Advances in
 Planetary Geology

FOR Reference

APRIL 1981
n/s^n

Advances in Planetary Geology

FOREWORD

This document is a compilation of reports from Principal Investigators and their Associates of NASA's Office of Space Science, Solar System Exploration Division, Planetary Geology Program. The reports present research that adds to our knowledge of the origin and evaluation of the solar system and to our understanding of the earth as a planet. Advances in Planetary Geology was established as a complement to the abstract document "Reports of Planetary Geology Program" and to professional journals. This document provides a method of publishing research results which are in a form that would not normally be published elsewhere. The research reports may be in the form of lengthy research reports, progress reports, Ph.D. dissertations, or master's theses.

Joseph M. Boyce
Discipline Scientist Planetary Geology Program Office of Space Science

To Contributors:

A wider variety of manuscripts can be accommodated by Advances in Planetary Geology than by most journals. Particularly appropriate are complete theses, dissertations, and research reliant on extensive presentations of data. All contributions must be of direct interest to planetary geologists and must be of high quality. Manuscripts must be typed single spaced in a camera-ready format and sent to:

Alex Woronow
Lunar and Planetary Laboratory University of Arizona
Tucson, AZ 85721

CONTENTS

SECTION I
Catalog of Terrestrial Craterform Structures. Part 3, Northern Europe 1
J. L. Whitford-Stark
SECTION II
Abstracts of Results of the Planetary Geology InternProgram . 187
SECTION IIIRegional Planetary Image Facilities--PhotographicHoldings . 251Gail S. Georgenson

SECTION I:

Catalog of Terrestrial Craterform Structures. Part 3, Northern Europe
J. L. Whitford-Stark

CATALOG
 OF
 TERRESTRIAL CRATERIFORM STRUCTURES

PART 3

NORTHERN EUROPE

GENERAL INTRODUCTION

The techniques of spacecraft photography have now advanced to a position where meaningful comparisons can be made between features of an equivalent size on the terrestrial planets and satellites. In practice this usually means craters or crateriform structures. The literature concerning terrestrial structures is the product of several disciplines, and accordingly is widely scattered in the literature. No single comprehensive body of information appears to exist in a form directly useful to planetary geologists. Catalogs of supposed impact structures have been compiled,for instance by Monod, and by 0^{\prime} Connell for the Rand Organization, and these are valuable though restricted in their terms of reference.

A certain need has been felt for a comprehensive, though not necessarily exhaustive, modern catalog listing craters irrespective of their mode of origin, to serve as a basis for the analysis of lunar and planetary photographs. This catalog is an attempt to satisfy that need. It is, therefore, aimed primarily at planetary geologists. Due to the constantly increasing volume of available information, this catalog will inevitably become rapidly out of date. Readers are encouraged to send any new information or corrections to the existing catalog to J.L.Whitford-Stark, for possible inclusion in any revised editions.

The catalog was originally published by the then ESRO, the first two parts being printed as Part 1 (Canada) and Part 2 (Indonesia) as ESRO SP-92 and SP-93 both being edited by R.J.Fryer. The original edition of this, Part 3, of the catalog was also edited by R.J.Fryer but, because of a policy change and name change to ESA, this volume was never printed but received limited circulation. In the four years since the original circulation of this catalog over 50 structures have been added. There has been no attempt to make any editorial comments on the interpretations of the various structures which are listed. The reader is referred to the referenced papers to make his or her own judgement as to the credibility of the various interpretations.

J.L.Whitford-Stark
Dept. of Geological Sciences Brown University,Providence, Rhode Island 02912, U.S.A.

INTRODUCTION -NORTHERN EUROPE

This catalog lists and describes some 150 features or groups of features which lie in northern Europe, and which are, or may well in the past have been, crateriform in appearance. Many of the features are "classic" examples of particular geological forms and have, as a result been described by many authors. It has therefore been the policy within this compilation, and for these features, to quote only reviews or classic papers. The reader will find leads to the general literature via these references.

The decision to limit the geographical coverage of this compilation to northern Europe (defined as Europe north of the Pyrenees, Alps, and Transylvanian Alps) was taken in order to restrict the task to one which might reasonably be undertaken by a single compiler within a reasonable time period. Southern Europe will form the subject of a subsequent section, hopefully in the not too distant future.

For each structure Section I presents basic data concerning its surface form and location; Section II a brief description of its form and structure (often quoted directly from a published account); Section III a summary of suggested modes of origin; and Section IV detailed reference to reports of specific studies. The studies to which the columns in section IV refer are:-

> 1. Aerial photography
> 2. Topographic map
> 3. Geologic map
> 4. Geologic section
> 5. Regional structure mapping
> 6. Gravitational anomaly mapping
> 7. Magnetic anomaly mapping
> 8. Topographic profile
> 9. Borehole studies
> 10. Reported shock metamorphism
> 11. Reported shatter coning
> 12. Blank

Geographical positions are given in degrees and minutes. Thus for the BARNSMORE PLUTON, 54.45 N indicates that the feature lies at latitude $54^{\circ} 45^{\circ}$ North.

Generally speaking, structures less than 500 m or less in diameter have been omitted; including the "Wiltshire Crater", the Knhynahinya Fall, and St.Sauver; all are found in other compilations. An exception to this rule was made only for those structures judged to be of unusual interest, or to draw attention to the existence of little known structures.

This section was prepared partly while the compiler held an N.E.R.C. grant at the Lunar and Planetary Unit, Department of Environmental Sciences, University of Lancaster, England, and partly under NASA grant NGR-40-002-116 at Brown University. Professors E.Rutte, C.Oftedah1, and W.E.Elston are gratefully acknowledged for their advice and information regarding specific features. R.J.Fryer inspired the author to compile this volume and acted as editor of the first edition. I would also like to thank Robert F. Austin, Chairman Geography Department, University of Missouri, Columbia, for the provision of office space.
J.L.Whitford-Stark

INDEX

The name under which the structure is listed is printed in CAPITALS. Alternative names are in lower case. The left hand column is alphabetic order.

ALPHABETIC LISTING

AFRIKANDA MASSIF
ALMUNGE
ALNÖ
ALNSJø CAULDRON
Ängskärsfjärden
ARDNAMURCHAN RING COMPLEX
ARRAN CENTRAL RING COMPLEX
AVA COMPLEX
BAERUM CAULDRON
Baerumlakkolith
Baerum-Sørkedal Cauldron
Barnsmore Granite (Complex)
BARNSMORE PLUTON
BEAUNIT
BEN NEVIS COMPLEX
BIRNBERG PIPE
BJøRNSJøEN RING COMPLEX

* BOLTYSH
* Boltyshka

BOOS MAARS
Borralon Complex
BORROLAN COMPLEX
Burton-on-Trent Explosion Crater

* Cabrerolles

CARLINGFORD COMPLEX

LISTED UNDER

AFRIKANDA MASSIF
ALMUNGE
ALNÖ
ALSNJ CAULDRON
ÀVA COMPLEX
ARDNAMURCHAN RING COMPLEX
ARRAN CENTRAL RING COMPLEX
ÀVA COMPLEX
BAERUM CAULDRON
BAERUM CAULDRON
BAERUM CAULDRON
BARNSMORE PLUTON
BARNSMORE PLUTON
BEAUNIT
BEN NEVIS COMPLEX
BIRNBERG PIPE
BJøRNSJめEN RING COMPLEX
BOLTYSH
BOLTYSH
BOOS MAARS
BORROLAN COMPLEX
BORROLAN COMPLEX
FAULD CRATER
HÉRAULT CRATERS
CARLINGFORD COMPLEX

ALPHABETIC LISTING

LISTED UNDER

Central, nyy Massif

* CĚSKÉ BUDĔJOVICE

CHAGVE-UAIV

* CHAM DEPRESSION
* Chassenon Crater

Chibina Massif
CISTA COMPLEX

* CONFOLENT

Dagali-Holmen Breccia Pipe

* DELLEN STRUCTURE

DITRO COMPLEX
Doline of Soulanges
DRAMMEN CAULDRON
DREISER WEITHER BASIN

* EDELBACH

ELETOZERO MASSIF
ETIVE GRANITE COMPLEX
FALKENSTEIN PIPE

* Faugères Craters

FAULD CRATER
FEN COMPLEX

* FIRTH DEEP

FLAJE COMPLEX
GARDNOS BRECCIA PIPE
GEMÜNDENERMAAR

* GFÖHL

GJERDINGEN RING STRUCTURE
GLEN COE CAULDRON
Glencoe Cauldron
GLITREVANN CAULDRON

TURYI
CESKÉ BUDEJJOVICE
CHAGVE-UAIV
CHAM DEPRESSION
ROCHECHOUART
KHIBINA MASSIF
CISTA COMPLEX
CONFOLENT
HOLMEN-DAGALI BRECCIA PIPE
DELLEN STRUCTURE
DITRO COMPLEX
SOULANGES DOLINE
DRAMMEN CAULDRON
DREISER WEITHER BASIN
EDELBACH
ELETOZERO MASSIF
ETIVE GRANITE COMPLEX
FALKENSTEIN PIPE
HÉRAULT CRATERS
FAULD CRATER
FEN COMPLEX
FIRTH DEEP
FLAJE COMPLEX
GARDNOS BRECCIA PIPE
GEMÜNDENERMAAR
GFÖHL
GJERDINGEN RING STRUCTURE
GLEN COE CAULDRON
GLEN COE CAULDRON
GLITREVANN CAULDRON

	ALPHABETIC LISTING	LISTED UNDER
	GORNOOZERSK	GORNOOZERSK
	Gour de Tazenat	TAZENAT MAAR•
	Gremjakha-Virmes Massif	GREMYATKLA-BYRMES MASSIF
	GREMYATKLA-BYRMES MASSIF	GREMYATKLA-BYRMES MASSIF
	GRUA CAULDRON	GRUA CAULDRON
*	GUSEV	GUSEV
	HEGGELIA CAULDRON	HEGGELIA CAULDRON
*	HEMAU	HEMAU
*	Hemauer Pulk	HEMAU
*	HÉRAULT	HÉRAULT
	HILLESTAD CALDERA	HILLESTAD CALDERA
	Hillestad Laccolith	HILLESTAD CALDERA
	HIRSCHBERG PIPE	HIRSCHBERG PIPE
	HOLMEN-DAGALI BRECCIA PIPE	HOLMEN-DAGALI BRECCIA PIPE
*	HUNGARIAN PLAIN	HUNGARIAN PLAIN
	HURDAL CAULDRON	HURPAL CAULDRON
	IIVAARA COMPLEX	IIVAARA COMPLEX
*	I1'inets	ILINTSY
	Il'inetskaya	ILINTSY
*	ILINTSY	ILINTSY
	Ilumetsa Craters	ILUMETS CRATERS
	ILUMETS CRATERS	ILUMETS CRATERS
	INGOZERO MASSIF	INGOZERO MASSIF
*	JÄnISJÄrVI	JÄNISJÄRVI
	JASENICE AMPHITHEATRE	JASENICE AMPHITHEATRE
	Jelettijarvi	ELETOZERO ?
	JUSI PIPE	JUSI PIPE
*	KAALIJARV CRATERS	KAALIJARV CRATERS
*	KALUGA	KALUGA
	KAMENSK	KAMENSK

ALPHABETIC LISTING

KAMPEN CAULDRON

* KARLA

KATNOSA RING COMPLEX
KHIBINA MASSIF
KIKUT RING STRUCTURE

* KJARDLA
* KÖFELS

KONTOZERO
Kontozersk
Koutajärvi
Kouterojärvi
KOVDOR
Kovdorozero
KOVDOZERO
Kovdozersk
Kuolo-jarvi
KURGA
Kurginskiy

* KURSK

LAACHER SEE

* LAC BOUCHET
* Lac du Bouchet

Lachermaar

* LAGO TREMORGIO

LAIVAJOKI

* Lake Dellen
* LAKE HUMMELN

LAKE LAATOKKA BASIN
Lake Ladozhskoye $0 z$
Lake Ladoga

LISTED UNDER

KAMPEN CAULDRON
KARLA
KATNOSA RING COMPLEX
KHIBINA MASSIF
KIKUT RING STRUCTURE
KJARDLA
KÖFELS
KONTOZERO
KONTOZERO
KOVDOZERO
KOVDOR
KOVDOR
KOVDOR
KOVDOZERO
KOVDOZERO
VUORI JARVI
KURGA
KURGA
KURSK
LAACHER SEE
LAC BOUCHET
LAC BOUCHET
LAACHER SEE
LAGO TREMORGIO
LAI VAJOKI
DELLEN STRUCTURE
LAKE HUMMELN
LAKE LAATOKKA BASIN
LAKE LAATOKKA BASIN
LAKE LAATOKKA BASIN

ALPHABETIC LISTING

* Lake Lappajärvi
* LAKE MIEN

LANGESUNDSFJORD CAULDRON
LANGLIA RING STRUCTURE
Langlia-Storflaaten Area

* LAPPAJÄRVI STRUCTURE
* LA SAUVETAT
* Le Clot

LESNAYA VARAKA

* LOGOISK

LOVOZERO MASSIF
Lujavrurt Massif
LUNDBERGKOLLEN CAULDRON
MAVRGUBINSKY COMPLEX
MEERFELDER MAAR

* MENDORF
* Mienstrukturen
* MISARAI
* MISHINA GORA
* Mishinogorsk

MOURNE GRANITE
MULL COMPLEX
MYKLE RING STRUCTURE

* NETOLICE EXPLOSION CRATER

NITTEDAL CAULDRON
NORDLIKAMPEN RING COMPLEX

* Nördlinger Ries
* Norra Dellen

NORRA KÄRR

* OBOLON ${ }^{\prime}$

LISTED UNDER

LAPPAJÄRVI STRUCTURE
LAKE MIEN
LANGESUNDSFJORD CAULDRON
LANGLIA RING STRUCTURE
SVARTEN CAULDRON
LAPPAJÄRVI STRUCTURE
LA SAUVETAT
HÉRAULT CRATERS
LESNAYA VARAKA
LOGOISK
LOVOZERO MASSIF
LOVOZERO MASSIF
LUNDBERGKOLLEN CAULDRON
MAVRGUBINSKY COMPLEX
MEERFELDER MAAR
MENDORF
LAKE MIEN
MISARAI
MISHINA GORA
MISHINA GORA
MOURNE GRANITE
MULL COMPLEX
MYKLE RING STRUCTURE
NETOLICE EXPLOSION CRATER
NITTEDAL CAULDRON
NORDLIKAMPEN RING COMPLEX
RIESKESSEL
DELLEN STRUCTURE
NORRA KÄRR
OBOLON ${ }^{\prime}$

	ALPHABETIC LISTING	LISTED UNDER
	OPPKUVEN BRECCIA PIPE	OPPKUVEN BRECCIA PIPE
	Oppkuven Cauldron	OPPKUVEN BRECCIA PIPE
	Oesel (0sel)	KAALIJARV CRATERS
	DJANGEN CAULDRON	DYANGEN CAULDRON
	Ozernaya Varaka	OZERNAYA VERAKA
	OZERNAYA VERAKA	OZERNAYA VERAKA
	PESOTCHNIY	PESOTCHNIY
*	Pfahldorf	PFAHLDORF CRATERS
	Pfahldorf Basin	PFAHLDORF CRATERS
*	PFAHLDORF CRATERS	PFAHLDORF CRATERS
*	PÖSING-WETTERFELD DEPRESSION	PÖSING-WETTERFELD DEPRESSION
*	PUCHEZH-KATUNKI	PUCHEZH-KATUNKI
	PULVERMAAR	PULVERMAAR
	Pyrguhaud	ILUMETS CRATERS
	RADHOST ' AMPHITHEATRE	RADHǑST' AMPHITHEATRE
	RAMNES CALDERA	RAMNES CALDERA
	RANDECKER MAAR	RANDECKER MAAR
	RHUM COMPLEX	RHUM COMPLEX
	Ries Structure	RIESKESSEL
	RIESKESSEL	RIESKESSEL
	ROCHECHOUART	ROCHECHOUART
	RÖDERN PIPE	RÖDERN PIPE
	Rosses Centered Complex	ROSSES RING COMPLEX
	Rosses Granite (Complex)	ROSSES RING COMPLEX
	Rosses Pluton	ROSSES RING COMPLEX
	ROSSES RING COMPLEX	ROSSES RING COMPLEX
	ROTMISTROVKA	ROTMISTROVKA
	RÖTZ-WINKLARN DEPRESSION	RÖTZ-WINKLARN DEPRESSION
	Rum	RHUM COMPLEX
	Rundevatn	RUNDVATNET

	ALPHABETIC LISTING	LISTED UNDER
*	Rundevatnet	RUNDVATNET
*	RUNDVATNET	RUNDVATNET
*	SÄÄKSJÄrVI	SÄÄKSJÄRVI
*	SAAL	SAAL
	ST. HIPPOLYTE MAAR	ST.HIPPOLYTE MAAR
	ST.KILDA-SOAY-BORERAY-LEVENISH-DUN COMPLEX	ST.KILDA-SOAY-BORERAY-LEVENISH-DUN
*	ST.MAGNUS BAY DEEP	ST.MAGNUS BAY DEEP
	Salanlatvinsky	SALLANLATVI
	SALLANLATVI	SALLANLATVI
*	Sall Craters	KAALIJARV CRATERS
	Salmagorsky	SALMOGORSK MASSIF
	SALMOGORSK MASSIF	SALMOGORSK MASSIF
	SANDE CAULDRON	SANDE CAULDRON.
	Sandelakkolith	SANDE CAULDRON
*	SAUSTAHL	SAUSTAHL
*	SCHAFFERGRUBE	SCHAFFERGRUBE
*	SCHAFGRABEN	SCHAFGRABEN
	SEBLJAVRSK MASSIF	SEBLJAVRSK MASSIF
	Sebl 'yavr	SEBLJAVRSK MASSIF
	Sebl-yarvi	SEBLJAVRSK MASSIF
	SENEZE MAAR	SENEZE MAAR
*	SILJAN RING	SILJAN RING
	SKREHELLE CAULDRON	SKREHELLE CAULDRON
	SKMYE COMPLEX	SKYE COMPLEX
	SLIEVE GULLION COMPLEX	SLIEVE GULLION COMPLEX
	SLOTTET RING STRUCTURE	SLOTTET RING STRUCTURE
	SNOWDON SYNCLINE	SNOWDON SYNCLINE
*	Söderfjärden Basin	VAASA STRUCTURE
	Sodra Dellen	DELLEN STRUCTURE
	SOKLI	SOKLI

ALPHABETIC LISTING

* Sornhüll

Soperor

SOULANGES DOLINE
SOUSTOVA MASSIF
Soustovsk Massif

* STAMSRIED-PEMFLING-KATZBACH DEPRESSION
* STEINHEIM BASIN
* Steinheimer Becken

STENOVICE COMPLEX

* STOPFENHEIM KUPPEL

STRYKEN CAULDRON

* Süvahaud

SVARTEN CAULDRON
tazenat maar

* TIEFENBACH-SCHÖNTHAL DEPRESSION
* TŘEBON゙

TRYVASSHぬGDA RING COMPLEX
Tsagve-Oaivi
Turii, Turja, Turyii
TURYI

* TVÄREN bAY

Umptek Massif

* VAASA STRUCTURE

VEALDS CAULDRON

* VEPRIAJ

VUORIJARVI MASSIF
Vuoriyarvi
WEINFELDER MAAR

* WIPFELSFURT
* Yanis'yarvi

LISTED UNDER

PFAHLDORF CRATERS
spagay
SOULANGES DOLINE
SOUSTOVA MASSIF
SOUSTOVA MASSIF
STAMSRIED-PEMFLING-KATZBACH DEPRESSION
STEINHEIM BASIN
STEINHEIM BASIN
STENOVICE COMPLEX
STOPFENHEIM KUPPEL
STRYKEN CAULDRON
ILUMETS CRATERS
SVARTEN CAULDRON
TAZENAT MAAR
TIEFENBACH-SCHÖNTHAL DEPRESSION
TREBON
TRYVASSHøGDA RING COMPLEX
CHAGVE-UAIV
TURYI
TURYI
TVÄREN BAY
KHIBINA MASSIF
VAASA STRUCTURE
VEALỚS CAULDRON
VEPRIAJ
VUORIJARVI MASSIF
VUORIJARVI MASSIF
WEINFELDER MAAR
WIPFELSFURT
JÄNISJÄRVI

ALPHABETIC LISTING
LISTED UNDER

ELETOZERO MASSIF

* zeleny gai
zeleny gai
* Denotes structures which have been ascribed a possible, probable, or definite origin by impact.

I. BASIC DATA

Name AFRIKANDA massif

Alternative
 names

Location

Geographical
position
Horizontal
dimensions
Approx. $8 \times 6 \mathrm{~km}$
$7 \mathrm{~km}^{2}$
Depth

Altitude

Rim

Age Caledonian
344-426m.y.

II.FORM AND STRUCTURE

Outer ring pyroxenites and melteigites. Centrally the pyroxenites become first fine grained and next coarse grained, with schleiren and veins of titanomagnetite-knopite rock. The core is an eruptive breccia of melilite olivinite in a cement of coarse pyroxenite and vibetoite.

Heinrich, 1966

Gersimovsky et al, 1974
Vartiainen \& Wooley, 1974

III.ORIGIN

Astrobleme

Non astrobleme

Alkaline intrusion Gerasimovsky et al, 1974 Heinrich, 1966
IV.SPECIFIC STUDIES

1	2	3	4	5	6	7	8	9	10	11	12

I. BASIC DATA

Name ALMUNGE
Alternative
names
Location $\quad 18$ miles east of Uppsala, Sweden
Geographical $59.52 \mathrm{~N} \quad 18.06 \mathrm{E}$
after Gorbatschev,1961
position
Horizontal $15 \mathrm{~km}^{2}$, about $3 \times 5 \mathrm{~km}$ Gorbatschev, 1961

dimensions
Depth
Altitude
RIm
Age 1580 m.y. Vartiainen \& Wooley,1974

II.FORM AND STRUCTURE

Irregularly rounded area surrounded by Svecofennian Archean supracrustals. Nephelinebearing rocks....joining in an obvious ring of comparatively small, mostly schistose en-echelon dikes, encompassing nearly all of the western, southern and northern peripheries of the alkali area.

Gorbatschev, 1961

III.ORIGIN

Astrobleme

Non astrobleme

Intrusion Gorbatschev, 1961

IV.SPECIFIC STUDIES

1	2	3	4	5	6	7	8	9	10	11	12

I. BASIC DATA

```
Namo ALNÖ
Alternatlve
names
Locatlon Baltic, NE. of Sundsval1, Sweden
Geographical 62.28N 17.30E von Eckermann et al,1960
position
Horizontal }8\mp@subsup{\textrm{km}}{}{2}\mathrm{ of NE. of Island:Center under sea von Eckermann et al,1960
dimensions 4 km diameter, Cone sheets to 12 km
from core, dikes to 25 km
```


Name
 ALNÖ

Alternative

```
names
Locatlon Baltic, NE. of Sundsvall, Sweden
Geographical 62.28 N 17.30E von Eckermann et al,1960
```


position

```
Horizontal \(\quad 8 \mathrm{~km}^{2}\) of NE. of Island:Center under sea von Eckermann et al,1960 4 km diameter, Cone sheets to 12 km from core, dikes to 25 km
```


Depth

Altitude

```
Rim
Age \(\quad\)\begin{tabular}{ll}
\(562 \mathrm{~m} . \mathrm{y}\). \\
& \(537 \pm 16 \mathrm{~m} . \mathrm{y}\)
\end{tabular}
```

von Eckermann et al,1960
Krester et al, 1977

II.FORM AND STRUCTURE

"Carbonatite dikes....indicate the dip of conesheets towards the volcanic center north of Alnö Island."

III.ORIGIN

Astrobleme

```
von Eckermann et a1, 1960
```


Non astrobleme

Intrusion
von Eckermann et al,1960

IV.SPECIFIC STUDIES

1	2	3	4	5	6	7	8	9	10	11	12

von Eckermann et al, 1960
I.BASIC DATA
Name ALNSJØ CAULDRON
Alternative
names
Location Southeastern Norway
Geographical 59.30N 11.00E
after Oftedahi, 1969position
Horizontal Diameter 15 km (?) Oftedahl,I960
Depth See FORM AND STRUCTURE
Altitude
Rim
Age Permian Oftedahl,I960
II.FORM AND STRUCTURE
III. ORIGIN
Astrobleme
Non astrobleme
Cauldron subsidence
Oftedaht, 1960

IV.SPECIFIC STUDIES

1	2	3	4	5	6	7	8	9	10	11	12

I.BASIC DATA

Name

ARDNAMURCHAN RING COMPLEX

Alternative names

Location A peninsula on the west coast of Scotland

Geographical position 56.40 N	6.10 W	after Richey et al,
I $96 I$		

Horizontal
dimensions

Depth

Altitude

Rim
Age $\quad \begin{aligned} & \text { Tertiary } \\ & \text { Dykes } 26+4 \times 10^{6}, \text { Minor intrusions } 55+6 \times 10^{6} \text { Richey et al,I96I } \\ & \text { Evans et al,I973 }\end{aligned}$

II.FORM AND STRUCTURE

A series of ring complexes related to one centre (Durrance, I96.7) or to three centres(Richey et al, I96I).

III. ORIGIN

Astrobleme

Non astrobleme
Igneous intrusion and extrusion.
Richey et al,I96I
Craig,I965
Durrance, 1967
IV.SPECIFIC STUDIES

Richey et al,I96I
Craig, I965

I.BASIC DATA

Name ARRAN CENTRAL RING COMPLEX

Alternative

names

Location Island in the Firth of Clyde,west Scotland

```
Geographical 55.35N 5.15W
after Richey et al,I96I
position
```


Horizontal dimensions

Approximately 5 km diameter $5.4 \times 4.8 \mathrm{~km}$ ($4 \times 3 \mathrm{miles}$)

Richey et al,I96I King, 1954

Depth
See FORM AND STRUCTURE

Altitude

Rim

Age	Tertiary	Richey et al,I96I
	Granite $=61 \pm 6,65 \pm 6,55 \pm 5,56+5,57 \pm 6,63 \pm 6$,	Miller \& Mohn, 1965
	60+6,62+6;Minor intrusions $61 \pm 6 \times 106 \mathrm{yrs}$	quoted by
	$58.3+2.2 \times 106 \mathrm{yrs}$ AND STRUCTURE III.	Evans et al,I973 ORIGIN

Eroded remains of a block of sedimentary rocks and lavas that subsided 3,000 feet(920 m).

King,I954
III. ORIGIN

Astrobleme

Non astrobleme

Igneous intrusion and extrusion
King, I954
IV.SPECIFIC STUDIES

King, I954
Richey et als,I96I

I. BASIC DATA

Non astrobleme
Intrusion Kaitaro,1953

IV.SPECIFIC STUDIES

1	2	3	4	5	6	7	8	9	10	11	12

I. BASIC DATA

I.BASIC DATA

Name
 BARNSMORE PLUTON

Alternative
Barnsmore Granite (Complex)

names

Location Donegal, Eire

Geographical
position

I972
$\begin{array}{ll}\text { Horizontal } & \text { Original structure offset by faulting, Pitcher \& Berger, } 1972 \\ \text { dimensions } & \text { was approximately } 11 \times 5 \mathrm{~km}\left(52 \mathrm{~km}^{2}\right)\end{array}$
Depth

Altitude

Rim

Age
Caledonian
Pitcher \& Berger,I972

II.FORM AND STRUCTURE

Elongate complex of three sharply defined granites. Outer dip 50 to 90 degrees, thickness 5.6 km .

III. ORIGIN

Astrobleme

Non astrobleme

Subsidence of a large block of schists, perhaps along a ring dyke.
Walker \& Leedal,I954
IV.SPECIFIC STUDIES

Walker \& Leedal, 1954
Riddihough,I969
Pitcher \& Berger, 1972

I.BASIC DATA

Name BEAUNIT

Alternative

names

Location Auvergne, France

Geographical $45.58 \mathrm{~N} \quad 2.56 \mathrm{E}$
position
Horizontal Approximate diameter 1.0km Baudry \& Camus; 1970
dimensions

Depth

Altitude

Rim
Age

II.FORM AND STRUCTURE

"Situé dans la partie nord de la chaîne, cet appareil est le plus important de ceux étudiés, l'emplacement de sa bouche d'émission, dont le diamètre est de l'ordre de 1 km ,est occupé par des terrains marécageux sur un substratum d'argiles lacustres.Ces formations détritiques sont partiellement recouvertes par des coulées venues du Sud et par un cone "strombolien" récent."

Baudry \& Comus, 1970

III. ORIGIN

Astrobleme

Non astrobleme

Maar
Boudry \& Comus,I970

IV.SPECIFIC STUDIES

1	2	3	4	5	6	7	8	9	10	11	12
		0		\bullet							

Baudry \& Camus, 1970

I.BASIC DATA

Name BEN NEVIS COMPLEX

Alternative names

Location Inverness,Scotland
Geographical $56.48 \mathrm{~N} \quad 6.00 \mathrm{~W} \quad$ after Bailey et al, I9I5
position

Horizontal	Diameter 6 km
dimensions	

Depth See FORM AND STRUCTURE

Altitude

Rini
Age Lower 0ld Red Sandstone Bailey et al, I9I5

II.FORM AND STRUCTURE

Ring complex of granitic intrusive rocks and andesitic extrusives with $+1,500$ feet(460 m) subsidence along a fault block.

Bailey et al,I9I5
III. ORIGIN

Astrobleme

Non astrobleme

Igneous intrusion Bailey et al,I9I5

IV.SPECIFIC STUDIES

1	2	3	4	5	6	7	8	9	10	11	12
	\bullet	\bullet	\bullet	\bullet							

Bailey et al,I9I5

I.BASIC DATA

Name BIRNBERG PIPE

Alternative

mames
Location \quad Saar-Nahe Trough, SW.Germany
Geographical
position
Horizontal Long diameter $1.22 \mathrm{~km} \quad$ Lorenz et al, 1970
dimensions

Depth

Altitude

Rim
Age Permian Lorenz et al, I970

II.FORM AND STRUCTURE

"...stratified,subsided pyroclastic beds are found near the margins of the pipe whereas the central part is occupied by intrusive andesite."

Lorenz et al,I970

III. ORIGIN

Astrobleme

Non astrobleme

Diatreme
Lorenz et al,I970

IV.SPECIFIC STUDIES

1	2	3	4	5	6	7	8	9	10	11	12
		\bullet									

Lorenz et al,1970

I．BASIC DATA

Name	BJめRNSJめEN	
Alternative names		
Location	Norway	
Geographical position	$60.00 \mathrm{~N} \quad 10.45 \mathrm{E}$	after Oftedahl， 1978
Horlzontal dimensions	Diameter 7 － 9 km	Oftedahl， 1978
Depth		
Altitude		
RIm		
Age	Permian	Oftedahl， 1978
II．FORM AND STRUCTURE		III．ORIGIN
Basic center to syenitic outer zone．		Astrobleme

Non astrobleme
Intrusion Oftedahl， 1978

IV．SPECIFIC STUDIES

1	2	3	4	5	6	7	8	9	10	11	12

I. BASIC DATA

Namp BOLTYSH
Alternative names Boltyshka
Location Ukranian SSR, USSR
Geographical position $48.45 \mathrm{~N} \quad 32.10 \mathrm{E}$
Grieve \& Robertson, 1979
Horlzontal Diameter 25 km Grieve \& Robertson, 1979
dimenslons
Depth
Altitude
RIm
Age $100 \pm 5 \mathrm{~m} . \mathrm{y}$. Grieve \& Robertson, 1979 about $70 \mathrm{~m} . \mathrm{y}$. Masaytis 1975
Late Cretaceous - Early Jurassic Yurk et al, 1975
II.FORM AND STRUCTURE
III.ORIGIN
"Base of buried crater lies approximately 1 kmbelow the surface of the Precambrian basement.In the center of: the crater is an uplift ofcrushed, cataclased and partially fused granites,$2 \times 4 \mathrm{~km}$ in size, with a relative height ofabout 500 m above the base.
Masaytis, 1975
Non astrobleme
IV.SPECIFIC STUDIES

1	2	3	4	5	6	7	8	9	10	11	12
			0								

[^0]
I.BASIC DATA

Name BOOS MAARS
Alternative

namos
Location Eiffel, West Germany
Geographical position

Horizontal dimensions	Diameter 650 to 700 m	Lorenz, 1973
Depth	30 to 87 m	Lorenz, 1973

Altitude

Rim
Ace Pleistocene Lorenz, 1973

II.FORM AND STRUCTURE

"The two maars are associated with a number of other volcanic features...To the E and NE there are four cinder cones on top of the hill(Schneeberg). At the E slope of the E marar a $4-7 \mathrm{~m}$ wide alkali basaltic dyke trends ENE.The two maars, cut into Lower Devonian slates, sandstones, and greywackes, are located at the bottom of a valley which today contains a very small stream."

Lorenz,I973

III. ORIGIN

Astrobleme

Non astrobleme

Volcanic
Lorenz, 1973

IV.SPECIFIC STUDIES

1	2	3	4	5	6	7	8	9	10	11	12
		\bullet									

Lorenz, 1973

I. BASIC DATA

[^1]
I.BASIC DATA

Name CARLINGFORD COMPLEX

Alternative

names

Location Louth, Eire
Geographical 54.03 N 6.15W after Chorlesworth,I963
position

Horisontal

Diameter 9.6 km (6 miles)
Chorlesworth, 1963 dimensions

Depth

Altitude

Rim
Age
Tertiary $58.5 \times 10^{6} \mathrm{yrs}$
Chorlesworth, 1963
Evans et al,I973

II.FORM AND STRUCTURE

Ring complex of gabbros, dolerites, basalts, granophyres, and agglomerates containing nine vents of 105 to 610 m diameter and cone sheets dipping at 60 degrees.

