General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)

NNASA

Technical Memorandum 82148

(NASA-TH-82148) SCFIVARE ZNGINEBEKING H81-26748
STANCARDS AND PBACTICES (MASA) 495 P
HC AG3/NF AOY CSCL 0958

'3 Unclas
/61 28867

Software Engineering
Standards and Practices

Ronald W. Durachka

JUNE 1981

National Aeronautics and
Space Administration

iard Spece Flight Center
Greenbeit, Maryland 20771

™

Software Engineering Standards aid Practices

Ronald W. Durachka
Data Set Preparation Section
Code 931.1
Information Management Branch
Information Extraction Division
Goddard Space Flight Center
Greenbelt, Maryland

June 1981

Goddard Space Flight Center
Greenbelt, Maryland

82148

PREFACE

This document presents techniques and concepts for software engineering
standards and practices throughout the software development 1ife cycle.
These ideas are not new; they have been documented in great detail in
text books, technical papers, and in several GSFC software engineering
documents. The guidelines presented in this document are those which are
most applicable to the Information Extraction Division's software develop-

ment activities.

-

Section

1.1
1.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.7.1
3.7.2
3.7.3
3.7.4
3.8
3.8.1
3.8.2
3.9
Appendix A
Appendix B

TABLE OF CONTENTS

Title
Preface

Acknowledgements. . .

Introduction.

Objectives.

References.

st

»

L]

.

L]

Software Development Life Cycle

Software Development Activities

Requirements.

Functional Design . . . e e e e e e
Detailed Design . . . « . + v ¢« o ¢ ¢ o o + &
Test Plans. . + ¢ ¢ v ¢ ¢ o v o o s 5 & & 5 &
Configuration Control » .+
Implementation. . e e e e e e .
Testing . « & v« ¢« v b bt e e e e e e e
Module Testing. + « « « ¢« + . « &

Build Testing

Integration and Acceptance Testing. . .

Build, Integration, and Acceptance Test Analysis Reports. . . .

Operations.

Users . « « ¢« ¢ ¢ o « &

Operational SUPPOrt . . « ¢ v ¢ ¢ o v o ¢ o o o 0 6 0 0 e 00

Maintenance and Enhancements. . .

Detailed Design Module Characteristics.
Detailed Design Module Prolog Characteristics .

- e e e o

L] . . L] L] Ld Ld . L]

PRECEDING PAGE BLANK NOT FILMED

iti

Page
B
P |
¢« b e N |
e e o 0 e e s}
s o s o b . 2

’ . . 3
e
R

e e a4 e b s .o N

¢ e o » .13
....... . 15

I I

e v s s e e 23

. . 0 . 27

¢ o e o 0 a1 n e 27

s s s s 8 0 s e 28

o o v o 4 e 23

. 29

o s 0 s 4 o . 31
e s e s e e 3

. 34

. 36

. s e s s e + 39
P §

Fow LI TR PR ATWEIT e T

~

Qo :
B & +

LIST OF FIGURES

Title

Software Develonment Cycle.

System Development Cycle.

Functional Requirements Document Outline.

OQutline of Test Plan. . . + . « + + « .

Configuration Control Form. . . .
Build Implementation Concept. . .
Build Implementation Matrix . .

Outline of Test Analysis Report .

.

Outline of Users Manual

Outline of Operations Manual. . .

Outline of Maintenance Manual .

v

.

-4
w (54] I (-]
F

17
22

26

30
32

35

ML i i S e et it il

1. INTRODUCTION

1.1 Objectives

This document des:ribes the various phases of a software development
project throughout its 1ife cycle and general software engineering standards
and practices to be followed during each phase.

This document is also intended to provide guidelines for the preparation
of a software development plan, which includes a specification of the
standards and practices to be followed from project inception to project
end. This software development plan will aid in:

o Defining the software engineering standards and practices to

be used by the designer;

0 providing an objective basis for measuring the project's

progress; and

o ensuring high quality software,

The software developmefit plan will aid software designers in:
o Providing a model of the software development cycle which will
be used as a basis for planning, measuring, and controlling
the software throughout its 1ife cycle,
o providing a basis for communications with the project, the user,
and the operations and maintenance personnel,
0 providing more usable, operable, maintainable and transportable
software.
Section 2 of this document describes the step-by-step development
of a software project. Section 3 discusses each of these steps in more
detail. The Appendices contain additional information on the characteristics

of detailed design modules and their prologs.

O RREANRE A T

et

.@Wry W T WO I Vn‘v\} AT

1.2 References

The material presented in this document is based on the documents
listed below. Certain parts were extracted verbatim; other parts were
modified or added to more properly reflect t'ie activities of the Information
Extraction Division.

1. "Guidelines for Documentation of Computer Programs and Automated
Daia Systems", FIPS PUB 38,

2. "Mission Operations Division (MOD) Software Engineering Standards
and Practices (SESP) Volumes 1 and 2 - Software System Life Cycle",
prepared for GSFC by Computer Sciences Corporation, May 1979.

3. "POCCNET Software Engineering Standard Approach Recommendation”,
SCPB Informal Memorandum I-76-34, prepared f7r GSFC by Computer Sciences
Corporation, December 1976.

4. "Telemetry Computation Branch Quality Assurance Procedures--
Programming and Documentation Standakds". prepared for GSFC by Computer
Sciences Corporation, February 1978.

5. "Telemetry Computation Branch Quality Assurance Procedures--
Software Development Procedures" (Revision !, prepared foy GSFC by

Computer Sciences Corporation, August 1977.

2, SOFTWARE DEVELOPMENT LIFE CYCLE

Figure 2-1 jdentifies and briefly describes the phases, major
activities, and major products of the software system 1ife cycle. Figure
2-2 jdentifies deliverables and i1lystrates a proven, risk-reducing
software system development cycle which emphasizes the formal specification
of requiremencs and strict control of changes to the specification,
implementation, and testing procedures.

