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FOREWORD

The Proceedings of the Shuttle-Based Cometary Science Workshop
is the initial result of a forum for the presentation of possible Shuttle-
based experiments and observations of comets and cometary-like materials.
The two-day workshop on the various possibilities of this new orbiting
laboratory was held in November 1976. The workshop was sponsored by
the George C. Marshall Space Flight Center and p'resented by the University
of Alabama in Huntsville. The encouragement of Bertram Donn of NASA
Headquarters, the support of Charles Lundquist of the Marshall Space
Flight Center and Ernst Stuhlinger of the University of Alabama in
Huntsville, and the enthusiastic participation of the attendees made the
workshop a success, as the proceedings reflect. It is hoped that the
final results of the workshop will be cometary science experiments and
observations from the Space Shuttle. The data obtained from this research
will increase greatly our knowledge of comets.

The session chairmen for the workshop were C. Lundquist,
B. Donn, M. Dubin, and C. R. O'Dell. The material from the last
session (IV) of the workshop has been incorporated in the proceedings
into the other sessions.

G. Allen Gary and K. Stuart Clifton
Editors
Space Sciences Laboratory
Marshall Space Flight Center



PREFACE

The motivation of this meeting was to examine the prospects of
cometary research from the Space Shuttle. Clearly, the Shuttle provides
a potentially valuable set of capabilities for such research. Many advan-
tages appear quite obvious. However, as one looks into them more closely
a variety of problems and difficulties begin to appear. In some cases the
value of Shuttle research compared to ground-based experiments or ob-
servations appears less favorable.

Dr. Lundquist suggested that a conference or workshop with a
small set of active cometary scientists could be very useful. Such an
effort, in which a number of individual points of view and scientific
disciplines would simultaneously consider this question, seemed very
worthwhile. This would be true not only for the participants, but for
all potential investigators of comets by circulating the workshop pro-
ceedings. As a result of a group discussion, not only could the more
obvious prospects and problems be explored, but new ideas could develop
and otherwise unforeseen difficulties become apparent. One objective
was to delineate opportunities for research unique to the Shuttle.

The workshop was divided into four sessions with a chairman who
had experience in the area covered by that session. The papers were
intended to introduce the subject and provide background material and
stimulation for the discussion by all the participants. The first session
dealt with the Shuttle as research environment. The second was concerned
with on-board experiments at zero-gravity and release of gas and dust to
simulate cometary phenomena. Cometary observations from space were
treated in the third session. The final session discussed objectives and
results of the workshop and additional information on Shuttle opportunities.

The participants felt the meeting indeed was worthwhile and that
they would remain an informal working group for cometary science from
the Shuttle. We hope that these proceedings will be useful and stimulating
to others in planning Shuttle-based cometary research. That was the
initial and primary goal of the Shuttle-Based Cometary Science Workshop.

Bertram Donn
National Aeronautics and Space Administration
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INTRODUCTORY COMMENTS

Ernst Stuhlinger
Organizing Chairman

University of Alabama in Huntsville

Professor Fred Whipple, discussing comets at a meeting of astrono-

mers several years ago, mentioned almost casually that a "dirty snowball",

resembling at least qualitatively his model of a comet nucleus, could

be built on earth and transported into a low earth orbit onboard a space-

craft. The snowball would then be expelled from the spacecraft and

observed with instruments while it orbited the earth in close proximity

to the orbiting spacecraft.

At the time of that remark, a project of this kind seemed to be

far in the future. Today, only five years separate us from the operational

Shuttle, and a "snowball" project would appear feasible. In fact, the

Shuttle with its capability for large payloads, instrumentation, and

even scientists onboard would be quite applicable to a snowball project,

provided that such a project should appear meaningful and desirable after

careful scientific scrutiny.

Dr. Bertram Donn, Office of Space Sciences at NASA Headquarters,

asked the G. C. Marshall Space Flight Center to organize and convene a

meeting of cometary sciences specialists with the objective of discuss-

ing feasibility and desirability of a snowball project, and of other

comet-related projects in space. Dr. Charles Lundquist was assigned

responsibility for this meeting, and he in turn selected the University

of Alabama in Huntsville to be the host of the conference. The UAH is

very happy tq> welcome the participants today. We hope that the meeting
t^f~S,



will be enjoyable and successful for all of you.

The organizing committee included Kenneth S. Clifton and Allen G. Gary

from the G. C. Marshall Space Flight Center, and Carl Cramer from the

University of Alabama in Huntsville.

The National Aeronautics and Space Administration is very intent

on making the capabilities of space projects available to science;

however, NASA desires to obtain from members of the scientific community

a clear indication of the usefulness and desirability of a specific science

project before work on the project is started.

It is hoped that this working group meeting on Shuttle-based

cometary science will bring out those objectives in comet research

which can and should be pursued by Shuttle-related projects.
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SPACE SHUTTLE OPPORTUNITIES FOR
COMETARY RESEARCH

Charles A0 Lundquist
Space Sciences Laboratory

NASA, Marshall Space Flight Center, Alabama

The Marshall Center is pleased to welcome this Workshop to

Huntsville, Alabama. The Space Shuttle's impact on future modes of

scientific investigation is particularly evident here,, Early in the

Shuttle planning cycle, this Center had the privilege to aid NASA

Headquarters by modeling sequences of typical Shuttle missions. These

mission models helped identify places where improvements could be

made to better accommodate experiments on the Shuttle. The Marshall

Center is also the principal United States interface with the Spacelab

Program of the European Space Agency. Spacelab will, of course, pro-

vide resource support for much of the specialized equipment prepared

for space investigations. Also, Marshall has been given management

responsibility for the first three Spacelab missions and for the science

payload to be flown on the sixth of the Orbital Test Flights of Shuttle

preceding the Spacelab missions.

From the vantage point that these responsibilities provide, we are

keenly aware that the Shuttle era is approaching very rapidly. This is a

realization that I want specifically to convey and emphasize today. A few

weeks ago, on September 17, the first Space Shuttle was rolled out in a

ceremony in Palmdale, California. Proposals for experiments on the

first Spacelab mission in 1980 have been received and are being evaluated.

The selection of experiments to be carried will be announced in the next

2 or 3 months. Proposals for experiments on Orbital Test Flights (OFT-2

through OFT-6) and for the second Spacelab mission are due on December

1976 —approximately 1 month from today. Their evaluation will begin

immediately thereafter. Further opportunities to propose experiments

for subsequent flights will be forthcoming soon.



To establish appropriate insight and common foundations for

participation in the Shuttle missions, various scientific disciplines have

held meetings analogous to this Workshop. Indeed, several major

disciplines have been quite busy seeking to understand how to optimize

the use of the Shuttle for their fields of interest. Truthfully, there

would have been advantages in a somewhat earlier date for this Work-

shop. Nevertheless, some time remains for the consequences of'the

Workshop to be registered in proposals for specific cometafy experi-

ments, even for the OFT and second Spacelab missions. Certainly, we

must fully appreciate a real sense of urgency in recognition of the pace

at which the Shuttle era is approaching.

Several distinct modes of cometary investigation are offered by

the Shuttle, First, there is a mode in which instrumentation for obser-

vations of a natural comet is carried to orbit on Spacelab. This is the

mode used successfully for Comet Kohoutek during the Skylab mission of

1973-1974. Second is a mode in which gaseous or solid material is

released from Shuttle to simulate some aspect of cometary physics.

Such an artificial comet option was discussed in some of the mission

model studies. Another mode uses the near weightlessness within

Spacelab to allow laboratory experiments with materials as they may

exist on the surface of a comet nucleus. Surely, the sponsors of this

' Workshop hope that all of these opportunities, to use Shuttle will be

examined in the course of the Workshop.

Ultimately, a Shuttle may be used to stage a mission to or near

a comet. This eventual mission should be kept in mind as the'other

opportunities for cometary research are considered. Early investigations

from Earth orbit, if thoughtfully designed, can significantly enhance the

value of a later comet visit,,

The first session on the Workshop agenda provides a synopsis of

the Shuttle characteristics that influence possible cometary research. The

organizers of the Workshop trust that this will supply the desired background

for our subsequent discussions.
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SHUTTLE/SPACEIAB DESIGN, PERFORMANCE,
ACCOMMODATIONS AND CONSTRAINTS

The purpose of this paper is to describe the main characteristics

of the Shuttle/Spacelab system in order to provide an introduction for

individual experimenters who may propose cometary science experiments.

The information contained herein was derived from the "Spacelab Payload

Accommodations Handbook PDR-B 1976". Specific information is subject to

change; however, the salient design, performance, accommodations, and

constraints for the experimenter are expected to remain as presented.

Major Spacelab/experiments interfaces, Spacelab payload support systems,

and requirements with which experiments must comply are described in

the referenced document.

General Spacelab System

Spacelab, as a shuttle payload, is carried to and from orbit by

the Space Shuttle (Figure 1). It remains attached to the Orbiter

(within the payload bay) of the Space Shuttle throughout the flight.

Spacelab consists of two basic elements in the orbiter bay - a

pressurized module and an unpressurized pallet which can be used separ-

ately or in combination. The modular design of the module and the pallet

allows a variety of flight configurations which can be grouped into

three basic configuration types - module only, module plys pallet, and

pallet only.

The module provides a controlled pressurized environment for the

users and their equipment. It supplies basic services such as power,
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heat rejection, and data management, together with certain basic support

equipment such as standard racks, airlock, etc. which may be used as

required. In general, the module consists of either a single cylindrical

segment (core segment) or two segments (core plus experiment segment).

The pallet is an unpressurized platform to which instruments, which

require direct exposure to space, such as telescopes and antennas may be

mounted. The pallet provides basic services, such as power distribution,

heat rejection, and data acquisition and commands.

The pallet only configuration may contain up to 15 m mounting length.

Up to three pallet segments can be combined with a short module (core

segment only) and up to two pallet segments can be combined with a long

module (core and experiment). The module diameter is slightly over

4 meters and each cylindrical segment is approximately 2.7 meters long.

The pallet segments are approximately 3 meters long and 4 meters wide.

Major external design features of Spacelab in a typical module plus

pallet configuration are shown in Figure 2. The presented configuration

consists of a two-segment module and one pallet segment.

The module itself is formed of a cylindrical pressure shell and

cone-shaped end closures (end cones) and is covered with high-perfor-

mance insulation. The module is structurally attached to the Orbiter

by attach fittings located on the main ring frames of the module

cylindrical segments. The forward-located module segment (core segment)

contains subsystem equipment and crew work space, but also leaves about

60 percent of the rack volume for experiment installation. The experi-

ment segment is dedicated entirely to experiment installation and oper-

ations .
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The center of gravity of the Orbiter with the integrated Spacelab

must lie within certain limits which result from aerodynamic constraints

during re-entry and landing. For this reason the Spacelab module cannot

be located at the very forward end of the Orbiter cargo bay. A tunnel

is therefore provided for crew and equipment transfer between the Orbiter

and the Spacelab module. In addition, a tunnel adapter/EVA airlock

combination is attached to the Orbiter forward bulkhead. Extra-vehicular

activity (EVA) can be performed through the EVA airlock on the top of

the tunnel adapter. The design of this unit is such that access to

Spacelab from the Orbiter is not interrupted during EVA.

The top of the core segment contains provisions for mounting a

high quality window/viewport assembly and the top of the experiment

segment contains provision for mounting either a high quality window/

viewport assembly or an airlock. If neither airlock nor window/viewport

are flown, the top openings are closed by coverplates. A second viewport

is located in the aft end cone to give an unobstructed view of the pallet.

The forward and aft end cones also provide for feedthrough panels for

utility routing. Figure 3 shows the major Spacelab flight elements.

The U-shaped pallet segments, also seen in Figure 3, are covered

with aluminum honeycomb panels. They are integral parts of the pallet

structure, but can also be used for mounting of light weight payload

equipment. A series of hardpoints attached to the main structure of the

pallet segment is provided for mounting of heavy payload equipment. The

pallet segments are mounted to the Orbiter with a set of attach fittings.

Up to three pallet segments may be structurally linked together to

form a pallet train and attached to the Orbiter by a single set of

9



attach fittings. Up to five pallet segments may be flown on a single

mission.

The interior design of the module is modular and provides flexibility

to the user. Racks are arranged in single and double rack assemblies

for mounting of equipment. The floor is segmented. The most forward

floor in the core segment provides support for the subsystem double

rack assembly on each side. A second floor segment provides for support

of rack assemblies for experiments.

The core segment can accommodate one single and one double rack

assembly for experiments, while the experiment segment can accommodate

one single and two double rack assemblies for experiments, on each side.

The sequence of single and double racks must be as indicated in Figure 3.

The racks are independently attached to the floor and overhead structure

so that as many racks as necessary may be installed for a given mission.

If some racks are not required, other special experiment equipment may

be attached in their place.

The subsystem racks are also detachable but will normally remain

installed in the core segment between flights. In operational use, the

equipment racks and floors will normally be pre-integrated and

checked out as a complete assembly. This assembly will then be rolled

into the module shell. The necessary interface connections will then

be made with the primary structure and the subsystems in the core

segment.

10



In the module only and module plus pallet configurations, Space-

lab subsystems are mounted in the subsystem racks and on the subfloor

as shown in Figure 3. In these configurations the module can accommo-

date crew members for operation of subsystems and experiments. Signal,

power and other utility lines to and from the Orbiter are routed from

the forward end cone. In module plus pallet configuration lines

between module and pallet are routed via a utility support structure.

For pallet configurations an "Igloo", a pressurized cylinder attached

to a pallet, is provided for installation of certain subsystem hard-

ware which is needed for pallet-only configurations. In pallet-only

configurations, operations of subsystems and experiments will be

performed from the Orbiter's aft flight deck (AFD) or from the ground.

Signal and other utility lines to and from the Orbiter are routed

through the igloo. Spaced pallet segments are connected via a utility

support structure.

The Spacelab equipment in the aft flight deck (AFD) of the

Orbiter permits the control of Spacelab subsystems and experiments,

and permits the display of data. This aft flight deck equipment is

independent of the Spacelab configuration flown. In the aft flight

deck there are also limited space and resources available for payload

use.

A prime consideration in designing Spacelab was the provision of

as many services as possible for the users within the given con-

11



straints. This has led to a modular design of subsystems. A certain

part of the subsystem equipment may be selected by the users in 'order

to satisfy the specific need for a flight in an optimal manner. This

subsystem equipment, which can be removed without affecting the basic

operation of the Spacelab system is defined as "mission dependent"

equipment.

The Spacelab flight hardware is divided into the following sub-

systems: Structure, environmental control, electrical power and

distribution, command and data management, and common payload support

equipment. The environment control subsystem (ECS) comprises elements

for environmental control, life support, and passive and active thermal

control. Oxygen/nitrogen atmosphere at sea level pressure is provided

in the module by this subsystem. Crew habitability support such as

food, drink, sleep, hygiene, and waste management facilities is

provided by the Orbiter. The ECS includes a valve in the forward

bulkhead by which experiment chambers etc. inside the module can be

connected with the outside vacuum. This* facility is referred to as

the small experiment vent assembly.

The electrical power and distribution subsystem (EPDS) conditions

the basic electric power derived from the Orbiter's fuel cells and

distributes it to Spacelab subsystems and Spacelab payloads.

The command and data management subsystem (CDMS) provides support

functions, such as data acquisition, command, formatting, display and

12



recording. The CDMS includes three identical computers: one dedicated

to Spacelab payloads, one dedicated to subsystems and one back-up com-

puter for either of the two dedicated computers. The CDMS subsystem is

largely independent from the Orbiter. Communication with ground facilities,

either directly to a Spaceflight Tracking and Data Network (STDN) Station

or via the Tracking and Data Relay Satellite System (TDRSS), is provided

through the Orbiter's communication system. System activation and

monitering (SAM) of Spacelab is performed through dedicated hardware

and CDMSo

Common payload support equipment (CPSE) consists of an airlock,

a top cover plate, a top cover plate with a high quality window and view-

port and film storage provisions.

The Spacelab program also provides software for operation of

Spacelab on orbit and check-out of Spacelab on the ground. Furthermore,

the program includes mechanical and electrical ground support equipment

for integration and checkout of Spacelab,,

Coarse pointing of Spacelab payloads is provided by the Orbiter.

A Spacelab-supplied instrument pointing subsystem (IPS) permits high

precision pointing of Spacelab payloads.

The typical operation cycles of Spacelab are: Pre-integrated

equipment of the user(s) is integrated into Spacelab which is subsequently

installed in the Orbiter. In the launch configuration the Space Shuttle

consists of the Orbiter, a large External Tank which provides propellant

to the Orbiter during launch and two Solid Rocket Boosters,

13



The Solid Rocket Boosters are jettisoned after burn-out and retrieved.

The External Tank is jettisoned in the final ascent phase. The nominal

flight duration of the Orbiter is seven days. However, the Orbiter/

Spacelab is being designed so as not to preclude extended missions of

up to thirty days duration. After launch the doors of the Orbiter cargo

bay will be opened in order to expose Spacelab to space. Subsequent to

completion of check-out operations Spacelab will be activated and operated.

Before re-entry and landing the Spacelab systems will be de-activated

and the doors of the Orbiter cargo bay will be closed. After landing,

Spacelab and the Orbiter will be refurbished as required and prepared

for the next flight in separate ground operation cycles.

Physical Constraints:

Figure 4 illustrates the physical envelope for Spacelab and its

payload in the Orbiter cargo bay and the location of this envelope within

the Orbitero The dynamic envelope is that envelope which must not be

exceeded by any Spacelab or payload hardware in launch or landing config-

uration (except for interface connections) under the maximum predicted

dynamic environment, excluding Orbiter crash landing loads.

The dynamic envelope is of cylindrical shape with a diameter of

4.572 m (15 feet) around a center-line parallel to the Orbiter Xo-axis

at Orbiter stations Yo = 0 and Zo = 400 inches (10.16 m). The length

of the dynamic envelope is 18.288 m (60 feet), extending from Orbiter

station Xo ==582 inches (14.783 m) to Orbiter station Xo = 1302 inches

(33.071 m).

Technical drawings of the dynamic envelopes in the Orbiter cargo

bay are given in Figure 5.
14



Particular attention of the users is drawn to the fact that trans-

portation envelopes for various ground transportation modes may impose

more severe constraints than the dynamic envelope of the Orbiter cargo

bay.

Field of View Constraints of the Orbiter Cargo Bay;

The Orbiter has the capability of exposing the entire length and

width of the Orbiter cargo bay to space environment. With the Orbiter

cargo bay doors and radiators open, the Orbiter provides an unobstructed

180-degree lateral field of view (except for localized interference due

to the manipulator supports and the door hinges) for any point along the

line Yo = 0, Zo = 427 (10,845.8 mm) between Xo = 582 (14,782.8 mm) and

Xo = 1302 (33,070.8 mm). The manipulator supports are not removed

from the Orbiter, even if the remote manipulator is not flown. From

the midpoint of the dynamic envelope Xo = 942 (23,926 mm) Yo = 0,

Zo = 400 (10,160 mm), the following clearance angles, measured from the

Z axis toward the X axis are maintained:

To the forward Orbiter bulkhead 75° (1.309 radians)

To the aft Orbiter bulkhead 75° (1.309 radians)

To the vertical stabilizer 57° (0.99408 radians)

These clearance angles are shown in Figure 6.

Center of Gravity Constraint:

The center of gravity of the assembly Orbiter and Spacelab with

its payload must be located within very close tolerances because of

aerodynamic effects during re-entry and landing. Therefore, the location

of the center of gravity of Spacelab with its payload with respect to the

center of gravity of the empty Orbiter has specific constraints.

15



Orbits and Orbital Maneuvering Constraints:

The Space Shuttle provides for transportation of Spacelab to and

from earth orbits and utilizes two launch sites. The Eastern Test

Range (ETR) located at the Kennedy Space Center (KSC) is used for

launches into low inclination orbits and the Wester Test Range (WTR)

located at the Vandenberg Air Force Base (VAFB) is used for launches

into high inclination orbits.

The thrust required to accelerate the Orbiter to suborbital velocity

is supplied by two Solid Rocket Boosters and the main engines of, the

Orbiter which are supplied with propellant from an External Tank. The

Solid Rocket Boosters and the External Tank are jettisoned during the

launch phase. An Orbital Maneuvering Subsystem (OMS) is used to acquire

orbital velocity and to place the Orbiter into the desired orbit

(Figure 7). Furthermore, the OMS provides the propulsive thrust to

perform orbit corrections, orbit transfer, rendezvous and de-orbit

maneuvers. The thrust required for Orbiter separation and translational

braking is provided by the Reaction Control Subsystem (RCS) which"is

operated in a special mode for this purpose, although the prime function

of this subsystem is attitude control.

The integral OMS tanks of the Orbiter are sized to provide a usable

capacity of 11294 kg (24900 Ib). The velocity increment which can be

imparted to the Orbiter by this amount of propellant is 304.8 m/sec

(1000 ft/sec) for a 29484 kg (65000 Ib) and .about 366 m/sec (1200 ft/sec)

for a 14515 kg (32000 Ib) cargo weight respectively. Up to three extra

propellant tanks, referred to as OMS kits can be installed in the

Orbiter cargo bay for increased operational flexibility. These extra

16



QMS kits are installed at the aft end of the Orbiter cargo bay.

The dry- and wet weight, as well as the velocity increment which

can be imparted to the Orbiter with various cargo weights are summarized

in Table 1.

The dry- and wet weight of the QMS-kits will be charged to the

landing and launch weight of the Spacelab payload, respectively. These

weight have to be duly accounted for in mission planning and in the

assessment of the center of gravity. The velocity increments outlined

in Table 1 indicate that the QMS-kits are not intended to perform sig-

nificant inclination changes e.g. from 28.5 to 0 degree inclination, but

to perform orbit corrections or transfer maneuvers in the orbital plane.

The maximum achievable inclination change per QMS-kit is about 2 degrees.

The achievable inclination decrease below 28.5 degree is about 1 degree

per QMS kit only because the inclination has to be restored to 28.5

degree prior to descent. The use of QMS-kits to obtain orbits with

high altitude is shown in Figure 8.

Achievable Orbits:

In Figure 8 typical ranges of circular orbits attainable for Space-

lab missions are presented. This figure is based on a total Spacelab

weight, including Spacelab payload, of 14515 kg (32000 lb). It is

assumed that launch takes place from KSC for inclinations between

28.5° and 57° and from VAFB for inclinations between 56° and 104°.

Figure 8 represents the capabilities of the Space Shuttle for

typical sets of operational requirements. In this figure, a RCS propell-

ant consumption of 1408 kg (3100 lb) is assumed. It should be noted
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that the suborbital disposal of the External Tank presents limitations on

some discrete inclinations between 56 and 70 degrees for launches from

VAFB. Missions in this inclination region will have to be individually

planned, because the performance shown in the maximum expected and traject-

ory changes to accommodate safe External Tank disposal will degrade per-

formance .

Figure 8 is derived from performance curves of the Space Shuttle for

launches from KSC and VAFB (Figures 9 and 10). The curves present the

cargo weight to be placed into circular orbits as a function or orbital

altitude, for various inclinations and number of OMS-kits. The weight

of the QMS propellant in the integral OMS-tankage and OMS-kits necessary

to obtain the indicated orbits has already been taken into account in

establishing the performance curves of Figures 9 and 10 and, therefore,

need not be subtracted from the cargo weight given in these figures.

The Space Shuttle also has the capability to place Spacelab into

elliptical orbits. This capability depends significantly on the de-orbit

mode. Orbits with maximum eccentricity, can be obtained in a direct

de-orbit mode, i.e. a procedure where the de-orbit maneuver is initiated

at apogee. An alternative de-orbit mode (indirect de-orbit mode) is to

return to a low altitude orbit prior to re-entry. The maximum achievable

heights of apogee are shown in Table 2 for various inclinations and the

two described de-orbit modes. This table is based on a height of perigee

of 185 km (100 nautical miles) and a Spacelab weight, including payload,

of 14515 kg (32000 Ib). For the direct de-orbit maneuver there exist

operational limitations such as the relationship of the landing site

to the location of the de-orbit maneuver or constraints due to thermal
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protection system capabilities. In Table 2 an ideal relationship between

the landing site and the location of the de-orbit maneuver and no con-

straint due to the Orbiter thermal protection system are assumed. The

data concerning the indirect de-orbit mode are based on an 185 km (100

nautical miles) circular orbit prior to re-entry. The indirect de-orbit

mode can always be flown. The exact capability of the Space Shuttle to

obtain elliptical orbits will have to be assessed on an individual basis

and will, in general, be between the figures for the two de-orbit modes,

quoted in Table 2.

The Shuttle System has the capability to place the Orbiter into

sun synchronous orbits which have nodal precession rates exactly matching

the earth's angular motion around the sun.

It has already been pointed out that the data for the direct de-orbit

modes given in Table 2 are based on an ideal location of the perigee

with respect to the landing site. Other locations of the perigee and

control of the location of perigee are possible, but these cases will

have to be calculated on an individual basis.

In principle the Shuttle System is capable of covering the whole

range of possible angles of right ascension of ascending nodes. Mission

requiring specific angles of right ascension of ascending node have to

be evaluated on an individual basis.

Attitude Control;

Orbiter pointing and attitude control are performed by the Reaction

Subsystem (RCS) using either primary or vernier thrusters. Basic RCS

data and the arrangement of thrusters and tanks are given in Figure 11.
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The Orbiter contains a structural reference, referred to as

Navigation Base. For Orbiter pointing, this Navigation Base is related

to an inertial reference which is derived in the Inertial Measurement

Unit (BUI). The IMIJ contains gyros whose accuracy can be up-dated by

star trackers. The Navigation Base and the IMU with its star trackers

are located in the forward end of the Orbiter„ The Orbiter Guidance,

Navigation and Control System has the capability of pointing any vector

defined in the Orbiter Navigation Base Axis System at any desired inertial,

earth fixed or orbiting target or in the direction of the local vertical.

In order to describe the pointing performance the terms "accuracy" and

"stability" are used. These terms are defined in Figure 12. Pointing

accuracy for inertial or earth referenced directions is within a * 0.5

degree (3-sigma) half cone angle,. The pointing error for continuous

pointing will increase with time due to drift of the IMU. Also, the

duration of continuous pointing is limited by the thermal constraints.

The pointing accuracy specified above when utilizing the Orbiter IMH for

Spacelab payload pointing does not include orientation alignment uncertainty

between the Orbiter Navigation Base and, for example, a Spacelab payload.

This alignment uncertainty can be greater than 2 degrees. In order to

minimize the effect of this uncertainty the Orbiter Guidance, Navigation

and Control System is capable of accepting compatible attitude infor-

mation from a Spacelab payload supplied and Spacelab mounted sensor of

comparable accuracy to the Orbiter IMU. The Orbiter Guidance, Navi-

gation and Control computer will receive and process the attitude error

signals from such a sensor. In order to meet the pointing accuracy this

sensor information must be updated to the Orbiter Guidance, Navigation

and Control computer at rates compatible with sample rates of the general
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purpose computer and consistent with the chosen method for determining

angular rates and accelerations during payload pointing. The combined

effect of quantization and noise on sensor readout must be no greater

than 30 arc seconds (1 sigma) per axis. Details of the interfaces

between the Spacelab payload supplied sensor and the Orbiter are TBD.

Utilizing this information, the Orbiter Guidance, Navigation and Control

System is capable of pointing a vector defined in the sensor-fixed

reference axis system at any direction defined above to within the

same pointing accuracy. The rate of change of this pointing accuracy

will now also depend upon the drift characteristics of the Spacelab

payload sensor.

The Orbiter Guidance, Navigation and Control computer will be able

to provide the following initialization or ephermeris data, also to

Spacelab and its payload:

a) position and velocity of Orbiter

b) attitude orientation angles and attitude rate

c) time

The specific frame, data format etc. is TBD.

Pointing Stability;

For Spacelab payload pointing utilizing the Vernier Thruster, the

Orbiter Flight Control System provides a stability of - 0.1 deg/axis.

This figure is in essence identical to the dead band of the Flight

Control System. The maximum stability rate is _ 0.01 deg/sec/axis for the

limit cycle of the control system when no Vernier Thrusters have failed.

When using the primary thrusters, the Orbiter Flight Control System is

capable of providing a stability of * 0.1 deg/axis and a stability rate
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of _ 0.1 deg/sec/axis. For pointing and/or stability requirements

beyond the capability of the Orbiter, the Orbiter is capable of accepting

compatible commands from a Spacelab payload supplied and Spacelab mounted
i

stabilization and control system.

Pointing Accuracy;

The Orbiter capability to point a vector defined in the navigation

base axes utilizing the Orbiter MI for attitude information is summarized

in Table 3 and described below:

IMU Inertial Attitude Hold: The error in pointing the Orbiter into an

inertial direction utilizing the Orbiter

IMU includes

o errors due to the deadband (+0.1 deg/axis) of the Flight Control

System

o errors due to the MJ alignment uncertainty of + 0.133 deg/axis

(3 sigma)

o read-out errors of the IMJ (+ 0.073 deg/axis, 3 sigma)

o drift rate of MJ (t 0.105 deg/hour/axis, 3 sigma)

Based upon these values, a vector defined in the Orbiter navigation

base axes may be maintained to an inertial pointing accuracy of + 0,5 deg

for durations up to 1.0 hour, subsequent to which MJ realignment is

required. Active MJ realignment can require interruption of attitude

hold for durations up to 15 minutes and the Orbiter may require maneuv-

ering to acquire the necessary stars. It is possible to realign the

MJ during the sunlit part of the orbit, .but this is a function of the

stars available to the Orbiter star tracker(s) to acquire. Pointing

duration can be extended beyond one hour by IMU inflight calibration
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(i.e. IMU realignment without interruption of attitude hold provided

the necessary stars are within the field of view of the Orbiter star

trackers).

For the second case shown in Table 3 (augmented inertial) the Orbiter

star trackers are continuously tracking a suitable star pair which

permits frequent updates of the IMLJ reference. For this case the attitude

error due to drift is essentially eliminated; thus, the vector defined

in the navigation base axes may be maintained to within * 0.44° of the

desired direction for an indefinitely long period of time (determined

by other factors such as propellant consumption, thermal conditioning

and heat rejection requirements, etc.).

Passive Attitude Control:

The Orbiter can also operate in either a free drift or (possibly,

depending upon the magnitude and direction of disturbances resulting

from crew motion and venting) a passive gravity gradient stabilized

mode to satsify acceleration levels below 10 g. A passively stable

gravity gradient drift mode (tXo-axis along local vertical) would only

experience thermal constraints on attitude hold duration for angles

between orbital plane and Earth-Sunline equal to or greater than 60

degrees. Star trackers of the Orbiter can passively keep the IMF

platform aligned to within 1 degree as long as the field of view of

the star trackers is kept on or above the local horizontal and suitable

star pairs are available. A gravity gradient attitude of a Xo-upward

along the local vertical and - Zo perpendicular to the orbital plane

would, therefore, have either no or occasional thermal constraints, and

be compatible with the star tracker field of view constraint for passive
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platform alignment.

Translational accelerations due to the atmospheric drag acting on

the Orbiter while in a free drift mode are given in Figure 13. Drift

mode translational acceleration level time histories could, however,

also be expected to be affected by other mission dependent variables

which include venting forces, disturbances from crew movement, orbit

altitude, Orbiter orientation, and attitude control changes due -to

communication requirements. Experiment timeline and crew timeline

constraints also need to be known before total meaningful attitude hold

duration capabilities and requirements can be specified.

