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PREFACE

The objective of the research described in this report was to
evaluate the utility of Heat Capacity Mapping Mission (HCMM) data for earth
resources applications. The HCMM data were the output product of NASA's
Applications Explorer Mission 1 program. This program had three specific
objectives. The first objective was to determine if the data from the
Heat Capacity Mapping Radiometer (HCMR) could be utilized to accurately
measure surface temperatures (specifically water temperatures). The second
objective was to determine if large scale diurnal and seasonal thermal
phenomena in the Laurentian Great Lakes could be observed using HCMM data
and, if observations were possible, could HCMM data provide significant
input to water quality studies:iassociated with thermal phenomena. The third
major objective was to investigate the feasibility of using HCMM data to study
macroscale/microscale thermal patterns associated with the well known urban

heat island effect.

The program involved analyses of aerial underflight imagery,
satellite image transparencies and computer compatible tapes as well as
in situ and ancillary support data. The results of these analyses indicate
that the thermal channel aboard HCMM can be radiometrically calibrated to
provide surface temperatures within 1.1°C of actual surface values. The
radiometric calibration of the HCMM thermal data enabled detailed mapping
of the thermal bar phenomenon in Lake Ontario. The seasonal development of
the thermal bar was observed using HCMM images and the day/night temperature
difference data demonstrated that the diurnal development of the thermal
bar could also be observed using HCMM data. HCMM data was also used to
study the macro and micro structure of urban heating patterns. In particular,

the role of vegetation in moderating the urban heat island was observed.

One primary recommendation for future thermal satellites would be
more repetitive coverage to observe short term thermal phenomena and to
improve the probability of cloud-free coverage. A second major recommendation
would be development of an improved procedure for radiometric calibration of
the sensor including correction for atmospheric effects. This study demon-
strated that current radiometric correction procedures are inadequate if

temperature measurements on the order of 1°C are required.

iii




ACKNOWLEDGEMENTS

We would like to express our thanks to Harold Oseroff, our NASA
technical monitor, for prodding us on throughout this program. We are also
in great debt to John Price, Locke Stuart, and the entire HCMM experiment
staff for making the experiment the success it has been. Closer to home,
our gratitude goes to Mike Wilkinson and Martha Bronstein for input to the
thermal bar experiment, Mike i_n particular for the thermal bar literature
review. Tim Gallagher deserves special thanks for collecting the day/night
HCMM underflight data. We would also like to acknowledge the support of
Lee Herrington of S.U.N.Y., Syracﬁse, who provided Heat Island‘ground truth
support and Thomas Lillesand and Doug Meisner of the University of Minnesota
who provided the reprocessed digital images used in several places within

this report.

iv




Section

TABLE OF CONTENTS

Title

1 INTRODUCTION AND SUMMARY.

2 BACKGROUND .

2.1 Remote Measurement of Temperature.

2.2 The Thermal Bar Phenomena.
2.3 The Urban Heat ‘Island.

3 TECHNICAL APPROACH.

3.1 Atmospheric
3.2 Thermal Bar
3.3 Heat Island

4 RESULTS .
4.1 HCMM's Role
4.2 HCMM's Role
4.3 HCMM's Role

Effects Experiment .
Experiment .

Analysis .

in Surface Temperature Measurement .
in Observing Regional Water Resources.

in Studying the Urban Heat Island.

5 CONCLUSIONS AND RECOMMENDATIONS .

- ' Appendix A.
Appendix B.
REFERENCES.

Page

20
20
28
40

63
63
71
79

81
84
107

128




Figure

2-1

2-2

2-3

2-5
2-6

3-1
3-2

3-3

3-4
3-5

3-6

3-7

3-8

3-9

3-10
3-11
3-12
3-13

3-14

LIST OF ILLUSTRATIONS

Title

Atmospheric Effects on an Idealized Spaceborne
Infrared Sensing System.

Energy Paths of Radiant Energy .
Formation and Progress of the Thermal Bar of Lake Ontario.

Characteristic Record of Temperature - Percent Transmission
on Crossing the 4°C Surface Isotherm .

Generalized Contours of Additive Totals of Algal Cells and
Surface Temperatures . e e e e e e e e e e

. \ . P
Theoretical Temperature Response to a Sinusoidal :Driving
Function . '

Typical Coverage Pattern for an Underflight Mission.. .
Example of Data Obtained During a Profile.

Surface Radiances Plotted Against Observed .Radiances at
Altitude .

Corrected Aircraft Data. .
Uncorrected Satellite. Data .

Regression of Satellite Observed Apparent Temperatures
Against Measured Surface Temperatures.

Examples of Water Quality Changes in Lake Ontario.

Simultaneous Color and Thermal Infrared Images of the
Thermal Bar in Lake Ontario. :

Lake Ontario Thermal Bar Development - 11 May 1978 .
Lake Ontario Thermal Bar Development - 26 May 1978 .
Lake Ontario Thermal Bar Development - 1 June 1978 .
Lake Ontario Thermal Bar Development - 6 June 1978 .
Lake Ontario Thermal Baf“Development - 22 June 1978.
Lake Ontario Thermal Bar Development - 4 July 1978 .

vi

Page

12

14

18
22

23

24
26

26

27

29

30
31
31
32
32
33

33

"




Figure
3-15

3-16

3-17
3-18
3-19
3-20
3-21
3-22
3-23

3-24

3-25
3-26
3-27

3-28
3-29

3-30

3-31

4-1

4-3

LIST OF ILLUSTRATIONS (cont.)

by Various HCMR Calibration Methods.

vii

Thermal Image of the Great Lakes . 35
Thermal Map of Lake Ontario Uncorrected for Atmospheric
Effects . . . . « « + « v v 0 0000 e .- 36
Thermal Map of Lake Ontario - 22 May 1978. 37
Thermal Map of Lake Ontario - 6 June 1978. 38
Dominant Water Quality Changes in Lake Ontario . 39
Ground Data Collected at Syracuse Station #5 . 41
Ground Temperature Data Collected at Syracuse, New York. 42
' Thermal Map of Metropolitan Buffalo - 6 June 1978-2 p.m. EDT . 45
Thermal Map of Metropolitan Syracuse - 6 June 1978-2 p.m. EDT. 46
Temperature Difference Map of Metropolitan Buffalo -

6 June 1978. 47
Thermal Map of Metropolitan Buffalo - 6 June 1978-2 a.m. EDT . 48
HCMM Thermal Image of Buffalo,. New York.. . . . . ~50-A~
HCMM Thermal Image of Syracuse, New York . 51
Thermal Map Overlay Showing Apparent Radiometric Temperatures

for Buffalo, New York - 6 June 1978... 52
Two Methods by Which an Area Can Affect the Temperature of an

Adjacent Area. e e e e . . . . . .« e 56
Effect of Overcast Sky Conditions. 57
Thermal Map Overlay Showing Apparent Radiometric Temperatures

for Buffalo, New York - 6 June 1978. 39
Plot of Satellite Calibrated Offset Values Vvs. Visibility. 65
Plot of Corrected Satellite Data vs. Water Surface

Temperatures . .66
Plot of Water Surface Temperatureé vs. Temperatures Predicted 70




LIST OF ILLUSTRATIONS (cont.)

Figure Title Page
4-4 Surface Radiometric Temperatures of Lake Ontario -

6June 1978 . . . . . . L e e e e e e e e e, T2
4-5 Red to Green Brightness Vector from Landsat Image of

Lake Ontario. . . . & v « v v v v v v e e e e e e e .. T3
4-6 . Water Quality Measurements for Lake Ontario . . . . . . . . 75
4-7 Color Encoded HCMM Thermal Images of Lake Ontario . . . . . 77

viii




Table No.

4-1
4-2

4-3

LIST OF TABLES

Title

HCMM Underflight Schedule.

Calibration Data for HCMM Underflights .

Radiosonde Input Data For Atmospheric Models .

Atmospheric Calibration Parameters .

ix

Page .

21
64
68

69




Section 1
INTRODUCTION AND SUMMARY

The objective of the research described in this report was to eval-
uvate the utility of Heat Capacity Mapping Mission (HCMM) data for earth resources
applications. The HCMM data were the output product of NASA's Applications
Explorer Mission 1 program. This program involved satellite collection of
day/night thermal infrared data (10.5-12.5 um) and registered day visible
data (0.55-1.1 um). in image and computer compatible tape (CCT) formats |
.(HCMM Data Users‘Héigyépk"1980).ﬂ

This program had three specific objectives. The first objective
was to determine if the data from the Heat Capacity Mapping Radiometer (HCMR)
could be utilized to accurately measure surface temperatures (specifically
water temperatures). The second objective was to determine if large scale
diurnal and seasonal thermal phenomena in the Laurentian Great Lakes could
be observed using HCMM data and, if observations were possible, could HCMM
data provide significant input to water quality studies associated with
thermal phenomena.' The third.majperbjective was to investigate the
feasibiiity'of using HCMM data to study macroscale/microscale thermal

patterns associated with the well known urban heat island effect.

This report discusses the background, approach, analytical methods
and results of each aspect of the three-pronged experiment. The study area-
for the expériments centered on Lake Ontario and the nearby cities of Buffalo,
Rochester and Syracuse in New York State. Satellite and underflight aircraft
data were collected during 1978. The intent of the program was to apply the
results of the HCMR calibration experiments to quantitative studies of the
thermal bar in Lake Ontario (Rodgers 1965) and the urban heat island
(Braham 1977).

It was demonstrated that by employing.uﬂdeiflight calibration tech-
niques the HCMR could be calibrated to within about 1.4°C of the actual water

surface temperature. However standard atmospheric models (LOWTRAN and RADTRA)




were not capable of reproducing these results. Variation in path radiance
appears to be one of the dominant factors affecting the variation in observed

longwave radiance for spaceborne sensors.

Largé scale thermal phenomena such as the spring thermal bars in
the Great Lakes were readily observed by HCMM. The precise location of the
thefmal bar marks the boundary between the warm nutrient-rich water and the
cold core of the lake. This location could be identified on maps drawn from
CCT data which had been radiometrically corrected using the underflight
procedures described above. It was also possible to observe turbidity gradients

across the thermal bar using Landsat data.

The thermal anomaiy caused by the extensive development in urban
areas (known as the heat island) is readily evident on HCMM imagery. In
addition, the thermal microstructure existent within the urban heat island

associated with such features as large city parks can be observed.

In. summary; this report describes some of the doorways opened to us
by the high resolutidn-large scale perspective offered by the HCMM experiment.-
It also discusses the techniques Yeﬁhgyeﬂ@gye}gpgd_ﬁpg;gx;:agﬁing_meaningful .

‘information from HCMM data and the potential roles thermal infrared satellites

offer in monitoring and helping to solve some of the problems affecting our

earth's resources.




Section 2

BACKGROUND

This section describes each of the phenomena investigated as part of

the experiment and discusses previous work that was drawn on in our studies.

2.1 Remote Measurement of Temperature (background)

Remote measurement of surface temperatures employing longwave infra-
red line scanning systems has been practiced for many years (Scarpace et al
1974).“ Measurement of temperatures to accuracies better than a degree
celcius using airborne infrared systems typically required use of ground
truth. Collecting ground truth temperatures for a satellite with a 0.36 km2

footprint posed a serious problem, so alternate approaches had to be considered.

One standard approach to calibrating satellite systems involves the
use of atmospheric models of radiation transfer (Rangaswamy and Subbarayudu,
1978; Selby et al, 1978). These models are designed to account for the effect
the atmosphere has on signal attenuation and also for the additive energy
associated with emissions from the atmospheric constituents between the space-
craft and the ground. These effects are illustrated in Figure 2-1. A signifi-
cant problem with these models is that they have never been extensively tested
for use from earth observation platforms because of the difficulties involved

in obtaining viable ground truth.

Schott (1979) described a procedure for a wholly airborne technique
for radiometric measurement of water surface temperatures. This technique
is described in detail in Appendix A. Essentially it involves flying an
infrared line scanner at a series of altitudes over a target area and recording
the radiant energy reaching the sensor. The radiant energy reaching the

sensor at altitude is expressed as

W=-"1c¢e WT + T WS T + WA (2-1)
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where:

T' is the atmospheric transmission in the wavelength interval
observed

e 1s the emissivity of the surface in this spectral region

W, is the energy that would be emitted (over the spectral
region observed) by a blackbody at temperature T

T 1is the surface temperature of the area observed

W is the spectral radiant energy reaching the surface from the sky

r 1s the reflectivity of the surface (e+r = 1)

W is the energy emitted by the atmosphere between the source
A and the sensor which reaches the sensor.

The energy paths described by equation 2-1 are illustrated in Figure 2-2.
As detailed in Appendix A, Schott (1979) defined procedures for computation

of the variables T, wA and W, thus permitting direct aerial measurement of

S
temperature for surfaces of known emissivity.

This techniqué, for calibration of aerial infrared scanning systems,
was chosen as a tool in correcting the HCMR sensor data foi atmospheric and
back ground effects. By flying a fully calibrated airborne infrared system
~under HCMM we expected to be able to obtain ground truth. The temperatures
measured using the aerial thermograms would be well within one degree
celcius of the actual value and could cover areas much larger than the HCMM
footprint.

The ground truth could then be ﬁsed to calibrate the satellite so
that actual surface emittance data (free of atmospheric effects) could be

obtained. The data obtained in this manner could also be compared to the

data obtained by using the LOWTRAN and RADTRA atmospheric models.

By evaluating the utility of the atmospheric models in this manner
we can determine what accuracy can be obtained in satellite measurement of

temperature.

The technical approach used in calibrating the satellite data is

discussed in Section 3.1.
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2.2 The Thermal Bar Phenomena (background)

In this section we briefly review the literature describing the
thermal bar phenomena and proceed to discuss the potential for studying

the phenomené using satellite sensing systems.

_ The thermal bar has been defined as the boundary layer between two
oppositély stratified water regions, one with a surface temperature above 4°C
in direct stratification, and the other with a surface temperature below 4°C.
in an inversely stratified configuration (Huang, 1972). The thermal bar has
‘also been described for experimental purposes as a sinking zone consisting of
water between 3.5 and 4.5°C travelling in front of a stable thermocline
(Elliott and Elliott, 1970). Thermal bars occur during the spring and fall
in dimictic, temperature zone lakes (Hubbard aﬂd Spain, 1973); however, the
effect is much more pronounced and has been more extensively studied during

the spring heating of large lakes fitting this description.

Development of the thermal bar occurs in two regimes (Rodgers and
Sato, 1970). The first entails -influx of natural or man-made sources of
warm water to the shallow near-shore areas. Here, the first appearance and
progression of a 4°C isotherm (representing the thermal bar) is dependent
upon local conditions affecting the rate of heat input. The second mechanism
involves both heating through the lake surface and lake heat content.
Obviously, this regime occurs during early stages of the thermal bar period,
but it does not exert dominance until the bar has travelled to a point past

which significant influence by the first regime-ehds (Rodgers and Sato, 1970).

Figure 2-3, from Rodgers (1966), portrays the formation and progress
of the thermal bAr in Lake Ontario in 1965. The surface and mid-lake tempera-
ture profiles illustrate development of the thermal bar from winter to full
summer lake stratification. The figure shows that as near-shore waters warm
a 4°C isotherm forms around the lake. This creates a steadily constricting
ring, which is driven by a density gradient penetrating the relatively cold
and less dense waters of mid-lake. The progress of the spring thermal bar
through the deeper parts of a lake is synonymous with the progress of strati-
fication (Rodgers and Sato, 1970).
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Figure 2-3. Formation and Progress of the Thermal Bar of Lake Ontario
from Winter to Full Summer Stratification. (From Rodgers, G.K.:
Publications Gt. Lakes Res. Div., Univ. Mich., 15: 372, 1966.)
(From Wetzel, 1975)




Initial development of portions of the thermal bar is undoubtedly
variable along the shoreline and precise dates for such formation are notably
1acking in the literature. In Lake Michigan, the spring thermal bar period
may start in late April or early May and may last from four to six weeks or
more (Huang, 1972). Rodgers reported an instance of moderate thermal bar
development in Lake Oﬁtario by May 17-20 in 1965 (Wetzel, 1975).