This software system development cycle is divided into nine aroas:
requirements, functional design, detailed cesian, test plans, configuration
control, implerentation, testina, operations, and maintenance procedures.

The requiremenis document is the first phase of the system life
cycle. The purpose of this phase is to provide a basis for mutual under-
of the software to be developed.

The functional design document presents the preliminary software system
design proposed to satisfy the requirements. It provides a system-level
description of the proposed software capabilities in 1ight of the currently
stated project requirements.

The detailed design document presents the unit-level software system
design proposed to sailisfy the requirements. It describes, at a detailed
level, the structure of all the software identified and presented in the
functional design document. The detailed information necessary to develop
the basic individual software components, or units, of each program is
provided. In addition to program specifications, this document includes
the detailed descriptions of all data files and external interfaces
utilized within the processing environment. The detailed design also

includes a detailed milestone software build schedule and implementation

e

LA S

i é
ADLSD ¢-bau BuLwiy
‘sadbessau ‘sweuabeip
J13soubesp ¢ suaLssaadxd $S30RJU3JUL
suot3diad 3593 Al jo [2o13Rway e €$324N0S3uU
-53p Ind uoLenieAd ‘S9ALIRARU ‘buy | puey
~3n0 “saJn pue jnd burssasoud J04U43
~-paoouad -3no/Indui $3$83 uQrzewaojur “jndino nduy
buijesado pajsey sasnpaldoad wa3sAs pue‘spiing aasem €34n30n43S
bug buiaq 3593 SNSJ3A uorjeafidjur -3j0s °sije 34PMIJOS JUILUOULAUD
-pniaut uorjaung suoL3ouny 53593 -wJu0j ejep *suoridradsap buia
apinb buipnouL wWAISAS SNSUIA pPLing ‘s3ndino buissaocouad -eaddo pue
uoLIel S,43Sn 333 Yoea Sjuawa LNbaJ ‘sysu] pue sndut ‘sMopy ejep sadejuaaguy NOLIVL
-uaun20p pue JO s3|nsad buzssadoad jLun 403 bBurkyidads Buipnout ‘“aouewaojdad ~NIWAJ0Q
bugysixd [enuew UIILJM 40 PBuimoys xragem pado|anap Jusun Juaum futpnjout
30 I3epdn suotLy /pue uor} 40 3|98} G [0A3U0D eL4dILAD -J0p ubissp -d0p ubLsop ‘3uauwndop
pue asp -ea9d) -R4jSUOWR] UOLIeJUdMWR | duf uoLr3eandyjuo) bur3say pajLe3aq feuorlounyd sjuawaJainbay
Ish [euoty uL ageuaado
SyJaetnouag -edado a0y pue uoil
“eqep wa33sAs ayy ubLsap paLjsijes aq -duni ([IM
*SjuM Lewiouqe swajqoad Aj1ienb {euorjdouni 03 3ae sJusw wd3shs ay3
~JdUeYus pue jewaou 3UBMI J0S pue 03 AJess3 Y3 uL -a41nbad 3yl - JuUBWUOALAUD
Juaus | duy 4y30g 03 ‘sjuauwdILNbat -D3u SuoL] paqLAISaIP MOy pue L e4an0
*Swa|qoad WaYSAs sasuodsau spiing duemyjos 03 sabueyd U3 SUOHPBP uRsAs Aydosoyiyd 2y} autjap 350d¥nd
WA sAs N3 paatnbaa Y3 Juawd]dul ¢ sjuouRsLnbas pue S3s93 2ay3 [Lejap wajysAs pue Ajideds
30844C) 3jeaadpy Ijeajsuowa] 03 Pod dojIa(g M3U {0a3u0) JY3 SuLyag uL A3iosds 3qLA2S3 “A313u9p]
TOUINGD N91S3a N9IS3a
JONYNIINIVW NOILVH3d0 ONILS3L NOIL1VINIWI 1dWI NOILWHN9IANOD SNY1d 1S3L a3niviia TYNOILINNY SINIWIYINDIY NOILIONNA
ITAI INIWHOTIAIC FYYMLI0S ~L1-Z2 FH¥N9Id

-

Xraqe
uo L3eJUABB| mm
ainpayds
UOISI| W
Ju3wNI0p 3abpng
[enue.: asueudjuiey ueid 3s9]
ueyd
[enue.: suorjeaadg Juaundop juawudo|anag
ubtsap pairezag
{Enued SA3sq JuauNd0p
Juawndop sjuawau tnbaa S1Ina0dd
uoLjejuldand0p wWAYSAs 03 sajepdp S3J0das sisAieue 3s3y | uS1sap [euoijouny feuorjouny
LeAoadde pue
MILAlU ueld 3sa)
{eaouadde
pue M3tA3u
ubisap pajte3ag
aouejdasoe pue
wd3SAS [e303 JO uOLIRASUOWRG jeaoadde {eAouadde
pue Matau pue matAsu SM3IIA3Y
duewiojiad wasAs PLI"G yoea j0 uoijeajsuoundg | ubrsap euoijoung sjusawasLnbay
T0YINOD NOILVHNOIANOD
buiisay
ddueldacde pue uoijeabajul
{enuew JdueuUHULeW ddedadd
fenuew peuctyesado aaedaud
ueuiogaad wWIISAS 3z euy {enues s43sn auedadg
wA3SAS 3yl adcueyud pue urejutey | cenns suejd 3s3}
wa3sAs a3yl ajeaadg 5 PN s L PLING 3 ubisag pattejaq S3u33LLNbA SITLIAILIY
b N PLiNG 204 S3a|npow 3p0d L & LexoL3ouny
wayshs ay3 asn | ‘" *L PLING 403 s3aLnpow 3po) | ubisag Leudi3dung 30 ud LUty
SINIWIIRVHNI ONY ONILIS3L ONY ISYHd 3ISVHd
FONVNIINIVH “SNOTLVAH3d0 NOILVINIWI W] N9IS3a SINIWIVINDIY
JIAI INIWJOT3AST WILSAS °2-2 N9Id4

matri) to be used in conjunction with the test plan during the imple-
mantation phase,

The test plans specify the proposed techniques and mechanics to
be employed in the validation and verification of the software duving
the implementation phase of the system development cycle.