Charlesworth, 1963

III. ORIGIN

Astrobleme

Non astrobleme

Igneous intrusion
Charlesworth, 1963

IV.SPECIFIC STUDIES

Cook \& Murphy, 1952
Charlesworth, 1963

ČESKÉ budějovice

First edition - 1976

I.BASIC DATA

Name C̆ESKE BUDE゙JOVICE

Alternative

names
Location Czechoslovakia
Geographical 49.00N 14.30E after Rutte, 1974

Horizontal

dimensions

Depth

Altitude
Rim
$\mathbf{A g}^{\boldsymbol{e}}$

II.FORM AND STRUCTURE

"Kraterlandschaft with shocked minerals"

Rutte,I974

III. ORIGIN

Astrobleme
Rutte,I974

Non astrobleme

Classen, 1977
IV.SPECIFIC STUDIES

1	2	3	4	5	6	7	8	9	10	11	12
									\bullet		

Rutte, 1974

I. BASIC DATA

```
Name CHAGVE-UAIV
Alternative Tsagve-0aivi
names
Location North Kola Peninsula, USSR
Geographical
position
Horizontal 1.5 < 1.0 km Tomkeieff, 1961
dimensions
Depth
Altitude
RIm
Age
```


II.FORM AND STRUCTURE

III.ORIGIN

```
Oval shaped massif in plan. Steeply dipping layered complex. Three intrusive phases can be distinguished Astrobleme

\title{
Non astrobleme \\ Intrusion \\ Tomkeieff, 1961
}
IV.SPECIFIC STUDIES
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline
\end{tabular}

\section*{I.BASIC DATA}

\section*{Name \\ CHAM DEPRESSION}

\section*{Alternative}
names

\section*{Location West Germany}
Geographical 49.14N 12.37E Classen,I975

\section*{position}
Horizontal \(\quad\) Diameter about \(1 \mathrm{~km} \quad\) Classen, I975
dimensions

\section*{Depth}

\section*{Altitude}

Rinn
Age \(\quad 14.8 \times 10^{6} \mathrm{yrs} ? \quad\) Classen, 1975

\section*{II.FORM AND STRUCTURE}

Depression of many craters.
Classen, I975
(see also PÖSING-WETTERFELD and STAMSRIED-PEMFLING-KATZBACH depressions)

\section*{III. ORIGIN}

Astrobleme
Classen,I975

\section*{Non astrobleme}

Classen,1977

\section*{IV.SPECIFIC STUDIES}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline
\end{tabular}

\section*{I. BASIC DATA}
Name CISTA complex
Alternative
names
Location Czechoslovakia
Geographical 50.02 N ..... 13.35E
position
Horizontal \(12 \times 8 \mathrm{~km}\) Bartosek et al, 1969
dimensions
Depth
Altitude
Rim
Age \(310 \pm 10 \mathrm{~m} . \mathrm{y}\). Bartosek et a1,1969
II.FORM AND STRUCTURE
III.ORIGIN
Central stock of granodiorite with foliated marginalfacies. Bordering intrusions of biotite granite. Astrobleme
Bartosek et al, 1969
Non astrobleme
Intrusion
Bartosek et al, 1969
IV.SPECIFIC STUDIES
1) 2

\(\square\)

7

\begin{tabular}{|l|l|l|l|l|}
\hline
\end{tabular}

\section*{I.BASIC DATA}
```

Name CONFOLENT
Alternative
names
Location Haute-Loire, France
Geographical
position
Horizontal Diameter approximately 1.5km Gallant,I964
dimensions
Depth
Altitude
Rim
Age

```

\section*{II.FORM AND STRUCTURE}
"meandre abandonné avec au centre une butte de roche en place."
A.Cailleux in Monod, 1965

\section*{III. ORIGIN}

Astrobleme
? Gallant,I964

\section*{Non astrobleme}

Classen,1977

\section*{IV.SPECIFIC STUDIES}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline
\end{tabular}

\section*{I. BASIC DATA}

\section*{Name DELLEN STRUCTURE}

\section*{Alternative \\ names}

Location \(\quad 300 \mathrm{~km}\) NNW of Stockholm, Sweden

\section*{Geographical position}

\section*{Horizontal} dimensions

Depth

\section*{Lake Dellen}

Norra Dellen and Sodra Dellen
\begin{tabular}{ll}
61.50 N & 16.45 E \\
61.55 N & 16.32 E
\end{tabular}

Original diameter 15 km
v.EngeZhardt, 1972

\section*{Altitude}

Rim
\(\begin{array}{lll}\text { Age } & 50 \text { to } 200 \times 10^{6} \mathrm{yrs} & \begin{array}{l}\text { Fredriksson \& Wickman, } 1963 \\ \text { Lower Tertiary }\end{array}\end{array}\)

\section*{II.FORM AND STRUCTURE}

Deeply eroded structure of two lakes separated by a peninsula.
v. Engeihardt,I972

\section*{III. ORIGIN}

\section*{Astrobleme}

Fredriksson \& Wickman, I963 Carstens,1975

\section*{Non astrobleme}

Glacial excavation of a region shattered by volcanic explosions.
t'skola, 192 I
IV.SPECIFIC STUDIES


C'arstens, 1975

\section*{I. BASIC DATA}


\section*{I. BASIC DATA}

\section*{Name DRAMMEN Cauldron}

\section*{Alternative}
names

Location Around the city of Drammen, Norway
\begin{tabular}{lll}
\begin{tabular}{lll} 
Geographical \\
position
\end{tabular} & 59.45 N 10.15 E & after oftedahl, 1969 \\
\begin{tabular}{l} 
Horlzontal \\
dimenslons
\end{tabular} & Diameter 7 km & Oftedahl, 1953
\end{tabular}

Depth
Altitude

Rim
Age Permian Oftedah1, 1953

\section*{II.FORM AND STRUCTURE}

Block subsidence of the order of 500 m . Oftedahl, 1953
"The subsidence of the lava block produced a bowl-shaped or saucer-shaped basin with a marginal upbending of the peripheral lavas." Oftedahl, 1960
The subsidence of the central part of the cauldron may amount to around 1000 m . oftedahl, 1978
IV.SPECIFIC STUDIES

\section*{III.ORIGIN}

\section*{Astrobleme}

\section*{Non astrobleme}

Cauldron subsidence Oftedahl, 1953 Segalstad, 1975

Oftedahl, 1953
Segalstad, 1975
Ramberg, 1976
Oftedahl, 1978

\section*{I.BASIC DATA}

\section*{Name DREISER WEITHER BASIN}

Alternative

\section*{names}

Location Eiffel, West Germany
\begin{tabular}{lll} 
Geographical & \(50.15 \mathrm{~N} \quad 6.48 \mathrm{E} \quad\) after Lorenz et al, 1970 \\
position
\end{tabular}
\begin{tabular}{l} 
Horizontal \\
dimensions
\end{tabular}\(\quad 1.36 \times 1.18 \mathrm{~km} \quad\) Lorenz et ak, I970

Depth 36 to 120 m Lorenz et al,I970

\section*{Altitude}

Rin

\section*{Age}

10 to \(12.5 \times 10^{3} \mathrm{yrs}\)
Lorenz et al, 1970

\section*{II.FORM AND STRUCTURE}
"The fact that the volume of the pyroclastic deposits is much less than that of the basin indicates subsidence of a central block.Drilling holes near the centre revealed Devonian rocks under a thin pyroclastic cover."

Lorenz et al,I970
III. ORIGIN

Astrobleme

Non astrobleme
Volcanic eruption plus basin subsidence
Lorenz et al, 1970
IV.SPECIFIC STUDIES


Lorenz et al,1970

\section*{I. BASIC DATA}

\section*{Name EDELBACH}

Alternative
names

\section*{Location Austria}
\begin{tabular}{lll} 
Geographical 48.40 N & 15.28 E & after Rutte, 1974 \\
position
\end{tabular}

Horizontal
dimensions

\section*{Depth}

\section*{Altitude}

Rim
Age

\section*{II.FORM AND STRUCTURE}
"Kraterlandschaft with shocked minerals."
Kutte,1974

\section*{III. ORIGIN}

\section*{Astrobleme}

Comet impact Hutte, 1974

\section*{Non astrobleme}

Classen,1977
IV.SPECIFIC STUDIES


Hutte, 1974

\section*{I. BASIC DATA}
\begin{tabular}{|c|c|c|}
\hline Namo & ELETOZERO massif & \\
\hline Alternative names & Yelet'ozero & \\
\hline Location & USSR & \\
\hline Geographical position & 66.00N 32.00E & \\
\hline Horlzontal dimensions & \(50 \mathrm{~km}^{2}\) & Gerasimovsky et al, 1974 \\
\hline \multicolumn{3}{|l|}{Depth} \\
\hline \multicolumn{3}{|l|}{Altitude} \\
\hline \multicolumn{3}{|l|}{Rim} \\
\hline Age & 1800 m.y. & Vartiainen \& Wooley,1974 \\
\hline \multicolumn{2}{|l|}{If.FORM AND STRUCTURE} & III.ORIGIN \\
\hline \multicolumn{2}{|l|}{It is of elliptical shape and is concentrically zoned, formed in three intrusive phases.} & Astrobleme \\
\hline
\end{tabular}

\section*{Non astrobleme}

\section*{Intrusion}

Gerasimovsky et al, 1974
IV.SPECIFIC STUDIES
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline & & & 0 & & & & & & & & \\
\hline
\end{tabular}

\section*{I.BASIC DATA}

\section*{Name ETIVE GRANITE COMPLEX}

\section*{Alternative}
names

Location Argyll,Scotland
Geographical \(56.34 \mathrm{~N} \quad 5.00 \mathrm{~W}\)
position

Horisontal \(\quad 28 \times 16 \mathrm{~km}(18 \times 10\) miles \() \quad\) Anderson, 1937
dimensions
Depth

\section*{Altitude}

Rim
Age Lower 01d Red Sandstone Anderson, 1937

\section*{II.FORM AND STRUCTURE}

Ring complex of four granitic members - the Quarry Intrusion, the Cruachan Granite, the Meall Odhar Granite, and the Starav Granite. Anderson,I937

\section*{III. ORIGIN}

\section*{Astrobleme}

\section*{Non astrobleme}

Igneous intrusion Anderson, 1937 Bailey et al, 1960

\section*{IV.SPECIFIC STUDIES}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline & & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & & & & & \\
\hline & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & & & & & \\
\hline
\end{tabular}

Anderson, 1937
Bailey et al,I960

\section*{I.BASIC DATA}
Name FALKENSTEIN PIPE

\section*{Alternative}
names
Location Saar-Nahe Trough,SW.Germany

\section*{Geographical position}
Horizontal Long diameter 1.52 km Lorenz et ah, 1970 .
dimensions

Depth

\section*{Altitude}

\section*{Rim}
Age . Permian Lorenz et al, I970

\section*{II.FORM AND STRUCTURE}
"Redding in the pyroclastic ejecta and subsided blocks of sediments are mostly orientated toward the center of the structure."

Lorenz et al, 1970
III. ORIGIN

\section*{Astrobleme}

\section*{Non astrobleme}

Diatreme Lorenz et al,I970

\section*{IV.SPECIFIC STUDIES}


Lorenz et al, 1970

\section*{I.BASIC DATA}


\section*{Non astrobleme}

Explosion of \(5.34 \times 10^{6} \mathrm{lbs}\) of T.N.T. in an old alabaster mine producing a crater of ellipticity \(18.5 \%\).
FieIder \& Guest, 1967
IV.SPECIFIC STUDIES


Fielder \& Guest,I967

\section*{I. BASIC DATA}


\section*{I. BASIC DATA}

\section*{Name FIRTH DEEP}

\section*{Alternative}
names
\begin{tabular}{llc} 
Location & Shetland Islands, 160 km N. of Scottish mainland \\
Geographical & 60.28 N & 0.58 W \\
position & &
\end{tabular}

\section*{Horisontal} dimensions
Depth Submarine 146m (80 fathoms) Elinn, I970

\section*{Altitude}

Rim
\(\mathbf{A g}^{\mathbf{e}}\)
Late Tertiary
Flinn, 1970

\section*{II.FORM AND STRUCTURE}
"Overdeep" elongate depression in a bay
Flinn, 1970
(see also ST.MAGNUS BAY DEEP)

\section*{III. ORIGIN}

Astrobleme
? Flinn, 1970

Non astrobleme

\section*{IV.SPECIFIC STUDIES}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline & \(\bullet\) & & & & & & & & & & \\
\hline
\end{tabular}

FZinn, 1970

\section*{I. BASIC DATA}
Name FLAJE complex
Alternative
names
Location Czechoslovakia
Geographical
position
Horizontal Approx. \(6 \times 7 \mathrm{~km}\) ..... Bartosek et al, 1969
dimensions
Depth
Altitude
Rim
Age \(307 \pm 10 \mathrm{~m} . \mathrm{y}\). Bartosek et al, 1969
II.FORM AND STRUCTURECentral stock of biotite granite, approximatelycircular but with southerly protuberance.
Bartosek et al, 1969
Non astrobleme
Intrusion
Bartosek et al, 1969
IV.SPECIFIC STUDIES
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline
\end{tabular}

\section*{I. BASIC DATA}

\section*{Name GARDNOS BRECCIA PIPE}

\section*{Alternative} names

Location \(\quad 90 \mathrm{~km}\) NW. of Tyrifjord,Norway

\section*{Geographical} position


\section*{Depth}

\section*{Altitude}

Rim
Age Post Ordovician, probably Permian Oftedahl,I960

\section*{II.FORM AND STRUCTURE}

Breccia pipe consisting of angular fragments from dust to 50 m in a black matrix. The fragments are largely derived from adjacent Precambrian rocks.

Oftedahi, I960

\section*{III. ORIGIN}

\section*{Astrobleme}

\section*{Non astrobleme}

Volcanic gas explosion
Brock quoted in Oftedahl,I960

\section*{IV.SPECIFIC STUDIES}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline
\end{tabular}

\section*{I. BASIC DATA}

\section*{Name GEMÜUDENERMAAR}

\section*{Alternative}
names
Location Eiffel, West Germany
Geographical position

\section*{Horisontal \\ dimensions}
\(570 \times 560 \mathrm{~m}\)
Lorenz et al,I970

Depth
204m 53 to 154m

Ullier,I967
Lorenz et al,I970

\section*{Altitude}

Rim
Age
10.5 to \(11.0 \times 10^{3} \mathrm{yrs}\)

Lorenz et al,I970

\section*{II.FORM AND STRUCTURE}

Funnel with a flat-bottomed floor. Ollier,I967

\section*{III. ORIGIN}

Astrobleme

\section*{Non astrobleme}
\[
\begin{aligned}
& \text { Volcanic } \\
& \text { ULlier, I967 } \\
& \text { Lorenz et al,I970 }
\end{aligned}
\]
IV.SPECIFIC STUDIES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & & \(\bullet\) & & & & \\
\hline
\end{tabular}

Lorenz et al,I970

\section*{I.BASIC DATA}
```

Name
GFÖHL
Alternative
names
Location Austria
luracrachical 48.32N 15.30E after Rutte,I974
Horizontal
dimensions
Depth

```

\section*{Altitude}

Rim
Age

\section*{II.FORM AND STRUCTURE}
"Kraterlandschaft with shocked minerals." Rutte,I974
III. ORIGIN

Astrobleme
Comet impact Rutte, 1974

Non astrobleme
Classen,1977

\section*{IV.SPECIFIC STUDIES}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline & & & & & & & & & \(\bullet\) & & \\
\hline
\end{tabular}

Rutte, 1974

\section*{I. BASIC DATA}
\begin{tabular}{|c|c|c|}
\hline Name & \multicolumn{2}{|l|}{GJERDINGEN ring structure} \\
\hline Alternative names & & \\
\hline Location & 30 km NNW of 0slo, Norway & \\
\hline Geographical position & 60.12N 10.35E & after Oftedahl, 1978 \\
\hline Horizontal dimensions & Diameter 4 - 5 km & Oftedah1, 1978 \\
\hline Depth & & \\
\hline Altitude & & \\
\hline Rim & & \\
\hline Age & Permian & Oftedahl, 1978 \\
\hline
\end{tabular}

\section*{II.FORM AND STRUCTURE}

Basic center to syenitic or granitic outer zone.

\section*{III.ORIGIN}

\section*{Astrobleme}

\section*{Non astrobleme}

Intrusion Oftedahl, 1978
IV.SPECIFIC STUDIES
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline & & 0 & & & & & 0 & & & & \\
\hline & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{I.BASIC DATA}

\section*{Name GLEN COE CAULDRON}

\section*{Alternative Glencoe Cauldron names}

\section*{Location Argyll,Scotland}

Geographical 56.40 N 4.58w position

\section*{Horizontal dimensions}

Depth
See FORM AND STRUCTURE

\section*{Altitude}

Rin
Age Lower Old Red Sandstone Bailey et al, I9I5

\section*{II.FORM AND STRUCTURE}
"The area....is surrounded for four-fifths of its circumference by a fault which throws down the volcanic rocks and the underlying schists some thousands of feet."

Bailey et al,I9I5
Fault din 50 to 70 degrees
Bailey et al,I960
Fault dip inward at 80 degrees
Taubeneck,I967
after Bailey et al,I9I5

Bailey et al,I9I5

\section*{III. ORIGIN}

\section*{Astrobleme}

\section*{Non astrobleme}

Igneous intrusion and extrusion Bailey et al,I9I5 Taubeneck,1967
IV.SPECIFIC STUDIES


Bailey et al,I9I5

\section*{I. BASIC DATA}
Name GLITREVANN Cauldron
Alternative
names
Location \(\quad 40 \mathrm{~km}\) west of Oslo, Norway
Geographical 59.47N 10.12E positionHorlzontal \(\quad 16 \times 10 \mathrm{~km}\)dimensions
Depth
Altitude
RIm
Age Permian Oftedahl, ..... 1953

\section*{II.FORM AND STRUCTURE}
"A cylindrical block subsided along a ring fault." Subsidence 1500 m .
oftedahl, 1953
!...two ring faults, a nearly circular one and another in the southern sector south of the first."

Oftedahl, 1978

\section*{III.ORIGIN}

\section*{Astrobleme}

\section*{Non astrobleme}
Cauldron subsidence Oftedah1, 1953
Segalstad, 1975
IV.SPECIFIC STUDIES
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline & & & 0 & & & & & & & & \\
\hline & & & & 0 & & & & & & & \\
\hline & & & & & 0 & & & & & & \\
\hline & & 0 & & & & & & & & & \\
\hline
\end{tabular}
Oftedah1, 1953
Segalstad, 1975
Ramberg, 1976
Oftedah1, 1978

\section*{I. BASIC DATA}
Namp GORNOOZERSK
Alternative names
Location Kola Peninsula, USSR
Geographicalposition
Horlzontal
dimensions
Depth
Altitude
Rim
Age 392 to 540 m.y. Vartiainen \& Wooley, 1974
II.FORM AND STRUCTURE
III.ORIGIN
Astrobleme
Non astrobleme
Intrusion
Vartiainen \& Wooley,1974
IV.SPECIFIC STUDIES
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline
\end{tabular}

\section*{I. BASIC DATA}
\begin{tabular}{|c|c|c|}
\hline Name & \multicolumn{2}{|l|}{GREMYATKLA-BYRMESmassif} \\
\hline Alternative names & Gremjakha-Virmes massif & \\
\hline Location & NW Kola Peninsula, USSR & \\
\hline Geographical position & 68.40N 32.30E & \\
\hline Horizontal dimensions & \[
\begin{aligned}
& 130 \mathrm{~km}^{2} \\
& 20 \times 6 \mathrm{~km}
\end{aligned}
\] & Gerasimovsky et al, 1974 Tomkeieff, 1961 \\
\hline \multicolumn{3}{|l|}{Depth} \\
\hline \multicolumn{3}{|l|}{Altitude} \\
\hline \multicolumn{3}{|l|}{R1m} \\
\hline Age & 1750-1870 m.y. & Vartiainen \& Wooley, 1974 \\
\hline \multicolumn{2}{|l|}{II.FORM AND STRUCTURE} & III.ORIGIN \\
\hline \multicolumn{3}{|l|}{\multirow[t]{5}{*}{Three intrusive phases. The most abundant are rock of the first intrusive phase mainly consisting of varieties of gabbro. The second intrusive phase forms a steeply dipping body in the central part of the massif and is dominated by foyaite. The third intrusive phase is composed of alkali granite, nordmarkite and, rarely, alkali}} \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline \multirow[t]{3}{*}{syenite.} & \multicolumn{2}{|l|}{Gerasimovsky et al, 1974 Non astrobleme} \\
\hline & & Intrusion Gerasimovsky et al, 1974 \\
\hline & \multicolumn{2}{|l|}{IV.SPECIFIC STUDIES} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline & & & & & & & & & & & \\
Gerasimovsky et al, 1974 \\
\hline
\end{tabular}

\section*{I. BASIC DATA}
Name GRUA cauldron
Alternative
names
Location West of Grua railway station, Norway
Geographical \(60.15 \mathrm{~N} \quad 10.40 \mathrm{E}\) after Oftedal, 1978position
Horlzontal Diameter 5 km ? ..... Oftedahl, 1978
dimenslons
Depth
Altitude
Rim
Age Permian ..... Oftedahl, 1978
II.FORM AND STRUCTURE
III.ORIGIN
Astrobleme
Non astrobleme
Cauldron subsidence ..... Oftedahl, 1978
IV.SPECIFIC STUDIES
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline & & & & 0 & & & & & & & \\
\hline
\end{tabular}

\section*{I. BASIC DATA}
Name GUSEV
Alternative
names
Location USSR.
Geographical 48.20N 40.15EGrieve \& Robertson, 1979
positionHorizontal Diameter 3 kmdimenslons
Depth
Masaytis, ..... 1975
Altitude
RIm
Age 65 m. .y. Masaytis, 1975
II.FORM AND STRUCTURE
III.ORIGIN
Ellipsoidal basin about 400 m deep, filledwith a breccia. The outlines have been contr-olled by the superimposition of subsequenttectonic movements and by uneven erosion.Masaytis, 1975
Astrobleme
Probably
Masaytis, 1975
Non astrobleme
IV.SPECIFIC STUDIES
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{I. BASIC DATA}

\section*{Name HEGGELIA Cauldron}

\section*{Alternatlve names}
\begin{tabular}{lll} 
Location & NW. of Oslo, Norway & \\
\begin{tabular}{lll} 
Geographical & 60.04 N 10.28 E & after Segalstad, 1975 \\
position
\end{tabular} & \\
\begin{tabular}{l} 
Horlzontal \\
dimensions
\end{tabular} & diameter 7 km & Oftedahl, 1978
\end{tabular}

\section*{Depth}

Altitude

\section*{Rim}

Age
Permian
Sega1stad, 1975

\section*{II.FORM AND STRUCTURE}

Subsidence \(1.0-1.5 \mathrm{~km}\)
Oftedahl,1978

\section*{III.ORIGIN}

Astrobleme

\section*{Non astrobleme}

Cauldron subsidence
Segalstad, 1975

\section*{IV.SPECIFIC STUDIES}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{I.BASIC DATA}
\begin{tabular}{|c|c|c|}
\hline Name & HEMAU & \\
\hline Alternative namos & Hemauer Pulk & \\
\hline Location & SW.Germany & \\
\hline Geographical position & 49.03N 11.47E & Classen, 1975 \\
\hline Horizontal dimensions & 30 craters in area of \(8 \times 12 \mathrm{~km}\) Diameter 2.0km & \begin{tabular}{l}
Rutte, I974 \\
Classen, 1975
\end{tabular} \\
\hline Depth & 100 m to fill,more than 130 m to the base of the fill & Rutte,I97I \\
\hline Altitude & 480 m to top of infilling, 600 m to rim & Rutte, I97I \\
\hline Rim & Height 20m (approx.) & Rutte,I974 \\
\hline Age & \(14.8 \times 10^{6} \mathrm{yrs}\) ? & Classen, 1975 \\
\hline II.FORM & AND STRUCTURE & III. ORIGIN \\
\hline 14 craters & & Astrobleme \\
\hline \multicolumn{2}{|l|}{Classen,I975} & Comet impact Rutte,I97I \\
\hline \multicolumn{3}{|c|}{Rutte,I974} \\
\hline
\end{tabular}

Non astrobleme

\section*{IV.SPECIFIC STUDIES}
\begin{tabular}{|c|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline & \(\bullet\) & & \(\bullet\) & \(\bullet\) & & & & & \(\bullet\) & & \\
\hline
\end{tabular}

Rutte, I97I

\section*{I. BASIC DATA}

IV.SPECIFIC STUDIES
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline & \(\bullet\) & & & & & & & & & & \\
\hline
\end{tabular}

Gèze \& Cailleux, 1950

\section*{I. BASIC DATA}


\section*{I.BASIC DATA}

\section*{Name HIRSCHBERG PIPE}

\section*{Alternative}
names

\section*{Location}

Saar-Nahe Trough,SW.Germany
Geographical position
\begin{tabular}{lll}
\begin{tabular}{ll} 
Horizontal \\
dimensions
\end{tabular} & Longest 660m & Lorenz et al,I970 \\
Depth & See FORM AND STRUCTURE &
\end{tabular}

\section*{Altitude}

Rim
Age
Permian
Lorenz et al,I970

\section*{II.FORM AND STRUCTURE}

Subsidence of 150 to 260 m along a ring-fault, probable original surface expression greater than 1.5 km .

Lorenz et al,1970

\section*{III. ORIGIN}

\section*{Astrobleme}

\section*{Non astrobleme}

Diatreme
Lorenz et al,I970

\section*{IV.SPECIFIC STUDIES}
\begin{tabular}{|c|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline & & \(\bullet\) & & \(\bullet\) & & & & & & & \\
\hline
\end{tabular}

Lorenz et al,I970
I.BASIC DATA
\begin{tabular}{lll} 
Name & HOLMEN - DAGALI BRECCIA PIPE \\
\begin{tabular}{ll} 
Alternative \\
names
\end{tabular} & Dagali-Holmen Breccia Pipe & \\
\begin{tabular}{lll} 
Location & Norway & \\
\begin{tabular}{l} 
Geographical \\
position
\end{tabular} & 60.25 N & 8.27 E \\
\begin{tabular}{l} 
Horizontal \\
dimensions \\
Depth
\end{tabular} & Diameter 1.5km & after Oftedahls I969 \\
\hline
\end{tabular} &
\end{tabular}

\section*{Altitude}

Rim
Age
Post Ordovician
Oftedaht, 1960

\section*{II.FORM AND STRUCTURE}

Breccia pipe nearly circular in outline. Oftedahl,I960
III. ORIGIN

Astrobleme

\section*{Non astrobleme}

Explosion vent
Oftedahl.I960

\section*{IV.SPECIFIC STUDIES}


\section*{I.BASIC DATA}

\section*{Name HUNGARIAN PLAIN}

\section*{Alternative} names
Location Hungary/Roumania
\begin{tabular}{lll} 
Geographical \(\quad 47.00 \mathrm{~N}\) & 21.00 E & \(0^{\prime}\) ConneZ2,I965 \\
position
\end{tabular}
Horizontal \(\quad 440 \times 240 \mathrm{~km} \quad O^{\prime}\) ConneZ2,I965
dimensions

\section*{Depth}

\section*{Altitude}

Rinn
Age Pliocene O'Connell,I965

\section*{II.FORM AND STRUCTURE}

A giant meteorite crater rimmed by the Transylvanian Alps.
J.Kaljuvee quoted in Hey,I966

\section*{III. ORIGIN}

\section*{Astrobleme}
J.Kaljuvee quoted in Hey,I966

\section*{Non astrobleme}

Heide quoted in Hey,I966

\section*{IV.SPECIFIC STUDIES}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline
\end{tabular}

\section*{I. BASIC DATA}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Namo} & \multicolumn{8}{|l|}{HURDAL cauldron} \\
\hline \multicolumn{13}{|l|}{Alternative names} \\
\hline \multicolumn{5}{|l|}{Location} & \multicolumn{6}{|l|}{65 km NNE of 0slo, Norway} & & \\
\hline \multicolumn{5}{|l|}{Geographical position} & \multicolumn{6}{|l|}{60.25N 10.55E} & & after Oftedahl, 1978 \\
\hline \multicolumn{5}{|l|}{Horizontal dimensions} & \multicolumn{6}{|l|}{Diameter 5 km} & & Oftedahl, 1978 \\
\hline \multicolumn{13}{|l|}{Depth} \\
\hline \multicolumn{13}{|l|}{Altitude} \\
\hline \multicolumn{13}{|l|}{Rim} \\
\hline \multicolumn{4}{|l|}{Age} & \multicolumn{7}{|c|}{Permian} & \multicolumn{2}{|r|}{Oftedahl, 1978} \\
\hline \multicolumn{5}{|l|}{II.FORM AND} & \multicolumn{6}{|l|}{STRUCTURE} & \multicolumn{2}{|r|}{III.ORIGIN} \\
\hline \multicolumn{11}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
1 km subsidence ? Layering of pyroclastic rocks records repeated subsidence and deposition partly on dry land, partly in shallow caldera lake \\
oftedah1, 1978
\end{tabular}}} & & Astrobleme \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & Non astrobleme Intrusion Oftedah1, 1978 \\
\hline & & & & & & V.SP & PE & IF & C S & TUD & & \\
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & \\
\hline & & & & \(\bigcirc\) & & & & & & & & Oftedahl, 1978 \\
\hline
\end{tabular}

\section*{I. BASIC DATA}
```

Nam0 IIVAARA complex
Alternative
names
Location 25 km SW of Kuusamo, NE Finland
Geographlcal 65.50N 28.00E after Lehijärvi, 1960
position
Horlzontal $3 \times 4 \mathrm{~km} \quad$ Lehijärvi, 1960
Depth
Altitude
RIm
Age $430 \mathrm{~m} . \mathrm{y} . \quad$ Vartiainen \& Wooley, 1974

```

\section*{II.FORM AND STRUCTURE}

The alkali rocks of the central zone are surrounded by a 200 - 300 m -broad zone of metasomatically altered rocks .

Lehijärvi, 1960

\section*{III.ORIGIN}

\section*{Astrobleme}

\section*{Non astrobleme}

Intrusion Lehijärvi, 1960

\section*{IV.SPECIFIC STUDIES}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{I. BASIC DATA}

\section*{Namp ILINTSY}
\begin{tabular}{ll} 
Alternative & Il'inets \\
names & Il'inetskaya
\end{tabular}

Location 45 km SE. of Vinnitsa, USSR
```

