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ABSTRACT

The method of vortex discretization 1s used to analyze the
interaction of the vorticity generated by a strake, with the flow
over a delta wing. The validity of the approach is first established
by making comparisons with established methods for dealing with
delta wings, after which compound delta planforms are discussed. An
understanding of the favorable interference effects normally associated
with this type of configuration i1s obtained and results are presented
to quantify the expected 1lift increments resulting from the strake

interaction.
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INTRODUCTION

In recent years there has been a great deal of interest shown in
the close coupled strake-wing configuration for military aircraft. This
arises because of the improvement afforded in the high angle of attack
characteristics of the aircraft. The improvement comes from the favor-
able interaction of the flow generated by the strake with the flow over
the main wing.

It 1s well-known that for highly swept wings with sharp leading
edges at incidence to a stream, the flow separates near the leading
edge. A shear layer, in the limit of infinite Reynolds number, a vortex
sheet, springs from the sharp edge and under the influence of 1ts own
vorticity rolls up into a spiral vortex lying above the wing. The
resulting flow pattern 1s quite different from the attached flow picture,
which 1s amenable to analysis by classical techniques. It seems 1in the
present context, that not only does this separated flow produce sub-
stantial vortex 1lift but the strake vortices interact favorably with
the wing flow field.

In order to calculate the aerodynamic forces which arise in the
flows with leading edge separation, a number of models have been put
forward. In general, the methods rely on the approximations associated
with slender body theory, that i1s, the assumption that the flow gradients
in the axial direction are small compared with those in the cross plane.
The approach adopted by Brown and Michael (1954) for flow over a delta

wing was to regard all the vorticity shed by the wing as being concentrated



in vortex cores connected to sharp leading edges by force free vortex
sheets of zero strength. Any vorticity shed by the wing 1s instantane-
ously convected into the cores.

Generalizations of this method developed by Mangler and Smith (1959)
and Smith (1968) consisted of an inviscid model in which the rolled up
shear layer was approximated by a concentrated vortex core, as in the
Brown and Michael study, connected to the leading edge by a non-uniform
force free vortex sheet. This showed a marked improvement over the
1solated vortex approach in that the pressure peak over the upper surface
of the wing was more accurately predicted.

The computational effort required in the above models were quite
small by modern standards.

More recently, techniques which avoid the simplifying assumptions
of slender body, or conical flow and utilize the modern high speed
computers have been developed. In particular a nonlinear discrete vortex
method has been presented by Atta, Kandil and Nayfeh (1977) to account
for leading edge separation and which 1s also capable of dealing with
the full three dimensional unsteady flow. The method essentially
reduces the problem to the determination of the strengths of bound vortex
filaments connecting the vortex lattice lines closest to the leading
edge to the starting vortex.

The aim of the present investigation is to try to obtain some
understanding of the complex flow interaction which arises between
the rolled up shear layer on the strake and the flow over the main

wing. Vorticity fed from the strake will influence the vorticity



shedding rate from the leading edge of the main wing and also affect
the way in which the shear layer over the main wing rolls up. The
detailed aerodynamics of the system are regarded as being of secondary
importance although comparisons of pressure coefficient over the wing
with previous theoretical results and experiment are made.

The slender body approximations are used 1in the present approach
and under these circumstances the steady flow over the strake wing
combination becomes equivalent to an unsteady two dimensional flow
problem past a growing plate. The method of vortex discretization for
this problem consists of replacing the shear layer by a distribution
of line vortices the dynamics of which can be determined using the
powerful tools of two-dimensional potential flow theory. It must be
remembered that in the three dimensional flow, the vortex lines would
be curved and consequently would have a self-induced velocity which
was logarithmically infinite. However, in a real problem, the singular
vortex line cannot exist and this self-induced velocity i1s in fact
limited by the effective non zero radius of the vortex tube. For the
present problem therefore, an estimate of the self-induced velocity can
be based on a vortex tube radius which 1s equal to a viscous diffusion
length appropriate to the discrete time step. Then the requirement 1is
that the self-induced velocity of the vortex be negligible compared with
the velocity induced at the vortex by the other vortices and the stream.
This restriction on the time step 1s not at all serious owing to the
fact that the singularity in the self-induced velocity 1is logarithmic
and so the approximation that the vortices can be regarded as infinite

straight line vortices 1is valid.