Configuration control is a systematic and discinlined approach to
applying administrative direction and maintaining surveillance over software
related activities. It is used to control and account for changes to
software, and to verify that deliverables contain only approved changes.

The implementation phase develops the system in ancordance with the
requirements, design, test plan, and confiauration procedures.

The testing strategy is baced on the fact that systems are developed
and tested incrementally in o series of builds proceeding from a minimal
capability in a series of well planned stages. This type of testing
procedure of "build-a-1ittle, test-a-little, use-a-little" is very
successful and has the following advantages:

0 Interface probiems can be discovered early.

0 Increments of system capabilities can be demonstrated before
completion of the tntal system,

0 It allows user feedback to validate the requirements before
the end of implementation.

The operational phase begins when the completed system is installed
in the user's environment and accepted by the project.

The maintenance phase consists of making modifications to the code,
the documentation, and/or data for the purpose of correcting errors in
the system. System :2nhancements are also included in this phase and con-

si% of responding to changes in the system requirements or other user needs.

3. SOFTWARE DEVELOPMENT ACTIVITIES

3.1 Requirements

The activity of the requirements phase is to specify the requirements
that the system must satisfy and to gain project approval of the specifica-
tion of these requirements. Inputs to this phase may include results from
previous efforts, such as feasibility study results, concept descriptions,
and trade-off study results.

Proper execution of requirements specification activities is critical
to providing a system that meets user requirements and minimizes overall
1ife cycle costs. User requirements are captured, analyzed, and synthesized
to provide clear, concise, unambiguous, and complete requirements state-
ments that can be verified, tested, and/or demonstrated. These statements
are organized and documented in the Functional Requirements Document,

This document is absolutely essential for the success of a development
effort, since it forms the basis of communications about the developing
system, Omissions, errors, or misunderstandings at this stage can later
cause major problems. When several individuals or organizations are
involved in development projects, it is critical that all requirements
be recorded in writing.

The requirements are defined through an iterative dialog between
the system users and the development group, in which genera) requirements
are gradually translated into specific functions. The requirements
document produced by this phase describes what is to be accomplished by
the software system. In contrast, follow-on design documents describe
how the requirements will be satisfied and show the required software

modules/routines, their functions and interrelationships.

The written requirements specification will be the definitive
reference for all future developmen? activity and must be updated
periodically (e.g., after each design review) to reflect changes or
additions. The specification should describe areas of uncertaiaty or
missing information, as well as what is certain. The requirements
specifications must be properly maintained, since they nay be used by
the project/task managers, design personnel, and other project personne)
(e.g., the testing group), and users. An accurate requirements spec-
ification is also essential for meaningful testing and verification of
the completed software system.

The Functional Requirements Document divides requirements into
logically related groups, such as those presented in Figure 3-1. A well-
organized presentation of requirements states what is to be done and
provides a means for evaluating the results; that is, the statement of
requirements provides both the basic "design to" guide for the development
group and the standard by which the manager can evaluate the resulting
system.

The outline presented in Figure 3-1 describes one possible means of
specifying requirements. Individual projects may develop more suitable
outlines and better methods of presentation., Although the format of
requirements specifications may vary, the contents should bazically include
those areas covered in Figure 3-1 which are applicable to that project.
Most important, however, is that the requirements be uniquely identified

and collected into logically related groups.

FIGURE 3-1. Functional Requirements Document Outline

1.1
1.2

1.3

2‘]

2.2

2.3

2.4

3.2

3.3

General Information

Summary - Summarize the general nature of the system to be developed
Environment - Identify the project, developer, users, and computer
complex where the system is to be implemented

References

Overview

Background - Present the purpose and scope of the system
Objectives - State the major performance chjectives of the system,
types of users, data bases, interfaces, and operational changes
which are to be supported.

Existing Methods and Procedures - Describe the current methods and
procecures for satisfying the existing objectives.

Proposed Methods and Procedures - Describe the proposed system and
its capabilities. Identify techniques and procedures from other
systems that will be used or that will become part of the proposed
system. identify the requirements that will be satisfied by the
proposed system.

Requirements

Functions - State the functions required of the software in quantitative
and qualitative terms, and how these functions will satisfy the
performance objectives.

Performance - Specify the performance requirements, such as
accuracy, validation, timing, and flexibility

Inputs/Outputs - Specify and show examples of the various data

inputs and ocutputs

3.4

3.5

4.2
4.3
4.4

4.5

Data Characteristics - Describe the data and estimate total storag:
requirements based on the system's expected grrath

Failure Contingencies ~ Specify the possible failures of the system,
alternative courses of action, and consequences. Include back-up,
fa'llback, and recovery and restart in the failure analysis.
Operating Environment

Equipient - Identify the equipment required for the operation of
the system,

Support Software - Identify the needed support software.

Interfaces -~ Describe the interfaces with other systems

Security and Privacy - Describe the overall security and privacy
requirements imposed on the system

Controls ~ Describe the operational controls imposed on the system

10

3.2 Functional Design

The functional or preliminary design phase consists of analyzing
the requirements specified in the functional requirements document and
designing a software system, at the highest level, which will perform those
functions. That is, the functional design describes how the proposed
system will perform the required functions. Processing strategies and data
structures are considered, and subsystems and their interfaces and inter-
actions are described. The principal product of the functional design phase
is a functional design document or set of document sections for incorperation
into a later document. The outline of the design document can serve as
an organizational mechanism for design activity, since designing the system
and writing the document are nearly synanymous,

The purpose of a formal design document is to allow review by all
affected organzations to ensure that a workable system has been planned
which will satisfy all requirements. User acceptability is a primary
consideration during the functional design phase. User or other operations
interfaces should be described in enough detail to allow potential users
to evaluate the system from their point of view.

