

NASA Contractor Report 3426

[.**?**

Semi-Actuator Disk Theory for Compressor Choke Flutter

J. Micklow and J. Jeffers

CONTRACT NAS3-20060 JUNE 1981

NASA

NASA Contractor Report 3426

Semi-Actuator Disk Theory for Compressor Choke Flutter

J. Micklow and J. Jeffers United Technologies Corporation West Palm Beach, Florida

Prepared for Lewis Research Center under Contract NAS3-20060

and Space Administration

Scientific and Technical Information Branch

1981

|**||**|

TABLE OF CONTENTS

----- -

Contraction of the local distance of the loc

14_

SUMMARY	iv
INTRODUCTION	1
ANALYTICAL MODEL. Model Definition. Assumptions and Boundary Conditions. Assumptions. Boundary Conditions. Derivation of the Unsteady Model. Upstream and Downstream Irrotational Flow Equations. Intrablade Flow Equations and Solutions. Perturbation Equations and Solutions for Region 1. Perturbation Equations for Region 2. Unsteady Shock Movement. Perturbation Equations for Region 3. Rotational Downstream Flow Field. Continuity and Momentum Equations for Region 3.	3 3 3 4 5 9 9 9 14 17 19 20 21
RESULTS Wind Tunnel Test Data Flutter Analysis Computational Method Flutter Prediction Results Summary of Results Conclusions.	22 22 22 22 24 29 30
APPENDIXES	
A DERIVATION OF THE SMALL PERTURBATION FORM OF THE EQUATIONS OF MOTION MOTION IN REGION 1	31
B SOLUTIONS TO THE EQUATIONS OF MOTION FOR REGION 1	39
C SOLUTIONS TO THE EQUATIONS OF MOTION FOR REGION 2	63
D SOLUTIONS TO THE EQUATIONS OF MOTION FOR REGION 3	74
E STEADY-STATE FLOW COEFFICIENTS FOR REGIONS 1, 2 AND 3	82
F CALCULATION OF MEAN FLOW AERODYNAMICS	98
G DEFINITION OF AREA PERTURBATIONS	100
H CALCULATION OF THE STEADY-STATE SHOCK LOCATION AND TEST FOR CHOKED FLOW	109
I LIFT AND MOMENT COEFFICIENT CALCULATION	112
J COMPUTER CODE COMPILATION	114
REFERENCES	160
NOMENCLATURE	162

Т

.

•

.

SUMMARY

Utilizing semi-actuator disk theory, a mathematical analysis was developed to predict the unsteady aerodynamic environment for a cascade of airfoils harmonically oscillating in choked flow. In the model, a normal shock is located in the blade passage, its position depending on the time dependent geometry and pressure perturbations of the system. In addition to shock dynamics, the model includes the effect of compressibility, interblade phase lag, and an unsteady flow field upstream and downstream of the cascade.

Calculated unsteady aerodynamic forces using the semiactuator disk model were compared to experimental data from isolated airfoil wind tunnel tests. The wind tunnel data simulate the special cascade condition of 180 deg interblade phase. Agreement between experimental and theory was reasonable. The semiactuator theory was also evaluated using compressor airfoil choke flutter data from single-spool tests of the F100 turbofan engine. Themodel was incorporated into a flutter prediction program in which calculated aerodynamic damping is correlated to construct flutter onset boundaries. The calculated flutter boundaries compared well with the measured flutter boundaries. Based on these evaluations, it was concluded that a conservative choke flutter design system could be established based on the semiactuator disk model.

INTRODUCTION

Compressor airfoil flutter remains a continuing problem in the design and development of advanced aircraft gas turbine engines. Flutter occurs over a wide range of operating conditions, but can be categorized into four regions: (1) subsonic/transonic stall, (2) subsonic/transonic choke, (3) supersonic unstalled, and (4) supersonic stalled, as shown in Figure 1.

Figure 1. Possible Flutter Boundaries

The subsonic stall flutter problem has been investigated by a number of authors. Jeffers (Reference 1) devised a semi-empirical unsteady aerodynamic theory based on combining the unsteady unstalled aerodynamic forces from Smith's theory (Reference 2) with correction from theory and experimental data of isolated airfoils operating at high incidence in incompressible flows. Sisto (Reference 3) used steady aerodynamic data to treat the unsteady flow problem in a quasi-steady manner. Perumal (Reference 4) developed an essentially "Helmholtz flow" model, while Yashima and Tanaka (Reference 5) adapted a rigid wake model to obtain reasonably good correlation with linear cascade experimental data. Most recently, Chi (Reference 6) used a small perturbation technique to model flow separation.

The supersonic flow region has also been discussed by a number of authors. For the unstalled regime, a finite difference method was first used by Verdon (Reference 7) and Brix and Platzer (Reference 8) to model the unsteady supersonic aerodynamics. Other approaches by Kurosaka (Reference 9) and Verdon and McCune (Reference 10) extend a velocity potential method first developed by Miles (References 11 and 12) for simple supersonic cascade configurations.

Ì. i

Recently, an unsteady actuator disk model was developed by Adamczyk (Reference 13) with encouraging results for supersonic stall bending flutter. The supersonic stalled region was also investigated by Goldstein, Braun and Adamczyk (Reference 14) in which the small perturbation analysis included the presence of a strong in passage shock.

The choke flutter problem that has arisen in advanced gas turbine engines with variable inlet guide vanes poses a very serious problem and no analytical model exists at present to predict the unsteady aerodynamic environment. The complex nature of this environment has thus far resisted rigorous mathematical formulation, but a "simplified" model has been undertaken herein based on a modified semi-actuator disk approach with one-dimensional channel flow. The channel flow approach originally used by NASA-NACA to analyze inlet diffusers of ramjet and turbojet engines was selected because airfoil cascades can exhibit flow characteristics similar to those of inlet diffusers. The flow in an inlet diffuser and a choked blade passage both contain a shock wave whose position strongly affects the pressure forces on the channel walls or blade surfaces. The position of the shock depends upon channel geometry and, therefore, in the case of the airfoil cascade, can be related to the vibratory motion of the airfoils in flutter. A preliminary analysis was completed in the initial phase of this effort which produced promising results when used in a stability prediction of a compressor rotor that experienced choke flutter at off-schedule operating conditions. However, concern for certain aspects of the preliminary model led to the present approach which includes a modified semi-actuator disk method to describe the upstream and downstream flow fields.

The section following contains the analytical derivation and definition of the mathematical model, including a steady-state interblade analysis and a linearized small perturbation analysis. The next section details the results obtained using this channel flow model. In order to rid the text of this report of complex, cumbersome, and lengthy mathematical manipulations and assumptions, numerous appendices are included herewith which allow model development in a straight forward manner.

ANALYTICAL MODEL

Model Definition

The semi-actuator disk model consists of two solutions: a steady-state intrablade analysis and an unsteady linearized small perturbation analysis. The steady-state analysis utilizes steady isentropic one-dimensional relations to define the intrablade conditions. An iterative procedure, ending in the match of the known static pressure ratio across the blade, locates the steady-state normal shock position. The procedure appears in Appendix H. The flow entering and leaving the cascade is defined externally by a streamline analysis. The unsteady solution consists of three basic flow fields: (1) upstream flow field, (2) intrablade flow analysis, and (3) a downstream flow field, as shown in Figure 2.

Figure 2. Unsteady Flow Field Description

Assumptions and Boundary Conditions

Assumptions

The following assumptions were made relative to the flow within the three basic flow fields of the unsteady solution:

1. Upstream Flow Field — The flow is assumed to be two-dimensional, inviscid, irrotational, unsteady, and compressible.

3

- 2. Intrablade Flow Analysis The flow is assumed to be one-dimensional, inviscid, unsteady, and compressible. Figure 3 details the division of the flow field into three sections: a subsonic section from blade leading edge to the blade throat or M = 1, a supersonic section from blade throat to shock location, and a subsonic section from shock location to blade trailing edge.
- 3. Downstream Flow Field The flow is assumed to be two-dimensional, rotational, inviscid, compressible, and constructed of the sum of two basic solutions: an irrotational part similar to the upstream flow field and a rotational part due to the vortices being shed off the blade trailing edge.

Figure 3. Intrablade Flow Field

Boundary Conditions

Boundary conditions for the unsteady solutions consist of the following:

- 1. The mass flow is continuous at the leading- and trailing-edge lines.
- 2. Conservation of mass, energy, and momentum was observed within each section of the blade channel.
- 3. The Kutta condition at the trailing edge is satisfied by specifying the exit air angle.

Derivation of the Unsteady Model

Upstream and Downstream Irrotational Flow Equations

Continuity Equation

Establishing a coordinate system, as shown in Figure 4 produces the following form for the continuity equation:

$$\frac{\partial (\rho u A)_{\pm \infty}}{\partial x} + \frac{\partial (\rho v A)_{\pm \infty}}{\partial y} + \frac{\partial (\rho A)_{\pm \infty}}{\partial t} = 0$$
(1)

Figure 4. Cascade Geometry

Small perturbations of the flow variables are assumed as follows:

$$ho = ar
ho +
ho'$$
 $u = ar u + u'$ $v = ar v + v'$

Substituting the above relationships into Equation 1, subtracting out the steady-state equation, and neglecting higher order terms gives the small perturbation form of the continuity equation, as follows:

$$\frac{\partial \rho'_{\pm\infty}}{\partial t} + \bar{u}_{\pm\infty} \left(\frac{\partial \rho'_{\pm\infty}}{\partial x} \right) + \bar{v}_{\pm\infty} \left(\frac{\partial \rho'_{\pm\infty}}{\partial y} \right) + \bar{p}_{\pm\infty} \left(\frac{\partial u'_{\pm\infty}}{\partial x} + \frac{\partial v'_{\pm\infty}}{\partial y} \right) = 0 \quad (2)$$

Momentum Equation

In tensor notation, the two-dimensional form of the momentum equation is as follows:

$$\frac{\partial (\rho u_i u_j)}{\partial x_j} + \frac{\partial (\rho u_i)}{\partial t} = - \frac{\partial p}{\partial x_i} + r_i$$

which becomes

x-direction

$$\frac{\partial \left(\rho u_{\pm \infty} u_{\pm \infty}\right)}{\partial x} + \frac{\partial \left(\rho u_{\pm \infty} v_{\pm \infty}\right)}{\partial y} + \frac{\partial \left(\rho u_{\pm \infty}\right)}{\partial t} = - \frac{\partial p_{\pm \infty}}{\partial x}$$
(3a)

y-direction

$$\frac{\partial \left(\rho \mathbf{u}_{\pm \infty} \mathbf{v}_{\pm \infty}\right)}{\partial \mathbf{x}} + \frac{\partial \left(\rho \mathbf{v}_{\pm \infty} \mathbf{v}_{\pm \infty}\right)}{\partial \mathbf{y}} + \frac{\partial \left(\rho \mathbf{v}_{\pm \infty}\right)}{\partial \mathbf{t}} = -\frac{\partial \mathbf{p}_{\pm \infty}}{\partial \mathbf{y}}$$
(3b)

Assuming small perturbations of the flow variables in Equations 3a and 3b, neglecting higher order terms and subtracting out the mean flow equation, gives the small perturbation forms of the momentum equation, as shown below:

x-direction

$$\frac{\partial \mathbf{u'}_{\pm\infty}}{\partial \mathbf{t}} + \bar{\mathbf{u}}_{\pm\infty} \quad \frac{\partial \mathbf{u'}_{\pm\infty}}{\partial \mathbf{x}} + \bar{\mathbf{v}}_{\pm\infty} \quad \frac{\partial \mathbf{u'}_{\pm\infty}}{\partial \mathbf{y}} = \frac{-1}{\bar{\rho}_{\pm\infty}} \left(\frac{\partial \mathbf{p'}_{\pm\infty}}{\partial \mathbf{x}} \right)$$
(4a)

y-direction

$$\frac{\partial \mathbf{v'}_{\pm\infty}}{\partial t} + \bar{\mathbf{u}}_{\pm\infty} \frac{\partial \mathbf{v'}_{\pm\infty}}{\partial \mathbf{x}} + \bar{\mathbf{v}}_{\pm\infty} \frac{\partial \mathbf{v'}_{\pm\infty}}{\partial \mathbf{y}} = \frac{-1}{\bar{p}_{\pm\infty}} \left(\frac{\partial \mathbf{p'}_{\pm\infty}}{\partial \mathbf{y}} \right)$$
(4b)

Nondimensionalized Wave Equation

Flow entering the cascade is assumed to be irrotational and can therefore be represented by a potential function as can the irrotational portion of the flow leaving the cascade. The velocity perturbations can then be represented in the following forms:

$$u'_{\pm \hat{w}} = \frac{\partial \Phi'_{\pm \infty}}{\partial x} \qquad v'_{\pm \infty} = \frac{\partial \Phi'_{\pm \infty}}{\partial y}$$
(5)

Substituting these relationships into the continuity and momentum equations and combining these equations gives the small perturbation form of the nondimensionalized wave equation (after some manipulation), as shown:

$$\bar{\mathbf{M}}^{2}_{\pm\infty} \left(\frac{\partial^{2} \Phi'_{\pm\infty}}{\partial t^{*2}} \right) + 2\bar{\mathbf{M}}_{\pm\infty} \bar{\mathbf{M}}_{\mathbf{x}\pm\infty} \left(\frac{\partial^{2} \Phi'_{\pm\infty}}{\partial \mathbf{x}^{*} \partial t^{*}} \right) + 2\bar{\mathbf{M}}_{\pm} \cdot \bar{\mathbf{M}}_{\mathbf{y}\pm} \cdot \left(\frac{\partial^{2} \Phi'_{\pm\infty}}{\partial \mathbf{y}^{*} \partial t^{*}} \right) + 2\bar{\mathbf{M}}_{\pm\infty} \bar{\mathbf{M}}_{\mathbf{y}\pm\infty} \left(\frac{\partial^{2} \Phi'_{\pm\infty}}{\partial \mathbf{x}^{*} \partial \mathbf{y}^{*}} \right) + (\bar{\mathbf{M}}^{2}_{\mathbf{x}\pm\infty} - 1) \left(\frac{\partial^{2} \Phi'_{\pm\infty}}{\partial \mathbf{x}^{*2}} \right) + (\bar{\mathbf{M}}^{2}_{\mathbf{x}\pm\infty} - 1) \left(\frac{\partial^{2} \Phi'_{\pm\infty}}{\partial \mathbf{x}^{*2}} \right) + (\bar{\mathbf{M}}^{2}_{\mathbf{y}\pm\infty} - 1) \left(\frac{\partial^{2} \Phi'_{\pm\infty}}{\partial \mathbf{y}^{*2}} \right) = 0$$
(6)

where x and y are nondimensionalized by semichord b, and time is nondimensionalized by the quantity U/b. The derivation of the wave equation appears in Reference 15.

Because Equation 6 is linear, a solution can be obtained by superposition of fundamental solutions, taking the following form:

$$\Phi'_{+,*} = A_{+,*} \exp i(Bx + Cy + kt)$$
⁽⁷⁾

where A, B, and C are unknown constants and k represents the reduced frequency based on semichord $k = b\omega/U$. Assuming the blades vibrate with a constant interblade phase angle σ , the tangential wave constant C is controlled by an unsteady periodicity condition. Any perturbation velocity potential at $(x_{\omega}, y_{\omega} + s)$ leads or lags the same potential at (x_{ω}, y_{ω}) by σ at all times. This may be expressed as follows:

$$\Phi'(\mathbf{x}_{o}, \mathbf{y}_{o} + \mathbf{s}, \mathbf{t}) = \Phi'(\mathbf{x}_{o}, \mathbf{y}_{o}, \mathbf{t}) e^{i\sigma}$$
(8)

where s defines the blade gap-to-semichord ratio. Substituting Equation 8 into Equation 7 gives

$$C = \frac{\sigma}{s}$$

Substituting Equation 7 into Equation 6, dividing by $A_{+\infty} \exp i(Bx + Cx + kt)$ and solving for B yields

$$B_{1,2} = \frac{-D_1 \pm \sqrt{D_1^2 + \beta_x^2 D_2}}{-\beta_x^2}$$
(9)

where,

A

$$\begin{split} \mathbf{D}_{1} &= \bar{\mathbf{M}}_{\mathbf{x}_{\pm \infty}} \bar{\mathbf{M}}_{\pm \infty} \mathbf{k} + \bar{\mathbf{M}}_{\mathbf{x}_{\pm \infty}} \bar{\mathbf{M}}_{\mathbf{y}_{\pm \infty}} \mathbf{C} \\ \mathbf{D}_{2} &= \mathbf{k}^{2} \bar{\mathbf{M}}^{2}_{\pm \infty} + 2 \bar{\mathbf{M}}_{\pm \infty} \quad \tilde{\mathbf{M}}_{\mathbf{y}_{\pm \infty}} \quad \mathbf{C} \mathbf{k} - \mathbf{C}^{2} \quad \beta_{\mathbf{y}}^{2} \\ \beta_{\mathbf{x}}^{2} &= 1 \quad - \quad \bar{\mathbf{M}}_{\mathbf{x}_{\pm \infty}}^{2} \\ \beta_{\mathbf{y}}^{2} &= 1 \quad - \quad \bar{\mathbf{M}}_{\mathbf{y}_{\pm \infty}}^{2} \end{split}$$

Thus, the solution takes the form:

$$\Phi'_{+\infty}(\mathbf{x}, \mathbf{y}, \mathbf{t}) = [\mathbf{A}_{1+\infty} \mathbf{e}^{i\mathbf{B}_{1}\mathbf{x}} + \mathbf{A}_{2+\infty} \mathbf{e}^{i\mathbf{B}_{2}\mathbf{x}}] [\mathbf{e}^{ii(\mathbf{y}+\mathbf{k})}]$$
(10)

The velocity perturbation must approach zero in the far field. Now if the quantity $D_1^2 + \beta_x^2 D_2 < 0$, B_1 and B_2 are complex conjugates. In order to satisfy the far field condition, the solution must take the following form:

$$\Phi'_{\infty}(\mathbf{x}, \mathbf{y}, \mathbf{t}) = \mathbf{A}_{1,\infty} \exp(\mathbf{i}\mathbf{B}_1\mathbf{x}) \exp(\mathbf{i}(\mathbf{C}\mathbf{y} + \mathbf{k}\mathbf{t})$$
(11)

Now consider the case where $D_1^2 + \beta_x^2 D_2 > 0$. Here B_1 and B_2 will be real numbers and the boundedness condition cannot be applied in the far field. This problem can be solved by representing the flow field as containing a transient part. The assumed solution becomes form

$$\Phi'_{zx}(\mathbf{x}, \mathbf{y}, \mathbf{t}) = \mathbf{A}_{\pm x} \exp \mathbf{i} \left[(\mathbf{B}\mathbf{x} + \mathbf{C}\mathbf{y} + \mathbf{k}\mathbf{t}) + \mathbf{k}_{1}\mathbf{t} \right]$$
(12)

Substituting Equation 12 into Equation 6 and dividing by $A_{1x} \exp[i(Bx + Cy + kt) + K_i t]$ gives

$$B_{1, 2 \text{ real}} = \frac{D_1^s \pm \sqrt{D_1^{s2} + \beta_x^2 D_2^s}}{\beta_x^2}$$
(13)

and

$$B_{imag} = \frac{-i \left(\bar{M}_{y \pm \infty} C + \bar{M}_{\pm \infty} k\right)}{\bar{M}_{x \pm \infty}}$$
(14)

Equation 12 physically implies an unsteady solution under the influence of a slowly divergent, oscillating source with the earlier emitted wave being stronger than the one following it. Since a finite period of time is required for a disturbance to propagate to the far field, the amplitude of the response should decrease with increasing distance from the source. Therefore, the proper upstream solution can be chosen. By letting k_1 approach zero, the correct wave solutions on either side of the harmonically vibrating source can be recovered, as shown in Equation 15.

$$\Phi'_{+\infty} = \mathbf{A}_{+\infty} \exp \mathbf{i} [\mathbf{x} (\mathbf{B}_1 + \mathbf{B}_{imag}) + \mathbf{C}\mathbf{y} + \mathbf{k}\mathbf{t}]$$
(15)

A summary of the correct solutions for the irrotational upstream and downstream flow fields is presented in Table 1.

Intrablade Flow Equations and Solutions

Perturbation Equations and Solutions for Region 1

Figure 5. Region 1 from Blade Leading-Edge Line to the Channel Throat, or M = 1

The first region, as shown in Figure 5, defines a control volume from the blade leadingedge line to the channel throat, or M = 1, with the coordinate system aligned with the chord line. In order to define the unsteady flow field, three unknowns must be obtained: (1) the complex constant describing the upstream flow field, (2) the density perturbation at the throat, and (3) the velocity perturbation at the throat. This requires the use of the unsteady form of the mass, momentum, and energy equations.

Equation 16 expresses the conservation of mass for a control volume (Reference 16):

$$\frac{\mathrm{d}\mathbf{m}}{\mathrm{d}\mathbf{t}} = 0 = \iint_{\mathrm{cs}} \rho \mathrm{U}\mathrm{d}\mathbf{A} + \frac{\partial}{\partial \mathbf{t}} \iiint_{\mathrm{vol}} \rho \partial (\mathrm{vol})$$
(16)

For the control volume shown in the above figure, this can be expressed as follows:

$$\dot{\mathbf{w}}^* - \dot{\mathbf{w}}_{\text{inter}} = - \frac{\partial(\rho_1 \mathbf{V}_1)}{\partial t}$$
(17)

Assuming small perturbations on the mean flow variables, neglecting higher order terms and subtracting out the mean flow equation, the following result is obtained after expanding Equation 17:

Upstream Flow Fields

$D_{1-\infty}^{2} + \beta_{x-\infty}^{2} D_{2-\infty} < 0$	$D_{1-\infty}^{2} + \beta_{x-x}$	$\sum_{\infty}^{2} D_{2-\infty} > 0$
$\mathbf{B_{iR}} = \mathbf{D_{i-\infty}}/\beta_{\mathbf{x-\infty}}^{2}$	$\mathbf{\bar{M}}_{-\infty}\mathbf{k} + \mathbf{\bar{M}}_{\mathbf{y}-\infty} \mathbf{C} > 0$	$\bar{\mathbf{M}}_{-\infty}\mathbf{k} + \bar{\mathbf{M}}_{\mathbf{y}-\infty} \mathbf{C} < 0$
$B_{11} = -\sqrt{D_{1-\infty}^{2} + \beta_{1-\infty}^{2} D_{2-\infty}} / \beta_{1+\infty}^{2}$	$B_{1R} = \frac{D_{1-\infty} + \sqrt{D_{1-\infty}^2 + \beta_x^2 D_{2-\infty}}}{\beta_x^2}$	$B_{1R} = \frac{D_{1-\infty} - \sqrt{D_{1-\infty}^{2} + \beta_{x}^{2} D_{2-\infty}}}{\beta_{x}^{2}}$
	$B_{11} = \frac{-(M_{y-\infty}C + M_{-\infty}k)}{\tilde{M}_{x-\infty}}$	$B_{11} = \frac{+(M_{y-\infty} C + \overline{M}_{-\infty} k)}{\overline{M}_{x-\infty}}$

Downstream Flow Fields

$$\begin{array}{c|c} D_{1+\infty}^{2} + \beta_{x+\infty}^{2} D_{2+\infty} < 0 \\ \hline D_{1+\infty}^{2} + \beta_{x+\infty}^{2} D_{2+\infty} > 0 \\ \hline B_{1R} = D_{1+\infty}/\beta_{x+\infty}^{2} \\ \hline B_{1R} = + \sqrt{D_{1+\infty}^{2} + \beta_{x+\infty}^{2} D_{2+\infty}} /\beta_{x+\infty}^{2} \\ \hline B_{2R} = - \frac{D_{1+\infty} - \sqrt{D_{1+\infty}^{2} + \beta_{x+\infty}^{2} D_{2+\infty}}}{\beta_{x+\infty}^{2}} \\ \hline B_{2R} = - \frac{D_{1+\infty} - \sqrt{D_{1+\infty}^{2} + \beta_{x+\infty}^{2} D_{2+\infty}}}{\beta_{x+\infty}^{2}} \\ \hline B_{2R} = - \frac{(\overline{M}_{y+\infty} C + M_{y+\infty} k)}{\beta_{x+\infty}} \\ \hline B_{2R} = - \frac{(\overline{M}_{y+\infty} C + \overline{M}_{y+\infty} k)}{\overline{M}_{x+\infty}} \\ \hline B_{2R} = - \frac{(\overline{M}_{y+\infty} C + \overline{M}_{y+\infty} k)}{\overline{M}_{x+\infty}} \\ \hline B_{2R} = - \frac{(\overline{M}_{y+\infty} C + \overline{M}_{y+\infty} k)}{\overline{M}_{x+\infty}} \\ \hline B_{2R} = - \frac{(\overline{M}_{y+\infty} C + \overline{M}_{y+\infty} k)}{\overline{M}_{x+\infty}} \\ \hline B_{2R} = - \frac{(\overline{M}_{y+\infty} C + \overline{M}_{y+\infty} k)}{\overline{M}_{x+\infty}} \\ \hline B_{2R} = - \frac{(\overline{M}_{y+\infty} C + \overline{M}_{y+\infty} k)}{\overline{M}_{x+\infty}} \\ \hline B_{2R} = - \frac{(\overline{M}_{y+\infty} C + \overline{M}_{y+\infty} k)}{\overline{M}_{x+\infty}} \\ \hline B_{2R} = - \frac{(\overline{M}_{y+\infty} C + \overline{M}_{y+\infty} k)}{\overline{M}_{x+\infty}} \\ \hline B_{2R} = - \frac{(\overline{M}_{y+\infty} C + \overline{M}_{y+\infty} k)}{\overline{M}_{x+\infty}} \\ \hline B_{2R} = - \frac{(\overline{M}_{y+\infty} C + \overline{M}_{y+\infty} k)}{\overline{M}_{x+\infty}} \\ \hline B_{2R} = - \frac{(\overline{M}_{y+\infty} C + \overline{M}_{y+\infty} k)}{\overline{M}_{x+\infty}} \\ \hline B_{2R} = - \frac{(\overline{M}_{y+\infty} C + \overline{M}_{y+\infty} k)}{\overline{M}_{x+\infty}} \\ \hline B_{2R} = - \frac{(\overline{M}_{y+\infty} C + \overline{M}_{y+\infty} k)}{\overline{M}_{x+\infty}} \\ \hline B_{2R} = - \frac{(\overline{M}_{y+\infty} C + \overline{M}_{y+\infty} k)}{\overline{M}_{x+\infty}} \\ \hline B_{2R} = - \frac{(\overline{M}_{y+\infty} C + \overline{M}_{y+\infty} k)}{\overline{M}_{x+\infty}} \\ \hline B_{2R} = - \frac{(\overline{M}_{y+\infty} C + \overline{M}_{y+\infty} k)}{\overline{M}_{x+\infty}} \\ \hline B_{2R} = - \frac{(\overline{M}_{y+\infty} C + \overline{M}_{y+\infty} k)}{\overline{M}_{x+\infty}} \\ \hline B_{2R} = - \frac{(\overline{M}_{y+\infty} C + \overline{M}_{y+\infty} k)}{\overline{M}_{x+\infty}} \\ \hline B_{2R} = - \frac{(\overline{M}_{y+\infty} C + \overline{M}_{y+\infty} k)}{\overline{M}_{x+\infty}} \\ \hline B_{2R} = - \frac{(\overline{M}_{y+\infty} C + \overline{M}_{y+\infty} k)}{\overline{M}_{x+\infty}} \\ \hline B_{2R} = - \frac{(\overline{M}_{y+\infty} C + \overline{M}_{y+\infty} k)}{\overline{M}_{x+\infty}} \\ \hline B_{2R} = - \frac{(\overline{M}_{y+\infty} C + \overline{M}_{y+\infty} k)}{\overline{M}_{x+\infty}} \\ \hline B_{2R} = - \frac{(\overline{M}_{y+\infty} C + \overline{M}_{y+\infty} k)}{\overline{M}_{x+\infty}} \\ \hline B_{2R} = - \frac{(\overline{M}_{y+\infty} C + \overline{M}_{y+\infty} k)}{\overline{M}_{x+\infty}} \\ \hline B_{2R} = - \frac{(\overline{M}_{y+\infty} C + \overline{M}_{y+\infty} k)}{\overline{M}_{x+\infty}} \\ \hline B_{2R} = - \frac{(\overline{M}_{y+\infty} C + \overline{M}_{y+\infty} k)}{\overline{M}_{x+\infty}} \\ \hline B_{2R} = - \frac{(\overline{M}_{y+\infty} C + \overline{M}_{y+\infty} k)}{\overline{M}_{x+\infty}} \\ \hline B_{2R} = - \frac{(\overline{M}_{y+\infty}$$

where,

_

$$D_{1\pm\infty} = (\overline{M}_{x\pm\infty} \ \overline{M}_{\pm\infty} \ k + \overline{M}_{y\pm\infty} \ M_{\pm\infty} \ C) \qquad \qquad \beta_{x\pm\infty}^2 = 1 - \overline{M}_{x\pm\infty}^2$$
$$D_{2\pm\infty} = (k^2 \ \overline{M}_{\pm\infty}^2 + 2 \ \overline{M}_{\pm\infty} \ My_{\pm\infty} \ Ck \qquad \qquad \beta_{y\pm\infty}^2 = 1 - \overline{M}_{y\pm\infty}^2$$

$$\begin{bmatrix} \rho'^* \bar{A}^* \bar{a}^* + \bar{\rho}^* A'^* \bar{a}^* + \bar{\rho}^* \bar{A}^* a'^* \end{bmatrix} - \begin{bmatrix} \bar{\rho}_1 \bar{A}_1 & (u_1' \sin \alpha_{ch} + v' \cos \alpha_{ch}) + \\ \bar{\rho}_1 A_1' \bar{U}_1 & \cos (\alpha_{ch} - \beta_1) + \rho_1' \bar{A}_1 & \bar{U}_1 & \cos (\alpha_{ch} - \beta_1) \end{bmatrix}$$
$$= - \left(\begin{array}{cc} \bar{\rho}_1 & \frac{\partial V_1'}{\partial t} + \bar{V}_1 & \frac{\partial \rho_1'}{\partial t} \end{array} \right)$$
(18)

The derivation of the small perturbation forms of the mass, momentum, and energy equations is shown in Appendix A.

The next step involves the derivation of the unsteady control volume form of the momentum equation. The equation takes the form:

$$\mathbf{F} = \frac{\mathbf{d}(\mathbf{m}\mathbf{U})}{\mathbf{d}\mathbf{t}} = \iint_{\mathbf{S}} \mathbf{U}(\rho\mathbf{U})\mathbf{d}\mathbf{A} + \frac{\partial}{\partial \mathbf{t}} \iint_{\mathbf{V}\mathbf{o}\mathbf{I}} \mathbf{U}\rho\mathbf{d} \ (\mathrm{Vol}) \tag{19}$$

Expanding Equation 19 and assuming small perturbations yields for Region 1:

$$p'\bar{A}_{i} + \bar{p}\bar{A}'_{i} - \bar{p}^{*}A^{*'} - p^{*'}\bar{A}^{*} = [a'^{*}\bar{w}^{*} + \bar{a}^{*}w^{*'}] - [\bar{w}_{i} (u'_{i} \sin \alpha_{ch} + v'_{i} \cos \alpha_{ch}) + \bar{U}_{i}w'_{i} \cos (\alpha_{ch} - \beta_{i})] + U_{ave}\bar{V}_{i} \frac{\partial \rho'_{ave}}{\partial t} + \bar{\rho}_{ave}\bar{U}_{ave} \frac{\partial V'_{i}}{\partial t} + \rho_{ave}\bar{V}_{i} \frac{\partial U'_{ave}}{\partial t}$$
(20)

The next step requires the derivation of the small perturbation form of the energy equation for as inviscid fluid with no external heat addition. The control volume for Region 1 is therefore (Reference 16):

$$\frac{\partial}{\partial t} \iiint_{\text{vol}} \rho \text{ed (Vol)} = -\iint_{cs} (\rho \mathbf{U} \cdot \mathbf{n}) \text{ eds}$$
(21)

where, n = Unit vector normal to the surface and,

$$e = \frac{a^2}{\gamma(\gamma - 1)} + \frac{U^2}{2}$$

Substituting the value for e into Equation 21 gives:

$$\frac{\partial}{\partial t} \left[\rho_1 V_1 \left(\frac{a^2}{\gamma(\gamma - 1)} + \frac{U^2}{2} \right) \right]$$
$$= - \left[\mathbf{w}^* \left(\frac{a^2 (\gamma^2 - \gamma + 2)}{2\gamma (\gamma - 1)} \right) - \mathbf{w}_1 \left(\frac{a_1^2}{\gamma (\gamma - 1)} + \frac{U_1^2}{2} \right) \right]$$
(22)

Expanding Equation 22 by assuming small perturbations and subtracting out the mean flow equation produces the small perturbation form of the energy equation, as shown below:

$$\frac{1}{\gamma(\gamma-1)} \left[2\bar{\mathbf{a}}_{\mathbf{i}}\mathbf{a}'_{\mathbf{i}}\bar{\mathbf{w}}_{\mathbf{i}} + \bar{\mathbf{a}}_{\mathbf{i}}^{2}\mathbf{w}'_{\mathbf{i}} \right] + \frac{1}{2} \left[\bar{\mathbf{w}}_{\mathbf{i}} \left(2\bar{U}_{\mathbf{i}}\cos\left(\alpha_{ch} - \beta_{\mathbf{i}}\right)\right) \left(\mathbf{u}'_{\mathbf{i}}\sin\alpha_{ch} + \mathbf{v}'_{\mathbf{i}}\cos\alpha_{ch}\right) + \mathbf{w}'_{\mathbf{i}} \left(\bar{U}_{\mathbf{i}}\cos\left(\alpha_{ch} - \beta_{\mathbf{i}}\right) \right)^{2} \right] - \frac{(\gamma^{2} - \gamma + 2)}{2\gamma(\gamma - 1)} \left[2\bar{\mathbf{a}}^{*}\mathbf{a}'^{*}\bar{\mathbf{w}}^{*} + \bar{\mathbf{a}}^{*2}\mathbf{w}'^{*} \right] \\ = \frac{1}{\gamma(\gamma - 1)} \left[\bar{\mathbf{a}}^{2}\bar{\nabla}_{\mathbf{i}} \frac{\partial\rho'}{\partial t} + \bar{\rho}\bar{\mathbf{a}}^{2} \frac{\partial V'_{\mathbf{i}}}{\partial t} + 2\bar{\mathbf{a}}\bar{\rho}\bar{\nabla}_{\mathbf{i}} \frac{\partial\mathbf{a}'}{\partial t} \right]_{\mathbf{i}} + \frac{1}{2} \left[\bar{U}^{2} \ \bar{\nabla}_{\mathbf{i}} \frac{\partial\rho'}{\partial t} + \bar{\rho} \ \bar{U}^{2} \frac{\partial V'_{\mathbf{i}}}{\partial t} + 2 \ \bar{U}\bar{\rho} \ \bar{\nabla}_{\mathbf{i}} \frac{\partial U'}{\partial t} \right]_{\mathbf{i}}$$
(23)

Before solving Equations 18, 20, and 23, densities are nondimensionalized by ρ_i , pressures by $\rho_i U_i^2$, velocities by U_{IRE} , lengths by semichord b, time by b/U_{IRE} , areas by A*, and volumes by A*b. The nondimensionalized form of the equations of motion for Region 1 are as follows:

Continuity Equation

$$\begin{bmatrix} \rho'^* \bar{\mathbf{a}}^* + \bar{\rho}^* \bar{\mathbf{a}}^* \mathbf{A}'^* + \bar{\rho}^* \mathbf{a}'^* \end{bmatrix} - \begin{bmatrix} \bar{\mathbf{A}}_1 (\mathbf{u}'_1 \sin \alpha_{ch} + \mathbf{v}'_i \cos \alpha_{ch}) + \\ \mathbf{A}'_i \cos (\alpha_{ch} - \beta_1) + \rho'_i \bar{\mathbf{A}}_i \cos (\alpha_{ch} - \beta_1) \end{bmatrix}$$
$$= \begin{bmatrix} \bar{\rho} \frac{\partial \mathbf{V}'}{\partial \mathbf{t}} + \bar{\mathbf{V}} \frac{\partial \rho'}{\partial \mathbf{t}} \end{bmatrix}_i$$
(24)

Momentum Equation

$$\begin{bmatrix} \mathbf{p}_{1}'\mathbf{\bar{A}}_{1} + \mathbf{\bar{p}}_{1}\mathbf{A}_{1}' - \mathbf{p}'^{*} - \mathbf{\bar{p}}^{*}\mathbf{A}'^{*} \end{bmatrix} = \mathbf{\bar{a}}^{*} \begin{bmatrix} 2\mathbf{\bar{\rho}}^{*}\mathbf{a}'^{*} + \mathbf{\bar{\rho}}^{*}\mathbf{A}'^{*}\mathbf{\bar{a}}^{*} + \mathbf{\rho}'^{*}\mathbf{\bar{a}}^{*} \end{bmatrix} - \cos(\alpha_{ch} - \beta_{1}) \begin{bmatrix} \mathbf{\rho}_{1}'\mathbf{\bar{A}}_{1}\cos(\alpha_{ch} - \beta_{1}) & +\mathbf{A}_{1}'\cos(\alpha_{ch} - \beta_{1}) + 2\mathbf{\bar{A}}_{1}'(\mathbf{u}_{1}'\sin\alpha_{ch} + \mathbf{v}_{1}'\cos(\alpha_{ch})) \end{bmatrix} + \mathbf{\bar{U}}_{1}'\mathbf{\bar{V}}_{1}'\frac{\partial\mathbf{\rho}_{1}'}{\partial\mathbf{t}} + \mathbf{\bar{\rho}}_{1}'\mathbf{\bar{U}}_{1}'\frac{\partial\mathbf{V}_{1}'}{\partial\mathbf{t}} + \mathbf{\bar{\rho}}_{1}'\mathbf{\bar{V}}_{1}'\frac{\partial\mathbf{U}_{1}'}{\partial\mathbf{t}} + \mathbf{\bar{\rho}}_{1}'\mathbf{\bar{V}}_{1}'\mathbf{\bar{A}}_{1}'\mathbf{\bar{A}}_{1}' + \mathbf{\bar{A}}_{1}'\mathbf{\bar{A}}_{1}'\mathbf{\bar{A}}_{1}'\mathbf{\bar{A}}_{1}'$$

$$(25)$$

Energy Equation

In Equations 24, 25, and 26, all quantities are nondimensionalized. The solution to these equations will next be presented.

After separating the equations into real and imaginary parts, a method of substitution is used to solve for the unsteady, complex flow field. All flow parameters within the blade channel are assumed to vary harmonically with time, as follows:

$$\mathbf{f}' = \mathbf{\tilde{f}'} \mathbf{e}^{\mathbf{i}\mathbf{k}\mathbf{i}} \tag{27}$$

where f is any flow parameter within the blade channel. The two-dimensional upstream flow field is converted to a one-dimensional flow field utilizing a technique commonly known in analyzing the turbulent channel flows (Reference 17):

$$\bar{\mathbf{f}}' = \frac{1}{\bar{\mathbf{y}}} \int_{\mathbf{0}}^{\bar{\mathbf{y}}} \mathbf{f}' \, \mathrm{d}\mathbf{y} \tag{28}$$

The energy equation is utilized to solve for the complex constant $(A_{-\infty})$ describing the upstream flowfield. The result is as follows:

$$A_{-\infty R} = E_{16}\overline{A'}_{1R} + E_{17}\overline{A'}_{11} + E_{18}\overline{\rho'}_{R}^{*} + E_{19}\overline{\rho'}_{1}^{*} + E_{20}\overline{A'}_{R}^{*} + E_{21}\overline{A'}_{1}^{*} + E_{22}\overline{A'}_{1}^{*} + E_{23}\overline{a'}_{1}^{*} + E_{24}\overline{V'}_{11} + E_{25}\overline{V'}_{1R}$$

$$A_{-\infty I} = E_{26}\overline{A'}_{1R} + E_{27}\overline{A'}_{11} + E_{28}\overline{\rho'}_{R}^{*} + E_{29}\overline{\rho'}_{1}^{*} + E_{30}\overline{A'}_{R}^{*} + E_{31}\overline{A'}_{1}^{*} + E_{32}\overline{a'}_{1}^{*} + E_{33}\overline{a'}_{1}^{*} + E_{34}\overline{V'}_{11} + E_{35}\overline{V'}_{1R}$$
(29)

The derivations of Equations 29 and 30 are presented in Appendix B. The E constants in the above equations are a function of the steady flow parameter and are presented in detail in Appendix E. Calculation of the steady flow parameters appears in Appendix F. Area and volume perturbations are a function of the known vibrational mode shapes. The calculation procedure appears in Appendix G. The two complex unknowns in Equations 29 and 30, $\tilde{\rho}'^*$ and \tilde{a}'^* , are obtained through the use of the momentum and continuity equations.

Using the momentum equation to solve for the complex density perturbation at the throat gives:

$$\tilde{\rho}'_{R}^{*} = M_{32}\overline{A}'_{iR} + M_{33}\overline{A}'_{iI} + M_{34}\overline{A}'_{R}^{*} + M_{35}\overline{A}'_{1}^{*} + M_{45}\overline{A}'_{1R} + M_{41}\overline{A}'_{iI} + M_{42}\overline{A}'_{R}^{*} + M_{43}\overline{A}'_{1}^{*} + M_{45}\overline{A}'_{1}^{*} + M_{45}\overline{A}'_{1}^$$

The M constants represent a function of the steady flow parameters. The derivation of Equations 31 and 32 appear in Appendix B. The final unknown, $\tilde{a}^{*'}$, is obtained through the use of the continuity Equation (24). The result is:

$$\tilde{a}'_{R}^{*} = C_{46} \tilde{A}'_{iR} + C_{47} \tilde{A}'_{iI} + C_{48} \tilde{A}'_{R}^{*} + C_{49} \tilde{A}'_{I}^{*} + C_{50} \tilde{\nabla}'_{IR} + C_{50} \tilde{\nabla}'_{IR}$$

$$\tilde{a}'_{I}^{*} = C_{52} \tilde{A}'_{iR} + C_{53} \tilde{A}'_{iI} + C_{54} \tilde{A}'_{R}^{*} + C_{55} \tilde{A}'_{I}^{*} + C_{55} \tilde{A}'_{I}^{*} + C_{55} \tilde{\nabla}'_{IR}$$
(33)
$$\tilde{a}'_{I}^{*} = C_{52} \tilde{\nabla}'_{IR} + C_{57} \tilde{\nabla}'_{IR}$$
(34)

The C constants also represent functions of the steady flow parameters and are presented in Appendix E. The derivations of Equations 33 and 34 also appear in Appendix B. This completes the analysis for Region 1.

Perturbation Equations for Region 2

Region 2 in Figure 6 represents the supersonic region from the blade throat (M=1) to the steady-state shock position. Since all the inlet flow parameters are known, only two flow parameters need to be found: (1) perturbation velocity (U_{US}) and (2) density (ρ'_{US}) on the upstream side of the shock. Thus, only the continuity and momentum equations are needed to solve for the density and velocity perturbations. Dealing first with the continuity equation, recall that:

$$\frac{\mathrm{d}\mathbf{m}}{\mathrm{d}\mathbf{t}} = \mathbf{0} = \iint \rho \mathrm{U}\mathrm{d}\mathbf{A} + \frac{\partial}{\partial \mathbf{t}} \iiint \rho \mathrm{d} \quad (\mathrm{Vol}) \tag{16}$$

which becomes for Region 2:

$$\rho_{us}U_{us}A_s - \rho^*A^*a^* = \frac{-\partial\rho V_2}{\partial t}$$
(35)

,

Figure 6. Region 2 from Channel Throat (M = 1) to the Steady-State Shock Location

Assuming small perturbations produces:

$$(\rho'_{us}\bar{U}_{us}A_{s} + \bar{\rho}_{us}U'_{us}\bar{A}_{s} + \bar{\rho}_{us}\bar{U}_{us}A'_{s}) - (\rho'^{*}\bar{A}^{*}\bar{a}^{*} + \bar{\rho}^{*}\bar{A}^{*}a'^{*} + \bar{\rho}^{*}\bar{A}^{*}\bar{a}^{*}) = -\left(\bar{\nabla}_{2}\frac{\partial\rho'}{\partial t} + \bar{\rho}\frac{\partial V'_{2}}{\partial t}\right)_{2}$$

$$(36)$$

Following similar lines to the derivation of the momentum equation in Region 1, the resultant equation becomes:

$$(-\mathbf{p'}_{us}\bar{\mathbf{A}}_{s} - \bar{\mathbf{p}}_{us}\mathbf{A'}_{s} + \mathbf{p'}^{*}\bar{\mathbf{A}}^{*} + \bar{\mathbf{p}}^{*}\mathbf{A'}^{*})$$

$$= (\mathbf{U'}_{us}\bar{\mathbf{w}}_{us} + \bar{\mathbf{U}}_{us}\mathbf{w'}_{us}) - (\mathbf{a'}^{*}\bar{\mathbf{w}}^{*} + \bar{\mathbf{a}}^{*}\mathbf{w'}^{*}) + \bar{\mathbf{U}}_{2} \ \bar{\mathbf{V}}_{2} \ \frac{\partial\rho'_{2}}{\partial\mathbf{t}} + \bar{\rho}_{2} \ \bar{\mathbf{U}}_{2} \ \frac{\partial\mathbf{V'}_{2}}{\partial\mathbf{t}} + \bar{\rho}_{2} \ \bar{\mathbf{V}}_{2} \ \frac{\partial\mathbf{U'}_{2}}{\partial\mathbf{t}}$$

$$(37)$$

These equations are nondimensionalized in the same manner as in Region 1 to yield the following equations for continuity and momentum:

Continuity Equation

$$(\rho'_{us}\bar{U}_{us}\bar{A}_{s} + \bar{\rho}_{us}U'_{us}\bar{A}_{s} + \bar{\rho}_{us}\bar{U}_{us}A'_{s}) - (\rho'^{*}\bar{a}^{*} + \bar{\rho}^{*}a'^{*} + \bar{\rho}^{*}A'^{*}\bar{a}^{*})$$

$$= -\left(\bar{V}_{2}\frac{\partial\rho'}{\partial t} + \bar{\rho}\frac{\partial V'_{2}}{\partial t}\right)_{2}$$

$$(38)$$

Momentum Equation

$$(-p'_{us}\bar{A}_{s} - \bar{p}_{us}A'_{s} + p'^{*} + \bar{p}^{*}A'^{*})$$

$$= (U'_{us}\bar{w}_{us} + \bar{U}_{us}w'_{us}) - [\bar{\rho}^{*}a'^{*}\bar{a}^{*} + \bar{a}^{*} (\rho'^{*}\bar{a}^{*} + \bar{\rho}^{*}A'^{*}\bar{a}^{*} + \bar{\rho}^{*}a'^{*})] +$$

$$\bar{U}_{2}\bar{V}_{2} - \frac{\partial\rho'_{2}}{\partial t} + \bar{\rho}_{2}\bar{U}_{2} - \frac{\partial V'_{2}}{\partial t} + \bar{\rho}_{2}\bar{V}_{2} - \frac{\partial U'_{2}}{\partial t} \qquad (39)$$

The momentum equation is used to obtain the expression for the density perturbation upstream of the shock to yield:

$$\bar{\rho}'_{\rm USI} = M_{52} \bar{A}'_{\rm SR} + M_{53} \bar{A}'_{\rm SI} + M_{54} \bar{\rho}'^{*}_{\rm R} + M_{55} \bar{\rho}'^{*}_{\rm I} + M_{56} \bar{A}'^{*}_{\rm R} + M_{57} \bar{A}'^{*}_{\rm I} + M_{58} \bar{U}'_{\rm USR} + M_{59} \bar{U}'_{\rm US4} + M_{60} \bar{a}'^{*}_{\rm I} + M_{61} \bar{a}'^{*}_{\rm R} + M_{62} \bar{\rho}'^{*}_{\rm I} + M_{63} \bar{\rho}'^{*}_{\rm R} + M_{64} \bar{\nabla}'_{21} + M_{65} \bar{\nabla}'_{2R}$$

$$(40)$$

$$\tilde{\rho'}_{USR} = M_{66}\bar{A'}_{SR} + M_{67}\bar{A'}_{S1} + M_{68}\bar{p'}_{R}^{*} + M_{69}\bar{p'}_{1}^{*} + M_{70}\bar{A'}_{R}^{*} + M_{71}\bar{A'}_{1}^{*} + M_{72}\bar{U'}_{USR} + M_{73}\bar{U'}_{US1} + M_{74}\bar{a'}_{1}^{*} + M_{75}\bar{a'}_{R}^{*} + M_{76}\bar{\rho'}_{1}^{*} + M_{77}\bar{\rho'}_{R}^{*} + M_{78}\bar{V'}_{1} + M_{79}\bar{V'}_{R}$$

$$(41)$$

The derivation of Equations 40 and 41 appears in Appendix C. The expressions for the density perturbations contain one unknown: the complex velocity perturbation upstream of the shock $(\overline{U'}_{us})$. The continuity equation (37) gives this relationship:

$$\begin{split} \mathbf{U}'_{\text{USR}} &= C_{73} \bar{\mathbf{A}'}_{\text{SR}} + C_{74} \bar{\mathbf{A}'}_{\text{SI}} + C_{75} \bar{\rho}'_{\text{R}}^{*} + C_{76} \bar{\rho}'_{1}^{*} + C_{77} \bar{\mathbf{a}'}_{\text{R}}^{*} + C_{78} \bar{\mathbf{a}'}_{1}^{*} + C_{79} \bar{\mathbf{p}'}_{\text{R}}^{*} + \\ C_{80} \bar{\mathbf{p}'}_{1}^{*} + C_{81} \bar{\mathbf{A}'}_{\text{R}}^{*} + C_{82} \bar{\mathbf{A}'}_{1}^{*} + C_{83} \bar{\mathbf{V}'}_{1} + C_{84} \bar{\mathbf{V}'}_{\text{R}} \end{split}$$

$$\begin{split} \mathbf{\tilde{U}'}_{\text{USI}} &= C_{85} \bar{\mathbf{A}'}_{\text{SR}} + C_{86} \bar{\mathbf{A}'}_{\text{SI}} + C_{87} \bar{\rho}'_{\text{R}}^{*} + C_{88} \bar{\rho}'_{1}^{*} + C_{89} \bar{\mathbf{a}'}_{\text{R}}^{*} + \\ C_{90} \bar{\mathbf{a}'}_{1}^{*} + C_{91} \bar{\mathbf{p}'}_{\text{R}}^{*} + C_{92} \bar{\mathbf{p}'}_{1}^{*} + C_{93} \bar{\mathbf{A}'}_{\text{R}}^{*} + C_{94} \bar{\mathbf{A}'}_{1}^{*} + C_{95} \bar{\mathbf{V}'}_{\text{R}} + C_{96} \bar{\mathbf{V}'}_{1} \end{split}$$

$$\end{split}$$

$$\end{split}$$

$$\end{split}$$

The derivation of Equations 42 and 43 is presented in Appendix C. The M and C coefficients are found in Appendix E.

This completes the analysis for Region 2. The unsteady shock wave movements are next defined along with equations describing flow discontinuities across the shock.

Unsteady Shock Movement

For a normal shock wave moving at a velocity, U_s with respect to the channel, the pressures on the two sides of the wave relate in the following manner (Reference 18):

$$p_{ds} = p_{us} \left[\frac{2\gamma \left(M_{us} - \frac{U_{us}}{a_{us}} \right) - (\gamma - 1)}{\gamma + 1} \right]$$
(44)

Assuming small perturbations and nondimensionalizing Equation 44 yields:

$$\frac{2\gamma}{\gamma+1} \quad \bar{\mathbf{p}}_{us}\mathbf{U'_{s}} = \left[\begin{array}{c} \bar{\mathbf{p}}_{us}\bar{\mathbf{M}}_{us} - \bar{\mathbf{p}}_{ds} - \left(\frac{\gamma-1}{\gamma+1}\right) \quad \bar{\mathbf{p}}_{us} \end{array} \right] \mathbf{a'}_{us} + \\ \left[\begin{array}{c} \frac{2\gamma}{\gamma+1} & \bar{\mathbf{a}}_{us}\bar{\mathbf{M}}_{us} - U_{s} - \left(\frac{\gamma-1}{\gamma+1}\right) \quad \bar{\mathbf{a}}_{us} \end{array} \right] \mathbf{p'}_{us} + \\ \left[\begin{array}{c} \frac{2\gamma}{\gamma+1} & \bar{\mathbf{a}}_{us}\bar{\mathbf{p}}_{us}\mathbf{M'}_{us} - \bar{\mathbf{a}}_{us}\mathbf{p'}_{ds} \end{array} \right]$$
(45)

Again, all flow parameters are assumed to vary harmonically with time. The change in shock position can be related to the shock velocity perturbation by:

$$U'_{s} = \bar{U}'_{s} \exp ikt = \frac{\partial x'_{s}}{\partial t}$$
(46)

Integrating Equation 46 gives:

$$\tilde{\mathbf{x}}'_{SR} = \frac{\tilde{\mathbf{U}}'_{SI}}{k}$$

$$\tilde{\mathbf{x}}'_{SI} = -\frac{\tilde{\mathbf{U}}'_{SR}}{k}$$
(47)

17

Substituting Equation 46 into Equation 45, dividing by e^{ikt} , and solving for \overline{U}'_s produces:

$$\bar{U}'_{SR} = \frac{1}{S_1} \left[S_2 \bar{a}'_{usR} + S_3 \bar{p}'_{usR} + S_4 \frac{U'_{usR}}{\bar{a}_{us}} - \bar{a}_{us} \bar{p}'_{dsR} \right]$$

$$\bar{U}'_{S1} = \frac{1}{S_1} \left[S_2 \bar{a}'_{usI} + S_3 \bar{p}'_{usI} + S_4 \frac{U'_{usI}}{\bar{a}_{us}} - \bar{a}_{us} \bar{p}'_{dsI} \right]$$
(48)

where the S coefficients are presented in Appendix E.

The pressure perturbation upstream of the shock can now be related to the density perturbation in the following manner:

$$\bar{p}'_{\rm US} = \bar{a}^2_{\rm US} \bar{\rho}'_{\rm US}$$

and to the speed of sound perturbation as

$$\tilde{\mathbf{a}'}_{\text{US}} = \left(\frac{\gamma - 1}{2}\right) \left(\frac{\tilde{\mathbf{a}}_{\text{US}}}{\tilde{\rho}_{\text{US}}}\right) \rho'_{\text{US}}$$

Thus, there exists only one unknown in Equation 48: \bar{p}'_{ds} . The downstream pressure perturbation is found by expanding the following equation in small perturbation form. The density discontinuity across the shock is

$$\rho_{ds} \left[(\gamma - 1) \ M_{US}^2 + 2 \right] = \rho_{US} \left[(\gamma + 1) \ M_{US}^2 \right]$$
(49)

This equation in small perturbation form can be expressed as

$$\bar{\rho}'_{dsR} = \mathbf{S}_{s} \, \bar{\mathbf{U}}'_{usR} + \mathbf{S}_{s} \, \bar{\rho}'_{usR}$$

$$\bar{\rho}'_{dsI} = \mathbf{S}_{s} \, \bar{\mathbf{U}}'_{usI} + \mathbf{S}_{s} \, \bar{\rho}'_{usI}$$
(50)

Substituting the relationships of Equation 50 into Equation 48 produces the shock perturbation velocity.

The velocity perturbation downstream of the shock is found by satisfying the continuity across the shock, as noted in the following equation:

$$\rho_{\rm us} U_{\rm us} A_{\rm s} = \rho_{\rm ds} U_{\rm ds} A_{\rm s} \tag{51}$$

Expanding Equation 51 in small perturbation form and solving for $\overline{U'}_{ds}$ gives

$$\bar{\mathbf{U}}'_{\mathsf{dsR}} = \frac{1}{\bar{\rho}_{\mathsf{ds}}} \qquad \left[\bar{\rho}'_{\mathsf{usR}} \bar{\mathbf{U}}_{\mathsf{us}} + \bar{\rho}_{\mathsf{us}} \bar{\mathbf{U}}'_{\mathsf{usR}} - \bar{\rho}'_{\mathsf{dsR}} \bar{\mathbf{U}}_{\mathsf{ds}}\right] \tag{52}$$

$$\bar{\mathbf{U}'}_{dsl} = \frac{1}{\bar{\rho}_{ds}} \qquad \left[\bar{\rho}'_{usl} \bar{\mathbf{U}}_{us} + \bar{\rho}_{us} \bar{\mathbf{U}'}_{usl} - \bar{\rho}'_{dsl} \bar{\mathbf{U}}_{us}\right] \tag{53}$$

This completes the relationships describing the flow perturbations across the normal shock.

18

Perturbation Equations for Region 3

Figure 7. Region 3 from the Steady-State Shock Location to the Cascade Trailing Edge

Region 3 is the subsonic intrablade region from the shock location to the cascade trailing edge, as shown in Figure 7. The unsteady flow field is derived using the perturbation relationships for the flow entering the region across the normal shock and exiting the cascade into the downstream flow field. The unsteady flow field exiting Region 3 is represented as the sum of two flow fields: (1) the irrotational part derived previously in the section on upstream and downstream irrotational flow, and (2) a rotational part related to the vorticities being shed off the trailing edge of the blades due to the unsteady vibratory motion.

Rotational Downstream Flowfield

Lacking viscosity, the equation of motion in vorticity form for two-dimensional flow is (Reference 19):

$$\rho \quad \frac{\mathrm{D}\zeta}{\mathrm{D}t} - \zeta \quad \frac{\mathrm{D}\rho}{\mathrm{D}t} = 0 \tag{54}$$

In small perturbation form this equation becomes

$$\frac{D\zeta'}{Dt} - \frac{\bar{\zeta}}{\bar{\rho}} \frac{D\rho'}{Dt} = 0$$
(55)

where, D/Dt represents the substantial derivative.

The vorticity of a nonvicous field remains zero, if at the beginning the vorticity was equal to zero and the fluid is only subjected to the forces which have a potential associated with them. A shock wave does not fit into this category. However, according to Crocco's Theorem (Reference 20), if the fluid passes through a stationary shock wave, the flow can conserve its irrotational character only if the entropy rise is uniform across the shock. This is the case for the normal shock in a one-dimensional channel flow. Thus, the mean flow vorticity is zero. Using this fact in Equation 55 produces

$$\frac{\mathrm{D}\zeta'}{\mathrm{Dt}} = 0 \tag{56}$$

A solution to Equation 56 is assumed.

$$\zeta (\mathbf{x}, \mathbf{y}, \mathbf{t}) = \mathbf{Z}_{+\tau} \exp \mathbf{i} \left(\mathbf{R}\mathbf{x} + \mathbf{C}\mathbf{y} + \mathbf{k}\mathbf{t} \right)$$
(57)

where C is defined in Equation 9 and k is the reduced frequency. Substituting Equation 57 into Equation 56 and solving for R results in

$$\mathbf{R} = \frac{-\left(\mathbf{k} + \bar{\mathbf{v}}_{\mathrm{E}} \mathbf{C}\right)}{\bar{\mathbf{u}}_{\mathrm{E}}} \tag{58}$$

The vorticity can be related to the stream function as follows (Reference 21):

$$\nabla^2 \psi' = -\zeta$$

where,

$$\mathbf{u}' = \frac{\partial \psi'}{\partial \mathbf{y}}$$
$$\mathbf{v}' = - \frac{\partial \psi'}{\partial \mathbf{x}}$$

A solution for the stream function ψ exists in the following form:

$$\psi' = \frac{Z_{+\infty}}{R^2 + C^2} \exp i (Rx + Cy + kt)$$
(59)

which will give the rotational velocity perturbation at the exit.

Continuity and Momentum Equations for Region 3

Because there are only two unknowns in the downstream flow field, the complex irrotational and rotational constants, the momentum and continuity equations are all that are required. The nondimensionalized small perturbation forms of these equations are

Continuity

_ _ . . _ _ _

$$\left[\left(\rho'_{\rm E} \,\bar{\rm A}_{\rm E} \,\bar{\rm U}_{\rm E} + \bar{\rho}_{\rm E} \,\bar{\rm A}'_{\rm E} \,\bar{\rm U}_{\rm E} + \bar{\rho}_{\rm E} \,\bar{\rm A}_{\rm E} \,{\rm U}'_{\rm E} \right) - \left(\bar{\rho}_{\rm ds} \,\bar{\rm A}_{\rm s} \,{\rm U}'_{\rm ds} + \bar{\rho}_{\rm ds} \,\bar{\rm A}'_{\rm s} \,\bar{\rm U}_{\rm ds} + \rho'_{\rm ds} \,\bar{\rm A}'_{\rm s} \,\bar{\rm U}_{\rm ds} + \rho'_{\rm ds} \,\bar{\rm A}'_{\rm s} \,\bar{\rm U}_{\rm ds} + \rho'_{\rm ds} \,\bar{\rm A}'_{\rm s} \,\bar{\rm U}_{\rm ds} + \rho'_{\rm ds} \,\bar{\rm A}'_{\rm s} \,\bar{\rm U}_{\rm ds} + \rho'_{\rm ds} \,\bar{\rm A}'_{\rm s} \,\bar{\rm U}_{\rm ds} + \rho'_{\rm ds} \,\bar{\rm A}'_{\rm s} \,\bar{\rm U}_{\rm ds} + \rho'_{\rm ds} \,\bar{\rm A}'_{\rm s} \,\bar{\rm U}_{\rm ds} + \rho'_{\rm ds} \,\bar{\rm U}$$

Momentum

 $(p'_{\mathsf{ds}}\;\bar{A}_{\mathsf{s}}\;+\;\bar{p}_{\mathsf{ds}}\;A'_{\mathsf{s}}\;-\;p'_{\mathsf{E}}\;\bar{A}_{\mathsf{E}}\;-\;\bar{p}_{\mathsf{E}}\;A'_{\mathsf{E}})\;=\;(U'_{\mathsf{E}}\;\;\bar{w}_{\mathsf{E}}\;+\;\bar{U}_{\mathsf{E}}\;\;w'_{\mathsf{E}})\;-$

$$(\mathbf{U}'_{ds} \ \mathbf{\bar{w}}_{ds} + \mathbf{\bar{U}}_{ds} \ \mathbf{w}'_{ds}) + \mathbf{\bar{U}}_{ave} \ \mathbf{\bar{V}}_{a} \ \frac{\partial \rho'_{a}}{\partial t} + \mathbf{\bar{\rho}}_{a} \ \mathbf{\bar{U}}_{a} \ \frac{\partial \mathbf{\bar{V}}'_{a}}{\partial t} + - \partial \mathbf{\bar{U}}'_{a}$$
(61)

 $\bar{\rho}_{3} = \bar{V}_{3} \frac{\partial U'_{3}}{\partial t}$ The momentum equation is used to solve for the complex constant $A_{+\infty}$ to produce

$$A_{+\infty R} = Z_{+\infty} M_{82} + Z_{+\infty 1} M_{83} + RC M_{84} + IC M_{85}$$
(62)

$$A_{+\infty i} = Z_{+\infty R} M_{86} + Z_{+\infty I} M_{87} + RC M_{88} + IC M_{89}$$
(63)

The M constants, along with RC and IC, appear in Appendix E.

The continuity equation is used to solve for the complex constant describing the rotational downstream flow field resulting in

$$Z_{+\infty R} = RC C_{112} + IC C_{113} + C_{114}$$
(64)

$$Z_{+\infty|} = RC C_{115} + IC C_{116} + C_{117}$$
(65)

where the C constants are found in Appendix E.

Equations 64 and 65 can then be substituted into Equations 62 and 63 to solve for A_{+x} giving a complete description of the flow field in Region 3. The derivation of Equations 62 through 65 is presented in Appendix D.

Thus, with the solution of the flow field in Region 3, a complete description of the cascade flow field is obtained. A compilation of the computer code for the semiactuator disk model is presented in Appendix J.

RESULTS

The semi-actuator disk theory was evaluated in two ways. The first method consisted of a comparison with test data presented by Tanida and Saito (Reference 22) for an isolated airfoil oscillating in choked flow in a wind tunnel. The second method involved a flutter analysis of the F100(3) 6th stage of the high-pressure compressor of the F100(3) turbofan engine, which encountered choke flutter while operating at off-design conditions in a core engine (no low rotor) at the Arnold Engineering Development Center (AEDC).

Wind Tunnel Test Data

Tanida and Saito oscillated an airfoil in a wind tunnel at constant amplitude for various combinations of inlet Mach number, back pressure, reduced frequency twist axis location, and tunnel wall separation, and recorded both steady and unsteady aerodynamic characteristics. Because reflections from the tunnel walls create a special case in a cascade in which adjacent blades are exactly out of phase, the experimental test conditions were simulated with an interblade phase angle of 180 deg. After calculating unsteady pressures through the blade channel, the unsteady lift and momentum coefficients were calculated in the manner presented in Appendix I.

General agreement was achieved for the imaginary moment due to pitch for backpressure ratios less than 0.7, as shown in Figure 8. At higher back-pressure ratios, flow is not fully transonic during the full cycle of operation; i.e., a weak shock appears and disappears on the airfoil surface. A basic assumption of the analytical model stipulates that flow is fully transonic, and a strong normal shock exists in the blade passage throughout the oscillatory cycle. Because this was not the case at high back-pressure ratios, good correlation was not anticipated.

Flutter Analysis

Computational Method

Investigations also involved an assessment of the semi-actuator disk unsteady aerodynamics by combining the model with existing P&WA cyclic work and aerodynamic damping calculations, and then performing a flutter analysis for the F100(3) sixth compressor stage, which experienced choke flutter at off-design conditions. The P&WA approach to flutter prediction stems from a cyclic energy method in which total system damping is calculated. The system becomes unstable when total damping, which is comprised of aerodynamic and mechanical damping components, is less than zero; i.e.,

 $\delta_{\text{TOT}} = (\delta_{\text{sero}} + \delta_{\text{mech}}) < 0 \Rightarrow \text{flutter}$

Figure 8. Comparison Between Wind Tunnel Data for Isolated Airfoil and Semi-Actuator Disk Analysis

Į

No method currently exists to determine mechanical damping. Thus, stability predictions are based on correlations of aerodynamic damping for an assumed level of mechanical damping. To calculate δ_{aero} , a quasi-three-dimensional analysis is used in which two-dimensional unsteady aerodynamic work (W) is calculated for strips along the airfoil span. As shown by Carta (Reference 23), the two-dimensional work can be expressed as

$$W = \rho \pi b^2 U^2 k^2 \left\{ L_{HI} \overline{h}^2 + \overline{\alpha} \overline{h} \left[(L_{\sigma R} - M_{HR}) \sin \theta + (L_{\sigma I} + M_{HI}) \cos \theta \right] + M_{\sigma I} \overline{\alpha}^2 \right\}$$

where,

L	=	unsteady lift coefficient
М	=	unsteady moment coefficient
$\overline{\alpha}$	=	normalized mode shape deflection of maximum twist
$\overline{\mathbf{h}}$	-	normalized mode shape deflection of maximum bending
θ	-	phase relationship between α and h.

Numerically integrating the two-dimensional work along the span produces total unsteady cyclic work for one blade (W_{ror}). The logarithmic decrement, or aerodynamic damping, is then calculated as

$$\delta_{aero} = - \frac{nW_{TOT}}{4KE}$$

where,

n = number of blades in the system

KE = normalized average kinetic energy of the system vibrating in the normalized mode.

Flutter Prediction Results

A flutter analysis of the F100 sixth stage compressor operating at sea level conditions was performed, and a summary of the data points, operating conditions and predicted damping values is presented in Table 2. The model predicted the first bending mode to be least stable, which is consistent with the results observed by Lubomski (Ref. 24). However, test data showed Rotor 6 encountered negative incidence flutter in the second coupled mode, with some secondary first-mode response.

For both the first bending and second coupled modes, the model shows a distinct difference in damping level between flutter and non-flutter points, with all of the flutter points analyzed having a negative damping value, indicating an unstable condition as seen in Figure 9 and 10. In general, the model predicts the correct trend with increasing speed, i.e., a decrease in stability with increasing speed.

Test Data				Stability Calculations			
	Test Stability %		Rear Compressor Variable Vane, RCVV		Aerodyn	Aerodynamic Damping δ _{aer}	
Data Point		% N _{cor}		Least S Nodal	Stable -Dia. Smith	Semi-Actuator Disk Theory	
F100(3) Rot	or 6 1st Bei	nding Mo	de			<u>.</u>	
AA02PT3	NF	80.0	-30.0	2	0.0164	0.0102	
AC06PT8	NF	88.7	-30.0	2	0.02978	-0.00104	
AC06PT9	FB	89.75	-33.0	4	0.0558	-0.01394	
AC06PT10	F	91.4	-37.2	3	0.04605	-0.0110	
AC06PT11	FB	90.21	-29.2	3	0.05793	-0.01313	
AC06PT12	F	92.4	-29.0	3	0.05516	-0.0106	
AC05PT29	NF	84.76	-20.0	2	0.03718	0.03718	
AC05PT30	NB	99.68	-20.8	4	0.0795	-0.0356	
AC05PT31	F	102.00	-21.0	4	0.06492	-0.03990	
F100(3) Rot	or 6 2nd Co	upled M	ode				
AA02PT3	NF	80.0	-30.0	3	0.000125	0.000101	
AC06PT8	NF	88.7	-30.0	3	0.000275	0.000097	
AC06PT9	FB	89 .75	-33.0	6	0.01894	-0.00101	
AC06PT10	F	91.4	-37.2	6	0.01334	-0.00053	
AC06PT11	FB	90.21	-29.2	6	0.0182	-0.00097	
AC06PT12	F	92.4	-29.0	4	0.00170	-0.00077	
AC05PT29	NF	84.76	-20.0	2	0.000354	0.000354	
AC05PT30	FB	99.68	-20.8	6	0.0299	-0.00130	
AC05PT31	F	102.0	-21.0	6	0.0243	-0.00166	
where,	NF FB F	= No F = Flutt = Flutt	'lutter er Boundary er				

1.

TABLE 2. SUMMARY OF LEAST-STABLE NODAL DIAMETERS AND DAMPING VALUES FOR SEA LEVEL CONDI-TIONS

_

Figure 9. Comparison of Calculated Aerodynamic Damping and Observed Stability for the First Vibratory Mode of the F100 6th-Stage Compressor

Figure 10. Comparison of Calculated Aerodynamic Damping and Observed Stability for the Second Vibratory Mode of the F100 6th-Stage Compressor

The slight discrepancy in this trend exhibited by the calculated damping values for flutter data points AC06-10 and -12 may be attributed to inaccuracies in the steady streamline aerodynamic input. The inaccuracies arise due to the difficulty in predicting the steady aerodynamic environment while the compressor is operating well off the design condition in flutter. The model is very sensitive to inlet air angle, relative inlet and exit Mach numbers, and static pressure ratio across the stage. The inlet Mach number and air angle are used to check for choked flow in the blade passage, and the static pressure ratio is used to locate the steady-state shock location. For data points AC06-9 and -11, the static pressure ratio across the stage was matched within 2 percent, while for AC06-10, the error was as high as 15 percent. This magnitude of discrepancy in matching the stage static pressure ratio could lead to inaccuracies in locating the steady-state normal shock. In the analysis, the chordwise location of the shock greatly affects the magnitude and sign of the unsteady aerodynamic coefficients, thus greatly affecting the damping calculation. It was noted that data points AC06-9 and -11 were calculated to be choked along the entire span, while AC06-10 and -12, operating deeper into the flutter boundary, were not. This has a large effect on the stability calculation because if the flow is determined to be unchoked, the unsteady, zero-incidence Smith coefficients (Reference 2) are used in place of the semi-actuator disk coefficients. The Smith coefficients always predicted the rotor to be stable.

The magnitude of the inlet and exit Mach numbers proved to be important parameters in describing the upstream and downstream flow fields. With increasing inlet Mach number, the unsteady lift due to flap increased in a destabilizing manner and with increasing exit Mach number. The unsteady moment due to twist showed a similar trend. Data points AC05-30 and -31 are approximately double the value of the negative damping of the other flutter points. This is due in part to the greater inlet and exit Mach numbers. The magnitude of the inlet air angles are related to the magnitude of the inlet Mach number through the continuity equation in the steady streamline analysis. It is noted that the streamline analysis indicated data point AC06-9 was operating above β_{max} at the tip. The air angle is related to the flow area; therefore, to satisfy continuity the inlet Mach number must decrease at this station. This is particularly significant because the maximum unsteady work occurs at the tip. A similar trend was noted at other sections. AC05-30 had similar trends, but not as severe, giving a more accurate inlet Mach number. It is speculated that a more accurate representation of AC06-9 would give a larger inlet Mach number and increase the damping in a negative sense, bringing the flutter points closer to the same damping level.

By plotting the aerodynamic damping versus corrected speed, as in Figures 9 and 10, or versus variable inlet guide vane setting, as in Figure 11, a predicted flutter boundary can be obtained by assuming a value for mechanical damping. As shown in Figure 12, the results of the flutter analysis prove to be conservative, particularly at higher corrected speeds. This conservatism is believed to be due to the inlet Mach number and air angle discrepancy discussed above resulting in two negative damping levels. A summary of the least stable nodal diameters and damping values is presented in Table 2 for the 1st bending and 2nd coupled modes of vibration. All the predicted least stable nodal diameters are relatively small because the model encountered numerical difficulties at large interblade phase angles as shown in Figure 13.

The General Electric annular cascade data (Reference 25), which was originally to be analyzed, had to be abandoned because the published data gave an inadequate description of the steady flow field. No exit data were published and attempts to calculate aerodynamic damping using exit conditions based on PWA 2-dimensional cascade test data produced no meaningful results.

27

Figure 11. Calculated Aerodynamic Damping Versus Variable Vane Angle With 1st Mode of Vibration, Backward Traveling Wave

FD 201842

Figure 12. Comparison of Predicted and Experimental Flutter Boundaries

Figure 13. Effect of Nodal Diameter and Interblade Phase Angle on Aerodynamic Damping

Summary of Results

The following is a summarization of the results of the flutter prediction study.

- 1. The model showed a distinct difference in damping level between flutter and non-flutter points indicating the importance of the unsteady shock in the blade passage.
- 2. The model shows the correct trend with increasing corrected engine speed and vane angle; i.e., with increasing choked conditions, the model predicts the aerodynamic damping to become less stable.
- 3. The model was very sensitive to the steady aerodynamic input. In order to perform an accurate flutter analysis, an accurate steady aerodynamic description of the flow field must be obtained.
- 4. The model was conservative in predicting the flutter boundary at high corrected engine speeds.
- 5. Due to limitations on interblade phase angle inherent in semiactuator disk theory, the model is limited to interblade phase angles of ± 90 deg.

Conclusions

Based on the results of the F100(3) 6th-stage compressor flutter analysis, it is concluded that the model is useful as a conservative choke flutter design system. The model is sensitive to the steady-state aerodynamic input, particularly inlet and exit relative Mach number, inlet air angle, and static pressure ratio across the stage. In order to perform an accurate flutter analysis, an accurate description of the steady flowfield must be obtained.
APPENDIX A

DERIVATION OF THE SMALL PERTURBATION FORM OF THE EQUATIONS OF MOTION IN REGION 1

CONTINUITY EQUATION

The continuity equation for Region 1 takes the form

$$\dot{\mathbf{w}}^* - \dot{\mathbf{w}}_{\text{inlet}} = - \frac{\partial(\rho_i \mathbf{V}_i)}{\partial \mathbf{t}}$$
(A1)

Mean Flow

.