The method of vortex discretization applied to two-dimensional
flow problems was first introduced by Rosenhead (1931) and since that
time many authors have taken advantage of the inherent simplicity of
the method to tackle the difficult problems involving separation
from sharp edges. In particular with the advent of the modern computer
the method received a great deal of attention. A substantial review
article by Clements and Maull (1975) outlines many of the varied
applications. Fink and Soh (1974) have critically reviewed the method
and highlight a source of error which may arise from the contribution
to the velocity from the principal-value integrals implicit ain the
numerical scheme. However, they poaint out that this can be avoided
providing the vortices are at the centre of the segment of the shear
layer which they are supposed to represent. They therefore proposed a
redistribution of vorticity at each time step. However, Sarpkaya (1975)
has concluded, after reworking some of his problems, that this
refinement was hardly justified.

Moore (1974) has drawn attention to rather more fundamental draw-
backs of the method which arise essentially because a vortex sheet as
unstable. The problem occurs when neighboring vortices get too close,
so that induced velocities of the vortices are extremely high. An
examination of Kaden's (1931) results indicated to Moore that any attempt
to replace the sheet near its tip by discrete vortices was 1nadequate.
He therefore amalgamated neighboring vortices on the inner spirals to
obtain smooth roll up. However, as he points out, some results showed

evidence of Kelvin-Helmholtz instability and amalgamation causes
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instantaneous changes 1in the velocity field so that it 1s possible

that this approach may aggravate this type of instability. Another
device employed by Chorin and Bernard (1973) to avoid the difficulties
encountered when vortices came closely together was the vortex cut-

off region which ensured that the induced velocities remained bounded.

In using the method of vortex discretization 1t 1S necessary to

determine the strength of the individual vortices and their generation
point. Many workers have relied on experaimental data to choose the

most appropriate generation point and then the Kutta condition applied
at the sharp edge determines the vortex strength. The present authors
(1977) used an approximate expression for the rate of vorticity shedding
which in conjunction with the Kutta condition gave two equations for the

determination of both the vortex strengths and the generation points.



METHOD

The problem analyzed is that of a compound delta wing at incidence
0 to a stream of speed U . It 1s easily seen from the analysis that
the restriction of delta wings is not strictly necessary, although they
are the only type considered in the present report. The apex angles of
the strake delta and wing are denoted by 2817 and 282 respectively.
A Cartesian coordinate system is set up in whach z!  1s measured along
the axis of the wing and x 1s perpendicular to the wing; the geometry
1s shown in Figure 1.

Since the flow 1s inviscid and irrotational, except at discrete

points, the velocity potential ¢ must satisfy
V% = 0

subject to the condition of zero normal velocity on the wing. Under

the assumptions of slender body theory, ¢ may be written

¢ =9+ U, cosa z!

2 2
where 2—9-+ §—2-= 0
ox? dy?
and §9-= 0
9x



The equivalent unsteady problem 1is that of a plate of height s(t)
placed normal to a stream of speed U_sind. This can be obtained from
the steady flow problem simply by observing that z! 1s essentially

1

the time coordinate, in fact =z = U cosa t , and the local semi-span

s(z!) of the wing can be written

S/0,, sinQ s, t t <t say

(1)

and S/Uoo sind s,(t - t;) + s, t, t >t

where sl = tan Bl/tan 0 and t;, 1s the time corresponding to the
strake/wing junction.

Now, concentrating on the unsteady flow problem in the z(= x + 1y)
plane, 1t 1s convenient to map the region y > O excluding the cut x = 0,
0 <y < s 1into the upper half of the Z(=£ + in) plane using the

transformation
C=/z2+sz (2)

In the z-plane, vortices are to be shed from a point zG close to the

tip of the plate where Xq =0, YG = s 4+ £€/2 so that € can be regarded
as the mean thickness of that part of the shear layer shed from the tip
which the discrete vortex 1s supposed to represent. This corresponéis

to vortices being released in the ¢ plane from a point CG close

to the origin into a stream of speed U sin0 parallel to the §£-axis.

After n vortices have been released, the complex potential can be



written

n

1 ———
(@) = -0, sina ¢+ oo jil KJ In(@ - Cj) - 1n(C - Cj) (3)

where account has been taken of the i1mage system of vortices and K
th
1s the strength of the j vortex which 1s at 7 = cj.
Because vortex paths do not correspond in the [ , and z-planes,

1t 1s necessary to use Routh's rule to determine the complex vortex

velocities (- ur + 1vr) in the z-plane. Hence,

-u +1v = - U_ sino + =— I K,: 1 1 :]
r r 0 2m J - —
g

(4)

where Cr corresponds to zr and zr 1s the position of rth vortex
in the z-plane. At any instant in time this equation gives the vortex
velocities thus allowing the i1ndividual vortices to be convected and
the new distribution established. It remains to examine the way 1in
which the vortices are generated.