Progression of the thermal bar continues until the last surface
water trace of the 4°C isotherm has disappeared. At that point, according
to one source, the lake has achieved full stratification (Rodgers and Sato,

1970), and the bar remnants sink and dissipate.

Thermal bar diéappearance dates in Lake.Ontario were estimated
for the years 1965-1969, and the dates varied from June 8th to 22nd (Rodgers
and Sato, 1970). The following year, in an extensive field investigation
of the spring thermal bar in Lake Ontario, no disappearance date was mentioned
(Rodgers, 1971); In 1970, Rodgers and Sato found a correlation between
April 1st mid-lake heat content and date of disappearance. Their data
suggested that the disappearance date might be predicted to within 4 days
¢Rodgers and Sato, 1970).

Thermal bars have been studieé iﬁ at‘iéasf-tw; 1éb6r;t6ry modéls
(Elliott and Elliott, 1970) and severalsfield investigations (Rodgers, 1971)
(Hubbard and Spain, 1973), in addition to.ét least one set of mathematical
models (Elliott and Elliott, 1971) and a physical model (Elliott and Elliott,
1970).

A quantitative laboratory model developed in 1970 suggests that a
stable thermocline of water warmer than 4°C forms in the shallows. = The
advancing front end marks a boundary between the stable thermal structure
in the shallows and the convecting deeper cold waterAacross.the bar. The
model displayed a mean flow toward the deep end in the thermocline with a
counter-flow underneath. Simultaneously, a flow near the surface travels
toward the shallows. This current deflects downward and splits to form an
upslope éurrent,in the shallows and a down slope current at depth. The

thermal bar in this model was referred to as the sinking zone located in front




of the stable thermocline consisting of water between 3.5 and 4.5°C. This
dense water was reported to be the result of heating cooler, lighter water
from the deep énd, and does not include water from the stable thermocline
on the shallow side. This particular model assumed negligible horizontal

advection and diffusion (Elliott and Elliott, 1970).

A majbr finding-of extensive field investigations during the spring
of 1970 in Lake Ontario was'that no clear thermal evidence for bottom flows
toward the deep portion of the lake ahead of the thermal bar was found.

Small temperature increases observed at the bottom in this study were reported
attributable to other factors includihg remnants of the winter hypolimnion

and thermal fine structure (Rodgers, 1971).

Field studies showed an inverse correlation with thermal bar move-
ment speed and lake bottom slope. During one set of surveys, the thermal
bar moved with an average speed of 0.8 cm/sec. away from the north shoreline
of Lake Ontario while travelling at 0.4 cm/sec. (average) away from the:
south shore {Rodgers, 1971). It is reasonable to assume that the velocity
differential is responsible for the steep surface isothermal gradient shown
along the southern shore of Lake Ontario (Wetzel, 1975). Although not
_addressed in the literature,. some data suggest-a narrowing of the bar as the  ~

phenomenon progresses.

Horizontal temperature gradients associated with the 4°C isotherm
can vary from day to night and from one day to the next. Also, surface skim
conditions can occur on the cold side of the thermal bar when strong heating
is coupled with calm or very light winds. The skim can consist of water
temperatures greater than 4°C (Rodgers and Sato, 1970), and this phenomenon

could confound data interpretation.

Field studies of heat content change show no marked pattern when
the thermal bar is close to shore. However, higher than average heat content
changes take place between the positions of the thermal bar as it moves out
into the lake on the north side of Lake Ontario. This trend was not noticed
on the south side; however, very large positive heat changes occurred at mid-
lake during the last one to two weeks of the presence of the thermal bar.
Rodgers concluded that shore waters warm less than mid-lake waters, particularly

during the last weeks of the thermal bar period (Rodgers, 1971).

10
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The density related downward flowing currents along the vertical
thermal bar result in a split flow penetrating the lower portions of the near-
shore and off-shore water masses as mentioned previously. Earth's rotational
forces combine with the density gradient to establish a counter clockwise

coastal current (Wetzel, 1975).

The thermal bar phenomenon is associated with definite changes in
water quality and biota. For example, visual field observations describing
the high correlation of turbidity with temperature at the lake surface in
 the region of the 4°C isotherm had been common in the literature prior to
1967. Rodgers, in a 1967 study of Lake Ontario, confirmed the correlation
quantitativély by using a towed transmissometer-thermometer and revealed
increased detail as to the variety of horizontal temperature gradients.

His data showed a marked inverse correlation between surface water 'tem-
perature and surface water transparency as is evident in Figure 2-4
taken from his paper. The figure represents records of temperature and
percent,transmiséion on the crossings of the 4°C isotherm in Lake Ontario

during the spring of 1967.

A major water quality consideration created by the thermal bar is
the temporary isolation of inshore waters by the density barrier. Chemical
and thermal enrichment via point and non-point discharges can occur in
this region as a result of entrapment on the inshore side of the bar. As
a result, increased productivity can occur earlier in the inshore areas
than in the mid-lake region. Perhaps more importantly, the entire volume
of lake water is unavailable for pollutant and nutrient reduction of dilu-
tion (Hubbard and Spain, 1973). The isolation of inshore waters suggests
that seasonal limitations be established for pollutant loadings in effluent

discharges to large lakes.

Preliminary bacteriological studies performed along the north
shore of Lake Ontario during the spring of 1970, and designed to investigate
the influence of the thermal bar on bacterial concentrations in the. inshore

area, indicated that a bacterial density gradient occurred with respect

11
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Figure 2-4. Characteristic Record of Temperature - Percent Transmission
on Crossing the 4°C Surface Isotherm. (From Rodgers, 1968)




to the bar. Maximum bacterial densities were found to occur along the in-
shore boundary of the bar, suggesting that the thermal bar tends to concen-

trate bacteria within the inshore area (Menon et al, 1971).

Algal populations in Lake Michigan studied during the thermal bar
period in 1967 were determined to be profoundly affected by the thermal bar.
Both algal abundance and species composition were biological parameters
heavily influenced. The highest algal populations observed during the study.
occurred at the interface between the waters inshore and offshore of the
thermal bar, with algal populations considerably lower in local river
water and waters offshore of the thermal bar (Stoermer, 1968). Figure 2-5.a
portrays generalized isopleths of additive totals of algal cells for in-
shore waters during the Lake Michigan study. Sample station numbers are
included for reference points. The total algal numbers shown in Figure 2-5.a
appear to follow the same distribution as the physical parameters measured
during the stﬁdy. Figure 2-5.b shows surface temperature data as isotherms
collected on the same date and at the same location as the algal data shown -

in Figure 2-5.a.

We expected HCMM to see the marked thermal gradients from mid-lake - - ~ -
to near-shore associated with the spring thermal bar. We were particularly
interested in determining the location of the thermal bar itself. We wanted
to see if HCMM could be used to locate the 4°C isotherm .that represents”the
zone of sinking water that physically separates the cold mid-lake water from
the warmer inshore water. . If this were possible studies of whole lake thermal
phenomena would be possible using the nearly instantaneous data available
from HCMM. It would also be possible to study short term (diurnal) develop-
ment of the thermal bar by analysis of night/day temperature difference
images available from HCMM. Our intent was to use the calibration methods
discussed in the previous section to compute water surface temperatures for

all of Lake Ontario. We could then use the data to isothermally map the lake.

In addition to the thermal properties of the lake we were acutely
interested in water quality. The thermal bar prevents the heavily stratified
inshore waters from mixing with the mid-lake water. The warm inshore

water carrying nutrients, suspended solids and other potential pollutants

13
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Figure 2-5a. Generalized Contours of Additive Totéls of Algal Cells Per
Four 1-ml Samples, Grand Haven, Michigan, Vicinity, 28 April
1967 (From Stoermer, 1968).

Figure 2-5b. Generalized 0.5°C Surface Temperature Contours, Grand Haven,
Michigan, Vicinity, 28 April 1967 (From Stoermer, 1968).
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from: spring runoff is thus concentrated inshore of the thermal bar fbr the dur-
ation of the thermal bar. The warm nutrient-rich water provides an excellent
environment for aigal growth. The'combiﬁation of a higher probability

of suspended solids combined with increased algal staﬁding crop should

increase the turbidity of the inshore water.

Piech et al, 1978 and Schott 1980 have described a technique for
remote assessment of water quality parameters using satellite or aerial photo-
graphy. The technique involves a procedure for measurement of the spectral

reflectance of the water by photometric analysis of color photographs. The

reflectances measured from the'imgges are processed through statistical

models. These models were developed from laboratory measurement of thewreflec-
tance of water containing certain coloring agents (chlorophyll, suspended solids
and yellowing organics) that modify the reflectance of water. Depending on

the amount of ground trﬁth available the output of these models can be
expressed either, as the degree of change of the most significant water quality
parameter varying between two points, or as actual concentration values of

key water quality parameters. We felt that by applying this method of water

'~ quality analysis (described in greater detail iﬁ Appendix B), it would be

~ possible to assess the feasibility of using HCMM data combined with ofher‘
remotely sensed data to study the influence of the thermal bar on water

quality. The technical approach used in evaluating this method is discussed

in Section 3.2.

2.3 " The Urban Heat Island (background)

The urban heat island is a phenomenon that occufs in developed urban
centers. It is characterized primarily by elevated temperatures in an urban
area as compared to surrounding rural areas. In addition to the discomfort
brought on by excessive heat in urbanized areas, studies indicate that this
excess heat, particularly at night in the summer, is actually related to an
increase in human mortality (Clarke, 1972). If the influence of individual
urban features (e.g., parks, open fields and industrial sites) on heat island

development could be monitored, the knowledge gained could be beneficial to
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future urban renewal and expansion in reducing the health hazards associated
with the heat island. This project investigated the feasibility of studying
the urban heat island problem using imagery provided by the HCMM satellite.

A large number of factors influence the development of an urban heat
island. The physical properties of the materials found within an urban
area are directly related to the absorption and reflection of incident
energy (e.g., solar) and the emission of stored energy. Through industry
and transportation, urban complexes generate additional heat independent of
solar loading. Local meteorological conditions also affect the development
of the heat island. Proper analysis of the heat island problem using
satellite imagery requires appropriate consideration of each of these prime
factors. A brief discussion 6f thes# parameters and the relationship of

each to the development of the heat island follows.

The most outstanding factor influencing the development of an
urban heat island is the high proportion of man-made materials used in an
urban center. Unlike the abundant vegetation found outside the urban center,
man-made materials do not exhibit the physiological process of evapo-
transpiration. Thus, the radiant heat incident on an urban area cannot be
removedlthrough.evaporativevcooling, but rather is absorbed and used to-

raise the temperature of the material surfaces. .

All the energy absorbed at the surface does not however go into
raising the surface temperature. The energy is dissipated by convection,
conduction and radiation. The extent of convection cooling is in part
. governed by air turbulence and is therefore related to the surface roughness
of the material. Radiational cooling is governed by the temperature and
emissivity of the surface. In addition to losing heat upward from the
surface which we can think of as loss from the system; heat can also be
cohducted into the material. This heat will raise.the temperature deeper
in the material by removing heat from the surface. This term will also be
a heat source when the surface begins to cool and heat is conducted back

to the surface from within the material.
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Lag times or phasé shifts occur when a material stores heat below
the surface. This heat tends to come up to the surface after the driving
function begins to decline, maintaining high temperatures longer than if
all the heat were at the surface. This is characteristic of most mari-made
materials used for pavements and building construction. In this way, after
solar insolation begins to decline or is completed within the diurnal cycle,
heat stored within pavements and building roofs and walls is slowly radiated
from thé material surfaces, maintaining warm temperatures within the urban
area. A sample plot of some temperature variations in response to a sinusoi-
dal'driving function is shown in Figure 2-6. The effects of vegetative eva-
potranspiration processes are not included in this figure. The theoretical
responses of the urban and rural areas are based solely on the densitjes
of materials characteristically found within these areas, urban areas being
composed generally of high density materials as mentioned above, and rural

areas being composed of less dense vegetation and soils.

Atmospheric conditions also influence the ability of the urban
area to cool after daytime insolation is completed. Cloud cover or haze
will tend to reflect heat being emitted by the urban area back into the
city (Mitchell, 1961). -Smog, smoke, and.particulates. concentrated in the -
atmosphere over urban areas thus tend to enhance the contrast in temperature
between the urban area where heat tends to be reflected back in;o the city
and the surrounding rural areas which are more apt to ''see' a clear sky
which does not reflect the emitted heat. 1In this way, overcast sky condi-
tions, either natural or man-induced, tend to increase the severity of the

heat island formation by locking excess heat within the urban area.

The air movement across an area also affects its tendency to lose
excess heat. Under stable, low-wind conditions, the heat stored by day in
an urban region is not removed by convective cooling and remains to heat

the city air. Strong heat islands are thus inclined to develop on still

nights.
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Figure 2-6.  Theoretical Temperature Response to a Sinusoidal Driving Function.

Higher Density Materials Tend to Absorb and Store More Heat Than
Less Dense Materials, Releasing the Stored Energy During Periods
of Low Loading. In Terms of Cities This Means That Urban Areas,
Consisting Basically of Higher Density, Man-Made Materials, Tend
to Absorb Solar Radiation During the Day and Re-emit it During
the Night, Maintaining Higher Temperatures in the City Than in
Surrounding Rural Areas Composed of Less Dense Materials.
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As described in the above discussion, the urban heat islands
develop as a result of numerous factors. The individual effects
resulting from increased particulate matter 'in the atmosphere, higher
density materials used for urban construction, and the lower vegetation
levels often associated with large urban areas combine to create the
phenomenon known as the urban heat island. The non-homogeniety of these
factors across an urban complex must give rise to variations in the heat
island within the limits of one urban complex. Increases in the percentage
of tree cover in certain urban areas, for example, would be expected to
increase the cooling capabilities of those immediate areas and possibly of
proximate areas also. Analysis of temperature variations within an urban
area may lead to the identification of those certain factors which have the
greatest positive and negative effects on the heat island development.
Identification of these factors could aid in future urban planning and

renewal to benefit the health of people who work and live in urban areas.

HCMM satellite imagery provides an available and relatively
inexpensive tool for analysis of these factors. Image scale and resolution
permit observation of the major configuration of imaged heat island for-
mation as well as some detail of the variability of temperature withinlthe»
urban area. The technical approach used to investigate the potential of
HCMM data for study of the urban heat island phenomenon is discussed in

Section 3.3.
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Section 3

TECHNICAL APPROACH

This section discusses separately the definition of each of the
three experimental questions addressed by the program as well as data collec-

tion and analysis techniques.

The three aspects of the experiment: atmospheric effects, the
thermal ‘bar and the heat island, were integrated geographically into the
central and western New York areas bordering Lake Ontario and the lake ~
itself. The HCMM spacecraft was underflown 7 times as detailed in Table
3-1. Thermal infrared (8-14 um) and color photography (day only) were
collected for selected ground tracks. Figure 3-1 is a HCMM thermal image
of Lake Ontario showing the typical coverage pattern for aﬁ underflight

mission.