Geographical 48.45N 28.00E
Grieve \& Robertson, 1979

``` position

\section*{Horlzontal}

Diameter 4.5 km
Diameter 3.2 km ( \(>4.0 \mathrm{~km}\) )
Masaytis, 1975
dimensions
Val'ter, 1975

\section*{Depth}

\section*{Altitude}

\section*{Rim}

Age \(\quad 495 \pm 5 \mathrm{~m} . \mathrm{y}\).
Grieve \& Robertson, 1979

\section*{II.FORM AND STRUCTURE}
"...a deeply eroded structure: under a thin cover of Neogene sands and clays, only a lens ( up to 200-250 m ) of suevites and allogenic breccia has been preserved...."

\section*{Masaytis, 1975}

The base of the body of impactites rises gently (at angles of 3 to 10 degrees) toward the

Non astrobleme

\section*{III.ORIGIN}

\section*{Astrobleme}

Masaytis, 1975
Khryanina, 1978 periphery of the basin.At its edges the angle of rise becomes steeper. Khryanina. 1978

\section*{IV.SPECIFIC STUDIES}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline & & & & & & & & & 0 & & \\
\hline & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{I.BASIC DATA}

\section*{Name ILUMETS CRATERS}

Alternative
Ilumetsa Craters
names
Larger \(=\) Pyrguhaud; Smaller \(=\) Süvahaud

Location SE. frontier of Estonia
\begin{tabular}{lll} 
Geographical & 58.00 N & 27.03 E \\
position & 58.00 N & 27.14 E \\
& 57.58 N & 25.25 E
\end{tabular}

Krinov, 1966
O'Conne2L,I965
v.Engelhardt, 1972

\section*{Horizontal}
dimensions
Depth

\section*{Altitude}
\begin{tabular}{lll} 
Rim & \begin{tabular}{l} 
Pyrguhaud max.height 6 m, breadth 15 m \\
Süvahaud max.height 1.5 m, breadth 20 m
\end{tabular} & Krinov, 1966 \\
Age & Over 2,000yrs & Krinov, I966
\end{tabular}

\section*{II.FORM AND STRUCTURE}

Three turf filled hollows in Devonian and Quaternary rocks.

Krinov,I966

\section*{III. ORIGIN}

Astrobleme
? Krinov, 1966

Non astrobleme

\section*{IV.SPECIFIC STUDIES}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline\(\bullet\) & \(\bullet\) & & & & & & & \(\bullet\) & & & \\
\hline
\end{tabular}

\section*{I. BASIC DATA}
Nams INGOZERO massif
Alternative
names
Location Kola Peninsula, USSR
Geographical ..... \(67.10 \mathrm{~N} \quad 34.00 \mathrm{E}\)
after Gerasimovsky et al, 1974positlonHorlzontaldimensions
Depth
Altitude
Rim
Age Caledonian Gerasimovsky et al, 1974
II.FORM AND STRUCTURE III.ORIGIN
Astrobleme
Non astrobleme
Intrusion
Gerasimovsky et al, 1974
IV.SPECIFIC STUDIES
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{I. BASIC DATA}


\section*{I.BASIC DATA}
Name JASENICE AMPHITHEATRE

Alternative

\section*{names}

Location Czechoslovakia
\begin{tabular}{lll} 
Geographical 49.29 N & 17.57 E & after Žebera, 1970 \\
position
\end{tabular}

Horizontal dimensions

Diameter 2 km

Depth

\section*{Altitude}

Rim

\section*{Age}

\section*{II.FORM AND STRUCTURE}
"It was deepened in the Tě̌in Shale at a diameter of 2 km . The conspicuous elevation in its centre is made up of enormous blocks of Jurassic limestone."

Žebera, 1970
III. ORIGIN

\section*{Astrobleme}

Comet impact
Žebera, 1970

\section*{Non astrobleme}

Classen,1977

\section*{IV.SPECIFIC STUDIES}


\section*{I.BASIC DATA}
Name JUSI PIPE

\section*{Alternative \\ names}
Location Swabian Alb, S.Germany
Geographical position
\begin{tabular}{ll}
\begin{tabular}{ll} 
Horizontal \\
dimensions
\end{tabular} & \begin{tabular}{l} 
Diameter approx. 1 km at a depth of \\
130 m below the original surface
\end{tabular} \\
Depth & See FORM AND STRUCTURE
\end{tabular}
Altitude See FORM AND GTRUCTURE
Rim \(\quad\) See FORM AND STRUCTURE
Age 5 to \(20.4 \times 10^{6} \mathrm{yrs} \quad\) Lorenz et al, 1970

\section*{II.FORM AND STRUCTURE}
"Bedded pyroclastic deposits at the exposed top of the pipe indicate a crater bowl about 1000 m wide, at a depth of 130 m below the original surface....Close to the margins of the pipe, the deposits dip inward quite steeply and are cut by small-scale antithetic faults that indicate latestage subsidence of the filling. Farther down the pipe, stratification due to fall-back of the ejecta into the vent becomes less distinct and finally disappears."

Lorenz et al,I970

\section*{III. ORIGIN}

\section*{Astrobleme}

\section*{Non astrobleme}

Diatreme
Lorenz et al,I970

\section*{IV.SPECIFIC STUDIES}


Lorenz et al,I970

\section*{I.BASIC DATA}
\begin{tabular}{|c|c|c|}
\hline Name & KAALIJARV CRATERS & \\
\hline Alternative & Sall Craters & \\
\hline names & Saarema Island Craters Oesel(Osel) & \\
\hline Location & Island of Saarema, Estonia & \\
\hline Geographical & 58.24N 22.40E & Krinov, 1966 \\
\hline position & \(58.24 \mathrm{~N} \quad 22.43 \mathrm{E}\) & Monod, 1965 \\
\hline Horizontal & Largest 110m diameter & Krinov,1966 \\
\hline & No. 1 diameter 25 m & " " \\
\hline dimensions & No. 2 diameter 35 to 53m & " " \\
\hline & No. 3 diameter 32 to 33 m & " " \\
\hline & No. 4 diameter 20 m & " " \\
\hline & No. 5 diameter 12 to 15 m & " " \\
\hline & No. 6 diameter 25 to 26m & " " \\
\hline Depth & Largest( rim crest to lake floor) 22m & \[
\text { Krinov,I966 }_{\|}
\] \\
\hline & \(\mathrm{No.2,3.5m}\) & " " \\
\hline & No.3,3.5m & \\
\hline & No.4,3.5m & " \\
\hline & No.5,0.9m & " " \\
\hline & No.6,0.65m & " " \\
\hline
\end{tabular}

\section*{Altitude}
\begin{tabular}{lll} 
Rim & Largest, 6 to 7 m above surrounding area & Krinov, I966 \\
Age & 4,000 to \(5,000 \mathrm{yrs}\) & Krinov, 1966
\end{tabular}

\section*{II.FORM AND STRUCTURE}
"The group consists of seven craters spread over an area of \(0.75 \mathrm{~km}^{2}\) situated among ploughed fields".

Krinov,I966

\section*{IV.SPECIFIC STUDIES}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline\(\bullet\) & & & \(\bullet\) & & & & & \(\bullet\) & \(\bullet\) & & \\
\hline
\end{tabular}
III. ORIGIN

\section*{Astrobleme} Krinov, 1966

\section*{I. BASIC DATA}
Namo KALUGA
Alternative
names
Location ..... USSR
Geographical 54.30N 36.15 E Grieve \& Robertson, 1979
position
Horlzontal Diameter 15 km
dimensions
Depth see FORM AND STRUCTURE
Altitude
RIm
Age \(360+10 \mathrm{~m} \cdot \mathrm{y}\). Grieve \& Robertson, 1979
Masaytis, 1975
II.FORM AND STRUCTURE
III.ORIGIN
AstroblemeMasaytis, 1975
Carboniferous strata about 800 m thick. It formsa rounded basin a few hundred meters deep...theallogenic breccia... forms a swell rising 300 mabove the floor of the basin and 150 to 200 mabove the original surface of the MiddleDevonian sediments
Masaytis, 1975 ..... 1975

Grieve \& Robertson, 1979

\section*{KAMENSK}

\section*{I. BASIC DATA}


\section*{I. BASIC DATA}
\begin{tabular}{lll} 
Name & KAMPEN cauldron & \\
\begin{tabular}{lll} 
Alternative \\
names
\end{tabular} & WNW of 0slo, Norway \\
Location & 60.03 N & 10.27 E
\end{tabular}\(\quad\) after Segalstad, 1975

\section*{Depth}

Altitude

Rim
Age
Permian
Segalstad, 1975

\section*{II.FORM AND STRUCTURE}

Subsidence about 1 km . The earliest caldera collapse is indicated by occurence of a thick sequence of coarse to gravelly volcanic sandstone...within the upper part of basalt unit B3. The B3 complex is overlain by an arc-shaped zone of coarse breccias, then felsite porphyry. It is tempting to interpret these rocks as a caldera filling and explosion breccia, overlain by ignimbrites.

Oftedahl, 1978
IV.SPECIFIC STUDIES
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{III.ORIGIN}

\section*{Astrobleme}

\section*{Non astrobleme}

Cauldron subsidence
Segalstad, 1975
Oftedahl, 1978

\section*{I. BASIC DATA}
Namp KARLA
Alternative
names
Locatlon RSFRS
Geographical ..... \(57.45 \mathrm{~N} \quad 48.00 \mathrm{E}\)
position
Horlzontal Diameter \(18 \mathrm{~km} \quad\) Grieve \& Robertson, 1979
dimensions
Depth

\section*{Altitude}

\section*{Rim}
Age \(\quad 10 \mathrm{~m} . \mathrm{y}\). Grieve \& Robertson, 1979Late Miocene - early PlioceneMasaytis et al, 1976

\section*{II.FORM AND STRUCTURE}
Middle Carboniferous limestone at the center of the structure form an uplift with an amplitude of as much as 300 m . Pliocene and Quaternary clays and other sediments are localized maily within the circular basin and constitute the filling complex which ranged in thickness up to 100 m .
Masaytis et al, 1976

\section*{III.ORIGIN}

\section*{Astrobleme}
Masaytis et al, 1976
Non astrobleme

\section*{IV.SPECIFIC STUDIES}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline & & & & & & & & & & 0 & \\
\hline
\end{tabular}

\section*{I. BASIC DATA}
Name KATNOSA ring complex
Alternative
names
Location 25 km NW of Oslo, Norway
Geographical 60.10N 10.35E ..... after Oftedah1, 1978
position
Horlzontal Diameter 9 km ..... Oftedah1, 1978
dimensions
Depth
Altitude
Rim
Age Permian ..... Oftedah1, 1978
II.FORM AND STRUCTURE
III.ORIGIN
Basic center to syenitic or granitic outer zone

\section*{Non astrobleme}
Intrusion Oftedahl, 1978

\section*{IV.SPECIFIC STUDIES}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline & & & & & & & & & & & \\
\hline
\end{tabular}

\footnotetext{
Oftedahl, 1978
}

\section*{I. BASIC DATA}


\section*{I. BASIC DATA}
Name KIKUT ring structure
Alternative
names
Location N. of Oslo, Norway
Geographlcal 60.03 N ..... 10.32E
after Segalstad, 1975position
Horlzontal Diameter approximately 8 km after Segalstad, 1975 oftedahl, 1978dimensions3 to 4 km diameter
Depth
Altitude
Rim
Age Permian Segalstad, ..... 1975
II.FORM AND STRUCTUREGranitic center to basic outer zone
III.ORIGIN
Astrobleme
Non astrobleme
PlutonicSegalstad, 1975
IV.SPECIFIC STUDIES
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{I. BASIC DATA}


\section*{I. BASIC DATA}
Name KÖFELS
Alternative
names
Location Tyrol, Austria
Geographical \(47.13 \mathrm{~N} \quad 10.58 \mathrm{E}\)
von Engelhardt, 1972
position
Horizontal Diameter 4 kmvon Engelhardt, 1972dimensions Diameter 5 km
Depth
Altitude
Rim
Age \(8 \times 10^{3}\) years von Engelhardt, 1972
II.FORM AND STRUCTURE
III.ORIGIN

Deeply eroded semicircular basin in the
flanks of a glacial U-shaped valley.
von Engelhardt, 1972

O'Conne11, 1965

\section*{Astrobleme}
von Engelhardt, 1972

\section*{Non astrobleme}
landslide
Erismann et a1, 1977

\section*{IV.SPECIFIC STUDIES}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline & & & & & & & & & 0 & & \\
\hline & & & & & & & & & & & \\
\hline
\end{tabular}
von Engelhardt, 1972
Erismann et al, 1977

\section*{I. BASIC DATA}
```

Name KONTOZERO
Alternative Kontozersk
names
Locatlon Kola Peninsula, USSR
Geographical 68.40N 36.00E after Gerasimovsky et al, 1974
position
Horizontal
dimensions
Depth
Altitude
RIm
Age 4l0 m.y.
II.FORM AND STRUCTURE
III.ORIGIN

```

\section*{Astrobleme}

\section*{Non astrobleme}

Gerasimovsky et al, 1974

\section*{IV.SPECIFIC STUDIES}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{I. BASIC DATA}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline & & & & & & & & & & & \\
\hline
\end{tabular} Borodin \& Pavlenko, 1974

\section*{KOVDOZERO}

Second edition - 1980

\section*{I. BASIC DATA}
Namp KOVDOZERO
Alternative Kovdozersk
Location Kola Peninsula, USSR
Geographical Approx. 67.00N 32.00E
after Gerasimovsky et al, 1974
position
Horizontal\(37.5 \mathrm{~km}^{2}, 8 \times 5.5 \mathrm{~km}\)Gittins, 1966
dimensions
Depth
Altitude
Rim
Age Caledonian ..... Gerasimovsky et al, 1974
II.FORM AND STRUCTURE
III.ORIGIN
The central part of the intrusion is olivinite,pyroxenite and peridotite; the latter two formincomplete rings, and the outer part consistsof ijolite, melteigite and jacupirangitedipping at 70 to 80 degrees. Between them aretwo bodies of turjaite also in the form of anincomplete ring
Gittins, 1966

\section*{Non astrobleme}
Gittins, 1966
Gerasimovsky et al, 1974

\section*{IV.SPECIFIC STUDIES}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{I. BASIC DATA}
Name KURGA
Alternative Kurginskiynames
Location Kola Peninsula, USSR
Geographical 68.10N 35.30E ..... after Gerasimovsky et al, 1974position
Horizontal
dimensions
Depth
Altitude
RIm
Age Caledonian Gerasimovsky et al, ..... 1974
II.FORM AND STRUCTURE
III.ORIGIN
Ultramafic alkaline massif
Astrobleme
Non astrobleme
Intrusion
Gerasimovsky et al,1974
IV.SPECIFIC STUDIES
1

3

5

17

18

\begin{tabular}{|l|l|l|l|}
\hline 9 & 10 & 11 & 12 \\
\hline
\end{tabular}

\section*{I. BASIC DATA}
Name KURSK
Alternative
names
Locatlon USSR
Geographical 51.40N 36.00E Grieve \& Robertson, 1979
position
Horizontal Diameter 5 km Grieve \& Robertson, 1979
dimensions
Depth
Altitude
RIm
Age ..... \(250 \pm 80 \mathrm{~m} . \mathrm{y}\).
Grieve \& Robertson, ..... 1979
II.FORM AND STRUCTURE
III.ORIGIN
In its central part there is an uplift ofcrushed crystalline basement with an amplitudeAstroblemeof up to \(250 \mathrm{~m}, \ldots\)...the structure is concealedMasaytis, 1975
below a 200 m sequence of Jurassic and Cretaceousstrata.
Masaytis, 1975Non astroblemeIV.SPECIFIC STUDIES
\begin{tabular}{l|l|l|}
\hline 1 & \(2 \mid\) & \\
\hline
\end{tabular} ..... 5
6

| 8

10
 11 ..... 12

\section*{I.BASIC DATA}
\begin{tabular}{lll} 
Name & LAACHER SEE & \\
\begin{tabular}{ll} 
Alternative \\
names
\end{tabular} & Lachermaar & \\
\begin{tabular}{ll} 
Location \\
\begin{tabular}{l} 
Geographical \\
position
\end{tabular} & \(50.25 \mathrm{~N} \quad 7.17 \mathrm{E}\)
\end{tabular} & \\
\begin{tabular}{l} 
Horizontal \\
dimensions
\end{tabular} & \(2 \times 2.5 \mathrm{~km}\) & after Schminke et al, 1973 \\
\begin{tabular}{l} 
Depth
\end{tabular} & after Schminke et al, 1973
\end{tabular}

\section*{Altitude}
Rim See FORM AND STRUCTURE

Age
11,000 BP.
Schminke et al,1973

\section*{II.FORM AND STRUCTURE}
"Laacher See....lies in a small oval basin of complex origin. The highest points around its rim are cinder- and lava-cones of alkalic basalts, formed about 40,000 years ago."

Schminke et al,I973
III. ORIGIN

Astrobleme

\section*{Non astrobleme}

Volcanic
Schminke et al,I973
IV.SPECIFIC STUDIES
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline & & \(\bullet\) & & & & & & & & & \\
\hline
\end{tabular}

Schminke et al,I973

\section*{I.BASIC DATA}
\begin{tabular}{ll} 
Name & LAC BOUCHET \\
Alternative & Lac du Bouchet \\
names \\
Location & Massif Central, France \\
Geographical \\
position & \\
\begin{tabular}{l} 
Horizontal \\
dimensions \\
Depth
\end{tabular} & Diameter approximately 1km
\end{tabular}\(\quad\) GaZZant,I964

\section*{Altitude}

Rim

Age

\section*{II.FORM AND STRUCTURE}

\author{
III. ORIGIN \\ Astrobleme \\ Gallant,I964
}

\section*{Non astrobleme}

Classen,1977

\section*{IV.SPECIFIC STUDIES}
\begin{tabular}{|c|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline\(\bullet\) & & & & & & & \(\therefore\) & & & & \\
\hline
\end{tabular}

Gallant, I964

\section*{I. BASIC DATA}
\begin{tabular}{|c|c|c|}
\hline Namp & LAGO TREMORGIO & \\
\hline \multicolumn{3}{|l|}{Alternatlve names} \\
\hline Location & Swiss Alps & \\
\hline \multicolumn{3}{|l|}{Geographical position} \\
\hline Horizontal dimensions & 1.36 to 1.42 km diameter & Bachtiger,1977 \\
\hline Depth & \[
\begin{aligned}
& 250 \mathrm{~m} \\
& \text { Original depth } 100 \mathrm{~m}
\end{aligned}
\] & \begin{tabular}{l}
Bachtiger, 1977 \\
Bachtiger, 1977
\end{tabular} \\
\hline Altitude & & \\
\hline \multicolumn{3}{|l|}{Rim} \\
\hline Age & 20,000 to 50,000 years & Bachtiger, 1977 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{II.FORM AND STRUCTURE}} & III.ORIGIN \\
\hline & & Astrobleme Possibly Bachtiger, 1977 \\
\hline & & Non astrobleme \\
\hline
\end{tabular}

\section*{IV.SPECIFIC STUDIES}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline
\end{tabular}

\section*{I. BASIC DATA}
Namp LAIVAJOKI
Alternative
names
Location Finland
Geographical Approx. 65.10N 27.30Eposition
Horizontal
dimensions
Depth
Altitude
RIm
Age 2020 m.y. Vartiainen \& Wooley, 1974
II.FORM AND STRUCTURE
III.ORIGIN
Astrobleme
Non astrobleme
Intrusion Vartiainen \& Wooley, 1974
IV.SPECIFIC STUDIES
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline
\end{tabular} ..... \begin{tabular}{l|l|}
\hline 11 & 12 \\
\hline
\end{tabular}

\section*{I.BASIC DATA}

\section*{Name LAKE HUMMELN}

Alternative

\section*{names}

Location Småland, south Sweden
\begin{tabular}{llll} 
Geographical & 57.24 N & 16.12 E & O'ConneI2,I965 \\
position & 57.22 N & 16.15 E & Svensson,I966
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Horizontal dimensions & \begin{tabular}{l}
Diameter of depressions in southern \\
lake bed \(=1 \mathrm{~km}\)
\end{tabular} & Fredriksson \& Wickman, 1963 \\
\hline & \(1.0 \times 0.65 \mathrm{~km}\) & Svensson, 1966 \\
\hline & \(1.3 \times 1.0 \mathrm{~km}\) & v.Enge Lhardt, 1972 \\
\hline Depth & Lake depth 60 m , which is \(80-90 \mathrm{~m}\) below general level. & Fredriksson \& Wichman, 1963 \\
\hline Altitude & Lake 61.5 m at deepest point,rim at13m depth. & Svensson, 1966 \\
\hline Altitude & & \\
\hline Rim & See Depth & \\
\hline Age & 600 to \(700 \times 10^{6} \mathrm{yrs}\) & Fredriksson \& Wickman,I963 \\
\hline
\end{tabular}

\section*{II.FORM AND STRUCTURE}

A depression in the bottom of the southern end of the lake.

Fredriksson \& Wickman,I963
III. ORIGIN

\section*{Astrobleme}

Fredriksson \& Wickman, 1963 Svensson, I966
v.Enge Lhardt, 1972

\section*{Non astrobleme}

\section*{IV.SPECIFIC STUDIES}
\begin{tabular}{|c|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline & \(\bullet\) & & & \(\bullet\) & & & \(\ddots\) & & & & \\
\hline
\end{tabular}

Svensson, 1966

\section*{I.BASIC DATA}
\begin{tabular}{lll} 
Name & LAKE LAATOKKA BASIN \\
Alternative & \begin{tabular}{l} 
Lake Ladoga \\
Lake Ladozhskoye Oz
\end{tabular} & \\
\begin{tabular}{lll} 
names
\end{tabular} & Karelia, USSR
\end{tabular}\(\quad\) after Eskola, I92T

\section*{Altitude}

\section*{Rini}

Age

\section*{II.FORM AND STRUCTURE}
"...analagous volcanic formations in the basin of Lake Laatokka.Boulders of volcanic amygdaloids and agglomeraters, some of which contain volcanic glass, are found on the islands of Valamo, mainly built up of diabase and quartz-diabase...."

Eskola,192I
III. ORIGIN

Astrobleme

Non astrobleme

\section*{IV.SPECIFIC STUDIES}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline
\end{tabular}

\section*{I. BASIC DATA}

\section*{Name LAKE MIEN}
Alternative Mienstrukturen
names

Location \(\quad 30 \mathrm{~km} \cdot \mathrm{~N}\). of Karlshamn, Sweden
\begin{tabular}{llll} 
Geographical & 56.25 N & 14.52 E & Stanfors, 1973 \\
position & 56.25 N & 14.55 E & von Engelhardt, 1972
\end{tabular}

Horizontal 5 km diameter (rhombic)
Stanfors, 1973
dimensions Diameter 4 to 5 km , area \(20 \mathrm{~km}^{2}\)
Svensson \& Wickman,1965

Depth W. side of lake 2 to 14 m deep, E . deeper
Stanfors, 1973
von Engelhardt, 1972
Altitude 94.8 m as 1.
Stanfors, 1973
RIm
Age Less than \(50 \times 10^{6}\) years Fredriksson \& Wickman, 1963
\(92 \pm 6 \times 10^{6}\) years Stanfors, 1973
\(119^{-} \pm 2 \mathrm{~m} . \mathrm{y}\).
Bottomley et al, 1978

\section*{II.FORM AND STRUCTURE}

In Precambrian granite-gneiss basement with glacial drift cover. West side of lake demarcated by N2OW fault. Drill on Ramso Island showed 3 to 5 m of moraine underlain by 20 to 25 m of "dellenite" lava-like rocks overlying 2 m of tuff-like breccia which lies on a basal granite breccia. Large negative gravity anomaly and positive magnetic anomalies.

Stanfors, 1973

\section*{III.ORIGIN}

\section*{Astrobleme}

Fredriksson \& Wickman,1963
Svensson \& Wickman, 1965
von Engelhardt, 1972
Stanfors; 1973

\section*{Non astrobleme}

Glacial excavation of a region shattered by a volcanic explosion. Eskola, 1921
IV.SPECIFIC STUDIES


Svensson \& Wickman, 1965
von Engelhardt, 1972
Stanfors, 1973
Bottomley et al, 1978

\section*{I. BASIC DATA}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & \multicolumn{10}{|c|}{LANGESUNDSFJORD cauldron} \\
\hline \multicolumn{14}{|l|}{Alternatlve names} \\
\hline \multicolumn{4}{|l|}{Location} & \multicolumn{10}{|l|}{Centered 5 km NW of Larvik, Norway} \\
\hline \multicolumn{4}{|l|}{Geographical position} & \multicolumn{2}{|l|}{59.05N} & \multicolumn{6}{|l|}{10.05E} & \multicolumn{2}{|l|}{after Oftedahl, 1978} \\
\hline \multicolumn{4}{|l|}{Horlzontal dimensions} & \multicolumn{8}{|l|}{Diameter approx. 12 km} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{after Oftedahl, 1978}} \\
\hline \multicolumn{12}{|l|}{Depth} & & \\
\hline \multicolumn{14}{|l|}{Altitude} \\
\hline \multicolumn{14}{|l|}{RIm} \\
\hline \multicolumn{4}{|l|}{Age} & \multicolumn{8}{|l|}{Permian} & \multicolumn{2}{|l|}{Oftedahl, 1978} \\
\hline \multicolumn{4}{|l|}{II.FORM A} & \multicolumn{8}{|l|}{ND STRUCTURE} & \multicolumn{2}{|l|}{III.ORIGIN} \\
\hline \multicolumn{12}{|r|}{A larvikite which has a semi-circular periphery extending...for about 120 degrees. A ring fault against bed rocks lies outside of it... the circular periphery of the larvikite body is due to a cauldron ring fault that was later followed by larvikite which stoped and consumed nearly all of the subsided block.} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Astrobleme \\
Non astrobleme \\
Cauldron subsidence Oftedahl, 1978
\end{tabular}} \\
\hline \multicolumn{14}{|c|}{IV.SPECIFIC STUDIES} \\
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & & \\
\hline & & & & \(\bigcirc\) & & & & & & & & Oftedahl, 1978 & \\
\hline
\end{tabular}
Name LANGLIA RING-STRUCTURE

\section*{Alternative} names

\section*{Location N.of Oslo,Norway}
```

Geographical 60.05N 10.30E after Segalstad,I975
position

```

\section*{Horizontal}
dimensions

Depth

\section*{Altitude}

Rim
Age Permian Segalstad,1975
II.FORM AND STRUCTURE
III. ORIGIN

Astrobleme

\section*{Non astrobleme}

Plutonic
Segalstad, 1975
IV.SPECIFIC STUDIES
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline & & & & \(\bullet\) & & & & & & & \\
\hline
\end{tabular}

Segalstad,1975

\section*{I. BASIC DATA}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Name LAPPAJARVI structure} \\
\hline Alternative names & \multicolumn{2}{|l|}{Lake Lappajarvi} \\
\hline Location & \multicolumn{2}{|l|}{320 km north of Helsinki, Finland} \\
\hline Geographical & \(63.10 \mathrm{~N} \quad 23.40 \mathrm{E}\) & Svensson, 1971 \\
\hline position & 63.09 N 23.42 E & Lehtinen,1976 \\
\hline Horizontal dimensions & \begin{tabular}{l}
Diameter of impact melt 5 to 6 km \\
Lake diameter \(24 \times 12 \mathrm{~km}\) \\
Diameter \(17 \times 10 \mathrm{~km}\) \\
Diameter 12 to 14 km
\end{tabular} & \begin{tabular}{l}
Svensson, 1971 \\
Lehtinen, 1970 \\
von Engelhardt, 1972 \\
Lehtinen, 1976
\end{tabular} \\
\hline Depth & Average depth of lake 5 to 10 m & von Engelhardt, 1972 \\
\hline \multicolumn{3}{|l|}{Altitude} \\
\hline \multicolumn{3}{|l|}{R1m} \\
\hline Age & Precambrian to Pleistocene Less than 1800 m.y. & \begin{tabular}{l}
von Engelhardt, 1972 \\
Lehtinen, 1976
\end{tabular} \\
\hline \multicolumn{2}{|l|}{II.FORM AND STRUCTURE} & III.ORIGIN \\
\hline \multicolumn{2}{|l|}{Topography of the Lake Lappajarvi area is rather flat..... The 80 m contour forms a rough circle around the lake area, excluding the southern and northern corners of the lake... and has a diameter of about 14 km .} & \begin{tabular}{l}
Astrobleme \\
Lehtinen, 1970 \\
Svensson, 1971 \\
von Engelhardt, 1972
\end{tabular} \\
\hline
\end{tabular}

\section*{Non astrobleme}

Glacial deepening of a region shattered by volcanic explosion. Eskola, 1921
IV.SPECIFIC STUDIES
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & 0 & & & & & \\
\hline
\end{tabular}

Lehtinen, 1970
Svensson, 1971
Lehtinen, 1976

\section*{I. BASIC DATA}

\section*{Name LA SAUVETAT}

\section*{Alternative} names
\begin{tabular}{lrl} 
Location & Puy de Dôme, France \\
Geographical & 44.52 N & 01.31 E. \\
position & &
\end{tabular}
Horizontal
dimensions \(\quad\) Diameter approximately \(1.5 \mathrm{~km} \quad\) Gailant, 1964

\section*{Depth}

\section*{Altitude}

Rim
Age

\section*{II.FORM AND STRUCTURE}
III. ORIGIN

Astrobleme
? Gallant, 1964

\section*{Non astrobleme}

Classen,1977
IV.SPECIFIC STUDIES
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline
\end{tabular}

\section*{I. BASIC DATA}
```

Nams LESNAYA VARAKA complex
Alternatlve
names
Location Kola Peninsula, USSR
Geographical 67.30N 32.40E after Gerasimovsky et al, 1974
position
Horlzontal }20\mp@subsup{\textrm{km}}{}{21961
dimensions
Depth
Altitude
Rim
Age
Caledonian
Gerasimovsky et al, 1974

```

\section*{II.FORM AND STRUCTURE}

Outer pyroxenites grade into olivinites
toward the center.

Tomkeieff, 1961
-

\section*{III.ORIGIN}

\section*{Astrobleme}

\section*{Non astrobleme}

\section*{Intrusion}

Gerasimovsky et al, 1974
IV.SPECIFIC STUDIES
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{I. BASIC DATA}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Namg LOGOISK} \\
\hline \multicolumn{3}{|l|}{Alternative names} \\
\hline Location & Bel. SSR & \\
\hline Geographical position & 54.12N 27.48E & Grieve \& Robertson, 1979 \\
\hline Horizontal dimensions & Diameter 17 km & Grieve \& Robertson, 1979 \\
\hline \multicolumn{3}{|l|}{Depth} \\
\hline \multicolumn{3}{|l|}{Altitude} \\
\hline \multicolumn{3}{|l|}{Rim} \\
\hline Age & \(100 \pm 20 \mathrm{~m} . \mathrm{y}\). & Grieve \& Robertson ,1979 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{II.FORM AND STRUCTURE}} & III.ORIGIN \\
\hline & & \begin{tabular}{l}
Astrobleme \\
Probably \\
Grieve \& Robertson, 1979
\end{tabular} \\
\hline \multicolumn{3}{|r|}{Non astrobleme} \\
\hline
\end{tabular}

\section*{IV.SPECIFIC STUDIES}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline
\end{tabular}

\section*{I. BASIC DATA}
\begin{tabular}{|c|c|c|}
\hline Name & LOVOZERO massif & \\
\hline Alternative names & Lujavrurt massif & \\
\hline Location & Central Kola Peninsula, USSR & \\
\hline Geographlcal position & \(68.05 \mathrm{~N} \quad 35.00 \mathrm{E}\) & after Gerasimovsky et al, 1968 \\
\hline Horizontal dimensions & \(650 \cdot \mathrm{~km}^{2}\) & Gerasimovsky et al, 1968 \\
\hline \multicolumn{3}{|l|}{Depth} \\
\hline \multicolumn{3}{|l|}{Altitude} \\
\hline \multicolumn{3}{|l|}{Rim} \\
\hline Age & Post Late Devonian 298 to 303 m.y. 386 to 422 m. \(y\). & \begin{tabular}{l}
Gerasimovsky et al, 1968 \\
Vartiainen \& Wooley, 1974
\end{tabular} \\
\hline II.FORM AN & STRUCTURE & III.ORIGIN \\
\hline \multicolumn{3}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
The form of the massif in plan is rectangular with rounded corners. It has the form of a \\
Astrobleme \\
laccolith with a broad "base". According to the geophysical data, the alkaline rocks can be traced to a depth of more than 7 km . Two structural units. Its upper part comprises a layered intrusion about 2 km thick and \(20 \times 30 \mathrm{~km}\) in area. The lower stock-like part is displaced to the east relative to the layered body and measures 12 x 16 km . The dip of the contacts of the intrusion are close to vertical \\
Non astrobleme \\
Intrusion \\
Gerasimovsky et al, 1968 \\
Vlasov et al, 1966
\end{tabular}}} \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) & \(\mathbf{5}\) & \(\mathbf{6}\) & \(\mathbf{7}\) & \(\mathbf{8}\) & \(\mathbf{9}\) & \(\mathbf{1 0}\) & \(\mathbf{1 1}\) & \(\mathbf{1 2}\) \\
\hline & & \(\mathbf{0}\) & \(\mathbf{0}\) & & & & & & & & \\
\hline & & & 0 & & & & & & & & \\
\begin{tabular}{l} 
Gerasimovsky et a1, \\
vlasov et al, 1966
\end{tabular} \\
\hline
\end{tabular}

\section*{I. BASIC DATA}
Name LUNDBERGKOLLEN ..... cauldron
Alternative
names
Locatlon 55 km NNE of Oslo, Norway
Geographical 60.26 N 10. 50E ..... after Oftedahl, 1978
position
Horlzontal Diameter 10 km ? ..... Oftedahl, 1978
dimensions
Depth
Altitude
RIm
Age Permian ..... Oftedahl, 1978

\section*{II.FORM AND STRUCTURE}

Subsidence 1 km . Area of volcanic rocks and volcaniclastic sediments, that have clearly subsided in relation to Cambro-Silurian sediments a little to the west. This small area is assumed... to represent the remanent of a formerly large caldera block.

Oftedah1, 1978

\section*{III.ORIGIN}

Astrobleme

\title{
Non astrobleme \\ Cauldron subsidence Oftedahl, 1978
}

\section*{IV.SPECIFIC STUDIES}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline & & & & 0 & & & & & & & \\
\hline
\end{tabular}

\section*{I. BASIC DATA}

\section*{Namp}

MAVRGUBINSKY
compl ex

\section*{Alternative}

\section*{names}

Location Kola Peninsula, USSR
Geographical \(68.20 \mathrm{~N} \quad 32.00 \mathrm{E} \quad\) after Gerasimovsky et al, 1974
position

\section*{Horizontal}
dimensions

\section*{Depth}

\section*{Altitude}

RIm
Age
Caledonian
Gerasimovsky et al, 1974

\section*{II.FORM AND STRUCTURE}

Ultramafic alkaline massif.
Gerasimovsky et al, 1974

\section*{III.ORIGIN}

Astrobleme

Non astrobleme Intrusion

Gerasimovsky et al, 1974

\section*{IV.SPECIFIC STUDIES}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{I.BASIC DATA}

Name MEERFELDER MAAR

\section*{Alternative}
names
Location Eiffel, West Germany

Geographical \(50.05 \mathrm{~N} \quad 6.45 \mathrm{E}\) after Lorenz et al, 1970
position

Horizontal
dimensions

Depth

Diameter 1.4 km \(1.48 \times 1.2 \mathrm{~km}\)

212 m
113 to 212m

OLLier,I967
Lorenz et al, 1970

Ullier,1967
Lorenz et al,I970

Lorenz et al,I970

\section*{III. ORIGIN}

Astrobleme

\section*{Non astrobleme}

Volcanic Ullier, I967 Lorenz et al,1970

\section*{IV.SPECIFIC STUDIES}


OLZier, 1967

Lorenz et al,1970

\section*{I.BASIC DATA}
\begin{tabular}{|c|c|c|}
\hline Name & MENDORF & \\
\hline \multicolumn{3}{|l|}{Alternative names} \\
\hline Location & SW.Germany & \\
\hline Geographical position & \[
\begin{array}{ll}
48.46 \mathrm{~N} & 11.37 \mathrm{E} \\
48.53 \mathrm{~N} & 11.36 \mathrm{E}
\end{array}
\] & \begin{tabular}{l}
after Rutte, 1974 \\
Classen,1975
\end{tabular} \\
\hline Horizontal dimensions & Diameter 2.6 km Diameter 2.5 km & \begin{tabular}{l}
Rutte, I974 \\
Classen,I975
\end{tabular} \\
\hline Depth & See FORM AND STRUCTURE & \\
\hline Altitude & 410 m & Rutte,I974 \\
\hline \multicolumn{3}{|l|}{Rim} \\
\hline Age & \(14.8 \times 10^{6} \mathrm{yrs}\) ? & Classen, I975 \\
\hline II. FORM & AND STRUCTURE & III. ORIGIN \\
\hline Infilled crater & ith central uplift. Rutte,I974 & \begin{tabular}{l}
Astrobleme \\
Rutte,I97I \\
Classen, I975
\end{tabular} \\
\hline \multicolumn{3}{|l|}{Very probably several craters Classen,I975} \\
\hline
\end{tabular}

\section*{IV.SPECIFIC STUDIES}


Rutte, I97I

\section*{I. BASIC DATA}
```

Name MISARAI
Alternative
names
Location Lith. SSR
Geographical 54.00N 23.54E
positlon
Horlzontal Diameter 5 km Grieve \& Robertson, 1979
dimensions
Depth
Altitude
RIm
Age 500 + 80 m.y. Grieve \& Robertson, }197
II.FORM AND STRUCTURE

```

\section*{III.ORIGIN}
```