The Functional Design Document consists of the following sections--
Introduction, Overview, and Subsystens.

A. Introduction

The Introduction briefly identifies the system, its purposes, users,
environment, and identifies the related requirements document and any other
relevant information.

B. Overview

The Overview section contains the following:

1) A block diagram of the system which illustrates and concisely names

11

all software subsystems, I/Q devices and associated files, and special
purpese hardvare.
2) A data flow diagram which depicts the flow of all data throughout
the system, from raw input through data base to user, and concisely
identifies all data types and output products. (This diagram may be
combined with the system block diagram, debending on complexity.)
3) A description of the overall system in terms of how it meets the
functional requirements. It briefly describes the subsystems shown in
the block diagram and how they interact; discusses and justifies major
design decisions where alternate approaches were considered; describes
the input data, all data files, and output products; describes user inter-
action and operational procedures; that is, how the user would perform
specific functions mentioned in the functional requirements document; and
discusses theoretical approaches taken in solving specific analysis problems.

C. Subsystems

This section provides a logical flow chart for each subsystem and
discusses each subsystem's function. It describes, using text and tables,
the interface to each subsystem, e.g., subroutine arguments, common blocks,
inter-task communication packets, and contents of I/0 records. (Note
that a subsystem may be defined as a subroutine or as an independant
program, depending on the size of the system.) It describes, for each
subsystem, any specific analysis algorithms, computational accuracy
considerations, speed requirements, etc., as necessitated by the functional

requirements.

12

3.3 Detailed Design
The detailed design phase consists of refining the functional design
into a complete, detailed system blueprint, essentially a code-to specifica-
tion. The detailed desinn is formally documented in order to allow review,
to comunicate the design to the programmers, and to serve as the basis
for final system documentation,
The Detailed Design Document consists of the following sections~-
Introduction, Subsystems, Formats, and Schedules.
A. Introduction
The Introduction briefly identifies the system, its purpose, users,
environment, and identifies the related Functional Design Document and
any other relevant information.
B. Subsystems
This section describes in detail each software subsystem as defined
in the Functional Design Document. Each subsystem description includes
the following:
) Logical flow chart i1lustrating subsystem function
0 Block diagram showing and naming each module within the system
0 Overview of the subsystem briefly describing each module and
inter~-module interactions and describing how the subsystem
function is achieved
0 Description of each module, to include a 70log as defined in
Appendix B, a description of the module .., Program Design
Language (PDL) and, optionally, a flow chart.
Prologs may be in the form of computer listings appended to the
design document. Al1]l modules must conform to the module characteristics

as described in Appendix A.

13

C. Formats

This section describes, to the level necessary for programming,
the formats of all 1/0 files and records, all output products (punched
cards, television displays, plots, graphs, listings, etc.), all global
storage areas (COMMON blocks), inter-task communication packets, interactive
user language and menu formats, and any other software constructs other
than actual code. Formats may be in the form of tables, diagrams and
text.

D. Schedules

System development is achieved as a top-down sequence of software
builds. This section of the Detailed Design Document describes each
build by Visting the modulés contained in it, the tests to be performed,
and the functional capabilities. (The final build is the completed
system,) A milestone schedule is included in this section which specifies

the delivery date for each build.

14

3.4 Test Plans

There are three phases of test plans necessary for the staged system
implementation and acceptance: (1) module test plans; (2) build test
plans (system increments); and (3) integration and acceptance test plans.
The technical inputs to the test plans are the Functional Requirements
Document, the Functional Design Document, and the Detailed Design
Document. The management inputs to the test plans are the software develop-
ment plan generated during the requirements phase and the software build
schedule and implementation matrix generated during the detailed design
phase,

The module test plan preparation and specification coincides with
the preparation of the module prolog and logic specification. The formats
for prologs are defined in the detailed design section 3.3. and Appendices
A and B,

The build test is composed mainly of the combination of the module
tests of the modules contained in the build. It identifies the individual
test cases that are required to demonstrate that the build performs its
functions and to show that the software and data requirement has been
implemented. The build test procedures describe the input, the expected
output, and the step-by-step procedures required to perform each specified
build test case.

The objective of the integration test plan is to integrate the modules
of the current build with the modules from the previous builds. The
primary inputs to the integration tests are the tested modules of the current
build with any builds previously integrated and tested. Having met the above
criteria the new build is integrated by testing the new capabilities and

determining that they satisfy the system requirements.

15

Once a1l the software builds have been successfully integrated,
the system is then ready for acceptance testing. Acceptance testing
consists of running the build tests, demonstrating the system capabilities
to project personnel and users, and thus obtaining approval and acceptance
of the system.

A general outline of the contents of a typical test plan is shown

in Figure 3-2. This outline is based in part -on FIPS publication 38.

16

FIGURE 3-2. Outline of Test Plan

]l
1.1

1.2

(2]
w

3.2

General Information
Summary - Summarizes the functions of the software and the tests to
be performed
Environment - Describes the test environment, summarizes the needed
equipment, inputs, etc.
Plan
Test Description - Briefly identifies the inputs, outputs, and
functions of the software being tested, specifies the step-by-step
procedures to accomplish the test, including test setup, initialization,
and termination.
Milestones - Gives the projected test date
Testing
2.3.1 Requirements - Lists the functional requirements the test
will satisfy, and identifies the equipment and other software
needed to support the test.
2.3.2 Testing Materials - Lists the materials needed for the test,
such as documentation, input data, and output data.
Specifications and Evaluation
Specifications and Evaluation - Lists the tests to be performed and
relates them to the functions of the software module or build.
Methods and Constraints
3.2.1 Methodology - Describes the general method or strategy of
the test.
3.2.2 Conditions - Specifies the input data to be used as well as the

data volume.