3.1 . Atmospheric Effects Experiment

Calibration of the HCMR for atmospheric and background effects
required collection of "underflight' truth data. These data were obtained by
fIying an infrared scanner through the profile calibration approach ‘de-
scribed -in- Appendix A. The aircraft data were typicaily_obtéiﬁed at altitudes
ranging from 1 to 2 thousand meters. The atmospheric profiles to calibrate
the system would be flown from flying height down to near ground level.
Profiles were normally flown at Buffalo (Huntley Power Station), Rochester
(Ginna Power Station), Nine Mile Point Power Station and Syracuse
(Onondaga  Lake). An example of the type of data obtained during a profile
is shown in Figure 3-2. This figure shows apparent témperature plotted
against altitude for several surfaces with different temperatures observed
during a profile. Figure 3-3 shows the extrapolated (zero altitude) surface
radiances plotted against the observed radiances at altitude. As discussed
in detail in Appendix A the slope of the line plotted in Figure 3-3 is a
measure of atmospheric transmission and the intercept is a function of the

path radiance illustrated in Figure 2-2.
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Table 3-1

HCMM Underflight Schedule Indicating the Major Sites Covered on
Each of the Seven Missions.

Lake Ontario

Underflight Mission Buffalo Rochester Syracuse Thermal Bar
22 May 1978 - Day X
6 June 1978 - Day X
6 June 1978 - Night X

14 August 1978 - Day

14 August 1978 - Night
1 November 1978 - Night
2 November 1978 - Day

L T B T A ST o
F T T T T S A
F I T T S S S
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By employing these calibration parameters it is possible to compute
the radiant energy or equivalent blackbody temperature originating from
any object observed by the infrared scanning system at flight altitude.
Employing this approach ''ground truth' was obtained by underflying the
HCMM space craft. A fully calibrated line scanner was flown over a known
ground track (usually over water because of its slowly varying thermal
structure). Density readings were made of the aerial infrared imagery
representing surface areas equivalent to the HCMM IFOV. These densities
were converted to integrated surface temperature values using the procedures
described above. Apparent satellite temperatures of these same areas
were computed by analysis of digital HCMM data. Figure 3-4 shows a plot
of actual surface temperature of Lake Ontario as measured by the aircraft
along a flight line out from shore. Figure 3-5 is a plot of the apparent
temperatures as viewed by the HCMR corresponding to this same flight line.
By regressing the satellite observed apparent temperatures against the
actual surface temperatures we can establish a linear relationship for
correcting satellite temperatures to surface temperatures, where the

slope of the relationship

™ = e
‘satellite Tsurface * (3-1)

is a function of atmospheric transmission (over: the 10.5-12.5 um bandpass)
and the intercept is a function of path radiance. Figure 3-6 is a plot

showing how this type of analysis was applied to HCMM iﬁagery.

The satellite was calibrated in this manner at several locations
on each underflight. By comparing the correction equations the physical
extent over which a correction was applicable could be estimated. The
variation in atmospheric effects from day to day was also evaluated. Finally,
by studying meteorological conditions and location of the calibration site
relative to the sensor, the effects of factors such as visibility, air

temperature and slant path length could be studied.
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The experiment was also designed so that radiosonde data collected
by the National Weather Service at the Buffalo airport could be incorporated
into atmospheric propagation models. These models provided corrections to
the HCMR data for atmospheric effects. The predicted temperatures obtained

by the models were then compared to the empirical values obtained via the
underflight method.

The results of these absolute temperature atmospheric calibration

analyses are presented in Section 4.1.

3.2 Thermal Bar Experiment

Data collection on the thermal bar experiment concentrated on
underflights out from the southern shore of Lake Ontario across the bar.
Three flight lines were flown on May 22, 1978 and again on June 6, 1978.
The aerial infrared data was calibrated using the empirical method (Schott
1979) described in the previous section. This densitometric analysis of
the thermal data permitted precise location of the 4°C zone characterizing
the thermal bar. Color photographs were also collected along these flight
lines using Hasselblad 500 EL (70 mm format) cameras. Figure 3-7 shows
two examples of the water quality changes visible along the flight line.
Figure 3-8 shows simultaneous color and thermal infrared images of the
thermal bar illustrating how marked the change in temperature and water

clarity can be.

The HCMM thermal infrared images clearly depict the effectiveness
of the thermal bar in trapping warmer water on the inshore side. Figures
3-9 through 3-14 are HCMM infrared images illustrating the progression of
the Lake Ontario thermal bar in 1978. 1In the early spring the lake surface
is at nearly a constant temperature with only an isolated trace of warming
near shore (Figure 3-9). By May 26 of 1978 the bar has clearly formed
and the cold core of the lake is encircled by a narrow ring of warm water
(Figure 3-10). In the following weeks the warm water forces its way out
from shore exhibiting more rapid movement from the shallow northern shore

and sharper thermal gradients on the southern shore (Figures 3-11 to 3-13).
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Figure 3-7. Two Examples of Water Quality Changes in Lake Ontario Visible

on Standard Color Photography Taken 22 May 1978 (North is up).
The Brightness of the Water is Related to the Turbidity of

The Lake. The Lower Photograph, Taken 2 Miles From Shore,
Shows Changes in Water Quality Resulting From the Cooling Water
Discharge of a Power Plant on the South Shore of Lake Ontario.
The Top Photograph, Taken 3 Miles From the Shore, Shows the
Marked Change in Water Quality at the Thermal Bar.



3-8. Simultaneous Color and Thermal Infrared Images of the Thermal Bar
in Lake Ontario - 22 May 1978. The Marked Change in Temperature

\cross the Thermal Bar is Clearly Shown in the Lower Illustration;
Light is Warm, Dark is Cold. The Corresponding Change in Water
Quality Can be Seen in the Top Photograph Where the Dark, Clear
Water Corresponding to the Colder Temperatures Beyond the Thermal
Bar Can be Seen in the Upper Right Corner.




Figure 3-9. Lake Ontario Thermal Bar Development - 11 May 1978.
The Lake Surface is at Nearly a Constant Temperature
With Only a Small Trace of Warming Near Shore.

Figure 3-10. Lake Ontario Thermal Bar Development - 26 May 1978.
A Narrow Ring of Warmer Water Encircles the Entire Lake.
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Lake Ontario Thermal Bar Development - 1 June 1978.
The Thermal Bar Advances More Rapidly From the Shallow,
Northern Shore of the Lake.

Figure 3-11.

Figure 3-12. Lake Ontario Thermal Bar Development - 6 June 1978.
The Thermal Bar is Well Developed With the Sharp Change
in Temperature Between the Warm Inshore Waters and the
Cold Core of the Lake Being Clearly Visible.
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Lake Ontario Thermal Bar Development - 22 June 1978.
The Thermal Bar Has Advanced Very Little From the Deep,
Southern Shore; Only a Small Portion of the Cold Core

of the Lake Remains.

Figure 3-13.

Figure 3-14. Lake Ontario Thermal Bar Development - 4 July 1978.
The Cold Core of the Lake Has Sunk to the Bottom and

the Lake has Fully Stratified.
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Finally, by July 4, 1978, the lake has fully stratified (Figure 3-14).
The images shown in Figures 3-9 to 3-14 clearly illustrate that HCMM data
can be used to subjectively observe the thermal development of the bar.
Indeed Figure 3-15 shows that the thermal bar is a large lake phenomenon

readily observed in all the Great Lakes.

Quantitatively mapping the thermal bar is a more difficult task.
The location of the 4°C isotherm, which is the temperature at which water

is most dense and therefore sinks, is important because this represents

the physical 1limit of dilution of inshore water. Quantitative mapping of
the thermal patterns in the lakes was accomplished by sorting the HCMR CCT
data and printing isothermal displays. Figure 3-16 is an example of an
isothermal display of the raw CCT data. The limitation of this approach

is obvious when one recognizes that the negative mid-lake temperatures are
impossible. It was necessary, therefore, to utilize the empirical calibra-
tion techniques described in Section 3.1. By applying the corrections
generated using the underflight method, isothermal maps such as those
shown in Figures 3-17 and 3-18 were generated. The accuracy of these

maps will he discussed in Section 4.1.

The color photography was calibrated at the shoreline ends of
the flight lines using the method of Piech and Schott (1978), (Appendix B).
This approach permits conversion of density measurements on the photographic
records to the volume spectral reflectance of the water. The spectral
reflectance values of the water are then input to a model whose output
indicates what the dominant water quality change (chlorophyll change, lignin
change or yellowing organic change) is between a reference point and tﬁe point
in question. This method was applied by collecting density values from the cold
core of the lake and then along the ground track toward shore. The water farthest
from shore (in the stable core of the lake) was used as the reference point
and changes from that point were computed by processing the data as de-
scribed above and detailed in Appendix B. In Figure 3-19 the changes indicated

by the densitometric analysis of the color imagery as well as the magnitude
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of the changes are plotted against distance from shore. In this case, as

in all those studied, the dominant change in moving across the thermal bar
was an increase in algal populations as indicated by increased chlorophyll
concentrations. A more detailed interpretation of these results is presented

in Section 4.2.

3:3 Heat Island Analysis

An initial investigation of the potential of HCMM data for analysis
of certain thermodynamic properties of urban centers was also performed. Of
particular interest under this experiment was an examination of surface
temperature patterns within an urban area as related to land use, land cover,
and meteorological conditions. This examination of data gave rise to several
interesting observations; a presentation and discussion of these observations

is given later in this section.

Study of the urban heat island problem was concentrated over two
cities - Buffalo, New York and Syracuse, New York. As presented earlier in.
Table 3-1, underflight thermal scanner data were obtained for several dates. In
addition to the underflight data, ground data were collected on 2 November 1978.
These data were collected at eight locations in and about Syracuse at the same
time as the satellite overflights - approximately 2 a.m. and 2 p.m. local
time. Ground data consisted of the apparent radiometric temperatures of
large, uniform surfaces such as parking lots. These were obtained using a
Barnes PRT-5 radiometer with a 2° field of view. The instrument was aimed
vertically at the ground element from an elevation of five feet. Air tempera-

ture and relative humidity data were also obtained at each location.

Figure 3-20 illustrates the numerous radiometric readings taken at
one of the ground sites. This process was typical of the eight stations for
which ground data were collected. Figure 3-21 shows the location of each
ground station in Syracuse along with a tabulation of the corresponding ground

data.
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1 3.0 | 14.0
2 4.5 | 18.0 Station 5
3 5.0 | 21.6 02:20,14:30
4 5.0 | 17.5 Highland St./0ak St.
5 4.5 | 20.5
6 4.5 ] 18.0
7 4.5 | 22.0
8 5.0 | 22.0 am/pm
9 5.0 | 21.5 relative humidity:70%/55%
10 5.5 1 17.5 wind speed: 0.5mph/ 5.0mph
11 5.0 | 22.0 wind direction:
121 5.0121.0 air temperature:38.0/64.4 F
Figure 3-20. Ground Data Collected at Syracuse Station #5
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Station # Day Temp. C
1 14.3 2.8 11.5
2 21.0 4.2 16.8
3 19.0 6.9 12.1
4 7.9 3.8 14.2
5 19.6 4.7 14.9
6 19.9 1.1 18.8
7 17.4 3.7 1.3,7
8 17.5 4.0 13.4
Urban X 18.0 4.4 13.6
Suburban x 18.6 3.4 15.2

Figure 3-21, Ground Temperature Data Collected at
Syracuse, New York - 2 November 1978
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The ground data were collected to identify microscale variations in
temperature within the urban center as well as to monitor general temperature

gradients between the urban and suburban areas of Syracuse.

Most of the heat island analyses were performed using the ample
data available from the HCMM satellite imagery. These data were supplied by
NASA in both computer compatible tapes (CCTs) and hard copy film images.

The CCTs were used for the heat island analyses because of the simplicity

of scaling the digitized scene to any map or image base.

In order to examine the relationships between ground surface
temperature and land cover/land use, the thermal images from the HCMM
satellite were registered with high altitude U-2 color infrared photography
over the particular urban areas being studied. Land use maps of the metro-
politan areas proved to be insufficient for this purpose due to their general-
ization of classifications. The registration of the CCT thermal images to
the U-2 photographs was straight-forward. Clearly identifiable points on
both images, in particular distinctive land/water interfaces, were selected
across the metropolitan area. The grid location of each point on each image

was recorded and rectilinear transformation coefficients were determined.

The CCT digital data were converted to temperature space using the
satellite's calibration. Computer software routines were developed and
employed to generate isopleths at 1°C intervals within a scene. These
isopleths were defined by their grid coordinates on the thermal image so
that they could be easily regenerated via the rectilinear transformation
coefficients to be registered with the U-2 photograph. Transparent over-
lays of these isopleths then provided a means for analyzing relationships

between temperature patterns and ground cover within the heat island.

It was determined that temperatures corrected for atmospheric
effects would not be required for our analysis of thermal patterns within
any one urban area. The atmospheric calibration which is a linear correction
would simply change the values of the thermal isopleths without affecting
the thermal patterns of interest under this experiment. For this reason,
temperatures used within the heat island experiment were determined solely

by the satellite's calibration.
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Overlays of temperature isopleths were generated for Buffalo and
Syracuse from the 6 June 1978 images - both day and night. This date was
chosen mainly because of the availability of a well-registered temperature
difference image on this date. The temperature difference image was gen-
erated and provided by NASA in both CCT and hard copy image formats (HCMM
Data Users Handbook, 1980); 2°C isopleths of temperature differences were
generated from these data and a registered overlay was generated for the U-2
photograph of Buffalo. Figures 3-22 through 3-25 present some of the thermal
maps generated for Buffalo and Syracuse. Isopleths containing only one

satellite image pixel have been omitted for clarity.

The thermal maps generated from the HCMM satellite imagery provide
a wealth of information relative to the urban heat island problem. This
information can be analyzed in numerous ways to examine various characteris-
tics of the heat island. Two general characteristics were investigated under
this effort. The first of these was the overall macroscale effects of the
urban heat island, that is , the overall changes in temperature due to ground
cover, in particular between the urban area and the surrounding rural area.
The second type of characteristic investigated involved the smaller effects
of particular urban features such as urban parks, industrial complexes and
residential districts and their effects on adjacent areas. Each of these

two areas of investigation is discussed below.

Analysis of the thermal patterns observed within an urban heat
island involves recognition of a complex array of variables and limitations.
Small changes in temperature recorded on a thermal image can be real, non-
real, or a combination of the two extremes. As discussed in Section 2.3,
real changes in temperature can result from numerous variables including
thermal properties of the ground cover, localized wind patterns, elevation,
evaporative cooling, and generation of heat. On the other hand, entirely
apparent changes in temperature can result from changes in surface emissivity
or integration of various temperatures over one resolution element. Most
of the analyses performed under this effort require consideration of all

these parameters.
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Figure 3-22. Thermal Map Overlay Showing Apparent Radiometric Temperatures
For Metropolitan Buffalo, N.Y. - 6 June 1978 - 2 p.m. EDT.
Each Isotherm represents a 1°C Change in Temperature as
Recorded by the HCMM Satellite. Winds are from the SSW
at 12 Knots.
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Figure 3-23. Thermal Map Overlay Showing Apparent Radiometric Temperatures
For Metropolitan Syracuse, N.Y. - 6 June 1978 - 2 p.m. EDT.
Each Isotherm Represents a 1°C Change in Temperature as Recorded
by the HCMM Satellite. Winds are from the SSW at 5 Knots
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Figure 3-24. Thermal Map Overlay Showing Apparent Change in Temperatures
For Metropolitan Buffalo, N.Y. Between 2 a.m. and 2 p.m. -
6 June 1978. Each Isotherm Represents a 2°C Change in the
Temperature Difference Between the Night and Day Scenes as
Recorded by the HCMM Satellite.
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Flgure 3-25.  Thermal Map Overlay Showing Apparent Radiometric Temperatures
For Metropolitan Buffalo, N.Y. - 6 June 1978 - 2 a.m. EDT.
Each TIsotherm Represents a 1°C Change in Temperature as
Recorded by the HCMM Satellite. Winds are from the South
at 6 Knots.

