   t h e  A i r  Qua l i ty  Program is 
gene ra l ly   capab le   o f   r ep resen t ing   qua l i t a t ive ly   t he   ave rage   concen t r a t ion  
of trace species   such as ozone,  hydroxyl radical, n i t r i c  acid, and odd n i t rogen  
(NO + N02). In   j udg ing   t he   accu racy  of model p r e d i c t i o n s ,  it is  important  to  
keep i n  mind t h a t   t h e  r e su l t s  depend  on  several   poorly known fac to r s ,   such  as 
the   ozone   f l ux   f rom  the   s t r a tosphe re ,   s eve ra l   phys i ca l  source s t r e n g t h s ,  and a 
l a r g e  number of  chemical ra te  cons tan ts   o f   var ious  re l iabi l i t ies .  Nonetheless,  
p r e s e n t  models are p rov ing   u se fu l   i n   add res s ing  a number of  important  tropc- 
spheric   problems,  among which are t h e   r e l a t i v e  roles of t r a n s p o r t  and  photochem- 
i s t r y   i n   e s t a b l i s h i n g   t h e   t r o p o s p h e r i c   o z o n e   d i s t r i b u t i o n ,   t h e  role of NMHC i n  
the  carbon monoxide  budget,  the role of odd n i t r o g e n   i n   o t h e r   e l e m e n t a l  tropo- 
spheric   budgets ,   and  the  per turbat ions to  t ropospheric   chemical   budgets  result- 
ing  from human a c t i v i t i e s .  

I t  is a n t i c i p a t e d   t h a t   f u t u r e   d e v e l o p m e n t s   i n   t h e  A i r  Q u a l i t y  Program  on 
global  modeling w i l l  proceed  along two l ines .   F i r s t ,   an   i nc reas ing   deg ree   o f  
s o p h i s t i c a t i o n  w i l l  be inco rpora t ed   i n to   t he   t r ea tmen t  of phys ica l  and biologi-  
cal  p r o c e s s e s   i n   c u r r e n t  models. Second,  present models w i l l  be extended to 
h ighe r   d imens iona l i ty   and   t he   spa t i a l  and   tempora l   var iab i l i ty   o f   the  tropo- 
sphere w i l l  be i n v e s t i g a t e d   i n   i n c r e a s i n g  de ta i l .  

An example of t h e   f i r s t   t y p e  of development is t h e   d e s c r i p t i o n  of t h e  
sources of   b io logica l ly   p roduced   gases  as func t ions   o f   the  meteorological param- 
eters (e .g . ,   temperature ,   re la t ive  humidi ty ,  soil  moisture ,  and p r e c i p i t a t i o n )  
on  which  they  might  depend. The coupling  of  aeronomic  and meteorological pro- 
cesses wi th in  a s i n g l e  model would then  permit  a d e s c r i p t i o n  of feedback loops 
w i t h i n   p e r t u r b a t i o n  models. This   coupl ing  is l a c k i n g   i n   t h e   p r e s e n t  model 
generat ion.  

The second type of  development  encompasses  the  construction  of models which 
inc lude   t he   l a rge   ho r i zon ta l   he t e rogene i ty  of the  t ropospheric   photochemical  
system. A s  discussed previously,  measurements  imply  that  the  troposphere may be 
descr ibed  by a series of concen t r a t ion   r eg ions  or domains  coupled  together by 
t ranspor t   p rocesses .  Each  domain is cha rac t e r i zed  by a common set of  chemical 
sou rce   and   s ink   s t r eng ths ,   t e r r a in ,   vege ta t ion ,   and   me teo ro log ica l   pa rame te r s ,  
and  includes p o l l u t e d  as well as remote regions.  I t  is l i k e l y   t h a t   f u t u r e  
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global  photochemical  models  of  the  troposphere w i l l  attempt to c o n s t r u c t  c o m -  
partmentalized  models  which t reat  the   va r ious   concen t r a t ion  domains as d i c t a t e d  
by observa t ions .  Even though  these models may i n i t i a l l y  b e   d i a g n o s t i c   i n   n a t u r e  
and w i l l  no t  t reat  t r a n s p o r t  ( l i k e  the  diagnost ic   two-dimensional   model) ,   u l t i -  
mately semiempirical r e l a t i o n s h i p s  w i l l  have to  be developed to  parameterize 
transport .   These  compartmentalized  models,  by avo id ing   t he  process of  averaging 
ove r   t he   l a rge   l ong i tud ina l   chemica l   va r i ab i l i t y   s f   t he   t roposphe re ,  w i l l  be 
t r u l y   g l o b a l   i n   n a t u r e  and w i l l  h a v e   s u f f i c i e n t   d e t a i l  to inco rpora t e  data gath- 
ered i n   a i r c r a f t  and s a t e l l i t e  measurement  missions. 

The relat ionship  of   the  proposed  program to other  modeling  prograns is as  
fol lows : 

(1)  The NASA Climate Plan:  NASA climate modeling is p r i m a r i l y   d i r e c t e d  
towards  study  of  the  energy  and water budgets   of   the   Earth  and  of   the  physical  
p rope r t i e s   o f  aerosols. Model ing  of   the  chemical   budgets   of   the   Earth  in   the 
Air Qua l i ty  Program  provides a n a t u r a l  complement to  the   c l imate-model ing   e f for t  
s i n c e  i t  is through  per turba t ions  to the   chemica l   budge t s   t ha t  man may i n f l u -  
ence climate i n   t h e   f i r s t   p l a c e .  The NASA Climate Plan   p laces  major emphasis 
on  the  development   of   general   c i rculat ion models (GCM's) €or climate s tudy.  As 
noted ear l ie r ,  modeling  within  the  program is concerned  with  f inding  the best 
techniques   for   incorpora t ing   the   chemica l   cont inui ty   equat ions   in to   g loba l  
c i r cu la t ion - type  models. Advances i n  climate modeling  should  thus  prove of 
d i r e c t   b e n e f i t  to t h i s   a s p e c t  of t h e  A i r  Qua l i ty  Program. 

Secondary,  but still  important ,   emphasis   in   the NASA Climate Plan is given 
to  the  development of s ta t i s t ica l  dynamical models (SDM's) . The close r e l a t i o n -  
s h i p  between two types of SDM's (radiative-convective  and  energy-balance climate 
models) and models i n   u s e   i n   t h e  A i r  Qua l i ty  Program was descr ibed  ear l ie r .  The 
concomitant  development  of  these  modeling  efforts  should resu l t  i n  a merging  of 
t echn iques   t ha t  w i l l  permit subs tan t ia l   advances   in   our   unders tanding   of   the  
natural   t ropospheric   chemical   system  and  the  per turbat ions to  which it may be 
s u b j e c t .  

(2) The Nat ional   Oceanic   and  Atmospheric   Adminis t ra t ion (NOAA) Climate 
Plan: N O M  climate modeling  gives major emphasis t o  s tudy   of   the  C02 budget 
w i t h   o t h e r   e f f o r t s   d i r e c t e d  towards mode l ing   t he   r ad ia t ive   e f f ec t s  of t r a c e  
gases.  Carbon  dioxide, as a chemica l ly   i ne r t   spec ie s ,   has   no t   r ece ived   a t t en -  
t i o n   i n   t h e  A i r  Qua l i ty  Program  on  modeling. I t  is conceivable ,  however, t h a t  
i f  long-term  per turbat ions to other   chemical  species are to be considered,  
then  incorporat ion  of  a C02 budget   in   such  a model w i l l  prove desirable. Th i s  
pe rmi t s   p ro j ec t ion  of f u t u r e   v a l u e s  of climatic va r i ab le s ,   such  as temperature ,  
to  which  chemical  perturbations  might be s e n s i t i v e .  

A s  no ted   p rev ious ly ,   mode l ing   t he   r ad ia t ive   e f f ec t s   o f  trace species is  
l i k e l y  t o  be a component  of fu tu re   a i r -qua l i t y   r e sea rch ,   and  NOAA e f f o r t s   i n  
t h i s  area should be followed. 

( 3 )  National   Center   for   Atmospheric   Research (NCAR) and  Univers i ty  pro- 
grams: Some aspects of the  modeling  program  being  carried o u t  a t  NCAR and  sev- 
e r a l  u n i v e r s i t i e s  are c l o s e l y   r e l a t e d  to  the   a i r -qua l i t y   mode l ing   e f fo r t .  The 
problems of the  tropospheric  ozone  budget,   carbon  monoxide sources and s inks ,  
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and the effects of NOx have  been addressed by these groups. It is t h u s  essen- 
tial  that  close  familiarity w i t h  the  results and direction of NCAR and univer- 
s i t y  efforts be maintained. 

3.4.2 Assimilation of  Remote Sensing Data Into Regional Air Pollution Models 

The development  of mathematical models for  the behavior of air  pollutants 
on regional  scales has been  a subject of increased interest  i n  the last  several 
years. Because  of the  extensive commitment  of the EPA to the development and 
application of  such  models, NASA does not plan  to  support  activities i n  t h i s  
phase of regional  air  pollution. A number of measurement  programs, several 
based on remote sensing,  are proposed to  further our understanding of the chem- 
ical  and physical  processes i n  regional  air  pollution. The measurements made 
i n  s u c h  programs m u s t  then be assimilated  into and  compared w i t h  model predic- 
tions  to  gain  the  desired  understanding. The general problem  of the  assimila- 
tion of remotely sensed and i n  s i t u  data  into  regional  air  pollution models 
has not received substantial  attention.  Therefore, because of its central 
importance to  the  analysis of data from the measurement  programs, the develop- 
ment of theory  applicable  to the assimilation of data  into  regional-scale models 
should represent  the  principal NASA thrust i n  the  area Of regional  air  pollution 
modeling. 

Regional air  pollution models are  virtually always  based on segmenting the 
region into an array of cells  for the purpose of numerically  solving  the differ- 
ential  equations governing the  spatial-temporal  distribution of the  species 
concentrations.  Since  the  smallest spatial  resolution  attainable is that  corre- 
sponding to  the  grid  cell  size,  the  concentrations  predicted by such models 
represent  values averaged over the volume  of  each cel l .  The characteristic spa- 
t ia l   scale  of the measurements,  whether  remote or i n  s i t u ,  never corresponds 
w i t h  that of the  concentrations  predicted by the models. Therefore, it is nec- 
essary  to  reconcile  the  data and predictions w i t h  respect  to  spatial  scale 
before  the  data can  be assimilated  into or compared w i t h  model predictions. 
Similar problems may arise w i t h  respect  to temporal discrepancies between the 
scales of data and predictions.  Frequently,  the temporal resolution of  model 
predictions can  be made as  fine  as  desired, although t h i s  may lead to  excessive 
computational  requirements. 

Let c i  (x,y,z, t) denote the  true,  instantaneous  concentration of spe- 
cies i a t  location  (x,y,z) and time t. A stationary, i n  s i t u  sensor a t  
point (x ,y ,z )  w i l l  measure t h i s  concentration, perhaps corrupted by experi- 
mental error €i. Thus,  the  reported  concentration is 

A remte sensor w i l l  generally measure the  average concentration of species i 
i n  a region of x,y,z-space which  can  be denoted by R. I f  8 can  be located 
according to its centroid (xc,yc,zc) , then  the measured average concentration 
w i t h i n  the  region R can  be denoted by 
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A r e g i o n a l  a i r  p o l l u t i o n  model p r e d i c t s  a concent ra t ion  ~ ~ , ~ ( ~ d , ~ d , ~ d , t ) ,  
the   average   concent ra t ion  over a g r i d  ce l l  with  dimensions (Ax,Ay,Az) centered 
a t  (XdrYdrZd). The problem  of   ass imi la t ing   da ta   and   pred ic t ions   reduces  t o  
r e c o n c i l i n g  tils and c i l r  with cilm. This  problem is complicated by t h e  
f ac t   t ha t ,   because   o f   unavo ldab le   i naccurac i e s   i n   bo th  model formulation  and 
input   parameters ,   the   re la t ionship   be tween  the   p red ic ted   concent ra t ion  
~ i , ~ ( X d , ~ d , z d ,  t) and  the  average  of  the true concentrat ion  over   the  region  of  
s i z e  (Ax,Ay,Az) is unknown. In   add i t ion ,   mode l s   p red ic t   t he  mean concent ra t ion ,  
whereas c i  is the instantaneous  concentrat ion.  

I n  summary, to enab le   t he   e f f ec t ive   eva lua t ion   o f  remote sens ing   da ta  by 
means of  mathematical models, a theore t ica l   p rogram aimed a t  assessing  the  sen-  
s i t i v i t y  of bo th   p red ic t ions  and d a t a  to spa t i a l  resolution  should  be  under- 
taken. I t  is a n t i c i p a t e d   t h a t   t h e  program w i l l  involve  the use  of one of   the 
ava i l ab le   r eg iona l   mode l s   t ha t   o f f e r s   t he   capab i l i t y   o f   t h ree -d imens iona l  
s p a t i a l   r e s o l u t i o n  and detai led  t reatment   of   a tmospheric   chemical   processes .  

3.5 LABORATORY MEASUREMENTS 

Laboratory  measurements  play a s i g n i f i c a n t  role i n   t h e  NASA Tropospheric 
Research  Program  Plan i n   t h r e e  major areas: (1) Supporting  the  development of 
new remote and i n   s i t u   t r a c e - g a s  and aerosol instrumentat ion;  ( 2 )  suppor t ing   the  
fur ther   deve lopment   o f   ex is t ing   a tmospher ic   sensors ,   par t icu lar ly  as r e l a t e d  to  
improving   ex is t ing   ca l ibra t ion   techniques ;   and  ( 3 )  de te rmin ing   r a t e   cons t an t s  
for atmospheric   e lementary  react ions as p a r t  of a n   o v e r a l l   e f f o r t  to improve our 
understanding  of   mult is tep  a tmospheric   processes .  

3.5.1 Laboratory  Measurements  Required for N e w  Instrument  Development 

Perhaps   the   s ing le  most important  type  of  laboratory  measurement  that  w i l l  
be   required  for   the  development   of   future  remote and i n   s i t u   a t m o s p h e r i c  moni- 
to r ing   ins t rumenta t ion  w i l l  be   t ha t   i nvo lv ing   spec t roscop ic   i nves t iga t ions .  
The s p e c t r a l   r e g i o n s  of i n t e r e s t  w i l l  cover  the  microwave,  far  infrared, mid 
i n f r a r e d ,   n e a r   i n f r a r e d ,   v i s i b l e ,  and u l t r a v i o l e t .  Of s p e c i f i c  i n t e re s t  w i l l  
be the  following  types  of  measurements: 

(1) Line  posit ions:   These  are  needed to  ident i fy   the   molecular   spec ies  
and e s t a b l i s h  a deg ree   o f   spec i f i c i ty .  The l ine-posi t ion  accuracy  should  be 
about 100 MHz (0.003 cm-l) i n   t h e  microwave regions,  10 MHz (0.0003 cm-l) i n  
t h e   i n f r a r e d ,  and  approximately 3000 MHz (0.1 a n - ’ )  i n   t h e   u l t r a v i o l e t .  

( 2 )  Line  strengths:   These are needed to  e s t a b l i s h   s y s t e m   s e n s i t i v i t y  and 
for  c a l i b r a t i o n .  The l i n e  s t rengths   should  be  measured to an accuracy  of 5 per- 
c e n t  or grea te r   over  a range  of   appropriate   temperatures .  
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( 3 )  Line  widths:  These  are  directly  related  to  ultimate  sensitivity  and 
are  useful  for  obtaining  vertical  profile  information  because  of  the  pressure 
dependence.  The  pressure  broadening  coefficients  should be measured  to  allow 
estimates  to  be  made  of  sensitivity  and  the  potential  for  vertical  profiling. 

( 4 )  Quenching cross sections:  These  are  important  for  ultraviolet- 
fluorescence  measurement  techniques.  These  measurements  should  be  performed 
at  a  range  of  temperatures  and  pressures  because  of  the  strong  impact  of  these 
parameters  on  the  fluorescent  signal. 

3.5.2 Laboratory  Measurements  Required TO Support  Existing 
Atmospheric  Instrumentation 

A  fundamental  question  which  is  raised  concerning  all  ongoing  atmospheric 
monitoring  devices  is  that  of  their  accuracy.  Questions  of  accuracy,  in  turn, 
quickly  revert  back  to  questions  about  calibration  techniques,  and  the  answers 
to these  questions  typically  are  based  on  a  broad  spectrum  of  laboratory  mea- 
surements.  Presented  in  this  section  are  several  of  the  more  important  types 
of  measurements  now  being  used  in  the  calibration  of  both  remote  and  in situ 
instrumentation.  Also  discussed  are  the  future  needs  of  each  instrument  type. 
For  purposes  of  clarity,  this  discussion  has  been  divided  into  two  subsections 
entitled "In situ  sensors"  and  "Remote  sensors." 

3.5.2.1 In  situ  sensors.- Two general  approaches  have  traditionally  been 
used  in  the  calibration  of  in  situ  instruments: (1) Fundamental  studies  of  the 
technique  under  the  controlled  conditions  of  a  laboratory  environment  and 
(2) interlaboratory  comparison  studies  involving  similar  instruments  from  dif- 
ferent  laboratories or, preferably,  other  instruments  based on totally  different 
operating  principles.  Calibration  studies  of  the  first  type  have  been  further 
subdivided  into  investigations  of  basic  processes  related  to  establishing  Cali- 
bration  standards  (e.g.,  absorption  cross  sections,  quantum  yields,  quenching 
cross  sections,  gas-phase  liquid  chromatography (GLC) retention  times,  mass- 
spectrometer  ionization  efficiencies, and gas  kinetic  rate  constants)  and  inves- 
tigations  of  fundamental  processes  designed  to  define  the  magnitude  of  chemical 
interferences . 

Although  the  calibration  of  in  situ  field  instrumentation  should  inherently 
be  more  direct  (and  hence  more  reliable)  than  for  remote  instrumental  tech- 
niques,  in  situ  devices  are  still  subject to many  types  of  errors.  Within  the 
last 3 to 4 years,  for  example,  it  has  been  convincingly  demonstrated  that  even 
though  several  different  instruments  may  be  put  through  an  interlaboratory c o w  
parison  that  results  in  similar  measured  values,  significantly  different  answers 
frequently  are  generated  under  field  sampling  conditions.  Variable  tempera- 
tures,  high  humidities,  dust,  and  unknown  interfering  chemical  compounds  occur- 
ring  naturally  in  the  atmosphere (or those  produced  by  the  sampling  platform) 
frequently  combine  to  produce  systematic  errors  of  unknown  magnitude  under  field 
conditions.  Thus,  it  is  recommended  that NASA give  a  high  priority  not  only  to 
calibration  studies  of  types (1) and (2), but  also  strongly  support  field  inter- 
comparison  investigations.  In  particular  it  is  recommended  that  any  large  field 
sampling  program  have  designed  into  it  a  well-conceived  calibration  program. 
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3.5.2.2 Remote sensors.- The measurement of atmospheric trace  constituents 
imposes severe accuracy and precision  constraints on experimental t es t  and eval- 
uation  instrumentation and procedures for remote sensing  instruments. T h i s  is 
due to  the small signal changes (typically 1 part  i n  1 O4 t o  l o 6 )  introduced by 
the  absorption  characteristics of the  gases of interest ,  the variabil i ty of 
spectrally  interfering gases (i.e.,  H20 and 031, and the  variability of  back- 
ground "scene" effects caused by variations i n  the  emissivity or reflectivity 
of the  Earth. 

Current  techniques  for calibrating remote sensors  are  limited  to  laboratory 
measurements of the  radiometric response of laboratory  radiation  sources  (i.e., 
300 K to 1100 K ) ,  w i t h  analytical  extrapolation of the  radiometric  data to  tem- 
peratures corresponding to  natural sources of radiation  (i.e., Earth/atmosphere 
systems and the Sun) .  These calibration measurements a re   s ta t ic  i n  nature and 
do not properly  assess  the dynamic response of the  sensor  to  variability i n  the 
ground emissivity or reflectivity.  Responses to  spectral  signatures of gases 
to be measured by differential  absorption  are  limited  to  short path lengths w i t h  
corrections  required  for  the presence of ce l l  windows. For relatively  stable 
gases, atmospheric conditions  are  simulated by us ing  elevated  pressures  for  the 
gases to be measured and dry  nitrogen to  simulate an atmospheric a i r  mixture. 
Uncertainties i n  foreign and self-gas broadening coefficients provide a degree 
of radianetric inaccuracy i n  the  sensor  response. For unstable gases requiring 
chemically reacting flow  chambers, tropospheric  conditions of pressure and  tem- 
perature cannot be simulated to  any degree of confidence and could lead to  a 
h igh  degree of calibration inaccuracy. 

Current  techniques  for calibrating remote sensors depend upon limited Cali- 
bration  information and a h igh  degree of analysis  to  extrapolate from the l a b e  
ratory measurements to the expected atmospheric  conditions of concentration, 
temperature,  pressure, and radiometric  input to  the  sensor. Instrument perfor- 
mance and accuracy of the data-reduction  process  are  severely  limited by the 
assumptions and uncertainties i n  the analytical procedures.  Correlative mea- 
surements w i t h  i n  s i t u  sensors or other remote sensing  instruments  are  required 
for intercomparison of data. T h i s  requires  scheduling wi th  a network of sensors 
and expenditure of correlative  testing funds. Inaccuracies of correlative mea- 
surements often do not identify  the source of inaccuracy i n  the remote sensor 
because of either a lack of precision i n  the remote sensor i t se l f  or a lack of 
precision and accuracy i n  both the i n  s i t u  and remote sensing  instruments. 

I n  order to  improve the  calibration of remote sensors, a dual calibration 
strategy should be developed to  improve laboratory  calibration  data  for remote 
sensors and to  improve b o t h  the  precision and accuracy of i n  s i t u  instruments 
used i n  correlative-data  studies. Recommendations for a calibration  strategy 
for remote sensors  include  the  following: 

1. Develop a calibration  facility  for remote sensors w i t h  standardized  cal- 
ibration  radiation  sources;  absorption  cells w i t h  concentration  mixture, 
pressure and thermal control; and  chamber monitoring instrumentation w i t h  for- 
matting,  processing,  recording, and display  functions. T h i s  f ac i l i t y  should 
satisfy  calibration requirements to  obtain  absolute  radiant-intensity  calibra- 
tions and simulation of radiance variabil i ty due to  ground emissivity and 
ref lect ivi ty  changes to determine rea l i s t ic  dynamic response of remote sensors. 
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2. Develop an accurate ,   updated a t las  of spec t roscopic   parameters   for  

t ropospher ic   gases  (i.e., l i n e   s t r e n g t h s ,   l i n e   p o s i t i o n s ,  and  broadening 
c o e f f i c i e n t s )  to  improve t h e   a n a l y t i c a l   s t u d i e s   r e q u i r e d   f o r  remote sens ing  
c a l i b r a t i o n s .  

3. Develop  gas cel l  chamber c a p a b i l i t y  to s imula t e   cond i t ions   i n   t he   na t -  
ural  t roposphe re   fo r   t he   pu rposes   o f   de t e rmin ing   t he   e f f ec t s  of i n t e r f e r i n g  
gases  and var ia t iof i s  i n  temperature and pressure. 

4. Develop  ground-based  long-path solar or long-pa th   hor izonta l  measure- 
ments  with spectral scanning  and  high-spectral-resolut ion  sensors  to  determine 
the  exis tence  of   a tmospheric   t ransmission windows. Systematic   data   f rom  these 
measurements  should  provide  the  data  base  for  updating  the a t l a s  of spectro- 
scopic   parameters .  

3.5.3  Laboratory  Measurements  Related to  Studies  of  Fundamental 
Atmospheric Processes 

3.5.3.1 Homogeneous gas  phase.- A t  the   p resent  time, a t  least two major 
homogeneous-gas-phase t ropospheric   chemical   problems  can  be  ident i f ied as being 
i n  need of   fur ther   l abora tory   s tudy .  The f i r s t  of these   involves   the  elucida- 
t i o n  of t h e  methane  and  higher molecular weight  hydrocarbon  degradation  cycle;  
the  second is concerned  with  the  need  for  new rate-constant  measurements  of  sev- 
e r a l  key t ropospheric   e lementary  processes  under a tmospheric   condi t ions of pres- 
sure and composition. A s  to t h e   f i r s t  problem, it is recognized  that   a l though 
the   degrada t ion   cyc les   o f   bo th  nonmethane  hydrocarbons (NMHC) and  methane may be 
of equal importance to our   understanding  of   t ropospheric   chemistry,   only  minimal  
s u p p o r t   f o r   k i n e t i c   s t u d i e s   o f  NMHC spec ie s  w i l l  be  required  from  the NASA tro- 
pospheric  program,  since EPA is p rov id ing   s ign i f i can t   suppor t   fo r   s tud ie s  of 
these   spec ies .   Ins tead ,   the  major emphasis  should be placed  on  methane  studies.  
The NH3 degradat ion cycle is also poorly  understood, b u t  t he  lack  of  importance 
of t h i s   c y c l e  to e i ther  t h e  NO, or t h e  NH3 tropospheric   budgets   does  not  seem to 
j u s t i f y   a s s i g n i n g  it a h i g h   p r i o r i t y  a t  t h i s  time. 

I n   t h e   t e x t   t h a t   f o l l o w s ,   c u r r e n t   l a b o r a t o r y   r e s e a r c h   n e e d s   r e l a t e d  to t h e  
methane  degradation cycle as well as the   requi rements   for   s tudying   severa l  
p ivo ta l   e l emen ta ry   r eac t ions  under  atmospheric  conditions  of  pressure and compo- 
s i t i o n ,  are discussed.  Also b r i e f l y  mentioned are the   l abora tory   needs   o f  a t  
least  one p o t e n t i a l  new area of   t ropospheric   chemistry.  

Methane degradat ion  chemistry:  A s  o u t l i n e d   i n   s e c t i o n   2 . 2  of t h i s  docu- 
ment,  methane r e p r e s e n t s   t h e   s i n g l e   l a r g e s t   b i o s p h e r i c  source of  hydrocarbons. 
AS an in f r a red - sens i t i ve  molecule and a major source of   a tmospheric  CO, H2CO, 
and  other possible t ropospher ic   molecules  (i.e., CH3OH,  CH300H, and HC02H), its 
importance to t ropospher ic   chemis t ry  is q u i t e  s i g n i f i c a n t .  Of p a r t i c u l a r   i n t e r -  
est  is t h e  role t h a t   t h i s  species is be l ieved  to p l a y   i n   m o d u l a t i n g   t h e   l e v e l s  
o f   t he   f r ee - r ad ica l  species H02 and OH. Mechanisms fo r   t he   deg rada t ion  of CH4, 
producing CO as the   f i na l   p roduc t ,   c an   be   wr i t t en  t o  r e p r e s e n t   e i t h e r  a n e t   s i n k  
or a n e t  source of HO, r a d i c a l s .  A t  p r e sen t ,   on ly  4 s t eps   o f   poss ib ly  a 10- to 
15-step mechanism are reasonably well unders tood   in  terms o f   t h e i r   k i n e t i c s ,  
i. e., 
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CH4 + OH + CH3 + H20 

M 
CH3 + 02 + CH3O2 

H2CO + hJ + CO + H2 

CH3O2 + NO + CH3O + NO2 

Among  the  many  possible  degradation  steps  which  need  further  investigation  are 
the  following: 

CH302H + OH CH3O2 + H20 

CH302H + OH + CH202H + H20 

CH302H + hv + CH3O + OH 

CH3O + OH + H2CO + H20 

CH3O + 02 -+ H2CO + H02 

CH3O + H02 + CH30H + 02 

Since  a  complete  understanding of the  methane  cycle  will  be  a  prerequisite  to  a 
complete  understanding  of  tropospheric  photochemistry,  a  high  priority  should  be 
placed  on  further  studies  of  this  system. 

High-pressure/atmospheric-composition studies:  An  examination of the  gas- 
kinetic  literature  reveals  that  a  substantial  number of those  absolute  rate  con- 
stants k reported  for  atmospheric  reactions  have  been  measured  only  under 
conditions  of  low  pressure.  An  even  larger  number of rate  constants  have  been 
measured  under  conditions  not  representative of natural  tropospheric-composition 
conditions,  especially  concerning  the  levels  of 02 and  H20.  More  recently, 
kinetic  studies on the  CO-OH  system  and on the  reactions  of  H02  have  indicated 
that 02 and H20 can, in some  instances,  have  a  significant  influence on the  mea- 
sured k values. In the  case of the  CO-OH  system,  several  studies  using  high 
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pressures of H e  and A r  r e s u l t e d   i n  rate c o n s t a n t s   t h a t  showed no evidence  of 
a pressure  dependence.   Ini t ia l   experiments   with  high  pressures  of N2, on   t he  
o the r  hand, showed an  enhancement  of  the rate c o n s t a n t   f o r   t h i s   r e a c t i o n   o f  a 
f ac to r   o f  almost two. More d e t a i l e d   s t u d i e s   w i t h   u l t r a c l e a n  N2 (minus  any 
traces of   02)   did  not  show a pressure effect .   These same i n v e s t i g a t i o n s  also 
have   ind ica ted   tha t  as l i t t l e  as 1 torr of 02  (1.0 torr = 133.3 Pa) i n   t h e   p r e s -  
ence  of   high  pressures  of N2 or other  gases  can  have a s igni f icant   impact   on   the  
measured rate c o n s t a n t   f o r   t h e  CO-OH system. I t  is now b e l i e v e d   t h a t   0 2   a f f e c t s  
t h e   s t a b i l i t y  of an i n i t i a l l y  formed HOC0 complex, r e s u l t i n g   i n  most o f   t h a t  
complex decay ing   i n to  C02 and H02 d i r e c t l y .  Based on   these   observa t ions ,  it 
seems unl ike ly   tha t   the   above   sys tem is unique.  In  fact ,   any  gas-phase elemen- 
t a r y   r e a c t i o n   t h a t   i n v o l v e s  complex  formation  and  that also may involve molecu- 
lar  oxygen in t e rac t ing   w i th   one  or more depar t ing   reac t ion   f ragments   should  be 
reexamined i n  terms of possible secondary   k ine t i c   e f f ec t s .  

The inf luence   o f  water vapor  on  previously measured rate cons tan ts   has  
aga in   on ly   recent ly   been   the  subjec t  o f   k i n e t i c   i n v e s t i g a t i o n s .   I n   t h i s  case, 
t h e   r e a c t i o n  

was examined  over a wide range  of H20 pressures .  The results showed t h a t   t h e  
apparent  rate cons t an t  was enhanced by up to a f a c t o r   o f   t h r e e  when t h e  H20 
l e v e l  was varied  from 0 t o  20 torr .  This  enhancement was a t t r ibu ted  to  the   for -  
mation  of  an H02=H2O complex,  which was repor ted  to react nea r ly  t w o  orders of  
magni tude   fas te r   wi th  a second H02 molecule than  with a noncomplexed H02 
s p e c i e s .   I f  t h i s  hypothes is  is indeed correct, it seems reasonab le   t ha t   o the r  
H02 r eac t ions  may be inf luenced  by the  absolute water l e v e l   p r e s e n t   i n   t h e  atmo- 
sphere.  I t  also raises the   ques t ion  of whether  the rate c o n s t a n t s   f o r   c e r t a i n  
OH r e a c t i o n s  c o u l d  be inf luenced  by atmospheric H20. 

A t  t h i s  time, the  evidence  support ing  the  importance  of  H20-complexed f r ee -  
radical species is still very limited. Even so, t he   imp l i ca t ions  of these  data 
are s u f f i c i e n t l y   g r e a t  to j u s t i f y  a very  systematic  examination  of a l l  f r ee -  
radical species tha t   migh t  have a high  probabi l i ty   of   complexing  with H20. 
Among t h e  more l i k e l y   c a n d i d a t e s  are HO, H02, HSO3, and HS05. 

Poten t i a l ly   impor t an t  new chemistry:  A s  an  example  of   potent ia l ly  impor- 
t a n t  new processes ,   cons ider   the   t ropospher ic   chemis t ry   o f   iod ine .  The source  
c o u l d  be CH3I or poss ib ly   o the r   o rgan ic  and  inorganic   iodine species from  the 
ocean. The f a c t   t h a t   i o d i n e  compounds are both  highly  photosensi t ive  and  ther-  
ma l ly   uns t ab le   sugges t s   t ha t   i od ine  may undergo major r ecyc l ing  between t h e  
oceans and the   a tmosphere .   Recent   model ing   ca lcu la t ions   fur ther   sugges t   tha t  
the  marine  iodine  photochemical   cycle  may have a s igni f icant   impact   on  
NOx-03-HOx photochemistry.  The r e l i a b i l i t y   o f   t h e s e   c a l c u l a t i o n s ,  however, is 
strongly  dependent  on s e v e r a l  key rate cons t an t s ,  a l l  of  which are i n  need of 
e x t e n s i v e   i n v e s t i g a t i o n .  The t roposphere may hold many such  chemical   surpr ises ,  
and new chemical  schemes  should be studied when models or measurements  Suggest 
t h a t   t h e y  are important.  
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3.5.3.2 Gas-to-particle conversion.- A fundamental problem i n  virtually 
a l l  aspects of atmospheric science is understanding  the  processes by which 
airborne  particles form  and evolve. Atmospheric particles,  or aerosols, may  be 
emitted into the atmosphere directly from sources  (both  natural and anthropo- 
genic) or may  be formed i n  s i t u  by the  nucleation of vapor molecules. Once 
emitted or formed, the  particles may  grow through coagulation w i t h  other  parti- 
cles or through scavenging of  vapor molecules. The rate  of coagulation is con- 
trolled by the  sizes of the two particles and the  properties of the  particles 
and of the medium.  The efficiency of scavenging of  vapor molecules by preexist- 
ing  particles is governed by the particle 's   size,  by the chemical nature of the 
particles and molecules through their  effect on the  transport  properties of the 
molecules i n  a i r ,  and  on the chemical reactions which occur when the molecule 
encounters  the particle. From the point of view  of assessing  the  climatic and 
human-health effects of atmospheric aerosols, it is important to be able  to mea- 
sure and predict  their  size and chemical-composition distribution. The size and 
composition of atmospheric aerosols is strongly dependent on their  mode  of for- 
mation and growth. 

The competitive  processes involved i n  gas-to-particle conversion are 
depicted i n  figure 18. Vapor molecules, or monomers, may collide  to produce a 
dimer which may then collide w i t h  another vapor molecule to produce a trimer, 
the  process  leading  eventually to  a stable molecular cluster and the entire 
process being referred  to  as  nucleation. A l l  throughout the  process i n  which 
molecular clusters  are being formed, monomers and molecular clusters may  be 
scavenged by other particles,  both by molecular clusters and by much larger 
particles.  Prediction of the rate of gas-to-particle  conversion  requires  that 
one  be able  to  simulate  the  detailed  kinetic  processes  depicted i n  figure 18. 
unfortunately, many of the thermodynamic  and kinetic parameters  required  for 
such simulation  are not known for  typical atmospheric aerosols. Laboratory 
programs are needed to  obtain such parameters. 

An atmospheric particle can  be considered to  be a multicomponent, m u l t i -  
phase system. Knowledge  of the thermodynamic properties of the particles is 
important i n  predicting  equilibrium  size and composition under varying atmo- 
spheric  conditions. Even  when particle composition is known, predicting  the 
thermodynamic properties is d i f f icu l t  because the  particles  are multicomponent, 
nonideal  solutions or nonideal solid-fluid mixtures. Knowledge of thermodynamic 
properties is also important i n  predicting  kinetic behavior such as  rates of 
coagulation, growth, and evaporation. 

The rate of collision of  two inert  spherical  particles  resulting from pro- 
cesses such as Brownian  motion or turbulent  diffusion can  be predicted pre- 
cisely. Coagulation rates  for  nonspherical  particles or for those having 
nonnegligible interparticle  forces  are determined w i t h  less  accuracy. Once col- 
l ision occurs,  sticking  coefficients  are  frequently assumed to be u n i t y  for  lack 
of better information. Particle composition and the  associated thermodynamic 
properties t h u s  influence  coagulation  rates. 

New stable   par t ic le  formation  occurs when growing molecular clusters reach 
a c r i t i ca l   s ize   a t  which the  cluster is thermodynamically stable. A s  noted 
previously, the molecular clusters must continually compete w i t h  each other and 
with preexisting  particles  for  the  available vapor molecules (monomer). Class- 
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Figure 18.- Competitive  processes involved i n  gas-to-particle conversion. 

ical  homogeneous-nucleation theory predicts  the  rate of formation of stable 
molecular clusters when cluster-cluster  coagulation can be neglected and when 
no preexisting  particles  are  present. 

The nucleation  rate,  the number  of stable  particles formed  per centimeter 
cubed per second fran  the  supersaturated vapor, is related  to  the average num- 
ber density of clusters cn which, i n  turn, is related to the  free energy b ~ ,  
necessary to  form the particle from the vapor phase, 

where k is Boltzmann’s constant and T is absolute  temperature. The detailed 
form of AG, and t h u s  of the cluster numbers cn is controversial. 