During normal Orbiter attitude-control activities, thrusting of

the Orbiter RCS will cause slight acceleration to be exerted on Spacelab

equipment depending on its location with respect to the center of

rotation. Values are given in Table 4 for the RCS thrusters,, The values

shown are based on an Orbiter prior to the deorbit burn with a 14515 kg

(32 K Ib) cargo.

All three angular accelerations may occur simultaneously and the

linear acceleration at any point of Spacelab may be calculated based

on the distance from the Orbiter's center of gravity. This location

will vary to some extent with the particular payload weight distribution.

Crew Tasks and Crew Size;

The Orbiter crew consists of the commander and pilot who are always

required to operate and manage the Orbiter. Additional crewmen who may

be required to conduct Orbiter/Spacelab payload operations are a mission

specialist and one or more payload specialists.
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The crew size will be a function of the mission complexity and

duration, but the maximum crew is seven persons: commander, pilot,

mission specialist and 4 payload specialists.

For Spacelab flights for a continuous 24 hour operation a total

crew of 4 is required: commander and pilot to monitor and control

Orbiter and Spacelab subsystems in alternating shifts, mission specialist

and a payload specialist to serve as Spacelab crew for experiment oper-

ation in alternating shifts.

It is foreseen that for each crew-member a sleep cycle of 8 hours

is followed by an awake cycle of 16 hours. 8% to 10% hours of productive

work can be expected within 16 hours awake time. Crew cycles may be

arranged such that an overlap for all crew-menbers of approximately 8

hours will be achieved. This will give convenient time each day for the

total crew for briefings, flight plan updates, checklist reviews etc.

Crew Compartment and Accommodation;

The Orbiter crew compartment is a two-level cabin consisting of

the flight deck and the mid-deck as shown in Figure 14.

The forward area of the flight deck is dedicated primarily to

Orbiter operations during ascent and descent. It is equipped with dis-

plays, controls and two seats for the commander and pilot. These seats

are not removable.

The aft area of the flight deck (aft flight deck) contains two

seats for a mission specialist and a payload specialist during ascent

and re-entry. These seats are removed for on-orbit operations. Controls

and displays for orbiter systems operations, Spacelab subsystem oper-
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ation are located on the aft flight deck.

The layout of the aft flight deck is shown in Figure 15: Three

work stations, namely the "mission station", the "on-orbit station" and

the "payload station" can be distinguished. Furthermore, attention is

drawn to the panel R7 which is the only panel which can be accessed by

the mission specialist during ascent and descent. Figure 15 indicates

the panels which are available for Spacelab and payload. The physical

accommodation for Spacelab and its payload is summarized in Table 5.

The entire Rll and L10 panels and the Spacelab dedicated parts of the

panels A6 and A7, together with volumes associated with all these panel

areas are allocated to Spacelab payloads. However, if the instrument

pointing system (IPS) is flown, a small IPS panel will be located either

in the A6 or A7 panel.

As indicated in Figure 15 the consoles in the mission and payload

station are removable from the Orbiter in order to permit equipment inte-

gration off-line from the turn-around cycle of the Orbiter. It is en-

visaged that the Spacelab subsystem hardware in the aft flight deck is

independent of the Spacelab configuration to be flown.

In the present operational concept for Spacelab it is foreseen

that the Spacelab subsystems can be operated from the mission station
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using the Orbiter display and keyboard located in the panel Rll and from

the Spacelab integrated control panels located in panel R7. This panel

contains also provisions for switches and indicators for payload safing

function required during ascent and descent. The payload station and

part of the on-orbit station are dedicated to experiment operation.

The power for Spacelab and its payload at the aft flight deck is

350 W continuous and 420 ;W peak during ascent/descent and 750 W contin-
i

uous and 1000 W peak for *on-orbit operation. The available heat reject-

ion is compatible with the quoted power figure.

The Orbiter provides, at no weight penalty to the Spacelab payload,

28 mandays of expendables for normal operations plus 16 mandays of

expendables for rescue operations for four men and for a.duration of

4 days. In addition, volume can be provided for expendables for up to

42 mandays whose weight and volume above the outlined provisions will

be charged to the Spacelab payload. (Figure 18 gives a survey of the

items and services charged to the Spacelab payload.)

The crew compartment is connected with the Spacelab module through

a tunnel. For this purpose a tunnel adapter must be attached to the

rear end of the mid-deck. A hatch separates the crew compartment from

the tunnel adapter, tunnel and module. On top of the tunnel adapter

the "EVA airlock" is attached permitting to perform Extra Vehicular

Activities (EVA) without interrupting the connection between the crew

compartment and the module. For pallet-only missions the tunnel and

tunnel adapter are not required. For these missions the EVA airlock

can be attached to the opening at the rear end of the mid-deck at
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Xo = 576" (14.630 m) and be placed either inside or outside of the

mid-deck„

Electrical Power and Energy;

Hydrogen/oxygen fuel cells provide the DC electrical energy for the

Orbiter and Spacelab. The required fuel is stored in tank sets, referred

to as energy kits, each energy kit providing approximately 840 kWh in the

Orbiter baseline configuration. The Orbiter baseline provides only 50 kWh

of electrical energy for Spacelab use; the weight of one additional energy

kit is included in the Spacelab weight so that 890 kWh are available to

Spacelab and its payload. Volume for three additional energy kits will

be provided outside the dynamic envelope of the Orbiter cargo bay.

Further energy kits may be added, but they must be located within the

dynamic envelope and, therefore, result also in a volume penalty for the

Spacelab payload. The dry and wet weight of additional energy kits will

be charged to the landing and launch weight of the Spacelab payload,

respectively. The weight of the fuel and the energy kits has to be

accounted for in mission planning and in the assessment of the center

of gravity.

Although additional energy kits may be used to increase the electrical

energy available to the Spacelab payload, it is pointed out that the use

of electrical power must be consistent with the available head rejection

capability.

Active Thermal Control Subsystem (ATCS):

The heat generated by Spacelab and its payload is dissipated in

Spacelab supplied coolant loops, transferred to the coolant loops of

ATCS via a heat exchanger and finally transferred to space via radiators
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on the doors of the Orbiter cargo bay. The heat rejection can be supple-

mented by the operation of a flash evaporator when the Orbiter attitude

is thermally unfavorable. Vaporized water produced by the hydrogen/

oxygen fuel cell is expelled overboard through the flash evaporator.

Heat generated in the Orbiter is rejected by this process. The ATCS will

provide a nominal on-orbit heat rejection of 8.5 kW for Spacelab and its

payload with the doors of the Orbiter cargo bay open. This level of

heat rejection capability is the maximum the Orbiter can supply. It is

achieved by supplementing the basic Orbiter ATCS (6.3 kW capability)

with a heat rejection kit which is included in the basic Spacelab weight,

i.e. the increased heat rejection capability is not weight chargeable

to the Spacelab payload.

EVA And Rescue Accommodation;

The Orbiter provides the capability for Extra-Vehicular Activity

(EVA) and rescue. The equipment and expendables required to support

three, two-man EVA operations is supplied by the Orbiter. Two of these

three operations may be utilized by Spacelab or payloads for either

planned or unscheduled EVA operations, the third operation is for rescue.

There is no weight credit to Spacelab or payloads if no EVA is planned

for a flight. Additional EVA operations in support of Spacelab and/or

its payload may be provided with the expendables being provided as items

which will be charged to the weight of the Spacelab payload.

EVA operations will utilize a self-contained life support system

capable of supporting a six-hour EVA. At lease three (3) hours of

oxygen prebreathing is required; post EVA operations take approximately

1.5 hours. Mose of the first two hours of the three-hour prebreathing
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scheduled to begin 3.5 hours before the start of an EVA, can be used to

accomplish useful, non-EVA related, activities by the EVA crewmen. The

remaining 1.5 hours are used for EVA preparation.

Avionics:

The Orbiter avionics provides for: ;

a) Receiving, transmission and distribution of voice

b) Transmission of operational telemetry

c) Receiving and transmission of Spacelab data (including

payload data)

d) Transmission of commands from the ground or Orbiter to

Spacelab CDMS subsystem

e) Furnishing Guidance, Navigation and Control data to

Spacelab or its payload

f) Transmission and distribution of television signals

g) Tracking of active and passive targets

h) Transmission and reception of EVA data and voice

i) Recording (MSS-PCM recorder)

The Orbiter avionics also provide the interface between the Oribiter

and:

a) Tracking and Data Relay Satellite (TDRS) operating in

KD-band and S-band

b) Space Tracking and Data Network (STDN) during ascent and

descent.

c) Spacelab

d) EVA crewmen

e) Other space vehicles

f) Landing site facilities of the Orbiter
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Remote Manipulator System;

The Remote Manipulator System and its installations in the Orbiter

are shown in Figures 16 and 17. The Orbiter provides one manipulator

50 ft (15.240 m) in length on the left side of the Orbiter. In orbit

the manipulator is capable of removing and installing a 15 ft (4.572 m)

diameter, 60 ft (18.288 m) long, 65.000 Ib (29.510 kg) pbject. The

Remote Manipulator System in its stored position does not infringe on

the dynamic envelope to Spacelab and its payload.

The manipulator provides a light for illumination and a TV camera

for remote viewing.

If not required for a particular mission the Remote Manipulator

System may be removed to provide additional payload weight capability,

provided compensations are made for the effect on the Orbiter center of

gravity.

A second manipulator-arm can be installed if required.

The capability is provided to operate two Remote Manipulator Systems

in a series, not simultaneously. However, it is possible to hold or

lock one manipulator arm while operating the other one.

SPACEIAB SYSTEM CAPABILITIES:

The Spacelab system provides versatile services to payloads as

depicted in Figure 18. The overall system capabilities and resources

will be described below. A description of the design aspects of the

various subsystems of interest to the user is also provided.
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Flight Configurations;

The modular elements of Spacelab introduced earlier can be arranged

in various flight configurations to suit the needs of specific mission/

payload requirements and to meet Orbiter constraints.

Eight basic flight configurations are presented in detail with

respect to their physical accommodation capabilities. While other

configurations are basically possible, only these eight configurations

are under configuration control with respect to the mechanical interfaces

to the Orbiter. In addition, of these eight basic configurations, four

are formal baseline design configurations and as such are under formal

configuration control within the Spacelab project. The formal baseline

design configurations are

o Short module/9 m pallet (3 pallet segments)

o Long Module

o 15 m pallet (5 pallet segments)

o 9 m pallet (3 independently suspended pallet segments)

The hardware of the Spacelab project, however, allows all eight basic

and other possible flight configurations to be implemented by combi-

nation/deletion/addition of appropriate hardware elements.

Long Module Configuration (Baseline Design Configuration);

The long module configuration is shown in Figure 19 . It consists
/

of the core and experiment segment and provides the largest pressurized

volume for Spacelab payloads. It is accessible from the Orbiter cabin
/

through the transfer tunnel. Utility services are routed from the

Orbiter to the forward end cone feedthrough provisions and from there

into the module interior. Basic Spacelab dimensions are shown (in mm),
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as well as the Orbiter stations of the module attach fittings. Orbiter

stations Xo 660" have to be kept clear of Spacelab and Spacelab payload

equipment, since this volume is reserved for the EVA airlock and tunnel

adapter.

Long Module plus 3 m Pallet Configuration:

Figure 20 depicts the long module/3 m pallet configuration. This

configuration provides both pressurized volume for payloads and pallet

mounting area for experiments requiring exposure to space environment.

Utility services to the pallet are routed from module aft end cone feed-

through plates to the pallet.

Long Module plus 6 m Pallet Configuration:

This configuration (Figure 21) increases the pallet mounting area

by connecting two pallet segments to form a pallet train. Utility

routing is the same as for the long module plus 3 m-pallet-configuration.

Short Module plus 6 m Pallet Configuration;

A short module may be used in place of the long module to provide

the configuration shown in Figure 22 .

Short Module plus 9 m Pallet Configuration (Baseline Design Configuration):

This configuration offers the largest area which may be used in a

module/pallet configuration, as shown in Figure 23. The three pallet

segments are rigidly attached to form a single pallet train.

9-Meter-Pallet-Configuration (Baseline Design Configuration);

As shown in Figure 24, this configuration consists of three inde-

pendently suspended pallet segments. The pallet segments are placed
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along the length of the cargo bay. Utility routing between pallet

segments is not described in this paper. The "Igloo" at the forward

pallet provides a controlled pressurized environment for a set of

Spacelab subsystem equipment similar to that located in the core segment

of the module. Utility services are routed directly from the Orbiter

to the Igloo/first pallet segment.

For the accommodation of experiment structures, it must be ensured

that such structures do not act as a rigid connection between the pallet

segments.

12-Meter-Pallet-Configuration:

A potentially well suited configuration for a number of astronomy

missions is depicted in Figure 25, consisting of two independently

suspended pallet trains composed of two pallet segments each. For the

accommodation of payload structures, it must be ensured that such struct-

ures do not act as a rigid connection between the two pallet trains.

15-Mieter-Pallet-Configuration (Baseline Design Configuration) :

This configuration provides the longest possible experiment plat-

form for Spacelab payloads requiring exposure to the space environment.

The configuration shown in figure 26 consists of two independently

suspended pallet trains separated by a dynamic clearance gap. One pallet

train consists of three and the other consists of two structurally

connected pallet segments.

For the accommodation of payload structures, it must be ensured

that such structures do not act as a rigid connection between the two

pallet trains.
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MODUIAR ELEMENTS OF SPACEIAB «• OVERALL CONFIGURATION:

The pressurized module consists of a combination of either one or

two 4-m-diameter cylindrical segments of 2.7 m length. The module end

closures are conical sections of equal angle. The forward end cone is

truncated at the diameter required to interface with the crew transfer

tunnel which connects to the Orbiter. The aft end cone is truncated to

provide an opening closed by a cover plate.

One segment, the Core Segment, and the forward and aft end cones

compose the Short Module. Two segments, Core Segment and Experiment

Segment, together with the end cones compose the Long Module„ The

module exterior is covered with high-performance insulation. EVA

mobility aids are also located at the exterior.

Each segment is equipped with a flange ring of 1.3 m internal

diameter on the top to provide accommodation for the following Common

Payload Support Equipment (CPSE):

• top airlock (experiment segment only)

or

• optical window/viewport assembly

When not used for any of the above items, the CPSE opening is closed

with a coverplate.

Planned and/or contingency access constraints during ground oper-

ations (late access in vertical position) do not allow the use of the

top airlock in the CPSE opening of the core segment.
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Accommodation Capability:

All module flight configurations contain the same basic internal

arrangement of subsystem equipment, the main difference being the volume

available for experiment installation.

Subsystem equipment is primarily located forward in.the core segment.

It is installed in the first double rack on each side and on the subfloor

extending the whole length of the core segment.

Experiment equipment can be accommodated in the remaining 60% of

the core segment and in the experiment segment as shown in Figure 27.

The main floor is designed to carry the racks with their equipment

and consists of segments. Racks and floor are interconnected at the

integration site. The floor segments allow adaptability of the secondary

structure to both module sizes. The main floor itself consists of a

load-carrying beam structure and is covered by panels on the main walking

surface providing also for noise attenuation from the subfloor area.

The floor also contains openings equipped with debris traps to allow

cabin air return flow. Except for the center floor panels, all panels

are hinged to allow underfloor access in orbit and on the ground, as can

be seen in Figure 29. Major features shown are the floor with the

equipment rack assemblies pre-integrated. If experiment racks are

replaced by stand-alone experiment equipment, the same attachment

points as those for racks have to be used.

The racks are standard 19 inch racks to accommodate standard as

well as non-standard laboratory equipment. The total number of experi-

ment racks is two double and two single racks in the core segment and
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four double and two single racks in the experiment segment.

Payload equipment (with or without racks) will normally be integrated

with the main floor structure when this is removed from the module. The

complete floor/payload assembly, the "experiment train", will then be

integrated in the module.

There is only a single interface plane between the subsystem equip-

ment remaining inside the module and the experiment train for electrical

and avionics cooling loop connections after roll-in and before roll-out

of the experiment train.

Figure 28 shows a frontal view of the module. The left and right

hand sections through the module are shown in Figures 29 and 30,

illustrating the subsystem arrangement, the airlock and the rack number-

ing scheme. The control center and the work bench rack contain subsystem

equipment only. The experiment racks are shown with the location of

the experiment power switching panels and intercom remote stations.

Subsystem equipment in the underfloor space of the core segment is mounted

on a 207 m subfloor attached to the primary module structure.

While an underfloor space for experiment is available in the exper-

iment segment, only attachment points in the primary structure are pro-

vided but no subfloor.

Overhead stowage containers marked with asterisk might not be

installed during launch/descent because of late access through the core

segment CPSE opening (detailed late access provisions are currently under

investigation).
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Standard Experiment Racks:

The nominal envelope for experiment and the subsystem equipment

mounted in the standard experiment racks is shown in Figure 31. Minor

protrusions of experiment equipment beyond the nominal allowable depth

may be possible, if compatible with the experiment rear cabling, the

spacing of the cabling support struts, and the ECS ducts.

Experiments which require no standard ECS air cooling ducts, no

standard ECS fire suppression system nor rear struts for cabling attach-

ments, may utilize the entire internal depth allowed by the basic rack

structure.

The height available for experiment (and Spacelab mission dependent)

equipment is also shown.

Projections of experiments in front of the front panel mounting

plane is normally limited to knobs, switches and similar small protrusions,

Larger protrusions in front of the racks may be allowed, subject to

case-to-case restrictions due to:

• possible interference and operational constraints with the MGSE

rack-floor support braces kit,

e possible interference and operational constraints with the MGSE

late access kit.

« possible interference with the floor hinged panels

e crew habitability considerations.

• excessive aisle obstruction due to similtaneous presence of center

aisle equipment.

The following maximum equipment masses, including Spacelab mission
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dependent equipment and experiment cabling, may be accommodated in the

experiment racks:

• single rack 290 kg

• double rack (overall) 580 kg

» either side of a double rack 290 kg

(left or right)

• double rack 480 kg

(center frame removed)

Pallet Segment:

The pallet cross-section is U-shaped providing hard points for

mounting heavy experiments and a large panel surface area to accommodate

lighter payload elements. Pallet segments are of 3 m length and 4 m

width and can be flown independently or interconnected. As many as

three pallets can be interconnected to form one pallet train supported

by one set of attach fittings; whereas pallet-configurations may consist

of one to five pallet segments.

Figure 32 shows a basic pallet segment with hardpoints and typical

sandwich skin panels with inserts (not shown here). Each segment

consists of the basic structure and subsystem equipment which includes:

Mission Independent Equipment:

• subsystem and experiment electrical power busses

• subsystem and experiment data busses

• a subsystem equipment package consisting of:

1 experiment power distribution box

- 1 subsystem RAU (Remote Acquisition Units)

1 subsystem interconnection station

- 2 experiment interconnection station
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Mission Dependent Equipment:

• up to 4 experiment RAU' s

• cold plates and thermal capacitors

• plumbing

• thermal insulation blankets

It is currently foreseen to mount the mission independent subsystem

equipment package on experiment cold plates located on each pallet seg-

ment. It has to be pointed out, however, that it might not be required

to always fly a complete basic subsystem package on each pallet segment,

depending on specific experiment requirements.

Igloo/Pallet Front Frame;

In pallet-only configurations, subsystem equipment necessary for the

operation of Spacelab is located in the "Igloo" which is mounted to the

front frame of the first pallet segment. The Igloo, as shown in Figure 33

is a pressurized cylinder equipped with a removable bulkhead providing

full access to the interior. The weight of an equipped Igloo is about

640 kg, the usable volume is 2.2 n?. Thermal control of subsystem

equipment is achieved by cold plates which are connected to the pallet

freon cooling loop.

A set of Spacelab subsystem equipment, similar to a set which in

module only and module/pallet configuration is integrated within the

module, is installed within the Igloo in the pallet-only mode. Operator

interface equipment, such as CRT's, keyboards, TV monitor and Spacelab

control panels are located in the Orbiter aft flight deck.
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The following is the list of the equipment (basic and mission depen-

dent) which is located in the Igloo:

• 3 computers (subsystem, experiment and back-up computer)

• 2 I/O units (subsystem and experiment I/O)

• 1 mass memory

• 2 subsystem RAU's

• 1 subsystem interconnecting station

• 1 emergency box

• 1 power control box

• 1 subsystem power distribution box

• 1 remote amplifier and advisory box (RAAB)

o 1 high rate multiplexer (HRM)

In addition to the Igloo the following major subsystem equipment

is also mounted to the front frame of the first pallet segment.

• 1 subsystem 400 Hz inverter (only in pallet-only configurations)

• 1 experiment 400 Hz inverter (only in pallet-only configurations)

• freon cooling loop components

Thermal control of the 400 Hz inverters is also achieved by cold

plates connected to the pallet freon cooling loop,

Transfer Tunnel:

The transfer tunnel (NASA furnished) will enable crew and equipment

transfer between the Spacelab module and the Orbiter in a shirtsleeve

environment. It is capable of functioning under orbital as well as

ground operation conditions. It will have a minimum of about 1 m clear

diameter, sufficient for handling a box of 0.56 x 0.56 x 1.27 m size
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and moving of a 1.95 m tall crew member with a maximum elbow width of

0.75 m. The same internal atmosphere as in the Spacelab module is

provided. Lighting is installed in the tunnel, as well as mobility

aids for internal movements.

Figure 34 shows in a simplified form the mode of interfaces with

the Orbiter and the Spacelab module. The tunnel adapter/airlock combi-

nation is provided by the Orbiter.

The tunnel consists of a S-shaped tunnel segment, a number of

cylinder segments to accommodate different flight configuration locations

and flexible elements for dynamic decoupling and tolerance compensation.

The baseline tunnel hardware will allow to assemble the five basic

module-only/module*pallet configurations.

COMMAND AND DATA MANAGEMENT SUBSYSTEM:

The Command and Data Management Subsystem (CDMS) provides a variety

of services to Spacelab experiments and subsystems.

These services include:

• data acquisition

• data processing

• data formatting

• data transmission

« recording

• large volume bulk-storage

• monitoring

• display
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• command and control capability for experiments

• command and control capability for subsystems

• audio intercommunication

• caution and warning

• provisions for closed circuit television

The equipment provided by the CDMS to Spacelab experiments is

listed in Table 6.

Figure 35 presents a functional block diagram of the CDMS0

Experiment outputs delivering housekeeping and low speed scientific

data that need further on-board processing, are sampled by Remote

Acquisition Units (RAU's) and transferred to the experiment computer via

interconnecting Stations (IS), the experiment data bus, and the Input/

Output (I/O) unit.

On the same path, serial PCM and On/Off commands are transferred

from the experiment computer, via the RAU's to the experiments.

The RAU User Time Clock delivers precision reference timing

information.

Typical functions for on-board processing of scientific data by

the experiment computer are quick look analysis, data compression, etc.

Programs for control and processing of experiments and subsystems

exceeding the capability of subsystem and/or experiment computer can be

loaded at execution time from the Mass Memory Unit (MMU)0

A backup computer, which is primarily intended as backup for the

subsystem computer, is also available to experiments in case of experi-
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merit computer failure. The backup computer is normally filled with sub-

system programs. Before operating as experiment computer the core memory

has to be loaded with the appropriate experiment software from the MMU.

The subsystem and experiment branches of the CDMS are identical

and are composed of the same components, (computer, I/O unit, data bus,

and EAU modules) except the user time clock capability which is unique

for experiments. However, it should be rioted that there is no direct

link between the subsystem and experiment branch.

Experiment and subsystem monitoring and control is in principle

automatically performed by CDMS equipment. These functions are initiated

automatically through pre-programmed computer sequences stored in the

MMD, or semi-automatically by inter-action of the keyboard/DDU with the

computer, or by telecommands through the Orbiter uplink (2kb/s).

Data, processed by the experiment or subsystem computer can be

displayed on Data Display Units (DDU's) having vactor display capability.

Low bit rate scientific and housekeeping data processed by the

experiment computer can be transmitted by the Orbiter downlink via the

Tracking and Data Relay Satellite System (TDRSS).

Medium and high rate scientific data are acquired by the High Rate

Data Acquisition part of the CDMS. This part consists of the High Rate

Multiplexer (HRM), the High Rate Digital Recorder (HRDR), the Orbiter

Payload Recorder and the Voice Digitizer. This system is able to multi-

plex up to 16 experiment input channels for direct downlink via the

Tracking and Data Relay Satellite System or for recording during non-

transmission times of the Orbiter KIJ-Band System (HRDR or the Orbiter
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Payload Recorder). The recorded data may be interleaved with real time

experiment data for transmission to ground.

The Voice Digitizer will convert analog Spacelab audio signals

into a HRM compatible digital form to allow voice tagging of data

multiplexed by the HRM.

Spacelab provides the necessary electrical interfaces for experiment

provided CCTV equipment to form an extension of the Orbiter CCTV. There

is space for a TV monitor in the control center rack and an electrical

interface for a video camera with EIA standard signal output characteristics

(Monitor and camera have to be experiment provided).

The spacelab provides a 4.2 MHz analog channel for use by the

experiment, e.g. to accommodate non-EIA-standard TV signals.

CCT and analog signals are transmitted to the ground through the

same analog channel of the KLJ-Band down link, TDRSS non-coverage times

are not bridged by an analog recorder.

Duplex voice links for onboard or Orbiter ground communication are

provided by the Intercom System.

Emergency, warning and caution conditions are detected and displayed

by the Caution and Warning System (C & W).

Low Rate Data Acquisition and Control;

Low rate data acquisition from experiments and experiment control

is performed by the experiment computer through the experiment I/O unit,

the experiment data bus and the experiment RAU's. Although the experi-

ments interface only with the RAU's, the following paragraphs describe
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the complete data and command transfer in more detail. The purpose of

the detailed description is to provide visibility into a system that

has to be shared with many users constraining each other.

The low rate data link is designed to achieve a word error rate

(WER) ^ 1.7 x 10"7 for the data flow between any RAU digital input and

the Orbiter PCM Master Unit.

Remote Acquisition Unit:

The RAU's are the principal interfaces for the bidirectional link

between experiments and the CDMS for acquisition of low bit rate digital

data, analog data and commands. The data exchange between RAU's and the

I/O unit is performed via a simplex serial bus with a 1 Mb/s clock rate.

The data are encoded in a self-clocking bi-phase code (Manchester II).

Each experiment RAU incorporates the following user interfaces:

Inputs: 128 flexible differential inputs for analog or discrete signals

4 serial PCM data channels with associated clocks,

code NRZ-L

Output: 64 ON/OFF command channels

4 serial PCM command channels with associated clocks,

code NRZ-L

1 User Time Clock 1024 kHz

1 User Time Clock Update, 4 pulse cycles/s pseudo-synch-

ronized with on-board GMT

A block diagram of the RAU is given in Figure 36.
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The RAU data acquisition is based on a software controlled concept.

The software for subsystem data acquisition and control is provided by

Spacelab. The software for experiment data acquisition and control has

to be provided by the experimenter in accordance with his requirements.

Applicable portions of the Spacelab software can be used by the experimenter,

The RAU's will be scanned periodically with periods of 10 ms, 100 ms,

or 1 s. Each scan cycle will be initiated and controlled by the General

Measurement Loop which is part of the Spacelab computer software. The

experimenters may design their own software to generate additional

measurement cycles using the operating system task scheduler. This

scheduler will accept priority levels and queue to experiment software

requests for data and command transmission.

Experiment RAU's can be connected to the experiment data bus at a

number of interconnecting stations (IS) in the module and on each pallet.

There are 2 interconnecting stations in the core segment, 3 in the experi-

ment segment, and 2 on each pallet segment.

Each station accommodates two RAU's. The Spacelab baseline contains

8 experiment RAU's. The electrical characteristics of the experiment

bus allow the accommodation of up to 22 RAU's although the computer

allows the address of up to 32 RAU's.

In the Spacelab baseline standard locations for RAU's are provided

in the lower part of the experiment rack. However, the concept allows

the users to integrate RAU's together with his experiment equipment, if

he uses his own racks and/or experiment equipment mounted directly to

the center aisle or to the pallet.
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In every case the user has to take care that

• the cabling between RAU and Interconnecting Station is below 5 m

• the environmental specifications of the RAU are met.

Computer:

The CDMS has three identical MITRA 125 S general purpose computers

with characteristics as shown in Table 7.

These computers have the inherent potential of an interrupt capa-

bility. Eight hardware interrupts are wired from the computer to the

I/O unit. Only four of these are presently required to support I/O unit

activities. At the experiment computer experiments can access to the

remaining four interrupts to enhance experiment use of the CDMS. The

basic software of CDMS is non-synchronous and can be adapted to handle

these interrupts.

The three computers are used as S/S Computer, Experiment Computer

and Back-up Computer. S/S and Experiment Computers are connected to the

dedicated CDMS equipment each via their own I/O unit, Data Bus and RAU's.

There is no direct link between each computer.

The .third computer is available as a back-up either for the S/S or

the Experiment Computer and can be switched over manually.

Due to the concept of routing all S/S and experiment peripherals

through dedicated I/O units, this switching connects the Back-up Computer

to the appropriate I/O unit and all peripherals.

Normally the Back-up Computer is loaded with subsystem software

(operating system and application software) since a S/S Computer failure
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is more critical with respect to the overall performance of Spacelab.

However, in case of Experiment Computer failure, the experiment software

may be loaded from the Mass Memory Unit (MMU) by an operator command.

In the Module or Module/Pallet configuration, the computers are

located in the Work Bench Rack. The location in the Pallet-Only con-

figuration is the Igloo.

The computer facilities allow general purpose processing by user

provided software written in HAL/S or another appropriate language for

such purposes as:

• Checkout of Experiments

• Sequencing of Experiment Operations

• Monitoring and Control of Experiments

• Processing of DATA Acquired by Experiment RAU's

Examples of Data Processing are:

• Filtering

« Data Reduction

• Histograms

• Averaging

• Interpolation, etc.

The processed data may be delivered back to experiments, displayed

on-board or transmitted to ground, depending on the mission requirements.

For experiment sequencing the user may provide several program

packages for each experiment stored in the MMLF. Depending on actual

experiment results or data and information from ground via keyboard

49



entries or directly via uplink commands, a running sequence of operation

steps may be stopped or changed or a new program may be initialized to

be executed in the Experiment Computer.

INSTRUMENT POINTING SYSTEMS:

The Instrument Pointing Subsystem (IPS) will be delivered under the

same general terms as the Spacelab and will be available for use on the

second and subsequent flights.

IPS Description:

The Instrument Pointing Subsystem (IPS) provides precision pointing

for payloads which require greater pointing accuracy and stability than

is provided by the Orbiter. The IPS can accommodate a wide range of

payload instruments of different sizes and weight.

The Gimbal System (shown in Figure 37 ) is attached to the payload

when on-orbit, and performs the control maneuvers required by the obser-

vation program. During launch and landing the gimbal system and payloads

are separated, whereas the payload is supported by the IPS Payload Clamp

Assembly. The gimbal system comprises the following assemblies and

subassemblies:

• 3 Bearing/drive units

• payload/gimbal separation mechanism

o replaceable extension column

• soft mount with soft mount clamp

o emergency jettisoning device

• lower support structure

9 thermal control system
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The three identical drive units are arranged in such a way that

their axes intersect at one point. Each drive assembly employs three

wetlubricated ball bearings, two brushless DC-torquers, and two single

speed/multi-speed resolvers. The design of the drive assembly includes

a main shaft, and auxiliary shaft and a load by-pass mechanism which

allows the loads occurring during the ascent and descent to be taken

by the assembly housing without the need for additional clamping devices,

while at the same time off-loading the ball bearings. All electrical

services for IPS and payload functions are carried across each drive

unit by a cable follower device consisting of two flexible flatband

cable bundles wound in opposite directions.