48




It should be noted here that the analyses performed under this
experiment were conducted primarily on the 6 June 1978 day/night imagery of
Buffalo and Syracuse, New York. As discussed in Section 2.3, a frequent
contribution to the formation of a distinct urban heat island is an overcast
sky capable of re-radiating escaping heat back into the urban area; of
course, overcast conditions preclude clear satellite imagery of an area.
The clear 6 June 1978 imagery does, however, indicate some degree of heat
island development in the major urban areas; furthermore, registered day/
night temperature difference images generated by NASA were also available
for analysis for this date. So although this date may not provide the best
example of a clear urban heat island formation, it provides a prime set of
day, night, and day/night temperature difference images with which to

investigate the thermal patterns seen within the urban complex.

The major characteristic of an urban heat island is, by definition,
an increase in temperature within the urban area relative to the rural
surrounds. This effect is observable directly from HCMM thermal images.
Figures 3-26 and 3-27, for example, are thermal images of Buffalo and
Syracuse, respectively. The brighter areas in these images correspond to
higher temperatures. As can be seen, therefore, the metropolitan areas
tend to be brighter than the rural areas surrounding the cities. This
difference in temperature is predominantly due to the abundance of vegetation
in the rural areas. The vegetation is physiologically capable of maintaining
its temperature near that of the ambient air through evaporative processes.
With this capability in mind, we would further expect that all rural areas
would be roughly at the same temperature, and all non-rural areas composed
of varying degrees of man-made materials would tend to be warmer due to the
thermal properties of the denser man-made materials. The 24°C isopleth
generated from the thermal image presented in Figure 3-25 corresponds re-
markably with the interface between the Buffalo metropolitan area and its
rural surrounds. This can be seen in Figure 3-28 which presents the entire
thermal map generated for this scene. This illustration is basically the
same as the map presented as Figure 3-22; in Figure 3-28, however, the 24°C
isopleths have been emphasized and annotations referring to examples
presented below have been added. (On the high altitude infrared photograph,

vegetation will appear red due to its high infrared reflectance).
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Figure 3-26.

Thermal Infrared Image of Metropolitan Buffalo, N.Y. -

6 June 1978 - 2 p.m. as Recorded by the HCMM Satellite.

The Warmer Metropolitan Area Appears Lighter on the Thermal
Image than the Cooler Rural Surrounds. Lake Erie is in the
Lower Left Corner of the Image. The Smaller Cities of
Niagara Falls, N.Y. and Niagara Falls, Ontario Can be Seen
Along the Niagara River Near the Upper Left of the Image.
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Figure 3-27.

Thermal Infrared Image of Metropolitan Syracuse, N.Y. -

6 June 1978 - 2 p.m. as Recorded by the HCMM Satellite.

The Warmer Metropolitan Area Appears Lighter on the Thermal
Image Than the Cooler Rural Surrounds. Onondaga Lake lies
Just to the Upper Left of Syracuse. Oneida Lake is in the
Upper Right Corner of the Image.
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Figure 3-28.

Thermal Map Overlay Showing Apparent Radiometric Temperatures
for Metropolitan Buffalo, N.Y. - 6 June 1978 - 2 p.m. EDT.
Each Isotherm Represents a 1°C Change in Temperature as
Recorded by the HCMM Satellite. The Bold 24°C Isopleth
Corresponds Remarkably With the Change in Ground Cover From
Urban to Rural. Areas A-J Show a Local Decrease in Tempera-
ture with an Increase in Tree Cover. Areas L and M Indicate
a Change in Temperature Between Two Similar Residential
Areas, One Being Contiguous With the Metropolitan Area and
the Other Being More Isolated.



The cooling effects of vegetation can also be seen within urban
areas themselves. A high correlation appears between the percent tree cover
in an urban area and the corresponding temperature of that area. This is
understandable and expected in that any given area is an integration of all
the individual factors (e.g., trees, roofs, pavements) in the area, each of
which exhibits its own thermal properties. The degree of influence of
individual features cannot be examined using the satellite imagery due to
insufficient resolution. However, some degree of heat exchange between
features is expected at this scale in a way similar to the effects discussed
below regarding larger urban features such as residential and industrial

complexes and parks.

The correlation between tree cover and temperature mentioned above
can be readily seen in Figure 3-28. (The amount of tree cover within the
urban and suburban areas can be roughly interpreted by the ''redness' of the
area on the photograph). Five areas which show an appreciable increase in
tree cover relative to surrounding areas are indicated as areas A, B, C, D
and E on Figure 3-28. Each of the areas corresponds to a local decrease in
temperature. To extend this point one step further, it can also be seen that
highly vegetative areas within the metropolitan area (e.g., parks, cemeteries,
and open areas) appear to be the coolest spots. Examples of some of these

areas are indicated by areas F, G, H, I and J on Figure 3-28.

Investigation of the influence of individual urban features on the
development of an urban heat island involves recognition of a complex array
of variables and limitations as mentioned above. The contribution of these
variables seems to become more important when finer details within the urban
thermal pattern are examined. This will be evident in the subjects presented
below. Because of the numerous variables involved and the limited depth of
this study, the examples presented within this section generally cannot and
are not intended to prove that certain conditions or phenomena exist. Rather,
the examples are intended to provide a sampling of the numerous subjects of
interest contained within the HCMM satellite thermal images of metropolitan
areas. A thorough analysis of most of the subject areas would entail compari-

sons of each area under various wind, sky and temperature conditioms.
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Ground data collected in Syracuse indicate that significant changes
in temperature can exist both between an urban center and its suburbs as well
as within the urban center itself. This can be seen by examining the compiled
ground temperature data presented in Figure 3-21. The temperature difference
between station 1 and station 2 during the day is remarkable given that they
are only a few city blocks apart. Likewise, the difference of 3.1°C between
station 3 and station 4 during the night indicates a substantial variation
in temperature within one city block. The general tendency of the suburban
areas to cool more than the urban center at night is also observable through
these data. Although ground truth data were not collected in the rural areas
surrounding the Syracuse metropolitan area, it is expected that these areas

would cool down even more than the suburbs.

HCMM satellite imagery can be used to observe most of the temperature
variations in and about a metropolitan area such as Syracuse. The 0.5 kilometer
resolution of the imagery does, however, limit examination for some of the

finer variations. A discussion of observable variations and patterns follows.

The general tendencies of residential areas contiguous to the metro-
politan area (e.g., area M in Figure 3-28) to have higher temperatures than
the isolated residential areas (e.g, areas K & L in Figure 3-28) indicates
that the urban core and industrial districts do have a general effect of raising
the temperatures of adjacent areas. This difference in temperature due to
proximity to warmer or cooler areas can be seen by comparing the average
temperature of two areas - areas L and M in Figure 3-28 for example. The
average temperature of area L is roughly 24°C while the average for area M
is 26°C. This difference in temperature is most likely a result of both the
cooling effects due to the rural surrounds of area L and heating effects

associated with the proximity of area M to hotter areas.

Another characteristic of the thermal patterns found around the
urban area is the tendency for isotherms to occur in loose concentric rings,
particularly within isolated residential spots such as area L on
Figure 3-28. This type of phenomenon, along with the example just cited,
support the idea that one area can tend to affect the temperature of adjacent

areas. This effect is most likely due to one of two phenomena which are
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illustrated in Figure 3-29. First, any wind present will tend to move cool
ambient air from vegetated areas into adjacent urban areas helping to cool
them down. And similarly, hot ambient air from within urban areas can be
removed to rural areas capable of cooling the air through evapotranspiration.
The second method by which adjacent areas may tend to affect one another

is through interaction by an overcast sky. This condition is more

likely to occur given the common conditions associated with heat island
formation as discussed in Section 2.3. In this case heat emitted from each
point in an urban area will tend to be re-radiated back to the earth, but

in an effectively larger area than the source. A point within an urban area
which is surrounded by further urbanization will therefore be loaded by the
energy emitted by these surrounds and re-radiated back by cloud cover. An urban
point near a rural area will however receive a lesser loading due to the
decrease in energy emitted by the cool rural area. In effect, this pheno-
menon would defocus sharp changes in temperature between two areas. As

the sky and atmosphere become clearer and as winds decrease, these effects
would decrease, resulting in a '"'sharper' thermal map. This does not mean
that temperature differences between rural and urban areas would be more
drastic, but rather that the change would occur over a shorter distance at
the interface between the two areas. In fact, as discussed earlier, as the
sky becomes more overcast and the heat island develops more intensely, the
temperature differences between the e;tire metropolitan area and the rural
surrounds will increase. The changes in temperature over smaller areas such
as urban parks will however be less drastic as a result of the overcast sky.
This is illustrated in Figure 3-30 where a theoretical temperature profile
across an urban area is presented for both clear and overcast sky conditions.

Wind in both cases is assumed to be negligable.

Five subject areas of interest are presented and discussed below.
Due to the large number of variables affecting the temperature of an area
and the multitudinous isopleths delineated for each metropolitan area (see
Figures 3-22 through 3-25), only a portion of the thermal map in the

immediate area being examined was used. In analyzing these individual areas,
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Two Methods by Which an Area Can Affect The Temperature of an
Adjacent Area. In Illustration A, Moving Air Permits Convective
Cooling in Urban Areas; Rural Areas or Green Spots Within the
Urban Area Are Capable of Cooling the Air Through Evapotrans-
piration. In Illustration B, Energy Being Emitted by the
Surface is Re-radiated Back to the Surface by an Overcast Sky
But in An Effectively Larger Area Than the Source. Thus the
Total Radiation Incident Upon Any Surface is a Function of

the Energy Emitted by Neighboring Areas.
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Furthermore, Higher Heat Loss by One Area Tends to Affect
the Temperature of Adjacent Areas Through Interaction of
the Overcast Sky.
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it was determined that concentration on the immediate area was essential;
attempts to visually interpret all the factors and interactions over larger

areas tended to yield confusion.

The five subject areas are presented in Figure 3-31. These five
subjects are all taken from the 6 June 1978 - 2 p.m. image of Buffalo. The
wind was from the SSW (240°N) at 12 knots. A discussion of each of the five

subjects follows.
SUBJECT I (see Figure 3-31)

Subject I is the lower portion of the contiguous area comprising
both Subjects I and II. In this area, the two residential areas A and B
are similar with respect to density and tree cover. The two areas differ
in temperature by 2°C. Given that the wind is out of the SSW, it is
reasonable to expect that this difference in temperature is due to
differences in the ground cover type upwind from areas A and B. Area A
is influenced by a warm air flow coming from additional residential and
commercial districts located at C. Area B, on the other hand, is
influenced by a cool air flow coming from the large open fields and rail-

yards located directly upwind from there at D.

SUBJECT II (see Figure 3-31)

Subject II is the area just northeast of Subject I and is similar
to that presented in Subject I. In this case, the entire residential area
comprising the subject area is reasonably constant relative to density and
tree cover. The gradient in temperature across this area normal to the wind
direction appears to reflect the changing ground cover found upwind of the

area. The large open area and railway yard at G appears to effect a cooler

swath into the residential district. In the absence of any potential 'cooling"

area upwind from F, this portion of the residential district remains warmer

than area E.

As discussed earlier, the resolution of the satellite imagery

limits analysis of these temperature patterns. In this subject, for

example, the 25°C isopleth at E may truly reflect a decreased temperature
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Figure 3-31.

Thermal Map Overlay Showing Apparent Radiometric Temperatures
For Metropolitan Buffalo, N.Y. - 6 June 1978 - 2 p.m. EDT.
Each Isotherm Represents a 1°C Change in Temperature as
Recorded by the HCMM Satellite. Selected Subject Areas are
Shown Which Demonstrate the Effects of Particular Urban
Features (e.g., Parks and Commercial/Industrial Districts)

on the Temperature of Adjacent Areas.



for that small portion of the residential area or it may result from an
integration of both the residential area and part of the open area at G.

(This isotherm encompasses two satellite image pixels).

SUBJECT IIT (see Figure 3-31)

Subject III involves the influence of a large urban park on local
temperatures. The large park located at J is centered between a large
industrial district, K, and a dense residential/commercial portion of the
urban core, L. The large uniform residential area labeled M is apparently
affected by both areas J and K which are located upwind from M. The more
obvious effect on this large residential area is the increased temperature
at the west end adjacent fo the industrial district, K. However, an
apparent large scale cooling process can also be seen if area M is compared
to area N which lies just southeast of M. Area N is not influenced by the
large urban park, but instead receives an air flow passing over the dense
residential/commercial area, L. Upon initial examination of the two resi-
dential areas, M and N, one might expect area N to be cooler because of the
increased tree cover within that area. However, apparently because of the
additional effect of adjacent urban features, J and L, area M is the cooler

of the two areas.

SUBJECT IV (see Figure 3-31)

Subject IV involves the effects of a hot commercial center on the
surrounding areas. The '"hot spot' in this case is a large complex of commer-
cial buildings dominated by large department stores and malls located at O.
The heat being emitted by this area appears to be increasing the temperature
of the adjacent residential area to the west. The open areas to the east,

P, are capable of cooling some of the heat coming from area O through

" evaporative processes, but a gradient in temperature can also be seen on this
side as the distance from area O increases across the open areas at P. This
subject demonstrates well the concept that heat from one area may have an

influence on adjacent areas.
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SUBJECT V

Subject V is not labelled on Figure 3-31 for the sake of clarity
in the illustration. It concerns area R located between Subjects I and II.
This is an example of a thermal pattern which does not appear to be so easily
explained. Area R is 2°C cooler than the similar residential areas, S and T,
located to either side. The only apparent reason for this temperature pattern
is the collection of small parks located upwind from and within area R.
Other small parks around the metropolitan area do not however seem to have so
great an effect. This can be verified by the reader's examination of Figure
3-28,.

This subject is presented to illustrate that thermal patterns
resulting from less obvious factors are also contained within the HCMM
satellite imagery. Proper examination and analysis of these features are
necessary if valuable information regarding the development and possible

alteration of urban heat islands is to be obtained from the HCMM imagery.

The subjects presented above indicate that considerable information
about the thermal properties of urban heat islands is contained within the
daytime images provided by the HCMM satellite. Similar subjects of interest
can be identified in the night and day/night images as well. Individual
subjects are not called out for each image studied under this effort. A
sample of some of the other images examined has however already been pre-

“sented in Figures 3-23 through 3-25. Examination of these illustrations
will confirm that numerous additional points of interest are contained in

the imagery.

Further investigation and examinatioﬁ of the thermal patterns-
imaged by the HCMM satellite frdm day to day under various sky, wind, and
temperature conditions could identify the importance of particular urban
features such as parks, open fields and tree-lined streets. A better under-

standing of the influence of these features on the urban heat island could
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play an important role in future urban planning relative to decreasing
excessive heat within urban areas and thus decreasing the discomfort and

health hazards associated with it.

A summary of the conclusions drawn from this experiment is

presented in Section 4.3.
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Section 4
RESULTS

This section discusses the results of each experiment conducted to
assess the utility of HCMM data. In each case the HCMM data provided new

and often unique insights into the problem being studied.