17

3.2.3 Data Recording - Discusses the method to be used for recording
the test results
3.2.3 Constraints - Indicates anticipated limitations on the test
due to interfaces, data bases, functions being completed in
another module or build, etc.
3.3 Evaluation - Describes the criteria and techniques used to evaluate

the test results.

18

I Ry e e g o g

3.5 Configuration Control

Configuration control iis comprised of three areas: the configuration
control board, configuration management, and the configuration management
procedure.

The configuration control board is composed of personnel from the
project/designers/users/operations and maintenance organizations. It
is responsible fur reviewing proposed changes to the system, assessing
the impact of the change request, and either approving, disapproving, or
delaying the implementation of the proposed change.

Configuration management encompasses change control, configuration
accounting and reporting, and configuration reviews.

Configuration management procedures are necessary because as a
rule data processing systems undergo considerable change and evolution
during development; it is, therefore, desirable to control changes to
the system requirements and design. This 1s made possible by well-defined
procedures for coding (Section 3.3), along with a formal mechanism for
requesting software changes and reporting software problems.

The formal mechanism for requesting a design change or reporting
a software problem or documentation discrepancy is the configuration
control form (CCF), illustrated in Figure 3-3.

The CCF is a four part form for reporting and/or requesting system
changes to requirements, design, software, and documentation. The CCF
is classified as one of three types: (1) software problem, for program
malfunctions; (2) design change requests, for changes in requirements or
design; and (3) documentation, for updates and changes to existing

documentation.

19

The change control process of the configuration management procedure

is described in the items below.

0

The CCF may be initiated by any individual involved in the
system, The initiator will complete the "INITIATOR Description"
portion of the CCF, and submit the form along with sufficient
information to justify the request.

The analyst reviews the request and assigns a problem type
designation in the space provided. The analyst determines the
amount and kind of information needed, performs the analysis,

and includes this information in the "analysis" portion of

the CCF, with additional sheets as required. The analyst
describes the required modifications and the anticipated impact
on the hardware/software resources, schedules, manpower, and cost.
When the analysis has been completed it is suomitted for approval.
If the change is approved by the configuration control board,

it is sent to the implementation personnel for inclusion in

the development schedule. The change could also he deferred

or rejected by the control board,

Change approval means that the implementation group is expected
to work the new activity into the development schedule. When

the change and testing has been completed, the "change" portion
of the CCF is filled in., Descriptions of modifications to the
software must be specific because the information is required

for verification activities. The supervisor reviews the modifica-
tions for correctness and conformance to software standards

and signs the CCF on the Tline denoted "work reviewed by:".

. e @
o AL PAGE

20 AR FOOR GUATITY

The implementation is reviewed by the software system technical
monitor to determine what additional tests if any are required
for final verification. When the verification actions have been
completed, the technical monitor signs the CCF and returns it

to the control board for final disposition.

The system version is filled in with date of system availability,
and the change is advertised to the user community as completed

and ready for use,

21

CONFIGURATION CONTROL FORM

REQUEST NUMBER: i PROJECT:
YR - MON : DAY +SEQ
o A A S A
STATUS: PROBLEM TYPE:
Received; D Scftware Problsm
ARSIYSIE; -, (] Design Change
Implarventation: D New Requirement
Varificution:
a3 T T L2 A R S YA R AL, Ry SRR
INITIATOR DESCRIPTION:
INITIATOR: : :
Name Organization Phone No,
STATEMENT OF PROBILEM TYPE:
additional pages "]
ANALYSIS:
Nams Date
Software/Hardware
Schedula;
Resources:

Other (Documentation, etc.):

additional pages]

e B L S N, 'm—m
CHANGE (Description of work parformed, includa test scores u..s for verification):

Software/Hardware Affected:

Work Performed by; ‘

Name Date
Work Roviawed by {supervisor):

Name Date
VERIFICATION:

Name Date
Availabitity of Change {System/Varsion)

Name Date

————

COPIES: INITIATOR/ANALYST/CONFIGURATION CONTROLLER/VERIFIER
JRIGINAL PAGE IS
P POOR QUALITY

3.6 Implementation

The implementation phase includes coding of software mocdules, module
testing, integration of modules into builds, huild testing, and integration
and acceptapce testing., This phase also includes the development of the
User, Operations, and Maintenance manuals.

This phase of software development has traditionally had low management
visibility and &% a result has presented opportunities for uncontrolied
schedule s1ips. To avoid or at least anticipate schedule problems in
the implementation phase, top down system development methodology is used
and the system is broken into software builds, where at least one visible,
verifiable event is scheduled each month.

The top down methodology consists of developing the highest level
software modules first, i.e., the main control module followed by the
modules called by the main program. Following this, the next *~vsl of
modules are then developed. This process continues until the Towest level
modules are finished. At each level, the modules to be called on the next
lowest level are represented by stubs. A stub consists of a prolog,
output message, and a return to the calling module. Using the top down
method the system is tested from the start of development as each software
build is finished.

A build is a software subset which fulfills some of the system
requirements. The advantages of builds are:

o Software functions become visible early during development

0 Testing and development proceed concurrently

0 If development is halted, the status of the system is well

defined

0 Management can more easily track the system development.

23

The objective of the build concept (Figure 3-4) is to veduce dependence
on final testing and to develop a usable subset of the system capabilities
with the delivery of each build., Thus, a build can be functionally tested
at a high level and can be operationally demonstrated to the user., From
the developer's view, the build ccnsists of a number of modules which have
been individually tested and then integrated. The build plan is developed
during the detailed design phase. An example of a build implementation
matrix is given in Figure 3-~5. The build implementation matrix shows
all the software builds across the top. The jeft side of the matrix
indicates the subsystems and the requirements fulfilled by each subsystem.
The right side of the matrix indicates the test performed to satisfy the
requirement. The asterisks indicate in which build the requirement will
be available for operational use.