The soft mount consists of a radially symmetrical arrangement of

six spring/damper units which reduce the attitude disturbances caused by

Orbiter thruster firings, crew motions, etc. Damping without static

friction is achieved by employing two metal bellows, between which a

liquid is pushed to and from through an orifice. During ascent and

descent the soft mount is clamped, forming a rigid connection between

gimbal structure and pallet. A replaceable extension column between

the soft mount and the gimbal support structure, can be changed between

missions to adjust the gimbal point of rotation for particular payload

requirements.

Pointing and Stabilization:

The IPS optical sensor package includes the capability to have two

roll sensors LOS at a skewed angle of either 45 degrees or 12 degrees

with respect to the LOS of the centrally mounted optical sensor. The

LOS's of all three optical sensors are arranged in one plane. Provision
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is also made for the mounting of a light baffle system, designed for

specific mission conditions, at the aperture of each optical sensor but

structurally decoupled from the sensor.

The IPS provides 3-axis attitude control and stabilization for experi-

ments. The characteristics of nominal 2000 kg and 200 kg payload are

given in Table 8 and these are used as design reference payloads except

when a requirement specifically states otherwise. Error requirements

apply during solar and stellar fine pointing of the IPS, with the Orbiter

in either an inertially stabilized mode or a free-drift mode with angular

rates up to 10 deg/min with respect to inertial space. The values of

pointing accuracy and quiescent stability error mean, in each case, that

the probability of the error being less than the required values is 67%

(see Figure 38). Bias error will include all sources of error with time

constant equal to or greater than one orbital period. The pointing and

stabilization characteristics are summarized in Table 9 and are presented

in more detail in the following paragraphs.

Pointing Accuracy:

The pointing accuracy of the experiment LOS with respect to a refer-

ence star or an idealized solar disk is less than 2 arc-sec (design goal

0.8 arc-sec) in the two axes perpendicular to the experiment LOS and less

than 40 arc-sec (design goal 15 arc-sec) in roll about the experiment LOS.

Quiescent Stability Error:

The quiescent stability error (achieved when there are no disturbances

from the Orbiter) will be less than 1.0 arc-sec (design goal 1.6 arc-sec)

in roll about the experiment LOS. These values apply for all angles
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within the LOS range and for both the nominal 2000 kg and 200 kg payloads.

Disturbance Response Errors:

The disturbance errors discussed herein are defined as including the

quiescent stability error and apply for the nominal 2000 kg payload with

the IPS located at the forward end of a five pallet train and pointed to

any attitude within the LOS range. Since the disturbance error for a

given input disturbance varies significantly with IPS location and point-

ing direction, the disturbance response error values corresponds to worst

case values.

For a nominal 200 kg payload the distrubrnce error is expected to be

2 or 3 times higher. Assuming similar shape and mass distribution, smaller

payloads will, in general, experience larger errors than larger payloads.

Although smaller payloads will have closer e.g. locations with respects

to the gimbal axes, the lower moment of inertia being the dominating

parameter, will result in a higher sensitivity to Orbiter disturbances.

Man Motion Disturbance

The disturbance error (peak value) due to a standardized man motion

disturbance (corresponding to a typical wall push-off by the crew) is less

than 3 arc-sec (design goal is 1 arc-sec) in the two axes perpendicular

to the experiment LOS and less than 10 arc-sec (design goal is 4 arc-sec)

about the roll axis.

Orbiter Limit Cycle Disturbance:

The limit cycle errors (peak value) arising in each axis due to

Shuttle limit cycle motion of t 0.1 degree and 30 m sec duration thruster

firing are not greater than those caused by man-motion disturbance, for
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the same payload and IPS configuration.

Stability Rate:

During fine pointing, peak stability rate is less than 2 arc-min/sec

for a nominal 2000 kg payload. This is an instantaneous value occuring

during the response of the IPS to a man-motion disturbance; a typical

value during undisturbed quiescent pointing is TED.

Pointing Range:

The IPS has a LOS pointing range of at least steradians without

payload.

The range of roll angle about the experiment LOS is at least

TT radians at any position within the TT steradians LOS pointing range.

In order to prevent the payload from contacting any surrounding equipment

due to error or failure, the IPS contains a redundant system for controlling

angular range and rate. This must be adjusted for the configuration of

surrounding equipment on each mission, and since a further angular range

is required in order to account for dynamic effects, the achievable LOS

range and allowable rate are restricted to less than the maximum as

shown in Figure 39.
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Figure 2. Spacelab external configuration within the Orbiter bay.
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(para 2.6.1.6)

Zo = 427 tnch (10.846 m)

Zo = 400 inch (10.160m)

Figure 6. Field of view and clearance angles of Orbiter.
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ORBITER NAVIGATION BASE

Overall pointing error envelope (half
cone angle) is described by the term
"accuracy". Actual pointing direction
remains within indicated envelope
with a certain probability expressed
by a sigma value. Stability errors
and long term drift effects are in-'
eluded.

Stability error envelope (half cone
angle) is described by the term
"stability". It is the deviation
during a short term interval. It is
a "dynamic" error which results
from deadband and other control
system problems. Long term drift
effects are not included.

Figure 12. Definition of Orbiter pointing accuracy and stability.
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Figure 13. Effects of atmospheric drag on the Orbiter.
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Figure 14. Crew compartment concept.
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Figure 20. Long module plus 3 m pallet configuration.
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Figure 21. Long module plus 6 m pallet configuration.
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Z0305

. 134.7

-Zo 414"
Zo 4OO"

Figure 22. Short module plus 6 m pallet configuration.

435.32

20 305"

Figure 23. Short module plus 9 m pallet configuration.
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3351,18

Z.355'-

Zo 305'

Figure 24. 9m pallet configuration.

12865.78

112O.98

Zo 305"-

2875.2

i—i HJ,
; ' i i i . f i

§

il
— Z.4U"
— Z.UJO"

c o n

Figure 25. 12 m pallet configuration.
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r"

( D O

2875.2 „ J22

Figure 26. 15 m pallet configuration.

HIGH QUALITY
WINDOW

OVERHEAD I VIEWPORT
STOWAGE CONTAINER

AIRLOCK
AFT END CONE VIEWPORT

') if no racks are foreseen

Figure 27. Internal accommodation layout.
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OVERHEAD STRUCTURE

CONTROL

CENTER

RACK

CABIN AIR DUCT

ll

/

/

/

// AIRLOCK V

/

v-

\
\

•\
\ \
\ —
\

WORK BENCH

RACK

MAIN FLOOR EXTENSION

Figure 28. Module frontal view (end cone removed),

SMALL EXPERIMENT
ASSEMBLY .

VIEVn>ORT

AFT FEEDTHROUGH

Figure 29. Sectional view port side.
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SMALL EXPERIMENT [fl I l
VENT ASSEMBLY II ^ n I I 1 I

'I >
OVERHEAD STOWAGE CONTAINER

DOUBLE RACK ,. DOUBLE RACK . SINGLE

VIEWPORT

AFT FEEDTHROUGH

— FORWARD END
CONE

Figure 30. Sectional view starboard side.
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NOMINAL

ALLOWABLE ENVELOPE

v
£!v:̂ -><3 ADDITIONAL ENVELOPE

AVAILABLE TO EXPERIMENTS REQUIRING
NO STANDARD ECS STRUTS FOR CABLING
ATTACHMENT, NCR STANDARD FIRE
SUPPRESSION SYSTEM

THIS AREA IS ONLY AVAILABLE

FOR PAYLOAD CABLING/LINES

AND FOR POSSIBLE MINOR

PROTRUSIONS TO BE
EVALUATED CASE BY CASE

WITHOUT MIDDLE FRAME:

3) REDUCED UP TO 687

4) MINCR PROJECTION INTO
EXPERIMENT ENVELOPE CF
MIDDLE FRAME FITTING
ACCORDING WITH FIG. 4.1-8

WIDTH OF PAVLCAD ENVELOPE:

1 . STANDARD SiNGLE RACK 4=1

2. STANDARD DOUBLE RACK: 2 x 451
(WITHOUT MIDDLE FRAME: 540'

Figure 31. Nominal experiment allowable envelope inside the racks.
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Figure 32. Pallet segment.
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EPDB

Cold Plate

2 nd
Accumulator

(not yet baselined)

400 Hz Inverters

Freon Pump & Accumulator

Figure 33. Igloo and front frame.

Orbiter
Space lab
Interface
Plane

EVA
Airlock

Tunnel
. Adapter

-Plane of Most Forward Spacelab Configuration

Modular, Rtgid
Light Alloy Cylindrical
straight Tunnel Element j/

S-shaped
Tunnel Segment

Orbiter
Cargo Bay

Figure 34. Transfer tunnel.
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TO I/O UNIT RAU TO EXPERIMENT

UJ

Oo.

1 USER TIME

CLOCK BUS

1 COMMAND LINE

1 DATA LINE —•

1 CMD LINE RED.—

1 DATA LINE RED.

2 POWER ON —

2 POWER OFF —

1 POWER FEEDER

1 POWER ON IND.

DC

DC
DC

DC

DC

&
^}
1

USER TIME
CLOCK
MODULE

EXPERIMENT
MODULE

INTERFACE

MODULE

CORE
MODULE

\

POWER

SUPPLY

MODULE

•&
-C5

-c?
•C5

-C?

$

^j
•>-

-O

1 USER TIME CLOCK

1 USER TIME CLOCK UPDATE

4 SERIAL PCM COMMANDS

4 SERIAL PCM CLOCK

4 SERIAL PCM DATA

4 REQUEST

4 SERIAL PCM CLOCK

64 FLEXIBLE INPUTS

32 ON/OFF COMMANDS

64 FLEXIBLE INPUTS

32 ON/OFF COMMANDS

1 MEASURING POINT

<
ce

oe
UJ
a.
X
UJ

LEGEND:

3C TRANSFORMER COUPLING

"V SWITCH

RELAYS SWITCHING

>f DIODE COUPLING

-{>- SINGLE ENDED OUTPUT

DIFFERENTIAL FLOATING INPUT

DIFFERENTIAL COMPLEMENTARY

OUTPUT

Figure 36. Remote acquisition unit block diagram.
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Error Envelope

Pointing Accuracy

Stability Error

LOS Angle

Pointing

Accuracy

Target

- Stability

Time

Figure 38. Error definitions.
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Elevation
Gimbal Angle

50°

40'-

301'

20'J

10"

-IT Ster. Field Of View (FOV)

o c.f.0
O 10° 20° HO 40" 50" .-,!)'

Figure 39. Two axes range limiting curve.

Cro-r; r.'lpv/ition
ljril Anrjlo

Gimbal Rate

[°/ min]

imiting Curve

• Range Rate Curve for Tracking
on C.irth fixed Tnrget
(185 km Orbit )

%

\
•

10° 20° 30° 40°

Figure 40. Eange-rate limiting curve.
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TABLE 1: WEIGHT AND VELOCITY INCREMENTS OF QMS-KIT

Number of
QMS-kits

1

2

3

Dry Weight
kg (Ib)

TBD

TBD

TBD

Wet Weight
kg (Ib)

6466 (14255)

12533 (27631)

18601 (41009)

Veloc i ty increments
m/sec ( ft/sec)

for 14 515 kg
(32 000 Ib)
cargo weight

- 183 (~ 600)

- 366 (-1200)

- 549 (• 1800)

for 29 484 kg
(65 000 Ib)
cargo weight

152.4( 500)

304.8 (1000)

457.2 (1500)

TABLE 2: ECCENTRIC ORBITS ACHIEVABLE

(Spacelab including Us payload: 14515 kg, 32000 Ib)

Inclination

28.5°

55°

104°

direct de-orbit

apogee

in km (n.mi.)

2500

(1 350)

2050

(1100)

280

( 150)

number of
QMS-kits

3

2

0

indirect de-orbit

apogee

in km (n.mi . )

1 15O

( 620)

950

< 510)

550

( 300)

number of
QMS-kits

3

2

0

Perigee 185 km (100 n.mt.)
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(TABLE 3: POINTING ACCURACY (HALF-CONE ANGLE) UTILIZING ORBITER IMU

Type of Pointing

Inertial

Augmented Inertial

Earth-Surface-Fixed .
Target*

Orbital Object

Local Vertical*

Pointing Accuracy
(3 Sigma)

(Half-Cone Angle)

+ 0.5 deg

+ 0.44 deg

+ 0.5 deg

TBD

+ O.5 deg

IMU-Drift Rate
(3 Sigma)

0. 1 05 deg/hr/axis

0

0.105 degAir/axis

TBD

0.105 deg/hr/axis

Duration Between
IMU Alignments

1 .0 hours

N/A

0.5 hours

TBD

1 hour

^"racking with TORS, 1OO n mi. (185 km) circular orbit.

TABLE 4: ORBITER RCS MAXIMUM ACCELERATION LEVELS

Direction

RCS System

•frimary Thruster

Vernier Thrusters

2

Translattonat. m'SGCV
'• (ft/sec2)

+ ".

0.18
(0.6 )

0

- xr

0.16

(0.5 )

0

±x-

0.22

(0.7 )

O.O021
P.0070)

+ z,.

0.4
(1.3)

0

- z,.

0.34

(1.1 )

0.0024
(0.0080)

2)
Rotational, degrees/sec

± +

1.2

0.04

+ 8

1.4

0.03

- 8

1.5

0.02

±'+'

0.8

0.02
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TABLE 5: PHYSICAL ACCOMMODATIONS ON THE AFT FLIGHT
DECK FOR SPACEIAB AND ITS PAYLOAD

Location
at Aft Flight Deck

• Panel R 7

• Mission Station R 1 2

• On-orbit Station
(Part of A6 &A7)

• Paytoad Station
(L10, L11, l_12)

• Additional Volume
for electronics
<l_16, L17, t_18)

T o t a l

Panel Depth

Inch (m)

8 (0.203)

20 (0.5O8)

5-10 (0,127
- 0.254)

20 (0.508)

-

-

Panel Width

inch (m)

TBD

19 (0.48)
Size M

19 (0.48)
Size G

19 (0.48)
Size M

Panel Area

2 2
ft (nO

2.3 (O.21)

2.8 (0.26)

3.7 (0.34)

8.3 (0.77)

-

17.1 (1.59)

Volume

ft3 (m3)

1.5 (0.042)

4.6 (0.130)

2.4 (0.068;

13.8 (0.391)

1.3 (0.036)

23.6 £0.668)

Mass 1)

Ibs (kg)

45 ( 20.4)

138 ( 62.6)

72 ( 32.6)

414 (187.8)

39 ( 17.7)

708 (321 . 1 )

3 3
Note 1: Maximum loading based on 30 Ibs/ft (480 kg/m ).

TABLE 6: CDMS. EQUIPMENT FOR EXPERIMENTS

Basic Space lab Mission Dependent

1. £xp. Daca Bus

2. Mass Memory

3. Keyboard/Data Display Unit (2)

4. Intercom

1. Experiment Computer

2. Experiment I/O Unit

3. Experiment RAU 's (a total)
(22 muy bo nc-comm.3c!.'<:cci)

4. Keyboard/Data Disclay
Unit (1)

5. High Rate Multiplexer

6. Voice Digitizer

7. High Rate Digital Recorder
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TABIE 7: COMPUTER CHARACTERISTICS

f-Virnvus

OH;rand:.: fl, 16, 32 and 2 4 + 8 ("floating points) Dtts

Instructions: 16 bits

Control Unit

Micro-programmed control unit

Cycla time 300 ns

Micro-interrupt capability

Micro-instructions 4 K words of 16 or 20 bits

Floating Point 32 Bits (24 +• 8)

Add/Sub Direct 5 r s

Indirect 6 p s

Mul/Div Direct 6 r s

Indirect 7 ji s

Gibson Mix 3.5 * 10 Operations/Second

Instruction Set

• Number of instructions 128

• Format 16 bits

Immediate 8 bits

• Addressing capability

" Direct 256 Bytes

Indirect memory double word

Relative 5'2 bytes

Based 256 bytes

Indexed 64 K bytes

• Type

Call and store

Logic and comparison operations

Shift operations

Fixed-to-floating and float ing-to-fixed
conversions

Conditional and unconditional jumps

Addressing Modes - •

Immediate, direct, indirect,
/-elative to a oase, indexed, relative
:o a program counter, half word,
word, cnaracter, double word

Addressing capability

Byte, word, double vwd

Input/Output

• Interrupts

Number of external

- Numoer of internal

- Number of software

Interrupt control

Priority scheduler

• Data transfer mode

Program controlled

data race

no of addressable periferals

Direct memory access

• data rate

control

• Word length

• ' Discretes

• Real time work

8 Levels
5 Levels

Program dependent .

Microprogram -f Software

Software

60 US /word

65 k

4OO to 60O K word/sec

direct

16 bits plus 1 parity
+ 1 protection

8 inputs and 8 Outputs

i r s to S32 msl

Memory

Number of Adressable Registers

4 Specialized registers

€2 Dedicated registers

7 3ase registers

Type:

Capacity:

Modularity:

Cycle time:

Addressing^
Quantum:

Access time:

Ports :

:8 mil ferrits cores 2 1/2

64 K 1&-bit words Tplus 1
Bit)

16 K words

920 ns

Byte, word

420 ns

2

D - configuration

parity bit and 1 protection

Computing Soeed

Fixea Paint =6 Bus

Add/SuO Direct 2

indirect 3

Mul/Div Direct A

Indirect 5

Fi*eC Pjm: 32 Bits

A.ld/SuD Oir*ct 5.5

Muf/Oiv Diret: 9.3

fr-direc: 9.3

rs

r1*

r3

f s

MS
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TABLE 8: CHARACTERISTICS OF NOMINAL 2000 kg AND 200 kg PAYLOADS

Mass

Dimensions

Moment of inertia aboul payload CG:

about axis perp. to LOS

about LOS axis

CG offset from center of rotation of gimbal axes:

along LOS

perp. to LOS

Structural characteristics frequency (TRD mode)

LARGE PAYLOAD

2000 kg

2 m 0 x 4 m

1 200 kgm2

1000 kgm2

2.5 m

O.30 m

TDD Hz

SMALL PAYLOAD

200 kg

1 m 0 x 1 .50 m

20 kgm2

. 25 kgm2

1 .50 m

0.10 m

TBD Hz

TABLE 9: POINTING AND STABILITY CHARACTERISTICS

Bias Error

LOS

ROLL

Quiescent Stab. Error

LOS

ROLL

Man Motion Dist. Error

LOS

ROLL

Stability Rate (max. )

Pointing Range

LOS

ROLL

Slewing Rate (max. )

Requirements

2 arc sec

40 arc sec

1 arc sec

3 arc sec

3 arc sec

10 arc sec

2 arc min/sec

TrSter.

TrRad.

2. 5 deg/sec

Goals

0. 8 arc sec

15 arc sec

0. 33 arc sec

1.6 arc sec

1 arc sec

4 arc sec

./.

N/A

1 sigma

1 sigma

1 sigma

1 sigma

peak

peak
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APPENDIX

SHUTTLE AND SPACELAB SCHEDULES

(As presented by Kenneth S. Clifton)

Flights of the Shuttle spacecraft will commence in 1979 with the

first of six Orbital Flight Test (OFT) missions. A limited amount of

experimentation will be accomplished on OFT flights 2 through 6, brief

profiles of which are presented in Table A-l. An Announcement of

Opportunity has already been released to the scientific community with

a proposal due date of December 3, 1976. . Likewise, the Announcements

of Opportunity have been released for the First and Second Spacelab

missions with proposal due dates of June and December 1976. Both of

these Spacelab flights will occur in 1980. Spacelab 1 will place an experi-

mental emphasis on the atmospheric sciences, while astrophysics will be

emphasized on Spacelab 2. Spacelab 3, to be launched in 1981, is expected

to emphasize space processing and life sciences. No Announcement of

Opportunity has yet been released for this flight.

Table A-2 portrays a summary of typical missions to be flown in

the years 1980-1982 in addition to those already specified. It should be

emphasized, however, that the table represents only a typical mission

plan for the early Shuttle flights in the years 1980-1982. The definitions

of many of the payloads included in this payload model are limited at this

time and subject to change. However, the missions shown are represen-

tative of the types, frequency, and cargo mixes during the period considered.

More definitive data for each individual mission will be prepared as payload

and mission planning evolves. At present it is envisioned that a general

Announcement of Opportunity for the Spacelab missions will be issued on

an annual basis. It might be noted that Spacelab payloads will be flown
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at monthly intervals by 1982, with general Shuttle missions launched

at the rate of two per month. Also, with the use of various upper

stages, a variety of orbits may be achieved, including synchronous

orbits and highly elliptical orbits, thus increasing the versatility for

orbital experimentation.

86



"

'

cow
J
M
pt)

Qt-< PS
1 PL.

H
W PCj am H
^4 f^EH pt*

H

CO
pj
w
H
H
2
w
P̂L,

Has
o
M

^

O
co
j3
CJ
(-,
cO

O
00

r&
CD
Pn

<7l
t«>»

o
cu
Q

p^

4-1
o.
(U

CO

CTl
p^

^T-H

3

0)
4J
CO
Q

CJ
a
3
CO

Q
pa
H

t**
LO
|

o
m

r*>.
m
I
o
m

o
-a-
I

CM
CO

o
^f

1
CM
CO

s-̂

60
0)
Q

c
o
•H
U

s
•H
rH
Oc
H

m
m
I ^CM tN

CM CM

*v^ fed
CM CM
CM CM

^d N î
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SHUTTLE ENVIRONMENTAL PARAMETERS

R. Naumann
Space Sciences Laboratory

Marshall Space Flight Center

(No paper submitted for publication)

Reference can be made to the following documents:

Space Shuttle System Payload Accommodations, JSC 07700, Vols. 10
and 14, Lyndon B. Johnson Space Center, NASA, Houston, Texas, 1975.

92



'I N.8 1-24131^
A LOW LIGHT LEVEL TELEVISION SYSTEM

Be Jc Duncan
Marshall Space Flight Center

A proposal has been submitted in response to the announcement of

opportunities for Skylab I involving low-light-level imaging techniques.

While the observational objectives are not necessarily pertinent to

cometary experimentation and observation, the instrumentation possibly

would be, and is potentially available if the proposal is successful.

Dr. Steve Mende of LMSC is the principal investigator, with

Dr. Bob Bather of Boston College, and the following MSFC personnel as

co-investigators: Drs. Robert Naumann, Gary Swenson, and David Reasoner

as well as Stuart Clifton and the author. The proposed observations

are of natural and induced atmospheric glows and near vehicle aerosol

distribution.

A dual detector system is proposed (see figures 1 & 2) mounted on

a Z-axis gyrostabilized gymbal system which is under computer control

for pointing and tracking. One channel is a low resolution array of

10 x 10 photodiodes on the rear of a microchannel plate (MCP) intensified.

The system field of view is 4 degrees with folded reflective optics

having a 5-inch aperture. A pair of filter wheels allows a choice of

interference and neutral density filters. Not shown in Figure 1 is the

capability to insert a narrow-band tunable birefregent filter and

another filter wheel for blocking filters. ' . .

The detector operates in a discrete pulse counting mode with each

register position capable of storing up to 21" counts. Sampling rates

of up to 1000 per sec are possible. The data is stored on digital

magnetic tape.
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The other channel utilizes an intensified SEC video tube operating

in an integration mode (i.e., integration on the SEC target). It has an

identical 4 degree field of view optical system and, in addition, a

20 degree field of view refractive optical system is selectable via a

flip mirror. Quartz optics allows ultraviolet observations down to

200 nm. Integrations of up to 1 second are possible on the SEC target.

This single frame of inherently analog data is digitized (8 bits/pixel)

and placed into a solid state memory from where it may be fed into the

computer for arithmetic operations with subsequent frames. The data

then can be placed on digital magnetic tape or fed back thru a D/A

system for image reconstruction for on-board real-time display. This

allows the payload specialist to interact for experiment operation and

control via the CRT display.

Figure 2 is a conceptual depiction of the experiment instrumen-

tation mounted on the gymbal system on a Spacelab pallet.
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SESSION II

SHUTTLE-BASED EXPERIMENTS



N81-24132
SIMULATION OF A COMETARY CONGLOMERATE OF FROZEN GASES

AND DUST IN A ZERO-GRAVITY ENVIRONMENT

A Critical Evaluation of Possible Space Experiments.-

A. H. Delsemme
Dept. of Physics and Astronomy

The University of Toledo, Ohio

ABSTRACT

The cometary material is likely to be the last

intact sample containing a volatile fraction accreted

from the icy grains or condensed out of the gases of the

primeval solar nebula, and it. has never been in gravity

fields larger than 10"̂  g.

Since we do not have any experience of dust and snow

accretion and sedimentation in these extremely weak

gravity fields, the bulk properties of cometary material

are totally unknown, and the clues given by observations

of comets cannot be unambiguously interpreted.

It is therefore proposed to use the Shuttle (OFT

experiments) or eventually Spacelab to study, in the

absence of gravity:

1. the low-velocity accretion and the bulk pro-

perties of icy conglomerates simulating cometary

material;

2. their sedimentation and bulk properties in very

small acceleration fields (10 to 10 g);

3. their behavior when exposed to the direct

solar flux.
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INTRODUCTION

It is possible that the cometary snows either condensed, some five

billion years ago, out of the gases of the primeval solar nebula, or that

they accreted from those interstellar grains that were present in that

nebula; in both cases, they could be the last intact samples of an imp-

ortant fraction of that nebula and they may be of a fundamental importance

in unraveling the cosmogony of the solar system. In particular, since

the volatile fraction of the cometary nucleus contains very large amounts

of hydrogen, carbon, nitrogen, and oxygen, it is likely that their

chemistry contains some of the information needed to understand the role

and the fate of these important elements in the formation of the planets

and in the appearance of 1ife.

However, not only is the cometary chemistry rather uncertain, but

the bulk properties of the icy conglomerate probably present in the

cometary nucleus are totally unknown, mainly because it has never been

exposed to any (large) gravity field. The gravity field at the surface

of a cometary nucleus could typically be 10 or 10"^ g, and we do not

have any experience of large systems of dust and ice that have been

accreted in the absence of gravity, and have never been in gravity

fields larger than these.

We suspect only that this "icy conglomerate" could be a very loose

structure with almost no cohesive strength, in particular if it has been

accreted at very slow velocities. The proposed research is not concerned

with crystal properties or, by and large, solid state physics, because

it is believed that microscopic properties are not very much perturbed by

the presence or the absence of gravity. It is rather proposed to
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concentrate on the more useful, although less glamorous bulk properties

that could eventually lead toward the structural "geology" and evolution

of the cometary nucleus. This type of information would be useful, not

only to understand the clues given by the ground-based observations of

comets, but also to clarify the meaning of the first imaging of a cometary

nucleus, that could be obtained during a future flyby or rendez-vous

mission, for instance to Comet Hal ley (1986).

NATURE OF THE COMETARY NUCLEUS

Coma and tail are transient phenomena originating from one single

permanent feature: the cometary nucleus. No cometary nucleus has ever

been seen but as a pinpoint of light, and data known with certainty are

scarce. Although Lyttleton continues to argue that comets have no solid

lump nucleus, he has never properly refuted the three major criticisms

against his loose "sandbank" model, and a consensus has appeared among

the other astronomers that has been described by Delsemme (1966) in his

Report to I.A.U. Commission 15, and that can be summarized as follows:

Cometary nuclei have been stored for a large but unknown length of

time on very large orbits, that may go half-way to the nearby stars but

still are bound to the sun (the Oort's cloud of comets); hence they are

permanent members of the solar system. Although their place of origin

is still in dispute, they probably have never been heated above 100°K prior

to their first passage through the inner solar system; in particular,

wherever they were formed, their volatile fraction must have accreted or

condensed at temperatures near 100°K. They have some cohesive strength

which must be very small but not nil, although its order of magnitude is

unknown. Their non-volatile material seems to be partially or totally
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constituted by very fine dust, although some large chunks cannot be

excluded at this stage.

The size distribution of the dust is poorly known, but it contains

at least a large fraction of micron and submicron particles. This dust

mainly contains silicate grains, although a small fraction of graphite

grains cannot be ruled out. After their first passage in the vicinity

of the sun, comets decay fast, losing much gas, icy grains and dust; at

that time, a heating of the upper layers of the nucleus is not unlikely,

that might change the dusty fraction into a crust; but a new comet coming

straight from the Oort's cloud must have some kind of a cement to keep

the dust together before its first passage near the sun. The cohesive

strength could be provided by the snows of frozen gases or of solid

hydrates of gases that are assumed to be its volatile fraction. The

assumed "icy conglomerate" includes mainly water, probably rather large

amounts of C02 (Delsemme and Combi 1976), HCN and CH3CN, plus many

compounds, including organic compounds, about which we have only incom-

plete spectroscopic clues. Even after one or several passages near the

sun, the "crusty" surface of the nucleus must remain very friable and

porous, because cometary fragments that sometimes reach the upper atmos-

phere of the earth are fragile and of a very low (although still not

well-known) density.

We suspect that the shape of the cometary nucleus could be highly

irregular, as suggested by other small bodies like asteroids, and Phobos

and Deimos. However, if their cohesive strength were very low, but their

density very high for snows, we could have more spherical bodies because

even a moderately small gravity could crush the snows together.
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Finally, we have circumstantial proofs that cometary nuclei rotate,

but we do not know their rotation rate; we can only set upper estimates

at which rate they would break into pieces by inertia. This is a possible

origin for the observed splitting of many nuclei; this would imply that

the asymmetrical vaporization, well established from non-gravitational

forces, has a net impulse which does not always go through the center of

mass of the nucleus; in some cases the spin could therefore be accelerated

beyond the tensile strength of the nucleus. Disintegrations of cometary

nuclei show very slow initial splitting velocities, probably too small

to be measured, which implies values smaller than a few meters per second,

as confirmed again by the recent splitting of Comet West. In particular,

Sekanina (1976) has shown that the traditional approach yields velocities

that are much too large, because it neglects the differential nongrav-

itational accelerations. This suggests extremely low rotational veloc-

ities at breakup and therefore extremely low tensile strengths and low

densities.

Numerically, we do not know much about any cometary nucleus. The

average error bar for our assessments of the density, the thermal con-

ductivity, and the tensile strength of any cometary nucleus could easily

extend to three orders of magnitude; for the mass, two orders of

magnitude; for the albedo, a factor of four and for the diameter, a

factor of two. As mentioned before, our ignorance partially stems from

the fact that cometary nuclei are too tiny to show an extended image in

any telescope, and that we have no experience whatsoever with large,

friable and porous systems in the absence of gravity, or more exactly in

gravity fields of the order of 1(H g.
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Several fly-bys, or better, rendez-vous with different cometary

nuclei, including at least some that have never been vaporized by the

solar heat before, that is, coming straight from the Oort's cloud for

the first time, would dramatically improve our understanding, but such

an ambitious program contains almost insuperable difficulties and is not

likely to be achieved during the 20th century anyhow.

However, the proper use of the Space Shuttle and Spacelab capabilit-

ies could dramatically improve our understanding of the bulk properties

of an icy conglomerate of frozen gases and snows in the absence of grav-

ity, and help our interpretation of the first imaging of a cometary

nucleus (probe to Comet Halley 1986).