4.1 HCMM's Role in Surface Temperature Measurement

The HCMR was calibrated on several passes using the underflight
method described in Section 3.1. Table 4-1 contains calibration data for
the underflights. These data were analyzed to determine if meteorological or
path length variations had a strong influence on the calibration coefficients.
Slant path length to the study site mever varied by more than 10% from
the nominal flying height of the space craft. Presumably because of this
small variation, path length effects did not contribute significantly to the
variation in calibration coefficients. There did appear to be some corfela-
tion between visibility and the intercept term (b of Table 4-1) which is
related to the amount of path radiance. The limited amount of data precluded
~ a quantitative analysis; however, the plot shown in Figure 4-1 indicates '
that the term related to path radiance tends to increase with decreased
visibility (particularly under low visibility - high temperature conditions).
The observations are in keeping with our expectation since the amount of
precipitable water is a significant factor affecting visibility and the
dominant factor affecting absorption and reradiation in the 10.5-12.5 um
bandpass observed by HCMM. ’

The calibration parameters derived from the underflight data were
used to predict surface temperatures at points where ground temperatures had
been determined from the aerial thermography. Figure 4-2 is a plot of surface
temperatures as determined from aircraft data (aftef Schott 1979) versus
temperatures obtained by applying the regression analysis to the satellite
data. Data from four underflights are included in Figure 4-2. The residual

error in the satellite temperatures was determined to be 1.0°C for 28 points.

63




[V}

(azey)
(9zeH)

™~

0¢

0¢
o1

C )
AITTIQISTA

(¢s)

(98)
(16)

(¥s)
(95)
(Ls)

(1)

Yy

(o)
(99)

(do) Do
~dwey, xt1v

K4

0%
g€

Al
€1
14!

[

¥4

61

p 3 .
(0, ur'y) q¢ PO qu o SIFIIOIBS
opn3T3Te IYSTTF O3 UOTSSTWSUBLY Wl pT-§ &
- - L€9 il 10009 asnNOBILS
Aeq 8L-1-11
- - £€9 29" 10009 asnaerds
et oL -LS9 89° 10009 1335900y
AeQ 8/-v1-8
629" - 0L* 8¢9 L8" 1 000" asnoexfg
| S 99° ¢Z9 L8" " 000b Ia1saydoy
z0c’ 1L 029 [V 10009 oreiing
-3Y3IN 8.-9-9
eLS - S9° 029 €99 1 0007V S9TIN 6
- - 029 80L” 1 000V 9sSNIRILS
Aed 8.-9-9
99° - b9 029 gL 1000V 130910
cl'e- 1L 999 69° 1 0008 1IN 6
- - €L9 gLL” 1 000V IsSNIBILG
- - A ¢l 10008 X91s9Yy20y
Aeq 8.-7Z-S
q u (ux). 1 (19V) ePmT3TY

sjuatoT1Iyeo0) ‘dusy
¥x93TT1938S 01 punoiy.

aduey 3JuUBTS
91TII93®ES

1Jeadary

SIYSTTIISPUN WWDH 103 ®Bled UOTIRIqITe)  “I-p 91QEL

64




4d° 5!

i

AITTTQISTA "SA SenTep 395330 POITIQITE) 93TI[938S JO 1014

4321

(DIVIO HIVD 134N

'S

tama

*I-¢ ean3ty

mg.a.

.
o

Yo

108° B2

(SF1IW) ALITISISIA

65




.F"_.. -

3d

o~ ....,f.__,«,....n..“_.“

Mmuc-AnariuzIn-<d OM-ANA—OMDnT

~--——— | @ °C ERROR BAR
27
-
i
.° Iﬂ; ~ - o _ .
<
;
1 i
- A
4
Vo
— ?‘: : 4 + e e e e e e e

'...,..m“.

Figure 4-2.

18 , 28 - 32 _ Hid

BROLKND TEMPERATURE °C

Plot of Satellite Data Corrected for Atmospheric Effects vs.
Water Surface Temperature. Predicted Temperatures were Obtained
by Correcting HCMR Data for Atmospheric Effects Using Coeffi-
cients Determined from the Aerial Underflight Calibration
Technique. Ground Temperatures were Determined from Aerial
Thermography. The Residual Error in the Satellite Temperatures
is 1.0°C as Indicated by the Error Bars.
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Schott 1979 had previously determined the expected error in the aerial
measurement of temperature to be 0.4°C. This yields an overall error in
satellite measurement of water temperature of 1.1°C for the underflight
calibration approach. 1In addition to the underflight calibrations the
LOWTRAN and RADTRA atmospheric models were run on several days when under-
flight data were available. The models were run with radiosonde input '
data from the Buffalo International Airport. An example input data set

is shown in Table 4-2 for August 14, 1978 at 7 p.m. EDT. In general,
radiosonde data at 7 a.m. and 7 p.m. bracketing the HCMM overpass times
were used to determine if a reasonably stable atmosphere appeared to exist.
If no significant variance (a change in predicted temperature of less than
about 1°C was considered insignificant) existed between the calibration
parameters generated by the radiosonde data, occurrihg just before or
after the HCMM overpass, then these data were assumed to be applicable

to the HCMR data. '

Calibration parameters for several HCMM overpasses are shown in
Table 4-3. In general, the LOWTRAN and RADTRA models which draw on the
same basic assumptions produce quite comparable results. The empirical
data obtained from the extensively tested underflight method exhibits
significant variation from the model results. Figure 4-3 is a plot similar
to Figure 4-2 showing the water surface temperature as measured from quanti-
tatively calibrated aircraft underflights plotted against water surface
temperatures predicted by the various HCMR calibration methods. In general,
we see that for the four data sets combined here the empirical data correlate
quite well as expected. The data from the LOWTRAN and RADTRA models exhibit
considerable error. Indeed when we combine the errors associated with the
difference between the satellite predicted values and the ground truth
generated from the aircraft, with the error inherent in the ground truth
itself, the errors associated with satellite measurement of surface tempera-
ture are 9.0°C and 6.9°C for LOWTRAN and RADTRA compared to the 1.1°C value

previously computed for the underflight calibration method.
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Table 4-2

Radiosonde Input Data For Atmospheric Models

August 14, 1978 - 7 p.m. EDT
Buffalo International Airport

Altitude Pressure Temperature Dew Point
(km) _ (mb) (°Q) °0)
0.218 994.6 30.0 16.1
0.984 912.0 22.9 12.7
1.313 878.0 19.0 12.7
1.591 - 850.0 16.9 10.9
1.763 833.0 16.7 4.6
1.929 817.0 16.5 2.8
2.452 768.0 12.8 1.4
2.618 753.0 12.6 2.3
2.923 726.0 10.4 3.5
3.050 715.0 9.3 3.2
3.226 . 700.0 8.4 2.1
3.526 ~ 675.0 6.3 0.3
3.809 °  652.0 4.0 0.8
3.885 . 646.0 3.9 -2.1
4.128 627.0 5.1 -11.7
4.299 614.0 3.5 -12.1
4:512 598.0 2.4 -27.6
5.794 509.0 -6.0 -36.0
5.934 500.0 -6.0 -36.0
6.188 484.0 -7.5 -37.5
6.350 474.0 -8.4 -38.4
7.645 ~400.0 -17.3 -47.3
9.296 319.0 -30.7 -60.7
9.590 306.0 -33.5 -36.0
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Table 4-3

Atmospheric Calibration Parameters

Date/Site/Time Calspan* RADTRA* LOWTRAN*
m b m b m b

" 6 June 1978

Buffalo 200 EDT  0.708  0.202
Buffalo 700 EDT 0.853 1.135

Buffalo 1900 EDT o 0.844  2.287 0.83  1.47
Rochester 200 EDT  0.659  1.231

Syracuse 200 ‘EDT ‘0.694 0.629

Nine Mile 1400 EDT 0.653 0.572

22 May 1978

Buffalo 700 EDT , ‘ 0.885 0.646
Olcott 1400 EDT 0.64 2.66

Nine Mile 1400 EDT 0.69 3.12

14 August 1978

Buffalo 700 EDT ' 0.545 7.59
Buffalo 1900 EDT 0.562 7.83 0.576 4.38
Rochester 1400 EDT 0.684 13.41 -

* = 3 °
Where Tsatellite- sturface +b (T in °C)
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These results indicate that the HCMR can be calibrated for absolute
surface temperature measurement using the underflight calibration technique.
In addition it appears as though in most cases the atmospheric propagation

models are not capable of accurate calibration of satellite sensing systems.

There has been some question about changes in the radiometric
calibration of the HCMR after launch. Our data do not support or disprove
this possibility. The distribution of the satellite predicted temperatures
using the atmospheric propagation models tends to indicate that if the models
were extremely precise then both a gain and offset correction to the HCMR
caliBration has been introduced after launch. We believe that barring any
supportive evidence of a change in the sensor calibration it is as likely
and perhaps more likely that inadequacies in the atmospheric propagation

models are introducing the apparent errors in HCMR calibration.

4.2 HCMM's Role in Observing Regional Water Resources

The general formation and development of the thermal bar can be

qualitatively studied by visual analysis of HCMR imagery. 1In addition,

by utilizing the results of the underflight calibration method presented

in _the previous subsection, it is possiblé to generate detailed quantitative
maps of the surface thermal structure of entire lakes. The actual lécation'
and rate of development of the thermal bar can be mapped after the HCMR data
have been corrected for atmospheric effects. Figure 4-4 is a map of the surface
temperatures of Lake Ontario showing the location of the thermal bar on 6/6/78.
Knowing the location of the thermal bar it is possible to map water quélity
indicators in the vicinity of the bar to determine its effects on water _
quality. In Figure 4-5 the magnitude of the red to green brightness vector
from the Landsat satellite has been mapped for a portion of Lake Ontario.

The brightness vector is a measure of the overall turbidity of the water

and therefore represents a rough measure of the combined algae and suspended
particulates (an indicator of nutrients) in the water. Also shown in

Figure 4-5 is the calibrated thermal data from 6/6/78 for comparison to -

the Landsat data from 6/14/78. The thermal bar's effect on water quality

is clear from Figure 4-5. The warm nutrient-rich water is trapped inshore
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Temperature °C -

Figure 4-5.

Lake Ontario _ -~

I
|

Red to Green Brightness Vector from Landsat Image of Lake
Ontario - 14 June 1978. The Brightness Vector is a Measure
of the Turbidity of the Water; Two Levels of Turbidity are
Presented Above. The Additional Thermal Data Illustrate the
Relationship Between the Thermal Bar and Water Quality.

Warm Water Trapped Inshore of the Thermal Bar Provides an
Excellent Medium for Algal Production Evident in the Higher
Turbidity Level Near Shore. Note that the thermal data
presented is from 6 June 1978 and some outward movements of
the bar might be expected by the 14 June date of the Landsat
overpass.
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of the thermal bar providing an excellent medium for algal production. As

we discussed in Section 3.2, aerial underflight data analyzed using the

method of Piech and Schott (described in Appendix B} indicated that the major
change in water color (turbidity) was associated with increases in algal concen-
trations. 1In addition to limiting dilution throughout the lake, thereby increas-
ing nutrient values, pollution concentrations associated with runoff are also
increased. 1In fact in extreme cases the elevated algal concentrations can

increase to bloom proportions and become pollution problems themselves.

The effects of the thermal bar on water quality was verified by

data taken during the week of 6/5/78 to 6/9/78 corresponding to the HCMM
vday/night overpass of 6/6/78. The data were obtained from the Canada Center
for Inland Waters (CCIW) which had collected it as part of a regularly scheduled
cruise of Lake Ontario. Figure 4-6 shows the pattern of the CCIW's per-
manent sampling stations around the lake. Also shown in Figure 4;6 are

CCIW's water surface temperatures, secchi depths and integrated chlorophyll
concentrations (wheré available)} for several stations of interest. We have
also shown in Figure 4-6 the location of the thermal bar as determined from
the calibrated HCMR data of 6/6/78. It is readily apparent from this figure
v_tha;‘thg CCIW data, taken over a 5 day period including the HCMM overpass . . . _
date,bverify the utility of the calibrated HCMR in locating the thermal bar.
These CCIW data also verify the interpretation of the auxiliary Landsat and
underflight data relative to water quality. The CCIW data ¢learly point to a
turbidity increase associated with dramatically elevated chlorophyll levels
occurring inshore of the thermal bar. Regretably suspended solids and

other factors affecting water ''color'" were not part of CCIW's analysis scheme.
Other factors studied. such as organic carbon,»condﬁctivity, etc. indicate
increased levels inshore of the thermal baf. This phenomenon is
particularly important because it occurs in the warm near-shore waters in

the spring which is when many newborn organisms are in their very susceptible
early life stages. These organisms tend (because of breeding habits and
availability of food) to spend the early part of their life in the near shore
water where they are subjected to elevated pollutiqn loadings resulting from

the thermal bars impediment to dilution.
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The HCMR sensor, combined with other spaceborne sensing platforms
offers a way to monitor the current location of the thermal bar and its impact-
on water quality. As seen in Figure 4-7a, HCMR data can be used not only to
study whole lake phenomena but also the microstructure of the thermal phenomena.
In this figure, we have color coded the thermal data from 6/6/78. The warm
" water ringing the lake is clearly evident. It is also clear from this figure
that localized effects from runoff (e.g., Niagara and Genesee Rivers) can be
monitored using HCMR data.. 'By combining the thermal detail available from
HCMM with the detail on certain water quality parameters available from the
reflected visible energy sensors aboard other spacecraft, a method of monitor-
ing critical conditions could be established. For example, in Figure 4-7a we
can see the thermal plume from the Niagara River at the southwest end of the
lake. In general, the pollution carried'in this water would be diluted by
mixing throughout the lake, but the thermal bar essentially forces the river
water to hug the shore mixing with other runoff water thereby potentially
increasing pollution loads rather than decreasing them. (As an example,
industrial discharge levels could be restricted during periods when turbidity
indicators were approaching a predetermined critical indicatbr of excess
pollution loading and dilution volumes as indicated by HCMM were expected to

be inadequate to reduce concentration levels.)

In addition to monitoring the seasonal development of the thermal
bar HCMM's diurnal coverage provides a unique capability for monitoring short
term developmental processes. This is dramatically demonstrated in Figure
4-7b. In this figure the nighttime thermal image of a portion of Lake
Ontario near Rochester has been subtracted from the daytime image for 6/6/78
and the results.color encoded. The deep purple tones in the éenter of the -
lake represent regions of essentially no teﬁperature change. The light
purple regions inshore of the thermal bar represent slight increase in
temperature due to runoff and increased solar absorption near the surface
caused by higher turbidity in the inshore waters. The regions color encoded
in blue, green and yellow represent increasingly significant changes in
temperature. These colors represent the outward advance from shore of the

thermal bar. The daytime heating combined with the influx of runoff has
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Figure 4.7a. Color Encoded Thermal Map of Lake Ontario - 6 June 1978
' From Hot to Cold, the Colors Range From Orange Through
the Yellows, Greens, Blues, Pinks and Violets to Dark Blue.

Figure 4.7b. Color Encoded Temperature Difference Image - 6 June 1978
[Hlustrating the Changes in Temperature of Lake Ontario
Surface Water at the Thermal Bar Over a Twelve Hour Period.
The Purple Tones Seen on Both Sides of the Thermal Bar
Represent Little Temperature Change. The Regions Color
Encoded in Blue, Green and Yellow Represent Increasingly
e

Significant Chanﬁes in Temperature Related to the Outward
Advance From Shore of the Thermal Bar.
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pushed the thermal bar outward so that the temperature difference in this
region is now composed of daytime inshore water minus cold central core
water from the previous night. The bar has advanced approximately 1 to 1.5
kilometers outward along most of the shore line during this 12 hour period.
The bar advanced less in the eastern portion of the image and shows no ’
advance just offshore of the Genesee River discharge. The river discharge
presumably had previously introduced a bulge in the bar which would tend
to mask advances until the rest of the bar advanced beyond the influence
of the plume. We observe a similar phenomena at the mouth of the Niagara
River. The increased turbulance:and currents at thése major discharges
also tend to disrupf somewhat the pattern and stable progression of the

thermal bar.