Astrobleme
Probably
Grieve \& Robertson, 1979
Non astrobleme

```
IV.SPECIFIC STUDIES
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline
\end{tabular}

\section*{I. BASIC DATA}
\begin{tabular}{|c|c|c|}
\hline Namg & MISHINA GORA & \\
\hline Alternative names & Mishinogorsk & \\
\hline Location & USSR & \\
\hline Geographical position & 58.40N 28.00E & Grieve \& Robertson, 1979 \\
\hline Horlzontal dimensions & Diameter 2.5. km \(4 \times 2.5 \mathrm{~km}\) & Grieve \& Robertson, 1979 Shmayenok \& Tikhomirov, 1974 \\
\hline Depth & 700 m deep & Shmayenok \& Tikhomirov, 1974 \\
\hline
\end{tabular}

\section*{Altitude}

\section*{RIm}

Age less than \(360 \mathrm{~m} . \mathrm{y}\).
Grieve \& Robertson, 1979
Shmayenok \& Tikhomirov, 1974

\section*{II.FORM AND STRUCTURE}

The structure is rounded in plan and is surrounded by a ring of deformed..sedimentary rocks dipping away...at varying angles. The cup-shaped basin...has been filled with a gigantic allogenic breccia

Masaytis, 1975

\section*{IV.SPECIFIC STUDIES}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{I. BASIC DATA}

\section*{Name MOURNE GRANITE}

\section*{Alternative}

\section*{names}

\section*{Location County Down, Northern Ireland}
Geographical 54.08 N 6.00W after Charlesworth, I963
Horizontal \(\quad\) Diameter \(11.6 \mathrm{~km}(7.5 \mathrm{miles}) \quad\) Chorlesworth, 1963
dimensions

\section*{Depth}

\section*{Altitude}

Rim

Age \(\begin{array}{ll}\text { Tertiary } \\ & 75 \pm 7 \times 10^{6} \mathrm{yrs} \\ & 58.1 \pm 1.6 \times 10^{6}, 58 \pm 1.0 \times 10^{6} \mathrm{yrs}\end{array}\)

\section*{II.FORM AND STRUCTURE}

Five granite intrusions with a cone sheet dipping at 30 degrees.

Charlesworth,I963

Charlesworth, 1963 Miller \& Brown quoted in Evans et al,I973
III. ORIGIN

Astrobleme

\section*{Non astrobleme}

Cauldron subsidence Charlesworth,I963

\section*{IV.SPECIFIC STUDIES}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & & & & \\
\hline
\end{tabular}

Charlesworth, 1963

\section*{I.BASIC DATA}

\section*{Name MULL COMPLEX}

\section*{Alternative}
names
Location West Scotland
Geographical \(56.28 \mathrm{~N} \quad 5.56 \mathrm{~W}\)
after Richey et al,I96I
position

\section*{Horizontal dimensions}

NW. caldera \(8 \times 5.5 \mathrm{~km}\)
SE. caldera \(9 \times 7 \mathrm{~km}\)
Nichey et al,I96I

Depth See FORM AITD STRUCTURE

\section*{Altitude}

Rim

Age
Tertiary
Slightly older than \(61 \times 10^{6} \mathrm{yrs}\)
Richey et al,I96I
Evans et al,I973

\section*{II.FORM AND STRUCTURE}

Two calderas with ring dykes and cone sheets.In the NW. caldera there has been 150 m subsidence on inner ring fault.

Lewis, 1968
Subsidence of 950 m on a 70 to 80 degree dip fault in the N. caldera.

Bailey et al,I924
IV.SPECIFIC STUDIES
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline & & \(\bullet\) & \(\bullet\) & & & & & & & & \\
\hline
\end{tabular}

Richey et al,I96I

\section*{I. BASIC DATA}

\section*{Name MYKLE ring structure}

\section*{Alternative}
names

Location 20 km north of Skien, Norway
\begin{tabular}{ll} 
Geographical 59.40 N \\
position & \(9.45 \mathrm{E} \quad\) after Segalstad, 1975
\end{tabular}
\begin{tabular}{lll} 
Horizontal & About \(23 \times 16 \mathrm{~km}\) & after Segalstad, 1975 \\
dimensions & \(18 \times 22 \mathrm{~km}\) & Oftedahl, 1978
\end{tabular}

Depth See FORM AND STRUCTURE

\section*{Altitude}

RIm

Age
Permian
Segalstad, 1975

\section*{II.FORM AND STRUCTURE}
"Along the border of the ring structure there is a depression in the terrain which can be readily seen on aerial photos and topographic maps.Outside this depression the larvikite has an angular surface and is overgrown by spruce trees, while on the inner side the larvikite has a rounded surface expression and supports pine trees... though the extent of the subsidence is difficult to estimate.It may have exceeded \(1500 \mathrm{~m} . .\). The ring dyke is usually 4 to 8 m wide..."

\section*{Segalstad, 1975 \\ \\ IV.SPECIFIC STUDIES} \\ \\ IV.SPECIFIC STUDIES}

\section*{III.ORIGIN}

\section*{Astrobleme}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{I.BASIC DATA}
\begin{tabular}{llll} 
Name & NETOLICE EXPLOSION & CRATER \\
\begin{tabular}{lll} 
Alternative \\
names
\end{tabular} & & \\
\begin{tabular}{lll} 
Location & Czechoslovakia & \\
\begin{tabular}{lll} 
Geographical & 49.03 N & 14.12 E \\
position
\end{tabular} & & \\
\begin{tabular}{l} 
Horizontal \\
dimensions
\end{tabular} & & \\
after žebera, I970
\end{tabular} \\
\hline
\end{tabular}

\section*{Altitude}

Rim
Age
14 to \(15 \times 10^{6} \mathrm{yrs}\)
Žebera, 1970

\section*{II.FORM AND STRUCTURE}
"A striking depression is there filled with chaotically deposited sediments of very unusual character for the South-Bohemian basins."

Žebera, 1970

\section*{III. ORIGIN}

\section*{Astrobleme}

Comet impact
Žebera, I970

Non astrobleme

\section*{IV.SPECIFIC STUDIES}


\section*{I. BASIC DATA}
Name NITTEDAL cauldron
Alternative
names
Location 15 km NE of Oslo, Norway
Geographical \(60.03 \mathrm{~N} \quad 10.38 \mathrm{E} \quad\) after Oftedah1, 1969
position
Horlzontal \(\quad 15 \times 10 \mathrm{~km}\) after Oftedah1, 1969dimensions 11 km diameterOftedah1, 1978
Depth
Altitude
Rim
Age Permian Oftedah1, 1978
II.FORM AND STRUCTURE
III.ORIGIN
Big caldera formerly assumed to be justa remnant of a smaller caldera, the Alnsjocaldera (q.v.).Oftedahl, 1969
Subsidence 0.8 km .Oftedahl, 1978
Non astrobleme
Cauldron subsidence
Oftedahl, 1969
IV.SPECIFIC STUDIES
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline & & & & & & & & & & & \\
\hline
\end{tabular}

\footnotetext{
Oftedah1, 1978
}
I. BASIC DATA
Name NORDLIKAMPEN ring complex
Alternative
names
Location \(\quad 60 \mathrm{~km}\) NNE of Oslo, Norway
Geographical 60.30N 10.58E ..... after Oftedah1, 1978
position
Horizontal Diameter 5 km ..... Oftedah1, 1978
dimensions
Depth
Altitude
Rim
Age Permian Oftedahl, ..... 1978
II.FORM AND STRUCTUREGranitic center to basic outer zoneOftedah1, 1978
1II.ORIGIN
Astrobleme
Non astrobleme
Intrusion
Oftedahl, 1978
IV.SPECIFIC STUDIES
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline & & & & & & & & & & & \\
\hline
\end{tabular} Oftedah1, 1978

\section*{I. BASIC DATA}

\section*{Name NORRA K ÄRR}

\section*{Alternative} names

Location \(\quad 1.5 \mathrm{~km}\) E of Lake Vattern, Sweden
Geographical position
Horlzontal \(\quad 1.1 \times 0.4 \mathrm{~km}\) von Eckermann, 1968 dimensions

Depth

Altitude
Rim
Age
1020 m.y.
von Eckermann, 1968
\(1580 \pm 62 \mathrm{~m} . \mathrm{y}\).
Kresten et al, 1977

\section*{II.FORM AND STRUCTURE}

The alkaline area is .....an intrusion surrounded by a fenite zone of 25 to 100 m width.
von Eckermann et a1, 1960

\section*{Non astrobleme \\ Intrusion \\ von Eckermann et al, 1960}
IV.SPECIFIC STUDIES
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{I. BASIC DATA}
Namp OBOLON'
Alternative
names
Location ..... USSR
Geographical 49.30N 32.55E Grieve \& Robertson, 1979position
Horlzontal Diameter \(15 \mathrm{~km} \quad\) Grieve \& Robertson ,1979
dimensions Diameter about 12 km
Depth ..... 900 m
Masaytis, 1975
Altitude
RIm
Age 160 m.y. Bajocian
Grieve \& Robertson, ..... 1979
Val'ter et al, 1978
II.FORM AND STRUCTUREThe basin formed in rocks of the crystallinebasement and the sedimentary cover is filledby allogenic explosion breccia with a thicknessof at least 200 to 250 m .200 to 300 m centraluplift of the crystalline basement
Masaytis, 1975
III.ORIGIN
Astrobleme
Masaytis, 1975
Val'ter et al, 1978
IV.SPECIFIC STUDIES
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline & & & 0 & & & & & & 0 & & \\
\hline & & & & & & & & & 0 & & \\
\hline
\end{tabular}

\section*{I. BASIC DATA}

\section*{Name OPPKUVEN BRECCIA PIPE}

Alternative Oppkuven Cauldron names

Location Norway
Geographical
position
\begin{tabular}{lll}
\begin{tabular}{l} 
Horizontal \\
dimensions
\end{tabular} & Diameter approximately 5 km & \\
Depth
\end{tabular}

\section*{Altitude}

Rim
Age Post Ordovician OftedahZ,I960

\section*{II.FORM AND STRUCTURE}

Breccia pipe with a rounded outline. Oftedahi,I960
III. ORIGIN

Astrobleme

\section*{Non astrobleme}

Explosion funnel
Oftedaht,I960

\section*{IV.SPECIFIC STUDIES}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline
\end{tabular}

\section*{I. BASIC DATA}
Name \(\varnothing\) YANGEN
 cauldron
Alternativenames
Location Norway
Geographical 60.05N 10.25E ..... after Oftedah1, 1969position
Horizontal Diameter approximately 8 km ..... Oftedah1, 1960
dimensions \(10 \times 7.5 \mathrm{~km}\)
Oftedahl, 1978
Depth see FORM AND STRUCTURE
Altitude
Rim
Age Permian ..... Oftedahl, 1960

\section*{II.FORM AND STRUCTURE}
Eroded subsidence cauldron which dropped 3 to 4 km . "The western quadrant of its ring fault is now taken up by a marginal intrusion or ring dyke, and the eastern half of the cauldron block is removed by stoping of the nordmarkitic magma mass."
\[
\text { Oftedahl, } 1960
\]

\section*{Non astrobleme}
Cauldron subsidence
Oftedahl, 1960
IV.SPECIFIC STUDIES
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline & & & & & & & & & & & \\
\hline
\end{tabular}
Oftedahl, 1978

\section*{I. BASIC DATA}
Namp OZERNAYA VERAKA
Alternative Ozernaya Varaka
names
Location Kola Peninsula, USSR
Geographical Approx. 67.30N 32.30E after Gerasimovsky et al, 1974position
Horizontal \(1 \mathrm{~km}^{2}\) ..... Tomkeieff, 1961
dimensions
Depth
Altitude
RIm
Age Caledonian
365 to \(400 \mathrm{~m} . \mathrm{y}\). Gerasimovsky et al, 1974
Vartiainen \& Wooley, 1974
II.FORM AND STRUCTURE
III.ORIGINExocontact fenitized zone varies in widthfrom 10 m to 60 m . Peripheral urtite-ijolite-
Astroblememelteigite series grades into alkali pyrox-enites toward the center.
Tomkeieff, 1961
Non astrobleme Intrusion
Tomkeieff, 1961 Gerasimovsky et al, 1974
IV.SPECIFIC STUDIES
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline & & & & & & & & & & & \\
Gittins, 1966 \\
\hline
\end{tabular}

\section*{I. BASIC DATA}
Name PESOTCHNIY
```

Alternative
names
Locatlon Kola Peninusla, USSR
Geographical approx. 66.00N 37.00
position
Horizontal
dimenslons
Depth
Altitude
RIm
Age Caledonian Gerasimovsky et al, 1974

```

\section*{II.FORM AND STRUCTURE}

Ultramafic alkaline massif
Gerasimovsky et al, 1974

\section*{III.ORIGIN}

Astrobleme

\section*{Non astrobleme}

Intrusion
Gerasimovsky et al, 1974
IV.SPECIFIC STUDIES
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{I.BASIC DATA}
\begin{tabular}{|c|c|c|}
\hline Name & PFAHLDORF CRATERS & \\
\hline Alternative names & \begin{tabular}{l}
Pfahldorf Basin \\
Pfahldorf, Mandelgrund, and Sornhüll
\end{tabular} & \\
\hline Location & SW.Germany & \\
\hline Geographical position & \[
\begin{array}{ll}
48.54 \mathrm{~N} & 11.22 \mathrm{E} \\
48.57 \mathrm{~N} & 11.22 \mathrm{E}
\end{array}
\] & Rutte,I97I Classen,I975 \\
\hline Horizontal dimensions & Greater than \(2 k m\) diameter 3 craters, diameters \(1.5 \mathrm{~km}, 1 \mathrm{~km}, 1 \mathrm{~km}\). Diameter 2.5 km & \begin{tabular}{l}
Rutte, 197I \\
Rutte, I974 \\
Classen,I975
\end{tabular} \\
\hline Depth & 30m & Rutte,I974 \\
\hline Altitude & 450 m & Rutte,I974 \\
\hline \multicolumn{3}{|l|}{Rim} \\
\hline Age & \(14.8 \times 10^{6} \mathrm{yrs}\) ? & Classen, 1975 \\
\hline \multirow[t]{2}{*}{II.FORM} & AND STRUCTURE & III. ORIGIN \\
\hline & & \begin{tabular}{l}
Astrobleme \\
Rutte,I974 \\
Classen,I975
\end{tabular} \\
\hline
\end{tabular}

\section*{Non astrobleme}

\section*{IV.SPECIFIC STUDIES}
\begin{tabular}{|c|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline & & & & \(\bullet\) & & & & & \(\bullet\) & & \\
\hline
\end{tabular}

Rutte, 197I

\section*{I.BASIC DATA}
\begin{tabular}{|c|c|}
\hline Name & PÖSING - WETTERFELD DEPRESSION \\
\hline Alternative names & \begin{tabular}{l}
Cham Depression \\
Stamsried-Pemfling-Katzbach Depression
\end{tabular} \\
\hline Location & West Germany \\
\hline Geographical position & 49.14 N 12.37E Classen, 1975 \\
\hline Horizontal dimensions & Diameter about 1 km Classen, 1975 \\
\hline Depth & \\
\hline
\end{tabular}

\section*{Altitude}

Rim
Age \(\quad 14.8 \times 10^{6}\) yrs ? Classen,I975
II.FORM AND STRUCTURE

Depression of many craters.
Classen, 1975
(see also CHAM and STMMSRIED-PEMFJING-KATZBACH depressions)
III. ORIGIN

Astrobleme
Classen,I975

\section*{Non astrobleme}

Classen,1977
IV.SPECIFIC STUDIES
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline
\end{tabular}

\section*{I. BASIC DATA}
Name PUCHEZH-KATUNKI
Alternative
names
Location USSR
Geographical 57.06N 43.35E ..... Grieve \& Robertson, 1979
position
Horlzontal Diameter 80 km Masaytis, 1975
dimensions
Depth ..... 600 m
Masaytis, 1975
Altitude
RIm
Age ..... \(183 \pm 3 \mathrm{~m} . \mathrm{y}\).
Masaytis, 1975
II.FORM AND STRUCTURE
III.ORIGIN"...form of a sloping funnel in sedimentarydeposits resting horizontally on the cryst-Astroblemedeposits resting horizontally on the crystMasaytis, 1975alline basement...It has been filled with anallogenic breccia. In the center of thefunnel is an uplift of gneiss and authigenicbreccia, about 10 km across. The amplitudeof the central uplift. is about 2 km .Masaytis, 1975
IV.SPECIFIC STUDIES
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{I. BASIC DATA}

\section*{Name PULVERMAAR}

Alternative names
Location Fiffel, West Germany
\begin{tabular}{lll} 
Geographical \\
position & 50.08 N & 6.50 E
\end{tabular}
Horizontal
dimensions \(\quad 0.8\) to \(0.9 \mathrm{~km} \quad\) Lorenz et al, 1970
\begin{tabular}{lll} 
Depth & 74 m & OLiier, \(I 967\) \\
& 124 m & Lorenz et al, 1970
\end{tabular}

\section*{Altitude}

Rim See FORM AND STRUCTURE
Age Less than 10 to \(12.5 \times 10^{3} \mathrm{yrs}\)
Lorenz et al,1970

\section*{II.FORM AND STRUCTURE}

Almost circular. OZZier, I967
Funnel shaped with flat-bottomed floor and surrounded by 10 metre thick pyroclastic ejecta.

Lorenz et al,I970

\section*{III. ORIGIN}

\section*{Astrobleme}

\section*{Non astrobleme}

\author{
Volcanic OLZier, 1967 \\ Lorenz et al,I970
}

\section*{IV.SPECIFIC STUDIES}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline
\end{tabular}

\section*{I.BASIC DATA}

\section*{Name \\ RADHOS̆T' AMPHITHEATRE}

\section*{Alternative \\ names}

Location Czechoslovakia
\begin{tabular}{lll} 
Geographical 49.35 N & 18.15 E & after Z̆ebera, 1970 \\
position
\end{tabular}

Horizontal dimensions

\section*{Depth}

\section*{Altitude}

Rim
Age

\section*{II.FORM AND STRUCTURE}
"Semicircular Radhošt' amphitheatre on the southeastern side of the central summit of Mt.Radhost́ ....right on the top....in subhorizontal sandstone beds...."

\section*{III. ORIGIN}

Astrobleme
Comet impact
Žebera, 1970

Non astrobleme
Classen,1977

\section*{IV.SPECIFIC STUDIES}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline
\end{tabular}

\section*{I. BASIC DATA}
Name RAMNES ..... caldera
Alternative
namesLocation 75 km SSW of Eslo Norway
Geographical 59.36N 10 16E ..... after Oftedahl, 1969
position
Horizontal \(14 \times 10 \mathrm{~km}\) ..... after Oftedahl, 1969
dimensions
Depth
AltitudeRimAgePermianOftedah1, 1969

\section*{II.FORM AND STRUCTURE}

The volume of subsidence (about 2 km ) of the caldera block in all cases exceeded that of the ignimbrites in the caldera and resulted in high and steep caldera walls which produced breccia sheets between each ignimbrite eruption.

Oftedah1. 1978

\section*{III.ORIGIN}

\section*{Astrobleme}

\section*{Non astrobleme}

Caldera
Oftedahl, 1969

\section*{IV.SPECIFIC STUDIES}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline & & & & 0 & & & & & & & \\
\hline & & & & & & & & & & & \\
Ramberg, 1976 \\
Oftedah 1978
\end{tabular}

\section*{I.BASIC DATA}

Name RANDECKER MAAR
Alternative
names

\section*{Location S.Germany}
\begin{tabular}{llll} 
Geographical & 48.58 N & 11.50 E & Classen, 1975 \\
position
\end{tabular}
\begin{tabular}{lll}
\begin{tabular}{ll} 
Horizontal \\
dimensions
\end{tabular} & \begin{tabular}{l} 
Diameter about 1 km \\
Diameter about 1 km
\end{tabular} & \begin{tabular}{l} 
Gallant, I964 \\
Lorenz et al, I970
\end{tabular} \\
Depth & 60 to 80 m & Lorenz et al,I970
\end{tabular}

\section*{Altitude}

Rim
\begin{tabular}{ll} 
Age & 5 to \(20.4 \times 10^{6} \mathrm{yrs}\) \\
& \(14.8 \times 10^{6} \mathrm{yrs} ?\)
\end{tabular}

\section*{II.FORM AND STRUCTURE}
"...subsidence continued into Pliocene time.A deep gorge cut through one side of the maar exposes deep levels of the underlying pipe". Lorenz et al,I970

Lorenz et al, 1970
Classen, 1975

\section*{III. ORIGIN}

\section*{Astrobleme}
? Gallant, 1964
Classen,I975

\section*{Non astrobleme}

Volcanic Lorenz et al,I970
IV.SPECIFIC STUDIES
\begin{tabular}{|c|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline & & & & & & & & & & & \\
\hline
\end{tabular}

Gallant, I964

\section*{I.BASIC DATA}

\section*{Name \\ RHUM COMPLEX}

\section*{Alternative Rum names}

Location Inner Hebrides, W.Scotland
Geographical 57.00 N 6.25W after Richey et al,I96I position

\section*{Horizontal dimensions}

Eroded by sea at the edges, presen size \(11.2 \times 8 \mathrm{~km}(7 \times 5\) miles \()\)

\section*{Depth \\ See FORM AND STRUCTURE}

\section*{Altitude}

Rim

Age
Tertiary
Richey et al,I96I

\section*{II.FORM AND STRUCTURE}

Intrusive rocks with rhythmic layering, cone sheets and dykes uplifted more than 950 m . Wager \& Brown, 1968

\section*{III. ORIGIN}

Astrobleme

\section*{Non astrobleme}

> Cauldron subsidence
> Wager \& Brown, I968 Dunhom, I970

\section*{IV.SPECIFIC STUDIES}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline & & \(\bullet\) & & \(\bullet\) & & & & & & & \\
\hline & & & & & \(\bullet\) & & & & & & \\
\hline & & \(\bullet\) & \(\bullet\) & & & & & & & & \\
\hline
\end{tabular}

Richey et al,I96I
McQuillin \& Tuson,I963
Wager \& Brown, 1968

\section*{I. BASIC DATA}

\section*{Name}

\section*{RIESKESSEL}
\begin{tabular}{ll}
\begin{tabular}{ll} 
Alternative \\
names
\end{tabular} & \begin{tabular}{l} 
Ries Structure \\
Nordlinger Ries
\end{tabular} \\
Location & Srim of Sudwestdeutsche Gross-Scholle,W. Germany
\end{tabular}
position

Horlzontal
dimensions
Depth
Altitude

RIm

Age

v.Engelhardt, 1972

مiameter 25 km ( 1.5 miles )
Diameter 22-24 km,with inner zone 8 km diameter Transient cavity about 10 km diameter

Max. known crater fill = 300 m of lake deposits Bottom 700 m below present surface Still meteoritic material greater than 1.2 km Plain 420 m as .

Baldwin, 1963
Dennis, 1971
Pohl et al, 1977
Dennis, 1971
Bucher, 1963
Karaszewski, 1974
Dennis, 1971
see FORM AND STPUCTURE
End of Tortonian times
Bucher. 1963
Baldwin, 1963
Dennis, 1971

\section*{II.FORM AND STRUCTURE}
"...a prominent \(N\)-NW facing scarp is interupted by a roughly circular depression... an inner zone with only modest surface relief, followed outward by a concentric zone of flat to hummocky relief... ..The undisturbed crystalline basement of the Ries originally was overlain by a sequence of Mesozoic sedimentary rocks, roughly 600 m thick

\section*{III.ORIGIN}

\section*{Astrobleme}

Werner, 1904
Shoemaker \& Chao, 1961
Baldwin, 1963
Dennis, 1971
Pohl et al, 1977
Non astrobleme
Volcanic
Bucher, 1963

\section*{IV.SPECIFIC STUDIES}


Baldwin, 1963
Bucher, 1963
Dennis, 1971
Karaszewski, 1974
Pohl et al, 1977

\section*{I. BASIC DATA}
Name ROCHECHOUART
Alternative Chassenon Crater namesLocatlon Haute Vienne, France
Geographical \(45.49 \mathrm{~N} \quad 0.50 \mathrm{~F}\) Kraut \& French, 1971
v.Engelhardt, 1972
Horizontal Originally 15 km diameter with 4 km Kraut \& French, 1971
dimensionscentral uplift.
Min. 20 km , max. 25 km diameter Lambert, 1977
Depth see FORM AND STRUCTURE
Altitude
RIm seeFORM AMD STRIJCTURE
Age Kraut \& French, 1971
154 and \(173+8 \times 10^{6}\) years
154 and \(173+8 \times 10^{6}\) years \(198 \pm 25\) and \(206 \pm 39 \times 10^{6}\) years
Wagner \& Storzer, 1975
II.FORM AND STRUCTURE"No topographic expression of a circulardepression is apparent... The present groundsurface lies at approximately the level of theAstroblemeoriginal crater floor."Kraut \& French, 1971
Kraut \& French, 1971

\section*{Non astrobleme}

\section*{IV.SPECIFIC STUDIES}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline & & 0 & 0 & & & & & & 0 & & \\
\hline & & 0 & & & & & & & & 0 & \\
\hline
\end{tabular}

\section*{I.BASIC DATA}

\section*{Name RÖDERN PIPE}

\section*{Alternative}
names
Location Saar-Nahe Trough, SW.Germany
Geographical position
\begin{tabular}{lll}
\begin{tabular}{ll} 
Horizontal \\
dimensions
\end{tabular} & Longest 750m & Lorenz et ai,I970 \\
Depth & See FORM AND STRUCTURE
\end{tabular}

\section*{Altitude}
Rim
Age Permian Lorenz et al, I970

\section*{II.FORM AND STRUCTURE}

Differential subsidence of 500 to 700 m along a steeply dipping ring fault. Probable original surface expression greater than 1.5 km diameter.

Lorenz et al,I970
III. ORIGIN

Astrobleme

\section*{Non astrobleme}

Diatreme
Lorenz et al,I970
IV.SPECIFIC STUDIES


Lorenz et al,I970

\section*{I.BASIC DATA}

\section*{Name ROSSES RING COMPLEX}

Alternative names

Location
Geographical position

\section*{Horizontal dimensions}

Rosses Centred Complex Rosses Granite (Complex) Rosses Pluton

Donegal, Eire
54.59 N 8.27 W
after Pitcher \& Berger, 1972

Depth
See FORM AND STRUCTURE

\section*{Altitude}

\section*{Rim}
\begin{tabular}{lll} 
Age & \(404 \pm 8 \times 10^{6}\) yrs & Lambert, I966 and Brown et al, \\
& \(384 \pm 8 "\) & \(" 1\)
\end{tabular}

\section*{II.FORM AND STRUCTURE}
"...there is no direct evidence in the Rosses of the subsidence of a central plug of older rocks, though the situation in the Moorlagh area,....is suggestive of its presence." Four granite stocks dipping at 60 to 70 degrees.

Pitcher \& Berger, I972
III. ORIGIN

\section*{Astrobleme}

\section*{Non astrobleme}

Igneous intrusion
Pitcher \& Berger, 1972

\section*{IV.SPECIFIC STUDIES}


Riddihough,I969
Pitcher \& Berger,I972

\section*{I. BASIC DATA}
Name ROTMISTROVKA
Alternative
names
Location ..... USSR
Geographical 49.00N 32.00E ..... Grieve \& Robertson, 1979
position
Horizontal niameter 2.5 km Grieve \& Robertson, 1979
```dimenslons Diameter 5 kmMasaytis et al, 1976
```

Depth 300 m Grieve \& Robertson, 1979
Altitude
Rim
Age 70 m.y Grieve \& Robertson, 1979
Late Jurassic or Early Cretaceous Masaytis et al, 1976

## II.FORM AND STRUCTURE

The crater has been filled with Cretaceous sediments below which lie breccias.

Masaytis, 1975

## III.ORIGIN

## Astrobleme

Masaytis, 1975

## Non astrobleme

## IV.SPECIFIC STUDIES

1	2	3	4	5	6	7	8	9	10	11	12

## I.BASIC DATA

Name RÖTZ-WINKLARN DEPRESSION
Alternative Tiefenbach-Schontahl Depression namos Rotz-tiefenbach Depression
Location West Germany

Geographical		
position	49.23 N	12.35 E
Classen, 1975		

Horizontal
dimensions $\quad$ Diameter about $1 \mathrm{~km} \quad$ Classen, 1975

## Depth

## Altitude

Rim
Age
$14.8 \times 10^{6}$ yrs ?
Classen,I975

## II.FORM AND STRUCTURE

Depressions of many craters.
Classen, I975
(see also RIEFENBACH-SCHÖNTHAL DEPRESSION)

## III. ORIGIN

## Astrobleme

Classen, 1975

## Non astrobleme

Classen, 1977

## IV.SPECIFIC STUDIES

1	2	3	4	5	6	7	8	9	10	11	12
									$\bullet$		

Rutte, I974

## I.BASIC DATA

Name	RUNDVATNET	
Alternative names	Rundevatn Rundevatnet	
Location	N.Norway	
Geographical position	69.27N 19.07E	Corner, 1975
Horizontal dimensions	100m diameter	Corner, 1975
Depth	14 to 22 m	Cormer, 1975
Altitude	1200m asl.	Corner, 1975
Rim		
Age	"Young"	Cormer, 1975

## II.FORM ANDSTRUCTURE

III. ORIGIN

Astrobleme
Corner, I975

## Non astrobleme

Avalanche product
Liest申L,I975

## IV.SPECIFIC STUDIES

1	2	3	4	5	6	7	8	9	10	11	12

## I.BASIC DATA

## Name SÄÄKSJÄRVI

## Alternative

names

| Location | 25 km E. of Pori, Finland |  |
| :--- | :--- | :---: | :--- |
| Geographical 61.25 N 22.30 E  <br> position    after Papunen, 1969 |  |  |

Horizontal
Lake $8 \times 4 \mathrm{~km}$
after Papunen, 1969

## Depth

## Altitude

Rim
Age

## II.FORM AND STRUCTURE

"......deep erosion level of the crater, which is indicated e.g. by the flat relief of the basin."

Popunen, 1973

## III. ORIGIN

## Astrobleme

Papunen, 1969
Carstens,I975

Non astrobleme

## IV.SPECIFIC STUDIES



Papunen, I969
Papunen, 1973
Carstens, 1975

## I.BASIC DATA

Name	SAAL	
Alternative   names		
Location	Near Kelheim, West Germany	
Geographical   position	48.52 N	11.53 E

## Altitude

Rim

Age
$14.8 \times 10^{6} \mathrm{yrs}$ ?
Classen, 1975

## II.FORM AND STRUCTURE

"Eine Abbauwand des Kalksteinbruchs Saal schneider den randichen Bereich eines sedimentrefüllten Impactkraters aus dem System der Astrobleme des Rieskometenschweifes auf."

Rutte, 1975

## III. ORIGIN

## Astrobleme

Comet impact Classen,I975 Rutte, 1975

Non astrobleme

## IV.SPECIFIC STUDIES



Rutte, 1975

## I.BASIC DATA

## Name ST.HIPPOLYTE MAAR

## Alternative

names
Location Auvergne, France
Geographical position

Horizontal<br>Diameter approximately 1 km<br>dimensions

Depth

Altitude
Rim
Age

## II.FORM AND STRUCTURE

## III. ORIGIN <br> Astrobleme

## Non astrobleme

Volcanic<br>Baudry \& Camus, I970

## IV.SPECIFIC STUDIES

1	2	3	4	5	6	7	8	9	10	11	12
				$\bullet$							

Baudry \& Comus,I970

## I. BASIC DATA

Name	ST.KILDA - SOAY-BORERAY-LEVENISH DUN COMPLEX
Alternative names	
Location	Off the Outer Hebrides, Srotland
Geographical position	57.51 8.31w. after Richey et ai,
Horizontal dimensions	Froded hy sea,orizinal diameter $9.6 \mathrm{~km}(6 \mathrm{miles})$ ? Richey et al, 196 I
Depth	

## Altitude

Rim


Igneous complex with sheets and dykes centred to a point between the islands. Richey et al,I96I
III. ORIGIN

Astrobleme

Non astrobleme

Ifneous complex<br>Richey et al,I96I

IV.SPECIFIC STUDIES

1	2	3	4	5	6	7	8	9	10	11	12
		$\bullet$									

Richey et al,I96I

## ST. MAGNUS BAY DEEP

First edition - 1976

## I.BASIC DATA

## Name ST.MAGNUS BAY DEEP

## Alternative

names
Location Shetland Islands, 150 km N . of the Scottish mainland
Geographical $60.25 \mathrm{~N} \quad 1.340$ after Flinn,I970
position

## Horizontal dimensions

Depth	Original 900 to 1100 m	Sharp, I970
	$160 \mathrm{~m}(90$ fathoms $)$	Flinn, I970

## Altitude

## Rim

Age	Late Palaeozoic to early Mesozoic	Sharp, I970
Late Tertiary	Flinn, I970	

II.FORM AND STRUCTURE
"The Shatland islands rise rather sudenly from the sea-floor about 45 fathoms deep, but between the islands in two land-locked bays are two deeps whose bottoms lie at about 30 fathoms."

Flinn,I970

## III. ORIGIN

## Astrobleme

Flinn, 1970
Sharp,I970

Non astrobleme

## IV.SPECIFIC STUDIES



McQuillin \& Brooks, 1967
Aeromagnetic map of Great Britain

Sharp, I970

## I. BASIC DATA



## I. BASIC DATA

Namp SALMOGORSK ..... massif
Alternative Salmagorsky
names
Location Kola Peninsula, IISSR.
Geographical approx.67.00N 34.00E ..... after Gerasimovsky et al, 1974
position
Horizontal
dimensions
Depth
Altitude
RIm
Age 480 to 540 m.y. Caledonian Vartiainen \& Wooley, 1974
Gerasimovsky et al, 1974
II.FORM AND STRUCTURE
Iltramafic alkaline massif.
Gerasimovsky et al 1974
Non astrobleme
Intrusion
Gerasimovsky et al, 1974

## III.ORIGIN

## Astrobleme

## IV.SPECIFIC STUDIES

1	2	3	4	5	6	7	8	9	10	11	12

## I. BASIC DATA

Name SANDE cauldron
Alternative Sandelakkolith
names
Locatlon $\quad 40 \mathrm{~km}$ SW of Oslo, Norway
Geographical ..... $59.40 \mathrm{~N} \quad 10.14 \mathrm{E}$
after Oftedah1, 1969
position
Diameter 12 km ..... Oftedahl, 1953
Horlzontal ..... Oftedahı, 1953
dimensions
Depth see FORM AND STRUCTURE
Altitude
RIm
AgePermianOftedahl, 1953
II.FORM AND STRUCTURE
"Irregular marginal intrusions along thering fault, a ring-shaped area of subsidedlavas, the central part of which is nowoccupied by a younger central intrusion."
Non astrobleme
Cauldron subsidence Oftedahl, 1953

$$
\text { Segalstad, } 1975
$$

IV.SPECIFIC STUDIES

## III.ORIGIN

## Astrobleme

Subsidence 500 to 800 m .Oftedah1, 1953Subsidence 500 to 800 m .
Oftedah1, 1953

## I.BASIC DATA

Name SAUSTAHL

## Alternative

дames
Location SW.Germany

Geographica]	48.56 N	11.48 E
position	48.58 N	11.50 E

Rutte,I97I
Classen,I975
$\begin{array}{lll}\text { Horizontal } & 1.4 \text { to } 1.8 \mathrm{~km} \text { diameter } & \text { after Rutte, } I 971 \\ \text { dimensions } & 2 \mathrm{~km} \text { diameter } & \text { Classen, } 1975\end{array}$
dimensions
$\begin{array}{lll}\text { Depth } & \text { Central } 20 \mathrm{~m} ; \text { near rim } 45 \mathrm{~m} \\ 8 \mathrm{~m}\end{array} \quad \begin{aligned} & \text { Rutte, I974 } \\ & \text { Classen, I975 }\end{aligned}$

Altitude	520 m	Rutte, I974
Rimı	8 m	Rutte, I974
Age	$14.8 \times 10^{6} \mathrm{yrs}$ ?	CZassen,I975

## II.FORM AND STRUCTURE

## III. ORIGIN

Astrobleme
Rutte,I97I
Classen,Ty75

Non astrobleme

## IV.SPECIFIC STUDIES

1	2	3	4	5	6	7	8	9	10	11	12
	$\bullet$		$\bullet$				$\bullet$	$\bullet$			
									$\bullet$		

Hutte, $19 / 1$
Kutte, $19 / 4$

## I.BASIC DATA

## Namo SCHAFFERGRUBE

## Alternative

names

Location	West Germany	
Geographical $48.48 \mathrm{~N} \quad 11.50 \mathrm{E}$    position     Horizontal     dimensions     Depth		

Altitude
Rim
Age $14.8 \times 10^{6}$ yrs ? C'lassen, $19 \%$

## II.FORM AND STRUCTURE

III. ORIGIN

Astrobleme Classen, I975

## Non astrobleme

## IV.SPECIFIC STUDIES

1	2	3	4	5	6	7	8	9	10	11	12

## SCHAFGRABEN

First edition - 1976

## I.BASIC DATA

Name	SCHAFGRABEN
Alternative   names	Sausthal ?
Location West Germany   Geographical   position $48.58 \mathrm{~N} \quad 11.50 \mathrm{E}$	

Horizontal
dimensions
Depth

Altitude
Rim
Age
$14.8 \times 10^{6}$ yris ?
C'Lassen, 1975

## II.FORM AND STRUCTURE <br> III. ORIGIN <br> Astrobleme

C'Lassen,I975

Non astrobleme
IV.SPECIFIC STUDIES

1	2	3	4	5	6	7	8	9	10	11	12

## I. BASIC DATA

Namp SEBLJAVRSK massif
Alternative Sebl 'yavr
names Sebl-yarvi
Location Kola Peninsula ..... IJSSR
Geographical Approx. 68.30N 32.00E after Gerasimovsky et al, 1974 position
Horizontal
dimensions
Depth
Altitude
RIm
Age 383 m.y Vartiainen \& Wooley, 1974Caledonian
II.FORM AND STRUCTUREUltramafic alkaline massifGerasimovsky et al, 1974Gerasimovsky et al, 1974
III.ORIGIN
Astrobleme
Non astrobleme
Intrusion Gerasimovsky et al, 1974
IV.SPECIFIC STUDIES

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | ..... 12

# SENEZE MAAR 

## I.BASIC DATA

## Name SENEZE MAAR

## Alternative names

Location Massif Central, France

## Geographical

 position| Horizontal <br> dimensions | Approximately 1 km diameter | Lorenz,1973 |
| :--- | :--- | :--- |
| Depth | Debris fill to plus 175 m | Lorenz, 1973 |

## Altitude

Rim

Age
Villefranchian
Lovenz, 1973

## II.FORM AND STRUCTURE

"A ring fault can be mapped nearly all round the crater floor, separating the gneiss of the wall from the bedded pyroclastic debris of the crater floor."

Lorenz,I97s

## III. ORIGIN

Astrobleme

## Non astrobleme

Volcanic
Lorenz, Iy73

## IV.SPECIFIC STUDIES



Lorent, $19 \% 3$

## I. BASIC DATA

## Name SILJAN RING

## Alternative

## names

Location $\quad 270 \mathrm{~km}$ NW of Stockholm, Sweden

Geographical	61.05 N	15.00 E	v.Engelhardt, 1972
position	61.02 N	14.52 E	Bottomley et al, 1978


Horizontal	Overall diameter about 35 km	Fredriksson \& Wickman, 1963
dimenslons	Width 5 to 10 km ; outer radius 20 km	Stam, 1967   Dutten, 1966

Depth

## Altitude

Rim see FORM AND STRUCTURE

| Age | Less than $400 \times 10^{6}$ years <br> $361.9 \pm 1.1 \mathrm{~m} . \mathrm{y}$. |
| :--- | :--- | | Fredriksson \& Wickman, 1963 |
| :--- |
| Bottomley et al, 1978 |

## II.FORM AND STRUCTURE

A group of Precambrian granite hills(outcrops) surrounded by an almost uniform ring of Cambrian/Silurian hills. Parts of the ring are covered by lakes and others by deep overburden.

Fredriksson \& Wickman, 1963
32 km central uplift of shocked Dala granite.
Bottomley et al, 1978
IV.SPECIFIC STUDIES

1	2	3	4	5	6	7	8	9	10	11	12
			0								

## III.ORIGIN

## Astrobleme

Fredriksson \& Wickman. 1963
Bottomley et al, 1978

## Non astrobleme

Volcanic
1966
Tectonic
Stam, 1967

Stam, 1967
Rutten, 1966
Bottomley et al, 1978

## I. BASIC DATA

Name SKREHELLE ..... cauldron
Alternative
names
Locatlon $\quad N$ of Skien, Norway
Geographlcal 59.35N 9.43E ..... after Segalstad, 1975
position
Horlzontal Diameter approx. 7 km ..... Segalstad, 1975
dimensions
Depth see FORM AND STRUCTURE
Altitude
Rim
Age Permian Segalstad, 1975

## II.FORM AND STRUCTURE

"The vertical subsidence of the cauldron may have been $1,500 \mathrm{~m}$, corresponding to the apparent thickness of the basalt...The ring dyke is sometimes up to 500 m thick...."

Segalstad, 1975
Traces of a ring fault covering nearly 90 degrees of the periphery...the cauldron block almost completely digested by the later stoping nordmarkite.

Oftedahl, 1978
IV.SPECIFIC STUDIES

## III.ORIGIN

## Astrobleme

## Non astrobleme

Cauldron subsidence
Segalstad, 1975 Oftedah1, 1978

1	2	3	4	5	6	7	8	9	10	11	12

## I.BASIC DATA

## Name SKYE COMPLEX

## Alternative

 names
## Location Inner Hebrides, Scotland

## Geographical <br> $57.15 \mathrm{~N} \quad 6.05 \mathrm{~W}$ <br> after Wager \& Brown,1968

position
Horizontal Diameter about 8 km ( 5 miles) Wager \& Brown, 1968 dimensions

Depth
See FORM AND STRUCTURE

## Altitude

Rim

Age

See FORM AND STRUCTURE
See FORM AND STRUCTURE
$52 \pm 3,58 \pm 6,51 \pm 4,54 \pm 2,52 \pm 5 \times 10^{6} \mathrm{yrs}$
Various authors in Evans et al,I973

## III. ORIGIN

Astrobleme

## Non astrobleme

Igneous intrusion
Harker, 1904
Wager \& Brown,I968

## IV.SPECIFIC STUDIES



Harker, 1904
Wager \& Brown, 1968

## I. BASIC DATA

## Name SLIEVE GULLION COMPLEX

## Alternative

names
Location County Armarh, Northern Ireland
Geographical $\quad 54.08 \mathrm{~N} \quad 6.28 \mathrm{~W}$ after Charlesworth, 1963
position

Horizontal
Diameter $11.2 \mathrm{~km}(7$ miles)
Charlesworth,I963
dimensions
Depth

## Altitude

Rim
Age

## II.FORM AND STRUCTURE

Two acid ring dykes with basalt and trachyte lavas,vent agglomerates, and crush breccias enclosing granophyre and dolerite.

Charlesworth, 1963

## III. ORIGIN

## Astrobleme

## Non astrobleme

Igneous intrusion
Charlesworth,I963

## IV.SPECIFIC STUDIES



Bailey \& McCallien, $1956^{\circ}$
Charlesworth, 1963

## I.BASIC DATA

## Name SLOTTET RING-STRUCTURE

## Alternative

## names

## Location

Geographical 60.03 N 10.29E after Segalstad,I975 position

Horizontal
dimensions

## Depth

Altitude
Rim

Age
Permian
Segalstad,I975
II.FORM AND STRUCTURE
III. ORIGIN

Astrobleme

## Non astrobleme <br> Plutonic <br> Segalstad,I975

## IV.SPECIFIC STUDIES

1	2	3	4	5	6	7	8	9	10	11	12
				0							

Segalstad, 1975

## I.BASIC DATA

## Name SNOWDON SYNCLINE

## Alternative

names
Location North Wales

Geographical $52.55 \mathrm{~N} \quad 4.05 \mathrm{w}$
after Rast,I969
position
Horizontal Inner caldera $12 \times 3.5 \mathrm{~km}$; syncline $15 \times 7 \mathrm{~km}$ after Rast, 1969
dimensions

Depth

## Altitude

Rim

Age
Initial dome in early Caradocian
Rast,I969

## II.FORM AND STRUCTURE

"....an anticlinal dome structure preceeding the main episode of volcanicity. The fault system separating the dome and the Snowdon Syncline is thus a volcanotectonic structure representing the rim of a caldera which was soon filled by volcanic ejectamenta,ignimbrites and lavas."
Rast,I969

## III. ORIGIN

Astrobleme

## Non astrobleme

Volcanotectonic
Rast,I969

## IV.SPECIFIC STUDIES

1	2	3	4	5	6	7	8	9	10	11	12
		$\bullet$		$\bullet$							

Kast, 1969

## I. BASIC DATA

## Namo <br> SOKLI

## Alternative

## names

## Location North Finland

Geographical 67.40N 28.40E
after Vartiainen \& Wooley, 1974 position

Horizontal
$20 \mathrm{~km}^{2}$, about $5 \times 4 \mathrm{~km}$
Vartiainen \& Wooley, 1974 dimensions

## Depth

## Altitude

## RIm

Age | 334 to $378 \mathrm{~m} . \mathrm{y} . \quad$ | $\quad$ Vartiainen \& Wooley, |
| :--- | :--- |
|  | $360 \mathrm{~m} . \mathrm{y}$. |

## II.FORM AND STRUCTURE

Around the Sokli intrusion there is a broad metasomatic aureole of fenitization which extends up to 2.5 km from the carbonatite contact.

Vartiainen \& Wooley, 1974
A plug of roughly circular cross-section occupying a topographic depression approximately 20 to 30 m deep. Outcrops are scarce and poor. Carbonatite ring dykes and a few tangential dykesNon astrobleme have been recorded.

Paarma, 1970
IV.SPECIFIC STUDIES