TARGETS OF THIS PROPOSAL

It is proposed to use the Space Shuttle and Spacelab capabilities

to improve our understanding of the formation mechanisms and of the bulk

properties of icy conglomerates of dust, water snow, frozen gases, and

solid hydrates of gases, in vacuum and in the absence of gravity.

For this purpose, a few specific targets would be aimed at, namely:

Existence and Bulk Properties

To explore the range of existence and to measure the bulk properties

of low-density icy conglomerate systems. The stress would be put on the

lowest density range that can be achieved, by building up extremely

fluffy, porous and friable clusters of "fairy castles" with long snow

whiskers. At first, the exploration could be limited to pure water snow,

pure carbon dioxide snow, solid hydrates of carbon dioxide, and mixtures

of these snows with fine silicate dust in different proportions. More

realistic icy conglomerate mixtures are probably difficult to define,
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right now, and are unlikely to reveal large differences in bulk properties.

However, if serious differences in bulk properties reflect the chemical

differences in the nature of the snows, more realistic icy-conglomerate

mixtures could be used later, incorporating a better understanding of

cometary chemistry, that is likely to be gained from vacuum-ultraviolet

studies of bright comets from 1977 to 1981.

Accretion Mechanisms

One of the techniques capable to achieve these porous structures

is the very low-velocity accretion of snowy and fluffy grains in vacuum

into large low-density clusters. By the same token, this technique

could explore one of the most important mechanisms that has apparently

played a basic role in the origin of the solar system: the accretion/of

the primeval nebula into cbmetary-size objects. Accretion is often used

theoretically in models of the origin of the solar system, but theorists

use arbitrary coefficients (for example a "sticking factor" of unity)

because basic experiments have never been done, in particular for the

very low-velocity range that can be realistically achieved only in the

absence of any gravity.

Sedimentation in Acceleration Field

Starting from an icy conglomerate of the lowest possible bulk

density, it is also proposed to study its sedimentation in an acceleration

field covering the range from 10 to 10~2 g (conveniently obtained by

centrifugation at small angular velocities) in particular in order to

better understand the inside of the cometary nucleus. Here the sediment-

ation would be used not only to simulate gravity fields of the largest

nuclei, but also to simulate the weight of the outer layers and gain an

insight on snow compression in their cores.
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Irradiation by Direct Sunlight in Space

Finally, icy conglomerates of,different bulk densities Would be

exposed to direct sunlight in space, and their vaporization rate, their

morphological changes (structure, density, albedo) the appearance of a

crust, its destruction by further vaporization, the dragging away of dust

and ice grains by vaporizing gases, the consequences-of the photoelectric

effect due to the ultraviolet light on the snows would be observed and

recorded by different means including motion pictures. It is to be

remarked that each of these specific targets, but particularly the last one

requires the presence and the feedback of a experienced scientist

actively engaged in cometary research, and are therefore particularly

well suited to Spacelab capabilities.

DISCUSSION

What is a significant zero-g experiment?

We do not know much about zero-gravity conditions. However, we can

try to establish a few guidelines. An experiment becomes significant in

a zero-gravity environment, either if, in the presence of terrestrial

gravity, the experiment is totally impossible; or if possible, it seems

totally impossible to extrapolate it to zero-gravity conditions.

This implies -that the forces of gravity are so overwhelming as

compared with the forces involved in the experiment, that these latter

forces are considerably perturbed or hidden. But the forces of gravity

are the weakest. They are large only when all the other forces either

have too short a range (as nuclear forces) or have been saturated to a

high degree, like most electromagnetic forces for macroscopic amounts of

matter. Typically, drop coalescence can be studied in zero-gravity
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environment, with much larger drops than in the presence of gravity,

because the amount of matter grows with the cube of the drop size,

whereas surface tension grows only linearly.

Standing in contrast, crystal growing is unlikely to be much

influenced microscopically by the absence of gravity, because the bond

forces between atoms or ions are many orders of magnitude larger than

gravity, However, when many crystals are mixed together, bond forces

are not present outside individual crystals, second-order effects become

overwhelming,^ and the bulk properties of materials are no more predict-

able from the properties of single crystals. In particular, bulk

properties of snow have not been and cannot be predicted theoretically

from the strength or the growth properties of individual ice crystals.

These bulk properties (like snow density, thermal conductivity, albedo,

etc.), typically are those that are going to play an important role in

the morphology of a cometary nucleus.

Extrapolation from Terrestrial Snows

Bulk properties of water snows have been studied for a large range

of static and dynamic conditions, in terrestrial snowfields and glac-

iers, and some of the extreme properties observed (like very low bulk

densities) may already represent the best simulation of low gravity

conditions, that could be obtained in earth-bound experiments. In

particular, the very small terminal velocities of snow flakes may be

interpreted as simulating a free fall in vacuum in a very low gravity

field. However, their bulk properties are likely to have been

considerably influenced by the presence of air. Even if we neglect

the influence of air on the growth and bulk density of the snow flake
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itself, as well as on the complex mechanism of snowflake accretion and

growth from snow crystals, it is clear that the bulk densities observed

in snow fields have never been accurately connected to known terminal

velocities because in particular they also depend very much on the air

turbulence.

Besides, the properties of snows of frozen gases and of their

solid hydrates, mixed up or not with fine dust, have never been observed.

Even if an exhaustive program of carefully controlled experiments were

initiated now, by using air to slow down flakes of such an icy conglom-

erate in the presence of terrestrial gravity, the validity of their extra-

polation to very weak gravity conditions and to the range of all gravities

smaller than g, would remain forever dubious.

Size and Geometry of Zero-q Experiment

The larger the amount of the icy conglomerate, the more significant

the experiments can be; however, apart from the previous general

considerations, we have absolutely no guidelines on their best size. It

seems however obvious that they must be at least an order of magnitude

larger than a large ordinary snowflake, so that the geometry would not

perturb its accretion. The other extreme is set by the capabilities of

Spacelab. Within these capabilities, the law of diminishing returns

suggests to keep them as small as possible. Since the previous consider-

ations set the general size range between 30 cm and 3m, we tentatively

adopt the smallest size for this preliminary estimate, for instance an

average of 30 liters of icy conglomerate, that is 3 kg with a density of

0.1 kg/liter. This corresponds to a cube of 30 cm side for the snow

chamber, and suggests an approximate volume of less than one cubic meter
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for the whole apparatus. Thirty experiments, with the icy conglomerate

being lost in space each time, imply a 100 kg supply of water and gases,

and the total mass of the whole equipment can therefore be probably kept

easily within a few hundred kilograms.

Vacuum and Temperature

It is submitted here that most of the experiments should be done in

the vacuum of space, most of the time in the shadow of Spacelab itself

(or of the Shuttle) with the exception of the vaporization studies that

would take place directly in the solar-light flux. Not only the absence

of gravity, but also the actual conditions of space itself are searched

for here; the steady-state temperature of snow vaporization in vacuum

and in solar light is in the vicinity of 200°K and will be reached in a

time of the order of a few minutes after exposing the icy conglomerate in

the flux of solar light.

For the other experiments, the distribution of the accretion

temperatures in the primeval nebula is unknown, but since the condensation

of gases probably took place around or below 100°K, we can assess that

the important range lies around that temperature. This temperature should

typically be reached automatically in the shadow of Spacelab, by steady-

state vaporization of the snows and also by varying the heat flow coming

from Spacelab, either by insulation or if impossible, by special cooling

with liquid nitrogen.

CONCEPTUAL DESCRIPTION OF THE EXPERIMENTS

Snow Making

We'll call hereafter "snows" or "snowflakes," those snows of water

or of frozen gases or of hydrates, mixed or not with dust. Different
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procedures to produce snowflakes and to accelerate them to small vel-

ocities, should first be developed in a ground-based equipment. A sprayer

spraying mist in vacuum could be used; the mist droplets would vaporize

quickly while they would retain a preferential velocity towards a cold

wall where the vapor could condense into snow; alternately, ice crystals

and whiskers could be grown slowly in a low-pressure environment, like

the saturated pressure of water vapor at low temperature, and they would

be propelled later in vacuum. The production of particulate beams as

described by Murphy and Sears (1963) could also be used as condensation

cores. We call "snow gun" the equipment that will be finally developed,

although its form may bear no resemblance with a gun. Much attention

should be given to the development of an effective snow gun. Low bulk

densities may require the growth of numerous snow whiskers without many

crystal dislocation, which in turn may require difficult conditions for

full success^

Snow Accretion

In the final experiments, the snow gun expels snowflakes in the

absence of gravity and with a controlled slow velocity, into a metal

cylinder (for instance thin black-anodized metal; size 30 cm x 30 cm)

closed at one end. Since the experiments are taking place in space,

protected either by screens or by the shadow of Spacelab from the direct

radiation of the sun, the steady-state temperature of the cylinder and

of the snows is kept in the vicinity of 100°K,mainly by radiative losses,

partially also by a small vaporization of the snows. The temperature is

not very critical, although some insulation, or some slight refrigeration

using liquid nitrogen may be used to diminish or compensate the heat
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losses coming from Spacelab. The accretion of snow is stopped when the

metal cylinder is approximately filled up.

Mass, Volume and Thermal Measurements

A measurement of the mass of the snow filling the cylinder is needed.

Since vapor losses are possible to space, a measure of the mass trans-

ferred is not accurate enough. It is proposed that the moment of inertia

of the snow be measured, for instance by measuring the torque needed

to accelerate the slow centrifuge described later for the sedimentation

experiments, or by using the imbalance of the centrifuge in a feedback

system also cescribed later. This implies that the cylinder be permanently

incorporated within the centrifuge.

Other bulk properties of the icy conglomerate are also measured in

situ, including total volume (by approximately filling up the cylinder,

and integrating numerically the outer surface from photographs; altern-

ately, a cutting blade could remove the snow excess protruding from the

cylinder); thermal conductivity (by heat transfer thorugh a known temp-

erature gradient), and tensile strength as described later.

Sedimentation and Cohesive Strength

The sedimentation of the icy conglomerate to higher densities under
o y

accelerations of 0.1 cm sec to 100 cm sec , is measured by centri-

fugation of the chamger. Different systems can be used to establish the

moment of inertia and the mean radius of gyration of the snow during

centrifugation. For instance, the out-of-balance introduced by the

sedimentation of the icy conglomerate may be used in an electronic feed-

back system, to move a counterweight whose position will define the

moment of inertia; .the two moments will be solved for the girating radius

and the mass of the snow.
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The cohesive strength of the snows may also be measured after turning

the cylinder 180° in the direction perpendicular to the centrifuge axis.

The centrifugation rate is then slowly accelerated until the main body

of snow splits into several chunks that will be ejected into space. For

this purpose, the cylinder walls, but not the bottom—should be treated

or covered with teflon.

Sublimation in Sunlight

The sublimation in sunlight is photographed by a movie camera, with

the cylinder in the same position as before. Proper screens are removed

or the rotation of Spacelab is used. The photoelectric effect of sun-

light on the snows can be measured by the current collected by a wire

grid located in front of the cylinder opening.

Thermal Conductivity

The technique used by West and Fountain (1975), to measure the

thermal conductivity of lunar fines, could probably be used without much

modification to measure the thermal conductivity of snows in the cen-

trifuge.

DEVELOPMENT OF.THE EQUIPMENT

It is clear that the previous description is conceptual only and

that a long path must still be covered towards the development of a working

equipment; during this development, it will become possible to make

several experiments (although on higher density snows) in a cooled vacuum

tank, and in the terrestrial gravity field. The equipment could be

developed in any laboratory that possesses already the basic equipment

needed, in particular a vacuum tank that is large enough; for instance,

this could be done at Marshall Space Flight Center.
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The Snowgun

Much attention must be devoted to the technological development of

an effective snowgun: it is likely that several ideas should be tried

and compared. However, in order not to stop the development of the

centrifuge and its testing in a vacuum tank, a crude snowgun spraying

water mist in vacuum would probably work. Even more simply, a nozzle

introducing water vapor at a constant rate, controlled by a leak valve,

would be satisfactory for early experiments in the terrestrial gravity

field.

The Centrifuge

The development of the centrifuge does not seem to set any serious

problem. A preliminary drawing is found in Figure 1. The water vapor

A or the carbon dioxide A1 (to' be used in the first experiments) are

introduced through the axis of the centrifuge D and injected towards the

cylinder bottom F where it condenses as snow. After F is filled up with

snow, the centrifuge (Motor D1 coupled with belt and pulleys) is used
o

to introduce an artificial gravity. Approximately 10 cm/sec = 10~3 g is

achieved with 5 rpm, and 0.1 g is reached for 60 rpm; therefore a range

from 1 to 100 rpm would probably be quite satisfactory. Counterweight

I is moved along screw J by motor G to remove the imbalance of the :system,

felt by piezoelectric sensors on ends of axis D and used in a feedback

loop. Positions of counterweight I can be used to deduce the moment of

inertia of the snow in sedimentation experiments. Motor H is used to

turn cylinder with opening outside. Centrifugation is then used to

measure tensile strength of snow, by observing its splitting into large

chunks.
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The different functions of the centrifuge can be tested in vacuum

in terrestrial conditions, and tensile strength and sedimentation of

higher density snows could already be studied, yielding data that could

be significant per se, as well as compared later with those in zero

gravity conditions.

Measurement Techniques for Other Physical Properties

The final choice of those other bulk properties of the snow that

are going to be measured, will depend on the development and convenience

of the different possible techniques. Mass and volume measurements

have been already described tentatively, since :they constitute the basic

data to which all other measurements will be related.

The cohesive strength also seems one of the most fundamental data

for which order-of-magnitude measurements would already bring important

clarification on the splitting of the cometary nucleus. The proposed

inertial splitting by centrifugation probably is sufficient for the type

of data requested.

Heat transfer by thermal conductivity could probably be studied by

measuring, at the steady-state,the temperature gradient established in the

snow cylinder, by natural heating of one side by the sunlight, and nat-

ural radiative cooling of the (black) bottom of the cylinder towards

space. From six to ten thermocouples, strategically placed within the

cylinder, would be sufficient to study this thermal gradient at different

points. A measurement of the albedo may not be as fundamental, because

it is unlikely that very low densities would change the surface properties

if the icy conglomerate. However, the geometric albedo, as seen from

the camera, could be deduced before and at different times during the
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vaporization, hopefully observing inhoroogeneities and the appearance

of a crust. A target with areas of known albedo should therefore be

included in the camera field.

CONCLUSIONS

This report represents a first step towards a critical evaluation

of those possible experiments in a zero-gravity environment, that

could simulate the accretion, the sedimentation and the decay of

cometary material in space. It assesses first the nature and the

range of our ignorance on the bulk properties of cometary material. It

gives the conceptual description of an experiment, and describes

concrete suggestions on the possible development of the equipment, whose

core would be a slow velocity centrifuge.

The next step would be to actually develop the Centrifuge, the

Snowgun and the Measurement techniques, and test them in a vacuum

chamber and at a liquid nitrogen temperature, but in presence of the

terrestrial gravity. Measures of icy conglomerates in the density range
_3

0.1 to 0.6 g cm , in this equipment, could already yield rather

significant results in an earth-bound laboratory, but the density range

between 0.1 and 0.001 g cm would probably be accessible in a zero

gravity environment only. It is likely that even very crude results on

the range of existence of low-density and low cohesive strength conglom-

erates of snow and dust, would have an important significance for our

understanding of the physical nature of the cometary nucleus.
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ABSTRACT

A continuing source of difficulty in cometary astrophysics is under-

standing the origin of C , C , NH and CO species in comets. We propose
£* «J

an experiment to investigate these problems by continuously releasing

suspected parent gases from the space shuttle and using a dye laser

to selectively excite fragments produced as a result of solar

photochemical decomposition of the molecules. The backscattered

fluoresence will be gathered by a .telescope, spectrally filtered

and measured as a function of time after the laser pulse. We show

that for reasonable estimates of the dissociation rate the expected

signal is roughly described by N (t) = N exp[-t/f] for t/T<10, T

being the radiative lifetime of the daughter species, and typically

of the order of 10 to 10"' seconds. N is the number of photons

reaching the detector per channel of width T . NQ is calculated to be

^ 10 . Thus the signals to be expected per pulse can be measured

by analog techniques and the success of the experiment seems highly

probable.
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Introduction

A continuing source of difficulty ; in cometary astrophysics is un-

derstanding the origin of C», C , NH, and CO' species in comets. The ^

and the NH radicals present difficulties because the most likely parents,

ammonia and acetylene, do not form these radicals in a single photochemi-

cal process at the available solar wavelengths. Further, since the ob-

served emissions originate from triplet levels of the radicals it can be

shown that photodissociation through absorption of a single photon would

violate selection rules and thus be unlikely to occur. The only currently

2
reported single step photolysis source of the Co radical is a minor pro-

duct in the laboratory photodissociation of HC2CH,.

Substantial progress has been made in applying the results of labora-

tory studies to increase our understanding of photochemical processes that

can occur in ccnets. Even with the reported progress ana the prospects

for future detailed studies there will always be difficulties associated

with translating the laboratory results to the solar environment outside

the earth's atmosphere. First, in the space environment there are no walls

to complicate the interpretation of the results. Secondly, the time be-

tween collisions is orders of. magnitude longer than it is in the laboratory,

so that slow secondary processes can compete with the direct chemical re-

action of these very liable species.

An ideal experiment would involve the release of suspected parent mo-

lecules one astronomical unit away from the sun in the interplanetary media.

This ideal condition can not be met even in the proposed experiment, since

the space shuttle does not reach interplanetary altitudes; it does of

course operate at one astronomical unit.
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In this proposal it will be shown that using the space shuttle .one

can obtain much of the needed information about photochemical processes

that occur in comets by doing time resolved studies of the laser induced

emission from the solar photodissociation fragments.

Proposed Space Shuttle Experiment

The proposed experiment consist of continuously releasing a gas

from the space shuttle and using a pulsed tunable dye laser to selec-

tively excite the fragments produced as the result of solar photochemi-

cal decomposition of the molecules. The collision time between molecules

at the space shuttle's altitude is of the order of 13 seconds, thus a

typical molecule will travel roughly 13 km before colliding with the am-

bient background gas. Any product formed by dissociation rrust be detect-

ed in times short compared to the collision tine in order to insure that

none of the observed products have been formed by collision with the aia-

bienr gas. Detection of the induced fluorescence as a-function of both

time and the laser --avelength will yield the rate of production of the

species formed, the identity of the species, and the quantum mechanical

state the species is formed in.

The spectra in Figure 1 is an example of the type cf spectra that one

can expect to obtain using laser induced fluorescence of the unstable

species. This particular spectra is for CN radicals, but comparable

spectrum may be expected for €£, €3, NH, and C0+ species. It is impor-

tant to be able to scan over a wide wavelength range, since a priori, we

have no way of knowing exactly which rovibronic levels of the molecules

are produced by the photodissociation process. In fact, determination

of the rovibronic levels that the cometary radicals are produced in by

solar radiation is valuable information and one of the ains of this ex-
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periment. For example, this information can be used in explaining ano-

malies observed in the cometary spectra of the Co radical. . The spectra

of these radicals are well separated, so that there will be no problems

of interpretation caused by overlapping lines and bands.

The 13 second exposure time of the parent molecule to solar radi-

ation is short compared to the times that occur in cosets. The calcu-

lated photochemical lifetimes for NH^, 2̂̂ -2 > anc* HC2CK3 in cometary

bodies at one astronomical unit have been reported as 2000, 5000, and

5000 sec respectively. Thus one in 150 to 400 is a crude estimate of

the fraction of the parent molecules decomposed during a 13 second ex-

posure time. The success of the proposed aethod for studying the photo-

chemistry of parent molecules relies on the extreme sensitivity of the

3
laser technique. It has been reported that in the laboratory one can

5 , -14
detect densities as low as 10 /cc or about 10 . atm. We propose to use

this high detection sensitivity to determine the mechanism for solar

photcdissociation of the proposed parent molecules.

Calculated Signal Strengths

In any fairly sophisticated experiment one should make a good esti-

mate of its j probable success and an evaluation of what vill be learned

if no signal is detected with all of the systems functioning. If no

signal is detected, then one can conclude that acetylene, propyne, arid

ammonia are not the photochemical precursors for C2> C3> and NH in comets,

This in turn would strongly suggest that collisions are the primary pro-

duction mechanisms for these species or that some exotic molecule is the

parent of these radicals. If forced to this last alternative then we

must conclude the enviroment where comets are formed is stranger than is



currently believed. . .•= .

The density of radicals formed from the photodissociation of a

4 5parent molecule has been computed by Haser. The equation he obtained

for a freely expanding gas is,

(1) P = P0(u0/ u1)(ro/r)
2B0/(ei-0o)(exp(-60x)- exp(-BlX))

In this equation p is the density of the daughter molecule and p0, the

number density of the parent molecule. The 8 is the inverse of the mean

distance traveled before dissociation which is the product of the flow

velocity u, of the molecule times its lifetime T, at one astronomical

unit. p0 is the number density of the parent molecule, i.e., at the dis-

tance ro. While it will not be possible to put a true artificial comet

in space this equation can be adapted to our use if it is realized that

r refers to a characteristic dimension of the emitter, such as the gross

dimensions of a linear array of holes through which the gas is allowed

to effuse. This equation then gives the lower linit of the radical

density. If the parent molecules are released in such a way that one

obtains a more directed flow, such .as with nozzels or multicappilary
7 . . - -. ;'.';'•

arrays, the observed radical density could be much higher.

We can simplify the above equation since the argument of the expo-

nential will be small for values of x less than 13 kilometers and UOTO .

is much less than UJ'TJ. There is both theoretical and observational

8evidence that the latter assumption is valid. O'Dell and Osterbrook

have determined the values of these products for the C radical and found

that they differed by an order of magnitude. The symmetry of Haser's
}" ' • ' ' ' .' • . ' '• . . ' ; • ' . . -

equation does not, however, allow one to determine which of these values

are larger. Jackson in a recent review has calculated the photochemical

lifetime of acetylene and has shown that it is of the order of 5000 seconds.
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This is in reasonable agreement with the lowest determined lifetime of

4
10 sec of O'Dell and Osterbrook. The highest lifetime determined by

these two authors is 100,000 seconds,forcing one to conclude that this

is the lifetime of the C daughter. The NH, C , and CN radicals probably

all have lifetimes that are longer;than their parents, since the suspect-

ed parent molecules will have a weaker bond than the daughters and there-

fore require longer wavelengths for photodissociation. The solar inten-

9
sity rises rapidly as the wavelength is increased from 100 nm to 300 nin,

which will substantially reduce the photochemical lifetime of the parent

relative to the daughter. Assuming that the daughter and parents have

about the same flow velocities then f5o will be much greater than gj.

The assumptions given in the above paragraph can be used to simplify

to,

(2) p = P0(ro
2/uoT0) (x/r2)

The laser pulse width is much smaller than the radiative lifetime of the

excited radicals so that only a negligible fraction of these radicals will

radiate while the laser is on. Under these circumstances the rate of laser

excitation for an optically thin gas in which stimulated emission may be

neglected can be calculated from equation 3.

(3) dp* / dt r olp

In this equation p* is the number density of the excited state, a is the

absorption coefficient of the radical, and I is the laser intensity in
o

photons /cm sec. Equation 3 may be multiplied by the cross sectional

area, A0, of the laser beam to yield an expression for X* the number of

excited molecules produced per unit path per sec.
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(4) dN*/dt = a!pAo

This differential equation only applies when the laser is or.. 'Assuming

the laser intensity is constant for a time t0, then equation 4 may be ir

tegrated to yield.

(5) W* = IapA0t0 = Eap / hv where: E=energy of laser pulse
v=laser freauencv

When the laser pulse has passed a segment of length dr the excited

molecules decay at the rate

(6) dN7*(r) = ; Nfl = J, Ea p(r) exp(-t'/T)
dt' T T hv

whsre T is the radiative lifetime (in this experiment the effect of colli-

sions upon the de-excitation of the molecules is negligible), and t1, the

local time at the segment centered about r, is less than t-t0 and greater

than 2r0/c, t being the time as measured at the detector. The number of

photons received per centimeter per second by the detector frccx this seg-

ment is the rate of emission multiplied by the solid angle of the segment

subtended by the detection system or

(7) <f»(r,t) dr dt = 1 Ea Ap(r) exp [-(t - t0 - 2r/c) /T] dr dt
T hv

<j)(r,t) is thus the contribution of a segment at r, where c(t - t0)/2>r>r0,

to the signal at time t. The rate at which the photons reach the detector

from all excited molecules, dN (t)/ dt is, from eqs . (2), (5), and (7)
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(8) dNp<t)

~dt
= -*. dr (r - r )(t - 2r/c) +

dr r - ro exp[-(t - to - 2r/c)/r]

where

=_1_ E? P A ; a = ct/2; b = c(t-t0)/2
T hv

"° Lo

A is the area of the telescope.

The first integral is the contribution of the segnent overlapped by the

laser pulse and equals

(9) L - 2t__ (l - 2 M
ĉ t'' ct

Now t0 is short compared to T and all other significant tiaes consider-

ed in this calculation and so as t0— =» o L disappears. This must happen

since in order to derive eq. (5) we had assumed that no excited molecules

will fluoresce during the time it takes for the laser pulse to pass through

the region dr about position r. The integral L is small compared to 3 and

may be neglected.

The second integral

(10) B= - 1 + -li

2
T

4- —czt t

l +_!_
c-r0J

,' 1

where Ei (x) is the tabulated exponential integral. This can be simplified
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by neglecting terms where appropriate (2r0/ct for exanple) and by defining

a (x) as

ct(x) = Ei(x) x>2 ; Lim a(x) =1
X—t-o

Then

(11) B-e-t/f

6r2 err c2x2 Ur |
o o o _J

The gatewidth, of the detection system t , the radiative lifetime, .T,
G .

of the laser all limit the ultimate depth resolution AR of a LIDAR experiment.

Kiddal and Beyer have defined AR by

(12) AR = (c/2) (to + T + T )
O

The radiative lifetimes of the radicals that will be studied in the present

experiments is much greater than both to and T so that AR is effectively
o

(c-0/2.

The number of photons, N , reaching the detector per pulse in the in—
P •

terval from t to t + t is from eqs (8) and (11)

(13) N (t) - _ ^_
p T hv 4ir VOTO

All of the quantities in this equation are known or can be calculated from

known quantities. The only quantity that presents any particular difficulty
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is a, the absorption coefficient of the radical that one would like to de-

tect.

The absorption coefficient for a single line is defined by the

following equation,

(14) I(v)I = exp[-kvx] = exp[-ap x]
0 A

but /kvdv = (hv0/4Tr) B_m PA(1-PA* /PA)nm ^ A** A

where: B = Einstein B coefficient for the transition
nm

p = density of molecules in the J" rotational level
A

p = density of excited molecules
A*

For a line limited by Doppler broading one can integrate over the line pro-

file and solve for B in terms of the oscillator strength f. This then

will ;ive

(15) o1 = k,/= •« [2Y(AvD)][ln2/7r] 1/2 [Tie
2/mc]f

This aquation is valid for an atomic line, however for a rclecular line f

must be replaced bv f q_ , „ ST/(2J" + 1). The a' can be converted to an
nm v v J

absorption coefficient, a, defined in terms of the total r.ur.ber density by

multiplying by the fraction, F,,,, of the molecules in s. given J" level and
J

by the ratio of Av /Av to account for the fact that the line width is de-

termined by the laser line width.

(16) a - (2/AvJ(Av/Av,) [In2/m] 1/2 [Tie2/me] [f c ,, „ S./(2J" + 1)]F.,
D D i- nin v v j j

The oscillator strengths f , Franck-Condon factors G , ,,, and rotational
nm v \

line strengths Sj for the C? and NH radicals have all been measured so that they
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present .no particular difficulty in evaluating cr. The fraction of the mole-

cules that are formed in a given J" level will be more difficult to determine

since it is well known that free radicals are not necessarily rotationally

equilibrated when produced by photodissociation. Recent experiments by the

12author and his co-workers have shown that at least for sone CN parent com-

pounds the CN radicals initial rotational distribution may be characterized

by a M.axwell-Boltzman distribution function with a high rotational tempera-

ture. This phenomena is illustrated in the plots in Figure 2. In light of

these experiments it appears that F ,, may be calculated from the Maxwell-Boltz-
j ' . J - • .

man distribution function if a high rotational temperature is assumed. We
o

xtfill use this approach and assume a rotational temperature of 5000 K.

We are now in a position to estimate 'N for a given J" level of the C

or NK-radicals using measured constants for these radicals along with

as3uzr.ptions about rhe experimental configuration. Figure 3 is a schematic

dravi-^ of how the l.-.ser transmitting and receiving telescope might look.

We -.-•ill assume th.-AC -;he receiving telescope is approximately 10" in diameter.

13 3
We will further as.vuue -that the P 0-at r0 is 10 nole/cn and that r0 ~ 250 cm.

Both of these latter quantities could be obtained' with a long arrays of super-

sonic nozzels or iroilticappillary arrays . If either of these devices are

used to release the gas then it will mininize the amount of gas that has to

be carried on the space craft and released for the experiment.

The density at r0 was obtained by the following consideration: in a

gas release system that is 3 cm high and 450 cm long the area from which gas

O /

is released is 1350 cm . Assuming we can carry 1.35x10 gms of gas and that

the flash lamp will only last for 10 shots, this will limit the observation

time to about 28 hours for the pulse rate of..10 cps.' The flux of gas released
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18 ?
if the average molecular weight is 30 AMU is 2x10 molec/cni sec corre-

13 3
spending to a density of 4x10 molec/cra .

Figure 4 gives the results for the photons arriving at the telescope

per laser shot for the maximum J" level of the NH and C ground states..

This figure shows that one can easily detect the resonance backscattered

photons from the NH and C« radicals produced by the assumed solar photo-

dissociation of either C^H -or NH . Further there is a great deal of

flexibility in the proposed system, since higher p0 nay be obtained by re-

leasing higher fluxes of the gas. Higher fluxes would permit us to look

for even slower photodissociation processes and put firmer limits on the

lifetimes of C H and NH~ in the solar radiation field.
22 3

The results in Figure 4 assume dye laser energies of the order of 10
O -JJ

millijoules per pulse of 0.1 A . Recently, Davis and co-workers have

reported laser er.arsies of this order of magnitude and bandwidths an order
o

of n^initude .smaller chan 0.1 A The laser they'used to pump the dye laser

was 2 frequency vij-.:r. "ad Nd-Yag laser made by ILS Co. The advantage of this

laser is that it car. be supplied to military specifications so that it should

be easy to certify- for flight work. _ The dye laser that we need should be

obtainable with a punp laser similiar to the one reported by Davis and co-

workers. The actual design of the dye laser will have to be investigated

since we want larger bandwidths and will want scan over larger wavelength

ranges.

Conclusion

In the present paper we have shown that a gas release shuttle experi-

ment can be used to determine if the C- and NH radicals are produced by the

solar photodissociation of NH3 and C2H-. The experimental detection of the
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radicals can be accomplished with a Nd-Yag pumped dye laser. The Nd-Yag

laser can already be supplied to military specifications and further develop-

ment of dye laser appears to be technically feasible.
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Ccnietary Nucleus Release Experiments and Ice Physics

W. F. Huebner
Theoretical Division

University of California, Los Alamos Scientific Laboratory
Los Alamos, New Mexico 87545

Some physical and chemical processes involved in the evaporation and sub-

limation of mixtures of frozen gases are discussed. Effects of zero gravity,

vacuum and solar radiation are emphasized. Relevant experiments that can be

carried out with the aid of the Space Shuttle are proposed.