The observed advance rate of the bar on this day of 1 to 1.5 km /day
seems reasonable since the mean advance rate of the bar from the south shore
is about 32 km/45 days or 0.7 km/day. We would expect considerable daily
variance in the advance rate with high insolation days. (such as the dayé
when HCMM coverage is good) showing higher rates. Analysis of HCMM Night -
Day - Night data might also provide answers to questions about diurnal

advance and partial withdraw of the thermal .bar. -

In summary, we found that HCMM data could be successfully used to
study both regional and local water resource problems. Daily and seasonal
development of the thermal bar as well as the effect of the thermal bar on

regional water quality were observed.
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4.3 HCMM's Role in Studying the Urban Heat Island

The processing, examination and analysis of HCMM thermal data performed
under this effort has indicated that the HCMM imagery can be an invaluable
tool for studying characteristics of the urban heat island phenomenon. It
can enable efficient study of the individual factors which affect the develop-
ment of the heat island by providing detailed temperature information across

an entire urban area.

The most beneficial property of the HCMM thermal imagery is that it
provides a rare opportunity to examine the thermal patterns associated with
a real urban complex at a resolution amenable to analysis of small scale
effects of individual urban features within a metropolitan area. In the
past, studying the urban heat island phenomenon consisted predominantly of
developing and analyzing theoretical models (Miller et al 1972, and Myrup
1969) and implemehting expensive ground truth or aerial data collection
programs (Lenschow. and putton"1964). The HCMM imagery,'héwever, now provides
a relatively inexpensive opportunity to carefully examine some of the thermal
properties associated with the urban heat islands as well as to analyze the

existent models of this phenomenon.

‘“The HCMM imaééfy lends itégif ko analysis of the heat island problem
in numerous ways. The frequent reimaging of the same metropolitan areas
permits examination of the same urban area under various meteorological con-
ditions. This includes both changes in local weather conditions (e.g. wind
speed and direction, temperature, sky conditions) and various degrees of
severity in the heat island formation. Imagery over any one urban area is
collected within a.short period of time thus eliminating the variable of
changing meteorological conditions which plague attempts to collect thermal
radiation data using other approaches. The integrity of the HCMM imaging
system is more than sufficient to describe major changes in temperature
within the island. The image resolution permits observation of thermal

effects from relatively small features within the urban center.
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These properties of HCMM imagery related to its potential application
to analyzing the urban heat island problem permit the careful examination
of certain aspects of the heat island. In depth analyses of individual metro-
politan areas using the thermal information recorded on this imagery can help
provide answers to questions concerning the effects of particular urban
features on the overall development and dissipation of the heat island.
Furthermore, the multiple date coverage of major urban centers can efficiently
provide information oh the changing role of these individual features under
various sky, temperature and wind conditions as well as their changing roll
under various degrees of heat island severity. Determination of the influence
of particular urban features on the heat island problem can in turn lead to
improved city planning to benefit the health and comfort of the people who

work and live there.

In summary, then, the heat island experiment conducted under this
effort indicates that abundant information relative to thé urban heat island
phenomenon is currently available in existing HCMM imagery. Through straight
forward data processing this information can be employed to further our

understanding of and control over the heat island problem.
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Section 5

CONCLUSIONS AND RECOMMENDATIONS

The HCMM experiment has been extremely successful in providing
new insights into the urban heat island and water resource phenomeha.
The unique high resolution synoptic perspective of thermal properties
that the HCMM experiment has provided has allowed us a look at these

phenomena as never before possible.

We have been able to monitor the formation and development of
the thermgl bar over all of Lake Ontafio. By employing the underflight
calibration technology HCMR data can be mapped directly to actual surface
temperatures. This allows detailed mapping of the thermal structure of
the entire lake surface and precise location ‘of the thermal bar. Near
shore water quality variations observed by Landsat and documented in
situ were demonstrated to be associated with the thermal bar‘phenomena by
analysis of HCMM data. HCMM's unique temperature difference product
proved valuable in studying in detail the short term-diurnal development
and advance of the thermal bar. High rgsolﬁtipq_thermal_infrared HCMM
data, in particuiar Qﬁen used with other remotely sensed data, can provide
very valuable monitoring and, potentially, forecasting data on large water -
resources. In general, both HCMM's spatial and thermal resolution were
adequate for large water resource studies. More repetitive coverage

would greatly increase the utility of the data from future satellites.

A reliable calibration method that did not require underflight
data would also be of great benefit in future missions. While inconclusive
because of the limited amount of data analyzed, our studies indicate that
the standard infrared atmospheric prdpagation models are inadequate for
precise calibration of satellite data. We recommend a more detailed study
of this problem to attempt to determine whether the internal calibration
on-board the HCMR failed or if, as is more likely, the limitation indeed lies
with the atmospheric models. If the failure was on-board HCMM then more
intensive application of any available underflight data could be used to

define the corrections necessary for future quantitative use of HCMR data.
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In the urban heat island experiment, we have seen that the high
resolution thermal imagery provided by the HCMM satellite is adequate to
monitor detailed surface temperature variations across large areas. The
large changes in temperature between urban and rural areas common to the
heat island phenomenon can be easily monitored using the satellite imagery.
Examination of the correlations between these changes in temperature and
the wind, temperature, and sky conditions present during numerous satellite
overflights could increase our understanding of the relative importance of
individual meteorological factors in the overall development and dissipation

of the heat island.

Because of the high resolution of the HCMM thermal imagery, we
were also able to examine temperature variations associated with the
microclimates found throughout the metropolitan areas being studied.

The beneficial effects of city parks, open spaces, and heavily treed

" residential districts as well as the detrimental effects of over-urbanized

commercial areas and industrial heat sources could be readily seen on the
thermal. imagery. ‘The repeaﬁed coverage of the éame metropolitan areas
under various meteorological conditions provides a means for closely
examining -the roles of-individual- urban -features—in the urban heat island ~

phenomenon.

Never before has so complete a picture of the urban heat island-
phenomenon been obtained than that which is contained within the imagery
provided by the HCMM satellite. The availability of this imagery as well
as similar imagery from future satellites could contribute greatly to
research efforts involved in studying and understanding the heat island
problem, possibly bringing about more timely implementation of improved

urban planning techniques to benefit the health of urban inhabitants.

Our experiments relative to the utility of HCMM data for earth
resource applications, in particular as a tool for studying .and monitoring
both our water resources and the urban heat island phenomenon, have
indicated that the data can constitute an invaluable tool for both research

and resources management. We further feel that the potential of the
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HCMM data, even in these particular applications alone, goes far beyond

that called out in this report. We suspect that further investigation

of these data and their applications would certainly open more doors to

further applications and immeasurable benefits.
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"TEMPERATURE MEASUREMENT OF
COOLING WATER DISCHARGED FROM POWER PLANTS'"

Photogrammetric Engineering and Remote Sensing
Vol. 45, No. 6, June 1979, pp. 753-761

by
John R. Schott

Calspan Corporation
- Buffalo, NY 14225
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TEMPERATURE MEASUREMENT OF COOLING WATER DISCHARGED
FROM POWER PLANTS
John R. Schott .

Calspan Corporation
Buffalo, New York

Introduction and Summary

The growing number and size of power facilities have stimulated
the interest of scientists, legislators and the public in the effects suéh
stations have on aquatic environments. The impact of thermal discharges
'on aquatic ecology and the effects on aquatic organisms that are drawn
through cooling systems are of particular concern. To ensure proper
protection and management of the: environment as well as continued generation

of required power, procedures must be developed to accurately assess environ-

-mental. effects in a. timely: and. cost-effective-manner. - In monitoring the - - - - --

cooling water discharged into a water bddy, the temperature value and
spatial extent of the thermal plume are the parameters of interest. These
thermal plumes can, in. some instances, extend more than a mile from the

discharge point and include temperature increases in excess of 15°F.
Airborne thermal infrared imaging systems have been used to study
v 1-3 . ..
some of these problems. ~These systems generate an image (similar to a

photograph) of the heat energy radiated by water surfaces. For example,

%
The work reported here was sponsored by the New York State Energy
Research and Development Authority (NYSERDA) under an agreement

dated August 23, 1976 with Calspan Corporation.
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the brighter the water appears on the image, the higher the temperature of
the water is. The advantage of this approach is that the thermal scanner
can image the entire surface area of a discharge plume ih minutes. In
this manner, all the internal detail as well as the shape and spatial
extent can be easily'determined, The disadvantage of this approach is
that a boat is required to provide data needed to convert brightness

levels on the image to temperature values.

In an effort to resolve technical, operational and cost problems
associated with the existing approaches, a program was initiated to develop
and test wholly airborne calibration of a thermal scanner system so that
precise thermal maps could be generated without requiring data from boats.
This technique involved development of a model relating the signal at the
sensor to the surface temperature and. the atmospheric effects contributing

to the signal at the sensor. .. . . --- - o -

Procedures were developed for collection and analysis of the thermal
imagery such that the terms in this model could be calculated.
Data colléction procedures included flying the aircraft at different altitudes
over the same point in the water and flying parallel flight lines so that data
from points in the water could be viewed at different look angles. These
procedures add a minimal amount of time to data collection and provide suf-
ficient data so that an analysis of the terms relating water temperature to
the signal actually reaching the sensor can be calculated. Once these
terms, including atmospheric transmission, sky radiation and reflectance of

the water, have been determined, the water surface temperature can be calculated.
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In an effort to evaluate this technique, a series of '""blindfold"
tests was made.s' In these tests an airplane flew over a boat located at
different positions in the water at different times and on different days.
The aircraft values were then compared to the boat values, which had been
withheld until the aerial determinations were made.6' Results of this test
indicate that on the average, the aerial measurements féll within 0.70°F of
the boat tempefatures (standard deviation :O.SQOF for 63 points). On the
basis of these results, this wholly airborne approach, called thel"angular
éalibration technique," is considered operational for airbo;ne measurement

of water surface temperatures.

This paper discusses the airborne ;alibration technique and the
experimental test program. For the sake of*brevi;y, the details of the
airborne collection system are omitted and the assumption is made that the
-radiant energy reaching an airborne sensor can be converted to an apparent

blackbody temperature equivalent.

Theoretical Approach

Thermal scanners generally detect radiation in the 8-14 um band-
pass. This éeétioﬁfwiilAdiscuSS'hOW'the'fadiant energy.detectédubyfa sensor at .
aircraft altitudes (v600 m) is not only a function of temperature but is also
functionally dependent on atmospheric and background terms. In addition, the

types of measurements required to calculate the values of these additional

terms will be defined.
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All matter at temperatures above absolute zero radiates electro-
magnetic energy. The relation between radiant energy, W (emittance), and
temperature, T, in %K is expressed by the Stephen Boltzmann equation

W aT4, ' | (1)

where o is a proportionality constant.

The general equation for a blackbody radiator is given by the
Planck distribution equation,

-5 (Ghe/KT_;)-1

WA = 2wc2h (e , (2)

where: W. is the radiant emittance per unit wavelength interval,
¢ 1is the speed of light,
h 1is Planck'§ constant,
k. 1is Boltzmann's constant,
T iS'fempefatﬁre,-and
A is wavelength.
This equation, derived from quantum physics, is a function of the quantum

radiation states within a blackbodyicavity.

The Stephen Boltzmann equation is obtained by integrating the Planck

equation over all wavelengths.

The problem in using these equations is finding the dependence
of W on temperature over a defined bandpasé. The Stephen Boltzmann equation
indicates that radiant emittance integrated over all wavelengths varies

as T4, i.e.,
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o - - 4
g WA d\ =W =0T, (3)

To find the functional dependence on temperature in a finite
bandpass, it is necessary to use a series expansion solution to the
normalized integral of radiant emittance. This yields the fraction of

‘energy less than a given wavelength, D, given by

e (4

These: D values are tabul;ted in standard bldckbody tables
for ranges of T, A or AT combinatioris‘.4 By finding the difference
in D for two wavelengths, a relation can be developed between temperature
~and radiant emittance in a bandpass expressed as a fraction of the total
radiant'emittancé«

IE 5‘-is5tﬁemfrécfi6ﬁ—of thé.£otéiAehérg& émitfed by a 5léékbodyh
between the wavelength 0 and A, then Dl-D2 is the fractiop of emitted
energy between Al and Xz. Since cT4' is the total energy for a given
temperature, then W =-(D1-Dz) 0T4 is the radiant energy emitted for a gifen
bandpass. Values of W and T over the range of interest can be stored in

data files on a computer. T can then be calculated from the stored W

values.
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We can therefore express the radiant energy from a blackbody over the

8-14 ym bandpass (WAA) as
. 1 4
w2 -5 he/KT -1 (5)
WAA = WT = f8 2r ¢ h (e -1,

This expression, however, is only true for a blackbody. A blackbody is a
perfect radiator and absorber; therefore, all the incident energy is absorbed
and reradiated. In practice, the bodies we will be concerned with will be
gray bodies, which are not perfect absorbers or radiators in the 8-14_um band-

pass and thus have emissivities less than unity.

Emissivity (e) is the ratio of energy radiated from a source to

energy radiated from a blackbody at the same temperature.. Thus, for a gray

body,

W=reW L L - (6)

TO’interpretrthe‘radiaﬁt'energy rgaching a point at any distance
from the source, one must consider atmospheric or path effects; of prime
concern is atmospheric transmission over the path lengths of interest. The.
atmospheric transmission window between 8 and 14 um 1is the most useful for
earth observation work for a number of reasons.. It encompasses the radiant
energy peak of 9.5 um for objects near earth ambient temperature of 300°K.
The transmission is quite high over the entire window, and the window is

" spectrally very broad, permitting integration over a sizable fraction of the

total distribution.
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Primary attenuation in the lower atmosphere is due to absorption by
HZO vapor, C02<and OH. These molecules absorb the radiation and reradiate it
as a function of temperature, thereby introducing two noise terms into the

system.

These terms can be included in the expression we have defined as

follows:

W= tewp + WA ' _ (7N

where T 1is the atmospheric transmission ane WA is the apparent radiant
emittance from the air column between the source and sensor, as well as
energy scattered into the sensor. It is important to keep in mind that WA

and T vary as a function of atmospheric conditions on a given day and also

within the air column because of layering effects in the atmosphere.

In addition to the radiant energy from the source itself, a certain
amount. of energy will be reflected from;the~ground. This energy comes from
both the sun and the sky.A Solar reflection effects can be avoided by proper
orientation of flight lines. Skylight‘reflection effects can be expressed

as Ws tR and included in equation (7), yielding

W= TEWT + W’A

W, R o | (8)
where Ws is the radiant energy from the sky incident on the surface

observed, and can be associated with an equivalent sky temperature T, -

R 1is the surface reflectance of the_water.
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Skylight irradiance comes from scattered solar radiation, radiation
emitted from components of the atmosphere (especially the ozone layer and
H20 vapor); and energy from the earth reflected by the gtmosphere. . All these
effects combine to give the sky an apparent radiometric temperature as viewed
from the grouhd. For our purposes, this is the blackbody temperature equi-
valent Ts associated with the amount of energy incident onAthe source over
the bandpass of interest. Ts can vary considerably with sky conditions from

about 300°K for heavy overcast to well below 250°K for clear sky conditions.