```
Intrusion
 Vartiainen & Wooley, 1974
 Paarma, 1970

\section*{III.ORIGIN}

Astrobleme
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{I. BASIC DATA}
Name \(\boldsymbol{S} \boldsymbol{\phi} \boldsymbol{R} \boldsymbol{\gamma} \mathbf{Y}\)
Alternative
names
Locatlon Island to north of Norway
Geographical \(70.30 \mathrm{~N} \quad 23.43 \mathrm{E}\) Sturt et a1, 1967position
Horizontaldimensions
Depth
Altitude
RIm
Age 384 to 420 m. y . Sturt et al, 1967

\section*{II.FORM AND STRUCTURE}

The alkaline rocks have been afftected by late phases of deformation and in places are sheared and folded.

\section*{III.ORIGIN}

Astrobleme

\title{
Non astrobleme \\ Intrusion \\ Sturt et al, 1967
}
IV.SPECIFIC STUDIES
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline
\end{tabular}

\section*{I.BASIC DATA}

\section*{Name SOULANGES DOLINE}
Alternative Doline of Soulanges
names
Location Grand Causses, France

Geographical position
\begin{tabular}{lll}
\begin{tabular}{lll}
Horizontal \\
dimensions
\end{tabular} & Diameter 1 km & Small,I972 \\
Depth & In excess of \(60 \mathrm{~m}(200 \mathrm{feet})\) & Small,I972
\end{tabular}

\section*{Altitude}

Rim

Age

\section*{II.FORM AND STRUCTURE}

Hollow in limestone.
Smaľ,I972

\section*{III. ORIGIN}

Astrobleme

\section*{Non astrobleme}

Solution of limestone Small, I972
IV.SPECIFIC STUDIES
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline & & 0 & & & & & & & & & \\
\hline
\end{tabular}

Small,I972

\section*{I. BASIC DATA}
Name SOUSTOVA massif
Alternative Soustovsk Massifnames
Location Kola Peninsula, USSR
Geographical approx. 67.00N 34.00E after Gerasimovsky et al, 1974
position
Horlzontal \(\quad 32 \mathrm{~km}^{2}\) Gerasimovsky et al, 1974
dimensions
Depth
Altitude
Rim
Age Hercynian Gerasimovsky et al, 1974
II.FORM AND STRUCTURENepheline syenite massif.
III.ORIGIN
Astrobleme
Non astrobleme
IntrusionGerasimovsky et al, 1974
IV.SPECIFIC STUDIES
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline
\end{tabular}
I. BASIC DATA

\section*{Altitude}

Rim
Age
\(14.8 \times 10^{6} \mathrm{yrs}\) ?
Classen, I975
II.FORM AND STRUCTURE

Depression of many craters. Classen,I975

\section*{III. ORIGIN}

\section*{Astrobleme}

Classen,I975

\section*{IV.SPECIFIC STUDIES}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline
\end{tabular}

\section*{I.BASIC DATA}

\section*{Name STEINHEIM BASIN}
Alternative Steinheimer Becken
names
Location \(\quad 65 \mathrm{~km}\) USW. of Stuttgart, Germany
Geographical \(48.02 \mathrm{~N} \quad 10.04 \mathrm{E}\) O'Conne22,I965

\section*{Horizontal dimensions}

Depth
Diameter \(2.4 \mathrm{~km}\left(1 \frac{1}{2}\right.\) miles)
Diameter \(2.8 \mathrm{~km}(1.8\) miles \()\)
Diameter 3.5 km
Greater than 100 m ?

Central rise 150 m
Central rise 50 to 55 m

15 to \(20 \times 10^{6} \mathrm{yrs}\)
Sarmatian?

\section*{II.FORM AND STRUCTURE}

Circular depression with central hill of brecciated rocks.
v. Engelhordt,I972

Baldurin,I963
Bucher,I963
Classen,I975
Bucher, I963

Bucher, 1963
v.Engelhardt,I972

Baldwrin, I963
Bucher, I963
III. ORIGIN

\section*{Astrobleme}

Baldwin, I963
v.EngeZhardt,I972

\section*{Non astrobleme}

Volcanic
Bucher, 1963
IV.SPECIFIC STUDIES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline\(\bullet\) & & & & & & & & & \(\bullet\) & \(\bullet\) & \\
\hline & & & & \(\bullet\) & & \(\bullet\) & & & & \(\bullet\) & \\
\hline
\end{tabular}

Baldwin, 1963
Bucher, 1963

\section*{I. BASIC DATA}
Name STENOVICE complex
Alternative
names
Location Czechoslovakia
Geographical
Horizontal Diameter 6 km Bartosk et al, 1969
dimensions
Depth
position
Altitude
Rim
Age \(340 \pm 12\) m.y. Bartosek et al, 1969

\section*{II.FORM AND STRUCTURE}

Stock of hornblende-biotite granodiorite becoming more basic toward the center.

Bartosek et al, 1969

\section*{III.ORIGIN}

\section*{Astrobleme}

\author{
Non astrobleme \\ Intrusion \\ Bartosek et al, 1969
}

\section*{IV.SPECIFIC STUDIES}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline
\end{tabular}

\section*{I.BASIC DATA}

\section*{Name STOPFENHEIM KUPPEL}

\section*{Alternative}
names
Location South Germany

Geographical 49.04 N 10.53 E after Storzer et al,I97I
position
Horizontal
dimensions \(\quad\) Diameter \(8 \mathrm{~km} \quad\) Storzer et al,I97I

\section*{Depth}

Altitude
Rim
Age
Post Jurassic
Storzer et al,I971

\section*{II.FORM AND STRUCTURE}
"Uplifted area within Mesozoic sediments, radially faulted with the strata dippinc rently outward from the centre."

Storzer et al,I97I

\section*{III. ORIGIN}

\section*{Astrobleme}

Storzer et al,I97I

Non astrobleme
Classen,1977

\section*{IV.SPECIFIC STUDIES}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline & & & & & & & & \(\bullet\) & & & \\
\hline
\end{tabular}

\section*{I. BASIC DATA}

\section*{Name \\ STRYKEN \\ cauldron}

\section*{Alternative}

\section*{names}

Location N. of Oslo, Norway
Geographical \(60.05 \mathrm{~N} \quad 10.32 \mathrm{E}\) after Segalstad, 1975
position
Horlzontal Diameter approx. \(8 \mathrm{~km} \quad\) after Segalstad, 1975 dimensions

Depth

Altitude
Rim

Age Permian Segalstad, 1975
II.FORM AND STRUCTURE
"A ring dyke of felsite porphyric composition, sometimes developed as an ignimbrite-like rock.
Western ring dyke Segal degrees and possible ignimbrite on the east.

Oftedahl, 1978

\section*{III.ORIGIN}

\section*{Astrobleme}

\section*{Non astrobleme}

Plutonic Segalstad, 1975 Oftedahl, 1978
IV.SPECIFIC STUDIES
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{I. BASIC DATA}
\begin{tabular}{|c|c|c|}
\hline Namo & SVARTEN cauldron & \\
\hline Alternative names & Langlia-Storflaaten area & \\
\hline Location & NW. of Oslo, Norway & \\
\hline Geographical position & \(60.04 \mathrm{~N} \quad 10.30 \mathrm{E}\) & after Segalstad, 1975 \\
\hline Horlzontal dimensions & Diameter 11 km & Oftedahl, 1978 \\
\hline \multicolumn{3}{|l|}{Depth} \\
\hline \multicolumn{3}{|l|}{Altitude} \\
\hline \multicolumn{3}{|l|}{RIm} \\
\hline Age & Permian & Segalstad, 1975 \\
\hline \multicolumn{2}{|l|}{II.FORM AND STRUCTURE} & III.ORIGIN \\
\hline \multicolumn{3}{|l|}{"Most of the caldera block has disappeared in the pluton to the north, leaving only a southern Astrobleme segment. From this relationship Saether infers 1,500 m subsidence."} \\
\hline
\end{tabular}

Oftedahl, 1978

\section*{Non astrobleme \\ Cauldron subsidence}

Segalstad, 1975

\section*{IV.SPECIFIC STUDIES}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{I.BASIC DATA}

\section*{Name TAZENAT MAAR}

\section*{Alternative \\ Gour de Tazenat}

\section*{names}

Location Auvergne, France

\section*{Geographical} position
\begin{tabular}{lll}
\begin{tabular}{lll}
Horizontal \\
dimensions
\end{tabular} & Diameter 1.5 km & Lorenz et \(a i, 1970\) \\
Depth & 67 m & Lorenz et al, 1970
\end{tabular}

\section*{Altitude}

\section*{Rim}

Age

\section*{II.FORM AND STRUCTURE}
"Volcanic debris forms only a small fraction of the crescent-shaped rim of ejecta around the northern side of the crater."

> Lorenz et al,I970

\section*{III. ORIGIN}

\section*{Astrobleme}

\section*{Non astrobleme}

Lorenz et al,I970

\section*{IV.SPECIFIC STUDIES}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline
\end{tabular}

\section*{I. BASIC DATA}

Name TIEFENBACH-SCHÖNTHAL DEPRESSION
Alternative Rotz-Tiefenbach Depression names Rotz-Winklarn Depression

Location West Germany
```

Geographical 43.23N 12.35E. C'Zassen,I975

```
position

Horizontal dimensions

\section*{Depth}

\section*{Altitude}

Rim

\section*{Age}
\(14.8 \times 10^{6} \mathrm{yrs}\) ?
Classen, 1975

\section*{II.FORM AND STRUCTURE}

Depression of many craters
Classen, 1975
see also RÖTZ-MINKTARN DEPRESSION
III. ORIGIN

Astrobleme
Classen, 1975

\section*{Non astrobleme}

\section*{IV.SPECIFIC STUDIES}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline
\end{tabular}

\section*{I.BASIC DATA}
Name Tॅ̌RBON゙
Alternative
names
Location CzechoslovakiaGeographical 49.01N 14.50 Eafter Rutte,I974
position
Horizontal
dimensions
Depth
Altitude
Rim
Age

\section*{II.FORM AND STRUCTURE}
"Kraterlandschaft with shocked minerals" Rutte, \(19 / 4\)

\section*{III. ORIGIN}

\section*{Astrobleme}

Rutte,I974

\section*{Non astrobleme}

Classen, 1977

\section*{IV.SPECIFIC STUDIES}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline & & & & & & & & & & & \\
\hline
\end{tabular}

Rutte, 1974

\section*{I. BASIC DATA}
\begin{tabular}{|c|c|c|}
\hline Name & TRYVASSHØGDA ring & complex \\
\hline \multicolumn{3}{|l|}{Alternative names} \\
\hline Location & About 8 km N. of Oslo, Norway & \\
\hline Geographical position & \(60.05 \mathrm{~N} \quad 10.40 \mathrm{E}\) & after Oftedahl, 1978 \\
\hline Horizontal dimensions & Diameter 7 km & Oftedahl, 1978 \\
\hline \multicolumn{3}{|l|}{Depth} \\
\hline \multicolumn{3}{|l|}{Altitude} \\
\hline \multicolumn{3}{|l|}{RIm} \\
\hline Age & Permian & Oftedahl, 1978 \\
\hline \multicolumn{2}{|l|}{II.FORM AND STRUCTURE} & III.ORIGIN \\
\hline \multicolumn{2}{|l|}{...between the Nittedal and Baerum cauldrons. A small area of subsided rhomb porphyries} & Astrobleme \\
\hline support the conc may have existed cauldron develop & lusion that a small cauldron here before the Baerum ed. & \\
\hline
\end{tabular}

\section*{Non aștrobleme}

Intrusion Oftedahl, 1978

\section*{IV.SPECIFIC STUDIES}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{I. BASIC DATA}
Name TURYI
Alternative Turja, Turyii, Turij
names Central'nyy massif
Location Kola Peninsula, USSR
Geographical Approx. 66.00N 37.30Eposition
Horizontal \(1 \mathrm{~km}^{2}\) core Bulakh \& Iskoz-Dalinina, 1978
dimensions
Depth
Altitude
RIm
Age 294 to \(373 \mathrm{~m} . \mathrm{y}\).
Polankov \& Gerling, 1961

\section*{II.FORM AND STRUCTURE}

Dykes penetrating sandstones and quartzites. Three intrusive phases.

Tomkeieff, 1961
In the core, the carbonatites constitute a vertical stock lying among alkali rocks and melilite-bearing ones.

Bulakh et al, 1972

\section*{III.ORIGIN}

\section*{Astrobleme}

\author{
Non astrobleme \\ Intrusion \\ Bulakh et al, 1972 \\ Gerasimovsky et al, 1974
}
IV.SPECIFIC STUDIES
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline
\end{tabular}

\title{
TVÄREN BAY
}

First edition - 1976

\section*{I.BASIC DATA}
Name TVÄREN BAY
Alternative
```names
```

Location Near Studsvik, Sweden
Geographical $\quad 58.46 \mathrm{~N} \quad 17.25 \mathrm{E}$. Fredriksson \& Wickman,I963
position
Morizontal Approximate diameter 7 km Fredriksson \& Wickman, I963
dimensions
Depth $\quad 45$ to 50 m below general bay floor level Fredriksson \& Wickman, I963
Altitude
Rinm
Age $450 \times 10^{6} \mathrm{yrs}$ Fredriksson \& Wickman,I963

II.FORM AND STRUCTURE

A round depression in the bed of the bay.
Fredriksson \& Wickman,I963

III. ORIGIN

Astrobleme

Fredriksson \& Wickman,1963

Non astrobleme

IV.SPECIFIC STUDIES

1	2	3	4	5	6	7	8	9	10	11	12

I. BASIC DATA

IV.SPECIFIC STUDIES

I. BASIC DATA

Name VEAL $\varnothing S$ cauldron
Alternative
names
Location East of Skien, Norway
Geographical 59.30N 9.50E
after Segalstad, 1975
position
Horlzontal Approx. 15 km diameter Segalstad, 1975dlmensions 10 to 20 km diameter
Oftedahl, 1978
Depth see FORM AND STRUCTURE
Altitude
RIm
Age Permian Segalstad, 1975
II.FORM AND STRUCTURE
III.ORIGIN"The ring fault has displaced the B_{1} basalt inthe southwestern part, and a nordmarkite-syeniteAstroblemering-dyke of variable thickness has intrudedalong the ring fault... The vertical subsidenceis difficult to estimate from the present data,but may have been of the magnitude of $1,500 \mathrm{~m}$.."

Non astrobleme

Cauldron subsidence
Segalstad, 1975

IV.SPECIFIC STUDIES

1	2	3	4	5	6	7	8	9	10	11	12
						0					

I. BASIC DATA

Namp VEPRIAJ
Alternatlve
names
Location Lith. SSR
Geographical 55,06N 24.36E Grieve \& Robertson, 1979
position
Horlzontal Diameter 8 km

```dimensions
```

Depth
Altitude
RIm
Age $160 \pm 30 \mathrm{~m} . \mathrm{y}$. Grieve \& Robertson, 1979
II.FORM AND STRUCTURE
III.ORIGIN
Astrobleme

```ProbablyGrieve \& Robertson, 1979
```

Non astrobleme
IV.SPECIFIC STUDIES

1	2	3	4	5	6	7	8	9	10	11	12

I. BASIC DATA

Name VUORIJARVI massif

Alternative	Vuoriyarvi
names	Kuolo-yarvi

Location Kola Peninsula, USSR
Geographical approx. 67.00N 29.50E after Gerasimovsky et a1, 1974 position

Horlzontal	$19.5 \mathrm{~km}^{2}$	Gittins, 1966
dimensions	$6 \times 3 \mathrm{~km}$	Kapustin, 1974

Depth

Altitude

RIm
Age Caledonian Gerasimovsky et al, 1974

II.FORM AND STRUCTURE

Oval. Four intrusive phases. Elliptical ring complex elongated east and west. The central part of the complex is a mass of pyroxenite with inward

Vartiainen \& Wooley, 1974 dip of 65 to 80 degrees. Surrounding the pyroxenite is a complete ring of ijolite, melteigite, jacupirangite and malignite, 100 to 140 m thick.

Gittins, 1966
The oldest rocks form the main part of the massif. The internal structure of the massif is extraordinarily complicated.
Kapustin, 1974
IV.SPECIFIC STUDIES

1	2	3	4	5	6	7	8	9	10	11	12

Non astrobleme

Intrusion
Gittins, 1966
Kapustin, 1974

Astrobleme

III.ORIGIN

I.BASIC DATA

Name WEINFELDER MAAR

Alternative

 namesLocation Eiffel, West Germany

Geographical

position

Horizontal dimensions	$0.575 \times 0.065 \mathrm{~m}$	Lorenz et al, 1970
Depth	137 m	
	67 to 87 m	OLLier, 196% Lorenz et al,I970

Altitude

Rim
Age
10.5 to $11 \times 10^{3} \mathrm{yrs}$
Lorenz et al,1970

II.FORM AND STRUCTURE

III. ORIGIN

Astrobleme

Non astrobleme

Volcanic
OLlier, 1967
Lorenz et al,1970
IV.SPECIFIC STUDIES

1	2	3	4	5	6	7	8	9	10	11	12
	\bullet	\bullet	\bullet				\bullet				

Lorenz et al,Igyo

WIPFELSFURT

First edition - 1976

I.BASIC DATA

Name WIPFELSFURT

Alternative

names

Location	Bayern	SW.Germany	
Geographical position	48.58 N	11.50E.	Classen, 1975

Horizontal dimensions	Diameter 1 km	Rutte, 1974
Depth	120 m (secondary)	Rutte, 1974
Altitude	420 m	Rutte, 1974
Rim		
Age	$14.8 \times 10^{6} \mathrm{yrs}$?	Classen,I975

II.FORM AND STRUCTURE
III. ORIGIN

Astrobleme

Rutte, $19 \% 1$
Classen,I975

Non astrobleme

IV.SPECIFIC STUDIES

1	2	3	4	5	6	7	8	9	10	11	12
	\bullet						\bullet				
									\bullet		
Rutte, 1971											

I. BASIC DATA

ZELENY GAI		
Alternative names		
Location	Ukr. SSR	
Geographical position	47.25N 35.23E	Grieve \& Robertson, 1979
Horlzontal dimensions	Diameter 1.4 km	Grieve \& Robertson, 1979
Depth		.
Altitude		
RIm		
Age	$120 \pm 20 \mathrm{~m} . \mathrm{y}$.	Grieve \& Robertson, 1979
II.FORM AND STRUCTURE		III.ORIGIN
		Astrobleme Probably Grieve \& Robertson, 1979

Non astrobleme

IV.SPECIFIC STUDIES

1	2	3	4	5	6	7	8	9	10	11	12

BIBLIOGRAPHY

Kraut,F. and French,B.M. 1971 The Rochechouart meteorite impact structure,France: Preliminary geological results.J.Geophys.Res.76,5394-5405.

		, Rex, D. ,Vartiainen,H., and Wooley,A. 1977 New ages of carbonatites and alkaline ultrmafic rocks from Sweden and Finland. Geol.Foren.Forhandl. 99,62-65.
Krinov, E.L.	1966	Giant Meteorites. Pergamon Press, N.Y. 397p.
Kristoffersen, Y.	1973	A magnetic investigation of the larvikite complex southwest of the lake Gjerdingen, Nordmarka.Norsk.Geol.Tidsskrift. 53, 267-282.
Lambert, P.	1977	The Rochechouart crater: Shock zoning study. Earth Planet. Sic.Letters. 35, 258-268.
Lauren,L.,Lehtova	J.	and Boström,R. . 1978 On the geology of the circular depression at Söderfjärden, western Finland. Geol.Surv. Finland.Bull. 297,5-38.
Lehijärvi,M.	1960	The alkaline district of Iivaara, Kuusamo, Finland. Bull.Comm.Geol.Finlande. 185.
Lehtinen, M.	1970	New evidence for an impact origin of Lake Lappajärvi, western Finland.Bull.Geol.Soc.Finland. 42,89-93.
Lehtinen, M.	1976	Lake Lappajärvi, a meteorite impact site in western Finland. Bull.Geol.Surv.Finland.282.92p.
Lewis, J.D.	1968	The form and structure of the Loch Ba ring dyke, Isle of Mull, Scotland.Proc.Geol.Soc.Lond. No.1649, 110-111.
Liest $\phi 1,0$.	1975	Reply to G.D.Corner.Norsk.Geog.Tidsskrift.29, 75.
Lorenz, V.	1973	On the formation of maars.Bull.volcanol. 37, 183-204.
Lorenz, V., McBirne	A.R.	and Williams,H. 1970 An investigation of volcanic depressions. Part III Maars, Tuff-rings, Tuff cones and diatremes. NASA-CR-115236. 198p.
Masaytis,V.L.	1975	Astroblemes in the USSR. Int.Geol.Rev. 18,1249-1258.
Masaytis,V.L.,Dani	ilin,A.	N., Karpov,G.M., and Raykhlin,A.I. 1976 Karla, Obolon' and Rotmistrovka astroblemes in the European part of the USSR. Doklady Akad.Nauk.Earth Sci. 230,48-51.
McQuillin,R. and B	ooks,	,M. 1967 Geophysical surveys in the Shetland Islands. Geophysical Paper No.2. London (Institute of Geological Sciences) HMSO.
McQuillin, R. and T	Tuson, J	1963 Gravity measurements over the Rhum Tertiary plutonic complex. Nature,Lond. 199, 1276-1277.
Monod, Th.	1963	Contribution a l'éstablissement d'urie iiste d'accidents circulaires d'origine meteoritique (reconnue,possible ou supposée), crypto explosive, etc. Inst.France D'Afrique Noire. Dakar, Senegal: 45p.
Neuvonen,K.J. 1	1970	Paleomagnetism of the ${ }_{0}$ dyke swarms in Finland V. Remanent magnetization of the Ava intrusives. Bull.Geol.Soc.Finland. 42, 101-107.

Nystuen, J.P.	1975	Diatremes and volcanic rocks in the Hurdal Area, Oslo Region. Studies on the igneous rock. complex of the Oslo Region, XXV.Skr.Norsk.Vidensk.-Akad.Oslo 1 Mat-Naturvidensk. K1.N.Ser. 33, 99p.
0'Connell, E.	1965	A Catalogue of Meteorite Craters and Related Features with a Guide to the Literature. Rand Corporation Paper P-3087. 218p.
Oftedaht, C .	1953	Studies on the igneous rock complex of the Oslo Region. Part XII, The Cauldrons. Skr.Norsk Vidensk.Akad.Oslo, Mat.Naturvidensk. KI.3, 108p.
Oftedahl , C.	1960	Permian rocks and structures of the Oslo Region. in, Geology of Norway. (ed. O. Holtedahl) Norges Geologiske Undersokelse, Nr. 208 I. Kommisjon Hos H.Aschehoug \& Co. Os10. 298-343.
Oftedahl, C.	1969	Personal Communication.
Oftedah1, C.	1978	Cauldrons of the Permian Oslo Rift. J.Volcanol.Geotherm. Res. 3, 343-371.
011 ier, C.D.	1967	Maars: Their characteristics, varieties, and definition. Bull.Volcanol. 31, 45-73.
Paarma, H.	1970	A new find of carbonatite in North Finland, the Sokli plug in Savukoski. Lithos, 3, 129-133.
Papunen, H .	1969	Possible impact metamorphic textures in the erratics of the lake Sääkjärvi area in south western Finland. Bull. Geol.Soc. Finland. 41, 151-155.
Papunen, H.	1973	Chemical composition and origin of the shock metamorphic rocks of the Sääkjärvi area, Finland. Bull.Geol.Soc.Finland, 45, 29-34.
Pitcher,W.S. and	Berger,	A.R. 1972 The Geology of Donegal. A study of granite emplacement and unroofing. Wiley Interscience. N.Y., London, Sydney, Toronto. 435p.
Pohl, J.,Stöffler	D., Gall	,H. and Ernstson,K. 1977 The Ries impact crater. in Impact and Explosion Cratering.(Ed. D.J.Roddy, R.O.Pepin, and R.B.Merrill) Pergamon Press,N.Y.343-404.
Polankov,A.A. an	Gerlin	g,E.K. 1961 The Pre-Cambrian chronology of the Baltic Shield. Ann.New York Acad.Sci. 91,492-499.
Puustinen, K.	1971	Geology of the Siilinjarvi carbonatite complex, eastern Finland. Bull.Comm.Geol.Finlande. 249, 43p.
Ramberg,I.B.	1976	Gravity interpretation of the Oslo graben and associated igneous rocks. Norges Geologiske.Undersok. 325, 194p.
Richey,J.E.,MacGr	egor,A.	G. and Anderson, F.W. 1961 British Regional Geology. Scotland: The Tertiary Volcanic Districts. HMSO,Edinburgh 120p.
Riddihough, R.P.	1969	Magnetic map of the Adara granite and southern County Donegal.Geophys,Bull.Dubl.Inst.Adv.Stud.No.27, 3p.

Rutte, E.	1971	Neue Ries - Aquivalente.. Krater mit Brakzien-Ejekta in der Sudlichen Frankenalb, Südeutschland. Geoforum,7,84-92.
Rutte, E.	1974	Personal Communication and Neue Befunde zu Astroblemen und Alemoniten in der Scheifregion des Rieskometen. Oberrhein geol.Abh. 23, 97-126.
Rutte, E	1975	Das silifizierungsphanomen des Impactkraters Saala.d.Donau. z.dt.geol.Ges. 126, 183-197.
Rutten, M.G.	1966	The Siljan Ring of Palaeozoic, central Sweden - a posthumous ring complex of a late pre-Cambrian Dala porphyries caldera. Geologie en Mijnbouw 45, 125-136.
Schminke,H-U., Fisher, R.V. and Waters,A.C. 1973 Antidune and chute and pool structures in the base-surge deposits of the Laacher See area, Germany. Sedimentology, 20, 553-574.		
Segalstad,T.V	1975	Cauldron subsidences, ring-structures, and major faults in the Skien District,Norway. Norsk.Geol.Tidsskrift, 55, 321-333.
Sharp,A.W.	1970	St.Magnus Bay,Shetland: A probable British meteorite crater of large size. The Moon, 2, 144-156.
Shmayenok,A.I. and Tikhomiroy,S.N. 1974 The Mishina Gora cryptoexplosion structure near Lake Chudskoye. Doklädy Akad.Nauk.Earth Sci. 219, 52-54.		
Shoemaker, E.M. and Chao,E.C.T. 1961 New evidence for the impact origin of the Ries Easin, Bavaria,Germany. J.Geophys.Res. 66, 3371-3378.		
Small,R.J.	1972	The Study of Landforms. A textbook of geomorphology. Cambridge at the University Press, 486p.
Stam, J.C.	1967	On the geology and tectonics of the Lake Siljan area, central Sweden. Geologie en Mijnbouw, 46, 467-481.
Stanfors, R	973	Mienstrukturen - en Kryptoexplosiv bildning i Fennoskandias urberg. Geologiska Institutionen Lunds Universitet,Thesis. Lund. 144p.
Storzer,D.,Ge	,W. and	Steinbrunn, F. 1971 Stopfenheim Kuppel, Ries Kessel and Steinheim Basin: A triple Cratering event. Earth Planet. Sci.Letters, 13, 76-79.
Streckeisen, A .	60	On the structure and origin of the nepheline-syenite complex of Ditro(Transylvania, Roumania). 2lst Int.Geol. Congr. Pt.13, 228-238.
Sturt,B.A., Miller,J.A. and Fitch,F.J. 1967 The age of alkaline rocks from west Finnmark, northern Norway, and their bearing on the dating of the Caledonian Orogeny. Norsk.Geol.Tidsskrift, 47, 255-273.		
Syensson,N.B.	1966	Lake Hummeln. A possible astrobleme in southern Norway.D. The Бottom topography. Sverges Geologiska Undersökning. $60,1-18$.