Assuming small perturbations about the mean flow gives the following expressions for the flow rates, neglecting higher order terms.

$$\begin{split} \dot{\mathbf{w}}_{\text{inlet}} &= \bar{\mathbf{w}}_{\text{inlet}} + \dot{\mathbf{w}}_{\text{inlet}}' = (\bar{\rho}_1 + \rho_1') (\bar{\mathbf{A}}_1 + \mathbf{A}_1') (\bar{\mathbf{U}}_{\text{inlet}} + \mathbf{U}') \\ &= \bar{\rho}_1 \bar{\mathbf{A}}_1 \bar{\mathbf{U}}_1 + \rho_1' \bar{\mathbf{A}}_1 \bar{\mathbf{U}}_1 + \bar{\rho}_1 \bar{\mathbf{A}}_1' \bar{\mathbf{U}}_1 + \bar{\rho}_1 \bar{\mathbf{A}}_1 \mathbf{U}_1' \end{split}$$

Let U'_i be the perturbation velocity aligned with chord line. Then

 $U'_i = u'_i \sin \alpha_{ch} + v'_i \cos \alpha_{ch}$

The inlet velocity is $U_{IRE} \cos (\alpha_{ch} - \beta_1)$. The inlet flowrate is then defined as

$$\dot{\mathbf{w}}_{inlet} = \mathbf{\bar{w}}_{inlet} + \dot{\mathbf{w}}'_{inlet} = \bar{\rho}_i \mathbf{\bar{A}}_i \mathbf{\bar{U}}_i \cos (\alpha_{ch} - \beta_1) + \\ \bar{\rho}_i \mathbf{\bar{A}}_i (\mathbf{v}'_i \cos \alpha_{ch} + \mathbf{u}'_i \sin \alpha_{ch}) + \bar{\rho}_i \mathbf{\bar{U}}_i \cos (\alpha_{ch} - \beta_1) \mathbf{A}'_i + \\ \rho'_i \mathbf{\bar{A}}_i \mathbf{\bar{U}}_i \cos (\alpha_{ch} - \beta_1)$$
(A2)

(A3)

The flowrate at the throat is represented by

$$\dot{\mathbf{w}}^* = \bar{\mathbf{w}}^* + \dot{\mathbf{w}}'^* = \bar{\rho}^* \bar{\mathbf{A}}^* \bar{\mathbf{a}}^* + \rho'^* \bar{\mathbf{A}}^* \bar{\mathbf{a}}^* + \bar{\rho}^* \mathbf{A}'^* \bar{\mathbf{a}}^* + \bar{\rho}^* \bar{\mathbf{A}}^* \mathbf{a}'^*$$

Next, expand the term $\frac{\partial(\rho_i V_i)}{\partial t}$

$$\frac{\partial(\rho_1 V_1)}{\partial t} = \rho_1 \frac{\partial V_1}{\partial t} + V_1 \frac{\partial \rho_1}{\partial t}$$

By assuming small perturbations, the following relationships emerge:

$$\rho_{1} \frac{\partial V_{1}}{\partial t} = (\bar{\rho}_{1} + \rho_{1}') \begin{bmatrix} \frac{\partial V_{1}}{\partial t} + \frac{\partial V_{1}'}{\partial t} \end{bmatrix} = \bar{\rho}_{1} \frac{\partial V_{1}'}{\partial t}$$

$$V_{1} \frac{\partial \rho}{\partial t} = (\bar{V}_{1} + V_{1}') \begin{bmatrix} \frac{\partial \bar{\rho}}{\partial t} + \frac{\partial \rho_{1}'}{\partial t} \end{bmatrix} = \bar{V}_{1} \frac{\partial \rho_{1}'}{\partial t}$$

$$\frac{\partial (\rho V)}{\partial t} = \bar{\rho}_{1} \frac{\partial V_{1}'}{\partial t} + \bar{V}_{1} \frac{\partial \rho_{1}'}{\partial t}$$
(A4)

The small perturbation form of the continuity equation for Region 1 is then:

$$[\rho'^* \bar{\mathbf{A}}^* \bar{\mathbf{a}}^* + \bar{\rho}^* \bar{\mathbf{A}}'^* \bar{\mathbf{a}}^* + \bar{\rho}^* \bar{\mathbf{A}}^* \mathbf{a}'^*] - [\bar{\rho}_i \bar{\mathbf{A}}_i (\mathbf{u}_i' \sin \alpha_{ch} + \mathbf{v}_i' \cos \alpha_{ch}) + \bar{\rho}_i \mathbf{A}'_i \bar{\mathbf{U}}_i \cos (\alpha_{ch} - \beta_i) + \rho'_i \bar{\mathbf{A}}_i \bar{\mathbf{U}}_i \cos (\alpha_{ch} - \beta_i)]$$

$$= -\left(\bar{\rho}_i \quad \frac{\partial V'_i}{\partial t} + \bar{\nabla}_i \quad \frac{\partial \rho'_i}{\partial t}\right)$$
(A5)

Unsteady Control Volume Form of Momentum Equation

The next step involves the derivation of the unsteady control volume form of the momentum equation. The equation has the form

$$F = \frac{d(mU)}{dt} = \iint_{cs} U(\rho U) dA + \frac{\delta}{\delta t} \iint_{V_{ol}} U\rho d (Vol)$$
(A6)

with

$$\sum F = p_i A_i - p^* A^* = (\bar{p}_i + p'_i)(\bar{A}_i + A'_i) - (\bar{p}^* + p'^*)(\bar{A}^* + A'^*)$$

Neglecting higher order terms and subtracting out the mean flow forces gives

$$\sum \mathbf{F}' = (\mathbf{p}'_i \bar{\mathbf{A}}_i + \bar{\mathbf{p}}_i \mathbf{A}'_i) - (\bar{\mathbf{p}}^* \mathbf{A}'^* + \mathbf{p}^{*'} \bar{\mathbf{A}}^*)$$
(A7)

Now to evaluate the first part of Equation A6,

$$\int \int_{cs} U (\rho U \cdot dA)$$

which is essentially

$$a^*\dot{w}^* - U_i \left(\cos \left(\alpha_{ch} - \beta_1 \right) \right) \dot{w}_i$$

In terms of small perturbations, this expands to

$$\begin{aligned} (\bar{\mathbf{a}}^* \bar{\mathbf{w}}^* + \mathbf{a}'^* \bar{\mathbf{w}}^* + \bar{\mathbf{a}}^* \mathbf{w}'^*) &- (\bar{\mathbf{U}}_1 \bar{\mathbf{w}}_1 \cos (\alpha_{ch} - \beta_1) + \bar{\mathbf{U}}_1 \bar{\mathbf{w}}_1 + \bar{\mathbf{U}}_1 \cos (\alpha_{ch} - \beta_1) \mathbf{w}_1') \end{aligned}$$

Subtracting out the mean flow quantities gives

$$(a'^*\bar{w}^* + \bar{a}^*w'^*) - (u'_i \sin \alpha_{ch} + v'_i \cos \alpha_{ch}) \bar{w}_i + \bar{U}_i \cos (\alpha_{ch} - \beta_i) w'_i)$$
(A8)

To evaluate the second term of Equation A6

. -

$$\frac{\partial}{\partial t} \iint U_{\rho} \partial (Vol) = \frac{\partial}{\partial t} (\rho_{1}U_{1}V_{1})$$
$$= U_{1}V_{1} \frac{\partial \rho_{1}}{\partial t} + \rho_{1}U_{1} \frac{\partial V_{1}}{\partial t} + \rho_{1}V_{1} \frac{\partial U_{1}}{\partial t}$$

Working with the first term and neglecting higher order terms produces

$$U_{1}V_{1} \quad \frac{\partial\rho_{1}}{\partial t} = (\bar{U}_{1}\bar{V}_{1} + U'_{1}\bar{V}_{1} + \bar{U}_{1}V'_{1}) \left(\frac{\partial\bar{\rho}}{\partial t} + \frac{\partial\rho'}{\partial t}\right)$$
$$= \bar{U}_{1}\bar{V}_{1} \quad \frac{\partial\rho'_{1}}{\partial t}$$

Similarly, for the second and third terms

$$\rho_{1}U_{1} \quad \frac{\partial V_{1}}{\partial t} = \overline{\rho}_{1}\overline{U}_{1} \quad \frac{\partial V'_{1}}{\partial t}$$

$$\rho_{1}V_{1} \quad \frac{\partial U_{1}}{\partial t} = \overline{\rho}_{1}\overline{V}_{1} \quad \frac{\partial U'_{1}}{\partial t}$$
(A9)

Combining Equations A7, A8, and A9 gives the small perturbation form of the momentum equation, as shown in Equation A10.

$$p'\overline{A}_{i} + \overline{p}\overline{A}'_{i} - \overline{p}^{*}A'^{*} - p'^{*}\overline{A}^{*} = [a'^{*}\overline{w}^{*} + \overline{a}^{*}w'^{*}] - [\overline{w}_{i} (u'_{i} \sin \alpha_{ch} + v'_{i} \cos \alpha_{ch}) + \overline{U}_{i}w'_{i} \cos (\alpha_{ch} - \beta_{i})] + \overline{U}_{i}\overline{V}_{i} \frac{\partial \rho'_{i}}{\partial t} + \overline{\rho}_{i}\overline{U}_{i} \frac{\partial V'_{i}}{\partial t} + \overline{\rho}_{i}\overline{V}_{i} \frac{\partial U'_{i}}{\partial t}$$
(A10)

Small Perturbation Form of Energy Equation

The next step requires the derivation of the small perturbation form of the energy equation for an inviscid fluid with no external heat addition. The control volume form for Region 1 is therefore

$$\frac{\partial}{\partial t} \int \int \int_{V_{\text{ol}}} \rho \text{ed (Vol)} = - \int \int_{cs} (\rho U \cdot n) \text{ eds}$$
(A11)

where,

5

n = unit vector normal to surface

$$e = \frac{a^2}{\gamma(\gamma-1)} + \frac{U^2}{2}$$

Substituting this relationship into Equation A11 produces

$$\frac{\partial}{\partial t} \int \int \int_{Vol} \rho \left(\frac{a^2}{\gamma(\gamma - 1)} + \frac{U^2}{2} \right) d \quad (Vol)$$
$$= - \int \int (\rho U \cdot n) \left(\frac{a^2}{\gamma(\gamma - 1)} + \frac{U^2}{2} \right) ds$$

which becomes

$$\underbrace{\frac{\partial}{\partial t} \left[\rho V \left(\frac{a^2}{\gamma(\gamma - 1)} + \frac{U^2}{2} \right) \right]}_{3} = \underbrace{- \left[w^* \left(\frac{a^{*2}(\gamma^2 - \gamma + 2)}{2\gamma(\gamma - 1)} \right)}_{2} - \underbrace{- w_i \left(\frac{a^2}{\gamma(\gamma - 1)} + \frac{U_i^2}{2} \right) \right]}_{1}$$
(A12)

-

Now, in order to expand by assuming small perturbations.

Term 1 (neglecting higher order terms)

$$-\frac{\gamma^{2}-\gamma+2}{2\gamma(\gamma-1)} \left[\bar{a}^{*2}\bar{w}^{*}+2\bar{a}^{*}a'^{*}\bar{w}^{*}+\bar{a}^{*2}w'^{*} \right]$$
(A13)

Term 2 (neglecting higher order terms)

$$\begin{aligned} (\bar{\mathbf{w}}_{1} + \mathbf{w}'_{1}) & \left[\frac{\bar{\mathbf{a}}_{1}^{2} + 2\bar{\mathbf{a}}_{1}\mathbf{a}'_{1}}{\gamma(\gamma - 1)} + \frac{1}{2} \left[(\bar{\mathbf{U}}_{1} \cos (\alpha_{ch} - \beta_{1}))^{2} + 2\bar{\mathbf{U}}_{1} \cos (\alpha_{ch} - \beta_{1}) \right] \\ & (\mathbf{u}'_{1} \sin \alpha_{ch} + \mathbf{v}'_{1} \cos \alpha_{ch}) \right] \\ & = \frac{1}{\gamma(\gamma - 1)} \left[\bar{\mathbf{a}}_{1}^{2}\bar{\mathbf{w}}_{1} + 2\bar{\mathbf{a}}_{1}\mathbf{a}'_{1}\bar{\mathbf{w}}_{1} + \bar{\mathbf{a}}_{1}^{2}\mathbf{w}'_{1} \right] + \frac{1}{2} \left[\bar{\mathbf{w}}_{1} \left(\bar{\mathbf{U}}_{1} \cos (\alpha_{ch} - \beta_{1}) \right)^{2} + 2\bar{\mathbf{U}}_{1} \cos (\alpha_{ch} - \beta_{1}) \left(\mathbf{u}'_{1} \sin \alpha_{ch} + \mathbf{v}'_{1} \cos \alpha_{ch} \right) \bar{\mathbf{w}}_{1} + \mathbf{w}'_{1} \left(\bar{\mathbf{U}}_{1} \cos (\alpha_{ch} - \beta_{1}) \right)^{2} \right] \end{aligned}$$

Term 3

.

$$\frac{\partial}{\partial t} \left[\rho_1 V_1 \left(\frac{a_1^2}{\gamma(\gamma - 1)} + \frac{U^2}{2} \right) \right] \underbrace{= \frac{1}{\gamma(\gamma - 1)} \frac{\partial}{\partial t} (\rho_1 V_1 a_{1}^2) +}_{a}$$

$$\underbrace{\frac{1}{2} \frac{\partial}{\partial t} (\rho_1 V_1 U_{1}^2)}_{b}$$

Term 3a

$$\frac{1}{\gamma(\gamma-1)} \left[\frac{\partial(\bar{\rho}_{1}\bar{\nabla}_{1}\bar{a}^{2})}{\partial t} + \frac{\partial(\rho'_{1}\bar{\nabla}_{1}\bar{a}^{2})}{\partial t} + \frac{\partial(\bar{\rho}'_{1}\nabla'_{1}\bar{a}^{2})}{\partial t} + \frac{\partial(\bar{\rho}'_{1}\nabla'_{1}\bar{a}^{2})}{\partial t} + \frac{\partial(\bar{\rho}'_{1}\nabla'_{1}\bar{a}^{2})}{\partial t} \right]$$
$$= \frac{1}{\gamma(\gamma-1)} \left[\bar{\nabla}_{1}\bar{a}^{2} \frac{\partial\rho'}{\partial t} + \bar{\rho}\bar{a}^{2} \frac{\partial V'_{1}}{\partial t} + 2\bar{a}\bar{\rho}\bar{\nabla}_{1} \frac{\partial a'}{\partial t} \right], \qquad (A15)$$

Term 3b

,

$$\frac{1}{2} \frac{\partial (\rho \bar{\nabla} U_1^2)}{\partial t} = \frac{1}{2} \left[\bar{\nabla}_1 \bar{U}^2 \frac{\partial \rho'}{\partial t} + \rho \bar{U}^2 \frac{\partial V'_1}{\partial t} + 2 \bar{U} \bar{\rho} \bar{\nabla}_1 \frac{\partial U'}{\partial t} \right],$$
(A16)

Combining Equations A13 through A16 and subtracting out the mean flow equation yields the small perturbation form of the energy equation:

$$\frac{1}{\gamma(\gamma-1)} \left[2\bar{\mathbf{a}}_{i}\mathbf{a}'_{i}\bar{\mathbf{w}}_{i} + \bar{\mathbf{a}}_{i}^{2}\mathbf{w}'_{i} \right] + \frac{1}{2} \left[\bar{\mathbf{w}}_{i} \left(2\bar{\mathbf{U}}_{i}\cos\left(\alpha_{ch} - \beta_{i}\right) \right) \left(\mathbf{u}'_{i}\sin\alpha_{ch} + \mathbf{v}'_{i}\cos\alpha_{ch} \right) + \mathbf{w}'_{i} \left(\bar{\mathbf{U}}_{i}\cos\left(\alpha_{ch} - \beta_{i}\right) \right)^{2} \right] - \frac{(\gamma^{2} - \gamma + 2)}{2\gamma(\gamma - 1)} \left[2\bar{\mathbf{a}}^{*}\mathbf{a}'^{*}\bar{\mathbf{w}}^{*} + \bar{\mathbf{a}}^{*2}\mathbf{w}'^{*} \right] \\ = \frac{1}{\gamma(\gamma - 1)} \left[\bar{\mathbf{a}}^{2}\bar{\mathbf{V}}_{i} \quad \frac{\partial\rho'}{\partial t} + \bar{\rho}\bar{\mathbf{a}}^{2} \quad \frac{\partial\mathcal{V}'_{i}}{\partial t} + 2\bar{\mathbf{a}}\bar{\rho}\bar{\mathbf{V}}_{i} \quad \frac{\partial\mathbf{a}'}{\partial t} \right]_{i} + \frac{1}{2} \left[\bar{\mathbf{U}}^{2}\bar{\mathbf{V}}_{i} \quad \frac{\partial\rho'}{\partial t} + \bar{\rho}\bar{\mathbf{U}}^{2} \quad \frac{\partial\mathcal{V}'_{i}}{\partial t} + 2\bar{\mathbf{U}}\bar{\rho}\bar{\mathbf{V}}_{i} \quad \frac{\partial\mathcal{U}'}{\partial t} \right]_{i}$$

$$(A17)$$

In order to nondimensionalize Equations A14, A15, and A17, densities will be nondimensionalized by $\bar{\rho}_{inlet}$, pressure by $\bar{\rho}_i \overline{U}_i^2$, velocities by \overline{U}_{iRE} , lengths by semichord, time by b/U_i, areas by A*, and volumes by A*b. Starting with the continuity equation:

$$\begin{bmatrix} \bar{\rho}_{1} \left(\frac{\rho'^{*}}{\rho_{1}} \right) & \bar{A}^{*} \left(\frac{\bar{A}^{*}}{\bar{A}^{*}} \right) U_{1} \left(\frac{\bar{a}^{*}}{U_{1}} \right) + \bar{\rho}_{1} \left(\frac{\bar{\rho}^{*}}{\bar{\rho}_{1}} \right) \bar{A}^{*} \left(\frac{\bar{A}'^{*}}{\bar{A}^{*}} \right) \bar{U}_{1} \left(\frac{\bar{a}^{*}}{\bar{U}_{1}} \right) \\ = \begin{bmatrix} \bar{\rho}_{1} \left(\frac{\bar{\rho}_{1}}{\bar{\rho}_{1}} \right) & \bar{A}^{*} \left(\frac{\bar{A}_{1}}{\bar{A}^{*}} \right) \bar{U}_{1} \left(\frac{\bar{a}'^{*}}{\bar{U}_{1}} \right) \end{bmatrix} \\ = \begin{bmatrix} \bar{\rho}_{1} \left(\frac{\bar{\rho}_{1}}{\bar{\rho}_{1}} \right) & \bar{A}^{*} \left(\frac{\bar{A}_{1}}{\bar{A}^{*}} \right) \bar{U}_{1} \left(\frac{\bar{u}_{1}'}{\bar{U}_{1}} \sin \alpha_{ch} + \frac{\bar{v}'_{1}}{\bar{U}_{1}} \cos \alpha_{ch} \right) \\ + \bar{\rho}_{1} \left(\frac{\bar{\rho}_{1}}{\bar{\rho}_{1}} \right) \bar{A}^{*} \left(\frac{\bar{A}'_{1}}{\bar{A}^{*}} \right) \bar{U}_{1} \left(\frac{\bar{U}_{1}}{\bar{U}_{1}} \right) \\ \cos \left(\alpha_{ch} - \beta_{1} \right) + \bar{\rho}_{1} \left(\frac{\bar{\rho}'_{1}}{\bar{\rho}_{1}} \right) \bar{A}^{*} \left(\frac{\bar{A}_{1}}{\bar{A}^{*}} \right) \bar{U}_{1} \left(\frac{\bar{U}_{1}}{\bar{U}_{1}} \right) \\ \cos \left(\alpha_{ch} - \beta_{1} \right) + \bar{\rho}_{1} \left(\frac{\bar{\rho}'_{1}}{\bar{\rho}_{1}} \right) \bar{A}^{*} \left(\frac{\bar{A}_{1}}{\bar{A}^{*}} \right) \bar{U}_{1} \left(\frac{\bar{U}_{1}}{\bar{U}_{1}} \right) \\ = - \left(\bar{\rho}_{1} \left(\frac{\bar{\rho}_{ave}}{\bar{\rho}_{1}} \right) \left(\bar{A}^{*} b \frac{\bar{U}_{1}}{b} \right) \frac{b_{1}\partial V'_{1}}{\bar{A}^{*}bU_{1}\partial t} + \frac{\bar{A}^{*}b\bar{V}_{1}}{\bar{A}^{*}b} \bar{\rho}_{1} \frac{\bar{U}_{1}}{b} \frac{b_{1}\partial\rho'V}{U_{1}\partial t\bar{b}\bar{\rho}_{1}} \right)$$

Dividing through by $\bar{\rho}_1 \tilde{A}^* \tilde{U}_1$ gives

$$[\rho'^{*}\bar{\mathbf{a}}^{*} + \bar{\rho}^{*}\mathbf{A}'^{*}\bar{\mathbf{a}}^{*} + \bar{\rho}^{*}\mathbf{a}'^{*}] - [\bar{\mathbf{A}}_{i} (\mathbf{u}'_{i} \sin \alpha_{ch} + \mathbf{v}_{i} \cos \alpha_{ch}) + \bar{\mathbf{A}}_{i} \cos (\alpha_{ch} - \beta_{1}) + \rho'_{i}\bar{\mathbf{A}}_{i} \cos (\alpha_{ch} - \beta_{1})]$$

$$= - \left[\bar{\rho} \frac{\partial V'_{1}}{\partial t} + \bar{\mathbf{V}}_{1} \frac{\partial \rho'}{\partial t} \right]_{1}$$
(A18)

ł.

Consider next the momentum equation (Equation A10). The result is, after dividing by $\bar{\rho}$ $\bar{U}_i^2 \bar{A}_i^*$

$$(\mathbf{p}'_{i}\bar{\mathbf{A}}_{i} + \bar{\mathbf{p}}_{i}\mathbf{A}'_{i} - \mathbf{p}'^{*} - \bar{\mathbf{p}}^{*}\mathbf{A}'^{*})$$

$$= [\mathbf{a}'^{*}\bar{\rho}^{*}\bar{\mathbf{a}}^{*} + \bar{\mathbf{a}}^{*} (\bar{\rho}^{*}\mathbf{a}'^{*} + \bar{\rho}^{*}\mathbf{A}'^{*}\bar{\mathbf{a}}^{*} + \rho'^{*}\bar{\mathbf{a}}^{*})] -$$

$$[(\mathbf{u}'_{i}\sin\alpha_{ch} + \mathbf{v}'_{i}\cos\alpha_{ch}) \bar{\mathbf{A}}_{i}\cos(\alpha_{ch} - \beta_{1}) +$$

$$\cos(\alpha_{ch} - \beta_{1}) (\rho'_{i}\bar{\mathbf{A}}_{i}\cos(\alpha_{ch} - \beta_{1}) + \mathbf{A}'_{i}\cos(\alpha_{ch} - \beta_{1}) +$$

$$\bar{\mathbf{A}}_{i} (\mathbf{u}'_{i}\sin\alpha_{ch} + \mathbf{v}'_{i}\cos\alpha_{ch}))] + (\bar{\mathbf{U}}\bar{\mathbf{V}}_{i} \frac{\partial\rho'}{\partial t})_{i} +$$

$$(\bar{\rho}\bar{\mathbf{U}} \frac{\partial\mathbf{V}'_{i}}{\partial t})_{i} + (\bar{\rho}\bar{\mathbf{V}}_{i} \frac{\partial\mathbf{U}'}{\partial t})_{i}$$

$$(A19)$$

Proceeding next to the energy equation (Equation A17):

$$\begin{split} \frac{\bar{\rho}_{i}\bar{A}^{*}\bar{U}_{i}^{3}}{\gamma(\gamma-1)} \left[2\bar{A}_{i}\cos\left(\alpha_{ch}-\beta_{1}\right)\bar{a}_{i}a'_{i}+\left(\rho'_{i}\bar{A}_{i}\cos\left(\alpha_{ch}-\beta_{1}\right)+A'_{i}\left(\alpha'_{i}\sin\left(\alpha_{ch}-\beta_{1}\right)+A'_{i}\left(\alpha'_{i}\sin\left(\alpha_{ch}-\beta_{1}\right)\right)\bar{a}_{i}^{2}\right] + \\ A'_{i}\cos\left(\alpha_{ch}-\beta_{1}\right)+\bar{A}_{i}\left(\alpha'_{i}\sin\left(\alpha_{ch}-\beta_{1}\right)+\alpha'_{i}\cos\left(\alpha_{ch}-\beta_{1}\right)+A'_{i}\cos\left(\alpha_{ch}-\beta_{1}\right)+\\ \cos^{2}\left(\alpha_{ch}-\beta_{1}\right)\left(\rho'_{i}\bar{A}_{i}\cos\left(\alpha_{ch}-\beta_{1}\right)+A'_{i}\cos\left(\alpha_{ch}-\beta_{1}\right)+A'_{i}\cos\left(\alpha_{ch}-\beta_{1}\right)+\\ \bar{A}_{i}\left(\alpha'_{i}\sin\left(\alpha_{ch}+\alpha'_{i}\cos\left(\alpha_{ch}-\beta_{1}\right)\right)\right) - \frac{(\gamma^{2}-\gamma+2)}{2\gamma(\gamma-1)}\bar{\rho}_{i}\bar{A}^{*}\bar{U}_{i}^{3}\left[2\bar{a}^{*2}a'^{*}\bar{\rho}^{*}+\\ \bar{a}^{*2}\left(\rho'^{*}\bar{a}^{*}+\bar{\rho}^{*}A'^{*}\bar{a}^{*}+\bar{\rho}^{*}a'^{*}\right)\right] \\ &= \frac{\bar{\rho}_{i}\bar{A}^{*}\bar{U}_{i}^{3}}{\gamma(\gamma-1)}\left[\bar{\nabla}\bar{a}^{2}\frac{\partial\rho'}{\partial t}+\bar{\rho}\bar{a}^{2}\frac{\partial V'_{1}}{\partial t}+2\bar{\rho}\bar{a}\bar{\nabla}_{1}\frac{\partial a'}{\partial t}\right]_{i} +\\ &\frac{\rho_{i}\bar{A}^{*}\bar{U}_{i}^{3}}{2}\left[\bar{\nabla}_{i}\bar{U}^{2}\frac{\partial\rho'}{\partial t}+\bar{\rho}\bar{U}^{2}\frac{\partial V'_{1}}{\partial t}+2\bar{U}\bar{\rho}\bar{\nabla}_{1}\frac{\partial U'}{\partial t}\right]_{i} \right] \end{split}$$

Dividing the above equation through by $\bar{\rho}_i \bar{A}^* \bar{U}_i^a$ and rearranging the terms yields

The nondimensional equations of motion are as follows

Continuity

$$[\rho'^* \bar{\mathbf{a}}^* + \bar{\rho}^* \mathbf{A}'^* \bar{\mathbf{a}}^* + \bar{\rho}^* \mathbf{a}'^*] - [\bar{\mathbf{A}}_i (\mathbf{u}_i' \sin \alpha_{ch} + \mathbf{v}_i' \cos \alpha_{ch}) + \mathbf{A}_i' \cos (\alpha_{ch} - \beta_1) + \rho'_i \bar{\mathbf{A}}_i \cos (\alpha_{ch} - \beta_1)]$$

= $- \left[\bar{\rho} \frac{\partial \mathbf{V}_1'}{\partial \mathbf{t}} + \bar{\mathbf{V}}_1 \frac{\partial \rho'}{\partial \mathbf{t}} \right]_i$ (A18)

Momentum

l

$$[\mathbf{p}', \mathbf{\bar{A}}_{i} + \mathbf{\bar{p}}, \mathbf{A}'_{i} - \mathbf{p}'^{*} - \mathbf{\bar{p}}^{*} \mathbf{A}'^{*}] = \mathbf{\bar{a}}^{*} [2\mathbf{\bar{\rho}}^{*} \mathbf{a}'^{*} + \mathbf{\bar{\rho}}^{*} \mathbf{A}'^{*} \mathbf{\bar{a}}^{*} + \mathbf{\rho}'^{*} \mathbf{\bar{a}}^{*}] - \cos(\alpha_{ch} - \beta_{1}) [\mathbf{\rho}', \mathbf{\bar{A}}_{i} \cos(\alpha_{ch} - \beta_{1}) + \mathbf{A}'_{i} \cos(\alpha_{ch} - \beta_{1}) + 2\mathbf{\bar{A}}_{i} (\mathbf{u}', \sin\alpha_{ch} + \mathbf{v}'_{i} \cos(\alpha_{ch})] + \mathbf{\bar{U}}_{i} \mathbf{\bar{V}}_{i} \frac{\partial \mathbf{\rho}'_{1}}{\partial t} + \mathbf{\bar{\rho}}_{i} \mathbf{\bar{U}}_{i} \frac{\partial \mathbf{V}'_{1}}{\partial t} + \mathbf{\bar{\rho}}_{i} \mathbf{\bar{V}}_{i} \frac{\partial \mathbf{U}'_{1}}{\partial t}$$
(A19)

Energy

- 1

The small perturbation forms of the equations of motion for Region 2 and 3 are derived in a similar manner.

APPENDIX B SOLUTIONS TO THE EQUATIONS OF MOTION FOR REGION 1

The nondimensionalized linear equations of motion for Region 1 are represented by Equations 24, 25, and 26, and are solved to obtain the three unknowns: $A_{-\infty} \rho^{*'}$, and $a^{*'}$. Starting with the inlet flow parameters

$$\mathbf{u'}_i = \frac{\partial \Phi'}{\partial \mathbf{x^*}} \mathbf{v'}_i = \frac{\partial \Phi'}{\partial \mathbf{y^*}}$$

The expression for Φ is given in Equation 11. The inlet velocity perturbations become

$$u'_{i} = \frac{i B_{1} A_{-\infty}}{b U_{1}} \exp i(B_{1}x + Cy + kt)$$
 (nondimensional) (B1)

$$v'_{i} = \frac{i C A_{-\infty}}{b U_{i}} \exp i(B_{i}x + Cy + kt)$$
 (nondimensional) (B2)

The inlet pressure perturbation can be obtained from Bernoulli's relationship in the following manner:

$$\frac{\partial \mathbf{p}_{i}}{\partial t} = -\bar{\rho}_{i} \left[\begin{array}{cc} \frac{\partial^{2} \Phi'_{-\infty}}{\partial t^{2}} + \overline{\mathbf{u}}_{i} & \frac{\partial \mathbf{u}'_{i}}{\partial t} + \overline{\mathbf{v}}_{i} & \frac{\partial \mathbf{v}'_{i}}{\partial t} \end{array} \right] \\ \underbrace{\mathbf{u}}_{1} & \underbrace{\mathbf{u}}_{2} & \underbrace{\mathbf{u}}_{3} \end{array}$$

 \mathbf{or}

$$\int \partial \mathbf{p'}_{i} = -\bar{\rho}_{i} \int \left(\frac{\partial^{2} \Phi'_{-\infty}}{\partial t^{2}} + \bar{\mathbf{u}}_{i} \frac{\partial \mathbf{u'}_{i}}{\partial t} + \bar{\mathbf{v}}_{i} \frac{\partial \mathbf{v'}_{i}}{\partial t} \right) \partial t$$
(B3)

Substituting for $\Phi'_{-\infty}$, u'_{i} , and v'_{i} , and integrating produces

$$p'_{i} = -i [A_{-\infty} \exp i(B_{1}x + Cy + kt)] [k + \bar{u}_{i}B_{1} + \bar{v}_{i}C]$$
(B4)

where all quantities are nondimensional. The inlet density perturbation can be related to the inlet pressure for isentropic flow

$$\partial \rho'_{i} = \frac{1}{\tilde{a}^{2}} p'_{i}$$
 (B5)

Substituting Equation B4 into Equation B5 gives

$$\rho'_{i} = \frac{-i}{\bar{a}_{i}^{2}} [A_{-\infty} \exp i(B_{i}x + Cy + kt)] [k + \bar{u}_{i}B_{i} + \bar{v}_{i}C]$$
(B6)

The speed of sound perturbation at the inlet is related to p_i by

$$\mathbf{a'}_{i} = \frac{\gamma - 1}{2} \left(\frac{\mathbf{p'}_{i}}{\overline{\rho_{i}} \mathbf{\overline{a}}_{i}} \right) \tag{B7}$$

Substituting Equation B4 into Equation B7 gives

$$a'_{i} = \frac{i(\gamma - 1)}{2\bar{a}_{i}} \quad [A_{-\infty} \exp i(B_{i}x + Cy + kt)] [k + \bar{u}_{j}B_{j} + \bar{v}_{j}C]$$

The inlet flow parameters represented by a two-dimensional flow field which is converted to a one-dimensional flow field by a technique commonly used in turbulent channel flows. Here the relationship holds.

$$\bar{f}'(x) = \frac{1}{\bar{y}_i} \int_0^{\bar{y}_i} f'(x, y) \, dy$$
 (B8)

where f is any flow parameter. Starting with the velocities

$$u'(\mathbf{x}, \mathbf{y}) = i B_{1}A_{-\infty} \exp i(B_{1}\mathbf{x} + C\mathbf{y} + k\mathbf{t})$$

$$\bar{u}'(\mathbf{x}) = \frac{1}{\bar{y}_{i}} \int_{0}^{\bar{y}_{i}} i B_{1}A_{-\infty} \exp i(B_{1}\mathbf{x} + C\mathbf{y} + k\mathbf{t}) d\mathbf{y}$$

$$\Rightarrow \bar{u}'(\mathbf{x}=0) = \frac{B_{i}A_{-\infty}}{C\bar{y}_{i}} e^{i\mathbf{k}\mathbf{t}} (e^{iC\bar{y}_{i}} - 1)$$
(B9)

The following steps are used to evaluate the y component of the velocity:

$$\mathbf{v}'(\mathbf{x}, \mathbf{y}) = \mathbf{i} \ \mathbf{C} \mathbf{A}_{-\infty} \exp \mathbf{i} (\mathbf{B}_{\mathbf{i}} \mathbf{x} + \mathbf{C} \mathbf{y} + \mathbf{k} \mathbf{t})$$
$$\bar{\mathbf{v}}'(\mathbf{x}=0) = \frac{1}{\bar{\mathbf{y}}_{i}} \int_{0}^{\bar{\mathbf{y}}_{i}} \mathbf{i} \ \mathbf{C} \mathbf{A}_{-\infty} \exp \mathbf{i} (\mathbf{B}_{\mathbf{i}} \mathbf{x} + \mathbf{C} \mathbf{y} + \mathbf{k} \mathbf{t}) \ \mathbf{d} \mathbf{y}$$
$$\Rightarrow \bar{\mathbf{v}}'_{i} = \frac{\mathbf{A}_{-\infty} \mathbf{e}^{i\mathbf{k}\mathbf{t}} \left(\mathbf{e}^{i\mathbf{C}\bar{\mathbf{y}}_{i}} - 1 \right)}{\bar{\mathbf{y}}_{i}} \tag{B10}$$

Returning to the inlet pressure expression noted in Equation B4, the following results:

$$\bar{\mathbf{p}}'_{i} = - \frac{(\mathbf{k} + \bar{\mathbf{u}}_{i}\mathbf{B}_{1} + \bar{\mathbf{v}}_{i}\mathbf{C}]}{C\bar{\mathbf{y}}_{i}} \quad [\mathbf{A}_{-\infty} \ \mathbf{e}^{i\mathbf{k}t} \ (\mathbf{e}^{iC\bar{\mathbf{y}}_{i}} - 1)]$$
(B11)

Returning to the inlet density expression, the following results:

$$\bar{\rho}'_{i} = - \frac{(\mathbf{k} + \bar{\mathbf{u}}_{i}\mathbf{B}_{1} + \bar{\mathbf{v}}_{i}\mathbf{C})}{C\bar{\mathbf{y}}_{i}\bar{\mathbf{a}}_{i}^{2}} [\mathbf{A}_{-\infty} e^{i\mathbf{k}\mathbf{t}} (e^{iC\bar{\mathbf{y}}_{i}} - 1)]$$
(B12)

Finally, the speed of sound expression becomes

$$\bar{\mathbf{a}}'_{i} = -\left(\frac{\gamma - 1}{2\bar{\mathbf{a}}_{i}}\right) \left(\frac{1}{C\bar{\mathbf{y}}_{i}}\right) \left[\mathbf{A}_{-\infty} \, \mathbf{e}^{i\mathbf{k}t} \, \left(\mathbf{e}^{iC\bar{\mathbf{y}}_{i}} - 1\right)\right] \quad \left[\mathbf{k} + \bar{\mathbf{u}}_{i}\mathbf{B}_{i} + \bar{\mathbf{v}}_{i}C\right] \tag{B13}$$

The next step assumes that all flow parameters within the blade channel are harmonically varying with time. As such, the following equations apply:

$$p'^{*} = \bar{p}'^{*} \exp ikt$$

$$\rho'^{*} = \bar{\rho}'^{*} \exp ikt$$

$$a'^{*} = \bar{a}'^{*} \exp ikt$$

$$A'^{*} = \bar{A}'^{*} \exp ikt$$

$$V' = \bar{V}' \exp ikt$$
(B14)

In addition to these expressions, the time rate of change of density, velocity, and speed of sound are also needed. Starting with the velocity at the inlet from Equation B9, the sequence progresses as follows:

$$\bar{\mathbf{u}}'_{i} = \frac{\mathbf{B}_{i}\mathbf{A}_{-\infty}}{\mathbf{C}\bar{\mathbf{y}}_{i}} \ \mathrm{e}^{\mathrm{i}\mathbf{k}\mathbf{t}} \ (\mathrm{e}^{\mathrm{i}\mathbf{C}\bar{\mathbf{y}}_{i}} - 1) \tag{B9}$$

$$\frac{\partial \bar{u}'_{i}}{\partial t} = \frac{ikB_{i}A_{-\infty}}{C\bar{y}_{i}} e^{ikt} (e^{iC\bar{y}_{i}} - 1)$$
(B14)

$$\bar{\mathbf{v}}'_{i} = \frac{\mathbf{A}_{-\infty} \operatorname{eikt} (\operatorname{ei} C \bar{\mathbf{y}}_{i} - 1)}{\bar{\mathbf{y}}_{i}}$$
(B10)

$$\frac{\partial \bar{\mathbf{v}}_{1}}{\partial t} = \frac{i\mathbf{k}\mathbf{A}_{-\infty}}{\bar{\mathbf{y}}_{1}} e^{i\mathbf{k}t} (e^{iC\bar{\mathbf{y}}_{1}} - 1)$$
(B15)

The time rate of change of density at the inlet equals

$$\frac{\partial \tilde{\rho}'_{1}}{\partial t} = \frac{-ik (k + \bar{u}_{i}B_{1} + \bar{v}_{i}C)}{C\bar{y}_{i}\bar{a}_{1}^{2}} \left[A_{-z} \text{ eikt } (eiC\bar{y}_{1} - 1)\right]$$
(B16)

and at the throat

$$\frac{\partial \rho'^*}{\partial t} = i k \bar{\rho}'^* \exp i k t$$
(B17)

The time rate of change of the speed of sound at the inlet equals

$$\frac{\partial \bar{\mathbf{a}}_{1}}{\partial t} = -\mathbf{i}\mathbf{k} \left(\frac{\gamma - 1}{2\bar{\mathbf{a}}_{1}}\right) \left(\frac{1}{C\bar{\mathbf{y}}_{1}}\right) \left[\mathbf{A}_{-\alpha} \operatorname{eikt}\left(\operatorname{ei}C\bar{\mathbf{y}}_{1} - 1\right)\right] \left[\mathbf{k} + \bar{\mathbf{u}}_{1}\mathbf{B}_{1} + \bar{\mathbf{v}}_{1}C\right]$$
(B18)

and at the throat

$$\frac{\partial a^{\prime *}}{\partial t} = ik\bar{a}^{\prime *} \exp ikt \tag{B19}$$

Working first with the energy equation, let

$$E_{1} = \left[\frac{\bar{a}_{1}^{2}}{\gamma(\gamma-1)} + \frac{\cos^{2}(\alpha_{ch} - \beta_{1})}{2}\right]$$

$$I = \cos(\alpha_{ch} - \beta_{1})$$

$$E_{2} = \frac{\bar{a}^{*2}(\gamma^{2} - \gamma + 2)}{2\gamma(\gamma-1)}$$

Inserting Equations B9 through B19 into Equation 26 and dividing through by e^{ikt} produces the following expression:

$$\begin{split} \mathbf{E}_{i} \left[-\mathbf{I}\bar{A}_{i} \left(\frac{\mathbf{k} + \mathbf{\bar{u}}_{i}\mathbf{B}_{j} + \mathbf{\bar{v}}_{i}\mathbf{C}}{\mathbf{C}\mathbf{\bar{y}}_{i}\mathbf{\hat{a}}_{1}^{2}} \right) \mathbf{A}_{-\infty} \left(e^{\mathbf{i}\mathbf{C}\mathbf{\bar{y}}_{i}} - 1 \right) + \bar{A}_{i}\mathbf{I} + \\ \bar{A}_{i} \left(\sin\alpha_{ch} \left(\frac{\mathbf{B}_{i}\mathbf{A}_{-\infty}}{\mathbf{C}\mathbf{\bar{y}}_{i}} \right) \left(e^{\mathbf{i}\mathbf{C}\mathbf{\bar{y}}_{i}} - 1 \right) + \left(\frac{\mathbf{A}_{-\infty}}{\mathbf{\bar{y}}_{i}} \right) \cos\alpha_{ch} \left(e^{\mathbf{i}\mathbf{C}\mathbf{\bar{y}}_{i}} - 1 \right) \right) \right] - \\ \frac{2\bar{A}_{i}\mathbf{I}\bar{a}_{i}}{\gamma(\gamma - 1)} \left(\frac{\gamma - 1}{2\bar{a}_{i}} \right) \left(\frac{1}{\mathbf{C}\mathbf{\bar{y}}_{i}} \right) \left(\mathbf{k} + \mathbf{\bar{u}}_{i}\mathbf{B}_{i} + \mathbf{\bar{v}}_{i}\mathbf{C} \right) \mathbf{A}_{-\infty} \left(e^{\mathbf{i}\mathbf{C}\mathbf{\bar{y}}_{i}} - 1 \right) + \\ \bar{A}_{i}\mathbf{I}^{2} \left[\sin\alpha_{ch} \left(\frac{\mathbf{B}_{i}\mathbf{A}_{-\infty}}{\mathbf{C}\mathbf{\bar{y}}_{i}} \right) \left(e^{\mathbf{i}\mathbf{C}\mathbf{\bar{y}}_{i}} - 1 \right) + \left(\frac{\mathbf{A}_{-\infty}}{\mathbf{\bar{y}}_{i}} \right) \cos\alpha_{ch} \left(e^{\mathbf{i}\mathbf{C}\mathbf{\bar{y}}_{i}} - 1 \right) \right) \right] - \\ \mathbf{E}_{2}[\bar{\rho}^{\prime *}\mathbf{\bar{a}}^{*} + \bar{\rho}^{*}\mathbf{\bar{A}}^{\prime *}\mathbf{\bar{a}}^{*} + 3\bar{\rho}^{*}\mathbf{\bar{a}}^{*}] \\ = \frac{1}{\gamma(\gamma - 1)} \left\{ \frac{\mathbf{\bar{V}}_{i}\mathbf{\bar{a}}^{2}}{2} \left[\mathbf{ik} \left(\bar{\rho}^{\prime *} - \left(\frac{\mathbf{k} + \mathbf{\bar{u}}_{i}\mathbf{B}_{1} + \mathbf{\bar{v}}_{i}\mathbf{C}}{\mathbf{C}\mathbf{\bar{y}}_{i}\mathbf{\bar{a}}^{2}} \right) \mathbf{A}_{-\infty} \left(e^{\mathbf{i}\mathbf{C}\mathbf{\bar{y}}_{i}} - 1 \right) \right] + \\ \mathbf{i}k\bar{\rho}\mathbf{\bar{a}}^{2}\mathbf{\bar{V}}_{i} + \bar{\rho}\mathbf{\bar{a}}\mathbf{\bar{N}}_{i} \left[\mathbf{ik} \left(\mathbf{a}^{\prime *} - \left(\frac{\gamma - 1}{2\mathbf{\bar{a}}_{i}} \right) \left(\frac{1}{\mathbf{C}\mathbf{\bar{y}}_{i}} \right) \mathbf{A}_{-\infty} \left(e^{\mathbf{i}\mathbf{C}\mathbf{\bar{y}}_{i}} - 1 \right) \right] \\ \left(\mathbf{k} + \mathbf{\bar{u}}_{i}\mathbf{B}_{i} + \mathbf{\bar{v}}_{i}\mathbf{C} \right) \right) \right] \right\}_{i}^{1} + \frac{1}{2} \left\{ \frac{\mathbf{D}^{2}\mathbf{\bar{V}}_{i}}{2} \left[\mathbf{ik} \left(\bar{\rho}^{\prime *} - \left(\mathbf{k} + \mathbf{\bar{u}}_{i}\mathbf{B}_{i} + \mathbf{\bar{v}}_{i}\mathbf{C} \right) \\ \left(\frac{\mathbf{A}_{-\infty}}{\mathbf{C}\mathbf{\bar{y}}_{i}\mathbf{\bar{a}}^{2}} \right) \left(e^{\mathbf{i}\mathbf{C}\mathbf{\bar{y}}_{i}} - 1 \right) \right) \right] + \mathbf{i}k\bar{\rho}\mathbf{\bar{U}}^{2}\mathbf{\bar{V}}_{i}^{2} + \bar{\rho}\mathbf{D}\mathbf{\bar{V}}\mathbf{\bar{V}}_{i} \left[\mathbf{ik} \left(\mathbf{a}^{\prime *} + \left(\frac{\mathbf{B}\mathbf{A}_{-\infty}}{\mathbf{C}\mathbf{\bar{y}}_{i}\mathbf{\bar{a}}^{2}} \right) \left(e^{\mathbf{i}\mathbf{C}\mathbf{\bar{y}}_{i}} - 1 \right) \right] \right\}_{i}^{1}$$

The E, M, and C constants presented in this section are found in Appendix E.

The next step requires that Equation 220 be broken down into its real and imaginary parts. The solution deals first with the four terms containing the unknown complex constant $A_{-\infty}$. These are broken into real and imaginary parts as follows:

1. $B_{1}A_{-\infty} (e^{iC\bar{y}_{1}} - 1)$ $B_{1} = B_{1R} + iB_{1l}$ $A_{-\infty} = A_{-\infty R} + iA_{-\infty l}$ $e^{iC\bar{y}_{1}} = \cos (C\bar{y}_{1}) + i \sin (C\bar{y}_{1})$

Thus, the real part of the expression is

$$\begin{split} & B_{1R}A_{-\infty R} \left(\cos(C\bar{y}_i) - 1 \right) - B_{1I}A_{-\infty I} \left(\cos(C\bar{y}_i) - 1 \right) - \\ & B_{1R}A_{-\infty I} \sin(C\bar{y}_i) - B_{II}A_{-\infty R} \sin(C\bar{y}_i) \end{split}$$

and the imaginary part of the expression is

$$\begin{split} & B_{1R}A_{-\infty I} (\cos(C\bar{y}_i) - 1) + B_{1I}A_{-\infty R} (\cos(C\bar{y}_i) - 1) + \\ & B_{1R}A_{-\infty R} \sin(C\bar{y}_i) - B_{1I}A_{-\infty I} \sin(C\bar{y}_i) \end{split}$$

2. $A_{-\infty} (e^{iC\bar{y}_i} - 1)$

The real part of the expression is

$$\mathbf{A}_{-\infty \mathbf{R}} \left(\cos(\mathbf{C} \bar{\mathbf{y}}_{i}) - 1 \right) - \mathbf{A}_{-\infty \mathbf{I}} \sin(\mathbf{C} \bar{\mathbf{y}}_{i})$$

The imaginary part of the expression is

$$A_{-\infty i} (\cos(C\bar{y}_i) - 1) + A_{-\infty R} \sin(C\bar{y}_i)$$

3. $ikB_1A_{-\infty}$ (e^{iCy₁} -1)

The real part of the expression is

$$-k[B_{1R}A_{-\infty 1} (\cos(C\bar{y}_{1}) - 1) + B_{11}A_{-\alpha R} (\cos(C\bar{y}_{1}) - 1) +$$

$$\mathbf{B}_{1\mathrm{R}}\mathbf{A}_{-\infty\mathrm{R}}\,\sin(\mathrm{C}\bar{\mathbf{y}}_{1})\,-\,\mathbf{B}_{1\mathrm{I}}\mathbf{A}_{-\infty\mathrm{I}}\,\sin(\mathrm{C}\bar{\mathbf{y}}_{1})]$$

The imaginary part of the expression is

$$\begin{split} &k[B_{1R}A_{-\infty R} (\cos(C\bar{y}_i) - 1) - B_{1I}A_{-\nu I} (\cos(C\bar{y}_i) - 1) - B_{1R}A_{-\nu I} \sin(C\bar{y}_i) - B_{1I}A_{-\nu R} \sin(C\bar{y}_i)] \end{split}$$

4. $ikA_{-\infty} (e^{iC\bar{y}_{1}} - 1)$

The real part of the expression is

$$-k[A_{-\infty 1} (\cos(C\bar{y}_i) - 1) + A_{-\infty R} \sin(C\bar{y}_i)]$$

The imaginary part of the expression is

$$k[A_{-\infty R} (\cos(C\bar{y}_i) - 1) - A_{-\infty I} \sin(C\bar{y}_i)]$$

Now let,

$$E_{i_{i}} = -\frac{E_{i}I\overline{A}_{i}\overline{u}_{i}}{C\overline{y}_{i}\overline{a}_{i}^{2}} + \frac{E_{i}\overline{A}_{i}\sin\alpha_{ch}}{C\overline{y}_{i}} - \frac{2A_{i}I\overline{u}_{i}}{2\gamma C\overline{y}_{i}} + \frac{A_{i}I^{2}\sin\alpha_{ch}}{C\overline{y}_{i}}$$
(B21)

$$E_{i_{i}} = -\frac{E_{i}I\overline{A}_{i}(\mathbf{k} + \overline{v}_{i}C)}{C\overline{y}_{i}\overline{a}_{i}^{2}} + \frac{E_{i}\overline{A}_{i}\cos\alpha_{ch}}{\overline{y}_{i}} - \frac{2\overline{A}_{i}I(\mathbf{k} + \overline{v}_{i}C)}{2\gamma C\overline{y}_{i}} + \frac{\overline{A}_{i}I^{2}\cos\alpha_{ch}}{\overline{y}_{i}}$$
(B22)

$$E_{i_{5}} = \frac{-\overline{a}_{i}^{2}\overline{V}_{i}\overline{u}_{i}}{2\gamma(\gamma - 1)C\overline{y}_{i}\overline{a}_{i}^{2}} - \frac{\overline{\rho}_{i}\overline{a}_{i}\overline{V}_{i}\overline{u}_{i}}{\gamma(\gamma - 1)} \left(\frac{\gamma - 1}{2\overline{a}_{i}C\overline{y}_{i}}\right) - \frac{\overline{U}_{i}^{2}\overline{V}_{i}\overline{u}_{i}}{4C\overline{y}_{i}\overline{a}_{i}^{2}} + \frac{\overline{\rho}_{i}\overline{U}_{i}\overline{V}_{i}\sin\alpha_{ch}}{2C\overline{y}_{i}}$$
(B23)

$$E_{\epsilon} = -\frac{-\bar{a}_{i}^{2}\bar{\nabla}_{i}(\mathbf{k}+\bar{\nabla}_{i}C)}{2\gamma(\gamma-1)C\bar{y}_{i}\bar{a}_{i}^{2}} - \bar{\rho}_{i}\bar{a}_{i}\bar{\nabla}_{i}\left(\frac{\gamma-1}{2C\bar{y}_{i}\bar{a}_{i}}\right)\left(\frac{\mathbf{k}+\mathbf{v}_{i}C}{\gamma(\gamma-1)}\right) + \frac{\bar{U}_{i}^{2}\bar{\nabla}_{i}(\mathbf{k}+\bar{\nabla}_{i}C)}{4C\bar{y}_{i}\bar{a}_{i}^{2}} + \frac{\bar{\rho}_{i}\bar{U}_{i}\bar{\nabla}_{i}\cos\alpha_{\epsilon^{h}}}{2\bar{y}_{i}}$$
(B24)

Substituting the relationships for the real part of the $A_{\star \infty}$ terms, along with Equations B21 through B24 gives

$$\begin{split} \mathbf{E}_{3} & \left[\mathbf{B}_{1R}\mathbf{A}_{-\infty R}\left(\cos(C\bar{\mathbf{y}}_{i})\ -\ 1\right) - \mathbf{B}_{1I}\mathbf{A}_{-\infty I}\left(\cos(C\bar{\mathbf{y}}_{i})\ -\ 1\right) - \\ & \mathbf{B}_{1R}\mathbf{A}_{-\infty I}\sin(C\bar{\mathbf{y}}_{i}) - \mathbf{B}_{1I}\mathbf{A}_{-\infty R}\sin(C\bar{\mathbf{y}}_{i})\right] + \\ & \mathbf{E}_{4} & \left[\mathbf{A}_{-\infty R}\left(\cos(C\bar{\mathbf{y}}_{i})\ -\ 1\right) - \mathbf{A}_{-\infty I}\sin(C\bar{\mathbf{y}}_{i})\right] + \\ & \mathbf{E}_{5}\overline{\mathbf{A}'}_{1R}\mathbf{I} - \mathbf{E}_{2} & \left(\overline{\rho'}_{R}^{*}\bar{\mathbf{a}}^{*}\ +\ \overline{\rho}^{*}\overline{\mathbf{A}'}_{R}^{*}\bar{\mathbf{a}'}^{*}\ +\ 3\overline{\rho}^{*}\bar{\mathbf{a}'}_{R}^{*}\right) \\ & = -\mathbf{k}\mathbf{E}_{5} & \left[\mathbf{B}_{1R}\mathbf{A}_{-\infty I}\left(\cos(C\bar{\mathbf{y}}_{i})\ -\ 1\right)\ +\ \mathbf{B}_{1I}\mathbf{A}_{-\infty R}\left(\cos(C\bar{\mathbf{y}}_{i})\ -\ 1\right)\ + \\ & \mathbf{B}_{1R}\mathbf{A}_{-\infty R}\sin(C\bar{\mathbf{y}}_{i})\ -\ \mathbf{B}_{1I}\mathbf{A}_{-\infty I}\sin(C\bar{\mathbf{y}}_{i})\ \right] + \\ & \mathbf{E}_{6} & \left[-\mathbf{k}\left(\mathbf{A}_{-\infty I}\left(\cos(C\bar{\mathbf{y}}_{i})\ -\ 1\right)\ +\ \mathbf{A}_{-\infty R}\sin(C\bar{\mathbf{y}}_{i})\right)\right] \\ & - & \left(\frac{\bar{\mathbf{a}}^{2}\bar{\mathbf{V}}}{2\gamma(\gamma-1)}\right)_{1}\ & \left(\mathbf{k}\bar{\rho}'_{1}^{*}\right)\ -\ \overline{\mathbf{V}'}_{1I}\mathbf{k}\ & \left(\frac{\bar{\rho}\bar{\mathbf{a}}^{2}}{\gamma(\gamma-1)}\right)_{1}\ -\ \mathbf{k}\bar{\mathbf{a}'}_{1}^{*}\ & \left(\frac{\bar{\rho}\bar{\mathbf{a}}\bar{\mathbf{V}}}{\gamma(\gamma-1)}\right)_{1}\ \end{split}$$
(B25)

Collecting terms and rearranging Equation B25 produces:

$$\begin{split} \mathbf{E}_{8}\mathbf{A}_{-\boldsymbol{\omega}\mathbf{R}} + \mathbf{E}_{9}\mathbf{A}_{-\boldsymbol{\omega}\mathbf{I}} &= -\mathbf{E}_{1}\bar{\mathbf{A}'}_{1\mathbf{R}}\mathbf{I} + \\ & \left(\frac{\bar{a}^{2}\bar{\mathbf{V}}_{1}}{2\gamma(\gamma-1)} + \frac{\bar{\mathbf{U}}^{2}\bar{\mathbf{V}}_{1}}{4}\right)_{1}\mathbf{k}\bar{\rho}'\mathbf{a}^{*} - \\ & \mathbf{k}\bar{a}'\mathbf{a}^{*} \left(\frac{\bar{\rho}\bar{a}\bar{\mathbf{V}}_{1}}{\gamma(\gamma-1)} + \frac{\bar{\rho}\bar{\mathbf{U}}\bar{\mathbf{V}}_{1}}{2}\right)_{1} - \\ & \mathbf{k}\bar{\mathbf{V}'}_{11} \left(\frac{\bar{\rho}\bar{\mathbf{U}}^{2}}{2} + \frac{\bar{\rho}\bar{a}^{2}}{\gamma(\gamma-1)}\right)_{1} \\ & + \mathbf{E}_{2}\left(\bar{a}^{*}\bar{\rho'}_{\mathbf{R}}^{*} + \bar{\rho}^{*}\bar{\mathbf{A}'}_{\mathbf{R}}^{*}\mathbf{a}^{*} + 3\bar{\mathbf{a}'}_{\mathbf{R}}^{*}\bar{\rho}^{*}\right) \end{split}$$

with

$$\begin{split} E_{7} &= \cos \left((C\bar{y}_{1}) - 1 \right) \\ E_{8} &= E_{4} \left(E_{7} B_{1R} - B_{11} \sin \left(C\bar{y}_{1} \right) \right) + E_{4} E_{7} + E_{5} k \left(B_{11} E_{7} + B_{1R} \sin \left(C\bar{y}_{1} \right) \right) \\ E_{9} &= -E_{4} \left(B_{11} E_{7} + B_{1R} \sin \left(C\bar{y}_{1} \right) \right) - E_{4} \sin \left(C\bar{y}_{1} \right) + \\ E_{5} k \left(B_{1R} E_{7} - B_{11} \sin \left(C\bar{y}_{1} \right) \right) + E_{6} k E_{7} \end{split}$$

--- -

Equation B26 represents the real component of Equation B20. The imaginary component is

÷

$$\begin{split} \mathbf{E}_{a} \left[\mathbf{B}_{1R} \mathbf{A}_{-i} \mathbf{E}_{7}^{-} + \mathbf{B}_{11} \mathbf{A}_{-olk} \mathbf{E}_{7}^{-} + \mathbf{B}_{1R} \mathbf{A}_{-cR} \sin \left(\mathbf{C} \bar{\mathbf{y}}_{i} \right) - \\ \mathbf{B}_{11} \mathbf{A}_{-i} \sin \left(\mathbf{C} \bar{\mathbf{y}}_{i} \right) \right] + \mathbf{E}_{4} \left[\mathbf{A}_{-i} \mathbf{E}_{7}^{-} + \mathbf{A}_{-iR} \sin \left(\mathbf{C} \bar{\mathbf{y}}_{i} \right) \right] + \\ \mathbf{E}_{1} \bar{\mathbf{A}}_{i1} \mathbf{I} - \mathbf{E}_{2} \left[\bar{\rho}_{1}^{+*} \bar{\mathbf{a}}^{*} + \bar{\rho}^{*} \bar{\mathbf{A}}_{1}^{+*} \bar{\mathbf{a}}^{*} + 3 \bar{\rho}^{*} \bar{\mathbf{a}}_{1}^{**} \right] \\ = \mathbf{E}_{5} \mathbf{k} \left[\mathbf{B}_{1R} \mathbf{A}_{-oR} \mathbf{E}_{7}^{-} - \mathbf{B}_{11} \mathbf{A}_{-ol} \mathbf{E}_{7}^{-} - \mathbf{B}_{1R} \mathbf{A}_{-ort} \sin \left(\mathbf{C} \bar{\mathbf{y}}_{i} \right) - \\ \mathbf{B}_{11} \mathbf{A}_{-ooR} \sin \left(\mathbf{C} \mathbf{y} \right) \right] + \mathbf{E}_{6} \mathbf{k} \left[\mathbf{A}_{-ort} \mathbf{E}_{7}^{-} - \mathbf{A}_{-ol} \sin \left(\mathbf{C} \bar{\mathbf{y}}_{i} \right) \right] + \\ \mathbf{k} \bar{\rho}_{1R}^{**} \left(\frac{\bar{a}^{2} \bar{\mathbf{V}}_{1}}{2 \gamma (\gamma - 1)} + \frac{\bar{\mathbf{U}}^{2} \bar{\mathbf{V}}_{1}}{4} \right)_{-1} + \\ \mathbf{k} \bar{\mathbf{a}}_{1R}^{**} \left(\frac{\bar{\rho} \bar{\mathbf{a}} \bar{\mathbf{V}}_{1}}{\gamma (\gamma - 1)} + \frac{\bar{\rho} \bar{\mathbf{U}} \bar{\mathbf{V}}_{1}}{2} \right)_{-1} \end{split}$$
(B27)
$$+ \mathbf{k} \left[\frac{\bar{\rho} \bar{\mathbf{a}}^{2}}{\gamma (\gamma - 1)} + \frac{\bar{\rho} \bar{\mathbf{U}}^{2}}{2} \right]_{-1} \bar{\mathbf{V}}_{1R}$$

(B26)

Again, collecting terms for $A_{\scriptscriptstyle -\infty I}$ and $A_{\scriptscriptstyle -\infty R}$, let

$$E_{10} = E_{3} [B_{11}E_{7} + B_{1R} \sin (C\bar{y}_{i})] + E_{4} \sin (C\bar{y}_{i}) - E_{5}k [B_{1R}E_{7} - B_{11} \sin (C\bar{y}_{i})] - E_{6}kE_{7}$$

$$E_{11} = E_{3} [B_{1R}E_{7} - B_{11} \sin (C\bar{y}_{i})] + E_{4}E_{7} + E_{5}k [B_{11}E_{7} + B_{1R} \sin (C\bar{y}_{i})] + E_{6}k \sin (C\bar{y}_{i})$$

Substituting the above relationships into Equation B27 gives

$$E_{10}A_{-\infty R} + E_{11}A_{-\infty l} = -E_{l}\bar{A'}_{,l}I + E_{2}\left[\bar{\rho'}_{,*}^{*}\bar{a}^{*} + \bar{\rho}^{*}\bar{A'}_{,l}^{*}\bar{a}^{*} + 3\bar{\rho}^{*}\bar{a'}_{,*}^{*}\right] + \\ k\bar{\rho'}_{R}^{*} \left(\frac{\bar{a}^{2}\bar{V}_{1}}{2\gamma(\gamma-1)} + \frac{\bar{U}^{2}\bar{V}_{1}}{4}\right)_{,} + k\bar{V'}_{1R} \left(\frac{\bar{\rho}\bar{a}^{2}}{\gamma(\gamma-1)} + \frac{\bar{\rho}\bar{U}^{2}}{2}\right)_{,} + \\ k\bar{a'}_{R}^{*} \left(\frac{\bar{\rho}\bar{a}\bar{V}_{1}}{\gamma(\gamma-1)} + \frac{\bar{\rho}\bar{U}\bar{V}_{1}}{2}\right)_{,}$$
(B28)

The next step involves the combination of Equation B26 with Equation B28 and solving for $A_{-\infty R}$ and $A_{-\infty I}$. The sequence requires that Equation B26 be divided by E_8 and Equation B28 be divided by E_{10} , as shown in Equations B29 and B30.

$$\begin{aligned} A_{-\infty R} + A_{-\infty I} & \left(\frac{E_{9}}{E_{8}}\right) &= -\bar{A}'_{iR}I & \left(\frac{E_{1}}{E_{8}}\right) &+ (\bar{\rho}'_{R}^{*}\bar{a}^{*} + \bar{\rho}^{*}\bar{A}'_{R}^{*}\bar{a}^{*} + \\ &3\bar{\rho}^{*}\bar{a}'_{R}^{*}) & \left(\frac{E_{2}}{E_{8}}\right) &- \bar{\rho}'_{1}^{*} & \left(\frac{E_{12}}{E_{8}}\right) &- \bar{V}'_{1I} & \left(\frac{E_{13}}{E_{8}}\right) &- \bar{a}'_{1}^{*} & \left(\frac{E_{14}}{E_{8}}\right) \end{aligned} (B29) \\ A_{-\infty R} + A_{-\infty I} & \left(\frac{E_{1}}{E_{10}}\right) &= -\bar{A}'_{iI}I & \left(\frac{E_{1}}{E_{10}}\right) &+ \\ & (\bar{\rho}'_{1}^{*}\bar{a}^{*} + \bar{\rho}^{*}\bar{A}'_{1}^{*}\bar{a}^{*} + 3\bar{\rho}^{*}\bar{a}_{1}^{*}) & \left(\frac{E_{2}}{E_{10}}\right) &+ \\ & \bar{\rho}'_{R}^{*} & \left(\frac{E_{12}}{E_{10}}\right) &+ \bar{V}'_{1R} & \left(\frac{E_{13}}{E_{10}}\right) &+ \bar{a}'_{R}^{*} & \left(\frac{E_{14}}{E_{10}}\right) \end{aligned} (B30) \end{aligned}$$

where,

$$\begin{split} \mathbf{E}_{12} &= \quad \left(\begin{array}{c} \frac{\bar{\mathbf{a}}^2 \bar{\mathbf{V}} \mathbf{k}}{2 \gamma (\gamma \ -1)} \ + \ \frac{\bar{\mathbf{U}}^2 \bar{\mathbf{V}} \mathbf{k}}{4} \end{array} \right)_{_{1}} \\ \mathbf{E}_{13} &= \quad \left(\begin{array}{c} \frac{\bar{\rho} \bar{\mathbf{a}}^2 \mathbf{k}}{\gamma (\gamma \ -1)} \ + \ \frac{\bar{\rho} \bar{\mathbf{U}}^2 \mathbf{k}}{2} \end{array} \right)_{_{1}} \\ \mathbf{E}_{14} &= \quad \left(\begin{array}{c} \frac{\bar{\rho} \bar{\mathbf{a}} \bar{\mathbf{V}} \mathbf{k}}{\gamma (\gamma \ -1)} \ + \ \frac{\bar{\rho} \bar{\mathbf{U}} \bar{\mathbf{V}} \mathbf{k}}{2} \end{array} \right)_{_{1}} \end{split}$$

Subtracting Equation B30 from Equation B29 yields

$$\begin{split} \mathbf{A}_{-\infty \mathbf{I}} &= \left[-\mathbf{E}_{\mathbf{I}} \mathbf{I} \left(\frac{\tilde{\mathbf{A}'}_{\mathbf{R}}}{\mathbf{E}_{\mathbf{g}}} - \frac{\tilde{\mathbf{A}'}_{\mathbf{I}}}{\mathbf{E}_{\mathbf{I}0}} \right) + \mathbf{E}_{2} \left[\mathbf{\tilde{a}}^{*} \left(\frac{\tilde{\boldsymbol{\rho}'}_{\mathbf{R}}^{*}}{\mathbf{E}_{\mathbf{g}}} - \frac{\tilde{\boldsymbol{\rho}'}_{\mathbf{I}}^{*}}{\mathbf{E}_{\mathbf{I}0}} \right) + \\ \tilde{\boldsymbol{\rho}}^{*} \tilde{\mathbf{a}}^{*} \left(\frac{\tilde{\mathbf{A}'}_{\mathbf{R}}^{*}}{\mathbf{E}_{\mathbf{g}}} - \frac{\tilde{\mathbf{A}'}_{\mathbf{I}}}{\mathbf{E}_{\mathbf{I}0}} \right) + 3 \tilde{\boldsymbol{\rho}}^{*} \left(\frac{\tilde{\mathbf{a}'}_{\mathbf{R}}^{*}}{\mathbf{E}_{\mathbf{g}}} - \frac{\tilde{\mathbf{a}'}_{\mathbf{I}}^{*}}{\mathbf{E}_{\mathbf{I}0}} \right) \right] - \\ \mathbf{E}_{\mathbf{I}2} \left(\frac{\tilde{\boldsymbol{\rho}'}_{\mathbf{I}}^{*}}{\mathbf{E}_{\mathbf{g}}} - \frac{\tilde{\boldsymbol{\rho}'}_{\mathbf{R}}^{*}}{\mathbf{E}_{\mathbf{I}0}} \right) - \mathbf{E}_{\mathbf{I}3} \left(\frac{\tilde{\mathbf{V}'}_{\mathbf{I}}}{\mathbf{E}_{\mathbf{g}}} - \frac{\tilde{\mathbf{V}'}_{\mathbf{I}\mathbf{R}}}{\mathbf{E}_{\mathbf{I}0}} \right) - \\ \mathbf{E}_{\mathbf{I}4} \left(\frac{\tilde{\mathbf{a}'}_{\mathbf{I}}^{*}}{\mathbf{E}_{\mathbf{g}}} - \frac{\tilde{\mathbf{a}'}_{\mathbf{R}}^{*}}{\mathbf{E}_{\mathbf{I}0}} \right) \right] \div \left[\frac{\mathbf{E}_{\mathbf{g}}}{\mathbf{E}_{\mathbf{g}}} - \frac{\mathbf{E}_{\mathbf{I}1}}{\mathbf{E}_{\mathbf{I}0}} \right]$$
(B31)

Substituting Equation B31 into Equation B29 and solving for $A_{\scriptscriptstyle -\infty R}$ produces

$$\mathbf{A}_{-\infty\mathbf{R}} = -\mathbf{\bar{A}'}_{\mathbf{i}\mathbf{R}}\mathbf{I} \quad \left(\frac{\mathbf{E}_{\mathbf{i}}}{\mathbf{E}_{\mathbf{s}}}\right) + \left(\mathbf{\bar{\rho}'}_{\mathbf{R}}^{*}\mathbf{\bar{a}}^{*} + \mathbf{\bar{\rho}}^{*}\mathbf{\bar{A}'}_{\mathbf{R}}^{*}\mathbf{\bar{a}}^{*} + 3\mathbf{\bar{\rho}}^{*}\mathbf{\bar{a}'}_{\mathbf{R}}^{*}\right) \left(\frac{\mathbf{E}_{\mathbf{2}}}{\mathbf{E}_{\mathbf{s}}}\right) - \mathbf{\bar{\rho}'}_{\mathbf{1}}^{*} \quad \left(\frac{\mathbf{E}_{\mathbf{12}}}{\mathbf{E}_{\mathbf{s}}}\right) - \mathbf{\bar{a}'}_{\mathbf{1}}^{*} \quad \left(\frac{\mathbf{E}_{\mathbf{14}}}{\mathbf{E}_{\mathbf{s}}}\right) - \mathbf{A}_{-\infty\mathbf{1}} \quad \left(\frac{\mathbf{E}_{\mathbf{9}}}{\mathbf{E}_{\mathbf{s}}}\right)$$
(B32)

Before proceeding further, the following relationships must be given:

$$E_{15} = \left(\frac{E_{y}}{E_{g}} - \frac{E_{11}}{E_{10}}\right)$$

$$E_{16} = I \left(\frac{E_{1}}{E_{g}}\right) \left(\frac{E_{3}}{E_{15}E_{g}} - 1\right)$$

$$E_{17} = I \left(\frac{-E_{1}}{E_{10}E_{15}}\right) \left(\frac{E_{g}}{E_{g}}\right)$$

$$E_{18} = \left(\frac{E_{2}}{E_{g}}\right) \left(\vec{a}^{*} - \frac{\vec{a}^{*}E_{9}}{E_{15}E_{g}}\right) - \left(\frac{E_{12}E_{9}}{E_{g}E_{10}E_{15}}\right)$$

$$E_{19} = -\frac{E_{12}}{E_{g}} + \left(\frac{\vec{a}^{*}E_{2}}{E_{10}E_{15}}\right) \left(\frac{E_{9}}{E_{g}}\right) + \left(\frac{E_{12}}{E_{g}E_{10}E_{15}}\right) \left(\frac{E_{9}}{E_{g}}\right)$$

$$E_{19} = -\frac{E_{12}}{E_{g}} + \left(\frac{\vec{a}^{*}E_{2}}{E_{10}E_{15}}\right) \left(\frac{E_{9}}{E_{g}}\right) + \left(\frac{E_{12}}{E_{g}E_{10}E_{15}}\right) \left(\frac{E_{9}}{E_{g}}\right)$$

$$E_{21} = \vec{p}^{*}\vec{a}^{*} \left(\frac{E_{2}}{E_{g}} - \left(\frac{E_{2}}{E_{g}E_{15}}\right)\right) \left(\frac{E_{9}}{E_{g}}\right)$$

$$E_{22} = 3\vec{p}^{*} \left(\frac{E_{2}}{E_{g}}\right) \left(1 - \frac{E_{9}E_{9}}{E_{9}E_{15}}\right) - \left(\frac{E_{9}E_{14}}{E_{9}E_{10}E_{15}}\right)$$

$$E_{24} = -\frac{E_{13}}{E_{g}} + \left(\frac{E_{13}}{E_{9}E_{15}}\right) \left(\frac{E_{9}}{E_{g}}\right)$$

$$E_{25} = -\left(\frac{E_{13}}{E_{g}} + \left(\frac{E_{13}}{E_{9}E_{15}}\right)\right) \left(\frac{E_{9}}{E_{g}}\right)$$

$$E_{25} = -\left(\frac{E_{13}}{E_{g}} + \left(\frac{E_{13}}{E_{9}E_{15}}\right)\right) \left(\frac{E_{9}}{E_{9}}\right)$$

$$E_{25} = -\left(\frac{E_{13}}{E_{g}} + \left(\frac{E_{13}}{E_{9}E_{15}}\right)\right) \left(\frac{E_{9}}{E_{9}}\right)$$

$$E_{25} = -\left(\frac{E_{13}}{E_{9}} + \left(\frac{E_{13}}{E_{9}E_{15}}\right)\right) \left(\frac{E_{9}}{E_{9}}\right)$$

$$E_{25} = -\left(\frac{E_{13}}{E_{9}E_{15}}\right) \left(\frac{E_{9}}{E_{9}}\right)$$

$$E_{25} = -\left(\frac{E_{13}}{E_{9}E_{15}}\right) \left(\frac{E_{9}}{E_{9}}\right)$$

$$E_{25} = -\left(\frac{E_{13}}{E_{9}E_{15}}\right) \left(\frac{E_{9}}{E_{9}}\right)$$

$$E_{25} = -\left(\frac{E_{13}}{E_{9}E_{15}}\right) \left(\frac{E_{9}}{E_{9}}\right)$$

$$E_{25} = -\left(\frac{E_{13}}{E_{10}E_{15}}\right) \left(\frac{E_{9}}{E_{9}}\right)$$

$$E_{25} = -\left(\frac{E_{13}}{E_{10}E_{15}}\right) \left(\frac{E_{9}}{E_{9}}\right)$$

Substituting Equation B31 into Equation B32 and using the relationships detailed in Equation B33 yields

$$A_{-\infty R} = (E_{16}\bar{A}'_{1R} + E_{17}\bar{A}'_{11}) + (E_{18}\bar{\rho}'_{R}^{*} + E_{19}\bar{\rho}'_{1}^{*}) + (E_{20}\bar{A}'_{R}^{*} + E_{21}\bar{A}'_{1}^{*}) + (E_{22}\bar{a}'_{R}^{*} + E_{23}\bar{a}'_{1}^{*}) + (E_{24}\bar{\nabla}'_{11} + E_{25}\bar{\nabla}'_{1R})$$
(B34)

The nondimensional momentum equation has the form

$$\vec{p}'_{i}\vec{A}_{i} + \vec{p}_{i}\vec{A}'_{i} - \vec{p}^{*}\vec{A}'^{*} - \vec{p}'^{*} = \vec{a}^{*} (2\vec{\rho}^{*}\vec{a}'^{*} + \vec{\rho}^{*}\vec{A}'^{*}\vec{a}^{*} + \vec{\rho}'^{*}\vec{a}^{*}) - \\ I \left[\vec{p}_{i}\vec{A}_{i}I + \vec{A}'_{i}I + 2\vec{A}_{i} (\vec{u}', \sin \alpha_{ch} + \vec{v}'_{i} \cos \alpha_{ch})\right] + \\ \vec{U}_{i}\vec{V}_{i} - \frac{\partial\vec{p}'_{i}}{\partial t} + \vec{p}_{i}\vec{U}_{i} - \frac{\partial\vec{V}'_{i}}{\partial t} + \vec{p}_{i}\vec{\nabla}_{i} - \frac{\partial\vec{U}'_{i}}{\partial t}$$

Inserting the relationships given in Equations B9 through B19 into Equation B25 and dividing through by e^{ikt} produces

$$\begin{bmatrix} -\left(\frac{\mathbf{k}+\mathbf{\widetilde{u}}_{i}\mathbf{B}_{i}+\mathbf{\widetilde{v}}_{i}\mathbf{C}\right) \\ (\mathbf{A}_{-\infty}\left(\mathbf{e}^{i\cdot\mathbf{\widetilde{v}}_{i}}-1\right)\right)\mathbf{\widetilde{A}}_{i}+\mathbf{\widetilde{p}}_{i}\mathbf{\widetilde{A}}_{i}'-\mathbf{\widetilde{p}}^{*}\mathbf{\widetilde{A}}^{**}-\rho^{**}\mathbf{\widetilde{a}}^{*2} \end{bmatrix} \\ = \mathbf{\widetilde{a}}^{*}\left(2\mathbf{\widetilde{p}}^{*}\mathbf{\widetilde{a}}^{**}+\mathbf{\widetilde{p}}^{*}\mathbf{\widetilde{A}}^{**}\mathbf{\widetilde{a}}^{*}+\mathbf{\widetilde{p}}^{*}\mathbf{\widetilde{a}}^{*}\right)-\mathbf{I} \left\{-\\ \left(\frac{\mathbf{k}+\mathbf{\widetilde{u}}_{i}\mathbf{B}_{1}+\mathbf{\widetilde{v}}_{i}\mathbf{C}}{\mathbf{C}\mathbf{\widetilde{y}}_{i}\mathbf{\widetilde{a}}^{2}}\right) -\mathbf{\widetilde{A}}_{i}\mathbf{I}\mathbf{A}_{-\infty}\left(\mathbf{e}^{i\cdot\mathbf{\widetilde{v}}_{i}}-1\right)+\mathbf{\widetilde{A}}_{i}'\mathbf{I}+\\ 2\mathbf{\widetilde{A}}_{i} \left[\left(\frac{\mathbf{B}_{i}\mathbf{A}_{-\infty}}{\mathbf{C}\mathbf{\widetilde{y}_{i}}\mathbf{\widetilde{a}}^{2}}-\mathbf{\sin}\alpha_{ch}\right)\left(\mathbf{e}^{i\cdot\mathbf{\widetilde{v}}_{i}}-1\right)+\\ \left(\frac{\mathbf{A}_{-\infty}}{\mathbf{\widetilde{y}_{i}}}\cos\alpha_{ch}\right) - \left(\mathbf{e}^{i\cdot\mathbf{\widetilde{v}}_{i}}-1\right)\right]\right\} +\\ -\frac{\mathbf{\widetilde{U}}_{i}\mathbf{\widetilde{V}}_{i}}{2} \left\{-\mathbf{i}\mathbf{k} \left[\mathbf{\widetilde{p}}^{**}-\left(\frac{\mathbf{k}+\mathbf{\widetilde{u}}_{i}\mathbf{B}_{1}+\mathbf{\widetilde{v}}_{i}\mathbf{C}\right)\\ \mathbf{A}_{-\infty}\left(\mathbf{e}^{i\cdot\mathbf{\widetilde{v}}_{i}}-1\right)\right]\right\} + \mathbf{\widetilde{p}}_{i}\mathbf{\widetilde{U}}_{i}\mathbf{i}\mathbf{k}\mathbf{\widetilde{V}}_{i} + -\frac{\mathbf{\widetilde{p}}_{i}\mathbf{\widetilde{V}}_{1}}{2} \left\{-\mathbf{i}\mathbf{k}\mathbf{\widetilde{a}}^{**}+\\ \mathbf{i}\mathbf{k} \left[\frac{\mathbf{B}_{i}\mathbf{A}_{-\infty}}{\mathbf{C}\mathbf{\widetilde{y}}_{i}}\left(\mathbf{e}^{i\cdot\mathbf{\widetilde{v}}_{i}}-1\right)\sin\alpha_{ch}+\frac{\mathbf{A}_{-\infty}}{\mathbf{\widetilde{y}}_{i}}\left(\mathbf{e}^{i\cdot\mathbf{\widetilde{v}}_{i}}-1\right)\cos\alpha_{ch}\right]\right\}$$
(B35)

Rearrange the Equation B35 to collect $A_{-\infty}$ on right side of expression. Assume the following relationships:

$$M_{i} = -\frac{\bar{u}_{i}\bar{A}_{i}}{C\bar{y}_{i}} - \frac{\bar{u}_{i}\bar{A}_{i}I^{2}}{C\bar{y}_{i}\bar{a}_{i}^{2}} + \frac{2\bar{A}_{i}I}{C\bar{y}_{i}} \sin \alpha_{ch}$$

$$M_{2} = -\frac{(k + \bar{v}_{i}C)\bar{A}_{i}}{C\bar{y}_{i}} - \frac{(k + \bar{v}_{i}C)\bar{A}_{i}I^{2}}{C\bar{y}_{i}\bar{a}_{i}^{2}} + \frac{2\bar{A}_{i}I^{2}}{\bar{y}_{i}} \cos \alpha_{ch}$$

$$M_{3} = \frac{\bar{U}_{i}\bar{V}_{i}}{2C\bar{y}_{i}\bar{a}_{i}^{2}} - \frac{\bar{\rho}_{i}\bar{V}_{i}\sin \alpha_{ch}}{2C\bar{y}_{i}}$$

$$M_{4} = \left(\frac{k + \bar{v}_{i}C}{C\bar{y}_{i}\bar{a}_{i}^{2}}\right) \left(\frac{\bar{U}_{i}\bar{V}_{i}}{2}\right) - \frac{\bar{\rho}_{i}\bar{V}_{i}\cos \alpha_{cl}}{2\bar{y}_{i}}$$
(B36)

Substitute the relationships of Equation B36 into Equation B35.

$$M_{1} [B_{1}A_{-\infty} (e^{iC\overline{y}_{1}} - 1)] + M_{2} [A_{-\infty} (e^{iC\overline{y}_{1}} - 1)] + M_{3} [ikB_{1}A_{-\infty} (e^{iC\overline{y}_{1}} - 1)] + M_{4} [ikA_{-\infty} (e^{iC\overline{y}_{1}} - 1)]$$

$$= (-\overline{p}_{1} - I^{2}) \overline{A}'_{1} + (\overline{p}^{*} + \overline{a}^{2}\overline{\rho}^{*}) \overline{A}'^{*} + 2\overline{a}^{*2}\overline{\rho}'^{*} + \frac{ik\overline{\rho}'^{*}\overline{U}_{1}\overline{V}_{1}}{2} + ik\overline{\rho}_{1}\overline{U}_{1}\overline{V}'_{1} + \frac{ik\overline{\rho}_{1}\overline{a}'^{*}\overline{V}_{1}}{2} + 2\overline{\rho}^{*}\overline{a}^{*}\overline{a}'^{*} \qquad (B37)$$

The next step in the sequence involves the separation of Equation B37 into real and imaginary parts. First, assume

$$M_{5} = -\vec{p}_{1} - I^{2}$$

$$M_{6} = \vec{p}^{*} + \vec{\rho}^{*} \vec{a}^{*2}$$
(B38)

and

$$M_{7} = M_{1} [B_{1R}E_{7} - B_{1I} \sin (C\bar{y}_{i})] + M_{2}E_{7} - M_{3} [kB_{1I}E_{7} - kB_{1R} \sin (C\bar{y}_{i})] - M_{4}k \sin (C\bar{y}_{i})$$

$$M_{8} = -M_{1} [B_{1I}E_{7} + B_{1R} \sin (C\bar{y}_{i})] - M_{2} \sin (C\bar{y}_{i}) + kM_{3} [-B_{1R}E_{7} + B_{1I} \sin (C\bar{y}_{i})] - kM_{4}E_{7}$$
(B39)

Real Part

$$M_{1} \left[B_{1R}A_{-\infty R}E_{7} - B_{1l}A_{-\infty l}E_{7} - B_{1R}A_{-\infty l}\sin(C\bar{y}_{i}) - B_{1l}A_{-\infty R}\sin(C\bar{y}_{i}) \right] + M_{2} \left[A_{-\infty R}E_{7} - A_{-\infty l}\sin(C\bar{y}_{i}) \right] - kM_{3} \left[B_{1R}A_{-\infty l}E_{7} + B_{1l}A_{-\infty R}E_{7} + B_{1R}A_{-\infty R}\sin(C\bar{y}_{i}) - B_{1l}A_{-\infty l}\sin(C\bar{y}_{i}) \right] - kM_{4} \left[A_{-\infty l}E_{7} + A_{-\infty R}\sin(C\bar{y}_{i}) \right] = M_{3}\bar{A}'_{iR} + M_{6}\bar{A}'_{R}^{*} + 2\bar{\rho}'_{R}^{*}\bar{a}^{*2} - \frac{k\bar{\rho}'_{1}^{*}\bar{U}_{1}\bar{V}_{1}}{2} - k\bar{\rho}_{1}\bar{U}_{1}\bar{V}'_{11} - \frac{k\bar{\rho}_{1}\bar{a}'_{1}^{*}\bar{V}_{1}}{2} + 2\bar{\rho}^{*}\bar{a}^{*}\bar{a}'_{R}^{*}$$
(B40)

Substituting Equation B39 into Equation B40 yields

$$\mathbf{M}_{7}\mathbf{A}_{-\mathbf{\omega}\mathbf{R}} + \mathbf{M}_{8}\mathbf{A}_{-\mathbf{\omega}\mathbf{I}} = \mathbf{M}_{8}\mathbf{\tilde{A}'}_{\mathbf{i}\mathbf{R}} + \mathbf{M}_{6}\mathbf{\tilde{A}'}_{\mathbf{R}}^{*} + 2\vec{\rho}'_{\mathbf{R}}^{*}\mathbf{\tilde{a}}^{*2} - \frac{\mathbf{k}\vec{\rho}_{1}\mathbf{\tilde{V}}_{1}}{2} - \mathbf{k}\vec{\rho}_{1}\mathbf{\tilde{U}}_{1}\mathbf{\tilde{V}'}_{\mathbf{I}} - \frac{\mathbf{k}\vec{\rho}_{1}\mathbf{\tilde{a}'}_{\mathbf{I}}^{*}\mathbf{\tilde{V}}}{2} + 2\vec{\rho}^{*}\mathbf{\tilde{a}}^{*}\mathbf{\tilde{a}'}_{\mathbf{R}}^{*}$$
(B41)

Imaginary Part

$$M_{1} [B_{1R}A_{-\infty l}E_{7} + B_{1l}A_{-\infty R}E_{7} + B_{1R}A_{-\infty R}\sin(C\bar{y}i) - B_{1l}A_{-\infty l}\sin(C\bar{y}i)] + M_{2} [A_{-\infty l}E_{7} + A_{-\infty R}\sin(C\bar{y}i)] + kM_{3} [B_{1R}A_{-\infty R}E_{7} - B_{1l}A_{-\infty l}E_{7} - B_{1r}A_{-\infty l}\sin(C\bar{y}i)] - B_{1l}A_{-\infty R}\sin(C\bar{y}i)] + kM_{4} [A_{-\infty R}E_{7} - A_{-\infty l}\sin(C\bar{y}i)] = (-\bar{\rho}_{i} - I^{2}) \bar{A}'_{ii} + (\bar{p}^{*} + \bar{\rho}^{*}\bar{a}^{*2}) \bar{A}'_{i}^{*} + 2\bar{\rho}'_{i}^{*}\bar{a}^{*2} + 2\bar{\rho}^{*}\bar{a}^{*}\bar{a}'_{i}^{*} + \frac{k\bar{\rho}_{i}\bar{a}'_{i}^{*}\bar{\nabla}_{i}}{2} + k\bar{\rho}_{i}\bar{\nabla}_{i}\bar{\nabla}'_{R1} + \frac{k\bar{\rho}_{i}\bar{a}'_{R}^{*}\bar{\nabla}_{i}}{2}$$
(B42)

Assume

$$M_{9} = M_{1} [B_{11}E_{7} + B_{1R} \sin (C\bar{y}i)] + M_{2} \sin (C\bar{y}i) + kM_{3} [B_{1R}E_{7} - B_{11} \sin (C\bar{y}i)] + M_{4}E_{7}k M_{10} = M_{1} [B_{1R}E_{7} - B_{11} \sin (C\bar{y}i)] + M_{2}E_{7} - kM_{3} [B_{11}E_{7} + B_{1R} \sin (C\bar{y}i)] - kM_{4} \sin (C\bar{y}i)$$
(B43)

Substituting the relationships of Equation B43 into Equation B42 yields

$$M_{g}A_{-\infty R} + M_{10}A_{-\infty l} = M_{s}\overline{A}'_{il} + M_{s}\overline{A}'_{l}^{*} + 2\bar{\rho}'_{l}^{*}\overline{a}^{*2} + 2\bar{\rho}^{*}\overline{a}^{*}\overline{a}'_{l}^{*} + \frac{k\bar{\rho}'_{R}^{*}\overline{U}_{1}\overline{V}_{l}}{2} + k\bar{\rho}_{1}\overline{U}_{1}\overline{V}'_{1R} + \frac{k\bar{\rho}_{1}\overline{a}'_{R}^{*}\overline{V}_{l}}{2}$$
(B44)

In order to solve for $A_{-\varpi R}$ and $A_{-\varpi I},$ make the following assumptions.

$$E_{26} = -I \quad \left(\frac{E_{1}}{E_{8}E_{15}}\right)$$

$$E_{27} = \frac{E_{1}}{E_{10}E_{15}}$$

$$E_{28} = \frac{\bar{a}^{*}E_{2}}{E_{8}E_{15}} + \frac{E_{12}}{E_{10}E_{15}}$$

$$E_{29} = -\frac{\bar{a}^{*}E_{2}}{E_{8}E_{15}} - \frac{E_{12}}{E_{8}E_{15}}$$

$$E_{30} = \frac{\bar{\rho}^{*}\bar{a}^{*}E_{2}}{E_{9}E_{15}}$$

$$E_{31} = -\frac{\bar{\rho}^{*}\bar{a}^{*}E_{2}}{E_{10}E_{15}}$$

$$E_{32} = \frac{3\bar{\rho}^{*}E_{2}}{E_{8}E_{15}} + \frac{E_{14}}{E_{10}E_{15}}$$

$$E_{33} = -\frac{3\bar{\rho}^{*}E_{2}}{E_{10}E_{15}} - \frac{E_{14}}{E_{8}E_{15}}$$

$$E_{34} = -\frac{E_{13}}{E_{8}E_{15}}$$

(B45)

Substitute the relationships of Equation B45 into Equations B41 and B44 to solve for $A_{-\infty t}$ and $A_{-\infty l},$ such that

$$A_{-\infty R} = E_{16}\overline{A'}_{iR} + E_{17}\overline{A'}_{i1} + E_{18}\overline{\rho'}_{R}^{*} + E_{19}\overline{\rho'}_{1}^{*} + E_{20}\overline{A'}_{R}^{*} + E_{21}\overline{A'}_{1}^{*} + E_{22}\overline{A'}_{1}^{*} + E_{23}\overline{a'}_{1}^{*} + E_{24}\overline{V'}_{11} + E_{25}\overline{V'}_{1R}$$

$$A_{-\infty I} = E_{26}\overline{A'}_{iR} + E_{27}\overline{A'}_{i1} + E_{28}\overline{\rho'}_{R}^{*} + E_{29}\overline{\rho'}_{1}^{*} + E_{30}\overline{A'}_{R}^{*} + E_{31}\overline{A'}_{1}^{*} + E_{32}\overline{a'}_{1}^{*} + E_{33}\overline{a'}_{1}^{*} + E_{34}\overline{V'}_{11} + E_{35}\overline{V'}_{1R}$$

$$(B46)$$

$$(B46)$$

$$(B47)$$

Substitute Equations B46 and B47 into Equation B41 to give

$$M_{7} (E_{16}\overline{A'}_{iR} + E_{17}\overline{A'}_{iI} + E_{16}\overline{\rho'}_{R}^{*} + E_{19}\overline{\rho'}_{I}^{*} + E_{20}\overline{A'}_{R}^{*} + E_{21}\overline{A'}_{I}^{*} + E_{22}\overline{a'}_{I}^{*} + E_{23}\overline{a'}_{I}^{*} + E_{24}\overline{V'}_{11} + E_{25}\overline{V'}_{1R}) + M_{8} (E_{26}\overline{A'}_{iR} + E_{27}\overline{A'}_{iI} + E_{29}\overline{\rho'}_{R}^{*} + E_{29}\overline{\rho'}_{I}^{*} + E_{30}\overline{A'}_{R}^{*} + E_{31}\overline{A'}_{I}^{*} + E_{32}\overline{a'}_{R}^{*} + E_{33}\overline{a'}_{R}^{*} + E_{33}\overline{a'}_{R}^{*} + E_{34}\overline{V'}_{11} + E_{35}\overline{V'}_{1R})$$

$$= M_{5}\overline{A'}_{iR} + M_{6}\overline{A'}_{R}^{*} + 2\overline{\rho'}_{R}^{*}\overline{a'}^{*2} - \frac{k\overline{\rho'}_{I}^{*}\overline{U}_{I}\overline{V}_{I}}{2} - k\overline{\rho}_{I}\overline{a'}_{I}^{*}\overline{V}_{I} + 2\overline{\rho}^{*}\overline{a}^{*}\overline{a'}_{R}^{*}$$
(B48)

Let;

$$M_{11} = E_{18}M_7 + E_{28}M_8 - 2\bar{a}^{*2}$$

$$M_{12} = E_{19}M_7 + E_{29}M_8 + \frac{k\overline{U}_1\overline{V}_1}{2}$$

$$M_{13} = -E_{16}M_7 - E_{26}M_8 + M_5$$

$$M_{14} = -E_{17}M_7 - E_{27}M_8$$

$$M_{15} = -E_{20}M_7 - E_{30}M_8 + M_6$$

$$M_{16} = -E_{21}M_7 - E_{31}M_8$$

$$M_{17} = -E_{22}M_7 - E_{32}M_8 + 2\bar{\rho}^*\bar{a}^*$$

$$M_{18} = E_{23}M_7 - E_{33}M_8 - \frac{k\overline{\rho}_1\overline{V}_1}{2}$$

$$M_{19} = -E_{24}M_7 - E_{34}M_8 - k\overline{\rho}_1\overline{U}_1$$

$$M_{20} = -E_{25}M_7 - E_{35}M_8$$
(B49)

Rearrange Equation B48 to collect $\bar{\rho}'_{R}$ and $\bar{\rho}'_{I}$ on the left side of the equation and all other terms on the right side. Substitute the relationships of Equation B49 into Equation B48.

$$M_{11}\overline{\rho'}_{R}^{*} + M_{12} \ \overline{\rho'}_{I}^{*} = M_{13}\overline{A'}_{iR} + M_{14}\overline{A'}_{iI} + M_{15}\overline{A'}_{R}^{*} + M_{16}\overline{A'}_{I}^{*} + M$$

Working with the imaginary part of the momentum equation, substitute Equation B46 and B47 into Equation B44 to give

$$\begin{split} \mathbf{M}_{9} & [\mathbf{E}_{16}\vec{A}'_{1R} + \mathbf{E}_{17}A'_{1I} + \mathbf{E}_{18}\vec{p}'_{R}^{*} + \mathbf{E}_{19}\vec{p}'_{1}^{*} + \mathbf{E}_{20}\vec{A}'_{R}^{*} + \mathbf{E}_{21}\vec{A}'_{1}^{*} + \\ & \mathbf{E}_{22}\vec{a}'_{R}^{*} + \mathbf{E}_{23}\vec{a}'_{1}^{*} + \mathbf{E}_{24}\vec{\nabla}'_{11} + \mathbf{E}_{25}\vec{\nabla}'_{1R}] + \mathbf{M}_{10} \left[\mathbf{E}_{26}\vec{A}'_{1R} + \\ & \mathbf{E}_{27}\vec{A}'_{1i} + \mathbf{E}_{28}\vec{p}'_{R}^{*} + \mathbf{E}_{29}\vec{p}'_{1}^{*} + \mathbf{E}_{30}A'_{R}^{*} + \mathbf{E}_{31}\vec{A}'_{1}^{*} + \mathbf{E}_{32}\vec{a}'_{R}^{*} + \mathbf{E}_{33}\vec{a}'_{1}^{*} + \\ & \mathbf{E}_{34}\vec{\nabla}'_{11} + \mathbf{E}_{35}\vec{\nabla}'_{1R} \right] = \mathbf{M}_{5}\vec{A}'_{1i} + \mathbf{M}_{6}\vec{A}'_{1}^{*} + 2\vec{p}'_{1}^{*}\vec{a}^{*2} + 2\vec{p}^{*}\vec{a}^{*}\vec{a}'_{1}^{*} + \\ & \frac{\mathbf{k}\vec{p}'^{*}_{R}\vec{U}_{1}\vec{\nabla}_{1}}{2} + \mathbf{k}\vec{p}_{1}\vec{U}_{1}\vec{\nabla}'_{1R} + \frac{\mathbf{k}\vec{p}_{1}\vec{a}'^{*}_{R}\vec{\nabla}_{1}}{2} \end{split} \tag{B51}$$

Further, assume the following relationships.