In evaluating the range of values for the reflectance terms, we
recognize that reflection is dependent on look angle. In addition, we have
mentioned that WA and T are dependent on the length and composition of
the atmospheric. path between the source and observation point. To recognize
this dependence iniequation (8), the fﬁnctional dependence on 8 and h
will be added to designépe éngular and height_degendence, ;gspectively
where Ah is the height of sensor above terrain,

‘ é 1s look angle measured from the vertical and
W(h, 8 = c(h,8) () Wy + Wy (h,8) + t(h,8) W_R(8) (9)

Limiting our discussion for the moment to vertical viewing, (8 = 0)
results in

W(h) = t(h)e Wy + t(h) ws' R+ W, (h) - (10)

Letting W(0) be the energy from the ground as it would be

measured vertically at zero altitude, equation (10) reduces to
W(h) = t(h) W(O) + W,(h) (11)

where W(0) =‘awT +'WSR 7, (12)
. " 9 2 -

o



If W(h) and W(0) are known for a set of observed values, then by
least squares analysis of (11), t(h) and. WACh) can be calculated.‘ W(h)
and W(0) represent the radiant energy observed by the sensor at fligh;
altitude and ground level, respectively. In practice, the ground level-
measure is obtained by extrapolating a plot of altitude-versus-temperature
to zero altitude using data collected over the same point at a series of

altitudes, where radiant energy is converted to apparent blackbody tempera-

ture.,
If we Once-again consider the angular viewing effects, equation (11)
becomes
W(h,0) = T(h,8) W(0,9) + W, (h,6) | | (13)
where W(0,8) = £(6) W + W_ R(8) and o oae.
) =) e (eos ) ad ()
W, (1,8) = W, (h, 0)/cos 8. | o (16)

. These equations result from the increase in absorption with path
length (15) and the increase in atmospheric radiation with path length (16).

Since the path length increases as 1l/cos 8 for slant viewing and the effects

_on atmospheric emissions should be very nearly linear for small increases in

path length through a given medium, equation (16) is derived. Note that.
this assumption of linearity is only valid for increase due to slant viewing
through a known atmosphere and is not necessarily valid for an overall increase

in path length;
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If observations were made at the same altitude of a given point

through two different look angles, one of which may be taken as vertical

for convenience, then equations (10), (13) and (14) may be combined to yield

W(h, 0) = m W(h, 8) - mt(h, 8) W R(6) -'mwA(h,e)
+ t(h, 0) WR(0) + W,(h, 0)] (17)
_€(0) t(h, 0) '
where m = OLIYD) (18)

Recognizing this as a straight line in the form,
Wch, 0) = mW(h, 8) + I | (19)
and solving for W_ in terms of m and I vyields

I+ mwA(h,.e)' - W, (h, 0)
W o= '
s t.(h,0) R(0) - mr(h,8) R(8)

(20)

Least squares analysis of equation (19), with input data consisting
of apparent temperatures (converted to radiant energy) measured along a line
viewed vertically and then at a slant angle, will yield from equation (20)

a measure of apparent sky temperature as viewed from the ground.

We have assumed ;hat the- apparent temperaturé of the sky is a
constant with respect to angle of observatien. In general, this is not
the-case;.rather, the zenith sky appears colder than the sky near the
horizon because the atmosphere viewed vertically has fewer radiators.

Because of the variability of sky conditions, a functional relationship
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between sky temperature and view angle is not readily defined nor are the
errors introduced by the assumption of a constant sky easily evaluated.
In order to minimize potential errors in measured sky temperature, the
~analysis discussed above can be conducted for a number of look angle

combinations, and a simple relationship between Ts and 6 can be developed.

Another solution would involve use of a vertical- viewing, upward-
looking radiometer on board the aircraft. Measurement of vertical sky
temperature at a number of altitudes and extrapolation to the apparent
temperature of the nadir sky as viewed from the ground would eliminate one
ﬁnknown in equation (17). The equation could then be solved for the sky
temperatﬁre at look angle 6 (i.e., Ts associated with R(0) would. be

known and Ts associated with R(6) would be unknown).

Rewriting equation. (9) as

Wp = [W(h,0) - t(h,0) W_ R_(e) - W, (h,0)]/e(8) <(h,0) TS
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we find
Wh, 8) is a measured value;

WA(h,e) is obtained from equation (ig) and least squares

analysis of (11);

- 1{(h,8) is obtained from equation -(15) and. least squares
analysis of (11);

W, , is obtained from equation (20);

R(8) and e(8) are tabulated values for water.

I;;shculd:ﬁhexefore be possible: to measure the: absolute-value of
surface waters based on the theorieS‘developed,thusffar; The next section

'EoﬁiéiﬁéféiacédﬁiaiTapproadhes for5c011ection;bf’necessary’inputtdata to

solve for the values in equation (2I).

Experimental Design

Qur concern at:thi§ point is in defining procedures for caqllecting
sufficient input data'to.pérmit.the<use~of:the theoretical procedures under
discussion. Again, we Qill neglect,. for simpli;ity, signal processing through
the sensdr;and assume that apparent blackbody radiometric temperature can be
measured at the sensor location by converting radiant energy to equivalent :

blackbody temperature.
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As shown in equation (11), the input data necessary to calculate
the transmission term r(h) and the additive target-independent energy from
the atmosphere WA(h) consists of TB(h) and TB(O) corresponding to
W(h) and W(0). TB(h) is simply the apparent blackbody temperature measured
at altitude: h with look angle 6 = 0. TB(O) is the apparent temperature
measured at the surface of the water. This value cannot be measured directly
butvis obtained by a profile technique whiéh involves a simple extrapolation
process for data collected at a series of altitudes to a zero altitude case
obtained by consecutive flights ovef'the same target.7 A target consists of
an area of uniform temperature either large enough to be directly below the
aircraft during the profile 6r within about 10° from the nadir and distinct
enough to be identifiable on theiprofile'imagés. At angles much larger

than 10° the assumption-of vertical viewing during the profile. no longer holds,

_ The _Iﬁinimum_dé_t‘a, input required. for equation (1D is .TB(hT)..., and-a ... - .-
correspondingv TBij fér at least two points at~differing.témperature.
Ideally this data consists of a set of approximately fi&e data points
covering as wide a temperature range as possible;v Figure 1 inqicates how

TB(h) and. TB(O) could be obtained for a number of different temperatures..

The input daté_neceséary to calculéte W.s » the sky light
radiance term; comes-from‘thé solution of equation (19) requiring TB(h, 0)
and 'Tg(h,e). as inputs. These values are the apparent temperature observed
at the same point through two look angles where one look angle is chosen as
zero degrees for convenience. (Note also that equation (11) can be solved

directly for Ws , i.e., a one point solution is available). The minimum
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500"

FIGURE 1. THERMAL IMAGES OBTAINED DURING A PROFILE. AREAS OF EQUAL TEMPERA-
TURE ARE INDICATED WHERE RADIOMETER READINGS COULD BE MADE.
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data required to solve equation (19) consists of two data sets composed of
fB(h,D) and TB(h,e) for two distinct points. In general, a number of
points with a large range in temperature should be used to solve for m

and I 1in equation_(lg). This data can be collected by flying two parallel
flight lines and aliowing for some sidelap. This procedure i§ often used

to obtain complete target coverage and would add little or no time to most

collection efforts. Figure 2 illustrates how this data could be obtained.

A ground-truth program was used to evaluate these radiometric
calibration techniques. This effort involved aerial overflights of a boat
anchpfed'at a series of positions in the Hudson River, both within and

beyond the thermal plumes of various power plants.

With the boat anchored at a given positiom, readings were made
on the upstream (downstream if flow was upstream in the estuary) side Sf the
boat. Measuremeﬁfs consisted 6f’fempéréﬁufeé récordedAfrom‘é submerged
thermistor (nominally at a depth of 6 in.) and from a Barnes PRT 5 radiometer.
During each fly-over, approximately ten readings were recorded and averaged
to predict the temperature at a point. To insure unbiased data, all sur-
face measurements were made by independent consultants and surface data were
withheld until aerial results had been delivered to NYSERDA. The surface
radiometer was calibrated in the field under prevgiling atmospheric aonditions
to ensure that all measurements were :absolute surface temperature measure-

ments.

The main survey took place on September 24, 1976 with the boat
anchoring at eight positions throughout the day. The aircraft flew over each

position four times, permitting 32 data-comparison points for the total survey.

99




FIGURE 2

EXAMPLE OF PARALLEL FLIGHT LINES OVER A POWER STATION
SHOWING THE CHANGE IN LOOK ANGLE FOR A GIVEN GROUND POINT.
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Because the boat was covered with aluminum foil, it had a low emissivity and
could be located as a '"cold" spot on the image. Surface temperatures were
predicted using the calibration technique discussed above. Data were also
collected at eight positions for five overflights on both July 8 and 9

1976. However, the July 8 data could not be used because of calibration

problems with the surface instrument.

Results

Table 1 presents the results of the data correlation for

| September 24, The mean and standard deviations of the absolute value of

the difference between the aerial and surface data are presented. Radio-
metric surface data was used because it is a more accurate measure of tﬁe '
actual surface témperatures than is the submerged thermistor; Comparison

of submerged (6 in.) thermistor data and aerial data showed a mean difference
of 0.5I°F with a standard deviation of 0.46°F. Also included is a correlation
of radiometric temperatures, to which no atmospheric correlations have been
applied,‘with_the surface data. Table 2 contains the results of the July 9

survey..

When the July and September data are combined, a mean error of
0.70°F is obtained with a standard. deviation of 0.59°F (Angular Technique).
This compares with a mean error of 3.23°F with a standard deviation of
1.25°F if only internal system calibration is used. Figure 3 illustrates
the precision of the calibration technique and the limitations of using only

internal scanner calibration. The figure shows the surface radiometer data
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Table 1

Comparison of Surface and Aerial Data

- for 24 September 1976 (°F)

Surface Radiometer
and Uncorrected Airborne

Scanner
Mean of the absolute value
of the temperature difference 4.19
between boat and aircraft
Standard deviation of AT ' 1.22
Table: 2

Surface Radiometer
and Angular Technique

Comparison;of’Surfacé;andrAeriaI Data

. for July 9, 1976 (°F)

Surface Radiometer
and Uncorrected Airborne

Scanner
Mean of the absolute value
of the_temperature difference 2.66
between boat and aircraft'
Standard deviation of AT 1.27
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plotted against the calibrated (#) and uncalibrated (0) scanner data. The
data, which has been corrected for atmospheric and background effects, shows
a very close fit within the 1°F error bars. The data using pnly the internal
scanner calibration shows sizable errors and is generélly less than the
actual temperature. Note that this is generally the case but that a tempera-
ture higher than the true surface temperature can be detected by airborne

systems under certain atmospheric and background conditioms.

One shortcoming to the angular technique is a requirement for
extra data to permit calibration and some;additional data processing.'
- Neither the time nor the cost is appreciable; however, the data must be properly
collected. Some improvements in accuracy could be expected if data collection
were modified'to facilitate analysis using the angular technique. Major
improvements cannot be expected because temppratures predictéd from the air

approach the accuracies obtainable by surface measurements.

Conclusions and Recommendations

The data correlation results presented in the previous section
indicate that a major advance in airborne radiometric measurement of water
surface temperatures has been achieved. Measurement accuracies essentially

as good as surface measurements are demonstrated.

The data collection procedures involve only minor variations in
standard collection practices requiring approximately fifteen additional
minutes of flight time. Data processing can all be done on a desk-top

computer.
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The net result of these conclusions is that a fully airborne approach
to measure water surface temperatures, with accuracies comparable to
those obtained from surface measurements, is an operational reality. In
addition, these results were obtained through use of an outside consultant

for acquisition of ground-truth data, thus precluding any bias.

~ We recommend that future efforts in this area be directed at
techniques to generate thermal maps with appropriate corrections at angles
away from vertical. The corrections developed using the angular calibration
techniques are quite accurate and should be applied in map generation.
Current mapping techniques do not apply a correction for variations in
apparent temperature at non-vertical look angles; development of these
corrective procedures in the map-generation process would allow the full
accuracies developed in the angular calibration technique to be carried through
a.final map product. In addi;iOn, Qata'cgllecped spgcificgily for analysis
usiﬁg this technique should eliminate the need for iterative solutions
and should further improve calibration accuracies. While major improvements
in water temperature measurements could not be expected because the current
results already so closely appfoach surface measurements, iﬁprovements
applicable to such problems as a quantitative measurement of heat loss from
buildings could be expected. In facf a major advantage of this technique is
that it includes consideration of sufficient yariables to allow surface:

temperature measurement of any‘udiform flat surface whose emissitivity is known.
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INTRODUCTION

One alternative to the enormous effort required for extensive samp-
ling of wéter fesources is the use of satellite and aircraft imagery.
Such imagery can not substitute completely for in-situ measurements of
physical, chemical, and biological variables; however, the data can
provide substantial assistance in a synoptic evaluation of the water
~quality of lakes.

The dbjective of this study was to evaluate satellite and aircraft
measurements of lake reflectances, particularly the relative values.of
blue and green reflectances, as indices of water quality. Recent papers
and extensive reviews {Graham, 1966; Fruh et al., 1966; Stgwart and
Rochlich, 1967; Piech and Walker, 1971; Likens, 1972; Bukata et al., 1974;-
Strong, 1974; Thdmson et al., 1974; Wrigiey and Horne, 1974; and Boland,

» 1976) have indicated that optical pfoperties of lakes and related ‘
chlorophyll values are important in water quality and trophic assessments.
Our investigation, involving remote sensing and field work, extends the
'”rélatidn$hip‘bétwééh"troﬁﬁic"paraﬁeteié'éndfbpti;éiipfapéfiieé‘By“éoﬁaffa"
paring selected water quality indices and reflectance‘ratios for lakes

of varying trophic character, The investigation has also developed a
pronising methodology for differentiating changes in chlorophyll, lignin,

" and humic acid concentrations.

The two lakeé given the most attention during this study were Lake
Ontario, the easternmost Great Lake, and Conesus Lake, the westernmost
Finger Lake in New York Staté{ Aircraft imagery were obtained for
Lake Ontario in 1972 and 1973, and for Conesus Lake in 1973. Satellite
imagery was alsn collected over Lake Ontario in 1973. In-situ measure-
ments of physical, chemical, and biological variables were obtained on
both lakes. The Lake Ontario data were gathered in 1972 during the Inter-
national Field Year on the Great Lakes (IFYGL), while the in-situ data
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for Conesus Lake were obtained in 1973.

The primary technique for data analysis involved densitometry of color
imagery and subseéuent analyses to remove atmospheric and film processing
effects from the photographic data. Accurate measurements of the ratios
of broad band reflectances could then be obtained. The reflectance data

were compared with in-situ measurements of Secchi disk, irradiance, and

chlorophyll in an attempt to derive relationships between changes in the

optical and changes in the trophic variables.

METHODS
A. Lake Data

The Secchi disk measurements were made with all white disks (30 cm
dia) on Lake Ontario and black and white disks (20 cm dia). on Conesus Lake.
Irradiance measurements at depth in Lake Ontario were made with a Hydro

Products Relative Irradiance meter equipped with a green filter (Wratten #58).

Water samples for chlorophyll(a) were collected aﬁ numerous- stations
in Lake Ontario by personnel of the Canada Centré for Inland Waters aboard
vessels Porte Dauphine, Limmos, and Martin Karlsen. Chlorophyll values
were determined by the spectrophotometric method of Strickland and Parsons
(1968). Sample values from one and five meters weré averaged and then a

lake-wide average was determined.