For very large  clusters, AGn w i l l  c o n s i s t  mainly of a surface term 
41Tr2y,  where r is the droplet  radius and y is the  surface  tension. Thus, 
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where  A  is  a  constant, n is  the  number of particles,  and 5 = 2/3 in  three 
dimensions  such  that An< = 4?Tr2Y/kT. Several  questions  remain unanswered: 

( I )  How  large  must  the  particles  be  in  order  to  satisfy  the  approximations 
inherent  in  equation ( 2 ) ?  

( 2 )  How important  is  the  cluster-cluster  interaction  neglected  in  equa- 
tion ( 2 ) ?  

( 3 )  How important  is  the  monomer  scavenging  by  preexisting  particles 
neglected  in  equation (2 )  ? 

Assessment  of  these  questions  suggests  carefully  designed  laboratory  experiments 
in  which  single-  and  multicomponent  nucleation is carried out both  in  the 
absence  and  presence of preexisting  nuclei.  Measurement of particle-size  dis- 
tributions  down  to  cluster  sizes  is  a  desirable  but  extremely  difficult  task. 
At  the  same  time,  thermodynamic  properties,  such  as  vapor  pressures,  densities, 
and  surface  tensions,  should  be  measured  for  mixtures  typical  of  atmospheric 
particles. 

3 . 6  'JECHNOLOGY DEVELOPMENT 

3 . 6 . 1  Remote  Sensors 

In this  section,  a  summary of the  current  status of remote  sensing  technol- 
ogy in  the  NASA  Air  Quality  Program  is  presented. This summary  was  compiled  by 
identifying  remote  sensing  systems  sponsored  by  the  Air  Quality  Program  within 
the  Office of Space  and  Terrestrial  Applications.  A  major  goal  of  the  program 
is to develop  remote  sensors  from  space,  aircraft,  balloon,  and  ground-based 
platforms  to  address  major  scientific  questions  related  to  chemical  and  trans- 
port  properties of the  troposphere. This involves  development  of  remote  sensors 
to  measure  the  vertical  distributions  and  total  vertical  concentrations  of 
molecular  species,  aerosols,  and  related  meteorological  parameters.  Development 
of  remote  sensing  systems  generally  involves  a  laboratory  calibration  and  test- 
ing  phase,  technology  demonstration  from  ground-based  and  airborne  platforms, 
and,  ultimately,  participation  in  scientific  investigations  from  space,  air- 
brne, OK ground-based  platforms. In the  current  state of development of remote 
sensors,  several  active  and  passive  systems  have  matured  to  the  stage  where  they 
are  being  used  in  or  proposed  for  field-measurement  programs  from  airborne  and 
ground-based  platforms  to  measure  gaseous  species (e.g., CO, 03, S02, H20, NH3, 
and N02), tropospheric  aerosols,  mixing-layer  heights,  and  optical-extinction 
coefficients.  Future  developments  in  remote  sensing  systems  should  extend  this 
capability  to  other  molecular  species  with  improved  sensitivity  and  vertical 
resolution. 

One  of  these  programs,  Measurement of Air Pollution  from  Satellites (MAPS), 
which  uses  a  nondispersive  gas-filter  correlation  instrument,  is  currently 
an  approved  payload  for  an  early  Space  Shuttle  flight. The objective of the 

62 



experiment is to measure  the  interhemispheric  mixing ra t io  of  carbon  monoxide i n  
the   g loba l   t roposphere .  The a i r c r a f t   v e r s i o n   o f   t h e  MAPS instrument  has  been 
used i n  studies to measure the  dispers ion  of   urban  plumes  over  L a k e  Michigan 
from the  Chicago area, and r e c e n t l y  w a s  used i n   t h e  Monsoon Experiment (MONEX) 
to measure  the  t ransport   of   carbon monoxide i n   t h e   I n d i a n  Ocean region  during 
t h e  monsoon season. 

Earth-observat ion sa te l l i t e  sys tems  or ig ina l ly   deve loped   for   Ear th  resource 
and   meteoro logica l   inves t iga t ions  are cur ren t ly   be ing   s tud ied  by NASA and t h e  
s c i e n t i f i c  community for d e t e c t i o n  and  measurement  of e l eva ted   po l lu t ion   ep i -  
sodes and to ta l  aerosol load ing   i n   t he   t roposphe re .  A measurement  strategy is 
c u r r e n t l y   e m e r g i n g   i n  which a combination  of sa te l l i te  observa t ions ,   a i rborne  
f l i g h t s ,  and  ground-based  networks of i n   s i t u  and remote senso r s   p l ay  complemen- 
t a r y  roles in  providing  measurements  of  gaseous  and aerosol species with wide- 
area cove rage ,   h igh   s ens i t i v i ty ,  and h igh   ve r t i ca l   r e so lu t ion  from the  ground to  
the  t roposphere.  One example  of a requirement   that   has  emerged du r ing   t he  past 
s e v e r a l   y e a r s   i n v o l v e s   e f f e c t s  of s u l f u r   p o l l u t i o n  on a r eg iona l  or mesospheric 
scale. 

Even though a network of ground-based  and a i r c r a f t   s e n s o r s   c a n   p r o v i d e  
accurate local measurements  of species concentrations,  such  measurements  have 
limited u t i l i t y   f o r   t r a c k i n g  and eva lua t ing   ep isodes  of regional   dimensions,  
e spec ia l ly   i n   fo rma t ive   s t ages .   Ea r th -obse rva t ion  sa te l l i t es  p resen t ly   u s ing  
v i s i b l e  and infrared  imagery and u l t imate ly   us ing   spec ies -sens i t ive   ins t ruments  
complement these  measurements by providing  global-   and  regional-scale   coverage,  
i d e n t i f y i n g   r e g i o n a l   p o l l u t i o n  episodes i n   f o r m a t i v e   s t a g e s ,  and t r a c k i n g   t h e  
episodes as they  migrate .  The combination  of sa te l l i t e  o b s e r v a t i o n s ,   a i r c r a f t  
f l i g h t s ,  and ground-based  sensors  can  provide  valuable  information  for  the 
design and   implementa t ion   of   envi ronmenta l   qua l i ty   cont ro l   s t ra teg ies   and   for  
improved s c i e n t i f i c   u n d e r s t a n d i n g  of t ropospher ic   p rocesses .  

I n   t h i s   s e c t i o n ,   t h e   c u r r e n t  s t a t u s  of  four remote sens ing   technologies  
wi th in   t he  NASA program are reviewed,  including  Earth-observation s a t e l l i t e  sys- 
tems, pass ive  remote sens ing   sys tems,   ac t ive  remote sens ing   sys tems  for   appl ica-  
t i o n  to  t roposphe r i c   i nves t iga t ions ,  and remote sens ing  of aerosols. Comments 
on   l imi t a t ions  of   the  current  s t a t u s  of  these  systems are presented  as well as 
t h e  need to implement new technology to f u l l y   r e a l i z e   t h e   p o t e n t i a l  of t h e s e  
systems  for   global   monitor ing.  

3.6.1.1 Earth-observat ion ~ ~ sa te l l i t e  systems.- NASA has  developed a number 
of   Earth-observat ion sa te l l i t e  sys tems  for   var ious   meteoro logica l  and resource 
app l i ca t ions .  Table 6 is a summary of these  systems  which  have  been  developed 
f o r   s p e c i f i c   a p p l i c a t i o n s .  None of  the satel l i te  systems l is ted i n  table 6 were 
s p e c i f i c a l l y   d e s i g n e d  to detect or measure aerosol load ings   i n   t he   t roposphe re .  
I n   f a c t ,  a g r e a t  deal of e f f o r t   h a s  been  expended to min imize   t he   e f f ec t s  of 
a tmospher ic   haze ,   espec ia l ly   in   the   Landsa t   sys tems.  An inc reas ing  number of 
i n v e s t i g a t o r s  have   no ted   t ha t   ce r t a in  types of a i r  p o l l u t i o n   p a t t e r n s   c a n  be 
d e t e c t e d   i n  s a t e l l i t e  imagery.  The  instruments i n  table 6 are gene ra l ly  classi- 
f i e d  as V i s i b l e / I n f r a r e d   S p e c t r o r a d i m e t e r s  and operate i n  selected spectral 
bands   ranging   f ran   the   v i s ib le  (0.45-0.70 pm) th rough   t he   i n f r a red  (20.70 pm). 
Spat ia l   resolut ions  of   the   instruments   range  f rom 0.03 km to 16 km. Table 6 
conta ins ,   for   each   ins t rument ,   the  spectral cove rage ,   spa t i a l   r e so lu t ion ,  satel- 
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TABLE 6.- EAKl!E (IBSWATIONS SATELLITE SYS- 

~ 7 Instruments 
Spectral 
coverage, 

Dm 
resolution, 
Spatial 

km 

Satellite 
system Orbit Launch 

schedule Applications/objective 

VISSR 
4 
8 

2 
1 and 2 

"1, 2, 3 

GOES-2, 3 

Geosynchronous Cloud  images SE-1 SMS-2 SE-3 
5/74  2/75  10/75 

GOB-2 

Sea  surface  temperature 

GOES-3 
Eigh-resolution images 

6/77  6/78 

IR images (10.50 to 12.60) 
VIS images (0.55  to  0.75) 
VIS images (0.55 to 0.75) 
VIS images (0.55  to  0.75) 

VAS 16 GOB D/E/F 
(NORA  Reimbursable) 

Geosynchronous D 
7/80  2/81  7/83 Sea  surface temperature 

E F Atmospheric  sounding 

Cloud top  temperatures 
Meteorological  high  resolution 
Earth  images 

Same  as VISSR  plus 
IR  (3.73 to 8.00) 
IR (8.00  to  14.70) 

I 

1.1 
1.1 
1.1 
1.1 
1.1 

N O M  A Thru  G 
TIROS N Sun synchronous TIROS N 

10/78 
NOM 

A B* C* 
4/79  79 80 

81 82  83  84 
Df E* F' G* 

Cloud  images 
Sea surface tcwcrature 
Eigh-resolution  images 

AVERR 
Near-IR  images (0.73 to  0.90) 
VIS images  (0.55 to 0.70) 

IR  images 
IR images (10.50  to  11.50) 

(3.55 to 3.93) 

0.08 Landsat 1 and 2 Sun synchronous 1 2 Land  use 

Agricultural'survey 

MSS VIS (0.50  to  0.60) 
VIS (0.60 to 0.70) 
IR (0.70  to  0.80) 

, IR (0.80 to 1.10) 

I 
, Blue-green (0.48 to 0.58) 
I Orange-red (0.58 to  0.68) 
Near IR (0.69 to 0.83) 

I Mss Same as Landsat 1 and 2 with 0.080 Landsat 3 
I additional E S  channel 

I Sun synchronous 3/78 ' Land  use 
917 km Water  resources 

Agricultural  survey 1 IR  (10.40 to 12.60) .237 I 

1 Thematic VIS (0.45 to 0.52) 
mapper ' VIS (0.52  to 0.60) 

VIS (0.63 to 0.69) 
~ IR (1.55 to 1.75) 
, IR  (1.55 to 1.75) 
I IR (10.40  to  12.50) 

' 0.03 Landsat  D  Sun synchronous 1 3rd  quarter 
.03 
.03 
.03 
.03 

1981 

.12 1 

Land  use 
Water  resources 
Agricultural survey 

+As needed. 



l i t e  system, orbit,  launch  schedule ,   and  appl icat ions/object ives   of   each satel- 
l i t e  system.  Several   systems,  such as the   Landsa t   type ,   represent  a continu- 
ing  series of launches .   Fur ther   in format ion   for   each  satel l i te  system  can be 
found i n   r e f e r e n c e s  5 to 7. 

NASA is cu r ren t ly   sponsor ing   r e sea rch  to  fu r the r   s tudy   t he   u se fu lness  of 
sa te l l i t e  imagery in   a s ses s ing   r eg iona l - sca l e   po l lu t ion   ep i sodes .  The o b j e c t i v e  
of  one  study is to p rov ide   t he   capab i l i t y  t o  quan t i t a t ive ly   mon i to r   t roposphe r i c  
aerosols over   l and  masses by e v a l u a t i n g   t h e   r e l a t i o n s h i p  between  upwelling  near- 
infrared  radiance  over   inland  bodies   of  water and  the  atmospheric-aerosol  thick- 
ness .  Raw d a t a  tapes f ran the   Landsa t  2 Mult i spec t ra l   Scanner  (MSS) are being 
used. This   s tudy  focuses   on  f ive  inland sites f o r  which  ground-truth data were 
o b t a i n e d   i n  a previous  Landsat   s tudy.  The o b j e c t i v e  of a second  s tudy is to  
perform a compara t ive   ana lys i s   o f  satell i te imagery  and  ground-based v i s i b i l i t y  
and to o b t a i n  aerosol measurements   for  selected per iods   encompass ing   s ign i f icant  
su l f a t e -po l lu t ion   ep i sodes   i n   t he   Nor theas t e rn   Un i t ed   S t a t e s .  The Geos ta t ionary  
Operational  Environmental  Satel l i te  (GOES) visible-band  images (see t a b l e  6) 
were used to observe a high-sulfate  episode  which  formed  in  the  Ohio  River  Basin 
on   Ju ly  21,  1978. R e s u l t s  o f   t hese   s tud ie s  are p r e s e n t e d   i n   r e f e r e n c e  8 .  The 
c u r r e n t  studies d e m o n s t r a t e   h i g h   p o t e n t i a l   f o r   q u a l i t a t i v e   i d e n t i f i c a t i o n   o f  
e l eva ted   po l lu t ion   ep i sodes   ove r   l and   fo r   h igh - su l f a t e   ep i sodes  and q u a n t i t a t i v e  
measurements  of aerosol loadings  using  inland bodies of  water. However, s e v e r a l  
problems still rema in   i n   d i sc r imina t ing  aerosol loadings  and  elevated  haze  from 
clouds and i n   d e t e c t i n g  low l e v e l s  of   haze,   especial ly   for   widely  varying  ground 
albedos. Improvement  of s a t e l l i t e  observat ion  systems  for   haze  and aerosol mea- 
surements w i l l  r equ i r e   con t inued   ana lys i s   o f   ex i s t ing  sa te l l i t e  imagery, simula- 
t i o n s  of upwell ing  radiance a t  var ious  wavelengths   and  for   var ious  instrument  
bandpasses, and development  of new sa te l l i t e  sys t ems   spec i f i ca l ly   des igned  t o  
determine  the  concentrat ions of  minor c o n s t i t u e n t s  of the   t roposphere .  

3.6.1.2 Passive . . . .~ remote sensing  technology.- The f e a s i b i l i t y   o f   u t i l i z i n g  
pass ive  remote senso r s  t o  measure t r o p o s p h e r i c   c o n s t i t u e n t s  from a i r c r a f t  and 
space  platforms was discussed i n  a s t u d y   f o r  NASA performed i n  1969 ( r e f .  9). 
One of t h e  major conclusions  of   the   s tudy was t h a t   t h e   i n f r a r e d   r e g i o n  of t h e  
spectrum is very   impor tan t   for  remote sens ing   of   t ropospher ic  species because 
it c o n t a i n s   c h a r a c t e r i s t i c   s p e c t r a l   f e a t u r e s  and because t w o  measurement 
methods  can be used - upwel l ing   Ear th-sca t te red   sunl ight   can  be detected i n   t h e  
3- t o  5-pm window and upwelling  thermal  radiation  can be d e t e c t e d   i n   t h e  8- to 
14-pm window. I n   t h e   f i r s t  method,  measurements are restricted to  day l igh t  
po r t ions  of the  globe; however, the  dependence  of  the  measurement  on accurate 
knowledge of   the  a tmospheric  temperature p r o f i l e  is not  as seve re  as it is a t  
longer   wavelengths .   In   the   years   fo l lowing   th i s   s tudy ,   var ious   pass ive   ins t ru-  
ments  and associated software  systems  have  undergone  laboratory  tes t ing  and air-  
c r a f t   f l i g h t  tests. A s  a resul t ,  a pas s ive  CO measurement  instrument (MAPS)  is 
approved to f l y   o n   t h e   s e c o n d  NASA S h u t t l e   f l i g h t .  

A summary o f   t h e   c u r r e n t   p a s s i v e  remote senso r s  under  development  and i n  
u s e  for remote sens ing   w i th in   t he  NASA A i r  Qua l i ty  Program is g i v e n   i n  table 7. 
The ins t ruments  are c a t e g o r i z e d   g e n e r i c a l l y   i n t o   f o u r   c a t e g o r i e s :  Gas f i l t e r  
c o r r e l a t i o n  (GFC), Interferometry,   Infrared  heterodyne  radianetry,   and  Spectro-  
r ad iomet ry .   In s t rumen t   cha rac t e r i s t i c s ,   i nc lud ing   de t ec t ab le  species, spectral 
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TABLE 7 . -  PASSIVE W T E  SENSORS 

~ 

Species 

~ 

pectral coverage, 
w 

~ 

Platform 
Category 

and 
instruments 

Field of view resolution, 
Vertical 

km 
Current  status Viewing mode 

Gas f i l t e r  
correlation 
(GFC) : 

AC/MAPS 
Brtendable t o  other  gases 

03. CH4 

co 
Extendable to  other gases 

4 . 5 2  to  4 .80  7 . 5 0  

4 . 5 0  

4 . 5 0  

20 t o  70 

<5  

<5 

<5 

<5 

Thermal IR 

Thermal I R  

Thermal I R  

9/12 operational 

OET MAPS 
(Shuttle) 

PMR 

4 . 5 2  to 4 .80  :Y 80 f l i gh t   t e s t  

4 . 5 2  t o  4 .80  
8 . 0 0  t o  11.00 

Proposed 
engineering model 
developent 

Propsed A/C 
deve1OpWt 

4 . 0 0  t o  9.00 S o l a r  reflected 

j Interferanetry: 

COPE I Q). CH4 2 .35  7 0  Total burden Solar  reflected A/C operational 

Engineering model 
developed 

Balloon/gnd-based 
operational 

C I r n T s  ~ NH3, H2O. NzO, CO, CH4 2.00 t o  2 . 4 0  2 0  t o  7O '~ 1 solar  reflected < 5  

i 
Q). so2 4 . 0 0  t o  9.00 ' , Thermal I R  

HS I Spectrally  scanning 1 1.00 t o  6.00 ~ 2 0  Total burden 1 Direct  solar 

A/C 

Balloon/gnd-based 

Infrared 
heterodyne 
radiometry: I 

I I 
IHR 03.  m3 9 . 0 0  t o  1 2 . 0 0  0 . 2 5  mrad < 5  Direct  solar 

(Discrete  steps w i t h  
co2 l a se r )  

' Thermal IR 

LHS Spectral ooverage 7 . 5 0  t o  13.00 0 . 2 5  mrad < 5  Direct solar 
(continuous) 

A/C gnd-based 
operational 

Requires  technology 
developent  in 
photanixer quantum 
efficiency 

Laboratory  engineer 
ing model 

Gnd-based 

Spectroradianetry: 

sgW-Tob5 03. 
12  selected  channels 0 . 2 5  t o  0 .34  1 30 Total burden solar  reflected 

Scanner, Nimbus 3 
N i m b u s  4 
Nimbus 7 

A/C 

S a t e l l i t e  
operational 

( w )  

1 SO28 03, NO2 0.30 t o  0.60 1 Multispectral 1 Total burden ' Direct  solar 
I imaging , (1 pprrm) ~ nadir 

MOPS A/C operational 



cove rage ,   f i e ld   o f  view,  and v e r t i c a l   r e s o l u t i o n ,  are given.  Three  "viewing 
modes" are de l inea ted ,   i nc lud ing   t he   t he rma l  IR ( 2 4 . 5  p m ) ,  solar r e f l e c t e d  ( 2 . 0  
to 4.5 pm) , and direct solar (3.0 to  15.0 p m )  . Although  the l a t t e r  viewing mode 
is o n l y   a p p l i c a b l e  f ran a ground-based  platform  for   the  t roposphere,  it has 
been  included  because  there are s i g n i f i c a n t   s c i e n t i f i c   i n v e s t i g a t i o n s   i n v o l v i n g  
well-mixed  gases i n  which  selected  geographical  measurements  would  provide  sig- 
n i f i c a n t  measurements f o r   u t i l i z a t i o n  by current   photochemical  models. An exam- 
p l e  of t h i s   t y p e   o f   i n v e s t i g a t i o n  is t h e  measurement  of t roposphe r i c  ammonia t o  
determine its seasona l   and   d iu rna l   va r i a t ions   fo r   s e l ec t ed   l and  masses such as 
m a r s h l a n d s ,   a g r i c u l t u r a l   t e r r a i n ,  and deser t s .   Another   impor tan t   appl ica t ion   of  
t h i s   v i ewing  mode for the  t roposphere is to u t i l i z e   s p e c t r a l l y   s c a n n i n g   i n s t r u -  
ments,  such as the  Michelson  type,  to ob ta in   h igh - re so lu t ion  spectra of tropo- 
s p h e r i c  molecules a t  per iodic in te rva ls   over   ex tended  periods of time t o  se rve  
as s e n t i n e l  measurements  of new t ropospher ic  species, and to o b t a i n  a long-term 
data base  of well-known t roposphe r i c  species. 

In   gene ra l ,   t he   gene r i c  classes l is ted i n  table 7 r e p r e s e n t   t h e   f o u r  major 
technologies  for  developnent  of  passive remote senso r s   fo r   app l i ca t ion   f rom 
space and a i rbo rne   p l a t fo rms   fo r   t roposphe r i c  species. However, wi th in   each  
g e n e r i c  class, o ther  remote sensing  systems have  been  developed  within NASA f o r  
a p p l i c a t i o n s  to s t r a tosphe r i c   mon i to r ing ,  and by o t h e r   o r g a n i z a t i o n s   f o r  long- 
path,   integrated-burden  measurements  of  tropospheric species. A comprehensive 
summary of t hese   i n s t rumen t s  is beyond the   s cope   o f   t h i s   chap te r ;  however, addi- 
t iona l   in format ion  is g i v e n   i n   r e f e r e n c e  10. 

The remote sensing  technology  developed or proposed  for  measurement  of 
s t r a t o s p h e r i c  trace cons t i tuents   can  have impor t an t   app l i ca t ions   i n  tropo- 
spheric  trace-gas  measurements. For example,  the  high spectral r e so lu t ion   o f  
s t r a t o s p h e r i c  remote sens ing   ins t ruments  reduces spectral i n t e r f e r e n c e s  from 
major t ropospher ic   gases   such  as  H20, CO2, and 03 when a p p l i e d  t o  t h e  tropo- 
sphere.   Several   technological   developnents  expected to  occur i n   f u t u r e  
s t r a t o s p h e r i c  and t roposphe r i c  remote senso r s   i nc lude   t he  u s e  o f   l i n e a r  and 
two-dimensional   arrays  of   infrared  detectors ,   cryogenic   cool ing  of   opt ical  
receivers,   charge-coupled detector t echno logy   fo r   i nc reased   i n t eg ra t ion  time 
from a i rbo rne  and space platforms,   high quantum e f f i c i ency   and  wideband  photo- 
mixers   for   heterodyne  detect ion,   and  microprocessor   technology  for   higher  
e f f i c i e n c y  data r educ t ion  and data ana lys i s .  

Technological  improvements i n   t h e   s e n s i t i v i t y  of pas s ive  remote s e n s o r s  
s h o u l d  expand the  number of   ins t ruments   wi th in   each   gener ic  class l i s t e d   i n  
table  7 as p o t e n t i a l   p a y l o a d s '   f o r   a i r b o r n e  and space platforms.   For  GET i n s t r u -  
men t s ,   t h i s  a u l d  i nc lude   d i spe r s ive   co r re l a t ion   t echn iques ,   cu r ren t ly   u sed   fo r  
plume d i spe r s ion  s tudies ,  and S02-NO2 transboundary  mass-flux  measurements  from 
mobile vans  and s t a t i o n a r y   p l a t f o r m s .  For i n t e r f e r o m e t r y   i n s t r u m e n t s ,   t h i s  
c o u l d  inc lude   the   deve lopnent  of Four ie r   t ransform spectrometers cu r ren t ly   be ing  
used on mobile p l a t f o r m s   i n  1-)cm integrated-burden  measurements  of a va r i e ty   o f  
molecules i n   t h e  2.0- to 16.0-pm spectral r eg ion   and   o the r   i n t e r f e romet r i c  spec- 
t r a l ly   s cann ing   t echn iques   cu r ren t ly   be ing   app l i ed  f rom  ba l loon   p la t forms   for  
monitoring  the  upper  atmosphere  (e.g. ,   the  High Speed In te r f e romete r ,  =I) .  

D e s p i t e   t h e   p o t e n t i a l  improvements i n   s e n s i t i v i t y   o f   p a s s i v e  remote senso r s  
through  technological  improvements i n  systems  and detector technology,   severa l  
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fundamen ta l   l imi t a t ions   i n   pas s ive   s enso r s  w i l l  limit the  use   o f   t hese   i n s t ru -  
men t s   fo r  some of t h e   s c i e n t i f i c   r e q u i r e m e n t s  l i s ted i n  earlier s e c t i o n s  of t h i s  
report. Pass ive  sensors o p e r a t i n g   i n   t h e   t h e r m a l  I R  have an i n h e r e n t   d i f f i c u l t y  
measuring molecules in   t he   b iosphe re   and  are limited to measur ing   in  broad ver- 
tical layers   o f  the middle and  upper  troposphere. The  somewhat l o n g   i n t e g r a t i o n  
times.required to  measure   lowconcent ra t ion  species w i l l  res t r ic t  the  horizon-  
t a l  r e s o l u t i o n  of the  measurement to broad geographic  areas, and w i l l  probably 
require the   use   o f   geos ta t ionary  sa te l l i t e  p la t forms  t o  i n v e s t i g a t e   r e g i o n a l  
areas such as the   Nor theas te rn  corridor of t h e  United States. Instruments   using 
Earth-scattered s u n l i g h t  are n o t   s e n s i t i v e  to details  of t h e  lower t roposphe r i c  
temperature profile and are thus  capable of near -sur face   concent ra t ion  measure- 
ments as well as v e r t i c a l - p r o f i l e  and  total-burden  measurements.  They are, of 
course, restricted to  measurements  over s u n l i t   p o r t i o n s  of  the  Earth.  The 
technique is also restricted to  d e t e c t i o n  of species wi th   v ib ra t iona l - ro t a t iona l  
l i n e s   i n   t h e  3.0- to  5.0-pm region,  where  for some i n t e r e s t i n g   t r o p o s p h e r i c  
gases   on ly   ove r tone   abso rp t ion   l i nes  are a v a i l a b l e ,   l i m i t i n g   t h e   s e n s i t i v i t y  of 
these   ins t ruments   wi th  respect to those  based on  thermal  emission. 

D e s p i t e   t h e s e   l i m i t a t i o n s ,   p a s s i v e  remote senso r s  do e x h i b i t   s e v e r a l  
a t t r a c t i v e   c h a r a c t e r i s t i c s   f o r  a g loba l -measurement   s t ra tegy   for   the  tropo- 
sphere:  The systems and technologies  are t h e  most advanced  for  s a t e l l i t e  mis- 
s ions .  The ins t ruments  are e f f e c t i v e   f o r   m e a s u r i n g   t r a n s p o r t   e f f e c t s  on a 
r eg iona l  and g loba l  scale. Passive  instruments   using  upwell ing thermal radi- 
ance  have  the  potent ia l   for   measuring a l a r g e  number of important tropospheric 
molecules s i m u l t a n e o u s l y ,   i n   t h e  middle and  upper troposphere, and should be 
e f f e c t i v e   i n   s t u d y i n g   t h e   c h e m i s t r y   o f  selected chemical   chains .   Final ly ,  
pass ive   ins t ruments   us ing   Ear th-sca t te red   sunl ight   have   the   capabi l i ty   o f  mea- 
s u r i n g   v e r t i c a l   p r o f i l e s  and total  burdens  of  several  major t ropospher ic   gases .  
A s a t e l l i t e  miss ion   incorpora t ing   bo th   types  of instruments   should be i n v e s t i -  
g a t e d   i n   l i g h t  of t h e   s c i e n t i f i c   r e q u i r e m e n t s  for an e a r l y  sa te l l i t e  payload 
dedicated t o  t h e  lower atmosphere. The f e a s i b i l i t y  of using  both  types  of 
remote sensors   s imul taneous ly  c o u l d  e f f e c t i v e l y  be tested i n  an a i rcraf t  f i e l d -  
measurement  study of the   t roposphere .  

3.6.1.3  Active remote sensing  technology.-   Considerable   effor t   has   been 
expended by NASA and  other   organizat ions  during the  p a s t  decade to develop laser 
sys tems  for   ac t ive  remote sensing  of  the  atmosphere.  The f i r s t   s y s t e m s  used 
pulsed  ruby lasers to measure aerosols by means of Mie b a c k s c a t t e r i n g   i n  a tech- 
nique known as l idar  ( l i gh t   de t ec t ion   and   r ang ing) .   In   t he   ea r ly   1970 ' s ,  Raman- 
s c a t t e r i n g  l idars  were used t o  remotely  measure species concent ra t ions .  By t h e  
m i d - 1 9 7 0 ' ~ ~  t h e  advent  of high-power tunab le  lasers spurred  t h e  development  of 
d i f f e r e n t i a l   a b s o r p t i o n   t e c h n i q u e s  for t h e  measurement  of  gases,   often  replacing 
the  less sensit ive  Raman-scattering  technique.  Such  systems  can be used to  
gather   range-resolved  information when t h e  power is high  enough to use atmo- 
s p h e r i c  backscattered r a d i a t i o n  and operate i n   t h e   d i f f e r e n t i a l   a b s o r p t i o n  l i da r  
(DIAL) mode. Otherwise, a f i x e d   t a r g e t  is used  to  provide  column-content  infor- 

mation  unless some other var iab le ,   such  as the  spectral line-width  dependence  on 
atmospheric   pressure,   can  provide a l t i t u d e  information.  

Table 8 is a par t ia l  survey of t h e   d i f f e r e n t i a l   a b s o r p t i o n  laser systems 
tha t  have  been or could be used t o  measure atmospheric  gases.  The species 
l is ted are p r imar i ly   t hose   a l r eady  detected in   t he   a tmosphe re  w i t h  laser sys- 
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WLE 8.- DIFFEREmIAL ABSORPTION LASER SYSTEMS 

Viewing mode I Plaff orm 

(a)  

Tunabi l i ty  
Wavelength 

Laser  region, 

I L l  
(var iables)  

Species 

Discrete  cy Pulsed  Continuous 

Doubled dye, 

NO2 X X , 0.44 t o  0.45 ~ Dye,  Nd:YAG 

X X 0.28 t o  0.32 1 
Nd:YAG Punped 

SO2, 03 

i Punrmped 

X X X B C 

I 
Dye, ruby i 0.70 t o  0.75 x j x  

I 

X X X A ( C )  1 C D 

O p t i c a l  para- ' 1.4 to 3 .7  1 j cH4,  s02, C O I  
metric  mcil- 
l a t o r  I I I 

I , ! H20, NH3, ! 
HzS, HC I I x  

D y e ,  Nd:YAG 1 mixed 

t 

' I  X X A 

H 2 0 ,  CH4, 
AC1, H W  

X X A C D 

X D C A X X NO 

X 

C A An B X X X 03, m3, X 

D D A, B X a, 

C2H4, H20t 
HC, SFsr co2 

(P, T) 

CO2 C C B X X X 

NO 
X 
X 

A 
D C D 
C D 

X C D D 

C - Untested,  but  considered  feasible D - Untested,  considered  unfeasible 

I Hydrogen f luoride (HF) 

Deuteriun 
f luoride (DF) 

C a r t o n  mon- 
oxide (CO) 

4.7 t o  7.5 I x  I l x  
1 to 16 X Diode 

dioxide (032) 

I 
x I x  co2 pimped 

c rys t a l s  

Spin f l i p  5(" X 5 t o  6 
9 t o  14 

aA - Demonstrated B - Under developllent 



tems.  Other species w i t h i n  the tuning  ranges of the lasers can be measured as 
well i f  the  concentrations  are high enough, i f  spectral  interference is not an 
overwhelming  problem,  and i f  the laser emits sufficient power a t  the  appropriate 
wavelengths. 

Although an eventual  goal is to  place  lidar systems on Space Shuttle (both 
the continuous-wave ( c w )  C02 laser and the Nd:YAG laser  are considered space- 
qualified) , much of the work w i t h  active remote sensors  for measurement of the 
troposphere i n  the near future w i l l  have to be  from the ground or from aircraft .  
Several van-mounted dye-laser systems are being developed by NASA and other 
organizations  for  range-resolved measurements of N02, S02, 03, and aerosols. 
Several I R  DIAL systems and long-path systems are  also being used or developed 
for field-measurement programs. 

3.6 .1 .4  Remote sensing of aerosols.- The f i r s t   l i d a r  systems used pulsed 
ruby lasers  for  the measurement of aerosols by means  of  Mie backscattering. 
Ruby lidars  are still used to map plumes  and  measure clouds and d u s t .  Shorter 
wavelength l idars  suffer from larger  interference from Rayleigh scattering by 
molecules. Longer wavelength l idars avoid the  Rayleigh-scattering problem b u t  
suffer from additional  detector  noise and  weaker  Mie scattering. It has 
recently been realized  that wavelengths from 3.0 t o  11 .0  Pm can be better used 
to  measure mass concentrations of aerosols than can the  shorter wavelengths, 
presumably because the wavelength is larger than the mean particle diameter so 
that  the  Mie-scattering  cross  section  varies  less  rapidly w i t h  particle diam- 
eter. Work is also i n  progress to  demonstrate  the differential-scattering 
(DISC) technique to allow differentiation between different  aerosol  species 
(water droplets,  ice  crystals,  sulfuric-acid  droplets,  etc.). Laser Doppler 
velocimeters  are being developed to measure aerosol  velocities. Table 9 sum- 
marizes  the various  lasers used to measure aerosols. 

TABLE 9.- LASERS USED TO MEASURE AEROSOLS 

I Laser 

Dye - second  harmonic 

Ruby - second  harmonic 

Nd:YAG - second  harmonic 

Ruby 

Nd : YAG 

Hl? or DF 

co2 

Wavelength, 
!Jn 

0.28 to 0.32 

.35 

.53 

. 69  

1.06 

2.8 to  3.4 

8 to  12 

Property measured 

Quasi-concentration 

Quasi-concentration 

V i s i b i l i t y ,  quasi-concentration 

Quasi-concentration 

Quasi-concentration 

Mass-concentration 

Mass-concentration, species 
(DISC) ,  and aerosol  velocity 
(Doppler ) 
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A s u m a r y   o f   t h e   c u r r e n t   a c t i v e  remote sens ing   sys tems  in   the  NASA A i r  
Q u a l i t y  Program is g i v e n   i n   t a b l e  10. T h i s   s u m a r y   c l a s s i f i e s   t h e   i n s t r u m e n t s  
i n to   f i xed -  and  tunable-wavelength  systems. The former are pr imar i ly   impor tan t  
i n  measurements   of   t ropospheric   and  s t ra tospheric  aerosols, aerosol e x t i n c t i o n ,  
and  measurements  of  heights of inve r s ion   l aye r s .  For molecular species i n  
which v ib ra t iona l - ro t a t iona l   l i nes   ove r l ap   wave leng ths   o f   t he   t r ansmi t t i ng  laser 
(e.g., 0 3  and NH3 f o r   t h e  C02 laser) ,  t h e  C02 Laser Absorption Spectrometer 
(LAS) has  been  developed  for  measuring total  column concentrations  from  an air- 
borne  platform,  and is read i ly   ex t endab le  to Spacelab  with  exis t ing  technology.  
Tunable-wavelength   l idar   sys tems  cur ren t ly   have   the   h ighes t   po ten t ia l   for  mea- 
su r ing  a v a r i e t y   o f  trace gases in   t he   t roposphe re   s imu l t aneous ly ,   w i th   ve r t i -  
cal  range  extending to the   g round  and   ver t ica l   reso lu t ion   approaching  1 km. 
The lower limit on v e r t i c a l   r e s o l u t i o n  is general ly   governed by t h e  power of t h e  
t r ansmi t t i ng  laser, the   concen t r a t ion  and d is t r ibu t ion   of   gas   be ing   measured ,  
t h e   s i z e  of t h e   c o l l e c t i n g  telescope, and t h e   i n t e n s i t y   o f   t h e   a b s o r p t i o n   l i n e  
i n  a window of  the  atmosphere.  