The mass of a comet nucleus is of the order of 10 to 10 tons. An ice

release experiment from the Space Shuttle will involve several 10 kg up to

possibly about 10 tons. Since the rate of sublimation (i.e., vaporization)

per unit surface area is the same for an artificial comet nucleus as for a

real nucleus the density of the vapors escaping in three dimensions is n(r) »
2

nQ • (R/r) . Here r is the distance from the center of the nucleus of a test

volume of gas and n is the gas density just above the unclear surface, it is

independent of the nuclear radius R. The half life against dissociation and

ionization of the molecules, T, depends primarily on the solar radiation.

Thus the range of the molecules r =VT ~ 10 km is about the same for a real

and for an artificial comet since the escape velocity is about the same. In

an artificial comet ion and radical chemistry will have only & very minor ef-

fect because the density of the active constituents is too small. Similar

arguments have been presented by Opik (1965) on the brightness of an artificial

comet, and by Jackson and Donn (1968). A new factor would be.-coordinated radio

observation from the ground of the developing coma of an artificial comet. To

fill the half-power beam width of a, say 36 ft, radio telescope with a column
13 2density of ~10 molecules per cm at a.line transition wavelength X ~ 1 cm

requires about 10 tons of ice in a spherical shell of several meters in diameter
\
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and a few cm thickness. The parameters depend also on the altitude of the

release, the dipole moment of the molecule and the length of desired observing

time.

The main area of my discussion will be concerned with the ice surface and

the space just above the surface,i.e., the physics and chemistry of ice sub-
2

limation. A surface area of 1m or less is sufficient in almost all of the

proposed experiments. Four categories should be cosidered:

1. Ground-based laboratory experiments. These are done in a vacuum, with ar-

tificial light and in the presence of gravity.

2. Onboard experiments on the Shuttle. Here experimental environment are

vacuum, possibly direct solar radiation but with truncated ultraviolet

radiation and "zero gravity".

3. Release experiments from the Shuttle. The residual earth's atmosphere may

not provide a vacuum as ideal as in the above two categories, but the

solar radiation spectrum is complete and gravity is "zero". Ground-based

observations, e.g.., with radio telescopes, should be coordinated.

4. Theoretical support, i.e., interpretation of the observations and modeling,

should be closely coordinated with the above three categories.

Solar wind interaction cannot be incorporated unless a release is made above

the magnetosphere.

Care should be taken that no clear ice, i.e., without air (gas) bubbles

is used. Such ice is "black", it does not scatter light. Cometary ice probably

has a flaky or grainy structure.

Desirable measurements include:

1. The rate of gas production, i.e., rate of sublimation.

2. The albedo as a function of wavelength, angle of incidence and angle cf re-

flection. Related to the albedo is the infrared emissivity as a function
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of wavelength and surface irregularity (plane emissivity, hemispherical

emissivity, etc.).

3. The surface characteristics as a function of time. Sublimation can cause

very irregular surfaces.

4. The temperature of the surface.

5. The ice-grain size and velocity distribution as a function of distance

from the surface.

6. The dust-grain size and velocity distribution.

7. The composition of the gas, i.e., the particle density of the radicals,

ions, and electrons.

8. The velocity and total density of the gas.

9. The state of excitation and the radiation, emitted by the gas molecules.

10. The heat conduction into the ice.

The above measurements will vary v/ith the composition of the icy conglomerate.

Desirable compositions of the ice component would include:

1. Various pure components such as HpO, COo and highly volatile compounds with

large dipole moments. Water has been studied most extensively, its proper-

ties can therefore be used for calibrations.

2. Pure compounds with dust of known particle size distribution.

3. Mixtures of compounds without dust.

a. Homogeneous mixtures. These may turn into layered mixtures if the

volatile component is sublimated preferentially.

b. Layered in various orders of volatility.

c. Heterogeneous mixtures, such as pockets of volatiles enclosed in HgO

ice. This may result in actions similar to the ones found in a frying

pan. If, e.g., a small amount of v/ater is covered with a larger amount
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of light oil, then the oil will completely cover the water. When heated

the oil, being less volatile, can reach a higher temperature then the

boiling temperature of the water. The water v/ill form vapor bubbles that

pop out of the oil with high speed. If such a bubble has to travel some

distance through the oil, the water may even become super heated and be

released explosively. In either case small amounts of oil are dragged

along with the escaping water. Similar results can be expected from

volatile frozen gases enclosed in less volatile ice, and may explain

outbursts in comets. Rate of heat conduction into the interior would be

an important criterion.

4. . Mixture of icy compounds with dust of known particle size distribution.

Subheadings a, b, c the same as in 3 above.

Desirable compositions of the refractory dust grains might include:

1. Silicates, because they have been identified in the infrared spectra of comets.

2. Metals:

a. Iron should be considered because it is a good catalyst. It may cause

observable changes in the chemical composition of the coma gases.

b. Sodium should be considered. It has been observed in comet spectra and

it is also a good donor of electrons which also may affect the chemical

composition of the coma.

The proposed measurements on the outlined compositions will yield valueable in-

formation on the physics and chemistry of sublimation from comet ices. E.g.,

they will indicate the effective latent heat of sublimation of the icy conglom-

erate and they will indicate the change of the latent heat with depletion of the

volatile components. The composition of the dust may alter the heat conduction

into the interior and lead to a better understanding of cometary activity.
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Many of the experiments should be carried out first in ground-based >

laboratories. Many of the surface characteristics will depend on the degree

to which icy grains or flakes are compacted and should be carried out in a

"zero gravity" environment. Experiments involving measurements of radicals,

ions and electrons, the effects of metallic grains on these, and the inter-

action of the gas with radiation should be performed outside of the Space

Shuttle.

REFERENCES

Jackson, W. M, and Donn, B., 1968, Icarus 8, 270.
i

• •

Opik, E. J., 1965, Irish Astron. J. T_t 32.

141



DUST CONTENT AND PARTICLE RELEASE EXPERIMENTS

Zdenek Sekanina
Center for Astrophysics

Harvard College Observatory and
Smithsonian Astrophysical Observatory

Cambridge, Massachusetts 02138

I. Introduction ;

Since dust particles are carried away from a comet nucleus by sub-

limating ices, the effects from the ambient earth's atmosphere on

Shuttle-based simulation experiments at lower altitudes are of the same

concern to the studies of the dust behavior as they are to the inves-

tigation of the volatile component. Also, since the experimental mod-

eling could realistically be performed on a linear scale that is at

least three orders of magnitude smaller than required by the true con-

ditions in comets, severe problems of extrapolation may arise in the

interpretation of some of the simulation results. Subject to these

limitations, future dust-release experiments made on "artificial

comets" could prove fruitful, as they would test the correctness of

our understanding of the fundamental properties of the dust-emission

mechanism in comets, and at the same time insight into the behavior

of dust particles after expulsion would be gained.

II. The Dust Release Mechanism

The general solution to the problem of dust emission from comets

was submitted by Probstein (1968), who applied a fluid-dynamics

approach. He treated the innermost coma of a comet as a spherically
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symmetric continuum source flow of a two-phase dusty gas, and found

that significant dust-gas interaction is confined to the immediate

vicinity of the nucleus. The terminal particle velocity was calcu-

lated as a function of two parameters: one of them is the ratio of

the mass-emission rate of the dust to the production rate of the gas,

the other measures the degree of accommodation of the particle to the

ambient gas-velocity field.

A meaningful experimental test of this mathematical model of the

release mechanism can only be performed, if, apart from other re-

quirements, the manufactured dust grains realistically approximate

the actual cometary particles in composition, structure and other

characteristics. This would unquestionably be a very difficult task

to accomplish in the near future, since the present level of knowledge

of the physical nature of cometary dust is in many a respect less

than satisfactory. Table I presents the basic information that is

available; it can perhaps serve as a basis for a future guide to

particle manufacturing, but in its present form it leaves too many

important questions unanswered. The information is compiled from

various sources, such as Whipple (1950, 1951), Jacchia e_t al. (1967),

O'Dell (1971), Ney (1974), Brownlee et al. (1976), Millman (1976),

Ney and Merrill (1976), Sekanina (1976a, b) and Weinberg and Beeson

(1976), to list several of them; and relies upon a number of assump-

tions, such as the relation between cometary dust and Browlee's

extraterrestrial particles.

-The straightforward application of Probstein's (1968) approach
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to a small artificial comet launched from the Space Shuttle gives

the "initial" velocities, i.e., velocities acquired through the in-

teraction with outgoing gas, that range from about 1 m/sec for mil-

limeter-sized particles to several tens of m/sec for micron-sized

ones. These are comparable in magnitude with velocities to which

the particles would be accelerated by solar radiation pressure over

an orbital arc of about 100 km (Table II). The effect of the pres-

sure exerted by the solar light reflected and scattered by the

earth — a small fraction of the direct solar radiation pressure —

is here neglected.

III. Particle Behavior After Ejection

The studies of dust tails of comets indicate that the radiation

pressure and attraction of the sun are the two dominant forces con-

trolling the motions of ejected dust particles after their interac-

tion with the escaping volatile substances has been terminated. That

does not exclude the possibility that the particles are subjected to

additional forces, such as the electrostatic charge, the effects of

the solar wind and of the solar magnetic field, etc. However, many

of these effects could only be studied on an artificial comet placed

in a trajectory outside of the earth's magnetosphere.

Potentially interesting results might emerge from the comparison

of the observed particle-size distribution with the manufactured one.

During the ejection process particles are exposed to forces that could
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perhaps crumble very fragile grains into smaller fragments, in which

case the particle-impact rates registered by dust detectors at various

distances from the artificial comet would exceed the predicted rates

(Table III).

There are indications that effects of particle fragmentation and

evaporation are observed in outer sections of cometary dust tails

(Sekanina 1976b). Particle evaporation cannot be properly simulated

on an artificial comet orbiting as far from the sun as 1 AU; the cause

of fragmentation is so far unclear and chances for its simulation can-

not be assessed at the present time.

Photometry of individual dust particles released from an arti-

ficial comet would be possible only at close range. Table IV shows

that a centimeter-sized grain observed from a distance of 100 meters

should be about as bright as Jupiter from the earth. Photometry
*% •"

could serve to check some of the results based on impact rates.

IV. Conclusions

To summarize, we believe that limited experimentation with the

dust released from an artificial comet is possible, but that the

quality of simulation of the physical conditions of dust in comets

should first be improved. Results from missions to real comets,

the continuing ground-based observations, and the theoretical and

laboratory work will hopefully provide the necessary information

in the relatively near future.

147



TABLE III

IMPACT RATES OF DUST PARTICLES RELEASED

FROM AN ARTIFICIAL COMET

Object's diameter: 5 meters
Production rate at 1 AU from sun: 8 gram/sec

Dust-to-gas mass-flux ratio: 1
Differential particle-mass distribution law: m~2dm

(m from 1%-̂  to 103grams)

I m p a c t r a t e ( c m 2sec * )

)istance (km) of detector* from cc

(g) 1 10 100

m . Distance (km) of detector* from comet
mm

160

17

1.8

1.6

0.17

0.018

0.016

0.0017

0.0001810~12

* At rest with respect to comet.

TABLE IV

BRIGHTNESS OF DUST PARTICLES RELEASED

FROM AN ARTIFICIAL COMET

Geometric albedo: 0.2
Phase angle: 0°

Particle
diameter

(mm)

10

1

0.1

0.01

A p p a r e n t

Distance (km) of

0.1

-2.8

2.2

7.2

12.2

B m a g n i

photometer from

1

2.2

7.2

12.2

17.2

t u d e

particle

10

7.2

12.2

17.2

22.2
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N81-24136
Spectroscooy of Small Cometary Particles

by

Peter H. Millman
Herzberg Institute of Astrophysics

Ottawai Ontario

INTRODUCTION

In this review I will summarize briefly our knowledge of

chemical composition derived from the spectroscopy of small cometary

meteoroidsf when they enter the earth's atmosphere at high velocity

and become visible as meteors. For statistically reliable results it

is necessary to have a large number of observations, and this requires

the photography of relatively faint meteors, which are considerably more

numerous than the bright fireballs. During the last thirty years, in

the post-war period, the improvement in observational techniques and

cameras has made it possible to extend the range of spectrographic data

from cometary particles of mass between a kilogram and a gram down to

•»? "̂those of only 10 or 10"-7 grams in mass. ; The corresponding increase in

the number-value of the statisitcs has been from less than 100 data

points to several 1000.

Increased observational efficiency has been achieved by the

development of very fast lens systems of radical designs, a great improve-

ment in the speed of photographic emulsions and, more recently, by the

employment of image-orthicon and vidicon systems which incorporate elec-

tronic image-intensification and record on the standard video tape used

for television. Another important aid in meteor spectroscopy has been
f

the availability of efficient transmission gratings large enough to

cover optical objectives up to 15 or more cm in diameter.
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THE NATURE OF METEOR SPECTRA.

A typical meteor spectrum consists of the low excitation

atomic lines of the elements common in chondritic meteorites, Fe, Mg, Si, Na,

Ca, Ni, Mn, Cr, Co, Al, Ti, for example (see Figs. 1&2), plus a faint background

of the band systems of molecules such as N2» FeO, and probably CN, CH,

and others. Meteor spectra are primarily a result of collision exci-

tation in vapour consisting of a mixture of:meteoroid and atmospheric

atoms and molecules. Unfortunately, the theoretical and laboratory

work necessary for converting the spectral line and band intensities

to numbers of atoms in the meteoroid has not been done in most cases.

Values for relative abundances of Fe, Kg, Ca, Ni, and Na

have been given by Killman (I972a, 1972b) and Harvery (1973)i and re-

viewed by Millman (I976b, 1977). These relative abundances agree well

with those of carbonaceous chondrites, type I, and with the values for

upper-air metallic ions and the electron microprobe analyses of a few

meteoroids collected in the upper atmosphere of the earth.

LIGHT, VOLATILE ELEMENTS

On the basis of the commonly observed out-gassing from comet

nuclei when they are near the sun, one would expect to find in comet

fragments considerable quantities of the light volatiles such as H, C,

and 0. Hydrogen appears quite regularly in the spectra of bright, fast

, meteors such as the Leonids and Perseids (see Fig. 1), while the presence of carbon

may be assumed from the identification of such molecules as CN and CH.

Oxygen is certainly a common component in the radiating vapour of a

meteor, but it is impossible to estimate the fraction of the 0 atoms

which originate in the atmosphere. We can say that there is good
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qualitative evidence for the presence of light, volatile elements in

cometary meteoroids but we can give no quantitative values for abun-

dances of these elements.

From first principles it is likely that a smaller percentage

of the light volatiles will contribute to the composition of the meteor-

oids of smaller mass detected at the earth's mean distance from the sun,

since here solar energy will tend to vaporize the light-element ices -

especially for the small, meteoroids Kith a relatively large surface-to-

mass ratio. The above supposition is supported by the observational

evidence that cometary meteoroids of smaller mass have higher mean bulk

densities (Verniani 196?, 1973).

In the future further information concerning H, C, N, and 0

in the luminosity of meteors may come from both the spectra of very

brilliant fireballs, photographed with high-resolution spectrographs

(Ceplecha, 1971)t and the spectra of relatively faint meteors, recorded

in large numbers at low resolution on video tape with several types of

electronic, image-intensifying equipments. In the first case various

systems of molecular bands appear with some detail as a faint background

to sharp atomic emission lines, while in the second case a faint band

structure can be seen in the early part of the meteor trail before the

atomic lines are fully developed (Millman et al., 1971; Cook et al.,

1973; Millman and Clifton, 1975).

CURRENT PROGRAMS

With the help of SIT Vidicon systems, studies are now being

made of the spectra of various major meteor showers to see if there is
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evidence for a significant difference in the chemical composition of

the meteoroids associated with different comets or coraetary orbits.

Aircraft operated by NASA have been employed on this project to over-

come problems of both bad weather and inaccessible observing locations

(Millman 1973, 19?6a).

One obvious possibility In this field is to extend observations

of meteor spectra into the ultraviolet by using Shuttle-operated spec-

trographs. A recent study (Meisel 1976) has noted the atomic lines of

interest that should be strong in meteor spectra in the wavelength range

from 1000 8 to 3000 8. These include lines of H, P. S, Kg, Ca, Mn, and

Fe. A full utilization of such observations to give quantitative chemi-

cal information on cometary meteoroids can only be made if we have a

great deal more data on the emission cross sections and the luminous

efficiencies of the relevant atoms and molecules when radiating under

conditions which simulate those in the upper atmosphere".
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RED G R E E N BLUE

H Si* 0 No

Figure 1. The photographic spectrum of a bright Perseid meteor,
secured at the Springhill Meteor Observatory of the

Herzberg Institute of Astrophysics near Ottawa,
Ontario, on 12 August 1968 at 08h 00m 22s UT.
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This meteor was visually estimated to have a luminosity
equivalent to -6 stellar magnitude. The visual train remained
visible for 12 seconds and the radar echo endured for 305 seconds,,
The photograph was taken with a Leitz lens, focal length 75 mm,
aperture ratio f/2. 0, and a Bausch & Lomb transmission grating,
600 lines/mm blazed for 5500 A0 An occulting shutter, open to
closed ratio 1:1, covered the lens 20 times per second, producing
the horizontal gaps in the spectrum,, Emulsion was Agfa Isopan
Record developed in hyfinol.

The meteor moved vertically downward as the spectrum is
here reproduced,, Prominent lines of the metallic elements Fe, Mg,
Na, Ca, and Si have been identified as well as lines of the light
volatiles H and O. The forbidden oxygen green line at 5577 A appears
early at the top and shows no shutter breaks since it has an effective
duration of a second or more. Other lines, with very brief duration
characteristics, appear in the shutter breaks near the bottom,,
Exposure duration was only 60 seconds as it was just 4 days past
full moon and the sky was bright,, The meteor spectrum is in the
first order of the grating, while the short star trails in the zero
order appear as small slanted bright spots. The lens was focused
for the green-red region, so the violet end of the spectrum is badly
out of focus.
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Figure 2. A Geminid meteor spectrum recorded on video tape by
K. S. Clifton at the Mt. Hopkins Observatory, Arizona,

on 14 December 1974 at 10h 21m 16s UT.
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The recording instrument was an SEC vidicon used with an
Oulde Delft Rayxar lens, focal length 105 mm, aperture ratio
f/0. 75 and a Diffraction Products transmission grating, 300 lines/mm,
blazed for 5000 J?. Spectrum was recorded on video tape by an Ampex
660C tape recorder, bandwidth 4, 2 MHz.

This equipment produces 30 complete frames per second.
Identifying field numbers appear at the right for the first three
records. The fourth record represents an integration of ten frames,
a technique which assists in the correct identification of lines in the
spectrum and which produces a better star field for use in height
calculations. Some of the more prominent atomic lines have been
identified at the bottom of the figure.
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H81-24137
REVIEW COMMENTS OF SHUTTLE-BASED

COMETARY EXPERIMENTS
C. R. O'Dell

Marshall Space Flight Center

The experiments considered by the various authors in

this session can be classified according to their morpholog-

ical nature. In order to plan for comet relevant Shuttle

experiments and payloads, I've grouped the experiments

along the line of the earlier speakers with slight varia-

tions.

PROPOSED SHUTTLE COMETARY EXPERIMENTS

On-Board

Overboard

Determination of Bulk Properties and
Processes (Within Solids)

Observations of Exposure Panels
(Near Surface Phenomena),

Gas/Dust Shells

Observation from Shuttle

Observation by Sub-satellites

One set of experiments is genuinely an on-board type,

e.g., Delsemme's experiment for the determination of bulk

properties. He talked about taking materials much like

what one would think the nucleus should be and determining
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the characteristics like density, conductivity, tensile

strength, etc. The advantage of Shuttle is that one can

work in low gravity, which cannot be done on earth. An

enormous variety of characteristics can be covered that

hopefully allows one to model, from outside to inside, a

favorite comet model of the nucleus. These are on-board

experiments that can be done in one of the Spacelabs.

A related (or extended) version of this is Huebner's

on-board experiments of observations at or near exposed

panels. Instead of just using orbit for low gravity, one

.is using the low gravity plus vacuum (not the best vacuum

but a high vacuum) and the direct access to solar radiation

for exposing panels to space. One can observe properties

both at and near the surface itself, and look at variations

in the nature of the surface with the time exposed to these

conditions. One can look at the material coming off these

surfaces for such things as the velocity of escape and the

physical form of the ejected material. A wide variety of

samples can be covered. Huebner talked about mixtures

which vary in gas to dust ratio, the physical state (homo-

geneous - highly inhomogeneous), and various types of parti-

cles and ices. With these experiments we are looking at

and near the surface or, in some cases, looking at the plume

being created from the panel.
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The next type of experiment I'll call the overboard

experiment. This is what Sekanina and Jackson discussed.

In these cases we are talking about hollow shells with the

sample material of ice or ice plus dust on the outside

giving a large surface area. This mass is thrown overboard.

One knows exactly what it is when observations are begun.

This experiment can be done on the same mission as the on-

board experiment. Since the Shuttle transportation costs
"N

are about $20 million per flight, a majority of a payload

for one discipline, especially a small discipline, isn't

going to get too many flights per year.

There is a dispersion of opinion about what kind of

ice is relevant to be put on the surface, e.g., what kind

and how much water. Clearly, one can cover a variety of

molecular types and various dust types. The theory of the

interaction of radiation with idealized particles is well

confirmed and applied to the interpretation of dust tails;

but, there are some things we know that must be true, al-

though we are unable to model them today. I would identify

two of these as (1) the question of charges on particles

(how they build up and vary), and (2) the effect of the

irregular shapes of particles. The particles of the

Brownlee photographs, even when one looks at the small

subcomponents of the whole, look like irregular particles.

The determination of the basic effects of irregular parti-

162



cles is needed for modeling and interpretation of actual

observations. It is difficult to get enough dust over-

board to observe, although it may be observed by direct

scattered light for a very large size, while cooled infrared

instruments would allow observations of small particles at

lower densities and might be the preferred way to make

direct observations of the dynamics of these dust particles.

It is also difficult to get enough gas to directly

observe. It is certainly very difficult to create an

artificial comet that can be studied well from the ground.

Even observations from the Shuttle are difficult. Jackson

suggests the -best way to do observations is with a mass

spectrometer since one is working with low densities. The

ideal way of doing this is to put a series—he illustrated

three—of satellites (very much like the ones put on inter-

planetary missions) in the plume of the artificial nucleus.

One can also envision conditions where something is thrown

overboard and the Shuttle is. flown along that plume. The

ability to maneuver the spacecraft in three dimensions is

now rather sophisticated and we should consider it.

Finally, on both of the overboard experiments there

are serious questions about whether or not anything meaning-

ful can be done. Jackson was initially pessimistic but

then reconsidered. The effects of the residual atmosphere

moving past the experiment (e.g., artificial nucleus) at
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8 km/sec and interacting'in both a reactive and momentum

manner can be very serious. It is so serious that one

would have to understand this interaction with great

precision before it would allow the determination of

information about the nucleus. It is a small comet signal
$

superimposed on a large atmospheric signal. There is a

zero order experiment, mentioned by Jackson, that can be

done. Although the sun (light source) is not present in

the earth's shadow, it doesn't mean that all the atomic

species will decay. Neither will all the electrons recom-

bine. The light simply goes off when the experiment is in

the earth's shadow. You should be able to see the dif-

ference in a plasma with the light source on and with the

light source off. The atmosphere is always there. One

can observe with the atmosphere plus a light source and

with the atmosphere and no light source.
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Jackson;

Keller:

Jackson;

Keller:

Jackson:

COMMENTS

I don't think the hydro-dynamics problem is as

much of a problem as what happens in the

chemistry interaction.

I don't think the chemistry will occur because

the density is much too low in that case -

the chemistry you expect to occur in a comet.

What you're saying is that the experiment

won't work and one can do some calculations to

determine whether it will work by calculating

what the relative lifetimes are for the chemistry.

Are you talking about the chemistry between

the oxygen atmosphere and the gas released?

Yes, what the relative lifetimes are of the

chemistry of the oxygen and the electrons, and

the ions with the cometary gases that you re-

lease. The chemistry caused by the photon

interaction with the gas that you release.

Those lifetimes are of the order of 10^ - 10^

seconds. I know what the rate constants are

for the interactions. You can then make a

calculation of what percentage of the fragments

you get for a certain kind. The photon inter-

action can be compared to the gas interaction.
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Now it is highly probably that the gas inter-

action is going to give you a different pro-

duct than the photon interaction. The whole

question is if you are getting enough.

O'Dell: Millman has said that there is a certain pos-

sibility to make meteor observations looking

down into the atmosphere in a new wavelength

range which always holds surprises. In ad-

dition, it makes possible the opportunity to

do some calibrations using artificial, well

known objects of a known mass range. It will

check the methods that people have been

employing over the years. It is very nice to

confirm something like this in an experimental

way.
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1-24138 '
THE STATUS OF COMETARY SCIENCE ~ " ' "

Fred L. tipple
Center for Astrophysics

Harvard College Observatory
and

Smithsonian Astrophysical Observatory

Abstract

The nature of the cometary nucleus and the observable

phenomena induced by the Sun are now sufficiently x^ell under-

stood to justify sophisticated scientific planning and exten-

sive effort directed toward the solution of specific problems.

The broad basic problem is to determine the chemical composi-

tion and physical structure of the nucleus. The rapidly ac-

cumulating information about the nucleus can eventually lead

to an understanding of the processes and location of cometary

origin. The role of comets in the evolution of solar system

will then become evident, including possibly a major contri-

bution to the volatiles of planets and even the elements

necessary for the development of life on Earth.

New dimensions to our understanding of comets are now

being contributed from the ground by radio, infrared, remark-

ably improved sensing equipment and phenomenal computers.

From space, vehicles and platforms rise above our obscuring

atmosphere to expose the entire electromagnetic spectrum for

scrutiny. The development of new theory for the complex

chemistry and physics in cometary atmospheres can now be jus-

tified by the increasing wealth of observations. Conversely,

new observations can be tuned for testing theories. Fine
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examples of constructive interplay between theory and obser-

vation lie in the field of plasma physics applied to the ion

tails of comets and in the field of gas-phase chemistry ap-

plied to the problem of parent molecules in the cometary

nucleus.

Space experiments and space probes now promise a quantum

jump in our understanding of comets, their origin and their

relation to us as living beings.

INTRODUCTION

As I see the ultimate goal in cometary science, it is to

determine the chemical composition and the physical structure

of the nuclei of comets. When we know enough about the .

nucleus we can tell where, how and when comets were formed.

With this solid information as to their origin we can evalu-

ate their function in the evolution of the solar system. On

the way to this goal we can learn to understand the physics

of a number of cometary phenomena. When we get space missions

to comets we can make more rapid progress in answering ques-

tions about the nucleus. Once having understood the role

that comets played in the evolution of the solar system, we

can find out what role they may have played in providing vola-

tiles on the Earth from which the life giving elements may

have come. Whether their role was a major or a minor one is

a critical and fundamental question.
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Now, as we all know, knowledge of comets has been ex-

panded enormously through the observation of comet Kohoutek,

1973X11, which was extensively supported by NASA. We have

now beautiful infrared techniques, radar results, remarkable

new instrumentation, ground-based equipment and computers

which are far better than anything we could dream of 30 or

40 years ago when I used to do a lot of computing. With

these we have made phenomenal progress in understanding comets

Space vehicles have enabled us to study cometary emissions

into the far ultraviolet. We now can study the entire elec-

tromagnetic spectrum of comets. The huge amount; of new in-

formation justifies the expenditure of great effort in devel-

oping new theories and in ground-based laboratory studies.

The latter I would like to see greatly expanded so that we

can understand the physics and chemistry of the cometary at-

mosphere. Then of course, having new theories, we will have

to be more explicit and fine tune our observations to check

anddisprove these theories. This constructive interplay

between theory and observation is beautifully illustrated in

the dynamics of ion tails and in gas-phase chemistry, which

are just getting underway to solve the problem of parent

molecules and other cometary problems. My favorite pictures
O

of comets are C/Kohoutek in ordinary light and in the 1416 A

line, Lyman alpha of hydrogen. I'm fond of the first because
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it was taken by the first observatory devoted entirely to

comets and asteroids, and of the second, at the same scale

and time, because it was taken from Skylab (Fig. 1). The

pictures show us how little we knew about comets before we

could observe Lyman alpha. The circle gives the scale, the

Sun's diameter at the comet. Dr. Lillie helped make the

first observations of La, of Comet Bennett.

COMET SPLITTING

Now Comet West 1975n is perhaps the greatest comet of

the century. It came in without too much fuss and feathers,

and was observed almost as thoroughly as C/Kohoutek. At an

early meeting about C/Kohoutek, I mentioned that I hoped it

would split. Unfortunately, it did not, but C/West did.

This is a very dusty comet so that photographs in the red

showing the dust tail and blue showing the ion tail look en-

tirely different.

Near perihelion a great brightening occurred because the

comet split into at least four components. Figure 2 from the

New Mexico State University Observatory at Las Cruces shows

the development of these components from March 8 to March 24.

Marsden and Sekanina believe component A to be the main body

because it seems to follow a Newtonian orbit. Component C is

well separated by the middle of March and in late March it is

moving out at a very high rate of speed. Component D is mov-

ing very slowly and B somewhat more rapidly with respect to A.
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A photograph of the nucleus by Giclas on April 1 shows that

C is nearly gone, hardly visible; all these components showed

tails at some time.

We once thought that components of split comets left the

main component at an appreciable velocity, if only some 10 to

30 meters per second. But this assumption never gave satis-

factory Newtonian orbits. Sekanina conceived the idea that

the components separate almost at zero velocity. The non-

gravitational forces arising by jet action from the sublimated

gases cause separation. He finds that the subsequent orbits,

with different non-gravitational forces, join back together

at the time of splitting and fit the observations excellently.

Comet West illustrates what must happen to all comets

with multiple nuclei. The components must separate because

of differential jet forces! A very interesting second phe-

nomenon concerns component C. It was the last one to sepa-

rate, some 10 days after perihelion, and lasted about 3 or 4

weeks. Sekanina finds it Was moving but with an acceleration

of more than 10 times B and about 20 or so times the accelera-

tion of D. When you calculate from the acceleration the

amount of mass in component C the dimension is perhaps some

30 meters. Its short life and high acceleration show that

it was much smaller than others. But the smallest component

was, at times, brighter than the larger components. Now,

how can this be?
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An icy conglomerate comet, after some solar heating

should develop layered structure with the dust and less vola-

tile ices on the outside. Inside is matter of much greater

volatility. Now it is a truism that for any solid whatso-

ever, when broken into two pieces, the new areas exposed on

the two pieces are identical. If the inside of the comet

contains very active material, the two broken pieces expose

equal amounts. When oriented towards the Sun properly the

small component can be just as bright as the large one. In

addition fragmentation may increase the effective area of the

small piece. Indeed when observations are available the

right times, almost all split comets show this phenomenon:

the little piece may disappear but at times it will be

brighter than the big piece which persists.

ICES AND RADIAL NON-GRAVITATIONAL FORCES

For many comets the accelerations radially from the Sun

have been determined by deviations from gravitational orbits.

The radial force per unit area can be calculated on the basis

of: a) sublimation equal to absorbed solar radiation divided

by the latent heat of vaporization, and b) force radially to

the Sun proportional to the momentum of the escaping gas cor-

rected for the geometry of an assumed spherical nucleus.