Build test, integration and acceptance test plans are required
under this development methodology and are defined in the test plan
section 3.4. The build test plan defines test cases needed to demonstrate
that the build is internally c¢orrect. Integration and acceptance test
plans are designed to demonstrate the correctness of interfaces, data
flows, and to verify that the system performs all the capabilities defined
in the design,

The system documentation develsped during the implementation phase
are the User, Operation and Maintenance guides. These guides are defined

in sections 3.8 and 3.9.

24

T4

1d3INOD NOILVINIWITAI G1Ing ¥-€ 3HN9I4

ALT119YdY0) Pmm»,A NOILVY93IINI _~ 1sa1 -~ gaisaL -~ 13003 alng
W3LSAS T4 JINY1dIIY WILSAS N a1mg NG STNEOH _ S3WOOW 1Sv7
i
i
I
I
i
!
|
i
L _ _ _ _ _|at111avdvd MOILV493INI -~ 1531 A gasaL -~ 43309 2
Q3SYIYINI WILSAS S aling SINCECH . SINAOW a1ing
ALIT18YdYD 1siT _~ g3isir — d300) L

TVILINI alng . S3NG0W ~_ sS3IndoW | 07Ing

Jé

Xta3ey uoizejuawdjduy pring g-¢ 24nbL4

LN 3S3l * 1+N juauwsurnbay
N 3S3} * N JusueaALnbay
W wajsAsgng
« €N
. aE
.)
. <5
. MQ
. 1 oG
. & <
i o
- \F!VO
£ 3Is9l ¥ € JuduauaLnbay
2 wajsAsqng
2 1591 * 2 jusupJainbay
L 3saL % 1 Juswaainbay
L we3sAsqgng
34Na3204d S3dvi vivd 3d¥L YLva W3LSAS INIWIHINOIY
1S3l Q31L1VWHO04 e e e e e e e e J3L1YWHOd | 3ZITVILINI W31SASaNS
1nd1n0 avad L a1Ing
N @1Ing 2 a1ing
saiing

saiing

3.7 Testing
The test phase, which begins during the implementation phase, carries
out the plans as previously developed (Section 3.4). The tests performed
occur at tie module, build, integration, and acceptance levels, By
using the strategy of testing at various levels the system is developed,
tested, and used incrementally from modules to builds to final system,
beginning with minimal capability and ending with full system capability.
This testing procedure of "build-a-little, test-a-little, use-a-little"
is very successful and has the advantages of early discovery of problems,
early demonstratable partial system, and early user interaction.
3.7.1 Module Testing
The purpose of module testing is to verify the correctness
of the module design and the module code. Since module testing is used as
an internal means of verification it does not have to be a formal process.
The only requirement is that the module pass a set of standard tests.
These tests certify that the module is ready to be integrated into a software
build and subjected to build testing.
The standard module test verifies that:
0 The module provides the software capability allocated to
it in the design document
0 A11 processing paths between successive decision points
jdentified in the module design function correctly.
o A1l the module interfaces to the data base are correct
0 A1l processing of user and computer inputs is done correctly

0 Correct responses are generated for user and computer inputs.

3.7.2 Build Testing
The purpose of build testing is to verify that the build as
produced reflects the design. When build testing is successfully carried
out it signifies that the integration test is ready to commence. The
build configuration is subjected to a series of tests which verify that
the build as produced reflects the design as described in the detailed
design document.
The standard build test verifies that:
0 A1l the module software capabilities specified in the design
document are provided for in the build
0 A11 the software interfaces to records, groups, and subgroups
in the data base are correct
o ‘. A1l the software interfaces between modules are correct
0 A1l user input and the resulting responses specified in the
User's Manual (Section 3.8) are correctly processed and generated
by the build
0 A11 computer operations input and the resulting responses
specified in the Operations Manual (Section 3.8) are correctly

processed and generated by the build.

3.7.3 Integration and Acceptance Testing
The purpose of integration and acceptance testing is to
demonstyate that the system as designed and coded meets the capabilities
as defined in the requirements and design documents. The standard integration

and acceptance test verifies that:

28

Lo el

o A1l capabilities specified in the requirements and design
documents are previded for by the system

0 A1l the performance requirements established in the require-
ments document are met by the system

o All data base requirements definedlin the requirements and
design documents are met by the system

) A1l the quality criteria set forth in the requirements and design
document are met by the system

0 A11 the interface requirements between the system and other
systems, as specified in the requirements and design documents,

are satisfied.

3.7.4 Build, Integration, and Acceptance Test Analysis Reports

The purpose of a test analysis report is to document the test
results and findings, to describe the demonstrated capabilities, and to
provide a basis for preparing a statement of system readiness.

Figure 3-6 presents a general outline for the test analysis report.

29

FIGURE 3-6. Outline of Test Analysis Report

1. Identifies the test,

2, Identifies and presents the test results, including data input and
output results,

3. Identifies and describes the findings for each function the test
is fulfilling, including performance evaluation, and identifies
the Jdeficiencies, Tlimitations, and constraints detected in the
software during testing.

4. Analysis Summary
4.1 Describes the capabilities of the software as demonstrated

by the tests.
4.2 Describes the deficiencies of the software as demonstrated
by the tests.

.3 Describes the readiness of the software for inclusion into

“" “
-
w

the system.

30

3.8 Operations
The operational phase of the system life cycle has two main
objectives: (1) to use the system to perform its required functions, and

(2) to provide the operational support needed in the use of tha system.