Table 10 s u m a r i z e s ,   f o r   e a c h  laser system,  several   ins t rument  parameters 
inc luding  some of   t he  species detectable with  the  instrument ,  spectral range, 
t y p e   o f   t r a n s m i t t i n g   l a s e r ,   r e c e i v e r   t e l e s c o p e  diameter, viewing mode, and t h e  
cu r ren t   p l a t fo rm used or proposed fo r   t he   s enso r .  The las t  two columns sum- 
mar i ze   t he   cu r ren t  s ta tus  and t h e  most probable f i e l d   a p p l i c a t i o n s   o f   t h e   s e n -  
sors. Other   organizat ions are cur ren t ly   deve loping  laser systems  for  applica- 
t i o n s  to t ropospheric   monitor ing.  A recent  survey  of  active  ground-based  and 
a i rbo rne  remote s e n s o r s   ( i n c l u d i n g  NASA sensors  and senso r s  from other   organi-  
za t ions )  which p o t e n t i a l l y  are ava i l ab le   fo r   s tudy ing   e l eva ted   po l lu t ion   haze  
was presented  a t  t h e  EPA Seminarfiorkshop on P e r s i s t e n t   E l e v a t e d   P o l l u t i o n  
Episodes (PEPE) he ld  March 19 to 23,  1979, i n  Durham, N.C. 

Within  the NASA A i r  Qual i ty   Program,   th ree   ac t ive  remote senso r s  have  been 
used i n  a j o i n t  EPA/NASA r e g i o n a l   f i e l d - t e s t  program  from  airborne  platforms  in  
t h e  summer o f  1980.  These  sensors are the   A i rbo rne   U l t r av io l e t  (UV) D I A L  Sys- 
tem, High Spectral Resolu t ion  Lidar ( H S R L ) ,  and Laser Absorption Spectrometer 
(LAS) . A d d i t i o n a l   j o i n t  s tud ies  are being  considered  for  1982. 

The Airborne UV DIAL System  has  been  designed to s imul taneous ly  measure 
aerosols and e i t h e r  0 3  or S02, w i t h   t h e   p o t e n t i a l  of modifying  the  system to  
measure a l l  three  s imultaneously.   Other  species detectable w i t h   t h e   p r e s e n t  
system  include NO2 and H20. The HSRL system was developed to measure the  ver-  
t i ca l  and h o r i z o n t a l   d i s t r i b u t i o n s   o f   a t m o s p h e r i c   o p t i c a l - e x t i n c t i o n   c o e f f i -  
c ients ,   the   aerosol- to-molecular-scat ter ing ratios, and aerosol -backsca t te r ing  
phase   func t ions .  The HSRL operates from  an a i r c r a f t   p l a t f o r m   w i t h   t h e   t r a n s -  
m i t t i n g  laser wavelength  in a Fraunhofer   l ine,   permit t ing  day/night   operat ion.  
The LAS h a s   u n d e r g o n e   e x t e n s i v e   a i r c r a f t   f l i g h t   t e s t i n g ,   i n c l u d i n g   f l i g h t s   o n  
the  NASA CV-990 and t h e  J P L  Beechcraf t  B80 Queen A i r  a i r c r a f t .  The LAS has 
also been used i n   t h e   S o u t h e a s t e r n   V i r g i n i a  air qua l i t y   s tudy   and   success fu l ly  
measured   the   t ranspor t   o f .  0 3  i n  parcels of a i r  which o r ig ina t ed   i n   u rban  areas 
dur ing  morning  hours  and were subsequent ly   t ranspor ted  by the   p reva i l ing   winds .  

The development   of   act ive remote senso r s  is not as advanced as the  develop- 
ment of   passive  systems.   Act ive remote sensors ,   however ,   have  high  potent ia l  
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TABLE 10.- ACTIVE -E SENSING SYSTEM 

Field 
Applications 

Transmitting 
laser 

aceiver 
? lesmp 
dim,  
cm 

122 

36 

31 

15 

36 

Current 
s ta tus  Species Viewing mode Category and instrument 

Fixed wavelength: 

Large telesmpe 
l idar   systm 

A/C stratospheric 

system 
aerosol  lidar 

Gnd-based ruby l idar  
system 

Laser Absorption 
Spectrameter (LAS) 

High Spectral  Resolution 
Lidar (HSRL) 

Gnd truth  for 
s a t e l l i t e s  
(SAM 11, SAGE) 
volcanic  eruptions 

Gnd truth  for 
s a t e l l i t e s  
(SAM 11, SAGE) 

Power-plant 
plune studies 

Total burden 

Stratospheric 
aerosols 

0.69 Ruby Operational 

Operational Stratospheric 
aerosols 

.69 Ruby Atmospheric 
backscatter 

Tropospheric 
aerosols 

03. m3 

.69 Abnospheric 
backscatter 

Reflected gnd 

absorption) 
(molecular 

Atmospheric 
backscatter 

Operational 

Operational 9.00 to  12.00 
(discretely 
tunable) 

0.40 t o  0.45 N2-plmped dye 
developnent 

Under Regional aerosol 
extinction  profiles extinction 

Aerosol 

Tunable wavelength: 

W D I A L  Mobile 
gnd 

rertical 
Gnd/ 

xof   i l es  

A/C 

A/C 

A/C 

Regional/urban 
plune studies 

0.28 to  0.31 

0.70 t o  0.75 

31 

51 

36 

36 

6 

125 

Differential 

fran 
absorption 

atmospheric 
backscatter 

Differential 
absorption 
f ran 
atmospheric 
backscatter 

DIAL, gnd 
reflection 

Operational 

Near-IR DIAL H 2 0 ,  pressure, 
temperature 
profiles 

Operational ~ Tropospheric 
, meteorological 
I parameters 

I 
1.40 t o  3.70 Optical 

! parametric 
~ osci l la tor  

developnent 1 and tropospheric 
Under Regional (EIC) 

I species  survey 
! 

A/C DIAL system 
; HzO, aerosols 

SOz. 03, NOZ. 

I temperatwe, , pressure 

Differantial 
absorption 

I atmospheric 
€ran 

backscatter 

Laser absorption 
i 

i n  20-m path 

developnent 1 sO2, aeroaols, 
Under ~ Regional  study Of 0 3 ,  

'I tKOpoSpheKiC 820 
profi les  

1 0.45 t o  0.60 i Tunable diodt 
7.50 t o  13.00 I lasers 

Differential  absorption 
pollution sensor 

Operational  Regional  study of 
tropospheric budgets 
and  dynamics 

Shuttle  lidar , Multiple 
~ species, 

' aerosols ' meteorological 

clouds, 

parameters 

, 0.30 t o  13.00 Evolutionary 
,' l idar  system 

I 

Abnospheric 
backscatter 
flourescence 
DIAL 

jpacelab : Phase8 Global 
I study  troposphere 
' complete stratosphere 

mesosphere I 
thermosphere i 
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for   be ing   des igned  to  ins t rumen t   spec i f i ca t ions  which meet some of the  major 
s c i e n t i f i c   r e q u i r e m e n t s   f o r   m e a s u r e m e n t s   i n   t h e   t r o p o s p h e r e   f r a n  an a i r b o r n e  
p la t form.   These   inc lude   ver t ica l   reso lu t ion   of   approximate ly  1 km f o r  major 
spec ies ,   ver t ica l   range   ex tending  to  the  ground,  day/night  operation, true col- 
umn content  measurements,  and  inherent  high spectral r e s o l u t i o n  and t u n a b i l i t y  
t o  measure  t ropospheric  species simultaneously and uniquely i n  a background  of 
i n t e r f e r i n g   g a s e s .  However, fo r   app l i ca t ions  to  space  platforms,  major techno- 
logical   breakthroughs  must   be made i n   t h e  sources themselves,   including  higher 
power and e f f i c i e n c y ,  improved co l l ima t ion  and spectral puri ty ,   wider   tunabi l -  
i t y ,  and higher   f requency  and  ampli tude  s tabi l i ty .   The NASA S h u t t l e   L i d a r  Work- 
i ng  Group h a s   r e c o g n i z e d   t h e   f a c t   t h a t  a t  the   p re sen t   s t age   o f  laser technology, 
on ly  t w o  types  of  lasers are s u i t a b l e   f o r  a Space   Shut t le   miss ion:  The Nd:YAG 
laser and the  cw C02 laser. N o  f a r - in f r a red  lasers are c u r r e n t l y   s u i t a b l e   f o r  
spaceborne   app l i ca t ions .   In   o rde r  to perform many of t h e   s c i e n t i f i c   i n v e s t i g a -  
t i o n s  of t h i s   p l a n ,  it w i l l  be necessary  t o  fu r the r   deve lop   appropr i a t e  sources 
f o r   a c t i v e  remote sensing  systems. 

Exis t ing  instruments   must  be t e s t e d  under f l i g h t   c o n d i t i o n s   n o t   o n l y  to  
d e m o n s t r a t e   t h e i r   o p e r a t i o n a l   r e l i a b i l i t y  and s e n s i t i v i t i e s ,   b u t  also to pro- 
v ide   da t a  which  can  be interpreted  and  analyzed  under   condi t ions as close to 
an ac tua l  mission as poss ib l e .  Such f l i g h t s ,   e i t h e r   w i t h   a i r c r a f t  or ba l loon  
p la t forms ,  must  be performed  for   any  instrument   being  proposed  for   spaceborne 
app l i ca t ion .  The Shut t le   l idar   exper iments   can   se rve  as the   t echnology demon- 
s t r a t i o n   f l i g h t s  and s c i e n t i f i c   i n v e s t i g a t i o n s   p o i n t i n g  to development  of 
dedica ted  sa te l l i t e  laser ins t ruments   for   s tudying   the   t roposphere   in   long-  
du ra t ion  sa te l l i t e  missions.  The time scale f o r   u t i l i z a t i o n   o f  laser systems 
i n   r e s e a r c h - s a t e l l i t e   i n v e s t i g a t i o n s  is c u r r e n t l y   d i f f i c u l t  to p ro jec t   due  to 
the   rapidly  emerging  technology  of   these  systems.   Therefore ,   in   generat ing 
s c i e n t i f i c   r e q u i r e m e n t s   f o r  sa te l l i t e  miss ions ,   the   requi rements  m u s t  be tem- 
pered by the  s t a t u s  of laser technology;   in  some cases, p r i o r i t i e s   f o r   m i s s i o n s  
m u s t  be d i c t a t e d  by t h e   a v a i l a b i l i t y  of s u i t a b l e  laser technology. 

3.6.2 I n   S i t u   S e n s o r s  

I n  s i t u  sensors   can be c a t e g o r i z e d   i n   s e v e r a l   d i f f e r e n t  ways. One of t h e  
most general  methods is tha t   based   on   the  time requi red  to  c a r r y  o u t  a measure- 
ment. I n   t h i s   c o n t e x t ,  w e  can   def ine  t w o  experimental   approaches: Real-time 
and  discontinuous  sampling.  In real-time f i e ld   s ampl ing ,   t he  time requ i r ed  to 
make  a measurement  (which can b e   e i t h e r   d i r e c t l y  or i n d i r e c t l y   r e l a t e d  to a 
concent ra t ion   va lue   for  a chemical species) is  s h o r t  compared w i t h   t h e   n a t u r a l  
time of v a r i a b i l i t y  of t h e  species in   the   a tmosphere  or t h e  time pe r iod  of t h e  
f i e l d - s a m p l i n g   o p e r a t i o n   i t s e l f   ( t y p i c a l l y  2 t o  1 2  h r ) ,  whichever is s h o r t e s t .  
In   the   d i scont inuous   sampl ing ,   the  time required f o r  a measurement is def ined  
to be l onge r   t han   t ha t   spec i f i ed   fo r   t he   na tu ra l  time o f   v a r i a b i l i t y   o f   t h e  
species or t h e  t o t a l  time period  for   sampling,   whichever  is s h o r t e s t .  Each 
of these   genera l   sampl ing   approaches ,   in   tu rn ,   can  be subdivided  according to  
d e t e c t i o n  method.   These   inc lude   d i rec t   spec t roscopic   de tec t ion ,   ind i rec t  spec- 
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trosmpic detection,  gas  chromatography,  and  wet-chemical  analysis.  Several 
specific  instrument  types  which  fall  into  these  four  categories  are  listed  in 
the  following : 

A. Direct  spectroscopic  detection: 

(1 ) Long-path UV absorption 
(2)  Long-path IR absorption 
(3)  Single-photon  laser-induced  fluorescence 
( 4 )  Multiphoton  laser-induced  fluorescence 
(5) Conventional  fluorescence  detection 

B. Indirect spectrosapic detection: 

(1) Chemiluminescence 
(2)  Neutron  activation  analysis - filter  matte  collection 

C. Gas  chromatography : 

( 1  ) Electron  capture  detection 
(2)  Flame  ionization  detection 
(3)  Mass  spectrometric  detection 
( 4 )  Flame  photometric  detection 

D. Wet-chemical  analysis: 

(1  ) Ion  chromatography 
(2) W-liquid chromatography 

A  more  complete  description  of  several  of  the  more  commonly  used  in  situ  sensors 
is  given  in  table 11. 

Based  on  the  recommendation  for  a  global  aircraft  field-sampling  program, 
it follows  that  further  development of in  situ  tropospheric  sensors  should  also 
be given  a  high  priority. Of particular  concern  should  be  the  development  of 
new  real-time  instrumentation  capable  of  detecting  tropospheric  species  at  con- 
centration  levels  given  in  table  12.  Species  for  which  instrumentation  either 
does  not  exist or for  which  present  instruments  are  inadequate  are of the 
highest  priority  and  include NO,, C2 to C10 hydrocarbons,  peroxides (e.g., H02, 
H202, and  CH3O2),  hydrogenated  sulfur  compounds (e.g., H2S,  CH3SH,  CH3SCH3, 
CH3SSCH3,  and  CH3SCH3),  and  NH3. 

0 
Also,  because  of  the  importance  of  flux  measurements  in  the  overall  assess- 

ment  of  local-regional  sources  and  sinks  for  atmospheric  trace  gases,  it  is 
recommended  that  NASA  give  especially  high  priority  to  the  funding  of  real-time 
instrumental  techniques  capable  of  generating  data  at  repetition  rates  of  at 
least 10 Hz. At the  latter  sampling  rate,  the  newly  developed  meteorological 
correlation  technique  can  be  used  to  measure  the  net  downward  or  upward  flux of 
a  trace  gas  directly  from  an  aircraft  platform. 
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TABLE 11 .- SUEPIARY OF I N  SITU INSTRUMENT& TECFlNIpUES POR MEASURING NATURAL 

BACKGROUND LEVEIS OF GAS-PEASE  TROWSPEERIC SPECIES 

(a)  Real-time  sampling 

~~ 
~ ~~~ 

General 
s t a t u s  of 
technique 

( a )  
- ~~ 

A 

B 

B 

B 

r Time re so lu t ion   fo r  
concent ra t ion   twice  
s e n s i t i v i t y  limit 

S t a t u s  of  sampling 
platform S e n s i t i v i t y  

limit 
(S/W = 2:l)  

Detection 
method 

Species  
de t ec t ed  

OH 

NO 

so2 

CA2O 

M) 

0 3  

E202 

*2 

(a: 
Ship  Gnd base 

3.5 x 105  OH/^^ 

I .  o x 106  OH/^ 
(p t  5 350 t o r r )  

(p, = 760 t o r r  - 
t r o p i c a l  marine 
boundary  layer) 

( p t  5 350 t o r r )  
-0 .5  pptb 

-1.0 pptb 
(pt  = 760 t o r r )  

(pt  5 350 t o r r )  
- 3 . 0  pp tb  

(pt  = 760 t o r r )  
- 6 . 0  pp tb  

50.0 pp tb  
( p t  5 350 t o r r )  

100.0 pptb 
(pt  = 760 t o r r )  

4 min 

4 min 

4 min  

4 min 

D 

C 

C 

C 

Laser-induced 
f lourescence 

Chernilminescence 1 . o  t o  2.0 ppt  

1.0  t o  2.0 ppb 

0.1 ppbb 

-1 min 

-1 min 

10 m i n  

CB, A 

A 

B 

B Chemiluminescence 
w i t h  chemical 
converter  

5 . 0  ppt -1 min B B B 

Cryo-trapping 
GLC-FPD 
sulfur  analyzer 

1 5 . 0  ppt 

2.0 ppt  

-1 0.0 ppt 

5 . 0  t o  20.0 pp tb  

5 . 0  t o  20.0 pptb 

-4  min 

-4  min 

- 4  min 

- 

- 

A 

A 

B 

B 

B 
__ 

A 

A 

A 

CA, B 

B 

B 

A W absorpt ion 1 .0  t o  2.0  ppb 1 s e c  A 
- 

D 

C 

A 

W photof  rag- 
mentation 

W f luorescence 

A 

B 

1 min A 

B 

D 

B 

0.1 Ppa 
(pt 5 350 t o r r )  

1.0 ppb f f a c t o r  
Of l o b  

be prac t i ca l   p l a t fo rm:  D = Untested,   considered  to  be impract ical   p la t form.  
aA = Tested,  measurements  reported i n  t h e   l i t e r a t u r e ;  B = Under developnent;  C = Untested,   considered  to  

CTechnique  has  been  successfully  used i n  ground-base  sampling  and is under  developnent  for use on a i r -  
bEs t ima ted   s ens i t i v i ty  limit only. 

c r a f t   p l a t fo rms .  
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TABLE 11 .- Continued 

~~ 

Detect ion 
m e t b d  

IR absorp t ion  
diode  laser  

~~ 

M e r  cur  y  oxide 

G a s  chrma-  
tography  flame 
i o n i z a t i o n  and 

t u r e   d e t e c t o r s  
e lec t ron  cap 

F r o s t - p i n t  
hygrmeter  

General  
s t a t u s  of 
technique 

( a )  

B 

B 
" 