For a flat plate normal to a uniform stream, Fage and Johansen (1927)
have verified experimentally that the vorticity flux 1s approximately
%qi where g+ 1s the speed of the outer surface of the shear layer

adjacent to a mainstream flow. Hence, 1f Kn 1s the strength of the



vortex released over an interval At , a slight modification of this

appropriate to the present problem 1s

n _ 1 2

At 2

dw

(5)

dz z =1(s + €) = 1s

At the sharp edge 2z = 1s, the Kutta condition 1is 1imposed to make the
velocity there finite, this implies that there 1s a stagnation point
at C = 0 . Using equation (3) this gaves

n=1 K n

K =-n, (U, sio + T %—L—) (6)
=1 Ej+n§

where, using the transformation (2), n_ = vVse + g? /4 .

G

Equations (5) and (6) may be solved to determine Kn and the corres-
ponding value of € .

The fluid velocity (u, v) at any point except the singular
points in the flow can be found from equations (2) and (3) and 1s

given by

n
-u + 1v = —UooSlnC!’*'z—J:”‘Z K[ 1 1 ]5(7)
=1 Jc—cj t -t dle

In order to evaluate some of the aerodynamic properties of the wings, 1t

1s necessary to find the pressure distribution over the surface of the

wing. The non-zero velocity component v 1in the cross flow plane can



be found from equation (7) and 1is

n K n, -s<E<s
g=-dyswmo ¥ - _J I - -

13 LE S S 2 2 _ S22
1=l & 2€£J+53+nj y s®-&

where § < 0 for the lower surface and & > 0 for the upper surface.
From equation (3) the velocity potential can be found and 1ts time
derivative evaluated, bearing in mind that the only time dependent part
of ® arises through the vortex positions.

Thus

L)
it T 3

; . u mj Aj + (& - EJ)BJ] +lj[(€_EJ)AJ - nJBJ]
_ J _ 2 2 2 2
1 [(§ EJ) + nJ] [EJ + njl

|

where A = X + n and B = - xN ’
J JEJ yJ J ] vt

Using Bernoulli's equation

o0 + p +-£pv2= a constant
ot 2

and equations (8) and (9), the pressure distraibution on the wing can be
calculated.

In the present work, the fact that no length scale exists for the
delta wing problem has not been incorporated into the analysis. As a
result there 1s no self-similar development of the flow and when a
comparison was made between the strake-on and strake-off configurations,

1t was felt that to be consistent, the length scale for both problems
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should be the same and therefore taken from the strake-on case. The
difficulty in adopting what might be regarded as a more rigorous
approach 1s that the numerical scheme does not remain stable for a

sufficiently long time.
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RESULTS AND CONCLUSIONS

It 1s i1mportant, before any detailed results concerning the
strake wing interaction are presented, to compare the present method
with the well established method of Smith. Smith's results give a
detailed picture of the rolled up vortex sheet and also give a location
for the concentrated core. However, his analysis was based on the
conical flow approximation so that it was necessary, in the present
calculations, to assume that the flow had become approximately similar
at chordwise stations before the comparisons were made. In Figure 1l(a), (b)
the vortex roll-up along two delta wings with s, =585, = 1 and 2/3
respectively 1s shown, the total number of vortices shed on the final

spiral 1s 59 1n each case. Reference to equation (1) shows that the

larger values of S,» S, can be interpreted, not only as indicating a

larger apex angle of the wing 1f the incidence in the two cases 1is
the same, but, alternatively, for the same wing represents a smaller
angle of attack. Thus, the reason for the more extensive vortex spiral
in the s, = s2 = .7 case 1s evident.