Γ

$$M_{21} = E_{19}M_{9} + E_{28}M_{10} - \frac{k\overline{U},\overline{V}_{1}}{2}$$

$$M_{22} = E_{19}M_{9} + E_{29}M_{10} - 2\overline{a}^{*2}$$

$$M_{23} = -E_{16}M_{9} - E_{26}M_{10} + M_{5}$$

$$M_{24} = -E_{17}M_{9} - E_{27}M_{10} + M_{6}$$

$$M_{25} = -E_{20}M_{9} - E_{30}M_{10}$$

$$M_{26} = -E_{21}M_{9} - E_{31}M_{10}$$

$$M_{27} = -E_{22}M_{9} - E_{32}M_{10} + \frac{k\overline{\rho}_{1}\overline{V}_{1}}{2}$$

$$M_{28} = -E_{23}M_{9} - E_{33}M_{10} + 2\overline{\rho}^{*}\overline{a}^{*}$$

$$M_{29} = -E_{24}M_{9} - E_{34}M_{10}$$

$$M_{40} = -E_{25}M_{9} - E_{35}M_{10} + k\overline{\rho}_{1}\overline{U}_{1}$$
(B52)

Substituting the relationships of Equation B52 into Equation B51 and rearranging the resultant to isolate $\bar{\rho}'^*_{\ R}$ and $\bar{\rho}'_1^*$ gives

$$M_{2i}\bar{\rho}'_{R}^{*} + M_{22}\bar{\rho}'_{I}^{*} = M_{2i}\bar{A}'_{iR} + M_{2i}\bar{A}_{iI} + M_{25}\bar{A}'_{R}^{*} + M_{26}\bar{A}'_{I}^{*} + M_{26$$

Solve for $\bar{\rho'}_{R}^{*}$ using Equations B50 and B53. First multiply Equation B53 by M_{12}/M_{22} to give

$$\begin{pmatrix} \frac{M_{21}M_{12}}{M_{22}} \end{pmatrix} \quad \vec{\rho}'_{R}^{*} + M_{12}\vec{\rho}'_{1}^{*} = \frac{M_{12}}{M_{22}} \quad [M_{23}\vec{A}'_{R} + \\ M_{24}\vec{A}'_{11} + M_{25}\vec{A}'_{R}^{*} + M_{26}\vec{A}'_{1}^{*} + \\ M_{27}\vec{a}'_{R}^{*} + M_{26}\vec{a}'_{1}^{*} + \\ M_{29}\vec{\nabla}'_{11} + M_{30}\vec{\nabla}'_{1R}]$$

Next, subtract Equation B53 from Equation B50.

$$\begin{split} \overline{\rho}_{R'}^{*} &= \left\{ \left(M_{13} - \frac{M_{12}M_{23}}{M_{22}} \right) \quad \overline{A'}_{iR} + \right. \\ &\left(M_{14} - \frac{M_{12}M_{24}}{M_{22}} \right) \quad \overline{A'}_{iI} + \left(M_{15} - \frac{M_{12}M_{25}}{M_{22}} \right) \quad \overline{A'}_{R}^{*} + \\ &\left(M_{16} - \frac{M_{12}M_{26}}{M_{22}} \right) \quad \overline{A'}_{1}^{*} + \left(M_{17} - \frac{M_{12}M_{27}}{M_{22}} \right) \quad \overline{a'}_{R}^{*} + \\ &\left(M_{18} - \frac{M_{12}M_{28}}{M_{22}} \right) \quad \overline{a'}_{1}^{*} + \left(M_{19} - \frac{M_{12}M_{29}}{M_{22}} \right) \quad \overline{\nabla'}_{iI} + \\ &\left(M_{20} - \frac{M_{12}M_{30}}{M_{22}} \right) \quad \overline{\nabla'}_{iR} \right\} \quad \div \quad \left\{ M_{11} - \frac{M_{12}M_{21}}{M_{22}} \right\} \tag{B54}$$

Now, let

$$M_{31} = M_{11} - \frac{M_{12}M_{22}}{M_{22}}$$

$$M_{32} = \left(M_{13} - \frac{M_{12}M_{23}}{M_{22}}\right) \div M_{31}$$

$$M_{33} = \left(M_{14} - \frac{M_{12}M_{24}}{M_{22}}\right) \div M_{31}$$

$$M_{34} = \left(M_{15} - \frac{M_{12}M_{25}}{M_{22}}\right) \div M_{31}$$

$$M_{35} = \left(M_{16} - \frac{M_{12}M_{25}}{M_{22}}\right) \div M_{31}$$

$$M_{36} = \left(M_{17} - \frac{M_{12}M_{25}}{M_{22}}\right) \div M_{31}$$

$$M_{37} = \left(M_{18} - \frac{M_{12}M_{25}}{M_{22}}\right) \div M_{31}$$

$$M_{37} = \left(M_{19} - \frac{M_{12}M_{25}}{M_{22}}\right) \div M_{31}$$

$$M_{39} = \left(M_{19} - \frac{M_{12}M_{29}}{M_{22}}\right) \div M_{31}$$
(B55)

Substituting the relationships in Equation B55 into Equation B54 results in the following:

$$\bar{\rho}'_{R}^{*} = M_{32}A'_{iR} + M_{33}A'_{iI} + M_{34}\overline{A}'_{R}^{*} + M_{35}\overline{A}'_{I}^{*} + M_{36}\overline{a}'_{R}^{*} + M_{37}\overline{a}'_{I}^{*} + M_{38}\overline{V}'_{II} + M_{39}\overline{V}'_{IR}$$
(B56)

$$\overline{\rho}'_{1}^{*} = \frac{1}{M_{12}} \left[M_{13} - M_{32}M_{11} \right] \overline{A}'_{1R} + (M_{14} - M_{33}M_{11}) \overline{A}'_{11} + (M_{15} - M_{34}M_{11}) \overline{A}'_{R}^{*} + (M_{15} - M_{35}M_{11}) \overline{A}'_{1}^{*} + (M_{17} - M_{36}M_{11}) \overline{a}'_{R}^{*} + (M_{18} - M_{37}M_{11}) \overline{a}'_{1}^{*} + (M_{19} - M_{38}M_{11}) \overline{V}'_{11} + (M_{20} - M_{39}M_{11}) \overline{V}'_{1R} \right]$$

Assume the following relationships:

[

.

$$M_{40} = -\frac{M_{13} - M_{32}M_{11}}{M_{12}}$$

$$M_{41} = -\frac{M_{14} - M_{33}M_{11}}{M_{12}}$$

$$M_{42} = -\frac{M_{15} - M_{34}M_{11}}{M_{12}}$$

$$M_{43} = -\frac{M_{16} - M_{35}M_{11}}{M_{12}}$$

$$M_{44} = -\frac{M_{17} - M_{36}M_{11}}{M_{12}}$$

$$M_{45} = -\frac{M_{18} - M_{37}M_{11}}{M_{12}}$$

$$M_{46} = -\frac{M_{19} - M_{38}M_{11}}{M_{12}}$$

$$M_{47} = -\frac{M_{20} - M_{39}M_{11}}{M_{12}}$$

Substituting the relationships in Equation B51 into Equation B57 results in the value of $\bar{\rho}'_1^*$ in the momentum equation.

$$\bar{\rho}'_{1}^{*} = M_{40}\bar{A}'_{iR} + M_{41}\bar{A}'_{i1} + M_{42}\bar{A}'_{R}^{*} + M_{43}\bar{A}'_{1}^{*} + M_{43}\bar{a}'_{R}^{*} + M_{45}\bar{a}'_{1}^{*} + M_{45}\bar{a}$$

Working with the continuity equation, recall that

$$[\rho^{\prime*}\bar{\mathbf{a}}^{*} + \bar{\rho}^{*}\mathbf{A}^{\prime*}\bar{\mathbf{a}}^{*} + \bar{\rho}^{*}\mathbf{a}^{\prime*}] - [\overline{\mathbf{A}}_{i} (\mathbf{u}_{i}^{\prime} \sin \alpha_{ch} + \mathbf{v}_{i}^{\prime} \cos \alpha_{ch}) + \mathbf{A}_{i}^{\prime}\mathbf{I} + \rho_{i}^{\prime}\overline{\mathbf{A}}_{i}\mathbf{I}] = -\left[\bar{\rho}_{1} \frac{\partial V_{1}^{\prime}}{\partial t} + \overline{\nabla}_{1} \frac{\partial \rho_{1}^{\prime}}{\partial t}\right]$$
(B26)

Substituting for the perturbation quantities and dividing through by e^{itt} gives

$$(\bar{\rho}'^*\bar{\mathbf{a}}^* + \bar{\rho}^*\bar{\mathbf{A}}'^*\bar{\mathbf{a}}^* + \bar{\rho}^*\bar{\mathbf{a}}'^*) - \left\{ \overline{\mathbf{A}}_i \left[\frac{\mathbf{B}_i\mathbf{A}_{-\infty}}{\mathbf{C}\overline{\mathbf{y}}_i} \left(\mathbf{e}^{\mathbf{i}\mathbf{C}\overline{\mathbf{y}}_i} - 1 \right) \sin \alpha_{ch} + \frac{\mathbf{A}_{-\infty}}{\overline{\mathbf{y}}_i} \left(\mathbf{e}^{\mathbf{i}\mathbf{C}\overline{\mathbf{y}}_i} - 1 \right) \cos \alpha_{ch} \right] + \overline{\mathbf{A}}'_i\mathbf{I} - \left(\frac{\mathbf{k} + \mathbf{\tilde{u}}_i\mathbf{B}_1 + \mathbf{\bar{v}}_i\mathbf{C}}{\mathbf{C}\overline{\mathbf{y}}_i\bar{\mathbf{a}}_i^2} \right) \overline{\mathbf{A}}_i\mathbf{A}_{-\infty}\mathbf{I} \left(\mathbf{e}^{\mathbf{i}\mathbf{C}\overline{\mathbf{y}}_i} - 1 \right) \right\}$$
$$= - \left[\mathbf{i}k\bar{\rho}_1\overline{\mathbf{V}}'_1 + \frac{\mathbf{i}k\overline{\mathbf{V}}_1}{2} \left(\bar{\rho}'^* - \left(\frac{\mathbf{k} + \mathbf{\tilde{u}}_i\mathbf{B}_1 + \mathbf{v}_i\mathbf{C}}{\mathbf{C}\overline{\mathbf{y}}_i\bar{\mathbf{a}}_i^2} \right) \mathbf{A}_{-\infty} \left(\mathbf{e}^{\mathbf{i}\mathbf{C}\overline{\mathbf{y}}_i} - 1 \right) \right) \right] (\mathbf{B}\mathbf{6}\mathbf{0})$$

Assume the following relationships:

$$C_{1} = -\frac{\tilde{A}_{i}}{C\tilde{y}_{i}} \sin \alpha_{ch} + \frac{\tilde{u}_{i}\tilde{A}_{i}I}{C\tilde{y}_{i}\tilde{a}_{i}^{2}}$$

$$C_{2} = -\frac{\tilde{A}_{i}}{\tilde{y}_{i}} \cos \alpha_{ch} + \left(\frac{k + \bar{v}_{i}C}{C\tilde{y}_{i}\tilde{a}_{i}^{2}}\right) \tilde{A}_{i}I$$

$$C_{3} = \frac{\tilde{u}_{i}\tilde{V}_{1}}{2C\tilde{y}_{i}\tilde{a}_{i}^{2}}$$

$$C_{4} = \left(\frac{k + \bar{v}_{i}C}{2C\tilde{y}_{i}\tilde{a}_{i}^{2}}\right) V_{i}$$
(B61)

Substituting the relationships in Equation B61 into Equation B60 and separating the real parts of the resultant equation yields

$$C_{1} \left[B_{1R}A_{-\infty R}E_{7} - B_{11}A_{-\infty l}E_{7} - B_{1R}A_{-\infty l}\sin(C\overline{y}_{i}) - B_{11}A_{-\infty R}\sin(C\overline{y}_{i})\right] + C_{2} \left[A_{-\infty R}E_{7} - A_{-\infty l}\sin(C\overline{y}_{i})\right] + \left[\overline{\rho}'_{R}^{*}\overline{a}^{*} + \overline{\rho}^{*}\overline{A}'_{R}^{*}\overline{a}^{*} + \overline{\rho}^{*}\overline{a}'_{R}^{*} - \overline{A}'_{iR}I\right]$$

$$= -kC_{3} \left[B_{1R}A_{-\infty l}E_{7} + B_{11}A_{-\infty R}E_{7} + B_{1R}A_{-\infty R}\sin(C\overline{y}_{i}) - B_{11}A_{-\infty l}\sin(C\overline{y}_{i})\right] - kC_{4} \left[A_{-\infty l}E_{7} + A_{-\infty R}\sin(C\overline{y}_{i})\right] + k\overline{\rho}_{1} \overline{V}'_{11} + \frac{k\overline{\rho}'_{1}^{*}\overline{V}_{1}}{2}$$
(B62)

Again, assume

$$C_{5} = C_{1}B_{1R}E_{7} - C_{1}B_{11} \sin (C\overline{y}_{i}) + C_{2}E_{7} + C_{3}kB_{11}E_{7} + C_{3}kB_{1R} \sin (C\overline{y}_{i}) + C_{4}k \sin (C\overline{y}_{i})$$

$$C_{6} = -C_{1}B_{11}E_{7} - C_{1}B_{1R} \sin (C\overline{y}_{i}) - C_{2} \sin (C\overline{y}_{i}) + C_{3}kB_{1R}E_{7} - C_{3}kB_{11} \sin (C\overline{y}_{i}) + C_{4}kE_{7}$$
(B63)

Substituting the relationships in Equation B63 into Equation B62 yields

$$C_{5}A_{-\infty R} + C_{6}A_{-\infty I} + (\vec{\rho}'_{R}*\vec{a}* + \vec{\rho}*\vec{A}'_{R}*\vec{a}* + \vec{\rho}*\vec{a}'_{R}* - I\vec{A}'_{II}) - k\vec{\rho}_{1}\vec{\nabla}'_{1I} - \frac{k\vec{\rho}'*\vec{\nabla}_{1}}{2} = 0$$

Next, substitute the values for $A_{\scriptscriptstyle -\infty R}$ and $A_{\scriptscriptstyle -\infty I}$ into Equation B64

$$C_{5}(E_{16}\widetilde{A'}_{1R} + E_{17}\widetilde{A'}_{1I} + E_{18}\widetilde{\rho'}_{R}^{*} + E_{19}\widetilde{\rho'}_{1}^{*} + E_{20}\widetilde{A'}_{R}^{*} + E_{21}\widetilde{A'}_{1}^{*} + E_{22}\widetilde{a'}_{1R}^{*} + E_{23}\widetilde{a'}_{1}^{*} + E_{24}\widetilde{V'}_{1I} - E_{25}\widetilde{V'}_{1R})$$

Combining like terms produces

$$\begin{aligned} (C_{5}E_{16} + C_{6}E_{26} - I) \ \overline{A'}_{iR} + (C_{5}E_{17} + C_{6}E_{27}) \ \overline{A'}_{iI} + \\ (C_{5}E_{18} + C_{6}E_{28} + \overline{a}^{*}) \ \overline{\rho'}_{R}^{*} + (C_{5}E_{19} + C_{6}E_{29} - k\overline{V}_{1}/2) \ \overline{\rho'}_{j}^{*} + \\ (C_{5}E_{20} + C_{6}E_{30} + \overline{\rho}^{*}\overline{a}^{*}) \ \overline{A'}_{R}^{*} + (C_{5}E_{21} + C_{6}E_{31}) \ \overline{A'}_{1}^{*} + \\ (C_{5}E_{22} + C_{6}E_{32} + \overline{\rho}^{*}) \ \overline{a'}_{R}^{*} + (C_{5}E_{23} + C_{6}E_{33})\overline{a'}_{1}^{*} + \\ (C_{5}E_{24} + C_{6}E_{34} - k\overline{\rho}_{1}) \ \overline{V'}_{11} + (C_{5}E_{25} + C_{6}E_{35}) \ \overline{V'}_{1R} = 0 \end{aligned}$$

Again, assume

• • • • • •

[

,

$$C_{7} = C_{5}E_{16} + C_{6}E_{26} - I$$

$$C_{8} = C_{5}E_{17} + C_{6}E_{27}$$

$$C_{9} = C_{5}E_{18} + C_{6}E_{28} + \bar{a}^{*}$$

$$C_{10} = C_{5}E_{19} + C_{6}E_{29} - k\overline{V}_{1}/2$$

$$C_{11} = C_{5}E_{20} + C_{6}E_{30} + \bar{\rho}^{*}\bar{a}^{*}$$

$$C_{12} = C_{5}E_{21} + C_{6}E_{31}$$

$$C_{13} = C_{5}E_{22} + C_{6}E_{32} + \bar{\rho}^{*}$$

$$C_{14} = C_{5}E_{23} + C_{6}E_{33}$$

$$C_{15} = C_{5}E_{24} + C_{6}E_{34} - k\overline{\rho}_{1}$$

$$C_{16} = C_{5}E_{25} + C_{6}E_{35}$$
(B65)

Substituting Equation B65 into Equation B64 gives

$$C_{7}\overline{A'}_{iR} + C_{8}\overline{A'}_{i1} + C_{9}\overline{p'}_{R}^{*} + C_{10}\overline{p'}_{1}^{*} + C_{11}\overline{A'}_{R}^{*} + C_{12}\overline{A'}_{1}^{*} + C_{12}\overline{A'}_{1}^{*} + C_{13}\overline{a'}_{1}^{*} + C_{14}\overline{a'}_{1}^{*} + C_{16}\overline{V'}_{11} + C_{16}\overline{V'}_{1R} = 0$$
(B66)

57

(B64)

Substituting for $\bar{\rho}'_{\rm \,R}{}^*$ and $\bar{\rho}'_{\rm \,I}{}^*$ results in

$$\begin{split} C_{9} & (M_{32}\overline{A'}_{1R} + M_{33}\overline{A'}_{1I} + M_{34}\overline{A'}_{R}^{*} + M_{35}\overline{A'}_{1}^{*} + M_{36}\overline{a'}_{R}^{*} + M_{37}\overline{a'}_{1}^{*} + \\ & M_{38}\overline{V'}_{1} + M_{39}\overline{V'}_{R}) + C_{10} & (M_{40}\overline{A'}_{1R} + M_{41}\overline{A'}_{1I} + M_{42}\overline{A'}_{R}^{*} + M_{43}\overline{A'}_{1}^{*} + \\ & M_{44}\overline{a'}_{R}^{*} + M_{45}\overline{a'}_{1}^{*} + M_{46}\overline{V'}_{1I} + M_{47}\overline{V'}_{1R}) - C_{7}\overline{A'}_{1R} + C_{8}\overline{A'}_{1I} + \\ & C_{11}\overline{A'}_{R}^{*} + C_{12}\overline{A'}_{1}^{*} + C_{13}\overline{a'}_{R}^{*} + C_{14}\overline{a'}_{1}^{*} + C_{15}\overline{V'}_{1I} + C_{16}\overline{V'}_{1R} = 0 \end{split}$$

Combining like terms gives

$$(C_{9}M_{32} + C_{10}M_{40} + C_{7})\overline{A'}_{iR} + (C_{9}M_{33} + C_{10}M_{41} + C_{8})\overline{A'}_{iI} + (C_{9}M_{34} + C_{10}M_{42} + C_{11})\overline{A'}_{R}^{*} + (C_{9}M_{35} + C_{10}M_{43} + C_{12})\overline{A'}_{1}^{*} + (C_{9}M_{36} + C_{10}M_{44} + C_{13})\overline{a'}_{R}^{*} + (C_{9}M_{37} + C_{10}M_{45} + C_{14})\overline{a'}_{1}^{*} + (C_{9}M_{38} + C_{10}M_{46} + C_{15})\overline{V'}_{1I} + (C_{9}M_{39} + C_{10}M_{47} + C_{16})\overline{V'}_{1R} = 0$$
(B67)

Assume

$$C_{17} = C_9 M_{32} + C_{10} M_{40} + C_7$$

$$C_{18} = C_9 M_{33} + C_{10} M_{41} + C_8$$

$$C_{19} = C_9 M_{34} + C_{10} M_{42} + C_{11}$$

$$C_{20} = C_9 M_{35} + C_{10} M_{43} + C_{12}$$

$$C_{21} = - (C_9 M_{36} + C_{10} M_{44} + C_{13})$$

$$C_{22} = - (C_9 M_{37} + C_{10} M_{45} + C_{14})$$

$$C_{23} = C_9 M_{38} + C_{10} M_{46} + C_{15}$$

$$C_{24} = C_9 M_{39} + C_{10} M_{47} + C_{16}$$
(B68)

Substituting the relationships in Equation B68 into Equation B67 and solving for a'_{R} * and a'_{i} * gives

$$C_{21}\bar{a}'_{R}^{*} + C_{22}\bar{a}'_{I}^{*} = C_{17}\bar{A}'_{iR} + C_{18}\bar{A}'_{iI} + C_{19}\bar{A}'_{R}^{*} + C_{20}\bar{A}'_{1}^{*} + C_{23}\bar{V}'_{1I} + C_{24}\bar{V}'_{1R}$$
(B69)

The imaginary part of Equation 24 is

$$\begin{aligned} (\bar{\rho}'_{1}*\bar{a}^{*} + \bar{\rho}\overline{A'}_{1}*\bar{a}^{*} + \bar{\rho}^{*}\bar{a}'_{1}*) &- I\overline{A'}_{iI} + C_{1} \left[B_{1R}A_{-\infty I}E_{7} + B_{1R}A_{-\infty R}\sin(C\bar{y}_{i}) - B_{1I}A_{-\infty I}\sin(Cy_{i}) \right] + \\ C_{2} \left[A_{-\infty I}E_{7} + A_{-\infty R}\sin(C\bar{y}_{i}) \right] - kC_{3} \left[B_{1R}A_{-\infty R}E_{7} - B_{1I}A_{-\infty I}E_{7} - B_{1R}A_{-\infty I}\sin(C\bar{y}_{i}) - B_{1I}A_{-\infty R}\sin(C\bar{y}_{i}) \right] - \\ kC_{4} \left[A_{-\infty R}E_{7} - A_{-\infty I}\sin(C\bar{y}_{i}) \right] + k\bar{\rho}_{1} \vec{\nabla}'_{1R} + \frac{k\bar{\rho}'_{R}*\bar{\nabla}_{1}}{2} = 0 \end{aligned}$$
(B70)

Again, let

$$C_{25} = C_{1} [B_{11}E_{7} + B_{1R} \sin (C\overline{y}_{i})] + C_{2} \sin (C\overline{y}_{i}) - kC_{3} [B_{1R}FE_{7} - B_{11} \sin (C\overline{y}_{i})] - kC_{4}E_{7}$$

$$C_{26} = C_{1} [B_{1R}E_{7} - B_{11} \sin (C\overline{y}_{i})] + C_{2}E_{7} + kC_{3} [B_{11}E_{7} + B_{1R} \sin (C\overline{y}_{i})] + kC_{4} \sin (C\overline{y}_{i})]$$
(B71)

Substituting the relationships of Equation B71 into Equation B70 yields

$$C_{25}A_{-\infty R} + C_{25}A_{-\infty l} + (\vec{\rho}_{1}^{\prime}*\vec{a}^{*} + \vec{\rho}*\vec{A}_{1}^{\prime}*\vec{a}^{*} + \vec{\rho}*\vec{a}_{1}^{\prime}*) - I\vec{A}_{il}^{\prime} + k\vec{\rho}_{1}\vec{\nabla}_{1R}^{\prime} + \frac{k\vec{\rho}_{1}\cdot\vec{\nabla}_{1R}^{\prime}}{2} = 0$$
(B72)

Substituting for $A_{\scriptscriptstyle -\infty R}$ and $A_{\scriptscriptstyle -\infty I}$ into Equation B72 gives

$$\begin{split} C_{26} & [E_{26}\vec{A'}_{1R} + E_{27}\vec{A'}_{i1} + E_{28}\vec{\rho'}_{R}^{*} + E_{29}\vec{\rho'}_{1}^{*} + E_{30}\vec{A'}_{R}^{*} + E_{31}\vec{A'}_{1}^{*} + \\ & E_{32}\vec{a'}_{R}^{*} + E_{33}\vec{a'}_{1}^{*} + E_{34}\vec{\nabla'}_{11} + E_{35}\vec{\nabla'}_{1R}] + C_{25} [E_{16}\vec{A'}_{1R} + E_{17}\vec{A'}_{i1} + \\ & E_{18}\vec{\rho'}_{R}^{*} + E_{19}\vec{\rho'}_{1}^{*} + E_{20}\vec{A'}_{R}^{*} + E_{21}\vec{A'}_{1}^{*} + E_{22}\vec{a'}_{R}^{*} + E_{23}\vec{a'}_{1}^{*} + \\ & E_{24}\vec{\nabla'}_{11} + E_{25}\vec{\nabla'}_{1R}] + [\vec{\rho'}_{1}^{*}\vec{a}^{*} + \vec{\rho}^{*}\vec{A'}_{1}^{*}\vec{a}^{*} + \vec{\rho}^{*}\vec{a'}_{1}^{*}] - I\vec{A'}_{11} + k\rho_{1}\vec{\nabla'}_{1R} + \frac{kV_{1}}{2}\vec{\rho'}_{R}^{*} = 0 \end{split}$$

Collecting like terms, as before, produces

$$(C_{26} E_{26} + C_{25} E_{16}) \overline{A'}_{1R} + (C_{26} E_{27} + C_{25} E_{17} - I) \overline{A'}_{1I} + (C_{26} E_{28} + C_{25} E_{18} + \frac{k\overline{V}_{1}}{2}) \overline{\rho'}_{R}^{*} + (C_{26} E_{29} + C_{25} E_{19} + \bar{a}^{*})$$

$$\overline{\rho'}_{1}^{*} + (C_{26} E_{30} + C_{25} E_{20}) \overline{A'}_{R}^{*} + (C_{26} E_{31} + C_{25} E_{21} + \bar{\rho}^{*} \bar{a}^{*})$$

$$\overline{A'}_{1}^{*} + (C_{26} E_{32} + C_{25} E_{22}) \bar{a'}_{R}^{*} + (C_{26} E_{33} + C_{25} E_{23} + \bar{\rho}^{*})$$

$$\overline{a'}_{1}^{*} + (C_{26} E_{34} + C_{25} E_{24}) \overline{V'}_{1I} + (C_{26} E_{35} + C_{25} E_{25} + k \overline{\rho}_{1}) \overline{V'}_{1R} = 0$$
(B73)

---- -

Again, assume

$$C_{27} = C_{26} E_{26} + C_{25} E_{16}$$

$$C_{28} = C_{26} E_{27} + C_{25} E_{17} - I$$

$$C_{29} = C_{26} E_{28} + C_{25} E_{18} + \frac{k\overline{V}_{1}}{2}$$

$$C_{30} = C_{26} E_{29} + C_{25} E_{19} + \overline{a}^{*}$$

$$C_{31} = C_{26} E_{30} + C_{25} E_{20}$$

$$C_{32} = C_{36} E_{31} + C_{25} E_{21} + \overline{\rho}^{*} \overline{a}^{*}$$

59

• •

$$C_{33} = C_{26} E_{32} + C_{25} E_{22}$$

$$C_{34} = C_{26} E_{33} + C_{25} E_{23} + \vec{\rho}^*$$

$$C_{35} = C_{26} E_{34} + C_{25} E_{24}$$

$$C_{36} = C_{26} E_{35} + C_{25} E_{25} + k \vec{\rho}_1$$
(B74)

Substituting the relationships of Equation B74 and the relationships for $\bar{\rho}'_{R}{}^{*}$ and $\bar{\rho}'_{I}{}^{*}$, and collecting terms gives

$$(C_{29}M_{32} + C_{30}M_{40} + C_{27})\vec{A'}_{iR} + (C_{29}M_{33} + C_{30}M_{41} + C_{28})\vec{A'}_{i1} + (C_{29}M_{34} + C_{30}M_{42} + C_{31})\vec{A'}_{R}^{*} + (C_{29}M_{35} + C_{30}M_{43} + C_{32})\vec{A'}_{1}^{*} + (C_{29}M_{36} + C_{30}M_{44} + C_{33})\vec{a'}_{R}^{*} + (C_{29}M_{37} + C_{30}M_{45} + C_{34})\vec{a'}_{1}^{*} + (C_{29}M_{38} + C_{30}M_{46} + C_{35})\vec{\nabla}'_{11} + (C_{29}M_{39} + C_{30}M_{47} + C_{36})\vec{\nabla}'_{1R} = 0$$
(B75)

Further, assume

$$C_{37} = C_{29}M_{32} + C_{30}M_{40} + C_{27}$$

$$C_{38} = C_{29}M_{33} + C_{30}M_{41} + C_{28}$$

$$C_{39} = C_{29}M_{34} + C_{30}M_{42} + C_{31}$$

$$C_{40} = C_{29}M_{35} + C_{30}M_{43} + C_{32}$$

$$C_{41} = - (C_{29}M_{36} + C_{30}M_{44} + C_{33})$$

$$C_{42} = - (C_{29}M_{37} + C_{30}M_{45} + C_{34})$$

$$C_{43} = C_{29}M_{38} + C_{37}M_{46} + C_{35}$$

$$C_{44} = C_{29}M_{39} + C_{30}M_{47} + C_{36}$$
(B76)

Substituting the relationships of Equation B76 into Equation B75 gives

$$C_{41} \,\overline{a}'_{R}^{*} + C_{42} \,\overline{a}'_{1}^{*} = C_{37} \,\overline{A}'_{iR} + C_{38} \,\overline{A}'_{iI} + \\C_{39} \,\overline{A}'_{R}^{*} + C_{40} \,\overline{A}'_{1} + C_{43} \,\overline{\nabla}'_{1I} + C_{44} \,\overline{\nabla}'_{1R}$$
(B77)

Recall that

$$C_{2i}\bar{a}'_{R}^{*} + C_{22}\bar{a}'_{i}^{*} = C_{17}\bar{A}'_{1R} + C_{18}\bar{A}'_{1i} + C_{19}\bar{A}'_{R}^{*} + C_{20}\bar{A}'_{1}^{*} + C_{23}\bar{\nabla}'_{11} + C_{24}\bar{\nabla}'_{1R}$$
(B69)

.

Multiplying Equation B78 by C_{42}/C_{22} and subtracting the resultant from Equation B77 yields

$$\begin{split} \mathbf{\bar{a}'}_{R}^{*} &= \left[\left(C_{37} - \frac{C_{17}C_{42}}{C_{22}} \right) \mathbf{\bar{A}'}_{iR} + \left(C_{38} - \frac{C_{18}C_{42}}{C_{22}} \right) \mathbf{\bar{A}'}_{iI} + \left(C_{39} - \frac{C_{19}C_{42}}{C_{22}} \right) \mathbf{\bar{A}'}_{iI} + \left(C_{40} - \frac{C_{20}C_{42}}{C_{22}} \right) \mathbf{\bar{A}'}_{iI}^{*} + \left(C_{43} - \frac{C_{23}C_{42}}{C_{22}} \right) \mathbf{\bar{A}'}_{iI} + \left(C_{43} - \frac{C_{23}C_{42}}{C_{22}} \right) \mathbf{\bar{V}'}_{iI} + \left(C_{44} - \frac{C_{24}C_{42}}{C_{22}} \right) \mathbf{\bar{V}'}_{iR} \right] \div \\ \left[C_{41} - \frac{C_{21}C_{42}}{C_{22}} \right] \end{split}$$

Further, assure

$$C_{45} = C_{41} - \frac{C_{21}C_{42}}{C_{22}}$$

$$C_{46} = \frac{1}{C_{45}} \left(C_{37} - \frac{C_{17}C_{42}}{C_{22}} \right)$$

$$C_{47} = \frac{1}{C_{45}} \left(C_{38} - \frac{C_{18}C_{42}}{C_{22}} \right)$$

$$C_{48} = \frac{1}{C_{45}} \left(C_{39} - \frac{C_{19}C_{42}}{C_{22}} \right)$$

$$C_{49} = \frac{1}{C_{46}} \left(C_{40} - \frac{C_{20}C_{42}}{C_{22}} \right)$$

$$C_{50} = \frac{1}{C_{45}} \left(C_{43} - \frac{C_{23}C_{42}}{C_{22}} \right)$$

$$C_{51} = \frac{1}{C_{45}} \left(C_{44} - \frac{C_{24}C_{42}}{C_{22}} \right)$$
(B78)

Thus,

$$\Rightarrow \overline{a}'_{R}{}^{*} = C_{46}\overline{A}'_{iR} + C_{47}\overline{A}'_{i1} + C_{48}\overline{A}'_{R}{}^{*} + C_{49}\overline{A}'_{1}{}^{*} + C_{49}\overline{A}'_{1}{}^{*} + C_{50}\overline{V}'_{11} + C_{51}\overline{V}'_{1R}$$
(B79)

Substituting Equation B79 into Equation B77 and solving for a'_1^* and then combining like terms gives

$$\overline{a}'_{1}{}^{*} = \frac{1}{C_{42}} \left[(C_{37} - C_{41}C_{46}) \overline{A}'_{1R} + (C_{38} - C_{41}C_{47}) \overline{A}'_{1I} + (C_{39} - C_{41}C_{49}) \overline{A}'_{1} \overline{A}'_{1R} + (C_{40} - C_{41}C_{49}) \overline{A}'_{1} \overline{A}'_{1} + (C_{43} - C_{41}C_{50}) \overline{V}'_{1I} + (C_{44} - C_{41}C_{51}) \overline{V}'_{1R} \right]$$

Further, assume

$$C_{52} = (C_{37} - C_{41}C_{46}) \div C_{42}$$

$$C_{53} = (C_{38} - C_{41}C_{47}) \div C_{42}$$

$$C_{54} = (C_{39} - C_{41}C_{48}) \div C_{42}$$

$$C_{55} = (C_{40} - C_{41}C_{49}) \div C_{42}$$

$$C_{56} = (C_{43} - C_{41}C_{50}) \div C_{42}$$

$$C_{57} = (C_{44} - C_{41}C_{51}) \div C_{42}$$
(B80)

Substituting the relationships of Equation 136 into the relationship for $a^\prime{}_1{}^*$ gives

$$\Rightarrow \overline{a}'_{1}{}^{*} = C_{52}\overline{A}'_{iR} + C_{53}\overline{A}'_{iI} + C_{54}\overline{A}'_{R}{}^{*} + C_{55}\overline{A}'_{1}{}^{*} + C_{55}\overline{A}'_{I}{}^{*} + C_{55}\overline{V}'_{II} + C_{57}\overline{V}'_{IR}$$
(B81)

L

This completes the analysis for Region 1.

.

APPENDIX C SOLUTIONS TO THE EQUATIONS OF MOTION FOR REGION 2

The nondimensionalized equations of motion are represented by Equations 38 and 39. Only two equations are needed because all the inlet parameters to Region 2 are known. This leaves two unknowns: the density and velocity perturbations just upstream of the shock. To obtain a solution to these equations, again make the assumption that all flow parameters vary harmonically in time. Thus,

$$p'_{us} = \bar{p}'_{us} \exp ikt$$

 $A'_{s} = \bar{A}'_{s} \exp ikt$
 $\rho'_{us} = \bar{\rho}'_{us} \exp ikt$
 $U'_{us} = \bar{U}'_{us} \exp ikt$
(C1)

making these substitutions into the momentum equation (39) and dividing by eiter gives

$$\begin{aligned} (\bar{\mathbf{p}}^*\bar{\mathbf{A}}'^* + \bar{\mathbf{p}}'^* - \bar{\mathbf{p}}_{us}\bar{\mathbf{A}}'_{us} - \bar{\mathbf{p}}'_{us}\bar{\mathbf{A}}_s) \\ &= [\bar{\mathbf{U}}'_{us}\bar{\mathbf{w}}_{us} + \bar{\mathbf{U}}_{us} (\bar{\rho}'_{us}\bar{\mathbf{U}}_{us}\bar{\mathbf{A}}_s + \bar{\rho}_{us}\bar{\mathbf{U}}'_{us}\bar{\mathbf{A}}_s + \bar{\rho}_{us}\bar{\mathbf{U}}_{us}\bar{\mathbf{A}}'_s)] - \\ &= [\bar{\rho}^*\bar{\mathbf{a}}'^*\bar{\mathbf{a}}^* + \bar{\mathbf{a}}^* (\rho'^*\bar{\mathbf{a}}^* + \bar{\rho}^*\bar{\mathbf{A}}'^*\bar{\mathbf{a}}^* + \bar{\rho}^*\bar{\mathbf{a}}'^*)] + \\ &= \frac{ik\bar{\mathbf{U}}_2\bar{\mathbf{V}}_2}{2} (\bar{\rho}'^* + \bar{\rho}'_{us}) + ik\bar{\rho}_2\bar{\mathbf{U}}_2\bar{\mathbf{V}}'_2 + ik \frac{\bar{\rho}_2\bar{\mathbf{V}}_2}{2} (\bar{\mathbf{a}}'^* + \bar{\mathbf{U}}'_{us}) \end{aligned}$$
(C2)

Making the substitution $p' = \tilde{a}^2 \rho'$ and collecting terms produces

$$(\bar{p}^{*}\bar{A}^{**} + \bar{p}^{'*} - \bar{p}_{US}\bar{A}_{S} - \bar{\rho}^{'}_{US}\bar{A}_{S}\bar{a}^{2}_{US})$$

$$= (2\bar{U}^{'}_{US}\bar{w}_{US} + \bar{\rho}^{'}_{US}\bar{U}^{2}_{US}\bar{A}_{S} + \bar{\rho}_{US}\bar{U}^{2}_{US}\bar{A}^{'}_{S}) - (2\bar{\rho}^{*}\bar{a}^{'*}\bar{a}^{*} + \rho^{'*}\bar{a}^{*2} + \bar{\rho}^{*}\bar{A}^{'*}\bar{a}^{*2}) + \frac{-ik\bar{U}_{2}\bar{V}_{2}}{2} (\bar{\rho}^{'*} + \bar{\rho}^{'}_{US}) + ik\bar{\rho}_{2}\bar{U}_{2}\bar{V}^{'}_{2} + ik\bar{\rho}_{2}\bar{V}_{2} (\bar{a}^{'*} + \bar{U}^{'}_{US})$$

$$(C3)$$

Real Part

I

$$\begin{split} \bar{p}'_{R}^{*} + \bar{p}^{*}\bar{A}'_{R}^{*} &- \bar{\rho}'_{USR}\bar{A}_{S}\bar{a}^{2}_{US} - \bar{p}_{US}\bar{A}'_{SR} \\ &= \bar{\rho}'_{USR}\bar{U}^{2}_{US}\bar{A}_{S} - \frac{k\bar{\rho}'_{USI}\bar{U}_{2}\bar{V}_{2}}{2} + 2\bar{U}'_{USR}\bar{w}_{US} - \frac{k\bar{\rho}_{2}\bar{U}'_{USI}\bar{V}_{2}}{2} - \\ &2\bar{\rho}^{*}\bar{a}'^{*}_{R}\bar{a}^{*} - \frac{-k\bar{\rho}_{2}\bar{a}'_{1}^{*}\bar{V}_{2}}{2} - \bar{\rho}'^{*}_{R}\bar{a}^{*2} - \frac{k\bar{\rho}'_{1}^{*}\bar{U}_{2}\bar{V}_{2}}{2} - k\bar{\rho}_{2}\bar{U}_{2}\bar{V}'_{2I} + \\ &\bar{\rho}_{US}\bar{U}^{2}_{US}\bar{A}'_{SR} - \bar{\rho}^{*}\bar{A}'^{*}_{R}\bar{a}^{*2} \end{split}$$
(C4)

Rearranging terms produces

$$(-\bar{a}^{2}_{US}\bar{A}_{S} - \bar{U}^{2}_{US}\bar{A}_{S}) \bar{\rho}'_{USR} + \left(\frac{k\bar{U}_{2}\bar{V}_{2}}{2}\right) \bar{\rho}'_{USI}$$

$$= (\bar{\rho}_{US}\bar{U}^{2}_{US} + \bar{p}_{US}) \bar{A}'_{SR} - 2\bar{p}'^{*}_{R} - (\bar{p}^{*} + \bar{\rho}^{*}\bar{a}^{*2}) \bar{A}'^{*}_{R} + 2\bar{U}'_{USR}\bar{w}_{US} - \frac{k\bar{\rho}_{2}\bar{U}'_{USI}\bar{V}_{2}}{2} - k\bar{\rho}_{2}\bar{U}_{2}\bar{V}'_{2I} - 2\bar{\rho}^{*}\bar{a}'^{*}_{R}\bar{a}^{*} - \frac{k\bar{\rho}_{2}\bar{a}'_{1}^{*}\bar{V}_{2}}{2}$$

$$(C5)$$

_|

Next, assume

$$M_{48} = (-\bar{a}^{2}_{US} - \bar{U}^{2}_{US}) \bar{A}_{S}$$

$$M_{49} = \frac{k\bar{U}_{2}\bar{V}_{2}}{2}$$

$$M_{50} = \bar{p}_{US} + \bar{\rho}_{US}\bar{U}^{2}_{US}$$

$$M_{50A} = \bar{p}^{*} + \bar{\rho}^{*}\bar{a}^{*2}$$
(C6)

Substituting Equation C6 into Equation C5 gives

$$\frac{M_{48}\bar{\rho}'_{USR} + M_{49}\bar{\rho}'_{USI} = M_{50}\bar{\Lambda}'_{SR} - 2\bar{p}'_{R}^{*} + M_{50A}\bar{\Lambda}'_{R}^{*} + 2\bar{U}'_{USI}\bar{w}_{US} - (C7)}{\frac{k\bar{\rho}_{2}\bar{U}'_{USI}\bar{V}_{2}}{2} - \frac{k\bar{\rho}'^{*}_{1}\bar{U}_{2}\bar{V}_{2}}{2} - k\bar{\rho}_{2}\bar{U}_{2}\bar{V}'_{2I} - 2\bar{\rho}^{*}\bar{a}'^{*}_{R}\bar{a}^{*} - \frac{k\bar{\rho}_{2}\bar{a}'^{*}_{1}\bar{V}_{2}}{2}}{2}$$

Imaginary Part

$$M_{48}\bar{\rho}'_{USI} - M_{49}\bar{\rho}'_{USR} = M_{50}\bar{A}'_{SI} - 2\bar{p}'_{1}^{*} - M_{50A}\bar{A}'_{1}^{*} + 2\bar{U}'_{USI}\bar{w}_{US} + \frac{k\bar{\rho}_{2}\bar{U}'_{USR}\bar{V}_{2}}{2} + \frac{k\bar{\rho}'_{R}\bar{U}_{2}\bar{V}_{2}}{2} + k\bar{\rho}_{2}\bar{U}_{2}\bar{V}'_{2R} - 2\bar{\rho}'^{*}\bar{a}'_{1}^{*}\bar{a}^{*} + \frac{k\bar{\rho}_{2}\bar{a}'_{R}^{*}\bar{V}_{2}}{2}$$
(C8)

Multiply Equation C8 by $M_{{}_{4\theta}}/M_{{}_{49}}$ and add to Equation C7 to produce

_____.

$$\begin{pmatrix} M_{49} + \frac{M_{42}^{2}}{M_{49}} \end{pmatrix} \bar{\rho}'_{USI} = M_{50}\bar{A}'_{SR} + \begin{pmatrix} M_{48}M_{50}\\ \overline{M}_{49} \end{pmatrix} \bar{A}'_{SI} - 2\bar{p}'^{*}_{R} - 2\begin{pmatrix} M_{48}\\ \overline{M}_{49} \end{pmatrix} \bar{p}'_{1}^{*} + M_{50A}\bar{A}'_{R}^{*} + \begin{pmatrix} M_{48}M_{50A}\\ \overline{M}_{49} \end{pmatrix} \bar{A}'_{1}^{*} + 2\bar{U}'_{USR}\bar{w}_{US} + 2\begin{pmatrix} M_{48}\\ \overline{M}_{49} \end{pmatrix} \bar{U}'_{USI} - \frac{k\bar{\rho}_{2}\bar{U}'_{USI}\bar{V}_{2}}{2} + \frac{k\bar{\rho}_{2}\bar{U}'_{USR}\bar{V}_{2}}{2} \begin{pmatrix} M_{48}\\ \overline{M}_{49} \end{pmatrix} - \frac{k\bar{\rho}'_{1}\bar{U}_{2}\bar{V}_{2}}{2} + \frac{k\bar{\rho}'_{R}\bar{U}_{2}\bar{V}_{2}}{2} \begin{pmatrix} M_{48}\\ \overline{M}_{49} \end{pmatrix} \\ - k\bar{\rho}_{2}\bar{U}_{2}V'_{21} + \frac{k\bar{\rho}_{2}\bar{U}_{2}\bar{V}'_{2R}}{2} \begin{pmatrix} M_{48}\\ \overline{M}_{49} \end{pmatrix} - 2\bar{\rho}^{*}\bar{a}'^{*}_{R}\bar{a}^{*} - 2\bar{\rho}^{*}\bar{a}'^{*}_{1} \begin{pmatrix} M_{48}\\ \overline{M}_{49} \end{pmatrix} \bar{a}^{*} - \\ \frac{k\bar{\rho}_{2}\bar{a}'^{*}_{1}\bar{V}_{2}}{2} + \frac{k\bar{\rho}_{2}\bar{a}'^{*}_{R}\bar{V}_{2}}{2} \begin{pmatrix} M_{48}\\ \overline{M}_{49} \end{pmatrix} \end{pmatrix}$$

$$(C9)$$

Assume the following relationships

$$\begin{split} M_{51} &= M_{49} + \frac{M_{48}^2}{M_{49}} \\ M_{52} &= \frac{M_{49}}{M_{51}} \\ M_{53} &= -\frac{M_{48}}{M_{49}} \frac{M_{50}}{M_{51}} \\ \dots M_{54} &= -\frac{2}{M_{51}} \\ M_{55} &= -\frac{2}{M_{49}} \frac{M_{50}}{M_{51}} \\ M_{56} &= -\frac{M_{49}}{M_{49}} \frac{M_{50}}{M_{51}} \\ M_{57} &= -\frac{M_{48}}{M_{49}} \frac{M_{50}}{M_{51}} \\ M_{58} &= \left[2\bar{w}_{US} + -\frac{k\bar{\rho}_2\bar{\nabla}_2}{2} - \left(\frac{M_{49}}{M_{49}}\right) \right] \div M_{51} \\ M_{59} &= -\frac{1}{M_{51}} - \left(-\frac{2\bar{w}_{US}M_{48}}{M_{49}} - -\frac{k\bar{\rho}_2\bar{\nabla}_2}{2}\right) \\ M_{60} &= -\frac{1}{M_{51}} - \left(-2\bar{\rho}^*\bar{a}^* + -\frac{k\bar{\rho}_2\bar{\nabla}_2}{M_{49}}\right) \\ M_{61} &= -\frac{1}{M_{51}} - \left(-2\bar{\rho}^*\bar{a}^* + -\frac{k\bar{\rho}_2\bar{\nabla}_2}{2M_{49}}\right) \\ M_{62} &= -\frac{1}{M_{51}} - \left(-\frac{-k\bar{U}_2\bar{\nabla}_2}{2}\right) \\ M_{63} &= -\frac{1}{M_{51}} - \left(-\frac{-k\bar{U}_2\bar{\nabla}_2}{2}\right) \\ M_{64} &= -\frac{-k(\bar{\rho}\bar{U})_2}{M_{51}} \\ M_{65} &= -k(\bar{\rho}\bar{U})_2 - \left(-\frac{M_{48}}{M_{49}}M_{51}\right) \end{split}$$

(C10)

66

_
Substituting these values into Equation 3.7 and solving for ρ' $_{\rm USI}$ gives

$$\bar{\rho}'_{USI} = M_{52}\bar{A}'_{SR} + M_{53}\bar{A}'_{SI} + M_{54}\bar{\rho}'_{R}^{*} + M_{55}\bar{\rho}'_{1}^{*} + M_{56}\bar{A}'_{R}^{*} + M_{57}\bar{A}'_{1}^{*} + M_{58}\bar{U}'_{USR} + M_{59}\bar{U}'_{USI} + M_{60}\bar{a}'_{1}^{*} + M_{61}\bar{a}'_{R}^{*} + M_{62}\bar{\rho}'_{1}^{*} + M_{63}\bar{\rho}'_{R}^{*} + M_{64}\bar{\nabla}'_{2I} + M_{65}\bar{\nabla}'_{2R}$$
(C11)

Substituting the relationships of Equation C11 into C7 and solving for $\bar{\rho}'_{\scriptscriptstyle\rm USR}$ gives

$$\bar{\rho}'_{\rm USR} = \frac{1}{M_{48}} \left[\left(M_{50} - M_{49} M_{52} \right) - \bar{A}'_{\rm SR} + \left(M_{50A} - M_{49} M_{53} \right) - \bar{A}'_{\rm SI} + \left(- 2 - M_{49} M_{54} \right) - \bar{p}'_{\rm R}^{*} + \left(- M_{49} M_{55} \right) - \bar{p}'_{\rm I}^{*} + \left(M_{50A} - M_{49} M_{56} \right) - \bar{A}'_{\rm I}^{*} + \left(- M_{49} M_{57} \right) - \bar{A}'_{\rm I}^{*} + \left(2 \bar{w}_{\rm US} - M_{49} M_{59} \right) - \bar{U}'_{\rm USR} + \left(\frac{-k\bar{\rho}_{2}\bar{V}_{2}}{2} - M_{49} M_{59} \right) - \bar{U}'_{\rm USI} + \left(\frac{-k\rho_{2}\bar{V}'_{2}}{2} - M_{49} M_{60} \right) \bar{a}'_{\rm I}^{*} + \left(- 2\bar{\rho}^{*} - M_{49} M_{61} \right) - \bar{a}'_{\rm R}^{*} + \left(- \frac{-kU_{2}\bar{V}_{2}}{2} - M_{49} M_{62} \right) - \bar{\rho}'_{\rm I}^{*} + \left(- M_{49} M_{63} \right) - \bar{\rho}'_{\rm R}^{*} + \left(- k\bar{\rho}_{2}\bar{U}_{2} - M_{49} M_{64} \right) - \bar{V}'_{\rm 2I} + \left(- M_{49} M_{65} \right) - \bar{V}'_{\rm 2R} \right]$$

$$(C12)$$

Further, let

ł

$$M_{66} = \frac{M_{50} - M_{49} M_{52}}{M_{48}}$$

$$M_{67} = -\frac{M_{49} M_{54}}{M_{48}}$$

$$M_{67} = -\frac{M_{49} M_{54}}{M_{48}}$$

$$M_{68} = \frac{-2 - M_{49} M_{54}}{M_{48}}$$

$$M_{69} = -\frac{M_{49} M_{55}}{M_{48}}$$

$$M_{70} = (M_{50A} - M_{49} M_{56}) / M_{48}$$

$$M_{71} = -M_{49} M_{57} / M_{48}$$

$$M_{72} = (2\bar{w}_{US} - M_{49} M_{58}) / M_{48}$$

$$M_{73} = (-\frac{1}{2} k \bar{\rho}_2 \bar{V}_2 - M_{49} M_{59}) / M_{48}$$

$$M_{74} = (-\frac{1}{2} k \bar{\rho}_2 \bar{V}_2 - M_{49} M_{60}) / M_{48}$$

$$M_{75} = (-2\bar{\rho}^* \bar{a}^* - M_{49} M_{51}) / M_{48}$$

67

$$M_{76} = (-\frac{1}{2} k \bar{U}_2 \bar{V}_2 - M_{49} M_{62}) / M_{48}$$

$$M_{77} = -M_{49} M_{63} / M_{48}$$

$$M_{78} = (-k (\bar{\rho} \bar{U})_2 - M_{49} M_{63}) / M_{48}$$

$$M_{79} = -M_{49} M_{64} / M_{48}$$
(C13)

L

Substituting Equation C13 into Equation C12 gives

$$\rho'_{USR} = M_{76}\bar{A'}_{SR} + M_{77}\bar{A'}_{SI} + M_{78}\bar{P'}_{R}^{*} + M_{79}\bar{P'}_{I}^{*} + M_{80}\bar{A'}_{R}^{*} + M_{81}\bar{A'}_{I}^{*} + M_{81}\bar{A'}_{I}^{*} + M_{82}\bar{U'}_{USR} + M_{83}\bar{U'}_{USI} + M_{84}\bar{a'}_{I}^{*} + M_{85}\bar{a'}_{R}^{*} + M_{86}\bar{\rho'}_{I}^{*} + M_{87}\bar{\rho'}_{R}^{*} + M_{89}\bar{V'}_{2I} + M_{89}\bar{V'}_{2R}$$
(C14)

Next, the continuity equation is used to solve for the velocity perturbation upstream of the shock. Separating Equation 38 into real and imaginary parts gives

Real Part

$$\bar{\rho}_{\rm US} \bar{U}'_{\rm USR} \bar{A}_{\rm s} = -(\bar{\rho}'_{\rm USR} \bar{U}_{\rm US} \bar{A}_{\rm s} + \bar{\rho}_{\rm US} \tilde{U}_{\rm US} \bar{A}'_{\rm SR}) + (\bar{\rho}'_{\rm R} * \bar{a}^{*} + \bar{\rho} * \bar{a}'_{\rm R} * + \bar{\rho} * \bar{A}'_{\rm R} * \bar{a}^{*}) + \mathbf{k} \left[\frac{V_{2}}{2} (\bar{\rho}'_{1} * + \bar{\rho}'_{\rm USI}) + \bar{\rho}_{2} \bar{\nabla}'_{21} \right]$$
(C15)

Imaginary Part

$$\bar{\rho}_{\rm US} \tilde{\mathbf{U}}'_{\rm USI} \bar{\mathbf{A}}_{\rm S} = -\left(\bar{\rho}'_{\rm USI} \bar{\mathbf{U}}_{\rm US} \bar{\mathbf{A}}_{\rm S} + \bar{\rho}_{\rm US} \bar{\mathbf{U}}_{\rm US} \bar{\mathbf{A}}'_{\rm SI}\right) + \left(\bar{\rho}'_{1}^{*} \bar{\mathbf{a}}^{*} + \bar{\rho}^{*} \bar{\mathbf{a}}'_{1}^{*} + \bar{\rho}^{*} \bar{\mathbf{A}}'_{1}^{*} \bar{\mathbf{a}}^{*}\right) - \mathbf{k} \left[\frac{\bar{\mathbf{V}}_{2}}{2} \left(\bar{\rho}'_{\rm R}^{*} + \bar{\rho}'_{\rm USR}\right) + \bar{\rho}_{2} \bar{\mathbf{V}}'_{2R}\right]$$
(C16)

Substituting for $\bar{\rho}'_{USR}$ and $\bar{\rho}'_{USI}$ in Equation C15 produces

$$\begin{split} \bar{\rho}_{US}\bar{U'}_{USR}\bar{A}_{S} &= -\bar{U}_{US}\bar{A}_{S} \ (M_{66}\bar{A'}_{SR} + M_{67}\bar{A'}_{S1} + M_{68}\bar{p'}_{R}^{*} + M_{69}\bar{p'}_{R}^{*} + M_{70}\bar{A'}_{R}^{*} + M_{70}\bar{A'}_{R}^{*} + M_{70}\bar{A'}_{R}^{*} + M_{70}\bar{A'}_{R}^{*} + M_{70}\bar{\rho'}_{1}^{*} + M_{70}\bar{\rho'}_{1}^{*} + M_{70}\bar{\rho'}_{R}^{*} + M_{70}\bar{\rho'}_{1}^{*} + M_{70}\bar{\rho'}_{1}^{*} + M_{70}\bar{\rho'}_{R}^{*} + M_{70}\bar{\rho'}_{1}^{*} + M_{70}\bar{\rho'}_{1}^{*} + M_{70}\bar{\rho'}_{1}^{*} + M_{70}\bar{\rho'}_{R}^{*} + M_{70}\bar{\rho'}_{1}^{*} + M_{70}\bar{\rho'}_{1$$

Next, combine like terms and rearrange so that $(\overline{U'}_{USR}$ and $\overline{U'}_{USI})$ is on the left-hand side of the equation and let:

$$\begin{split} \mathbf{M}_{so} &= \bar{\rho}_{US} \bar{\mathbf{A}}_{S} + \bar{\mathbf{U}}_{US} \bar{\mathbf{A}}_{S} \mathbf{M}_{72} - \frac{\mathbf{k} \bar{\mathbf{V}}_{2}}{2} \mathbf{M}_{58} \\ \mathbf{M}_{s1} &= \bar{\mathbf{U}}_{US} \bar{\mathbf{A}}_{S} \mathbf{M}_{73} - \frac{\mathbf{k} \bar{\mathbf{V}}_{2}}{2} \mathbf{M}_{59} \\ \mathbf{M}_{s2} &= - \bar{\mathbf{U}}_{US} \bar{\mathbf{A}}_{S} \mathbf{M}_{66} - \bar{\rho}_{US} \bar{\mathbf{U}}_{US} + \frac{\mathbf{k} \bar{\mathbf{V}}_{2}}{2} \mathbf{M}_{52} \\ \mathbf{M}_{s3} &= - \bar{\mathbf{U}}_{US} \bar{\mathbf{A}}_{S} \mathbf{M}_{67} + \frac{\mathbf{k} \bar{\mathbf{V}}_{2}}{2} \mathbf{M}_{53} \\ \mathbf{M}_{64} &= - \bar{\mathbf{U}}_{US} \bar{\mathbf{A}}_{S} \mathbf{M}_{77} + \bar{\mathbf{a}}^{*} + \frac{\mathbf{k} \bar{\mathbf{V}}_{2}}{2} \mathbf{M}_{63} \\ \mathbf{M}_{85} &= - \bar{\mathbf{U}}_{US} \bar{\mathbf{A}}_{S} \mathbf{M}_{76} + \frac{\mathbf{k} \bar{\mathbf{V}}_{2}}{2} \mathbf{M}_{62} \\ \mathbf{M}_{86} &= - \bar{\mathbf{U}}_{US} \bar{\mathbf{A}}_{S} \mathbf{M}_{68} + \frac{\mathbf{k} \bar{\mathbf{V}}_{2}}{2} \mathbf{M}_{54} \\ \mathbf{M}_{87} &= - \bar{\mathbf{U}}_{US} \bar{\mathbf{A}}_{S} \mathbf{M}_{69} + \frac{\mathbf{k} \bar{\mathbf{V}}_{2}}{2} \mathbf{M}_{55} \\ \mathbf{M}_{88} &= - \bar{\mathbf{U}}_{US} \bar{\mathbf{A}}_{S} \mathbf{M}_{70} + \bar{\rho}^{*} \bar{\mathbf{a}}^{*} + \frac{\mathbf{k} \bar{\mathbf{V}}_{2}}{2} \mathbf{M}_{56} \\ \mathbf{M}_{99} &= - \bar{\mathbf{U}}_{US} \bar{\mathbf{A}}_{S} \mathbf{M}_{71} + \frac{\mathbf{k} \bar{\mathbf{V}}_{2}}{2} \mathbf{M}_{57} \\ \mathbf{M}_{90} &= - \bar{\mathbf{U}}_{US} \bar{\mathbf{A}}_{S} \mathbf{M}_{74} + \frac{\mathbf{k} \bar{\mathbf{V}}_{2}}{2} \mathbf{M}_{50} \\ \mathbf{M}_{91} &= - \bar{\mathbf{U}}_{US} \bar{\mathbf{A}}_{S} \mathbf{M}_{75} + \bar{\rho}^{*} + \frac{\mathbf{k} \bar{\mathbf{V}}_{2}}{2} \mathbf{M}_{61} \\ \mathbf{M}_{92} &= - \bar{\mathbf{U}}_{US} \bar{\mathbf{A}}_{S} \mathbf{M}_{76} + \frac{\mathbf{k} \bar{\mathbf{V}}_{2}}{2} \mathbf{M}_{64} + \mathbf{k} \bar{p}_{2} \\ \mathbf{M}_{93} &= - \bar{\mathbf{U}}_{US} \bar{\mathbf{A}}_{S} \mathbf{M}_{76} + \frac{\mathbf{k} \bar{\mathbf{V}}_{2}}{2} \mathbf{M}_{64} + \mathbf{k} \bar{p}_{2} \\ \mathbf{M}_{93} &= - \bar{\mathbf{U}}_{US} \bar{\mathbf{A}}_{S} \mathbf{M}_{76} + \frac{\mathbf{k} \bar{\mathbf{V}}_{2}}{2} \mathbf{M}_{65} \\ \end{array}$$

(C17)

Using these relationships, the real part becomes

$$\mathbf{M}_{80} \mathbf{\bar{U}'}_{USR} + \mathbf{M}_{81} \mathbf{\bar{U}'}_{USI} = \mathbf{M}_{82} \mathbf{\bar{A}'}_{SR} + \mathbf{M}_{83} \mathbf{\bar{A}'}_{SI} + \mathbf{M}_{84} \mathbf{\bar{\rho}'}_{R}^{*} + \mathbf{M}_{85} \mathbf{\bar{\rho}'}_{I}^{*} + \mathbf{M}_{86} \mathbf{\bar{\rho}'}_{R}^{*} + \mathbf{M}_{89} \mathbf{\bar{\rho}'}_{R}^{*} + \mathbf{M}_{91} \mathbf{\bar{a}'}_{R}^{*} + \mathbf{M}_{92} \mathbf{\bar{V}'}_{2I} + \mathbf{M}_{93} \mathbf{\bar{V}'}_{2R}$$
(C18)

Dealing next with the imaginary part, substituting for $\bar{\rho}'_{\rm USI}$ and $\bar{\rho}'_{\rm USR}$ gives

$$\begin{split} \bar{\rho}_{US}\bar{U'}_{USI}\bar{A}_{S} &= - \bar{\rho}_{US}\bar{U}_{US}\bar{A}_{SI} + (\bar{\rho}'_{1}{}^{*}\bar{a}^{*} + \bar{\rho}^{*}\bar{a}'_{1}{}^{*} + \bar{\rho}^{*}\bar{A}'_{1}{}^{*}\bar{a}^{*}) - \\ k \left(\frac{V_{2}}{2} \bar{\rho}'_{R}{}^{*} + \bar{\rho}\bar{\nabla}'_{2R} \right) - \bar{U}_{US}\bar{A}_{S} \left(M_{52}\bar{A}'_{SR} + M_{53}\bar{A}'_{SI} + M_{54}\bar{\rho}'_{R}{}^{*} + M_{55}\bar{p}'_{1}{}^{*} + \\ M_{56}\bar{A}'_{R}{}^{*} + M_{57}\bar{A}'_{1}{}^{*} + M_{58}\bar{U}'_{USR} + M_{59}\bar{U}'_{USI} + M_{60}\bar{a}'_{1}{}^{*} + M_{61}\bar{a}'_{R}{}^{*} + \\ M_{62}\bar{\rho}'_{1}{}^{*} + M_{63}\bar{\rho}'_{R}{}^{*} + M_{64}\bar{\nabla}'_{2I} + M_{65}\bar{\nabla}'_{2R} \right) - \frac{k\bar{V}_{2}}{2} \left(M_{66}\bar{A}'_{SR} + M_{67}\bar{A}'_{SI} + \\ M_{68}\bar{p}'_{R}{}^{*} + M_{69}\bar{p}'_{1}{}^{*} + M_{70}\bar{A}'_{R}{}^{*} + M_{71}\bar{A}'_{1}{}^{*} + M_{72}\bar{U}'_{USR} + M_{73}\bar{U}_{USI} + M_{74}\bar{a}'_{1}{}^{*} + \\ M_{75}\bar{a}'_{R}{}^{*} + M_{76}\bar{\rho}'_{1}{}^{*} + M_{77}\bar{\rho}'_{R}{}^{*} + M_{78}\bar{\nabla}'_{2I} + M_{79}\bar{\nabla}'_{2R} \right) \end{split}$$

Now, let

$$\begin{split} C_{56} &= \bar{\rho}_{US}\bar{A}_{S} + \bar{U}_{US}\bar{A}_{S}M_{59} + \frac{k\bar{V}_{2}}{2}M_{72} \\ C_{59} &= \bar{U}_{US}\bar{A}_{S}M_{58} + \frac{k\bar{V}_{2}}{2}M_{72} \\ C_{60} &= -\bar{U}_{US}\bar{A}_{S}M_{52} + \frac{k\bar{V}_{2}}{2}M_{66} \\ C_{61} &= -\bar{\rho}_{US}\bar{U}_{US} - \bar{U}_{US}\bar{A}_{S}M_{53} - \frac{k\bar{V}_{2}}{2}M_{67} \\ C_{62} &= -\bar{U}_{US}\bar{A}_{S}M_{63} - \frac{k\bar{V}_{2}}{2}(1 + M_{77}) \\ C_{63} &= \bar{a}^{*} - \bar{U}_{US}\bar{A}_{S}M_{62} - \frac{k\bar{V}_{2}}{2}M_{76} \\ C_{64} &= -\bar{U}_{US}\bar{A}_{US}M_{61} - \frac{k\bar{V}_{2}}{2}M_{75} \\ C_{65} &= \bar{\rho}^{*} - \bar{U}_{US}\bar{A}_{S}M_{60} - \frac{k\bar{V}_{2}}{2}M_{74} \\ C_{66} &= -\bar{U}_{US}\bar{A}_{S}M_{54} - \frac{k\bar{V}_{2}}{2}M_{68} \\ C_{67} &= -\bar{U}_{US}\bar{A}_{S}M_{55} - \frac{k\bar{V}_{2}}{2}M_{69} \end{split}$$

$$C_{68} = -\bar{U}_{US}\bar{A}_{S}M_{56} - \frac{k\bar{V}_{2}}{2}M_{70}$$

$$C_{69} = \bar{\rho}^{*}\bar{a}^{*} - \bar{U}_{US}\bar{A}_{S}M_{57} - \frac{k\bar{V}_{2}}{2}M_{71}$$

$$C_{70} = -\bar{U}_{US}\bar{A}_{S}M_{65} - \frac{k\bar{V}_{2}}{2}(2\bar{\rho}_{2} + M_{79})$$

$$C_{71} = -\bar{U}_{US}\bar{A}_{S}M_{64} - \frac{k\bar{V}_{2}}{2}M_{78}$$
(C19)

Substituting these relationships into the imaginary part of the continuity equation yields

$$C_{59}\bar{U}'_{USR} + C_{58}\bar{U}'_{USI} = C_{66}\bar{A}'_{SR} + C_{61}\bar{A}'_{SI} + C_{62}\bar{\rho}'_{R}^{*} + C_{63}\bar{\rho}'_{1}^{*} + C_{64}\bar{a}'_{R}^{*} + C_{65}\bar{a}'_{1}^{*} + C_{65}\bar{a}'_{1}^{*} + C_{65}\bar{A}'_{1}^{*} + C_{69}\bar{A}'_{1}^{*} + C_{70}\bar{V}'_{21} + C_{71}\bar{V}'_{2R}$$
(C20)

Multiplying Equation C18 by C_{ss}/M_{si} and subtracting the resultant from Equation C20 produces, after solving for $\bar{U'}_{\text{USR}}$:

$$\widetilde{U}_{USR}^{'} = C_{73}\overline{A}_{SR}^{'} + C_{74}\overline{A}_{SI}^{'} + C_{75}\overline{\rho}_{R}^{'} + C_{79}\overline{\rho}_{1}^{'} + C_{77}\overline{a}_{R}^{'} + C_{78}\overline{a}_{1}^{'} + C_{78}\overline{a}_{1}^{'} + C_{79}\overline{\rho}_{1}^{'} + C_{81}\overline{A}_{R}^{'} + C_{81}\overline{A}_{R}^{'} + C_{82}\overline{A}_{1}^{'} + C_{83}\overline{V}_{21}^{'} + C_{84}\overline{V}_{2R}^{'}$$
(C21)

where,

Ī

•

$$\begin{split} C_{72} &= C_{59} - \frac{C_{58}M_{80}}{M_{81}} \\ C_{73} &= \frac{1}{C_{72}} \left(C_{60} - \frac{C_{58}M_{82}}{M_{81}} \right) \\ C_{74} &= \frac{1}{C_{72}} \left(C_{61} - \frac{C_{58}M_{83}}{M_{81}} \right) \\ C_{75} &= \frac{1}{C_{72}} \left(C_{62} - \frac{C_{58}M_{84}}{M_{81}} \right) \\ C_{75} &= \frac{1}{C_{72}} \left(C_{63} - \frac{C_{58}M_{84}}{M_{81}} \right) \\ C_{76} &= \frac{1}{C_{72}} \left(C_{63} - \frac{C_{58}M_{85}}{M_{81}} \right) \\ C_{77} &= \frac{1}{C_{72}} \left(C_{64} - \frac{C_{58}M_{85}}{M_{81}} \right) \\ C_{78} &= \frac{1}{C_{72}} \left(C_{65} - \frac{C_{58}M_{80}}{M_{81}} \right) \\ C_{79} &= \frac{1}{C_{72}} \left(C_{66} - \frac{C_{58}M_{80}}{M_{81}} \right) \\ C_{80} &= \frac{1}{C_{72}} \left(C_{67} - \frac{C_{58}M_{87}}{M_{81}} \right) \end{split}$$

$$\begin{split} C_{81} &= \ \frac{1}{C_{72}} & \left(C_{68} - \ \frac{C_{58}M_{88}}{M_{81}}\right) \\ C_{82} &= \ \frac{1}{C_{72}} & \left(C_{69} - \ \frac{C_{58}M_{89}}{M_{81}}\right) \\ C_{83} &= \ \frac{1}{C_{72}} & \left(C_{70} - \ \frac{C_{58}M_{93}}{M_{81}}\right) \\ C_{84} &= \ \frac{1}{C_{72}} & \left(C_{71} - \ \frac{C_{58}M_{92}}{M_{81}}\right) \end{split}$$

Substituting Equation C21 into C20 and solving for $\bar{U'}_{\mbox{\tiny USI}}$ produces

$$\bar{U}'_{USI} = C_{85}\bar{A}'_{SR} + C_{86}\bar{A}'_{SI} + C_{87}\bar{\rho}_{R}^{*'} + C_{88}\bar{\rho}_{I}^{*'} + C_{89}\bar{a}_{R}^{*'} + C_{90}\bar{a}_{J}^{*'} + C_{91}\bar{p}_{R}^{*'} + C_{92}\bar{p}_{I}^{*'} + C_{93}\bar{A}_{R}^{*'} + C_{94}\bar{A}_{I}^{*'} + C_{95}\bar{\nabla}_{2I}' + C_{96}\bar{\nabla}_{2R}'$$

$$(C22)$$

where,

.

$$C_{85} = \frac{1}{C_{58}} (C_{60} - C_{59}C_{73})$$

$$C_{86} = \frac{1}{C_{58}} (C_{61} - C_{59}C_{74})$$

$$C_{87} = \frac{1}{C_{58}} (C_{62} - C_{59}C_{75})$$

$$C_{88} = \frac{1}{C_{58}} (C_{63} - C_{59}C_{76})$$

$$C_{89} = \frac{1}{C_{58}} (C_{64} - C_{59}C_{77})$$

$$C_{90} = \frac{1}{C_{58}} (C_{65} - C_{59}C_{78})$$

$$C_{91} = \frac{1}{C_{58}} (C_{67} - C_{59}C_{79})$$

$$C_{92} = \frac{1}{C_{58}} (C_{68} - C_{59}C_{80})$$

$$C_{93} = \frac{1}{C_{58}} (C_{69} - C_{59}C_{81})$$

$$C_{94} = \frac{1}{C_{58}} (C_{69} - C_{59}C_{82})$$

$$C_{95} = \frac{1}{C_{58}} (C_{70} - C_{59}C_{83})$$

$$C_{96} = \frac{1}{C_{58}} (C_{71} - C_{59}C_{84})$$

(C23)

ł

¢

The value for the velocity perturbation upstream of the shock given in Equations C21 and C22 can then be inserted into Equations C11 and C14, given the density perturbation upstream of the shock, for a complete description of the flowfield in Region 2.

