
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 



NASA
I Memorandum 82148,Technics

(NASA-TIS-82148) SCITVAVZ 18616229110 	 VOI-26748
STANDARDS AND FAACTICIS (NASA) 49 p
HC A03/81 A01	 CSCL 098

G3	 tlacla
40/61 28867

Software Engineering
Standards and Practices

Ronald W. Durachka

JUNE 1981

c	 .. National Aeronauticsa
^ 	 J^41961

hECEtV'^QSpace Administration	 fit,

Goddard Spwo Flight CNIS r off• ^,
Greenbelt, Maryland 20771	 0,^^^

R



x

TM	 82148

Software Engineering Standards a W Practices

Ronald W. Durachka
Data Set Preparation Section

Code 931.1
Information Management Branch

Information Extraction Division
Goddard Space Flight Center

Greenbelt, Maryland

June 1981

l

k

k

Goddard Space Flight Center
Greenbelt, Maryland



F

i
c

i

4
M^

IN

PREFACE

This document presents techniques and concepts for software engineering

standards and practices throughout the software development life cycle.

These ideas are not new; they have been documented in great detail in

F f
	

text books, technical papers, and in several GSFC software engineering

documents. The guidelines presented in this document are those which are

most applicable to the Infomation Extraction Division's software develop-

ment activities.

i



TABLE OF CONTENTS

i

Sec.. n Title Page

Preface	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 . .	 .	 .	 .	 . .	 .	 .	 i

Acknowledgements .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 . .	 .	 .	 .	 . .	 .	 .	 ii

1 Introduction .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 . .	 .	 .	 .	 . .	 .	 .	 1

'	 1.1 Objectives.	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 . .	 .	 .	 .	 . .	 .	 .	 1

1.2 References .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 . .	 .	 .	 .	 . .	 .	 .	 2

2 Software Development Life Cycle . . . . .	 .	 .	 .	 . .	 .	 .	 .	 . .	 .	 .	 3

3 Software Development Activities .	 . . . .	 .	 .	 . .	 .	 .	 .	 . .	 .	 .	 7

3.1 Requirements.	 .	 ..	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 . .	 .	 .	 .	 . .	 .	 .	 7

3.2 Functional Design	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 . .	 .	 .	 .	 . .	 .	 .	 11

3.3 Detailed Design	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 . .	 .	 .	 .	 . .	 .	 .	 13

3.4 Test Plans.	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 . .	 .	 .	 .	 . .	 .	 .	 15

3.6 Configuration Control 	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 . .	 .	 .	 .	 . .	 .	 .	 19

3.6 Implementation .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 . .	 .	 .	 .	 . .	 .	 .	 23

3.7 Testing	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 . .	 .	 .	 .	 . .	 .	 .	 27

3.7.1 Module Testing.	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 . .	 .	 .	 .	 . .	 .	 .	 27

3.7.2 Build Testing	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 . .	 .	 .	 .	 . .	 .	 .	 28

3.7.3 Integration and Acceptance Testing . . . .	 .	 .	 .	 . .	 .	 .	 .	 . .	 .	 .	 28

3.7.4 Build, Integration, and Acceptance Test Analysis Reports.	 . .	 .	 .	 29

3.8 Operations .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 . .	 .	 .	 . .	 .	 31

3.8.1 Users	 ..	 .	 ..	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 . .	 .	 .	 .	 . .	 .	 .	 31

3.8.2 Operational Support . 	 .	 ...	 .	 .	 .	 .	 . .	 .	 .	 .	 . .	 .	 .	 .	 . .	 .	 .	 34

3.9 Maintenance and Enhancements. . . . . .	 .	 .	 .	 . .	 .	 .	 .	 . .	 .	 .	 36

Appendix A Detailed Design Module Characteristics. .	 .	 .	 .	 . .	 .	 .	 .	 . .	 .	 .	 39

Appendix B Detailed Design Module Prolog Characteristics . . .	 .	 .	 . .	 .	 .	 41