3.8.1 Users
The major activities performed by the system users are:
() Perform user functions for which the system was developed
0 Identify errors or deficiencies which inhibit full use of
the system and file a problem report (Section 3.5)

0 Evaluate and report on system capabilities from the point of

view of user satisfaction

0 Suggest system improvements.

A user manual is developed to describe sufficiently the functions
performed by the system, so that the user community can determine how
to use the system. The manual serves as a reference document for
preparation of input data and parameters and interpretation of results
by the users.

Figure 3-7 presents a sample outline for a Users Manual.

31

FIGURE 3-7. OQutline of Users Manual

1.
1"]

1.2

1.3

2.2

2.3

2'4

2.5
2.6

2.7

General Information

Introduction - Summarizes the applications and general functicns
of the software system,

Overview - Identifies the user organization, the computer center,
and general data flow.

References

Application

Description - Describss when and how the software is used and the
unique support provided to the users,

Operation - Shows the operating relationships between the systej
capabilities and the users. Describes security and privacy con-
siderations.

Equipment - Describes the hardware on which the system is running
and the degree of system transportability.

Structure - Shows the structure of the software and describes the
roie of each component in the operation of the system,
Performance - Describes the performance capabilities of the system.

Data Base - Describes all data files in the data base that are

referenced, supported, or kept current by the system, and indicates

the purpose of each file.
Input, Processing, and Qutputs - Describes the inputs, flow of data

through the data processing, and. the resultant outputs.

32

3.1

3.2

3.3

3.4

Procedures and Requirements
This section provides information about initiation procedures and

the preparation of data and parameter inputs for the system., This

information is logically arranged and sufficiently precise and complete

to enable the user to prepare all required inputs. This section also
explains in detail the characteristics and meaning of all system
outputs. It also describes error, recovery, and query procedures.
Initiation - Describes step-by-step procedures required to initiate
processing.

Input - Describes the preparation for preparing input data and
parameters.

Output - Describes the content, format, and intepretation of each
system output.

Error and Recovery - Lists error codes or conditions generated by
the system and corrective action to be taken by the user. Indicates
procedures to be followed by the user to ensure that any restart

and recovery capability can be used.

33

3,8.2 Operational Support
The system is considered to be operational once it has passed
all integration and acceptance testing, and an Operations Manual {is made
available to the operations personnel. The operations personnel have
the responsibility to:
0 Operate the system.
0 Identify system operational problem areas, errors, and deficiencies
and file a problem report about them (Section 3.5).
0 Monitor, evaluate, and report on system performancea.
0 Make recommendations to solve operational problems and to
improve the system.
The Operations Manual provided with the system is intended to provide
system operations personnel with a description of the software and of
the operational environment. Figure 3-8 presents a sample outline for

an Operations Manual,

34

FIGURE 3-8. Outline of Operations Manual

1.1
1.2
1.3

2.2
2.3

3.2

3.3

General Information
Introduction ~ Summarizes the general functions of the software
Environment ~ Identifies the user organization and the computer center

References

Overview

System Organization - Provides a diagram showing the inputs, outputs,
data files, and sequence of operations of the system

Program Inventory - Identifies each program

File Inventory ~ Identifies each permanent file that is referenced,

created, or updated by the system,

Description of Tasks

Task Inventory - Lists the various tasks possible, summarizes the
purpose of each task, and shows the programs that are executed
during each task.

Task Progression - Describes the manner in which progression advances
from one task to another so that the entire task cycle is shown

Task Description - Organizes the information on each task into

the most useful presentation for the operations personnel involved

Non-Routine Porcedures

Provides all information necessary concerning emergency or non-

routine operations, such as switchover to a back-up system and procedures

for turnover to maintenance personnel.

35

3.9 Maintenance and Enhancements

The mainteriance and enhancement phase is the last phase of the system
*ife cycle and consists of making modifications to the code, the documenta-
tion, and/or data for the purpese of correcting errors and improving the
system.

A Maintenance Manual is provided to complement the Operations Manual
and User's Manual. The Maintenance Manual provides the information
necessary to understand the system, its operating environment, and its
maintenance procedures. Continued additions to this document, such as
new operating procedures, new processing algorithms, or any other specific
technical enhancement or modification to the system will keep the documentation
current and abreast with the system changes,

Figure 3-9 presents a sample outline to be used as a guide in

daveloping a Maintenance Manual,

36

o i ey

I i

R Bk
i

FIGURE 3-9, Outline of Maintenance Manual

1.1

1.2

2.1

Z.N

3.

3.1

3.N

General Information
Introduction - Summarizes the general nature of the software to
be maintained

References

Program Descriptions
Describes the programs in the system to be maintained
Program Attributes for Programs
2.1.1 Programming language
*2.1.2 Input (reference User's Guide)
*2,1.3 Processing features (variables, algorithms, error handling,
Tinkages, etc.) (reference User‘s Guide)
*2.1.4 Outputs (reference User's Guide)
*2.1.5 Interfaces (reference Detailed Design Document)
*2,1.6 Operating procedures to run the program (reference User's Guide)

Program Attributes for Program N (repeat 2.1)

Program Environment

Identifies the resources necessary for running the programs
Resources for Programs

3.1.1 Program size (memory used)

3.1.2 Data storage on line and off line

3.1.3 Input/Output devices used (tape and disk drives, etc.)
3.1.4 Transmission lines

Resources for Program N (repeat 3.1)

FIGURE 3-9 continued

4, Maintenance Procedures

*4,1 Programming Conventions (refer to detailed design Section 3.3)

*4,2 Verification Procedures (refer to test plans and testing Sections 3.4
and 3,7)

4,3 Error Correction Procedures - Describes all error conditions, their
sources, and procedures for correcting them

4.4 Special Maintenance Procedures - Describes any special procedures
required for the majntenance of the programs

4.5 Program Listings

*This feature is described in detail in the referenced document or section

and is only mentioned here for completeness.