,

APPENDIX D SOLUTION TO THE EQUATIONS OF MOTION FOR REGION 3

The nondimensionalized equations of motion appear as Equations 60 and 61. Again, only the momentum and continuity equations are needed because these are only two unknowns, $A_{+\infty}$ and $Z_{+\infty}$. These parameters describe the irrotational and rotational flowfields.

Exit flow perturbations are defined first. The velocity is represented as the sum of the rotational and irrotational fields, while pressure is a function of the irrotational flowfield only¹. Conversion of the two-dimensional flowfield into a one-dimensional field proceeds as follows:

$$\mathbf{p'}_{\mathbf{E}} = \frac{1}{\mathbf{\bar{y}}_{\mathbf{E}}} \int_{\mathbf{o}}^{\mathbf{y}_{\mathbf{E}}} \mathbf{p'}_{\mathbf{E}} d\mathbf{y}$$

which produces

$$\mathbf{p'_{E}} = - \bar{\rho_{E}} \left[\frac{\mathbf{k} + \bar{\mathbf{u}}_{E} \mathbf{B}_{2} + \bar{\mathbf{v}}_{E} \mathbf{C}}{\mathbf{C} \bar{\mathbf{y}}_{E}} \right] \left[\mathbf{A}_{+\infty} \mathbf{e}^{i\mathbf{k}t} \left(\mathbf{e}^{i\mathbf{C} \bar{\mathbf{y}}_{L}} - 1 \right) \right]$$
(D1)

The density perturbation can be related through isentropic form relationships to the pressure perturbations as

$$\bar{\rho}'_{\rm E} = - \bar{\rho}_{\rm E} \left[\frac{\mathbf{k} + \bar{\mathbf{u}}_{\rm E} \, \mathbf{B}_2 + \bar{\mathbf{v}}_{\rm E} \, \mathbf{C}}{C \bar{\mathbf{y}}_{\rm E} - \bar{\mathbf{a}}_{\rm E}} \right] \left[\mathbf{A}_{+\infty} \, \mathbf{e}^{i\mathbf{k}t} \left(\mathbf{e}^{iC \bar{\mathbf{y}}_{\rm E}} - 1 \right) \right]$$
(D2)

The expressions for the velocity component are listed below:

Irrotational Field in the x-direction

$$\tilde{u}_{iE} = \frac{B_2 A_{+\infty}}{C \tilde{y}_E} e^{ikt} (e^{iC \tilde{y}_E} - 1)$$
(D3)

$$\bar{\mathbf{v}}_{1E}' = \frac{\mathbf{A}_{+\infty}}{\bar{\mathbf{y}}_{E}} \, \mathbf{e} \, \mathrm{i} \mathrm{kt} \left(\mathbf{e} \, \mathrm{i} \mathrm{C} \bar{\mathbf{y}}_{E} - 1 \right) \tag{D4}$$

Rotational Field

$$\bar{u}'_{RE} = \frac{Z_{+\infty}}{(R^2 + C^2) \bar{y}_E} e^{ikt} (e^{iC\bar{y}_E} - 1)$$
(D5)

$$\bar{v}'_{RE} = \frac{-R Z_{+\infty}}{C (R^2 + C^2) \bar{y}_E} e^{ikt} (e^{iC\bar{y}_E} - 1)$$
 (D6)

Next, expressions for the time derivatives of the exit density and velocity perturbations are obtained in the following manner:

Density

$$\frac{\partial_{\rho'_{E}}}{\partial t} = -\bar{\rho}_{E} \left[\frac{i k (k + \bar{u}_{E} B_{2} + \bar{v}_{E} C)}{C \bar{a}_{E}^{2} \tilde{y}_{E}} \right] \left[A_{+\infty} e^{ikt} (e^{iC\bar{y}_{E}} - 1) \right]$$
(D7)

¹Goldstein, M. E., Aeroacoustics, pp. 220, 221.

Velocity

Ē

Irrotational Component

$$\frac{\partial \bar{\mathbf{u}'}_{1\mathrm{E}}}{\partial t} = \left(\frac{\mathrm{i} \, \mathrm{k} \, \mathrm{B}_2 \, \mathrm{A}_{+\infty}}{\mathrm{C} \bar{\mathrm{y}}_{\mathrm{E}}}\right) \, e^{\mathrm{i} \mathrm{k} t} \left(\mathrm{e}^{\mathrm{i} \mathrm{C} \bar{\mathrm{y}}_{\mathrm{E}}} - 1\right) \tag{D8}$$

$$\frac{\partial \bar{\mathbf{v}'_{1E}}}{\partial t} = \left(\frac{\mathbf{i} \mathbf{k} \mathbf{A}_{+\infty}}{\bar{\mathbf{y}}_{E}}\right) \mathbf{e}^{\mathbf{i}\mathbf{k}t} \left(\mathbf{e}^{\mathbf{i}C\bar{\mathbf{y}}_{k}} - 1\right)$$
(D9)

Rotational Component

$$\frac{\partial \bar{\mathbf{u}'}_{RE}}{\partial t} = \left[\frac{\mathbf{i} \mathbf{k} \mathbf{Z}_{+\infty}}{(\mathbf{R}^2 + \mathbf{C}^2) \, \bar{\mathbf{y}}_E} \, \mathbf{e}^{\mathbf{i}\mathbf{k}t} \, (\mathbf{e}^{\mathbf{i}C\bar{\mathbf{y}}_k} - 1) \right]$$
(D10)

$$\frac{\partial \bar{\mathbf{v}'}_{RE}}{\partial t} = \left[\frac{-i \ k \ R \ Z_{+\infty}}{C \ (C^2 + R^2) \overline{\mathbf{y}}_E} \ e^{ikt} \ (e^{iC \mathbf{y}_E} - 1) \right]$$
(D11)

Assuming the flow parameters vary harmonically with time, substituting the relationships of Equations D3 through D11 into the momentum equation, and dividing through by e^{ikt} produces

$$\begin{split} \tilde{\mathbf{p}}'_{ds}\tilde{\mathbf{A}}_{s} + \tilde{\mathbf{p}}_{ds}\tilde{\mathbf{A}}'_{s} + \tilde{\nu}_{E}\bigg[\bigg(\frac{\mathbf{k} + \tilde{\mathbf{u}}_{E}\mathbf{B}_{2} + \tilde{\mathbf{v}}_{E}\mathbf{C}}{\mathbf{C}\tilde{\mathbf{y}}_{E}}\bigg)\tilde{\mathbf{A}}_{E}\mathbf{A}_{+\nu}\left(\mathbf{e}^{i\mathbf{C}\tilde{\mathbf{y}}_{1}} - 1\right)\bigg] &- \tilde{\mathbf{p}}_{E}\tilde{\mathbf{A}}'_{E} \\ &= \left\{\bigg[\bigg(\frac{\mathbf{B}_{2}\mathbf{A}_{+\infty}}{\mathbf{C}\tilde{\mathbf{y}}_{E}} + \frac{\mathbf{Z}_{+\infty}}{(\mathbf{R}^{2} + \mathbf{C}^{2})\tilde{\mathbf{y}}_{E}}\bigg)\left(\mathbf{e}^{i\mathbf{C}\tilde{\mathbf{y}}_{1}} - 1\right)\sin\alpha_{ch} + \\ \left(\frac{\mathbf{A}_{+\infty}}{\tilde{\mathbf{y}}_{E}} - \frac{\mathbf{R}\mathbf{Z}_{+\infty}}{\mathbf{C}(\mathbf{R}^{2} + \mathbf{C}^{2})\tilde{\mathbf{y}}_{E}}\right)\left(\mathbf{e}^{i\mathbf{C}\tilde{\mathbf{y}}_{1}} - 1\right)\cos\alpha_{ch}\bigg]\tilde{\mathbf{w}}_{E} + \\ \mathbf{U}_{\text{REL}}\cos\left(\alpha_{ch} - \beta_{2}\right)\left[-\tilde{\nu}_{k}\bigg(\frac{\mathbf{k} + \tilde{\mathbf{u}}_{E}\mathbf{B}_{2} + \tilde{\mathbf{v}}_{E}\mathbf{C}}{\mathbf{C}\tilde{\mathbf{y}}_{E}\tilde{\mathbf{a}}_{E}^{2}}\bigg)\tilde{\mathbf{A}}_{E}\mathbf{A}_{+,\cdot}\left(\mathbf{e}^{i\mathbf{C}\tilde{\mathbf{y}}_{1}} - 1\right)\sin\alpha_{ch} + \\ \left(\frac{\mathbf{A}_{+\infty}}{\tilde{\mathbf{y}}_{E}} - \frac{\mathbf{R}\mathbf{Z}_{+\infty}}{\mathbf{C}(\mathbf{R}^{2} + \mathbf{C}^{2})\tilde{\mathbf{y}}_{E}}\bigg)\left(\mathbf{e}^{i\mathbf{C}\tilde{\mathbf{y}}_{1}} + \frac{\tilde{\mathbf{v}}_{E}\mathbf{A}_{E}}{\mathbf{C}\tilde{\mathbf{y}}_{E}\tilde{\mathbf{a}}_{E}^{2}}\bigg)\tilde{\mathbf{A}}_{E}\mathbf{A}_{+,\cdot}\left(\mathbf{e}^{i\mathbf{C}\tilde{\mathbf{y}}_{1}} - 1\right)\sin\alpha_{ch} + \\ \left(\frac{\mathbf{A}_{+\infty}}{\tilde{\mathbf{y}}_{E}} - \frac{\mathbf{R}\mathbf{Z}_{+\infty}}{\mathbf{C}(\mathbf{R}^{2} + \mathbf{C}^{2})\tilde{\mathbf{y}}_{E}}\bigg)\left(\mathbf{e}^{i\mathbf{C}\tilde{\mathbf{y}}_{1}} + \frac{\mathbf{Z}_{+\nu}}{\mathbf{C}\tilde{\mathbf{y}}_{E}\tilde{\mathbf{a}}_{E}^{2}}\bigg)\left(\mathbf{e}^{i\mathbf{C}\tilde{\mathbf{y}}_{1}} - 1\right)\cos\alpha_{ch}\right) + \\ \tilde{\rho}_{E}\tilde{\mathbf{U}}_{E}\tilde{\mathbf{A}}'_{E}\cos\left(\alpha_{ch} - \beta_{2}\right)\right]\bigg\} - \left\{\tilde{\mathbf{U}}'_{ds}\tilde{\mathbf{w}}_{ds} + \tilde{\mathbf{U}}_{ds}\tilde{\mathbf{w}}'_{ds}\right\} + \\ \frac{\tilde{\mathbf{U}}_{3}\tilde{\mathbf{V}}_{3}}{2} \left\{\left(\mathbf{i}\tilde{\mathbf{k}}\tilde{\boldsymbol{p}}'_{ds} - \mathbf{i}\tilde{\mathbf{k}}\tilde{\boldsymbol{p}}_{E}\left(\frac{\mathbf{k} + \tilde{\mathbf{u}}_{E}\mathbf{B}_{2} + \tilde{\mathbf{v}}_{E}\mathbf{C}\right)\mathbf{A}_{+\nu}\left(\mathbf{e}^{i\mathbf{C}\tilde{\mathbf{y}}_{E}} - 1\right)\right\} + \\ + \mathbf{i}\tilde{\mathbf{k}}\left(\tilde{\rho}\widetilde{\mathbf{U}}\tilde{\mathbf{V}'}\right)_{3} + \frac{\mathbf{i}\tilde{\mathbf{k}}\rho_{3}\tilde{\mathbf{V}}_{3}}{2} \left\{\left(\frac{\mathbf{B}_{2}\mathbf{A}_{+\infty}}{\mathbf{C}\tilde{\mathbf{y}}_{E}\tilde{\mathbf{a}}_{E}^{2}}\right)\mathbf{A}_{+\nu}\left(\mathbf{e}^{i\mathbf{C}\tilde{\mathbf{y}}_{E}} - 1\right)\sin\alpha_{ch} + \\ \left(\frac{\mathbf{A}_{+\infty}}{\tilde{\mathbf{y}}_{E}} - \frac{\mathbf{R}\mathbf{Z}_{+\infty}}{\mathbf{C}\left(\mathbf{R}^{2} + \mathbf{C}^{2}\right)\tilde{\mathbf{y}}_{E}}\right)\left(\mathbf{e}^{i\mathbf{C}\tilde{\mathbf{y}}_{E}} - 1\right)\cos\alpha_{ch} + \mathbf{U}'_{ds}\bigg\}$$

The next step requires that Equation D12 be divided into its real and imaginary parts. The momentum equation is used to solve for $Z_{+\infty R}$, $Z_{+\infty l}$ and the continuity equation is used to solve for $A_{+\infty R}$, $A_{+\infty l}$. Combine like terms and make the following assumptions:

$$\begin{split} \mathbf{M}_{94} &= \frac{\mathbf{\bar{u}}_{E}\mathbf{\bar{A}}_{E}}{\mathbf{C}\mathbf{\bar{y}}_{E}}\vec{\rho}_{E} - \frac{\mathbf{\bar{w}}_{E} \sin \alpha_{ch}}{\mathbf{C}\mathbf{\bar{y}}_{E}} + \\ & \left[\begin{array}{c} \mathbf{U}_{2REL} \cos \left(\alpha_{ch} - \beta_{2}\right) \end{array} \right]^{2} \left[\begin{array}{c} \mathbf{\bar{U}}_{E}\mathbf{\bar{A}}_{E}}{\mathbf{C}\mathbf{\bar{y}}_{E}\mathbf{\bar{a}}_{E}^{2}}\vec{\rho}_{E} \end{array} \right] - \\ & \left[\left(\frac{\bar{\rho}_{E}\mathbf{U}_{2REL}\mathbf{\bar{A}}_{E}}{\mathbf{C}\mathbf{\bar{y}}_{E}} \right) \left(\sin \alpha_{ch}\right) \end{array} \right] \cos \left(\alpha_{ch} - \beta_{2}\right) \\ \mathbf{M}_{95} &= \overline{\rho}_{E} \left(\begin{array}{c} \mathbf{k} + \mathbf{\bar{v}}_{E}\mathbf{C} \\ \mathbf{\bar{C}}\mathbf{\bar{y}}_{E} \end{array} \right) \mathbf{\bar{A}}_{E} - \frac{\mathbf{\bar{w}}_{E} \cos \alpha_{ch}}{\mathbf{\bar{y}}_{E}} + \\ & \left[\begin{array}{c} \mathbf{U}_{2REL} \cos \left(\alpha_{ch} - \beta_{2}\right) \end{array} \right]^{2} \left[\left(\begin{array}{c} \mathbf{k} + \mathbf{\bar{v}}_{E}\mathbf{C} \\ \mathbf{\bar{C}}\mathbf{\bar{y}}_{E}\mathbf{\bar{a}}_{E}^{2} \end{array} \right) \mathbf{\bar{A}}_{E} \overline{\rho}_{E} \right] - \end{split}$$

 $ar{
ho}_{
m E} ~ar{{
m U}}_{
m 2REL} ~ar{{
m A}}_{
m E} ~\coslpha_{
m ch} \cos\left(lpha_{
m ch} - eta_2
ight)$

$$\begin{split} \mathbf{M}_{96} &= \overline{\rho}_{\mathrm{E}} \frac{\overline{\mathbf{u}}_{\mathrm{E}} \overline{\mathbf{U}}_{3} \overline{\mathbf{V}}_{3}}{2 \mathrm{C} \overline{\mathbf{y}}_{\mathrm{E}} \overline{\mathbf{a}}_{\mathrm{E}}^{2}} - \frac{\rho_{3} \overline{\mathbf{V}}_{3} \sin \alpha_{\mathrm{ch}}}{2 \mathrm{C} \overline{\mathbf{y}}_{\mathrm{E}}} \\ \mathbf{M}_{97} &= \overline{\rho}_{\mathrm{E}} \frac{(\mathbf{k} + \overline{\mathbf{v}}_{\mathrm{E}} \mathbf{C}) \overline{\mathbf{U}}_{3} \overline{\mathbf{V}}_{3}}{2 \mathrm{C} \overline{\mathbf{y}}_{\mathrm{E}} \overline{\mathbf{a}}_{\mathrm{E}}^{2}} - \frac{\rho_{3} \overline{\mathbf{V}}_{3} \cos \alpha_{\mathrm{ch}}}{2 \overline{\mathbf{y}}_{\mathrm{E}}} \\ \mathbf{M}_{98} &= \left[\frac{\overline{\mathbf{w}}_{\mathrm{E}} \sin \alpha_{\mathrm{ch}}}{(\mathbf{R}^{2} + \mathbf{C}^{2}) \, \overline{\mathbf{y}}_{\mathrm{E}}} - \frac{\mathbf{R} \overline{\mathbf{w}}_{\mathrm{E}} \cos \alpha_{\mathrm{ch}}}{\mathbf{C} (\mathbf{R}^{2} + \mathbf{C}^{2}) \overline{\mathbf{y}}_{\mathrm{E}}} \right] + \\ &\left[\frac{-\overline{\rho}_{\mathrm{E}} \mathbf{U}_{2\mathrm{REL}} \overline{\mathbf{A}}_{\mathrm{E}} \cos \left(\alpha_{\mathrm{ch}} - \beta_{2}\right)}{(\mathbf{R}^{2} + \mathbf{C}^{2}) \overline{\mathbf{y}}_{\mathrm{E}}} \right] \left[\sin \alpha_{\mathrm{ch}} - \frac{\mathbf{R} \cos \alpha_{\mathrm{ch}}}{\mathbf{C}} \right] \\ \mathbf{M}_{99} &= \frac{\overline{\rho}_{3} \overline{\mathbf{V}}_{3}}{2 \left(\mathbf{R}^{2} + \mathbf{C}^{2}\right) \, \overline{\mathbf{y}}_{\mathrm{E}}} \left(\sin \alpha_{\mathrm{ch}} - \frac{\mathbf{R} \cos \alpha_{\mathrm{ch}}}{\mathbf{C}} \right) \\ \mathbf{M}_{100} &= \cos \left(\mathrm{C} \overline{\mathbf{y}}_{\mathrm{E}} \right) - 1 \end{split}$$
(D13)

-

· .

Substituting these relationships into equation D12 and extracting the real part yields

.

$$\begin{split} \mathbf{M}_{94} \left[\mathbf{B}_{2R} \mathbf{A}_{+\infty R} \mathbf{M}_{100} - \mathbf{B}_{21} \mathbf{A}_{+\infty} \mathbf{M}_{100} - \mathbf{B}_{2R} \mathbf{A}_{+\infty} \sin (\mathbf{C} \overline{\mathbf{y}}_{E}) - \mathbf{B}_{21} \mathbf{A}_{+\infty R} \sin (\mathbf{C} \overline{\mathbf{y}}_{E}) \right] + \mathbf{M}_{95} \left[\mathbf{A}_{+\infty R} \mathbf{M}_{100} - \mathbf{A}_{+\infty I} \sin (\mathbf{C} \overline{\mathbf{y}}_{E}) \right] - \mathbf{K} \mathbf{M}_{96} \left[\mathbf{B}_{2R} \mathbf{A}_{+\infty I} \mathbf{M}_{100} + \mathbf{B}_{21} \mathbf{A}_{+\infty R} \mathbf{M}_{100} + \mathbf{B}_{2R} \mathbf{A}_{+\infty R} \sin (\mathbf{C} \overline{\mathbf{y}}_{E}) - \mathbf{B}_{21} \mathbf{A}_{+\infty I} \sin (\mathbf{C} \overline{\mathbf{y}}_{E}) \right] - \mathbf{k} \mathbf{M}_{97} \left[\mathbf{A}_{+\infty I} \mathbf{M}_{100} + \mathbf{A}_{+\infty R} \sin (\mathbf{C} \overline{\mathbf{y}}_{E}) \right] \\ = -\mathbf{k} \mathbf{M}_{99} \left[\mathbf{Z}_{+\infty R} \mathbf{M}_{100} + \mathbf{Z}_{+\infty I} \sin (\mathbf{C} \overline{\mathbf{y}}_{E}) \right] + \mathbf{M}_{98} \left[\mathbf{Z}_{+\infty I} \mathbf{M}_{100} - \mathbf{Z}_{+\infty R} \sin (\mathbf{C} \overline{\mathbf{y}}_{E}) \right] - \mathbf{p}'_{daR} \mathbf{\bar{A}}_{*} - \mathbf{\bar{p}}_{da} \mathbf{\bar{A}'}_{*R} + \left[\mathbf{\bar{p}}_{E} + \mathbf{\bar{\rho}}_{E} \left(\mathbf{U}_{2RE} \cos \left(\alpha_{ch} - \beta_{2} \right) \right)^{2} \right] \mathbf{\bar{A}'}_{ER} - \mathbf{\bar{U}'}_{daR} \mathbf{\bar{w}}_{da} - \mathbf{\bar{U}}_{da} \mathbf{\bar{w}'}_{daR} - \frac{\mathbf{k} \mathbf{\bar{\rho}'}_{dal} \mathbf{\bar{U}}_{3} \mathbf{\bar{V}}_{3}}{2} - \mathbf{k} \mathbf{\bar{\rho}}_{3} \mathbf{\bar{U}}_{3} \mathbf{\bar{V}'}_{3I} - \frac{\mathbf{k} \mathbf{\bar{\rho}}_{3} \mathbf{\bar{U}'}_{ds} \mathbf{\bar{V}}_{3}}{2} \end{split}$$

$$(D14)$$

Collect like terms in the following manner and let

$$\begin{split} \mathbf{M}_{101} &= \mathbf{M}_{94} \left(\mathbf{M}_{100} \mathbf{B}_{2R} - \mathbf{B}_{21} \sin \left(\mathbf{C} \mathbf{\bar{y}}_{E} \right) \right) + \mathbf{M}_{95} \mathbf{M}_{100} \\ &- \mathbf{k} \mathbf{M}_{96} \left(\mathbf{B}_{21} \mathbf{M}_{100} + \mathbf{B}_{2R} \sin \left(\mathbf{C} \mathbf{\bar{y}}_{E} \right) \right) - \mathbf{k} \mathbf{M}_{97} \sin \left(\mathbf{C} \mathbf{\bar{y}}_{E} \right) \\ \mathbf{M}_{102} &= - \mathbf{M}_{94} \left(\mathbf{M}_{100} \mathbf{B}_{21} + \mathbf{B}_{2R} \sin \left(\mathbf{C} \mathbf{\bar{y}}_{E} \right) \right) - \mathbf{M}_{95} \sin \left(\mathbf{C} \mathbf{\bar{y}}_{E} \right) \\ &- \mathbf{k} \mathbf{M}_{96} \left(\mathbf{M}_{100} \mathbf{B}_{2R} - \mathbf{B}_{21} \sin \left(\mathbf{C} \mathbf{\bar{y}}_{E} \right) \right) - \mathbf{k} \mathbf{M}_{97} \mathbf{M}_{100} \\ \mathbf{M}_{103} &= - \mathbf{k} \mathbf{M}_{99} \sin \left(\mathbf{C} \mathbf{\bar{y}}_{E} \right) + \mathbf{M}_{98} \mathbf{M}_{100} \end{split}$$

$$M_{104} = - kM_{99} M_{100} - M_{98} \sin (C\overline{y}_{E})$$
(D15)

Substituting Equation D15 into D14 yields

$$\mathbf{M}_{101}\mathbf{A}_{+\infty R} + \mathbf{M}_{102}\mathbf{A}_{+\infty I} = \mathbf{M}_{103}\mathbf{Z}_{+\infty R} + \mathbf{M}_{104}\mathbf{Z}_{+\infty I} + \mathbf{RC}$$
(D16)

where,

-

$$\operatorname{RC} = -\tilde{p}'_{dsR}\overline{A}_{S} - \bar{p}_{ds}\overline{A}'_{SR} + [\bar{p}_{E} + \rho_{E} (U_{2RE} \cos (\alpha_{ch} - \beta_{2}))^{2}] \overline{A}'_{ER} - \overline{U}_{ds}\overline{w}_{ds} - \overline{U}_{ds}\overline{w}'_{dsR} - \frac{k\rho'_{dsl}\overline{U}_{3}\overline{V}_{3}}{2} - k\bar{\rho}_{3}\overline{U}_{3}\overline{V}'_{3l} - \frac{k\bar{\rho}_{3}\overline{U}'_{dsl}\overline{V}_{3}}{2}$$
(D17)

with

_ __

$$\overline{\mathbf{w}}'_{dsR} = \left(\overline{\rho}'_{dsR} \overline{\mathbf{U}}_{ds} \overline{\mathbf{A}}_{S} + \overline{\rho}_{ds} \overline{\mathbf{U}}'_{dsR} \overline{\mathbf{A}}_{S} + \overline{\rho}_{ds} \overline{\mathbf{U}}_{ds} \overline{\mathbf{A}}'_{SR} \right)$$
(D18)

77

The imaginary part of the momentum equation is expressed as

$$M_{105}A_{+\infty R} + M_{106}A_{+\infty I} = M_{107} Z_{+\infty R} + M_{108}Z_{+\infty I} + IC$$
(D19)

-

where,

$$\begin{split} M_{105} &= M_{94} \left[B_{21} M_{100} + B_{2R} \sin (C \overline{y}_{E}) \right] + M_{95} \sin (C \overline{y}_{E}) \\ &+ k M_{96} \left[B_{2R} M_{100} - B_{21} \sin (C \overline{y}_{E}) \right] + k M_{97} M_{100} \\ M_{106} &= M_{94} \left[B_{2R} M_{100} - B_{21} \sin (C \overline{y}_{E}) \right] + M_{95} M_{100} \\ &- k M_{96} \left[B_{21} M_{100} + B_{2R} \sin (C \overline{y}_{E}) \right] - k M_{97} \sin (C \overline{y}_{E}) \\ M_{107} &= M_{96} \sin (C \overline{y}_{E}) + k M_{99} M_{100} \\ M_{108} &= M_{70} M_{72} - k M_{71} \sin (C \overline{y}_{E}) \end{split}$$
(D20)

and

$$IC = -p_{dsl} \bar{A}_{S} - \bar{p}_{ds}\bar{A}'_{Sl} + \left[\bar{p}_{E} + \bar{\rho}_{E}(\bar{U}_{2REL}\cos(\alpha_{ch} - \beta_{2}))^{2}\right]\bar{A}'_{El} - \\ \bar{U}'_{dsl}\bar{w}_{ds} - \bar{U}_{ds}\bar{w}'_{dsl} + \frac{k\bar{\rho}'_{dsR}\bar{U}_{3}\bar{V}_{3}}{2} + k\bar{\rho}_{3}\bar{U}_{3}\bar{V}'_{3R} + \frac{k\bar{\rho}_{3}\bar{U}'_{dsR}\bar{V}_{3}}{2}$$
(D21)

with

$$\bar{w'}_{dsl} = (\bar{\rho'}_{dsl}\bar{U}_{ds}\bar{A}_{S} + \bar{\rho}_{ds}\bar{U'}_{dsl}\bar{A}_{S} + \bar{\rho}_{ds}\bar{U}_{ds}\bar{A}_{Sl})$$

In order to solve for $A_{+\infty R},$ multiply Equation D16 by M_{78}/M_{74} and subtract the resultant from Equation D19 to produce

$$A_{+\infty R} = M_{110}Z_{+\infty R} + M_{111}Z_{+\infty I} + M_{112}IC + M_{113}RC$$
 (D22)

where,

$$\begin{split} \mathbf{M}_{109} &= \mathbf{M}_{105} - \mathbf{M}_{101} \mathbf{M}_{106} / \mathbf{M}_{102} \\ \mathbf{M}_{110} &= (\mathbf{M}_{107} - \mathbf{M}_{103} \mathbf{M}_{106} / \mathbf{M}_{102}) / \mathbf{M}_{109} \\ \mathbf{M}_{111} &= (\mathbf{M}_{108} - \mathbf{M}_{104} \mathbf{M}_{106} / \mathbf{M}_{102}) / \mathbf{M}_{109} \\ \mathbf{M}_{112} &= 1 / \mathbf{M}_{109} \\ \mathbf{M}_{113} &= -\mathbf{M}_{106} / \mathbf{M}_{102} \mathbf{M}_{109} \end{split}$$

Substitute Equation D22 into Equation D19 and solve for $A_{\scriptscriptstyle +\infty l}$ to give

$$A_{+\infty I} = M_{114}Z_{+\infty R} + M_{115}Z_{+\infty I} + M_{116}RC + M_{117}IC$$
(D23)

where,

Γ

I

- -

$$M_{114} = (M_{107} - M_{105}M_{110})/M_{106}$$

$$M_{115} = (M_{108} - M_{105}M_{109})/M_{106}$$

$$M_{116} = -M_{105}M_{113}/M_{106}$$

$$M_{117} = (1 - M_{105}M_{113})/M_{106}$$
(D24)

The continuity equation is used to obtain $Z_{+\infty}$. The equation takes the following form after substituting Equation D2 through D7 into Equation 38 and dividing through by e^{ikt} .

$$\begin{bmatrix} -\bar{\rho_{\rm g}} \left(\frac{\mathbf{k} + \bar{\mathbf{u}}_{\rm E} \mathbf{B}_2 + \bar{\mathbf{v}}_{\rm E} \mathbf{C}}{\mathbf{C} \bar{\mathbf{y}}_{\rm E} \bar{\mathbf{a}}^2_{\rm E}} \right) \bar{\mathbf{U}}_{\rm E} \bar{\mathbf{A}}_{\rm E} \bar{\mathbf{A}}_{+\infty} \left(e^{i\mathbf{C} \bar{\mathbf{y}}_{\rm E}} - 1 \right) \cos \left(\alpha_{\rm ch} - \beta_2 \right) \end{bmatrix} + \\ \bar{\rho}_{\rm E} \bar{\mathbf{U}}_{\rm E} \bar{\mathbf{A}}'_{\rm E} + \bar{\rho}_{\rm E} \bar{\mathbf{A}}_{\rm E} \left(e^{i\mathbf{C} \bar{\mathbf{y}}_{\rm E}} - 1 \right) \begin{bmatrix} \left(\frac{\mathbf{B}_2 \mathbf{A}_{+\infty}}{\mathbf{C} \bar{\mathbf{y}}_{\rm E}} + \frac{\mathbf{Z}_{+\infty}}{(\mathbf{R}^2 + \mathbf{C}^2) \, \bar{\mathbf{y}}_{\rm E}} \right) \sin \alpha_{\rm ch} + \\ \left(\frac{\mathbf{A}_{+\infty}}{\bar{\mathbf{y}}_{\rm E}} - \frac{\mathbf{R} \mathbf{Z}_{+\infty}}{\mathbf{C} \left((\mathbf{R}^2 + \mathbf{C}^2) \, \bar{\mathbf{y}}_{\rm E}} \right) \cos \alpha_{\rm ch} \end{bmatrix} - \bar{\mathbf{w}}'_{\rm ds} \\ = i \bar{\rho}_3 \bar{\mathbf{V}}'_3 - \frac{i \mathbf{k} \bar{\mathbf{V}}_3}{2} \begin{bmatrix} -\bar{\rho}_{\rm E} \left(\frac{\mathbf{k} + \bar{\mathbf{u}}_{\rm E} \mathbf{B}_2 + \bar{\mathbf{v}}_{\rm E} \mathbf{C} \\ \mathbf{C} \bar{\mathbf{y}}_{\rm E} \bar{\mathbf{a}}^2_{\rm E} \end{bmatrix} \mathbf{A}_{+\infty} \left(e^{i\mathbf{C} \bar{\mathbf{y}}_{\rm E}} - 1 \right) + \bar{\rho}'_{\rm ds} \end{bmatrix}$$
(D25)

The following steps separate out and solve for the real and imaginary components of $A_{\pm \infty}$. First, make the assumptions noted in Equation D26 below.

$$C_{gr} = - \frac{\overline{\rho_E \, \tilde{u}_E \, \tilde{U}_{2REL} \tilde{A}_E \, \cos \, (\alpha_{ch} - \beta_2)}}{C \bar{y}_E \tilde{a}^2_E} + \frac{\overline{\rho_E} \tilde{A}_E \, \sin \, \alpha_{ch}}{C \bar{y}_E}$$

$$C_{gg} = - \frac{\overline{\rho_E} (\mathbf{k} + \bar{\mathbf{v}}_E \mathbf{C}) \, \tilde{U}_{2REL} \, \tilde{A}_E \, \cos \, (\alpha_{ch} - \beta_2)}{C \bar{y}_E \tilde{a}^2_E} + \frac{\overline{\rho_E} \bar{A}_E \, \cos \, \alpha_{ch}}{\bar{y}_E}$$

$$C_{gg} = \frac{\overline{\rho_E} \tilde{A}_E}{(\mathbf{R}^2 + \mathbf{C}^2) \bar{y}_E} \left(\sin \alpha_{ch} - \frac{\mathbf{R}}{\mathbf{C}} \, \cos \, \alpha_{ch} \right)$$

$$C_{100} = \frac{\overline{\mathbf{u}}_E \overline{\mathbf{V}}_3 \, \overline{\rho}_E}{2C \bar{y}_E \bar{a}^2_E}$$

$$C_{101} = \frac{(\mathbf{k} + \bar{\mathbf{v}}_E \mathbf{C}) \, \overline{\mathbf{V}}_3 \, \overline{\rho}_E}{2C \bar{y}_E \bar{a}^2_E} \qquad (D26)$$

Substituting Equation D26 into Equation D25 and rearranging term yields

$$C_{102}A_{+\infty R} + C_{103}A_{+\infty I} + C_{104}Z_{+\infty R} + C_{105}Z_{+\infty I} = CR$$
(D27)

.

where,

11 1

$$\begin{split} C_{102} &= C_{97}B_{2R}M_{100} - C_{97}B_{21} \sin (C\bar{y}_{E}) + C_{98}M_{100} \\ &+ kC_{100} (B_{21}M_{100} + B_{2R} \sin (C\bar{y}_{E})) + kC_{101} \sin (C\bar{y}_{E}) \\ C_{103} &= -C_{97} (B_{21}M_{100} + B_{2R} \sin (C\bar{y}_{E})) - C_{98} \sin (C\bar{y}_{E}) \\ &- kC_{100} (B_{2R}M_{100} - B_{21} \sin (C\bar{y}_{E})) + kC_{101}M_{100} \\ C_{104} &= C_{99}M_{100} \\ C_{105} &= -C_{99} \sin (C\bar{y}_{E}) \end{split}$$
(D28)

and

$$CR = - \overline{\rho}_{E} \overline{A}'_{ER} \overline{U}_{E} + w'_{dsR} + \overline{\rho}_{3} k \overline{V}'_{3I} + \frac{1}{2} k \overline{V}'_{3} \overline{\rho}'_{dsI}$$
(D29)

Substituting Equation D22 and D23 into Equation D27 and combining the terms gives

$$C_{106}Z_{+\infty R} + C_{107}Z_{+\infty I} + C_{108} RC + C_{109} IC = CR$$
(D30)

where,

$$C_{106} = C_{102}M_{110} + C_{103}M_{114} + C_{104}$$

$$C_{107} = C_{102}M_{111} + C_{103}M_{115} + C_{105}$$

$$C_{108} = C_{102}M_{113} + C_{103}M_{116}$$

$$C_{109} = C_{102}M_{112} + C_{103}M_{117}$$
(D31)

Next, the imaginary part of the continuity equation is dealt with. Let,

$$C_{110} = C_{97} [B_{21}M_{100} + B_{2R} \sin (C\overline{y}_{E})] + C_{98} \sin C\overline{y}_{E}) - kC_{100} [B_{2R}M_{100} - B_{21} \sin (C\overline{y}_{E})] - kC_{101}M_{100} \\ C_{111} = C_{97} [B_{2R}M_{100} - B_{21} \sin (C\overline{y}_{E})] + C_{98}M_{100} + kC_{100} [B_{21}M_{100} + B_{2R} \sin (C\overline{y}_{E})] + kC_{101} \sin (C\overline{y}_{E}) \\ C_{112} = C_{99} \sin (C\overline{y}_{E}) \\ C_{113} = C_{99}M_{100}$$
(D32)

This yields

$$C_{110}A_{+\infty R} + C_{111}A_{+\infty I} + C_{112}Z_{+\infty R} + C_{113}Z_{+\infty I} = CI$$
(D33)

٠,

where,

.

$$CI = - p_E \overline{U}_{2REL} \cos \left(\alpha_{ch} - \beta_2 \right) \overline{A}'_{EI} + \overline{w}'_{daI}$$
$$- \overline{\rho}_3 k \overline{V}'_{3R} - \frac{1}{2} k \overline{V}_3 \overline{\rho}'_{daR}$$
(D34)

Next, substitute the relationships for $A_{+\infty}$ presented in Equations D22 and D23 into D33. Let,

÷ _

$$C_{114} = C_{110}M_{110} + C_{111}M_{114} + C_{112}$$

$$C_{115} = C_{110}M_{111} + C_{111}M_{115} + C_{113}$$

$$C_{116} = C_{110}M_{113} + C_{111}M_{116}$$

$$C_{117} = C_{110}M_{112} + C_{0111}M_{117}$$
(D35)

This produces

$$C_{114}Z_{+\infty R} + C_{115}Z_{+\infty I} + C_{116} RC + C_{117} IC = CI$$
(D36)

Now, multiply Equation D30 by C_{115}/C_{107} and subtract the resultant from Equation D30.

Let,

$$C_{118} = C_{114} - C_{115}C_{106}/C_{107}$$

$$C_{119} = - (C_{116} - C_{115}C_{106}/C_{107})/C_{118}$$

$$C_{120} = - (C_{117} - C_{115}C_{109}/C_{107})/C_{118}$$

$$C_{121} = (CI - C_{115} CR/C_{107})/C_{118}$$
(D37)

This gives

$$Z_{+\infty R} = C_{119} RC + C_{120} IC + C_{121}$$
(D38)

Substituting Equation D38 into Equation D36 and solving for $Z_{\scriptscriptstyle +\infty I}$ gives

$$Z_{+\infty I} = C_{122} RC + C_{123} IC + C_{124}$$
(D39)

where,

$$C_{122} = (-C_{116} - C_{114}C_{119})/C_{115}$$

$$C_{123} = (-C_{117} - C_{114}C_{120})/C_{115}$$

$$C_{124} = (CI - C_{121}C_{114})/C_{115}$$
(D40)

The relationships given for $Z_{+\infty}$ in Equations D38 and D39 are then substituted into Equations D22 and D23 to yield $A_{+\infty}$. This, then, produces a complete description of the flowfield for Region 3.

···· |

REGION 1

Energy

$$\begin{split} \mathbf{E}_{i} &= \left[\frac{\tilde{\mathbf{a}}_{i}^{2}}{\gamma(\gamma-1)} + \frac{\cos^{2}\left(\alpha_{cb} - \beta_{i}\right)}{2} \right] \\ \mathbf{E}_{z} &= \frac{\tilde{\mathbf{a}}^{**}\left(\gamma^{2} - \gamma + 2\right)}{2\gamma(\gamma-1)} \\ \mathbf{E}_{s} &= -\frac{-\mathbf{E}_{i}\mathbf{I}\tilde{\mathbf{A}}_{i}\tilde{\mathbf{u}}}{\mathbf{C}\tilde{\mathbf{y}}_{i}\tilde{\mathbf{a}}^{2}} + -\frac{\mathbf{E}_{i}\tilde{\mathbf{A}}_{i}\sin\alpha_{cb}}{\mathbf{C}\tilde{\mathbf{y}}_{i}} - \frac{2\tilde{\mathbf{A}}_{i}\mathbf{I}\tilde{\mathbf{u}}_{i}}{2\gamma\mathbf{C}\tilde{\mathbf{y}}_{i}} + \frac{\tilde{\mathbf{A}}_{i}\mathbf{I}^{2}\sin\alpha_{cb}}{\mathbf{C}\tilde{\mathbf{y}}_{i}} \\ \mathbf{E}_{4} &= -\frac{-\mathbf{E}_{i}\mathbf{I}\tilde{\mathbf{A}}_{i}\left(\mathbf{k} + \tilde{\mathbf{v}}\mathbf{C}\right)}{\mathbf{C}\tilde{\mathbf{y}}_{i}\tilde{\mathbf{a}}^{2}} + \frac{\mathbf{E}_{i}\tilde{\mathbf{A}}_{i}\cos\alpha_{cb}}{\tilde{\mathbf{y}}_{i}} - \frac{2\tilde{\mathbf{A}}_{i}\mathbf{I}\left(\mathbf{k} + \tilde{\mathbf{v}}\mathbf{C}\right)}{2\gamma\mathbf{C}\tilde{\mathbf{y}}_{i}} + \frac{\tilde{\mathbf{A}}_{i}\mathbf{I}^{2}\cos\alpha_{cb}}{\tilde{\mathbf{y}}_{i}} \\ \mathbf{E}_{5} &= -\frac{-\frac{2}{2\gamma}\left(\gamma-1\right)\mathbf{C}\tilde{\mathbf{y}}_{i}\tilde{\mathbf{a}}^{2}}{(\gamma-1)\mathbf{C}\tilde{\mathbf{y}}_{i}\tilde{\mathbf{a}}^{2}} - \frac{\tilde{\rho}_{i}\tilde{\mathbf{a}}}{\gamma\left(\gamma-1\right)}\left(\frac{\gamma-1}{2\mathbf{C}\tilde{\mathbf{y}}_{i}}\right) - \frac{\overline{\mathbf{U}}_{i}^{*}\tilde{\mathbf{v}}_{i}\tilde{\mathbf{u}}_{i}}{4\mathbf{C}\tilde{\mathbf{y}}_{i}\tilde{\mathbf{a}}^{2}} + \frac{\tilde{\rho}_{i}\tilde{\mathbf{U}}_{i}}{2\mathbf{C}\tilde{\mathbf{y}}_{i}} \\ \mathbf{E}_{6} &= -\frac{-\frac{2}{\tilde{\mathbf{a}}_{i}}\tilde{\mathbf{V}}_{i}\left(\mathbf{k} + \bar{\mathbf{v}}\mathbf{C}\right)}{2\mathbf{V}_{i}} + \frac{\tilde{\rho}_{i}\tilde{\mathbf{u}}}{\gamma\left(\gamma-1\right)}\mathbf{C}\tilde{\mathbf{y}}_{i}\tilde{\mathbf{a}}^{2}} - \frac{\tilde{\rho}_{i}\tilde{\mathbf{a}}}{\gamma\left(\gamma-1\right)}\left(\frac{\gamma-1}{2\mathbf{C}\tilde{\mathbf{y}}_{i}}\right)\left(\frac{\mathbf{k}+\mathbf{v}\mathbf{C}}{\gamma\left(\gamma-1\right)}\right) + \frac{\tilde{U}_{i}^{*}\tilde{\mathbf{U}_{i}}\left(\mathbf{k}+\bar{\mathbf{v}}\mathbf{C}\right)}{2\mathbf{V}_{i}} + \frac{\tilde{\rho}_{i}\tilde{\mathbf{U}}_{i}}{2\mathbf{V}_{i}}\left(\mathbf{x}\right) \\ \mathbf{E}_{6} &= \frac{-\frac{2}{\tilde{\mathbf{a}}_{i}}^{*}\tilde{\mathbf{V}}_{i}\left(\mathbf{k} + \bar{\mathbf{v}}\mathbf{C}\right)}{2\mathbf{V}_{i}} + \frac{\tilde{\rho}_{i}\tilde{\mathbf{U}}_{i}}{2\mathbf{V}_{i}}\cos\alpha_{cb}} \\ \mathbf{E}_{i} &= \cos\left(\mathbf{C}\tilde{\mathbf{y}_{i}\right) - 1 \\ \mathbf{E}_{i} &= \mathbf{E}_{i}\left(\mathbf{E}_{i}\mathbf{E}_{i}\mathbf{E}_{i}\mathbf{C}\right) + \frac{\tilde{\rho}_{i}\tilde{\mathbf{U}}_{i}}{2\mathbf{V}_{i}}\cos\alpha_{cb}} \\ \mathbf{E}_{7} &= \cos\left(\mathbf{C}\tilde{\mathbf{y}_{i}\right) - 1 \\ \mathbf{E}_{8} &= \mathbf{E}_{1}\left(\mathbf{E}_{i}\mathbf{E}_{i}\mathbf{E}_{i}\mathbf{E}_{i}\mathbf{B}_{i}\sin\left(\mathbf{C}\tilde{\mathbf{y}_{i}\right)\right) + \mathbf{E}_{4}\mathbf{E}_{i}\mathbf{E$$

$$\begin{split} \mathbf{E}_{11} &= \left(\frac{\ddot{a}^{3}\ddot{\nabla}\mathbf{k}}{2\gamma(\gamma-1)} + \frac{\vec{D}^{3}\overleftarrow{\nabla}\mathbf{k}}{4}\right)_{1} \\ \mathbf{E}_{13} &= \left(\frac{\vec{p}\ddot{a}^{3}\mathbf{k}}{\gamma(\gamma-1)} + \frac{\vec{p}\vec{D}^{3}\mathbf{k}}{2}\right)_{1} \\ \mathbf{E}_{14} &= \left(\frac{\vec{p}\ddot{a}^{3}\mathbf{k}}{\gamma(\gamma-1)} + \frac{\vec{p}\vec{D}\vec{\nabla}\mathbf{k}}{2}\right)_{1} \\ \mathbf{E}_{15} &= \left(\frac{\vec{E}_{9}}{\gamma(\gamma-1)} + \frac{\vec{p}\vec{D}\vec{\nabla}\mathbf{k}}{E_{9}}\right) \\ \mathbf{E}_{15} &= \left(\frac{\vec{E}_{9}}{\mathbf{E}_{9}} - \frac{\vec{E}_{11}}{E_{90}}\right) \\ \mathbf{E}_{15} &= 1\left(\frac{\vec{E}_{1}}{\mathbf{E}_{9}}\right)\left(\frac{\vec{E}_{9}}{\mathbf{E}_{18}\mathbf{E}_{8}} - 1\right) \\ \mathbf{E}_{17} &= 1\left(\frac{-\vec{E}_{1}}{\mathbf{E}_{10}\mathbf{E}_{15}}\right)\left(\frac{\vec{E}_{9}}{\mathbf{E}_{18}\mathbf{E}_{8}}\right) - \left(\frac{\vec{E}_{10}\mathbf{E}_{15}}{\mathbf{E}_{9}\mathbf{E}_{10}\mathbf{E}_{15}}\right) \\ \mathbf{E}_{19} &= -\frac{\vec{E}_{12}}{\mathbf{E}_{8}} + \left(\frac{\ddot{a}^{*}\mathbf{E}_{7}}{\mathbf{E}_{10}\mathbf{E}_{15}}\right)\left(\frac{\vec{E}_{9}}{\mathbf{E}_{9}}\right) + \left(\frac{\vec{E}_{10}}{\mathbf{E}_{10}\mathbf{E}_{15}}\right)\left(\frac{\vec{E}_{9}}{\mathbf{E}_{8}}\right) \\ \mathbf{E}_{20} &= \vec{p}^{*}\vec{a}^{*} \left[\frac{\vec{E}_{2}}{\mathbf{E}_{6}} - \left(\frac{\vec{E}_{2}}{\mathbf{E}_{10}\mathbf{E}_{15}}\right)\left(\frac{\vec{E}_{9}}{\mathbf{E}_{9}}\right)\right] \\ \mathbf{E}_{11} &= \vec{p}^{*}\vec{a}^{*} \left(\frac{\vec{E}_{2}}{\mathbf{E}_{10}\mathbf{E}_{15}}\right)\left(1 - \frac{\vec{E}_{9}}{\mathbf{E}_{10}\mathbf{E}_{15}}\right) - \left(\frac{\vec{E}_{9}}{\mathbf{E}_{9}\mathbf{E}_{15}}\right) \\ \mathbf{E}_{22} &= 3\vec{p}^{*} \left(\frac{\vec{E}_{2}}{\mathbf{E}_{9}}\right)\left(1 - \frac{\vec{E}_{2}\mathbf{E}_{9}}{\mathbf{E}_{10}\mathbf{E}_{15}}\right) + \left(\frac{\vec{E}_{9}\mathbf{E}_{10}\mathbf{E}_{15}\right) \\ \mathbf{E}_{24} &= -\frac{\vec{E}_{14}}{\mathbf{E}_{9}} + 3\vec{p}^{*} \left(\frac{\vec{E}_{10}\mathbf{E}_{15}}{\mathbf{E}_{15}}\right)\left(\frac{\vec{E}_{9}}{\mathbf{E}_{8}}\right) \\ \mathbf{E}_{24} &= -\frac{\vec{E}_{14}}{\mathbf{E}_{9}\mathbf{E}_{15}}\right)\left(\frac{\vec{E}_{9}}{\mathbf{E}_{15}}\right) \\ \mathbf{E}_{25} &= -1\left(\frac{\vec{E}_{10}\mathbf{E}_{15}}{\mathbf{E}_{15}}\right)\left(\frac{\vec{E}_{9}}{\mathbf{E}_{8}}\right) \\ \mathbf{E}_{27} &= -\frac{\vec{E}_{12}}{\mathbf{E}_{9}\mathbf{E}_{15}}\right) \\ \mathbf{E}_{28} &= -1\left(\frac{\vec{E}_{12}}{\mathbf{E}_{16}\mathbf{E}_{15}}\right) \\ \mathbf{E}_{29} &= -\frac{\vec{a}^{*}\vec{E}_{2}}{\mathbf{E}_{16}\mathbf{E}_{15}} + \frac{\vec{E}_{12}}{\mathbf{E}_{19}\mathbf{E}_{15}}\right) \\ \mathbf{E}_{29} &= -\frac{\vec{a}^{*}\vec{E}_{2}}{\mathbf{E}_{15}} - \frac{\vec{E}_{12}\mathbf{E}_{15}}{\mathbf{E}_{15}}\right) \\ \mathbf{E}_{29} &= -\frac{\vec{a}^{*}\vec{E}_{2}}{\mathbf{E}_{16}\mathbf{E}_{15}} - \frac{\vec{E}_{12}\mathbf{E}_{15}}{\mathbf{E}_{16}\mathbf{E}_{15}}\right) \\ \mathbf{E}_{29} &= -\frac{\vec{a}^{*}\vec{E}_{12}}{\mathbf{E}_{16}\mathbf{E}_{16}\mathbf{E}_{16}\mathbf{E}_{16}\mathbf{E}_{16}}\right) \\ \mathbf{E}_{29} &= -1\left(\frac{\vec{E}_{12}\mathbf{E}_{12}\mathbf{E}_{12}\mathbf{E}_{12}\mathbf{E}_{15}\mathbf{E}_{16}\mathbf{E}_{16}\mathbf{E}_{16}\mathbf{E}_{16}\mathbf{E}_{16}\mathbf{E}_{16}\mathbf{E}_{16}\mathbf{E}_{16}\mathbf{E}_{16}\mathbf{E}$$

$$\begin{split} \mathbf{E}_{30} &= \frac{\bar{\rho}^* \bar{\mathbf{a}}^* \mathbf{E}_2}{\mathbf{E}_8 \mathbf{E}_{15}} \\ \mathbf{E}_{31} &= -\frac{\bar{\rho}^* \bar{\mathbf{a}}^* \mathbf{E}_2}{\mathbf{E}_{10} \mathbf{E}_{15}} \\ \mathbf{E}_{32} &= \frac{3 \bar{\rho}^* \mathbf{E}_2}{\mathbf{E}_8 \mathbf{E}_{15}} + \frac{\mathbf{E}_{14}}{\mathbf{E}_{10} \mathbf{E}_{15}} \\ \mathbf{E}_{33} &= -\frac{3 \bar{\rho}^* \mathbf{E}_2}{\mathbf{E}_{10} \mathbf{E}_{15}} - \frac{\mathbf{E}_{14}}{\mathbf{E}_8 \mathbf{E}_{15}} \\ \mathbf{E}_{34} &= -\frac{\mathbf{E}_{13}}{\mathbf{E}_8 \mathbf{E}_{15}} \end{split}$$

ł

•

.

Momentum

$$\begin{split} \mathbf{M}_{1} &= -\frac{\overline{\mathbf{u}_{i}}\overline{\mathbf{A}_{i}}}{\mathbf{C}\overline{\mathbf{y}_{i}}} - \frac{\overline{\mathbf{u}_{i}}\overline{\mathbf{A}_{i}}\mathbf{I}^{2}}{\mathbf{C}\overline{\mathbf{y}_{i}}\overline{\mathbf{a}_{i}}^{2}} + \frac{2\overline{\mathbf{A}_{i}}\mathbf{I}}{\mathbf{C}\overline{\mathbf{y}_{i}}} \sin \alpha_{ch} \\ \mathbf{M}_{2} &= -\frac{(\mathbf{k} + \overline{\mathbf{v}_{i}}\mathbf{C}) \,\overline{\mathbf{A}}_{i}}{\mathbf{C}\overline{\mathbf{y}_{i}}} - \frac{(\mathbf{k} + \overline{\mathbf{v}_{i}}\mathbf{C}) \,\overline{\mathbf{A}_{i}}\mathbf{I}^{2}}{\mathbf{C}\overline{\mathbf{y}_{i}}\overline{\mathbf{a}_{i}}^{2}} + \frac{2\overline{\mathbf{A}_{i}}\mathbf{I}}{\overline{\mathbf{y}_{i}}} \cos \alpha_{ch} \\ \mathbf{M}_{n} &= -\frac{\overline{\mathbf{U}_{i}}\overline{\mathbf{V}_{i}}}{2\mathbf{C}\overline{\mathbf{y}_{i}}\overline{\mathbf{a}_{i}}^{2}} - -\frac{\overline{p}_{i}\overline{\mathbf{V}_{i}}\sin \alpha_{ch}}{2\mathbf{C}\overline{\mathbf{y}_{i}}} \\ \mathbf{M}_{4} &= -\left(\frac{\mathbf{k} + \overline{\mathbf{v}_{i}}\mathbf{C}}{\mathbf{C}\overline{\mathbf{y}_{i}}\overline{\mathbf{a}_{i}}^{2}}\right) \left(\frac{\overline{\mathbf{U}_{i}}\overline{\mathbf{V}_{i}}}{2\mathbf{C}\overline{\mathbf{y}_{i}}}\right) - \frac{\overline{p}_{1}\overline{\mathbf{V}_{i}}\cos \alpha_{ch}}{2\overline{\mathbf{y}_{i}}} \\ \mathbf{M}_{5} &= -\overline{p}_{i} - \mathbf{I}^{2} \\ \mathbf{M}_{6} &= \overline{p}^{*} + \overline{p}^{*}\overline{a}^{*2} \\ \mathbf{M}_{7} &= \mathbf{M}_{1} \left[\mathbf{B}_{1R}\mathbf{E}_{7} - \mathbf{B}_{d}\sin(\mathbf{C}\overline{\mathbf{y}_{i}})\right] + \mathbf{M}_{2}\mathbf{E}_{7} - \\ \mathbf{M}_{a} \left[\mathbf{k}\mathbf{B}_{1}\mathbf{E}_{7} - \mathbf{k}\mathbf{B}_{1R}\sin(\mathbf{C}\overline{\mathbf{y}_{i}})\right] - \mathbf{M}_{2}\mathbf{k}\sin(\mathbf{C}\overline{\mathbf{y}_{i}}) + \\ \mathbf{k}\mathbf{M}_{3} \left[-\mathbf{B}_{1R}\mathbf{E}_{7} + \mathbf{B}_{1R}\sin(\mathbf{C}\overline{\mathbf{y}_{i}})\right] - \mathbf{M}_{2}\sin(\mathbf{C}\overline{\mathbf{y}_{i}}) + \\ \mathbf{k}\mathbf{M}_{3} \left[-\mathbf{B}_{1R}\mathbf{E}_{7} + \mathbf{B}_{1R}\sin(\mathbf{C}\overline{\mathbf{y}_{i}})\right] + \mathbf{M}_{2}\sin(\mathbf{C}\overline{\mathbf{y}_{i}}) + \\ \mathbf{k}\mathbf{M}_{3} \left[\mathbf{B}_{1R}\mathbf{E}_{7} - \mathbf{B}_{11}\sin(\mathbf{C}\overline{\mathbf{y}_{i}})\right] + \mathbf{M}_{4}\mathbf{E}_{7} \\ \mathbf{M}_{9} &= \mathbf{M}_{1} \left[\mathbf{B}_{1R}\mathbf{E}_{7} + \mathbf{B}_{1R}\sin(\mathbf{C}\overline{\mathbf{y}_{i}})\right] + \mathbf{M}_{4}\mathbf{E}_{7} \\ \mathbf{M}_{3} \left[\mathbf{B}_{1R}\mathbf{E}_{7} - \mathbf{B}_{11}\sin(\mathbf{C}\overline{\mathbf{y}_{i}})\right] + \mathbf{M}_{4}\mathbf{E}_{7} - \\ \mathbf{k}\mathbf{M}_{3} \left[\mathbf{B}_{1R}\mathbf{E}_{7} - \mathbf{B}_{11}\sin(\mathbf{C}\overline{\mathbf{y}_{i}})\right] + \mathbf{M}_{4}\mathbf{E}_{7} - \\ \mathbf{k}\mathbf{M}_{3} \left[\mathbf{B}_{1R}\mathbf{E}_{7} + \mathbf{B}_{1R}\sin(\mathbf{C}\overline{\mathbf{y}_{i}})\right] - \mathbf{k}\mathbf{M}_{4}\sin(\mathbf{C}\overline{\mathbf{y}_{i}}) \\ \mathbf{M}_{11} &= \mathbf{E}_{10}\mathbf{M}_{7} + \mathbf{E}_{20}\mathbf{M}_{8} - 2\overline{a}^{*2} \end{aligned}$$

$$\begin{split} M_{12} &= E_{10}M_{7} + E_{20}M_{8} + \frac{k\overline{U}_{1}\overline{V}_{1}}{2} \\ M_{12} &= -E_{1e}M_{7} - E_{2e}M_{8} + M_{5} \\ M_{14} &= -E_{17}M_{7} - E_{27}M_{8} \\ M_{15} &= -E_{20}M_{7} - E_{30}M_{8} + M_{6} \\ M_{16} &= -E_{21}M_{7} - E_{33}M_{8} \\ M_{17} &= -E_{22}M_{7} - E_{33}M_{8} + 2\overline{\rho}^{*}\overline{a}^{*} \\ M_{18} &= E_{23}M_{7} - E_{33}M_{8} - \frac{k\overline{\rho}_{1}\overline{V}_{1}}{2} \\ M_{19} &= -E_{24}M_{7} - E_{34}M_{8} - k\overline{\rho}_{1}\overline{U}_{1} \\ M_{30} &= -E_{25}M_{7} - E_{35}M_{8} \\ M_{21} &= E_{18}M_{9} + E_{28}M_{10} - 2\overline{a}^{*2} \\ M_{22} &= E_{19}M_{9} + E_{29}M_{10} - 2\overline{a}^{*2} \\ M_{23} &= -E_{16}M_{9} - E_{26}M_{10} + M_{5} \\ M_{24} &= -E_{17}M_{9} - E_{27}M_{10} + M_{6} \\ M_{25} &= -E_{21}M_{9} - E_{33}M_{10} \\ M_{26} &= -E_{21}M_{9} - E_{33}M_{10} + 2\overline{\rho}^{*}\overline{a}^{*} \\ M_{29} &= -E_{24}M_{9} - E_{33}M_{10} + 2\overline{\rho}^{*}\overline{a}^{*} \\ M_{29} &= -E_{24}M_{9} - E_{33}M_{10} + k\overline{\rho}_{1}\overline{U}_{1} \\ M_{30} &= -E_{25}M_{9} - E_{35}M_{10} + k\overline{\rho}_{1}\overline{U}_{1} \\ M_{31} &= M_{11} - \frac{M_{12}M_{21}}{M_{22}} \\ M_{32} &= \left(M_{13} - \frac{M_{12}M_{23}}{M_{22}}\right) + M_{31} \\ M_{34} &= \left(M_{14} - \frac{M_{12}M_{24}}{M_{22}}\right) + M_{31} \end{split}$$

· 85

.

-

$$\begin{split} \mathbf{M}_{35} &= \left(\begin{array}{ccc} \mathbf{M}_{16} - \frac{\mathbf{M}_{12}\mathbf{M}_{26}}{\mathbf{M}_{22}} \right) & \div & \mathbf{M}_{31} \\ \mathbf{M}_{36} &= \left(\begin{array}{ccc} \mathbf{M}_{17} - \frac{\mathbf{M}_{12}\mathbf{M}_{27}}{\mathbf{M}_{22}} \right) & \div & \mathbf{M}_{31} \\ \mathbf{M}_{37} &= \left(\begin{array}{ccc} \mathbf{M}_{18} - \frac{\mathbf{M}_{12}\mathbf{M}_{29}}{\mathbf{M}_{22}} \right) & \div & \mathbf{M}_{31} \\ \mathbf{M}_{38} &= \left(\begin{array}{ccc} \mathbf{M}_{19} - \frac{\mathbf{M}_{12}\mathbf{M}_{29}}{\mathbf{M}_{22}} \right) & \div & \mathbf{M}_{31} \\ \mathbf{M}_{39} &= \left(\begin{array}{ccc} \mathbf{M}_{20} - \frac{\mathbf{M}_{12}\mathbf{M}_{30}}{\mathbf{M}_{22}} \right) & \div & \mathbf{M}_{31} \\ \mathbf{M}_{40} &= -\frac{\mathbf{M}_{13} - \mathbf{M}_{32}\mathbf{M}_{11}}{\mathbf{M}_{12}} \\ \mathbf{M}_{41} &= -\frac{\mathbf{M}_{14} - \mathbf{M}_{33}\mathbf{M}_{11}}{\mathbf{M}_{12}} \\ \mathbf{M}_{42} &= -\frac{\mathbf{M}_{16} - \mathbf{M}_{36}\mathbf{M}_{11}}{\mathbf{M}_{12}} \\ \mathbf{M}_{43} &= -\frac{\mathbf{M}_{16} - \mathbf{M}_{36}\mathbf{M}_{11}}{\mathbf{M}_{12}} \\ \mathbf{M}_{43} &= -\frac{\mathbf{M}_{16} - \mathbf{M}_{36}\mathbf{M}_{11}}{\mathbf{M}_{12}} \\ \mathbf{M}_{45} &= -\frac{\mathbf{M}_{18} - \mathbf{M}_{37}\mathbf{M}_{11}}{\mathbf{M}_{12}} \\ \mathbf{M}_{46} &= -\frac{\mathbf{M}_{19} - \mathbf{M}_{36}\mathbf{M}_{11}}{\mathbf{M}_{12}} \\ \mathbf{M}_{47} &= -\frac{\mathbf{M}_{19} - \mathbf{M}_{36}\mathbf{M}_{11}}{\mathbf{M}_{12}} \end{split}$$

l

ĺ

Continuity

$$C_{1} = - \frac{\overline{A}_{i}}{C\overline{y}_{i}} \sin \alpha_{ch} + \frac{\overline{u}_{i}\overline{A}_{i}I}{C\overline{y}_{i}\overline{a}_{i}^{2}}$$

$$C_{2} = - \frac{\overline{A}_{i}}{C\overline{y}_{i}} \cos \alpha_{ch} + \left(\frac{\mathbf{k} + \overline{v}_{i}C}{C\overline{y}_{i}a_{i}^{2}}\right) \overline{A}_{i}I$$

$$C_{3} = \frac{\overline{u}_{i}\overline{V}_{1}}{2C\overline{y}_{i}\overline{a}_{i}^{2}}$$

$$C_{4} = \left(\frac{\mathbf{k} + \overline{v}_{i}C}{2C\overline{y}_{i}\overline{a}_{i}^{2}}\right) \overline{V}_{1}$$

$$\begin{split} C_{5} &= C_{1}B_{14}E_{7} - C_{5}B_{14}\sin(C\bar{y}_{1}) + C_{4}E_{7} + \\ C_{3}kB_{14}E_{7} + C_{3}kB_{14}\sin(C\bar{y}_{1}) - C_{2}\sin(C\bar{y}_{1}) + \\ C_{3}kB_{14}E_{7} - C_{1}B_{18}\sin(C\bar{y}_{1}) - C_{2}\sin(C\bar{y}_{1}) + \\ C_{3}kB_{14}E_{7} - C_{3}kB_{11}\sin(C\bar{y}_{1}) + C_{4}kE_{7} \\ \hline \\ C_{7} &= C_{5}E_{15} + C_{6}E_{25} - I \\ C_{8} &= C_{5}E_{17} + C_{8}E_{77} \\ \hline \\ C_{9} &= C_{5}E_{15} + C_{6}E_{25} + \bar{a}^{*} \\ \hline \\ C_{10} &= C_{5}E_{15} + C_{6}E_{25} + \bar{a}^{*} \\ \hline \\ C_{10} &= C_{5}E_{15} + C_{6}E_{25} - k\bar{\nabla}_{1}/2 \\ \hline \\ C_{11} &= C_{5}E_{22} + C_{6}E_{23} + \bar{a}^{*} \\ \hline \\ C_{12} &= C_{3}E_{22} + C_{6}E_{33} \\ \hline \\ C_{13} &= C_{3}E_{22} + C_{6}E_{33} \\ \hline \\ C_{14} &= C_{5}E_{33} + C_{6}E_{33} \\ \hline \\ C_{15} &= C_{5}E_{24} + C_{6}E_{34} - k\bar{\rho}_{1} \\ \hline \\ C_{16} &= C_{3}E_{25} + C_{4}E_{35} \\ \hline \\ C_{17} &= C_{6}M_{32} + C_{10}M_{40} + C_{7} \\ \hline \\ C_{16} &= C_{9}M_{32} + C_{10}M_{40} + C_{7} \\ \hline \\ C_{19} &= C_{9}M_{34} + C_{10}M_{42} + C_{11} \\ \hline \\ C_{20} &= C_{9}M_{35} + C_{10}M_{43} + C_{12} \\ \hline \\ C_{21} &= -(C_{9}M_{54} + C_{10}M_{43} + C_{12} \\ \hline \\ C_{22} &= -(C_{9}M_{54} + C_{10}M_{45} + C_{14}) \\ \hline \\ C_{23} &= C_{9}M_{38} + C_{10}M_{45} + C_{15} \\ \hline \\ C_{25} &= C_{1} \left[B_{14}E_{7} + B_{18}\sin(C\bar{y}_{7}) \right] + C_{2}E_{1} \left(C\bar{y}_{7} \right) - kC_{3} \left[B_{18}E_{7} - B_{11}\sin(C\bar{y}_{7}) \right] + kC_{4}}\sin(C\bar{y}_{7}) \\ \hline \\ C_{27} &= C_{28}E_{26} + C_{28}E_{16} \\ \hline \\ C_{28} &= C_{1} \left[B_{14}E_{7} - B_{11}\sin(C\bar{y}_{7}) \right] + C_{2}E_{7} + kC_{3} \left[B_{14}E_{7} + B_{18}\sin(C\bar{y}_{7}) \right] \\ \hline \\ \end{array}$$

$$\begin{split} C_{29} &= C_{26}E_{28} + C_{25}E_{18} + \frac{k\bar{V}_{1}}{2} \\ C_{30} &= C_{25}E_{29} + C_{25}E_{19} + \bar{a}^{*} \\ C_{31} &= C_{35}E_{30} + C_{25}E_{20} \\ C_{32} &= C_{26}E_{31} + C_{25}E_{21} + \bar{\rho}^{*}\bar{a}^{*} \\ C_{33} &= C_{26}E_{32} + C_{25}E_{22} \\ C_{34} &= C_{26}E_{33} + C_{25}E_{23} + \bar{\rho}^{*} \\ C_{35} &= C_{26}E_{34} + C_{25}E_{24} \\ C_{36} &= C_{26}E_{35} + C_{25}E_{25} + k\bar{\rho}_{1} \\ C_{37} &= C_{29}M_{32} + C_{30}M_{40} + C_{27} \\ C_{38} &= C_{29}M_{32} + C_{30}M_{40} + C_{27} \\ C_{38} &= C_{29}M_{32} + C_{30}M_{41} + C_{28} \\ C_{39} &= C_{29}M_{34} + C_{30}M_{42} + C_{31} \\ C_{40} &= C_{29}M_{35} + C_{30}M_{43} + C_{32} \\ C_{41} &= -(C_{29}M_{36} + C_{30}M_{44} + C_{33}) \\ C_{42} &= -(C_{29}M_{37} + C_{30}M_{45} + C_{34}) \\ C_{43} &= C_{29}M_{38} + C_{30}M_{46} + C_{35} \\ C_{44} &= C_{29}M_{39} + C_{30}M_{46} + C_{35} \\ C_{45} &= C_{41} - \frac{C_{21}C_{42}}{C_{22}} \\ C_{46} &= \frac{1}{C_{45}} \left(C_{37} - \frac{C_{17}C_{42}}{C_{22}}\right) \\ C_{47} &= \frac{1}{C_{45}} \left(C_{39} - \frac{C_{19}C_{42}}{C_{22}}\right) \\ C_{49} &= \frac{1}{C_{45}} \left(C_{40} - \frac{C_{20}C_{42}}{C_{22}}\right) \\ C_{50} &= \frac{1}{C_{45}} \left(C_{43} - \frac{C_{20}C_{42}}{C_{22}}\right) \\ C_{51} &= \frac{1}{C_{45}} \left(C_{44} - \frac{C_{24}C_{42}}{C_{22}}\right) \\ C_{52} &= (C_{37} - C_{4}C_{46}) \div C_{42} \\ \end{split}$$

---- |

$$C_{53} = (C_{38} - C_{41}C_{47}) \div C_{42}$$

$$C_{54} = (C_{39} - C_{41}C_{48}) \div C_{42}$$

$$C_{55} = (C_{40} - C_{41}C_{49}) \div C_{42}$$

$$C_{56} = (C_{43} - C_{41}C_{50}) \div C_{42}$$

$$C_{57} = (C_{44} - C_{41}C_{51}) \div C_{42}$$

REGION 2

.

,

Momentum

$$\begin{split} M_{48} &= (-\bar{a}_{US}^2 - \bar{U}_{US}^2) \,\bar{A}_S \\ M_{49} &= \frac{k \bar{U}_2 \bar{V}_2}{2} \\ M_{50} &= \bar{p}_{US} + \bar{\rho}_{US} \bar{U}_{US}^2 \\ M_{50} &= \bar{p}^* + \bar{\rho}^* \bar{a}^{*2} \\ M_{51} &= M_{49} + -\frac{M_{48}^2}{M_{49}} \\ M_{51} &= M_{49} + -\frac{M_{48}^2}{M_{49}} \\ M_{52} &= -\frac{M_{50}}{M_{51}} \\ M_{53} &= -\frac{M_{48} M_{50}}{M_{49} M_{51}} \\ M_{53} &= -\frac{2M_{49}}{M_{49} M_{51}} \\ M_{56} &= -\frac{M_{50A}}{M_{49} M_{51}} \\ M_{57} &= -\frac{M_{48} M_{50A}}{M_{49} M_{51}} \\ M_{58} &= \left[2 \bar{w}_{US} + -\frac{k \bar{\rho}_2 \bar{V}_2}{2} - \left(-\frac{M_{48}}{M_{49}} \right) \right] \quad \div M_{51} \\ M_{59} &= -\frac{1}{M_{51}} - \left(-\frac{2 \bar{w}_{US} M_{48}}{M_{49}} - -\frac{k \bar{\rho}_2 \bar{V}_2}{2} \right) \end{split}$$

$$\begin{split} M_{s0} &= \frac{1}{M_{s1}} \qquad \left(- \frac{\bar{a}^{*} 2\bar{\rho}^{*} M_{s2}}{M_{s2}} - \frac{k\bar{\rho}_{s} \bar{\nabla}_{s}}{2} \right) \\ M_{c1} &= \frac{1}{M_{s1}} \qquad \left(-2\bar{\rho}^{*} \bar{a}^{*} + \frac{k\bar{\rho}_{s} \bar{\nabla}_{s} M_{s2}}{2M_{s2}} \right) \\ M_{c2} &= \frac{1}{M_{s1}} \qquad \left(-\frac{k\bar{U}_{s} \bar{\nabla}_{s}}{2} \right) \\ M_{c3} &= \frac{1}{M_{s1}} \qquad \left(-\frac{k\bar{U}_{s} \bar{\nabla}_{s} M_{s3}}{2M_{s3}} \right) \\ M_{c4} &= -\frac{k(\bar{\rho} \bar{U})_{2}}{M_{s1}} \\ M_{c5} &= k(\bar{\rho} \bar{U})_{2} \left(-\frac{M_{s4}}{M_{s9} M_{s1}} \right) \\ M_{66} &= -\frac{M_{s0} - M_{s0} M_{s2}}{M_{s6}} \\ M_{c7} &= -\frac{M_{s9} M_{35}}{M_{s6}} \\ M_{c7} &= -\frac{M_{s9} M_{35}}{M_{s6}} \\ M_{c9} &= -\frac{M_{s9} M_{35}}{M_{s6}} \\ M_{c9} &= -\frac{M_{s9} M_{55}}{M_{s6}} \\ M_{70} &= (M_{50A} - M_{s9} M_{56})/M_{48} \\ M_{71} &= -M_{49} M_{57}/M_{48} \\ M_{72} &= (2\bar{w}_{US} - M_{49} M_{58})/M_{48} \\ M_{74} &= (-\frac{1}{2} k \bar{\rho}_{s} \bar{\nabla}_{s} - M_{s9} M_{59})/M_{48} \\ M_{74} &= (-\frac{1}{2} k \bar{\rho}_{s} \bar{\nabla}_{s} - M_{s9} M_{50})/M_{48} \\ M_{76} &= (-\frac{1}{2} \bar{\rho}^{*} \bar{a}^{*} - M_{s9} M_{61})/M_{48} \\ M_{76} &= (-\frac{1}{2} \bar{\rho}^{*} \bar{a}^{*} - M_{s9} M_{61})/M_{48} \\ M_{76} &= (-k(\bar{\rho} \bar{U})_{2} - M_{s9} M_{62})/M_{48} \\ M_{77} &= -M_{s9} M_{63}/M_{48} \\ M_{77} &= -M_{s9} M_{63}/M_{48} \\ M_{79} &= -M_{s9} M_{63}/M_{48} \\ M_{79} &= -M_{s9} M_{63}/M_{48} \\ M_{80} &= \bar{\rho}_{US} \bar{A}_{S} + \bar{U}_{US} \bar{A}_{S} M_{72} - \frac{k\bar{\nabla}_{2}}{2} M_{58} \\ \end{split}$$

ł

$$\begin{split} \mathbf{M}_{s_2} &= -\overline{\mathbf{U}}_{\mathrm{US}}\overline{\mathbf{A}}_{\mathrm{S}}\mathbf{M}_{\mathrm{66}} - \overline{\mathbf{\rho}}_{\mathrm{US}}\overline{\mathbf{U}}_{\mathrm{US}} + \frac{\mathbf{k}\overline{\mathbf{V}}_2}{2} \mathbf{M}_{\mathrm{52}} \\ \mathbf{M}_{\mathrm{83}} &= -\overline{\mathbf{U}}_{\mathrm{US}}\overline{\mathbf{A}}_{\mathrm{S}}\mathbf{M}_{\mathrm{57}} + \frac{\mathbf{k}\overline{\mathbf{V}}_2}{2} \mathbf{M}_{\mathrm{53}} \\ \mathbf{M}_{\mathrm{84}} &= -\overline{\mathbf{U}}_{\mathrm{US}}\overline{\mathbf{A}}_{\mathrm{S}}\mathbf{M}_{\mathrm{71}} + \overline{\mathbf{a}}^* + \frac{\mathbf{k}\overline{\mathbf{V}}_2}{2} \mathbf{M}_{\mathrm{63}} \\ \mathbf{M}_{\mathrm{85}} &= -\overline{\mathbf{U}}_{\mathrm{US}}\overline{\mathbf{A}}_{\mathrm{S}}\mathbf{M}_{\mathrm{76}} + \frac{\mathbf{k}\overline{\mathbf{V}}_2}{2} \mathbf{M}_{\mathrm{62}} \\ \mathbf{M}_{\mathrm{86}} &= -\overline{\mathbf{U}}_{\mathrm{US}}\overline{\mathbf{A}}_{\mathrm{S}}\mathbf{M}_{\mathrm{68}} + \frac{\mathbf{k}\overline{\mathbf{V}}_2}{2} \mathbf{M}_{\mathrm{54}} \\ \mathbf{M}_{\mathrm{87}} &= -\overline{\mathbf{U}}_{\mathrm{US}}\overline{\mathbf{A}}_{\mathrm{S}}\mathbf{M}_{\mathrm{69}} + \frac{\mathbf{k}\overline{\mathbf{V}}_2}{2} \mathbf{M}_{\mathrm{55}} \\ \mathbf{M}_{\mathrm{88}} &= -\overline{\mathbf{U}}_{\mathrm{US}}\overline{\mathbf{A}}_{\mathrm{S}}\mathbf{M}_{\mathrm{70}} + \overline{\mathbf{\rho}}^*\overline{\mathbf{a}}^* + \frac{\mathbf{k}\overline{\mathbf{V}}_2}{2} \mathbf{M}_{\mathrm{56}} \\ \mathbf{M}_{\mathrm{89}} &= -\overline{\mathbf{U}}_{\mathrm{US}}\overline{\mathbf{A}}_{\mathrm{S}}\mathbf{M}_{\mathrm{70}} + \overline{\mathbf{\rho}}^*\overline{\mathbf{a}}^* + \frac{\mathbf{k}\overline{\mathbf{V}}_2}{2} \mathbf{M}_{\mathrm{56}} \\ \mathbf{M}_{\mathrm{89}} &= -\overline{\mathbf{U}}_{\mathrm{US}}\overline{\mathbf{A}}_{\mathrm{S}}\mathbf{M}_{\mathrm{71}} + \frac{\mathbf{k}\overline{\mathbf{V}}_2}{2} \mathbf{M}_{\mathrm{57}} \\ \mathbf{M}_{\mathrm{90}} &= -\overline{\mathbf{U}}_{\mathrm{US}}\overline{\mathbf{A}}_{\mathrm{S}}\mathbf{M}_{\mathrm{75}} + \overline{\mathbf{\rho}}^* + \frac{\mathbf{k}\overline{\mathbf{V}}_2}{2} \mathbf{M}_{\mathrm{60}} \\ \mathbf{M}_{\mathrm{91}} &= -\overline{\mathbf{U}}_{\mathrm{US}}\overline{\mathbf{A}}_{\mathrm{S}}\mathbf{M}_{\mathrm{75}} + \overline{\mathbf{\rho}}^* + \frac{\mathbf{k}\overline{\mathbf{V}}_2}{2} \mathbf{M}_{\mathrm{61}} \\ \mathbf{M}_{\mathrm{92}} &= -\overline{\mathbf{U}}_{\mathrm{US}}\overline{\mathbf{A}}_{\mathrm{S}}\mathbf{M}_{\mathrm{78}} + \frac{\mathbf{k}\overline{\mathbf{V}}_2}{2} \mathbf{M}_{\mathrm{65}} \\ \mathbf{M}_{\mathrm{93}} &= -\overline{\mathbf{U}}_{\mathrm{US}}\overline{\mathbf{A}}_{\mathrm{S}}\mathbf{M}_{\mathrm{78}} + \frac{\mathbf{k}\overline{\mathbf{V}}_2}{2} \mathbf{M}_{\mathrm{65}} \\ \end{array}$$

Continuity

-

$$\begin{split} C_{58} &= \bar{\rho}_{US}\overline{A}_{S} + \overline{U}_{US}\overline{A}_{S}M_{59} + \frac{k\overline{V}_{2}}{2} M_{73} \\ C_{59} &= \overline{U}_{US}\overline{A}_{S}M_{58} + \frac{k\overline{V}_{2}}{2} M_{72} \\ C_{60} &= -\overline{U}_{US}\overline{A}_{S}M_{52} - \frac{k\overline{V}_{2}}{2} M_{66} \\ C_{61} &= -\bar{\rho}_{US}\overline{U}_{US} - \overline{U}_{US}\overline{A}_{S}M_{63} - \frac{k\overline{V}_{2}}{2} M_{67} \\ C_{62} &= -\overline{U}_{US}\overline{A}_{S}M_{63} - \frac{k\overline{V}_{2}}{2} (1 + M_{77}) \\ C_{63} &= \overline{a}^{*} - \overline{U}_{US}\overline{A}_{S}M_{62} - \frac{k\overline{V}_{2}}{2} M_{76} \end{split}$$

$$\begin{split} & C_{64} = -\overline{U}_{US}\overline{A}_{US}M_{61} - \frac{k\overline{V}_2}{2} M_{75} \\ & C_{65} = \rho^* - \overline{U}_{US}\overline{A}_SM_{60} - \frac{k\overline{V}_2}{2} M_{74} \\ & C_{66} = -\overline{U}_{US}\overline{A}_SM_{54} - \frac{k\overline{V}_2}{2} M_{69} \\ & C_{67} = -\overline{U}_{US}\overline{A}_SM_{55} - \frac{k\overline{V}_2}{2} M_{69} \\ & C_{68} = -\overline{U}_{US}\overline{A}_SM_{56} - \frac{k\overline{V}_2}{2} M_{70} \\ & C_{69} = \overline{\rho}^*\overline{a}^* - \overline{U}_{US}\overline{A}_SM_{57} - \frac{k\overline{V}_2}{2} M_{71} \\ & C_{70} = -\overline{U}_{US}\overline{A}_SM_{65} - \frac{k\overline{V}_2}{2} (2\overline{\rho}_2 + M_{79}) \\ & C_{71} = -\overline{U}_{US}\overline{A}_SM_{64} - \frac{k\overline{V}_2}{2} M_{78} \\ & C_{72} = C_{59} - \frac{C_{58}M_{80}}{M_{81}} \\ & C_{73} = \frac{1}{C_{72}} \left(C_{60} - \frac{C_{58}M_{82}}{M_{81}} \right) \\ & C_{74} = \frac{1}{C_{72}} \left(C_{61} - \frac{C_{58}M_{82}}{M_{81}} \right) \\ & C_{75} = \frac{1}{C_{72}} \left(C_{62} - \frac{C_{58}M_{84}}{M_{81}} \right) \\ & C_{77} = \frac{1}{C_{72}} \left(C_{64} - \frac{C_{58}M_{85}}{M_{81}} \right) \\ & C_{77} = \frac{1}{C_{72}} \left(C_{64} - \frac{C_{58}M_{99}}{M_{81}} \right) \\ & C_{79} = \frac{1}{C_{72}} \left(C_{66} - \frac{C_{58}M_{99}}{M_{81}} \right) \\ & C_{79} = \frac{1}{C_{72}} \left(C_{66} - \frac{C_{58}M_{99}}{M_{81}} \right) \\ & C_{80} = \frac{1}{C_{72}} \left(C_{66} - \frac{C_{58}M_{85}}{M_{81}} \right) \\ & C_{81} = \frac{1}{C_{72}} \left(C_{66} - \frac{C_{58}M_{85}}{M_{81}} \right) \\ & C_{82} = \frac{1}{C_{72}}} \left(C_{69} - \frac{C_{58}M_{89}}{M_{81}} \right) \\ & C_{82} = \frac{1}{C_{72}} \left(C_{69} - \frac{C_{58}M_{89}}{M_{81}} \right) \\ \end{array}$$

$$C_{83} = \frac{1}{C_{72}} \left(C_{70} - \frac{C_{58}M_{93}}{M_{81}} \right)$$

$$C_{84} = \frac{1}{C_{72}} \left(C_{71} - \frac{C_{58}M_{92}}{M_{81}} \right)$$

$$C_{85} = \frac{1}{C_{58}} \left(C_{60} - C_{59}C_{73} \right)$$

$$C_{86} = \frac{1}{C_{58}} \left(C_{61} - C_{59}C_{74} \right)$$

$$C_{87} = \frac{1}{C_{58}} \left(C_{62} - C_{59}C_{75} \right)$$

$$C_{88} = \frac{1}{C_{58}} \left(C_{63} - C_{59}C_{76} \right)$$

$$C_{89} = \frac{1}{C_{58}} \left(C_{63} - C_{59}C_{76} \right)$$

$$C_{90} = \frac{1}{C_{58}} \left(C_{65} - C_{59}C_{76} \right)$$

$$C_{91} = \frac{1}{C_{58}} \left(C_{66} - C_{59}C_{79} \right)$$

$$C_{92} = \frac{1}{C_{58}} \left(C_{67} - C_{59}C_{80} \right)$$

$$C_{934} = \frac{1}{C_{58}} \left(C_{68} - C_{59}C_{81} \right)$$

$$C_{94} = \frac{1}{C_{58}} \left(C_{69} - C_{59}C_{82} \right)$$

$$C_{95} = \frac{1}{C_{58}} \left(C_{70} - C_{59}C_{83} \right)$$

$$C_{96} = \frac{1}{C_{58}} \left(C_{71} - C_{59}C_{84} \right)$$

)

REGION 3

Ĩ

.