Svensson, N.B.	1971	Lappajärvi structure, Finland: Morphology of an eroded impact basin. J.Geophys.Res. 76, 5382-5386.
Svensson,N.B.		n,F.E. 1965 Coesite from Lake Mien,southern Sweden. Nature, 205, 1202-1203.
Talvitie, J., Pe	. and	Raitala, J. 1975 The circular Vaasa structure in the Baltic Shield, western Finland. University of Oulu,Dept. of Geophysics Contrib.59, 15p.
Taubeneck, W.H.	1967	Notes on the Glen Coe cauldron subsidence, Argyllshire, Scotland. Geol:Soc:Amer.Bull. 78, 1295-1316.
Tomkeieff, S.I.	1961	Alkalic ultrabasic rock and carbonatites in the USSR. Int.Geol.Rev. 3, 739-758.
Val'ter, A.A.	1975	Interpretation of the Il'intsy structure in the Vinnitsa Oblavt,Ukraine, as an astrobleme. Doklady Akad.Nauk.Earth Sci. 224, 77-79.
	Ye.	and Ryabenko,V.A. 1978 The Obolon' fossil meteorite crater(astrobleme) on the northeast flank of the Ukranian Shield. Doklady Akad.Nauk.Earth Sci. 232, 37-40.
tiainen, H.	1	,A.R. 1974 The age of the Sokli carbonatite,Finland, and some relationships of the North Atlantic Alkaline igneous province. Bull.Geol.Soc.Finland, 46, 81-91.
V,		Z. and Es'kova,E.M. 1966 The Lovozero Alkali massif. (Ed. S.I.Tomkeieff and M.H.Battey, Trans.D.G.Fry and K.Syers).Hafner Pub.Co.N.Y. 627p.
	$\mathrm{n}, \mathrm{G} . \mathrm{M}$	1968 Layered Igneous Intrusions. Oliver \& Boyd, Edinburgh and London. 588p.
Wagner,G.A. and		1975 The age of the Rochechouart impact structure. Meteoritics, $10,503-504$.
I ker,G.P.L.	ed	,G.P. 1954 The Barnsmore Granite Complex, County Donegal Sci.Proc.R.Dublin Soc. 26, 207-243.
Werner, E.	1904	Das Ries in der Schwäbisch-fränkischen Alb. Blatter des schwabischen Albvereins, 16, 153-167.
Wooley, A.R.	1970	The structural relationships of the Loch Borrolan Complex, Scotland. Geol.J. 7, 171-182.
Yurk,Yu.Yu.,Yeremenko,G.K., and Polkanov,Yu.A. 1975 The Bolysh depression - a fossil meteorite crater. Int.Geol.Rev. 18, 196-202.		
Zebera, K.	1971	Geological effects of the comet fall on the territory of Central Europe at the end of the Miocene. Mineralia Slovaca Roč. 11, 172-175.

SECTION II:

Abstracts of Results of the Planetary Geology Intern Program.

THE PLANETARY GEOLOGY INTERN PROGRAM
Abstracts Covering Research Projects for Summer 1980

The Planetary Geology Intern Program was established four years ago as an offshot of the highly successful Viking Intern Program. It has provided undergraduates with an opportunity to consider planetary work by actually becoming involved in on-going research with NASA-sponsored Principal Investigators. Following is a summary of projects in which PGIP participants were actively involved during the summer of 1980. Interns whose abstracts have been included in this publication are:

Richard P. Binzel, senior at Macalester College, MN Hosted by Dr. Eugene Shoemaker/Eleanor Helin at Cal Tech, Pasadena, CA

Stephen H. Brown, senior at Univ. of Massachusetts, Amherst Hosted by Dr. James Head, Brown Univ., Providence, RI

James D. Giglierano, junior at Eastern Kentucky Univ. Hosted by Mrs. Carol S. Breed, USGS, Flagstaff, AZ

Marilyn Ginberg, sophomore at Franklin \& Marshall College, PA. Hosted by Dr. Stephen Saunders, JPL, Pasadena, CA

Silvia M. Heinrich, senior at Univ. of Massachusetts, Amherst Hosted by Dr. Robert E. Strom, Univ. of Arizona

Charles T. Herzig, junior at Dickinson College, PA Hosted by Dr. Farouk El-Baz, Smithsonian Inst., Washington, DC

Melinda L. Hutson, junior at University of Minnesota Hosted by Dr. Robert Wolfe, Smithsonian Inst., Washington, DC

John M. Japp, senior at University of Nebraska, Lincoln Hosted by Dr. Stephen Saunders, JPL, Pasadena, CA

Jeffrey D. Kenney, senior at Bates College, Maine Hosted by Dr. Stephen Saunders, JPL, Pasadena, CA

Kathleen A. Malone, senior at San Jose State University Hosted by Dr. Ronald Greeley, NASA Ames Research Center, CA

Fernando Martinez, senior at City College of New York Hosted by Dr. James Head, Brown University, Providence, RI

Leo G. Matthews, senior at Hofstra University, NY Hosted by Dr. Duwayne M. Anderson, S.U.N.Y. at Buffalo

Lynn Muradian, junior at Massachusetts Inst. of Technology Hosted by Dr. Stephen Saunders, JPL, Pasadena, CA

Christina A. Neal, junior at Brown University, RI Hosted by Dr. Elliot Morris, USGS, Flagstaff, AZ

Paul N. Romani, junior at University of Michigan Hosted by Dr. Stephen Saunders, JPL, Pasadena, CA

Marianne Stam, senior at Univ. of California, Berkeley Hosted by Dr. James Head, Brown University, Providence, RI

Randii Wessen, senior at S.U.N.Y. at Stony Brook Hosted by Dr. Chas. Stembridge/Patricia Cates, JPL, Voyager Science Office

Deborah L. Young, junior at S.U.N.Y. Hosted by Patricia Cates, JPL, Pasadena, CA

PLANET CROSSING ASTEROID SURVEY

Richard P. Binzel*
NASA Planetary Geology Intern
Division of Geological and Planetary Sciences California Institute of Technology

BACKGROUND

This survey was undertaken in 1973 by Eugene M. Shoemaker and Eleanor F. Helin of the California Institute of Technology in order to determine the population of asteroids whose orbits cross Mars, Earth, and Venus. Results from this survey combined with results of previous studies will give improved estimates of the cratering rates on these planets.

Time exposures of selected areas of the sky are made monthly primarily with the 18 inch and occasionally the 48 inch Schmidt telescope at Mount Palomar Observatory in order to search for these planet crossing asteroids as their orbital motion causes them to display short trails. A typical 48 inch Schmidt photographic plate may reveal several hundred trails, many being among the over 2000 numbered asteroids, but the majority being previously undiscovered objects whose orbits are within the main asteroid belt. Planet crossing asteroids are identifiable on a plate by their relatively fast apparent motion, but such objects are a rare find with a discovery rate of only one or two per year. Besides making positional measurements and orbital determinations for the objects of primary interest, the newly discovered planet crossing asteroids, an effort is made to also measure positions and determine orbits for the numerous newly discovered main belt objects.

RESEARCH

In 1978, 150 new main belt asteroids were discovered on plates taken by Helin and Shoemaker over a two month interval
*Present address: Dept. of Astronomy, University of Texas, Austin, TX 78712.
using the 48 inch Schmidt. These objects were measured and preliminary orbits for them were determined. Under the direction of Schelte J. Bus, I used these preliminary orbits and the record plates taken with the 48 inch Schmidt to determine whether some of these objects may have shown up on plates taken prior to their discovery. This search was centered around their 1977 opposition and uncovered potential plates for 56 of the objects. Of these, 38 objects were on plates taken by Charles Kowal of Caltech as part of his Solar System Survey. Since these plates were readily accessible, I concentrated my examination on them and was able to search for 23 of the objects. Each of the plates examined showed numerous asteroid trails, but images having a suitable match to the positions and orbital motions predicted by the preliminary orbits were found for only 12 of the objects, roughly 50 percent. The positions of these objects were then measured to better than one arcsecond precision and have been reported to Brian Marsden of the Smithsonian Astrophysical Observatory and will be published in the Minor Planet Circulars. These additional positions will allow great refinements to be made in the preliminary orbits of these objects which will lead to their permanent number and name assignments.

I was also able to participate in two observing sessions at Mount Palomar using the 18 inch Schmidt telescope on a total of five nights. Approximately 20 exposures were taken each night with the work consisting of telescope guiding and developing the films. Each film was scanned with a binocular microscope to detect fast moving asteroids, but no such objects were found during my stay.

ACKNOWLEDGMENTS
I would like to thank E. F. Helin and S. J. Bus for sharing their experience and particularly A. Freeman for help with living arrangements.

THE GEOLOGY OF THE ELYSIUM REGION OF MARS

Stephen H. Brown
NASA Intern at Brown University

August 23, 1980

The Elysium region of Mars, located in the vicinity of $215^{\circ} \mathrm{W}$, $25^{\circ} \mathrm{N}$, is one of the two major volcanic provinces on the planet. The geology of the other younger volcanic region, Tharsis, has been extensively studied by such workers as Schaber et al (1). However, the overall geology of the Elysium region has been neglected; with previous studies in the region having concentrated on specific volcanic constructs $(2,3)$ or the fossae and associated channels $(4,5,6)$. The purpose of this study is therefore to explore in detail the geology of the Elysium region with special emphasis being placed on determining the manner in which the surface features were formed.

The first part of this project involved the detailed mapping of the region. Medium resolution Viking Orbiter pictures (frames 541A03-541A06, 732A11-732A16, 844A11-844A22, 844A39-844A46, and 846A17-846A22) were used to delineate map units on an orthographically corrected photomosiaic (frames 844A09-844A46). The boundaries in the unit map were chosen based upon both differences in distinctive composition and mode of emplacement as well as differences in morphology in those cases where post emplacement processes have significantly altered the terrain.

In addition, morphometric measurements of the Elysium fossae and associated channels were obtained. From sinuous channels in the region, measurements were taken of channel bankfull widths and associated wavelengths. Moreover, widths and associated planimetric areas were taken from streamlined forms, as defined by Baker (7), located within an anastomizing Elysium channel. This channel was located on a high resolution photomosaic composed of Viking Orbiter pictures (frames 651A01-651A24). The planimetric areas were measured using an area calculating computer program in conjunction with a digitizing board. These morphometric measurements were taken in an attempt to determine the origin of the Elysium fossae and associated channels.

Lastly, a chronology was determined for the events acting in the Elysium region which led to the formation of the surficial units. The major criterion for separating the units based on their relative ages was the superposition of adjacent units at a common boundary. Moreover, an erosive unit which cut into another unit was determined to be younger than that unit.

The major result of this investigation is that the Elysium region has been divided into sixteen morphologically distinct units. Ten of these units were formed by constructive processes involving volcanic activity; whereas, the other six units were formed by destructive processes involving one or more erosive agent(s).

Also, the Elysium fossae and associated channels can be separated into two groups when wavelength versus width measurements are plotted on log versus log paper. One group probably had a fluvial origin based upon similarities between the channels in the group and the catastrophically flooded scablands of Washington (7). The other group probably formed by erosion from turbulent lava flows based upon similarities between the channels in this group and sinuous rilles on the moon.

The measurements of length versus planimetric area of streamlined forms were obtained from a channel which belonged to the fluvial origin group based upon the above sinuosity measurements. A plot of the points on log versus log paper coincided very well with data which Baker and Kochel (8) obtained from the scablands of Washington on the Earth and the Maja and Kasei Vallis regions on Mars. This strongly supports the finding that this channel (and those morphologically similar) was formed by catastrophic flooding.

Finally, the constructive volcanic units of the Elysium region were generally followed by the erosive destructional units. This generality is complicated by the existence of more than one type of erosive agent. It appears that in many cases, one of the erosive agents, water, reached the surface at the same location as lava. In some cases the lava had been acting as a destructive agent characterized by erosive turbulent flows; in other cases the lava had been acting as a constructive agent characterized by large scale surface flows. Invariably, the water came after the lava.
(1) Schaber, G. G. et al (1978) Proc. Lunar Planet. Sci. Conf. IX, 3933-3958.
(2) Malin, M. C. (1977) Bull. Geol. Soc. America 88, 908-919.
(3) Riemers, C. E. and Komar, P. D. (1979) Icarus 39, 88-110.
(4) Carr, M. H. (1974) Icarus 22, 1-23.
(5) Sharp, R. P. and Malin, M. C. (1975) Geol. Soc. America Bull. 86, 593-609.
(6) Malin, M. C. (1976) Jour. Geophys. Res. 81, 4825-4845.
(7) Baker, V. R. (1978) Proc. Lunar Planet. Sci. Conf. IX, 3205-3223.
(8) Baker, V. R. and Kochel, R. C. (1978) Proc. Lunar Planet. Sci. Conf. IX, 3193-3203.

THE HEIGHTS OF DUNES ON MARS

James D. Giglierano
U.S.G.S. Flagstaff, AZ.
August 1980

On Mars, there are many areas which have what appear to be dunes. In my area of study, the north polar region of Mars, there are vast fields of transverse and barchan dunes. These fields cover an area on the order of one million square kilometers, which is as large as the great sand seas of North Africa.

Presence of dunes on Mars and information from the Viking landers have created some interesting questions. The Viking landers have shown an apparent lack of any sand size particles on the surface near the lander. This may be a condition local to the landing sites, but if this lack of sand material were planetwide, it raises the question of what the dunes are made. The absence of sand material may be due to the so called kamikaze effect (Sagan et al., 1977), which states that under present Martian conditions saltating grains would tend to destroy themselves.

Another paradox discovered at the landing sites was that the wind velocities were below what is needed for grains to start saltating and be moved into dune forms (Sagan et al., 1977). Again, this may be a local condition, but if this is true over the whole planet, then the dunes may be presently inactive.

If these conditions are true for the whole planet, then it seems unlikely that dunes could be formed or are active under present circumstances. It may be that the dunes that are present were formed in the past when atmospheric conditions were more favorable.

In order to understand under what conditions the dunes were formed and under what conditions they are presently being subjected, it was necessary to establish the morphological characteristics of the dunes, such as height, width, and length. Using
a photo illumination method devised by Arthur (1980), determinations of the heights of fourteen individual barchan dunes taken from Viking frame 524B21, were made.

Widths of dunes were then measured. This was done so that directly measured width data could be compared with widths calculated using Finkel's (1959) height-width formula for barchan dunes. Finkel's formula is $W=10.34 \mathrm{H}+4.0$. Table 1 shows the unfortunate result, which indicates discrepancies between the widths found from the height calculations and the widths found by direct measurement from the orthographic image. It is my belief that it is not possible to obtain good accurate measurements directly from the photograph and that another method be used in order to test the validity of the height calculations. Hopefully, it will then be possible to shed further light on the physics of the Martian dunes' formation and on what forces are presently acting on them.

TABLE 1
Comparison of widths found by calculation and by direct measurement of barchan dunes on Viking frame 524B21

Approx. location of dune sample no. line	Calculated height	Measured width	Finkel width	
735	90	23 meters	500 meters	250 meters
745	110	36	550	375
750	115	68	700	700
760	90	33	550	350
763	110	25	350	250
763	135	38	500	400
778	125	31	450	325
792	110	7	250	75
815	125	32	500	350
822	100	42	450	450
800	65	41	500	425
770	20	35	550	350
743	25	13	400	125
773	10	15	350	150

REFERENCES

Arthur, D., personal communication and in press, 1980.
Finkel, H. J., The barchans of southern Peru, J. Geol., 67, 614-647, 1959.

Sagan, C., D. Pieri, P. Fox, R. E. Arvidson, and E. A. Guinness, Particle motion on Mars, inferred from the Viking lander cameras, J. Geophys. Res. 82, 4430-4438, 1977.

MARTIAN VALLEY ORIENTATIONS AND REGIONAL STRUCTURAL CONTROLS Marilyn Ginberg, Dept. of Geology, Franklin and Marshall College, Lancaster, PA 17604 and David Pieri, Jet Propulsion Laboratory, Pasadena, CA 91103

Abstract

Processes ranging from rainfall to basal sapping to surface runcıf from seepage zones (Sharp and Malin, 1975) have been proposed to explain the origins of martian valley networks (Milton, 1973; Sharp and Malin, 1975; Pieri, 1976, 1980). Such formational processes, involve the movement of groundwater or surface water which would presumably be facilitated and directed by the existence of zones of structural weakness associated with faults or joints. Strong positive correlations between network orientation and regional joint patterns have been demonstrated for canyons in the Colorado Plateau (Laity, 1980) which are analogous to martian valleys in morphology and perhaps in certain aspects of their origin (1.e. basal sapping) (Baker, 1980; Pieri, 1979; Pieri et al., 1980). Thus, models for valley formation which invoke a lithospheric source (e.g. sapping/seepage) imply that the subsurface control of valley orientation should be strong (Sharp and Malin, 1975; Pieri, 1980).

In an effort to determine whether any correlation exists between valley orientation and structural landforms (e.g. grabens, scarps, mare ridges, lineaments), the orientations and lengths of these features were compared to the orientations and lengths of link segments comprising nearby valley networks (Figure 1). Three regions on Mars were selected on the basis of terrain type: (1) Margaritifer Sinus in the neighborhood of Nirgal Vallis representing Lunae Planum age cratered plains (Figure lc and b); (2) Sinus Sabaeus near Flaugergues crater representing older heavily cratered terrain (Figure le and f); and (3) Sinus Sabaeus proper which is a composite of older heavily cratered terrain and younger intercrater plains (Figure le and d). Figure 1 (a through f) is a series of rose diagrams comparing the orientation and lengths of mapped structural features (Figure la, c, e) to nearby valley lengths and orientations (Figure $l b, d, f$).

Figure la clearly displays the strong E-W trend of the numerous graben which exist between Nirgal Vallis and Valles Marineris. A corresponding trend is clear in Figure 16 and is due primarily to the orientation of Nirgal Vallis, generally parallel to the graben system. Also visible is a strong NESW structural trend with which there is little correspondence in valley orientation. This lobe corresponds to mare ridges which may be younger than nearby valleys. There is a major N-S trend in valley orientations, with no structural counterpart associated with Ladon Vallis which is quite old as evidenced by clearly superimposed large impact craters.

The heavily cratered terrain of Sinus Sabaeus (le and f) shows two prominent trends ($\mathrm{N} 20^{\circ}-30^{\circ} \mathrm{W}$ and $\mathrm{N} 30^{\circ}-40^{\circ} \mathrm{E}$) which appear in both valley and structural orientations. 0ld and perhaps exhured valleys showing good directional correlation with structural topographic elements may argue for persistent, stable or ancient structural controls.

The region near Flaugergues crater (Figure lc and d) composed of both cratered terrain and intercrater plains shows two major trends in structure orientation ($\mathrm{N} 20^{\circ}-40^{\circ} \mathrm{W}$ and $\mathrm{N} 20^{\circ}-40^{\circ} \mathrm{E}$) but with only the former expressed in valley orientation. The NE-SW structural trend corresponds to mare ridges in intercrater plains, younger than the subjacent heavily cratered terrain in which the valleys are expressed.

Correlations exist in these data between the trends of structural features and valley orientation, however, in several cases structural elements postdate valley formation and show no correlation with valley orientations. It is felt that sun orientation while probably having a small effect does not

bias the data strongly, particularly since about one-third of the data show clear east-west trends.

While this study is preliminary and of limited scope, it shows the coincidence between the regional orientations of structures such as grabens, scarps, structural lineaments, and mare ridges and valley networks. Further detailed work which addresses the local geological interaction between mare ridges and tributary canyons of Nirgal Vallis is underway. Preliminary geologig and geomorphologic sketch maps have been produced from high resolution ($\quad 40$ meter per line pair) Viking images, which show the direction of tributary development to be correlated with the presence of mare ridges intersecting the valley at high angles. We conclude that on both regional and local scales subsurface structure has a strong influence on the orientations of neighboring valley networks. This observation is consistent with and suggestive of valley formation by groundwater flow by either seepage or sapping mechanisms.

Caption, Figure 1

Shown here are the orientations of valley link segments (b,d,f) as compared to the orientations of structural landscape elements (e.g. scarps, grabens, troughs, lineaments) (a,c,e). Locations are defined in the text.

BIBLIOGHAPHY

Baker, V.R., 1980, Some terrestrial analogs to dry valley systems on Mars, p. 286-288 in Report of Planetary Geology Program 1979-1980, P. Wirth, R. Greeley, and R.D'Alli eds. NASA TM-81776, NASA, Hash. D.C., 421 pgs.

Laity, J.E., 1980, Sapping processes in martian and terrestrial valleys, EOS, 61, p. 286.

Milton, D.J., 1973, Water and processes of degradation in the martian landscape: Jour. Geophys. Researche 78, pp. 4037-4049.

Pieri, D., 1976, Distribution of small channels on the martian surface: Icarus, 27. pp. 25-50.

Pieri, D.C., 1979, Geomorphology of martian valleys, Ph.D. Thesis, Cornell University, Ithaca, N.Y., 280 pgs.

Pieri, D.C., 1980, Martian valleys: Morphology, distribution, age, and origin, in press, Science.

Pieri, D.C., M.C. Malin, and J.E. Laity, 1980, Sapping: Network structure in terrestrial and martian valleys, Repts, of Plan, Geol. Proes 19791980, NASA TM-81776, p. 292.

Sharp, R.P. and M.C. Malin, 1975, Channels on Mars, GSA Bull. 86. p. 593-609.

MOUNTAIN LANDFORMS ON IO
Silvia M. Heinrich
Planetary Geology Internship Program Department of Planetary Sciences University of Arizona, Tucson, Az. 85721

An important discovery by the Voyager mission was the presence of large mountains on the surface of 10 . The purpose of this investigation was to characterize these landforms in terms of their morphology, distribution and dimensions. Voyager 1 high resolution images ($0.5-5 \mathrm{~km}$./line pair) show that the planimetric shape of the mountains on Io are diverse: irregular, elliptical and ridge-like. The topographic texture of these features is very rugged; having been disrupted by fractures. The crests of the mountains are ridges, not isolated peaks, and steep walls or scarps usually form the mountain flanks.

The highest resolution images of a mountain are those of Haemus Mons, taken near the terminator. The topography of this mountain is controlled by lineaments forming parallel ridges and troughs which are probably fractures. These lineaments form two sets, intersecting at an angle of about 50°. A graben-like structure and a lineament in the adjacent plains parallel the two sets of mountain fractures. Although a pit crater occurs at the base of Haemus Mons, no volcanic landforms such as calderas or flows are observed. Where resolution allows, these same characteristics are also found on other mountains.

Thirty nine mountains were identified on Voyager 1 limb and terminator photography. These mountains were correlated with albedo features on full-phase images and then located on the Preliminary Pictorial Map of Io. Both their lateral and vertical dimensions were measured with respect to the mean limb and are minimum values since the mountains probably are a few degrees over or in front of the limb. The mountains range in height from about 3 to 13 km . and in width from about 6 to 190 km . These large dimensions indicate that the material has a high yield strength consistent with silicate material. Without exception, the mountains correspond with bright to moderately high
albedo markings. This suggests they are coated with a bright material which may be frozen SO_{2}. Contrary to earlier reports, ${ }^{1}$ these mountains seem to be uniformly distributed over the surface rather than concentrated in the polar regions. Furthermore, they appear to be isolated massifs rather than continuous chains, but some clustering probably occurs.

Mountains on the terrestrial planets are formed by three general mechanisms: impact, volcanism and tectonism. The origin of the mountains on 10 is not clear from the limited data base available. However, it is not likely that they are the remnants of impact crater or basin rims because of their great height, uncharacteristic morphology and uniform distribution. Although features of unambiguous volcanic origin are lacking on the mountains, it is possible that such features have been rendered unrecognizable by fracturing and other types of disruptions such as mass wasting. The fractured nature of these mountains does suggest that tectonism has played a role in their formation. Possibly they are segments of the silicate crust which have been uplifted by tectonic forces early in the history of Io. In any event, any proposed origin of these features must take into account the following characteristics: (1) uniform distribution over the surface, (2) high to moderate albedo, (3) very large dimensions, and (4) the high degree of fracturing.
${ }^{1}$ Smith, et al., 1979, The Jupiter System through the Eyes of Voyager 1, Science, 204, 951-972.

RESULTS OF A PLANETARY GEOLOGY INTERNSHIP AT THE SMITHSONIAN INSTITUTION: A MINERALOGICAL ANALYSIS OF SAND SAMPLES FROM THE WESTERN DESERT OF EGYPT

by
Charles T. Herzig
1 August 1980

INTRODUCTION

Observations recorded by the astronauts during the Apollo Soyuz Test Project (ASTP) indicated that the color of desert surfaces varies both on a regional and local scale. A reason for these variations has been shown to be related to compositional changes in the exposed surfaces (1).

The Western Desert of Egypt was selected as a test site for the ASTP. Several field excursions have been made to the Western Desert for the collection of samples for ground truth measurements. Specific sites were chosen for a detailed mineralogical analysis of the samples collected from these localities. The purpose of this "expanded abstract" is to present an account of the work completed on these samples during a NASA Planetary Geology Internship at the Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, Washington, D.C. under the direction of Dr. Farouk El-Baz.

GENERAL SETTING
The Western Desert is a plateau of limestones and sandstones encompassing two-thirds of Egypt. There are seven major depressions in this desert and two topographic highs, the Gilf Kebir and Gebel Uweinat, in its southwestern corner (2).

Overlying the bedrock are bundles of sand dunes, with the largest accumulation, the Great Sand Sea, in the western central part of the desert. There are several types of dunes and the large north-south trending longitudinal dunes are the most prominent in the ASTP photographs.

Sand samples were collected from a wide variety of locations in the Western Desert. However, only seven sites were selected, on the basis of previous mineralogical analyses (3), for the detailed mineralogical study. These locations include the oases of Faiyum, Bahariya, Siwa, Dakhla, Kharga, Bulag, and the Great Sand Sea.

SAMPLE ANALYSIS

The sand samples were studied according to the accepted procedures of sedimentary petrography. The samples were sieved and separated into quarter phi units (0.00-4.00 + Pan) and a representative part of each size fraction was mounted in Lakeside 70 ($\mathrm{n} \approx 1.54$).

The grain mounts were examined utilizing a Nikon polarizing microscope. The polarizing microscope was preferred over the binocular microscope because of the capabilities of the former to facilitate a more accurate identification of the minerals present.

The counting procedure consisted of a preliminary examination of the grain mounts, recording all identifiable mineral species present. One hundred point counts were made by traversing the slide linearly, where the grains were counted using the crosshairs as pointers. During the course of the preliminary identification, photographs were made of the sand grains. This was done in order to record any unusual features present, as well as the mineral species and representative features of the sample.

DISCUSSION
As expected, the examined samples consisted primarily of quartz and varying amounts of other minerals. However, the early stages of the analysis indicated that the point counts would not be as simple as identifying quartz and the other mineral species. Each sample contained a wide variety of quartz grains as well as calcareous grains, which constituted the second most abundant species. For example, the types of quartz present ranged from rounded to angular shapes; contained a wide variety of inclusions, such as rutile, tourmaline, apatite, zircon, and others, where the inclusions had different shapes and affinities for one another; and the quartz grains exhibited a wide variety of coatings. Whereas the angularity measurements and the type of inclusions were easily classifiable, the coatings presented a
difficult problem. This is because the quartz grains had coatings that were multi-colored, varied in the area of the grain covered, and were of different varieties (hematitic and calcareous). Hence, this characteristic of the quartz grains was limited to a classification according to coatings being present or absent.

Other mineral species present were various types of calcareous grains, calcite, tests, gypsum, rutile, garnet, tourmaline, hornblende, zircon, staurolite, epidote, pyroxene(?), apatite(?), plagioclase, microcline, feldspars, kyanite, biotite, and opaques (ilmenite with some alteration to leucoxene). Some samples also contained large amounts of rock fragments in the coarser size fractions. It is interesting to note that this group of minerals, especially the heavy minerals, exhibited features that would be diagnostic in a provenance study. Several varieties of tourmaline and rutile were present, and some calcite grains exhibited an anomalous biaxial optic axis figure, which are indicators of a unique source rock. Also, the heavy minerals had different degrees of angularity, which is an indicator of transport distance in an eolian regime.

CONCLUSION

The data and observations from the mineralogical analysis of seven areas in the Western Desert of Egypt will provide information to facilitate a better understanding of the color variations observed in the desert surfaces in the ASTP photographs. The results will be useful to parallel studies of the spectral reflectance properties and the nature of the grain coatings of the same samples. It is apparent that the knowledge of the detailed mineralogy of the samples is necessary for explaining variations in the sands. If there is some relationship between the results of the spectral reflectance data and the mineralogy, then this relationship may be extrapolated to the deserts of Mars, due to their similarity with the Western Desert of Egypt (4).

Finally, it is recommended that more work be done on the inclusions in the quartz grains. Also, if samples were to be collected from rock outcrops in Egypt, a provenance study could be easily accomplished. This study would further enhance the results of studies on the transportation of the sands in the dry eolian regime of the Western Desert of Egypt. This in turn would further our understanding of transport and oxidation of particulate matter on Mars.

1. El-Baz, Farouk: Astronaut Observations from the Apollo Soyuz Mission. Vol. I of Smithsonian Studies in Air and Space, Smithsonian Institution Press (Washington, D.C.), 1977.
2. Said, Rushdi: The Geology of Egypt. Elsevier Pub. Co. (Amsterdam), 1962.
3. El-Baz and others: Preliminary Analysis of Color Variations in the Western Desert of Egypt. Vol. II of ASTP Summary Science Report, NASA Publication SP-412 (Washington, D.C.), 1979.
4. El-Baz and Maxwell.

ORIENTASION OF IMFACT CRATERS ON MARS. Melinda Hutson, University of Minnesota, Minneapolis, MN 55455 and Robert \%ionfe, National Air and Space Museum, Smithsonian Institution, Washington, D.C. 20560.

Terrestrial and Lunar impact craters have been noted to depart from circularity. In some cases, the deviation from circularity reflects gross pre-impact structural characteristics of the terrestrial or lunar crust (Epoler et al.,). Keteor Crater in Arizona is a well-known example. The quadrate shape of the crater is related directly to joints on the Colorado Plateau (Roddy et al., 1975). Martian craters also depart from circularity. Therefore, one might expect that these deviations also reflect: Eross structural characteristics of the Martian crust.
:ie measured the shapes of 817 martian craters in the region from 0° to -30° latitude, tracing the crater rims of craters from nineteen l:2,000,000 scale USGS photomosaic maps of Mars. Each crater outline was digitized and the first twenty harmonics of a Fourier spectiom, perticularly the second harmonic phase angle (the long axis orientation) was computed (Ehrlich and :leinbere, 1970; Eppler et al., 1977). For each of the nineteen maps, a rose diagram was drawn by plotting the direction of the long axis on a polar co-ordinate graph in increments of 10 degrees.

In most cases, long axis orientation of the martian craters appeared to be nonrandom. Many of the craters within a map had long axes parallel to subparallel to each other. One clear example of this was the Memnonia quadrangle. The majority of the craters in this area had their long axes oriented in a range from 100° to 140°, or in a northwesternly direction. The majority of the craters in the sautheast quarter of the Aeolis quandrangle have the same long axis orientation of 100° to 140°. The majority of the craters in the lower half of the Margarititen Sinus quandrangle, on the other hand, had their long axes oriented in an east-west direction in a range from 150° to 200°. There were also minor local orientation trends, in small areas of an individual quandrangle, and trends where the long axis orientations gradually increased or decreased in angularity in certain directions.

There needs to be additional studies to see if these orientations are reflected in other structures on Mars.

References

Erlich, R. and G. Weinberg, 1970, An exact method for characterization of grain shape: Jour. Sedimentary Petrology, 8.40 , p. 205-212. Eppler, D. T., D. Nummedal and R. Ehrlich, l977, Fourier analysis of planimetric lunar crater shape-possible guide to infact history and lunar geology: Proceedings, Symposium on Cratering Mechanics, Flagstaff, Sept. 26.

Eppler, D. T., D. Nummedal and R. Ehrlich, ti:ns of Lunar Crater Elongation:

Roddy, D. J., J. M. Boyce, G. W. Colton, and A. L. Dial, Jr., 1975, Meteor Crater, Arizona, rimdrilling with thiciness, structurel uplift, diameter, depth, volume and mass-balance calculations: Proc. Lunar Science Conf. 6th, p. 2621-2644.

SIZE-FRACTION ANALYSES OF MAUNA KEA, HAWAII SUMMIT SOILS AND THEIR POSSIBLE ANALOGY WITH MARTIAN SOILS

J.M. Japp and J.L. Gooding, Planetology Section, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91103

INTRODUCTION. The Viking lander x-ray fluorescence spectrometers gave elemental analyses which suggest derivation of surface fines from mafic or ultramafic igneous parent rocks (1), such that soils developed on terrestrial basalts under dry, nearly abiotic conditions might serve as reasonable analogs of Martian soils. Ugolini(2) proposed soils from the summit region of the Mauna Kea, Hawail volcano as such analogs. SAMPLES AND METHODS. Two samples were selected from surface (upper ~ 12 cm) soils developed, respectively, on volcanic and glacially/fluvially reworked deposits near the Mauna Kea summit. The first (5B) was taken from Puu Poliahu, a tephra cone within the Waikahalulu Formation of the Laupahoehoe Group (3,4). The second (3B) was collected from a Makanaka Formation (also Laupahoehoe Group) deposit which is interpreted as outwash material $(3,4)$ possibly produced by catastrophic flooding precipitated by melting of glacial ice.

Each bulk soil was separated into size fractions using a sonic sifter and ASTM sieves. After optical microscopic examination, portions of each fraction were crushed to pass a $30-\mu \mathrm{m}$ sieve and analyzed by x-ray diffraction (XRD) and visible/near-infrared (VIS/NIR) reflectance spectrophotometry.
RESULTS AND INTERPRETATION. Sieve analyses (Fig. 1) show that soil 3B (outwash plain) contains appreciably more fine material than does 5B (tephra cone). However, < 5 weight percent of either sample falls within the apparent silt-size range of Martian surface fines analyzed by the Viking landers (5).

XRD indicates that both soils contain similar relative abundances of primary igneous minerals (plagioclase, olivine, pyroxene, and spinels). Soil 5B also contains substantial amounts of secondary minerals including smectites and hematite. Furthermore, at least three XRD peaks from 5B show systematic increases in intensity with decreasing particle size (Fig. 2), indicating concentration of some (mostly secondary) minerals into small particles. In contrast, $3 B$ shows no pronounced variation of mineralogy with particle size.

Two NIR absorption bands ($1.4,1.9 \mu \mathrm{~m}$) of 5B (Fig. 3) are attributable to hydrous phyllosilicates (6) although 3B exhibits only incipient bands at the same wavelengths as would be characteristic of an unweathered basalt (7). Color differences between the soils (yellow-brown, 5B; gray-black, 3B) are substantial with 3B composed mostly of crystalline rock fragments and $5 B$ composed of tephra fragments coated with weathering products as well as individual particles of secondary minerals (Fig. 4).
*NASA Planetary Geology Intern, Summer 1980. Now at Dept. of Geology, Univ. of Nebraska, Lincoln, NE 68508

CQNCLUSIONS. Significant mineralogical differences can arise between soils developed on genetically and temporally related but depositionally distinguished basaltio substrates. Fluvially re-worked but littleweathered silt may be mineralogically similar to its parental material although unworked but significantly weathered materials may produce silt which is mineralogically distinot from its source. Consequently, compositions of silt-sized Martian soils, in general, shouid not be expected to reflect the compositions of their parental bulk soils or source rocks unless chemical weathering has not occurred. Most likely, a variety of soil types occur on Mars, representing a wide range in degree of weathering.