A 

A 

A 

A 

A 

9, A 

A 

CB, A 

CB, A 

A 

B 

B 

B 

B 

B 

B 

A 

A 

A 
-~ 

A 

(a)  Concluded 

~~~ 

S e n s i t i v i t y  
limit 

(S/N = 2:l) 

~~ ~~ 
~~ 

5 .0  to 10.0 ppb 

50.0 pptb  

2.0 to  5 .0  ppb 

-2 .0  ppb 

3.0  ppt  

5.0 p p t  

2 .0   ppt  

10.0 pp tb  

5.0 p p t  

20.0  pptb  

20.0  pptb 

5 . 0  ~ p t  

30.0 pptb  

30.0 pptb 

15.0 pptb  

30.0 to  60.0 pptb 

30.0 t o  60.0 p p t b  

30.0 to 60.0 pp tb  

5.0 ppb 

2.0  ppb 

5.0 Ppb 
~ 

Dew pt., 243 to 
233 X, or 

Dew pt. depression,  
248 to  243 K 

Time r e s o l u t i o n   f o l  
concent ra t ion  t w i a  

s e n s i t i v i t y  limit 
~. ~ - 

0 .5  to 2 min 

0.5 to 2 min 

Few seconds 

Few seconds 

8 min 

8 min 

8 min 

8 min 

8 min 

8 min 

8 min 

3 min 

5 min 

5 min 

5 min 

5 min 

5 min 

5 min 

3 min 

3 min 

3 min 

1 sec 

~ . . .  

. "" - 

" -~ 

.. . 

Status  of  sampling 
platform 

A 

A 

A 

B 

A 

B 

B 

A 

B 

B 

B 

B 

B 

B 

A 

A 

A 
" 

A 

(a - 
S h i p  

C 

C 

" 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

C 

C 

C 

C 

C 

A 

A 

A 

A 

-~ ~. 

~ 

B 

C 
~ 

A 

A 
-~ 

A 

A 

A 

A 

A 

A 

A 

A 

A 

C 

C 

C 

C 

C 

A 

A 

A 

prac t ica l   p la t form;  D = Untested,   considered to be impract ical   p la t form.  
aA = Tested,  measurements  reported i n   t h e   l i t e r a t u r e ;  B = Under developnent; C = Untested,   considered to  be 

CTechnique  has  been sucessful ly   used  in   ground-base  sampling and is under  developnent  for use on a i r c r a f t  
bEs t ima ted   s ens i t i v i ty  limit only. 

platforms.  

I 
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mu 11.- Continved 

( b )   D i s m n t i n w u s   s a p l i n g  

~ 

Detection 
m e t b d  

Bigh-volue 
co l lec t ion   wi th  
t r e a t e d   f i l t e r  
mattes - l a b  
analysis  

Cryo-trapping- 
n a t r i x  IBOlLI- 

analysis 
t ion - l a b  

. .  

C1 4-01 Chamber 
Reactor - l ab  
analysis  ._ . ." ~ 

Column a d s o r p  

GC-mass spec- 
t i on  - l a b  

t rcmetr ic  
analysis 

.~ 

Grab  sanpling - 
Lab GLC OT 
(;LC-mass spec- 
t r o e t r i c  
analysis  

aA - Tested, mea 
pract ical   p la t form; 0 

bEstimated  sensi 

rementa 
Unteste 

v i t y  l i m  

r t e d   i n  

- 

Sens iv i ty  

(S/N - 2:l) 
limit 

~ 

10.0 p p  

2 0 . 0  p p  

50.0  pp t  

100.0  pptb 

20.0  pp tb  

10.0  pptb 

1 . 0 p p t  

5 . 0  x 107/aa3  b 

_~__ " 

-105 0 r r / ~ 3  

~~ 

~ ~~ ~~ 

2 0 . 0  t o  50.0 
ppt  for  each 
speciesb 

~ ~~ 

2.0 ppt  

2 .0  Ppt 

1.0  Ppt 

~~ 

4.0 PS 
3 . 0  ppt  

3 . 0  ppt  

3 . 0  ppt  

3 . 0  ppt  

10.0 ppt 

10.0  ppt 

2 . 0  ppt  

2 . 0  ppt  

,15.0 pp t  

15.0 ppt  

7.0 pp t  

36.0 pp t  

30.0 ppt  

30.0  pptb 

30.0 pptb 

2.0 ppt  

1.0 pp t  

2.0 ppt  

Li terature;  B - 
be impract ical  

for mncentrat ion 
Time resolut ion 

a t   s e n s i t i v i t y  limit 

-1 hr 

- 1  hr 

-1 hr 

21  hr 

-1 hr 

Not meaningful 
p l an t i  ty: tine 
reso lu t ion   in  
&cinciple  muld 

which can smples  
be the  r a t e   a t  

wu ld  be opened, 
f i l l e d ,  and then 
c l m e d  

der   deve lopent ,  c - 
atform. 

S t a t u  of sampling 
plafforn 

i i r c r a f t  

A 

B 

B 

B 

B 

C 

C 

D 

D 

B 

A 

A 

A 

A 

C 

C 

C 

B 

B 

B 

B 

A 

A 

A 

A 

B 

B 

B 

B 

B 

A 

A 

tes ted,  , 

C 

:nd base 

B 

B 

A 

A 

A 

A 

A 

A 

A 

B 

B 

B 

B 

A 

A 

A 

A 

B 

B 

B 

B 

B 

A 

A 

, to bc 
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TABLE 12.- INSTRUMENT SENSITIVITY REQUIRED FOR THE  DETECTION 

OF SEVERAL CARBON, NITROGEN, OZONE, AND HxOy SPECIES 

UNDER  DAYTIME CONDITIONS 

Species 
measured 

OH 

HO2 

H202 

H20 

03 

NO 

NO2 

HNo3 

HNo2 

NO3 

co 

CH4 

CH20 

CH300H 

CH30H 

cH302 

Estimated 
mean concentration 

level 

I .  5 x 1 0 6 1 ~ 3  

3.0 x 107/cm3 

500 ppt 

1 .O torr 

50 PPb 

5 PPt 

1 0  PPt 

50  PPt 

1 X 106/,3 

4 X 1 0 6 1 ~ 3  

90 PPb 

1 . 6 5  ppn 

1 0 0  ppt 

200 ppt 

500 ppt 

3 x 107/& 
~ ~~ 

Concentration 
r  ange 

2 X 1 0 5  to 3 x 1 0 7 / ~ 3  

1 x 1 O6 to  6 x 1 0 8 / m 3  

50 t o  3000 ppt 

0.02 to  20 torr 

2 t o  300 ppb 

1 to  200 ppt 

2 t o  400 ppt 

1 0  to 1000 ppt 

1 x 1 0 5  to 1 x 107/,3 

4 x 1 0 5  to 2 x 1 0 7 / m 3  

40 t o  300 ppb 

1 . 4 0  t o  1 . 9 0  ppn 

20 to  500 ppt 

20  to 1 0 0 0  ppt 

50 t o  2000 ppt 

1 x l o 6  to  6 x 108/cm3 
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3.7 INTERAGENCY COORDINATION 

The NASA research program in   t roposphe r i c   env i ronmen ta l   qua l i t y  is contin- 
ua l ly   coord ina ted   wi th   o ther   agencies   conduct ing   re la ted  programs through m u t u a l  
p a r t i c i p a t i o n   o n   i n t e r a g e n c y   s t e e r i n g  committees, through  the  exchange  of  and 
comment on  programmatic   documentat ion,   through  mutual   par t ic ipat ion  in   per iodic  
progress   reviews and planning  workshops,  and  through  discussion  and critique a t  
in te ragency  committee meetings. 

The o v e r a l l   c o o r d i n a t i o n   w i t h   r e l a t e d  programs in   t he   Env i ronmen ta l  Protec- 
t i o n  Agency (EPA) is conducted by an  interagency committee cochai red  by t h e  EPA 
Assis tant   Adminis t ra tor   for   Research  and  Developnent  and by t h e  NASA Associate 
Administrator for Space and T e r r e s t r i a l   A p p l i c a t i o n s .   T h i s  committee adminis- 
ters an EPA/NASA in te ragency   agreement   focus ing   on   coopera t ive   p rograms  in  
environmental   qual i ty .  A c u r r e n t  Memorandum of  Understanding  under t h i s   i n t e r -  
agency  agreement  covers a coopera t ive  project on   reg iona l -sca le   po l lu t ion  epi- 
sodes. A s  part of t h i s  project, NASA is conduc t ing   ana ly t i ca l   and   f i e ld  studies 
i n  support of such EPA a c t i v i t i e s  as the   Su l f a t e   T ranspor t   and   T rans fo rma t ion  
Experiment (STATE), t he   Pe r s i s t en t   E leva ted   Po l lu t ion   Ep i sodes  (PEPE) a c t i v i t y ,  
and other   in-house  research.  NASA has  been a p a r t i c i p a n t   i n   t h e  EPA-coordinated 
Federal Interagency  Energy/Environment  Research  and  Developnent  Program  since 
1975. Through these  cont inuing  programs  and  through  f requent  m u t u a l  participa- 
t i o n   i n   p r o g r e s s   r e v i e w s  and  workshops,  the NASA program is f u l l y   c o o r d i n a t e d  
wi th  EPA. 

I n   a d d i t i o n  to EPA, a number of   o ther   o rganiza t ions  are conducting  programs 
related  to t h e  NASA A i r  Qua l i ty  Program.  The Nat ional   Science  Foundat ion (NSF) 
has  sponsored Global Atmospheric  Measurements  Experiment  on  Tropospheric Aero- 
sols and Gases (GAMETAG) and  has   es tabl ished a new research  program  in  atmc- 
spher ic   chemis t ry .  NASA has  reviewed  the  programmatic  documentation  on GAMETAG, 
and GAMETAG s c i e n t i f i c   i n v e s t i g a t o r s  have k e p t  NASA a b r e a s t   o f   t h e  results t o  
date. NSF and NASA r e p r e s e n t a t i v e s  have discussed p o t e n t i a l   c o l l a b o r a t i o n   o n  
fu tu re   a i r c ra f t   measu remen t s .  NSF also managed t h e   U n i t e d   S t a t e s   p a r t i c i p a t i o n  
i n   t h e  Monsoon Experiment (MONEX) i n   t h e   s p r i n g   o f  1979, and  severa l  NASA inves- 
t igators   conducted  environmental   experiments  as part  of MONEX. 

Other studies of i n t e r e s t  to NASA are: ( I )  The Multistate Atmospheric 
Power Product ion  Pol lut ion  Study (MAP3S) under t h e  management of EPA through 
the  Department  of  Energy t o  s tudy  the  environmental  impact of f o s s i l - f u e l  burn- 
ing,  and ( 2 )  t h e  now completed Sulfate   Regional   Experiment  (SURE), which was 
conducted by t h e  Electric Power R e s e a r c h   I n s t i t u t e   f o r   v a l i d a t i o n   o f   r e g i o n a l  
t r a n s p o r t  models. NASA has   coordinated its program a c t i v i t i e s   w i t h  MAP33 and 
SURE. 

The NASA research program i n  air q u a l i t y  was fu r the r   coo rd ina ted   w i th  a 
group  of 16 Federal agencies  conducting  environmental  programs  through par- 
t i c i p a t i o n   i n   t h e   I n t e r a g e n c y  T a s k  Force  on  Environmental  Data and  Monitoring. 
T h i s  T a s k  Force was e s t a b l i s h e d   i n  1977 by the  Counci l   on  Environmental   Qual i ty  
a t  t h e   d i r e c t i o n  of t h e   P r e s i d e n t  to review  present   environmental  data and mon- 
i tor ing  programs  and to  recommend improvements t h a t  would make these  programs 
more e f f e c t i v e .   I n   a d d i t i o n  to pursuing its own o b j e c t i v e s ,   t h e  T a s k  Force  has  
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provided an excellent mechanism for  interagency  coordination of federally spon- 
sored  environmental programs. The final  report of the Task Force was issued i n  
March 1980 (ref. 11) .  

The NASA research program i n  air   quali ty is coordinated wi th  related pro- 
grams i n  other  countries through NASA's  International  Affairs  Division. Key 
NASA technical and management personnel participate i n  international  technical 
meetings,  serve  as members  of committees i n  support of the  United  Nations Envi- 
ronmental Progam (UNEP), and frequently v i s i t  other  countries engaged i n  related 
programs to maintain an up-to-date knowledge  of their  progress and status. 
Additional  coordination wi th  foreign programs is achieved  through active  partic- 
ipation by scient is ts  from other  countries i n  NASA programs. Foreign scient is ts  
are  principal  investigators  for experiments on NASA satel l i tes ,   serve on 
NASA working groups, and participate i n  the NASA research programs through the 
Announcement  of Opportunity (AO) and Applications  Notice (AN) processes. 
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CHAPTER 4 - SUMMARY 

This  report has  been  devoted to  t h e   s c i e n t i f i c   r a t i o n a l e  and recommended 
program  elements for the  NASA Tropospheric  Research Program  Plan. The o v e r a l l  
goa l  of the  research  program is to  increase  our  understanding  of  the  chemical 
phenomena occurr ing   in   the   t roposphere   wi th   par t icu lar   emphas is   on   those  aspects 
t h a t  impact on  environmental   qual i ty   such as h e a l t h ,   a g r i c u l t u r e ,  climate, and 
weather.   Thus,   the  tropospheric  research  plan  focuses  on  those aspects of  the 
general   b iogeochemical   cycles  of the   Ear th   tha t   concern   the   chemis t ry   and  
dynamics  of  the  troposphere. 

The present   research   p lan  is centered  around  three  general   quest ions:  

I. What are t h e   p r i n c i p a l  processes governing  the  global   carbon/ni t rogen/  
ozone  system? 

11. What are t h e   p r i n c i p a l  processes governing  the  global  sulfur/ammonia/ 
trace metal/carbon/aerosol  system? 

111. What are t h e   r e l a t i v e  roles of transport ,   transformation,  and  removal 
processes   in   govern ing   the   behavior  of regional-  and urban-sca le   po l lu ted  a i r  
masses?  (This  problem is of i n t e r e s t  to NASA in   responding  to  requests from 
EPA and  other  agencies  for  the  development and a p p l i c a t i o n  of space technology 
for   moni tor ing   t ropospher ic  processes.) 

Those  research t a sks  t h a t  have  been selected for   implementat ion are d i v i d e d   i n t o  
four  basic ca t egor i e s :  

1 .  Fie ld  measurements 

2. Modeling 

3.  Laboratory  measurements 

4. Technology  development 

Each  of t h e  major s c i e n t i f i c  p rob lems   ou t l i ned   i n   t he   t roposphe r i c  
research  plan  has   components   that   suggest   theoret ical   and  experimental   research 
s t u d i e s ,  and the   expe r imen ta l   s tud ie s  are divided  according to  those  conducted 
i n   t h e   f i e l d  and i n   t h e   l a b o r a t o r y .   I n  view  of the  role of NASA as a developer 
of space-derived  technology  and as a c a t a l y s t   f o r   t h e   a d o p t i o n  of t h i s   t e c h n o l -  
ogy by o the r  U.S. agencies   and  those  of   other   countr ies ,   emphasis  is also given 
to a number of technology-developnent tasks.  This  aspect is important  because 
of  the  need  for  the  continued  development of  advanced  technology to  achieve 
a g l o b a l   m o n i t o r i n g   c a p a b i l i t y   f o r   t h e   n a t u r a l  and the   per turbed   t roposphere .  
Among the   four  basic categories  mentioned,  f ield-measurement  programs  and  tech- 
nology  developnent are t h e  areas of p r imary   emphas i s   i n   t he   r e sea rch   p l an   i n  
recogni t ion  of   the  unique role of NASA i n   o r b i t a l  remote sensing  and  instrument  
developnent.  The f ield-measurement  programs  proposed  consist  primarily  of 
o r b i t a l  remote sensing  and  airborne  monitoring.  Airborne  measurements,   and to  
sane extent  ground-based  measurements, are proposed as high-priority  programs 
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e a r l y   i n   t h e  NASA t roposphe r i c  program  because  the i n   s i t u  data to  be obta ined  
w i l l  be e s s e n t i a l  to improving  our   understanding  of   t ropospheric  processes. 

NASA has played a c e n t r a l  role in   the  developnent   of   mathematical  models 
of the   g loba l   t roposphere ,  and cont inued  ref inement   of   such models is e s s e n t i a l  
for the  proper in te rpre ta t ion   o f   t ropospher ic   measurements .  Because of  the  need 
to i n t e r f a c e  remote sens ing  data wi th   t he   p red ic t ions   o f  models b o t h   f o r   t h e  
g loba l   t roposphere  and r e g i o n a l  air  pol lut ion,   the   developnent   of   techniques for 
s u c h   i n t e g r a t i o n  is also viewed as an  important  t a s k .  

A v a r i e t y   o f   l a b o r a t o r y  studies are needed to  support the  major components 
of  f ield-measurement  programs  and  technology  development.   The  laboratory pro- 
grams proposed are divided  according to  spec t roscopy ,   ca l ib ra t ion ,  and fundamen- 
t a l  kinetic  measurements.   The  fundamental   kinetic  studies  proposed  include  the 
measurement  of rate cons t an t s  a t  tropospheric  conditions  and  measurements aimed 
a t  e x p l a i n i n g   t h e  processes of   gas- to-par t ic le   conversion.  

Technology  development  has  been a corners tone   o f  NASA's mission.  Several  
proposed  programs are out l ined   for   t echnology  deve lopment   in   suppor t  of tropo- 
sphe r i c   r e sea rch .  

4.1 FIELD-MEASUREMEW  MISSIONS 

Two s c i e n t i f i c   g o a l s   i n  which the  NASA program  should  attempt to make major 
ga ins   dur ing   the  coming two decades are establ ishment   of   global   a tmospheric  dis- 
t r i b u t i o n s  (i.e., budgets)   of   those  e lements   bel ieved to  be of key  importance i n  
global   biogeochemical   cycles  and de termina t ion   of   the   cause-and-ef fec t   re la t ion-  
s h i p s  between t h e s e  observed d i s t r i b u t i o n s  and the  dominant   control l ing factors, 
such as atmospheric   chemical   t ransformations,   b iospheric   and  a tmospheric  source 
and s i n k   s t r e n g t h ,  and   a tmospher ic   t ranspor t .   S ince   an   ex t raord inary  amount  of 
f i e ld   s ampl ing  a t  a cons iderable  cost w i l l  be required to  s a t i s f y   t h e s e  two 
goals ,   the   decis ion  on  what  type or types of  sampling  platforms to  u s e  i n   e a c h  
case is obvious ly  a c r i t i ca l  one .   Es t ab l i sh ing   t he  detai led r e l a t i o n s h i p s  
between c o n c e n t r a t i o n   l e v e l s  and source and s i n k   s t r e n g t h s  as well as chemical- 
t ransformat ion  rates w i l l  require a combinat ion  of   a i rcraf t ,   ground-based,   and 
ship  sampling  platforms  coupled  with limited sa te l l i t e  observa t ions .  The estab- 
l i shment   o f   g loba l   d i s t r ibu t ions ,   on   the   o ther  hand, conceptua l ly  c o u l d  be most 
e f f e c t i v e l y  carried o u t  on s a t e l l i t e  and/or  Space  Shuttle  sampling  platforms. 
The monitoring by means  of s a t e l l i t e  platforms  of a b o u t  100  chemical species 
wi th   h igh   r e so lu t ion   i n   bo th   t he   ve r t i ca l  and h o r i z o n t a l   d i r e c t i o n s  i s  h ighly  
unl ike ly .  Two basic ques t ions  which  then  need to be answered i n   i n i t i a t i n g  a 
cos t - e f f ec t ive  s a t e l l i t e  program are: 

(1 )  Which of   the  approximately 100 chemical species are r e a l l y   t h e  key 
ones? 

( 2 )  With  what v e r t i c a l  and ho r i zon ta l   r e so lu t ion   mus t   each  of t hese  key 
chemical species be measured? 

S ince   t he  answer to  t h e   f i r s t   q u e s t i o n  is s t rongly   dependent   on   the  cause-and- 
e f f e c t   r e l a t i o n s h i p s  as well as l a b o r a t o r y   g a s   k i n e t i c  data, it is suggested 
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that an extensive sa t e l l i t e  monitoring effor t  be preceded by a well-conceived 
a i rc raf t  measurements  program. 

4.1.1 Tropospheric Aircraft Sampling  Program 

When considering  tropospheric phenomena, it is convenient to  divide  the 
atmosphere spatially  into  global-scale,  regional-scale, and mesoscale regimes. 
On a  global  scale, one is interested i n  those  species  that comprise the 
so-called  natural  troposphere. On the mesoscale, species  usually  considered  as 
pollutants  are of  prime interest ,  whereas, both natural and anthropogenically 
derived (pollutant)  species  are important on the  regional  scale. 

A key consideration i n  the  design of the  tropospheric a i rc raf t  sampling 
program is the  spatial  resolution  required  for measuring the  particular chemical 
species. One of the  factors  that  dictates  the  spatial  resolution  required  for 
measuring a chemical species on a  global  scale is its atmospheric residence 
time. I n  general,  the longer the  residence time, the lower the  spatial  resolu- 
tion  required  for  the measurement. For species such as CFCl3, CF2C12, and 
N 2 0  w i t h  very long residence  times, two well-placed ground stations, one  each i n  
the Northern and Southern Hemispheres, would suffice for  purposes of establish- 
ing  the  distributions of these  species. For species wi th  residence times on the 
order of a few days to  a  year,  the  existence of local  regional  sources and s i n k s  
i n  combination w i t h  the variable  levels of free  radicals  dictates  a  fairly 
h igh  level of spatial  resolution  for  aircraft  operations. For rapidly  reacting 
species wi th  residence times on the order of a few minutes to  a day, local 
sources, s i n k s ,  and chemical-transformation rates  are expected to  strongly con- 
t ro l  the levels of these compounds. Higher spatial-resolution coverage t h a n  for 
longer  residence-time  species is necessary. Two possible  aircraft sampling 
scenarios  oriented toward s tudying  the  chemistry of the natural troposphere (as 
opposed to  regional  air  pollution)  are provided i n  t h i s  recommended plan. The 
f i r s t  scenario  restricts  the  aircraft sampling to  27 independent  geographic 
regions and results i n  a sampling program of about 6.5 to 8 years  duration. The 
second scenario expands the sampling to  43 regions and requires  about 11.5 years 
to  complete. 

4.1.2 Lower Atmospheric Research Sa te l l i t e  (LARS) 

The large  spatial and temporal heterogeneities of tropospheric  source and 
s i n k  regions as well as the variabil i ty i n  meteorological  variables make it 
imperative that  a comprehensive global study of the carbon/nitrogen/ozone and 
sulfur/ammonia/carbon/trace metal/aerosol systems include  the  application of 
remote sensing technology on one or more orbi ta l  platforms. Although a i rc raf t  
measurements  can  be quite important  for  characterizing  various  concentration 
domains, for many species  for which  abundance is affected by both transport 
and photochemistry, measurements  from space are  likely  to be the  best method 
to  accurately map global  distributions and to  determine whether a  concentration 
variation i n  a given location is due to Eulerian or Lagrangian effects. 

Thus, a  goal of the NASA Tropospheric Research Program Plan is the even- 
tual implementation of a Lower Atmospheric Research Sa te l l i t e  (LARS). By 
chronologically  following  the  tropospheric a i rcraf t  sampling program, it is 
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envisioned that many of the  mission and design specifications  for atmospheric 
chemistry  experiments on LARS can  be formulated on the  basis of the find- 
ings  of the aircraft  studies. The long-term global  overage  that could be 
obtained by LARS w i l l  complement the  data  obtained by the  aircraft  program, 
which w i l l  be  more detailed and precise b u t  also more spat ia l ly  and temporally 
limited than LARS. Appropriate  atmospheric  chemistry  missions for LARS could 
include: ( 1 )  The detailed  global mapping  of species  distributions and major 
source and s i n k  regions, (2 )  a better understanding of the  global importance of 
anthropogenic  sources of  key trace  species, (3)  the development and verifica- 
tion of detailed  global and regional models of tropospheric  tracegas composi- 
tion and a i r   qual i ty  w i t h  capabilities  to  predict  the impact of various 
anthropogenic  emissions, and ( 4 )  a comprehensive record of the  present  global 
tropospheric  trace  amposition which may ultimately be used i n  identifying 
long-term secular or cyclic  variations i n  parameters relevant  to  regional and 
global air  quality. 

Because of the h ighly  coupled nature of tropospheric photochemistry, simul- 
taneous measurements  from LARS of as many species  as is realist ically  possible 
should be a major objective. Thus,  implementation of t h i s  mission w i l l  depend 
on a vigorous program to develop a remote sensing technology as well  as an 
intense field-measurements effor t  us ing  ground-based instruments and a i rcraf t  
measurements  mmplemented by modeling calculations  to determine which  con- 
figuration of species measurements  from a space platform would  be  most valu- 
able. Thus, while the  ultimate  goal of the orbi ta l  program for  the  troposphere 
is the implementation of a comprehensive multiple-species measurement  from 
space,  smaller  data-gathering  missions u s i n g  remote sensors  either from space, 
ground-based stations, or from a i rc raf t  should be included i n  the  tropospheric 
program. 

4.2  MODELING 

The objectives .of global-scale modeling are   to  enhance  our understanding of 
the chemical properties of the troposphere and to  support  the development of 
observing systems applicable  to  tropospheric  pollution. The global-scale models 
being developed and applied i n  the  current NASA Air Quality Program are  pri- 
marily designed to  explain  the  features of the various chemical budgets. Typi- 
cally  these models contain a detailed  description of tropospheric photochemistry 
and adopt an eddy diffusion approach to  transport. The output of such  models 
is the  spatial and temporal distributions of the  concentrations of selected 
tropospheric  species. Because of the large number  of species involved i n  the 
chemical budgets, f u l l y  three-dimensional models are not yet  computationally 
practical. I n  fact ,  it is unlikely  that f u l l  operational u t i l i t y  of a global 
circulation model containing a detailed chemical component w i l l  be realized 
w i t h i n  the 5-year  purview of t h i s  plan. Thus ,  heavy reliance is l ikely  to con- 
tinue  to be placed on one- and two-dimensional models. I t  is anticipated  that 
future developnent i n  the  tropospheric modeling  program w i l l  proceed along two 
lines.   First ,  an increasing degree of sophistication w i l l  be incorporated i n  
the  treatment of physical and biological  processes i n  current models.  Second, 
current models w i l l  be extended to  higher dimensionality, and the  spatial and 
temporal variabil i ty of the troposphere w i l l  be investigated i n  increasing 
detail.  
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An e x a m p l e   o f   t h e   f i r s t  type of development is t h e   d e s c r i p t i o n   o f   t h e  
sources   o f   b io logica l ly   p roduced  gases as func t ions   o f   t he  meteorological param- 
eters (temperature, relative humidity, soil  m o i s t u r e ,   p r e c i p i t a t i o n ,  etc.) on 
which  they  might  depend.  Coupling  of  aeronomic  and meteorological processes 
wi th in  a s i n g l e  model would  then permit a descr ip t ion   of   feedback  loops wi th in  
per turbat ion  models .  The second type of   development   involves   the  construct ion 
of  time-dependent,  two-dimensional models which may inc lude  a t  least part of   the  
s t r a tosphe re .  The principal  advantage  of  such  development w i l l  be t h e   d e t a i l e d  
desc r ip t ion   o f   s t r a tosphe r i c - t roposphe r i c   exchange  and  of species t r a n s p o r t  
within  the  t roposphere.  

I n   a d d i t i o n ,  a key  component f o r   b o t h   t h e   t r o p o s p h e r i c   a i r c r a f t   s a m p l i n g  
program  and satel l i te  missions  should be the   d iagnos t ic   and   pred ic t ive   model ing  
c a p a b i l i t y  to analyze  and  s imulate   the  data   gathered.   Because  of   the  complexi ty  
of  the  photochemical  system of the  t roposphere,  a t r u l y  complete understanding 
o f   t he   da t a   r equ i r e s   de t a i l ed   numer i ca l   ca l cu la t ions .  

A number of  measurement  programs,  several based on remote sensing,  have 
been proposed to fur ther   our   understanding  of   the  chemical   and  physical  pro- 
cesses i n   r e g i o n a l  a i r  p o l l u t i o n .  The  measurements made in  such  programs 
m u s t  then be assimilated i n t o  and compared w i t h  model p r e d i c t i o n s  to g a i n   t h e  
desired understanding. The general   problem  of   the  ass imilat ion  of   remotely 
sensed  and  in s i t u  data i n t o   r e g i o n a l  a i r  p o l l u t i o n  models has   no t   r ece ived  
subs t an t i a l   a t t en t ion .   The re fo re ,   deve lopmen t   o f   t heo ry  applicable to t h e  
a s s i m i l a t i o n   o f  data i n t o   r e g i o n a l - s c a l e  models s h o u l d   r e p r e s e n t   t h e   p r i n c i p a l  
NASA t h r u s t   i n   t h e  area of   reg iona l  a i r  pol lut ion  model ing.  

4 . 3  LABORATORY MEASUREMENTS 

The  measurement  and eva lua t ion   of   a tmospher ic  properties and processes mus t  
be based upon r e l e v a n t   l a b o r a t o r y  s tudies  under   cont ro l led   condi t ions .  

4 . 3 . 1  Spectroscopy 

Spectroscopy is t h e  basis f o r   e s s e n t i a l l y  a l l  of   the  remote sensing  tech-  
niques  for   chemical  species in  the  atmosphere.   Consequently,  it rep resen t s   an  
important area for   fundamental   s tudy prior to the  deployment  of a system  for  
species de tec t ion .   S ince  remote sens ing   ins t ruments  may operate i n   t h e  micro- 
wave, f a r - i n f r a r e d ,   m i d - i n f r a r e d ,   n e a r - i n f r a r e d ,   v i s i b l e ,  or u l t r a v i o l e t   r e g i o n s  
o f   t he  spectrum, spectroscopic i n v e s t i g a t i o n s  m u s t  be made i n  a l l  o f   t hese  
reg ions .   These   s tud ies  m u s t  provide  information  on  the  fol lowing spectral prop- 
ert ies for   the   n lo lecular  species of i n t e r e s t :   L i n e   p o s i t i o n s ,   l i n e   s t r e n g t h s ,  
l ine  widths,   and  quenching cross s e c t i o n s .  

4.3 .2  Calibrat ion  Requirements  

4.3.2.1 Remote sensors.- The  measurement  of  tenuous  atmospheric trace con- 
s t i t u e n t s  imposes seve re   accu racy   and   p rec i s ion   cons t r a in t s  on  experimental  test 
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and eva lua t ion   procedures  for remote sens ing   ins t ruments .   Curren t   t echniques  
for c a l i b r a t i n g  remote senso r s  depend to a high  degree on limited c a l i b r a t i o n  
information and e x t r a p o l a t i o n  from laboratory  measurements to expected atmo- 
spher ic   condi t ions   o f   concent ra t ion ,   t empera ture ,   p ressure ,  and radiometric 
input.   Instrument  performance  and  accuracy of the   da ta - reduct ion  process are 
seve re ly  limited by the  assumptions and u n c e r t a i n t i e s   i n   a n a l y t i c a l   p r o c e d u r e s .  

Measurements  with  in s i t u   s e n s o r s  or o t h e r  remote sens ing   ins t ruments  are 
requi red   for   in te rcompar   i son   of  data. I n  order to improve t h e   c a l i b r a t i o n  of 
remote senso r s ,  a d u a l  c a l i b r a t i o n   s t r a t e g y   s h o u l d  be developed,  including 
improving   the   conf idence   o f   l abora tory   ca l ibra t ion  data f o r  remote senso r s  and 
improving   bo th   p rec is ion   and   accuracy   of   in   s i tu   ins t ruments   used   in   cor re la t ive  
data studies.  

4.3 .2 .2  I n   s i t u   s e n s o r s . -   A l t h o u g h   t h e   c a l i b r a t i o n   o f   i n  s i t u  i n s t ru -  
menta t ion   should   inherent ly  be more direct and  hence more reliable than   fo r  
remote ins t rumen ta l   t echn iques ,   i n  s i t u  dev ices  are still s u b j e c t  to many types 
of errors. With in   the  l as t  3 t o  4 years ,   for   example,  it has  been  convincingly 
demonstrated  that   even  though  mult iple   instruments  may go   th rough  in te r labor-  
a to ry   compar i sons   g iv ing   bas i ca l ly   t he  same va lues ,   under   f ie ld   sampl ing  con- 
d i t i o n s   s i g n i f i c a n t l y   d i f f e r e n t   a n s w e r s  are generated.  Variable temperatures, 
high  humidi t ies ,  aerosols, and unknown i n t e r f e r i n g  chemical compounds, n a t u r a l l y  
in   the  a tmosphere or produced by the   sampl ing   p la t form,   f requent ly  combine to 
produce sys t ema t i c  errors of unknown magnitude  under f i e l d   c o n d i t i o n s .  Thus, it 
is recommended t h a t  NASA g i v e   p r i o r i t y   n o t   o n l y  to s t a n d a r d   c a l i b r a t i o n  s tud ies  
b u t  also to s t rong ly   suppor t   f i e ld   i n t e rcompar i son   i nves t iga t ions .   In   pa r t i c -  
u l a r ,  it is recommended t h a t  any large  f ie ld-sampling  program  have  designed  into 
it a well-conceived  calibrations  program. 

4.3.3 Gas-Phase  Chemical  Kinetics 

A t  t h e   p r e s e n t  time, one  can  ident i fy  a t  least two major tropospheric  prob- 
lem areas t h a t  are i n  need   of   fur ther   l abora tory   s tudy .  The f i r s t  of these  
involves  t h e  complete   explanat ion  of  t he  methane  and  higher molecular weight 
hydrocarbon  degradat ion  cycles;   the   second is concerned  with  the renewed e f f o r t  
to de termine   the   absolu te   gas-k ine t ic  rate c o n s t a n t s  for s e v e r a l  key r e a c t i o n s  
under atmospheric cond i t ions   o f  pressure and  composition. 

4.3 .4  Aerosol Physics  and  Chemistry 

A problem of f u n d a m e n t a l   i n t e r e s t   i n   v i r t u a l l y  a l l  aspects   of   a tmospheric  
s c i ence  is unders tanding   the   p rocesses  by which a i r b o r n e   p a r t i c l e s  form  and 
evolve.  Atmospheric particles, or aerosols, may be emitted into  the  a tmosphere 
d i r e c t l y  from sources ( b o t h   n a t u r a l  and anthropogenic) or may be formed i n  s i t u  
by the   nuc lea t ion  of vapor  molecules. From t h e   p o i n t  of view  of   assessing  the 
climatic and human h e a l t h   e f f e c t s   o f   a t m o s p h e r i c  aerosols, it is important to 
be able to  measure and p r e d i c t   t h e i r   s i z e  and  chemical-composition  distribution. 
S i z e  and composition of atmospheric aerosols are s t rongly  dependent  on t h e  mode 
of  formation and  growth  of  the aerosol. Unfor tuna te ly ,  many of the thermody- 
namic  and k ine t ic   parameters   requi red   for   unders tanding   format ion  and growth 
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are no t  known f o r  typical atmospheric aerosols. Laboratory  programs are needed 
to obta in   such  parameters. 

4.4 TECHNOLOGY DEVELOPMENT 

4.4.1 Remote Sensors  

I n   t h e   c u r r e n t  state of  development  of remote s e n s o r s ,   s e v e r a l   a c t i v e   a n d  
passive  systems  have  progressed to t h e   s t a g e  where they are being  used or pro- 
posed in  f ield-measurement  programs  from  airborne and  ground-based  platforms to 
measure gaseous species (e.g., CO, 0 3 ,  S02, H20, NH3, and  N02),  tropospheric 
aerosols, mixing   he ights ,   and   op t ica l   ex t inc t ion   coef f ic ien ts .   Future   deve lop-  
ments  and remote sensing  systems are aimed toward e x t e n d i n g   t h i s   c a p a b i l i t y  to 
o t h e r  molecular spec ies   wi th  improved s e n s i t i v i t y  and v e r t i c a l   r e s o l u t i o n .  

Pass ive  remote senso r s  are c a t e g o r i z e d   g e n e r i c a l l y   i n t o   f o u r   c a t e g o r i e s :  
(1)  Gas f i l t e r   c o r r e l a t i o n   t e c h n i q u e s ,   ( 2 )   i n t e r f e r o m e t r y ,  ( 3 )  i n f r a red   he t e ro -  
dyne  radiometry,  and ( 4 )  spectroradiometers.  Technological  improvements  in  the 
s e n s i t i v i t y   o f   p a s s i v e  remote sensors  should  expand  the number of   ins t ruments  
wi th in   each   gener ic  class as po ten t i a l   pay loads   fo r   a i rbo rne  and  space  plat-  
forms. Despite t h e   p o t e n t i a l  improvements i n   t h e   s e n s i t i v i t y   o f   p a s s i v e  remote 
sensors  through  technological  improvements  in  systems and detector   technology,  
s eve ra l   fundamen ta l   l imi t a t ions   i n   pas s ive   s enso r s  w i l l  res t r ic t  t h e  u s e  of 
t hese   i n s t rumen t s   fo r  s o m e  o f   t h e   s c i e n t i f i c   r e q u i r e m e n t s  listed i n   t h i s  docu- 
ment. Pass ive   sensors   in   the   thermal   in f ra red   have   d i f f icu l ty   measur ing  mole- 
cules i n   t h e   b i o s p h e r e  and are limited to measuring  in  broad v e r t i c a l   l a y e r s   i n  
t h e  middle and  upper  troposphere. The r e l a t i v e l y   l o n g   i n t e g r a t i o n  times 
required to measure low-concentrat ion  species  w i l l  res t r ic t  t h e   h o r i z o n t a l  reso- 
lut ion  of   the  measurement  to broad geographic areas and w i l l  probably require 
t h e  u s e  of   geos ta t ionary  sa te l l i t e  p la t forms  to i n v e s t i g a t e   r e g i o n a l  areas, such 
as t h e  U . S .  Northeastern corridor. Ins t ruments   us ing   Ear th-sca t te red   sunl ight  
are capable  of  measuring t o t a l  in tegra ted   burdens   o f  molecular s p e c i e s  b u t  have 
inhe ren t ly  limited temporal and geographic   coverage.   Despi te   these  l imitat ions,  
pas s ive  remote senso r s  do e x h i b i t   s e v e r a l   a t t r a c t i v e   c h a r a c t e r i s t i c s   f o r   g l o b a l  
measurements.  Their  systems  and  technology are the  most advanced   ava i lab le   for  
sa te l l i t e  missions.   Passive  instruments   using  upwell ing  thermoradiance  have 
a po ten t i a l   fo r   measu r ing  a l a r g e  number o f   i n t e re s t ing   t roposphe r i c   mo lecu le s  
s imultaneously and should be e f f e c t i v e   i n   s t u d y i n g   t h e   c h e m i s t r y   o f  selected 
chemical   systems.   Passive  instruments   using  Earth-scat tered  sunl ight   have  the 
capabi l i ty   o f   measur ing   the  t o t a l  burden  of   several  major t ropospheric   gases .  
A sa te l l i te  miss ion   incorpora t ing   bo th  types of   instruments   should  be  invest i -  
g a t e d   i n   l i g h t   o f   t h e   s c i e n t i f i c   r e q u i r e m e n t s  for an e a r l y  dedicated satel l i te  
f o r   t h e  lower atmosphere. 

Considerable   effor t   has   been  expended by NASA and o ther   o rganiza t ions   dur -  
i ng   t he   pas t  decade to deve lop   ac t ive  remote sensing  techniques  using lasers. 
The f i r s t   s y s t e m s  used pulsed  ruby lasers to measure aerosols v i a  Mie back- 
s c a t t e r i n g   i n   t h e   t e c h n i q u e  known as l idar  ( l i g h t   d e t e c t i o n  and  ranging) .   In  
the  ear ly   1970's ,   Raman-scat ter ing l idars  were used to remotely measure s p e c i e s  
concent ra t ions .  By the  mid-l970 's ,   the   advent   of  high-power tunab le  lasers 
spur red   t he   deve lopmen t   o f   d i f f e ren t i a l   adso rp t ion   t echn iques   fo r   t he  measure- 
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ment  of   gases ,   of ten  replacing  the less s e n s i t i v e  Raman technique. The a c t i v e  
remote-sensor  systems i n   t h e  NASA A i r  Qua l i ty  Program  can be c l a s s i f i e d   i n t o  
fixed-  and  tunable-wavelength  systems. The former p r i m a r i l y  are i m p o r t a n t   i n  
measurements   of   t ropospheric   and  s t ra tospheric  aerosols, aerosol e x t i n c t i o n ,  
and  measurements  of  inversion  layer  heights.  Tunable-wavelength l idar  systems 
cu r ren t ly   have   t he   h ighes t   po ten t i a l   fo r   measu r ing  a v a r i e t y  of trace gases  
in   t he   t roposphe re   s imu l t aneous ly ,   w i th   ve r t i ca l   r ange   ex tend ing  to  the  ground 
and wi th   ve r t i ca l   r e so lu t ion   approach ing  1 km. The development of a c t i v e  
remote senso r s  is not  as advanced as tha t   o f   pass ive   sys tems.   Act ive  remote 
sensors ,  however,  have h igh   po ten t i a l   fo r   be ing   des igned  to  s p e c i f i c a t i o n s  
t h a t  meet some of   the major sc i en t i f i c   r equ i r emen t s   fo r   measu remen t s   i n   t he  
t roposphere   f ran  an a i rbo rne   p l a t fo rm,   i nc lud ing   ve r t i ca l   r e so lu t ion  of 
approximately 1 km f o r  major species, ve r t i ca l   r ange   ex tend ing  t o  the  ground, 
day/night  operation,  true  column-content  measurements,   and  inherent  high spec- 
t r a l  r e s o l u t i o n  and t u n a b i l i t y  to  measure t roposphe r i c  species simultaneously 
and un ique ly   i n  a background  of i n t e r f e r i n g   g a s e s .  For a p p l i c a t i o n s  to  space 
p la t fo rms ,   bwever ,  major technological   breakthroughs  must  be made i n   t h e  
sources themselves ,   including  high power and e f f i c i e n c y ,  improved co l l ima t ion  
and spectral p u r i t y ,  wider t u n a b i l i t y ,  and  higher  frequency  and  amplitude sta- 
b i l i t y .   I n  order to perform many of t h e   s c i e n t i f i c   i n v e s t i g a t i o n s  of t h e  tr- 
pospher ic   research   p lan ,  it w i l l  be necessary  t o  develop   appropr ia te  sources 
f o r   a c t i v e  remote sens ing   sys t ems .   Fu r the r ,   ex i s t ing   i n s t rumen t s  mus t  be tested 
under f l i g h t   c o n d i t i o n s  not only  to  d e m o n s t r a t e   t h e i r   o p e r a t i o n a l   r e l i a b i l i t y  
and s e n s i t i v i t i e s  b u t  also to  provide data t h a t   c a n  be i n t e r p r e t e d  and  analyzed 
under a m d i t i o n s  as close t o  an actual mission as possible. The time scale f o r  
u t i l i z a t i o n   o f  laser systems  and  research sa te l l i t e  i n v e s t i g a t i o n s  is c u r r e n t l y  
d i f f i c u l t  to estimate due to the  rapidly  emerging  technology of laser systems. 
T h e r e f o r e ,   i n   g e n e r a t i n g   s c i e n t i f i c   r e q u i r e m e n t s  for sa te l l i t e  miss ions ,   the  
science  requirements  must be tempered somewhat by t h e  s ta tus  of laser technol- 
ogy,  and, i n  sane cases, priorit ies for   missions  must  be dictated by a v a i l a b i l -  
i t y   o f  laser technology. 

4 . 4 . 2  I n  S i t u  Sensors  

Based on  the  recommendation  for a g loba l  a i rcraf t  f ield-sampling  program, 
the   fu r the r   deve lopnen t  of i n  s i t u  t roposphe r i c   s enso r s   shou ld  be given a high 
p r i o r i t y .  Of par t icu lar   concern   should  be the  development  of new real-time 
ins t rumenta t ion  capable o f   de t ec t ing   t roposphe r i c  species a t  necessary concen- 
t r a t i o n   l e v e l s .   S p e c i e s   o f   t h e   h i g h e s t   p r i o r i t y   ( t h a t  is, t h o s e   f o r  which 
in s t rumen ta t ion   e i the r  does n o t   e x i s t  or f o r  which present   ins t ruments  are 
inadequate)  are NO,, C2 to C10 hydrocarbons,   peroxides  (e.g. ,  H02,  H202, and 
CH3O2), hydrogenated  sulfur  compounds (e.g., H2S, CH3SH,  CH3SCH3,  CH3SSCH3, 
CH3SCH3)t and NH3. 

0 
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CHAPTER 1 - OUTSTANDING  SCIENTIFIC  QUESTIONS AND RESEARCH TgKS 
. .  

A. "XJREMENTS OF THE  GLOBAL  DISTRIBUTIONS OF GASES  AND AEROSOLS AND 

ELUCIDATION  OF  ATMOSPHERIC  CYCLES 

1 .  Tropospheric  Ozone  Budget 

Although  tropospheric  ozone  (03)  is  believed  to  play  a  key  role  in  the 
free-radical  photochemistry  of  the  troposphere,  the  tropospheric  budget  of 03 
is  not  completely  understood  and  is  the  subject  of  intense  scientific  investi- 
gation.  Understanding  the  budget  of  tropospheric 03 is  essential  for  establish- 
ing  a  firm  knowledge  of  tropospheric  photochemistry  and  for  establishing  the 
potential  impact  of  pollutants  on  the  photochemical  system. For instance,  con- 
cern  has  been  expressed  that  enhanced  concentrations  of  carbon  monoxide  (CO), 
hydrocarbons  (HC),  and/or  nitrogen  oxides  (NOx)  due  to  anthropogenic  activities 
could  lead  to  higher  levels  of  tropospheric  03. 

Two theories  have  been  advanced  to  explain  the  natural  30  to 40 parts  per 
billion  by  volume  (ppb)  of 03 commonly  observed  in  the  troposphere.  The  trans- 
port  theory  maintains  that  tropospheric 03 is produced  in  the  stratosphere  where 
ultraviolet (W) photons  can  dissociate  oxygen  and  form  ozone,  is  then  mixed  down 
into  the  troposphere  by  turbulent  diffusion  where  it  is  chemically  inert,  and 
is eventually  destroyed  at  the  Earth's  surface  (Junge  (ref. 12)). Supporting  this 
theory is the  immense  amount  of  meteorological  and  radionuclide  data  that  indi- 
cate  a  correlation  between  tropospheric  ozone  levels  and  stratospheric  intrusions 
(Fabian  and  Pruchniewicz  (ref.  13),  Danielsen  and  Mohnen  (ref.  14),  and  Falconer 
et  al.  (ref.  15)). 

The  photochemical  theory  of  tropospheric  ozone  advanced  by  Frenkiel 
(ref. 161, and  more  recently  by  Crutzen  (refs. 17 and 18) and  Chameides  and 
Walker  (ref. 1 9 ) ,  proposes  that  ozone  is  photochemically  produced  and  destroyed 
in  the  troposphere  through  the  interaction  of  natural  hydrocarbons  such  as 
methane  (CH4),  CO,  and  NOx  with  sunlight.  The  photochemical  production of 
tropospheric 03 may  occur  from  the  generation  of  peroxyl  radicals  in  the CH4 
oxidation  chain  and  in  the  oxidation  of  CO.  The  peroxyl  radicals  (H02)  may  then 
react  with  NO 

NO + H02 + NO2 + OH 

NO + CH3O2 + NO2 + CH3O 

to  form  nitrogen  dioxide  (NOZ),  which  is  photolyzed  and  leads  to 03 formation 
as  follows: 