Momentum

$$M_{g_4} = \frac{\overline{u}_{E}\overline{A}_{E}}{C\overline{y}_{E}} - \frac{\overline{w}_{E} \sin \alpha_{eh}}{C\overline{y}_{E}} + \left[U_{2REL} \cos \left(\alpha_{eh} - \beta_{2}\right)\right]^{2} \left[\frac{\overline{u}_{E}\overline{A}_{E}}{C\overline{y}_{E}\overline{a}_{E}^{2}} \overline{\rho}_{E}\right] - \left[\left(\frac{\overline{\rho}_{E}\overline{U}_{2REL}\overline{A}_{E}}{C\overline{y}_{E}}\right) (\sin \alpha_{eh})\right] \cos \left(\alpha_{eh} - \beta_{2}\right)$$

$$\begin{split} \mathbf{M}_{\rm ss} &= \overline{\rho}_{\rm E} \quad \left(\begin{array}{c} \frac{\mathbf{k} + \overline{\mathbf{v}}_{\rm E} \mathbf{C}}{\overline{\mathbf{y}}_{\rm E}} \right) \quad \overline{\mathbf{A}}_{\rm E} - \frac{\overline{\mathbf{w}}_{\rm E} \cos \alpha_{\rm ch}}{\overline{\mathbf{y}}_{\rm E}} + \\ \left[\mathbf{U}_{\rm 2REL} \cos \left(\alpha_{\rm ch} - \beta_2 \right) \right]^2 \quad \left[\left(\begin{array}{c} \frac{\mathbf{k} + \overline{\mathbf{v}}_{\rm E} \mathbf{C}}{\overline{\mathbf{y}}_{\rm E} \overline{\mathbf{a}}_{\rm E}}^2 \right) \quad \overline{\mathbf{A}}_{\rm E} \overline{\rho}_{\rm E} \end{array} \right] \quad - \\ \overline{\rho}_{\rm E} \overline{\mathbf{U}}_{\rm 2REL} \overline{\mathbf{A}}_{\rm E} \cos \alpha_{\rm ch} \cos \left(\alpha_{\rm ch} - \beta_2 \right) \end{split}$$

$$\begin{split} \mathbf{M}_{96} &= \overline{\rho}_{E} \quad \frac{\overline{\mathbf{u}}_{E}\overline{\mathbf{U}}_{3}\overline{\mathbf{V}}_{3}}{2C\overline{\mathbf{y}}_{E}\overline{\mathbf{a}}_{E}^{2}} \quad - \quad \frac{-\rho_{3}\overline{\mathbf{V}}_{3}\sin\alpha_{ch}}{2C\overline{\mathbf{y}}_{E}} \\ \mathbf{M}_{97} &= \overline{\rho}_{E} \quad \frac{(\mathbf{k} + \overline{\mathbf{v}}_{E}C)\overline{\mathbf{U}}_{3}\overline{\mathbf{V}}_{3}}{2C\overline{\mathbf{y}}_{E}\overline{\mathbf{a}}_{E}^{2}} \quad - \quad \frac{\rho_{3}\overline{\mathbf{V}}_{3}\cos\alpha_{ch}}{2\overline{\mathbf{y}}_{E}} \\ \mathbf{M}_{98} &= \quad \left[\frac{\overline{\mathbf{w}}_{E}\sin\alpha_{ch}}{(\mathbf{R}^{2} + \mathbf{C}^{2})\overline{\mathbf{y}}_{E}} \quad - \quad \frac{\mathbf{R}\overline{\mathbf{w}}_{E}\cos\alpha_{ch}}{\mathbf{C}(\mathbf{R}^{2} + \mathbf{C}^{2})\overline{\mathbf{y}}_{E}} \right] \quad + \\ & \quad \left[\frac{-\overline{\rho}_{E}\mathbf{U}_{2REL}\overline{\mathbf{A}}_{E}\cos(\alpha_{ch} - \beta_{2})}{(\mathbf{R}^{2} + \mathbf{C}^{2})\overline{\mathbf{y}}_{E}} \right] \quad \left[\sin\alpha_{ch} - \quad \frac{\mathbf{R}\cos\alpha_{ch}}{\mathbf{C}} \right] \\ \mathbf{M}_{99} &= \quad \frac{\overline{\rho}_{3}\overline{\mathbf{V}}_{3}}{2(\mathbf{R}^{2} + \mathbf{C}^{2})\overline{\mathbf{y}}_{E}} \quad \left(\sin\alpha_{ch} - \quad \frac{\mathbf{R}\cos\alpha_{ch}}{\mathbf{C}} \right) \end{split}$$

$$\begin{split} M_{100} &= \cos (C\bar{y}_{E}) - 1 \\ M_{101} &= M_{94} (M_{100}B_{2R} - B_{21} \sin (C\bar{y}_{E})) + M_{95}M_{100} - \end{split}$$

$$kM_{s6}(B_{21}M_{100} + B_{2R} \sin (C\overline{y}_{E})) - kM_{s7} \sin (C\overline{y}_{E})$$

$$M_{102} = M_{94} (M_{100}B_{21} + B_{2R} \sin (C\bar{y}_E)) - M_{95} \sin (C\bar{y}_E) - kM_{96} (M_{100}B_{2R} - B_{21} \sin (C\bar{y}_E)) - kM_{97}M_{100}$$

$$kM_{96} (M_{100}B_{2R} - B_{21} \sin (C\bar{y}_E)) - kM_{97}M$$

$$M_{103} = -kM_{99} \sin (C \vec{y}_E) + M_{98} M_{100}$$

$$M_{104} = -kM_{99}M_{100} - M_{98} \sin (C\tilde{y}_E)$$

$$\begin{split} M_{105} &= M_{94} \left[B_{21} M_{100} \, + \, B_{2R} \sin \, (C \overline{y}_E) \right] \, + \, M_{95} \, \sin \, (C \overline{y}_E) \, + \\ \\ & k M_{96} \left[B_{2R} M_{100} \, - \, B_{2I} \, \sin \, (C \overline{y}_E) \, + \, k M_{97} M_{100} \right] \end{split}$$

$$M_{106} \approx M_{94} [B_{2R}M_{100} - B_{21} \sin (C\bar{y}_E)] + M_{95}M_{100} -$$

$$kM_{96} [B_{2l}M_{100} + B_{2R} \sin (C\overline{y}_{E})] - kM_{97} \sin (C\overline{y}_{E})$$

$$M_{107} = M_{98} \sin (C\bar{y}_{E}) + kM_{99}M_{100}$$
$$M_{108} = M_{98}M_{100} - kM_{99} \sin (C\bar{y}_{E})$$

$$M_{109} = M_{105} - M_{101}M_{106}/M_{102}$$
$$M_{100} = (M_{100} - M_{100}M_{100})/M_{100}$$

$$\begin{split} M_{110} \ &= \ (M_{107} \ - \ M_{103} M_{106}/M_{102})/M_{109} \\ \\ M_{111} \ &= \ (M_{106} \ - \ M_{104} M_{106}/M_{102})/M_{109} \end{split}$$

$$M_{_{112}} = 1/M_{_{109}}$$

$$M_{113} = -M_{106}/M_{102}M_{100}$$

$$M_{114} = (M_{107} - M_{105}M_{110})/M_{106}$$

$$M_{115} = (M_{108} - M_{105}M_{109})/M_{106}$$

$$M_{116} = M_{105} M_{113}/M_{106}$$

$$M_{117} = (1 - M_{105}M_{112})/M_{106}$$

Continuity

i <u>---</u>--

.

$$\begin{split} \mathbf{C}_{g_{7}} &= -\frac{\bar{\rho}_{z}\overline{\mathbf{U}}_{z}\overline{\mathbf{U}}_{z}}{\mathbf{C}\overline{\mathbf{y}}_{z}\overline{\mathbf{d}}_{z}} \frac{\alpha_{ch} - \beta_{z}}{\mathbf{C}\overline{\mathbf{y}}_{z}} + \frac{\bar{\rho}_{z}\overline{\mathbf{A}}_{z}}{\mathbf{C}\overline{\mathbf{y}}_{z}} \frac{\alpha_{ch}}{\mathbf{y}_{z}} \\ \mathbf{C}_{g_{8}} &= -\frac{\bar{\rho}_{z}(\mathbf{k}_{z} + \overline{\mathbf{v}}_{z}\mathbf{C})}{\mathbf{U}_{zm}} \frac{\overline{\mathbf{A}}_{z}}{\mathbf{c}\overline{\mathbf{v}}_{z}} \frac{\cos(\alpha_{ch} - \beta_{z})}{\mathbf{v}_{z}} + \frac{\bar{\rho}_{z}\overline{\mathbf{A}}_{z}}{\mathbf{v}} \frac{\cos\alpha_{ch}}{\mathbf{y}_{z}} \\ \mathbf{C}_{g_{9}} &= \frac{\bar{\rho}_{z}\overline{\mathbf{A}}_{z}}{(\mathbf{R}^{2} + \mathbf{C}^{2})} \frac{\overline{\mathbf{y}}_{z}}{\mathbf{y}_{z}} \left(\sin\alpha_{ch} - \frac{\mathbf{R}}{\mathbf{C}} \cos\alpha_{ch} \right) \\ \mathbf{C}_{inv} &= \frac{\bar{\mu}_{z}\overline{\mathbf{V}}_{z}\overline{\mathbf{A}}_{z}}{2\mathbf{C}\overline{\mathbf{y}}_{z}\overline{\mathbf{d}}_{z}^{2}} \\ \mathbf{C}_{ini} &= \frac{(\mathbf{k} + \overline{\mathbf{v}}_{z}\mathbf{C})}{2\mathbf{V}_{z}\overline{\mathbf{d}}_{z}^{2}} \\ \mathbf{C}_{ini} &= \frac{(\mathbf{k} + \overline{\mathbf{v}}_{z}\mathbf{C})}{2\mathbf{V}_{z}\overline{\mathbf{d}}_{z}^{2}} \\ \mathbf{C}_{ini} &= \frac{(\mathbf{k} + \overline{\mathbf{v}}_{z}\mathbf{C})}{2\mathbf{V}_{z}\overline{\mathbf{d}}_{z}^{2}} \\ \mathbf{C}_{ini} &= \mathbf{C}_{g_{1}}\mathbf{B}_{2R}\mathbf{M}_{ino} - \mathbf{C}_{g_{2}}\mathbf{B}_{2i}\sin(\mathbf{C}\overline{\mathbf{y}}_{z}) + \mathbf{C}_{g_{8}}\mathbf{M}_{ino} + \\ \mathbf{k}\mathbf{C}_{ini}\sin(\mathbf{C}\overline{\mathbf{y}}_{z}) + \mathbf{k}\mathbf{C}_{ini}\sin(\mathbf{C}\overline{\mathbf{y}}_{z}) \\ \mathbf{C}_{ini} &= -\mathbf{C}_{g_{7}}\left(\mathbf{B}_{2i}\mathbf{M}_{ino} + \mathbf{B}_{2R}\sin(\mathbf{C}\overline{\mathbf{y}}_{z})\right) + \mathbf{k}\mathbf{C}_{ini}\sin(\mathbf{C}\overline{\mathbf{y}}_{z}) + \\ \mathbf{k}\mathbf{C}_{inv}\left(\mathbf{B}_{2R}\mathbf{M}_{ino} - \mathbf{B}_{zi}\sin(\mathbf{C}\overline{\mathbf{y}}_{z})\right) + \mathbf{k}\mathbf{C}_{ini}\mathbf{M}_{ino} \\ \mathbf{C}_{ini} &= -\mathbf{C}_{g_{9}}\left(\mathbf{B}_{zi}\mathbf{M}_{ino} + \mathbf{B}_{zi}\sin(\mathbf{C}\overline{\mathbf{y}}_{z})\right) + \mathbf{k}\mathbf{C}_{ini}\mathbf{M}_{ino} \\ \mathbf{C}_{ini} &= -\mathbf{C}_{g_{9}}\sin(\mathbf{C}\overline{\mathbf{y}}_{z}\right) \\ \mathbf{C}_{ini} &= \mathbf{C}_{inz}\mathbf{M}_{ini} + \mathbf{C}_{ini}\mathbf{M}_{ini} + \mathbf{C}_{ini}\mathbf{M}_{ini} \\ \mathbf{C}_{ini} &= \mathbf{C}_{inz}\mathbf{M}_{ini} + \mathbf{C}_{ini}\mathbf{M}_{ini} + \mathbf{C}_{ini} \\ \mathbf{C}_{ini} &= \mathbf{C}_{inz}\mathbf{M}_{ini} + \mathbf{C}_{ini}\mathbf{M}_{ini} + \mathbf{C}_{ini} \\ \mathbf{C}_{ini} &= \mathbf{C}_{inz}\mathbf{M}_{ini} + \mathbf{C}_{ini}\mathbf{M}_{ini} \\ \mathbf{C}_{ini} &= \mathbf{C}_{inz}\mathbf{M}_{ini} + \mathbf{C}_{ini}\mathbf{M}_{ini} \\ \mathbf{C}_{ini} &= \mathbf{C}_{g_{g}}\left[\mathbf{B}_{zi}\mathbf{M}_{ino} + \mathbf{B}_{zi}\sin(\mathbf{C}\overline{\mathbf{y}}_{z}\right] + \mathbf{C}_{ini}\mathbf{M}_{ino} + \\ \mathbf{k}\mathbf{C}_{ini}\left[\mathbf{D}_{zi}\mathbf{M}_{ino} + \mathbf{D}_{zi}\sin(\mathbf{C}\overline{\mathbf{y}}_{z}\right] + \mathbf{C}_{ini}\mathbf{M}_{ino} + \\ \mathbf{k}\mathbf{C}_{ini}\left[\mathbf{D}_{zi}\mathbf{M}_{ini} + \mathbf{D}_{zi}\mathbf{N}_{zi}\mathbf{N}_{z}\right] \\ \mathbf{C}_{ini} &= \mathbf{C}_{ini}\mathbf{M}_{ini} + \mathbf{C}_{ini}\mathbf{M}_{ini} \\ \mathbf{C}_{ini} + \mathbf{C}_$$

$$C_{112} = C_{39} \sin (C\overline{y}_{E})$$

$$C_{113} = C_{99}M_{100}$$

$$C_{114} = C_{110}M_{110} + C_{111}M_{114} + C_{112}$$

$$C_{115} = C_{110}M_{111} + C_{111}M_{115} + C_{113}$$

$$C_{116} = C_{110}M_{113} + C_{111}M_{116}$$

$$C_{117} = C_{110}M_{112} + C_{111}M_{117}$$

$$C_{118} = C_{114} - C_{115}C_{106}/C_{107}$$

$$C_{119} = -(C_{116} - C_{115}C_{108}/C_{107})/C_{118}$$

$$C_{120} = - (C_{117} - C_{115}C_{109}/C_{107})/C_{118}$$

$$C_{122} = (-C_{116} - C_{114}C_{119})/C_{115}$$

$$C_{123} = (-C_{117} - C_{114}C_{120})/C_{115}$$

$$C_{124} = (CI - C_{121}C_{114})/C_{115}$$

S Coefficients

$$\begin{split} \mathbf{S}_{1} &= \frac{2\gamma}{\gamma+1} \quad \overline{\mathbf{p}}_{us} \\ \mathbf{S}_{2} &= \frac{2\gamma}{\gamma+1} \quad \overline{\mathbf{p}}_{us} \overline{\mathbf{M}}_{us} - \overline{\mathbf{p}}_{ds} - \frac{(\gamma-1)}{\gamma+1} \quad \overline{\mathbf{p}}_{us} \\ \mathbf{S}_{3} &= \frac{2\gamma}{\gamma+1} \quad \overline{\mathbf{a}}_{us} \overline{\mathbf{M}}_{us} - \overline{\mathbf{U}}_{s} - \frac{(\gamma-1)}{\gamma+1} \quad \overline{\mathbf{a}}_{us} \\ \mathbf{S}_{4} &= \frac{2\gamma}{\gamma+1} \quad \overline{\mathbf{a}}_{us} \overline{\mathbf{p}}_{us} \\ \mathbf{S}_{5} &= (\gamma-1) \quad \overline{\mathbf{M}}_{us}^{2} + 2 \\ \mathbf{S}_{6} &= (2-2\gamma) \quad \overline{\rho}_{ds} + (2\gamma+2) \quad \overline{\rho}_{us} \\ \mathbf{S}_{7} &= (\gamma+1) \quad \overline{\mathbf{M}}_{us}^{2} \\ \mathbf{S}_{8} &= \mathbf{S}_{6}/(\overline{\mathbf{a}}_{us} \mathbf{S}_{5}) \\ \mathbf{S}_{9} &= \mathbf{S}_{7}/\mathbf{S}_{5} \end{split}$$

Miscellaneous

$$\begin{split} \mathrm{RC} &= -\bar{\mathbf{p}'}_{\mathrm{dsR}}\bar{\mathbf{A}}_{\mathrm{S}} - \bar{\mathbf{p}}_{\mathrm{ds}}\bar{\mathbf{A}'}_{\mathrm{SR}} + [\bar{\mathbf{p}}_{\mathrm{E}} + \rho_{\mathrm{E}} \left(\mathbf{U}_{2\mathrm{RE}}\cos\left(\alpha_{\mathrm{ch}} - \beta_{2}\right)\right)^{2}] \,\bar{\mathbf{A}'}_{\mathrm{ER}} - \\ \bar{\mathbf{U}'}_{\mathrm{dsR}}\bar{\mathbf{w}}_{\mathrm{ds}} - \bar{\mathbf{U}}_{\mathrm{ds}} \,\bar{\mathbf{w}'}_{\mathrm{dsR}} - \frac{\mathbf{k}\rho'_{\mathrm{dsl}}\bar{\mathbf{U}}_{3}\bar{\mathbf{V}}_{3}}{2} - \mathbf{k}\bar{\rho}_{3}\bar{\mathbf{U}}_{3}\bar{\mathbf{V}'}_{3\mathrm{I}} - \frac{\mathbf{k}\bar{\rho}_{3}\bar{\mathbf{U}'}_{\mathrm{dsl}}\bar{\mathbf{V}}_{3}}{2} \end{split}$$

with

.

$$\vec{\mathbf{w}}'_{dsR} = (\vec{\rho}'_{dsR} \overline{\mathbf{U}}_{ds} \overline{\mathbf{A}}_{S} + \vec{\rho}_{ds} \overline{\mathbf{U}}'_{dsR} \overline{\mathbf{A}}_{S} + \vec{\rho}_{ds} \overline{\mathbf{U}}_{ds} \overline{\mathbf{A}}'_{SR})$$

$$\begin{split} \mathrm{IC} &= -\mathbf{p}_{\mathrm{dul}} \mathbf{\tilde{A}}_{\mathrm{S}} - \mathbf{\tilde{p}}_{\mathrm{du}} \mathbf{\tilde{A}'}_{\mathrm{SI}} + \quad \left[\mathbf{\tilde{p}}_{\mathrm{E}} + \mathbf{\tilde{\rho}}_{\mathrm{E}} \left(\mathbf{\tilde{U}}_{2\mathrm{REL}} \cos\left(\alpha_{\mathrm{ch}} - \mathbf{\beta}_{2}\right)\right)^{2}\right] \mathbf{\tilde{A}'}_{\mathrm{EI}} - \\ \mathbf{\tilde{U}'}_{\mathrm{du}} \mathbf{\tilde{w}}_{\mathrm{du}} - \mathbf{\tilde{U}}_{\mathrm{du}} \mathbf{\tilde{w}'}_{\mathrm{dul}} + \quad \frac{\mathbf{k} \mathbf{\tilde{\rho}'}_{\mathrm{du}} \mathbf{\tilde{U}}_{3} \mathbf{\widetilde{V}}_{3}}{2} + \mathbf{k} \mathbf{\bar{\rho}}_{3} \mathbf{\tilde{U}}_{3} \mathbf{\overline{V}'}_{3\mathrm{R}} + \quad \frac{\mathbf{k} \mathbf{\bar{\rho}}_{3} \mathbf{\tilde{U}'}_{\mathrm{du}} \mathbf{\overline{V}}_{3}}{2} \end{split}$$

with

$$\begin{split} &\overline{\mathbf{w}'}_{dsl} = (\overline{\rho}'_{dsl}\overline{\overline{U}}_{ds}\overline{\overline{A}}_{S} + - \overline{\rho}_{ds}\overline{\overline{U}'}_{dsl}\overline{\overline{A}}_{S} + - \overline{\rho}_{ds}\overline{\overline{U}}_{ds}\overline{\overline{A}'}_{Sl}) \\ & \mathrm{CR} = -\overline{\rho}_{\mathrm{E}}\overline{\overline{A}'}_{\mathrm{ER}}\overline{\overline{U}}_{\mathrm{E}} + - \mathbf{w}'_{dsR} + - \overline{\rho}_{3}\mathbf{k}\overline{\overline{V}'}_{3l} + - \frac{1}{2}\mathbf{k}\overline{\overline{V}'}_{3}\overline{\rho}'_{dsl} \\ & \mathrm{CI} = -\overline{\rho}_{\mathrm{E}}\overline{\overline{U}}_{2\mathrm{REL}}\cos((\alpha_{\mathrm{ch}} - \beta_{2})\overline{\overline{A}'}_{\mathrm{EI}} + \overline{\mathbf{w}'}_{dsl} - \overline{\rho}_{3}\mathbf{k}\overline{\overline{V}'}_{3\mathrm{R}} - - \frac{1}{2}\mathbf{k}\overline{\overline{V}}_{3}\overline{\rho}'_{dsR} \end{split}$$

APPENDIX F CALCULATION OF MEAN FLOW AERODYNAMICS

Pressure jump across the shock (steady state)

$$\frac{\bar{\rho}_{ds}}{\bar{\rho}_{us}} = 1 + \frac{2\gamma}{\gamma+1} (\bar{M}_{us}^2 - 1)$$
(F1)

Steady-state pressure as a function of chordwise location

$$\bar{\mathbf{p}}(\mathbf{x}) = \bar{\mathbf{p}}_{\text{TOT}} \left[1 + \frac{\gamma - 1}{2} \left(\bar{\mathbf{M}}_{\mathbf{x}}^2 \right) \right]^{\left(\frac{-\gamma}{\gamma - 1} \right)}$$
(F2)

Steady-state density as a function of chordwise location

$$\bar{\rho}(\mathbf{x}) = \bar{\rho}_{\text{TOT}} \left[1 + \frac{\gamma - 1}{2} \left(\bar{\mathbf{M}}_{(\mathbf{x})}^2 \right) \right]^{\left(\frac{-1}{\gamma - 1} \right)}$$
(F3)

where,

$$\rho_{\rm TOT} = \frac{{\rm P}_{\rm TOT}}{{\rm R}{\rm T}_{\rm tot}}$$

Steady-state temperature as a function of chordwise position

$$\bar{\mathbf{T}}(\mathbf{x}) = \bar{\mathbf{T}}_{\text{TOT}} \left[1 + \frac{\gamma - 1}{2} \left(\mathbf{\tilde{M}}^2(\mathbf{x}) \right) \right]^{-1}$$
(F4)

Local steady-state speed of sound as a function of chordwise position.

$$\bar{\mathbf{a}}(\mathbf{x}) = \left[\frac{\gamma R T_{\text{TOT}}}{1 + \frac{\gamma - 1}{2} (\bar{\mathbf{M}}^2(\mathbf{x}))}\right]^{\nu_3}$$
(F5)

Total pressure, temperature, and density downstream of the shock

$$p_{\text{TOT}_{ds}} = p_{\text{TOT}_{us}} \left[1 + \frac{2\gamma}{\gamma + 1} \left(M_{us}^2 - 1 \right) \right]^{\left(\frac{-1}{\gamma - 1} \right)} \left[\frac{(\gamma + 1)}{(\gamma - 1) M_{us}^2 + 2} \right]^{\left(\frac{\gamma}{\gamma - 1} \right)}$$
(F6)

 $T_{TOT_{ds}} = T_{TOT_{us}}$

Mach number across the shock

$$\bar{\mathbf{M}}_{ds}^{2} = \frac{\bar{\mathbf{M}}_{us}^{2} (\gamma - 1) + 2}{2\gamma \bar{\mathbf{M}}_{us}^{2} - (\gamma - 1)}$$
(F7)

APPENDIX G

DEFINITION OF AREA PERTURBATIONS

Bending Mode Perturbations

Figure G1 describes the inlet area to be considered. The blades will be considered to vibrate harmonically with a constant interblade phase lag σ . Assuming this, then the deflections can be represented as follows:

 $h = \bar{h} e^{ikt}$ (reference blade)

 $h' = \tilde{h} e^{ikt} e^{i\sigma}$ (blade adjacent to reference blade)

FD 176255

Figure G1. Bending Mode Area Perturbations

Thus, the area perturbation can be represented as shown below:

$$A'_{i} = (h'-h) \frac{\sin \beta_{1}}{\sin \alpha_{ch}}$$
$$= (\bar{h}^{ikt} e^{i\sigma} - \bar{h} e^{ikt}) \frac{\sin \beta_{1}}{\sin \alpha_{ch}}$$
(G1)

where all quantities are nondimensional. Simplifying this expression yields

$$\overline{A}'_{i} = \overline{h} e^{ikt} (e^{i\sigma} - 1) \frac{\sin \beta_{1}}{\sin \alpha_{ch}}$$
(G2)

Dividing through be e^{ikt} gives

$$\bar{A}'_{i} = \bar{h} (e^{i\sigma} - 1) - \frac{\sin \beta_{1}}{\sin \alpha_{ch}}$$
(G3)

Separating the expression into its real and imaginary components produces

$$\bar{A}'_{iR} = \bar{h} (\cos \sigma - 1) \frac{\sin \beta_1}{\sin \alpha_{ch}}$$
(G4)

$$\overline{A}'_{ii} = \overline{h} \sin \sigma \quad \left(\frac{\sin \beta_i}{\sin \alpha_{ch}} \right)$$
(G5)

Similarly, the other area perturbations for the bending mode will be

$$\bar{\mathbf{A}}^{\prime *}{}_{\mathbf{B}} = \bar{\mathbf{h}} (\cos \sigma - 1) \tag{G6}$$

$$\overline{A}^{\prime *}{}_{I} = \overline{h} \sin \sigma \tag{G7}$$

$$\bar{A}'_{SR} = \bar{h} (\cos \sigma - 1) \tag{G8}$$

$$\vec{A}'_{s1} = \vec{h} \sin \sigma \tag{G9}$$

$$\bar{\mathbf{A}}'_{\text{ER}} = \bar{\mathbf{h}} (\cos \sigma - 1) \frac{\sin \beta_2}{\sin \alpha_{\text{ch}}}$$
(G10)

$$\overline{A'}_{EI} = \overline{h} \sin \sigma \left(\frac{-\sin \beta_2}{\sin \alpha_{ch}} \right)$$
(G11)

Torsional Mode Area Perturbations

Figure G2. Torsional Mode Area Perturbation

In the torsional mode area perturbations, the airfoils will be assumed to be undergoing rigid body torsional deflections about an arbitrary elastic axis position a. Consider first a cascade of flat plate airfoils oscillating out of phase, as shown in Figure G2. The area perturbation can be represented by

$$A'(x) = c \left(Z - \frac{x}{c}\right) (\alpha' - \alpha)$$
(G12)

where,

$$Z = \frac{b(1 + a)}{c}$$

a = Elastic axis position referenced to midchord and nondimensionalized by b.

At the blade leading edge

$$A'_{i} = Zc \left(\alpha' - \alpha\right) \left(\frac{\sin \beta_{1}}{\sin \alpha_{ch}}\right)$$
(G13)

Next, assume

$$\alpha = \overline{\alpha} e^{ikt}$$

$$\alpha' = \overline{\alpha} e^{ikt} e^{it}$$
(G14)

Thus,

$$\alpha' - \alpha = \overline{\alpha} e^{i\mathbf{k}t} (e^{i\sigma} - 1)$$

Dividing this by eth and substituting the resultant into Equation G13 gives

.

$$\overline{A}'_{,} = c Z \overline{\alpha} (e^{is} - 1) \left(\frac{\sin \beta_{1}}{\sin \alpha_{ch}} \right)$$

Separating this expression into its real and imaginary components yields

$$\overline{A}'_{iR} = cZ\overline{\alpha}(\cos \sigma - 1) \left(\frac{\sin \beta_1}{\sin \alpha_{ch}}\right)$$
(G15)

$$\overline{A'}_{ii} = cZ\overline{\alpha} \sin \sigma \left(\frac{\sin \beta_i}{\sin \alpha_{ch}}\right)$$
(G16)

Similarly, the other area perturbations will be

$$\overline{A}'_{R} = \left(Z - \frac{x^{*}}{c} \right) c\overline{\alpha} (\cos \sigma - 1)$$
(G17)

$$\overline{A}^{*'_{1}} = \left(Z - \frac{x^{*}}{c} \right) \quad c\alpha \sin \sigma$$
(G18)

At the shock wave, the area perturbations will be

$$\overline{A}'_{SR} = \left(\begin{array}{cc} Z - \frac{X_s}{c} \end{array} \right) \quad c\overline{\alpha} \ (\cos \sigma - 1) \tag{G19}$$

$$\overline{A'}_{SI} = \left(\begin{array}{c} Z - \frac{X_s}{c} \end{array} \right) \quad c\overline{\alpha} \sin \sigma \tag{G20}$$
At the exit, the area perturbations will be

Γ

$$\overline{A'_{\text{ER}}} = (Z - 1) (\cos \sigma - 1) c\overline{\alpha} \left(\frac{\sin \beta_2}{\sin \alpha_{ch}} \right)$$

$$\overline{A'_{\text{EI}}} = (Z - 1) c\overline{\alpha} \sin \sigma \left(\frac{\sin \beta_2}{\sin \alpha_{ch}} \right)$$
(G21)

DEFINITION OF THE VOLUME PERTURBATIONS

Bending Mode Perturbations

Figure G3 defines and divides the volumes into three sections. Each section is dealt with separately in this Appendix.

Figure G3. Bending Mode and Torsional Mode Volume Perturbations

Section 1

For ease of determination, Section 1 is divided into three subsections, such that

$$V_{1} = V_{1s} + V_{1b} + V_{1c}$$
 (G22)

.

Subsection 1a

$$V_{le} = \frac{A_1^2}{2 \operatorname{cotan} (90 - \beta_1)}$$

Expanding this expression in small perturbations and neglecting higher order terms gives

$$V_{ia} = -\frac{(\vec{A}_{1}^{2} + 2\vec{A}_{i} A'_{i})}{2 \cot a (90 - \beta_{1})}$$
(G23)

which produces for the perturbation volume in terms of real and imaginery components

$$\overline{\mathbf{V}}'_{i_{BR}} = \frac{\overline{\mathbf{A}}_{i_{l}} \overline{\mathbf{A}}'_{i_{R}}}{\cot an} (90 - \beta_{i})$$

and

$$\overline{\mathbf{V}'}_{\text{tal}} = \frac{\overline{\mathbf{A}}_i \,\overline{\mathbf{A}'}_{i1}}{\cot an} \frac{(G24)}{(90 - \beta_1)}$$

l

where $\overline{A'}_{iR}$ and $\overline{A'}_{iI}$ are given in Equations A4 and A5, respectively, in Appendix A.

Subsection 1b

$$V_{\rm ib} = \frac{1}{2} \ (\delta \ \cos \ \alpha_{\rm ch}) \ (\delta \ \sin \ \alpha_{\rm ch})$$

where δ represents the gap between the blades. Expanding this expression in small perturbations gives

$$V_{ib} = \frac{1}{2} (\overline{\delta}^2 + 2 \,\overline{\delta} \delta') \sin \alpha_{cb} \cos \alpha_{cb}$$

or

$$V_{ib} = \overline{\delta} \left(\frac{h' - h}{\sin \alpha_{ch}} \right) \sin \alpha_{ch} \cos \alpha_{ch}$$

Breaking this expression down into its real and imaginary components gives

$$\nabla'_{\rm the} = \bar{\delta}\bar{h} \, (\cos \sigma - 1) \cos \alpha_{\rm ch} \tag{G25}$$

$$\overline{V'}_{ibl} = \overline{\delta h} \sin \sigma \cos \alpha_{ch} \tag{G26}$$

Subsection 1c

 $V_{tc} = A^* (x^* - \delta \cos \alpha_{ch})$ Expanding this expression in small perturbations and neglecting higher order terms produces

$$V'_{tc} = (\overline{A}^* - A'^*) x^* - (\overline{\delta} \overline{A}^* + \overline{\delta} A'^* + \delta' \overline{A}^*) \cos \alpha_{ch}$$

or

$$V'_{ic} = A'^* (x^* - \overline{\delta} \cos \alpha_{ch}) + \delta' \overline{A}^* \cos \alpha_{ch}$$
(G27)

or

$$\overline{\mathbf{V}'}_{1cR} = \overline{\mathbf{h}} (\mathbf{x}^* - \overline{\delta} \cos \alpha_{ch}) (\cos \sigma - 1) + \overline{\mathbf{A}^*} \overline{\mathbf{h}} (\cos \sigma - 1) \cot \alpha_{ch}$$

$$\overline{\mathbf{V}'}_{1cl} = \overline{\mathbf{h}} (\mathbf{x}^* - \overline{\delta} \sin \alpha_{ch}) \sin \sigma + \overline{\mathbf{A}^*} \overline{\mathbf{h}} \sin \sigma \cot \alpha_{ch}$$
(G28)

Thus, the real and imaginary components for Section 1 represent a summation of the three subsections, as shown in Equation G29.

$$\overline{\mathbf{V}'}_{1\mathrm{R}} = \overline{\mathbf{V}'}_{1\mathrm{aR}} + \overline{\mathbf{V}'}_{1\mathrm{bR}} + \overline{\mathbf{V}'}_{1\mathrm{cR}}$$

$$\overline{\mathbf{V}'}_{1\mathrm{l}} = \overline{\mathbf{V}'}_{1\mathrm{eI}} + \overline{\mathbf{V}'}_{1\mathrm{bI}} + \overline{\mathbf{V}'}_{1\mathrm{cI}}$$
(G29)

Section 2

Since this section represents supersonic flow, downstream disturbances cannot propagate upstream. Therefore, the volume perturbation can be represented as being bounded on the downstream side by a steady-state shock location, as shown in Equation G30.

$$V_{2} = \frac{1}{2} (A^{*} + A_{s}) (\bar{x}_{s} - x^{*})$$
(G30)

Expanding in small perturbations produces

$$V'_{2} = \frac{1}{2} (A'^{*} + A'_{*}) (\bar{x}_{s} - x^{*})$$
(G31)

Breaking the expression into its real and imaginary components gives

$$\overline{\mathbf{V}'}_{_{2R}} = \overline{\mathbf{h}} \ (\cos \sigma - 1) \ (\overline{\mathbf{x}}_{_{S}} - \mathbf{x}^{*})$$

$$\overline{\mathbf{V}'}_{_{2I}} = \overline{\mathbf{h}} \sin \sigma \ (\overline{\mathbf{x}}_{_{S}} - \mathbf{x}^{*})$$
(G32)

Section 3

Section 3 also has been divided into three subsections. Each subsection is dealt with separately with the volume perturbations of Section 3 equal to the summation of the subsections.

Subsection 3a

I

-

$$V_{3s} = \frac{1}{2} (A_{s} + A_{\frac{r}{c}-1}) (c - x_{s})$$

$$V'_{3s} = \frac{1}{2} [(A'_{s} + A'_{\frac{r}{c}-1}) (c - \overline{x}_{s}) - (\overline{A}_{s} + \overline{A}_{\frac{r}{c}-1}) x'_{s}]$$

$$\overline{V}'_{3sR} = \overline{h} (\cos \sigma - 1) (c - \overline{x}_{s}) - \frac{1}{2} \overline{x}'_{SR} (\overline{A}_{s} + \overline{A}_{\frac{r}{c}-1})$$
(G33)

$$\overline{\mathbf{V}}'_{\mathbf{3}\mathbf{s}\mathbf{l}} = \overline{\mathbf{h}} \sin \left(\mathbf{c} - \overline{\mathbf{x}}_{\mathbf{s}}\right) - \frac{1}{2} \mathbf{x}'_{\mathbf{s}\mathbf{l}} \left(\overline{\mathbf{A}}_{\mathbf{s}} + \overline{\mathbf{A}}_{\frac{\mathbf{x}}{\mathbf{c}} - 1}\right)$$
(G34)

Subsection 3b

т

$$V_{3b} = \frac{1}{2} (\delta \cos \alpha_{cb}) (\delta \sin \alpha_{cb})$$

$$V'_{3b} = \delta \delta' \cos \alpha_{cb} \sin \alpha_{cb}$$

$$\overline{V'}_{3bR} = \frac{1}{2} \overline{h} (\cos \sigma - 1) (\delta \sin 2\alpha_{cb})$$

$$\overline{V'}_{3bI} = \frac{1}{2} \overline{h} \sin \sigma (\delta \sin 2\alpha_{cb})$$
(G36)

Subsection 3c

$$V_{3c} = \frac{\overline{A}_{E}^{2}}{2 \tan \beta_{2}}$$

$$V'_{3c} = \frac{\overline{A}_{E} A'_{E}}{\tan \beta_{2}}$$

$$\overline{V}'_{3cR} = \frac{\overline{A}_{E} \overline{h} (\cos \sigma - 1) \cos \beta_{2}}{\sin \alpha_{cb}}$$
(G37)

$$V'_{3cl} = \frac{\bar{A}_{E} \bar{h} \sin \sigma \cos \beta_{2}}{\sin \alpha_{ch}}$$
(G38)

As stated, the real and imaginary components of Section 3 represent a summation of the three subsections, as shown below:

$$\overline{\mathbf{V}'}_{_{3\mathbf{R}}} = \overline{\mathbf{V}'}_{_{3\mathbf{a}\mathbf{R}}} + \overline{\mathbf{V}'}_{_{3\mathbf{b}\mathbf{R}}} + \overline{\mathbf{V}'}_{_{3\mathbf{c}\mathbf{R}}}$$

$$\overline{\mathbf{V}'}_{_{3\mathbf{l}}} = \overline{\mathbf{V}'}_{_{3\mathbf{a}\mathbf{l}}} + \overline{\mathbf{V}'}_{_{3\mathbf{b}\mathbf{l}}} + \overline{\mathbf{V}'}_{_{3\mathbf{c}\mathbf{l}}}$$
(G39)

Torsional Mode Perturbations

As before, the individual sections will be dealt with separately in the following paragraphs.

Section 1

Section 1 is again divided into three subsections for ease of determination.

Subsection 1a

1

$$V'_{ia} = \frac{\bar{A}_i A'_i}{\cot a (90 - \beta_i)}$$

$$\bar{\nabla}'_{IaR} = \frac{\bar{A}_i c Z \alpha (\cos \sigma - 1) \sin \beta_1}{\sin \alpha_{ch} \cot an (90 - \beta_1)}$$
(G40)

$$\overline{\mathbf{V}'}_{1al} = \frac{\overline{\mathbf{A}}_{i} \ \mathbf{c} \ \mathbf{Z} \ \overline{\alpha} \ \sin \sigma \ \sin \beta_{1}}{\sin \alpha \ \cot an} \ (90 - \beta_{1})$$
(G41)

Subsection 1b

$$V'_{1b} = \frac{1}{2} \overline{\delta} \delta' \sin (2 \alpha_{ch})$$

$$\overline{V}'_{1bR} = c Z \overline{\alpha} \overline{\delta} (\cos \sigma - 1) \cos \alpha_{ch}$$
(G42)

$$\overline{\mathbf{V}'}_{1\mathbf{b}\mathbf{l}} = \mathbf{c} \mathbf{Z} \overline{\alpha \delta} \sin \sigma \cos \alpha_{c\mathbf{h}} \tag{G43}$$

Section 1c

$$V'_{1c} = \int_{x_{ENT}}^{x^*} A'(x) dx \qquad A'(x) = c \left(Z - \frac{x}{c} \right) (\alpha' - \alpha)$$

$$= cZ \left(x^* - \overline{\delta} \cos \alpha_{ch} \right) (\alpha' - \alpha) - \frac{c \left(x^{*2} - (\overline{\delta} \cos \alpha_{ch})^2 \right) \left[\alpha' - \alpha \right]}{2c}$$

$$\overline{V}'_{1cR} = c\overline{\alpha} \left(\cos \sigma - 1 \right) \left[Z \left(x^* - \overline{\delta} \cos \alpha_{ch} \right) - \frac{x^{*2} - (\overline{\delta} \cos \alpha_{ch})^2}{2c} \right] \qquad (G44)$$

$$\overline{V}_{1cl} = c\alpha \sin \sigma \left[Z (x^* - \overline{\delta} \cos \alpha_{ch}) - \frac{x^{*2} - (\overline{\delta} \cos \alpha_{ch})^2}{2c} \right] \qquad (G45)$$

The summation of the real and imaginary components of the subsections is shown in Equation G46.

$$\bar{\nabla}_{1R}' = \bar{\nabla}_{1aR}' + \bar{\nabla}_{1bR}' + \bar{\nabla}_{1cR}'$$

$$\bar{\nabla}_{1I}' = \bar{\nabla}_{1aI}' + \bar{\nabla}_{1bI}' + \bar{\nabla}_{1cR}'$$
(G46)

Section 2

$$V_{2}' = \int_{x^{*}}^{x_{\alpha}} A'(x) dx$$

$$\tilde{V}_{2R}' = c \ \bar{\alpha} \ (\cos \sigma - 1) \left[Z \ (x_{s} - x^{*}) - \left(\frac{x_{s}^{2} - x^{*2}}{2c} \right) \right]$$
(G47)

$$\bar{\mathbf{V}}_{21}' = \mathbf{c} \ \bar{\alpha} \ \sin \sigma \left[\mathbf{Z} \ (\mathbf{x}_{\mathrm{S}} - \mathbf{x}^*) - \left(\frac{\mathbf{x}_{\mathrm{S}}^2 - \mathbf{x}^{*2}}{2\mathbf{c}} \right) \right]$$
(G48)
107

Section 3

As before, Section 3 will be divided into three subsections.

Subsection 3a

$$V_{3a}' = \int_{x_{s}}^{x_{E}} A'(\mathbf{x}) d\mathbf{x} - \bar{A}_{a} \mathbf{x}'_{s}$$

$$= c \left(\alpha' - \alpha\right) \left[Z \left(\mathbf{x}_{E} - \mathbf{x}_{s}\right) - \left(\frac{\mathbf{x}_{E}^{2} - \mathbf{x}_{s}^{2}}{2c}\right) \right] - \bar{A}_{s} \mathbf{x}'_{s}$$

$$\bar{V}_{3aR}' = c \alpha \left(\cos \sigma - 1\right) \left[Z \left(c - \bar{\mathbf{x}}_{s}\right) - \left(\frac{c^{2} - \bar{\mathbf{x}}_{s}^{2}}{2c}\right) \right] - \bar{A}_{s} \bar{\mathbf{x}}'_{sR} \qquad (G49)$$

$$\bar{\mathbf{V}}_{3\alpha\mathbf{I}} = \mathbf{c} \ \bar{\alpha} \ \sin \sigma \left[\mathbf{Z} \ (\mathbf{c} \ - \ \bar{\mathbf{x}}_{s}) \ - \left(\ \frac{\mathbf{c}^{2} - \ \bar{\mathbf{x}}_{s}^{2}}{2\mathbf{c}} \right) \right] \ - \ \bar{\mathbf{A}}_{s} \ \bar{\mathbf{x}}'_{s\mathbf{I}} \tag{G50}$$

Subsection 3b

 $V_{sb} = \frac{1}{2} (\bar{\delta}^2 + 2 \bar{\delta} \delta') \sin \alpha_{ch} \cos \alpha_{ch}$ $V_{sb}' = \bar{\delta} \delta' \sin \alpha_{ch} \cos \alpha_{ch}$

where,

$$\delta' = \frac{c(Z-1)(\tilde{\alpha} - \alpha)}{\sin \alpha_{ch}}$$

$$\bar{\nabla}'_{abk} = c \ \bar{\alpha} \ (Z-1) \ (\cos \sigma - 1) \ \cos \alpha_{ch} \cdot \delta$$
(G51)
$$\bar{\nabla}'_{abk} = c \ \bar{\alpha} \ (Z-1) \ cos \ \sigma - 1) \ cos \ \alpha_{ch} \cdot \delta$$
(G52)

$$\mathbf{V}_{\mathsf{sb1}} = \mathbf{c} \ \bar{\boldsymbol{\alpha}} \ (\mathbf{Z} - 1) \sin \sigma \cos \alpha_{\mathsf{ch}} \cdot \boldsymbol{\delta} \tag{G52}$$

Subsection 3c

$$V_{3c} = \frac{A_{E}^{2}}{2 \tan \beta_{2}}$$

$$V_{3c}^{\prime} = \frac{\bar{A}_{E} A_{E}^{\prime}}{\tan \beta_{2}}$$

$$\bar{V}_{3c}^{\prime} = \frac{\bar{A}_{E} c \bar{\alpha} (Z - 1) (\cos \sigma - 1) \cos \beta_{2}}{\sin \alpha_{ch}}$$

$$\bar{V}_{3c1}^{\prime} = \frac{\bar{A}_{E} c \bar{\alpha} (Z - 1) \sin \sigma \cos \beta_{2}}{\sin \alpha_{ch}}$$
(G53)
$$\bar{V}_{3c1}^{\prime} = \frac{\bar{A}_{E} c \bar{\alpha} (Z - 1) \sin \sigma \cos \beta_{2}}{\sin \alpha_{ch}}$$

The resulting summations for Section 3 are given in Equation G55.

$$\bar{V}_{3R}' = \bar{V}_{3aR}' + \bar{V}_{3bR}' + \bar{V}_{3cR}'$$

$$\bar{V}_{3I}' = \bar{V}_{3aI}' + \bar{V}_{3bI}' + \bar{V}_{3cI}'$$
(G55)

APPENDIX H CALCULATION OF THE STEADY-STATE SHOCK LOCATION AND TEST FOR CHOKED FLOW

The first step in the analysis requires checking for choked flow. Equation H1 is obtained from the isentropic flow relationships. $\left(\alpha \pm 1 \right)$

$$\left(\frac{A_{c}}{A^{*}}\right)^{2} = \frac{1}{M_{c}^{2}} \left[\frac{2}{\gamma+1} \left(1 + \frac{\gamma-1}{2}M_{c}^{2}\right)\right] \left(\frac{\gamma+1}{\gamma-1}\right)$$
(H1)

Rearranging this relationship and solving for A_c gives

$$\mathbf{A}_{c} = \left\{ \frac{1}{\mathbf{M}_{c}^{2}} \left[\frac{2}{\gamma+1} \left(1 + \frac{\gamma-1}{2} \mathbf{M}_{1}^{2} \right) \right]^{-\left(\frac{\gamma+1}{\gamma-1}\right)} \right\}_{A}^{\frac{1}{\gamma}} \mathbf{A}^{*}$$
(H2)

For a choked flow condition, A* will be equal to or greater than the minimum area between the blades (A_{mu}) . Thus, for choked flow Equation H2 becomes

$$\mathbf{A}_{c} \geq \left\{ \frac{1}{\mathbf{M}_{c}^{2}} \left[\frac{2}{\gamma+1} \left(1 + \frac{\gamma-1}{2} \mathbf{M}_{c}^{2} \right) \right]^{-\left(\frac{\gamma+1}{\gamma-1}\right)} \right\}_{\mathbf{A}^{*}}^{1/2} \mathbf{A}^{*}$$
(H3)

During steady-state conditions

$$A_{c} = \delta \sin \beta_{1} \tag{H4}$$

and

$$A_{\min} = (\delta \sin \alpha_{ch}) + y_L x_2^* - y_u x_1^*$$
(H5)

Substituting the relationships of Equations H4 and H5 into Equation H3 and solving for β_1 yields r 1 . . \

$$\beta_{1} = \sin^{-1} \left| \frac{1}{\delta} \left\{ \frac{1}{M_{c}^{2}} \left[\frac{2}{\gamma+1} \left(1 + \frac{\gamma-1}{2} M_{c}^{2} \right) \right]^{-\left(\frac{\gamma+1}{\gamma-1}\right)} \right\}^{1/2} \left\{ \delta \sin \alpha_{ch} + y_{L}(\mathbf{x}^{*}_{2}) - y_{u}(\mathbf{x}^{*}_{1}) \right\} \right]$$
(H6)

Thus, the flow will be choked if the input β_1 is equal to or greater than the β_1 calculated in Equation H6. If the flow is choked, the areas at various cross-sections will be calculated along with the exit area, as shown.

$$\mathbf{A}_{\mathsf{exit}} = \delta \sin \beta_2 \tag{H7}$$

The next step in the analysis requires that the supersonic Mach numbers downstream of the throat be calculated by solving the following equation for M at the specific chordwise locations:.

$$\frac{\mathbf{A}_{(\mathbf{x})}}{\mathbf{A}_{\min}} = \left\{ \frac{1}{\mathbf{M}^{2}(\mathbf{x})} \left[\frac{2}{\gamma+1} \left(1 + \frac{\gamma-1}{2} \mathbf{M}^{2}(\mathbf{x}) \right) \right]^{-\left(\frac{\gamma+1}{\gamma-1}\right)} \right\}^{\frac{1}{2}}$$
(H8)

,

Once the area relationships and Mach numbers as a function of x have been determined, the analysis proceeds with the calculation of the steady-state shock position. The derivation requires only the Mach numbers downstream of the throat since it can be shown that the shock position is stable only in a diverging channel. With the pressure ratio across the stage (PR) input, the capture Mach number fixes the pressure at the entrance, as shown in Equation H9.

$$\frac{P_{c}}{P_{t}} = \left(1 + \frac{\gamma - 1}{2} M_{c}^{2}\right)^{\left(\frac{-\gamma}{\gamma - 1}\right)}$$
(H9)

The pressure ratio from the throat to the exit can be defined as

$$PR_{corr} = \frac{P_{c}}{P_{t}} \left(\frac{2}{\gamma+1}\right)^{\frac{-\gamma}{\gamma+1}} PR$$
(H10)

The use of an iteration procedure finds the shock location by first assuming the shock is located at the throat and then incrementally moving downstream until the obtainable pressure ratio (PR_{obt}) at the specific shock location matches the PR_{corr} within some tolerance ϵ . PR_{obt} is calculated in the following manner:

1. Calculate the ratio of pressure entering the shock to the pressure at the throat as

$$\frac{P_{us}}{P^*} = \frac{\left(1 + \frac{\gamma - 1}{2} M_s^2\right)^{\left(\frac{-\gamma}{\gamma - 1}\right)}}{\left(\frac{\gamma + 1}{2}\right)^{\left(\frac{-\gamma}{\gamma - 1}\right)}}$$
(H11)

2. Calculate the pressure rise across the throat as

$$\frac{P_{ds}}{P_{us}} = 1 + \frac{2\gamma}{\gamma + 1} (M_s^2 - 1)$$
(H12)

3. Calculate the Mach number exiting the shock to determine the nature of the flow (subsonic or supersonic) as

$$M_{ds}^{2} = \frac{1 + \frac{\gamma - 1}{2} M_{us}^{2}}{\gamma M_{us}^{2} - \frac{\gamma - 1}{2}}$$
(H13)

where,

$$M_{us} = M_s$$

Knowing the nature of the flow, M_{exit} can be calculated from the area relationship in Equation H8. Knowing M_{exit} , the pressure ratio from the shock location to the exit can be calculated by

$$\frac{P_{\text{exit}}}{P_{\text{ds}}} \left(\frac{1 + \frac{\gamma - 1}{2} M_{\text{exit}}^2}{1 + \frac{\gamma - 1}{2} M_{\text{ds}}^2} \right)^{\left(\frac{-\gamma}{\gamma - 1}\right)}$$
(H14)

From this point, PR_{obt} can be defined from Equations H11, H12, and H13 as

$$PR_{obt} = \left(\frac{P_{us}}{P^*}\right) \left(\frac{P_{ds}}{P_{us}}\right) \left(\frac{P_{exit}}{P_{ds}}\right)$$
(H15)

Equation H14 is valid for all values for M, less than or equal to 1.1. If $M_s > 1.1$, there will be a loss in total pressure. Calculate total pressure in this situation in the following manner:

$$\frac{P_{tot_c}}{P_{tot_{exit}}} = \left[1 + \frac{2\gamma}{\gamma+1} \left(M_s^2 - 1\right)\right] \left(\frac{1}{\gamma-1}\right) \left[\frac{(\gamma-1) M_s^2 + 2}{(\gamma+1) M_s^2}\right] \left(\frac{\gamma}{\gamma+1}\right)$$
(H16)

Then, Equation H15 becomes

$$PR_{obt} = \left(\frac{P_{us}}{P^*}\right) \left(\frac{P_{ds}}{P_{us}}\right) \left(\frac{P_{exit}}{P_{ds}}\right) \left(\frac{P_{tot_{exit}}}{P_{tot_c}}\right)$$
(H17)

The shock will be located at the point where

$$|PR_{corr} - PR_{obt}| \le \epsilon \tag{H18}$$

If this relationship is not valid, move to the next discrete section downstream and repeat the calculations. If the shock position is not located in this manner before reaching the end of the channel, the shock location is downstream of the blades. \checkmark

APPENDIX I LIFT AND MOMENT COEFFICIENT CALCULATION

With pressure perturbations known at the inlet and outlet of each section, the mean section pressure perturbations can be defined as follows:

Section 1

$$\tilde{\mathbf{p}}'_{1R} = (\tilde{\mathbf{p}}'_{1R} + \tilde{\mathbf{p}}^{*}_{R}') \div 2 \qquad \qquad \tilde{\mathbf{p}}'_{11} = (\tilde{\mathbf{p}}'_{11} + \tilde{\mathbf{p}}^{*}_{1}') \div 2 \qquad (I-1)$$

Section 2

$$\vec{p}'_{2R} = (\vec{p}^*_{R}' + \vec{p}'_{USR}) \div 2 \qquad \vec{p}'_{2I} = (\vec{p}^*_{I}' + \vec{p}'_{USI}) \div 2 \qquad (I-2)$$

Section 3

$$\mathbf{\tilde{p}'}_{3R} = (\mathbf{\tilde{p}'}_{daR} + \mathbf{\tilde{p}'}_{ER}) \div 2 \qquad \mathbf{\tilde{p}'}_{3i} = (\mathbf{\tilde{p}'}_{daI} + \mathbf{\tilde{p}'}_{EI}) \div 2 \qquad (I-3)$$

Equations I-1 through I-3 give the unsteady pressure distribution on the reference airfoil suction surface. The pressure perturbation for the "channel" below the reference channel can be described in the following manner:

$$p_{L} = p_{u} \exp(-i\sigma)$$
 (I-4)

where, L denotes the lower airfoil surface and U denotes the upper airfoil surface,

or

$$\mathbf{p}_{LR} + i\mathbf{p}_{LI} = (\mathbf{p}_{UR} + i\mathbf{p}_{UI}) (\cos \sigma - i\sin \sigma) \tag{I-5}$$

which gives

$$p_{LR} = p_{UR} \cos \sigma + p_{UI} \sin \sigma$$

$$p_{LI} = p_{UI} \cos \sigma - p_{UR} \sin \sigma$$
(I-6)

Then, the pressure perturbations for each section can be calculated as follows:

Section 1

$$\vec{p}'_{IRL} = \vec{p}'_{IRU} \cos \sigma + \vec{p}'_{IIU} \sin \sigma$$

$$\vec{p}'_{IIL} = \vec{p}'_{IIU} \cos \sigma - \vec{p}'_{IRU} \sin \sigma$$

$$(I-7)$$

Section 2

$$\vec{\mathbf{p}}'_{2RL} = \vec{\mathbf{p}}'_{2RU} \cos \sigma + \vec{\mathbf{p}}'_{2IU} \sin \sigma \vec{\mathbf{p}}'_{2RL} = \vec{\mathbf{p}}'_{2IU} \cos \sigma - \vec{\mathbf{p}}'_{2RU} \sin \sigma$$
(I-8)

Section 3

$$\vec{p}'_{3RL} = \vec{p}'_{3RU} \cos \sigma + \vec{p}'_{3IU} \sin \sigma$$

$$\vec{p}'_{3IL} = \vec{p}'_{3IU} \cos \sigma - \vec{p}'_{3RU} \sin \sigma$$

$$(I-9)$$

With the unsteady pressures defined on the suction and pressure sides of the airfoil, the unsteady lift and moment coefficients can be defined as follows for each mode. The real part of the unsteady lift coefficient is

$$C_{LR} = C_{LUR} + C_{LLR} \tag{I-10}$$

where,

$$C_{LUR} = -(\bar{p}'_{1UR} \mathbf{x}^* + \bar{p}'_{2UR} (\mathbf{x}_s - \mathbf{x}^*) + \bar{p}'_{3UR} (\mathbf{c} - \mathbf{x}_s)) \div \mathbf{b}$$
(I-11)

$$C_{LLR} = + (\bar{p}'_{LLR} (\mathbf{x}^* - \delta \cos \alpha_{ch}) + \bar{p}'_{2LR} (\mathbf{x}_s - \mathbf{x}^*) + \bar{p}'_{3LR} (\mathbf{c} - \mathbf{x}_s + \delta \cos \alpha_{ch})) \div \mathbf{b}$$
(I-12)

The imaginary part of the unsteady lift coefficient is

- - ----

$$C_{LI} = C_{LUI} + C_{LLI} \tag{I-13}$$

where, C_{LUI} and C_{LLI} are defined in the same manner as in Equations I-11 and I-12 with the imaginary pressure perturbations used. The real part of the moment coefficient can be defined for each mode as

$$C_{MR} = C_{MUR} + C_{MLR}$$
(I-14)

where,

$$C_{MUR} = -\left[\tilde{p}'_{1UR} \mathbf{x}^{*} \left(Zc - \frac{\mathbf{x}^{*}}{2}\right) + \bar{p}'_{2UR} (\mathbf{x}_{s} + \mathbf{x}^{*}) \left(Zc - \frac{(\mathbf{x}^{*} + \mathbf{x}_{s})}{2}\right) + \bar{p}'_{3UR} (c - \mathbf{x}_{s}) \left(Zc - \frac{(c + \mathbf{x}_{s})}{2}\right)\right] \div b^{2}$$

$$C_{MLR} = +\left[\tilde{p}'_{1LR} (\mathbf{x}^{*} - \delta \cos \alpha_{ch}) \left(Zc \left(\frac{\mathbf{x}^{*} - \delta \cos \alpha_{ch}}{2}\right)\right) + \bar{p}'_{2LR} (\mathbf{x}_{s} - \mathbf{x}^{*}) \left(Zc - \frac{1}{2} (\mathbf{x}_{s} + \mathbf{x}^{*} - 2\delta \cos \alpha_{ch})\right) + \bar{p}'_{3LR} (c - \mathbf{x}_{s} + \delta \cos \alpha_{ch}) \left(Zc - \frac{1}{2} (c + \mathbf{x}_{s} - \delta \cos \alpha_{ch})\right)\right] \div b^{2}$$

$$(I-15)$$

The imaginary part of the moment coefficient for each mode is

$$C_{MI} = C_{MUI} + C_{MLI}$$
 (I-17)

where, $C_{\mbox{\scriptsize MUI}}$ and $C_{\mbox{\scriptsize MLI}}$ are defined as in Equations I-15 and I-16 with the imaginary pressure perturbations used.

	c	DAT	A SET 900	66MAIN AT	LEVEL 00	1 AS GF 07	/30/30		0000000		
		9046	NEVISED 1	VERSTEN OF	DESK 8303	I AS OF 04	121/00				
	 	1,50-	NOV TO BE	E USER AS 1	HE CHANNE	L FLOW CHO	KE FLUTTER	2	0000030		
	č		UNSTEADY	AERODYNAMI	C MODEL			•	0000040		
	č								00000050		
	C ANA	LYST	JEFFREY I	F. SIMPSON					0000060	·····	
	"C DA1	Έ	JACUARY,	1900				-	06000070		
	C EXT	•	4315						00000000		
	C MAI	L LOC	R-47, BL	DG 32, FEG					00000000		
	_ C								00000100	·	
	C * /	LPOAR -	HEAN TO	RSIONAL DEF	LECTION T	HRU CYCLE	(DEG.)		00000110		
	C * /	L7CH -	STAGGER	OF BLADE F	01 (DEG.)				00000120		
	C * E	ETAL -	· INLET A	IR ANGLE (DEG.)				00000130		
	*	SETA2	EXI1 AL	R ANGLE (E	125.)				_ C0000140		
	- U * (· UHU 0 1.	IN.J					00000150		
		ICLIA -	н өхн сай . Иоматис	HEEN BLAUSS	S (18.) STTC AV78	ICONTION	DEE TO M	IDCDAM	0000170		
			- TOLEDAN	75 103 550	STIC ANIS	D	Rar. IV II	LDOFAN	00000170		
			SCECTET	C PEAT PAIL	0	· · · · · · · · · · · · · · · · · ·			00000160		
	C * 1	131R -	12/14 FL	AFPING DEFI	ECTION OF	BLADE THE	NU THE CYCI	LE (IN.)	00000200		
	C * 1	1I -	INLET M	ACH NUMBER					00000210		
	C * 1	11 -	L.E. HA	CH NUHDER					00000220		
	°c ~~"≀	;;» — — .	RUNDER	OF AIRFOIL	CCCRDINAT	ES			60600230		
	C * 1	ISECT .	 HUNDER (OF SEGMENTS	5 FOR CHAN	NEL AREA,	MACH NUMB	ER, ETC.	00000240		
	C * 1	ITINE -	- NUCER	OF TINE IN	RELEATS				00600250		
	C * (GGA•	- FPEQUER	CY OF VIER	ATIC'I (RA	D. / SEC.)		00000260		
	C ¥	י רי	STATIC	FRESSURE RA	ATIO ACROS	S STAGE			00000270		
	C * 1	י זי	- TOTAL P	RESCURE EN	FERING STA	GE (FSI)			00000200		
	C * 1	RGAS -	- 613 CCN	STANT (FT-I	.CF / DEG.	R-LB(NCL))		00000290		
	C*	ICLMIT_	TOLEPAN	CE FOR MAG	I NUCBER I	TERATION			_00000300		
	C * 1	Г Г ·	- TOTAL T	EMPLPATU.1E	ENTERING	STAGE (DEC	3. R)		00000310		
	C * 3	51N	- ARRAT O	r AIPFOIL 3		GES LIN.J	· • · · ·		00000320		
	C *	ILIN ·	- A78AT U	F ALPHOIL	r LCNER CO	OCD THATES	(16.)		00000350		
	<u> </u>	(UIN	CAAT_U	F AS FUIL_	[_01-PER_C0	URDINA [ES	(IN)		00000340		
NU 0002	С.	OPMON	2011	VOLD		45	45745	F	00000340		
.511 0002	,	- Graton	VOLI,	VCL2,	10.35	M05.	HOT.	Ξ, TT.	00000370		
	;		Y9.	YSEAR.	RICS.	P255.	P355.	Г., Г.	00000370		
	;		· KT	- PT.	EFTAL.	BETAR			00000390		
	;		AL2CH.	PHIJEB	FHIIST.	HBAR.	DELTA		00000400		
	;		OLIEGA .	ALEBAR.	v				00000410		
	c .								000000420		
ISN 0003		REAL	LATBOA	LUSS,	LLSS,	MI,	M1,	ME,	0000430		
	?		110,	M53,	MCC,	MOI,	MC,	MOSS,	0000440		
	?		LSS,	MUSS,	HLSS				00000450		
	С								00000460		
ISN COC4		DINENSI	DN ASS(51), 1153(51)	, TITLE(20), XIN(5Ö), YLINCSO),	00060470		
	?		YUIN(5	0), DMACH(2	5), X1P(5)	L), XMACH(25),YMACH(25)	00000460		
ISH 0005	_	FIGF(XM) = 1. +	.5 * (GAM	- 1.) * Xi	1 * XM			00000500		
	C							<u> </u>	00000510		
	С	READ IN	PUT						00000520		
	C								00000530		

*VERSION 1.3.0 (01 M	AY 80) MAIN SYSTEM/370 FORTRAN H EXTENDED (ENHANCED) DAT	E 80.353/15.02.47 PAGE 2
ISH 0008 8	r FORMAT(20A4)	00000360
ISN 0009	READ(5,85) HP,NB,IWAVE,NSECT	00000570
ISN 00108	5 FCRHAT(415)	00000560
ISN 0011	READ(5,86) ALPCH, BETA1, BETA2, C, DELTA, E, EPS, GAM, MI, MI, OMEGA, PR, PT,	00000590
	TT,V,DIAN,TOLNIT,ALPBAR,HEAR	00000600
ISN 0012 8	5 FORMAT(OFIO.0)	03300510
ISH 0013	_ READ(5,86) (XIN(I),I=1,NP)	.00000520
ISH C014	READ(5,85) (YLIN(I),I=1,NP)	00000630
ISN 0015	READ(5,86) (YUIN(I),I=1,NP)	00000640
151 0016	IF (EPS .EQ. 0.) EPS = .05	00000650
ISH 0018	IF (GAMEQ. 0.) GAM= 1.4	00000660
ISH 0020	IF (M1 .EQ. 0.) M1 = MI	00000670
ISH C022	IF (RGAS .EQ. 0.) RGAS = 1716.26	00000630
ISN 0024	IF (TOLMIT .EQ. 0.) TOLMIT = .00001	0000690
ISN C026	TAU = DELTA	GU000700
ISH 0027	PHIICB = 6.2832 * DIAM/NB	0000710
ISN 0028	IF(INAVE.LT.0) PHIIBB = -1.0 * PHII6B	00000720
ISN 0030	PHILBT = PHIL2B	00200730
C		00000740
c	PRINT INPUT	0000750
c		00000760
ISN 0031	WRITE(6,5) TITLE,	0000770
	? ALFC4R, ALPCH, BETA1, BETA2, C, DELTA, DIAM, E, EPS, GAM, HBAR,	00000780
	? INAVE.MI. NI. NE. NP. NEECT. NTINE. CMEGA. PHILES. PHILET. PR.	V0000790
ISN 0032	5 FORMAT('ICH'NEEL FLCH CHCKE FLUTTER ANALYSIS DECK 9066'// 20A4//	00000800
	1' ALFBAR', F10.5,5X, 'MEAN TOPSIONAL DEFLECTION THRU CYCLE (DEG.) //	00000010
	2' ALPCH ',F10.3,5X, 'STAGGER ANGLE OF BLADE ROW (DEG.)'/	0000820
	3' PETA1 ',F10.3,5%, 'INLET AIR ANGLE (DEG.)'/	00000030
	4' BETA2 ',F10.3,5%,'EXIT AJR ANGLE (DEG.)'/	00000340
	5' C ',F10.5,5X,'CHC5D (IN.)'/	00000050
	6' DELTA ', F10.5,5X, 'GAP BETWEEN BLADES (IN.) /	00000260
	7' DIAM ',F10.3,5X, 'NODAL DIAMETER'/	00000870
	8' E ',F10.6,5X, 'ELASTIC AXIS LOCATION REF. TO MIDSPAN'/	00000550
	9' EPS ',F10.5,5%, 'TOLEPANCE FCR FRESSURE RATIO'/	00000890
	X' GAM ',F10.5,5X, 'SPECIFIC HEAT RATIO'/	00000900
	1' HBAR ',F10.6,5X, 'NEAN FLASPING DEFLECTION OF BLADE (IN.)'/	00000910
	2' IWAVE ',IIO ,5X, WAVE MOTION'/	00000920
	3' MI ',F10.5,5%,'INLET MACH NUMBER'/	00000930
	4' M1 ', F10.5, 5X, 'L. E. MICH NUMBER'/	00000943
	5' NB ',IIO ,5X, 'NUCHER OF BLADES'/	00000950
	6' NP ', IIO , 5X, 'NUMBER OF AIRFOIL COORDINATES'/	0000960
	7' NSECT ',110 ,5X, 'NUMBER OF SECHENTS FROM L.E. TO T.E. '/	00000970
	8' NTINE ',110 ,5X, 'NUMBER OF TIME INCREMENTS'/	0000930
	9' CHEGA ', FI0.2, 5X, 'FREQUENCY OF VICTATION (CYCLES. / SEC.)'/	00000990
	X' PHILED', F10.4, 5X, 'EENDING MODE INTEFELADE PHASE ANGLE (RAD.) //	00001000
	1' PHIIBT', F10.4,5%, 'TORSIONAL NODE INTERBLADE PHASE ANGLE (RAD.)'	/00001010
	2' FR ',F10.5,5X, 'STATIC PRESSURE RATIO ACROSS STAGE'/	00001020
	3' V ',F10.3,5X, 'RELATIVE INLET VELCCITY (FT/SEC)')	00001030
ERROR DETECTED - SCAN	V POINTER = 0	
ISN 6033	MRITE (6,6) PT,RGAS,TAU,TOLMIT,TT	00001040
ISN 0034	5 FCRMAT(' PT ',F10.4,5%, 'TOTAL PRESSURE ENTERING STAGE (PSI)'/	00301050
	1' RGAS ', F10.2, 5X, 'GAS CONSTANT (FT**2 /(SEC**2 DEG. R))'/	C0001050
	2' TAU ', FI0.5, 5%, 'GAP BETWEEN AIRFOILS WHILE OSCILLATING (IN.)'	/0001070
	3' TOLMIT', FI0.6, 5X, 'TOLERANCE FOR MACH NUMBER ITERATION'/	00031050
	4' TT ',F10.2,5X, 'TOTAL TEMPERATURE ENTERING STAGE (DFG. R)')	00001090
15N 0035	WRITE (6,7) (XIN(I),YLIN(I),YUIN(I),I=1.NP)	00001100
ISN 0036	7 FORMAT('QAIRFOIL COORDINATES (IN.) /// 10X. 'X Y LOWER Y UPPER'/	00001110
	1(1X,3F10.5))	00001120
С		00001130