Water sampleslfor chlorophyll (a) from Conesus Lake were collected
by boat from selected sites with an "integrated" open tube sampler
(according to Lund, 1949), and analyzed by the spectrophotometric method
of Lorenzen (1967). Chlorophyll(a) values from both lakes were corrected '

for pheo-pigments.
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B. Aerial Data

The aerial data base consisted of color imagery from aircraft (Piper
Aztec and B-26) and satellite (Skylab) overflights. The aircraft imagery
utilized Ektachrome MS2448 color film from Hasselblad 500EL cameras with
80 mm focal length lenses. The Skylab imagery utilized S0242 film from .

the Skylab S190 camera package.

The three coior film 1afers (red-, green~, and blue-sensitive)vpro-
vided information on the color of the lakes in each photograph. A densit-
ometer measurement of each film layer could thus provide a measurement of
the brightness of the lake in the three color bands. Atmospheric and
film processing effects, however, modify the color of the lake. The{efore,
before the color information could be related to trophic indices, the at-
mospﬁeric and film processing effeéts had to be removed from the density

information in each film band.

A method to measure these effects énd”re}atg exposure values to re-
.flectance»values has been described previously (Piech and Schott, 1974;
Piech and Walker, 1974; Piech et al., 1975) . The method uses densitometry
of shadows within the image to establish the additive exposure caused by
. the atmosphere and the transmission loss through-the étmosphere. Shadows
cast by buildings near the shorelines of the lakes were used to calibrate
the color imagery and thus relate film exposure to lake reflectance.
Detailed analyses of the accuracy of the shadow calibration process have shown
that reflectance ratios can be measured to an accuracy of +10% of the ratio
value (Piech et al,, 1975). Such an aceuracy appears sufficient to measure

changes in chlorophyll concentration.
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C. Laboratory Data

The lake sampling and aerial data were supplemented by a laboratory
investigation of reflectance changes caused by varying amounts of chloro-
phyll, lignin, and humic acid.

The major difficulties associated with such a laboratory experiment
are reproducing the geometry and illumination conditions of a large lake
satisfactorily. The geometry of the problem is that of an infinite half
space (An infiﬁite half space approximates a large deep lake, i.e., a medium
with x and y extent from -=¢ to +o¢ , and z extent from 0 to -<¢ ). Con-
structing an approximation to the half space while retaining the ability to
vary the paraﬁeters of the medium is difficult. Similarly, it is difficult
to create satifactory illumination over the half space approximation.

The above difficulties were resolved by thé apparatus of Fig. 1,
_A square tube, 0.07 meters on the side and 0.5 méters long, was lined with
aluminum foil so that specular reflections from the foil would approximate
a slab with infinite extent in’directioﬁé-perﬁendicﬁlar to. the loﬁg axis
of the tube. The tube was immersed in a vat of water, approximately 0.5 m3
in volume, whose composition could be readily changed. A collimated

tungsten source illuminated the tube at one end. The light. reflected back

from the tube was, in turn, collected by a fibre optics probe with a cosine

collector head. The other end of the fibre optics bundle was integrated
into the photomultiplier tube and electronics of the microdensitometer
of the photointerpretation console described by Piech et al. (1975).
Measurements were made in red, green, and blue spectral bands using
Wrattan 90 sefies.filters. |

The reflectance and transmission of the medium in the slab, r and t,

were measured by monitoring the reflected signal from a set of known
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refiectance standards at the end of the slab. The reflectance of these
standards ranged from 2 to 30 percent. The reflected signal, S, to
first order consists of the signal reflected by the medium alone, s(r), and
that signal transmitted through the medium and reflected by the end
reflector, i.e.,
S = atzR + s{r) +c¢ = mR‘+ b

where R is the reflectance of the end reflector, and a and c are instru-
ment constants. The correlation coefficieﬁt, rz, for the linear fit
between S and R was alwayé in excess of 0.99 for all the test media.
A set of six reflectance standards was used to establish the fit to Eq.
.

The apparatus was calibrated using distilled water as a standard.
Letting the subscript o denote distilled water,
S = at62R<+ s(ro) +Cc= méR + bd

0

The values adopted for:distilled water transmission in the red, green,

‘and blue spectral bands were 75.0, 93.3, and 98.1% per meter, respectively, . _

or t = 86.6%, 96.6%, and 99.0%..
Comparison of the slopes of the test and standard media then yields
t through

t=1¢t |/2 ' (3)

The difference between the intercepts of the test and standard media

curves yields r through

b-b, = s(r) - s(r)®s(r), and (4
o
T = s(r)to . (5)
m
[o)
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. The reflectance for infinite depth was obtained from the diffuse
reflectance, r, and transmission, t, of the tube or slab by consecutive
computation of the reflectance, Ty and transmission, t2, of slabs with

double thickness. The necessary equations are

tr
Ty ST - (6)
t, = t? ' ‘ , , (7)
2 .
-T

The doubling was continued until no change in fhe reflectance was obtained.

The properties of the medium were varied by additions of chlorophyll,
lignin, and humic acid. The chlorophyll was added in the_form of water-
soluble chlorophyll; the lignin was in the form of bleached hardwood paper
pulp. Since the chlorophyll was on a soap substrate, the weight of water-
soluble chlorophyll necessary to simulate a given concentration of in-vivo
chlorophyll was determined by matching spectral responses on the standard -
spectrometer method for measuring chlorophyll concentration. The chlorophyll
_;onéent;ati;ns'QeFe ;;riea f?om-b £$ 7;§g/1 ;hile_ligﬁiﬁ‘éon;entrgtion -
ranged from 0 to 70 mg/l and humic acid from 0.5 to 1.5 mg/1.

A major difficulty with the experiment‘prbved.to be the soap substrate
of the water-soluble chlorphyll. fhe original intent was to modify the
chlorophyll concentration while keeping the scattering turbidity constant
so that a model could be developed for chlorophyll concentration at vary-
ing degrees of background turbidity. Unfortunately, the soap substrate
nodified the background turbidity by contributing a spectrally uniform

scattering as chlorophyll concentration was changed. The net effect of

this background turbidity was to dampen changes in the reflectance ratios.
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Reflectance change with addition of both chlorophyll and lignin was
linear. As the amount of chlorophyll was increased, the increased scatter-
ing by the substrate effectively cancelled the increasing absorption of the
chlorophyll in the blue. The blue reflectance thus remained a uniform 4%
from 0 to 7 pg/l. The green reflectance varied from 2.7 to 7.2% over this
concentration range, while the red reflectance changed from 1.1 to 2.9%.

The corresponding variation in the blue to green reflectance ratio was

from 1.5 to 0.6, with the variation being approximately linear. Reflectance
of the medium with lignin variation was 47 to 11% in the blue, 2.77% to

8.5Z in green, and 1.1% to 5.7% in red. |

The-dafa obtained by individual variation of the three components
were supplemented by jqint'variation of the components. As a result, it
was possible to develop a set of disériminatorsrfor'determining'whether a
turbidity change is caused by a variatiom in 1ignin; chlorophyll, or
humic acid.

RESULTS
A. Ratios

The study of Lake Ontario during 1972 established the feasibility of moni-
toring selected water quality indices using aircraft imagery at scales asrsmall
as 1:50,000. The study demonstrated that indices such as depth of photic
zone (1% relative irradiance in green spectral region), Secchi disk
transparency, total attenuation coefficient, and chlorophyll concentration
could be related to the ratio of blue lake reflectance to green lake
.reflectance as measured from the color film imagery. figure 2 illustrates
these relationships using lake-wide averages, i.e., averages over all lake

stations occupied. Although station by station comparisons are more complex,
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Comparison of Optical and Biological Data Obtained from Surface Vessel and
Aircraft Measurements During the International Field Year on the Great Lakes
Data Represent Lake-Wide Averages. Chlorophyll Data Supplied by

(1972).
Canada Centre for Inland Waters.
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the data of Fig. 2 ggnerally indicate a surprising'seasonal relationship
between the.various parameters. The ratio of blue to green reflectance is
inversely proportional to chlorophyll concentration and coefficient of
total attenuation and directly proportional to photic zone depth and Secchi
disk transparency.

A key aid in water quality evaluation of kkes from optical data
would be the use of satellite imagery. A test was therefore conducted to
determine if lake reflectances could be measured to sufficient accuracy
for such assessments ffom Skylab imagery.

Figure 3 is a Skylab S190A image (from an altitude of a435 km) of
Lake Ontario in which the Skylab sétellite track and two aircraft tracks
are'indipated. The simultaneous aircraft uﬁderflights were at an altitude
of 3 km on two north~south tracks separated by approximately 50 km.

The S190A image of Lake Ontario was processed to remove

atmospheric effects to yield a color encoded display'of the blue to green

reflectance ratio and the data from this.display. were.compared B0« e e

the aircraft data at a scale of 1:40,000. About 15 photographs were obtained

on each aircraft track, with each photograph cévering an area of about 6.6 kmz;
Therresblution of thé Skylab imagery was only 15 to 30 meters, insuf-

ficient for the shadow calibration mentioned earlier. The Skylab imagery

was. calibrated using reflectances of objects measured on previous flights,

€.g., coal piles and aircraft runways (Piech, et al., 1975). The aircraft

imagery was calibrated using shadow analyses at the ends of the aircraft tracks.
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Figure 4 compares the satellite and aircraft data obtained on the two
tracks. The aircraft points include error bars corresponding to + 127 of
the blue to green reflectance ratio and + 1.6 km in aircraft position. The
statistical correlation between reflectance ratios of ;he satellite and air-
craft is excellent (correlation coefficient = 0.87 in Olcott to Gold Point
flight and 0.98 in the Troutberg to Chub Point flight, highly significant
in both cases). This indicates that either S190 imagery or aircraft imagery

may be utilized for defining the optical properties of the lake using re-

lationships similar to those obtained on the IFYGL program.

The relationship between the optical and trophic parameters is dependent

on the physical properties of the lake being studied. For example, Fig. 5 con-

tains the relationship between blue to green reflectance ratio and chlorophyll
concentration for Conesus Laké, as obtained on the Skylab effort. Again, a
strong dependency is evidenced with a marked blue-green minimum occurring at
' maximgm.chlorophyll concentration, although the specific relationship of
.,chlorophyll?concentration—and"ratiO‘ievel“differs from the Ontario values.
The variation occurs because Conesus and. Ontario are quite different in

' physiéal character. For example, Conesus is. darker than Ontario, having a
green reflectance of about 2% compared to a reflectance of 37 for Lake
Ontario. The darker the lake, the greater the effect chlorophyll absorption
can be expected to have on the blue-green ratio,‘ The actual situation is,
of course, more complicated than this simple model.

A major area of further research therefore involves generalizing the
relétionships.between aerial and surface déta. By way of example, Conesus
and Canadice Lakes (the latter of which is a shorter but deeper Finger Lake
near Conesus Lake) had approximately thé same range of chlorophyll

~and Secchi disk v2lues at the time these measurements were made. The
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Figure 4

Comparison of S190 Measurements of Blue to Green Reflectance Ratio Along the
Aircraft Tracks (Solid Line) With the Aircraft Measurements (Crosses and

Each Division on the Horizontal Axis Represents 4.8 km.

Correlation Coefficient Between Blue to Green Ratio Measurements by S190A

Error Bars).

Satellite and Small Aircraft is 0.87 for the Upper Plot and 0.98 for the

Lower Plot - Statistically Highly Significant in Both Cases.
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FIGURE 5

Comparisoh of Blue to Green Reflectance Ratio With Surface Chlorophyll
Concentration in mg/l for Conesus Lake in New York.
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Canadice blue to green ratio values which correspond fo the Conesus values
of Fig. 6 are: 7 M;y, 1.5; 19 June, 0.3; 13 August, no data; apd 9 September,
1.4. The close correspondence between the blue~-green ratios of Conesus and
Canadice, even though specific chloroﬁhyll_data for Canadice are not available
on these dates, is encouraging. This co;respondence, coupled with the cor-
relation of the aerial and surface data for both Conesus Lake and Lake
Ontario, leads us to believe that general relationships valid for lakes of
a given trophic classification can be developed, and that such understanding
will serve to significantly broaden the scope of application of sophisﬁicated
.satellite.photography.
B. Lignin and Humic Acid

The laboratory measurements of reflectance versus chlorophyll, lignin,
and humic acid conceqtration attempted to broaden this understanding. The
laboratory déta also provided é method for relating color or turbidity
changes to changes in concentrations of chlorophyll, lignin or humic acid.
- .  The discriminatorsnforwthe~dominant'turbidiéy change..are: listed in
Table 1. In essence, the data indicate that changes in any of the three
components can be discriminated by the blue to green ;eflectance—ratio and
reflectances of the green and red bands. The blue to green ratio is in-
versely proportional to chlorophyll concentration, does not vary with humic
acid, and is directly proportional to the amount of lignin. The green and
red reflectances are directly proportional fo both chlorophyll and lignin,
while the green réflectance is.inversely proportionél to humic acid and red
reflectance is unchanged by humic acid. Measurements of the blue to green
reflectance ratio and green and red band reflectances thus appear sufficient

to specify variations in chlorophyll, lignin, and humic acid concentration.

Use of Table 1 in studying the Skylab image of Fig. 3 indicates that major
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Table 1

DISCRIMINATORS FOR CHANGES IN
CHLOROPHYLL, LIGNIN AND HUMIC ACID*

Variable Change Discrimination Equation
. B Bl B _ Bl
chlorophyll increase if = g<ar and G > G1 and TR
chlorophyll decrease if = B > and G < Gl and E-> Bl
G Gl R Rl
. . : ' B Bl .G _Gl
lignin increase if R > Rl and G > Gl and T2 and & < ot
. . B _ Bl G, Gl
lignin decrease if R <Rl and G < G1l and Tic and > RT
R . . .~ B _ Bl B _ Bl
humic acid increase if = TRl and G < Gl and T e
. . .- B Bl B Bl
humic acid decrease if §r> R and G > Gl and T

*R1, Gl, and Bl are the red, green and blue reflectances respectively at some
arbltrary reference level and R, G, and B are the reflectances at the sample
points.
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turbidity changes may be caused by changes in -chlorophyll concentration.
However, it is also apparent from investigations of Dobson et al., (1974)
and Bukata et al., (1974) that some variations in turbidity.may also be
related to particulate matter and suspended sediment.

Application of the discrimination rules of Table 1 would facilitate
investigations such as studies of the effects of power plant discharges
on neighboring wéter quality, evaluation of the impact of chlorination of
power plant discharges on algal concentration, and a study of the effects
of sewage treatment outfalls on stream or river conditions.

These discrimihation rules have been applied to aerial imagery of
power plant discharges into the Hudson River (Schott and Gaucher, 1977).
Comparison of the aerial'predictions based on Table 1 were verified by
surface data collected simultanéously with the aerial overflights. The
validity of the general behavior between chlorophyll concentrétion and

the blue' to green reflectance ratio observed on Lake Ontario and Conesus

Lake for the very turbid waters of the Hudson River is quite encouraging.

SIGNIFICANCE

Our results indicate that relative chlorophyll concentrations can be
nonitored using blue to green reflectance ratios. Because the chlorophyll/
reflectance relationship may vary between lakes of different.trophic
character'and even within a lake, a general relationship'between chlorophyll
and reflectance data cannot have uniform application to all lakes. The
in-situ sampling requi?ements are, however, significantly reduced by
aerial monitoring while at the same time a more complete description of

lake behavior is obtained.
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