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The  generation  of H02 may  also  lead  to  the  destruction  of 03 through  the 
reaction 

H02 + 03 + OH + 202 

Finally,  ozone  is  destroyed  in  the  generation  of  the  hydroxyl  radicals  (OH): 

03 + hv + O(lD) + 02 
O('D) + H20 + 20H 

The  recent  observations  of  tropospheric  OH  concentrations  at  the  approximate 
levels  predicted by photochemical  models  (Davis  et  al.  (refs. 20 and  21)  and 
Perner  et  al.  (ref.  22))  at  least  confirm,  by  means  of  the  reviously  given  reac- 
tions,  the  existence  of a  chemical 03 sink  of  about 7 x lo1{ molecules/cm2/s. 
This  sink  alone  is  comparable to estimates by Fabian  and  Pruchniewicz  (ref.  13) 
of 03 destruction  at  the  Earth's  surface.  The  presence  of  CO  further  implies 
the  conversion  of  OH  to  H02  and  thus  implies  more  photochemical  production  and 
destruction  of  tropospheric  ozone  through  the  reactions  involving  H02. 

Recent  model  calculations by several  investigators,  including  Chameides 
(ref.  23),  Nastrom  (ref.  241,  Danielsen  and  Mohnen  (ref.  141,  Fabian  and 
Pruchniewicz  (ref.  13),  Chameides  and  Stedman  (ref.  251,  Stewart  et  al. 
(ref.  26),  Fishman  and  Crutzen  (ref.  27),  Fishman  et  al.  (ref.  28),  Fishman  and 
Crutzen  (ref.  291,  Galbally  and  Roy  (ref.  30),  Mahlman  et  al.  (ref.  31),  and 
Gidel  and  Shapiro  (ref.  321,  indicate  that  both  photochemistry  and  transport 
probably  play  important  roles  in  the  tropospheric 03 budget,  with  photochemistry 
acting  as  a  net  sink  for 03 in  remote  locations.  (See  table  13.)  However,  the 
intensity  of  the  ozone  photochemistry  and  whether  the  photochemistry  supplies 
a  net  source or sink  of 03 are  both  uncertain  and  depend  on a number  of  param- 

TABLE 13.- ESTIMATES OF THE  GLOBAL OZONE BUDGET 

-~ - ~ ~~~ 

Ozone  photo- 
chemis try   and  

t r a n s p o r t  

Photochemica l  
p r o d u c t i o n  

Photochemica l  
d e s t r u c t i o n  

S t r a t o s p h e r i c -  
t r o p o s p h e r i c  
f l u x  

F l u x   i n t o   E a r t h ' s  
s u r f   a c e  

.. ~ ~~ 

G l o b a l   o z o n e   b u d g e t ,   1 0 l 1   m o l e c u l e s / c m 2 / s ,  f r a n  - 1 
Reference  23 

0 . 2  to 1 . 2  

1 . 2  to 1 . 8  

1 . 3  to 1 . 5  

0 . 5  to 0 . 8  

I l e f e r e n c e  24 Reference  1 (  7ef e r e n c e  1 3  

0 . 4  to 0 . 8  
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eters which include  the  concentration of nitrogen  oxides,  the  concentration of 
CO, and the loss   ra te  of free  radicals due to  heterogeneous processes and  key 
rate  coefficients which are still  not  accurately measured. The rate of trans- 
port of 03 from the  stratosphere  to  the  troposphere is also  uncertain;  recent 
observations and  model calculations imply that the 03 exchange rate  estimated 
from tropopause-folding  processes is too  small to  account  for  estimated  trans- 
port  rates, and other  processes may exis t  which transport 03 across  the tropo- 
pause. Observations wi th   h igh  vertical  resolution  are needed to address t h i s  
quest  ion. 

Scientific Questions: 

A . l . l  What are  the  relative  roles of stratospheric-tropospheric exchange, pho- 
tochemistry, and surface s i n k s  i n  the  global  tropospheric ozone budget? 

A. l .2  Will variations i n  global CO and NOx levels s h i f t  the ozone balance? 

~ . 1 . 3  What is the detailed  degradation  chain  for methane and  what are its con- 
sequences on ozone and HO,? 

A. 1 .4  What is the  role of  nonmethane hydrocarbons i n  the ozone budget? 

A. 1.5 What are  the  detailed exchange  mechanisms  between the  troposphere and 
stratosphere? 

Research Tasks: 

(1) Continue development of global  tropospheric photochemical transport models. 

( 2 )  Measure the  global  distribution of ozone as a function of lati tude,  longi- 
tude, alt i tude,  and time. Of special importance would  be measurements of 
stratospheric ozone transport i n  to the troposphere. These  measurements 
could be carried  out i n  two phases: 

Phase I: Simultaneous measurement  of  ozone wi th  NO,, €DX, CO, non- 
methane hydrocarbons, and urban and stratospheric  tracers. Resolution 
required:  Vertical, 0.1 to 1 km; horizontal, 5 to 100 km; temporal, 
hourly . 
Phase 11: Long-term  measurements  of  ozone af ter  the i n i t i a l  program. 
Resolution  required:  Vertical, 2 km; horizontal, 100 km; temporal, 
daily  to weekly. 

I n  addition,  supplemental  local and regional measurements of ozone  under 
conditions of  enhanced tropospheric-stratospheric exchange would  be desir- 
able.  Resolution  required:  Vertical, 0.25 km; horizontal, 1 to  10 km; 
temporal, continuous. 
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( 3 )  Conduct  flux  measurements  of  ozone  near  the  ground  over  various  geograph- 
ical  loca t ions .  

(4 )  Develop remote capabi l i t i es   for   measur ing   t ropospher ic   ozone .  

2. Tropospheric  Nitrogen  Budget 

Act ive   n i t rogen  (NO, NO?, NO?, N~OC,, HNO:,, HNO?, and HO2NO7).- Act ive 
n i t rogen  is o f   i n t e r e s t  to a tmosphe r i c   s c i en t i s t s   because  NO,(NO + N 0 2 )  acts to 
enhance  tropospheric OH l e v e l s  and, as in   t he   u rban   env i ronmen t ,   ca t a iy t i ca l ly  
produces ozone in   the   p resence   o f   peroxyl  radicals; t h a t  is, 

NO + H02 + NO2 + OH 

NO2 + hV + NO + 0 

Furthermore,   the  conversion of NOx to n i t r i c  acid (HNO3) th rough  the   reac t ion  

NO2 + OH + M + HNO3 + M 

may c o n t r i b u t e  to acid ra in .   Unfor tuna te ly ,   the  sources and s inks  of   a tmospheric  
n i t rogen   ox ides  and t h e i r   n a t u r a l  abundances are uncer ta in .  

The s i n k   f o r   a c t i v e   n i t r o g e n  compounds is be l ieved  to involve  heterogeneous 
removal by r a i n o u t  and  washout. The rate o f   t h i s   p r o c e s s  is h ighly   uncer ta in ,  
b u t  an estimate of about  60 to 90 m i l l i o n  metric tons  per   year   of   ni t rogen 
(60 to 90 Mt/yr of N )  is usua l ly  made on   t he   bas i s   o f   ex i s t ing  data on  the con- 
c e n t r a t i o n   o f   n i t r a t e  NO3 i n   p r e c i p i t a t i o n .  Inasmuch as photochemical models 
predict t h a t  HNO3 is the  most abundant  form  of  active N i n   t h e   u n p o l l u t e d  tropo- 
sphere,  it has  been  assumed t h a t   t h e  removal   process   involves   pr imari ly  HNO3 
removal. 

The p o s s i b l e   n a t u r a l  sources of a c t i v e  N i nc lude   f i xa t ion   o f   n i t rogen  by 
l ightning,   b iospheric   product ion  f rom  the soils (and  ocean) , and production  from 
the   ox ida t ion   o f  ammonia (NH3) i n i t i a t e d  by r eac t ion   w i th  OH. The e a r l y  esti- 
mates t h a t   l i g h t n i n g   f i x a t i o n  was r e spons ib l e   fo r   t he   p roduc t ion   o f  30 to  
40 Mt/yr of N (Chameides e t  a l .  (ref. 33) ) have recent ly   been   rev ised  downward 
t o  a b o u t  3 Mt/yr of N (Dawson ( r e f .  3 4 ) ) .  Because  the NH3 abundance is unce r t a in  
and the  importance  of  heterogeneous  removal is d i f f i c u l t  to estimate, t h e  pro- 
duc t ion  of NOx from NH3 is n o t   a c c u r a t e l y  known. S imi l a r ly ,   t he  soil  source 
rate is uncertain.   Al though  laboratory  s tudies   have shown t h a t  NO is produced 
i n  acidic soils, o the r   expe r imen t s   i nd ica t e   t ha t   t he  NO is absorbed  and  retained 
i n   t h e  soil and even tua l ly   ox id i zed  t o  No3 (Bartholomew  and C l a r k  ( r e f .  3 5 ) ) .  
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Detailed  measurements of NO, fluxes  from  various  soil  types  and  terrains  will 
be  needed  to  understand  the  importance of biospheric  production  of  atmospheric 
active N. 

Inasmuch as estimates of anthropogenic NO, emissions  yield  a  global  source 
rate for 1975 of about 20 to 25 Mt/yr of N, it  would  appear  that  man  may  have 
a  significant  impact  upon  the  active  nitrogen  budget  (Liu  (ref. 36)  and  Chameides 
(ref. 3 7 ) ) .  Calculations  indicate  that, if  these  anthropogenic  emissions 
increase  in  the  coming  decades,  they  may  lead  to an increase  in  tropospheric 
0 3  and OH levels on a  regional  and,  perhaps,  global  scale. 

State-of-the-art  measurements  (Schiff  et  al.  (ref. 3 8 ) ,  and  McFarland  et  al. 
(ref. 39) ) indicate NO and NO2 levels  that  are  less  than 0.04  ppb  in  remote 
marine  and  continental  areas  but  are as high as 0 . 2  to 0 . 5  ppb in rural  regions 
of  the  continental  United  States. It is  not  certain  whether  this  enhancement 
is  caused  by  anthropogenic  influences.  Tropospheric  model  simulations  estimate 
an average NO, level of about 0.05  ppb  for  the  lower  troposphere.  (Even  at 
these  low  concentrations,  calculations  indicate  that NO, still  may  play  a  sig- 
nificant  role  in  generating OH and 0 3 . )  Model  calculations  indicate  that HNO3 
is  the  most  abundant  form  of  active N in  the  unpolluted  troposphere,  being  about 
an order  of  magnitude  more  concentrated  than NO,. However,  observations of 
HNO3, which  are  unfortunately  limited  at  this  time,  indicate  that  the  ratio 
mO3/NOX may  be  smaller  than  originally  believed  (Huebert  and  Lazrus  (ref. 4 0 ) )  
and  that  it  is  possible  that  a  key  element  in  the  active N system  has  not yet 
been  identified. The importance of heterogeneous  processes  in  controlling  the 
abundance  and  distribution of HNO3, which  is  highly  soluble  in  water,  is  not 
well  understood.  If  heterogeneous  removal of HNO3 is  the  major  sink of atmo- 
spheric  active  nitrogen,  it  is  important  to  understand  the  details of this  mech- 
anism. A concerted  observational  effort  is  needed  to  characterize  the  global 
distribution of NO, N02, and HNO3 and  to  assess  the  impact  of  anthropogenic 
activities. 

Scientific  Questions: 

A.2.1 What  are  the  tropospheric  concentrations of the  active  nitrogen  compounds? 

A.2.2 What  are  the  natural  sources  of  active  nitrogen? 

A.2.3  What  are  the  major  sinks  of  atmospheric NO, and  total  active  nitrogen? 

A.2.4 Can  increased  levels of NO, influence  the  tropospheric  ozone  balance? 

Research  Tasks : 

( 1 )  Measure  the  global  concentration  distributions of NO, N02, and HNO3. 
These  measurements  could  be  carried  out  in  two  phases: 

Phase I: Initial  high  resolution  measurements  in  representative  global 
regions  with  simultaneous  observations of 0 3 ,  HO,, and  an  urban  tracer. 
Resolution  required:  Vertical, 0 .2  to 1 km;  horizontal, 5 to 100 km; 
temporal,  hourly.  Concentration  ranges  expected: 0.002 to 1.00  ppb for 
NO and N02; 0.01 to 3 ppb  for HNO3. 
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Phase 11: After t h e   i n i t i a l  measurement  program,  long-term  measurements 
o f   t he  most abundant   ac t ive   n i t rogen  compounds, f o r  example, HNO3, would 
be  needed.  Resolution  required: Vertical, 0 . 2  t o  1 km; hor i zon ta l ,  
5 to 100 km; t empora l ,   da i ly  to weekly.  Concentration  ranges  expected: 
0.002 to  1 .00  ppb f o r  NO and NO2; 0.01 to  3 ppb for HNO3. 

( 2 )  Carry o u t  f l u x  measurements  of NO and NO2 near  the  ground  over  various  geo- 
g raph ica l   l oca t ions .  

( 3 )  Measure t h e   n i t r a t e   c o n t e n t   i n  aerosols and r a i n f a l l  on a g l o b a l  scale. 
Temporal r e so lu t ion   r equ i r ed :  Monthly. S e n s i t i v i t y   d e s i r e d :  10'6 moles/l. 

( 4 )  Develop remote and s u p p o r t i v e   i n   s i t u   s e n s i n g  methods to measure NO, NO2, 
and HNO3. S e n s i t i v i t y  desired f o r   i n  s i t u  instrument:  1 t o  2 parts per 
t r i l l i o n  by volume ( p p t )   f o r  NO and NO2 and 10 p p t   f o r  HNO3. 

Ammonia (NH31.- The role of NH3 in   a tmospher ic   photochemis t ry   cannot  be 
assessed unt i l   accura te   measurements   charac te r ize  its g l o b a l   d i s t r i b u t i o n  and 
u n t i l   t h e   p r o c e s s e s   t h a t  produce and  remove NH3 are fully  understood.  Depending 
upon t h e  NH3 abundance,  the  oxidation  of NH3 by OH 

NH3 + OH + NH2 + H20 

followed by f u r t h e r   o x i d a t i o n  to NO may lead to s i g n i f i c a n t   p r o d u c t i o n  of NO,. 
Ammonia  may also a f f e c t   t h e  SO2 - SO4 system by forming ammonium s u l f a t e  
(NH4) 2SO4. 

Ammonia is be l ieved  to o r i g i n a t e  from  the so i l  where,  under  the  proper con- 
d i t i o n s ,  ammonium, which is produced  in   the  decomposi t ion  of   organic  amino com- 
p u n d s ,  is vola t ized .  I t  is estimated tha t   abou t  140 Mt/yr  of N i n   t h e  form 
of NH3 are produced by this   process   (Burns  and Hardy ( r e f .  4 1 ) ) .  There is some 
evidence to s u g g e s t   t h a t   i n t e n s e   a g r i c u l t u r a l   f e r t i l i z a t i o n  may lead t o  s i g n i f i -  
cant  enhancements  of NH3 and NHa i n   p r e c i p i t a t i o n   o n   t h e   r e g i o n a l  scale. The 
known s i n k s   f o r  NH3 i nc lude   t he   r eac t ion   w i th  OH and  heterogeneous  removal prc- 
cesses. Based upon l i fe t ime  a rguments ,  it is l ike ly   t ha t   t he   he t e rogeneous   p ro -  
cess is dominant;  Chameides e t  a l .  ( r e f .  33) estimate t h a t  less than 25 percen t  
of  atmospheric NH3 reacts wi th  OH and is eventua l ly   conver ted  to NO. This  esti- 
mate is uncertain,  however,  awing to  our l ack  of knowledge of   the  heterogeneous 
processes  and  the  exact  abundance  of OH. 

Measurements  of NH3 i n d i c a t e  wide d iscrepancies ,   wi th   concent ra t ions   vary-  
ing  from 10 ppb  using  analyt ic   chemistry  (Georgi i   and  Muel ler   ( ref .  42)  ) t o  less 
than 0.08 ppb  using  spectroscopy  (Kaplan  ( ref .  43)  1 .  I t  is not  known t o  what 
e x t e n t   t h e s e   d i f f e r e n c e s   r e f l e c t  real  v a r i a t i o n s   i n   a t m o s p h e r i c  NH3 or merely 
sys t ema t i c  errors i n   o n e  or both  measurement  techniques.  Accurate  techniques 
for   measur ing  NH3 need to be developed  and  applied to de termine   the   g loba l   d i s -  
t r i b u t i o n   o f  NH3. 

95 



APPENDIX A 

Scientific  Questions: 

A.2.5 What  are  the global concentrations,  sources,  and  sinks of ammonia? 

Research  Tasks: 

(1) Measure  the global  concentration  distribution of ammonia.  These  measure- 
ments  can  be  carried  out  in  two  phases: 

Phase I: An  initial  measurement  program  in  representative  global  regions 
with  simultaneous  measurements of ammonium  in  precipitation, OH, and NO,. 
Resolution  required:  Vertical,  0.2 to 1 km;  horizontal, 5 to  100  km; 
temporal, 0.3 to 1 day.  Concentration  range  expected: 0.01 to 3.0 ppb. 

Phase 11: After  the  initial  program,  long-term  measurements  at  lower 
spatial  resolution of ammonia  concentrations.  Resolution  required:  Ver- 
tical,  2 km; horizontal, 100  km;  temporal,  weekly  to  monthly.  Concentra- 
tion  range  expected: 0.01 to 3.0 ppb. 

(2)  Carry  out  flux  measurements of ammonia  over  various  soils  and  terrain. 

( 3 )  Develop  improved  in  situ  and  remote  sensing  methods  to  measure NH3. 
Sensitivity  desired for in situ  measurements: 1 0  to  20  ppt. 

Nitrous  oxide (N20).- Nitrous  oxide  (N20),  when  transported  to  the  strato- 
sphere,  may  react withX(lD) to  produce NO 

N20 + O('D) -F 2NO 

and  thus  may  have  an  impact  upon  stratospheric 0 3 .  Radiative  transfer  calcula- 
tions  also  indicate  that  N20, as an absorber of terrestrial  radiation,  contrib- 
utes  to  the  Earth's  climate  by  means of the  greenhouse  effect  (Yung  et  al. 
(ref. 4 4 ) ) .  

Recent  improvements  in  electron-capture gas chromatographic  techniques  for 
measuring  ambient N20 have  established  an  abundance of about 330 ppb  (Cicerone 
et  al.  (ref. 4 5 ) ) .  The lack of variability  in N20 with  season  and  location  is 
characteristic of a  long-lived gas and  may  indicate  that  the  only  significant 
sink  for N20 is  photochemical  destruction  in  the  stratosphere  at  a  rate of 
9 x 1 O 8  molecules/cm2/s. The  sources of N20 include  denitrification  in  soils 
and  possibly  the  oceans, as well  as  small  production  rates  associated  with 
anthropogenic  activities.  McElroy et al.  (ref. 46)  have  argued  that  the  oceans 
act as a  sink  for N20, but  the  data  at  present  are  conflicting  and  inconclusive. 
The possibility  that  atmospheric N20 may  increase  due  to  increased  industrial 
production of fertilizer  has  been  addressed  by  several  investigators;  however, 
there  is, at  present,  no  consensus.  A  better  knowledge of N20 sources  and  sinks, 
as well as of the  denitrification  process,  is  needed  before  the  impact of man's 
activities on N20 in  the  atmosphere  can  be  completely  analyzed. 
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Scientific  Question: 

A.2.6 What  are  the  natural  sources  and  sinks  of N20 and  what  are  the  implica- 
tions of increased  use of nitrogenous  fertilizers  on  the  tropospheric 
N20 budget? 

Research  Tasks: 

(1 )  Conduct  continuous  monitoring  of  atmospheric N20 concentrations.  Resolution 
required:  Vertical, 3 km;  horizontal, 1000 km;  temporal,  monthly.  Sensi- 
tivity  desired: 6 ppb. 

(2)  Carry  out  N20  flux  measurements  over  soils  and  the  ocean. 

3 .  Tropospheric  Carbon  Budget 

Carbon  monoxide (CO).- Tropospheric CO is believed  to  be  a  key  element in 
atmospheric  photochemistry.  The  reaction 

CO + OH + C02 + H 

is believed  to  be  a  major  sink  for OH and  since  H  atoms  are  rapidly  converted 
to HO2 by 

H + 02 + M +  H02 + M 

CO  oxidation  may  lead  to  the  photochemical  production  and/or  destruction  of 03. 

Before  the  early  1970's,  the  only  known  source  of CO was  anthropogenic, 
primarily  from  the  internal  combustion  engine,  and,  in  the  absence  of  any  known 
significant CO sinks, it  was  feared  that CO levels  might  eventually  rise to dan- 
gerously  high  levels.  Weinstock  (ref. 47) , Levy  (ref.  481,  and  McConnell et al. 
(ref. 491,  however,  alleviated  these  fears  somewhat by  pointing  out  that CO is 
produced  in  nature  by  the  oxidation  of CH4 (by  means  of  the  methane  oxidation 
chain)  and  that CO is photochemically  removed  from  the  atmosphere by reaction 
with  OH.  Preliminary  model  calculations  indicated  that  the CO  abundance  was  con- 
trolled  by  these  natural  photochemical  processes  and  that  anthropogenic  sources 
of CO were  probably  relatively  small.  However,  this  view of atmospheric CO was 
hard  to  reconcile  with  observations  that  indicated  significantly  higher  levels 
of CO in  the  Northern  Hemisphere  than  in  the  Southern  Hemisphere  (Wilkniss et 
al.  (ref. 50) and  Seiler  (ref. 1 ) ) . Since  CH4  has  essentially  the  same  abun- 
dance  in  the  Northern  and  Southern  Hemispheres, one would  not  expect  to  find 
a  hemispheric  asymmetry  in CO if  it was  predominantly  produced  from CH4 oxida- 
tion.  Both  Seiler  (ref. 1 ) and  Newel1  (ref. 51 ) argued  that,  in  view  of  this 
latitudinal  gradient  in CO, the  major  source  of CO must  be  anthropogenic  emis- 
sions,  which  are  most  intense  in  the  Northern  Hemisphere. 
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Although recent  assessments of the CO budget indicate  that 30 to  50 per- 
cent of the CO present i n  the atmos here is from anthropogenic  emissions that 
are produced a t  a  rate of about l0ly molecules/cm2/s (Seiler  (ref. 1 )  , Wofsy 
(ref.  52) , Chameides (ref.  371, and  Logan (ref .  5 3 ) ) ,  many uncertainties remain. 
The hemispheric asymmetry i n  CO is a  possible measure  of the importance of 
anthropogenic  emissions of CO. Seiler  (ref.  1)  estimates  that  the average 
northern hemispheric and southern hemispheric CO abundances are 0.15 parts 
per million by volume  (ppm)  and 0.05 ppm, respectively. The natural  sources 
and s i n k s  of CO are  also  uncertain. The production of CO from CH4 (on the 
order 1 O1 mlecules/cm2/s) is uncertain because of the  lack of  knowledge  of 
the OH global  distribution and the  exact mode  of the CH4 decomposition; for 
example, i f  an intermediate of the CH4 oxidation  chain is removed by hetero- 
geneous processes,  the CO yield could be greatly reduced. The possible  source 
of CO from  nonmethane hydrocarbons (NMHC) is also not accurately known because 
of our lack of  knowledge  of NMHC abundances and the mode of decomposition for 
NMHC. The ra te   a t  which CO is attacked by OH (estimated  to be as  large  as 
3 x l o l l  molecules/cm*/s) is not accurately known because of uncertainties i n  
both OH densities and the  rate  constant  for  the CO + OH reaction under tropo- 
spher i c  cond it ions. 

The role of so i l s  i n  the CO budget remains uncertain  as  observations indi -  
cate  that, depending upon ambient CO levels and temperature, so i l s  may act  as 
a source  or a s i n k  for CO. Seiler  (ref. 1 )  has suggested that the  net  effect 
is a  large s i n k  for  atmospheric CO. T h i s  s i n k ,  however, is hard to  reconcile 
w i t h  the known source strengths. Table 1 4  summarizes some estimates of the 
global budget of tropospheric CO. 

TABLE 7 4 .- GLOBAL BUDGET OF TROPOSPBERIC CO 

I Sources  S t r e n g t h ,  Mt/yr 

Oceans . . . . . . . . . . . . . .  
500 to  700 Anthropogenic  . . . . . . . . . . .  60 to 300 

20 to  500 NMHC o x i d a t i o n  . . . . . . . . . .  70 to  700 CH4 + OH . . . . . . . . . . . . .  

T o t a l  . . . . . . . . . . . .  650 t o  2200 

I S i n k s  I S t r e n g t h ,  Mt/yr I 1 soils . : : : : . .  I . . .  I . .  1 300 to 500 i 
CO + OH . . . . . . . . .  1200 t o  1900 
T r a n s p o r t  to  s t r a t o s p h e r e  . . . . .  10 t o  60 

T o t a l  . . . . .  . . .  . .  1510 to 2460 
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Wofsy  (ref.  52)  and Crutzen and  Fishman  (ref.  54)  have  found  that  the CO 
hemispheric  asymmetry  implies  an  asymmetry in OH,  and  Sze  (ref.  55)  and  Chameides 
et al.  (ref.  56)  have  calculated  that,  if CO emissions  continue  to  increase,  sig- 
nificant  perturbations in the  tropospheric  photochemistry,  and  ultimately in the 
climate,  may  occur.  The  major  effect  thus  far  identified  involves  an  increase 
in CO, which  leads  to  a  decrease  in  OH,  and,  consequently,  to  an  increase  in CH4 
and  other  gases  scavenged by  OH. Since CH4 takes  part  in  the  atmospheric  green- 
house  effect,  an  increase  in CH4 will  probably  lead  to  an  increase  in  surface 
temperature  (Wang  et  al.  (ref 5 7 ) ) .  These  calculations,  however,  remain  uncer- 
tain  because of uncertainties  in  the  CO  budget  as  well  as  the  impact  of  simulta- 
neous  anthropogenic  emissions  of  NOx  which  tend  to  enhance OH (Liu (ref.  36)  and 
Chameides (ref. 37) ) . 

Photochemical  model  calculations,  in  agreement  with  observations  of  the 
variabilities  of CO, indicate  that  tropospheric  CO  has  a  residence  time  of  months. 
This  residence  time  implies  that  both  transport  and  photochemistry  are  important 
in  controlling  the CO abundance  and  distribution.  Thus,  in  order  to  understand 
the  detailed  CO  distribution,  both  the  dynamics  and  photochemistry  should be 
studied.  In  particular,  interhemispheric  exchange  processes  need  to  be  investi- 
gated  to  understand  the  importance  of  anthropogenic  processes  in  causing  the CO 
hemispheric  asymmetry. 

Scientific  Questions: 

A.3.1 Are  higher  carbon  monoxide  levels  in  the  Northern  Hemisphere  as  compared 
with  the  Southern  Hemisphere  due  to  natural or anthropogenic  processes 
and  will  continued CO  emissions  perturb  atmospheric  OH  levels,  especially 
the  relative  abundance  in  the  two  hemispheres? 

A.3.2 Do soils  always  act  as  a  sink  of  atmospheric  carbon  monoxide? 

A.3.3 What is the  role  of  nonmethane  hydrocarbons  in  the  CO  budget? 

A.3.4 What  are  the  exchange  mechanisms  between  the  two  hemispheres,  and  how 
important  are  they  in  controlling  the CO abundance? 

Research  Tasks : 

( 1 )  Conduct long-term  measurements  of  the  global  distribution  of  carbon  mon- 
oxide.  Simultaneously,  study  the  global OH distribution.  Resolution 
required:  Vertical, 0.2 to 1 km; horizontal,  5  to 100 km; temporal,  hours 
to days.  Concentration  range  of  CO  expected: 30 to  250 ppb. 

(2)  Measure  the  global  distribution  of  nonmethane  hydrocarbons.  Resolution 
required:  Vertical, 0.2  to 1 km;  horizontal,  5  to 100 km;  temporal,  hours 
to  days.  Concentration  range  expected: 0.01 to 2  ppb. 

(3) Develop  improved  remote CO sensor. 

Methane (C€I&.- Atmospheric CH4 is  produced  primarily  as  a  by-product  of 
microbial  fermentation  in  tropical  rain  forests,  swamps,  and  rice-paddy  fields, 
as  well  as  a  by-product  of  enteric  fermentation  in  mammals. The total  source 
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s t r e n g t h  is es t imated  to be about 1 O 1  molecules/cm2/s.  The major s i n k  of CH4 
is the   r eac t ion   w i th  OH 

CH4 + OH + CH3 + H20 

which leads to a long series of r e a c t i o n s  known as the  methane  oxidat ion  chain.  
The methane ox ida t ion   cha in   u l t ima te ly  leads to the   p roduc t ion   o f  CO and H2. 
The conversion of OH to H02 i n   t h e  methane  oxidat ion  chain is also be l ieved  to 
affect  the  photochemistry  of   t ropospheric  0 3 .  (See s e c t i o n   e n t i t l e d  "Tropo- 
s p h e r i c  Ozone Budget.") It  should be no ted   t ha t   t he   exac t   s equence   o f  reac- 
t i o n s   i n   t h e  methane ox ida t ion   cha in  is not  well-known.  Depending upon the  
branching ratio o f   s e v e r a l   r e a c t i o n s ,   t h e   o x i d a t i o n   c h a i n   c o u l d  lead to  either 
a source or a s i n k   o f  HO, f r e e  radicals. I f  any of the   in te rmedia te  species 
o f   t he  methane o x i d a t i o n   c h a i n  are removed  by heterogeneous processes, t h e   y i e l d  
of CO could be s i g n i f i c a n t l y  less than   un i ty .  

The l i f e t i m e   o f  CH4 is estimated to be of t h e  order o f  1 0  y r  and  thus CH4 
e x h i b i t s   v e r y  l i t t l e  s h o r t - t e r m   v a r i a b i l i t y .  The global  abundance  of CH4 is 
be l ieved  to be about 1.6  to 1 . 7  ppm. Table 15 p r e s e n t s  a summary of estimates 
for sources   and   s inks   o f   the   g loba l   budget  of t roposphe r i c  CH4. 

TABLE 15.- GLOBAL BUDGET OF TROPOSPHERIC CH4 

I Sources I S t rength,  Mt/yr I 
Oceans . . . . . . . . . . . . . .  

500 to  800 Soils . . . . . . . . . . . . . . .  4 t o  20 

10 t o  50 Anthropogenic . . . . . . . . . . .  
Total . . . . . . . . . . . .  514 to  870 

Sinks Strength,  Mt/yr 

CH4 + OH . . . . . . . . . . . . .  
Transpor t   to   s t ra tosphere  . . . . .  200 to  400 

10 to  70 

Tota l  . . . . . . . . . . . .  210 to  470 
~ ~- ~- 
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A recen t   ana lys i s   o f   t en   yea r s   o f   con t inuous  data from three  urban/suburban 
sites has led to  the   hypo thes i s   o f  a secular t rend   of   increas ing   ground  leve l  
CH4 concen t r a t ions  (Graedel and McRae ( r e f .  58)). The p o s s i b i l i t y   o f  a s e c u l a r  
v a r i a t i o n   i n  CH4 is of concern  in   view  of  its importance  in  the  atmospheric 
photochemistry as well as its role in   t he   a tmosphe r i c   g reenhouse   e f f ec t  as an 
absorber of  terrestrial  r a d i a t i o n   i n   t h e  7.7-pm window region. Model ca lcu la-  
t i o n s   i n d i c a t e  t h a t  the CH4 v a r i a t i o n  may be caused by a v a r i e t y   o f  processes 
inc lud ing   i nc reases   i n  CO, i n c r e a s e s   i n  Nox, changes   i n   s t r a tosphe r i c  03, and 
changes   in  t h e  atmospheric   temperature ,  as well as  changes   in  t h e  f lux   o f  CH4 
from the   su r f ace .  Many uncer ta in t ies   remain .  For ins tance ,  it is not  clear i f  
the  CH4 ground  flux is p resen t ly   i nc reas ing ,   dec reas ing ,  or remaining  constant;  
i n c r e a s e d   c u l t i v a t i o n  of rice-paddy f ie lds  would i n c r e a s e   t h e  CH4 f l u x ,  w h i l e  
d e f o r e s t a t i o n   o f  tropical r a i n   f o r e s t s  and drainage  of  swamps would lower t h e  
CH4 f lux .  A better understanding  of   the  budgets  of CO and Nox is needed to 
more accura t e ly  assess the  impact   o f   fu ture   emiss ions   o f   these   spec ies  upon the  
CH4 balance.  

Research Tasks :  

( 1 )  Conduct  long-term  measurements of t h e  g l o b a l   d i s t r i b u t i o n  of methane. 
Simultaneously,  measure t h e  OH dist r ibut ion.   Resolut ion  needed:  Vertical, 
10  km; h o r i z o n t a l ,  1000 km; temporal, seasonal ly .  

(2) Conduct sa te l l i t e  monitoring of g loba l   l and   t ypes  and r e sources  to i n f e r  
the  impact of man's a c t i v i t i e s  upon areas of methane  production. 

( 3 )  Carry o u t  flux  measurements  of  methane  over  various  geographical areas. 

( 4 )  Develop remote CH4 sensor .  

Formaldehyde (H?CO).- Atmospheric H2C0 is be l ieved  to be produced from 
the  CH4 oxida t ion   cha in .  The oxida t ion   of  nonmethane  hydrocarbons may also 
lead to s i g n i f i c a n t  H2CO product ion.  The chemica l   l i f e t ime  of H2CO is about 
1 day  and is destroyed by pho to lys i s  

H2CO + hV + H2 + CO 

H2CO + hV * H + HCO 

and r eac t ion   w i th  OH 

H2CO + OH -+ HCO + H20 

Measurements of the  H2CO abundance  under a v a r i e t y  of cond i t ions  may help to 
elucidate s o m e  of t h e   s t e p s   i n   t h e  methane ox ida t ion   cha in  as well as help to 
indica te   the   impor tance  of nonmethane  hydrocarbons  relative to CH4 i n   t h e  H2CO 
and CO budgets. 
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Research  Tas ks : 

(1) Conduct  measurements of the  distribution  of  formaldehyde  with  simultaneous 
observations  of CH4, NMHC, OH, NO,, and  light  intensity  at  selected  global 
locations.  Resolution  required:  Vertical, 0.2 to 1 km;  horizontal, 5 to 
100 km; temporal,  hourly.  Concentration  range  expected:  0.02  to 1 ppb. 

(2) Develop in  situ  and  remote  sensing  methods  to  measure  formaldehyde.  Sensi- 
tivity  desired  for  in  situ  measurements:  20 to 50 ppt. 

Nomethane hydrocarbons  (NMHC).-  The  role  of  NMHC  remains  highly  uncertain 
due  to  our  lack of  knowledge  of  the  concentrations  and  sources  of  these  species. 
Although  highly  reactive  NMHC  emitted  in  urban  areas  are  believed  to  be  respon- 
sible  for  photochemical  smog,  their  short  photochemical  lifetimes  probably  pre- 
clude  their  having  an  impact  in  the  background  troposphere.  However,  longer 
lived  NMHC  may  be  important  in  the  tropospheric  photochemistry.  For  instance, 
Chameides  and  Cicerone  (ref. 59) have  found  that 1 ppb  of  C2H6  and  C2H2,  with 
0.1 ppb  of  C3H8,  C4H10,  and  C5H12,  can  lead  to  a  source  of CO of  as  much  as 

3 x 1 010 molecules/cm2/s.  Other  investigators  have  attempted  to  estimate  the 
source  strength  of  terpenes  from  vegetation  and  have  found  that  terpenes  may 
lead  to  significant  production  of CO (Zimerman et  al.  (ref.  60)). These  NMTX 
may  also  have a  significant  effect  upon  tropospheric 03, depending  upon  their 
degradation  mode. 

Research  Tasks : 

(1) Measure  the  global  distribution  of  nonmethane  hydrocarbons.  These  measure- 
ments  can  be  carried  out  in  three  phases. 

Phase I: High  resolution  spot  measurements  to  determine  which  NMHC  are 
most  abundant.  Concentration  range  expected: 0.01 to  2 ppb. 

Phase 11: Simultaneous  NMHC  measurements  with  CH4, CO, OH, NO,, 03, and 
an  urban  tracer.  Resolution  required:  Vertical, 0.2 to 1 km; horizon- 
tal, 5 to 100 km;  temporal,  hourly. The  sensitivity  would  be  determined 
by  the  phase I studies. 

Phase 111: Long-term  measurements of representative  NMHC.  Resolution 
required:  Vertical, 1 km; horizontal,  100 km; temporal,  weekly. 

(2)  Carry  out  flux  measurements  of  nonmethane  hydrocarbons  over  various  geo- 
graphical  areas. 

( 3 )  Develop  new  in  situ  and  remote  sensing  NMHC  instruments  for  detection  of 
C2-C12  species.  Sensitivity  desired  for  in  situ  measurements: 0.01  ppb. 

Carbon  dioxide (Cod.-  The  atmosphere  presently  contains  about 330 ppm of 
C02, equivalent  to 700 x 1 O3 Mt of C. The  atmospheric C content is ultimately 
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determined  by  oceanic  conditions (i.e., ocean temperature)  since  the  large  ocean 
reservoir of about  35 x 1 O6 Mt of C, primarily  in  the  form of HCOj,  drives  the 
smaller  atmospheric  reservoir.  However,  because of the slow mixing  time of 
water  between  the  surface  and  deep  Ocean,  it  takes  about 1000 yr  for  the  Ocean- 
atmosphere C02 system  to  reequilibrate  after  a  perturbation.  Thus,  any  process 
that  leads  to  an  imbalance  between  the  rapid  cycle of C02 production  (respira- 
tion,  decay,  and  combustion of organic  material)  and  removal  (photosynthesis) 
can  cause  a  relatively  long-term  perturbation  in  the  atmospheric C02 abundance. 
In view of the  dominant  role 0 2  plays in  controlling  the  climate  by  means of 
the  greenhouse  effect,  the  observed  increase  in C02  of about  0.3 to 0.4 percent 
per  year or about  2 x 1 O3 to  3 x 1 O3 Mt/yr of C is  cause  for concern - possibly 
the  most  significant  environmental  problem  to  be  faced. 

The  increase  in C02 has  been  primarily  attributed to fossil-fuel  burning 
which  is  growing  at  a  rate of about 4 percent  per  year  and  currently  adds  about 
5 x 1 O3 Mt/yr of C to the  atmosphere.  The  observed  rate of increase of C02 has 
been  explained  by  the  fact  that  about 50  percent  of  the  extra C02 is  taken  up 
by  Ocean  surface  layer.  This  view of the C02 buildup  has  been  confused  by  the 
recent  findings  that  deforestation  and  wood  burning  have  been  producing C02 at 
a  rate  approximately  equivalent  to  the  fossil-fuel  burning  source  (Adams et al. 
(ref. 61 ) )  . To explain  this  situation,  Wong  (ref. 62) has  proposed  a  more  effi- 
cient  oceanic  pump  of  atmospheric C02 involving  phytoplankton.  Apparently,  more 
research  into  the  detailed  global C02 cycle  is  needed  before  the  relative  impor- 
tance of deforestation,  wood  burning,  and  fossil-fuel  burning can  be fully 
under  stood. 

Scientific  Questions: 

A.3.5 Is the  deforestation  and  wood-burning  hypothesis  plausible  for  the 
increase of C02 global  concentration? 

A.3.6 What  are  the  climatic  implications of changes  in  the  atmospheric  composi- 
tion  of  trace  gases  such as  C02,  CH4,  N20,  fluorocarbons, and  aerosols? 

Research  Task: 

Conduct  satellite  monitoring of land types,  resources,  and  oceanic  produc- 
tivity  to assess  key  parameters  in  the C02 cycle  and  their  variation  with 
time.  Resolution  required:  Vertical,  3  to  5  km;  horizontal,  200  km; 
temporal,  seasonally. 

4. Tropospheric  Gaseous  Sulfur  Budget 

Globally,  natural  emissions of hydrogen  sulfide  (H2S)  and/or  dimethyl  sul- 
fide  (CH3SCH3)  are  believed to be the  single  largest  source of atmospheric  sul- 
fur. These  emissions  have  been  estimated  to  be  in  the  range of 100 to 200  Mt/yr 
(Hitchcock  (ref.  63)  and  Friend  (ref. 64)). However,  both  the  relative  release 
rates of H2S and  CH3SCH3, as well as the  absolute  quantity of  natural  biospheric 
sulfur,  are  still  considered  to  be  poorly  defined  due  to  a  lack  of  in  situ  con- 
centration  and  flux  data. The atmospheric  fate of H2S and  CH3SCH3  has  now  been 
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reasonably  well established and is believed to  consist of a multiple-step  oxi- 
dation  to SO2, the in i t ia t ion  of  which is reaction w i t h  OH (Cox  and Sandalls 
(ref.  6 5 ) )  . I n  the  case of H2S, some contribution  to  oxidation is also thought 
to  be made by heterogeneous 03 reactions  (Penkett  (ref. 6 6 ) ) .  The chemical con- 
version time for  these  oxidation  processes can range from a few hours to a few 
days, depending on the  steady-state  concentration of the hydroxyl radical and/or 
ozone'concentration. 

Anthropogenic emissions of SO2 are now estimated to be approximately 
70 Mt/yr (Friend (ref.  6 4 ) ) .  With the  predicted  increased usage of coal  as an 
energy source, it is t h u s  quite  possible  that anthropogenic sulfur emissions 
may soon equal  those from natural  biospheric  sources. Recently reported  global 
SO2 data (Maroulis e t   a l .   ( re f .  6 7 ) )  suggest natural  concentration  levels  for 
t h i s  species to be i n  the range of 207 to 37 ppt; however, a t  present, still  too 
few data  exist  to  ascertain what impact anthropogenic  emissions might be having 
on natural SO2 concentration  levels,  either on a regional or a global  scale. 
Among the many possible concerns related  to anthropogenic SO2 emissions  overtak- 
ing natural  sulfur emissions is the  possible  effect  that this acidic  species 
(once converted to H2SO4) might have  on global or regional  levels of NH3. An 
overtitration of atmospheric NH3 could result  i n  long-term changes i n  s o i l  pH 
which, i n  turn, could have a major  impact on plant-growth patterns. 

The atmospheric fate of SO2 i n  natural  tropospheric  air is chemical oxida- 
tion  to H2SO4 and sulfates,  which leads  to the  formation of sulfur  aerosol spe- 
cies. Both  homogeneous (predominantly reaction wi th  OH) and heterogeneous  reac- 
tions  are now believed to  be important i n  t h i s  conversion (Davis and Klauber 
(ref.  68)  , Davis e t   a l .   ( re f .  21 ) , Sander and Seinfeld  (ref. 69)  , Calvert e t  
a l .   ( ref .  70) , Junge and  Ryan (ref. 71) , and Penkett (ref.  6 6 ) ) .  The relative 
importance of  each  mechanism,  however, w i l l  obviously depend on a very large 
number of  atmospher ic  variables. Under  warm weather conditions where moderately 
h igh  OH concentrations would exis t ,  a chemical conversion time for SO2 of a few 
days is expected. 

Carbonyl sulfide, COS, has only recently been identified i n  the troposphere 
(Maroulis e t   a l .   ( re f .  7 2 ) ) .  Recent global measurements  of t h i s  species 
(Torres e t   a l .   ( re f .  7 3 ) )  indicate  that a near-uniform distribution  exists 
throughout the lower atmosphere. The sources of t h i s  sulfur gas are  presently 
poorly  defined. Its chemical lifetime would appear to be several  years; t h u s ,  
it is quite  possible  that  diffusion  into the lower stratosphere, followed by 
photodissociation, is the most likely s i n k  for COS. If the major source of COS 
is anthropogenic emissions  (possibly CS2) , the resulting formation of H2SO4 
aerosol i n  the lower stratosphere could have possible long-range consequences 
i n  terms  of its effect  on the  atmospheric radiation balance  (Crutzen (ref. 7 4 ) .  

Scientific Questions: 

A.4.1 What is the  yearly  quantity of sulfur now being released from the natural 
biosphere, and  what are  the major chemical forms i n  which t h i s  sulfur is 
being released? 

A. 4 . 2  What is the  global  distribution of SOz? 
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~.4.3 What  are  the  short-term  and  long-term  impacts  of  anthropogenic  emissions 

of  SO2  on the  tropospheric  sulfur  budget  and on the  budgets  of  other 
trace  gases  such  as  NH3? 

A.4.4 What is  the  relative  importance of homogeneous  versus  heterogeneous  pro- 
cesses in  the SO2 gas-to-particle  conversion  cycle? 

A.4.5 What  are  the  major  sources  of  tropospheric  COS?  And,  if  man's  activi- 
ties  are  a  major  source,  what  might  be  the  climatic  implications of a  COS 
buildup  in  the  atmosphere? 

Research  Tasks: 

( 1 )  Carry  out  flux  measurements  of  H2S  and  CH3SCH3  over  different  geographical 
areas. 

(2)  Measure  the  global  distribution  of  S02.  Resolution  required:  Vertical, 
0.2  to 1 km;  horizontal, 5 to 100 km; temporal,  daily  to  weekly.  Concen- 
tration  range  expected: 0.01 to 1.0 ppb. 

(3)  Measure  the  global  distribution  of COS as well  as  the  concentrations in 
the  vicinity of  volcanoes,  power  plants, and  swamps.  Resolution  required: 
Vertical, 1 to  3  km;  horizontal, 100 km; temporal,  monthly. 

(4) Measure  the  distribution  of  sulfates  in  aerosols  and  rainwater. 

( 5 )  Develop  one  new  in  situ  and  remote  sensing  method  for  measuring  COS.  Sen- 
sitivity  desired  for  in  situ  measurements: 10 to 20 ppt. 

(6) Develop  one  new  in  situ  and  remote  sensing  method  for  monitoring  S02.  Sen- 
sitivity  desired  for  in  situ  measurements: 1 0  ppt. 

(7) Develop  one  new  in  situ  method  to  measure  HzS,  CH3SCH3,  and  CS2.  Sensitiv- 
ity  desired  for  in  situ  measurements: 5 to 10 ppt. 

5. Tropospheric  HxOy  (OH, H, H02, and  H202) 

On  the  basis of  both  kinetic  data  (ref.  75)  and  recent  OH  field  measure- 
ments  (refs.  20,  21, 76, 77,  and 78), it  has  now  been  established  that  the OH 
radical  plays  a  major  role  in  the  oxidation  of  several  tropospheric  trace 
gases, for  example, 
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Multiple 

steps 
(R32)  H2S + OH + HS' + H 2 0  - SO2 

Multiple 

steps 
(R33) CH3SCH3 + OH "-* CH3SCH2' + H z 0  -S02, CO 

Multiple 

steps 
(R34)  CH4 + OH "9 CH3' + H 2 0  - CO 

Multiple 

steps 
(R35)  (High MW hydrocarbons)RH + OH * R- + H 2 0  - CO 

Mu1 t iple  

steps 
(R36) CxH,ClVFw + OH '-)C,HU-1C1$,- + Hz0 - CO, HF, HC1 

(R37) CO + OH +CO2 + H 

N2102 (R38)  No2 + OH -HN03 

where MW is molecular weight. 

The relative importance of the OH oxidation  process  as compared w i t h  other 
possible mechanisms is strongly dependent on a large number  of atmospheric vari- 
ables which collectively  control  the  steady-state  concentration of the OH radi- 
cal. As a direct   resul t  of this, the  tropospheric OH concentration is h ighly  
variable both spatially and temporally. Even i n  the  Tropics, where average 
midday boundary-layer OH levels were  found to be 8.5 x 106/cm3, variations of 
a factor of five  to s i x  were observed i n  the midday OH concentration, due 
primarily  to changes i n  the 03 level  at   different times of the  year. I n  the 
same geographical  area, s t i l l  larger  variations i n  OH concentration were 
observed i n  the middle free-troposphere,  reflecting major variations i n  H 2 0  
and, to a lesser  extent, 03 levels.  Variations i n  the NO concentration may 
also have  been important; however, only upper limit measurements of the con- 
centration of t h i s  species were possible a t   t ha t  time. 
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The primary mechanism  by which atmospheric OH radicals  are generated is 
given by the  reaction scheme 

1<3150A 
( R 3 9 )  0 3  $. h V  --"-----tO('D) + 02 

( R 4 0 )  O ( l D )  + N2 -O(3P) + N2 

( R 4 1 )  O ( l D )  + H20 - 2  OH 

Thus, the UV solar f l u x ,  ozone concentration, and the  absolute water content 
of the atmosphere have a near-linear  effect on the  rate of production of OH. 
Possible  loss  processes  for  the OH radical  are  reactions ( R 3 4 )  and ( R 3 7 ) .  Taking 