*VERSICH 1.3.0	(01 M	MAIN SYSTEM/370 FORTRAN H EXTENDED (ENHANCED)	DATE 80.353/15.02.47	PAGE 3	
ICN 0037		COR = 57.2957795100	00001140		
ISH 0035		ALFBAR = ALFBAR / DOR	00001150		
ISN 0037		ALPCH = ALFCH / DCR	00001160		
ISH C040		PETAL = BETAL / DUR	60001170		
ISH 0041		BETA2 = BETA2 / DOB	00001100		
	r		00001100		
	ř	DEFTUE CHANTITLES HEED EDECHENTLY IN CALCULATIONS	00001290		
	~~~~~~	DEFINE QUARTITIES USED _REQUERTED_IN_CALCOLATIONS	00001200		·
TEN COAD	C	at = 7.1(1-0.0)(7-0.0000)	00001210		
101 0042		P1 = 3.141592653589600	00001220		
151 0045		CHEG - CLEGA	00001230		
1034 0344		Uneca = Uneca + 2. + PI	00001240		
15.1 0345		NDECTI = NDECT + 1	09001250		
15N 0046	_	N(1)(2) = N(1)(2) + 1	00001260		
	С	SEHICHORD	00001270		
ISH 0047		B = .5 * C	00001260		
ISN C048		B1ME = B * (1 E)	00001290		
ISN 0049		51FE = B * (I. + E)	00001300		
•	С	TUTAL DENSITY	00001310		
ISN 3050		RHOT = PT / (TT * RGAS * 12.)	00001320		
1SN 0051		ZP = DJPF / C	00001330		
	С	CASCADE STACGER ANGLE	00001340		
ISN 0052	-	1 AMERA A 15 % ET - ALPCH	00001310		
ISN 0053		$COSLAM \neq COS(LAMPRA)$	00001350		
TS9 0054		SPRIM = STULADORAD	00001370		
751 0055		TSI PI = TM + CTPIAM	00001370		
1511 0056		$\frac{1}{2} \frac{1}{2} \frac{1}$	00001550		
			00001290		
			00001400		
1CH 0053		MCCP1 = 2. / (GAM + 1.)	00001410		
ISN 0059		COSTCH = COS(ALPCH)	00001420		
ICH 0060		SIMCH = SIM(ALPCH)	00001430		
ISN 0061			00001440	······································	
ISH 0062		CCCB2 = CDS(BETA2)	00001450		
ISN 0063		SIND2 = SIN(BETA2)	00001460		
	С	EXIT STEADY STATE AREA	00001470		
ISN 0064		ASSE = TAU * SIND2	00001480		
	Ċ	X INCREMENT FOR CHANNEL AREA, MACH NUMBER, ETC.	00001490		
ISN 0065		DXIP = (C - TSLAM) / FLOAT(NSECT)	00001500		
	С		00001510		
	ř	CALCULATE STEADY STATE ADEAS THEIL CHAPMEN + LOCATE THEOAT	00001520		
			00001520		
TSN 0046	•	ACTAD - 1 60A	00001550		
104 0000			00001540		
1211 0007	~		00001550		
	<u> </u>	X CUSRDINATE OF REFERENCE SLADE	03001560		
150 0068	_	XIP(NS) = FLOAT(NS-1) * DXIP + TSLAM	00001570		
	Ç	X COCRDINATE OF BLADE ABOVE REFERENCE BLADE	00001580		
ISN 0069		X2P = X1P(NS) - TSLAN	00C01590		
	C	Y COORDINATE OF UPPER SURFACE OF REFERENCE BLADE	00001600		
ISH 0070		CALL LINE (NP, XIN, YUIN, XIP(NG), YU, DUM, IDUM)	00001610		
	С	Y COOPDINATE OF LOWER SURFACE OF UPPER BLADE	00001620		
ISN 0071		CALL LINE (NP, XIN, YLIN, X2P, YL, DUM, IDUM)	00001630		
	С	ARRAY OF STEADY STATE AREAS THRU CHANNEL ABOVE REFERENCE BLAD	E 00001640		
ISN 0072		ASS(NS) = TAU * COSLAM - YU + YL	00001650		
ISN 0073		WRITE(6,16) NS,ASS(NS)	00001660		
ISN 0074	16	FORMAT(2X,12,6X,E15,6)	00001670		
ISH 0075		TE (ASS(NS) .GT. ASTAR) GO TO 20	00001680		
		THROAT AREA	00001690		
TSN 0077	v	$\Delta STAD = \Delta SS(NG)$	00001700		
101 00//	r	DISTANCE FORM DEFENSE DIADE 1 5 TO TUDDAT	00001700		
151 0078	L.	VETAD - VID(NC)	00001710		
		AJIAR - AIR(N)	00001150		

*VERSICN	1.3.0 (01 )	MAY 80) MAIN SYSTEM/370 FORTRAN H EXTENDED (ENHANCED)	DATE 80.353/15.02.47	PAGE 4	
ISH OC	379	YUSTAR = YU	00001730		
ICN OC	080	YLSTAR = YL	00001740		
	C	SUBSCRIPT OF THROAT LOCATION	00001750		
ISN 00	130	IT = \\S	00001760		· · · · · · · · · · · · · · · · · · ·
ISN 00	392	20 CONTINUE	00001770		
	c		00001780		
	č	CALCULATE SUPERSONIC MACH NUMBERS FROM THROAT TO EXIT	00001790		
·····	č				
TSN 00	283	CALL ZERD (MSS()), MSS(NSECTI), 1.)	00001870		
TSH 00	15.1	DO 30  MS = 1.  MSECTI	00001820		
104 00	185	TE (YIE(NE)) (T. VETAD) CO TO ZO	00001820		
	·····		00001050		
T591 CC	-a7	ADAMIN - ACC(NC) / ACTAD	00001840		
15H 00	,u/ naa	TES - 1	00001850		
1010 CO		TOD - T	00001030		
1200_00	10.Y	CALL MACHINI (ACAMIN, MSSINS), GAM, TOLMIT, ISS, KILL)	00001970		
	Ľ,	IF (KILL .NE. 0) KRITE (6,25) ADAMIN, XIP(NS)	00001830		
ISN UU	190	25 FORMAT('0A/ASTAR = ',1PE13.5,' X = ',E13.5)	00001850		
15N 00	1910	SO CONTINUE	00001900		
	<u> </u>		00001910		
	С	TEST FOR CHOKED FLOW AND LOCATE STEADY STATE SHOCK	00001920		
	C		00001930		
ISN DO	92	BETAIC = ARSIN(SORT(((THOGP1 * FIOF(M1))**GPIGM1) / M1**2) / T.	AU ¥00001940		
		1 (TAU * COSLAM + YLSTAR - YUSTAR))	00001950		
ISH CO	393	IF (BETAL .GE. BETALC) GO TO 41	00001950		
ISH 00	195	KRITE (6,40)	00001970		
ISN 00	96 6	40 FCRMAT(' ***** FLCW IS NOT CHOKED')	C0001980		
ISN CO	97	ICHOKE = 0	00001990		
ISN 00	93	ASTAR = TAU*SINS1*MI*(2./(G/M+1.) * (1.+(GAM-1.)/2. * MI**2))	** 00000000		
		? (-(CAN+1,)/(2,*(GAM-1,)))	00002010		
ISN:00	99	XSTAR = DELTA + COSACH + 0.1	00002020		
ISH 01	00	IF(C-DELTA+COSACH .GT. 0.1) GOTO 330	00002030		
ISH 01	02	XSTAP = C - DELTASCOSACH	00002040	······	
	c	L'OTTELS. 3601 XSTLP	00002050		
TSN 03	03 34	D FORMATIZZY *** XSTAR RESET TO FIS AL	00002050		
רח ניפד	04 33	A YA = YSTAD $\pm$ A 15	00002000		
TSN 01	05		00002090	······································	
TCU 01	07	$Y_0 = Y_0 + 0.05$	00002080		
1011 01			00002070		
10 1121	109 T41	5.(1)(0)500) AU 5. 503041//// XXX VO DECET TO! ETE 4)	00052100		
	00 500	CO TO 41	00002110		
124 01		UNITE STATIC TO TOTAL DESCRIPT DATES	00002120		
TCN 01	יי נית נ	AT AC - TAIL & CTURN PREDOURE RAILU	00002150		
101 01		AC = 1AC + 51ACI	00002140		
15.4 01	12	AUGULA - AU / ADIAK	00002150		
15N 01	17	120 = 0	00002160		
1214 01	1.2	17 (n1.61.1.) 155 = 1	00002170		
15:1 01	15	CALL DIGHTE FADAMIN, NC, GAM, TOLMIT, ISS, KILL)	00002180		
ISN 01	.16	P1P1 = F10F(MC)**G01MG	00002190		<u></u>
ISN 01	17	BETAL = BETALC	00002200		
ISN 01	18	BETAPR = BETAL * CCR	00002210		
ISN 01	19	ERITE(6,117) BETAFRI	00002220		
ISH 01	.20 11	7 FORMAT(//' BETA1'/E15.6)	00002230		
IS! 01	21	ICHCKE = 1	00002240		
	C	EXIT AREA	00002250		
ISN 01	122	AE = DELTA * SINB2	00002260		
	С	RATIO OF EXIT AREA TO THROAT AREA	00002270		
ISN 01	123	AOAMIN = AE / ASTAR	00002280		
ISN 01	.24	ISS = 0	00002290		
ISN 01	125	IF (AE .LT, ASTAR) ISS = 1	00002300		
ISN 01	127	CALL MACHIT (AOAMIN, ME, GAM, TOLMIT, ISS, KILL)	00002310		

____

.

*VE	RSION 1.3.0	(01 MA	80) MAIN SYSTEM/370 FORTRAN H EXTENDED (ENHANCED)	DATE 80.353/15.02.47	PAGE	5	
		С	IF (KILL .NE. 0) WRITE (6,45) ADAMIN, XIP(NS)	00002320			
	ISN 0123	45	FORMAT('0AE/ASTAR = ',1PE13.5,' X = ',E13.5)	00002330			
	ISN 0129		DO 60 HS = IT, HSECT1	09002340			
		C	SHOCK MACH NUMBER	00002350			
	ISN 0130		MC = MSS(NS)	00002560			
	1514 0131		IF(M0.GT.0.999 .AND. M0.LT.1.001) M0=1.01	00002370			
		c	TOTAL THEFT TO EXIT PRESSURE PATTO	00002780			
	759 0133	- •	PTIPTE = 1	00002300			
	150 0136			00002370			
	10/1 0101		$(1 + GM + T)^{2}GP + (MOYY2 - 1))YY(1 / (GAM - 1))$	)) # 00002400			
			(2 + E30E(M2) + ((CAM + 3)) + M0442)) + ((CAM) - 1.)	00002410			
		r	STATIC PRESIDER DITIO ACROSS STACE	000000420			
	1511 0174	C	DEDI - CO + DITOTE	00002450			
	1214 0120	~	TUPOLT TO EVIT PERCENTE DITTO	06002440			
	TOU 0177	L.	DECORD - DIET & TUDERIVECTIVE & DR	00002450			
	1991-0121		FECOSA = PIPI * TAGOPI**COING * PR	0002460	·		
		C	SAUCK INCEL MACH NUMBER	00002470			
	151 0138	-	101 2 110	00002480			
		C	SHOCK EXIT MACH NUMBER	00002490			
	_ISN_0139		MOE = SCPT(FLOF(MOI) / (GAM * MOI**2 - (GAM + 1,) * ,5))	00002500			
		C	SHOCK INLET TO TURDAT STATIC PRESSURE RATIO	00002510			
	ISN 0140	50	POIPTH = F10F(M0)**CO1M3 / ((GAM + 1.) * .5)**G01MG	00002520			
		С	SHOCK EXIT TO INLET STATIC FRESSURE RATIO	00002530			
	ISN 0141		PCEPOI = 1. + GAM * TWOGPL * (NO**2 - 1.)	00002540			
		C	STACE EXIT TO SHOCK EXIT STATIC FRESSURE RATIO	00002550			
	ISN 0142		PEPCE = (F1CF(ME) / F1CF(MOE))**GO1MG / PTIPTE	00002560			
		С	OSTAINABLE FRESCURE RISE (STAGE EXIT TO THROAT STATIC PRESS.	RAT.)00002570			
	ISH 0143		FRCST = POIPTH + POEPOI + PEPOE	00002550			
	IEN 0144		IF (ASS(FRCCRR/FROST-1.).GT, EPS) GO TO 60	00002590			
		С	DISTANCE FROM REFERENCE BLADE L.E. TO STEADY STATE SHOCK	00002600			
	ISH 0145		X0 = X1P(NS)	00000610			
	ICH 0147		X5=X0	00002620			
	ICH 0143	·	TELXSTEP.NE.X01 GOTO 71	00002630			
	151 0150		17TT2(4.75)	60002660			
	10151	75	FORMATIN SHOCK IS LOCATED AT THE THEOATIN	00002650			
	154 0150		COID 500	00002650			
	101 0153			00002600	•		
	101 0104	· •		00002670			
	TCH CIFE		CALL LINE (HE VIA VIA) TOIN AU VIO VIOVO TOIN)	00002630			
	TCH 0100		CALE LINE (NP) XIN, TLIN, X2P, TLU, TLUXU, TUUN) S0 = 2D = Y0 / C	00002690			
	10,0000	<u> </u>		00002700			
	TCN 0157	C	AD & ACOLUCA AREA	00302710			
	100 0157		AU = AS(RS)	00002720			
	TOH 0122	~	PU = F10F(NU)**301NG * P1	00002730			
<u> </u>		<u>ر</u>	SVESSRIPT OF SHOCK LOCATION	00002740			
	10H 01/0		10 = 10	00002750			
	158 0160		GU 10 65	00002760			
	13N 0161	60	CCRITINUE	00002770			
	13:1 0162	61	15 = 0	0002760			
	I3H C163		KKITE (6,62)	00002790			
	ISM 0164	52	FORMAT(' ***** STEADY STATE SHOCK POSITION NOT FOUND')	0002300			
	ISN 0165		GD TO 500	00002810			
				0002820			
_		с	CALCULATE CAPTURE MACH NUMBER	00002830			
		С		00002840			
	ISN 0166	ú5	AC = TAU * SIN(BETAIC)	00002850			
_		С	RATIO OF CAPTURE AREA TO THROAT AREA	00002860			
	ISN 0167		ADAMIN = AC / ASTAR	00002870			
	ISN 0138		155 = 0	00002880			
	ICN 0169		IF (MI .GT. 1.) ISS = 1	00002890			
	ISN 0171		CALL MACHIT (ADAMIN, MC, GAM, TOLMIT, ISS, KILL)	00002900			
_			and the second secon				

*VERSION 1.3.0	(01 MA	Y 80) MAIN SYSTEM/370 FORTRAN H EXTENDED (ENHANCED)	DATE 80.353/15.02.47	PAGE 6	
	С	IF (KILL .NE. 0) WRITE (6,65) ADAMIN	00002910		
ISN 0172	66	FORMAT('OAC/ASTAR = ',1PE13.5)	00002920		
	С		00002930		
	c	CALCULATE STEADY STATE PRESSURES	00002940		
	С		00002950		
ISN 0173		PCPT = FlOF(IC)**GOING	00002930		
151:0174		PC = PCPT * PT	00002920		
TSU 0175		TE(TCHCKE ED 1) COTO 370	000000330		
TSU 0177		CALL THE (NO.XIN, YUIN, YSTAD, YU DUM TOUM)	00002,930		
151 0173		CALL LINE (NO.YIN YIN) STARTED AN YI DUM TOUR)	00003000		
TSH 0170		ADEA - TAU & COSTAM - VI + VI	00003000		
			00003010		
TCH 0100		CHIL MACHINE AND CAN TOLVET TOO WELL	00035020		
12:4 0101		CALL AKCHIT (AGAALA, KAS, GAA, TOLMIT, ISS, KILL)	00003030		
129 0195	~	PRIPI = FIOREXES) ** COING	00003040		
	^L	WITE(6,201) XSTAR, ISLAN, YU, YL, AREA, AUAMIN, XMS, PALPT	00003050		
15:: 0165	201	FCNMAILZ' XSTAR, TSLAM, YU, YL, AREA, ADAMIN, XMS, PM1PT'/8E15.6)	00003030		
151 0184		6010 380	00003070		
15:1 0185	370	FM1PT = ((GAM + 1.) * .5)**CO1MG	00003080		
ISH 0186	380	PHL = FILIPT * PT	00003090		
ISN 0137		PIPT = F1CF(NO)**GOING	00003100		
ISH 01CB		PENT = PIPT * PT	00003110		
ISN 0189		PCEPI = 1. + GAM * TWCGP1 * (MO**2 - 1.)	00003120		
	С		00003130		
ISN 0190		IF(ICHOKE.EQ.1) COTO 375	00003140		
ISN 0192		CALL LINE (N2,XIN,YUIN,X0,YU,DUM,IDUM)	00003150		
ISN 0193		CALL LINE (NP,XIN,YLIN,X0-TSLAM,YL,DUM,IDUM)	00003160		
IS:4 0194		AREA = TAU * COSLAM - YU + YU	00003170		
TEN 0195		ADAMTH = APEA / ASTAP	00003180		
151 0196		CALL MACHYY (ADAMIN, YMD, GAM, TOLMIT, ISS, KILL)	00003190		
TSN 0197		POF = FIDF(YHD) + FDIMG + PT	00003200		
1011 0177	c	LOTTE(4.202) VO. TSLAM, VI. ADEA, ADAMIN, VMO. DOE	00003200		
TS1 0108	202	ECONATION VI VI VI ADEA ADAMINI VMO DOELACTIE 4	00003210		
134 0170 TCN 0100	202	COTO ZOC	00003220		
134 0177 TCN 0200	775	BULU DOD	00003230		
15N 0200	3/5	PUE - FUEPI * PEN	00003240		
	385_	PEPT = FIOR(RE)**GOING	00003250		
150 0202			00003260		
ISN 0205		P155 = (FA1 + FC) * .5	00003270		
ISN 0204		P2SS = (FENT + FM1) * .5	00003230		
ISN 0205		_IF(ICHCKE.EQ.0) P2SS=(P0E+PM1) * 0.5	00003290		
ISN 0207		P3SS = (POE + PE) * .5	00003300		
	C	· ·	00003310		
	С	CALCULATE STEADY STATE MOMENT	00003320		
	C		00003330		
ISH 0208		MUSS = -PISS * XSTAR * (BIPE - XSTAR * .5) - P2SS * (XO - XSTA	R) *00003340		
		1 (BIPE - (XSTAR + (XO - XSTAR) * .5)) - P3SS * (C - XO)	* 00003350		
		2 (61PE - (X0 + (C - X0) * .5))	00003360		
ISN 0209		DCACH = DELTA * COSACH	00003570		
ISN 0210		MLSS = PISS * (XSTAR - DCACH) * (BIPE - (XSTAR - DCACH) *	00003380	· · · · · ·	
		1 .5) + P255 * (X0 - XSTAP) * (B)PF - (XSTAP -	00003390		
		2 BCACH + (YA - YSTAR) + E)) + BISS + (C - (YA -	00003600		
		3 PCACHI) * (RIPF = (C + (VA = DCACHI) *	00003410		
			00003410		
TEN 0011		T	00003420		
TOW ASTT	~	1055 -(1055 + 11253)/12.	00003430		
	5		00003440		
	<u> </u>	LALUULATE STEAUT STATE LIFT	00003450		
	C		00003460		
ISN 0212		LU55 = -P155 * XSTAR - P2SS * (X0 - XSTAR) - P3SS * (C - X0)	0000347 <b>0</b>		
ISN 0213		LLSS = PISS * (XSTAR - DCACH) + P2SS * (XO - XSTAR) + P3SS * (	C - 00003480		
		1 (X0 - DCACH))	00003490		

*VERSIC	1.3.0	(01 MAY	80)	М	AIN SYS	STEM/370 FOR	RTRAN H EX	KTENDED (3	NHANCED )	DATE	80.353/15.02.47	PAGE	7	
ISH	0214		LSS =(	LUSS	+ LLSS)/12					1	00003500			
ISN	0215	!	RTITE	(6,10	0) P155,FC	SS, P3SS, MOS	SILSS				00003510			
ISH	0216	100	FORMAT	r(//'	STEADY ST/	TE VALUES'	/11X, 'P1'	.10X.'P2'	,10X,'P3'	.6X.	00003520			
		i	'MOME!	X2. 'TS	LIFT	X.3F12.4.F1	2.5.F12.6	5)			00003530			
		C T		,				••			00003540			
TSH	6217	-	D!!M =	<b>b</b> post	1000000						0000000000			
TSN	0210		L'OTTEI	(6.200	A YSTAD.Y	. ASTAR.MO.	ידמדדם אוא	-			00003560			
- Tell	0010		PODMIT	.0,200		TOO 1101	2011;FIIF10							 ·······
1.214	0519	200	FURNAI		5, X517.R ,	122, X0.11	S, ASTAR	',152,'NU'	,103,		00005570			
		:		1840	PANKCOUK .	180, PRLOS	5.76F12.6	)			00003580			
150	0220		RATIE	6,600	0 1155						00003590			
ISN	0221	600_	FORMAT	<u>(()/</u>	MSS'/(6E15	5.6))			·····		00003600			 
		<b>C</b> .									00003610			
		C DEF	INE ST	FEADY	STATE VOLU	IMES					00003620			
		С									00003630			
ISN	0222		AC	= D	ELTA*STHAC	281					00003640			 
ISH	0223		AE	= D	ELTA*SINAC	:н					00003550			
ISN	C224		VIA	= 0	.0						00003660			
ICH	0225	:	XENT	= e	ELTANCOSA	:H					00003670			
15:1	0225		CALL	LINE	NP. XTN.	UTN. XENT.	YUENT. DI	M. TOUM			00003680			
	0027		VIR		SKOFLTAN	2203104481			CHAVIENT		00003690			 
101	0228		Y20	= 0	. DELIGN,	C. CODACINO			CHAIGEN		00003300			
1011	0-20		CALL P	- 0	-						00003700			
1011	0267		UNC L	THE I	000 ALH) 1	CTINE YOUCHIE	LENI, UU	1, 10001			00003710			
12:4	0230		VIC	!	UELIA*SIN/	CH-LYUSTAR	YUEN1_7/2	U+LYLSTAR	+YLENT 1/2		00003720			 
		?		(	XSTAR-XENT	1					00003730			
154	C231		VOLI	= v	14+13+13						00003740			
ISH	0232		VOLZ	≖ (	DELTAKOIN	CH-{YU0+YU5	STAR 1/2.0-	+(YL0+YLST	(AR)/2.0)*	ł	00003750			
		?		(	NO-XSTAR)						00003760			 
ICH	0233		YUE	= Y	UIH(H2)						00003770			
122	0234		V3A	= (	DELTA*SIN/	CH-(YUE+YU	))/2.0+(YI	L0+YL3/2.0	))*		00003780			
		?		(	C-X0)						00003790			
ISN	0235		XCD	= C	-DELTA*CO	SACH					00003800			
ISH	0236	•	CALLTI	LINE	NP. XIN. Y	LIN XCD	LW. DUM.	IDUM)		·	00003310			 
TSN	6237		V38	= 0	.5#DELTAN	2*SINACH*C	SACH5*	DELTANCOSA	CH#YLW		00003820			
TCH	0238		VIC	= 0	1.0						000033330			
151	0239		VOIR	= v	 /34+V39+V3(	•					00003840			
T 5!!	ngan		UNITER	16 605	Sec. 22	·					00003050			 <u></u>
151	0247	605	EDDH11		TT. 1VIA1 -			730 1911510			00003030			
10.1	0241		I VALIA I		TUT INCT	113) 772 171		137, IUENI	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	JUNK .	00003880			
****	0069	:			1031.1511	17 1/2, TL			-		00003870			
	0242		L C L L E L	0,610	J VIA,VIB	VILITUENT	USTAR, YL	STAR, YLENI	l		00003380			 
123	0243	610	FORMAT	ic)	8(611.4,1)	(1)					00003890			
		C	<b>.</b>								00003900			
ISN	0244		CALL L	JNST							00003910			
ISH	0245	500	STOP								00003920			 
	0245		EI:0								00003930			
			****	*FOR	TRAN	CROSS	S REI	FEREN	CE L	ISTI	N G****			
SYMBOL	INTERN	AL STATE	MENT I	NUMBER	25									
в	0047	0043 00	49											 
с	0002	0011 00	31 00	047 C	051 0065	0100 010	2 0105 0	0156 0208	a 8020 6	210 02	10 0212 0213	0234 0235		
ε	0002	0011 00	31 0	048 0	1049									
Ť	0013	0013 00	13 0/	014 0	0014 0014	0015 0019	5 0015	0035 0039	5 0035 0	035 00	35			
v	0002	0011 00	31	<b>-</b>									**	 ·
ÅC	6002	0110 01	11 0	166 0	1167 0222									
10	0002	0122 01	27 0	125 0	1222									
20	0002	0167 01		100 0										
	0002	0121									· · · · · · · · · · · · · · · · · · ·			 
	0120	0149												
12	0124	0102												
17	0081	0129	• • •	<b></b>										
riC.	0003	0115 01	.16 0]	171 (	J17 <b>3</b>									

*VERSION 1.3.0 (01 MAY 80) MAIN SYSTEM/370 FORTRAN H EXTENDED (ENHANCED) DATE 80.353/15.02.47 PAGE 8 *****FORTRAN CROSS REFERENCE LISTING***** SYMBOL_ INTERNAL STATEMENT NUMBERS ME 0003 0127 0142 0201 MI 0362 0003 0011 0020 0031 0098 0098 0113 0169 130 0003 0011 0020 0020 0031 0092 0092 _____ MT ັເສັ 0009 0027 0031 NP 0009 0013 0014 0015 0031 0035 0070 0071 0154 0155 0177 0178 0192 0193 0226 0229 0233 0236 NS 0037 0058 0058 0059 0073 0072 0073 0073 0075 0077 0078 0081 0084 0085 0087 0089 0129 0130 0146 0157 0159 PC 0174 0203 FE 0202 0207 PĨ 0042 0044 0052 ____0011 0031 0136 0137 F? CCCC CO11 0033 0050 0158 0174 0185 0188 0197 0202 PT PÛ 0153 TΤ 0002 0011 0033 0050 0002 0147 XS XÓ 0210 0212 0212 0213 0213 0218 0232 0234 YL 6071 0072 0030 0178 0179 0193 0194 0234 YU 0070 0072 0079 0177 0179 0192 0194 Zp – 0001 0156 ABS 0144 ASS 0004 0072 0073 0075 0077 0007 0157 COS 0053 0059 0062 "ÖC7 0037 0033 0037 0040 0041 0113 0070 0071 0177 0178 0192 0193 0217 0218 0226 0229 0236 DUM EPS 0011 0016 0016 0031 0144 0005 0011 0018 0018 0031 0056 0056 0057 0057 0058 0069 0098 0098 0098 0098 0115 0127 0134 0134 GAIT 0134 0139 0139 0140 0141 0171 0181 0185 0189 0196 ISS 0033 0009 0112 0113 0115 0124 0125 0127 0168 0169 0171 0181 0196 CC03 0214 0215 LSS 0003 0004 0083 0083 0089 0130 0220 MSS 0002 0003 0139 0142 "3Ci1 0002 0003 0133 0139 0139 MOI F:11 0186 0203 0204 0205 POE 0177 0200 0205 0207 SIN 0054 0050 0061 0063 0166 0026 0033 0055 0064 0072 0092 0092 0098 0110 0166 0179 0194 TAU V1A 0224 0231 0242 V1B 0227 0231 0242 V1C 0230 0231 0242 V3A 0234 0239 V38 0237 0239 V3C 0233 0239 "xco 0235 0236 0204 0013 0035 0070 0071 0154 0155 0177 0178 0192 0193 0226 0229 0236 XIN XIIS 0181 0182 C:1X 0196 0197 0004 0058 0069 0070 0078 0085 0146 X1P X2P 0059 0071 0153 0155 0228 0229 YER 0236 0237 0155 0232 0234 YLO YUE 0233 0234 YUO 0154 0232 0234 AREA 0179 0180 0194 0195 ASSE 0064

*VERS1	CH 1.3.	0 (01	MAY 80	)	MAIN	SYS	TEM/37	O FORT	RAN H	EXTEND	ED (EN	HANCED	) D	ATE 80	.353/1	5.02.4	7	PAGE	9			
				****			<b>C</b> 0				ENC	e		<b>T</b> T M	*****							
SYMBOL	. INTER	HAL ST	ATEMEN	T NUMB	SERS	AN	LR	0 5 5	ĸc	гск	ENU	2	L I 3	1 1 1	6×××××							
E1NE	0048																			 	,	
BIFE	0049	0051	0208	0208	0208	0210	0210	0210														
DIAM	0011	0027	0031																			
5105	0005	0053	- 0114	0174	0170	-01/0			0150	0177				0001						 		
85.2	00002	0072	0031	0124	0139	0140	0142	0144	0150	0112	0102	015/	0141	0201								
IDUM	0070	0071	0154	0155	0177	0178	0192	0193	0226	0229	0236											
KILL	0009	0115	0127	0171	0181	0196			_													
LIRE	0070	0071	0154	0155	0177	0178	0192	0193	0226	0229	0236											
LLSS	0003	0213	0214																			
LUSS MISS	0005	0212	0214																			
1235		0211	0211						\									<u> </u>		 		
11983	0003	0203	0211																			
CHES	6043																					
FCPT	0173	0174																		 		
FERF	0174	0200	0204																			
FEPT	0203	0202																				
PIPT	0116	0137	0187	0188																		
P155	0002	0203	0208	0210	0212	0213	0215													 		
P2\$5	0002	0204	0205	0208	0210	0212	0213	0215														
P365	0002	0207	0208	0210	0212	0213	0215															
- RUND - RUNT	-0005	-0022-		_0033_	0050															 		
STRT	0092	0139																				
UNST	0244																					
VCL1	0002	0231	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·																 		
Vala	0002	0232																				
XTRE	0002	0239	0230																			
YLIN	0004	0014	0035	0071	0155	0178	0193	0229	0236													
TYUIN	0004	0015	0035	0070	0154	0177	0192	0226	0233											 		
Z5:20	0033																					
ALFOR	0602	0011	0031	0039	0039	0052	0059	0060														
- AADIA - TASTIN	0092	- 0046	"no75"		-0087	- 0000	- 6111-	-0104-	- 61 66-	0147	0100									 		
EETAL	0002	0011	0031	C040	0040	0061	0093	0125	0718	0107	0100	0195	0210									
63772	0002	0011	0031	0041	0041	0062	C063															
C0352	0062							· ·-												 		
DCACH	0209	0210	0210	0210	0210	0210	0213	0213														
UELIA	0002	0011	0026	0031	0099	0100	0102	0122	0209	0222	0223	0225	0227	0227	0230	0232	0234	0235	0237			
CHACH	0004																					
FLONT	0055	0068																		 		
GOING	0056	0116	0134	0137	0140	0140	0142	0158	0173	0182	0185	0187	0197	0201								
IRAVE	0009	8200	0031																			
HITER		0031	0045	0065																 		
CHEGA	0002	0011	0031	0043	0044	0044																
PEPDE	0142	0143																				
_PHIPT	0132	0165	0186																			
-FROBT	0143	0144	0217																	 		·····
STEPI	0061	00200	0110																			
SINB1	0063	0064	0122																			
													-					_		 		

*VERSION 1.3.0 (01 MAY 80) MAIN SYSTEM/370 FORTRAN H EXTENDED (ENHANCED) DATE 80.353/15.02.47 PAGE 10 *****FORTRAN CROSS REFERENCE LISTING***** SYNBOL INTERNAL STATEMENT NUMBERS TITLE 6004 C007 0031 TSLAM 0055 0065 0063 0069 0153 0178 0193 X112CH 0004 0210 0212 0212 0213 0213 0218 0230 0232 YLENT 0229 0230 0242 YLOX0 0155 Y11:CH 0004 YUENT 0226 0227 0230 0242 YUDX0 0154 ALFBAR 0002 0011 0031 0038 0038 AOANIN 0087 0039 0111 0115 0123 0127 0167 0171 0180 0181 0195_0196 _____ BETATR 0118 0119 SETAIC 0072 0073 0117 0166 COSACH 0859 0099 0100 0102 0209 0225 0227 0227 0235 0237 0237 COSLAM C053 0072 0092 0179 0194 621611 0057 0392 ICHCKE 0097 0121 0175 0190 0205 LANCOA 0003 0052 0053 0054 MACHIT_0089_0115_0127_0171_0181_0196_____ "NSECT1 0045 0067 0033 0084 0129 NTIME1 0046 FHIIDB 0002 0027 0028 0028 0030 0031 PHILET 0002 0030 0031 FPCCER 0137 0144 0217 PFIPTE 0133 0134 0136 0142 0218 PCEFCI 0141 0143 POIPTH 0140 0143 SINACH 0050 0222 0223 0227 0230 0232 0234 0237 SINLAM 0054 0055 TOLMIT 0011 0024 0024 0033 0089 0115 0127 0171 0181 0196 TK03P1 0053 0092 0134 0137 0141 0189 YLSTAR 0080 0092 0230 0232 0242 YUSTAR 0079 0092 0230 0232 0242 *****FORTRAN CROSS REFERENCE LISTING***** LABEL DEFINED REFERENCES 5 0032 0031 6 003% 0033 7 0036 0035 10 C007 16 0074 0073 20 0082 0067 0075 25 0070 -30-0084 0085 40 0056 0095 41 0110 0093 45 0128 50 0140 60 0161 0129 0144 61 0162 0105 0109 62 0164 0163 65 0166 0160 66 0172 71 0153 0148 75 0151 0150

FIOF AASE RH4 COCOCO

C 8≠4

С

C

ALPBAR SF C R*4

E¥4

R*4

8-4

244

**R**≠4

~R×4

R*4

I#4

R*4

R∺4

R*4

R*4

000000

0000030

000040

000033

000054

0000004

001054

000010

0000560

000068

000074

0000284

ĸa

NR

000070

LINE SF XF

1:003 SF

PONT SF

P163 SF

PHOT S

V012 S

ASTAR SF

DCACH SF

IVAVE SF

PEPGE SF

SING1 SF

HOACH

YMACH

YUTH SEA

FUAR SF C

PESS SF C

SCRT FA XF

VOL3 S C

ZERO SE XE

BETAL SFA C

DELTA SF C

XSTAR SFA C

NGECT SFA

FULPT SF

SIN32 SF

YUENT SFA

ADAMIN SFA

LLS3 SF

MUCS SF

FEPI S

R¥4

R¥4

R¥4

R×4

R*4

R¥4

₽×4

R∺4

T×4

R*4

R¥4

R*4

R¥4

R*4

000064

000024

000034

000044

00003C

000000

000008

000000

000050

000063

000060

000078

0000283

000034

000078

000CA0

MAIN

SYSTEM/370 FORTRAN H EXTENDED (ENHANCED) DATE 80.353/15.02.47

PAGE 11

		*****FORT	RAN CRO	SS	REFER	ENCE L	ISTIN	I G*****					
_LABEL	DEFINED_	_ REFERENCES											
CO	0003	0007											
85	0010	0007											
<b>S</b> 6	0012	0011 0013 0014	0015										
_100	0215	0215											
117	0120	0119											
200	C219	0218											
201	0133												
202	0193												
330	0104	0100											
340	0103												
360	0103												
370	0185	0175											
375	0200	0190											·······
330	0165	0134											
305	3201	0197											
500	0245	0307 0152 0165											
	2221	0220											
605	0241	0240											
610	0293	0242											
				1	MAIN /	SIZE OF PRO	GRAM 0024	7C HEXADECI	MAL BYTE	ES .			
	NAME TAG	S TYPE ADD.	NAME TAG	TYPE	ADD.	NAME TA	G TYPE	ADD.	NAME	TAG	түре	ADD.	
	B SF	R#4 000558	C SF C	R*4	000044	E SF	CR*4	000014	I	F	1*4	000B5C	
	V SF C	C00074	AC SF C		000018	AE SF	C R¥4	000000	AC S	5 C		00001C	
	E0 S	P¥4 000260	IS S	I*4	000254	IT SF	1*4	000E68	MC S	SFA	R¥4	00CB5C	
	ME SFA	E*4 000070	MI SF C	R#4	000043	110 SFA	C R¥4	000020	M1 9	SFA	R¥4	000874	
	1'3 SF	I+4 000373	NP SFA	I+4	000070	NS SFA	Ĩ¥4	000380	PC S	SF	R*4	000384	
	PE SF		PI SF	R*4		FR SF	R*4	000320	PT	SF C	R*4	00004C	
	FJ S	R*4 000094	TT SF C	R¥4	000020	XSS	C R⊁4	000030	X0 S	SFA	R*4	000898	
	YL SFA	R#4 00025C	YU SEA	R×4	000240	7P 5F		000844	455 5	SF	R*4	0000050	
	CO3 E XI					-							
		- R#4 000000	DCR SF	H * 4	COCTAS	DUM SEA	2 * 4	DAGDOO	EPS 5	SE	R¥4	000580	
	EAN SEA		DCR SF	^{H*4}	_ 0005A8	DUH SFA LSS_SF	X*4 R*4	000BAC	EPS \$	5F	_R*4	_000380	• • • •
	GAM SFA	R#4 000000 R#4 000004 R#4 000004	ICS SFA	^{P*4} I*4 P*4	000238 000238 000028	LSS SF	R*4 R*4 ₽≠4	_000BAC 000BBC 0005C0	EPS S MSS S POF S	8F 87A 8F	_ R*4 R*4 P*4	_000280 00008C 0008C4	·
	GAM SFA NCE SFA ( SIN F XI	- <u>R#4</u> 000000 R≠40000204 CR#40000004 FR#40000000	ICS SFA ICS SFA MOI SFA C TAU SFA	₽*4 I¥4 R*4 ₽*4	_000238 000238 000028 00028	LSS SF LSS SF PM1 SF V1A SF	R*4 R*4 R≭4 R*4	000BAC 000EBC 000EC0 000BCC	EPS S MSS S POE S VIB S	5F 5FA 5F 5F	_ R*4 R*4 R*4 R*4 R*4	_000580 00005C 0008C4 0008D0	<u> </u>
	GAM SFA HOE SFA SIN F XI VIC SF	R#4 000004 R#4 000004 R#4 000000 R#4 000000 R#4 000000	DCR SF ISS SFA MOI SFA C TAU SFA V3A SF	8*4 I*4 R*4 R*4 R*4	_ 0002A8 000238 000028 000268 000208	DUM SFA LSS SF FM1 SF V1A SF V3B SF		_000BAC 000BBC 000BC0 000BCC 000BCC	EPS \$ MSS \$ POE \$ V1B \$ V3C \$	5F 5FA 5F 5F 5F	_ R*4  R*4 R*4 R*4 R*4 8*4	_000280 00008C 0008C4 0002D0 0008F0	<u> </u>
	GAM SFA HOE SFA SIN F XI VIC SF XOD SFA	- R#4 000004 - R#4 000004 - R#4 000000 - R#4 000000 - R#4 000004 - P#4 000004	DCR SF ISS SFA NOI SFA C TAU SFA V3A SF XTH SFA		_ 0002A8 000028 000028 000208 _000208	DUM SFA LSS SF FM1 SF V1A SF V39 SF XUS SFA		_ 000BAC 0002BC 0002C0 0002CC _ 0002DC 0002DC	EPS 5 MSS 5 POE 5 V1B 5 V3C 5 XM0 5	5F 5FA 5F 5F 5F 5F4	_ R*4 R*4 R*4 R*4 R*4 R*4 _ R*4	000380 00008C 0008C4 000200 0008E0 0008E0	
	GAM SFA NOE SFA SIN F XI VIC SF XCD SFA XIP SFA	- R+4 000004 - R+4 000004 - R+4 000000 - R+4 000000 - R+4 000004 - R+4 000004 - R+4 000004 - R+4 000005	DCR SF ISS SFA MOI SFA C TAY SFA V3A SF XIN SFA XIN SFA		_ 0002A8 _ 000238 _ 000028 _ 000208 _ 000208 _ 000208	DUM SFA LSS SF FM1 SF V1A SF V139 SF XIIS SFA YIN S54		_ 000BAC 0003BC 0002C0 0003BCC _ 0003BCC 0003E8 0005E4	EPS 5 MS5 5 P0E 5 V1B 5 V1B 5 V3C 5 XM0 5 Y10 6	55 57 A 57 57 57 57 57 A 57 A	_ R*4 R*4 R*4 R*4 R*4 R*4 R*4 R*4	000080 00008C 0008C4 0002D0 0008E0 0008E0 0008E8	
<del></del>	CAM SFA NGE SFA ( SIN F XI VIC SF XCD SFA XIP SFA YUT SF	R+4         000000           R+4         000004           R+4         000004           R+4         000004           R+4         000004           R+4         000004           R+4         000005           R+4         000005           R+4         000005           R+4         000005	DCR SF ICS SFA MOI SFA C TAU SFA V3A SF XIN SFA XIN SFA YUN SFA		000238 000023 000028 000208 000208 000208 0002050 0002050	LSS SF PM1 SF V1A SF V3B SF XIIS SFA YLH SFA ADFA SF		_000BAC 000EBC 000EC0 000ECC 000ECC 000EE8 000EF4 000EF4	EPS 5 MSS 5 POE 5 V1B 5 V3C 5 XH0 5 YL0 5	55 57 A 57 57 57 57 57 A 57 A	_ R*4 R*4 R*4 R*4 R*4 R*4 R*4 R*4 R*4	000280 00025C 00025C 000250 0008E0 0008E0 0005F8 0005F8 000568	

ICUN SFA

LUSS SF

PEPT SF

XENT SFA

DITACH

NTINE F

FFCBT SFA

YLENT SFA

YUCKO SFA

BETAPR SF

TITLE SF

P335 SF C

UNST SF XF

ALFCH SFA C

BETA2 SFA C

ONEG S

1*4

R*4

R*4

₽*4

R≠4

R*4

R≠4

. B + 4

R¥4

I*4

R*4

R*4

R*4

R¥4

R⊀4

0000C1C

000C23

000038

000048

000040

000000

000058

000058

000054

NR

000070

000070

0011AC

0000090

000090

000CA4

KILL SFA

MLSS SF

FCPT SF

PIPT SF

RGAS SF

VOL1 S

YLIN SFA

C0532 S

GOING SF

OMEGA SF

POEPI SF

TSLAM SFA

YLOXO SFA

BETALC SFA

FRXFR#

ARSIN F XF

1*4

R#4

**R***4

R*4

R¥4

R*4

R*4

R*4

R*4

P¥4

R¥4

R*4

R¥4

R×4

C R¥4

C R*4

XF

000C20

000020

000030

000C4C

000050

000000

00101C

000000

000050

000064

00006C

000C80

00003SC

000094

000000

000CA8

*VERSICH	1.3.0	(01 MAY 8	O) MAIN	l SY	STEM/370	FORTRAN H EXTE	NDED	(ENHANO	CED)	DATE 80.	353/15.	.02.47	P	AGE 1	2		
COSA	CH SF	R*4	DACCAC	COSLA	M SFA	R*4 000CE0	G	P1G∷1 \$	SFA	R*4 0	00084	130011#	F	XF I	*4	000000	
ICHO	EES	1*4	000023	LVI:CD	A SEA	R∺4 000050	. M.	ACHIT S	SF XF	0	00000	NSECTI	SFA	I	*4	000000	
NTI	(E1 S _	I*4	• 000CC4	_ PHIIS	9 SFC	R*4 000050	PI	HIIBT S	5F _ C	_ P.*4 0	00060_	PRCORR	SFA		*4	000008	 
PTIF	TE SF	R*4	000000	PCEPC	I SF	R*4 000CDC	P	OIPTH S	SF	R*4 0	00004	SINACH	SF	R	¥4	000008	
SIH	AM SF	R*4	F 000CDC	TOLHI	T SFA	R*4 000CE0	T	HC3P1 S	5FA	୧୫୫ 0	00CE4	YLSTAR	SFA	R	*4	833030	
YUST	TAR SFA	R*4	000CEC														
					***** CC;	WON INFORMATI	ON 1	****4									
		- COMMON		<u> </u>	6176 OF BI	0.000			DVTC								
	NAME_U	F_COLLION	BLUCK		SIZE UF BI	LUCK 000078	-HEXAL	DECIMAL	LETIES	••••••••••••••••••••••••••••••••••••••						· · · · · · · · · · · · · · · · · · ·	 
VA	R. Hem	F TY22					VAD	MAME	TYPE				TYDE		1000		
••	Veill	8*4	000000	v	012 844	000004	100	VOLX	Dad	0000038	<b></b>	AE AE	0×4	000	ADDR	•	
	ASTAR	R+4	000010	•	F RX4	000014		AC	R¥4	000018		AD	D¥4	000	010		
	- 1:0	8+4	000020		M05 - R44	000024		- dor -		000010	·	<u>, , , , , , , , , , , , , , , , ,</u>	_R++_	000	010		 
	XS	R¥4	600030	XS	TAD R44	000034		P105	D¥4	000020		P255	D¥G	000	020		
	PISS	874	000040		C P¥4	000044		MT	0+4	0000048		0T	C¥4	000	000		
	EETA1	18+4	000050	BE	TA2 284	000054	,	ALECH	D¥4	000058		PHITES	0+4	000	050		
	PHIIBT		000060	H!	BAR REA	000064	, r		_ D*4	000068		01560	_K	000	050		 
	ALPBAR	8*4	000070		V R¥4	000074			KA4	000000		Ontex	R 44	000	000		
					. , .												
SOURCE	STATEM	ENT LABEL	. <b>S</b>														
LADEL	ISH	ADSR	LASE	LISH	ADDR T	LABEL	ISH	ADDR	2	LABE	LISH	ADOR					 
10	7	001298 N	R 2	0 82	001044	30	91	00192	24	33	0 104	001A42					
41	110	001/64	5	0 140	000100	1R 71	153	00107	70	6	0 161	001EOC					
61	162	001E16	6	5 166	001833	370	185	001F3	32	38	0 186	001F54					
375	200	002036	33	5 201	002042	500	245	00244	ic								 
COMPILE	R GENER	RATED LAB	ELS														
LABEL	ISH.	1008	LABE	L ISN	ADDR	LASEL	ISN	ADDR	2	LABE	L ISN	ACOR					
100000	1	001234	10000	1 7	0012AC	200001	17	00142	2C	10000	3 17	001436					
100009	18	00143E	10001	0 19	001448	100011	20	00145	50	10001:	2 21	00145A					
105013	22	001452	10001	.4 23	00146C	100015	24	60147	74	100010	5 25	00147E					
100017	26	001485	10001	8 29	00168A	100019	30	00140	4	100020	0 35	0015FE					
100021	35	00161A	10002	268	001774	100023	77	_00183		100024	483_	001650_					 
100025	25	0018F2	10002	6 67	0012FE	100027	92	00192	28	100028	3 <u>95</u>	001946					
100029	102	001A3E	10005	0 107	001454	100031	114	001A0	18	10003	2 115	001A6C					•
100033	125	00151E	10003	4 127	001822	100035	130	00100	DE	20000	2 132	00105E					
100035	_132_	_0018F6	10003	7_133	_COIDFE _	100038	_135	_ 001C1	.2	100034	9_136	_001C76_					 
100040	146	001052	10004	1 150	CO1D76	100043	170	001E6	5	10004	+ 171	001E6A					
100045	177	COLEES	1000%	6 192	001F26	100047	206	0020A	2	100048	3 207	002082					
200003	217	0021F3	20000	4 235	00237E												
FUNDAI Treef	214161	ADDO	3	······					<u></u>								 
LAUEL	. 12:6 	200028	LASE	L 15N	AUDR	LASEL	12:1	ROUA		LABE		RUDA					
50	74	000028	8	01 C	000022	86	12	00003	×4	-	2ذ ح	00003B					
6	- 54 C1	000458	- /	/ 107	000537	16	74	00050	5	21	> 90	000506	ЧH				
40	·, <u>```</u> ···	0005F4	34	0 105	000511 N	IR360	- 108	_ 00052	<u>0 NR</u>	1	120	000646					 
CP	107	000030 N	х / П 20	2 100	000575	50 001 D	164	00059	/E	60	5 172	UUCSCE I	NR				
201	203	0000023 N	R 20	E 261	000716 N	IR 100	215	00074	14	200	219	000793					
000		000703	00	5 641	000726	610	243	00032	.0								
NECTER	TEVEL			FORTR		nen Epono Mes	SAGES'					• •• ••		• • • • •			 
, ion ben				1 911173		DED ERROR HED	0.0000										
TEE029T	8(F)	TSH	0032	THE N	24352 DE C	OUTIVIATION C		YCEEDS	: 10 r	04011E9 05			-				
2	5(1)	2011	0052		STATEMENT	CONTINUES			, T2. C	UNFILLR Pr	065331	.no ur 186	•				
1852261	8(F)	TSH	eiro	THE	TATEMENT H	LAS & VADIADIE	พรรษ	MODE T	นงม์ ตา	V CHARACTE	05						 
	5.67	2011	<b>VII</b> /		THE RIGHTM	OST CHADACTED	S ADE	TOURCA	TED	A CHARACIE							
*OPTICNS	IN EFF	ECT*NAME(	MAIN) OPTIMI	ZE(2)	LINECOUNT(	60) SIZE(M4X)	AUTOR	BLINON	(5)								
*OPTIONS	IN EFF	ECTHSOURC	E EBCDIC NOL	IST NOT	DECK OBJEC	T MAP NOFORMA	T GOST	MT XPF	F NOAT	C NOANSE 1	FRM TR		)				

*VERSICH 1.3.0 *STATISTICS* *STATISTICS*	(01 MAY 80) MAIN SCURCE STATEMENTS = 2 DIAGNOSTICS GENERATED;	SYSTEM/370 FORTRAN H EXTENDED 245, PROGRAM SIZE = 9340, HIGHEST SEVERITY CODE IS 8	(ENHANCED) DATE SUSPROGRAM NAME =	80.353/15.02.47 Main	PAGE 13
HANNER END OF C	COMPILATION ******		508K BYTES OF COR	E NOT USED	
					<u> </u>
			<u> </u>		
					· · · · · · · · · · · · · · · · · · ·
•					
					<u></u>
-					

i

PTICHS IN EFFEC	NS: EBCDIC,N CT: NAME(MAI SOURCE E	MAP.NOLIST.NCDECK,XTEF,OPT=2 (N) OFTIMIZE(2) LINECCUNT(60) SIZE(MAX) AUTODBL(NONE) BECOTC NOLIST NODECK 03.FCT MAP NOFORMAT GOSTMT XRFF NOALC :	NOANSE TERM TRM FLAG(T)	
		DATA SET SOLUTION OF AT LEVEL DOG AS DE SOUTE AND		
	č	DATA SET FORGERST AT LEVEL OUL AS OF 03/15/60	0000000	
	c c	DATA SET SUCCESSI AT LEVEL COL AS DE 06/20/00	00000000	
TSN 0002	ei 'Ror	NTINE 40ST	60000020	
1511 0000	c SODIC		0000000	
		266 CHARREL FLORE CHARE FULLTER UNSTEADY AFRODYNAMIC MODEL	CC50C040	
	r been n	So Champe Feed Choice Feetrer Onoreast Acrobitante hobee	00000000	
			00000370	
	C DATE		0000000	
	C EVT	4115	00000030	
	C NATLIC	4315 NC 0 47 PLDC 72 EEC	00000100	
		R-47, 6103 32, P53		
	c c		00000110	
	с с		0.000120	
	C	010800-10-10-10-10-10-10-10-10-10-10-10-10-1		
	с			•••••
	L			
	C B	SEMICHURD OF THE AIRFOIL	00000160	
		DERGERT AT THE INLET	00000170	
	C C0	DENSITY DC'SISTPEAN	00000130	
	C DTOT	TOTAL DENSITY	00000190	
	C CU	DENSITY UPSTREAM	00002200	
	CE	ELASTIC /XIS FOSITION REFERENCED TO MIDCHORD	00000210	
	CFLCH	S.S FLOW PATE ENTERING THE SHOCK	00000320	
	C FFE	S.S FLOURATE AT THE EXIT	00000230	
	C GREEA	SPECIFIC HEAT PAVID	00000240	
	C NEXIT	MACH NURGER AT THE EXET	00000250	
	C MDS	MACH NURBER CONNETRIAM	00000260	
	C MI	MACH NUNDER AT THE INLET	00000270	
	C NEROCK	MACH NUMBER AT THE SHOCK	00000080	
	C MT	MACH NUNDER AT THE THPOAT	00000290	
	C MUS	MICH MUNETR UPSTREIM	0000300	
	C CHEGA	FRETUENCY OF VIRPATIONS	00000310	
	C PE	PRESSURE AT THE EXIT	00000320	
	C FD	FRESERNE DOWNSTREAM	00000330	
	C PIN	FRESCURE AT THE INLET	00000340	
	C PIOT	TOTAL FREDSURE	06600350	
	C FU	PRESCUPE UPSTREAM	00000360	
	C PGAS	GAS CONDEANT	0000370	
	C SIGMAB	BENSING LODE INTERBLADE PHASE ANGLE	0000380	
	C SIGNAT	TODSICHAL HODE INTERBUIDE PHASE ANGLE	00200390	
	C \$0505	SPEED OF SCUTO DOUTCOTREAM	66000400	
	C SOJEX	SPEED OF SOUND AT THE EXIT	00000410	
	C SSI	SECED OF SOUND AT THE INLET	0000420	
·····	C	SPEED OF SOUND AT THE THEOAT	00000430	
	C 591		00002440	
	r TRS	TEMPERATURE DOWNSTREAM	00000450	
	C TE	TEMPERATURE AT THE EVIT	00000400	
	~~ ii	TEMPEDITIVE AT THE THEFT	00000070	· •
	C 11=	AVIAL VELOCITY AT THE EVIT	0000010	
		AALAE YEEGGINT AN INT THE EVIT		
		TANGTOTTAL VELULIT AT THE EXIT		
	<u> </u>	VELOUITI DESTREAT		
	L		60000510	
	c		00000520	
	C		00000530	
15N C003	DIMEN	ISIUN FE(35), FM(47), FC(57), FM2(18), M(28),	00000540	

*VERSION 1.3.0	(01 MAY 80) ? ?	UNST SYSTE CL(39), S(9) AAI(2), BAR(	EH/370 FCRTRAN H ), LM(24), L( (2), BAI(2), A	EXTENDED (28), / R(2), /	(ENHANCED AAR(2), AHI(2),	DAT	E 80.353/15.02.49 00000550 00000560	PAGE 2	
<u> </u>	<u></u>		27			<u></u>	00000570		
TON ADDA	L						00000550		
ISN 0004	REAL	K + 1	IC, LC,	LM,	nu,	ĽD,	00000590		
	?	MDS, N	1US, MMD,	NXU,	11YD,	MYU,	00000600		
	?	IMAP, I	IKDP,IKPP,	_ IMSP,	IRFF,	_ISSP,	00000610		
	?	IUDS, 1	IVPD, МСРТ,	MIRE,	Mere,	IMAPI,	00000620		
	?	INAPT, I	INDFU, INPPU,	INVPU,	ISOSU,	MEXIT,	00000630		
	?	MSHOCK, N	MI, MI,	м,	I,	IACE,	00000640		
	?	IVPU,]	ICDS,IFDS,	_MXSTAR,			00000650		
	?	MYU, 1	YD, INPPI,	IMOPI,	IMSSPI,	IITVPI,	00000660		
	?	IIAVPI, I	IMPPE, IMOPE,	IMSSPE,	IIAVPE,	IITVPE,	00000670		
	?	IRAVPE, 1	IRTVPE, IP1U,	IP2U,	IP3U,	IP1L,	00000680		
	?	IP2L, I	IP3L, ICLU,	ICLL,	ICL,	ICMU,	00000690		
	?	ICML, 1	тсм				00000700		
	C						00000710		
ISN 0095	COMMON	VOL1. V	VOL2, VOL3,	ACE.	ASTAR.	E.	00000720		
	?	AC,	NO MSHOCK	HDS.	HUS.	TTOT.	00000730		
	;	XS	STAR, FRESI,	EPES2.	PREST.	<u>с.</u>	00000740		
	;	MIRE. I	PTOT. BETAL	BETA2.		•,	00000750		
	;	ALCCH.	STEMAR STEMAT	U U	DELTA		00000750		
	;	CMEGA.	ALCRAD, ULTOF		DELIA		00000750		
			ULLOWES OTTRE			-			· · · · · · · · · · · · · · · · · · ·
TSN 0004	DEAD(E.1)	000) M205					00000760		
1511 0007	MEVIT -	MODE#COD(ALD	NU DETADA				00000790		
154 0007	1000 FORMAT/F	HERERGOUGIALPI	UN - DETAZJ				00000000		
154 0008	FORMATCE.	10.01					00000910		~ <u></u>
							00000020		
7011 0000	с 						00000830		
T2N 000A	8 =	C/2.0					00000240		
		·····					_00000850		
	C UNDIMENSION	ALIZE TAU					00000260		
180 0010	140 =	DELTA					00000370		
ISR 0011	≓ UAT	TAU/B					00000380		
·							_00000390		
	C DEFINE QUAN	TITIES USED FRE	EQUENTLY IN CALCU	JLATUIONS			00000900		
	C						00000910		
ISN 0012	PI =	3.1415926535	589800				00000920		
101 9913	MT=	1.0					_00000930		
ICH 0014	= IN	MIRE					00000940		
ICN 0015	GAMMA =	1.4					00000950		
ISH CO16	MXSTAR =	1.0					00000960		
ISN 0017	Z=	B*(1+E)/C					00000970		
154 0013	RCAS =	1716.26					00000980		
ISN 0019	DTOT =	PTOT/(RGAS*)	TTOT)*144.0				00000990		
ISN 0020	I =	COS(ALFOH-DE	ETAl)				00001000		
ISN C021	к =	C/2*OMEGA/UI	11RE/12.0				00001010		
I3: 0022	WRITE(6,	95) K					00001020		
IC4 0023	95 FORMATIZ	/' K'/E15.6)					00001030		
ISN 0024	FU =	PTOT*(1+(GAN	"MA-1)/2*MSHOCK*I	(2)**(-GA	MAZ (GAMMA	-1))	00001040		
ICN 0025	PT =	PTOT*(1+(GA)	111A-1)/2*MT**2)*1	-GANMA/	(GANMA-1))		00001050		
ICH 0026	PIN =	PTOT#(1+(GA	GIA-1)/2*111*92}*	-GAMMA/	(GAMMA-1))		00001060		
ISH 0027	TIN =	TTOT/(1+(GM	MA-1)/2*MI**21				00001070		
ISN 0028	pr =	PIN/(RGAS#T)	IN)+144				00001000		
ISN 0029	PD =	PU*(1+2*GAM	TAZ ( GANNA+1 )*( MU	5**2-111			00001090		
ISN 0030			114-1)/2#MDS##21				00001100		
ISN 0031	po =	PD/(PCAS*TO	S1#144				00001110		
ISN 0032	DU =	DTOT#(1+(GAN		(2)**(-1/	GAMMA-TI)		00001120		
	с						00001130		
							******		

____

*VERSION 1.3.0	(01 MAY 80)	UNST	SYSTEM/370 FORTRAN H EXTENDED (ENHANCED)	DATE 80.353/15.02.49	PAGE	3
	C			00001140		
ISN 0033	CO =	SIGN	MB/TAU	00001150		
ISN 0034	MD =	Marte	*COS(ALPCH-BETA2)	00001160		
ISH 0035	11U =	MIRE	*COS(ALFCH-BETAL)	00901170		
ISH 0036	MXD =	N2RE	PCOS(ALPCH-BETA2)*SIN(ALPCH)	00001180		
ISN 0037	MXU =	M188	COS(ALPCH-BETAL)*SIN(ALPCH)	00001190		
ISN 0033	MYD =	M275	COS(ALPCH-BETA2)*COS(ALPCH)	00001200		
ISH 0039	MYU =	M188	PCOS(ALPCH-BETA2)#COS(ALPCH)	00001230		
ISN 0C40	BXU =	1-MX	1/2×2	00001220		
I5N 0041	EXD =	1-11	D*#2	00001220		
TSN 0042	BYU =	1-117	1/2+2	00001250		
TSN 0043			Dist2	00001250		
TSN 0044	- DIU =	MV118	MIRK TWAITENALISCO	00001250		
TSN 0005	D10 =	MYD¥	NB&KANND&NYD&CO	00001260		
TSN 0045	D10 0	8449	STATERSTORNAL CORRORATION CORRORATION	03001270		
	D2D	 		03001280		
1011 0047	r 010 -	N##2	***************************************	00001290		
751 0049	01017 -	01/14	X0 - DVIIVD01	00001300		
15N 0040	COART -	0107		00001310		
			6010 80	00001320		
150 0051	KSIIE(6,	/1)		00001330		
15% 6052	71 FURNAL U	· · · · · · · ·	STREAM SOLUTION NUMBER 1')	00001340		
ISN 0053	B11 =	-533	T(-(D1U**2+BXU*D2U))/BXU	00001350		
ISN 0054	B1R =	D1U/	BXU	00001360		
IGN 0055	GCTO 90			00001370		
ISN 0055	80 WRITE(6,	75)		00001380		
ISN 0057	75 FORMAT('	','UPS	TREAM SOLUTION NUMBER 2')	00001390		
ISN 0058	QUANT =	MU¥K	+MYU*CO	00001400		
ISN 0059	IF(QUANT	GT.0)	GOTO 84	00001410		······
ISH 0051	81R =	(D1U	~SCRT(D1U**2+BXU*D2U))/BXU	00001420		
ISN 0062	B1I =	(MYU	*CO+MU*K )/HXU	00001430		
ISN 0063	GOT <b>O 90</b>			00001440		
ISN 0064	84 BIR =		+SSRT(D1U**2+BXU*D2U))/BXU	00001450		
ISN 0065	811 =	-(MY	U*CO+MU*K)/MXU	00001460		
	C			00001470		
ISN 0066	90 CUANT	מוס =	**2+BYD*D20	00001480		
159 0057	TELOUANT	10.Tô.	GOTO 91	00001400		
ISN 0069	WRITE(6.)	76)		00001470		
TSN 0070	76 EDGMATC	ייתחי	STREAM SOLUTION NUMBER 111	00001500		
101 0071	R2T =	SCOT		00001510		
Tet 0072		- 0107		00001520		······
151 0072	COTO 99	0107		00001530		
TSN 0074	01 010 77	MDav	THADROD	00001540		
TCH 0074	91 QUART =	/⊼⊈ii 76 v	+111D*C <b>U</b>	00001550		
Tel 0075				00001550		
13N 0070	TECONART	07 031	ADIREAR DULUTION NUMBER 2.1	00001570		
15N 0077	IFIQUANI.	.GI.0J	CU1U 94	00001580		
13.1 03/9	B2R =	1010	+SCR1(D1D**2+5X0*020))/BXD	00001590		
=	B2I =	-087	D*CO+MD#K1/MXD	00001600		
ISH 0001	GOT <b>O 99</b>			00001610		
ISN 0082	94 B2R =	(D1D	-SCRT(D1D**2+BXD*D2D))/BXD	00001620		
ISN 0003	B2I =	(HYD	*CO+MD*K )/MXD	00001630		
	<u>c</u>			00001640		
ISN 0084	99 K =	К *	12	00001650		
ISN 0025	PE =	PTOT	*(1+(GAMMA-1)/2*MEXIT**2)**(-GAMMA/(GAMMA-1))	00001660		
ISN 0085	TE =	TTOT	/(1+(GAMMA-1)/2*MEXIT**2)	00001670		
ISN 0087	DE =	PE/(	RGASHTE)*144	00001630		
ISN 0038	SOSEX =	SCRT	(GAUMANRGAS*TTOT/(1+(GAMMA-1)/2*MEXIT##2))	00001690		
ISN 0089	REV =	M2RE	* SOSEX	00001700		
ISN 6090	VE =	REV×	COS(ALPCH-BETA2)*COS(ALPCH)	00001710		
ISN 0091	UF =	DEVa	COS( AL PCH-RETA2 ) #STN( AL PCH )	00001720		

____

*VE	RSIGN 1.3.0	(01 MAY 80)	UNST SYSTEM/370 FORTRAN H EXTENDED (ENHANCED)	DATE 80.353/15.02.49 PAGE 4
	I3N 0092	U2IRE =	REV	00001730
	ISN 0073	U3 =	0.0	00001740
	ICH 0094	S3I =	SCRT(GAMMA*RGAS*TTOT/(1+(GAMMA-1)/2*MI**2))	00001750
	ICN 0033	SST =	SCRT(GAUMASRGAS*TTCT/(1+(GAUMA-1)/2*MXSTAR**2))	00001760
	ISH 0095	S03DS =	SORT(CANNIASREAS*TTOT/(1+(GAMNA-1)/2*MDS**2))	00001770
	151 0097	53U' =	SORT(GARMANEGAS*TIOT/(1+(GARMA-1)/2*MUS**2))	00001730
	134 0033	VII =	MUSUSSI	00001790
	TCH 0050		N05_565	00001800
	1511 0100	1/05 =	VD340200 / DT410 T064/STAD )	00001810
	10N 0100		(SCI (SCI )/2 0	00001920
	ICH OIGE	AV3505 -		00001320
	104 0102		DIDIR(1+(GARGA-1)/2*0X5)AR8*2/**(-1/(GARGA-1))	
	15N 0103	AVGDI =	101+011/2.0	0001640
	ISN 0104	AVG02 =	(37+00)/2.0	00001850
	158 0105	AVGD3 =	(DD+DE)/2.0	00001250
	ICH 0105	AVGV1 _=	(ULIRE)CCS(ALPCH-BETAL)+SST)/2.0	00001870
	ICN 0107	AVGV2 =	(SST+VU)/2.0	00001830
	ICN C108	AVGV3 =	(VD+REVSCOS(ALFCH-BETA2))/2.0	00001890
	ICH 0109	REV =	REV/ULIRE	00001900
	1SH 0110	VELAX =	UIIRE*COS(ALPCH-BETA1)*SIN(ALPCH)	C0001910
	1CH 0111	VEL =	ULIRE*COS(ALPCH-DETA1)*COS(ALPCH)	00001920
		C		0001930
	TSN 0112	L'OTTELG.	100)	00001540
	101 0113	100 E0204TC	1. TS7. 'T'U ET'. TS1. 'THROAT'. T66. 'HPSTREAM'. T81.	00001950
			DO'' /STEAM', TOA, 'EXIT')	0001550
	TSH 0116	UDITEIA	ICEL MT NT MUG MOG MENTT	00001930
	101 0114	19175(4		00001030
	10H 0115	NALIELO)	1157 F10,F1,F0,F5,FC	00001930
	131 0115	WRITELO,		00001470
	15:4 0117	1.(11E(6)	1207 551,551,550,50593,505EX	
	ISN 0118	105 FORMAT('	J', 'MACH NUMBER', T32, G14.7, T47, F14.7, T62, F14.7, T77, F	14.7, 00002010
		?	[92,F14.7]	00002020
	ISH 0119	110 FORMAT('	J', 'DEHSITY', T32, F14.7, T47, F14.7, T62, F14.7, T77, F14.7	,00002030
• •		?	[92,F14.7)	00002040
	ISN 0120	115 FORMAT('	0', 'FRESSURE', T32, F14.7, T50, F14.7, T62, F14.7, T77, F14.'	7, 00002050
		?	T92,F14.7)	00002060
	ISN 0121	120 FORMAT('	0', 'SPEED OF SOUND', T32, F14.7, T47, F14.7, T62, F14.7, T7	7, 00002070
		?	F14.7,T92,F14.7)	00002080
		Ċ		00002090
		C NONDIMENSIO	NALIZE ALL QUANTITIES	00002100
		С		00002110
			THE DENSITIES BY THE INLET DENSITY	00002120
		C 011101 ACC		00002130
	151 0122	011 =	DU /DT	00002160
	100 0122	20 -		
	134 0123			
	TCH 0104	UC =		
	104 0125	D1 =	01701	00002170
	ISN 0126	DTOT =	ITOT/DI	00002180
	IS:1 0127	AVGD1_=	AVGD1/DI	00002190
	131 0128	AVGD2 =	AVGD2/DI	00002200
	ISN 0129	AVGD3 =	AVGD3/DI	00002210
		С		00002220
		C PUT FRESSUR	E IN P-S-F UNITS AND DIVIDE BY (INLET DENSITY*INLET	00002230
_		C VELOCITY)		00002240
		C		00002250
	ISN 0130	PIN =	PIN#144.0/(DI#U1IRE**2)	00002260
	T5N 0133	PU =	PU+144-0/(DT+U)TPE++2)	00002270
	TON 0132		P0+144 0/(01#U1TRE##2)	00002280
-	TSU 0133	- pg	PENIGA 0/(DINUITOSH42)	00002290
	101 0130	PT -	074166 0/(DT2011705282)	00002300
	TOH 0134		FINITY, V/(D17U11KEXXE)	00002300
	15N 0135	P101 =	PIU1*144.0/(DI*U11RE**2)	00002310

*VERSICN 1.3.0 (	01 MAY 80)	UNST SYSTEM/370 FORTRAN H EXTENDED (ENHANCED) D	ATE 80.353/15.02.49 PAGE 5
ISN 0136	PRES1 =	FRES1#144.0/(DI*U1IRE**2)	00002320
ISN 0137	FRES2 =	FRES2#144.0/(DI*U11RE**2)	00002330
ISN 0138	PRES3 =	PRES3*144.0/(DI*U11RE**2)	00002340
	C		60002350
	C DIVIDE ALL V	ELECITIES AND THE SPEED OF SCUNDS BY THE INLET VELOCIT	TY C0002360
	C		00002370
ISN 0139	SSI =	SSI/ULIRE	00002380
IGN 0140	\$ST =	SST/ULIRE	00000390
ISN 0141	SOSEX =	SOSEX/ULIRE	00002400
ISN 0142	SCSDS =	SCEDS/ULTRE	00302410
151 0143	550 =	SSU/ULIRE	00002420
ISN 0144	AVGSOS =	AVGS0S/ULTRE	00002430
ISN 0145	VE =	VEZULIRE	00002440
ISH 0146	UE =	UE/ULINE	00002450
ISN 0147	vu =	VU/ULIFE	00002450
TSN 0148	va	V0/U115E	00002470
ISN 0149	AVGVI =	AVGV1/ULIRE	00002480
ISN 0150	AVGV2 =	AVGV2/ULTRE	00002450
154 0151	AVGV3 =	AVGV3/ULTEF	00002500
13N 6152	VELAX =	VELAX/ULTRE	00002310
151 0153	VF1 =	VEL/III TRE	00000520
151 0154	UPTRE =	12TRE/ULTRE	00000030
	C		00002540
	C UNDTHENSTONA	TTTE THE VOLUMES	00002550
	C		00002550
TSN 0155	V011 =	VOL1/(ASTAR*B)	00002570
151 0154	V012 =	VOL2/(ASTARAB)	00002570
TSN 0150		V013/(ASTAR+B)	00002500
2011 0257	r	1023/(0310/~07	00000500
	C UNDITIONSTONA	TZE THE AREAS	03002610
	C CHOINENDIQUA	LILL ML ARLAD	00002610
TSN 0158	ACE =		00002520
TSN 0159	AC =	AC/ASTAR	00000560
ISN 0160	A0 =	AD/ASTAR	00002650
	c		00002650
	c		00002670
	C INTERBLADE A	NALYSTS OF SECTION 1	00002680
	C		00002690
	c		03002700
TSN 0161	FINE	DUELORVI	00002710
ISN 0162	FRE =	DEFACENU2TRE	00002720
158 0163	FE(1) =	• SSTN#2/(GAMMA*(GAMMA-1))+((COS(A) PCH-BETA1))**2)/2	00002730
	c		00002740
ISN 0164	FE(2) =	(GAL: 14 **2-GANMA+2)/(2*(GAMMA*(GAMMA-1)))*SST**2	00002750
	C		00002760
ISN 0165	FE(3) =	-FF())*T*AC*VFLAX/(CO*TAU#SST**2)+FF())*AC	00002770
	,	*STN( A1 PCH ) / ( CONTAIL) - 28AC #T#VEL AV / ( 28GAMMA#CO#	00002780
•	;		00002790
	c ·		00002800
TSN 0166	FF(4) =	~FF(1)*T*4C*(K+CO*VEL)/(CO*T4!!*SST**2)+(FF(1)*4C	00002810
	2	#CGS(4) PCH))/TAU-2#AC#T#(K+CC#VEL)/(2#GANMA	80802820
	;	*CO*T4U)+(4C*T##2#COS(4) PCH1)/T4U	03002830
	с [•]		00002000
TSN 0147	- FF(5) =	[-V0]]#AV6505##2#VE]AX}/(2#GAMMA#(CAMMA_1)#CO#TAU	00002850
2411 4241	~ ~ ~ ~		00002860
	;	*VELAX=(VOL) %*VGV1**2*VELAX)/(4*CONTAN*ST***2)	
	;	+( AVGV1 *AVGN1 *VOL1 *STN( AL PCH1) / ( >*CONTACO 31**2 )	00002830
	c `	CONTRACTOR AND ANTICATION AND AND AND AND AND AND AND AND AND AN	00002890
TSN 0168	FF(6) =		00002070
7311 0100	1	( = FORMARYOUND ALCOUTELY) ( COOMINIANT ONININAL)	

*VERSION 1.3.0	0 (01 MA	Y 80)	UNST SYSTEM/370 FORTRAN H EXTENDED (ENHANCED) DAT	TE 80.353/15.02.49 PAGE 6
		?	*CO*TAU+SSI**2)-AVGSOS*AVGD1*VOL1/GANHA/(2*SSI	00002910
		?	*CO*TAU)*(K+CO*VEL)+(VOL1*AVGV1**2)/4*(K+CO*VEL)/	00002920
		?	(CG*TAU*SSI**2)+AVGV1*AVGD1*VOL1*CO3(ALFCH)/(2*TAU)	00002930
	С			00002940
ISN 0169		FE(7) =	COS(CD#TAU)-1	00002950
	С			00002950
ISN 0170		FE(8) ≍	FE(3)*(FE(7)*81R-811*SIN(CO*TAU))+FE(4)*FE(7)+FE(5)	00002970
		?	*K*(G1I%FE(7)+B1R+GIN(CONTAU))+FE(6)*K*SIN(CO*TAU)	00002930
	С			00002990
ISN 0171		FE(9) =	-FE(3)*(FE(7)*BII+DIP*STN(CO*TAU))-FE(4)*SIN(CO*TAU)+	0002000
		?	FE(5)*K*(B1R*FE(7)-B1T*STN(CO*TAU))+FE(6)*K*FE(7)	00003010
	c			00003020
ISN 0172	-	FE(10) =	FF(3)*(B)T*FF(7)+B)R*STN(CO*TAIL))+FF(4)*STN(CO*	00003030
10.0 01.0		2		00003060
		· ·	-DE(4):VXEE(7)	00002050
		·		00003350
TCH 0177	C C	FF(1)		
120 01/2		, E(TT) ~	FE(5)*(DIRFFE(7)=DII*SIN(CO*(AU))+FE(4)*FE(7)	00003070
		<u>.</u>	+FE(5)+(K+S11*rE(7)+K+S1R*S1N(UU*(AU))+FE(6)	00003080
		·		00003090
	C			00003100
ISN 0174		FE(12) ≠	VOL1 * AVGSOS**2* K/12 / (2*GAMMA*(GANMA-1)) +	00003110
		?	VOL1 * AVGV1**2 * K/12 / 4	00003120
	C	-		_ 00003130
ISH 0175		FE(13) =	K/12 * AVGD1 * AVGCOS**2 / (GAMMA * (GAMMA-1)) +	00003140
		?	K/12 * AVG01 * AVGV1**2 / 2	00003150
	С			00003160
ISH 0176		FE(14) =	AVGSOS * AVGD1 * AVGV1 / (GAMMA * (GAMMA - 1)) *	00003170
		?	K/12 + AVGV1 * AVGD1 * VOL1 * K/12 / 2	00003180
15% 0177		FE(15) =	FF(9)/FS(8)-FF(11)/FF(10)	00003190
	C.			00003200
TSN 0178	•	FF(16) =	FF(1)/FF(8)*T*(FF(9)/FF(8)/FF(15)+)	60003210
				00003220
154 0170	U U	FF(17) -		00003220
13.4 01//	r	12(1/) -		00003250
154 0160	U U	55(10) -	EE(2)/EE(3)#(CCT_CCT/EE()E)#EE(0)/EE(0))	00003.40
101 0100				
	~	:	(FELTO)#LELTD)]#LELA]/LELA]	00003260
	L			00003270
128 0181		FE(19) =	-FE(12)/FE(8)+FE(2)*SST/(FE(10)*FE(15))*FE(9)/FE(8)+	00003280
		<u> </u>	FE(12)/(FE(8)*FE(15))*FE(9)/FE(8)	00003290
	С			00003300
ISN 0182		FE(20) =	FE(2)/FE(8)*DT*SST-FE(2)*DT*SST/(FE(8)*FE(15))*	00003310
		?	FE(9)/FE(3)	00003320
	С			00003330
ICH 0183		FE(21) =	FE(2)*DT*SST/(FE(10)*FE(15))*FE(9)/FE(8)	00003340
	С			00003350
ISN 0184		FE(22) =	3*FE(2)/FE(8)*(DT-DT/FE(15)*FE(9)/FE(8))-FE(14)/	00003350
		?	(FE(10)*5E(15))*5E(9)/FE(8)	00003370
•••		<u> </u>		0/003330
TSN DIRE	•	FF(23) =	_FF(14)/FF(8)+(FF(2)*3*0T*FF(9)/(FF(16)*FF(7C)*FF(9))	140001350
1011 0103		· · · · · · · · · · · · · · · · · · ·	FS(14)*F5(9)/(FF(8)%%*FF(35)) FS(14)*F5(9)/(FF(8)%%*FF(35))	00003370
	r	•	1 6 ( 2777) 6 ( 777 ) ( 1 6 ( 0 ) 0 4 4 7 ( 6 ( 27 ) )	00003410
Ttol hier				00003410
1214 0186	~	rg(24) =	~rE(15)/rE(8)+FE(15)/(rE(8)*FE(15))*FE(9)/FE(8)	00003420
7011 0305	L,			00003430
15N C187		FE(25) =	-re(13)/(FE(10)*FE(15))*FE(9)/FE(8)	00003440
	<u> </u>			00003450
= ISN 0188		FE(26) =	~FE(1)*I/(FE(8)*FE(15))	00003460
	C			00003470
ISN 0189		FE(27) =	FE(1)/(FE(10)*FE(15))	00003480
	C			00003490

*VERSION 1.3.0 (01 MAY 80)	UNST SYSTEM/370 FORTPAN H EXTENDED (ENHANCED) DAT	TE 80.353/15.02.49 PAGE	7
	fE(2)*551/(fE(8)*fE(15))+fE(12)/(fE(10)*fE(15))	00003510	
ISN 0191 FE(29) =	-FE(2)*SST/(FE(10)*FE(15))-FE(12)/(FE(8)*FE(15))	00003520	
C		00003530	
ISH 0192 FE(30) =	FE(2)*SST*DT/(FE(8)*FE(15))	00003540	
C		00003550	
	FE(2)*SST*DT/(FE(10)*FE(15))	00003560	
TSN 0194 55(32) =	3487866(2)/(EE(8)866(36))+66(34)/(66(36)866(36))	00003570	
C C	5%D1*FE(2)/(FE(6)*FE(15))+FE(14)/(FE(10)*FE(15))	00003580	
ISN 0195 FE(33) =	-3*DT*FE(2)/(FE(10)*FE(15))-FE(14)/(FE(8)*FE(15))	00003500	
C		00003610	
ISN 0196 FE(34) =	~FE(13)/(FE(8)*FE(15))	00003620	
C		00003630	
	FE(13)/(FE(10)*FE(15))	00003640	
C C		00003650	
		00003660	
23N 0173 F(((1) =	= VECHANAGU/(UUNIAGU-VELAANAUNINNZZ/(UUNIAUNSSINNZ)+ 2#30%STN/(AIDCH)XTZ/(CONTAL))	00003570	
		00003650	
ISN 0199 FM(2) =	-(K+CO*VEL)*AC/(CO*TAU)-(K+CO*VEL)*AC*I**2/(CO*TAU*	00003700	
?	SSI*#2)+2*AC*COS(ALFCH)#I/TAU	00003710	
С		00003720	
ISN 0200 FM(3) =	AVGV1+VOL1+VELAX/(2*CO*TAU*SSI**2)-AVGD1+VOL1*	00003730	
?	SIN(ALPCH)/(2*CO*TAU)	00003740	
C		00003750	
ISN 0201 FM(4) =	(K+CC%VEL)/(CO*TAU*SSI**2)*AVGV1*VOL1/2-AVGD1*VOL1/2*	00003760	
?	COS(ALPCH)/TAU	00003770	
		00003730	
13A 0202 FM(5) =	-hTU-T*#5	00003790	
T55: 0203 EM(6) =	DTLSST##2%DT		
C		00003820	
ISH 0204 FM(7) =	FM(1)*(BIR*FE(7)-BII*SIN(CO*TAU))+FM(2)*FE(7)-FM(3)*	00003330	
?	(K*E1I*FE(7)-K*BIR*SIN(CO+TAU))-FM(4)*K*SIN(CO+TAU)	00003340	
C		00003050	
ISN 0205 FM(8) =	-FM(1)*(B11*FE(7)+81R*SIN(CO*TAU))-FM(2)*SIN(CO*TAU)+	00003060	
?	FM(3)*K*(-B1R*FE(7)+B11*SIN(CO*TAU))-FN(4)*K*FE(7)	00003370	
<u> </u>		_ 00003030	
15N 0205 FM(9) =	FR(1)*(B11*FE(7)+D1R*SIN(CO*TAU))+FN(2)*SIN(CO*TAU)+	00003590	
۰ م	FILS)=K*(DIR*FE(7)=BI1*SIN(CO*(AU))+FIL(4)*FE(7)*K	00003900	
ISN 0207 FM(10) =	FM(1)+(B)P*FF(7)-B)T*STN(CONTAIL)1+FM(2)*FF(7)-	00003920	
?	FN(3)*K*(D11*FE(7)+B1R*SIN(CO*TAU))-FM(4)*K*	00003930	······
?	SIN(CO*TAU)	00003940	
C		00003950	
ISN 0208 FM(11) =	FE(18)*FM(7)+FM(8)*FE(28)-2*SST**2	00003960	
C		00003970	
ISH 0209 FM(12) =	FM(7) * FE(19) + FM(8) * FE(29) + AVGV1 *	0003900	
?	VOL1 * K/12 /2	00003990	
	EM(7)*55()/) 5M(0)*55(2/)(5)(5)	00004000	
10H 0210 PM(13) =	-rin///*rc(10/-rn(8/*rt(20/+rn(5/	00004010	
TSN 0211 FM(14) =	-FN(7)*FF(17)-FM(A)*FF(27)	00004020	
C (M(14) =	-110177160277-110074161677	00004040	
ISN 0212 FM(15) =	-FM(7)*FE(20)-FM(8)*FE(30)+FM(6)	00094050	
C		00004060	
ISN 0213 FM(16) =	-FM(7)*FE(21)-FM(8)*FE(31)	00004070	
c		00004080	

*VERSICH 1.3.0 ()	01 MAY 80) FU(17) =	UNST SYSTEM/370 FORTRAN H EXTENDED (ENHANCED)	DATE 80.353/15.02.49 PAGE 8
15.1 0217	r		00004100
150 0215		-5M(7) + FF(23) - FM(8) + FF(33) -AVGD1 +	00104100
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	V01 * K/12 / 2	00004120
	с [.]		00004120
TSN 0216	FM(19) =	-FM(7) * FF(24) - FM(8) * FF(34) - AVGD1 *	00004150
1500 0010	2		000001110
	· · · · · · · · · · · · · · · · ·		
151 0217	EH(20) =	-EM(7)*EE(25)-EM(8)*EE(35)	00004100