REFERENCES, (1) P. Toulmin III, A.K. Baird, B.C. Clark, K. Keil, H.J. Rose, Jr., R.P. Christian, P.H. Evans, and W.C. Kelliher (1977) Je Geophys. Res.e 82. 4625. (2) F.C. Ugolini (1976) In Intil Colloo Planet. Geole Proc.e Geol, Romana, 15,521 . (3) S.C. Porter (1979) Geole Soc. Amer. Bull. 90 , 980. (4) S.C. Porter (1980) Geol. Soc. Amer. Niap MC-30. (5) H.J. Moore, R.E. Hutton, R.F. Scott, C.R. Spitzer, and R.W. Shorthill (1977) J. Geophys. Res. 82, 4521. (6) J.D. Lindberg and D.G. Snyder (1972) Amer, Mineral, 57, 485. (7) G.R. Hunt, J.W. Salisbury, and C.J. Lenhoff (1974) Mode Geeler 5, 15.

Figure 1. Particle-size distributions of two Mauna Kea summit soils compared with estimated (5) particle size of Martian surface fines. Upper horizontal scale is in mm.

Figure 2. Normalized relative intensities of selected XRD peaks (7.03, 4.93, illite (?); 2.66, plagioclase or hematite) as a function of particle size in Mauna Kea soil 5B.

Figure 3. VIS/NIR reflectance spectra of Mauna Kea soile 3B and 5B (>63, <l25-1.m fractions).

3 B

58

500 MICROHS
Figure 4. Photomicrographs of
the >63, <125 - 1 m Iractions of Mauna Kea soils 3B and 5B.

PARAMETRIC STUDY OF DUST FOUNTAINS

Jeffrey Kenney
Advisors:
R, S. Saunders
J. Stephens

INTRODUCTION

In the Mars regolith thermodynamics experiment currently taking place, a peculiar "problem" arose which may have implications for Mars. The formation of "dust fountains," an unexpected occurrence in the experiment, while worthy of study in their own right, might indicate a similar phenomenon on Mars. Such a phenomenon, as a transporter of small particulate matter into the atmosphere, could help to fuel the planet's dust storms. This paper is the result of "thought experiments," and observations made in a small chamber ($25 \mathrm{~cm} \times 40 \mathrm{~cm} \times 3 \mathrm{~cm}$) with one clear plexiglas wall. As a first attempt to understand fountain behavior, its purpose is to describe the interrelationships of the parameters affecting the channels and fountains, and discuss the potential for fountain formation on Mars.

HOW CHANNELS AND FOUNTAINS FORM

Dust fountains form when the pressure gradient across certain types of soil becomes great enough to form channels in the soil. Gas flow becomes concentrated in the channels, and shoots particles up above the surface in a plume, or fountain. The channeling phenomenon is one of fluid flow through a porous medium, when the inertial effects of the gas become significant. Gas flows under a pressure gradient in a porous medium. There are two ways a pressure gradient could form on Mars - - by a change in the atmospheric pressure, or by desorption of CO_{2} by clay minerals as suggested by Fanale and Cannon (1, 2). Because adsorption is a function of temperature and pressure, an increase in surface temperature or a decrease in atmospheric pressure will cause the regolith to outgas, creating a pressure gradient, and enhancing channeling activity.

Observations seem to indicate four types of behavior in the montmorillonite, and montmorillonite/basalt mix studied as the pressure gradient across it is increased. The first two may be understood without considering the inertial effects of the gas, the latter two can not. The first behavior is that of normal flow through a porous medium. The second occurs when the hydrostatic pressure difference between some point in the soil and the surface is just greater than the overlying mass pressure. At this point, horizontal cracks appear, and the soil surface is upraised.

Channeling with subsequent fountaining is the third type. Here, the subsurface gas pressure, perhaps aided by the increased gas flow, becomes great enough to force soil out of the way and create a path to the surface. Once a channel is formed, the gas flow widens it, and straightens it out (i.e. makes it more vertical).

The fourth regime is that of fluidized particle movement. When the gradient becomes very great, the soil particles are pushed
upwards with the gas in a fluid-like flow. This results in a "bubbling" at the surface, which is quite different from the distinct fountain events, and does not send particles up as high.

The inertial effects of the gas have not been studied yet in detail, but it would seem that a low permeability explains the connection between the cracks and the channeling. A highly permeable soil allows a greater gas flow, and would enter the fluid flow regime before building up great pressures at depth. Thus, a low permeability is a requirement for channel formation. Clays generally have low permeabilities, thus many types of clay might be expected to form channels. To the low permeability requirement, we may add two others. The soil particles must be small enough to move under the influence of a concentrated gas flow. And, the soil particles must not stick together with any appreciable force.

MEASURABLE PARAMETERS

The physical dimensions of a channel are dependent upon the mass flow through it. A channel will deepen until the mass flow at its bottom is large enough to elevate the particles. Gas will expand until its upward velocity near the edge of the channel is no longer enough to remove particles, thus the mass flow can be estimated from the width of the hole at the surface. Another measurable parameter, the fountain height, can be related to the gas velocity in the center of the hole, and thus to the mass flow.

The mass flow through a channel for a given soil is dependent on the depth of the soil. With an equivalent rate of pressure change at the surface, a deeper layer of soil is observed to have longer channels, wider surface holes, greater gas flows, higher fountains, longer lasting fountains, and a small surface distribution of fountains.

Minimum channel depths for a homogenous soil can be determined from the hole surface distribution. Since the pressure at the bottom of the channel will be nearly the same as the surface pressure, the minimum channel depth expected will be half the average separation of the holes. The actual hole distribution is determined by the pressure gradient at the time of channel formation. With a large gradient, many more channels per unit area are observed.

MARS

What are the chances for fountains on Mars? Ignoring desorption effects, consider a diurnal atmospheric pressure variation of 20 to 5 mb . This is larger than what is currently expected for Mars (many investigators). As an extreme case, suppose that the pressure at a depth of one meter remains at 20 mb when the atmospheric pressure has dropped to 5 mb . Comparing the overlying mass pressure
($=1.5 \mathrm{~g} \mathrm{~cm}^{-3}$) to the hydrostatic pressure differential, it is found that the former is greater than the latter at all depths. Thus, if channeling occurs only when the pressure differential is greater than the mass pressure, no fountain activity would be expected on Mars from diurnal pressure variations.

On the other hand, if Mars contains CO_{2} - adsorbing clays as Fanale suggests, fountains seem more likely. He calculates that a 10 meter depth of nontronite would release $10 \mathrm{~g} \mathrm{CO}_{2} \mathrm{~cm}^{-2}$ when heated from $-110^{\circ} \mathrm{C}$ to $-77^{\circ} \mathrm{C}$ (1). If the top 20 cm of soil released $.02 \mathrm{~g} \mathrm{CO}_{2} \mathrm{~cm}^{-2}$ (one tenth as much per cm^{3}) uniformly over a ten hour period, the gas flow would correspond to an isothermal, steady-state pressure distribution (3) of 24 mb , much greater than the overburden pressure of 11 mb . While these are only rough calculations, they indicate that the potential for fountain formation on Mars exists if there are gas adsorbing clays in the regolith.

REFERENCES

1. Fanale, F. P., and W. A. Cannon, J. Geophys. Res., 83, 2321-2325, 1978.
2. Fanale, F. P., and W. A. Cannon, J. Geophys. Res., 84, 8404-8414, 1979.
3. Muskat, Morris, The Flow of Homogenous Fluids through Porous Media, J. W. Edwards, Ann Arbor, Michigan, 1937.

FLUX OF WTNDBLOWN PARTICLES ON MARS: PRELIMINARY WIND TUNNEL DETERMINATION

Ronald Greeley and K. Malone, Dept. of Geology, Ariz. State Univ., Tempe, AZ 85281; R. Leach and R. Leonard, Dept. of Physics, Univ. of Santa Clara, CA 95053; and B. R. White, Dept. of Mech. Engr., Univ. Calif. at Davis, Davis, CA 95616

Fundamental to the understanding of the aeolian regime on Mars is knowledge of particle flux in terms of particle size distributions and velocities as functions of freestream wind speed and height above the surface. This knowledge is required for many problems dealing with the evolution of the martian surface, including the determination of rates of aeolian erosion. Although various theoretical approaches have been applied to the problem (White et al., 1979), an experimental approach is desirable in order to check theoretical results and to provide a broader data base for other studies of aeolian processes. Consequently, a general study of particle flux was initiated several years ago using the MARSWIT, the Martian Surface Wind Tunnel. Initial work involved perfection of various particle collectors that would be effective, yet not interfere with the flow of air and of the particles. Trial-and-error wind tunnel tests led to the design of triangular-shaped collectors, open at the apex ($1 \mathrm{~cm}^{2}$ collecting area), with flow-through $40 \mu \mathrm{~m}$ screens at the back and retainers to prevent particles from escaping; multiple collectors can be stacked to about 2 m high. Although some problems remain, the collectors allow a good assessment of particle size and number distribution as a function of height and freestream wind speed. The second part of the problem involves the determination of particle velocity. Although high speed motion pictures provide some data, this approach is costly, time consuming for the amount of data returned, and the results are of marginal quality. Another approach uses a particle velocimeter; this device was originally developed by the U. S. Forest Service to measure velocities of blowing snow (Schmidt, 1977) and the design was modified for use in our wind tunnel. The velocimeter consists of a light source that produces a light beam perpendicular to the wind-stream, and two light-sensitive semiconductors that detect the shadow of any intersecting particle as it crosses two separate portions of the light beam. A voltage is produced as each beam is interrupted; thus, particle velocity is derived from the time interval between the two pulses and the distance between the two light sensors. This distance was calibrated using wires of various radii spinning on a motor at known velocities.

An experimental matrix was developed involving: (1) particle diameter (760 mm , or "common" sand size and 92 mm , or the size most easily moved by lowest strength winds); (2) amospheric pressures of 1 bar ("Earth" case) and 6.6 mb ("Mars" case): (3) free-stream wind relocities of $65 \mathrm{~m} \mathrm{~s}^{-1}$ (minimum Mars threshold) and $115 \mathrm{~m} \mathrm{~s}^{-1}$ (strong Mars storm) and $11.1 \mathrm{~m} \mathrm{~s}^{-1}$ (mild Earth storm) and $6.9 \mathrm{~m} \mathrm{~s}^{-1}$ (threshold "Earth" case); and (4) height above surface of 29, 71, 161, and 240 mm . Although not ail combinations of variables have been run, enough experiments have been completed to show some interesting trends. Figure ! shows the general increase in particle velocity with height above the surface, reflecting increasing wind speeds through the boundary layer, for the nominal Mars "sand" storm case. Note, however, that most of the particles have velocities less than 20 percent of the free-stream wind speed: similar runs for "Earth" conditions show that particles generally achieve velocities much closer to free-stream than on Mars (Fig. 2). Thus, although much greater wind velocities occur (and are required for threshold) under martian conditions. the coupling of the particles with the wind is much less. and the effectiveness of wind erosion would be decreased. Preliminary results for
particle flux as a fraction of free-stream velocity under "Earth" conditions are shown in Figure 3, for two particle sizes. At the time of writing. insufficient data were collected for "Mars-cases" for comparison. However, using some preliminary results for flux in combination with the information on the velocity distributions and knowledge of wind strengths/frequencies from the Viking Landers enables estimates to be made for rates of aeolian erosion. These experiments will continue through the next fiscal year.

Kathleen Malone was supported for work on this project through the Planetary Geology Interm Program, 1980.

REFERENCES

Schmidt. R. A., 1977. A system that measures blowing snow: U. S. Dept. Ag., Forest Service Res. Pap. RM-194.
White, B. R., 1979. Soil transport by winds on Mars, Jour. Geophys. Res. 84, 4643-4651.

FIGURE 1. Velocity distribution for saltating particles under low pressure (Martian surfac) conditions for four heights (29.71. 161, and 240 mm) above the surface: valucities are shown as both percemage of full "free-stream" spee'd. and as actmal speed in meters per second.

FIGURE 2. Particle velocity shown in percentage of freestream velocity for "Earth-case" and "Mars-case" as a function of height above the surface; note that particles are more closely coupled to the wind on Earth than on Mars.

FIGURE 3. Particle flux for "Earth-case" for wo sizes of particles as a function of free-strcam wind speed.

A COMPARISON OF LARGE CRATER FEATURES ON GANYMEDE AND MARS
Fernando Martinez
NASA Planetary Geology Intern at Brown University June 30-August 22, 1980.

Ganymede is the third of the Galilean satellites of Jupiter. Its surface is thought to consist of a water-ice and silicate mixture. The structures that are formed as a result of the cratering process in an ice silicate target have not been studied in detail. This report looks at three large craters on Ganymede and describes their external morphologies, textures and albedoes. Also, comparisons of these features are made with corresponding features on similar craters on Mars.

The craters studied on Ganymede were chosen based on clarity and freshness of features. All of the Voyager 1 and 2 picture frames of Ganymede were inspected for large fresh craters near the terminator or craters whose morphologies were otherwise distinctive enough to map. The three Ganymede craters chosen were all larger than about 50 km in diameter. The basic features that these craters had in common served as a model for choosing craters on Mars for the comparison.

The craters on Mars were selected based on the criteria that first, they exhibited the salient features that were found on the Ganymede craters, second, that they be of approximately the same size and third, that the features be of comparable resolution with those on Ganymede. Once these criteria were set the craters were searched for using 1: 1,000,000 mosaic maps of Mars. Three suitable craters were found. The craters were then inspected in more detail and mapped using Viking Orbiter pictures.

The descriptive maps that were prepared showed the surface extent of the features which were mapped as distinct units. The units were defined and delineated based on continuity of form, texture and albedo.

To a large extent it appears that the exterior ejecta of the Ganymede craters is modified by what seems to be the pre-existing terrain. The surface of Ganymede is dominated by two general types of terrain. One has come to be known as grooved terrain and the other as cratered terrain. The grooved terrain occurs as long bands which in general have parallel or sub-parallel grooves or furrows that extend along the length of the band. The bands also contain few craters. There is some variation in the form and arrangement of the bands. The bands are usually bilaterally symmetric but sometimes the sets of grooves do not extend all the way to the center of the band, leaving it essentially smooth there. The bands themselves may bifurcate, thin out and disappear, truncate other bands or cut across other bands. The bands are higher in albedo than the cratered terrain.

The cratered terrain is very much darker than the grooved terrain and consists of presumably very old material that is thoroughly cratered and pitted. It is disected into large and small, generally polygonal patches by the grooved terrain. This pre-existing material shows through the ejecta of two of the craters making it appear dark and rough in places and light and smooth or grooved in other places, corresponding to whether it is underlain by cratered terrain or grooved terrain.

The central pits of two of the Ganymede craters have large, smooth updomed constructive features in them. The Mars craters showed only one example of a constructive feature and in that case it was rough and irregular. The floors of the Ganymede craters were more domed than the Martian craters. Also, they had sinuous furrows which originated at the central pits and extended outward. These furrows were absent in the Martian craters studied. The Martian craters had raised central pit rims while the rims of the Ganymede central pits were even with the floor or only slightly raised. The walls of the Ganymede craters were thinner and more continuous in form than the Martian crater walls. The Martian craters showed much wider walls with extensive terraces, scalloping and blocky terrain associated with them. The Ganymede craters showed only minor wall failure.

The external ejecta of the Martian craters was highly eroded and indistinct so no comparisons of these features were made.

SURFACE FEATURES OF EUROPA AND
 GANYMEDE AND THE RELATIONSHIP TO THEIR EVOLUTIONARY HISTORIES

Leo G. Matthews	Faculty of Natural Sciences	Buffalo, NY
and Mathematics	14260	
Intern, Planetary	State University of New York	U,S.A,
Geology Program	at Buffalo	

The two most probable processes for forming surface features on Europa and Ganymede are convection and expansion. Early thermal models (Lewis, 1971) assumed conduction in the crust, not convection. Conduction alone would not result in any surface features. This model was further expanded by Consolmagne and Lewis (1976, 1978). However, Reynolds and Cassen (1979) showed the importance of convection in the crust. They concluded that the satellites, having undergone melting and differentiation, would now be totally refrozen due to convection.

Surface features from solid state convection depend on the crustal model used. With a rigid near surface ice layer, as suggested by Reynolds and Cassen (1979), both compressive and tensile tectonic features would be likely to exist. If convection continued up to the surface, the fracturing of a thin layer of hard ice at the surface could result in accumulations of this ice in zones of subduction. Sublimation may also play a part, resulting in the surface accumulation of meteorites that had become imbedded in the crust, much as occurs in the antarctic ice sheets in the zones of ablation (Cassidy, 1979). A very thick, rigid ice layer or the lack of convection would result in no surface features.

Voyager imaging has shown Europa to have striking linear features resembling cracks which occur over the entire surface. These features show no relief and are apparent only as albedo differences, the cracks being darker. Also irregular dark patches occur around the 'planet' often obscuring cracks which pass through them.

It is difficult to see how any process of convection at the surface could produce the features observed here, especially the cracks. They seem most logically attributable to the expansion of the surface that results from differentiation (Squyres and Shoemaker, 1979).

Expansion occurs when the denser polymorphs of ice, that exist within the homogeneous body, begin to melt into less dense water. Differentiation would result in the formation of an ice crust early on and this crust would expand.as melting and differentiation progresses. Europa's high albedo (~ 0.7), highest for the icy satellites, suggests a very efficient differentiation. It can be concluded, therefore, that convection in the homogeneous body was not significant enough to prevent melting and differentiation as suggested by Parmentier and Head (1979).

A conspicuous aspect of European morphology is the lack of significant cratering. This suggests that its surface is the youngest of the icy Jovian moons. This is most likely the result of active erosion and is probably caused by sputtering (Lanzerotti, et al, 1978). Sputtering could have resulted in the erosion of tens of meters to kilometers of subsurface material (mostly ice). Ganymede is greatly different from Europa in its surface features. It shows no cracking but rather complex bands of ridges or grooves that form segmented, branching, somewhat linear patterns which often cross-cut one another. Individual grooves range in width from 5 to 15 kilometers and are only a few hundred meters high. The bands are from 10 to 100 kilometers wide and range from 10 to 1000 kilometers in length. The bands separate older irregular polygons of darker, heavily cratered terrain. The grooved terrain is estimated to range in age from $4.0-3.5$ billion years based on crater densities (Squyres and Shoemaker, 1979). It has also been concluded that the cause of the grooved terrain is tensional stress (Smith, et al, 1979; Squyres and Shoemaker, 1979). Squyres and Shoemaker attribute the tensile stress to the expansion of the crust due to differentiation. Another possibility is that tensile stresses developed as a result of convection in the crust below a rigid ice layer. However, the expected compressional features expected with this model are not observed.

Thus, the surface features of both Europa and Ganymede are seen to be most likely the result of expansion during differentiation rather than convection. Since the grooved terrain on Ganymede is expected to date from this time, when convection was just starting, any convection surface features that occurred should still be evident, just as the grooved terrain. That there are none observed indicates that convective surface features never existed. This requires that either convection never occurred, or that there has always been at the surface a rigid ice layer thick enough never to have been affected by the convective stresses below.

Reynolds and Cassen (1979) have called for a rigid surface ice layer which would resist convection due to low temperature ($\sim 100^{\circ} \mathrm{K}$) and high viscosity. If thick enough, it would not show any surface features from convection. Another consequence of a rigid layer of surface ice has to do with the rate of topographic relaxation. If the surface ice is not rigid then any topographic relief would be reduced by creep deformation in less than 10^{6} years (Johnson and McGetchin, 1973) assuming a higher surface temperature of $134^{\circ} \mathrm{K}$. However, the grooved terrain, if the period of formation has been correctly estimated, formed relatively early in the history of Ganymede. It shows little if any signs of creep relaxation. It is apparent that creep deformation must not have been significant since the time of formation of the ground terrain and therefore for most of the
history of the satellite. Also, craters on the grooved terrain are well preserved (Smith, et al, 1979) showing that little cold flow has occurred since the formation of the grooves.

However, degraded craters are observed on Ganymede in the heavily cratered terrain and have been attributed to creep deformation. It is possible that degredation is due to sublimation of the surface ice, but this would also degrade the grooved terrain arid is therefore unacceptable for the same reason as creep deformation.

Since no process for crater degradation can have been in operation since the formation of the grooved terrain, the process or processes responsible must have been active only before groove formation and therefore before differentiation. Creep deformation would occur if the surface temperature of the satellite were higher than the present temperature. Johinson and McGetchin (1973) used a surface temperature of $134^{\circ} \mathrm{K}$ (based on infrared brightness temperature) to determine the viscosity from which they showed that creep deformation would occur. The occurrence of undegraded craters and degraded grooves indicates a period when the satellite was still a homogeneous body during which the surface temperature was higher than at present. Additional sources of heat could be from accretion, higher orbital eccentricities, and the higher than present energy output of Jupiter. The temperature rise would not have to be great (around $34^{\circ} \mathrm{K}$ to reach Johnson's and McGetchin's value). Craters formed during this period would be degraded in short order. As time passes, the surface temperature falls and craters formed are degraded more slowly. When differentiation occurs the surface temperature becomes too cold to allow creep deformation. This would explain the occurrence of degraded craters in the older, heavily cratered areas and the undegraded craters on the grooved terrain.

The possibility that sublimation has played an important role in the development of surface features requires further comment. A likely feature associated with sublimation would be the accumulation of silicates at the surface. As the ice sublimates, imbedded silicates would be left behind forming a 'reg' deposit. Sputtering would result in similar accumulations. The surface albedo of Ganymede is around 0.4. Just under the surface is relatively clean ice as evidenced by impact craters. This accumulation of dark material at the surface has been attributed to a build-up of meteoric particles and dust. However, Europa, which has been shown to have a greater 'dusting' rate (Smith et al, 1979) has an albedo of around 0.7. If it is assumed that the albedo of Europa of 0.7 is due to the build-up of meteoric particles (therefore assuming total ice-silicate differentiation) then the darker appearance of Ganymede could be due to a 'reg' deposit. Since sputtering is not assumed to be important for Ganymede, then sublimation should be the cause of the accumulation. This would require a less-than-total ice-silicate differentiation.

The period of 'reg' formation must have been restricted to an early time before the formation of the grooved terrain. Sublimation would tend to degrade the grooved terrain, just as creep,
and since this has not happened, sublimation can only have been important early in Ganymede's history before differentiation. As the grooves formed ice from below the 'reg' would mix with the silicates resulting in the somewhat higher albedo of the grooved terrain. Cratering since then would reveal fresh ice from below and no new 'reg' would begin to form on the fresh ice. If sublimation has continued since then, it has been at a much reduced rate.

References:

Cassidy, W.A., Antarctic Meteorites, EOS, 60, 157-177, 1979.
Consolmagno, G., and Lewis, J., Structural and thermal models of icy Galilean satellites, in Jupiter, T. Gehrels ed., Univ. of Arizona Press, 1035-1051, 1976.
Consolmagno, G., and Lewis, J., The evolution of icy satellite interiors and surfaces, Icarus, 34, 280-293, 1978.
Johnson, T., and McGetchin, T., Topography on satellite surfaces and the shape of asteroids, Icarus, 18, 612-620, 1973.
Lanzerotti, L.J., et al., On the contribution of water products from the Galilean satellites to the Jovian magnetosphere, Geophys. Res. Lett., 5, 155-158, 1978.
Lewis, J., Satellites of the outer planets: thermal models, Science, 171, 1127-1128, 1971.
Parmentier, E.M., and Head, J.W., Internal processes affecting surfaces of low density satellites: Ganymede and Callisto, J. Geophys. Res., 84, 6263-76, 1979.

Reynolds, R.T., and Cassen, P.M., On the internal structure of the major satellites of the outer planets, Geophys. Res. Lett. 6, 121-124, 1979.
Smith, B.A., et al., The Galilean satellites of Jupiter: Voyager II imaging science results, Science, 206, 927-950, 1979.
Squyres, S., and Shoemaker, E.M., Volume changes in Ganymede and the origin of grooved terrain, Reports of Planetary Geology Program, 1979-1980, 345-346, 1980.

REPORT ON MARS ATMOSPHERE-REGOLITH INTERACTION EXPERIMENTS CONDUCTED AT THE JPL MARS SIMULATION CHAMBER, JUNE-AUGUST 1980

Lynn Muradian
(F. P. Fanale, Advisor)

The sublimation and condensation of Mars CO_{2} polar caps due to seasonal insolation changes causes major (up to 40%) variations in atmospheric pressure (Hess et al, 1977). This variation has been quantitatively modeled by Davies et al (1977) and Pollack (1979). The predictions of these models are generally concordant with Viking lander meteorological experiments (Hess et al, 1977). However, there is a considerable amount of uncertainty in these models, and it is possible that effects other than exchange with the polar caps may significantly affect both the amplitude and phase of the pressure variation. One such effect is adsorption onto the regolith (Davis, 1969; Fanale and Cannon, 1971, 1974, 1978). If the atmospheric pressure wave penetrates deeply enough, the regolith may act as an isothermal buffer (here we assume that the pressure wave penetrates much deeper than the thermal wave). This effect is caused by the increased population of adsorbed CO_{2} on the grain surfaces due to the increases in pore pressure. Alternatively, if pressure wave and thermal wave penetrate about equally, the regolith may act as an isobaric buffer. In this case, the changes in the adsorbed population is due primarily to the temperature changes. It has been argued, however, that the penetration of CO_{2} would be so small that these effects could be ignored (Toon et al, 1980). Theoretical prediction of the depth of penetration is hampered both by our lack of knowledge of Martian soil parameters and by the complexity of calculating the diffusion rate through a highly adsorbing medium. Therefore an experimental investigation is desirable.

An apparatus was assembled to test CO_{2} penetration through a cold, highly adsorbing soil and to study several other phenomena having to do with soil volatiles on Mars. The cylindrical, stainless steel chamber (61 cm in diameter by 20 cm in height) is encased within an insulated box. The large size and thermal
feedback mechanism (see below) reduces wall effects. The soil partially filling the chamber is similar to Martian soil analyzed at the Viking lander sites in that it is primarily a fine montmorillonite. However, it was discovered after extensive soil preparation (drying, sizing, and dehydrating) that the soil density had been reduced to $0.6 \mathrm{~g} / \mathrm{cm}^{3}$, considerably lower than the $1.2 \mathrm{~g} / \mathrm{cm}^{3}$ density of Martian soil. It was decided to go through with the experiment as a test of the apparatus and data handling techniques, and as a first approximation to Martian soil data. The experiments will be repeated at a later date with soil of more reasonable density. The outside of the chamber is temperature controlled, and six stainless steel pressure and temperature sensitive probes extend into the soil at various depths. This eliminates the thermal boundary effects of the wall.

Different gases $\left(\mathrm{CO}_{2}, \mathrm{~N}_{2}, \mathrm{He}\right)$ can be introduced into the chamber at. measured input pressures and flow rates. The chamber is first evacuated. Then as the gas is let in, the total amount admitted is recorded, as well as the pressure as a function of time at each depth. The latter measurement gives data pertaining to the effective gas permeability, while the former allows us to calculate the amount partitioned into the adsorbed phase. N_{2} and He were used first, since they are very weakly adsorbed. Therefore, when the CO_{2} is run, especially with the soil cold, the effects of adsorption should be readily separable.

The data treatment is as follows:
1.) Fitting the pressure data with smooth curves.
2.) Finding an empirical equation to fit the curves.
3.) Comparing the equations with any theoretical approximations that can be derived.
4.) Deriving parameters useful as diffusion constants.
5.) Comparing these with:
a) the Toon et al (1980) a priori calculation,
b) our expectations based on the physical parameters of our soil.

Using these results, we will then try to predict the effect on the season pressure variation on Mars.

We have fit an equation to the N_{2} runs and are now at the stage of examining its form. Our current "best fit" empirical expression for pressure as a function of depth and time is:

$$
P(d, t)=P_{S}-\beta \exp -\left(K \frac{t}{\sqrt{d}}\right)
$$

where P_{S} is the surface pressure (held constant after the start of the run), and β and K are parameters used to fit the curves. This equation is similar in form to the amplitude dependence of a sinusoidal wave diffusing into the soil, so we are confident that a diffusion constant can be extracted from our numbers.

After suitable equations are obtained for CO_{2} as well, the data treatment will proceed as previously outlined. Clearly the bulk of the work is yet to be done; the Martian soil thermodynamics tests will not be completed for some time.

REFERENCES

Davies, Farmer, and LaPorte (1977): Behavior of volatiles in Mars' polar areas: A model incorporating new experimental data, J. Geophys. Res., 82, 3815.
Davis (1969): Some speculations on adsorption and desorption of CO_{2} in martian bright areas, Icarus, $11,155$.
Fanale, and Cannon (1971): Adsorption on the martian regolith, Nature, 230, 502.
Fanale, and Cannon (1974): Exchange of adsorbed $\mathrm{H}_{2} \mathrm{O}$ and CO_{2} between the regolith and atmosphere of Mars caused by changes in the surface insolation, J. Geophys. Res., 79, 3397.

Fanale, and Cannon (1978): Mars: The role of the regolith in determining atmospheric pressure and response to insolation changes, J. Geophys. Res., 83, 2321.
Hess, Henry, Leovy, and Tillman (1977): Meteorological results from the surface of Mars: Viking 1 and 2, J. Geophys. Res., 82, 4559 .
Pollack (1979): Climatic change on the terrestrial planets, Icarus, 37, 479.
Toon, Pollack, Ward, Burns, and Bilski (1980): The astronomical theory of climate change on Mars, Icarus, in press.

THE EVOLUTION OF OLYMPUS MONS

Christina A. Neal
Planetary Geology Intern
U.S.G.S., Flagstaff Center Branch of Astrogeologic Studies
September 23, 1980

During the eight week internship in Flagstaff, I participated in a variety of projects and independent studies. However, I worked primarily with Dr. Elliot Morris on questions concerning the evolution of Olympus Mons. What follows is an extended abstract of this research.

Olympus Mons is perhaps one of the most amazing features on the planet Mars. The largest volcano yet discovered on any of the inner planets, it records a tremendously effusive period of volcanic activity in the Tharsis region. Many problems concerning its structure and evolutionary history remain, despite the thorough coverage of the area by the Viking Orbiter spacecrafts. One of these is the question of the origin of the unusual scarp which rings the base of the massive shield. Another is the delineation of a flow history and stratigraphy on the flanks.

The scarp ranges in height from $2-4 \mathrm{~km}$ and is irregular in shape and orientation. It is frequently draped by young flows which completely subdue the sharpness of the cliff. Landslide and slump modification has occurred in most areas; the scarp has almost certainly receded summitward from its original position. The steep, distinct portions of the scarp are most prominent in the NW and SE quadrants of the volcano.

Those who have worked on the volcanic interpretation of Martian terrain have offered several mechanisms for the formation of the scarp. These include erosion by wind or water, erosion of pre-Olympus Mons substrate and collapse, subglacial eruption, simple landsliding, and others. None of these approaches completely explains all of the dramatic features of the structure we see today. It is difficult through these models to account for the tremendous volume of material that would have had to be transported by an unknown erosional agent. Additionally, none of
these mechanisms adequately explain the scale and spatial relations of the scarp. One very different mechanism for the formation of the scarp involves normal faulting that is directly related to the construction of the enormous shield and subsequent crustal deformation. Observations of the structural features of the flanks and scarp lend support to this idea. Some of the more important observations are listed below:

1. A roughly concentric ridge and fracture system occurs on the flanks of Olympus Mons. These could be indicative of thrust motion which occurred during subsidence of the volcanic pile.
2. There is general agreement of the linear portions of the scarp with the orientation of a regional fracture system.
3. There exists an annular depression at the base of the scarp. It is as if the surrounding terrain had been warped downward towards the volcano.
4. The edges of the flanks dip summitward; that is, the volcanic shield appears bowed upward adjacent to the scarp.

Briefly, the normal faulting episode can be described as an elastic response of crustal material to imposed stress. The loading of the region with large amounts of Olympus Mons basalts occurred by most estimates over a relatively short period of time. As the shield grew, a "sagging" of the crust beneath the load would occur. Close to the center of the cone, there would exist a room problem as summit area material collapsed downward upon a less rapidly subsiding flank--the result would be thrust faulting concentric to the center of mass. At a distance "x" from this center, determined by the thickness and strength of both the Olympus Mons and platform material, this downwarping would reach a point where the vertical stresses decreased beyond some critical level. A complex combination of both horizontal (related to the integrity of the surrounding terrain) and vertical stresses could cause a brittle fracture here, the remnant of which we see today as the scarp. Rebound of the margins of the shield adjacent but upslope (summitward) of the fracture would deform the strata in a concave upward direction. Terrain on the opposite side of the fracture could conceivably subside due to the tremendous withdrawal of material during the early eruptions, as well as in response to such a change in the state of stress.

There remain many details of this mechanism to be worked out by such methods as numerical modelling of similar conditions. A knowledge of the flew stratigraphy and evolution in time as well as in space of the Olympus Mons shield would facilitate further study of this hypothesis.

Attempts to develop a sequential eruptive history have been made by many investigators. These have been in general unsuccessful due to poor picture resolution, cloud cover, and the confusing morphology of flow features on the sides of the volcano. The mapping of different units based upon crater counting turns out to be statistically unreliable, for the number of significant craters is too low. In an effort to get around these difficulties, use of color ratioing techniques to enhance unit boundaries was attempted. The premise was that different compositions, ages, or states of degradation would be brought out by looking at certain color responses. A color composite of the Olympus Mons region using the $R E D, R / V$, and V / R responses was developed at the Image Processing facility in Flagstaff.

From this base, discernible color "units" were mapped and an attempt made to correlate boundaries with physical features visible on the black and white orbital photography. Crater counts were done to perhaps substantiate, although not conclusively, these boundaries. Both checks were almost completely unsuccessful. It is more probable that the particular ratios used were more sensitive to water content and lighting conditions than any other factor, and thus basalt unit boundaries would not be enhanced. However, there should be more work done using this technique; some meaningful discoveries were made.

As a part of the cross check with the black and white photos, a high resolution mosaic of Olympus Mons was constructed. Several small patches ($\approx 100 \mathrm{~km}^{2}$) of bright, smooth material were isolated on the consistently cloud-free SE flank which in a crude way did correspond to bright patches prominent on the color composite. A more careful look indicated that these patches indeed appeared to be older surfaces which remained topographically higher than the younger flows which streamed around it. Their elongated morphology and generally higher crater counts (as averaged over a much larger area containing these patches) supported this hypothesis. Such patches were also found along the upturned edges of the scarp. Large blocks of bright, stratified material were free of the rivulet-like flows that drape most of the flank surface. Indeed flows were seen to veer around the blocks. Thus, a basis for distinguishing at least two surfaces distinct in time was established. Further work must be done to search for similar surfaces elsewhere on the volcano.

Finally, a fairly good correlation was found between fractured portions of the volcano's flanks and lower crater counts. This supports the idea that some of the most recent flows on Olympus Mons originated along these fracture planes. This data agree well with earlier conclusions by other workers about the
variation in age based on crater counts. Further analysis of this will hopefully shed light on the implications for a more general understanding of the history of Olympus Mons.