the coupled se t  of reactions ( R 3 9 )  , ( R 4 0 )  , ( R 4 1 )  , ( R 3 4 )  , and ( R 3 7 )  as  the major 
formation and loss  processes  that  control  the OH concentration,  the OH concen- 
t ra t ion  a t  photochemical equilibrium (PE) is given by 

Equation (1  ) , however, is based on the assumption tha t   a l l  C H 3  radicals gener- 
ated from reaction ( R 3 4 )  go  on to  react i n  such a way that no additional OH 
radicals  are produced or destroyed. I n  fact ,  depending on the  levels of other 
atmospheric trace gases  (e.g., NO) and  on the detailed  degradation  cycle chosen 
for  the CH3 radical,  as many as  three OH radicals could be generated from  each 
C H 3  species. Thus,  the possibility  exists  that  reaction ( R 3 4 )  could lead to a 
net secondary source of OH radicals. T h i s  secondary OH source can  be incor- 
porated into equation ( 1 )  by modifying the term k34 [CHq] to  read as shown i n  
the  following: 

c 
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where the  values of x can  be 0 , 1 , 2 , etc. , and correspond to 

A f ina l  complication  not  taken into  consideration by the scheme of reactions 
(R39)  , (R40) , (R41) , (R34) , and (R37) involves  the assumption tha t   a l l  H atoms 
produced i n  reaction ( R 3 7 )  react wi th  0 2  to produce H 0 2  radicals which, i n  
turn,  are  systematically  converted  into hydrogen peroxide ( H 2 0 2 ) .  I t  is further 
assumed that this H z 0 2  species is completely removed from the atmosphere v i a  
washout processes,  that is, 

N 2 1 0 2  
(R42)  H + 02 -H02 

(R43)  H 0 2  + HO2 "f H202-4 + 0 2  

Washout and/or rainout 

There are, however, a t   l ea s t  two significant shortcomings w i t h  the  preceding 
scheme. Firs t ,  H 2 0 2  may not be  removed  from the atmosphere by heterogeneous 
processes w i t h  100-percent efficiency: H 2 0 2  can  undergo photolysis  to produce 
two  new OH radicals  or it may react w i t h  OH to produce H20 and  an H 0 2  radical. 
Second, the H 0 2  species can react i n  a t   l ea s t  two additional modes other than 
reaction ( R 4 3 ) :  that is, 

or 

(R45)  H 0 2  + OH + 0 2  

Reaction (R44)  would, i n  effect ,  decrease  the  efficiency of reaction (R37)  as 
a removal process  for OH whereas reaction (R45)  would tend to  increase  the 
apparent efficiency of reaction ( R 3 7 ) .  The net effect  of these  additional 
reactions on the photochemical stationary  state  concentration of OH cannot 
be specified i n  any simple expression.  Detailed modeling calculations show 
that the impact  of t h i s  additional chemistry is c r i t i ca l ly  dependent on the 
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absolute HOx radical  concentration,  as well as on the NO level.  Nitric oxide 
concentrations  as low as  10 to  20 ppt now appear to have a significant impact 
on the  calculated  values of [OHI~E. 

Only wi th in  the l a s t  year has it even  been possible  to  carry  out a quanti- 
t a t ive   t es t  of the  validity of equation ( 2 ) .  The comparisons made between 
experimentally measured OH concentrations and calculated OH values, by us ing  
simultaneously collected  data on CO, 03, H20,  CH4, and the UV flux, have now 
shown reasonable agreement ( to  wi th in  a factor of 1 .5) for  clean  tropospheric 
a i r   ( ref .  7 9 ) .  More extensive comparisons w i l l  require  reliable  data on NO, 
H202,  CH20,  and CH300H plus more accurate  values  for  several  gas  kinetic  rate 
cons tan ts . 
Scientific Questions: 

A.5.1 What is the re l iab i l i ty  of present photochemical theory i n  predicting 
HxOy distributions i n  both urban and remote atmospheric air  parcels? 

A.5.2 Can the asymmetry i n  global CO levels  lead  to asymmetry i n  global 
OH d i s t r  i b u  tions? 

A. 5.3 What is the  lifetime of H202 i n  the atmosphere, and  what are major 
s i n k s  for t h i s  compound? 

Research Tasks: 

Measure the  global  concentration  distributions of OH and H02 .  Resolu- 
tion  required:  Vertical, 0.2 to 1 km; horizontal, 5 to 100 km; temporal, 
hourly.  Concentration range expected: lo5  to lo9 molecules/cm3. 

Measure the  global  concentration  distribution of H202. Resolution 
required:  Vertical, 0.2 to 1 km; horizontal, 5 to  100 km; temporal,  hours 
to days. Concentration range expected: 0.01 to 10  ppb. 

Develop new i n  s i t u  methods to measure OH, H 0 2 ,  and H202.  Sensitivity 
desired  for i n  s i t u  measurements: 106 molecules/cm3 for OH, 1 ppt  for H O ~ ,  
and 50 ppt for H202. 

Develop a remote sensing  instrument  for measuring H20.  

6. Tropospheric Gaseous  Halogens 

A t  the  present  time,  those halogenated species which  have  been detected 
i n  the  troposphere are listed i n  table 16 (from refs. 79 and 80) .  
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TABLE 16.- A'IWSPHEIERIC BAu)Gm SPECIES 

Compound 

CH3Br (methyl  bromide) 
c 8 3 C l  (methyl  chloride) 

CHjI (methyl  iodide) 
EC1 (hydrochloric  acid) 

7 

I 
CH3CCl3 (methyl chloroform) 

CClq (tetrachloride) 
CF2Clz 
CPC13 
CHC12P 

nthropogenic C2C13P 
CHC13 (chloroform) 

C2tCl3  (ethylene trichloride) 
C2Cl4 (ethylene) 

SF6 (sulfur hexafluoride) 

Quality of data 
(a) 

B 

C 
C 

C 

B 

B 
B 
B 
C 
C 
C 
C 
C 
C 

Mixing ratio, 
PPt 

b-800; 6 3 0  
< l o  
-1 0 
100 to 1000 
(200 typical) 

- 1  00 

-1 35 
200 to 230 
100 to 140 
< l o  
-20 
-20 
-30 
-20 
- 0 . 2  

aA - Excellent  data  base;  uncertainty in global distribution no greater 
than 5 percent 

B - Fair  data  base;  uncertainties still equal to or exceeding 15  percent 
C - Fragmentary information 

b800 ppt in tropical  and  subtropical  boundary-layer  air; 630 ppt in tropi- 
cal and subtropical free  tropospheric  air. 

As noted i n  table 1 6 ,  of the 1 4  halogen species  that have now been detected 
i n  the  troposphere,  only 4 can  be clearly  characterized  as  resulting from pre- 
dominantly natural emissions. Good evidence now exists  that   indicates  that   al l  
four of these  species have an oceanic  source. Recent data  indicate  that CH3C1, 
CH3Br,  and CH31 are  released  directly  into  the atmosphere. On the  other hand, 
HC1 would appear to be the  product of both gas-phase chemistry and heterogeneous 
chemistry. The gas-phase source  involves  the  OH-initiated  degradation of CH3C1 
(Davis e t   a l .   ( re f .  21 ) )  ; that is, 

(R46) CH3C1 + OH P C H 2 C 1  + H 2 0  

Multiple  steps 
(R47) CH2C1 > HC1, CO, H 2 0  

I n  t h i s  system, the  rate determining step  for  the formation of HC1 from CH3C1 
is reaction (R46). The second source of HC1 is now believed  to  involve  the 
reaction of HN03 with  C1' i n  cloud droplets,  the  net  reaction being 

where subscripts  (9) and (s) indicate gaseous and solid forms, respectively. 
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More data are needed to de termine   the   re la t ive   impor tance   o f   reac t ions  (R46) 
and  (R48) i n   t h e   p r o d u c t i o n  of HC1. The chemica l   l i fe t imes   o f   bo th  CH3C1 and 
CH3Br are d i c t a t e d  by t h e i r  rates of reac t ion   wi th   a tmospher ic  OH r a d i c a l s ;  
whereas   for  CH31, both  photodegradation and r eac t ion   w i th  OH would appear to be 
important.  The a tmosphe r i c   l i f e t ime   o f  HC1 is undoubtedly  control led by wash- 
o u t  and  ra inout ;   however ,   the   eff ic iency  of   these processes is still poor ly  
documented.  Recent  global  tropospheric data would s t r o n g l y   s u g g e s t   t h a t   t h e  
a c i d i t y   o f  rainwater i n  remote areas of  the  world is p r i m a r i l y   c o n t r o l l e d  by 
the   p resence   o f  HC1 and HNO3. 

The atmospheric   or igin  of   methyl   chloroform  has ,  up un t i l .   r ecen t ly ,  
been  considered  anthropogenic   in   nature .  Earlier measurements  designed to 
de termine   the   average   in te rhemispher ic   g rad ien ts  for t h i s  species r e s u l t e d   i n  
reported values   of   approximately 1 . 5  (S ingh   ( r e f .   81 ) ) .  However, r e c e n t   f i e l d  
measurements  have  suggested  an  average  interhemispheric  gradient of 10  to 
25 pe rcen t .   S ince   t he   p r inc ipa l  mode o f   d e g r a d a t i o n   f o r   t h i s  compound is reac- 
t i o n   w i t h  OH, s e v e r a l   i n v e s t i g a t o r s  have  used  the  interhemispheric   concentrat ion 
g r a d i e n t  to ca lcu la te   an   average   g loba l  OH concen t r a t ion   (S ingh   ( r e f .  81) and 
Crutzen and  Fishman ( r e f .   5 4 ) ) .   I f   t h e s e   r e c e n t   d a t a  are correct, one  would 
be  forced to conclude   tha t   e i ther   the   average   g loba l  OH concen t r a t ion  is ins ig-  
n i f   i c a n t l y  small (< l  x l o 5  molecules/cm3) or t h e r e  are n a t u r a l   g l o b a l  sources 
of CH3CC13. The former  conclusion would appear to be incons i s t en t   w i th   ex i s t -  
ing  OH f i e l d  data. 

The las t  set of compounds l isted i n   t a b l e   1 6  are a l l  be l ieved  to have 
anthropogenic  sources.  The chemica l   l i fe t imes  of these   spec ies   vary   enor-  
mously,  depending  on  whether a given compound is l iab le  to  be attacked by OH 
radicals. Those compounds having   e i ther  a double bond or a C-H bond f a l l   i n t o  
t h e  la t ter  ca tegory  (i.e., CHC12F, C2C13F, CHC13, C2Cl4,  and C2HC13). On the  
o the r  hand, CCl4 ,  CF2C12, and CFC13 are p ro jec t ed  to have l i f e t i m e s   i n   t h e   r a n g e  
of  20 to 200 y r .  For those molecules h a v i n g   l i f e t i m e s   g r e a t e r   t h a n  about  10  yr ,  
approximately 10 percent   o f   the   t ropospher ic   burden  would d i f f u s e   i n t o   t h e  
s t r a t o s p h e r e  and  be  photodecomposed. For a 20-yr l i fe t ime,   approximate ly  
25 pe rcen t  of the  released halocarbon would end up being removed by means of 
d i f f u s i o n   i n t o  the StKatOSpheKe. I n  a l l  cases, it is b e l i e v e d   t h a t  released 
c h l o r i n e   i n   t h e   s t r a t o s p h e r e  would resul t  i n  a sys t ema t i c   r educ t ion   i n   t he  
s t ra tospher ic   mix ing  ratio of  ozone. 

For comparison  purposes ,   the   l i fe t imes  of   several  compounds l i s t e d   i n  
table 16 have  been  given i n  table 17.  These l i f e t i m e   c a l c u l a t i o n s  are based  on 
rate cons t an t s  k ( r e f .   75 )   fo r   r eac t ion   w i th  OH, t ak ing  268 K as the  average 
t ropospheric   temperature .  The g loba l   average  OH concen t r a t ion  [OHIav was taken 
to be e i t h e r  9 x l o 5  or 3 x l o 5  molecules/cm3. 
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TABLE 1 7 .- CHEMICAL  LIFETIMES 

Compound 

CH3C1 
CH 3Br 
CHC12F 
CHCl3 
CH3CC13 
c2c14 

k at 268 K, 
cm3/molecule/s 

Lifetime, yr, for PHIaav of - 
9 x 105  molecules/cm3 3 x 105  molecules/cm3 

1.2 
1.3 
2.1 
.6 

4.4 
3.2 1 

S c i e n t i f i c   Q u e s t i o n s :  

A.6.1  What impor tance   ( in  terms of  a g loba l   average   concent ra t ion   va lue   for  OH) 
can be ass igned  to the  interhemispheric   gradient   in   methyl   chloroform? 

A.6.2 What are t h e  major sources of   a tmospheric  HC1 and how important is t h i s  
i n   d e t e r m i n i n g   r a i n   a c i d i t y   i n   b o t h  remote and  urban areas? 

A.6.3 What are the   s t r a tosphe r i c   imp l i ca t ions   o f   an th ropogen ic  releases of 
halocarbons  (such as CH3CCl3, CHClzF, and CHClF2) i n  terms of t h e i r  
OH-controlled chemical lifetimes in   t he   t roposphe re?  

Research Tasks :  

(1)  Conduct  global  measurements  of t h e  d is t r ibu t ion   of   ha logen   spec ies   (e .g . ,  
CH3CC13,  CH3C1, f luorocarbons ,  HC1, and C1-).  Resolut ion required: For 
CH3CC13 and f luorocarbons  - v e r t i c a l ,  3 to 5 km; h o r i z o n t a l ,  1000 km; 
temporal ,   seasonal ly;   and  for  CH3C1 and HC1 - v e r t i c a l ,  0.2 to  1 km; hor i -  
zon ta l ,  5 to  100 km; temporal, d a i l y  to weekly.  Concentration  range 
expected: For CH3C1, 0.3 to 1 .O ppb;  and f o r  HC1, 0.01 to  3 ppb. 

(2 )  Develop  one new i n   s i t u  and remote sensing method to  measure HC1 and 
CH3C1. S e n s i t i v i t y  desired f o r   i n   s i t u  measurements: 20 ppt .  

7. Global Aerosol Budget 

I t  is now well e s t a b l i s h e d  tha t  one of t h e  major consequences of f o s s i l -  
fuel   combust ion is the   i nc reased  aerosol burden  of t he  atmosphere. On a g loba l  
basis,  it is estimated tha t   approximate ly  10 percent   o f   the  t o t a l  p a r t i c u l a t e  
emission to the  atmosphere results f rom  an th ropogen ic   ac t iv i t i e s ,   t he  remain- 
ing 90 percent   being  f rom  such  natural  sources as ocean  spray, wind  blown d u s t ,  
and volcanic   e rupt ion .  However, a l l  a tmosphe r i c   pa r t i c l e s  are even tua l ly  
re turned  to the  ground  through  such processes as sed imenta t ion ,   d i f fus ion ,  
r a inou t ,  and  washout. The l i f e t ime   o f   a tmosphe r i c  aerosols may range  from a 
few  days  in  t h e  lower troposphere to s e v e r a l  months i n  t h e  s t r a tosphe re .  
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Aside from their  potential  health  effects i n  heavily  polluted  areas, atmo- 
spheric  aerosols  are of interest  because of their   effect  on v i s i b i l i t y ,  on rain 
pH, and on the radiation balance of the atmosphere. They are  also known to  affect  
the  precipitation  process and  may have other  inadvertent weather modification 
effects . 

A major concern of increased  fossil-fuel combustion, particularly  the com- 
bustion of coal  containing  sulfur, is the increased emission of S02. I n  the 
atmosphere, SO2 is photooxidized to  form sulfuric  acid and sulfates,  both of 
which exist  i n  particulate form.  These particles  containing  sulfur can cause 
reduced v i s i b i l i t y .  They also lower the pH of rain and other forms of precipi- 
tation, w i t h  potentially  disastrous  effects on aquatic l i f e  i n  fresh water lakes 
and  on agricultural  production through modification of s o i l  pH and chemistry. 

Although many of the consequences of  an increased  atmospheric  aerosol 
burden have  been identified or postulated,  the  quantitative  understanding of 
the  processes  involved remains at  best incomplete. There is a need for a care- 
f u l l y  planned program of sc ien t i f ic  s tudy  i n  order to gain a better understand- 
ing  of the  processes involved i n  the  generation,  conversion,  transformation, 
transport, and removal of atmospheric particulates. With improved understand- 
ing ,  the environmental consequence of increased  atmospheric aerosol burden can 
then be  more accurately  assessed. 

The behavior of the aerosol and the effects it produces are dependent upon 
the  concentration,  size  distribution, and the chemical composition of the par- 
t ic les .  The concentration of atmospheric aerosols may range from a few yg/m3 
a t  remote and background s i t e s  i n  the lower troposphere to  several hundred yg/m3 
i n  heavily  polluted  areas. The size  distribution of the  aerosol is typically 
bimodal, w i t h  a fine-particle mode located  at about 0.3 pm and a coarse-particle 
mode i n  the 5- to 50-ym range, depending on the specific  location involved. 
Near combustion sources, a third mode i n  the 0.01- to  0.1-pm range sometimes 
also appears. The major constituents of atmospheric particles  include  sulfate, 
nitrate,  organics,  soot, and inorganic  matter  (including Na, S i ,  e tc . ) .  Most 
of the data on the  concentration,  size  distribution, and chemical composition 
of atmospheric aerosols  are  for urban areas. There are  comparatively fewer 
data  for remote and background s i tes ,  and even more limited  data on the  verti- 
cal   profile of atmospheric aerosols. One  of the major  needs is to  obtain a 
more extensive  data base on the spatial  and temporal distributions of  atmo- 
spheric  aerosols,  including  the  concentration and size  distribution i n  the 
0.002- to 10-ym-diameter range, and under special  conditions i n  the 0.002- to  
50-ymdiameter range. The chemical composition of the  aerosol m u s t  also be 
determined for  various  classes of conditions. 

One  of the major questions  regarding  the  climatic  effects of increased 
atmospheric aerosol burden is the effect of the aerosol on the  radiation balance 
of the atmosphere. I n  order t o  make an accurate assessment of the  effect of 
aerosol on the radiative balance of the atmosphere, the optical  properties of 
the  particles must be known. T h i s  would require measuring the  refractive index 
and absorption  coefficient of the particles. Lack  of data on the  optical  prop 
er t ies  of atmospheric aerosols has made past  predictions somewhat uncertain. 
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There is considerable  controversy  regarding  the  relative  role of homogene- 
ous and heterogeneous reactions i n  the  conversion of gaseous pollutants,  partic- 
ularly S02, into  particulate form. Experiments should be designed and conducted 
i n  order to  assess  the  relative importance of the homogeneous  and heterogeneous 
reaction mechanisms. 

The recent  observation of the  extensive  areas of  haze covering thousands of 
square kilometers of areas i n  the United States through sa t e l l i t e  photographs 
suggests  that  there is large-scale  transport of pollutants  across  the  continen- 
t a l  United States. The origin and  movement of  such hazes  should be  more care- 
f u l l y  studied and their  implication i n  terms  of ambient air   quali ty standards 
assessed. 

Scientific Questions: 

A. 7.1 What are the optical  properties of tropospheric  aerosols? 

A.7.2 What are  the  physical and chemical properties of tropospheric  aerosols? 

A.7.3 How do aerosols  influence  the  tropospheric  radiation  balance? 

A.7.4 What is the origin and fate of large-scale  tropospheric haze? 

Research Task: 

Measure globally  the  size  distribution,  refractive index, chemical compo- 
s i t ion,  and vertical  distribution of aerosols. 

B. REGIONAL A I R  POLLUTION AND LONG-RANGE TRANSPORT 

1.  Meteorological Aspects of  Long-Range Pollutant Transport 

Some of the  meteorological  processes  that  play a dominant role i n  the dis- 
persion of pollutants on large temporal and spatial   scales have a negligible 
e f fec t   a t  smaller scales, and vice  versa. Among the  processes  that have a sig- 
nificant impact on dispersion over regions of 1000 km i n  s ize  and over periods 
of several days b u t  which are  usually  insignificant on smaller  scales (and 
hence are  neglected i n  most urban diffusion models) are  the  following: 

(1) Vertical  velocities induced by horizontal  divergence i n  the  synoptic 
scale flow, by Ekman  pumping i n  the boundary layer , by convective 
clouds, and by other phenomena 

( 2 )  Wet  and dry removal processes; that  is, rainout, washout, and 
deposition 

(3)  Fluctuations i n  the  horizontal flow where scales  are  larger than that 
of turbulence b u t  smaller t h a n  that  resolvable by the wind data 
ne  twor k 

( 4 )  Wind shear 
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The e f f e c t s   o f   t h e s e  processes and p a r t i c u l a r l y   t h e i r  combined e f f e c t s  are pres- 
e n t l y   t h e  most poorly  understood  meteorological  aspects of long-range   po l lu tan t  
t ransport ,   d ispers ion,   and  removal .  

Vertical veloci t ies . -   Divergence  in   the  synopt ic   and mesoscale h o r i z o n t a l  
wind regimes leads to vertical air  motions. Also, v e r t i c a l   c u r r e n t s ,  which g ive  
rise to t h e  phenomenon known as Ekman pumping, are genera ted  by v i scous   fo rces  
i n   t h e  boundary  layer and can be p a r t i c u l a r l y  large i n   r e g i o n s  of complex ter- 
rain.   Although the  v e r t i c a l   v e l o c i t i e s   g e n e r a t e d  by these processes have a 
magnitude  of  only 1 to 10 m/s,  t hey   can   ca r ry   po l lu t an t s  to t h e  upper  reaches 
o f   t he  troposphere i n   t h e  time required to t r a v e r s e  a ho r i zon ta l   d i s t ance   o f  
1000 km. 

The effects of v e r t i c a l   v e l o c i t i e s   o n  material t r a n s p o r t   i n   d i f f u s i o n  
models can be described, b u t  it is not  known whether  the estimates of  the mag- 
n i tudes   o f  these v e l o c i t i e s  t h a t  are in fe r r ed   f rom  ava i l ab le   me teo ro log ica l  
data are s u f f i c i e n t l y  accurate t o  provide  an  adequate   descr ipt ion of the v e r t i -  
cal t r a n s p o r t  of p o l l u t a n t s .  To  r e s o l v e  t h i s  question,  measurements are needed 
of t h e   v e r t i c a l   p r o f i l e s  of i n e r t   p o l l u t a n t  species concent ra t ions   over  a reg ion  
of about 1000 km i n   s i z e  w i t h  a h o r i z o n t a l   r e s o l u t i o n  of roughly 1 0  km and a 
v e r t i c a l   r e s o l u t i o n   o f  1 km. 

Convect ive  c louds  can  produce  ver t ical   veloci t ies   100 times l a r g e r   t h a n  
those  produced by t h e  two processes cited previously.   Al though  individual  
clouds may be no l a r g e r   t h a n  about 1 km i n  width,  l a r g e   p o p u l a t i o n s  of them act  
i n   c o n c e r t  to  t r a n s p o r t   h e a t ,   m e n t u m ,  moisture, and   po l lu t an t s  o u t  of   the  
mixed l a y e r  (or boundary   l ayer )   ad jacent  to  t h e  e a r t h  and i n t o  t h e  so-called 
f r e e  atmosphere  above ( t h e  l a y e r  above a b o u t  1 )an). A t  t h e  same time, these  
clouds force a i r  f r a n   t h e   f r e e  atmosphere down i n t o   t h e  mixed l a y e r .  C louds  
a lso provide a l i q u i d  water medium i n  which chemical r e a c t i o n s  other than  those 
observed  in   dry a i r  can  occur. 

A t  p r e s e n t ,  there is no detai led information a b o u t  t h e  effects of clouds 
on   po l lu tan ts :  there are on ly  unanswered  questions. For example, is the  n e t  
upward f l u x   o f   p o l l u t a n t s   i n  a l a rge   popu la t ion  of convect ive  c louds  (and  the 
compensatory downward f l u x  of material from t h e  free atmosphere) uniquely 
related t o  some averaged, measurable properties of the  atmosphere? Are pol- 
l u t a n t s  t h a t  are t r anspor t ed  upward in   convec t ive  clouds deposited a t  some spe- 
c i f i c   l e v e l   s u c h  as cloud top he igh t ,  or are they  more uniformly d i s t r i b u t e d  
i n  t h e  cloud l a y e r ?  What chemical processes occur among p o l l u t a n t s   i n  c louds 
and  what products are ejected by c louds  or l e f t  behind when clouds evaporate? 

I n  order to answer  these  quest ions,  detailed measurements of i n e r t  and 
reac t ive   po l lu tan t   concent ra t ions   in   and   a round  la rge   cumulus   c louds  are needed, 
p a r t i c u l a r l y   t h o s e  deeper than about one-half  the  mixed-layer depth. To inves- 
t i g a t e   t h e   c l o u d   f l u x   q u e s t i o n s ,   v e r t i c a l   c o n c e n t r a t i o n   p r o f i l e   m e a s u r e m e n t s  of 
a n   i n e r t   p o l l u t a n t  are needed  over a h o r i z o n t a l  area several   hundred kilometers 
i n   s i z e  and  extending  from the ground to  an  e levat ion  of   about  5 km. V e r t i c a l l y  
in t eg ra t ed   concen t r a t ions  would su f f i ce ,   p rov ided   t hey  are g iven  for bo th   t he  
cloud  layer  (i. e., the  region  between  cloud base and mean cloud top) and  the 
subcloud  layer .  A h o r i z o n t a l   r e s o l u t i o n  of a t  least  10 km is required. 
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Wet and dry  removal processes.- Rainout ,   washout ,   and  dry  deposi t ion are 
the   on ly  processes by which p o l l u t a n t s  are even tua l ly  removed  from t h e  atmo- 
sphere.   Since  each of these  phenomena t ends  to be correlated to some e x t e n t  
w i th   ho r i zon ta l   f l ow  d i r ec t ion ,  it is l i k e l y   t h a t   t h e   r e g i o n   o v e r  which p o l l u t -  
a n t s  from a given s i te  are even tua l ly  removed d i s p l a y s   d i s t i n c t   d i r e c t i o n a l  
c h a r a c t e r i s t i c s .  For example,  southwesterly flows on  the east side of   t roughs 
are usua l ly  associated with  ascending  motion  and  hence  clouds  and  precipitation. 
Conversely,   nor thwester ly   f lows on t h e  east side o f   r i d g e s  are g e n e r a l l y  asso- 
ciated with  subsidence and  hence clear s k i e s  and t h e   t r a p p i n g   o f   p o l l u t a n t s  
below low-level   inversions.  The t r a p p i n g   e f f e c t  would tend to  e l e v a t e  ground- 
l eve l   concen t r a t ions ,   and  this, in   tu rn ,   might   enhance  the rate of  dry  removal 
( a l t h o u g h   i n   t h e  case of  S02, t he   depos i t i on  process might be i n h i b i t e d  by t h e  
photooxidat ion  of  SO2 to s u l f a t e ) .  On t h e  basis of this s i m p l i f i e d   p i c t u r e ,  
one  might expect tha t ,   averaged   over  a long   per iod   of  time, a g i v e n   p o l l u t a n t  
source w i l l  have the grea tes t   impact  on ground- leve l   concent ra t ions  to the  
sou theas t   o f   t he  source and t h e   g r e a t e s t   c o n t a m i n a t i n g   e f f e c t  on p r e c i p i t a t i o n  
(e.g., acid r a in   p roduc t ion )  a t  sites to  the   no r theas t .  

Knowing whe the r   such   pa t t e rns   ex i s t  is of  obvious  importance to  n a t i o n a l  
land-use  planning  and  emissions-control  strategy s tudies .  For t hese  and o the r  
pu rposes ,   quan t i t a t ive  knowledge is required  of   the  regions  over   which  pol lut-  
a n t s  from a given source si te are deposited, both by r a i n f a l l  and s u r f a c e  
uptake, and of  the  amounts  deposited  annually a t  a l l  p o i n t s   w i t h i n   t h i s   r e g i o n .  
One of  t h e  major issues tha t  must be faced before removal   pa t te rns   can  be 
de l inea ted  by model ing  s tudies  is de termining   the  amount of material removed 
as a f u n c t i o n   o f   r a i n f a l l  rate,  material concent ra t ion ,   and   perhaps   o ther  param- 
eters in   bo th   convec t ive  and f r o n t a l   p r e c i p i t a t i o n   s y s t e m s .  Estimates of 
removal rates on convec t ive   p rec ip i t a t ion   can  be obta ined   f rom  ver t ica l ly   in te -  
g r a t e d   p o l l u t a n t   c o n c e n t r a t i o n s  made c o n t i n u a l l y   f o r  about a 24-hr per iod  over  
a r eg ion   i n  which  an isolated thunders torm  occurs .   In tegra t ion   th rough  the  
depth   o f   the   t roposphere  and  over   the  horizontal  area covered by the storm dur- 
ing its l i f e t i m e  (about 100 km) is required. H o r i z o n t a l   r e s o l u t i o n  is not  
e s s e n t i a l .  Estimates of pol lutant   removal  rates i n   f r o n t a l   p r e c i p i t a t i o n   s y s -  
tems (e .g . ,   ex t r a t rop ica l   cyc lones )  require similar obse rva t ions   excep t ,   i n   t h i s  
case, t h e  h o r i z o n t a l  area covered m u s t  be about 1000 km and h o r i z o n t a l  and 
v e r t i c a l   r e s o l u t i o n s   o f  about 10  km and 500 m, r e s p e c t i v e l y ,  are desirable. 
V e r t i c a l l y   i n t e g r a t e d   c o n c e n t r a t i o n s  combined w i t h  surface  measurements  might 
suffice. 

Hor izonta l  wind f l u c t u a t i o n   e f f e c t s . -  The wind data required i n  models of 
long-range   po l lu tan t   t ranspor t  are obta ined  either from historical wind measure- 
ments or from a s imula t ion   of   the  wind fields.  Measured data  are a v a i l a b l e  from 
a network  of   s ta t ions  spaced  roughly 100 km a p a r t ;  simulated wind data can be 
obta ined  on h o r i z o n t a l   g r i d s  as small as about 10 km. Regardless  of t h e  wind 
data source, t h e   e f f e c t s  on p o l l u t a n t   t r a n s p o r t   o f  wind f l u c t u a t i o n s  or eddies 
t h a t  are l a r g e r   t h a n  t h e  s p a t i a l   r e s o l u t i o n  of t h e  da ta  are treated e x p l i c i t l y  
i n   t h e   d i f f u s i o n  d e l .  Eddies smaller than about 1 km are ca tegor ized  as 
turbulence  and t h e i r  combined e f f e c t s  are pa rame te r i zed   i n   d i spe r s ion  models 
by a d i f f u s i v i t y  term. An impor tan t   ques t ion  a t  p r e s e n t  is whether   the  diffu-  
s iv i ty   app rox ima t ions  used to rep resen t   t u rbu lence   e f f ec t s   can  be "scaled up" 
to describe the  impact  on p o l l u t a n t   d i s p e r s i o n  of eddies l a r g e r   t h a n  t h e  tu rbu-  
l ence  scale b u t  smaller than   the  spat ia l  r e so lu t ion   o f   t he  wind data. To 

116 



APPENDIX A 

answer th i s   ques t ion ,   po in t - sou rce  plume obse rva t ions  are needed  over   dis tances  
up t o  1000 km f rom  the   source .   Ver t ica l ly   in tegra ted   concent ra t ions   o f   an   iner t  
po l lu t an t   w i th  a ho r i zon ta l   r e so lu t ion   o f   abou t  1 km would s u f f i c e  for t h i s  
purpose. 

Wind shear   e f fec ts . -   Dur ing   dayl ight   hours  when the  mixed l a y e r  is unstably 
s t r a t i f i e d  and confined below an   invers ion   layer ,  wind s h e a r   i n   t h e  mixed l a y e r  
is confined to a very   sha l low  layer   next  to the  ground. Under these   cond i t ions ,  
t h e  flow has  approximately  the same speed  and  direct ion a t  a l l  l e v e l s   i n   t h e  
mixed l aye r  and p o l l u t a n t   t r a n s p o r t  is r a t h e r   e a s i l y  described. A t  n igh t ,  con- 
d i t i o n s  are much more complicated.   Contaminants  that  are i n   t h e  lower p o r t i o n  
of the  mixed l aye r  a t  sundown may become stalled i n   t h e  calms t h a t  accompany 
ground-based  radiation  inversions,  or the   d i r ec t ion   o f   mo t ion   o f   t hese  contam- 
i n a n t s  may be altered by the   sha l low  dra inage   winds   tha t  are common i n   r e g i o n s  
of complex t e r r a i n .  A t  t h e  same time, contaminants   tha t  were i n   t h e  upper por- 
t i o n   o f   t h e  mixed l a y e r  a t  s u n s e t  may cont inue  on t h e i r  way through  the   n ight  
unimpeded or they may be accelerated by the  low-level   nocturnal  jet .  A s  a 
r e s u l t ,  by morning,  contaminants  that  w e L e  p a r t   o f   t h e  same v e r t i c a l  column the  
prev ious   a f te rnoon may be scattered ove r   ho r i zon ta l   d i s t ances   o f   t ens  or even 
hundreds  of kilometers. The same type of d i s t o r t i o n   p r o c e s s  is a c t i v e   d u r i n g  
a l l  hours when the  boundary  layer is n e u t r a l l y   s t r a t i f i e d .  

To inves t iga te   wind-shear   e f fec ts  and to develop ways o f   t r e a t i n g  them i n  
long-range  t ransport  models, e leva ted   po in t - source  plume obse rva t ions  are 
needed,   especial ly  a t  n igh t .  Vertical  p r o f i l e s   o f   i n e r t  species concen t r a t ions  
are r equ i r ed   ove r   d i s t ances  up to several   hundred kilometers from  the  source 
and  extending  from  the  ground to an e l eva t ion   o f  about  1 km. A h o r i z o n t a l  
r e so lu t ion   o f  about  100 m and a v e r t i c a l   r e s o l u t i o n   o f  about 50 m are required 
in  the  concentration  measurements.  To f a c i l i t a t e   b o t h   t h e   i n t e r p r e t a t i o n   o f  
t hese  data and t h e i r  u l t imate  u s e  in   long-range   t ranspor t  model development, 
wind measurements  should be made concurren t ly   wi th   the   concent ra t ions .  It  is 
also impor tan t   tha t   the  plume  and  wind observa t ion  be made over   both smooth 
and  complex terra  in .  

Relationship  of  measurements and model predic t ions . -  The d i s p a r i t y  between 
t h e   s p a t i a l  and temporal scales of  measurements  and model p r e d i c t i o n s   o f t e n  
leads to d i f f i c u l t y   i n   a s s e s s i n g  model performance.  Measurements may be made 
i n  any  of  the  following  four  combinations: 

S p a t i a l  scale 

Ins tan taneous  
measurement 

Temporal 
scale Time-average 

measurement 

Po i n  t S p a t i a l   a v e r a g e  
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Model  predictions  are  usually  based on solutions  of  equations  that  involve both 
spatial  and  temporal  averaging. An  important  need  in  model  development  and 
evaluation  is  reconciliation  of  the  scales  of  measurements  and  predictions. 

Scientific  Questions: 

B . l . l  What  are  the  meteorological  processes  governing  the  long-range  transport 
of pollutants? 

B . 1 . 2  what is the  relative  importance  of  the  various  removal  processes on the 
long-range  transport  of  pollutants? 

Research  Tasks: 

(1) Develop  mesoscale  models  of  atmospheric  transport,  transformation,  and 
removal of pollutants. 

(2)  Measure  pollutant  removal  during  precipitation  processes. 

(3 )  Measure  the  long-range  characteristics  of  pollutant  plumes,  especially 
during  nighttime  conditions. 

( 4 )  Conduct  detailed  measurements  of  the  flow  fields  in  complex  terrain. 

(5) Measure  transport  rates  between  the  mixed  layer  and  the  free  troposphere. 

(6) Continuously  measure  vertical  temperature  profiles,  mixing  depth,  and 
surface  heat  flux  to  support  model  development  and  validation. 

(7) Develop  techniques  to  relate  measurements  (both  in  situ  and  remote)  to 
model  predictions. 

2. Chemical  Processes  During  Pollutant  Transport 

The  object  of  the  study  of  transport  and  removal  processes of pollutant 
species is development  of  the  capability  to  predict  their  atmospheric  residence 
time as they  are  transported  downwind  from  a  source-rich  area.  Several  recent 
investigations  have  been  made  in  which  measurements  (usually  airborne)  have 
been  conducted  downwind  of  large  urban  complexes  to  obtain  material  balances 
on gaseous  and  particulate  pollutants. A goal  of  these  studies is to  determine 
the  relative  roles  of  transport,  conversion of gaseous  to  particulate  pollut- 
ants,  and  removal. 

The  general  behavior of pollutants  in  the  urban  plume  can  be  described as 
follows.  Primary  gaseous  emissions  are  converted  partly  to  secondary  gaseous 
species  within  the  urban  atmosphere  as  a  result  of  gas-phase  reactions.  Simul- 
taneously,  the  secondary  species  are  converted  to  the  particulate  phase  by  fur- 
ther  chemical  reaction  or  by  absorption  into  existing  particles.  The  mixture 
of  gases  and  particles  is  transported  downwind  of  the  urban  region,  accompanied 
by  continuous  conversion  of  more  of  the  primary  gases  to  particulate  material. 
Occurring  simultaneously  is  surface  absorption  of  primary  gases  as  well as 
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particles  containing  secondary  species.  Eventually,  rainout  and  washout  will 
serve  to  remove  the  remaining  gases  and  existing  particles. 

Tr.ansformation  of SO:! to  sulfate.-  Sulfur  dioxide  undergoes  chemical  reac- 
tions.  in  the  atmosphere  which  leads  to  a  change  in  oxidation  state,  principally 
to SOT in  the  particulate  form.  The  questions  of  main  concern  relative to the 
conversion  of SO2 to  sulfate  pertain  to ( 1 )  the  mechanism  and  rate  of  conversion 
and (2)  the  chemical  and  physical  properties  of  the  particulate  sulfur. 

From  the  point  of  view  of  understanding  sulfate  levels,  the  most  important 
questions are: 

( 1 )  Are  the  oxidizing  agents  of SO2 man-made  and  can  they  be  controlled? 
If SO2 oxidation is promoted  by  man-made  oxidizing  agents  (as  it  is  now  sus- 
pected),  then  the  specific  role  of  those  substances (e.g.,  the  hydroxyl  radical) 
should  be  established  and  the  means  of  their  control  should  be  explored. 

(2) Do natural (e.g., meteorological)  parameters  influence SO2 conversion? 
Temperature,  humidity,  solar  radiation, or any  other  natural  parameter  may  influ- 
ence  the  conversion  rate. 

(3) What is the  chemical  composition  of  the  particulate  sulfur?  Acidic 
aerosol is believed  to  be  environmentally  more  harmful  than  neutral  aerosol. 
The  conditions  that  favor  acid  aerosol  formation  should be established. 

In order  to  answer  these  questions,  an  understanding  of  the SO2 conversion  mech- 
anisms is necessary. There  are  four  mechanisms  that  are  believed  to be of  sig- 
nificance  for  atmospheric SO2 conversion: 

( 1  ) Indirect  photooxidation 

( 2 )  Catalytic SO2 oxidation 

(3)  Oxidation  in  the  liquid  phase by strong  oxidants 

( 4 )  Surface  catalyzed  oxidation  of SO2 

( 1 )  Indirect  photooxidation  occurs  following  gas-phase  reaction  of SO2 with 
strong  oxidizing  radicals  such  as  OH,  H02,  and  CH3O2. The  sources of  these  rad- 
icals  in  the  polluted  troposphere  are  hydrocarbon  and  NOx  emissions  which,  in 
the  process  of  daytime  photooxidation,  produce  oxidizing  radicals  as  intermedi- 
ate  products.  The SO2 oxidation  step is therefore  indirectly  linked  to  smog 
photochemistry.  The  chemical  kinetics  of  this  mechanism  have  been  formulated 
in  models  using  measured  rate  constants  (Sander  and  Seinfeld  (ref. 69), Calvert 
et  al.  (ref. 7 0 ) ,  and Davis et  al.  (ref. 21) ) . An  unambiguous  confirmation  of 
the  importance  of  the  homogeneous  conversion  mechanism  would  require  the  direct 
observation  of  the  participating free radicals (e.g., OH, H02, and  CH3O2)  simul- 
taneously  with SO2 and SOT under  a  variety  of  atmospheric  conditions.  Cur- 
rently,  such  data  are  not  available.  Simulations  of  chemical  kinetics  for  typ- 
ical  urban  mixtures  indicate  conversion  rates  of 2 to 4 percent  per  hour  for 
sunny  days  (refs. 21 and 7 0 ) .  Eggleton  and  Cox  (ref.  82),  in  a  summary  of 
European  results,  conclude  that  in  the  western  European  summer, SO2 oxidation 
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rates due to gas-phase, radical r e a c t i o n s   i n   s u n l i g h t  are expected to  be between 
0.5 and 5 percent   per   hour ,   depending   on   the   degree   o f   po l lu t ion   of   the  atmo- 
sphe re .   In   t he   w in te r ,   because   o f   t he   r educed   sun l igh t   i n t ens i ty   and   du ra t ion ,  
the   convers ion  rates are expected to be slower by a t  least  a f a c t o r  of 2 to 5. 
The s p e c i f i c  roles of temperature,  dew p o i n t ,  solar r a d i a t i o n   i n t e n s i t y ,  and so 
f o r t h   o n   t h e   i n d i r e c t   p h o t o o x i d a t i o n   r e q u i r e   s y s t e m a t i c   f u t u r e  studies.  

(2 )  C a t a l y t i c  SO2 o x i d a t i o n   i n   d r o p l e t s   h a s   b e e n  s tud ied  ex tens ive ly  b u t  
t h e  results regard ing  its role in   the   a tmosphere  are unce r t a in .  The concensus 
a t  t h e   I n t e r n a t i o n a l  Symposium on Sulfur   in   the  Atmosphere is as fol lows 
( r e f .   83 ) :  

"The ca t a lyzed   ox ida t ion   o f  SO2 i n   s o l u t i o n  by t r a n s i -  
t i o n  metals (e.g., Fe, Mn) is be l ieved  to be i m p o r t a n t   i n  
s i t u a t i o n s   i n  which r e l a t i v e l y   h i g h  Mrmolar] ) con- 
c e n t r a t i o n s  of c a t a l y s t  are p r e s e n t   i n   t h e  droplet and i n  
which the  t o t a l  a tmosphe r i c   concen t r a t ions   o f   t he   ca t a ly t i c  
elements are also high. Such c o n d i t i o n s   c a n   e x i s t   i n   u r b a n  
and stack plumes and  perhaps i n  urban   fogs .   In   c leaner  
r u r a l  a i r  t h i s  r e a c t i o n  would occur   on ly   i n  clouds. How 
eve r ,   un le s s   t he  pH and metal c o n c e n t r a t i o n s   i n  cloud water 
are s u b s t a n t i a l l y   d i f f e r e n t  from t h o s e   i n   r a i n  water, t h i s  
process is u n l i k e l y  to  be of   s ign i f icance .   Both   l abora tory  
and f i e l d  s tud ies  of   such  react ions are necessary." 

(3 )   Ox ida t ion   i n  t h e  l i qu id   phase  by s t rong   ox idants ,   such  as ozone  and 
H202, can be comparable  with or exceed   the   ind i rec t   photooxida t ion  rate (Eggle- 
t o n  and Cox (ref.   82)  and B e i l k e  and  Gravenhorst   (ref.  8 4 )  ) . However, c u r r e n t  
ox ida t ion- ra te  data vary too widely to pe rmi t   quan t i t a t ive   a s ses smen t  of t h e i r  
atmospheric  importance. The ozone  and Hz02 i n  urban  atmospheres arise i n  photo- 
chemical smog. Within clouds or fogs,   such  gases  are r a p i d l y  absorbed i n t o  
water d rop le t s .  Measurements  of H202 i n  p o l l u t e d  and  clean  atmospheres are 
necessary to assess the   impor tance   o f   th i s  mechanism of SO2 oxida t ion .  

( 4 )  Sur face   ca ta lyzed   ox ida t ion   of  SO2 upon c o l l i s i o n   w i t h  solid p a r t i c l e s ,  
pa r t i cu la r ly   e l emen ta l   ca rbon  (soot), has been  demonstrated (Novakov e t  a l .  
r e f .   8 5 ) ) .  Measurements  of aerosol soot l e v e l s   i n  plumes are needed to  assess 
t h e   a p p l i c a b i l i t y   o f   l a b o r a t o r y  s t u d i e s  t o  the  atmosphere. Common f e a t u r e s  of 
t h e  SO2 conversion  mechanisms are t h a t   t h e   r a t e - c o n t r o l l i n g  species can be iden- 
t i f i e d  and may, i n   p r i n c i p l e ,  be control led  independent ly   f rom S02. 

The res idence  time and   t r anspor t   d i s t ance   o f   su l fu r  are determined by the  
o v e r a l l  removal ra te  of s u l f u r  compounds fram t h e  atmosphere. The o v e r a l l  
removal has four  major components: (1 ) Dry  removal  of  S02, (2 )  w e t  removal 
of S 0 2 ,  ( 3 )  dry  removal  of SO;, and ( 4 )  wet removal  of SO;. Dry removal 
of SO2 and w e t  removal of SO; appear to be t h e  two major components  and are 
described as fol lows:  

Dry  removal is a mass t r a n s f e r   p r o c e s s  whereby SO2 is f i r s t  
t r anspor t ed  to s u r f a c e s  by t u r b u l e n t  and  molecular   dif fusion and then 
removed by adso rp t ion  or absorp t ion  a t  t h e  su r face .  The o v e r a l l  mass 
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transfer  rate  can  be  characterized by a  mass  transfer  coefficient, 
called a deposition  velocity,  and  the  difference  between  the  bulk  and 
surface  concentrations. 

Wet  removal  of  sulfur  compounds  involves  collection of material 
into  cloud  droplets  with  the  subsequent  deposition  in  rain.  The  wet 
removal  rate,  therefore,  can  be  estimated  from  the  sulfur  content  and 
the  rate  of  rainfall. 

Wet  and  dry  removal  rates  are  evidently  of  comparable  magnitude;  dry  depo- 
sition  dominates  the SO2 removal  (about 60 percent  of  the  total)  and  wet  deposi- 
tion  dominates  the SOZ removal (40  percent).  Both  removal  processes  limit  the 
lifetime  of  sulfur  compounds  to 2 to 3 days.  The  residence  time  of SO2 is  deter- 
mined  by  the  competing  rates  of  transformation  to  sulfate  and  removal  of SO2 and 
SOZ. For a conversion  rate  of 1 to 2 percent  per  hour  and  an  overall  removal 
rate  of 2 to 5 percent  per  hour,  a  characteristic  residence  time of 14 to 33 hr 
is obtained  for S02. The  residence  time  of  sulfate  is  the sum of  the  formation 
and  removal  times.  According  to  current  estimates,  the  sulfate  residence  time 
is  between 3 and 5 days. A typical  transport  speed  in  the  planetary  baundary 
layer  is  about 500 km/day;  hence,  transport  distances  are on the  order  of 500 km 