	с.		00004180
TSN 0218	FM(21) =	EN(9) + EE(18) + EM(10) + EE(28) - AVGV1 +	00000000
	?	V011 * K/12 / 2	00004200
	C .		00004210
ISN 0219	- Ft(22) =	FM(9)*FE(19)+FM(10)*FE(29)-2*SST**2	00004220
	С		00004230
TSN 0220	Fm(23) =	-EM(9)*EE(16)-EM(10)*EE(26)+EM(5)	00006260
	C		00004250
ISN 0221	FM(24) =	-FF(17)*FM(9)-FM(10)*FF(27)+FM(6)	00004250
	c		00004270
TSN 0222		_FM(9)*FF(20)_FM(10)*FF(30)	00004220
2011 0200	r	110 // 2020 / 110 // 2030 /	00003290
151 0223	EM(26) =	-FM(0)*FF(2))-FM(10)*FF(3))	00004270
10.1 0225	c		00004310
TSV 0224	FH(27) =	-FM(9) * FF(22) - FM(10) * FF(32) + AVCD1 *	00004520
10.1 0000	2		00004330
	r ·		00004355
TE'1 0225	EM(28) =	_EM(Q)*EE(23)_EM(10)*EE(33)+2*SCT*DT	000001750
		(((()))) E(E)) ((((10))) (E(D))) (E(D))((D))	00004350
7531 0226	EM(29) =	_FM(9)*FF(24)_FM(10)*FF(34)	00004370
1911 0220	r r	(18/))))(((+))))((+)))((+)))	00004570
164 0227	EM(30) =	_EM(G) = EE(2E) = EM(10) = EE(3E) + AV(D) =	00004300
13.1 0227	,,,,,		03004600
	r ·		00004400
TSH 0228	5 FM(37) =	FM(11)_FN(12)*FM(21)/FM(22)	0000410
1311 0120	r (11(51) -	(10,11)-110,12,5010(L1)/110(Z2)	00004420
TCH 0229		EM(12)/EM(22)	03003400
TS4 0230	0010	1=32.37	00004450
141 0231	EM(1) =	(EM(1-19)_0U0T*EM(1-9))/EM(3))	00004450
764 0232	10 CONTINUE	(11113-177-2001-11113-77771111317	00000670
	r		000004478
154 0233	FM(39) =	(EM(19)_0U0T*EM(20))/EM(71)	00001400
1011 0255	r (10,00) -	(17/17)-(001/17/17/27/7/17/51)	00004490
151 0234	EN(20) -	(EN(20)-CUCTXEN(20))/EN(22)	00004510
		(Fill 20)=Q00(*Fill 30))?Fill 31)	00004510
TEN 0775	C 20	1=40.47	00004520
151 0235	51111 -	J-40147 (EV(1-27) EW(1 8)/(EV(11))/(EW(12))	00004530
134 0233		(FG(J=27)=FG(J=8)*FG(11)/FG(12)	00004540
	~COULTHOF		
			00004550
TCN 0270			000034070
124 0522	ruii) =	-AC*3144 ACPCR // 100*140 /*V2EAX*AC*1/100*140*551**2	() UUUU453U 04004ED0
TCH 0230		ACACOS (ALOCH) ZTALL (KICOVUSL) MACAT / COVTALING COV	00004370
13H UC37	ru(c) =	~RC#GOS(ACFCR)/(AOF(R)COMVEC)#AC#1/(CO#1AO#551##2	
TCN 0260	- FC(7) -		
134 6240	ru(3) =	VULL/C*VELRA/(LU*IAU*SS1**Z)	
- 15N 0241	ru(4) =	VULI*(K+CU*VEL)/(CU*1AU*551**2)/2	00004640
7511 0040	• =		00004550
ISN 0242	FC(5) =	FU(1)*B1R*FE(7)-FC(1)*B11*SIN(CO*TAU)+FC(2)*FE(7)	00004660
	:	+ru(3)*K*811*FE(7)+FC(3)*B1R*SIN(CO*TAU)*K+FC(4)*	00004670

*VERSION 1.3.0	(01 MAY 80)	UNST SYSTEM/370 FORTRAN H EXTENDED (ENHANCED)	DATE 80.353/15.02.49 PAGE 9
	?	K*SIN(CO*TAU)	00004680
	c		00004590
1511 0243	- FC(6) =	_FC(1)#317*FF(7)_F((1)#810#STN(CO#TAN)_FC(2)#	00004370
		STP(COUT/11)+EC(3)-//83/D) EE(7)-SC(3)-//80/T#	00004788
	•	SINCOVINDIALCCV/NAMES D)	00004710
	~ ·	518(CC+1/0)+FC(4)-//*F2(7)	00004720
7611 0044			03254739
15/1 0244	FC(7)_=_	FU(5)#FE(16)#FE(6)#FE(26)=1	02004740
138 0245	FC(8) =	FC(5)*F2(17)+F2(6)%f2(27)	00004750
ISN 0246	FC(9) =	FC(5)*FE(18)+FC(6)*FE(28)+SST	00004760
ICN 0247	FC(10) =	FC(5) * FE(19) + FC(6) * FE(29)- K/12 * VOL1 /2	00004770
ISN 0248	FC(11) =	FC(5)*FE(20)+FC(6)*FE(30)+DT*SST	_ 00004780
ISN 0249	FC(12) =	FC(5)*FE(21)+FC(6)*FE(31)	00004790
154 0250	FC(13) =	FC(5)*FE(22)+FE(6)*FE(32)+DT	00004800
ICN 0251	FC(14) =	FC(5)*FE(23)+FC(6)*FE(33)	00004310
TSH 0752	FC(15) =	$FC(5) \neq FE(24) + FC(6) \neq FE(34) - K/12 \neq AVGD1$	0000000
751 0253	FC(16) =	FC(5)%FF(25)+FC(6)%FF(35)	03004220
151 0255	FC(17) =	FC(9)+FM(79)+FC(10)+FM(70)+FC(7)	02004020
	FC(19) =	FC(0)XEM(77), FC(10)XEM(40) +FC(7)	
1314 0633	FU(10) -	FC(9)*FN(33)+FC(20)*FN(41)+FC(6)	00004850
			C00C4250
158 0255	60 30 J=	19,24	09004870
ISN 0257	FC(J) =	FC(9)*FM(J+15)+FC(10)*FM(J+23)+FC(J-8)	00004280
ISN 0258	30 CONTINUE		00004390
	<u> </u>		000004900
IS:1 0259	FC(21) =	-FC(21)	0001910
ISH 0260	FC(22) =	-FC(22)	00004920
	c		00004930
ISN 0261	FC(25) =	EC(1)*(B1I*FE(7)+B1E*STN(CO*TAU))+EC(2)*STN(CO*TAU)	- 00004940
		EC(3)*K*(B)R*FE(7)-B)T*STH(CO*TAU))=EC(4)*K*FE(7)	00004950
	c ·		0000/260
TEN 0242	EC(24) =	EC(1)*(D)D*EE(7)_017*ETN(CO*TNU))*EC(0)*EE(7)*EC(7)	
1510 0252	2		00004970
·····			
			00004450
150 0003	FL(27) =	FC(26)*FE(26)+FC(25)*FE(16)	00005000
108 0264	FC(23) =	FC(26)*FE(27)+FC(25)7FE(17)-1	00005010
ISH 0265	FC(29) =	FC(26) * FE(28) + FC(25) * FE(18) + VOL1 * K/12 / 2	00005020
IEN 0255	FC(30) =	FC(26)*FE(29)+FC(25)*FE(19)+SST	00005030
131 0267	FC(31) =	FC(26)*FE(30)+FC(25)*FE(20)	00005040
ISN 0268	FC(32) =	FC(26)*FE(31)+FC(25)*FE(21)+DT*SSI	00005050
ISN 0269	FC(33) =	FC(26)*FE(32)+FC(25)*FE(22)	0^005060
IC! 0270	FC(34) =	FC(26)*FE(33)+FC(25)*FE(23)+DT	00005070
ISH C271	FC(35) =	FC(26)*FE(34)+FC(25)*FE(24)	CC005C30
ISH 0272	EC(36) =	FC(26) * FE(35) + FC(25) * FE(25) + K/12 * AVGD1	00005090
139 6073	FC(37) =	EC(29)HEN(32)+EC(30)HEN(40)+EC(27)	00005100
158 2274	FC(33) =	FC(29)*FM(33)+FC(30)*FM(41)+FC(28)	00005110
	C		00005120
TCH DOTE	DO 40 I-	70 //	00005120
12:1 02/3	DU 40 J-	37344 EC(20)4EM(1.E);EC(20)4EM(1.7);EC(1.6)	00005150
		FC(24)*FI(J*5)*FC(30)*FI(J+5)*FC(J*6)	
104 0077	40 CONTINUE		00005150
	L		00002100
ISN 6278	FC(41) =	-FC(41)	00005170
ISN 0279	FC(42) =	FC(42)	00005180
	C		00005190
ISN 0280	QUOT =	FC(42)/FC(22)	00005200
ISN 0281	FC(45) =	FC(41)-QUOT*FC(21)	00005210
ISN 0282	FC(46) =	1/FC(45)*(FC(37)-QUOT*FC(17))	00005220
ISN 0283	FC(47) =	1/FC(45)*(FC(39)-QUOT*FC(18))	00005230
ISH 0284	FC(48)'=	1/FC(45)*(FC(39)-GUOT*FC(19))	00005240
ISH 0185	FC(49) =	1/FC(45)*(FC(40)-QUOT*FC(20))	00005250
ISN 0286	FC(50) =	1/FC(45)*(FC(43)-QUOT*FC(23))	00005260

~

3	VERSION 1.3.0 (01 MA)	183)	UNST SYSTEM/370 FORTRAN H EXTENDED (ENHANCED) DAT	E 60.353/1 5.02.49	PAGE 10
	131 0287	FC(51) =	1/FC(45)*(FC(44)-QUOT*FC(24))	00005270	
	ISN 0223	FC(56) =	1/FC(42)*(FC(43)-FC(41)*FC(50))	00005380	
	ISN 0289	FC(57) =	I/FC(42)*(FC(44)-FC(41)*FC(51))	00005290	
				00005300	
	ISH 0290	DO 50 J=	52.55	00005010	
	151 0291	FC(J) =	1/FC(42)*(FC(J-15)-FC(41)*FC(J-6))	00005300	
	TSN 0292 50	CONTINUE		00005330	
-			······································	00005340	
	č			00005350	
	č			00005350	
			1 YETE OF SECTION 2	00005-00	
-	C			00005320	
	L C			00005130	
	TEN 0207	FH0(1) -		00005390	
	121 0275	F(12(1) =		00005400	
-	12H_0294	FN2(2) =	AVGV2 * VUL2 * K/12 / 2	00005410	
	151 0295	$F_{12}(3) =$	FU1EU"YU4*2	00005420	
	ICH 0295	FMC3A =	PT+DT+SST#*2	00005430	
	ICH 0297	FM2(4) =	Ff12(2)+Ff12(1)**2/Ff12(2)	00005440	
_	ISN 0293	FM2(5) =	_FN2(3)/FN2(4)	00005450	
	ICH 0299	FM2(6) =	FM2(3)*FM2(1)/(FM2(2)*FM2(4))	00005460	
	ISN 0300	FM2(7) =	-2/FM2(4)	00005470	
	ISN 0301	FM2(8) =	-2*FNC(1)/(FM2(2)*FM2(4))	00005480	
	ISN 0302	FM2(9) =	F1(23A/F1(2(4)	00005490	
	154 0103	FR(2(10)=	FN2(1)/FN2(2)*FN23A/FM2(4)	00005503	
	ISN 0304	FN:2(11)=	1 / FH2(4) * (2 * FLC) + FM2(1) /	00005510	
		2	FM2(C) # AVGD2 # VOL2 # K/12 / 2)	00003520	
	15H 0305	FM2(12)=	1 / FM2(4) * (FM2(1) / FM2(2) * 2 *	00003550	
-		?	FLCH - AVG02 * VGL2 * K/12 / 2)	00005540	
	ISN 0305	FM2(13)=	1 / FN2(4) * (-2 * FN2(1) / FN2(2) * DT *	00005550	
		,	SST - $\Delta VOD2 + VOD2 + KZI2 Z CD$	00005550	
	TS1 0327	-	1 / FM2(4) + (-2 + DT + SST + K/12 + FM2(1) /	00005570	
~		,	2 / FM2(2) + M0(2 + M002)	00005500	
	פחבח ניפד	EM2(15)=	= AVGV2 = VC12 = K/32 = / (2 = KM2/A1)	00005520	
	101 0300	512(15)-	-AVOYE A YOLE A KYIE / (C & FNC(4)) EMD(1) / END(D) & AVOYO & VOYO & V/10 / (D & EMD(A))	000055990	
	12.0 0309	5/2(10)=	-14542 # 14522 # 84342 # 4022 # 8712 / (2 # FN2(4)) -14542 # 14522 # 84342 # 4022 # 8712 / (2 # FN2(4))	00005600	
-		FN2(10)=	AUGNO * AUGUO * K/10 * FN2(4)	00005510	
	138 0311	FR2(10)-	AVGUE * AVGVE * K/12 * FN2(1) / (FN2(2) * FN2(4))	00005520	
	Ļ			00005630	
				00005540	
	1511 0512		(FM2(3)-FM2(2)*FM2(5))/FM2(1)	00005650	
	151 0313	M(2) =	-FMC(2)#FM2(6)/FM2(1)	00003660	
	124 0314	M(3) =	(-2-FH2(7))FH2(2))/FH2(1)	00005670	
	15/1 0315	M(4) =	-FM2(2)+FM2(8)/FM2(1)	00003680	
	ISN 0316	M(5)=	(FHCIA-FH2(2)*FH2(9))/FH2(1)	00005590	
	ISH 0317	11(6) =	-F112(2)*F112(10)/F112(1)	00005700	
	ICH 0318	M(7) =	(2*FLCN-FM2(2)*FN2(11))/FM2(1)	00005710	
	ISH 0319	M(8) =	<pre>- (-K/12 * AVCD2 * VOL2 / 2 - FM2(2) * FM2(12)) / FM2(1)</pre>	00005720	
	ISH 0320	M(9) =	-(AVCD2 * VOL2 * K/12 / 2 + FM2(2) * FM2(13)) / FM2(1)	00005730	
	ISH 0321	[N(10)] = [(-2*DT#SST-FM2(2)#FM2(14))/FM2(1)	00005740	
	ISH 0312	M(11) =	-(AVGV2 * VOL2 * K/12 / 2 + FM2(2) * FM2(15)) / FM2(1)	00005750	
	ISN C323	11(12) =	(-FM2(2)*FM2(16))/FM2(1)	00005760	
	ISN 0324	M(13) =	(-K/12 * AVCD2 * AVGV2 - FM2(2) * FM2(17)) / FM2(1)	00005770	
	109 0305	11(14) =	-FN2(2)>FN2(18)/FN2(1)	00005780	······································
	ISN 0326	M(15) =	DU # AO + VU * AO * N(7) ~ K/12 * VOL2 / 2 * FM2(11)	00005790	
	ISH 0327	M(16) =	VU # AO * $M(8) = K/12 $ #VOL2 / 2 * $F(2(12))$	0005330	
	TSN 0323	M(17) =	-VU * 10 * M(1) - DU * VU + K/12 * VD12 / 2 * FM2(5)	00005310	
-	151 0329	H(18) =	-VI * AO * M(2) + K/12 * VOI2 / 2 * EM2(A)	00005320	······
	TSN 0330	H(19) =	-VII + LO + M(12) + SST + K/12 + VO(2 / 2 + EM2(14))	00105330	
	150 0331	M(20) =	-V(1 4 40 4 M(31) 1 K/15 4 VO(5 / 5 4 EM3(16)	00005560	
	TCH 0332	M(21) -	NU - AU - HUII) - HVIE - NUES / E - FLGUID) -NU - AU - HUII) - HVIE - NUES / E - FLGUID)	00003340	
	10.4 0005		$\neg v = v = v = v = v = v = v = v = v = v $	00003390	

*VERSICH 1.3.0	(01 MAY 80)	UNST SYSTEM/370 FORTRAN H EXTENDED (ENHANCED) DAY	TE 80.353/15.02.49 PAGE 11
ISH 0333	M(22) =	-VU * AO * M(4) + K/12 * VOL2 / 2 * FM2(8)	00005260
ISN 0324	M(23) =	-VU * AO * M(5) + DT * SST + K/12 * VOL2 / 2 * FM2(9)	00005370
ISN 0335	M(24)=	VU * AO * M(6) + K/12 * VOL2 / 2 * FM2(10)	_ 60005380
ISN 0336	M(25) =	-VU * AO * M(9) + K/12 * VOL2 / 2 * FM2(13)	00000000
ISN 0337	M(26) =	-VU * AO * M(10) + K/12 * VOL2 / 2 * FM2(14) + DT	00005790
ISN 0338	H(27) =	-VU * AD * M(13) + K/12 * VOL2 / 2 *	02003910
	?	FM2(17) + K/12 * AVG52	00005920
ISN 0339	M(28) =	-VU * AO * M(14) + K/12 * VOL2 * FM2(18) / 2	00005930
	C		00005940
	C		00005950
ISN 0340	CL(1)_=_	OU * AO + VU * AO * FM2(12) + K/12 * VOL2 / 2 * M(8)	00005960
ISN 0341	CL(2) =	VU * AO * FN2(11) + K/12 * VOL2 / 2 * M(7)	00005970
ISN 0342	CL(3) =	-VU * AO * FN2(5) - K/12 * VOL2 / 2 *M(1)	00003530
ISN 0343	C1(4) =	-DU * VU - VU * AO * FM2(6) - K/12 * VOL2 / 2 * M(2)	63605790
ISN 0344	CL(5)=	K/12 * VOL2 / 2 - VU * AO * FN2(16)	00006000
	?	K/12 * VOL2 / 2 * M(12)	00005010
ISN 0345	CL(6) =	SST - VU * AO * FH2(15) - K/12 * VOL2 / 2 * M(11)	60006020
ISH 0375	CL(7) =	-VU * AO * FM2(14) - K/12 * VOL2 / 2 * M(10)	C0006C30
ISH 0347	CL(8)_=	DT - VU * AO * FM2(13) - K/12 * VOL2 / 2 * M(9)	00006040
ISN 0343	CL(9) =	-VU * AO * FM2(7) - K/12 * VOL2 /2 * M(3)	00006050
ISN 0349	CL(10) =	-VU * AD * FM2(8) - K/12 * VOL2 / 2 * M(4)	00006060
ISH 0350	CL(11) =	-VU * AO * FM2(9) - K/12 * VOL2 / 2 * M(5)	00006070
ISN 0351	CL(12) =	-VU * AD * FM2(10) - K/12 * VOL2 / 2 * M(6) + AVGD2*S	ST00003030
ISN 0352	CL(13) =	-VU * AO * FN2(16) - K/12 * VOL2 / 2 * (2 * DT + M(14))00066090
ISN 0353	CL(14) =	-VU * AO * FM2(17) - K/12 *VOL2 / 2 * M(13)	00006100
ISN 0354	CL(15) =	CL(2)-CL(1)/N(16)*N(15)	00006110
	C		00006120
ISN 0355	DO 60 J=	16,19	00006130
ISH 0385	CL(J) =	1/CL(15)*(CL(J-13)-CL(1)/H(16)*H(J+1))	00006140
ISN 0357	60 CONTINUE		00006150
	С		C0006150
ICH 0358	CL(20) =	1/CL(15)*(CL(7)-CL(1)/R(16)*R(25))	00005170
ISH 0359	CL(21) =	1/CL(15)*(CL(8)-CL(1)/N(16)>N(25))	00006130
ISN 0360	CL(22) =	1/CL(15)*(CL(9)-CL(1)/N(16)*M(21))	00005190
ISN 0361	CL(23) =	1/CL(15)*(CL(10)-CL(1)/M(16)*M(22))	00005200
ISN 0362	CL(24) =	1/CL(15)*(CL(11)-CL(1)/M(16)*M(23))	00005210
ISH 0363	CL(25) =	1/CL(15)*(CL(12)-CL(1)/M(16)*M(24))	00005220
ISN 0364	CL(26) =	1/CL(15)*(CL(13)-CL(1)/N(16)*M(28))	00006230
ISN 0365	CL(27) =	1/CL(15)*(CL(14)-CL(1)/M(16)*M(27))	00005240
	C		00006250
ISN 0366	DO 70	J = 26,39	00006260
ISN 0357	CL(J) =	- (CL(J-25)-CL(2)*CL(J-12))/CL(1)	00005270
ISN 0368	70 CONTINUE		00006280
	с		00006290
	C		000C630 0
	C INTERBLADE A	NALYSIS OF SECTION 3	00006310
	С		0000320
	c		00006330
ISN 0359	S(1) =	2*GA1010*PU/(GA1010+1)	00006340
ISH 0370	S(2) =	(2+GARREAZ(GARREATE))*PUERRUS-PD-(GARRA-1)/(GARRA+1)*PU	00206350
ISN 0371	S(3) =	2*SANNA/(GANNA+1)*SSU*MUS+US-(GANMA-1)/(GANMA+1)*	00006350
	?	SSU	0000370
ISN 0372	S(4) =	2*GANMAZ(GANNA+1)*SSU*PU	00006300
ISN 0373	\$(5) =	(GANMA-1)*MUS**2+2	00006390
ISH 0374	5(6) =	(2-2*GAMMA)#DD+(2*GAMMA+2)*DU	00006400
ISN 0375	S(7) =	(GANMA+1)*(US%*2	00006410
ISN 0376	5(8) =	S(6)/(SSU*S(5))	00006420
ISN 0377	S(9) =	\$(7)/\$(5)	00005430
	C		00006440

*V	ERSICN 1.3.0	(01 1	1AY 80)	UNST SYSTEM/370 FORTRAN H EXTENDED (ENHANCED) DAT	E 80.353/15.02.49 PAGE 12
		С			00006450
	ISN 0378		LM(1) =	DE#UE#AGE/(CO#TAU)-FRE#SIN(ALPCH)/(CO*TAU)+(REV*	00006460
			?	_ COS(ALFCH-DETA2))**2*ACE+UE*DE/(CO*TAU*SCSEX**2)-DE*	. 00006470
		-	?	ACE/(CONTAU)*SIN(ALFCH)¥REV/COS(ALFCH-DETA2)	00006400
		С			00006490
	ISN 0379		LM(2) =	DE*(K+CO*VE)*ACE/(CO*TAU)~COS(ALPCH)*PRE/TAU+DE*(REV*	00003500
-			_?	_ COS(ALFCH-BETA2))**2*4CE*(K+CO4VE)/(CO*TAU*SOSEX**2)	_ 00006510
			?	DE#ACE#COS(ALFCH)#REV#COS(ALFCH+BETA2)	00006520
		С			C0006530
	ISN 0380		LM(3) =	AVGV3*V0L3/2*UE*DE/(CO*TAU*SOSEX**2)~AVGD3*V0L3*	00006540
			?	SIN(ALFCH)/(2*CO"TAU)	00006550
		С			00006560
	ISH 0381		LM(4) =	AVGV3#VOL3/(2*COFTAURSOSEX#R2)*(K+CORVE)*DE+	09095570
			?	AVGD3%YOL3%CCS(ALPCH)/(2#TAU)	C0006500
		С			00006590
	151 0302		R =	-(X+VE*CO)/UE	00005600
	ISN 0383		LM(5) ≠	FREMSIN(ALPCH)/(TAU%(R*M2+CO%M2))-RMCOS(ALPCH)*FRE/(CO	0*00006610
			?	TAU/(RX32+COV32))+REVXCOS(ALFC3-BETA2)*DE*ACE*	6960(500
			?	(SIN(ALFCH)-R/CO#COS(ALPCH))/(TAU#(R##2+CO##2))	000066530
		с			
	ISN 0334	-	LM(6) =	AV903*V013/(2*TAUX(R**2+C0**2))*(STN(ALPCH)-P/C0*	0000650
			2	COS(ALSCH))	0000650
		с	•		00005670
	158 0385			COS(CONTAU)-1	00000000
		C	2		0000000
	TSN 0325	-	1M(A) =	18(7)%(1)(7)%3?7=6?7*578(CC*740));;(M(2)*)M(7)=X*	000000700
			2	LN(3)+(62T+LN(7)+62C+STN(CO+TALL)+K+LN(6)+STN(CO+TALL)	00006710
~~		r	'		00000710
	TS1 0767	•	EM(9) =	-IM(1)*/IM(7)*C2T+D2D*STN(COSTAN))_IM(2)*STN(CO*TAN)_	00000720
			2	K41M(3)+(800+10(7)_001+951H(00+100)1_K+1M(6)+1M(7)	00000750
		r '	•	K*En(3)*(5)*(5)(*En(7)*521*510(C6*(K0))*(*En(4)*Cn(7)	00005740
-	158 0328	· _ ·· [©] ·	14(10) =	-K+11(6)+STU(CONTAIL)+[N(5)+[N(7)	
	1011 0230	r	LIN(10) -		00003780
	TSN 0300	U	LM(11) -		00008770
	2011 0007			KAENCOVENCY ENCOVERCE AND	00004780
	1991 0390		- 18(12) =	10(1)/(021410/7)-802#STB(COUT/01))+10(2)#STN(CO4TAL)+	00000600
	2011 0070		2		00003030
		r	•		00004600
	TSN 0301	U	LM(13) =	11(1)×(22C×1N(7)_C2T×CTN(C2×TALL))+D(2)×(M(2)) (M(7)×	0000000
	_1.514_0.571			_ EN(1)*(62**CN(7)*621*51N(CO**A0))*CN(2)*EN(7)*EN(5)*	00005030
		c	•		
	154 0102	ų.	10(14) -	INCENSESSION TALL LING AND LINES	00006330
	13.1 0372	C	Lin 147 -		00000380
	TSH 0707	<u>`</u>			
	1214 0232	~	LIN(15) -		0000000
	TSN 0304		IM(76) -	[M/]2)_[//(]7)/(M/O)*(//(0)	
	134 0314	~	L(110) -	ru 15)-ru 12)/ru 4)*ru 6)	00005900
	131 0375	r		TV FULTO) × (FULT TA) = FULT TA) × FULT O) V FULA))	00006920
	151 0304	ç	14(10) -	1/1M(1/)×(1M(1E) 1)/(17)×(M(11))/(M(4))	00005930
	101 0370	r	CIII 107 -	TA FULTO / (FULTO) - FULTO) × FULTT (/ FUL(A))	00005540
-		<u>`</u>		1/(1/(1/)	
	1011 0071	r	CULTA1 -	1/ Lin 10 /	
	TSN 0709	L	1M(201 -	_(M(13)/((M(Q)*(M(14))	00033970
	101 0070	c	En 207 -	~CIT 10// CIT 7/*CIT 10//	
— -					000003990
-	TSH 0277		LANCLJ =	(LM(15) _ LM(10) ×(M(10)) / LM(17)	
	10400		111221 -	- LM(3.2.) SEM(3.0.) ZEM(3.7.)	00007010
	15H 0401		LFIL 25J =	- LTR 12 J*LTR 20 J/LTR 13 J	00007020
_	1311 0402		LI1(24) *		
*VERSION 1.3.0 (01 MAY 80) UNST SYSTEM/370 FORTRAN H EXTENDED (ENHANCED)	DATE 60.353/15.02.49 PAGE 13			
-----------------------	--	------------------------------			
ISN 0403	KRIJE(6,333) BIR,BII	00007040			
ISN 0404	333 FCRIAT(//' B1'/(2E15.6))	00007050			
	C	00007050			
ISN 0405	RITE(6,6000) FE	00007070			
TCN 0405	EDITE(6,6100) AVGVI	0000000			
154 0607		00107020			
154 0407		001070			
751 0:00		20107110			
13.1 0407 TCN 0410		03007110			
15.4 0410		00007120			
1\$N_0412					
150 0413	1R11E(6,60C5) 5	00037150			
ISN 0414	URITE(6,6007) LH	00037130			
ISH 0415	HRITE(6,6008) LC	00007170			
ISN C416	_6000 FCRMAT('1',' FE',/,9(E12.4,2X))	CCCC07180			
ISN 0417	6100 FORMAT('-',' AVGV1',/,1X,E12.4,2X)	00037190			
ISN 0413	6200 FCRHAT('-',' VOL1',/,1X,E12.4,2X)	00007200			
ICN 0919	6001 FCRHAT('-',' FM',/,9(E12.4,2X))	00007210			
IS! 0420	6002 FORMAT('-',' FC',/,9(E12,4,2X))	00007220			
120 0421	6003 FC3ULT('-', ' FN2', /, 9(F12, 4, 2X))	00007030			
TON 0422	6006 FORMAT('-', ' M', /, 9(F12, 4, 2%))	00007240			
154 0.23		00007250			
TEN 0423	$\frac{1}{2} \frac{1}{2} \frac{1}$	00007200			
131 0404					
ICN 0423	$\frac{1}{2} \frac{1}{2} \frac{1}$	00007270			
15N 0426	6008 FGATAT('-',' LU',/,9(E12.4,2X))	00007280			
		00007290			
	CCALCULATE_EITHER IN TORSIONAL_GR_BENDING_MODE	0CCC7300			
	c	00007310			
	C	C0007320			
ISN 0427	00 15 II = 1,2	00007330			
ISN 0423	IF (II.EQ.1) GOTO 13	00007340			
	c	00037350			
	C CALCULATES TORSIONAL MODES AREAS	00007350			
	c	00007370			
ISN 0430	RMAPI = C*Z*ALF3AP*(COS(SIGMAT)-1)/ASTAR	00007330			
T5N 0431	THAPT = C#7*ALED19*(STU(STCHAT))/ASTAR	00007390			
150 0432		00007400			
194 0433		00007410			
TCN 0433		00007/30			
		00007420			
1511 0425		00007420			
128 0435	RACE = (Z-1)*(CGS(S)GRA(J-1))*(ALFBAR/AS)AR	00007440			
138 0437	IACE = {Z-I}*SIN(SIGNAT)*C*ALPBAR/ASTAR	00007450			
		00007450			
	C CALCULATES TORSICIAL MODE VOLUMES FOR THE FIRST TWO SECTIONS	00007470			
	C	00007430			
ISN 0433	VIAR = 0.0	00007490			
ISN 0439	VIAI = 0.0	00007500			
	C	00007510			
ISN 0440	VIER = C*DELTA*Z*ALFDAR*(CCS(SIGMAT)-1)*COS(ALFCH)/(ASTAR	*B) 00007520			
ISN 0441	VIBI = C*DELTA*Z#ALFDAR*(SIN(SIGNAT))*COS(ALFCH)/(ASTAR*3) 00007530			
	C	00007540			
TSN 0442	VICECHAT PRARHICOS(STEMAT)-1)+(7#(XSTAR-DELTA+COS(A) PCH	1)- 00007550			
2011 0716	7 (YST+0222_[DE[TASPO(()]DCH))2442)/(2401)/(4014000(AE)0)	00007560			
TSN 0007	VICT CNULARAAUTUULUAAUUUUAUUUUUUUUUUUUUUUUUUUUU	- 00007570			
1311 0443					
	[X51AK**2=[U2L1A*CU5(RLPCH)]**2]/[2*C])/[A51AR*B]				
		00007550			
ISN 0444	VIR = VIAR+VIER+VICR	00007600			
ISN 0445	VII = VIAI+VIBI+VICI	00307610			
	c	00007620			

¥1	ERSION 1.3.0	(01 r	(03 YA)	_	UNST SYSTEM/370 FORTRAN H EXTERDED (ENHANCED) D	DATE 80.353/15.02.49 PAGE 14
	124 0448		, v2R	=	U#ALFBARY(COS(S15MAF)=1)*(Z*(XS=XSTAR)=((XS**2=	00007630
	TSH 0447		; 	-	AS(ARMAC)/(2*()))/(ASTARAS) CXALES'SX(CT)/(CTCRAT))///2*/VC_VCTAD) //VCVVD	00007640
			,****			
		C	•		ASTRACED (Enc) / / (ASTARAD)	00007630
	TSN 8448	ŭ	GOTO 1	7		00007690
	10.0 01.0	С	0010			00007680
			LCULTES	BEN	TING MODE AREAS	00007700
		c				00007710
	ISN 0449	13	RACE	=	H*(COS(SIGMA3)-1)/ASTAR	00007720
	ISN 0450		IACE	=	H*SIH(SIGHAS)/ASTAR	00007730
	ISN 0451		IMAP		HACIN(SICHAD)/ASTAR	00007740
	ISN 0452		RIMP	=	H*(COS(SIGMAB)-1)/ASTAR	00007750
	ISN 0453		RUMPI	=	H*(COS(SIGMAB)-1)/ASTAR	00007760
	ISN 0454		INAPT	=	H*SIN(SIGMAB)/ASTAR	00007770
	ISN 0455		TH:PI		H#SIH(SIGMAB)/ASTAR	00007780
	ISH 0456		RHAPT	=	H*(COS(SIGMAB)-1)/ASTAR	00037790
	•	С				00007800
			ALCULTES	13 <u>8</u> _8	NDING_MCDE_VOLUMES_FCR_THE_FIRST_TWO_SECTIONS	00007310
		с				00007320
	ISN 0457		VIAR	Ξ	0.0	00007830
	ISN 0458		VIAI	2	0.0	00007340
		<u>C</u>				00007850
	ISN 0459		VIBR	Ξ	DELTA#H#(COS(SIGMAB)=1)#COS(ALPCH)/(ASTAR#B)	00007860
	ISH C460	_	VIBI	z	DELTA*H*(SIN(SIGHAB))*COS(ALFCH)/(ASTAR*B)	00007870
		С				00007830
	ISN 0461		V1CR		_(H*(XSTAR-DELTA*CCS(ALFCH))*(COS(SIGMAB)-1)+ASTAR*H*	00007890
			?		(COS(SIGHAB)-1)*COTAN(ALPCH))/(ASTAR*B)	00007900
	ISN 0462		VICI	=	(H*(XSTAR-DELTA*COS(ALFCH))*(SIN(SIGHAB))+ASTAR*H*	00007910
		~	?		(SIN(SIGHAB))*COTAN(ALFCH))/(ASTAR*B)	00007920
_	TCH 0447					0007930
	120 0400 TEM 04/4		VIR	-	VIAREVIER	00007940
	124 0404	~	VII	-	VIAI+VIDI+VICI	00007950
	TSN 0465	C	1/20	-		00007980
	TCH 04455					
	134 6466	ç	VZI	-	1*(516(516(AS))*(X5-X51AR)/(ASTAR*5)	00007930
		ř				00007990
		ř				0000000
	TSN 0467	<u> </u>	TSSP	=		0000000
	2011 0107		,	-	FC(54)+V)T_FC(57)+V)D	00000020
		с	•		10(20)//11(10(2))/(10	00000000
	ISN 0468	-	RSSP	=	FC(46)%20APT+FC(47)%TMAPT+FC(48)%PMAPT+FC(49)%TMAPT+	00000050
			?		FC(50)*V1T+FC(51)*V1R	00000000
		С	•			00003070
	ISN 0469	-	IMDP	=	FM(40)+RMAPI+FM(41)+IMAPI+FM(42)*RMAPT+FM(43)+IMAPT+	000000000
			?		FII(44)*RSSP+FII(45)#ISSP+FN(46)*V1T+FM(47)*V1R	00000000
-		C				00003100
	ISN 0470		RMDP	=	FM(32)*RMAFI+FM(33)*INAPI+FM(34)*RMAPT+FM(35)*IMAPT+	00003110
			?		FM(36)+RSSP+FM(37)+ISSP+FM(38)+V1I+FM(39)+V1R	00000120
		С				00003130
-	ISN 0471		IVPU	¥	FE(26)*RMAPI+FE(27)*IMAPI+FE(28)*RMDP+FE(29)*IMDP+	000003140
			?		FE(30)*RMAPT+FE(31)*IMAPT+FE(32)*RSSP+FE(33)*ISSP+	00003150
			?		FE(34)#V1I+FE(35)#V1R	00003160
.		C				00003170
	ISN 0472		RVPU	=	FE(16)*RMAPI+FE(17)*IMAPI+FE(18)*RMDP+FE(19)*IMDP+	00003180
			?		FE(20)*RMAPT+FE(21)*IMAPT+FE(22)*RSSP+FE(23)*ISSP+	00006190
		-	?		FE(24)*V1I+FE(25)*V1R	00003200
		С				60008210

*VERSION 1.3.0	(01 MAY 80)		UNST SYSTEM/370 FORTRAN H EXTENDED (ENHANCED) DAT	E 80.353/ 15.02.49	PAGE	15
ISH 0473	INFP	z	IMDP#SST**2	00008220		
ISN 0474	RHPP	=	RI:DP*SST**2	00008230		
	_c			00008240		
ISN 0475	RMVFU	=	CL(16)#RH3P+CL(17)*IMAP+CL(18)*RH3P+CL(19)*IH3P+CL(20)	*00008250		
	?		RSSP+CL(21)*ISSP+CL(22)*RUPP+CL(23)*IUPP+CL(24)*RMAPT+	00008260		
	?		CL(25)%INAPT+CL(26)%V2R+CL(27)%V2T	00000270		
	c ·			00000000		
TSN 0476	THVPH	=	CI (23)************************************	000000000		
1011 04/0	2	-	C((3))49999910((33))4799910((36))48687400((31)716874	00000270		
				00003300		
	· ·		CC(32)*XI/261+CC(3)]*T(2614CC(32)*45K+CC(34)*45T	00003310		
TCU 0477						
124 0477	RUPU	Ŧ	n(1)*RTAP+n(2)*10AF+n(3)*RTP+n(4)*15P+n(5)*	00008330		
	£		RGAP140(6)410AP140(7)5k0VPU40(8)*10VPU40(9)*155P4	00008340		
	- ?		M(10)*RSSP+M(11)*IMDP+M(12)*RMDP+M(13)*V2I+M(14)*V2R	00003350		
				_ 00008360		
ISN 0478	INDPU	=	F112(5)%R11AP+F112(6)*I11AP+F112(7)%R11PP+F112(8)*I11PP+	00608370		
	?		FN2(9)*FNAPT+FN2(10)*INAPT+FM2(11)*RMVPU+FM2(12)*	00008380		
	?		IHVPU+FN2(13)*ISCP+FM2(14)*RSSP+FM2(15)*IMDP+	00003390		
	?		FM2(16)*RH3P+FM2(17)*V2I+FM2(18)*V2R	00003400		
	C			00003410		
ISN 0479	RCDS	Ξ	S(8)*RHVPU+S(9)*RHDFU	C0008420		
ISN 0460	IDDS	Ŧ	S(3)%J%VEU+S(9)*TCDEU	00000430		
ISN 0431	RMEPU	=	\$5U**2*727FU	00000440		
1511 0482	TUEFIL		551/7#2616161	00003450		······
1511 0483	PSOSU	=	(GMM14-1)/289PMPCH/(PH8SSH)	00000450		
TSN 0484	TSOSU	-	(GARANA-I)/2007MDDD(//BUSSSSS)	00003430		
15H 0485	PEDS	-	COSDERF24RDDS	00000470		
751 0406		-]-	60000x20x000	00003430		
TCM 0/07	1100	-	3/5(1)x(5(2)x2cocli(5(7)x2Mpoli(6(4))ceuxpMupi(ceuxpape)	00003490		
15A 0457	UCT	-	1/5(1)*(5(2)*R5050+5(5)*R(PP0+5(4)/550*R(PP0*550*RP05)	00001500		
134 0403	031	-	1/2(1)*(2(2)*12020+2(2)*10550+2(4)/250*10040~220*1602)	00038510		
13H_0439	1DP			_ 00008520		
15N 0490	RU25	=	USIZK	00002530		
	C	_		00008540		
15N 0491	RULAT	=	-VELAX/(CO*TAU)*(BIR*RVPU*(COS(CO*TAU)-1)-B11*IVPU*	00000550		
			(COS(CO*TAU)-1)-IVFU*31R*SIN(CO*TAU)-B11*RVPU*SIN(CO*_	_ 00008560		
	?		TAU))-(K+CO#VEL)/(CO*TAU)*(RVPU*(COS(CO*TAU)-1)-IVPU*	00008570		
	?		SIN(CONTAU))	00008580		
	С			00008590		
ISN 0492	INPPI	=	VELAX/(CO*TAU)*(IVPU*BIR*(COS(CO*TAU)-I)+B1I*RVPU*	_00000600		
	?		(COS(CC*TAU)-1)+BIR*RVPU*SIN(CO*TAU)-BII*IVPU*SIN(CO*	00003610		
	?		TAU})-(K+CO*VEL)/(CO*TAU)*(IVPU*(COS(CO*TAU)~1)+RVPU*	00008620		
	?		SIN(CONTAU))	00000630		
	C			00008640		
ISN 0493	RHDPI	Ξ	RIIPPI/SSI*+2	00003650		
ISN 0494	INDPI	Ξ	IMPPI/SSI**2	00003660		
	C			00000670		
ISN 0495	RMSSP	I =	(GAN::A-1)/(2*SSI)*RMPPI	00002580		
ISN 0496	IMSSP	1 =	(GANNA-1)/(2*SSI)*INPPI	00002590		· · · · · · · · · · · · · · · · · · ·
	C			00003700		
ISN 0497	PITVP	т=	1/TAUX(RVEUX(COS(COXTAU)-1)-TVPUXSTB(COXTAU))	00003710		
ISH 0498	TITVP	T =		00000720		
	- <u></u>			00003730		
154 0499	DTAVO	T =	1/(COMTAIL)*(B1CXOVCU/(COS(COXTAIL)_3)_D)T#TVDUM	00009760		
44/1 V477	?	• -		00002750		
	•		CTRUCOVIAU/FI/FI/FUNDIR#OINCOVIAU/FDII#RYFUR	00000750		
			51h(CU*1A077			<u>-</u>
TON ACAA	• •	. -		00005770		
13N 0500	TTAVP.	T =		00003780		
	?		COSTLU*IAUJ-1J+RVPU*BIR*SIN(CO*TAU)-BII*IVPU*	00008790		
	?		SIN(CO*IAU))	00008800		

×۷	ERSION 1.3.0	(01 MA	Y 80)	1	UNST SYSTEM/370 FORTRAN H EXTENDED (ENHANCED) DAT	E 60.353/15.0	02.49 PAGE	16
		C				00003316		
	ISN 0501	_	IF(II.	EQ.2) GOTO 24	00000820		
		_ C				00003330		
		C CA	LCULATE	ES TH	E BENDING MODES VOLUMES FOR THE THIRD SECTION	00603840		
		C				00008050		
	ISN 0503		V3AR	=	(H*(CC3(SIGMAB)-1)*(C-XS)-(AO+ACE)*ASTAR/2*RMSP*B)/	000002060		
			?		(ASTAND)	00000370		
	ISN 0504		VEER	=	DELTA/2.0*SIN(2*ALFCH)*H*(COS(SIGMAB)-1)/(ASTAR*B)	06000880		
	ISN 0505		V3CR	Ξ	0.0	00003390		
	ISN 0506		VJAI	Ξ	(H *SIN(SIGMAD) * (C - XS) - (AO + ACE) * ASTAR /	00008900		
			?		2 * INSP * B) / (ASTAR * B)	00008910		
	ISN 0507		VIBI	=	DELTA/2.C*SIN(2*ALFCH)*H*(SIN(SIGHAB))/(ASTAR*B)	00000920		
	ISN 0508		VECI	=	0.0	00003930		
	ISN 0509		WRITE	6,41	0)	00003940		
	ISN 0510	410	FORMAT	1111	, BENDING')	00008950		
	ISN 0511		GOTO 2	25		00008060		
		С				000000970		
		C CA	I CULTES	S THE	TORSTOUGT MODE VOLUMES FOR THE THIRD SECTION	0000000000		
		č			Tokorowie habe volenes fok me miko secreto.	000000000		
	TSV 0512	- 24 -	VIAD		(C#4) FRACH(COS(STONAT)-1)#(74(C-VS)-(C#42-VS442)/	000000000		
	LOW ODIE		2	-	(2xc))_AcxActAcercerce)/(ActAcerc)	00007030		
	TSN 0513			-	(C#A)[C7AC4(CT)](SIC4(AT))2(74(C-VC)_(C#40, VC440))/(04C))_	000000000		
	1211 0212		2 221	-	- (C*ACFLAX*(SIG(SIG())*(Z*C(C*AS)=(C**Z*AS**Z)/(Z*C))*	00007020		
	7511 0510		- Nard -			00009030		
	1214 0214		2004	-		00009040		
	101 0515		- 11707	_		00009050		
	15N 0515		VSSL	-	ALPBAR*(Z-1)*SIN(SIGNAT)*C*COS(ALPCH)*DELTA/(ASTAR*B)	00009060		
	_101 0515		- VSCR			0000070		
	15:0517		VSUL	=	0.0	00009030		
	138 0518		RETIFIC	6,42		00009090		
	138 0519	420	FCIIIA	. .	, TORSICNAL!)	00009100		
						00009110		
	ISN 0520	25	V31	=	V3AI+V3BI+V3CI	00009120		
	ISN 0521	_	A?K	Ξ	V3AR+V3ER+V3CR	00009130		
		C				C0009140		
		_ <u>c</u>				00009150		
		Ç				00009160		
		C				00009170		
		С				00009180		
	_ISN 0522		_RUDS_	=	_1/DD*(Ritopu*VU+DU*RMVFU-RDDS*VD)	00009190		
	ISH 0523		IUDS	=	1/DD*(INDFU%VU+DU*INVFU-IDDS*VD)	00009200		
	ISN 0524		LOSI	=	IDDS*VD*A0+DD*IUDS+A0+DD*VD*IMAP	00009210		
	ISH 0525		KOSR	=	RCDSHV0#L0+DD/RUDG#A0+DD#VD#RMAP	00009220		
	ISN 0526		CI	=	-DE*REV*COS(ALPCH-BETA2)*IACE+WDSI-AVGD3 * K/12 * V3R	-00009230		
			?		K/12 *VOL3/2*RDDS	00009240		
		С				00009250		
	ISN 0527		CR	=	-DE*RACE*U2IRE+WDSR+AVGD3 * K/12 * V3I+K*VOL3/2*IDDS	00009260		
		С				00009270		
_	ISN 0528		IC	=	-IFDS*AO-PD*IMAP+IACE*(PE+(REV*COS(ALPCH-BETA2))**2*	00009280		
			?		DE) - 105 * IUDS + AVGV3 * VOL3 * K/12 * RDDS / 2 +	00009290		
			?		AVGD3 * AVGV3 * K/12 * V3R + K/12 *AVGD3 * V0L3 *	00009300		
			?		RUDS / 2 - NDSI + VD	00009310		
-	ISN 0529		RC	2	-RFDS*A0-PD*RHAP+RACE*(PE+(REV*COS(ALFCH-BETA2))**2*	00009320		
			?		DE) - HDS * RUDS - AVGV3 * VOL3 * K/12 * IDDS / 2 -	00009330		
			2		AVGD3 * AVGV3 * K/12 * V3I - K/12 * AVGD3 * V013 *	00009340		
			?		IUDS / 2 - WDSR * VD	00009350		
		C				00009360		<u> </u>
-		č				00009370		
		č				00009380		
	TSN 0530	•	16(1)	Ŧ		00009300		
			/	-	SE SE NOULAE OF SELACT CONTRONOUSEANS, FDEN			

*VERSION 1.3.0	(01 MAY 8	50)	UNST SYSTEM/370 FORTRAN H EXTENDED (ENHANCED) DA	TE 80.353/15.02.49 PAGE 17
	?		ACE*SIN(ALPCH)/(CO*TAU)	00009400
	C			00005410
ISN_0531	L	C(S)=	DE*(K+CO*VE)*ACE*REV*COS(ALPCH-BETA2)/	0C009420
	?		(CO*TAU*SOSEX**2)+DE*ACE*COS(ALPCH)/TAU	00009430
	C			00009440
ISN 0532	LC	C(3) =	DE#ACE/(TAU#(R##2+CC##2))#(SIN(ALPCH)-R/CO#COS(ALPCH)) 00009450
	_ <u>c</u>			00009460
ISN 0533	LC	C(4) =	VOL3*UE*DE/(2*CO#TAU*SOSEX**2)	00009470
	C			00009480
ISN 0534	LC	C(5) =	VOL3/2*(K+CO*VE)*DE/(CO*TAU*SOSEX**2)	00009490
	С			00009500
ISN 0535	LC	C(6) =	LC(1)*B2R*LM(7)-LC(1)*B2I*SIN(CO#TAU)+LC(2)*LM(7)+	00007510
	?		K*LC(4)*(B2I*LH(7)+B2R*SIN(CO*TAU))+K*LC(5)*	00009520
	2		SIN(CONTAU)	00009530
	c			00005560
158 0536	LC	(7) =	-1C(1)*(P2T*(M(7)+PCP*STN(CO*TAU))+(C(2)*STN(CO*TAU)+	00009550
	, ,		K#10(4)#(1M(7)#B02-B2T#STN(00#T4U))#K#10(5)#1M(7)	00002540
	c '			00000570
TSN 0537	Ŭ	*(A) =	[C(3)x[M(7)	00000700
TEN: 0579	۰ , ر		10(7)*6711(COXT111)	00005590
124 0222	~ ¹¹	.(9) -	-[[[]]]*2IU[[0+[A0]]	00009500
	<u>ل</u>			00809510
15:1 0539	LC	:(10) =	LC(6)*LM(17)+LC(7)*LM(21)+LC(8)	00009520
	C			00009630
ISN 0540	LC	(11) =	LC(6)*LM(18)+LC(7)*LM(22)+LC(9)	00009540
	С			00007650
ISN_0541	LC	:(12) =	_LC(6)*LH(20)+LC(7)*LH(23)	00009660
	С			00009670
ISN 0542	ĹC	:(13) =	LC(6)*LM(19)+LC(7)*LM(24)	00009680
	С			00007570
ISN 0543	LC	(14) =	LC(1)*(E2I*LM(7)+62F*SIN(CO*TAU))+LC(2)*SIN(CO*TAU)-	00007700
	?		LC(4)*K*(B2R*LM(7)-B2I*SIN(CO*TAU))-LC(5)*K*LM(7)	00009710
	C			00009720
ISN 0544	10	(15) =	LC(1)*(B2R*LN(7)-B2I*STN(CO*TAU))+(C(2)*(M(7)+	00009730
	?		LC(4)*K*(B2I*U(7)+B2R*SIN(CO*TAU))+LC(5)*K*	00009740
	;;;;;;;;;		STHICONTAIL	00009750
	r .			0000750
TSN 0545	То	= (41)	10(3)8578(008781)	00000770
1311 0343	r			000007770
TEN OF44	<u> </u>			
1311 0346	~	.(17) -		00009750
TEN AEA7		(10) -	10(14)¥IM(17))10(15)VIM(01)-10(1()	
134 0547	-	.(10) -	LC(14)*L((17)*LC(15)*L((21)+LC(10)	00009310
TCU ACAD	<u> </u>	1102 -		
15N U548		(19) =	LL(14)*Lm(18)+LC(15)*Lm(22)+LC(17)	00004820
	с 			00009540
ISN 0549		(20) =	LC(14)*LM(20)+LC(15)*LM(23)	CCC09350
	с			00009360
ISN 0550	LC	(21) =	LC(14)*LM(19)+LC(15)*LM(24)	00009370
	C			00030000
ISN 0551	LC	(22) =	LC(18)-LC(19)/LC(11)*LC(10)	00009690
	С			00009900
ISN 0552	LC	(23) =	-(LC(20)-LC(19)/LC(11)*LC(12))/LC(22)	00009910
	С			06669920
ISN 0553	LC	(24) =	-{LC(21)-LC(19)/LC(11)*LC(13))/LC(22)	00005930
	с			00009940
ISN 0554	LC	(25) =	(CI-CR+LC(19)/LC(11))/LC(22)	00009950
	C			00009960
ISN 0555	88	RFF =	LC(23)*RC+LC(24)*IC+LC(25)	00009970
	С		_	00009980

¥VE	RSICN 1.3.0	(01	MAY 80)	UNST SYSTEM/370 FORTRAN H EXTENDED (ENHANCED) DA	ATE 80.353/15.02.49 PAGE 18
	ISN 0536		LC(26) =	-(LC(20)+LC(18)*LC(23))/LC(19)	00003990
		С			00010000
	ISN 0557	-	10(27) =	-(10(21)+10(15)*10(24))/10(19)	00012010
					00010020
	1511 0553	•	10(28) -	(CT-1C(2E)×(C(10))/(C(10))	00010070
	7314 0330	~	LC(20) =	(01-00(25)*00(10))/00(19)	
	TOUL AFEA	C	TOFF -		00010040
-	15N 0559			LU(26) C+LU(27)*1C+LU(28)</td <td>00010059</td>	00010059
		C			00010060
	ISN 6560		IVPD =	LM(21)%RRFF+LM(22)*IRFF+LM(23)*RC+LM(24)*IC	00910070
		С			C3910980
	ISN_0561	-	RVFD =	LH(17)*RRFF+LN(18)*IRFF+LM(19)*IC+LM(20)*RC	00010090
		С			00010100
	ISN 0562		RM2PE =	-UE*5E/(CO*TAU)*(B2R*RVFD*(COS(CO*TAU)-1)-B2I*IVPD*	00010110
			?	(COS(COXTAU)-1)-TVED#328%STN(COXTAU)-R2T#RVPD#STN(CO)	¥ 00010120
			;	T(U))_(V+CCVVE)/(CONTAUL)*(DVED*(COS(CONTAUL-1)_TVDD*	00010130
		~	•	510(0041207)	
	TOUL OF CH	C	TH995 -		00010150
	120 0202		16228 4	-CEYDEX(LC+)AU)*(1YPD*B2K*(COS(CO+)AU)-1)+B21*RVPD*	00010160
			?	(CO3(CC*TAU)-1)+B2R*RVPD*SIN(CC*TAU)-B2I*IVPD*SIN(CO*	*00010170
			?	TAU)}-(K+CO*VE)/(CO*TAU}*(IVPD*(COS(CO*TAU)-1)+RVFD*	CC010180
			?	SIN(CO*TAU))	00010190
		С			00310200
	ISN 0564		RMDFE =	PTIPPE/SOSEX**2	00010210
	ISN 0565		INOPE =	IMPRE/SOGEX #2	00010220
		С			00010230
	1511 0566	-	R''SSEE =	(GAMMALI)/(2850SEXEDE)&ZMODE	00010260
	TSU 0547		THEODE -		00010240
	1310 0307			(GAR_RA=1)/(2*5056A*06)*10PP6	
		č			00010260
		L.	TREDITIONA	L VELOCITY PERTURBATIONS AT THE EXIT	00010270
		C			00010280
	IEN_0568		RITVPE =	1/TAU*(RVPD*(COS(CO*TAU)-1)-IVPD*SIN(CO*TAU))	00010290
	ISH 0569		IITVPE =	1/TAU*(IVFD*(COS(CO*TAU)-1)+RVFD*SIN(CO*TAU))	C0C103C0
		С			00010310
	ISN 0570		RIAVPE =	1/(CO*TAU)*(B2R*RVPD*(COS(CO*TAU)-1)-B2I*IVPD*	00010320
			?	(CCS(CO*TAU)-1)-IVPD*B2R*SIN(CO*TAU)-B2I*RVPD*	00010330
			?	SIN(COATAU))	00010340
		ċ			00010350
	TSN 0571	-	TTAVPE =	1/(COFTAIL)*(B20%IVPD*(COS(COFTAIL)-1)*B21*PVPD*	00010360
			2	(COS(CCUTAIL) - 1)+EVED#209457N(CONTAIL) - E2THINDE	00010370
			— ; — — —	SIRCONTARY A VIEW DEDUCTOR NOT DETUTYPD	
		c	•	OTHER CONTROLL	00010350
		L L			00010390
		L A	RUTATIONAL	VELOCITT FERTURSATIONS AT THE EXIT	00010:00
		<u> </u>			00C1C410
	ISN 0572		RRAVPE =	1/((R**2+CC=*2)*TAU)*(RRFF*(COS(CO*TAU)-1)-IRFF*	00010420
			?	SIN(CO*TAU))	00010430
	ISN 0573		IRAVPE =	1/((R**2+CC**2)*TAU)*(IRFF*(COS(CO*TAU)-1)-RRFF*	00010440
			?	SIN(CO*TAU))	00010450
		C			00010460
	TSN: 0574		ROTVPE =	-P/CO%CRAVEE	00010470
	154 0575		TRTVPE =		00010600
		r		H GG: INNTE	00010/00
	7611 7572				
	101 0277		1710 =	(INF.11+1), FJ/2,0, (INF.11+1), FJ/2,0,	00010300
	121 02/7		KPIU =	CREATER CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONT	00010510
	15H 0578		1650 =	(INP2+IMPFU)/2.0	00010520
	IEN_0579		RP2U=	(RMPP+RMPFU)/2.0	00010530
-	ISN 0580		IP3U =	(IFDS+IMPFE)/2.0	00010540
	ISN 0531		- DC4X		00010550
	ISN 0531	С	Kb20 =	(RFUS+RMPPE1/2.0	00010550 00010560

J,

144

į

Т

*VERSION 1.3.0	(01 MAY 80))	U	NST SYSTEM/370 FORTRAN H EXTENDED (ENHANCED)	DATE 80.353/15.02.49	PAGE	19
ISN 0583	IPIL		=	IPIU*COS(SIGMAT)-RPIU*SIN(SIGMAT)	00010530		
ISN 0584	RP21	_ =	:	RP2U+COC(SICHAT)+IP2U+SIN(SIGMAT)	00010590		
ISN 0395	1921		=	IP2UNCCS(SIGNAT)-RP2UNSIN(SIGMAT)	00010500		
ISN 0586	RP3L		-	RPIU=CCS(SICHAT)+IP3U*SIN(SICHAT)	00010610		
ISH 0587	1931	_ =	=	IP3U*CCS(SIGNAT)-RP3U*SIN(SIGMAT)	00010520		
	С				00010630		
ISN 0588	RCLU	ء د	-	(PPIU*XSTAR+RP2U*(XS-XSTAR)+RP3U*(C-XS))/B	02010540		
ISN 0589	ICLU	; =	=	(IP1U#XSTAR+IP2U#(XS-XSTAR)+IP3U#(C-XS))/B	00010650		
	С				00010660		
ISN 0590	RCLL		=	(RP1L*(XSTAR-DELTA*COS(ALPCH))+RP2L*(XS-XSTAR)+	00010670		
	?			RP3L*(C-XS+DELTA*COS(ALPCH)))/B	00010680		
ISN 0591	ICLL		=	(IPIL*(XSTAR-DELTA*COS(ALFCH))+IP2L*(XS-XSTAR)+	00010690		
	?			IP3L*(C-XS+DELTA*COS(ALPCH)))/B	00010700		
	C				00010710		
ISN 0592	RCL	*	.	-RCLU+PCLL	00010720		
15N 6593	ICL	-	-	-ICLU+ICLL	00010730		
	C		_		00010740		
15N 0594	RCMU			-(RPIU*XSTAR#(Z*C-XSTAR/2)+RP2U*(XS-XSTAR)*(Z*C-	00010750		
 				(XSTAR+XS)/2)+RP3U*((C-XS)*(Z*C-(C+XS)/2)))/(B**2)_	00010760		
TON AFOF	L Tour				00010770		
130 0595	1000	= ر	-	-(1P10+X5TAR*(Z*C-X5TAT/2)+IP20*(XS-XSTAR)*(Z*C-	00010780		
	- ·			(XSTAR+XSJ/2J+1F20%((C+XSJ*(Z*C+(C+XSJ/2J)))/(B**2)	00010790		
					00010800		
1211 0240	2		-	(RPIL*IXS(AR-DELIA*COS(ALPCH))*(Z*C-(XSTAR-DELTA*	00010310		
	í.			COS(ALPCH) 1/2 1+RP2L*(XS-XS+AR J*(Z*C-(XS+XSTAR-2*DEL	TA* 00010320		
				UUSIALFUN / //////////////////////////////////	00010330		
<u> </u>	· · · · · · · · · · · · · · · · · · ·			(X5+C-92L1X*C0S(ALFCH))/2))/(5**2)	00010340		
TCH 0507	TCNI	_	-		00010850		
134 0397	2 20112		•	(121E*(XSTAR=02ETA*LUS(ALFCH))*(2*C=(XSTAR=0ELTA*	00010060		
				CCS(ALFCH))/2)+1P2L*(X5-X51APJ*(Z*C+(X5+X51AP-2*DEL	TA* 03010870		
	;			(Vero DELTAXCOC() + DELLAXCUS(ALPCH))*(Z*C	05010830	<u>_</u>	
	r '			(X3+C-D2L1A+COS(ALFCH))/2))/(B**2)	00010390		
TSN 0598	всм	-		RCM1+RCM1	0001000		
759 0599	TCM	_		TCP/1-TCP/1	00010910		
					00010920		
TSH 0600	TEI	TT F		1 6010 33	00010050		
134 0602	A17(21	=	(-RC1//ET*X**2**198401)/12	00010940		
ISH 0603	1744	2)	z	(+TC) /(PT+K++2+4) =3+2))/12	00010950		
TSU 0604		21-	- <u>-</u>		00010070		
TSN 0505	BAT(21	-		00010770		
TSN 0606	CVEK		-	(4 4 7 (7) × F 4 × C)	00010400		
TSN 0607	64.TK		3	[AST(2)](Y**2)	00010990		
ISN 0503	BACK		-	(PA9(2)*(***?)	00011000		
ISN 0609	BATK		=	(PAT(2)*X**2)	00011020		
ISN 0610	AHEK		=	(AHB(2)×K**2)	00011030		
ISN C611	AHIK		=	(AHT(2)+X**2)	00011050		
ISN 0612	BHOK			(EUR(2)85882)	00011049		
ISN 0613	EHIK		=	(BHI(2)*K**2)	00011050		
ISN 0614	COTO	34			00011070		
	C	2.			00011080		
158 0615	33 AHRI	2)	=	(5°3CLŽ(PI*K*Ř2PH))/12	00011090		• • • • • • • • • • • • • • • • • • • •
ISH 0615) I HA	2)	=	(B*ICL/(PI%K**2%H))/12	00011100		
ISN 0617	BHRt	2)	=	-B#RCH/(PI*K**2*H)/12	60611110		
ISN 0618	BHI	2)	z	-B*ICM/(PI*K**2*H)/12	00011120		
·····					00011130		· · · · · · · · · · · · · · · · · · ·
ISN 0619	34 WRIT	E(6.	666	6) LC	00011140		
ISN 0620	6666 FORM	ATC	-1.	LC',10(E8.2,3X))	00011150		
ISN 0621	WRIT	E(6.	440	RMAPL.IMAPL.RMAPL.TMAPL.RMAP.TMAP	00011160		
				· ····································	00011100		

-

İ

	
4	
ö	

i.

*VERSION 1.3.0	(01 MAY 80) UNST SYSTEM/370 FORTRAN H EXTENDED (ENHANCED)	DATE 80.353/15.02.49	PAGE 20	
ISH 0622	WRITE(6,450) PACE,IACE	00011170		
ISH 0623	WRITZ(6,440) RSSP,ISSP,RSC3U,ISOSU,FMSSPI,IMSSPI	00011180		
ISN 6024	INTITE(6,470) FRIESPE, TRIDEFF	02011190		
ISN 0625	WPITE(6,400) FUTP, IMPP, FUTPU, IMPPU, IMPPU, AFDS, IFDS	00011200		
ISH 0526	WRITE(6,490) EUTEL, MUTI, FUTE, INFEE	00011010		
ICH 0627	VRITE(6,500) RUDE, LUDE, RUDEU, RUDEU, EDDS, IDDS	00011220		
ISH CSCS	HPITE(6,510) REDEI, TEDEI, DEDEE, TEDEE	00011230		
ICH 0529	WEITE(6.520) MER, UST, FUSP, THER	00011240		
ISN 0630	WRITE(4,530) VIAS, VIAT, VIED, VIET, VICE, VICT	00011250		
ICH 0631	LOTTE(6.540) VID.VIT. (20.V0T.V340.V341	00011260		
TEN 0632		00011270		
TON 0533	UTITE(6,560) EVEL INCLEVED, TVED	00011250		
159 0574	LETTELS STALL STALL STALL TITUDE STAVET TTAVET	00011200		
TCN 0557	UNITE(4,570) BUTVEE TITVEE DITVEE TITVEE DAVAGE	00011200		
1511 0636	INTICO JEGA POTVOS INTVOS	00011300		
13.1 00.30		00011310		
134 6337		00011320		
127 6555	R2112(6,610) C1;C2;1C;RC	03011330		
154 0559	WRITE(6,620) ROFF, IRFF	00011340		
ISN 0640	1211E(6,630) RP19, IP10, RP20, IP20, RP30, IP30	00011350		
131 6641	WRITE(6,640) EP1L,IP1L,RP2L,IP2L,RP3L,IP3L	COC11360		
ISN 0642	WRITE(6,650) RCLU,ICLU,RCLE,ICLL,RCL,ICL	00011370		
ISN 0643	IRIIE(6,660) FCPU,ICHU,RCHL,ICHL,ICH,ICH	00011330		
ISN_0544	440 FORMAT('~',T11,'RMAPI',T28,'IMAPI',T45,'RMAPT',T62,'IMAPT',T79	00011390		
	? 'RHAP', T93, 'IHAP'/4X, 6(F15.6, 2X))	00011400		
	C	00011410		
ISN 0645	450 FORMAT('-',T11,'RACE',T28,'IACE'/4X,2(F15.6,2X))	00011420		
	c	00011430		
ISN 0646	460 FCRMAT('-',TII, 'FSSP',T28,'IS37',T45, 'R305U',T62,'IS0SU',T79,	00011440		
	? 'FMSCPI', T96, 'INSSPI'/4X,6(F15,6,2X))	00011450		
	c	00011460		
IEN 0647	470 FCRNAT('-',Tll,'RM3SPE',T23,'IMSSPE'/4X,2(F15.6,2X))	00011470		
	c	80011400	····	
ISN 0648	480 FORMAT('~',T11, 'R:PP',T28, 'ICFP',T45, 'R:PPU',T62, 'IMPPU',T79,	00011450		
	? 'SEDS', T95, 'TEDS'/4X,6(F15,6,2X))	06011500		
	6	00011510		
ISN 6649	490 FORMAT('-',T11,'EMPPT',T28,'IMPPT',T45,'RMPPE',T62,'TMPPE'	00011520		
	? (4X.4(E15.6.2X))	00011530		
		00013540		
TSH 0650	500 FORMAT(, T11, 'DED2', T28, 'TEDD', T45, 'DEMODUL, T42, 'TEDDUL,	00011540		
10.1 0010		00011550	····	
	· · · · · · · · · · · · · · · · · · ·	00011530		
TC11 04 E1	C EIA Sounatill IIII Irveeti taa itveeti tae irveeti taa itveeti	00011370		
1311 0031	510 FORMAR(= \$111; PROPL \$120; 100PL \$145; RNDPE \$102; 100PE	00011530		
	······································	00011590		
TCN 0/ 20	L FOR FOUNTY & FIL BUCK TAA UURTE TYE YOMODE TYS (TWOOL	00011600		
121 0652	520 FURNAR(, 111, USR , 128, US1 , 145, 'RMSP', 162, 'IMSP'	00011610		
	? /4X,4(F15:6,2X))	00011620		
-		00011630		
1211 0222	530 FORMATC'-', 111, VIAP', 128, VIAL', 145, VIBR', 162, VIBL', 179,	00011640		
	? 'V1CR',T96,'V1CI'/4X,6(F15.6,2X))	00011650		
	C	00011660		
ISN 0654	540 FURMAT('-',T11,'VIR',T28,'V11',T45,'V2R',T62,'V2I',T79,	00011670		
	<pre>? 'V3AR',T96,'V3AI'/4X,6(F15.6,2X))</pre>	00011680		
	C	00011690		
ISN 0655	550 FORMAT('-',T11,'V3CR',T28,'V3BI',T45,'V3CR',T62,'V3CI',T79,	00011700		
	? 'V3R',T96,'V3I'/4X,6(F15.6,2X))	00011710		
~	C	00011720		
ISN 0656	560 FORMAT('-',T11,'RVPU',T28,'IVPU',T45,'RVPD',T62,'IVPD'	00011730		
	? /4X,4(F15.6,2X))	00011740		
	C	00011750		

¥VERSION ISN 06	1.3.0 57	(01 57	MAY 80 0 FOF ?	D) RMAT('- T	UNST -',T11, 79,'RMI	SYS 'RMVPU (AVPI',	TEM/37 J',T28, T96,'I	O FORI IMVPU MIAVPI	RAN H 1',T45, 1'/4X,6	EXTEND 'RHITY (F15.6	DED (EN VPI',T(5,2X})	HANCE 52,'IM] (C ITVPI')	000 ATE 000 000	.353/1 11760 11770	5.02.4	9	PAG	E 21				
ISN 06	58	C 53	0 FOF	RHAT(1',T11, IMITVPA	'PHIAV	PE',T2	8,'IM1 PE'.TS	AVPE',	T45,'F	RMITVP(/4X.6()	E',T62	, , 2X1)	000 000 000	11780 11790 11500				<u> </u>	<u></u>		<u>.</u>	
ISN 06	59	C59	0FOF	NAT('	- <u>'</u> ,T11,	'RNRTV	'PE',T2	8,'IMF	TVPE'	′4X,2(F	-15.6,2	2X))		000 000	11810 11820					<u> </u>			
ISN CO	60	60	0 FCF ?	анатс". //	-',T11, 4X,4(F1	'RUDS'	,T28,'	I∪DS',	T45,'µ	DSR',1	[62, 'W	osi'		000 000 000	11830 11840 11350								
ISN C6	61	_c_	0 FOF	RIATE .	-`,T11,	'CI',T	28,'CR	',T45,	", ici, i	62, 'RC	;			000	1186 0 11870				· •·			. <u> </u>	
ISN 060	62	с 62	: 0FOF	., 11411 -	- <u>'</u> ,711,	'RRFF'	,T28,'	IRFF'/	'4X,2(F	15.6,2	2X]]			000 000 000	11890 11900_								
ISN C60	63	C 631	D FOF	•• • • •	-',T11, 79.'EP3	'RP10'	,T28,'	IP1U',	T45,'R	P2U',1	[62,'IF	P2U',		000 000	11910 11920								
ISN 050	64	_C		MATC -	· , T11,	'RP1L'	,T28,	IPIL',	T45,'R	P2L ⁻ ,1	62,'IF	2Ľ',		000 000	11940 11950								
ISN C66	65	с 65	?) FOR	T -') TAMS	/9,'RP3 -',T11,	'RCLU'	, IP3L	'/4X,6 ICLU',	(F15.6	,2X)) CLL',1	62,10	:LL'.		000 000 000	11950 11970 11980								
ISN 060	66	661		TI MAT('	79,'RCL -',Tll,	', T96, 'RCMU'	'ICL'/ ,128,'	4X,6(F ICHU',	15.6,2 T45,'R	X)) CHL',1	62,'10	:ML',		000	11990 12000								
ISN 066	67	_c	: 5 00:	LI SUMITS	·····			4X,6(F	15.6,2					000 000 000	12010 12020 12030					- 		. <u></u>	<u></u> .
ISN 066 ISN 066	58 69 70		K31 K31	TE(6,6	570) AA 500) AH	R(2), R(2),	AAI(2) AHI(2)	BAR(2), BA 2), BH	I(2) I(2)				000	12040								
ISN 063	71	с.	- 521	TE(6,7	700) AN	RK, AH	IK, BH	RK, 8H	IK					000	12070 12050						-		
IEN 06	72 73	670 	D FCR ? D FOR	- ' MATC' י/ יי אמדני:	-',T11, %%,4(F1 -',T11,	'AAR', 5.6,2%	T28,'A []] T28,'A	AI',T4 HI',T4	5, 'BAR	,T62,	'BAI'	_,,	<u></u>	000 000000	12090 12100_ 12110			<u> </u>					
ISH 06	74	69	? 	// MAT('-	X,4(F1	5.6,2X 'AARK')) ,T28,'	AAIK',	T45,'B	ARK',1	62 ,' 84	IK'		000 000	12120 12130								
ISN 06	75	70	ງີ໌FOR ?	יי - י זדגואו //	·X,4(F1 -',T11, •X,4(F1	5.6,2X 'AHRK' 5.6,2X	,T28,T	AHIK'',	T45,'B	нак 7, т	62,'BH	IIK'		000 000 000	12140 12150 12160								
ISN 06	76	с 	RET	URN				· · · ·						000	12170 12180								
25,7 00			**	' ***F () R T R	AN	CR	oss	RE	FER	ENC	; E	LIS	тін	G****								
B B	NTERNA 609 0 503 0	L ST/ 011 504	ATEMEN 0017 0306	0155 0506	0155 0507	0157	0512	0441 0513	_ 0513	0443	0446	0447	0459	0460	0461	0462	0465	0466	0503				
C0	615 0 005 0	616 009	0617 0017	0513	0430	0431	0432	0432	0433	_0433_	_0434	_0434_	_0435_	_0435	_0436_	_0437_	_0440_	_0441_	_0442_				
04 03 03	442 0 585 0 597 0	539 597	0443 0590 0597	0591 0597	0446 0594 0597	0447 0594	0447 0594	0503 0594	0506 0594	0512 0595	0512 0595	0512 0595	0512 0595	0513 0595	0513 0596	0513 0596	0513 0596	0514 0596	0515 0596				
_H00	005 0 005 0 506 0	017 449 507	0450	0451	0452	0453	0454	0455	0456	0459	0460	0461	0461	0462	0462	0465	0466	0503	0504				
I 00	004 0	020	0165	0165	0165	0166	0166	0166	0178	0179	0188	0198	0198	0199	0199	0202	0233	0239	0244		<u> </u>		^.

147

*VERSION 1.3.0 (01 MAY 60) UNST SYSTEM/370 FORTRAN H EXTENDED (ENHANCED) DATE 80.353/15.02.47 PAGE 22

*****FORTRAN CROSS REFERENCE LISTING*****

SYMBOL INTERNAL STATEMENT NUMBERS 0230 0231 0231 0231 0235 0235 0236 0236 0256 0257 0257 0257 0257 0257 0275 0276 0276 0276 0276 0276 0276 0290 0291 0291 0291 0335 0355 0355 0356 0366 0367 0367 0367 0004 0021 0022 0044 0045 0046 0046 0047 0047 0058 0042 0065 0074 0080 0083 0084 0084 0166 0166 C168 0168 C16B 0170 0170 C171 0171 0172 0172 0172 0173 0173 0173 0174 0174 0175 0175 0175 0176 0176 0199 0199 0201 0204 0204 0204 0205 0205 0205 0206 0206 0207 0209 0215 0216 0218 0224 0227 0239 0241 0242 0242 0242 0243 0243 0243 0247 0252 0261 0261 0262 0262 0265 0272 0294 0304 0305 0306 C307 0308 0309 0310 C311 0319 0320 0322 0324 0326 0327 0328 0329 0330 C331 0332 0333 0334 0335 0335 0337 0338 0339 0340 0341 0342 0343 0344 0344 0345 0346 0347 0348 0349 0350 0351 0352 0353 0379 0379 0381 0322 0336 0325 0337 0387 0388 0389 0390 0390 0391 0391 0392 0393 0489 0490 0491 0492 0526 0526 0527 0527 0523 0528 0528 0529 0529 0529 0531 0534 0535 0535 0536 0536 0543 0543 0544 0544 0562 0563 0602 0603 0604 0605 0606 0607 0608 0609 0610 0611 0612 0613 0615 0616 C617 C613 coe3 0004 0312 c313 0314 0315 c316 0317 0318 0319 0320 0321 0322 0323 0324 0325 0326 0326 0326 M 0337 0337 0333 0333 0339 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351 0352 0353 0354 0354 0355 0356 0358 0358 0359 0359 0359 0360 0360 0361 0361 0362 0362 0363 0363 0364 0364 0292 0333 0303 0333 0333 0333 0334 0334 0532 0532 0572 0573 0574 0575 0003 0004 0370 0371 0372 0373 0374 0375 0376 0376 0376 0377 0377 0377 0413 0479 0479 0480 0480 S 0487 0487 0487 0487 0488 0488 0488 0488 0017 0430 0431 0432 0433 0434 0435 0436 0437 0440 0441 0442 0443 0446 0447 0512 0513 0514 0515 0594 0594 0594 0595 0595 0595 0596 0596 0596 0597 0597 0597 AC 0139 0239 AO 0:00 0100 0160 0160 0161 0093 0326 0326 0327 0328 0329 0330 0331 0332 0333 0334 0335 0336 0337 0333 0339 0340 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351 0352 0353 0503 0506 0512 0513 0514 0524 0525 0525 0528 0529 CI 0525 0554 0553 0538 0003 03-0 0241 0242 0343 0344 0345 0346 0347 0348 0349 0350 0351 0352 0353 0354 0354 0354 0354 0356 0475 0476 0475 0476 0476 0476 0476 0476 0475 0033 0044 0045 0046 0046 0047 0047 0058 0062 0065 0074 0080 0083 0165 0165 0165 0165 0166 0166 00 0165 0166 0167 0167 0167 0167 0168 0168 0168 0168 0168 0168 0169 0170 0170 0170 0171 0171 0171 0171 0204 0205 0205 0205 0205 0205 0206 0205 0207 0207 0207 0238 0238 0239 0239 0240 0241 0241 0242 0242 0242 6143 6043 6043 6051 6061 6061 6062 6052 6062 6378 6378 6378 6378 6379 6379 6379 6379 6379 6386 `0∻92 0∻92 0∻92 0∻92 0∻92 0∻92 0∻92 0∻92 0497 0497 0498 0499 0490 04000 0400 0400 0400 0400 04000 04000 04000 04000 04000 04000 04000 04000 04000 040000 0400000 040000 0400000 04000 040000 04000 04000 04000 04000 04000 040 0500 0500 0503 0530 0530 0531 0532 0532 0533 0534 0534 0535 0535 0535 0536 0536 0536 0538 0371 0572 0572 0572 0573 0573 0573 0574 0575 CR 0527 0554 0603 CO 0031 0100 0105 0116 0123 0123 0374 0522 0523 0524 0524 0525 0525 DE 0007 0105 0116 0124 0124 0126 0378 0378 0378 0379 0379 0379 0380 0381 0383 0526 0527 0528 0529 6530 0530 0531 0531 0532 0533 0534 0542 0563 0566 0567 0023 0100 0103 0116 0122 0123 0124 0125 0126 0127 0128 0129 0130 0131 0132 0133 0134 0135 0136 nr 0137 0138 0102 0103 0104 0116 0125 0125 0182 0182 0183 0184 0184 0185 0192 0193 0194 0195 0203 0214 0225 __ ОТ 0243 0250 0268 0270 0296 0306 0307 0321 0334 0337 0347 0352 0032 0104 0116 0122 0122 0161 0295 0326 0328 0340 0343 0374 0483 0484 0522 0523 CU FC 0244 0244 0244 0245 0245 0245 0246 0246 0246 0247 0247 0247 0248 0248 0248 0249 0249 0249 0249 0250 0250

*VERSION 1.3.0 (01 MAY 80) UNST SYSTEM/370 FORTRAN H EXTENDED (ENHANCED) DATE 80.353/15.02.49 PAGE 23

			**	**⊁F 0	RTR	AN	CR	0 S S	RE	FER	ENC	Е	LIS	тін	G*****					
SYMBOL	INTER	NAL ST	ATEMEN	IT NUMB	ERS													-		
	C251	0251	0251	0252	0252	0252	0253	0253	0253	0254	0254	0254	0254	0255	0255	0255	0255	0257	0257	
	0257	0257	0259	0259	0260	0260	0231	0261	0261	0261	0261	0262	0262	0262	0262	0262	0265	0265	0203	
	0264	0264	0264	0265	0265	0265	0266	0265	0266	0267	0267	0267	0268	0268	0268	0269	0269	0269	0270	
<u></u>	_0270	0270	C271	_ 0271	0271	0272	0272	0272	0273	. 0273	0275	_ 0273	_0274	0274	0274		0276	. 02/6 .	0276	
	0276	0278	0278	0279	0279	0230	0280	0231	0281	0231	0282	0282	0282	0262	0283	0203	0203	0203	0204	
	0284	0264	0284	0285	0285	0285	0285	0286	0206	0236	6285	0237	0287	0287	0257	0208	0283	0285	0288	
•	0288	0289	0289	0289	0289	0289	0291	0291	0291	0291	0291	0409	0467	0467	0467	0407	0467	0407	0460	
	_C458	0468	0453	0468	0463	·							 		- 01 70		0170	-0170-		- une anno 18 - 18 - 18 - 18 - 18 - 18 - 18 - 18
FE	0003	0163	0164	0165	0165	0165	0165	0165	0106	0101	0103	0169	0170	0170	0170	0170	0170	0177	0177	
	0170	0171	0171	0171	0171	0171	01/1	01/1	01/1	0172	0172	0172	0172	0172	0172	0172	0172	0175	0175	
	0173	0173	0173	0173	0173	0173	0174	0175	0176	0177	01//	0177	01//	01//	01/6	01/5	01/8	01/0	0170	
	0178	0179	0179	0179	0179	0179	0179	0130	0180	0180	0160	_0180	_ 0130	0180	0160	0130	0100	. 0130	0101	
	0181	0181	0181	0151	0181	0181	0181	0151	0181	1610	0191	0181	0182	0102	0182	0132	0102	0102	0102	
	0182	0183	0183	0183	0133	0163	0183	0184	0184	0104	0184	0184	0184	0184	0184	0104	0104	0104	0105	
	C185	0185	0185	0185	0105	0185	0185	0185	0185	0165	0185	0185	0186	0186	0106	0105	0105	0100	0105	
	0187	0187	0187	0187	0187	0187	_0138	0189	0189	0188	0189	- 0189	-0189	.0189.	0190	0140	_0190	.0190	0120	
	0190	0190	0191	0191	0191	0191	0191	0191	0191	0192	0192	0192	0192	0143	0195	0104	0163	0103	0194	
	0194	0194	0194	0194	0194	0195	0195	0195	0195	0195	0195	0195	0196	0196	0196	0196	014/	0134	014/	
	0197	0204	0204	0204	0205	0205	0205	0206	0206	0206	0207	0207	0207	0203	0208	0209	0209	0210	0210	
	0211	0211	_0212	_ 0212	_ 0213	0213	0214	_0214.	0215	_ C215	_ 0216	. 0216	_ 0217	0217	0218	0218	0219	- 0219-	0220	
	0220	0221	0221	0222	0222	0223	0223	0224	0224	0225	0225	0226	0226	0227	0227	0292	0242	0242	0243	
	0243	0243	0244	0244	0245	0245	0245	0246	0246	0247	0247	0248	0248	0249	0249	0250	0250	0250	0251	
	0251	0252	C252	0253	0253	0261	0261	0261	0262	0252	0262	0263	0263	0264	0264	0265	0205	0200	0620	
_	_0267	0267	0268	0268	0269	0269	_0270_	0270	0271	0271	. 0272	0272	_ 0405	0471	0471_	_04/1_	_04/1.	04/1_	_04/1_	
	0471	C471	0471	0471	0472	0472	0472	0472	0472	0472	0472	0472	0472	0472					000/	
FM	0003	0158	0199	0200	0201	0202	0203	0204	0204	0204	0204	0204	0205	0205	0205	0205	0205	0206	0206	
	0206	0206	0206	0207	0207	0207	0207	0237	0208	0208	0208	0209	0209	0209	0210	0210	0210	0210	0211	
	_ C211	0211	_0212	0212	0212	0212	0213	0213	0213	0214	0214	0214	_ 0215.	_ 0215.	_ 0215_	_0216_	_0216	_ 0216.	_ 0217_	
	0217	0217	C213	0213	0215	0219	0219	C219	0220	0220	0220	0220	0221	0221	0221	0221	0222	0222	0222	
	0223	0223	C223	0224	0224	0224	0225	0225	0225	0226	0226	0226	0227	0227	0227	0228	0228	0228	0220	
	0228	0229	0229	0231	0231	0231	0231	0233	0233	6233	0233	0234	0254	0234	0234	0235	0440	0235	02.50	
	0236	0254	0254	_ 0255	0255	0257	0257	_ 02/3	_ 0275	_ 0274	0274	_ 0276	_0276_	0408_		_0469_	_0464	0409	_0409_	
	0459	0467	0469	0470	C470	C470	6470	04/0	0470	0470	0470									
IC	0004	0523	0555	0559	0560	0561	0655													
II	0427	0428	0501	0000										0575	457/	057/	0574	0574	0574	
LC	0003	0004	0415	0530	_ 0531	0532	_ 0533_	0534	_ 0535	_ 0535	_ 0535	_ 0535	-0535	- 0535	- 0536-	-0536	0535	0530	- 0536-	
	0537	0537	0538	0539	0539	0539	0539	0539	0540	0540	0540	0540	0541	0541	0541	0542	0542	0542	0543	
	0543	0543	0543	0543	0544	0544	0544	0544	0544	0545	0545	0546	0546	0547	0547	0547	0547	0540	0540	
	C548	0548	0549	0549	.0549	0550	0550	0550	0551	0551	0551	0551	0551	0552	0552	0552	0552	0252	0552	
	C553	0553	0353	_0553	- 0553	0553		0554	0554	0554	- 0555	- 0555	_0595	_0226			_0220_			
	0557	0557	0557	0557	0528	0558	0553	0558	0559	0559	0559	0019	070/	670/	070/	070/	0704	0707	0727	
LM	0003	0004	0378	0379	0300	0381	0333	0384	0385	0326	0586	0306	0356	0386	0306	0300	0300	0307	0307	
	0337	0387	0537	0337	0337	0307	0333	0508	0303	0308	0389	0389	0309	0209	0390	0707	0390	0300	0370	
	0390	0390	_0590	0391_	0391	. 0391	. 0391	-0391	-0391.	- 0391	- 0391	- 0392	- 0392	0392	- 0392	-0704-	- 0393	- 0393	- 0373	
	0394	0394	0394	0394	0394	0395	0395	0395	0395	0395	0395	0396	0396	0396	0390	0396	0/01	0/01	0402	
	0378	0398	0398	0393	0399	0399	0399	0399	0399	0400	0400	0400	0400	0400	0401	0501	0401	0501	05402	
	0402	0.402	0402	0414	0535	0535	0535	0536	6560	0535	0537	0527	V237	0540	0540	0541	0541	0546	0560	
	0545	0545	0545	- 0544	_ 0544	0544	U_55_6	/	<u>v54/</u>	0548	0248	0249	0547	_0320		0.200	0.00		_0.000_	
	0561	0561	0561	0561																
CM	0004	0034	0045	0047	0047	0074	0080	0083												
MI	0004	0014	0026	0027	0054	0114														
MT	0004	0013	_0025	0114																
'Hn	0004	0035	0044	0046	0046	0058	0062	0065												
FD	0029	0031	0115	0132	0132	0370	0528	0529												
PE	C085	0087	0115	0133	0133	0528	0529													
PI	0012	0602	0603	0604	0605	0615	0616	0617	0618										·	

149

*VERSIO	พ 1.3.	0 (01	MAY 80)	UNST	SYS	TEM/37	0 FORT	RAN H	EXTEN	DED (EM	HANCED)) (ATE 80	.353/1	5.02.4	9	PAGE	24		
			¥ ¥	***F O) P. T. R	A N	CR	oss	RE	FEF	RENC	: Е	LIS	тін	G****	í					
SYMBOL	INTER	KAL ST	ATENEN	IT NUCE	SERS																
PT	0025	0135	0134	0134	0203	0295															
ະບ	0024	0029	0115	0131	0131	0295	0369	0370	0370	0372											
2C	0529	0555	0359	0530	0561	0633															
re 🛛	0035	C057																			
IE	0091	0146	0146	0378	0373	0530	0332	0530	0533	0562	0563									 	
IS	0093	0371																			
םי	0099	0100	0103	0143	0148	0522	0523	0524	0524	0525	0525	6528	0529								