While these projects took up the majority of my time, I also engaged in several independent studies. These included an introduction to the theory and practice of radar interpretation, familiarization with the Galilean satellites geology and photography (especially Io), and participation in a lecture series on image processing techniques, organized by Dr. Morris and his colleagues. In addition, I spent time observing the photo lab in operation and talking with other scientists about their work.

The Search for Sun Dogs on Mars

Paul Romani, University of Michigan

Sun dogs, or parhelia, are bright spots that appear on either side of the sun at the same elevation as the sun. On Earth, sun dogs are caused by $\mathrm{H}_{2} \mathrm{O}$ ice crystals in the atmosphere. Whenever there are large numbers of hexagonal plate crystals in the air, with their short sides vertical, sun dogs appear. Each crystal acts like a prism; light from the sun strikes it and is refracted. Sun dogs form at the angle of minimum deviation for a prism, which is also the point of maximum light. The equation of minimum refraction is as follows:

$$
\sin \left(\frac{d+a}{2}\right)=n\left[\sin \left(\frac{a}{2}\right)\right]
$$

where a is the prism angle, n the index of refraction, and d the angle of minimum deviation. This equation for minimum refraction is valid only for rays in the principal plane of the prism. For sun dogs this only occurs when the sun is on the horizon. When the sun is above the horizon the sun's rays strike the ice crystals inclined to their principal planes. The net effect is to increase the effective index of refraction for the projection of the ray in the principal plane. Thus with higher sun elevations the angular distance from the sun dog to the sun increases. The sun dogs still appear at the same elevation as the sun. Using the above equation for $\mathrm{H}_{2} \mathrm{O}$ ice, $\mathrm{n}=1.31$ (yellow light), and $\mathrm{a}=60^{\circ}$, thus d is $21^{\circ} 50^{\prime}$. Tabular or columnar $\mathrm{H}_{2} \mathrm{O}$ crystals form with right angles, so there exist water sun ice dogs for $a=90^{\circ}$. These form at $45^{\circ} 44^{\prime}$ away from the sun ($n=1.31$). Sun dogs may be colored, too, due to the change in the index of refraction with wavelength, with red closest to the sun, blue farthest away.

If there is no preferred orientation of the crystals, as in cirrus type clouds, then a halo is formed. Halos of both 22° and 46° angular radius can appear. This halo may be colored, too, with the inner part red and the outer part blue. Unlike sun dogs, the halos occur at the same angular distance regardless of how high up the sun is, as they are formed by crystals with randomly oriented principal planes.

On Mars there exists the possibility of sun dogs and halos formed by either $\mathrm{H}_{2} \mathrm{O}$ or CO_{2} ice. Unfortunately the index of refraction of solid CO_{2} is not well known. An approximate value from some sources is 1.38 with an uncertainty of ± 0.05. Frozen CO_{2} can form cubic crystals with prism angle 90°, so these CO_{2} crystals would cause either sun dogs or halos at $64^{\circ} 45^{\prime}$. But a slight change in the index of refraction will change the position of the sun dogs/ halos greatly. For example, if $n=1.40$, they then form at $73^{\circ} 44^{\prime}$, or if $n=1.36$, they then form at $58^{\circ} 10^{\prime}$.

Evidence of sun dogs on Mars would be useful for several reasons. It would show that large quantities of $\mathrm{CO}_{2} / \mathrm{H}_{2} \mathrm{O}$ crystals are present in the atmosphere at certain times. The crystal shapes would also be known.

The difference between a sun dog or a halo would indicate the crystal orientation. CO_{2} sun dogs would provide a good value of the index of refraction of CO_{2} under Martian conditions.

The search for sun dogs was made using Viking lander images. The Lander cameras form images by reflecting light from the scene onto one of 12 photodiodes. The photodiodes in turn convert the light into an electrical signal that is then digitized. Thus, each image is an array of numbers called picture elements. The end product is called a camera event. To make a color camera event, each line is viewed in turn by a blue, green and red photodiode. Infared camera events are also composed of three images of the same scene, each image made by a photodiode with a different effective wavelength in the infared. High resolution camera events are made using a broad band photodiode. All three types of camera events were used in the search.

First it was decided to look at all camera events that contained any part of the sky from 20° to 90° away from the sun when the sun elevation was lower than 15°, and that contained the elevation of the sun when the image was made. The 20 to 90 degree span was to try to catch both $\mathrm{H}_{2} \mathrm{O}$ and CO_{2} phenomena, even with the uncertainty in the index of refraction of CO_{2}. A low sun elevation would provide the longest path through the atmosphere and thus increase the probability of refraction. There were 60 camera events that qualified.

As time allowed, more images were searched. First high sun, morning camera events of the first summer were checked to see if the summer morning $\mathrm{H}_{2} \mathrm{O}$ ice fog was causing any sun dogs or halos. 16 images met this requirement. At the same time Lander 2 autumn camera events were included to try to catch the sun shining through the polar hood clouds. Also, refraction phenomena could possibly be caused by atmospheric ice that was deposited during the following winter. There were nine such camera events. Finally, it was decided to search all camera events that contained the right azimuth for sun dogs regardless of sun elevation or season. This last group had a total of 109 camera events in it. Due to a lack of time, not all of these images were checked.

The images were searched for sun dogs at the Computer Graphics Lab at JPL. For each horizontal line of picture elements in the image, a graph of intensity as a function of azimuth was displayed on a CRT. An increase in intensity with distance from the sun, as opposed to the normal decline of intensity, would represent a sun dog. The entire sky portion of each image was searched. A display of the numerical values of the picture elements in a given area could be done if further information was desired.

On some, images noise was a problem. Occasionally it was necessary to use a computer program that did a vertical average of the picture elements in a defined box, to see if a horizontal variation in intensity was real.

To the level of detectability of the Viking lander cameras, no sign of either sun dogs or halos were seen. A total of 110 camera events were checked. 53 of these were either totally or partially saturated. Noise was a problem in 14 camera events. In 58 camera events either the point 22° and/or the point 46° away from the sun was present; the point 65° away from the sun was present in 35 images. At Lander 2, eight camera events that had the desired azimuth in them were images of the back of the S-band antenna. Of the 18 summer morning camera events, nine were good for $\mathrm{H}_{2} \mathrm{O}$. ice refraction phenomena, 12 for CO_{2}. There were five camera events that were useless due to missing lines.

From this search alone it is not possible to conclude that there are no sun dogs on Mars. It is possible that they are there but were not captured in Lander images. There is also the chance that the sun dogs were missed because of data saturation. That is more possible for the sun dogs at 22°, as they form closest to the sun of all the sun dogs.

For the CO_{2} sun dogs there could be two additional reasons for failing to observe them, even though the crystals are present. One could be that the index of refraction of solid CO is too high. If the CO_{2} crystal is cubic, and the index of refraction is greater than 1.414, then any ray striking the crystal will suffer total internal reflection. Another possibility is that the CO_{2} condenses on already formed water crystals. If the $\mathrm{H}_{2} \mathrm{O}$ part of the crystal is significant, then no sun dogs will be seen, even though the CO_{2} does make the cubic crystal. Most rays striking it will go from air to frozen CO_{2} to frozen $\mathrm{H}_{2} \mathrm{O}$ and out again. Thus cubic CO_{2} crystals may be present in large quantities without forming sun dogs.

Of course, the necessary $\mathrm{H}_{2} \mathrm{O}$ and CO_{2} crystals could be not present. At least the search shows that sun dogs are not a common or easily visible phenomena on Mars. This implies that for the days good images are available an upper bound can be placed on the quantity of sun dog forming crystals.

Acknowledgments
This work was done while I was a participant in NASA's Planetary Geology Intern Program. Steve D. Wall was my advisor at JPL. The suggestion to search for sun dogs on Mars was made by Paul Doherty of Oakland University, Rochester Campus, Michigan.

A Determination of Important Near Infrared Band Passes for Distinguishing Compositional Units on the Moon
 Marianne Stam
 NASA Intern, Brown University, Providence, Rhode Island 02912

Introduction

This Project was designed to examine the near Infrared, (. 6 - 2.5 micrometers), telescopic lunar spectra in detail. Its purpose was to determine the important band passes in this region that may be used to enhance lunar spectral imaging as a technique for distinguishing lunar compositional units and investigating their distributions on the moon.

Methods

Relative reflectance, residual absorption and absolute spectra were divided into four lunar morphological types based on where the spot was located on the lunar surface. These 'types' included Terra Craters, Terra, Mare Craters, Mare and Trasitionals. Relative reflectance spectra were then qualitatively examined to determine the important spectral features for quantification. Residual absorption spectra, with their continuum slope removed, were the easiest spectra to use for quantitative measuring and analysis of important spectral parameters. These important parameters could be interpreted in a direct mineralogical sense.

Results

Three parameters were quantitatively measured. These included the 1.0 , 1.2 and $1.5-2.0$ micrometer wavelength features. Data analysis and reduction involved the plotting of three frequency distributions and six scattergrams. The three frequency distributions considered the 1.0 micrometer width/depth ratio, the 1.2 micrometer width/depth ratio and the $1.5-2.0$ micrometer slope depth. The six scattergrams compared these and other measured features. Each of these graphs was examined visually to determine groups or clusters of spectra within the major morphologic types. Thus, each graph had a set of groups associated with it. that represented clusters of spectra. A computer program was designed to search for reoccuring groups in each graph and to determine significant spectral combinations. Results showed that many of the combinations of spectra determined both visually and by the computer proved to be significant and followed previous results found in the literature. Some, however, were unexpected. A significant finding was the distinction between Flamsteeds A, B and F western basalts and the MS 2 eastern basalts all of which had previously been classified as mISP (Pieters, et. al. 1980). Another unexpected finding was the grouping of the eastern Mare Crisium 40 and 41 areas with the western Flamsteed A. More work is needed before the significance of the latter case is known as their spectra differ largely in the 1.2 micrometer width and depth and in their continum slope values although
they are quite similar in the 1.0 and the $1.5-2.0$ micrometer parameters.
Because many of the results agree well with the previous literature, it is safe to assume that the chosen $1.0,1.2$ and $1.5-2.0$ micrometer features are important for the distinction of lunar compositional units. Therefore, wavelength bands around six points that characterize each of these features were determined, (see Table 1). These represent the important band passes that should be used for lunar spectral imaging in the near infrared as a technique for distinguishing lunar compositional units. Although there are cautions in using these methods, with a finite number of band passes to choose from, these points will adequately discriminate the primary units of the lunar surface.

CHARACTERIZING WAVELENGTH BANDS

Morphologic Types	Wavelength Bands (micrometers)					
	Point 1	Point 2	Point 3	Point 4	Point 5	Point 6
Terra	. 76-. 78	. $91-.94$	1.07-1.14	1.30-1.33	1.44-1.58	1.91-2.00
Terra Craters	. 76-. 80	. 91-. 97	1.04-1.17	1.31-1.34	1.45-1.58	1.94-2.00
Mare	. $73-.80$.94-1.01	1.10-1.23	1.26-1.33	1.41-1.62	1.88-2.00
Mare Craters	.73-.79	. $94-.99$	1.14-1.24	1.25-1.39	1.46-1.59	1.92-2.00
Transitionals	. $74-.79$. $92-.99$	1.01-1.20	1.28-1.32	1.45-1.59	1.94-2.00

Pieters, C.M., et.al.
1980 Late High-Titanium Basalts of the Western Maria: Geology of the Flamsteed Region of Oceanus Procellarum. Journal of Geophysical Research, 85(B7): 3913-3938.

The Discovery of a Correlation between Near Infrared Continuum Slope Values for the . 75-1.5 and 1.5-2.5 micrometer Wavelength Regions
Marianne Stam
NASA Intern, Brown University, Providence, Rhode Island 02912

Introduction

This paper discusses the discovery of an apparent correlation between the near infrared continuum formulated by Pieters, et.al., (1980) and a new continuum fit that covers a spectral range between $1.5-2.5$ micrometers.

Procedure

Several spectra of returned, apollo laboratory samples were examined with respect to their continuum slopes between .73 and 1.5 micrometers and 1.5-2.5 micrometers. For the 1.0 micrometer slope, a line was fit around .73 micrometers to a point tangent near 1.5 micrometers in a manner similar to Pieters, et.al., (1980). In the 2.0 micrometer region, tangent points on either side of the 2.0 micrometer absorption were determined and a line was then fit between these two points. Three graphs were made that compared the continuum slope values of the two wavelength regions for lunar soils, lunar breccias/igneous rocks and magnetic/ non-magnetic separates of lunar soils. Determination of a least squares fit for each graph followed.

Results

The graph that compares the continum slope values of the 1.0 and 2.0 micrometer regions for lunar soils shows that there is a straight line correlation between the two values. Some points, however, do not follow this straight line distribution. Apollo 16 soils mainly follow the least squares line. Apollo 14 and 15 lunar soils also lie on this line although they have greater continuum slope values than Apollo 16 soils. Apollo 17 samples, however, are erratic in their distributions.

In the graph that compares the continuum slope values of the lunar breccia/ igneous rocks, the line that represents the least squares fit was determined for all positive values only. A less noticable, but distinctly linear trend between the two values exists. Apollo 12 samples cluster together with predominately negative 2.0 micrometer slopes. Similarly, Apollo 11 samples have greater continuum slope values in both regions than do the other breccias or rocks. More importantly, Apollo 12 soils follow the general trend outlined above but their breccia/igneous rocks do not. Overall, the best fit line for breccias/igneous rocks has a smaller slope value than that for soils.

Because of the lack of information, the graph depicting continuum slope values
of the 1.0 and 2.0 micrometer regions for magnetic and non-magnetic separates of lunar soils cannot be adequately assessed.

It is evident from the presented data that there is an apparent correlation between the continuum slope values for the 1.0 and 2.0 micrometer spectral regions. As a result, there is a possibility that a continuum slope could be estimated for that part of the telescopic spectra beyond the 2.0 micrometer wavelength that is affected by a thermal component.

Pieters, C.M., S. Flam and T. McCord
1980 Near Infrared Lunar Spectra: Patterns in the Increasing Data Set. Lunar Sci. 11, p. 897.

Randii Wessen, S.U.N.Y. at Stony Brook, N.Y.
In August and September of 1977, two spacecrafts were launched on a journey that would take them out of our known solar system. It's main objectives were encounters with the Jupiter and Saturn planetary systems.

Aboard each spacecraft, is a Science Scan Platform upon which the sensors for the Imaging Science, Infrared Radiation, Polarimetry and Ultraviolet Spectroscopy Investigations are mounted. This platform is mounted to the polygonal 10 -sided main body of the craft by a boom. This boom also serves as a mount for the Plasma Particle, Low Energy Charged Particle and Cosmic Ray sensors.

During cruise and especially encounter phases, the incoming data is monitored, assimilated and then analyzed for anomalies or unexpected results. These anomalies manifest themselves as mechanical and/or telemetry failures. One such mechanical failure was the Scan Platform "Creep" anomaly. Here the Science Scan Platform would "creep" when at certain azimuths. This anomaly was probably caused by the extra torque of the wires on the platform coupled with Teflon Flow at these extreme temperatures.

Another anomaly experienced was in the Ultrviolet Spectroscopy data during the solar and stellar occultation observations. Apparently, during transmission in a given data mode, the data stream can be altered (data hit), resulting in erroneous data. To correct these errors, the data are Golay Coded. This coding allows the data hits to be corrected at the expense of cutting the data volume in half.

Prior to launch, the Principle Investigators for the Ultraviolet Spectrograph experiment decided not to have the $\mathrm{OC}-1$ (the data mode used during occultation maneuvers) Golay Coded. The general consensus was to risk some data quality for a higher spatial resolution in planetary atmospheres as well as a data rate of 7.2 Kbits vs. 3.6 Kbits .

In January 1980, during a Ultraviolet Spectrograph Suncal (solar measurement), higher data counts than can be generated by the Ultraviolet Spectrograph detector or digital electronics were observed in large numbers. When the next suncal was executed in July, the data quality of $0 \mathrm{C}-1$ showed serious increases in deterioration. These high data counts also started appearing in GS-3, which is the Golay Coded general science mode.

However, during $0 C-1$, the Ultraviolet Spectrograph is allocated
the largest data volume with the Infrared Radiometer and Photopolarimeter as the "riding" experiments. Unfortunetly the radiometer was off and the polarimeter was non-functional. Thus any non-zero data in either the radiometer or polarimeter indicated a problem with the data. Ultra-violet Spectrograph data however,by itself, is ambiguous due to it's non-zero nature. Therefore, by comparing the number of definite high counts in radiometer and polarimeter data streams against the apparent figh counts in the spectrograph data streams, one could check for consistency to determine if the anomaly was associated with the spectrograph alone or was characteristic of the data stream as a whole.

The results of the analysis indicated that the anomaly was either associated with the down link or telcom performance. Further analysis showed that the anomalous data were a function of dimensions of the radio antenna used, power of the X band and the ambient radio antenna weather conditions.

Thus the anomaly was verified as a signal strengh problem, correctable by using the high power X band and only the 64 -meter or an array of the 64 meter and 34 meter radio antennas, when transmitting in the OC-1 data mode.

Fortunetly, the cruise phase is not characterized by anomalies. During this period of time, the Science Support Teams are involved with the sequencing of future loads, real time analysis and documentation of data and future trajectory selection.

Even though the Voyager spacecrafts were not intially intended to function after Saturn, Voyager II's trajectory is currently designed to take it to Uranus in January of 1986 and to Neptune in 1989.

Although all the investigations have a hand in trajectory selection, Radio Science and their Limb Tracking Maneuver will have precedents over the outcome. No other investigation has the "ability" to penetrate an atmosphere down to the surface. This ability is the result of being able to calculate the index of refraction at deeper and deeper depths as the occulted spacecraft's signal is refracted towards the earth.

From the characteristics of this signal, plus data from the Infrared Radiometer, a pressure/temperature profile can be compiled. In addition, particle structure, aerosol structure, and surface pressure can be calculated with an accuracy which is orders of magnitudes better than earth based observations.

Already the Voyager spacecrafts have broadened our knowledge of
our solar system and will continue to do so for many years to come. In November of this year, Voyager I will be within $400,000 \mathrm{Km}$. of Saturn and again flood us with wealths of knowledge of our place in the solar system. This knowledge is a direct result of the many years of dedication and perseverance by the men and women who work on the Voyager Project.

Acknowledgments

This work was done under the supervision of Dr. Charles Stembridge, Science Manager for the Voyager Project Flight Science Office at the Jet Propulsion Laboratory, Pasadena, California.

At this time I would like to thank the Planetary Geology Internship Program for this opportunity and all the people on the Voyager Science Support Teams.

ROTATION RATES OF THE B RING SPOKES AND THEIR RELATIONSHIP TO THE ROTATION RATES OF PARTICLES ACCORDING TO THE PHYSICAL LAWS OF MAGNETIC AND GRAVITATIONAL MOTION

Photographs taken by Voyager 1 during its recent encounter with Saturn revealed radial structures within the B ring. A timelapse movie made up of a series of photographs of Saturn and its rings during the approaching leg of the encounter shows these features to have a motion within the ring similar to the spokes within a wheel. These spoke-like features show a dark contrast with the ring when seen in backscattered light and a light contrast when viewed in forescattered light. This characteristic alone may be indicative of their composition. The rotation rate of the particles comprising these spokes with respect to their distance from Saturn's center may be a major clue to the controlling forces behind them.

A graph was made showing the orbital period of a particle at a certain distance from the center of Saturn as defined by Kepler's Third Law of Gravitational Motion, $P^{2} R^{3}$, where P is the period in minutes and R is the distance in $R_{s}{ }^{*}$. the constant for the curve was foun using the orbital period of Mimas, $1367.79 \mathrm{~min} .$, and its orbital radius, $3.089 \mathrm{R}_{\mathrm{S}}$. Another line was drawn to represent the magnetic period, 639 min., which doesn't vary with distance. The orbital periods of the spokes with respect to the distances from from the center of Saturn were then plotted on the same graph. These periods and distances were found using every third frame of the approach movie and an overlay made by computer to correspond to the inclination of the ring plane from the spacecraft. A point along the spoke was measured for distance from the center of Saturn and it was traced through as many frames as possible to calculate its orbital period.

The resulting graph (fig. 1) showed a grouping of the spoke properties, period vs. distance, around the corotation point oft the magnetic and gravitational periods. This may help to support the theory that the spokes of the B-ring are somehow related to the magnetic field of Saturn. If the rest of the particles that make up the B ring are controlled by the gravitational forces of the planet, then the change in the velocity of some of the particles due to the magnetic field would cause a variation in the apperance of th ring. Smaller particles would be the ones most likely affected by magnetic forces. These small particles would also demonstrate the different contrasts when viewed in forescattered and backscattered light.

This study has shed some light on the mystery of the B ring Spokes. However, it hasn't, by any means, solved it. Further and more detailed studies are needed to completely understand this phenomenon. Hopefully, this study will point scientists in the right direction.

```
* R}\mp@subsup{R}{S}{}=\mathrm{ Satürn Radii ( }60,330 km.
```

Deborah L. Young; NASA Planetary Geology Intern; Jet Propulsion Lab; Pasadena,California; Oct. - Nov. 1980

ACKNOWLEDGEMENTS

The author wishes to thank the following people for their contributions to this research project: Dr. Lawerence Soderblom for the factual data and guidance: Bruce McLaughlin and Brad Wallace for the computer work; and Eric Korsmo for the necessary photographs.

B-RING SPOKE ROTATION RATE DATA

The data for these rates was obtained using every third frame of the PIO Ring Rotation Movie made during the Far Encounter Phase of the Voyager 1 encounter with Saturn. (FDS count \# 34380.36 - 34392.54 ; every . 18 FDS \# was used.)

$\begin{gathered} \text { DISTANCE } \\ \text { FROM } \operatorname{SATURN}\left(R_{S}^{*}\right) \end{gathered}$	$\begin{aligned} & \text { PERIOD } \\ & (\min) \end{aligned}$
1.8	668.9
1.855	592.0
1.865	609.9
1.81	648.0
1.865	617.9
1.92	648.0
1.90	635.0
1.90	622.1
1.865	609.9
1.865	602.0
1.94	638.0
1.91	638.0
1.79	628.4
1.77	632.2
1.81	610.0
1.77	617.0
1.80	622.0
1.81	636.6
- $\overline{\mathrm{A}} \mathrm{V} \overline{\mathrm{G}}^{-}$-	626.4
1.71	532.0
1.72	538.6
1.72	563.5
- $\overline{\mathrm{A}} \mathrm{V} \overline{\mathrm{G}} \mathrm{O}^{-}$-	544.7

* $R_{S}=$ radius of Saturn $(60,330 \mathrm{~km}$.)

FIGI

SECTION III:

Regional Planetary Image Facilities--Photographic Holdings
Gail S. Georgenson

REGIONAL PLANETARY IMAGE FACILITIES -- PHOTOGRAPHIC HOLDINGS
Compiled by Gail S. Georgenson, Space Imagery Center, University of Arizona
The Regional Planetary Image Facilities (RPIFs) provide easy access to NASA's lunar and planetary imagery. The network of seven facilities enables scientists, students, educators, and the general public to select necessary image copies and carry out research within each facility. Local librarians assist users in acquiring hard copy products for permanent retention by referral to various NASA photo contractors. Cooperation among the RPIF members permits access to materials without unnecessary trips to a distant facility. In addition, three new branch libraries now allow an even greater number of interested users to access NASA photo files. Though the branch facilities do not contain the same range of NASA photo products as the regional facilities, they can assist in referrals to the regional libraries and NASA photo contractors. Complete addresses for the seven RPIF members and three branch facilities are included at the end of the photoproduct holdings list presented here. The facilities welcome inquiries from scientists and other interested individuals.

The following list is a compilation of inventory information gathered by the regional facilities. It points out the wide range of photoproducts and formats produced for NASA interplanetary missions and provides availability information for data sets at each facility. Most of the standard distribution products are available at each facility in either partial or complete sets. However, different specific strengths (i.e., special products) exist in the individual collections indicating the past research interests of the home institutions. Again, communication within the RPIF network is strong, hence providing users maximum access to all facilities. Institutional codes and a key to abbreviations used in the listing are included below.

Institutional Codes

AZ	University of Arizona / Tucson, Arizona
BR	Brown University / Providence, Rhode Island
COR	Cornell University / Ithaca, New York
FLAG	USGS Flagstaff / Flagstaff, Arizona
LPI	Lunar and Planetary Institute / Houston, Texas
JPL	Jet Propulsion Laboratory / Pasadena, California
WASH	Washington University / St. Louis, Missouri

Key to Abbreviations

EDR	Experiment Data Record
FOVLIP	First Order Viking Lander Image Processing
MTIS	Mission Test Image System
MTPS	Mission Test Photographic System
MTVS	Mission Test Video System
Negs	Negative film
Orig	Original film
(P)	Partial set
Pos	Positive film
RDR	Reduced Data Record
SCP	Strip Contact Prints
TDR	Team Data Record
Trans	Transparencies (film)

$A Z \quad B R \quad$ COR FL LPI \quad JPL \quad WASH

Ranger 7, 8, 9

Surveyor 1, 3, 5, 6,7

Films - 16 mm	$x(P)$				$x(P)$
JPL Mosaics - Negs			x		X
JPL Mosaics - Prints	$x(P)$		x		
70-mm Photography - Negs			x	x	
70-mm Photography - Prints	$x(P)$		X		$x(P)$
Support Data	X	x	x	x	
USGS Mosaics - Negs			x		
USGS Mosaics - Prints	$x(P)$		X		x (\#5

Lunar Orbiter 1-5

Microfiche	x	x		$\begin{aligned} & x \\ & x(D) \end{aligned}$	x	$\begin{aligned} & x \\ & x(P) \end{aligned}$	x
Prints 20×24	x	x	x	x	x	x	x
Slides - Lantern	$x(P)$						
Slides - 35 mm	$x(P)$					$x(P)$	
Support Data	x	x	x	x		X	x
Transparencies - Negs - 20x24				x		X	
Transparencies - Pos - 20×24	$x(P)$						

Apollo 5-17

Apollo 5-70mm Negs						$x(P)$	
Apollo 5-70 mm Orig Film						$x(P)$	
Apollo 6 - 70 mm Negs						$x(P)$	
Apollo 6 - 70 mm Orig Film						$x(P)$	
Apollo 6 Prints					x		
Apollo 7 Negs						$x(P)$	
Apollo 7 Prints					x		
Apollo Support Data	x		x			x	x
Films - 16 mm	x			x	x	x	
Hasselblad Microfiche	x	x	x	x	x	x	
Hasselblad Microfilm	x	x		x			
Hasselblad Prints	X			x	x		$x(P)$
Hasselblad 70-mm Film Negs				x		x	$x(P)$
Hasselblad $70-\mathrm{mm}$ Film Pos	x	$x(P)$	x	x	x	x	
Metric (Mapping) Enl. Prints				$x(P)$	x		
Metric (Mapping) Film Negs				X	X		
Metric (Mapping) Film Pos	$x(P)$	$x(P)$		x		x	
Metric (Mapping) Microfiche	X	X		x		x	x
Metric (Mapping) Microfilm	x	x		X			
Metric (Mapping) Prints	X			x	x		x
Panoramic Camera Microfiche						x	
Panoramic Camera Microfilm		X		X			\boldsymbol{x}
Panoramic Camera Negs				x	x		
Panoramic Camera Pos Trans	x	x		x	x	x	
Panoramic Camera Prints	x		x	X	X		x
Rectified Pan	$x(P)$			x	x		

Mariner 10 (Earth Moon Sequence)	AZ	BR	COR	FL	LPI	JPL	WASH
Microfiche							x
Support Data	x		x	x		x	
Systematic Products (MTVS) Negs	x			x		x	x
Systematic Products (MTVS) Pos Trans	x				x	x	
Systematic Products (MTVS) Prints	x			x	x		
Systematic Products (MTVS) SCP	x		x			x	

PLANETARY DATA

Mariner 4(Mars)

Digital Tapes
Negatives
Support Data
Mariner 6, 7 (Mars)

Digital Tapes	
Special Products - Negs	
Special Products - Prints	
Support Data	
Systematic Products - Negs	
Systematic Products - Prints	

Mariner 9 (Mars)

Digital Tapes	
IPL/RDR -Microfiche	
IPL/RDR - Negs	
IPL/RDR - Pos Trans	
IPL/RDR - Prints	
IPL/Rectified Stereographic	
JPL Mosaic Products	
Press Rel ease Prints	
Support Data (incl. Microfiche)	
Systematic Products(MTVS)-Microfiche	x
Systematic Products (MTVS) - Negs	
Systematic Products (MVS) - Pos Trans	
Systematic Products (MTVS) - Prints	x

Systematic Products - Negs

 x
Mariner 10 (Mercury)

Films - 16 mm	x
IPL Mosaics	x
IPL/RDR - Microfiche	x
IPL/RDR - Negs	x
IPL/RDR - Pos Trans	x
IPL/RDR - Prints	x
IPL/RDR - SCP	x
IPL Stereo - Negs	x
IPL Stereo - Pos. Trans	x
IPL Stereo - SCP	x
Press Release Prints	
Press Release Slides	
Support Data (incl. Microfiche)	x
Systematic Products (MTVS) -Microfiche	x
Systematic Products (MTVS) - Negs	x
Systematic Products (MTVS) - Pos Trans	x
Systematic Products (MTVS) - Prints	x
Systematic Products (MTVS) - SCP	x

Mariner 10 (Venus)	AZ	BR	COR	FL	LPI	JPL	WASH
IPL Mosaics	$x(P)$					x	
Support Data (incl. Microfiche)	x					x	
Systematic Products (MTVS) - Negs	x			x		x	
Systematic Products (MTVS) - Pos Trans	x					x	
Systematic Products (MTVS) - Prints	x		x	x		x	
Systematic Products (MTVS) - SCP	x		X			X	
Systematic Products (MTVS)-Microfiche	x						x
Viking Orbiter 1, 2 (Mars)							
IPL/GRE Color Filter Prints	x		x	x		x	
IPL Stereo Pairs	x		x	x		x	
JPL Mosaics - 4×5 Negs	x		x	X	x	X	x
JPL Mosaics - 4×5 Prints				x			x
JPL Mosaics - 20×24 Prints	x	$x(P)$	x	X	x	x	X
Phobos/Deimos - 8×10 Prints			x	x			
Phobos/Deimos - Negs	x		x	x		x	
Phobos/Deimos - Pos Trans				x		x	
Phobos/Deimos - SCP	$\underline{x} \times$		x	X			
Press Release Photos	$x(P)$		x			$x(P)$	x
Primary \& Extended Mission-8x10 Prints			x	x			
Primary \& Extended Mission-Microfiche	x		x	X	x	x	x
Primary \& Extended Mission - Negs	x	$x(P)$	x	X	X	x	X
Primary \& Extended Mission - Pos Trans				X		x	
Primary \& Extended Mission - SCP	x	$x(P)$	x	x	x	x	
Sildes - 35 mm	x		x	x		x	x
Support Data (incl. Microfiche)	x		x	x		x	X
Survey Mission - Negs	x		X	X		x	
Survey Mission - Pos Trans				x		x	
Survey Mission - SCP	x		x	X		x x	
USGS Color Reference Prints	x		x	x		x	
USGS Mosaics (Mars Charts) - Prints	x	x	x	x		X	X
Viking Lander 1, 2 (Mars)							
EDR Microfiche	x		x	x	x	x	X
EDR Negs		x	X	x			
EDR Pos Trans		X					
EDR SCP	x	x	x	${ }^{x}$			x
EDR Digital Tapes			x	${ }^{x}$			
FOVLIP Negs		$x(P)$	x	x			x
FOVLIP Pos Trans							
FOVLIP SCP	x	$x(P)$		x			
FOVLIP Slides							
JPL Mosaics (Hi Res) - Negs		x	x	x			X
JPL Mosaics (Stereo) - Negs		x	x	x			x
JPL Mosaics (Stereo) - Prints							x
Press Release - Prints		x	x			x	x
TDR/DIFFPICS - Negs		x	x	x			x
TDR/DIFFPICS - SCP	x		x	x			
TDR Negs		$x(P)$	x	x			x
TDR Pos Trans			x	x			x
TDR SCP	x	$x(P)$	x	X	$x(p)$		x
TDR SCP (color) TDR Slides	X	$x(P)$	x	x		x	x
TDR Slides			x		x	x	x

Voyager 1, 2 (Jupiter)	AZ	BR	COR	FL	LPI	JPL	WASH
Films - 16 mm	x		${ }^{x}$			x	
Press Release Prints	X		x	x		X	
Press Release Slides	x		X	X		x	
Systematic MTIS/MTPS - Enlargements			X				
Systematic MTIS/MTPS - Negs	x		x $x(P)$	X			

Voyager 1, 2 (Satellites)

IPL Products - Prints	x	X		x			
JPL Mosaics - Large Prints	x	x	x	X			
Press Release Prints	x	x	x	x	x	x	x
Press Release Slides	X	X	X	x	X	X	x
Systematic MTIS/MTPS Enlargements	x (P)		X	x	x	x	
Systematic MTIS/MTPS Negs	x	x	X	x	X	x	$*$
Systematic MTIS/MTPS Pos Trans				x	x		
Systematic MTIS/MTPS SCP	$x(P)$	X		X	x	x	x

Regional Planetary Image Facilities

SPACE IMAGERY CENTER
Lunar and Planetary Laboratory
University of Arizona
Tucson, Arizona 85721
Facility Director: Robert G. Strom
Data Manager: Gail S. Georgenson
(602/626-4861)
PLANETARY IMAGE FACILITY
Lunar and Planetary Institute
Houston, Texas 77058
Facility Director: Peter H. Schultz
Data Manager: Ron Weber
(713/486-2172)
PLANETARY DATA FACILITY
Astrogeological Branch
U. S. Geological Survey

Flagstaff, Arizona 86001
Facility Director: Elliot Morris
Data Manager: Jody Swann
(602/779-3311) (FTS: 261-1505)

BROWN REGIONAL PLANETARY DATA CENTER
Brown University
Providence, Rhode Island 02912
Facility Director: James Head, III
Data Manager: John Crowley
(401/863-3243)

SPACECRAFT PLANETARY IMAGING FACILITY
Cornell University
Ithaca, New York 14853
Facility Director: Joseph Veverka
Data Manager: Margaret Dermott
(607/256-3833)
PLANETARY IMAGE FACILITY
McDonnell Center for Space Sciences
Washington University
St. Louis, Missouri 63160
Facility Director: Raymond E. Arvidson
Data Manager: Betty Weiss
(314/889-5679)

PLANETARY IMAGE FACILITY
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California 91103
Facility Director: R. Stephen Saunders
Data Manager: Mike Martín
(213/354-3343) (FTS: 792-3343)
(213/354-6065)

Branch Facilities

```
Arizona State University
Dept. of Geology
Space Photography Laboratory
Tempe, AZ 85281
Librarian: Sondra Peacock
Facility Director: Dr. R. Greeley
Louisiana State University
Dept. of Geology
Baton Rouge, LA }7080
Facility Director: Dr. Dag Nummedal
University of Hawaii
Institute for Astronomy
2680 Woodlawn Drive
Honolulu, HI 96822
Facility Director: Dr. Thomas McCord
```

End of Document

[^0]: Masaytis, 1975

[^1]: Wooley, 1970