for SO2 and 3000 km for  sulfate.  The  meteorological  framework  in  which  sulfur 
transport  needs  to  be  considered is therefore  the  synoptic  scale. 

Transformation  of NO, to  nitrate.-  Figure A1 depicts  the  potential  paths 
by  which  particulate  nitrate  species  may  be  formed  from NO and N02. Path 1 

I 
+ HON02 

I 

NO,(NO + NO21 
.I 

6 
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I NO, (NO + 

Figure A1.- Paths  of  nitrate  formation  in  the  atmosphere. 

121 



APPENDIX A 

involves  the  formation of gaseous nitric  acid.  Nitric  acid vapor, once  formed, 
may then react wi th  NH3, a ubiquitous atmospheric constituent with both natural 
and anthropogenic  sources, to produce ammonium ni t ra te ,  NH4NO3 (path 2 ) ,  which 
a t  standard  temperature and pressure  exists  as a solid.  Alternatively, t h e  
ni t r ic   acid vapor may be absorbed directly  into a par t ic le  (path 3) although 
thermodynamic  and kinetic  considerations  favor  reaction wi th  NH3 t o  form NH4NO3 
t o  convert gaseous ni t r ic   acid  to   ni t ra te  i n  particulate form (Morris and N i k i  
(ref. 8 6 )  and Stelson  et  al.  (ref. 8 7 ) ) .  Path 4 involves  the direct  absorption 
of NO and NO2 into an atmospheric particle,  a route  that is likely  for  certain 
aqueous particles,  particularly when accompanied by the  absorption of  ammonia 
(path 5)  (Ore1 and Seinfeld  (ref. 8 8 ) ) .  Path 6 depicts the  formation of organic 
ni t ra tes  followed by absorption of these  nitrates  into  particles. A t  present, 
l i t t l e  is known about the importance of paths, such as  path 6. 

There  have  been a number  of measurements of ni t r ic   acid and particulate 
nitrate  concentrations i n  ambient a i r  (Huebert and Lazrus (ref.  4 0 ) ) .  Many of 
the measurements  have identified  the  particulate  nitrate  as NH4N03, suggesting 
that the  aerosol may consist of solid NH4N03  or N H i  and NO: i n  solution i n  
approximate stoichiometric  balance. I t  is d i f f i c u l t  to  estimate  the  relative 
importance of the  paths i n  figure A1 for  several reasons. F i r s t ,  the  rate of 
reaction of ni t r ic   acid and  ammonia is not well-known although  the forward reac- 
tion is probably rapid and, i n  fact ,  can be presumed to  be i n  equilibrium w i t h  
the  dissociation of solid ammonium ni t ra te  

Second, the  rate of absorption of NO and NO2 into  existing  particles depends 
on the composition and s ize  of each particle and cannot generally be predicted 
a priori .  I n  either  case, it is apparent that  the presence of NH3 is required, 
either  to form N H 4 N 0 3  or to  neutralize the acidity of a liquid  droplet i n  which 
NO and NO2 dissolve. 

The current  state of understanding of atmospheric n i t ra te  formation can 
be  summarized as  follows. The principal gas-phase nitrate-forming  reaction is 
the  reaction of NO2 and OH. The n i t r i c  acid vapor  formed i n  t h i s  way probably 
reacts  rapidly wi th  ammonia to  form small particles of solid ammonium nitrate: 
t h u s ,  the equilibrium of the  previously given reaction is established. I n  com- 
petition w i t h  the n i t r i c  acid/ammonium ni t ra te  path is the  path  consisting of 
direct  absorption of NO and NO2 into aqueous droplets. The relative  rates of 
these two paths cannot be determined i n  general. I n  either  case, however, the 
presence of  ammonia appears to be required. 

Ozone/oxidant formation.- Ambient concentrations of photochemical oxidants 
i n  urban atmospheres are well documented.  Although certain  details  of the chemi- 
cal  processes  that  are  responsible  for formation of oxidants i n  urban atmospheres 
are s t i l l  unresolved, the  basic  qualitative  aspects of the  process  are understood. 
Recently,  the  existence of oxidant/ozone concentrations i n  nonurban atmospheres 
that exceed what has  been thought to be natural background levels has  been of 
intense  interest. I n  principle,  there  are  three  routes by which oxidant may 
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be produced i n  rural3 areas a t  l eve l s   exceed ing   t he   na tu ra l   background   l eve l  of 
ozone: (1)  Transport  of precursor hydrocarbons  and  oxides of n i t rogen  from 
urban source areas, coupled   wi th   chemica l   reac t ions   in   the  a i r  mass to produce 
ozone a t  downwind nonurban sites; (2 )  long-range  transport   of  ozone  formed  in 
the  urban  atmosphere to  the  nonurban site; and  (3)   interact ion  between  natural  
hydrocarbon emissions and man-made emissions  of   oxides  of ni t rogen.  

Measurements i n   t h e  l a s t  5 to  6 y r  have showed oxidant /ozone   concent ra t ions  
i n  many rural  areas to exceed 0.08 ppm, with a frequency comparable to or even 
exceeding   tha t   observed   in  many urban areas. Such e leva ted   ox idant /ozone   leve ls  
i n   r u r a l  areas are almost c e r t a i n l y  caused by anthropogenic  oxidant/ozone  and/or 
precursors gene ra t ed   l oca l ly  or t r a n s p o r t e d   i n t o  such  areas from urban  centers.  
Ev idence   a t t e s t ing  to the  anthropogenic   nature   of  rura l  o x i d a n t ,   i n   p a r t  or i n  
whole, is the  e levated  concentrat ions  of   chlorof luoromethanes or ace ty lene ,  as 
well as t h e  fact  t h a t  wind back- t r a j ec to ry   ana lys i s   i nd ica t e s   pas sage  of t h e  
r u r a l  a i r  over  urban  sources. Downward i n t r u s i o n  from l a y e r s   a l o f t  of t rans-  
ported  anthropogenic   oxidantLozone  concentrat ions  can  explain t h e  occurrence 
of e leva ted   ox idant /ozone   concent ra t ions   in  rural  areas and   dur ing   the   n ight   in  
t h e  summer and f a l l  months. 

The occurrences   o f   ox idant /ozone   concent ra t ions   in  remote areas and  during 
t h e  winter  months cons t i t u t e   s t rong   ev idence  t h a t  n a t u r a l  sources mus t  e x i s t  
and t h u s  provide an atmospheric  background upon which t h e  an thropogenica l ly  gen- 
erated oxidant /ozone  concentrat ions are superimposed. The ques t ion  of t h e  
s t r e n g t h s  of n a t u r a l  sources needs to be answered for the  purpose of more accu- 
r a t e l y   e s t i m a t i n g  t h e  b e n e f i t s  to  be der ived  from anthropogenic  emission reduc- 
t ion.   Evidence  der ived  f rom  analysis   of   data   on  ozone  concentrat ions  in  remote 
areas s u g g e s t s   s t r a t o s p h e r i c   i n t r u s i o n s   t h a t  may reach ground  level.  

An a i r  interchange  between  stratosphere  and  troposphere i s  known to  occur 
by means of f o u r  mechanisms: (1)  Mean m e r i d i o n a l   c i r c u l a t i o n ,  ( 2 )  l a rge - sca l e  
eddy t ranspor t ,   (3 )   seasonal   ad jus tment  o€ t ropopause   l eve l ,  and ( 4 )  mesoscale 
and small-scale eddy t r a n s p o r t .  Each of these mechanisms is cha rac t e r i zed  by 
short- term  seasonal  and  long-term  fluctuations.  The i r  impact i n  terms of s u r -  
f ace   concen t r a t ion  of s t r a tosphe r i c   ozone   va r i e s  w i t h  l a t i t u d e .  Specific 
research needs  include: (1) More de f in i t i ve   i n fo rma t ion   on  t h e  frequency of 
occurrence and i n t e n s i t y  of c y c l o n i c   e v e n t s   r e s u l t i n g   i n   s t r a t o s p h e r i c   o z o n e  
i n t r u s i o n ,  ( 2 )  more de f in i t i ve   i n fo rma t ion   on  the  ozone  decay  a t tending t h e  sub-  
s idence  of s t r a tosphe r i c   ozone   w i th in  t h e  lower t roposphe res ,   e spec ia l ly   w i th in  
the  planetary  boundary  layer ,   (3)   development  of t echn iques   fo r   fo recas t ing  
stratospheric ozone   in t rus ions ,  and ( 4 )  f u r t h e r   a n a l y s i s  of t ropospheric   ozone 
measurements to  d e l i n e a t e  the  s t r a tosphe r i c   and   an th ropogen ic   con t r ibu t ions  to 
such  ozone. 

The role and  importance of n a t u r a l l y  emitted o rgan ic s   i n   t he   ox idan t /ozone  
problem is a ques t ion  of c u r r e n t   i n t e r e s t .  I t  is well e s t ab l i shed   t ha t   vege ta -  

3The term " r u r a l "  is used to s i g n i f y  areas or atmospheres t h a t  are nonurban 
b u t  are occas iona l ly  susceptible to anthropogenic   pol lutants ,   and t h e  term 
"remote" is used to  s i g n i f y  areas so far removed  from anthropogenic   po l lu tan t  
sources   tha t   contaminat ion  by s u c h  p o l l u t a n t s  is h ighly   un l ike ly .  
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t i o n  emits o rgan ic   vapor s   and   t ha t   ce r t a in   o f   t hese   vapor s   ( t e rpenes )   p l ay   t he  
dua l  role of oxidant /ozone  precursors   and  destruct ive  agents .   Relevant   ques-  
t i o n s  are:  

(1)  What is t h e  n e t  e f f e c t  upon oxidant /ozone  precursors  of the  a tmospheric  
r e a c t i o n s  of t e rpenes  and o the r   na tu ra l '   o rgan ic s?  

( 2 )  What r e a c t i v e   o r g a n i c s   o t h e r   t h a n   t e r p e n e s   a r e  emitted by n a t u r a l  
sources  and a t  what r a t e s ?  

I t  is cr i t ica l   tha t   convinc ing   measurements  be provided on t h e  chemical 
ident i ty ,   ambient   concent ra t ions ,  and emissions of na tu ra l   o rgan ic s .  There is 
s u f f i c i e n t  evidence to  show that  monoterpenes do occur   i n  t h e  ambient   a i r  b u t  
only w i t h i n  f o r e s t e d   a r e a s .  I n  such  a r e a s ,   t o t a l  terpene concentrat ions  aver-  
aged 1 0  to 50 ppb of carbon. The ev idence   fu r the r  shows tha t   t e rpenes   have  
extremely short lifetimes; the re fo re ,  wi th  the   excep t ion   o f   i sop rene ,   t hey   a r e  
not   t ranspor ted  downwind from t h e  s o u r c e s   i n   a p p r e c i a b l e   q u a n t i t i e s .  Wi th in  
urban  areas,   terpenes  have no t  been  found to  occur in   measurable   concent ra t ions .  
Thus,  t h e  evidence does n o t  suppor t   an   impor t an t   d i r ec t   ro l e  of t e r p e n e s   i n   t h e  
urban  oxidant/ozone problem. I t  is conceivable ,  of course ,   tha t  terpenes may 
con t r ibu te   t o   t he   ru ra l   ox idan t   p rob lem and, t h e r e f o r e ,   i n d i r e c t l y ,  to t h e  urban 
problem by  way of   ox idant   t ranspor t  to urban  areas.  

The f a c t   t h a t   o z o n e  is r e l a t i v e l y  i n s o l u b l e  in   water  - d e s p i t e  evidence 
t h a t  t h e  oceans remove  some ozone - sugges ts  t h a t  r a inou t  and  washout  cannot 
be important s i n k  p r o c e s s e s   f o r  ozone. The r e a c t i o n  of ozone with NO and  with 
hydrocarbons is an important  s i n k  process  which  accounts  for t he  complete 
removal  of ozone f rom  the   su r f ace   a i r   l aye r s   i n   u rban   a r eas   a t   n igh t .   Su r face  
adsorp t ion  and some d e s t r u c t i o n  from l o c a l l y  emitted NO and  hydrocarbons  account 
for t h e  nighttime  absence  of  ozone  from t h e  ru ra l   a tmosphe res   a t   g round   l eve l .  
I n  a i r   l a y e r s   a l o f t   t h a t   a r e   r e l a t i v e l y   f r e e   o f   f r e s h   p r e c u r s o r  and s u r f a c e  
i n f l u e n c e s ,  ozone has  been  observed  to  remain  extremely  stable over time pe r iods  
on t h e  order  of hours to days. Thus,  the  chemical s i n k  processes   for   ozone   a re  
q u a l i t a t i v e l y  well e s t a b l i s h e d ;   q u a n t i t a t i v e l y ,  t h e  dry   depos i t ion  s i n k  pro- 
cesses for  ozone  are  not well defined. Adsorpt ion  and/or   destruct ion of ozone 
on  ground s u r f a c e s  (soil,  vegetat ion,   water ,  etc.) consti tute a  major s i n k  f o r  
t h i s  gas on a g l o b a l   b a s i s .  Measurements  of  uptake r a t e s  of d i f f e r e n t   p o l l u t -  
a n t s  by ce r t a in   fo rms  of vege ta t ion  show t h e  ozone r a t e  to be comparable to t h a t  
f o r  NO2 and  somewhat lower t h a n   t h a t   f o r  S02 .  Thus, t he  ev idence   p resent ly  
a v a i l a b l e   i n d i c a t e s   t h a t ,  of t he   va r ious   poss ib l e  s i n k  processes   for   ozone,  
chemica l   reac t ion   and   sur face   des t ruc t ion   a re  t h e  most important.  

S c i e n t i f i c   Q u e s t i o n s :  

B.2 .1  What chemical   processes   inf luence 03 formation i n  p i n t - s o u r c e  and  urban 
plumes? 

B . 2 . 2  What chemical  processes  govern the  conversion  of SO2 to s u l f a t e s  i n  
point-source and urban plumes? 

B . 2 . 3  What chemical  processes  govern the  conversion  of NOx to n i t r a t e s  i n  
point-source and urban  plumes? 
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B.2 .4  What are t h e   c o n t r i b u t i o n s  of photochemistry  involving man-made and 
natural   hydrocarbons,   long-range  t ransport   of  0 3  and precursors ,   and 
stratospheric i n t r u s i o n s   i n   p r o d u c i n g   e l e v a t e d  03 c o n c e n t r a t i o n s   i n  
r u r a l  areas? 

B.2 .5  What is the   source  and composition of acid r a i n ?  

Research T a s k s  : 

Conduct detailed measurements i n  and  near  point-source  (e.g., power p l a n t )  
plumes of S02,  NH3, SOZ, OH, H02, H20,  H202, aerosols ( s i z e  distri- 
b u t i o n ) ,  trace metals, wind fields, and temperature. 

Conduct detailed measurements i n  urban  and  point-source plumes and i n  
r u r a l  areas of hydrocarbons, NO,, 03, CO, H20, OH, HO2, HNO3, and tracer 
molecules  such as C2H2 or fluorocarbons.  

Measure the  pH and  composition of rainwater.  

S imul taneous ly   measure   v i s ib i l i ty ,  aerosol  properties, and tracer molecules 
i n  rura l  and remote areas. 
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CHAPTER  2 - SUMMARY OF SCIENTIFIC  QUESTIONS AND RESEARCH  TASKS - 
THEIR  CORRESPONDENCE AND PRIORITIES 

The  scientific  questions  posed  in  chapter 1 are  summarized  in  table 18. 
In tables  19  and 20 the  research  tasks  outlined  in  chapter l'are presented. 
In these  two  tables,  the  research  tasks  have  been  divided  according  to  opera- 
tional  needs  (table 19) and  instrument  development  needs  (table  20). 

For  virtually  all  trace  gases  in  the  troposphere,  remote  measurements 
(especially  by  means  of  satellite)  would  be  desirable.  Establishing  the  operat- 
ing  parameters  for  instruments  of  this  class,  however,  is  very  difficult  at  this 
time  since  information is just  now  being  obtained on the  variability  of  trace 
gases  on  vertical  and  horizontal  scales.  Thus,  more  extensive  in  situ  sampling 
should  take  place  before  large-scale  investments  are  made  in  remote  sensing 
instrumentation. At  this  time,  the  general  guidelines  for  resolution  that  are 
suggested  for  remote  instruments  are:  Vertical, 1 km;  horizontal, 100 km. 
(For  the  long-lived  species  N20,  C02,  CFC13,  and  CF2C12,  the  needed  resolutions 
would  be  more  like 3 to 5 km (vertical)  and  1000 km (horizontal).) 

The  characteristics  required  in  new  in  situ  instrumentation  depend  greatly 
on the  nature  of  the  sampling  platform.  For  static  platforms,  integration  times 
(time  resolution)  as  long  as 1 hr  would  be  acceptable to achieve  signal-to-noise 
ratios  of 2. On the  other  hand,  for  aircraft  sampling  platforms,  a  time  resolu- 
tion  no  greater  than 5 to  10  min  would  be  desired  if  acceptable  vertical  and 
horizontal  spatial  resolutions  are  to  be  achieved. 

Corresponding  to  each  research  task  in  tables 19 and 20 are  the  ques- 
tions  relevant  to  that  task. The  Working  Group  recognized  that  the  research 
tasks  listed  in  these  tables  are  not  all  of  equal  priority  with  respect  to 
increasing  our  understanding  of  tropospheric  pollution.  Consequently,  it  was 
decided  that  a  two-level  ranking  system  would  be  appropriate  to  indicate  those 
research  tasks  that  the  Working  Group  viewed  as  high  priority  and  somewhat  lower 
priority.  Thus,  in  the  "Priority"  column  in  tables 1 9  and  20,  a  research 
task is given  a "1" or "2" ranking,  depending on whether  it  is  recommended  as 
a  high  or  low  priority  task.  One  object  of  the  Working Group was  to  suggest 
research  tasks  that,  in  the  opinion  of  the  Group,  would  be  of  potential  interest 
to  EPA  for  a  joint  NASA-EPA  research  effort.  Tasks  that  fall  in  this  category 
are  delineated  with  an  asterisk. 

Recently,  several  atmospheric  species  previously  undetected  have  been  dis- 
covered,  which  leads  to  suspicions  as  to  what  additional  undetected  compounds 
may  be  present.  The  Working  Group  wishes  to  propose  that  long-term  monitoring 
of  infrared  spectra of the  troposphere  be  initiated  not  only  to  measure  changes 
in  the  concentrations  of  species  already  identified  but  also  to  detect  the 
appearance  of  new  species.  This  recommended  research  task  appears  as  entry  38 
in  table 19. 
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TABLE 18=- SUMMARY OF SCIENTIFIC  QUESTIONS  RELATED To TROPOSPHERIC  POLLUTION 

.~ 

Number 

A.l.l 

A.1.2 

A.1.3 

A.l  .4 

A.1.5 

A.2.1 

A.2.2 

A.2.3 

A.2.4 

A.2.5 

A.2.6 

A.3.1 

A.3.2 

A.3.3 

A.3.4 

A.3.5 

A.3.6 

~. ~- .. . - ~ ~ 

Question 
. ... . . 

~~ ~. .~ - 

What  are  the  relative  roles  of  stratospheric-tropospheric  exchange, 
photochemistry,  and  surface  sinks  in  the  global  tropospheric  ozone 
budget ? 

Will  variations  in  global CO and  NOx  levels  shift  the  ozone  balance? 

What is the  detailed  degradation  chain  for  methane  and  what  are  its 
consequences  on  ozone  and HO,? 

What is  the  role  of  nonmethane  hydrocarbons  in  the  ozone  budget? 

What  are  the  detailed  exchange  mechanisms  between  the  troposphere 
and  stratosphere? 

What  are  the  tropospheric  concentrations  of  the  active  nitrogen 
compounds? 

What  are  the  natural  sources  of  active  nitrogen? 

What  are  the  major  sinks of atmospheric  NOx  and  total  active  nitrogen? 

Can increased  levels  of  NOx  influence  the  tropospheric  ozone  balance? 

What  are  the  global  concentrations,  sources,  and  sinks  of  ammonia? 

What  are  the  natural  sources  and  sinks  of N20 and  what  are  the  impli- 
cations  of  increased  use of nitrogenous  fertilizers on the  tropo- 
spheric N20 budget? 

Are  higher  carbon  monoxide  levels  in  the  Northern  Hemisphere  as 
compared  with  the  Southern  Hemisphere  due  to  natural or anthropo- 
genic  processes  and  will  continued  CO  emissions  perturb  atmospheric 
OH levels,  especially  the  relative  abundance  in  the  two  hemispheres? 

Do soils  always  act  as  a  sink  of  atmospheric  carbon  monoxide? 

What  is  the  role  of  nonmethane  hydrocarbons  in  the CO budget? 

What  are  the  exchange  mechanisms  between  the  two  hemispheres,  and 
how  important  are  they  in  controlling  the  CO  abundance? 

Is the  deforestation  and  wood-burning  hypothesis  plausible  for  the 
increase  of C02  global  concentration? 

What  are the  climatic  implications  of  changes  in  the  atmospheric 
composition  of  trace  gases  such  as CO2, CH4,  N20,  fluorocarbons, 
and  aerosols? 

.. . ". 

\ 

~ 
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TABLE 18.- Continued 

Numbel 

A.4.1 

A.4.2 

A.4.3 

A.4.4 

A.4.5 

A.5.1 

A.5.2 

A.5.3 

A.6.1 

A. 6.2 

A. 6.3 

A.7.1 

A.7.2 

1.7.3 

Question 

What is the y e a r l y   q u a n t i t y  of Su l fu r  now being released from t h e  
natural   b iosphere,   and  what  are t h e  major chemical forms i n  which 
t h i s   s u l f u r  is be ing   re leased?  

What is t h e   g l o b a l   d i s t r i b u t i o n   o f  S02? 

What are the   shor t - te rm and  long-term  impacts of anthropogenic emis- 
s ions   o f  SO2 on   the   t ropospher ic   su l fur   budget   and   on   the   budgets  of 
o t h e r  trace gases   such as NH3? 

What is the   r e l a t ive   impor t ance  of homogeneous versus   heterogeneous 
processes i n   t h e  SO2 gas- to-par t ic le   convers ion   cyc le?  

What are the  major sources   o f   t ropospher ic  COS? And, i f  man's  activ- 
ities are a major source, what  might  be  the climatic impl i ca t ions  of 
a COS bui ldup   in   the   a tmosphere?  

What is t h e   r e l i a b i l i t y  of present   photochemica l   theory   in   p red ic t ing  
H,Oy d i s t r i b u t i o n s   i n   b o t h   u r b a n  and remote atmospheric a i r  
parcels? 

Can the  asymmetry i n   g l o b a l  CO l e v e l s  lead to  asymmetry i n   g l o b a l  
OH d i s t r i b u t i o n s ?  

What is t h e   l i f e t i m e   o f  Hz02 in  the  atmosphere,   and  what are t h e  major 
s i n k s   f o r   t h i s  compound? 

What impor tance   ( in  terms of a g loba l   average   concent ra t ion   va lue  
f o r  OH) can be ass igned  to the   in te rhemispher ic   g rad ien t   in   methyl  
chloroform? 

What are t h e  major sources of  atmospheric HC1 and how important  is 
t h i s   i n   d e t e r m i n i n g   r a i n   a c i d i t y   i n   b o t h  remote and  urban areas? 

What are the   s t r a tosphe r i c   imp l i ca t ions  of anthropogenic releases of 
halocarbons  (such as CH3CC13, CHC12F, and CHClF2) i n  terms of 
the i r   OH-cont ro l led   chemica l   l i fe t imes   in   the   t roposphere?  

What are the  optical  p rope r t i e s   o f   t roposphe r i c  aerosols? 

What a re   t he   phys i ca l   and   chemica l   p rope r t i e s   o f   t roposphe r i c  
aerosols? 

How do aerosols in f luence   t he   t roposphe r i c   r ad ia t ion   ba l ance?  
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TABLE 18.- Concluded 

- "- - 

Number 

A.7.4  

" 

B. l  .1 

B. l  .2 

B.2.1 

B . 2 . 2  

B . 2 . 3  

B . 2 . 4  

B . 2 . 5  
" ." 

.- . . ~  . - " 

Quest ion 

What  is  the  origin  and  fate  of  large-scale  tropospheric  haze? 

What  are  the  meteorological  processes  governing  the  long-range 
transport of pollutants? 

What  is  the  relative  importance  of  the  various  removal  processes on 
the  long-range  transport  of  pollutants? 

What chemical  processes  influence 0 3  formation  in  point-source  and 
urban  plumes? 

What  chemical  processes  govern  the  conversion  of SO2 to sulfates  in 
point-source  and  urban  plumes? 

What  chemical  processes  govern  the  conversion  of NO, to  nitrates  in 
point-source  and  urban  plumes? 

What  are the  contributions of photochemistry  involving  man-made  and 
natural  hydrocarbons,  long-range  transport  of 0 3  and  precursors,  and 
stratospheric  intrusions  in  producing  elevated 0 3  concentrations  in 
rural  areas? 

What  is  the  source  and  camposition  of  acid  rain? 
" " - 
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Number 

1. 

"2. 

*3. 

4. I 

*5. 

*6. I 

7. I 

f 8 .  ( 

9. ( 

10.  ( 

1 1 .  ( 

APPENDIX A 

TABLE 19.- OPERATIONAL RFSEARCH TASKS 

~~ 

Research  task 

Continue  development of global  tropospheri 
photochemical  transport  models. 

Measure  the  global  distribution  of  ozone  a 
a  function  of  latitude,  longitude,  alti- 
tude,  and  time. Of special  importance 
would  be  the  measurements  of  strato- 
spheric  ozone  transport  into  the 
troposphere. 

Conduct  flux  measurements of ozone  near 
the  ground  over  various  geographical 
locations. 

Measure  the  global  concentration  distribu- 
tions of NO, NO2 , and HNO3. 

Carry out  flux  measurements  of NO and NO2 
near  the  ground  over  various  geographi- 
cal locations. 

Measure  the  nitrate  content  in  aerosols anc 
rainfall on a  global  scale. 

fleasure  the  global  concentration  distribu- 
tion  of  ammonia. 

3arry  out  flux  measurements  of  ammonia ove~ 
various  soils  and  terrain. 

:onduct continuous  monitoring of the  atmo- 
spheric N20 concentration. 

2arry out N20 flux  measurements  over  soils 
and  the  ocean. 

:onduct  long-term  measurements  of  the 
global  distribution of carbon  monoxide. 

:onduct  long-term  measurements  of  the 
global  distribution  of  methane.  Simul- 
taneously,  measure  the OH distribution. 

Relevant  question 

A.l .1 , A.l . 2 ,  
A.l . 3 ,  A.1.4 

~~ 

A.l .1 

A.2.1  A.1.2, 
A.2.3,  A.2.2 

A.2.3 

A.2.5,  A.4.3 

A.2.5 

A.2.6 

A.2.6 

A.3.1 , A.3.2, 
A.3.3,  A.3.4 

A.l .1 , A.l  .3 

Priorit 

1 
~- 

1 

2 

1 

1 

2 

1 

1 

2 

2 

1 

1 

~ .~ 

*Candidate  for NASA-EPA program. 
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Number 

13.  

14 .  1 

15.  

*16. 

*17. 1 

18.  1 

*19. 1 

*20. I 

21.  1 

*22. 1 

u 

~ ______ ". 
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TABLE 19.- Continued 

Research task 
- ____ ..~ . 

Conduct  satellite  monitoring of global 
land  types  and  resources  to  infer  the 
impact of man's  activities  upon  areas 
of  methane  production. 

Carry  out  flux  measurements of methane 
over  various  geographical  areas. 

Conduct  measurements  of  the  distribution 
of  formaldehyde,  with  simultaneous  obser- 
vations of CH4, NMHC, OH, NO,, and  light 
intensity  at  selected  global  locations. 

Measure  the  global  distribution  of  non- 
methane  hydrocarbons.  These  measurement: 
can  be  carried out in  three  phases. 

Carry  out  flux  measurements  of  nonmethane 
hydrocarbons  over  various  geographical 
areas. 

Conduct  satellite  monitoring  of  land  types, 
resources,  and  oceanic  productivity  to 
assess  key  parameters  in  the C02 cycle 
and  their  variation  with  time. 

Carry  out  flux  measurements  of  H2S  and 
CH3SCH3  over  different  geographical 
areas. 

Measure  the  global  distribution of S02. 

Measure  the  global  distribution  -of COS as 
well  as  the  concentrations  in  the 
vicinity  of  volcanoes,  power  plants, 
and  swamps. 

Measure  the  distribution of  sulfates in 
aerosols  and  rainwater. 

Relevant  questions 

A.1.3,  A.3.6 

A.1  .3 

A . l   . 1 ,   A . l   - 3 ,  
A.3.1 

A . l   . 1 ,   A . l   . 4 ,  
A.3.3 

A . l   . 1 ,   A . l   . 4 ,  
A .3 .3  

A.3.5,  A.3.6 

A.4.1 

A.4.5 

Priority 

2 

1 

2 

*Candidate  for NASA-EPA program. 
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TABLE 1 9. - Continued 

Research  task 

Measure  the  global  concentration  distribu- 
tions of OH and  H02. 

Measure  the  global  concentration  distribu- 
tion  of  H202. 

Conduct  global  measurements  of  the  distri- 
bution  of  halogen  species (e.g., CH3CC13, 
CH3C1,  fluorocarbons,  HC1  and Cl-). 

Measure  globally  the  size  distribution, 
refractive  index,  chemical  ccxnposition, 
and  vertical  distribution  of  aerosols. 

Develop  mesoscale  models  of  atmospheric 
transport,  transformation,  and  removal 
of  pollutants. 

Measure  pollutant  removal  during  precipi- 
tation  processes. 

Measure  the  long-range  characteristics  of 
pollutant  plumes,  especially  during 
nighttime  conditions. 

Conduct  detailed  measurements  of  the  flow 
fields  in  complex  terrain. 

Measure  transport  rates  between  the  mixed 
layer  and  the  free  troposphere. 

Continuously  measure  vertical  temperature 
profiles,  mixing  depth,  and  surface  heat 
flux  to  support  model  development  and 
validation. 

Develop  techniques  to  relate  measurements 
(both  in  situ  and  remote)  to  model 
predictions. 

Relevant  ques t ion: 

A.1 e l ,  A.1 - 3 ,  
A.1.4,  A.3.3, 
A.4.4,  A.5.1, 
A.5.2,  A.6.1, 
A.6.2,  A.6.3 

A.5.1,  A.5.3 

A.6.1,  A.6.2, 
A.6.3 

B.l .1 

B.1.2 

B.l .1 

B.l .1 

B.l .1 

B.l .1 

B.l .1 

Priorit 

1 

1 

1 

1 

1 

1 

1 

2 

1 

2 

1 

for NASA-EPA program. 
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TABLE 1 9 ;- Concluded 

Wumber 

*34.  

"35. 

*36.  

*37 .  

38.  

Research  task 

Conduct  detailed  measurements  in  and  near 
point-source  (e. g. , power  plant)  plumes 
aerosols  (size  distribution),  trace 
metals,  wind  fields,  and  temperature. 

of S02 ,  NH3, SOZ, OH, HO2, H20,  H202, 

Conduct  detailed  measurements  in  urban  and 
point-source  plumes  and  in  rural  areas of 
hydrocarbons, NO,, 0 3 ,  CO, H20, OH, H02, 
HNO3, and  tracer  molecules  such as C2H2 
or  fluorocarbons. 

Measure  the pH and  composition  of 
rainwater. 

Simultaneously  measure  visibility,  aerosol 
properties,  and  tracer  molecules  in  rural 
and  remote  areas. 

Long-term  monitoring  of  infrared  spectra of 
the  troposphere. 

ielevant quest  ions 

B . 2 . 2 ,   B . 2 . 3 ,  
A .4 .4  

B . 2 . 3 ,   B . 2 . 4  

B . 2 . 5  

B . 1 . 2 ,   B . 2 . 1 ,  
B . 2 . 2 ,   B . 2 . 3 ,  
B .2 .4  

?riority 

1 

1 

1 

1 

1 

*Candidate  for NASA-EPA program. 
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TABLE 20.- INSTRUMENTAL DEVELOPMENT TASKS 

__ 

Number Research t a s k  

*l. Develop remote capabi l i t ies  for   measuring 
tropospheric  ozone. 

2. Develop remote and s u p p o r t i v e   i n  s i t u  sens-  

Develop  improved i n  s i t u  and remote sensin! 3. 

ing  methods to measure NO, NO2, and HNO3. 

methods to  measure NH3. 

4. Develop new i n  s i t u  and remote sens ing  
methods to measure formaldehyde. 

5. Develop  one new i n  s i t u  and remote sens ing  
method for measuring COS. 

6. Develop  one new i n  s i t u  and remote sens ing  
method fo r   mon i to r ing  S02. 

7. Develop  one new i n  s i t u  method to measure 
H2S, CH3SCH3, and CS2. 

*8. Develop new i n  s i t u  methods to measure 
OH, H02, and H202. S t u d y   t h e   f e a s i b i l i t y  
of  developing remote sensing  methods for 
these   spec ies .  

9. Develop a remote sensing  instrument   for  
measuring H20.  

1 0 .  Develop a remote s e n s i n g   c a p a b i l i t y   f o r  
s u l f a t e ,   n i t r a t e ,  trace metals, and car- 
bon i n  aerosols. 

11. Continue  development of methods for mea- 
su r ing  t h e  o p t i c a l   p r o p e r t i e s   o f  
aerosols. 

12 .  Continue  development of methods f o r  mea- 
su r ing   a tmosphe r i c   s t a t e   va r i ab le s .  

I .. - . . .. .. 

*Candidate   for  NASA-EPA program. 

A. l   .1  1 

A. 2.1 1 

A.2.5 1 

I '  
I 

A.4.5 2 

A. 4 .2 1 

A. 4.1 2 

A.5.1,  A.5.3 1 

l 2  
A.7.2 

A. 7.1 

B. l   .1  
i 
! l  
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A/C 

ACE 

AIDS 

alt 

AN 

Anthro. 

A0 

$ ASDAR 
Ij 

AVHRR 

CI MATS 

COPE 

cw 

DCR 

DCS 

DIAL 

DISC 

DMSP 

EDS 

EPA 

EQ 

ESA 

FGGE 

ACRONYMS,  ABBREVIATIONS,  AND SYMBOLS 

ACRONYMS  AND  ABBREVIATIONS 

Aircraft 

Aerosol  Climate  Effects 

Aircraft  Integrated  Data  System 

Altitude 

Applications  Notice 

Anthropogenic 

Announcement  of  Opportunity 

Aircraft  to  Satellite  Data  Relay 

Advanced  Very  High  Resolution  Radiometer 

Correlation  Interferometer  for  Measuring  Atmospheric  Trace 
Species 

Carbon  Monoxide  Pollution  Experiment 

Continuous  wave 

Differential  Correlation  Radiometer 

Data  Collection  System 

Differential  Absorption  Lidar 

Differential  scattering 

Defense  Meteorological  Satellite  Program 

Environmental  Data  Service 

U . S .  Environmental  Protection  Agency 

Equator 

European  Space  Agency 

First GARP Global  Experiment 
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Flame  Photometric  Detector FPD 

GAMETAG 

GARe 

Gc 

GCM 

GFC 

GLC 

GMT 

grid 

GOES 

GOS 

HIRS 

HS  I 

HS RL 

IHR 

IR 

JPL 

LARS 

LAS 

LHR 

LHS 

lidar 

MAPS 

MAP3s 

MAS IR 

mb 
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Global  Atmospheric  Measurements  Experiment on Tropospheric 
Aerosols  and  Gases 

Global  Atmospheric  Research  Program 

Gas  chromatograph 

General  circulation  model 

Gas  filter  correlation 

Gas-phase  liquid  chromatography 

Greenwich  Mean  Time 

Ground 

Geostationary  Operational  Environmental  Satellite 

Global  Observing  System 

High  Resolution  Infrared  Sounder 

High  Speed  Interferometer 

High  Spectral  Resolution  Lidar 

Infrared  Heterodyne  Radiometer 

Infrared 

Jet  Propulsion  Laboratory 

Lower  Atmospheric  Research  Satellite 

Laser  Absorption  Spectrometer 

Laser  Heterodyne  Radiometer 

Laser  Heterodyne  Spectrometer 

Light  detection  and  ranging 

Measurement  of  Air  Pollution  from  Satellites 

Multistate  Atmospheric  Power  Production  Pollution  Study 

Microwave  Atmospheric  Sounding  and  Imaging  Radiometer 

millibar (1 mb = 100 Pa) 
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Monsoon Experiment 

Mul t i spec t r a l   Obse rva t ions  of P o l l u t a n t s  

Mul t i spec t ra l   Scanner  

Microwave  Sounding  Unit 

North 

Nat ional   Aeronaut ics   and Space Adminis t ra t ion  

Nat iona l   Center  for Atmospheric Research 

Na t iona l   Ea r th  Sa te l l i t e  Se rv ice  

Northern Hemisphere 

Nonmethane  hydrocarbons 

National  Oceanic  and Atmospheric Adminis t ra t ion  

Nat ional   Science  Foundat ion 

Orbi ta l  F l i g h t  Test MAPS 

P e r s i s t e n t   E l e v a t e d   P o l l u t i o n  Episodes 

Pressure Modulated Radiometer 

Parts per b i l l i o n  by  volume 

Parts per m i l l i o n  by volume 

Parts per million-meter 

Parts per t r i l l i o n  by volume 

Return-Beam  Vidicon Camera 

Relat ive  humidi ty  

R o o t  mean square  

South 

Stratospheric Aerosol and Gas Experiment 

S t r a t o s p h e r i c  Aerosol Measurement I1 

Solar Backscattered U l t r a v i o l e t  

M3NEX 

MOPS 

MSS 

MSU 

N 

NASA 

NCAR 

NESS 

N.H. 

NMHC 

NOAA 

NSF 

OFT MAPS 

PEPE 

PMR 

PPb 

PPm 

PPm-m 

PPt 

RBV 

R.H. 

rms 

S 

SAGE 

SAM I1 

SBW 
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1 

SDM 

SEM 

SMS 

SOP 

SSEC 

SST 

ssu 

STATE 

SURE 

Subtrop. 

TIROS 

TOMS 

Tovs 

Twos 

UNEP 

w 

VAS 

V I S  

VISSR 

WEFAX 

www 

A 

C i  

Cn 

*Gn 
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Stat is t ical  dynamical model 

Space  Environment  Monitor 

Synchronous  Meteorological Sa te l l i t e  

S tandard   opera t ing   procedures  

Space  Science and Engineering  Center 

Sea su r face   t empera tu re  

Stratospheric   Sounding  Unit  

Su l f a t e   T ranspor t  and  Transformation  Experiment 

Sulfate   Regional   Experiment  

Subtropical 

Te lev i s ion  and Inf ra red   Observa t ion  Sa te l l i t e  

Total Ozone  Measurement  System 

TIROS Opera t iona l  Vertical Sounder 

Trop ica l  Wind Observing  Ships 

United  Nations  Environmental  Program 

U l t r a v i o l e t  

VISSR Atmospheric  Sounder 

V i s ib l e  

Vi s ib l e  and Infrared  Spin  Scan Radiometer 

Weather Facsimile 

Wor I d  Weather Watch 

SYMBOLS 

cons  tan t 

concen t r a t ion  of species i 

average number dens i ty   o f  clusters 

f r ee energy 



n 

P 

Ps 

P t  

r 

s/N 

T 

TC 

TS 

t 

A t  

V 

X I Y I Z  

Ax, Ay, Az 

PW 

n 
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Planck's  mnstant 

photochemical rate  constant 

Boltzmann's mnstant 

number  of particles 

pressure 

surf ace pressure 

total  pressure 

droplet  radius 

signal-noise ra t io  

absolute temperature 

cloud- top temper a t  ur e 

surface temperature 

time 

change i n  time 

wind vector 

location of point or region 

specified dimensions or size 

location of centroid 

location of center of grid  cell 

geometric height 

surface  tension 

err or 

wavelength 

frequency of electromagnetic  radiation 

density of water  vapor 

region 
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Subscr ip t s  : 

(9) 

i 

m 

r 

S 

(SI 

g a s  

species i 

model 

remote 

s t a t i o n a r y  (in situ) 

s o l i d  or p a r t i c l e  
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MEASUREMENT OF ATMOSPHERIC STATE VARIABLES 

Nearly  all  of  the  research  objectives  in  tropospheric  pollution  require  a 
knowledge  of  weather  variables (e.g., the  classical  state  variables  of  pressure, 
temperature,  and  density,  plus  such  other  parameters as water vapr, wind,  sea- 
surface  temperature,  precipitation,  cloud  cover,  and  visibility). The weather- 
observing  system  in  the  United  States is composed  of  four  fundamental  weather- 
observing  programs - surface,  upper  air,  radar,  and  meteorological  satellites. 
Our  national  programs  are  complemented  by  observation  programs  of  other  coun- 
tries. Taken  together  they  constitute  the Global Observing  System (GOS), a 
part  of  the  World  Weather  Watch (WWW), which,  in  turn is an  element  of  the 
World  Weather  Program.  (See  refs. 89 to 92.) 

U.S . WEATHER  OBSERVING  PROGRAMS 
Surface  observations  are  taken  by  the  Departments of  Commerce,  Defense, 

Transportation,  and  Energy,  and  the  National  Aeronautics  and  Space  Administra- 
tion.  Automatic  stations  and  automated  buoys  are  becoming  increasingly  popular 
in  providing  such  observations  as  wind,  temperature,  dew  point,  pressure,  pre- 
cipitation,  and  even  cloud  and  visibility  information. 

Data  from  the  upper-air  observing  network  provide  the  basic  input  to 
numerical  analysis  and  forecasting.  The  Department of  Commerce  operates land 
facilities  in  the  United  States to  make  upper-air  (balloon)  observations.  The 
Department  of  Defense  participates  both  at U . S .  and overseas  areas  through  oper- 
ations  of  its  land  and ship facilities.  Supplemental  upper-air  data  are  pro- 
vided  by  Department of  Defense  weather  reconnaissance  flights  and  by  in-flight 
reports  from  commercial,  general,  and  military  aviation.  Also, NASA and  the 
Department  of  Defense  use  rocketsondes  to  obtain  temperature  and  wind  measure- 
ments  at  altitudes  above  balloon  levels  at  selected  sites. 

A  fundamental  state-variable  observation  program  consists  of  polar- 
orbiting  and  geostationary  satellites.  Operational  systems  include  those  of 
the  Departments of Commerce and  Defense. The Department of Commerce,  through 
the  NOAA  National  Earth  Satellite  Service (NESS), is  the  agency  responsible  for 
a  national  operational  environmental  satellite  system. 

The  current  polar-orbiting  satellites  in  this  system are in  the  TIROS-N/ 
NOAA series. The TIROS-N  payload  consists  of  four  instruments: 

(1 ) Advanced  Very  High  Resolution  Radiometer  (AVHRR) : A €our-channel 
( 0 . 5  to 0.9, 0.7 to 1 . 1 ,  3.6 to 3.9, and 10.5 to 1 1 . 5  um)  scanning  radiometer 
providing  image and radiometric  data  in  the  visible,  near-infrared,  and  far- 
infrared  portions  of  the  spectrum  with  a  resolution of approximately 1 km  (at 
the  satellite  subpoint). 
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(2)  TIROS  Operational  Vertical  Sounder (TOVS), consisting of the  following: 

(a) The High Resolution  Infrared  Sounder ( H I R S / 2 ) ,  a  20-spectral- 
channel  infrared  radiometer  used to infer  tropospheric  tempera- 
ture  and  moisture  profiles 

(b)  The Stratospheric  Sounding  Unit  (SSU),  a  three-channel  pulse- 
modulated,  step-scanned,  far-infrared  spectrometer  used  to 
produce  temperature  profiles  of  the  stratosphere 

(c) The Microwave  Sounding  Unit (MSU) ,  a  four-spectral-channel  radiom- 
eter  with  response  in  the 50- to 57-GHz 02 band  capable  of  sound- 
ing  atmospheric  temperatures  even  in  the  presence  of  clouds 

( 3 )  Data  Collection  and  Platform  Location  System:  A  random-access  system 
for  platform  location  and  the  collection  of  meteorological  data  from  both  fixed 
and  moving  platforms,  such  as  buoys  and  constant-density  balloons. 

( 4 )  Space  Environment  Monitor  (SEMI : A  multidetector  unit  used  to  monitor 
solar  particulate  energies  in  the  vicinity of the  satellite. 

The  geostationary  satellites  in  the  operational  system  are  in  the SMS/GOES 
(Synchronous  Meteorological  Satellite/Geostationary  Operational  Environmental 
Satellite)  series. The SMS/GOES  payload consists of the  following: 

(1) Visible  and  Infrared Spin Scan  Radiometer  (VISSR): This is  basically 
a  telescope  with a precision  latitude  stepping  mechanism.  The  radiometer  scans 
within  two  broad  bands  (visible, 0.55 to 0.75 urn, and  infrared, 10.5 to 12.6 um) 
in  the  west/east  direction  as  the  spacecraft  spins  about  its  axis.  There  are 
eight  identical  visible  channels  and  two  redundant  infrared  channels.  The  eight 
visible  channels  are  aligned  in  a  linear  array  providing  approximately  1-km 
image  resolution  at  the  satellite  subpoint.  The  two  infrared  channels  provide 
approximately  8-km  resolution  at  the  subpoint.  At 100 rpm,  the  full  disk  image 
requires  18.2  min.  Full  Earth  disk  pictures  are  available  at  30-min  intervals 
throughout  the  day  and  night:  partial  disk  pictures  can  be  obtained  at  more 
frequent  intervals  to  meet  special  requirements  such as viewing  the  development 
and  movement  of  severe  storms.  Approximately 1600 wind  observations  from  two 
or three  levels  can be deduced  daily  from  sequential  satellite  cloud  images 
within 50° of the  subpoint. 

(2)  Data  Collection  System  (DCS):  A  system  used to collect  and  relay 
environmental  data  observed  by  remotely  located  sensing  platforms  such  as  auto- 
matic  weather  stations,  buoys,  and  river  and  tide  gages. , 

( 3 )  Weather  Facsimile  (WEFAX)  System: A system  used  to  broadcast  environ- 
mental  data  to  remote  stations. I 

( 4 )  Space  Environment  Monitor (SEMI: A  system  to  collect  data  for  warnings 
of solar  activity. 
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The  Defense  Meteorological  Satellite  Program  (DMSP) is an  operational  mete- 
orological  satellite  system  managed  by the U . S .  Air  Force. DMSP  data  are  simi- 
lar to  the  data  from  NOAA  satellites.  NOAA  receives  the DMSP  data for  opera- 
tional  use  and  dissemination to other  government  agencies. 

THE GLOBAL  OBSERVING  SYSTEM 

The  components  of  the  Global  Observing  System (GOS) are  depicted  in  fig- 
ure Cl. Radar  systems  are  not  shown  in  figure C1 because  they  primarily  detect 
short-term  mesoscale  phenomena  and,  hence,  are  usually  not  considered  to  be 
"global"  in  nature. Also, rocketsondes  are  not  shown in  figure C1 because  their 
observations  are  not  sufficiently  numerous or widely  enough  distributed  to  be 
considered as part  of  the  routine  observing  system. 

Important  characteristics  of  the  First GAFU? Global  Experiment  (FGGE) 
level  11-B  surface-based  data  and  satellite  data  are  shown  in  tables 21 and  22, 
respectively.  Level  11-B  data  refer  to  meteorological  parameters  resulting  from 
a  special  delayed  (up  to 6 months)  data  collection  and  processing  effort  in 
order  to  assemble  the  most  complete  set of observations  that is practical  to 
obtain  for  subsequent FGGE research.  (In  the  context of this  report,  it  is 
hoped  that  the FGGE level 11-B data  represent  the  type  of  data  that  will  become 
routinely  available  during  the 1980 Is.) 

Polar  (P) 

Location and 
data  collection 

Multichannel 

for   satel l i te  
Reference  levels 

vertical   sounders:  

buoy 
5, 

Figure C1.- Schematic  of  the Global Observing  System.  (Constant-density 
balloons  are  used only for special observations.) 
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TABLE 21.- FIXE LEVEL 11-B SURFACE-BASED DATA 

Observing  system 

Mobile sh ips  

Comnercial a i r c r a f t  

Oceanographic 

Dropwindsonde a i r c r a f t  

Constant-level  balloons 

Dr i f t ing  buoys 
~~ 

Land and ocean  station: 

Data types 
Observational 

Areal  coverage  observations 
Frequency 

Geophysical  parameters 