′Ε	0090	0145	0145	0379	0379	0351	0332	0531	0534	0562	0563										
U	0073	0107	0147	0147	C161	0293	_ C295_	0326	0327	0328	0328	0329	0330	0331	0332	0333	0334	0335	0336	 	
	0337	0338	0339	0340	0341	0342	0343	0543	0344	0345	0346	0.747	0348	0349	0350	0351	0352	0353	0522		
	0523						-														
S	0005	0434	0435	0446	0446	0447	0447	0465	6456	0503	0506	0512	0512	0573	0513	0588	0588	0589	0589		
	0530	0570	0591	0591	0594	0594	0594	0594	0595	0595	0595	0595	0596	0596	0596	0596	(.597	6597	0597	 	
	0597									•••	00/0	• • • • •	00.0		0270	0370		0.577	•••		
AL I	0003	0603	C 607	0668																	
78	0003	0602	6506	0663																	
4CE	0005	0154	0150	0162	0378	0370	0379	0170	0170	0370	0347	0507	0504	0530	0530	0531	0537	0512		 	
UT .	0013	0410	0616	0460	03/0	03/0	03/0	03/7	0377	03/7	0101	0505	0500	0550	0550	0531	0551	0552			
420	0003	0610	0615	0649																	
11.1 1.1 T	0003	0605	0409	0663																	
<u> </u>	00003	0.01	04.03	0643	··· — · · · - —										·					 	
-1.K	0007	0.004	0410	0:40																	
.nii 2017	6007	013	0417	0009																	
100	00003	0014	0071	0007	0070	0070	0070														
	-0041	0000	0071	0071	- 0072	_ 00/9	~ 00/9-	- 0082	0082											 	
	0047	00/0	0095	0355	0054	0001	0091	0064	0004												
510	0045	0047																			
	0042	0046	00/-		A1 7 A																
	00000	10002	- 00055	01/0	01/0	01/1	- 01/1	_ 0172	0172	- 01/3	_ 0173	- 0204	-0204	0205	_ 0205	_0206	C206	_0207_	0207_	 	
	0076	0242	6243	0170	CLOI	0201	6162	6202	0403	0491	0491	0492	0492	0499	0499	0500	6500				
114	0054	0001	0004	0170	0170	01/1	0171	0172	01/2	0173	01/5	0204	0204	0205	0205	0206	0206	0207	0207		
	0071	0242	0245	0245	0201	0.51	0262	0.262	0405	0491	0491	0492	0492	0499	0499	0500	0500				
21	- 00/1	0030		- 0505	- 03.53	. 0.337	- 0207	0390	0.390	0391	-0391	0535_	_0535	0536	_0536_	0543	0543_	_0544_	0544	 	
	0252	0102	0503	دەدە	0570	010	0571	0571													
24	0072	0079	0032	0550	0100	0387	0557	0390	0390	0241	0391	0555	0535	0536	0536	0543	0543	0544	0544		
	0552	0552	0000	0265	0570	0570	0571	0571													
.05	- 0007	0029	0034	0035	0035	0037	0038	0039	0039	_0039	0090	_0090	_0091	0106	0108	_0110	_ 0111	_0111	_ 0163_	 	
	0155	0156	6103	0109	0149	0201	0239	03/8	0378	0379	0379	0379	0379	0331	0383	0383	0383	0384	0385		
	0430	1-32	0454	0.125	0440	6940	0441	0442	0442	0442	0443	0443	0446	0449	0452	0453	0456	0459	0459		
	0450	0-51	0401	0451	0962	6455	0491	0491	0491	0492	0452	0492	0497	0493	0499	0499	0500	0020	0503		
	-0504	- 0512	- 0514	0514	. 0515	0516	- 0528	0529	_ 0530	_0531	_ 0531	0532	0562	_ 0562	0562	_0563_	_0563	_0563	0568_	 	
	0.59	0570	05/0	0571	05/1	0572	0573	0282	0583	0584	0565	0586	0587	0590	0590	0591	0591	0596	0596		
	0596	0370	0575	0597	6597	0597	0597	0597													
111	0045	0055	00/1	0072	0079	0079	0082	0082													
010 10	0044	0045	0053	_ 0054	_ 0051	_0061_	_0054_	_0064_												 	
	0.047	0056	00/1	0079	0382																
120	0045	0048	0053	0061	0054																
-112	0003	0563	029+	0295	0297	0297	0297	0297	0298	0298	0298	0299	0299	0299	0299	0299	0300	0300	0301		
	0301	0301	0301	0302	_ 0302	0303	0303	0303	0303	_0304	_0304	0304	_0304	_0305	_0305	_0305	0305	_0306_	_ 0306_	 	
	0306	0306	0307	0307	0307	0307	0308	0308	0309	0309	0309	0309	0310	0310	0311	0311	0311	0311	0312		
	0312	0312	0312	0313	0313	0313	0314	0514	0314	0315	0315	0315	0316	0316	0316	0317	0317	0317	0318		
	0318	0318	0319	0319	0319	0320	0320	0320	0321	0321	0321	0322	0322	0322	0323	0323	0323	0324	0324		
	0324	0325	0325	0325	0326	0327	0328	0329	0330	0331	0332	0333	_0334	_ 0335	0336	_0337	_0338	_0339_	0340_	 	
	0341	0342	0343	0344	0345	0346	0347	0348	0349	0350	0351	0352	0353	0410	0478	0478	0478	0478	0478	 	
	0478	0478	0478	0478	0478	0478	0478	0478	0478												
RE	0162	0378	0379	0383	0383																
ICL	0004	0593	0603	0616	0642																

:

*****FORTRAN CROSS REFERENCE LISTING*****

SYNBOL_	INTER	INAL ST	TATEMEN	it nuitz	SERS															 		
ICM	0004	0599	0605	0618	0543																	
KD\$	0004	0005	0030	0095	0099	0114																
MUS	0004	0005	0029	0097	0098	0114	0370	0371	0373	0375												
MXD	0004	0036	0041	0045	0045	0680	0083															
MXU	0004	0037	0040	0044	0044	0062	0065															
HYD	0004	0004	0033	0043	0045	0347	0074	0080	0083													
мүн	0004	0004	8039	0042	0044	0046	0058	0062	0065													
PTH	0026	0028	0115	0130	0130	0202	0050	USUL	0000													
EC1	-0502	0602	-0615	0662	_****.	_ •••••																
RCL CCM	0572	04 04	0015	0046																		
RUN DEU	0000	0004	0017	0040			0100		A 7 7 A													
REV	0039	0090	0071	0092	0108	0109	0109	0378	0378	0379	05/9	0383	0526	0528	0529	0550	0551					
SIN	_0036	0037	.0091	_ 0110	0165	0165	0167	0170	0170	0170	-01/1-	_01/1	_01/1	_0172	01/2	01/2	01/3	. 0173_	_01/2_	 		
	0193	0200	0204	0204	0204	0205	0203	0205	0206	0205	0206	0207	0207	0207	0238	0242	0242	0242	0243			
	0243	0243	0261	0261	0251	0262	0262	0252	0373	0378	0320	0383	0333	0334	0386	0386	0386	0387	0387			
	0337	0338	0339	0390	0350	0390	0391	0371	0391	0392	0393	0431	0433	0435	0437	0441	0443	0447	0450			
	0451	0454	0.155	0460	0462	0452	_ 0456 _	0471	_0491	_0491_	_0492	_0492_	_ 0492_	0497_	_ 0498	_0499	0499	_0500_	_0500			
	C504	0506	0507	0507	0513	0515	0530	0532	0535	0535	0535	0536	0536	0536	0538	0543	0543	0543	0544			
	0544	0544	0545	0562	0562	0552	0563	0563	0563	0568	0569	0570	0570	0571	0571	0572	0573	0582	0583			
	0534	0585	0526	0587																		
SSI	0094	0101	0117	0139	0139	0163	0165	0167	0167	0167	0168	0163	0168	0198	0199	0200	0201	0238	0239			
	0240	0241	0263	0493	0494	0495	0495															
SST	0095	0101	01.05	0107	0117	0140	0140	0164	0166	0180	0180	0181	0182	0182	0183	0190	0191	0192	0193			
	0203	0208	0214	0219	0225	0246	0248	0244	0296	0306	0307	0321	0330	0334	0345	0351	0473	0474				
6611	00007	0200	0117	0143	0143	02903	0270	0171	0270	0375	0491	0482	0483	0404	0040	0301	0475	04/4				
	-0010	- 0011	00117	0077	0145	0145	-01/1-	0145	0144	0144	0144	0144	0147	0147	0147	0147	0168	0146	0149	 	· · · · ·	
IAU	0010	0011	0011	0055	0105	0100	0105	0105	0100	0100	0100	0100	0107	0107	0107	0107	0100	0100	0100			
	0158	0109	0170	0170	0170	01/1	01/1	0171	01/2	01/2	0172	01/5	01/5	01/5	0158	0193	0173	0199	0179			
	0199	0200	0200	0201	0201	0204	0204	0204	0205	0205	0205	0206	0206	0206	0207	0207	0207	0233	0238			
	0239	0239	0240	0241	0242	0242	0242	0243	0243	_ 0243	0261_	0261	_0261_	0262	_ 0262	_0262	_03/8_	_0378_	_0378_	 		
	0378	0379	0379	0379	0300	0300	0351	0331	0333	0333	0353	0384	0335	0356	0385	0386	0387	0357	0387			
	0363	0389	0390	0390	0390	0391	0391	0391	0392	0393	0491	0491	0491	0491	0491	0491	0491	0491	0492			
	0492	0492	0492	0492	0492	0492	0492	0497	0497	0497	0498	0498	0498	0499	0499	0499	0499	0499	0500			
	0500	0500		0500	_0530	0530	0531_	_0531	_0532	_0533_	_0534	_0535_	_0535_	_0535_	_0536_	_0536_	_0536	_0538_	0543			
-	0543	0543	0544	0544	0544	0545	0562	0562	0562	0562	0562	0562	0562	0562	0563	0553	0563	0563	C563			
	0563	0563	0563	0568	0558	0568	0569	0569	0569	0570	0570	0570	0570	0570	0571	0571	0571	0571	0571			
	0572	0572	0572	0573	0573	0573																
TDS	0030	0031																				
TIN	0027	0028																				
USI	0489	0490	0629																			
0.02	0487	0430	0629																			
VEL	0117	0157	0157	0366	0144	0169	0168	0169	0010	0100	0201	0230	0241	1491	0402							
VIT	-0111 -044F-	0064	01.53	- 0100	-0100-	- 0100-	- 0400-		0177	0177	_0201_						~					
V11 V10	0444	0447	0-107	0.400	0407	0470	04/1	0472	0473													
A T K	0494	0465	0467	0468	0409	0470	04/1	0472	0021													
V21	0447	0465	0475	0476	0477	0478	0631															
V2R	0346	0465	0475	_0476	0477	0478	0631		··											 		
V3I	0520	0527	0529	0632																		
VIR	0521	0526	0528	0632																		
KOS	0100	0528	0529																			
AAIK	0607	Có70																		 		
AARK	0606	6670																				
AHIK	C611	0671																				
AHRK	0610	0671																				
EAIK	0609	0670																				
RASK	0608	0570		-																 		
PHTK	0613	0671																				
PUDK	0612	0671																				
DTOT	0010	0032	0102	0124	0124																	
10101	0014	26.00	U I U Z	NTCO	V160																	

			**	***F C	RTR	A N	CR	0 5 5	RE	FER	ENC	Ε	LIS	ΤΙΝ	G****							
SYMBOL_	_INTER	NAL ST	ATENEN	IT NUME	EPS	···· - ··· 	<u> </u>													 		
FLC:	0161	0.504	0305	0318																		
TALE	0004	0437	6450	0525	0528	0622																
TCLU	0004	0509	0573	0542																		
- <u>1010</u>	0004	0507	0575.	- 0642																 		
TON	0204	0595	0599	0643																		
1003	0004	0450	0455	0523	0524	0527	0520	0627														
THAP	0004	0435	0451	0475	0476	0477	0478	0524	0528	0621												
THOP	0004	0459	0471	0472	0473	0475	0476	0477	0478	0627										 		
IT:PP	0004	0473	0475	C476	0477	0478	0576	0578	0625													
INSP	0004	0459	0505	0513	0629	• · · -																
IFDS	0004	0406	0408	0523	0580	0625																
ĨP1L	0004	0583	0591	0597	0641													<u> </u>				
IPIU	0004	0576	0502	0533	C589	0595	0640															
IF2L	0004	0585	0571	0597	0641																	
1520	0004	0578	05\$4	0335	_ 0389_	_ 0595_	_0640													 		
IP3L	0004	0537	0591	0597	0641																	
IFIU	0004	0530	0585	0587	0539	0595	0640															
ICFF	0004	0559	0500	0361	0572	0573	0639															
ISSP	_0034	0467	0459	04:0	0471	0472	_ 0,475_	_0476_	_0477_	_0478_	_0623_									 		
1005	6004	0523	0524	0328	0529	0637																
1450	0004	0550	0552	0562	0262	0563	0563	0563	0568	0569	0570	0570	0571	0571	0633							
IV: U HCDT	0004	0471	04-1	0491	0491	0492	0492	0492	0497	0498	6499	0499	0500	0500	0633							
N10F	-0004	- nabe -	- 0016	0075							<u></u>									 ······		
MODE	6004	0005	0014	0035	0037	0037	0030															
DIOT	0004	0000	00007	0.025	0025	00.55	0135	6135														
RUDT	0229	0231	0233	0231	0280	0203	0282	0283	0286	0285	0284	0287										
BACE	0436	0449	0527	0529	0622		_0.002_	_0.03_	_0.04	_0.00	_0,200_									 		
RCLL	0590	0592	0542																			
RCLU	0523	0592	0542																			
RCHL	05:76	0598	0643																			
80110	0594	0593	0343																	 		
REDS	0479	0485	0502	0525	0526	0528	0627															
R3 1.S	0018	0019	0028	0031	0037	0038	0094	0095	0096	0097												
EUAP	_0434	0452	0475	0475	_ 0477	0478_	_0525	_ 0529_	_0621													_
RHDP	C470	C471	0472	0474	0475	0476	0477	6478	0627													
RICPP	0474	0475	0476	6477	0473	0577	0579	0625														
RHSP	C490	0503	0512	0529																		
103	-0385	0387	-0529	- 0531	0625_															 	·	
TE TE	0512	0,590	0575	0541																		
SP10	0577	0252	0000	0535	0394	0640																
2021	0579	0500	05/3	0041	0504	0440																
	- 0574	0820	0535	0558	0574							• • • • • • • • • • • • • • • • • • • •			·					 	·	
6.21	0581	0576	0555	0542	0594	0440																
RDFF	0555	0560	0561	0572	0573	0639																
RCSP	0468	0469	6476	0471	0472	0475	0476	0477	0478	0623												
rubs	CE22	0525	C528	C529	6637															 		
RV2D	0351	0562	0562	0562	0563	0563	0563	0568	0569	0570	0570	0571	0571	0633								
RVFU	0472	0491	0491	0491	0492	0492	0492	0497	0493	0499	0499	0500	0500	0633								
SCRT	0053	0061	0064	0071	0079	0082	0063	0094	0095	0096	0097		_						_			
-TTOT	C 005	0019	0027	0030	- 0086	0038	0094	0095	0096	0097										 		
UNST	0002																					
VOL1	00(5	0155	0155	0167	0167	0167	0167	0168	0168	0168	0168	0174	0174	0176	0200	0200	0201	0201	0209			
	0215	0218	0224	0240	0241	0247	0265	0407												 		

*VERSION 1.3.0 (01 MAY 80) UNST SYSTEM/370 FORTRAN H EXTENDED (ENHANCED) DATE 80.353/15.02.49 PAGE 26

HENNET DI TITALIN UNERSIS VUIDI INTERNIA TATIENTA INTERNA UNERSIS VUIDI INTERNA INTERNA UNERS	*VERSIO	N 1.3.	0 (01	MAY 80)	UNST	SYS	TEM/37	3 FCRT	RAN H	EXTEND	ED (EN	HANCED	ם גו	ATE 80	.353/1	5.02.4	9	PAGE	27		
9Y:30.1 111Emuli 1571211111 1115 0350 0350 0330 0320 033				**	***F 0		AN	СR	0 5 5	R E	FER	ENC	E	LTS	тти	G****						
V012 0250 0156 0254 0320 <td< td=""><td>_SYMBOL_</td><td>INTER</td><td>NAL ST</td><td>ATENEN</td><td>T NUMB</td><td>ERS _</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>• </td><td></td><td></td><td></td><td></td><td></td><td> </td></td<>	_SYMBOL_	INTER	NAL ST	ATENEN	T NUMB	ERS _										• 						
0320 0330 0336 0336 0337 0336 0336 0331 0336 0334 0336 0336 0336 0336 0336 <td< td=""><td>VOL2</td><td>0005</td><td>0156</td><td>0156</td><td>0294</td><td>0304</td><td>0305</td><td>0306</td><td>0307</td><td>0308</td><td>0309</td><td>0319</td><td>0320</td><td>0322</td><td>0326</td><td>0327</td><td>0328</td><td>0329</td><td>0330</td><td>0331</td><td></td><td></td></td<>	VOL2	0005	0156	0156	0294	0304	0305	0306	0307	0308	0309	0319	0320	0322	0326	0327	0328	0329	0330	0331		
VULD 0230 0137 0130 0531 0534 0529 0529 0529 0533 0534 VLLT 0335 0446 0437 0645 0535 0645 0533 0646 0537 VLST 0445 0445 0645 0650 0646 0650 VLST 0446 0646 0650 0650 0646 0650 VLST 0646 0646 0650 0646 0650 0650 VLST 0646 0651 0511		0332	0333	0334	0335	0336	0337	0338	0339	0340	0341	0342	0343	0344	0344	0345	0346	0347	0348	0349		
1121 033 0434 0435	1013	0005	0157	0157	0383	0380	0381	0381	0384	0526	0527	0528	0528	0529	0529	0533	0534					
1/12 0439 0446 0464 0467 0464	VIAT	0439	0445	0455	0464	0630		_0.001_	_0004_	_ 0.220_		0520_	0500_		_ 0527_	0555_	_0554_	•				
VIST 0441 0445 0450 0453 0454 0453 0454 0453 0454 0453 0454 0453 0454 0453 0454 0453 0454 0453 0454 0453 0453 0530 <th< td=""><td>VIAR</td><td>0439</td><td>0444</td><td>0457</td><td>0463</td><td>0630</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	VIAR	0439	0444	0457	0463	0630																
V12E 0440 0446 0455 0466 0520 V12E 0442 0444 0451 0436 0630 V12E 0442 0444 0611 0631 0631 V12E 0447 0514 0615 0631 0631 V12E 0547 0516 0512 0632 0521 0632 V12E 0547 0516 0521 0632 0537 0637 0637 0637 0637 0637 0637 0637 0637 0536 0637 0536 0637 0536 0637 0536 0537	VIBI	0441	0445	0450	0464	0630																
Click Click <td< td=""><td>V107</td><td>_0440_</td><td>_0444 .</td><td>. 0459</td><td>_0463.</td><td>_ 0630_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td> </td></td<>	V107	_0440_	_0444 .	. 0459	_0463.	_ 0630_																
V317 0326 0517 0527 0512 0521 0633 V327 0507 0512 0521 0522 0522 0524 0526 0526 0527 0515 0527 0515 0527 0515 0527 0515 0527 0527 0535 0516 0527 0537 0535 0516 0527 0537	VICI	0443	0445	0462	0464	0630																
V331 C503 0521 0521 0521 0531 V332 C504 0514 0521 0532 0532 V327 0130 0517 0535 0532 0537 0536 0522 0537 V337 0130 0517 0535 0526 0527 0526 0537 0337 0036 0035 0039 0039 0090 0091 0091 0106 0108	VIAL	0306	0513	0520	0631	0000																
V321 C507 0512 0520 0521 0522 V322 C544 0544 0514 0521 0532 V323 C547 0530 0517 0520 0524 0528 0523 0537 0530 0637 V037 0510 0524 0526 0537 <t< td=""><td>V3AR</td><td>0503</td><td>0512</td><td>0521</td><td>0631</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td> </td></t<>	V3AR	0503	0512	0521	0631																	
V3:E C504 O514 O521 C512 O521 O522 O524 O525 O517 O524 O524 O524 O524 O524 O537	V3BI	C507	0515	0520	0632																	
V3CR 053 0514 0512 0532 0533 0534 0524 0525 0537 0534 0525 0537 0534 0524 0525 0537 0536 0035 0037 0033 0039 0090 0090 0091 0091 0016 0106 0108	VER	0504	0514	0521	C532																	
1031 0000 0000 0000 0000 0001	VICI	0598	0517	0521	0652																	
LDSE 0525 0527 0527 0527 0527 0527 0527 0527 0537 0035 0035 0036 0039 0039 0039 0090 0090 0091 0091 0106 0106 0106 0106 0107 0379 0377 0379 0377 0379 0377 0370	UDST	0505	0516	0523	0632																	
ALFCH 0005 0007 0023 0034 0039 0039 0039 0039 0090 0091	KOSR	0525	0527	0329	0637																	
0110 0110 0110 0111 0163 0165 0165 0165 0166 0167 0160 0190 0190 0200 0201 0238 0239 0378 0378 0378 0378 0378 0378 0378 0378	ÁLFCH	0005	0007	0020	0034	0035	0036	0036	0037	0037	0038	0038	0039	0039	0090	0090	0091	0091	0106	0108		
0378 0373 0379 0379 0379 0379 0379 0379 0330 0331 033 033 033 033 033 033 033 0	,	0110	_0110	_0111_	_ 0111	0163	0165	0165	0166	0166	0167	0168	0198	0199	0200	0201	_0238_	_ 0239_	_0378_	_0378_		
C443 0443 0443 0443 0443 0443 0443 0443 0443 0443 0443 0443 0444 0441 0442		0378	0373	0379	0379	0379	0379	0330	0381	0303	0363	0383	0383	0383	0334	0384	0440	0441	0442	0442		
ASTAR CCC5 D125 D126 D126 <thd126< th=""> D126 D126 <th< td=""><td></td><td>0532</td><td>0445</td><td>0459</td><td>0450</td><td>0401</td><td>0391</td><td>0462</td><td>0402</td><td>0594</td><td>0596</td><td>0514</td><td>0515</td><td>0525</td><td>0528</td><td>0529</td><td>0530</td><td>0530</td><td>0531</td><td>1550</td><td></td><td></td></th<></thd126<>		0532	0445	0459	0450	0401	0391	0462	0402	0594	0596	0514	0515	0525	0528	0529	0530	0530	0531	1550		
0445 0446 0447 0445 0445 04461 0461 0461 0461 0462 0462 0465 0466 0333 0503 0504 0504 0512 0513 0513 0513 0513 0513 0513 0513 0514 0514 0514 0514 0514 0524 0227 0252 0272 AVCD1 0128 0128 0128 0126 0334 0326 0529 0529 0529 0529 0529 0216 0216 0218 0227 0406 AVGV1 0153 0151 0529 0529 0216 0218 0227 0406 XVGV2 0164 0151 0151 0526 0529 0529 0529 0250 0526 0529 0530 0531 0531 0131 0322 0324	ASTAR	0005	0100	0155	0156	0157	0153	0159	0160	0430	0431	0432	0433	0434	0435	0436	0437	0440	0441	0442		
0533 0504 0566 0506 0507 0512 0513 0513 0514 0515 0224 0227 0222 0224 0224 0224 0227 0406 AVGV1 0150 0154 0151		0443	0445	0447	0449	0450	0451	0452	0453	0454	0455	0456	0459	0460	0461	0461	0462	0462	0465	0466		
AVC01 C133 0127 0127 0127 0126 0126 0220 0221 0222 0227 0222 0227 AVC02 0104 0128 0128 0126 0126 0126 0126 0227 0222 0227 0226 0227 0226 0227 0226 0227 0226 0227 0226 0227 0226 0227 0266 0227 0266 0227 0266 0227 0266 0227 0266 0227 0266 0227 0266 0227 0406 AVC02 0107 0150 0150 0150 0167 0176 0176 0176 0176 0176 0176 0176 0120 0210 0216 0218 0227 0406 AVC02 0107 0150 0150 0150 0167 0176 0176 0176 0176 0176 0176 0176 0176 0176 0176 0120 0216 0218 0227 0406 AVC02 0107 0150 0150 0167 0167		0503	0503	0504	0506	0506	0507	0512	6512	0513	0513	0514	0515									
AVGD2 0124 0128 0126 0334 0335 0346 0332 0324 0338 0351 AVGD2 0105 0129 0120 0130 0149 0149 0167 0163 0163 0163 0164 0175 0176 0176 0200 0201 0209 0216 0218 0227 0406 AVGV2 0107 0150 0294 0339 0310 0311 0322 0324 AVGV3 0108 0151 0151 0153 0236 0529 0529 0529 0520 0529 0529 0520 0529 0520 0524 0406 0416 0442 0443 0459 0459 0379 0379 0383 0526 0529 0530 0531 0550 0556	AVGD1	0103	0127	0127	0167	0167	0168	0168	0175	0175	0176	0176	0200	0201	0215	0216	0224	0227	0252	0272		
AXSUS 0129 0127 0126 0127 0126 0127 0126 0121 0120 0216 0216 0227 0406 AVGV1 0105 0151 0150 0230 0331 0130 0310 0310 0310 0320 0324 0229 0216 0218 0227 0406 AVGV2 0107 0150 0150 0230 0330 0310 0310 0310 0328 0376 0379 0383 0526 0528 0529 0530 0531 ETAT 0050 0101 0440 0442 0443 0459 0460 0461 0462 0504 0516 0550 0590 0597 0597 0597 0597 0597 0597 0597 0597 0597 0597 0597 0597 0597 0597	AVGD2	0104	0128	0128	-0304	0305	0306	0307	0310	_0311.	0319	_0320_	_0324	0338_	_0351_							 ·
AVGV2 0107 0150 0294 0330 0310	ANGUS IVOVI	0105	0129	0129	0320	0167	0169	0526	0327	0223	0320	0529	0229	0201	0209	0216	0218	0227	0404			
AVGV3 0108 0151 0151 0330 0381 0528 0523 0529 0529 ETTAL 0005 0020 0335 0037 0106 0110 0111 0163 EETA2 0005 0007 0034 0036 0038 0039 0090 0091 0108 0378 0378 0379 0383 0526 0528 0529 0530 0531 COT:N 0451 0452 EETA 0005 0010 0440 0441 0442 0442 0443 0459 0460 0461 0462 0504 0507 0514 0515 0590 0590 0591 	AVGV2	0107	0150	0150	0294	0303	0309	0310	0311	0322	0324	• • • •	0200	0001	0207				0.00			
ETA1 0005 0020 0037 0166 0110 0111 0163 EETA2 0005 0007 0034 0036 0033 0030 0091 0108 0378 0379 0383 0526 0528 0529 0530 0531 COTXM 0440 0441 0442 0443 0443 0459 0460 0461 0462 0504 0507 0590 0590 0590 0591	AVGV3	0108	0151	0151	_0330	_0381_	0528	_0523_	0529	_0529_												
EE1A2 0005 0307 0036 0036 0036 0036 0036 0037 0108 0379 0379 0383 0526 0529 0530 0531 C0TAN 0431 0462 0440 0441 0442 0443 0443 0459 0460 0461 0462 0504 0507 0590 0590 0590 0590 0591 0590	ÊSTA1	0005	0020	0035	0037	0106	0110	0111	0163													
CUTAN 0431 0442 0442 0443 0443 0459 0460 0461 0507 0514 0515 0590 0590 0591 0591 0596 0596 0596 0596 0597 0597 0597 0597 FM23A 0295 0302 0303 0316 0024 0024 0025 0025 0025 0026 0027 0029 0030 0032 0032 0085 0085 0085 0265 0063 0034 0094 0095 0095 0096 0097 0097 0102 0163 0164	BETA2	0005	0007	0034	0036	0038	0039	0070	0091	0108	0378	0378	0379	0379	0383	0526	0528	0529	0530	0531		
0391 0596 0596 0596 0597 0102 0102 0102 0163 0164 0164 0164 0164 0164 0164 0164 0164 0164	DELTA	0451	0452	በፊፊስ	0441	0442	0442	0443	0443	0459	0440	0461	8462	0504	0507	0514	0515	0590	0590	0591		
FH23A 0295 0302 0333 0316 GANMA C015 0024 0024 0025 0025 0025 0026 0026 0027 0029 0030 0032 0032 0035 0085 0085 0085 0255 0028 0024 0029 0037 0102 0102 0163 0164 0163 0163 0163	OLLIA	0591	0596	0595	0596	0596	0596	0597	0597	0597	0597	0597	_0402	_0504	_0207_				_03/0_	_0.7,1_		
GANMA C015 0.324 0.024 0.024 0.025 0.025 0.026 0.026 0.027 0.029 0.030 0.032 0.032 0.035 0.085 0.085 0165 0166 0167 0167 0167 0166 0168 0163 0174 0175 0175 0176 0163 0164	FM23A	0295	0302	0303	0316																	
0025 0033 0034 0094 0095 0095 0096 0097 0097 0102 0102 0103 0163 0164 0164 0164 0165 0166 0167 0167 0167 0168 0168 0168 0174 0174 0175 0176 0176 0176 0369 0369 0370 0370 0370 0370 0371 0371 0371 0371 0372 0373 0374 0374 0375 0483 0484 0495 0496 0566 0567 IMAPI 0004 0431 0455 0467 0468 0469 0470 0471 0472 0621 INAPT 0004 0433 0434 0467 0468 0469 0470 0471 0472 0475 0476 0477 0478 0621 INOPT 0004 0433 0456 0628 INOPT 0004 0478 0400 0482 0523 0627 IMAPI 0004 0462 0484 0488 0578 0626 IMAPI 0004 0462 0484 0488 0578 0625 INOPT 0004 0462 0484 0488 0578 0625	GANMA	C015	0324	0024	0024	0025	0025	0025	0026	0026	0026	0027	0029	0029	0030	0032	0032	0085	0085	0085		
0155 0166 0107 0187 0187 0188 0188 0183 0174 0174 0175 0175 0176 0176 0369 0369 0370 0370 0370 0370 0371 0371 0371 0371 0372 0372 0373 0374 0375 0483 0484 0495 0496 0566 0567 IMAPI 0004 0433 0435 0467 0468 0469 0470 0471 0472 0621 IMAPI 0004 0433 0434 0467 0468 0469 0470 0471 0472 0475 0476 0477 0478 0621 IMAPI 0004 0555 0628 IMAPI 0004 0563 0565 0527 0580 0626 IMAPI 0004 0478 0400 0482 0523 0627 IMAPI 0004 0462 0484 0483 0578 0626 IMAPI 0004 0462 0484 0483 0578 0626 IMAPI 0004 0476 0477 0473 0400 0488 0523 0634	<u> </u>	_0085_	0088	0028	_0094	_0094	_0095_	_0095.	_0096	_0096_	_0097	_0097	_ 0102	_0102_	_0163_	_0163_	_0164_	_0164_	_0164_	_0164_		
IMAPI 0004 0371 0371 0372 0372 0374 0374 0475 0476 0477 0478 0475 0476 0477 0478 0475 0476 0477 0478 0476 0477 0478 0476 0477 0478 0476 0477 0478 0476 0477 0478 0476 0477 0478 0476 0477 0478		0155	0156	0107	0167	015/	0168	0165	0103	01/4	0174	01/5	01/5	0175	01/6	0369	0269	05/0	0370	0370		
INAPT 0204 0433 0434 0467 0468 0469 0470 0471 0472 0475 0476 0477 0478 0621 INAPT 0204 0555 0528 INAPT 0204 0478 0420 0482 0523 0627 INAPE 0204 0478 0420 0482 0523 0627 INAPE 0204 0492 0494 0495 0576 0626 INAPT 0204 0492 0494 0495 0576 0626 INAPT 0204 0492 0494 0493 0578 0625 INAPT 0204 0492 0494 0493 0578 0625 INAPT 0204 0492 0494 0493 0578 0625 INAPT 0204 0496 0477 0478 0480 0488 0523 0634	TMAPT	0570	6431	0371	0467	0571	0372	0372	0373	0374	0574	03/5	0403	0404	0495	0490	6200	0507				
I::::::::::::::::::::::::::::::::::::	INAPT	0004	0433	0434	0467	0468	0469	0470	0471	0472	0475	0476	0477	0478	0621							
INDPI 0004 0494 0628 INDPU 0004 0478 0400 0482 0523 0627 INPPE 0004 0563 0565 0567 0590 0626 IMPPI 0004 0492 0494 0496 0576 0626 INPPU 0004 0402 0484 0483 0578 0625 INPPU 0004 0476 0477 0473 0480 0523 0634 INPU 0004 0496 0497 0473 0480 0523 0634	1::375	C004	6565	6628																		
II:DPU 0004 0478 0420 0482 0523 0627 II:PPE 0004 0563 0565 0557 0590 0626 II:PPI 0004 0492 0494 0496 0576 0626 II:PFU 0004 0492 0484 0483 0578 0625 II:PFU 0004 0476 0477 0478 0480 0488 0523 0634 IFC09U 0004 0496 0688 0428	INDPI	0004	0494	0628																		
IMPPI 0004 0492 0494 0496 0576 0526 0523 0626 IMPPI 0004 0492 0494 0496 0576 0526 0523 0634 IMPPU 0004 0476 0477 0478 0480 0588 0523 0634 IMPPI 0004 0496 0497 0478 0480 0588 0523 0634	UPCOL	0004	0478	0420	0482	0523	0627															
INFFU 0004 0462 0484 0483 0578 0625 INFFU 0004 0476 0477 0478 0488 0523 0634 INF9U 0004 0476 0477 0478 0488 0523 0634	1/7/PE	0004	0563 0492	0565	- 0557	- 0530	-0626														·· · · · ·	
INVPU 0004 0476 0477 0478 0488 0523 0634	INFEU	0004	0482	0484	0483	0578	0625															
	INVPU	0004	0476	0477	0478	0480	0488	0523	0634													
	ISOSU	0004	0484	_0488_	_0623_																	
HEXIT 0004 0007 0085 0086 0114	MEXIT	0004	0007	0085	0086	0088	0114															
	DESCI	0005	0021	0174																		
PRES2 0005 0137 0137	FRES2	0005	0137	0137																		

_

*VERSION 1.3.0 (01 MAY 80) UNST SYSTEM/370 FORTRAN H EXTENDED (ENHANCED) DATE 80.353/15.02.49 *####FORTRAN CROSS REFERENCE LISTING***** SYNEOL INTERNAL STATEMENT NUMBERS FRES3 0005 0130 0130 CUANT 0048 0049 0058 0059 0056 0057 0074 0077 EMAPI 0430 0453 0467 0468 0469 0470 0471 0472 0621 _0432_0456_0467_0468_0469_0470_0471_0472_0475_0476_0477_0478_0621_____ RIMPT 0534 0503 END FE E!CPI 0453 0528 RHOPU 0477 0479 0481 0522 0627 RIIPPE 0552 0564 0556 0581 0526 _____ EC221 0491 0493 0475 0577 0626 RHORH 0431 0483 0437 0579 0625 0475 0477 0478 0479 0487 0522 0634 R:::/2U RSOSU 0483 0487 0623 \$0305 035 0039 0117 0142 0142 0435 0486 CCC3 0039 0117 C141 0141 0373 0379 0380 0381 0530 0531 0533 0534 0564 0565 0566 0567 SCSEX 0005 · 0021 0100 0106 0109 0110 0111 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 ULIRE U2IEE 0072 0154 0154 0162 0527 VELAX 0110 0152 0165 0165 0167 0167 0167 0198 0198 0200 0238 0240 0491 0492 XSTAR 0005 0432 0433 0442 0442 0443 0446 0446 0446 0447 0461 0462 0465 0466 0588 0588 0589 0589 ALFBAR 0005 0430 0431 0432 0433 0434 0435 0436 0437 0440 0441 0442 0443 0446 0447 0512 0513 0514 0515 0502 0503 0604 0605 AV3505 0101 0144 0144 0167 0167 0168 0168 0174_0175_0176_ IIAVFE 0004 0571 0635 IIAVPI 0004 0500 0634 IIIVPE 0004 0559 0635 IITVPI 0004 0493 0634 INCORE CC04 C567 C624 INSCRI 0004 0476 0623 IRANFE 0004 0573 0575 0635 INTVPE 0004 0575 0636 MUROCK 0004 0005 0024 0032 MMSTAR 0004 0016 0095 0102 RIAVPE 0570 0635 RIAVPI 0499 0534 RIIVEE 0568 0635 RITVPI 0497 0634 RH3SPE 0266 0624 RM35PI 0495 0623 REAVEE 0372 0574 0635 RRTVPE 0574 0636 SIGMAB C005 0033 0449 0450 0451 0452 0453 0454 0455 0456 0459 0460 0461 0461 0462 0462 0465 0466 0503 0504 0506 0507 SIGHAT 0005 0430 0431 0432 0433 0434 0435 0436 0437 0440 0441 0442 0443 0446 0447 0512 0513 0514 0515 0582 0582 0583 0583 0584 0584 0585 0585 0586 0586 0587 0587 *****FORTRAN CROSS REFERENCE LISTING***** TABEL DEFINED REFERENCES 10 0232 0230 13 0-49 0428 15 0667 0427 -17-0467 0448 20 0237 0235 24 0512 0501 25 0510 0511

154

PAGE 28

PAGE 29

		**	***FORTRAN	CROSS	REFERENCE	L I S T I N G*****
_LABEL	DEFINED	REFERE	NCES			
30	0258	0256				
33	0615	0600				
34	0619	0614				
40	0277	_ 0275 _				······································
50	0292	0290				
60	0357	0355				
70	0358	0155				
75		0054		······		
76	0070	0069				
78	0076	0075				
80	0056	0049				
	0054	0059			·	
90	0065	0055	0063			
91	0074	0057				
\$4	0032	0077				
95	C023	0022				
99	0034	0073	0081			
100	0113	0112				
	0118	_ 0114	· - · · · · · · · · · · · · · · · · · ·			
110	0119	0116				
120	0120	0115				
333	0121	0117				
	_ 0510	0509				
420	0519	0518				
440	0644	C621				
450	0645	0622				
460	0646	0623				
470	C647	C524				
480	C548	0625				
490	0649	0526				
500	0550	C627				
510	0651	0628				
520	0652	0629				
- 530	0454	- 0630				
550	0534	0632				
560	0656	0633				
570	0457	0634				
580	0.58	6635				
590	C659	C636				
600	0660	0637				
	0661	_ 0638			<u>_</u>	
620	0662	0639				
630	C663	0640				
640	0504	0641				
-600-		- 0442				······································
670	0572	0668				
650	0673	0669				
650	0674	0670				
700	0675	0671			••	
1000	0008	0006				
6000	0416	0405				
6001	0419	0408				

I.

		****F 0 R T R A N	CROSS	REFERENCE	L I S T I N G*****	
LABEL	DEFINED	REFERENCES				
6002	0420	0409				
6003	0421	0410				
6004	0422	0411				
6005	0423	0412				
6006	0424	6413				
6007	0425	0414				
6008	0426	0415				
6100	0417	0406				
6200	0418	0407				
5666	0620	0619				

NAME	TAG	TYPE	AUD.	NAME	т.	AG T	YPE	ADD.	NAME	۱	FAG	TYPE	ADD.	NAME	Т	AG	TYPE	ADD.	
B *SF		R#4	000D5 0	С	F	C R	!¥4	000044	Ε	F	С	R*4	000014	н	F	С	R¥4	000064	
 I SF		R*4	000054_	J.	SF		*4	_000D53	к	SF_		_ R*4	_00005C_	M	SF		_R*4	_00105C_	
RSF		R×4	0000060	S	SF	F	{¥4	001000	z	SF		R*4	00CD64	AC	SF	C	R*4	000018	
AO SF	С	R*4	000010	CI	SF	F	{¥4	860300	CL	SF		₹×4	0010F0	CO	SFA		R*4	CC006C	
CR SF		R#4	000070	00	SF	F	≀ ∺4	000074	CE	SF		R¥4	000D78	DI	SF		R*4	00CD7C	
 DT SF		₽×4	_000330_	DU	SF	F	?¥4	_000084	FC.	SF		_ R*4	_00118C	FE	SF		_R*4	001270_	
 FM SF		R*4	0012FC	IC	SF	R	*4	000033	II	SF		I×4	000DSC	LC	SF		R*4	001383	
LM SF		R*4	001428	C: 1	S.F	F	₹×4	000090	MI	SFA		R×4	00CD94	MT	SF		R*4	00CD98	
NU SF		R¥4	0005550	FD	SF	ਸ	{¥4	0000040	FE	SF		R¥4	OCCDA4	PI	SF		R*4	8AC000	
 PT_SF		R*4	_000D/C_	PU	SF	٦	*4	_000030	RC	SF_		_ R *4	_ 000DB4	TE	SF		_R*4	_000D38_	
UE SF		E⊁4	OCUDBC	US	SF	5	₹¥4	000000	D	SF		R*4	0000004	VE	SF		R*4	0000C8	
VU SF		R #4	000000	XS	F	CF	{×4	000030	IAA	SF		R⊁4	001488	AAR	SF		R*4	001490	
ACE SF	С	R#4	000000	IHA	SF	5	{¥4	001493	AHR	SF		R*4	0014A0	BAI	SF		R*4	0014A8	
BAR SF		.K - 4	001400	EHI	SF	٩	?*4	001483	BHR	SF_		_R*4	_ 0014C0	BXD	SFA_		_R*4	_000300_	
 EXU SF	4	R×4	_00CDD4_	EYD	S7	۶	{¥4	0000003	BYU	SF		R¥4	COCCDC	Blľ	SF		R*4	000DE0	
B1R 57		R*4	0000224	521	SF	۲.	₹¥4	COCDE8	B2R	Sř		R*4	OOODEC	COS	F	XF	R×4	C00000	
C10 SF/	۹.	R¥4	0000000	C1U	SFA	F	? * 4	000DF4	D2D	SFA		R*4	000DF8	DCU	SFA		R¥4	0000FC	
FM2 SF		244	0014C3	FRE	SF	٩	2¥4	003500	ICL	SF_		_ R*4	_000E04	ICH	SF		_R*4_	_000E08_	
 1:03 F	A Ç		000024	1125	FÅ	CF	?×4	000023	MXD	SF		R¥4	000E0C	MXU	SF		R¥4	000E10	
NYD SF		R×4	000E14	MYU	SF	7	₹¥4	000E18	PIN	SF		R*4	000E1C	RCL	SF		R*4	000E20	
FCH SF		$R \times 4$	003524	REV	SF	F	₹¥4	0C0E28	SIN	F	XF	R¥4	000000	SSI	SF		R×4	000E2C	
SST SF		R×4	000230	SSU	SF	न	₹¥4	000534	TAU	SFA		_R+4	_ COOE 38	TOS	SF		_R*4	_0C0E3C_	
 TIN SF			0000040	U3I	SF	P	₹#4	000544	USR	SF		R*4	000E48	VEL.	SF		R*4	000E4C	
V1I SF		₹ ¥4	000250	VIR	SF	۴	2+4	000254	V2I	SF		R*4	000E58	V2R	SF		R¥4	OCOESC	
V3I SF		R*4	000000	V38	SF	r.	₹%4	000E64	HDS	37		R×4	000268	AAIK	SF		₹*4	000E6C	
AARK SF		R*4	C00E70	AHIK	SF	F	*4	0C3E74	AHEK	SF		R¥4	000E78	BAIK	SF		R*4_	000E7C	
 BARK SF			000580	BHIK	SF	۶	₹¥4	000E84	DH3K	SF		R:+4	000E88	тота	SF		R*4	000E&C	
FLCH SF		R*4	000290	IACE	SF	F	₹¥4	000E94	ICLL	SF		R×4	000E98	ICLU	SF		R¥4	000E9C	
ICML SF		R ¥4	000EA0	UMDI	SF	F	244	000EA4	IDDS	SF		R¥4	000EA8	IMAP	SF		R¥4	000EAC	
INCP SF		R*4	000220	1455	SF	F	2*4	000EE4	INSP	SF_		R×4	000EB8	IFDS	SF		_ ₽¥4	_000EBC_	
 TP1L SF			000200	IFIU	SF	F	₹≈4	000EC4	IP2L	SF			6032000	IP2U	SF		R*4	000ECC	
IP3L SF		R*4	002000	IPCU	SF	F	₹¥4	000004	177F	SF		R×4	000203	ISSP	SF		R*4	OOCEDC	
IUDS SF		R*4	OCCEED	IVED	SF	F	2#4	0002E4	IVFU	SF		R*4	COCEE8	NCPT			R*4	NR.	
NIRE F	С	R¥4	000048	MERE	SF	F	2*4	000EEC	PTOT	SF	C	R*4	00004C	CUOT	SF		_R*4	_000EF0_	
 RACE SF		R*4	000CF4	RCLL	SF	F	₹%4	000EF8	RCLU	SF			OOCEFC	RCHL	SF			000700	
RCHU SF		R¥4	000F04	RDOS	SF	۶	274	000F08	RGAS	SFA		R*4	000F0C	RMAP	SF		R¥4	000F10	
RHOP SF		R*4	000F14	RK2P	SF	ş	₹¥4	000F18	RMSP	SF		R¥4	000F1C	RFDS	SF		R*4	000F20	
 RP1L SF		R*4	000F24	RPIU	SF	F	₹¥4	000F25	RP2L	SF		R¥4	000F2C	RP2U	SF		R¥4	000F30_	
 RP3L SF			000734	RP3U	SF	F	?*4	000738	RRFF	SF -			000F3C	RSSP	SF		R*4	000540	
RUDS SF		R*4	000F44	RVPD	SF	1	? *4	000F48	RVFU	SF		R¥4	000F4C	SCRT	F	XF	R¥4	000000	
		546	000020	LISIC T		r	2¥4	000750	1011	e E	r.	D¥4	000000	V01.2	SE	C	R*4	000004	
1101 P	A C	K×4		C(131			· · · · ·	000.20	VOLL	51	~		000000	VOLL	. .	-			

_____UNST_/____SIZE_OF_PROGRAM_006992_HEXADECIMAL_BYTES______

*VERSION 1.3.0 (01 MAY 80)) UNST SYSTEM/37(FORTRAN H EXTENDED	D (ENHANCED) DATE	80.353/15.02.49	PAGE 31	
VIER SF R*4	000F60 V1CI SF	R*4 000F64	VICR SF R*4	000F68 V3AI S	F R*4	000F6C
V3AR SF R¥4	000F70 V3DI SF	R*4 00CF74	V3DR SF R*4	000F78 V3CI S	F R¥4	000F7C
V3CR SF R*4_	000F80 WOSI SF	R*4000F84		000F83 ALPCH	FAC R*4 .	000053
ASTAR F C R¥4	000010 AVGD1 SF	R*4 00CF8C	AVGD2 SF R*4	000F90 AVCD3 5	F R*4	000F94
AVGV1 SF R×4	000F98 AVGV2 SF	R*4 000F9C	AVGV3 SF R#4	000FA0 EETAL	FA C R*4	000050
BETA2 FA C R#4	000054 CDTAN F X8	R×4 000000	DELTA F C R#4	000068 FH23A S	F R*4	000FA4
GAINA SFA R×4	GOOFASIMAPI SF	R*4 000FAC	_ IMAPT SF R*4	_ 000FD0 INDEE S	FR*4_	000FD4
INDPI SF R#4	0005E3 INDEU SE	R*4 00078C	IMPRE SF EX4	000FC0 INPPI S	F R*4	000FC4
INFPU SF R#4	COOFC8 INVEU SE	R#4 COOFCC	ISCSU SF R*4	00CFD0 MEXIT S	FA R*4	000FD4
ONEGA F C RX4	00005C FRESI SF 0	R*4 000038	FRES2 SF C R*4	00003C FRES3 S	F C R*4	000040
GUANT S R#4	_ 000FD8 RMAPI SF	R*4 000FDC	_ RMAPT_SF R*4	000FE0 RMDPE S	F R*4_	000FE4
RISPI SF R*4	CCCFE8 RI:DPU SF	R*4 000FEC	RMPPE SF R*4	000FF0 RHCPI S	F R*4	000FF4
RHFFU SF R*4	000FF8 RMVFU SF	R*4 000FFC	RSOSU SF R*4	001000 SDSDS S	F R*4	001004
SOSEX SF R*4	001008 UNIRE F (R×4 000074	U2IRE SF R*4	00100C VELAX S	F R*4	001010
XSTAR F C P+4	000034 FRXF2# XI	R*4000000	ALPBAR F C. R*4	000070 AVGSOS_S	FR*4	001014
IBCCII# F XF R#4	000000 IIAVPE SF	R+4 001018	IIAVPI SF R*4	00101C IITVPE S	F R¥4	001020
IITVPI SF R*4	001024 IMSSPE SF	R*4 001028	INSSPI SF R#4	00102C IRAVPE S	F R*4	001030
IRTVPE SF R*4	001034 MSROCK F (R*4 000020	MXSTAR SFA R*4	001038 RIAVPE S	F R*4	001030
RIAVPI SF R*4	_001040 RITVPE_SF	R*4001044	_RITVPI SFR*4	001048 RMSSPE _S	FR*4_	00104C
RIISSPI SF R*4	001050 RRAVPE SF	R*4 001054	RRTVPE SF R*4	001058 SIGMAB	FA C R*4	00005C
SIGMAT FA C R*4	000060					

***** COMMON INFORMATION *****

NAME OF COMMON BLOCK * * SIZE OF BLOCK 000078 HEXADECIMAL BYTES

 											the second se
 VAR. NAME	TYPE	REL. ADDR.	VAR. NAME	TYPE	REL. ADDR.	VAR. NAME	түре	REL. ADDR.	VAR. NAME	τγρε	REL. ADDR.
VOL1	R×4	000000	VOL2	R¥4	C00004	VOL3	R¥4	800330	ACE	R*4	00000C
ASTAR	R*4	000010	E	R¥4	000014	DA	₽*4	000018	04	R¥4	00001C
MSHOCK	R×4	000020	MDS	R*4	000024	MUS	R¥4	000028	TTOT	_R*4	00002C
 XS	R×4	000030	XSTAR		000034	PRESI	R*4	000038	PRES2	R¥4	00003C
PRES3	R*4	000040	С	R¥4	000044	MIRE	R¥4	000048	PTOT	R⊁4	00004C
BETAL	R¥4	000050	BETA2	R*4	000054	ALFCH	R¥4	000053	SIGNAB	R*4	00005C
SIGNAT	R*4	000060	. н	R*4	000054	DELTA	R*4	000068	OMEGA	_R*4	00006C
 ALEBID	Ded	000070	IN TRE	_ D¥4	000074						

s	101141	K `**		<u> </u>	пк*ч	000054	. <u> </u>	CLIAK <u>24</u>	000068		_UTIEGA	00000C	
A	LFBAR	. R×4	000070	UlI	RE R*4	000074							
SCURCE S	TATEN	ENT LABEL	_S										
LABEL	ISN	ADDR	LABEL	ISN	ADDR	LADEL	ISN	ADDR	LABEL	_ISN_	ADDR		
80	56	001682		64	001F2E	90	66	001F6E	9].	74	C017CC		
94	82	002045	99	84	002085	10	232	0031DE	20	237	00322E		
30	253	003452	40	277	00368A	50	292	0037C6	60	357	003EE6		
70	368	0040CA	13	449	005166	17	_ 467	0051F6	24	512_	00539A		
25	520	005900	33	615	0062CE		619	006322	15	667	006830		
COMPILER	GENE	RATED LAB	JELS										
LADEL	ISN	ACOR	LADEL	ISN	ADDR	LASEL	ISN	ADDR	LADEL	ISN	ADUR		
100501	2	001B04	200001	27	001076	200002	40	001D78	100002	51	001E6A		
100003	61	OOIEEA	100004	69	001783	100005	79	_00200A	200003	్ 9ప్	00218A		
200004	112	0022CA	200005	136	000492	200006	166	002úEE	20007	169	00284A		
20003	173	C02972	200009	177	002.46	200010	102	00251A	200011	186	0022F2		
200012	194	002050	200013	200	002003	200014	205	002576	200015	203	00CF42		
200016	~216	003052	200017	224	003130	100005	231	0031C8	100007	233	003162		
100008	236	003218	100039	238	003232	200018	243	0032FE	200019	248	003300		
200020	256	00343E	100010	257	003493	100011	259	C034B6	200021	264	003540		
200022	272	003618	100012	276	003670	100013	278	007632	200023	290	00379E		
103014	291	0037AC	100015	293	0037CA	200024	305	0032D4	200025	312	003906		
200026	321	003AF2	200027	329	003010	200028	336	C03CC2	200029	343	003D74		
200030	350	003E2C	100016	356	003208	100017	358	003EEA	200031	365	003FCA		
100018	367	003FF4	100019	369	00400E	200032	379	0041A8	200033	382	004293		

157

1

.

200034	337	004336	200035	391	004476	200036	396	004522	200037	408	004634			
100020	423	005035	100021	430	005006	200033	441	00511A	200039	447	00515A			
200040	452	00510E	200341	471	00530A _	200042	476	005468	200043	479	C055FE			
200044	492	00577C	200045	497	CCESOA	100022	503	00582C	200046	529	005A7A			
200047	533	0053CE	200043	537	80C200	200049	544	003074	200050	550	005008			
200551	559	400200	200052	553	COSECC	200053	569	005F5C	200054	573	005F92			
200055	507	003665	200056	595	006194	200057	593	006202	100023	602	006224			
200003	623	003400	200059	636	005500	100024	668	006890						
FORMAT	STATE	ENT LABELS	5											
LASEL	ISN	ACOR	LABEL	ISN	ADDR	LABEL	ISN	ADDR	LABEL	ISN	ADDR			
1000	3	000028	\$5	23	00002D	71	52	00003A	75	57	00005B			
75	70	010370	78	76	00009F	100	113	006062	105	118	0000FB			
110	119	000126	115	120	000149	120	121	C00175	333	404	0001A3			
6000	415	000135	6100	417	000103	6200	418	000100	6001	419	000111			
6602	420	000204	6003	421	000217	6004	422	000228	6005	423	000235			
6026	424	000251	6007	425	000064	6008	426	000227	470	520	000256			
420	519	000279	6666	620	000241	440	646	000200	450	645	0072000			
460	6:6	000300	470	647	000244	430	669	000200	400	640	000300			
500	650	000520	510	657	0000000	500	452	000004	570	467	0000000			
Se0	650	000/56	510	455	000540	520	454	. 000555	530	- 055	- 000474			
510	459	000714	550	450	000000	500	020	000552	570	0.07	000366			
600	610	000350	570	447	000322	600	660	000654	510	661	000584			
(40	662	0000000	0.20	600	0000000	640	004	000/00	650	665	000740			
730	- 222	. 00070A	0/0	. 672				_0007F4	690_	_674_	_000350_		<u> </u>	
	11 255	ECTAVINED	MATUD ODTINT7"	())	THECOUNT	(0) 077-(04)	ALCOOR							
#0F110.65 1	NA EFF	CUIS GULE()	MAINE UPITALZE		THECCONT	COU SIZE(MAX)	AUTOD	BLINGNET						
*CPHICH3 1	IN EFF	ECT#SCURC	E ESCOIC HOLIS	T NOD	ECK COJE	OT MAP NOFORMAT	GOST	HT XREF N	OALC NOANSF TE	RM IB	M FLAG(I)		
_#STATISTIC	:s* .	SOURCE	STATERERTS =	67	GFROGR	AM_SIZE_=27	026,	SUBFROGRA	M NAME = UNST					
										_				
STATISTIC	:S N	O DIACHOS	STICS GEHERATE	D			_							
STATISTIC	S N D OF C	O DIACHO: CMPILATIC	STICS GENERATE	D			_	280K BYTE	S OF CORE NOT	USED				
*STATISTIC ***** END	:S* N 0 of C	O DIAGNO CMPILATIC	STICS GEHERATE 4 ******	D			_	280K BYTE	S OF CORE NOT	USED				
*STATISTIC ****** END *STATISTIC	:S* N) of C ;S <u>*</u>	O DIAGNO CMPILATIC 2_DIAGNO	STICS GEHERATE V ****** STICS_THIS_STE	D P, HI	GHEST SE	VERITY_CODE_IS_	8	280K BYTE	S OF CORE NOT	USED				
*STATISTIC ****** END *STATISTIC	:S* N) of C ;S <u>*</u>	O DIAGNO CMPILATIC 2_DIAGNO	STICS GEHERATE + ****** STICS_THIS_STE	D P, <u>H</u> I	GHEST_SE	VERITY_CODE_IS_	_8	280K BYTE	S OF CORE NOT	USED				
*STATISTIC ****** END *STATISTIC	:S* N 0	O DIAGNO CMPILATIC 2-DIAGNO	STICS GENERATE	D P <u>, H</u> I	SHEST_SE	VERITY_CODE_IS_	_8	280K BYTE	S OF CORE NOT	USED				
*STATISTIC ****** END *STATISTIC	:S* N) OF C ;S <u>*</u>	O DIAGNO CMPILATIC _2_DIAGNO	STICS GEHERATE + ****** STICS_THIS_STE	D P <u>, H</u> I	SHEST_SE	VERITY_CODE_IS_		280K BYTE	S OF CORE NOT	USED				
*STATISTIC ****** END *STATISTIC	:S* N 0 of C :S <u>*</u>	O DIAGNO: CMPILATIC: _2_DIAGNO:	STICS GENERATE + ****** STICS_THIS_STE	D P <u>, H</u> I	SHEST_SE	VERITY_CODE_IS_	_8	280K BYTE	S OF CORE NOT	USED				
*STATISTIC ***** END *STATISTIC	:S* N) GF C :S <u>*</u>	O DIAGNO	STICS GENERATE	D P, <u>H</u> I	SHEST_SE	VERITY_CODE_IS_	8	280K BYTE	S OF CORE NOT	USED				
*STATISTIC ***** END *STATISTIC	:S* N) OF C ;S <u>*</u>	O DIAGNO: CMPILATIC: 2_DIAGNO:	STICS GEHERATE	D P, <u>H</u> I	SHEST_SE	VERITY_CODE_IS_	8	280K BYTE	S OF CORE NOT	USED				
*STATISTIC ***** ENS *STATISTIC	:S* N) OF C :S <u>*</u>	O DIACHO CMPILATIC: _2_DIAGNO:	STICS GEHERATE	D P,_HI	GHEST_SE	VERITY_CODE_IS_	8	280K BYTE	S OF CORE NOT	USED				
*STATISTIC ****** EN3 *STATISTIC	:S* N 0 OF C :S <u>*</u>	IO DIAGNO: CMPILATIC: _2_DIAGNO:	STICS GEHERATE	D P, <u>H</u> I	GHEST_SE	VERITY_CODE_IS_	.8	280K BYTE	S OF CORE NOT	USED				
STATISTIC	:S N 0 OF C :S <u>*</u>	O DIAGNO: CMPILATIC: _2_DIAGNO:	STICS GEHERATE	D P, <u>H</u> I	GHEST_SE	VERITY_CODE_IS_	8	280K BYTE	S OF CORE NOT	USED				
*STATISTIC ****** END *STATISTIC	:S* N 0 OF C :S <u>*</u>	IO DIAGNO: CMPILATIC: _2_DIAGNO:	STICS GENERATE	D P,_HI	GHEST_SE	VERITY_CODE_IS_	8	280K BYTE	S OF CORE NOT	USED				
*STATISTIC ****** END *STATISTIC	(S* N) 0 OF C (S <u>*</u>	IO DIAGNO: CMPILATIC: _2_DIAGNO:	STICS GEHERATE	D P,_HI	SHEST_SE	VERITY_CODE_IS_		280K BYTE	S OF CORE NOT	USED				
STATISTIC	(S N) 0 OF C (S <u>*</u>	IO DIACHO:	STICS GEHERATE	D P,_HI	SHEST_SE	VERITY_CODE_IS_		280K BYTE	S OF CORE NOT	USED				
STATISTIC	(S N) OF C (S*	IO DIAGNO: CMPILATIC: _2_DIAGNO:	STICS GENERATE	D P,_HI	SHEST_SE	VERITY_CODE_IS_	8	280K BYTE	S OF CORE NOT	USED				
STATISTIC	(S N) OF C (S*	IO DIAGNO: CMPILATIC: _2_DIAGNO:	STICS GEHERATE	D P,_HI	SHEST_SE	VERITY_CODE_IS_	8	280K BYTE	S OF CORE NOT	USED				
STATISTIC	(S N) OF C (S*	IO DIACHO:	STICS GEHERATE	D P,_HI	GHEST_SE	VERITY_CODE_IS_		280K BYTE	S OF CORE NOT	USED				
*STATISTIC ****** END *STATISTIC	(S* N) OF C (S <u>*</u>	IO DIAGNO: CMPILATIC: _2_DIAGNO:	STICS GEHERATE	р, нт	SHEST_SE	VERITY_CODE_IS_	8	280K BYTE	S OF CORE NOT	USED				
STATISTIC	(S N) OF C (S*	IO DIAGNO: CMPILATIC: _2_DIAGNO:	STICS GENERATE	р, <u>н</u> т	SHEST_SE	VERITY_CODE_IS_		280K BYTE	S OF CORE NOT	USED				
STATISTIC	(S N) OF C (S*	IO DIACHO:	STICS GEHERATE	р, ні	GHEST_SE	VERITY_CODE_IS		280K BYTE	S OF CORE NOT	USED				
STATISTIC	S N OF C S <u>*</u>	IO DIAGNO:	STICS GENERATE	D P,_HI	SHEST_SE	VERITY_CODE_IS_		280K BYTE	S OF CORE NOT	USED				
STATISTIC	S N OF C S <u>*</u>	IO DIAGNO: CMPILATIC: _2_DIAGNO:	STICS GENERATE	D P, HI	SHEST_SE	VERITY_CODE_IS		280K BYTE	S OF CORE NOT	USED				
STATISTIC	S N) OF C S <u>*</u>	IO DIACHO:	STICS GEHERATE	D P, HI	GHEST_SE	VERITY_CODE_IS	.8	280K BYTE	S OF CORE NOT	USED				
STATISTIC	S N OF C S*	IO DIAGNO:	STICS GEHERATE	D P, HI	GHEST_SE	VERITY_CODE_IS_	_8	280K BYTE	S OF CORE NOT	USED				
STATISTIC	.S N) of C :S*	O DIAGNO: CMPILATIC: _2_DIAGNO:	STICS GENERATE	D P, HI	SHEST_SE	VERITY_CODE_IS	_8	280K BYTE	S OF CORE NOT	USED				
STATISTIC	.S N) of C :S*	O DIACHO:	STICS GEHERATE	D P, HI	GHEST_SE	VERITY_CODE_IS		280K BYTE	S OF CORE NOT					

UNST SYSTEM/370 FORTRAN H EXTENDED (ENHANCED) DATE 80.353/15.02.49

PAGE 32

158

*VERSICH 1.3.0 (01 MAY 80)

I.

FORTRAN H EXTENDED (ENHANCED)

*** FORTRAN H EXTENDED ERROR MESSAGES ***

LINE	00000300	5 FORMAT('ICH/INEL FLOW CHOKE FLUTTER AMALYSIS DECK 9066'// 2044//
LIKE	00000310	1' ALFDAR', FIG. 5, 5X, YIGAN TORSIONAL DEFLECTION THEN CYCLE (DEG.)//
LINE	00000820	2' ALFCH ',F10.3,5X, 'STAGGER ANGLE OF BLADE ROW (DEG.)'/
LINE	00000830	3' BETAL ',FI0.3,5X, 'INLET AIR ANGLE (DEG.)'/
TLINE T	00000340	4' BEFA2 ',F10.3,5X, 'EXIT AIR ANGLE (DEG.)'/
LINE	00000350	5' C ',F10.5,5X,'CN07D (IN.)'/
LINE	0600000	6' DELTA ',F10.5,5X,'G\P BETHEEN BLADES (IN.)'/
_LINE	_00000370	7' DIAM',F10.3,5X,'NODAL DIAMETER'/
LINE	00000000	8' E ',F10.6,5X,'ELASTIC AXIS LOCATION REF. TO MIDSPAN'/
LINE	00000090	9' EPS ',F10.5,5X,'TOLERANCE FOR FRESSURE RATIO'/
LINE	00000900	X' GAN ',F10.5,5X,'SFECIFIC KEAT RATIO'/
_LIHE	_000000010000000	1' HBAR _',F10.6,5X, MEAN FLAPPING DEFLECTION OF BLADE (IN.)!/
LINE	00000920	2' IMAVE ',ILO ,5X, WAVE NO.IUN'/
LINE	00000930	3' NI ',F10.5,5X,'IRLET MACH NUMBER'/
LINE	00000910	4' M1 - ',F10.5,5X,'L. E. MACH NUMBER'/
_LINE	_00000950	5' N3',I10 ,5X,'NUNBER OF BLADES'/
LINE	00000960	6' NP ',110 ,5X,'NUNDER OF AIRFOIL COORDINATES'/
LINE	00000970	7' NEECT ',IIO ,5X, 'NUMBER OF SEGMENTS FROM L.E. TO T.E.'/
11/2	00003980	8' NILLE', ILO ,5X, NULLER OF TIME INCREMENTS'/
	00000790	9' CHEGA ',FIO.2,5X, 'FREQUENCY OF VIERATION (CYCLES. / SEC.)'
17115		X' FALLES', FLO.4, 5X, 'SENDING MODE INTERBLADE FRASE ANSLE (RAD.)'/
LIKE	66601010	1 PHILDT, FIG. 4, 5X, TORSIONAL MODE INTERBLADE PHASE ANGLE (RAD.) //
LINE	00001020	2' PR ', FIG. 5, 5X, 'STATIC PRESSURE RATIO ACROSS STACE'/
	STUESTLY REEL TOU 0072 T	S V ', FIO. 3, SX, 'RELATIVE TRUE! VELOCITY (F/SEC)')
1150271	SEVERIN G(E) 150 0052 1	RE NOTION OF CONTINUES CARDS EXCEEDS 19. COMPTLER PROCESSING OF THE
	3	TATEMENT CONTINUES.
LINE	00002220	VTTE(6.117) RETARDI
IFE226Ï	SEVERITY B(E) ISN 0119 T	HE STATEMENT HAS A VARTABLE WITH MORE THAN STY CHADACTEDS
	T	HE RIGHTHOST CHARACTERS ARE TRINCATED
SOURCE S	TATEMENTS = 245, PROGRAM S	IZE = 9340, SUBFROGRAM NAME = MAIN
SOURCE S	TATEMENTS = 676, PROGRAM S	IZE = 27026, SUBPROGRAM NAME = UNST

REFERENCES

- 1. Jeffers, J. D., A. May, and W. J. Deskin, "Evaluation of a Technique for Predicting Stall Flutter in Turbine Engines," NASA CR-135423, February, 1978.
- 2. Smith, S. M., "Discrete Frequency Sound Generation in Axial Flow Turbomachines," University of Cambridge, Cambridge, England, Report CUED/A.
- 3. Sisto, F., "Stall Flutter in Cascades," JAS, September 1953, pp 598-604.
- 4. Perumal, P. V. K., "Thin Airfoil in Eddy-Array and Part-Stalled Oscillating Cascade," Ph.D. thesis, Stevens Institute of Technology, 1975.
- 5. Yashima, S. and H. Tanaka, "Torsional Flutter in Stalled Cascade," ASME 77-GT-72, 1977.
- 6. Chi, M. R., "Unsteady Aerodynamics in Stalled Cascade and Stall Flutter Prediction," ASME, 80-C2/Aero-1, 1980.
- 7. Verdon, J. M., "The Unsteady Aerodynamics of a Finite Supersonic Cascade with Subsonic Axial Flow," *Journal of Applied Mechanics*, Vol 40, No. 3, September 1973, pp 667-671.
- 8. Brix, C. W. and M. F. Platzer, "Theoretical Investigations of Supersonic Flow Past Oscillating Cascades with Subsonic Leading Edge Locus," AIAA Paper No. 74-14, Presented at the AIAA 12th Aerospace Sciences Meeting, Washington, DC, January 1974.
- 9. Kurosaka, M., "On the Unsteady Supersonic Cascade with a Subsonic Leading Edge An Exact First Order Theory, Parts 1 and 2," Transactions of the ASME, Vol 96, Series A, Journal of Engineering for Power, No. 1, January 1974, pp 13-31.
- 10. Verdon, J. M. and J. E. McCune, "Unsteady Supersonic Cascade in Subsonic Axial Flow," *AIAA Journal*, Vol 13, No. 2, February 1975. pp 193-201.
- Miles, J. W., "The Compressive Flow Past An Oscillating Cascade with Supersonic Leading Edge Locus," *Journal of the Aeronautical Sciences*, Vol 24, January 1957, pp 65-66.
- 12. Miles, J. W., *The Potential Theory of Unsteady Supersonic Flow*, Cambridge University Press, Cambridge, England, 1959, pp 49-53.
- 13. Adamcyzk, J. J., "Analysis of Supersonic Bending Flutter in Axial Flow Compressor by Actuator Disk Theory," NASA TP-1345, November 1978.
- Goldstein, M. E., W. Braun, and J. J. Adamcyzk, "Unsteady Flow in a Supersonic Cascade with Strong In-Passage Shocks," *Journal of Fluid Mechanics*, Vol 83, Part 3, 1977, pp 569-604.
- 15. Scanlan, R. H. and R. Rosenbaum, Aircraft Vibration and Flutter, Dover Publications, 1968, pp 379-382.
- 16. Kuethe, A. M. and J. P. Schetzer, Foundations of Aerodynamics, Wiley, 1959.

- 17. White, F. M., Viscous Fluid Flows, McGraw Hill, 1974.
- 18. Hurrell, H. G., "An Analysis of Shock Motion in Ducts During Disturbances in Downstream Pressures," NACA TN-4090, NACA Lewis Flight Propulsion Laboratory, Cleveland, Ohio, September 1957.
- 19. Lamb, H., Hydrodynamics, Sixth Edition, Dover Publications.
- 20. Liepmann, H. W. and A. Rosko, Elements of Gas Dynamics, Wiley.
- 21. Schlichting, H., Boundary Layer Theory, Sixth Edition, McGraw-Hill.
- 22. Saito, Y. and Y. Tanida, "On Choking Flutter," Journal of Fluid Mechanics, Vol 82, Part 1, 1977, pp 179-191.
- Carta, F. O., "Coupled Blade Disk Shroud Flutter Instabilities in Turbojet Engine Rotors," Annual Winter Meeting and Energy Systems Exposition, ASME, Paper 66-WAIGT6, 1966, pp 419-426.
- 24. Lubomski, J. F., "Status of NASA Full-Scale Engine Aeroelasticity Research," NASA Technical Memorandum 81500.
- 25. Rakowski, W. J. and H. T. Liu, "Experimental Analysis of Blade Instability, Air Force Contract F33615-76-C-2035, September 1979, General Electric.

NOMENCLATURE

I.

Symbol	Definition
A	Area between the blades
$A_{\pm\infty}$	Complex constant describing irrotational flow field
а	Speed of sound
В	Axial wave number
b	Semi-chord of the airfoil
С	Tangential wave number
C _p	Specific heat at constant pressure
C,	Specific heat at constant volume
$\frac{\mathrm{D}}{\mathrm{Dt}}$	Substantial derivative
е	Specific internal energy
F	Force on the control volume
h	Enthalpy
ĥ	Blade deflection in bending mode
′ k	Reduced frequency based on semi-chord
М	Mach number
m	Mass
n	Unit vector normal to surface
р	Pressure
R	Universal gas constant
S	Nondimensional interblade spacing
Т	Temperature
U	Velocity along airfoil chord
u	Axial velocity component

NOMENCLATURE (Continued)

Symbol	Definition
ũ	Specific intrinsic energy
v	Volume
v	Tangential velocity component
ŵ	Mass flowrate
Z	Nondimensional elastic axis position
$\mathbf{Z}_{+\infty}$	Complex constant describing rotational flow field
ā	Mean torsional deflection
$lpha_{ m ch}$	Cascade stagger angle
β_1	Inlet air angle
eta_2	Exit air angle
δ	Gap between the blades
γ	Ratio of specific heats
$\Phi'_{\pm\infty}$	Perturbation velocity potential
ρ	Density
Τ	Gap between the blades
σ	Interblade phase lag
ψ	Stream function
ζ	Vorticity
Subscripts	
	Far upstream of blade row

- ∞	i an apportant of blade for				
+∞	Far downstream of blade row				
x	Axial component				
у	Tangential component				
ave	Average flow parameter				

NOMENCLATURE

Į

Subscripts	Definition
IRE	Relative inlet quantity
i	Inlet to blade row
E	Outlet from blade row
1,2,3	Average quantity in the control volume
us	Upstream of the shock
ds	Downstream of the shock
R	Real part
1	Imaginary part
IR	Irrotional component
s	Shock
E	Cascade exit

Superscripts

- Steady-state	quantity
----------------	----------

- Perturbation quantity
- -' Mean perturbation quantity
- * Blade throat

1. Report No.	2. Government Access	ion No.	3. Recipient's Catalog	g No.			
4. Title and Subtitle			5. Report Date				
SEMI-ACTUATOR DISK THEO	RY FOR COMPR	ESSOR	June 1981				
CHOKE FLUTTER			6. Performing Organi	zation Code			
7. Author(s)			8. Performing Organiz	ation Report No.			
J Micklow and J Jeffers			FR-12976				
9. Performing Organization Name and Address	9. Performing Organization Name and Address						
United Technologies Corporation	United Technologies Corporation			No.			
Government Products Division			NAS3-20060				
P.O. Box 2691, West Palm Be	ach, FL 33402		13. Type of Report an	nd Period Covered			
12. Sponsoring Agency Name and Address			Contractor R	eport			
National Aeronautics and Space	e Administration	F	14. Sponsoring Agency	/ Code			
Washington, D.C. 20546			510-55-02				
Final report. Project Manager, H. G. Hurrell, Engine Systems Division, NASA Lewis Research Center, Cleveland, Ohio 44135.							
16. Abstract							
Utilizing semi-actuator disk th	eory, a mathema	tical analysis was	developed to pre	edict the			
unsteady aerodynamic environm	nent for a cascad	le of airfoils harmo	nically oscillati	ng in choked			
flow. In the model, a normal s	shock is located i	in the blade passage	e, its position de	epending on			
the time dependent geometry a	nd pressure pert	rbations of the sys	tem. In additio	n to shock			
dynamics, the model includes t	the effect of com	pressibility, interb	lade phase lag,	and an			
unsteady flow field upstream an	nd downstream of	the cascade. The	theory was eval	luated by			
comparing calculated unsteady	aerodynamics wi	th isolated airfoil v	wind tunnel data	and predicted			
choke flutter onset boundaries	with data from te	sting of an F100 hi	gh pressure con	pressor stage.			
		0		- 0			
1							
17. Key Words (Suggested by Author(s))	17. Key Words (Suggested by Author(s))			18. Distribution Statement			
Choke flutter	Unclassified - unlimited						
Unsteady aerodynamics		STAR Category 07					
19. Security Classif. (of this report) 20. Security Classif. (of this page)		f this page)	21. No. of Pages	22. Price*			
Unclassified	Unclassified		167	A08			

* For sale by the National Technical Information Service, Springfield, Virginia 22161

.__