The calculated radial force is thus proportional to
o

nR (1-A) where R is the radius and A is the albedo. The
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acceleration is the force divided by the mass, 4irpR /3, where

p is the density, taken as 1.3 gin/cm. Equating this theo-

retical acceleration to the observed non-gravitational accel-

eration provides a numerical value of (1-A)/R.

At extreme solar distances where old short-period comets

are usually inactive, photometry provides the well-known
1 /2quantity area-times-albedo or, as the square root, RA . .

From these numerical values, a solution is then possible for

R and A for the nucleus of a comet. The derived quantity
1/2from the product is (l-A)A ' , a quantity that maximizes at

0.3849 when A=l/3. It provides a limiting check on the basic

assumptions and, therefore, on the basic physical properties

of the nuclei. The check is made, with the latent heat of

vaporization for water ice, as an upper limit to the product

R,A,*0.20 where A, is the radial non-gravitational term as

used by Marsden, Sekanina and Yeomans (1973) and R,=RA ' km,

directly observed.

. I have applied the method to ten short-period comets of

perihelion distance, q, less than 1.5 AU for which the values

of A- are applicable. The results are shown in Table I where

r (AU) is the maximum solar distance at which the comets
o

were observed.

The results are consistent with water ice as the subli-

mating material except for P/Tuttle, in which case the
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determined value of A, is undoubtedly too large. About half

the comets appear to be "spotty," that is, they sublime more

slowly than if uniformly covered with water ice. If consti-

tuted of a more volatile material they would be even more

spotty or RjA, would become even smaller.

The radii in Table I have been determined with small

values (̂ 1/3) for the albedo. I do not trust this method

really to give reliable radii, but probably the order of mag-

nitude is correct, R=0.4 to 1.7 km for these old comets.

Higher values of A may be quite correct for newer comets,

however.

I cannot yet apply the method to periodic comets of
«.

larger q because of the assumptions regarding sublimation

made in the calculations by Marsden, et al. Nevertheless we

have strong evidence supporting water ice as the primary sub-

limating agent for old comets.

Delsemme and Rud (1973) have shown for three comets the

combination of observed H20 loss and photometry at great

solar distances leads to determinations of the radii that ap-

pear reasonable. Thus water ice could be the major action

agent for somewhat younger comets. For comets that are very

bright with much larger perihelion distances than 1.5 AU,

some of them periodic and some single apparition comets, ice

is not adequate because, at 3 to 4 AU from the Sun, water

ice would be completely inactive with negligible vapor
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pressure. Nothing should happen at all. Some comets are

active beyond 4 and 5 AU, up to 11 or 12 AU. So, we know

that there must be more volatile materials.

For some comets of a single apparition, H-Q ice is not

volatile enough to produce the observed radial accelerations.

For at least one comet, Bennett 1970II, however, the gas

production rates, as studied by Delsemme and Rud cannot be

reconciled with the observed non-gravitational radial ac-

celeration and the theory of this paper. I suspect that this

acceleration is actually spurious, being produced by apparent

displacements of the observed nucleus from the true nucleus

radially away from the Sun. Such displacements have been

observed by Malaise (1976). For C/Bennett I find that the

displacements need not exceed some 3300 km.

The physical characteristics of comets vary with their

orbits and with their age. New comets on their first near

solar passage from the Oort cloud are extremely active. The

activity appears to fall statistically with increasing age

as measured by reduced orbital period. This sequence must

represent a corresponding layering of structure from the sur-

face of a new comet inwards.

Marsden and Sekanina point out that comet discoveries

with very large perihelion distances of 4 to 5 AU have mostly

been new comets. Why are there so few returning comets of

large q? Probably because new comets return as fainter
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objects. Here we have evidence that new comets may rather

rapidly lose a thin outer layer of extreme volatility.

I find that I didn't listen to Bertram Bonn as I should.

He suggested (1976) that while comets are in the Oort cloud

they are exposed to cosmic rays for presumably the age of

the solar system. The amount of energy injected near the

surface is tremendous. Figure 6 shows data based upon ob-

servations at very high altitude from balloons, giving the

ionization energy from cosmic rays deposited as a function

of depth in water ice. For integration over 4.6x10 yr the

measurement unit of 10,000 cal gm" is rather staggering.

For water ice, which is the most difficult to sublimate, the

latent heat vaporization is only 640 cal gm" . The induced

radiation gives up to about 50,000 calories per gram or

nearly 60 times the amount of energy required to vaporize

water ice in the outer meters of a new comet. Of course,

vaporization does not occur as the surface temperature in

deep space needs be only some 10 K or less to radiate away

the energy, including also any likely radioactive energy from

within.

What would actually happen to an icy conglomerate mix

after this much bombardment by cosmic rays? I know of no

data that are directly applicable, although graphite in piles

can store some 50 cal gm ! From certain laboratory data

Bonn feels that polymerization might be the major effect,
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producing more complex molecules but probably reducing rather

than increasing the volatility of the end product. Figure 7

shows a schematic representation of crystal damage by a

primary near the end of its path or by a secondary. Momen-

tarily a great deal of heat is generated in the interstitial

lattice, which partially heals at room temperature. In a

very cold environment at only a few degrees absolute the

crystalline structure must suffer enormous damage, being

transformed into an amorphous structure. Hence significant

exothermic energy in the form of defects, vacancies and rad-

icals must be added to produce the extraordinary activity

observed in some new comets. I consider laboratory experi-

ments as urgently demanded to simulate the cometary envi-

ronment in deep space.

I am fascinated with Brownlee's pictures of high-alti-

tude particles that appear very likely to be cometary stuff

(Fig. 8). On a scale of only a few tenths of a micron the

internal structure looks like fish eggs, incidentally, about

the size of interstellar dust. But they form single pieces

strong enough to withstand entrance into the atmosphere.

Since they are like nothing else we know and have the ex-

pected composition, they are probably cometary. I think this

is one of the most exciting aspects of comet research today.

Do we really have pieces of comets in the laboratory?
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A word about the nuclei! of comets. Outside is a very

thin layer, I call frosting, producing the activity in very

new comets. On the other hand, the very old comets of

short period contain mostly water ice and fairly compact

meteoritic material. Perhaps this is a core just outside

of which may be an inner mantle. Water ice may still be the

major material that sublimates to produce the activity of

the "not-quite-so-old" comets, i.e., the periodic comets of

longer period and those of larger perihelion distances. Be-

tween the inner mantle and the "frosting," however, is a

(thick?) region containing a considerable fraction of ices

that must be much more volatile than water ice. This outer

mantle provides the material for the activity of the split

pieces of C/West, for example.

As these outer regions sublime away to space, an old and

originally very large comet such as P/Encke wastes away to

some sort of a core. Several thousands revolutions about the

Sun for P/Encke with q only 0.3 AU leave a rather inactive

body. Does this inner core turn into an earth crossing as-

teroid? We don't know whether any of these asteroids are

comets. Many people believe they are. I have always stood

on the fence on that subject because there is yet no proof,

not until we can get missions to comets and asteroids to see

what that material is like. In any case, there is a huge
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reduction in activity from new to old comets. Part of this

effect undoubtedly comes from increasing coherence of the

material with depth. Recall that the activity of comets

arises only by sublimation of ices at the surface; the gas

must carry along the meteoroidal material. We know that the

latter constitutes a good fraction of the total mass and is

somewhat consolidated. At least it sticks together to some

extent. A crust of such material could only be broken by

"explosive" pockets as Huebner has discussed. I wonder to

what extent the activity is controlled by increased cohe-

siveness with depth rather than by chemical changes in com-

position.

As to the origin of these layered comets there are sev-

eral possibilities. Perhaps the first accumulation was a

meteoritic core on which ice was deposited, a theory which

Gpik rather likes. On the other hand, the cloud of dust and

gas may have been very cold and homogeneous to begin with,

containing enough radioactivity to produce a certain amount

of vaporization. The heat conductivity is extremely poor in

such a body so that heat would be transferred by the subli-

mation of material which would then move outward to cooler

regions and recondense. In that way perhaps the inner part

will consolidate without the need for much gravity, which is

very small in comets.
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All in all, however, the fact that comets exist and are

so active shows that the meteoritic material cannot be the

major matrix material. Activity would halt very quickly as

the gas from the subliming ice would have to seep out through

the porous poorly conducting solid. Clearly the solids must

be introduced as finely divided unconnected tiny particles.

I rather suspect most of these particles (interstellar

grains?) are surrounded with ice when they collect and are

insulated by ice so that they do not stick together. We know

that the cometary meteoroids are very fragile. A small in-

crease in the strength of the meteoritic material would very

much reduce the activity and perhaps form an impervious

crust.

It may not be clear until we go to comets whether the

major variable with depth in comets is the coherence of the

meteoritic material or chemical variation. So far we see

little difference in the ratio of water (from lyman alpha and

OH) to the solids for the few comets in which they have been

measured. Also there appears to be no great compositional

change systematically from new comets to old comets as meas-

ured by that ratio. The problem remains.

So far I have discussed the nature of the nucleus. I

have not treated much of the very beautiful work that has

been done on other aspects, the C/Kohoutek results, new
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results on the molecules by radio and the progress that has

been made in understanding the gas-phase chemistry, nor the

great progress that's being made in ion tails. There has

barely been time enough to talk about the subjects closest

to me.

Cometary science is now at a point where we can justify

highly sophisticated and expensive techniques in studying

comets. We have a sound enough basis that we know how to

get results of importance by good detailed planning and exe-

cution, and we have enough basis to justify laboratory ex-

perimentation on the important physical processes involved.

We can justify expensive calculations and theory, based per-

haps upon not quite the right premises but theory that will

enable us to make new relevant observations or to use the

old observations more effectively. All of this, of course,

again, leads to the study of the nucleus, which I mentioned

at the first. It then leads to an understanding of the role

of comets in the evolution of the solar system. I think

that we can say with confidence that shuttle-based cometary

science and, in particular, missions to comets, can lead to

a true quantum jump in our understanding. Eventually we will

discover the degree to which comets provided the atoms that

make up our own bodies.
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Table I

Data for Periodi.c Comets with q.sl.5 AU

q V Rl Al R1A1 A3 R
Comet AU AU km km (calc) (km)

Honda-Mrkos- .
Pajdusakova 0.56 1.2 0.48 0.1 0.05 0.008 1.2

Giacobini-Zinner 0.99 2.5 0.70 0.31 0.21 -- 1.25

Tuttle 1.02 2.0 2.01 0.321 0.64 -- 3.55

Finlay 1.08 2.0 0.26 0.51 0.13 0.07 0.74

Tuttle-Giacobini- 9 .
Kresak 1.15 1.7 0.14 0.66^ 0.09 0.033 0.4̂

D'Arrest 1.17 2.8 0.28 0.82 0.22 -- 0.55

Schaumasse 1.20 2.8 0.88 0.42 0.35 -- 1.55

Tempel 2 1.37 3.6 0.53 O.I1 0.05 0.010 1.44

Jackson-Neujmin 1.43 1.9 0.20 0.8 0.16 0.12 0.54

Borreley 1.45 3.0 0.66 0.09 0.06 0.013 1.74

1 Maximum value if variable
2 Most recent value
3 Lower value of A adopted, p=1.3
4 A adopted as 0.15
5 A adopted as 1/3
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(a) (b)

Figure 1. Comet Kohoutek, 1973XH, Dec. 25.9, 1973.
(a) Photograph, Comet and Asteroid Observatory, South
Baldy, New Mexico, (b) NASA Skylab photograph in far-
ultraviolet hydrogen La radiation. Both photographs are
on the same scale as is the Sun's disk (circle) at same
projected distance.
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Figure 2. Nucleus of Comet West, 1975n, on 5 dates. Component A,
lower left; B, upper right; C, lower right; D, middle left. Scale on
March 24. 5: A to B = 16. 3". Distance from Earth: 0. 88 to 1. 09 AU,
March 5. 5 to 24. 5. From A. S. Murrell and C. F. Knuckles, New
Mexico State University Observatory.
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Figure 5. Particle collected at an altitude of 20 km by
Donald E. Brownlee and his collaborators.
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SHUTTLE-BASED OBSERVATIONS



1-24139
SHUTTLE-BASED OBSERVATIONS

M. Dubin
Science Manager of Spacelab Research

Goddard Space Flight Center

I would like to say a few introductory words which, I guess, is the

prerogative of the chairman. I will not mention the specific history of

cometary research by NASA, which I have spent upwards of a dozen years

managing at NASA Headquarters. I think it is not worthwhile talking

here about the astronomical activities of the IR programs that have

developed and have been used for comet observations. I think you are .

fairly familiar with the programs using manned systems from Gemini to

Skylab. Of course, the Skylab cometary work is well documented and I

hope you have the report on Comet Kohoutek. What I want to do is to

outline some of the progress in science in relation to the Space Shuttle

and to bring the working group up to date about what has been happening.

Beginning about 1970-71 John Naugle began an activity of the use of

the Space Shuttle and Spacelab. Prior to this, there were a number of

studies on the use of space stations. In 1971, a symposium was held at

Langley Research Center on science in the sortie mode using the Space

Shuttle, and there followed a workshop for NASA scientists at Goddard

in 1972, which was published in a series of documents. There then was

organized ten discipline working groups and meetings and another series

of doc uments on the uses of the Space Shuttle was published in May

1973. In 1973 there was a National Academy of Science summer study on

the scientific use of the Shuttle which was published in 1974. Some of

you have copies of this material and it is relevant in some respects to

the theme of this working group. In addition to the above, there have
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been a number of follow-on activities and studies that are clearly

relevant and I'm not sure that you are familiar with, i.e., the

Astronomy Spacelab Payloads Studies at the Goddard Space Flight Center

that continued for several years (about three years) and the AMPS

activity, (AMPS stands for the area of Atmosphere, Maghetosphere and

Physics-in-Space). Each of these programs involved a number of people,

some workshops, and an expenditure of study funds of several million

dollars in these areas. I am not sure that you, are familiar with the

AMPS program which was begun at Marshall and later transferred to

Goddard.

At Goddard there was organized in January 1976, a Shuttle Spacelab

Payloads Project Office covering the fields of (1) solar physics, (2)

astronomy with optical instruments (3) high energy astrophysics, (4)

atmospheric research and magnetospheric physics and (5) Earth observa-

tional studies. The reason for reviewing all these activities is that

within the context of the cometary physics field there are a number of

devices and instruments that are already in the planned program; for

example, the astronomy studies at Goddard, which are published in a six

volume report Astronomy Spacelab Payloads Study, incorporated various

types of instruments as, i.e., telescopes, spectrometers, which are

expected to be available in the Spacelab program. A variety of pointing

devices with arc second stability were studies: The European large

pointer called the Instrument Pointing System for telescopes, a smaller

pointer which is the size of one of the Spacelab pallets and which can

simultaneously point two independent instrumented canisters. Within the

context of the workshops and studies, rocket instruments like the UV

Schwarzschild camera were included, similar to the instrument used to
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observe comet West in early March from an Aerobee rocket; the results

will be reported in this next session.

In the AMPS study also, comet investigations have been included.

In the astronomy studies, comets were considered to be of secondary

scientific importance; if bright cometary apparition appeared, it would

be observed in a manner of OAO observations of Comet TSK. In the case

of AMPS, there were some experiments identified relating to comets. One

set of observations involved meteor observations and artificial meteors.

Another experimental area, which is fairly extensive, is the study of

chemical releases notably explosive releases, the releases of ionized

plasmas, as barium, shape-charged barium and other chemicals like sodium,

lithium or other resonant fluorescent species. In addition, within that

same study, there is for example the laser resonance experiment and its

evolution as a means of probing chemical releases.

By way of introduction, I want to mention to the working group that

cometary physics has been treated more as a secondary area in all the

previous work up to the present time. I would hope that this working

group, possibly, would take the lead in evolving an advocacy group, a

planning group, that would actually "sell" the program, or get it

through the competition for available resources, to advance the program

in physics of comets. As an example, the AMPS phase B study which was

carried out by TRW and by the Martin Company included devices for re-

leasing subsatellites or controlling subsatellites for releasing chemicals

at different locations from the Shuttle, i.e., at geo-stationery altitudes

and outside the magnetosphere with observations of these releases from

the Shuttle. These experiments have a great similarity to what was

already discussed.
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With regard to these reports, the Academy Study was available in

print in 1974. It is called The Scientific Uses of Space Shuttles,

Space Science Board National Research Council National Academy of

Sciences, Washington, D. C., 1974, a GPO publication. The Goddard

report is a series of reports which may be available through the Goddard

Space Flight Center.

I think most of you know that proposals are required by NASA and

they are submitted in response to announcements. However, what is

needed in the organization of comet research proposals is a program plan

for physics of comets as a guide for peer groups reviewing proposals.

For example, there is not, at the present time, a peer group for review

of comet physics proposals, that will look at proposals in a manner

commensurate with the type of physics we are talking about. To this end,

an advocacy group and a program plan of cometary physics covering several

years into the future could turn out to be valuable.

In regard to the present status of the Spacelab program, the Space-

lab I and II missions and Orbital Flight Test missions experiment proposal

due date has already passed. These Shuttle missions cover the period

1979 and 1980. It turns out that the flight schedule is expected to

accelerate after that time reaching 4 or 8 missions in 1981 and from 6 to

10 missions in 1982.

Perhaps I should outline also how the comet program used to work in

the past. It used to be poor, in the sense that for astronomical obser-

vations there was no program, except observations of orbits of comets by

a few dedicated observers like E. Roemer, except in the case of a very

bright comet. Only a few bright comets appeared - Ikeya-Seki in 1965 in

which a rocket experiment turned out negative UV results; Tago-Sato-kosaka in
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1970; and Bennett in 1970, an excellent, very bright comet. We are

going to cover some of the ultraviolet results in this session, including

the Lyman alpha detection and hydroxyl detection from these comets.

There were no further bright comets until Kohoutek in 1973. Then, right

after that, there was Comet Bradfield in 1974 and West in 1976. I think

that the future will be similar if the comet is not bright we probably

won't look at it. However, we can now observe with the new devices and

the instruments in orbit with the longer viewing time and it will be

possible to look at much dimmer comets which are between 5th and 10th

magnitude. This will tremendously improve the astronomical set of

observations. For example, in Bennett, we found only two lines, hydroxyl

and Lyman alpha, we found the additional lines of 01 (X1304) and the

CI (A1541) in Kohoutek but that's all. That was enough for Paul Feldman

to argue that there was enough carbon generated in that comet to be about

equilivant to the water molecule evolution within a factor of ten,

which is very significant. For comet West, there is a fabulous set of

results by comparison. You will see these in this session. The spectro-

scopy of comets in the ultraviolet is superb. The spectroscopy of

comets in the infrared is poor at the present time, and it is a new

field in terms of molecular species.
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ULTRAVIOLET AND INFRARED OBSERVATIONS OF COMETS:
RECENT RESULTS AND PROSPECTS FOR THE SHUTTLE ERA

C. B. Opal and G. R. Carruthers *
Naval Research Laboratory

Washington, D. C.

Abstract

Recent observations in the ultra-
violet and infrared, particularly during
the apparition of Comet Kohoutek, have
considerably increased our knowledge of
comets. New atomic and ionic species
(H, C, O, and C+) have been identified
with ultraviolet instruments on spacecraft
Improved observations of the OH radical
in the near ultraviolet have been made
from space and from high-flying airplanes.
Recent ground-based infrared measurements
Indicate that cometary dust Is very
similar to that in the interstellar
medium. Large regions of the infrared
will be opened up when infrared instru-
ments are operated in space, making it
possible to detect the more abundant
parent molecular species such as HaO and
COa. Other expected atoms and molecules
such as N, CO, and Ha will be detectable
in the ultraviolet. Instrumentation
applicable to these observations includes
sounding-rocket class instruments, Space-
lab facility instruments such as SUOT and
SIRTF, and the free-flying LST. From
these spacecraft data, a better picture
of the composition of cometary nuclei
will emerge, revealing much about the
composition and conditions of the solar
nebula during the formation of the solar
system.

I. Introduction

Interest in comets has increased in
recent years because the space program
has spurred greater interest in the solar
system as a whole. And Comet Kohoutek
stimulated many observations, including
a number from spacecraft. We will
describe some of the recent observations,
particularly those in parts of the optical
spectrum not studied before. We will also
discuss bow observational capabilities
will be expanded by future space systems—
particularly the space shuttle—and how
these expanded capabilities will help us
to learn more about the nature of comets
and their origin. This, in turn, will
aid our understanding of the origin and
history of the solar system.

A comet, as seen when it is close
enough to the sun to be observable to the
unaided eye, consists of a diffuse spheri-
cal halo called the coma, which is the
brightest part of the comet that is
ordinarily observable, and a tail (actu-
ally consisting of two Independent parts,
both of which generally point away from
the sun). According to the currently

* Member AIAA
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favored "dirty snowball" model, the
source of the phenomena associated with
a comet is a nucleus, consisting largely
of ice, which sublimes and sheds particles
as the comet warms on approaching the
sun. This nucleus has yet to be resolv-
ed with a telescope, but is probably a
few km in diameter. As it evaporates
the ice releases embedded dust and exotic
molecules, forming the coma. Radiation
pressure acting on the dust grains
blows them away from the nucleus, produc-
ing the dust tail. The outflowing
molecules are dissociated by sunlight,
forming a succession of free radicals
and finally atoms. Some of the mole-
cules and atoms are ionized, forming a
plasma which is dragged backward by the
solar wind to produce the ion tail.

Figure 1. Comet Kohoutek photographed
in the visible from South Baldy Mountain,
New Mexico on January 11, 1974. (JOCR
photo, courtesy NASA) Note that the
smooth dust tail and kinked ion tall
point in slightly different directions.

The solar system is believed to have
formed from the contraction and con-
densation of a cloud of Interstellar gas
consisting mostly of hydrogen and
helium, with about 1% by mass of heavier
elements. The sun, other stars, and
the interstellar medium have nearly
identical compositions. Comets are now
thought to originate in the very outer-
most portions of the solar system—the
orbit of Uranus and beyond. In the
outer solar system, the low temperatures
that prevailed during condensation and
agglomeration of primordial solar nebula
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allowed condensation of the volatile
HzO, NHs , and CHt , forming "cometesimals".
In contrast, only the less abundant
refractory dust particles (silicates,
iron, etc.) were incorporated into
planetesimals in the inner solar system,
where temperatures were 300 K or more.
The cometesimals then aggregated to form
comets, the cores of the outer planets
and their satellites, in the same manner
as the planetesimals formed the inner
planets and asteriods. The satellites
of the outer planets and comets are
probably still very similar to the origi-
nal solar nebula condensate in their
composition; whereas the outer planets
themselves gravitationally accumulated
large amoi'"ts of the still more abundant
(but non-condensible) hydrogen and
helium, and became more like the sun in
composition.

Comets are the most accessible samples
of the original solar nebula condensate;
hence the study of c .'oets is very impor-
tant to our understanding of the early
phases of for :•.;-. t ion of the solar system.

II. The Neutral Coma

Our best chance of learning about the
volatile component of the cometary
nucleus is from studying the neutral
coma.

In the visible, the strongest emis-
sions from neutral species are due to
bands of free radicals such as CN and
Ca. Although it is possible that some
of these radicals were trapped in the
ices, it is much more likely that they
are photodisintegration products of
larger, stable molecules. None of the
potential parent molecules has been
detected in the optical spectrum—in fact,
the only stable molecules yet detected
(HCN, CJfeCN) have been seen through their
emission of microwaves. Unfortunately,
it is very difficult to derive abun-
dances from microwave measurements, .
because the excitation conditions are
poorly known.

Probably the most abundant consti-
tuent of most comets is water. Its
photodissociation products, OH and H,
can be observed from the ground, but
only with difficulty because of compli-
cations from ozone absorption and geo-
coronal hydrogen emissions. In fact it
was not generally realized how really
strong the OH emissions at 3090 A
really were until they were observed in
Comets Tago-Sato-Kosaka and Bennett by
OAO-2. The OAO also discovered a strong
signal at 1216 A from sunlight scattered
from atomic hydrogen. (See Fig. 2.)
The hydrogen region was very extensive
and could be mapped out to millions of
kilometers. The reason for the great

extent is that momentum is shared equally
between the two fragments of a dissocia-
tion process, hence light atoms like

hydrogen fly away from the comet more
rapidly than other species. Also, atomic
hydrogen is fairly long-lived in the
solar radiation field as compared to heavy
molecules.
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Figure 2. Objective spectrum of Comet
Bennett obtained by OAO-A2. The 1216 A
Lyman alpha line of H dominates the
spectrum; it appears broad because of
the large extent of the hydrogen cloud.
Note the strong OH features near 3000 A.

The first real images showing the
great extent of the hydrogen cloud were
obtained with an NRL ultraviolet camera
which was carried on an Aerobee rocket
in early 1974 to observe Comet Kohoutek.
A similar camera was also carried on the
Skylab 4 mission. The observed cloud
extended some 10 km from the nucleus,
making it the largest object in the solar
system after the heliosphere. Figure 3
shows equal brightness contours of the
rocket image. The effect of solar
Lyman-a radiation pressure is to deflect
the atoms in the down-sun direction,
which causes the more distant contours
to become elliptical. Contour mappings
like these make it possible to determine
quite accurately the outflow velocity
of the atomic hydrogen and the rate at
which it is being produced by the comet.

Figure 3. Equal brightness contours of
the hydrogen cloud surrounding Comet
Kohoutek observed from a sounding rocket
on Jan. 8, 1974. The elliptical shape
is caused by pressure of sunlight acting
on the atoms. Solid lines are a theo-
retical fit to the data.

Similar observations were made with
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the Skylab Instrument, both before and
after perihelion. Figure 4 shows the rate
of production of atomic H as a function
of distance from the sun. Note that the
production rate was nearly constant and
about the same both inbound and outbound,
except for a brief outburst near peri-
helion. This is not what one would ex-
pect; ideally the rate of production of H
should depend on the inverse square of
the distance from the comet to the sun.
It is also interesting that this comet
was much brighter in the visible before
perihelion than after. Clearly the pro-
duction of dust (as seen in the visible)
and the production of gas (as seen in the
ultraviolet) were not following the same
patterns. |(J3

H PRODUCTION RATE VS
HELIOCENTRIC DISTANCE
COMET 1973 HI

'lO30

X INBOUND
o OUTBOUND
* ROCKET

OJ 0.2 0.4 OS 0.8 1.0
R(au)

Figure 4. Hydrogen production rate of
Comet Kohoutek as a function of distance
from the sun, based on ultraviolet obser-
vations from Skylab 4 and the Jan. 8
rocket flight. Note the tremendous
increase in output near perihelion, but
relatively constant output otherwise,
both inbound and outbound.

An important reason for studying
atomic hydrogen is that even if water is
not the dominant constituent, hydrogen is
still likely to be one of the most abun-
dant atoms in the head of the comet.
Thus, even if we can't see the original
parent molecules, we can infer a good
deal about them from a comparison of the
relative abundances of other atoms as
compared to hydrogen.

The abundant neutral atoms, O, C, and
N (like H), can best or only be observed
in the far ultraviolet wavelength range
(below 3000 A) which is inaccessible to
ground-based observations. The abun-
dances of atoms other than H were first
measured from a pair of sounding rockets
in January 1974. Scanning spectrometers
covering the range 1200-3200 A were
flown by Johns Hopkins University. An
objective spectrograph covering the

1250-2000 A range was flown by NHL (on the
same payload which contained the Lyman-a
camera). Figure 5 shows part of the JHTJ
spectrum. All of the features between 2000
and 3200 A are due to airglow except for
the very strong cometary OH emissions in
the 3090 and 2840 A bands. The feature
at 1657 A (and a weaker one at 1561 A)
are from atomic carbon in the comet. The
features at 1304 and 1356 A are mainly
atomic oxygen airglow, with a contri-
bution from the comet at 1304 A. Mono-
chromatic images of the comet at 1304 A
and 1657 were obtained with the NRL
spectrograph; Figure 6 shows isodensity
tracings of the 1304 A image. Although
these data were noisy, it was possible
to determine the brightness and size of
the oxygen coma and hence the rate of
production of oxygen. Similar results
were obtained for carbon.

1400 1900

WAVELENGTH (A)

Figure 5. ultraviolet spectrum of Comet
Kohoutek obtained with a scanning
spectrometer carried on a sounding rock-
et on Jan. 5, 1974. Carbon features are
present at 1561 and 1657 A. Other fea-
tures are due primarily to airglow, but
part of the 1304 A atomic oxygen and of
the 1216 A atomic hydrogen emissions are
cometary.

SPECTRUM Of
8 CAP

OBJECTIVE SPECTRUM
OF JAN 8.1 1974

PREDICTED LOCATION OF
Q ^at̂ =n COMET * !3°4 MAGE

Figure 6. Equal brightness contours of
the atomic oxygen cloud (obtained on the
Jan. 8 rocket flight). The oxygen cloud
is much smaller than the hydrogen cloud
because the oxygen atoms move outward
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more slowly and are more rapidly lost
through ionization.

The results of the rocket experiments
are ambiguous. The amount of 0 and OH
observed was not as large as would be
expected if most of the H came from dis-
sociation of water. There seemed to be
about as much carbon as oxygen. The
fourth expected major atom, N, was not
observed. These results imply either
that organic substances and other complex
molecules are a major component of the
nucleus, or that 0 and OH become ionized
or otherwise disappear from view more
rapidly than we think. Observations of
0+ and OH+ simultaneous with observations
of 0 and OH are needed to clarify the
situation.

The exploration of cometary spectra
at wavelengths not accessible from the
ground has only begun. With more sensi-
tive ultraviolet instruments, we should
be able to detect emissions from atomic
nitrogen, carbon monoxide, and perhaps
other molecules such as NO, Ng, and Hs.
Extensions further into the ultraviolet
(below Lyman-a) are needed to observe N,
N+, and Ar.

It is difficult to interpret the far-
ultraviolet spectra of comets because the
solar ultraviolet spectrum, which excites
cometary emissions, consists of discrete
emission lines rather than a continuum
(as in the near ultraviolet, visible, and
infrared). Therefore, the efficiency of
a solar line in exciting a cometary
emission varies drastically with the
Doppler shift (due to the radial velocity
of the comet relative to the sun). Thus,
the solar line can be Doppler-shifted
partially or completely off the corre-
sponding cometary absorption line, and
the observed emission is determined not
only by the abundance of the particular
specie in the comet, but also by the
radial,velocity, the width of the solar
emission line, and the width of the
cometary absorption line. Therefore,
observations must be made over a range
of radial velocities, including in par-
ticular the very short time interval
near perihelion when the radial velocity
passes through zero (and where the solar
radiation is most intense). The velocity
shift is more favorable for observing
atomic oxygen before perihelion than
after perihelion, because the solar Lyman-
0 line can excite the oxygen 1304 A
emission (though not as efficiently as
the solar 1304 A lines, most effective
near zero radial velocity). Conversely,
molecular hydrogen emission (also excited
by the solar Lyman-|3 line) is best ob-
served after perihelion.

The infrared has hardly been touched.
Although (unlike the ultraviolet) there
are numerous "windows" in the infrared
where interference from the earth's
atmosphere is relatively low, diffi-
culties are produced by the fact that

atmospheric emissions and absorptions due
to OH, HaO, COa , etc. make it hard to ob-
serve these same species in extraterres-
trial objects. Also,•in the far infrared,
the atmosphere emits a thermal (black
body) continuum, which also interferes
with the observation of faint sources.