In order to make a detailed comparison with Smith's results, 1t
1s necessary to reproduce his type of flow model, namely one and half
spirals 1n the shear layer and a concentrated vortex core. This was
done after 49 vortices had been released by amalgamating the inner 24

vortices into their vortex centre. The results are shown in Figure 2a

and b, where it can be seen that good agreement between the two methods
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and b, where 1t can be seen that good agreement between the two methods
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is achieved overall, but the centre of the vortex core on the present
calculation, although at approximately the same height, lies farther
inboard. Smith pointed out that his predicted lateral position of
the core was 1in error by about 6% of the semi-span of the wing so
the present calculations look particularly promising. In Figure 3,
the pressure distribution over the wing surface 1is compared with both
Smith's results and the experimental data of Faink and Taylor (1966).
Two curves from the present calculations are shown, one corresponding
to no amalgamation of vortices and the other to the amalgamation of
twenty four vortices as mentioned above. The results clearly show the
increased sharpness of the pressure peak resulting from the concentration
of vorticaty. Overall, the results show a broader suction peak
spreading further inboard giving good qualitative agreement with the
experiment. However, the pressure rise as the leading edge 1s approached
1s overestimated by the theory.

Having established that the method 1s capable of producing realistic
results for the case of the delta wing, attention can now be focussed
on the strake wing interaction problem. It must be stressed that the
numerical procedure used requires rather fine tuning in order to avoid
the instabilities which frequently arise with this method. It 1is
worthwhile to examine the reason for this difficulty as 1t has a
direct bearing on the results to be presented for the strake wing
problem. As mentioned 1n the Introduction, Moore has suggested that
the system 1s susceptible to Kelvin-Helmholtz instabilities which can

be triggered by any perturbation to the system. He found evidence that

-13-



repeated amalgamation of vortices, by producing instantaneous changes
in the velocity field, made this type of instability on the system more
apparent. Clearly, any discrete numerical scheme 1s continually pro-
ducing instantaneous changes to the system but in the present context
the extra complication which arises from continually changing geometry
aggravates this situation. In particular, when there 1s a sudden
change i1n a parameter value e.g. where the problem 1s enormously
increased. This means that at this stage, 1t 1s necessary to limit

the cases considered to ones where the ratio sl/s2 1s no more than 2.

Nevertheless, in the extreme case the results (Figure 4) show
the development of an instability after about thirty five vortices have
been released. Figure 5 shows the same flow with a change 1in time
step at the daiscontinuity of slope of the wing which has succeeded 1in
stabilizing the numerical procedure. Another example of the vortex
roll up 1s shown in Figure 5b where s, = .5 and s, = .8 . The
experimental results of Lamar (1978) and Luckring (1978) show that for
high angles of attack, there appears to be only one vortex system
over the main wing.

Although 1t 1s not going to be possible to examine the practical
si1tuations where sl/s2 1s substantially more than 2, the results
shown in Figure 4 do begin to show the way in which the interaction
between strake vortex and flow over the wing produces an improvement in

11ft characteristics. By comparing the shapes of the rolled up shear
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layers at the same span (A in Fig. 4, B 1in Fig. 1(a)) for the two
cases, l1.e. corresponding to strake on and strake off configurations,
1t can be seen that the rolled up shear layer i1s dragged inboard
by the strake vortex. On the face of it this would suggest a
substantial increase 1in the coefficient of 1lift per-unit chord CLS
at this span since the total vorticaity at this station 1s greater with
the strake on than with the strake off. However, reference to
Figure 6 where the surface pressure distributions for the two cases
are plotted, shows that this i1s not the case. This 1s because the
center of vorticaity at the span corresponding to the strake wing
junction, although in approximately the same lateral position for
the two cases, 1s about one and a half times further from the wing
surface with the strake on. It 1is necessary to go further along the
wing before the favorable interaction becomes apparent in the form of
an increase 1n CLS' This 1s shown in Figure 7 where the CLS with the
strake on becomes greater than the strake off value at about two
strake chords from the vortex of the strake. It must be borne in mind
that the contribution of CLS to the overall CL of a wing would be
weighted by the local span. Such curves are shown in Figure 8 where
1t 1s worth noting that the deviation from a straight line through the
origin 1is a measure of the non-conical nature of the flow.

It seems likely that this preliminary investigation of the influence
of a strake on the flow characteristics over a slender wing 1s worth

extending to gain further insight into this complex phenomenon. Clearly
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the restriction to delta like geometry 1is not necessary and also
cambered aerofoils could be analyzed. However, 1t 1s felt, intuitively,
that one of the most important benefits which might arise from the
addition of a close coupled strake 1s the delay in the vortex

breakdown over the main wing. In general, the highly swept strake

will produce a stable vortex which may under suitable conditions,

tend to stabilize the 1inherently less stable vortex over the main

wing. Indeed there are indications from recent experimental

results14 that this may be the case.
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