38

R T T S R

R

APPENDIX A
DETAILED DESIGN MODULE CHARACTERISTICS

Definition
A module is the smallest software element in the system hierarchy,

i.e. subroutine, and performs a maximum of one function.

Module Characteristics

A module shall conform to the following characteristics:

1. It shall perform only one function.

2. It shall have a unique nane.

3. It shall constitute a single compilation or assembly entity,

4. NAs a guideline it should consist of no more than 100 executable
statements.

5. It shall have only one point of entry and one point of exit.

6. When invoked by another module, it shall return to the point
immediately following the invocation.

7. It shall not relinquish control to another module other than by
invocation or by return to the module which invoked it.

8. It shall be documented as a unit.

9, Its internal logic shall be independent of the internal logic of
all other modules.

10. It shall be serially reusable, i.e. no assumptions shall be made
regarding its previous execution.

11. The organization of the module shall be as follows:

a. Purpose of the module

39

b.

c.

Module prolog
Module flow description statements interspersed among executable

statements,

40

e

R

APPENDIX B
DETAILED DESIGN MODULE PROLOG CHARACTERISTICS

B.1 Prolog Contents
A11 headings listed below shall be a part of every module prolog

from the beginning of module design. Those items for which infoymation

is not available at that time shall contain the entry "NOT AVAILABLE".

As coding progresses and the information becomes available, it shall be

entered into the appropriate place within the prolog. When coding is

completed, the prolog shall be checked for completeness, for accuracy,
and for consistency with the code.

1. Module Name: The module invocation name and the English language
name (full name or phrase from which the module invocation name
is derived).

2. Function: A concise description of the function of the module.
The functie~ is the net effect of one execution madule; it is not
an explanation of how the module accomplishes its function. A
module shall have only one function.

3. Author Names: The names (first initial and last name) and
organizational affiliations of the module designer(s) and module
programmer(s).

4. Calling Sequence: A list and brief description of the parameters
of the calling sequence. Any constraints on size or range of values
shall be noted here. Each parameter shall be labeled as an input
parameter (used inside the module without initialization) or an
output parameter (modified by this module). The use of parameters

on both input and output parameters shall be avoided.

4

10.

11.

12.

Method: A brief narrative describing the module processing shall

be specified., This shall be written so that the reader can easily
relate the narrative to the module function (item 2) and to the
module flow (item 15).

Error Processing: A1l error or exception conditions which can be
detected by this module shall be identified along with the response
to each condition,

File References: Each file, including data base elements, shall be
listed by name, purpose of reference, and type of reference (e.g.,
Write, Read, Store, Retriuvve, Update, Create, Delete).

Global Storage References: A1l global storage blocks (e.g., named
COMMON blocks in Fortran) which are referenced by this module shall
be Tisted by name, purpose of reference, and type of reference (i.e.,
Store or Retrieve). Include 1ist and description of each variable
contained,iﬁlthg global storage blocks.

External Modu]e?Macro References: A1l references to external modules
or macros shall be listed by name and purpose of reference.

Interhgl Tables and Variables: The format of each nontrivial

tab]é; buffer, or werk area shall be described. Include 1ist and
purpose of each major internal variable.

Dependencies: Any known depandencies on a specific computer, operating
system, or compiler shall be described.

Assumptions/Restructions: A1l assumptions (especially those which
result in algorithm simplification) and restrictions (e.g., unit
conventions, size limitations) regarding processing logic or data
shall be clearly specified.

ORIGINAL PAGE IS
OF POOR QUALITY

42

]3.

14,

15.

B.2

Reference: References to any additional information regarding

the module not covered above, such as file formats, data struciures,
or mathematical/scientific techniques shall be clearly identified.
Change History: A1l changes shall be listed here, Each entry

shall contain the following information: name (first initial, last
name) and organization affiliation of the person making the change,
date of implementation of the change, project identification information
(prnject name, contract number, task number, etc.), references

to pertinent change control documents, and a short (one line) des-
cription of the purpose of the change. Change history data shall

be Tisted in reverse order of implementation, i.e., the most recent
change shall be listed first and the oldest change listed last.
Module Flow: A detailed description of the module processing will
be provided. The description will use structured design constructs,
such as If-Then-Else, Do-While, in combination with an English
Tanguage vocabulary. The description will address each decision
path and loop and will clearly indicate decision path and lcop

dependencies.

Prolog Maintenance

The prolog represents the final documentation of the module. Because

other personnel will use the prolog for interface information and for

understanding the module, the prolog shall be updated each time the

module is modified.

43

	1981018210.pdf
	0001A02.jpg
	0001A02.tif
	0001A03.tif
	0001A04.tif
	0001A05.tif
	0001A06.tif
	0001A07.tif
	0001A08.tif
	0001A09.tif
	0001A10.tif
	0001A11.tif
	0001A12.tif
	0001A13.tif
	0001A14.tif
	0001B01.tif
	0001B02.tif
	0001B03.tif
	0001B04.tif
	0001B05.tif
	0001B06.tif
	0001B07.tif
	0001B08.tif
	0001B09.tif
	0001B10.tif
	0001B11.tif
	0001B12.tif
	0001B13.tif
	0001B14.tif
	0001C01.tif
	0001C02.tif
	0001C03.tif
	0001C04.tif
	0001C05.tif
	0001C06.tif
	0001C07.tif
	0001C08.tif
	0001C09.tif
	0001C10.tif
	0001C11.tif
	0001C12.tif
	0001C13.tif
	0001C14.tif
	0001D01.tif
	0001D02.tif
	0001D03.tif
	0001D04.tif
	0001D05.tif
	0001D06.tif
	0001D07.tif