So far, only upper limits for known or
expected cometary constituents such as
HaO, NHa , COa, and CHt have been obtained
by ground-based infrared observations.
Undoubtedly, the higher sensitivity obtain-
able with cryogenically-cooled space tele-
scopes will result in the detection of
these and other parent molecules. There
is observational evidence that comets shed
flakes of ice when they are far from the
sun; at present, the infrared signature
of ice particles near 2 fi has not been
detected because when comets are close to
the sun, the ice evaporates too close to
the nucleus to be observable with ground-
based resolutions, and when comets are far
from the sun, too few ice particles are
released to be detectable with available
ground-based sensitivities.

In addition to limited spectral cover-
age, ground-based cometary observations
suffer through most of the accessible
wavelength range from foreground glow due
to atmospheric emissions and scattering
of sunlight. The latter is particularly
important when comets are close to the
sun, and hence must be observed near sun-
set or sunrise. Also, however, ground-
based observations (even with the largest
telescopes) are limited in resolution to
about 1 arc second by atmospheric turbur
lence and motions. Observations with a
large, diffraction-limited space telescope
will give 0.1 arc sec resolution capa-
bility and freedom from atmospheric fore-
ground. This will allow resolution of
the cometary nucleus and the "transition
zone" in which volatized parent molecules
are dissociated to form the coma. Thus,
new spectral identifications may be made
even in the vislbre'wavelength range, as
well as in the extended spectral range
accessible from space.

III. The Dust Tail

The smallest dust particles released
by the sublimation of "dirty ice" are
blown away by the radiation pressure of
visible sunlight and disperse outward
through the solar system. The larger,
heavier ones spread out gradually in the
comet's orbit, forming a meteor stream.
These shower meteors, however, generally
are still too'small and friable to sur-
vive entry to the earth's atmosphere, and
do not reach the ground. Some information
about their composition (particularly the
relative abundances of the heavier metal-
lic elements) can be inferred from the
visible spectra of these meteors, but the
most abundant non-volatile constituents
such as mineral compounds of silicon,
oxygen, and carbon, cannot be observed in
the visible spectrum. Samples of the dust
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by high flying airplanes and, most
recently, samples gathered in foils on
Skylab, have provided additional infor-
mation. But the samples have been modi-
fied by the impact and have been altered
by being near the sun for some time, so
they may not be representative of the
major dust component of the comet.

Data on fresh dust must come from
studying the dust tail directly. In the
visible, the dust simply reflects sun-
light and, except for some polarization,
the scattered light does not reveal much
about the size distribution, structure,
or composition of the dust. In the ultra-
violet .there is so little sunlight to
reflect that the tail has not yet been
detected. Most of our information on
the dust comes from infrared measurements.

Figure 7 shows broadband and visible
measurements of the brightness of the
dust tail of Comet Kohoutek which were
made at several sun-comet distances by
E. P. Ney at U. of Minn. The broad peak
in the visible spectrum is simply reflect-
ed sunlight; it gets fainter as the comet
recedes from the sun. The broad peak in
the infrared is thermal radiation from
the dust. The wavelength of the peak is
determined by the temperature of the
dust. Note that, as expected, the peak
moves to longer wavelengths as the comet
recedes from the sun and the grains cool
down. The temperature of the grains is
higher than the predicted temperature of
a black body at the same distance from
the sun. This indicates that the grains
have difficulty radiating their heat,
which would be the case if the grains
were smaller than the typical infrared
wavelength they are trying to emit; this
sets the upper limit on the size of a
typical cometary dust particle at a few
microns. The fact that the reflectivity
of the grains doesn't change much in the
visible means that they are larger than
visible-light wavelengths, in other words,
bigger than a few tenths of a micron.
Thus the infrared spectrum gives a good
idea of the size of the particles. Also,
there is usually a peak near 10 microns
which can be, attributed to metallic
silicate material. The infrared signa-
ture of the dust is identical to that of
interstellar dust, which indicates that
comets may hold some of this cosmic dust
in cold storage in essentially unaltered
form.
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Figure 7. Broadband visible and infrared
measurements of the dust tail of Comet
Kohoutek over a range.of sun-comet dis-
tances. The peak in the visible is re-
flected sunlight, that at longer wave-
lengths is thermal emission from the dust.

It is important to make ultraviolet
measurements of the dust to see whether
it has characteristics identical to
interstellar dust in that portion of the
spectrum as well. In particular, the
dust should have an absorption band near
2200 A and should scatter more strongly
to shorter wavelengths. These measure-
ments can only be made in space by a
sensitive ultraviolet spectrometer.

IV. The Ion Tail

Ion tails are formed through a complex
and poorly understood interaction of the
gases in the coma with the solar wind.
The ions apparent in the visible spectrum
are clearly not produced by photoioniza-
tion, since they do not originate from a
diffuse region but rather from confined
regions near the nucleus. Among the ions
present are CO+, N2 + , OH+, CH

+, and H30
+.

The latter was identified recently in
spectra of Comet Kohoutek, and in old comet
spectra through some recent laboratory and
theoretical work on the spectrum of ioniz-
ed water. Probably most of the ions
present simply don't show up in the
ground-accessible spectrum. Expected ions
which are observable only in the vacuum
ultraviolet include 0+, C+, N+, Si"1", and
many others.

Because of the difficulties in
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interpretation, ion tails do not yet tell
us very much about the composition of the
nucleus. Rather, they are of interest
for what they tell us about the solar
wind. In fact, the existence of the solar
wind was first postulated by Biermann on
the basis of the existence of ion tails.
The direction of the tail allows one to
determine the speed of the solar wind.
Since comets can go closer to the sun and
farther out of the ecliptic than existing
spacecraft, they provide a unique means
of studying the solar wind in these regiona

Ground-based observations of ion tails
when the comet is near the sun are hamper-
ed by twilight, which washes out the tail,
and by the fact that the lifetimes of the
ions which can be observed in the visible
are short close to the sun, making the
tail short. The closest to the sun an
ion tail has ever been observed is .18
a.u.; this observation was made in the far
ultraviolet. Figure 8 shows an image in
the 1250-1600 A band of Comet Kohoutek
at that sun-comet distance, obtained
during the Christmas Day EVA on Skylab 4
with the NRL S-201 ultraviolet camera.
Although the emitting species has not
been identified spectroscopically, it is
probably the long-lived carbon ion.
Incidentially, there was no twilight
problem with this measurement; in fact,
it was made in broad daylight! Unfortu-
nately the earth was almost in the plane
of the comet's orbit, which means that
the viewing geometry was very poor for
determining the speed of the solar wind.
This type of measurement will have to
await a comet with a more favorable orbit.

Figure 8. Brightness contours of Comet
Kohoutek in the 1250-1600 A band on
Christmas Day, 1973 from Skylab (same
camera as used for the H observations).
This is probably an ion tail of C+. Note
that the tail does not point exactly
away from the sun, owing to comet motion
and non-radial flow of the solar wind.
This is the closest to the sun that an
ion tail has been observed.

Desirable observations for the future
are measurements of ion tails at high
ecliptic latitudes and near the sun.
Spectroscopic observations of ion tails
in the ultraviolet, to identify and
measure the emissions, are necessary.
Also, high-resolution spectra in the

visible and other spectral regions
would tell us more about the velocity
distribution of the ions near the head
and in the tail, from which one could
hope to better understand the interaction
of the coma gases with the solar wind
and the subsequent acceleration process.
It is important to obtain a self-
consistent, well-calibrated set of obser-
vations over the largest possible portion
of the comet's trajectory, as it
approaches and recedes from the sun.
(Incidentally, not only twilight prob-
lems, but also the vagaries of weather,
make this very difficult to do from the
ground.) Also, higher-resolution imag-
ery (from a space probe or a telescope
in earth orbit) is needed to resolve the
details of the ion tail origin close to
the nucleus.

V. Future Prospects

It is clear that there are huge gaps
in our understanding of comets. We will
now turn our attention to some of the
ways of filling these gaps which will be
available in the future. We will con-
centrate on those made possible by
future spacecraft.

An obvious thing to do is send a
spacecraft to a comet to take high reso-
lution pictures of the nucleus, to
sample its atmosphere with a mass spectro-
meter, to measure the size distribution
of the dust, and perhaps to somehow
sample the nucleus itself. The most
desirable type of comet to study is one
that has never been near the sun before—
a so-called "new" comet. Unfortunately,
a slow fly-by of, or rendezvous with,
such a comet is extremely difficult. For
one thing, most comets are discovered
only a few months before perihelion,
which makes preparing a spacecraft for
the mission virtually impossible. For
another the energy requirements for
rendezvous are enormous. The minimum
delta v required for a parabolic comet
orbit is more than 20 km/sec; 50 km/sec
is more typical. This is clearly out of
the question for conventional chemical
rockets, although it could be achieved
with solar electric propulsion. There
are also difficulties associated with
dust near the nucleus, which could
obscure it from view and which would
present serious hazards to a spacecraft
undergoing a high-speed fly-by. The
best prospect for a direct cometary
mission in the near future seems to be a
slow fly-by of one of the less spectac-
ular periodic comets. These require
smaller delta v's and have dust pro-
duction low enough for the nucleus to be
observable and for the spacecraft to
survive undamaged. It would also be
possible to target a spacecraft with a
non-cometary mission near a. comet at a
safe distance; in fact this is being
studied as a possibility for the third
Helios mission. Even granted that a
fly-by is undertaken in the near future
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there will still be an important role for
near-earth observations.

We anticipate that there will be
further sounding rocket experiments,
since they offer the advantages of quick
response time and good economics for a
single-purpose objective such as a comet
study. Unfortunately it is not practical
to use sounding rockets for synoptic
studies of the comet's passage through
perihelion, where the most interesting
changes take place.

An orbiting observatory would provide
the necessary time coverage, but because
of the high cost and the unpredictability
of comet observing opportunities, build-
ing a satellite solely for a comet-study
mission would be difficult to justify.
Thus, future orbital observations of
comets will be made primarily from space-
craft designed for other purposes.

The most promising prospect for near-
earth observations in the near future
is provided by the space shuttle. The
flexibility, large recoverable payload
capacity, short preparation time, and
relatively low cost of Spacelab missions
will be ideal for comet studies. One of
the major .orbital facilities planned for
launch on the shuttle is the Large Space
Telescope (LST). This will be a
diffraction-limited, 2.4 meter aperture
telescope with angular resolution of
0.1 arc sec (10 times the best ground-
based resolution) and capable of obser-
vations over the entire spectral range
from about 1000 A in the far ultraviolet
to 1000 microns in the far infrared. It
will be capable of low-resolution spec-
trometry in the 1000-8000 A wavelength
range, high resolution spectrometry in the
1150-3100 A wavelength range, and high-
resolution direct imagery. It will, there-
fore, be a powerful tool for the study of
comets. The space shuttle will also serve
as a first stage for deep-space missions,
utilizing solar-electric as well as
chemical upper stages, which could be used
for-in-situ probing of comets.

In addition to its use as a launch
vehicle for automated spacecraft such
as LST, and as a booster stage for deep-
space missions, the shuttle can be used
as a platform from which to make short-
term astronomical observations (7 to 30
days in the Spacelab mode of operation),
followed by return of the shuttle and
its instrument complement to the earth.

Proposed Spacelab missions include
major facility instruments, such as the
Spacelab Ultraviolet/Optical Telescope
and the cryogenically-cooled Spacelab
Infrared Telescope Facility, both of
which will be quite useful for cometary
studies. The Spacelab mode of operation,
however, can also incorporate a large
number of smaller, independent instru-
ments directed toward a common objective.
It will be possible to assemble a diverse

payload designed specifically to study
comets and to fly it on short notice.
One can envision a group of small
"sounding-rocket class" instruments,
covering the optical spectrum from the
near infrared to the extreme ultraviolet.
Because the instruments would be recover-
able, film recording could be used in
many cases, resulting in greatly simplifi-
ed instrument design. For the middle and
far infrared, cryogenically cooled instru-
ments could be carried. Data retrieval
in this case could be in the form of on-
board recording analogous or even prac-
tically identical to that used in a ter-
restrial observatory. Various specialized
instruments could be carried as well.

VI. Conclusions

In summary we emphasize again that we
have yet to find out (for certain) what
comets are made of. When we do, we will
have some important clues about what the
solar nebula was made of and how it con-
densed to form the solar system. To find
out what comets are made of, we must make
sensitive instruments covering the whole
spectrum and carry them above the atmo-
sphere. Of the methods available for
doing this, the shuttle holds the most
promise: it provides the advantages of
flexibility, low cost, quick response
time, and retrievability, all of which
combine to make it an ideal platform for
comet watching.
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ULTRAVIOLET SPECTROSCOPY OF COMETS

Charles F. Lillie
The University of Colorado at Boulder

Introduction:

Since the first ultraviolet observations of comets were

obtained in 1970 (Code et al., 1972), considerable progress

has been made in both observational techniques and the

interpretation of their spectra. The recent rocket observa-

tions of Comet West by groups at the University of Colorado,

Johns Hopkins University, and Goddard Space Flight Center

produced the most detailed ultraviolet spectra currently

available. Ultraviolet spectra offer a special insight into

the physics of comets because most of the abundant atomic

and molecular species present in the coma, H, C, 0, CO, C02,

OH, CN, NH, have resonance transitions in the 1000 to 4000 A

region of the spectrum.

Impact of the Space Shuttle

As an observing platform for advanced instrumentation,

the Space Shuttle has the potential for great advances in

the study of comets. Ground-based observatories are severe-

ly hampered in their studies by the earth's atmosphere.

In many respects, comets are most interesting during

perhelion passage when the production rate of dust and gas

is at a maximum. Unfortunately, this event takes place in

only a few days, during which the comet can only be observed

for a brief period just before sunrise or after sunset and

is seen through a long path length in the earth's atmosphere
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which produces image blurring, absorption of light, and

enhanced sky brightness due to scattered light and airglow.

More often than not, it seems, the weather is bad just when

key observations are to be made. And, of course, ground-

based measurements are only possible in the visible and near

infrared where the features are mainly due to trace constit-

uents of the comet: CN, C2, C^, CH, NH.

By contrast, the Space Shuttle orbits the earth 15

times each day, far above the atmosphere. With its rapid

turnaround time and frequent launch schedule, it should be

possible to fly an integrated payload to observe newly

discovered comets at perihelion passage at wavelengths from

the extreme ultraviolet to the far infrared or sub-milli-

meter range.

In addition to high spectral resolution measurements,

it will be possible to obtain nearly diffraction-limited

images through narrow bandwidth filters which isolate spe-

cific atomic and molecular species such as H, 0, CO, CC^ .

And we will be able to observe the comet every 95 minutes,

15 times each day, to follow temporal changes in the produc-

tion rate of atoms and molecules due to solar activity,

which occur with time scales shorter than a day.

Cometary Spectra •

We have perhaps the most complete spectral coverage for

comet West (1976). Figure 1 shows its spectrum in the 3000

to 5800 A region, where the dominant features are due to £>~ ,

Co, and CN. These data were obtained from Boulder when the
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comet was low in the sky, and the OH feature at 3090 A was

absorbed by ozone in the earth's atmosphere. Satellite

observations show OH X3090 is approximately twice as strong

as CN X3883. Figure 2 shows Andy Smith's spectrum of comet

West in the 1600-4000 A region with a rocket-borne Schwartz-

schild camera. It illustrates the increasing richness of

cometary spectra as one goes further into the ultraviolet.

As a rule, the information content per unit wavelength

interval seems to be inversely proportional to the wave-

length. Here we see not only a strong, over exposed OH

X3090 feature, but many previously unobserved features due

to CO , C02 , CS, and Si. The underlying continuum is due

to sunlight scattered by dust; its density decreases toward

long wavelengths due to vignetting in the camera. The

CI X1657 and CN X3883 features show weakly at the extreme

edges of the spectrum. This is but one of 30 or 40 density

profiles from Smith's observations which have not yet been

analyzed.

Figure 3 is a reproduction of the rocket observations

of comet West by Feldman and Brune (1976). In the 2000 to

3200 A region we again note the CO first negative band and

the first positive band of C02
+. Shortward of 1700 A, the

spectrum is dominated by features due to atomic carbon and

oxygen. The Lyman alpha feature of atomic hydrogen, at

X1216, not shown here, is the strongest single emission

feature of comets. Figure 4 shows the ultraviolet observa-

tions of Comet West obtained by Earth, Lawrence, and Rottman.
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In addition to the features due to C and 0 we note the

Fourth Positive Band of CO, including what may be the (5-0)

transition at 1393 A.

Interpretation of the Spectra

The obvious information to be derived from a study of

these spectra includes the density, temperature and composi-

tion of the coma and tail of the comet as a function of

distance from the nucleus and, by repeated observations over

a period of time (several weeks if possible) how these

properties vary with heliocentric distance. In order to

determine these parameters, it is necessary to understand

the excitation mechanism for the observed features. We

should also like to determine the production rate of dust

and gas in the comet as a function of heliocentric distance.

Given this information, it will then be possible to con-

struct models for the coma of the comet and to study the gas

phase reactions which occur in the collisional region of the

coma. At the boundary of the coma, and in the tail of the

comet, we should also like to understand the interaction of

the cometary plasma with the solar wind and the interplan-

etary magnetic field.

In addition to providing a better understanding of

comets, these studies are relevant to research on the CO^-

rich atmospheres of Venus and Mars whose spectra resemble in

many ways the ultraviolet spectra of comets.
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Comet Bennett

Many of the features in the spectra of comet West had

been detected earlier in the OAO-2 observations of comet

Bennett (1970 II). Because the OAO-2 spectrometer was an

objective grating instrument (Code et al., 1970) a strong

signal due to. Lyman alpha was measured at all grating posi-

tions. Figure 5 shows the spectrum of comet Bennett in the

1250 to 1800 A region with the contribution of Lyman alpha

removed. It shows, for the first time, (Lillie, 1975) the

CO Fourth Positive Bands, as well as 01 X1304, CII X1335,

CI X1657, and possibly [01] X1356.

Comparing the spectrum of comet Bennett with that of

comet West, we note a great decrease in the strength of the

CI lines relative to 01, and an enhancement of the emission

rate in the 1350 to 1450 A. Although these difference may

be due to differences in composition, it seems more likely

to be a result of the different heliocentric distances at

which they were observed: 0.39 a.u. for West, and 0.82 a.u.

for Bennett.

We have fit synthetic spectra to these data, assuming a

Boltzmann distribution of line strengths for the Fourth

Positive System and find a good correlation in the 1450 to

1800 A region. In order to fit the 1850 to 1450 A region,

however, it is necessary to assume the higher vibrational

bands are far more populated than one would expect. We have

examined the possibility that the emission features in this

3 1 +
wavelength interval are due to the CO (d A^X T. ) system,
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but no conclusion could be reached with the limited informa-

tion on this band system which was available to use.

We may also use the OAO data to calculate the lifetimes

of these atomic and molecular species against charge-exchange

and photoionization. Since the ultraviolet spectrometer is

an objective grating instrument, it provides information on

the spatial distribution of the emitting species (Keller and

Lillie, 1974). Additional information can be obtained by

comparing the emission strength measured in the 1x8 arcmin

spectrometer slit with that in the 10' diameter field-of-

view of the ultraviolet photometers. When we compare these

observations with the intensity variations predicted by

Haser's (1957) parent-daughter model for the radial expan-

sion and dissociation/ionization of cometary gasses, we find

the lifetimes for 0 and CO listed in Table l.< These Values

are a factor of ^12 smaller than those in the literature,

suggesting that an additional process is contributing to

their destruction.

Given the lifetimes of these species we may also cal-

culate the rate at which they are produced in the coma, if

we know the excitation mechanism. Normally the emission

lines are due to the resonant-fluorescence of solar radia-

tion, although the strong [01] A1356 line must originate by

another process. If we use the lifetimes from the litera-

29 -1
ture, the hydrogen production rate, 6 x 10 atom-s , is

consistent with previous measurements (Keller and Lillie,

1974; Keller and Thomas, 1975), and the value for oxygen,
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29
2 x 10 , is nearly right for it to be produced by the

photodissociation of water; but CO is far more abundant than

expected, a factor of 4-6 greater than hydrogen. We get the

same result if we integrate over the entire CO Fourth Posi-

tive System from 1400 to 1800 A.

If we use the observed lifetimes of the species, (see
OQ

Table 1) the oxygen production goes up to ̂ 2 x 10

atom-s~ , which is consistent with Delsemme and Combi's

(1975) production rate for oxygen in comet Bennett at the

heliocentric distance (0.82 a.u.), based on observations of

the [01] X6300 line. However, the production rate of CO is

31 -1
increased to ̂ 2x10 molecule- s , which seems far too high.

TABLE 1 — Column Densities and Production Rates

B(s), 8(:
photon

HI

01

CI

CII

CO

H-

v*y

1216

1304

1657

1335

1510

1608

ĵ

70,000

3,420

220

1,260

440

<30

rauj.— aec

2.5xlO~3

-ft
3.1x10

_5
3.5x10 3

-6
4.9x10 °

-7
2.2x10

_7
1.4x10

) T(S"
1) f_

2.2x10° 0.0033

l.SxlO5 0.53

2.5xl05 0.46

2.5xl05? 0.46

/,
0.92

•vlO8 0.001

Q(mol-s -1)

6.1x10
29

2.2xl03°

8.5xl027

3.5x10
29

l.SxlO31

<3.3xlO
29

We have examined other excitation mechanisms: dissocia-

tive recombination of

C00
+ + e" -»•CO* .+ 0,

would require a similarly high production rate, and colli-

sional excitation by electrons would require unreasonably
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high electron densities. Perhaps chemiluminescence due to

gas phase reactions in the collisional region of the coma,

within 3x10 km from the nucleus, is the answer.

Cometary and Planetary Spectra

Since a comet is influenced by many of the same factors

which affect the atmospheres of the planets: solar radia-

tion, solar wind, and the interplanetary magnetic field, and

they can be studied at a large range of heliocentric dis-

tances: 0.10<r£5 a.u., we can gain new insight in the phys-

ics of planetary atmospheres by their study. In particular,

we may compare them with the C, 0, CO, and CC^ atmospheres

of Mars and Venus.

Figure 6 shows the spectrum of Mars' atmosphere (Earth

e_t al. , 1972) in the 2000-4000 A region. The C02
+ A2890

feature is present, but instead of the CO First Negative

Bands found in Comet West, we have the Cameron Bands of CO

which are the result of electron excitation. On the other

hand, in both the comet and Mars we see the CO Fourth Posi-

tive Bands, CI, 01, and, of course, atomic hydrogen.

In the spectrum of Venus (Rottman and Moos, 1973;

Figure 7) the CO Fourth Positive and the A1400 emission line

is abnormally strong, as in the case of Comet Bennett.

Other features in the 1350 to 1450 A region are blended into

the [01] A1356 and A1400 features at the low resolution of

this spectrum.

The spectra of Mars and Venus resemble those of comets

in many respects, but also differ in subtle ways. Compara-
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tive studies of the ultraviolet spectra of these planets and

comets at different heliocentric distances (0.1<r<2.0 a.u.)

should provide much insight into physical processes in

planetary atmospheres and cotnetary comae.

Summary

This discussion indicates the current state of our

understanding of the ultraviolet observations of comets, and

it suggests the Shuttle could make an enormous contribution

in this area. Of course, what is required to resolve the

discrepancy between our observations of comet West and comet

Bennett is a long-duration (̂ 30 to 45 days) study of several

comets, both dusty and gaseous, "new comets," and those

which have previously approached the sun. The rocket obser-

vations represents "snapshots" taken when the comets were

bright and close to the sun (0.34 to 0.39 a.u.), with rela-

tively low spectral resolution (10 to 20 A).

Extended observations from the Shuttle would permit us

to follow variations in the production rate of gas and dust

and changes in the structure of the tail and coma as comets

approach and recede from the sun. We should be thinking at

this time of payloads which are tailored to cometary obser-

vations from the Shuttle; one which covers the accessible

wavelength range at moderate and high spectral resolution,

and permits monochromatic imaging at high spatial resolu-

tion; and which can be flown with minimal preparation,

within two to three months after the discovery of a comet.

We must try to get out of our present situation in which one
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uses the instruments that are available (but designed for

other purposes) when a bright comet comes along. The ques-

tions which are being posed by the ultraviolet observations

demand specialized instrumentation.
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Spectrum of comet West 1975n in the 1250-1680 A spectral range. The solid line gives the response of the spectrometer to a

source of uniform spectral brightness. The peak of the C I X1657 line is off-scale at 79 counts per 0.12 s.
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Figure 3. The ultraviolet spectrum of comet West
obtained by P. Feldman with ultraviolet

spectrometers on a sounding rocket
launched from WSMR on March 5, 1976.
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Figure 4. The spectrum of comet West in the 1250 to 1800 A
region obtained by Barth et al. with a sounding rocket

launched from WSMR on. March 5, 1976.
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WAVELENGTH

I
3000

Mars airglow spectrum 1900-3400 A. This spectrum is the result of averaging 120 individual
limb observations with 15-A resolution.

MARINER 9: MARS AIRGLOW SPECTROSCOPY

1200 1400 1800

WAVELENGTH (A)

Mars airglow spectrum 1100-1900 A. This spectrum also is the result of averaging 120
individual limb observations with 15-A resolution.

Figure 6. The airglow spectrum, of Mars' atmosphere
observed from the Mariner 9 spacecraft at a reso-

lution of 15 A.
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N81-24141
OH OBSERVATIONS

Michel FESTOU

Service d'Aeronomie du CNRS

Verrieres le Buisson

FRANCE

The OH emission has been observed from the ground since 1941 (Comet

Cunningham 1940 c)(Sv,'ings et al., 1941) in the UV range. (0-0) and

2 + 2
(1-1) bands of the A Z -X II. transition were identified. Then IR

was detected and more recently radio-observations were conducted

successfully on Comets Kohoutek (1973 XII) and West (1975 N) at

18 cm. The OH emission is one of the strongest arguments which have

led to the icy model for the nucleus developped by Whipple (1950).

With OA02 observations in 1970 (Code et al.) of both emissions of

H and OH of comet Tago-Sato-Kosaka (1969 g) begins a new epoch for

the OH radical : as a matter of fact since that time we have quanti-

tative measurements. H and OH observations can be used to check the

validity of the icy model..

As far as we describe the H cloud as a very large object, we can

assume the H-source to be ponctual. But in order to explain obser-

vations of the central part of the cloud, the source must £>e assu-

med as extended, and consequently we have to know the OH lifetime.

It is why we attempted to obtain photographs of the OH emission

from the Convair 990 airplane (Blamont et al., 1974).

222



The photographic technic from the ground has some inconvenients :

in a single photograph we cannot reach the isophotes beyond two

scalelengths of the OH radical from the nucleus owing to the rather

small available time exposure (the comet is always following or

preceding the Sun). Another difficulty bound to the long observa-

tionnal duration is the necessity to correct the proper motion of

the comet with respect to the stellar field (whence a limited spatial

resolution).. As demonstrated by the easy detection of the OH emission

in comet Bennett (1970 II) (Keller and Lillie, 197U), the future is

to developp experiments from Earth-orbiting plateforms. However

some problems will be raised as the necessity to account for stray-

light coming directly from the Sun or diffused by the Earth. The

principal improvements will be a better sensitivity (no atmospheric

absorption + new technics)and an increase of the available time for

measurements.

The analysis of OH isophotes provides two informations : the production

rate of HO (the most probable parent of OH) and the dissociative-

lifetime of the radical. This last parameter is model dependent :

until now all observations in the cometary coma have'been studied with

the Haser's model which principal features are a padial and uniform

expansion velocity of the molecules. This assumption is certainly

uncorrect since the dissociation of the parent almost leads to an

excess of energy (Keller, 1971) essentially converted into the kinetic

energy of the products. We have computed a new model where the HO

and the OH velocities are vectorially added and we have compared it

with our OH observations of comet Kobayashi-Berger-Milon (1975 H)

obtained from La Foux-.id'Allos (France) in August, 1975. Thus we have
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determined a lifetime of about 3 x 10 seconds (at 1 A.U.) instead

of 2 x 10 s by an Haser's analysis. The uncertainty is ± 10 s.

Consequently all determinations of the OH production.rates are model-

dependant since they necessitate the exact value of the OH lifetime.

Considering that H_0 is the parent of OH, there are two sources of

H ; if we are looking directly on the nuclear region, we observe the

first component of hydrogen (produced by dissociation of H^O, the H

velocity is * 20 km s if there is no thermalisation by> collisions)

and looking farther we observed the H-atoms coming from the disso-

ciation of OH. The knowledge of the OH lifetime is helpful! to

construct such a model. The H and OH production rates must be

compatible with the common origin hypothesis : that is the case

when we compare the H/OH ratio in comets Bennett, Kohoutek and

K.B.M,, at least within a factor of 2. Another consequence of the

H^O presence in comets is that it is not possible to describe the

Lyman-alpha emission as the result of the superposition of two

emissions due to two populations of atoms having maxwellian velocity

distributions centered at 8 and 20 km s~ respectively : the first

one indicates that collisions occur precisely where the second

is created and .thus there is necessarely a single population, what

is inconsistent. In the same way, to utilize a 1 km s component

is purely artificial since a 8 km s maxwellian distribution

contains a lot of 4 km s atoms.

Coming back to the advantages that can-be reached in space, what

are the objectives which can be looked at ? OH is the best indicator

of the H_0 presence and a systematic survey of its emission is desi-

I
rable. The measured production rates, reduced to 1 A.U., in the three
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29 -1comets mentionned above are between 2cand 5 x 10 molecules s

This can reflect a common size for these objects. The comet Eneke,

for which we have H-observations, has a much lower production rate.

It will be interesting to know if it is characteristic of the short

period comets. The high value of the g factor for OH (and OD) and the
o

low signal due to the dust at 3100 A allow us to attempt a measurement

of the OD/OH ratio in very bright comets. In our laboratory we have

obtained spectra of a mixture of OD and OH. It was rather easy

-3 -4-
to detect a 10 - 10 ratio,.but we were limited by small satel-

lite lines of OH. The lines of the (1-0) bands of OD and OH are

separated by many angstroms and the continuum is very low, but

this band is 20 times less intense than the (0-0) (Feldman, 1976).

Note that the interpretation of the observation of the OD/OH ratio,

if it is positive,may be certainly more difficult that the direct

measurement of the D/H ratio at Lyman-alpha (to be done outside

the geocorona). The Lyman-alpha and the OH emissions can be used

to detect comets since they are very intense and well isolated.

Neglecting the problem of the geocoronal Lyman-alpha absorption,

the choice of the observing wavelength is dependant of the Sun-

comet distance R. If R > 2 A.U., the Lyman-alpha emission is

limited by the interplanetary background, while the OH emission

is only limited by the zodiacal light (is there a threshold in

the OH emission versus R ?). If R < 0.5 A.U., for a 2° field of

view and a low production rate (no saturation effect), it is

best to use the Lyman-alpha wavelength (a comet 10 times fainter

than Encke could be easily detected at 0.5 A.U.). If 0.5 < R < 2 AU

the two wavelengths are almost equivalent but the objects in the
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OH light are much more stellar at Lyman-alpha and the determi-

nation of their position can be easier. Do not forget here that

a one week mission risk to be insufficient to obtain meaningfull

results, especially in a detection experiment.
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H.U. Keller

Max-Planck-Institut fiir Aeronomie, Katlenburg-Lindau, FRG

The intention of this contribution is to give a brief status report

on theoretical models dealing with the interpretation of the cometary

Lytnan alpha (L ) observations. L is the resonant line of hydrogen at

X 121.6 nm. It is the most prominent emission feature in the cometary

vacuum ultraviolet. The existence and general extensions of a hydrogen

halo around comets had been conceived in the late sixties (Biermann

1968). One of the main clues for high gas production rates were the ob-

servations of a cometary component of the forbidden 01[630.0 nm] in the

early sixties.