~~~~ ~ ~ 

Surface  marine  reports Conventional  surface  neteoro- 3 hourly  (as   avai lable)  1 Jan 78  t o  Global 
Oceans logical  parameters 30 Nov 79  

Sea surface  temperature  (SST), 
wind  wave, and swel l   data  

Ai rc ra f t   f l i gh t - l eve l  F l i g h t   l e v e l  wind,  tempera- Asynoptic 1 Jan 7 8  to Global 
reports  ture,   pressure/height 30 Nov 79  (a long   f l igh t   rou tes )  

Bathythennal  observa- Temperature - depth   p rof i les  Asynoptic 1 Jan 78  t o  Global 
t ions 30 NOV 79 Oceans 

Temperature,   salinity,  Temperature/salinity/ 
and cur ren t   repor t s  I curren t  - depth   p rof i les  ! 

Upper-air  reports Equator ia l  iI 1 5  Jan 79  t o  i Asynoptic 1 Wind, temperature,  humidity, 
(10% t o  10%) 13 Feb 79;  pressure/height 

Upper-air  flight-level  Approximately  Asynoptic  Flight  level, wind,  tempera- i 
20% t o  40% repor t s  ture,   pressure/height 

Ocean surface  reports  Asynoptic  Sea  level  pressure, SST 

1 30 June 79 

Surface  reports I Global 1 Jan 78  to   Surface:  6 hourly ' Surface:  conventional I 
(includes Ocean 
weather s t a t i o n s  1 Upper-air  reports 
and Tropical  Wind 
Observing  Ships I 
( W S ) ) .  I 

30 Nov 79  meteorological  parameters .: 

(sane 6 hourly)  humidity,  pressure/height 1 upper  air:  1 2  hourly  Upper-air: wind, temperature. 



TABLE 21.- Concluded 

P 
Colaents I 

Nmber  of  expected 
Observing  system daily  observations 

Avai labi l i ty  
of data 

(a) 

Expected  accuracy of 
geoHysica1  parameters 

SST - f1.5 K 
Winds - accuracy of Beaufort  scale OK be t te r  

1 

SST: 90# of a l l   obse rva t ions  
a re   f rap  N.E. 1 

9000 6 months 
t0 1 yK 

Mabile ships  

' Comerc ia1   a i rc raf t  I 1 0  000 t o  12 000 Winds - 1.5  m/sec KIIE 

Alt = k 2 0  m 
T = f1.5 K 

6 months A P ~ K O X .  100 observations/day 
frcm  each of 80 AIDS and 

17 ASDAR equipped a i r c r a f t  

T = iO.2 K 
Sal in i ty  = i1  part  per  thousand 

6 months Oceanographic 150 

Dropwindsonde a i r c r a f t  100 6 months Winds - . l .  5 m/sec 
T = 20.5 K (var iable)  
p = i2 ab  

Coverage: Atlantic,   Indian, 

Oceans 
and  mid- and eastern-Pacific 

Winds - 1.5 m/sec 
T = i 0 . 7  K 
p = i 3 m b  

6 months F l igh t   a l t i tude :  140 mb Constant-level  balloons 400 

Drif t ing buoys 300 to 700 

I 
Land and  ocean s t a t i o n s  10 000 

(includes Ocean 
weather s ta t ions  

(Synoptic  surface  reports) 

(UFpeK-air reports)  Observing  Ships 
1500 and Tropical Wind 

( IWDS) ) .  
* 

p = i l m b  
T = iO.2 K 6 months 

hFpeK-aiK  winds - i l  . O  m/sec b e l w  10.0 m/sec 
T = k1.0 K 
R.E. = f5# 
p = i l m b  

plax. 80 observations p K  
day  from m s  f r a  1091 
to 10% f o r  SOP'rr (5  JM - 
5 X.r, 1 M y  - 30 JuM 79)  

6 months 

aAvailable  fran World Data  Center i n  Washington, D.C., after  the  time of Observation. 
bAccuracy f l o e  above 1 0  m/sec.  For TWOS, wind accuracy will depend on geographical  area,  time of day, a v a i l a b i l i t y  of Omega s ta t ions ,   so la r  

oonditims,  etc.  Average expected  accuracy, 2 m/sec; re la t ive  hmidi ty   accuracy above 300 mb (or tropopause), i 1  O t ;  atmospheric  pressure  accuracy 
near  surface,  f0.5 mb. 

d 

I P  
VI 



TABLE 22.- FGGE LFVEL 11-6 SATELLITE DATA 

Observing  system I Geophysical 
parameters  Areal  coverage  period I Observational Frequency  of 

derived  data 

Geos ta t ionary   sa te l l i t es   aCloud  vec tors  
( 3  USA, 1 ESA, 1 Japan) 

SST (ESA, Japan) 1 50% to 5OoS 

I c1 Jan 78 t o  30 Nov 79 

1 uncertain 

dl Z hourly 

Uncertain 

Operational  polar- 1 Global  Oceans 
o r b i t i n g   s a t e l l i t e s  

1 1 Jan 78 t o  30 NOV 79 

(2 USA, 2 USSR) 1 z r - a i r  soundings and Global 1 Jan 78 to 30 NOV 79 
radiances 

Daily 

12 t o  24 hourly 

Experimental p l a r -  Duty cycle: 1 day 1 Dec 78 to 30 NOV 79 SST, ocean-surface wind Global  oceans 
o r b i t i n g   s a t e l l i t e s  
(2  USA - Nimbus 7 and water  vapor (Nimbus) j from 64% t o  

on, 1 day o f f :  

bal  coverage  per I 64% Seasat  A) 
QPKOX. 75a glo- 

day 

speeds, and atmospheric  (every 6 days 

Ocean-surface wind velOc- Global  oceans 1 5 Jan 79 to 5 Mar 79 
i t i es   (Seasa t )   (every  3 days) [ 1 nay 79 t o  30 June 79 

I I 

height   p rof i les  (Nimbus) 1 a l o n g   s a t e l l i t e  , 
1 84% and 64OS - ~ 

t rack  (outs ide 

! no da t a )  

Stratospheric  temperature/  , A t  320-km i n t e r v a l s  1 Dec 78 to 30 NOV 79 

Resolution of 
der ived  data  

e250 km 

Uncertain 

50 tam 

250 to 500 km 

150 km (SST) 

100 km (wind speeds) 

60 km (water  vapor) 

A s  ava i l ab le  ~ 50 km I 
1 

A s  avai lable:  
Duty cycle: 5 days resolut ion 

150 km, sounding i 
on, 1 off  

, i n t e r v a l  
320 km, sounding 

the mid- and eastern-Pacif ic  and A t l a n t i c  Oceans (170°E to 20%) for   the  per iod 1 Dec 78 t o  30 NOV 79, as well  as  a  high-density  Indian Ocean  wind set  
( r e so lu t ion  200 t o  300 km) f r m   l a t i t u d e  35% to 20'5 and longi tude 30°E t o  llOoE a t  0830 and 2045 GMT for  the  period 1 May 79 t o  8 Aug 79 (100 days) .  

t o  450s. 

aUniversity of Wisconsin will provide  daily,   near-local  nwn  mesoscale  cloud  motion VeCtOKS (100- to Z O O - k m  r e so lu t ion )  from 15% to 15% l a t i t u d e  foe 

bllniversity of Wisconsin will produce  Indian Ocean  wind s e t  w i th   l a t i t ude  limits expected  to be 55% t o  55OS and GOES At lan t i c  and Pac i f i c  limits of 45% 

CIndian Ocean Set  observational  period 1 Dec 78 t o  30 NOV 79 i n   con t r a s t  to 1 Jan 78 to 30 NOV 79 per iod   for   At lan t ic  and Pac i f i c  GOES. 
dIndian Ocean derived wind times, 1000 and  2200 GMT. U.S. observat ions  a t  00, 1200, and 1800 GMT. 
eIndian Ocean resolut ion,  250 t o  500 km. 
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TABLE 22.- Concluded 

i I Camnents Oherving  systen 
Geophysical Nmber of e x p c t e d  
parameters daily  observations 

Expected  accuracy 1 Avai l ab i l i t y  
of  geophysical 

(approx.) I parameters 
of data  

I f 1  

Geos ta t iona ry   s a t e l l i t e s  
( 3  USA, 1 ESA, 1 Japan) 

aCloud  vectors ! 97500 ' Winds - *3 t o  6 m/sec 
I 

h6  months 

T = t 2 . 0  K or bet ter  6 months Uncertain 

SST 

Upper-air  soundings and , 

40  000 

radiances ' 6 000 

+ t T - t 1 . 5  K 

T = approx. f2.0 R 

6 months 

6 months 

Limited by clouds;  analysis 
resolut ion 100 and 500 kin 

Based on 500-Ls resolut ion 

Operational  polar- 
o r b i t i n g   s a t e l l i t e s  
(2  USA, 2 USSR) 

Experimental  polar- 
o r b i t i n g   s a t e l l i t e s  
(2  USA - Nimbus 7 
and Seasat A) 

SST, ocean-surface wind 
speeds, and atmospheric 
water  vapor ( N i m b u s )  

20 000 (wind) 
60 000 (vapor) 

10 000 (SST) 
Winds - f2 m/sec from 0 t o  50 m/sec 
SST - f1.5 to  2 R 

Water vapor - f0.15 g/m3 

6 months 

6 months 

6 months 

A l l  weather,  but will not ~ c -  
vi& a omplete  global  coverage 
every  day 

Ocean-surface wind veioc- 
i t i e s   ( S e a s a t )  

Stratospheric  temperature/  
he ight   p rof i les  (Nimbus) 

20  000 

1 BOO 

Winds - t108 from I t o  26 m/sec 

T = f1.5 R 

fSee  footnote  (a) on Daae 146. 
Winds are   der ived  iLa;eas  w i t h  su i t ab le  cloud  tracers.   Vertical   resolution is 2 t o  3 l eve ls .  

of Wisconsin will record a t   f u l l   r e s o l u t i o n  t h e   f u l l  d i g i t a l  output  for  the th ree   ac t ive  SELS/GOFS s a t e l l i t e s   f o r   t h e   e n t i r e   o p e r a t i o n a l  FGGE year. 

%ab' VISSR image data  from P a c i f i c  and At l an t i c  archived a t  NOAR/EDS. The Space  Science and Engineering  Center (SSEC) of  the  University 

In  addition.  .xKangetMtS  are  being  pursued by  SSEC to  obtain geostat ionary s a t e l l i t e  images fran ESA and Japan. 



APPENDIX C 

EXPERIMENTAL  SATELLITES 

In  addition  to  the  operational  satellite  systems  previously  described, 
NASA  carries  out  an  experimental  satellite  program to develop  new or advanced 
sensors  for  the  purpose  of  increasing  our  knowledge of environmental  processes 
and/or  providing  improved  data  leading to improved  forecasts. Two such  satel- 
lites  launched  in 1 9 7 8  were  Seasat  A  and  Nimbus 7 .  Unfortunately  Seasat A, 
an  oceanographic  satellite  launched on  June 26, 1978 ,  became  inoperative on 
October 1 0 ,  1978 .  Nimbus 7 ,  launched on October 24,  1978 ,  carried  eight  sensors 
intended  to  measure  upper  atmosphere  temperatures,  trace  gases/aerosols  (pollu- 
tants),  and  oceanographic  and  meteorological  parameters. 

SOME FUTURE SYSTEMS 

A  geostationary  sounding  capability  has  been  incorporated  into  the GOES-D 
and  will be incorporated  into  subsequent  spacecraft.  The GOES-D spacecraft  was 
launched  in  September 1 9 8 0  and  carried  the  VISSR  Atmospheric  Sounder  (VAS)  as 
its  primary  instrument.  VAS  retains  the same  imaging  capability  as  before,  but 
an  infrared  sounding  capability  has  been  added. 

New  sensors  employing  active  remote  sensing  technology  are  under  study  for 
future  satellite  missions.  Among  these  are  the  following: 

( 1 )  Lidar  Temperature  and  Moisture  Sounder 

(2 )  Lidar  Pressure  Sounder 

( 3 )  Lidar  Wind  Sensor  (Clear  Skies) 

( 4 )  Lidar  Aerosol  Sensor  (Troposphere) 

(5 )  Precipitation  Radar 

(6) Active/Passive  Multichannel  Microwave  Imager 

New  passive  sensors  are  also  under  study.  Among  these  are  the  following: 

(1) Sensors  for  remotely  sensing  tropospheric  pollutants:  The  Mapping of 
Atmospheric  Pollution  Sensor  (senses  emitted  infrared  radiation)  and  the 
Differential  Correlation  Radiometer  (DCR,  senses  backscattered  solar  radiation) 
are  examples. 

( 2 )  Microwave  Atmospheric  Sounding  and  Imaging  Radiometer  (MASIR): A 
microwave  sounder/imager  for  sensing  tropical  cyclones  and  severe  local  storms 
f r m  a  geostationary  platform; 100- to 2 0 0 - a ~  spectral  region,  At < 1 hr. 
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