The first satellite observations revealed strong L signals of the
a

two medium bright comets Tago-Sato-Kosaka (1969 IX) and Bennett (1970 II).

These new data triggered some effort to create more elaborate models for

the interpretation of the hydrogen halo. I will not dwell on the early

models and their refinements but rather briefly describe the most re-

cent results.

The UV observation of comet Bennett by the University of Colorado

photometer (Keller and Thomas 1973) showed that the dimension of the

hydrogen halo was more than 1/5 a.u. Figure 1 displays the model iso-

photes for the observational scans across the hydrogen cloud (Keller and

Thomas 1975). They show the influence of the relatively strong solar L

pressure force pushing the hydrogen atoms in an antisolar direction. This

repellant force can even overcome the gravitational attraction. The iso-
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photes are not at all circular as for the small optical coma. The hydro-

gen halo shows also a strong curvature due to the orbital motion of the

5 «IO7

COMET BENNETT
Ly aISOPHOTES

MARCH 20.74
1970

Fig. /. Lx isophote map of a model calculation for 20.74 March.
The .v coordinate points in antisolar and the y coordinate in the
direction of llie cometary motion, .v and \- lie in the orbital
plane of the comet. The cometary nucleus is located at the origin.
Two velocity components i;H = 7 and 2 l k m s ~ ' . F0 = 5 x 10" ph
s " ~ ' c m ~ 2 A ~ ' and ( H = l . 3 x l O h s are used. The isophotcs are
labeled with relative apparent emission rates. 10 corresponds to
8.86R for Q = 5.9x I0 2 9H atom s~' at I a.u. (n = 2). Heavy lines
arc scans of the OGO-5 University of Colorado photometer at
their particular geometrical position depending on the observational
date (M28 dashed). The crosses ( + ) arc defined by the .v and v
coordinates of the earth at the times when the maximum intensities
were observed. The curved line is the syndyname

Keller and Thomas (1975)

comet (very much in analogy to the visible dust tail). The line-of-ob-

servation was almost perpendicular to the cometary orbital plane reveal-

ing the curvature most effectively. The stronger the solar L flux the

less curvature can be seen. This curvature can therefore be used to de-

termine the solar L intensity independent of any absolute calibration

of the instrument. The relative intensity distribution across the hydro-

gen halo determines the strength of the curvature and hence the solar La
228 ^ .



intensity scattered by the comet.

This type of model assumes an optically thin emission (certainly not

correct for the surroundings of the nucleus out to less than 10 km) and

takes the effects of the orbital motion of the comet and the gradients

of the forces of gravitation and radiation pressure into account. The

following cometary parameters can be determined:

1) The production rate of hydrogen, Q , and its variation with helio-
H

centric distance, r.

2) The mean outflow velocity, vu.H

3) The hydrogen lifetime, tu.n

We shall now discuss these parameters using L observations of
a

comet Kohoutek (1973 XII) taken by the electrographic camera of the

Naval Research Laboratory (Opal et al. 1973; Meier et al. 1976). A camera

was installed on Skylab and observed the comet for a period of about two

months centered around perihelion time. A second camera was flown on a

sounding rocket on June 8, 1974, (r = 0.43) producing the best observa-

tion (Fig. 2). For this observation the line-of-sight lay almost in the

orbital plane perpendicular to the sun-comet direction. Therefore, the

effect of the curvature in the orbital plane appears only as a rather

slight asymmetry. We (Keller and Meier 1976) had to give up the conveni-

ence of the earlier model and refine the calculations by introducing an

arbitrary geometry but neglecting the variations of forces over the size

of the observed hydrogen cloud (which is considerably smaller than that

observed by the OGO-5 photometer, see Fig. 1). The intensity of the

solar L line had to be assumed because the curvature could not be seen
a

due to the projection. With a solar flux of F = 3.7 x 10 ph cm s A
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29 —1 6
at 1 a.u. we obtained Qu= 6 x 10 s , and t, = 2 x 10 s reduced to 1

' n n

a.u. A potential law Qu « r was assumed for the time variation of the
H

LYMAN a ISOPHOTES
COMET 1973 Xtt

JAN 8.1,1974

F0=3.7xld lphCfTi2sHA1,
IH= 2 x 106s I at I au
n = 2

Q (0.434 auteZxlO2^
Q4 = O.O3Q
Q8 = 0.580
020 = 0.390

Fig. "jtt Observed and computed isophotes from the rocket La
imagery. Airglow and film backgrounds have been removed. No data
are shown in portions of the antisolar direction, owing to an
instrumental ion spot at the center of the field; the outermost
isophote is not completed in the lower left of the figure because
of a scratch on the film. The smallscale variations in the data are
due to grain variations in the film, and densitometer noise

Meier et al. (1976)

production yielding an exponent n = 2. As for the above mentioned OGO-5

observations of comet Bennett it was not possible to fit the isophotes

with a one parametric Maxwellian velocity distribution of the outstream-

ing hydrogen atoms. A combination of 60% atoms with v = 8 km s and
H

40% with v.= 20 km s resulted in a good fit to the observations. Whilen

the outflow velocity of 8 km s had been found in early investigations

(Keller 1971; Bertaux et al. 1973), a second, higher velocity component

had to be introduced for fitting with the more sophisticated models. It
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should be pointed out that the mean velocities 8 and 20 km s were not

the result of the fit but had been chosen a priori and only the ratio of

the productions of atoms of the two distributions was varied. 20 km s~1

was chosen because the hydrogen atoms may be produced from dissociation

of water (see below). The interpretation of this result is that the ac-

tual velocity distribution of the outflowing hydrogen atoms (which is

certainly not Maxwellian) has to have a high velocity component.

LYMAN a FROM COMET I973 XH

5I02

o
in

X OBSERVED
25 DEC. 1973

- THEORY

10 I06 I05 I06

DISTANCE FROM NUCLEUS (km)

Fig. 3. Upsun and downsun emission rate profiles for the EVA
observation. The horizontal error bar in the last upsun data reflects
the spread in distance of the outermost isophote

Notice the change in curvature of the 4 km s"1 profile in the
downsun direction near 5 105 km due to atmospheric absorption

Meier et al. (1976)

Figure 3 displays upsun and downsun intensity profiles of the Sky-

lab observation of comet Kohoutek on Dec. 25, 1973 (r = 0.18 a.u.) Here

we had to introduce a third, low, velocity component with 4 km s to

achieve a good fit to the isophotes.

The number of parameters makes it advisable to investigate their in-

fluence on the fit rather carefully to uphold their physical meaning. An
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easy method to do so is demonstrated in Figure 4. Three models with

vu = 4, 8, and 20 km s were calculated resulting in the isophotes
n

shown on the first row of Fig. 4. The second row shows isochrones con-

necting points where the mean lifetime of the hydrogen atoms in the

line-of-sight column is equal.

COMET KOHOUTEK

JANUARY 8.1, 1974

v = 4 km s~' •7=20 km S"'

INTENSITY
(KR)

LIFETIME
(I05s)

VELOCITY
RELATIVE
. TO SUN

(kms-0

-I7/ -I9/ -Zl/ -Z3/-24/-2a/ -2€/ -27

VELOCITY
RELATIVE
TO EARTH

(kmV)

I.0xl06km

Fig. 4. Isophotes, isochrones and isotachs of the radial velocities for models with mean velocities of 4, 8 and 20 cm s~' • - _ . _ i •
illustration purposes, the following values of the parameters were adopted at 1 a. u. for each model :F0 = 3.7 10 phcm s A , t H — Z l O - s ,
n = 3,CH=1029s"1.Thepositionofthenucleusisindicatedbyadot,thesunistothe right.

Keller and Meier (1976)
232



The solar L line is self-reversed. The excitation of the hydrogen

atoms depend on their radial velocity component with respect to the sun.

The influence of this Doppler shift can be judged using the plots in the

third row displaying isotachs.

Even more important than the variation of the solar excitation may

be the geocoronal absorption of the cometary L signal. Since the geo-

corona extends to more than 10 km from the earth most satellites fly in-

side. The optical depth of the terrestrial hydrogen in the center of the

absorption line depends on the observational geometry; a typical value

is 10. The isotachs of the fourth row of Fig. 4 permit determination of

the influence of this absorption, which often is only important in a

small region of the cometary halo. The geocoronal line is narrow compared

to the cometary emission line and to the dispersion of the radial velo-

city component. A first order approximation of this absorption is inclu-

ded in our models. E.g., it was important for the Skylab observations on

Dec. 25. In general, all the diagrams show an asymmetry with respect to

the sun comet line. The faint isophotes show a slight intensity enhance-

ment even on the sunward portion of the plots. This is due to a contri-

bution of old hydrogen atoms of the far tail which is turned around and

seen in this particular observational projection as faint background

mainly on the upper parts of the plots. The situation can be compared to

the appearance of an anomalous dust tail.

We have strong indications that HO is an important, or even the

dominant, parent molecule of the observed hydrogen. H and OH are produced

in a ratio of about two to one. This ratio was constant for 0.8 < r

< 1.2 a.u. for two comets (Keller and Lillie 1974, 1977). The water mole-
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cules are dissociated into H and OH by solar photons (Table I). Most of

the excess energy of this process is converted into kinetic energy of the

hydrogen atoms yielding velocities bigger than 16 tan s . The second dis-

sociation of OH into 0 and H is badly known, no laboratory measurements

exist. The question is whether the observed 8 km s component can be

connected with this dissociation process. For more details see Keller

(1976a).

Table

HaO Photodissociation

A

A: 1365-1860 A '^ H(*5)+OH(AT««)+rk,njpHJjg1^s_1 j 60%

H2+0« 10%

A<1365 A 3^°

>

H2+o«;

OH Photodissociation

A: 2610 A -> H(25) + O(3P)+£nn(~0.4eV)b

A~1500A ->
A~1000A ->

a 3P, 1D, 1S depending on A.
b Predissociation via AzZ+v'=2.
c Dissociation via 2£~ or %. ) . . ...d Dissociation via S2r+. I £kin estlmated Usin6 the Franck-Condon principle

Keller (1976a)

The appearance of the low velocity component with about 4 km s

in the pre-perihelion observation on Dec. 25, 1973 can be explained by

thermalization of hydrogen atoms which are created in the inner coma. At

this small heliocentric distance the cometary gas production is high, ex-

tending the collisional zone around the nucleus. The parent molecules

dissociate shortly after evaporation from the nucleus because of the in-
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creased solar flux. This interpretation yields an additional argument

that the 8 km s component is not due to thermalization but is intrin-

sic to the creation processes, of the hydrogen atoms (Keller 1976b).

The explanation of the origin of the predominant 8 km s velocity

component seems to be one of the central questions which ought to be in-

vestigated and solved. Possibly experiments could be performed using the

Space Shuttle to study the photodissociation of OH and the resulting ex-

cess energies liberated in this process.

Because hydrogen is the dominant atomic species produced by comets

the L observations are representative for the overall gas output and its

variation with heliocentric distance. They provide the best means to

monitor the evolution of an incoming comet and are an important feature

for the characterization of a comet.

Space Shuttle will make it possible to observe comets with a vari-

ety of instruments simultaneously. This will enable us to combine L ob-
d

servations with information gained at other wavelengths and so help to

solve the question of the nature of the original parent molecules and

their dissociation processes.

Observations over an extended heliocentric distance interval of

comets, perhaps with more than one shuttle mission, will provide essen-

tial information of the scalelengths of the species. These scalelengths

2
vary with r if the destroying process depends on the strength of the

solar flux. This, combined with the variation of the intensities of the

emissions with r, will provide clues on the creation and excitation me-

chanisms. E.g., a long living species can be observed out to several

scalelengths if the comet is close to the sun and vice versa the scale-
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length of a short lived parent molecule may be resolved at larger dis-

tances. The knowledge of the scalelength of a species is essential for

the determination of its production rate. Theoretical dissociation rates

are very uncertain.

Monitoring the strong L signal and hence the variation of the

total gas production out to 2 to 3 a.u. is possible. Thus the predicted

rather rapid decline of the gas production at around 2 a.u. will be ob-

servable. There the insolation cannot any longer overcome the high eva-

poration heat of water ice. Observations of a large number of well known

periodic comets (such as comet Encke) will be possible. The determination

of their gas productions could tell us whether there are systematic dif-

ferences between periodic and "new" comets.
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The extension of the range of observation from the visual to the

ultraviolet on the one hand, and to the infrared and radio on the other

hand, •within the last decade, has produced a significant advance in our

knowledge of comets. It is doubtful if there has been a corresponding

increase in our understanding of comets. Perhaps the real progress

here has been the growing realization that comets are more complex

beasts than had hitherto been thought.

The infrequent and unexpected apparition of comets as well as

their transient nature contribute to the difficulty of the systematic and

sustained study of comets. It is therefore desirable to supplement the

study of these natural phenomena with simulations in both the terrestrial

and the space (earth orbiting) laboratory, as well as in the "free space"

environment.

Of course, these simulations will be based on our current views of

comets, and will therefore be largely useful in establishing the plausibility

of some and the invalidity of others. Hopefully the happy circumstance of

serendipity may provide us insights that we are not actively seeking.

Furthermore, the controls we exercise on our experiments •will enable us

to cut through the bewildering welter of cometary phenomena and study

them piecemeal.

With regard to shuttle based experiments, earlier speakers have

emphasized the importance of on-board experiments, using particularly the

"zero-gravity" environment in the study of cometary snows.
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Others have discussed release experiments from the shuttle,

particularly with the view of studying the neutral coma. Clearly the

absence or near absence of "wall effects" is an advantage in this case,

and so is the negligible attenuation of the solar spectrum at high exo-

spheric altitudes. The existence of "zero-gravity" here is not crucial.

The observational difficulty of such a coma and its lack of

'photometric similarity1 to a real comet, mainly by virtue of our situa-

tion within it, has already been discussed by Opik (1965). This needs to

be kept in mind, even though Opik overestimated the expansion velocity
I •

and consequently the size of the artificial coma substantially, by assuming

a free -expansion rather than a diffusion of the artificial comet gases into

the ambient environment.

This leads us to the second and more important difficulty, which

is the lack of "dynamical similarity1 between the artificial and the real

comet.

At typical shuttle altitudes (h) there is still a substantial residual

atmosphere, mainly of neutral atomic oxygen, with a typical temperature

9 -3
of about 1500°K. When h » 300 km typically n(o) « 10 cm , and

n(e ) w 2 X 10 cm , whereas when h « 700 km (which corresponds to

7 - 3
the maximum altitude of the shuttle) n(o) « 10 cm and

- 5 -3
n(e ) » 5 x. 10 cm . The shuttle -will also be moving with a speed of

7-8 km sec -with respect to the ambient atmosphere.
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Suppose the artificial comet, released from the shuttle space

laboratory consists of a frosting of snow (predominantly H_O with traces
O

of CO_ , etc. ) 1 cm thick deposited on a light hollow spherical shell of
^ •

radius 1 m. Then it would have a mass of perhaps 100 kg or less and

will continue to be active for several weeks.

9 -3This "comet" will be subject to a neutral wind with n «10 cm

and v « 7. 8 km sec , if it is at an altitude of 300 km. above the earth.

While this will not have an appreciable effect on decelerating the 'comet1;

it will be basic to the size and shape of the artificial coma. Due to the

small size of the artificial comet, a 'free particle' approach is appropriate

even for regions close to the nucleus, unlike in the case of a real comet.

However, the cometary molecules will be strongly decelerated by colli-

sions with the oxygen atoms of the ambient neutral wind. The trajectories

of the cometary molecules -will be enveloped -within a paraboloid whose

apex is at a distance D « \(u /w) from the nucleus, where u and w
o o

are respectively the initial speed of the cometary molecules and the wind

speed, and \ is the effective mean free path of the cometary molecules

( « 1/n a). On substitution we find that D is only about 2 km, and the
a

latus rectum of the paraboloid L ^ 10 km.

Also the oxygen atoms of the neutral wind have energies ^ 5 eV

which are sufficient to dissociate the 'cometary' molecules with a time

scale of only 10-20 sec. Furthermore, the cometary species will be

ionized by charge exchange with the ions of the corresponding 'ion wind1
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with a time scale of 500-1000 sec.

The dynamic interaction of this terrestrial 'ion -wind'

(n. « 2 x 1 0 cm and w « 7. 8 km sec ) with the artificial cometary

•

ionosphere is also completely different from that of the solar wind with

the natural cometary ionosphere. The equitorial magnetic field at

h ~ 300 km is about 0. 3 F and therefore the terrestrial 'ion-wind1 is

highly sub-Alfenic, unlike the solar wind. Consequently there will be

negligible distortion of the field lines and the cometary ions will merely

diffuse along these undistorted field lines as they are swept back into the

wake.

If the artificial comet released from the shuttle is merely a mix-

ture of neutral gases (e.g. H_O, CO_ , N_ , etc. ), so as to reduce the

payload, this cloud will be brought to rest with respect to the ambient

medium in a line scale T ~ (n. ) R/ n w , which mav be on the order
i a . .

of only a minute, for typical values of (n. ) R. The neutral gas cloud,

which \vould be somewha t squashed in the forward direction, will then

begin to diffuse into the ambient medixim. The dynamical development of

any single neutral species, neglecting sources and sinks, is then governed

by the diffusion eqxiation (with spherical symmetry):

where D is the diffusion coefficient - kT /mv (v being the collision

frequency). If initially there was a uniform spherical cloud of radius r
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and density n , then the solution of (1) is (Shklovskii and Kurt, 1961)

given by,

n
o

n(r , t ) = -r- erf(x) + er£(y) + — / [exp(-x ) - exp(-y )}
T N TT J

(2)

where

r - r r 4- ro , o
x = —: , y =

and

x

erf(x) = — / exp(-

The diffusion speed

- —
D n dr .

and the radius of the cloud R(t) (when it is much larger than r ) is

given approximately by

R(t) « «/Pt .. _,. (4)

The expansion speed of the cloud is then given by

V(t) = R(t) « ~- (5)

and V(t) « vth , when R(t) » 5 km.

What all this shows is therefore, that on account of the existence

of a substantial residual ambient atmosphere at typical shuttle altitudes,
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artificial comets released from the shuttle will not simulate the natural

ones either physically or dynamically.

In order to obtain a proper simulation, it is not sufficient to

merely reach higher altitudes, where the effects of the residual ambient

atmosphere would be smaller. It is necessary to reach outside the .

terrestrial magnetosphere -where the artificial comet can have a direct

interaction with the solar wind.

This may conceivably be achieved with the help of a small booster

rocket, attached to the cometary payload, which uses the shuttle as a

launching pad. Best viewing conditions may be obtained with a high

inclination orbit which reaches apogee at a distance r » 50 Rm» on the
-tl. "£s

tail side of the magnetosphere, but well above the magnetotail.

It appears that artificial 'comets' were launched by the Russians

outside the magnetosphere early in their space program, when 1 kg of Na

vapor was released at an earth distance of-about 19 R... (Shklovskii, 1961).
®

But the purpose of this 'comet1 was merely to serve as a method for

optical tracking of space vehicles.

We are, of course, interested in studying the nature of the comet

solar-wind interaction.

The two primary agents responsible for the observed (transient)

cometary phenomena are solar radiation and the solar -wind. It is gener-

ally believed that solar radiation is responsible for the evaporation of

cometary snows and also largely responsible for the dissociation and
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and ionization of the resulting gas molecules. More recently, it has been

suggested (Ip and Mendis, 1975, 1976) that the solar wind, which is responsible

for the shaping and maintaining of the plasma tail, would play an indirect but

dominant role on the dissociation and ionization of the cometary gases too.

The idea here is that the 'folding ximbrclla' morphology of cometary

tail streamers is associated with the 'folding1 of interplanetary field lines

into the cometary tail and the build up of an associated cross tail current

8 9
(see Fig. 1). It is argued that a large current (~ 10 - 10 A) of keV

electrons can be generated this way, and that at least a part of this current

may be eventually discharged, along the field lines, into the comctary

ionosphere, dxie to a partial or total disrxiplion of the cross-tail current

(see Fig. 2). Dissociation and ionization of cometary species can then

3 4
take place sporadically on a time scale of only 10 - 10 sec under favor-

able conditions, which is in agreement with the early observations of.

Wurm (e .g . sec Y v u r m , \ 9 ( > l ) . These linu:s are orders of

smaller than the typical photodissociation and photoionization time scales

of 105 - 10 sec at 1 AU. < ------ .- ......

Since the identification of the dominant dissociation and ionization

process is vital to the future development of cometary physics, it seems,

that a space experiment directed specifically towards this end is highly

desirable.

Conceivably, with the simultaneous release of about 50 kg of a

mixture of Ba and H?O (and perhaps also CO) vapor at r « 50 Rg we
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can produce an observable "comet" (with a total brightness comparable

to that of an "average" H^O dominated comet of 1 km radius at a helio-

centric and geocentric distance of 1 AU) in order to sirrrulate the comM--

solar wind interaction described in Figs. 1 and 2. The purpose of the B?.

(which is photoionized within an extremely short time < 100 sec,

Haser, 1967) is to capture the interplanetary magnetic field lines and

fold them back into the tail. As discussed earlier a strong electric dis-

charge through the coma would result, causing dissociation and ionization

3 4
of the H_O and CO with a predicted time scale of about 10 - 10 sec.

The actual time scales for these processes may be estimated from the

appearance and distribution of the H0O , CO and OH emissions in tho
i^

visual region, and compared with prediction, in order to test the validity

of this proposed mechanism.

If an.experiment of this nature is at all feasible, then we could

extend it also to study other details of the comet-solar wind interaction.

The stability of the comet-solar wind interface and the fine structure of

the plasma tail are amongst these.
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Fig. 1

The 'folding umbrella'
morphology of comctary tail
streamers and the generation
phase of the nexitral sheet
cross tail current.

• Field al igned
current

Ionospheric
.current

Neutral sheet cur ren t

Comet

C o m e t a r y
ionosphere

Fig. 2

Disruption phase of the cross-
tab current, causing field
aligned flow and a strong ioniza-
tion in the inner coma.
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APPEND IX A

Editors' Comment: Various missions to comets have been and are
being planned. The experimentation and observations from the
Shuttle base should provide significant insight into the selection of
missions to comets. This brief description of a possible rendez-
vous mission with Comet Halley is presented to indicate the
possible role that cometary research may take in the future.



THE HALLEY RENDEZVOUS VIA SOLAR SAILING
MISSION DESCRIPTION

L. D. Friedman JJ8 1 * 2 4 1 4 4

The Solar Sail trajectory to Hal ley's Comet provides a path through

unexplored regions of our solar system to yield a rendezvous with this

famous celestial visitor. Comets are believed to hold clues about the

origin of our solar system and its subsequent history, for they, unl ike

planets, have not undergone internal processes altering their primitive

composition. A typical comet comes from the far outer reaches of the

solar system once in recorded history— these comets are usually active

and undoubtedly would provide many indicators for scientific studies

if their coming could only be predicted. The short period comets, in

contradistinction, can be predicted, but because they come near the

Sun so often they are nearly "burnt out" and are far less active.

Halley's Comet is the compromise— long period enough to be active and

bright, yet having suff ic ient visits to be a predictable target for

exploration.

But although Halley's Comet is a tantalizingly close target (in its

last visit its tail actually touched the Earth) , it is an elusive one.

Halley comes through the solar system backwards (retrograde) and, l ike

ships passing in the night , normal flybys provide too brief a visit to

learn much. To achieve a rendezvous (matching position and velocity)

or slow flybys of speeds associated with planetary missions, we must,

in effect, stop our vehicle and turn it completely around. Mathematically,

this means we must wipe out orbital angular momentum and then reverse

it. This has the effect of turning the orbital plane over. Of course,

simultaneously we must reduce the orbital energy from that of Earth 's

(which has a period of 1 year) to that of Hal ley ' s (which has a period

251

N.



of 76 years). The finding of a trajectory to accomplish this is due to

J. Wright, formerly of Battelle Columbus Laboratories.

The Solar Sail trajectory can be modified easiest when it is near

the Sun, hence the angular momentum change is done in a near solar

orbit. Similarly, acceleration can only be provided while the vehicle

flys outward from the Sun, thus the energy change to match Halley's

orbit is done primarily with an outward loop after the inclination change.*

The energy change is a much easier job than is the flipping of the

orbital plane.

The trajectory is depicted in Fig. 1. Following launch, a 9-month

cruise phase takes the vehicle to a 0.3 AU circular orbit about the Sun.

This orbit is called the "cranking" orbit since, while here, the orbit

is "cranked" from a low inclination, over the pole to an angle

of 163°. Approximately once per two months the vehicle orbits the Sun

while the solar radiation force modifies the inclination about 10° per

orbit. After about 1-1/2 to 2 years the orbital plane has been flipped

to nearly that of Halley's.

This period should provide some very exciting opportunities for

solar observations and exploration of new regions of our solar system,

for this would be the first spacecraft ever to fly significantly out

of the ecliptic plane, and it would repeatedly do so near the Sun afford-

ing many observation opportunities. Solar polar observations are possible

in addition to monitoring activity at all ecliptic latitudes and longitudes.

*Solar Electric Propulsion trajectories differ in that they cannot
utilize full solar power near the Sun because of temperature limitations,
but they can accelerate while flying in toward the Sun by pointing of
the thruster. Thus, the SEP trajectory is very different.

252



After the near 160° orbit is achieved, the orbit is "pumped" out to

an aphelion near 2 AU (almost to the asteroid belt, but above it and

not quite deep enough into it to be dangerous) where it leisurely turns

around to fly in front of Hal ley going just slow enough to be gradually

overtaken by the comet. (The sail can fly outward or inward simply by

orienting the sail angle to add or reduce orbital speed). The rendez-

vous takes place after Halley's perihelion since the sail cannot gain

much energy while flying in toward the Sun. This turns out to be no

scientific limitation since a near perihelion rendezvous could not

occur with the vehicle near the comet. The latter is too active at that

point and would probably destroy the instruments observing it. The

rendezvous is planned for a distance about 1 AU from the Sun, while

outbound. After this, the spacecraft would stay with the comet flying

in and around it exploring and observing the nucleus, the coma and the

tail. The sail would be jettisoned after the rendezvous, before the

spacecraft flys close to the nucleus. The total velocity change

achieved by the sail on the mission is approximately 125 km/s (or 225,000

mph)--if the sail were kept connectedto the spacecraft for three more

days after rendezvous it would escape the solar system.

The rendezvous approach is shown in Fig. 2. It is designed to pro-

vide a cautious exploration plan, one in which the vehicle gradually

approaches the active regions from a direction outside the main flow

of particles. The spacecraft will have 500 m/s (enough to move it

almost 200,000 miles per week, 10 different times) velocity impulse

from chemical propellant to move it after rendezvous. This will enable

detailed cometary exploration.
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The nominal mission plan calls for a launch in January 1982, with

rendezvous near 1 AU in March 1986. The sail would be visible to the

naked eye on Earth for months after launch. If the sail is heavier

than anticipated or if its development takes longer so that launch is

not possible until as late as July 1982, then the rendezvous point is

moved further out to 2 to 2.5 AU. After July 1982, it may be better to

not move the rendezvous point further away, but to let the intercept be

a slow flyby. Even with a January 1983 launch, a 5 km/s flyby is possi-

ble. An October 1983 launch yields a 15 km/s flyby.

The mission schedule presently calls for a full-scale Shuttle test

in early 1981 or late 1980. If this can be dispensed with and if the

development program has proceeded without adverse surprises, then a

1981 launch could be used to permit either an earlier rendezvous or

else a somewhat farther out cranking orbit. This latter could ease

temperature requirements on the sail material.

Solar sailing to Halley's Comet affords an exciting opportunity for

space exploration—to a large, active, famous, unique target and to a

new environment near and over the Sun. The mission plan is challenging,

but the options for variations from it offer sufficient contingency to

permit justifying acceptance of the challenge. The two-year sail

development program is now underway, aimed at project readiness in

October 1978, and at launch readiness for a test on the Shuttle in late

1980.

254



_100

0 LAUNCH

HG. la HALLEY RENDEZVOUS TRAJECTORY; EARTH
TO CRANKING ORBIT

RENDEZVOUS
0.9 AU, 650 d

SPACECRAFT
AT COMET
PERIHELION

HALLEY
PERIHELION

200
© RENDEZVOUS 3/86

300

400

500

FIG. lb HALLEY RENDEZVOUS TRAJECTORY: CRANKING
ORBIT TO RENDEZVOUS

255



CVJ

o

256



APPENDIX B



SHUTTLE-BASED COMETARY SCIENCE
WORKSHOP PARTICIPANTS

Kenneth S. Clifton (Stu)
Code ES64
NASA/MSFC
Huntsville, Alabama 35812

Dr. Nicholas C. Costes
Code ES81
NASA/MSFC
Huntsville, Alabama 35812

Dr. Armand H. Delsemme
Department of Physics and Astronomy
University of Toledo
Toledo, Ohio 43606

Dr. Bertram Donn
Code SG, Cometary Physics
NASA Headquarters
Washington, D. C. 20546

Dr. Maurice Dubin
Code 680
NASA/GSFC
Greenbelt, Maryland 20771

Dr. M. Festou
Service D'Aeronomie du CNRS
B. P. No. 3
91-Verrieres-le-Buisson
France

Dr. G. Allen Gary
Code ES62
NASA/MSFC
Huntsville, Alabama 35812

Dr. Walter F. Huebner
Los Alamos Scientific Laboratory
Box 1663
Alamos, New Mexico 87544

Dr. William M. Jackson
Department of Chemistry
Howard University
Washington, D. C. 20059

Dr. H. U. Keller
Max Planck Institut fur Aeronomie
Postfach 20
D-3411 Katlenburg-Lindau 3
Germany

R. Lavender
Code JA61
NASA/MSFC
Huntsville, Alabama 35812

Dr. C. F. Lillie
Laboratory of Atmospheric and

Space Physics
University of Colorado
Boulder, Colorado 80302

Dr. Charles A. Lundquist
Director, Space Sciences

Laboratory, ES01
NASA/MSFC
Huntsville, Alabama 35812

Dr. Asoka Mendis
Department of Applied Physics
University of California
San Diego, California 92110

Dr. Peter M. Millman
National Research Council of Canada
Ottawa, Ontario
Canada K1A OR6

Dr. Robert J. Naumann
Code ES71
NASA/MSFC
Huntsville, Alabama 35812

259



Dr. C. R. O'Dell
Associate Director for Science
NASA/MSFC
Huntsville, Alabama 35812

Dr. Chet Opal
Code 7124
Naval Research Laboratory
Washington, D. C. 20375

Jerry K. Owens
Code ES64
NASA/MSFC
Huntsville, Alabama 35812

Dr. Zdenek Sekanina
Smithsonian Astrophysical Observatory
60 Garden Street
Cambridge, Massachusetts 02138

Dr. Ernst Stuhlinger
Adjunct Professor
The University of Alabama in Huntsville
P. O. Box 1247
Huntsville, Alabama 35807

Dr. Fred L. Whipple
Smithsonian Astrophysical Observatory
60 Garden Street
Cambridge, Massachusetts 02138

260

T^U.S. GOVERNMENT PRINTING OFFICE 1977 - 740-049/277 REGION NO. 4