PRECEDING PAGE 13L.ANK NOT FILMED

iii



y

LIST OF FIGURES

Figgre 	 Ti tle	 P.,

2-1	 Software Devel b,,mnt Cycle. . . . . . . . . . . . . . 	 . . 4

2-2	 System Development Cycle.	 . . . . . . . . . . . . . . . . 6

3-1	 Functional Requirements Document Outline. . 	 . . . . . . 9

3-2	 Outline of Test Plan . . . . . . . . . . . . . . . . . . . . 17

3-3	 Configuration Control Fo-n. . . . . 	 .	 . . . . . . . . 22

3-4	 Build Implementation Concept. . 	 . . . . . . . . . . . . . 25

r
3-5	 Build Implementation Matrix . . . . . . 	 . . . . . . . . 26

3 . 6	 Outline of Test Analysis Report . . . . . . . 	 . .	 . . 30

3-7	 Outline of Users Manual	 .	 . . .	 . . . .	 . . . . 32

3-8	 Outline of Operations Manual. . . . . 	 . . . . . .	 . . . 35

3-9	 Outline of Maintenance Manual . . . . . .	 . . . .	 . .. 37

f

iv

^T



1.	 INTRODUCTION

1.1 Objectives

This document describes the various phases of a software development

project throughout its life cycle and general software engineering standards

and practices to be followed during each phase.

This document is also intended to provide guidelines for the preparation

of a software development plan, which includes a specification of the

standards and practices to be followed from project inception to project

end. This software development plan will aid in:

o	 Defining the software engineering Standards and practices to

be used by the designer;

o	 providing an objective basis for measuring the project's

progress; and

o	 ensuring high quality software.

The software development plan will aid software designers in:

o	 Providing a model of the software development cycle which will

be used as a basis for planning, measuring, and controlling

the software throughout its life cycle,

o	 providing a basis for communications with the project, the user,

and the operations and maintenance personnel,

o	 providing more usable, operable, maintainable and transportable

software.

Section 2 of this document describes the step-by-step development

of a software project. Section 3 discusses each of these steps in more

detail.- The Appendices contain additional information on the characteristics

of detailed design modules and their prologs.-

1



1.2 References

The material presented in this document is based on the documents
4

listed below. Certain parts were extracted verbatim; other'parts were

modified or added to Pore properly reflect 0e activities of the Information

Extraction Division.

1. "Guidelines for Documentation of Computer Programs and Automated

nai,4 Systems", FIPS PUB 38,

2. 11 144ission Operations Division (MOD) Software Engineering Standards

and Practices (SESP) Volumes 1 and 2 Software System Life Cycle",

prepared for GSFC by Computer Sciences Corporation, May 1979,

3. "POCCNET Software Engineering Standard Approach Recommendation",

SCPB informal Memorandum I-76-34, prepared f-,,ir GSFC by Computer Sciences

Corporation, December 1976.
M

	

	

4.	 "Telemetry Computation Branch Quality Assurance Procedures—

Programming and Documentation Standards", prepared for GSFC by Computer

Sciences Corporation, February 1978.

5. "Telemetry Computation Branch Quality Assurance Procedures—

Software Development Procedures" (Revision !), prepare.4 for- GSFC by

Computer Sciences Corporation, August 1977.

2



2.	 SOFTWARE DEVELOP'ME'NT LIFE CYCLE

Figure 2-1 identifies and briefly describes the phases, major

activities, and major products of the software system life cycle. Figure

2-2 identifies deliverables and illia trates a proven, risk-reducing
s

'	 software system development cycle which emphasizes the formal specificationp	
of requirements and strict control of changes to the specification,

implementation, and testing procedures.

This software system development cycle is divided into nine areas;

requirements, functional design, detailed 6esign, test plans, configuration

control, implementation, testing, operations, and maintenance procedures.

The requirerients document is the first phase of the system life

cycle. The purpose of this phase is to provide a basis for mutual under-

standing between the project, users, and designers of the initial definition

of the software to be developed.

The functional design document presents the preliminary software system

design proposed to satisfy the requirements. It provides a system-level

description of the proposed software capabilities in light of the currently

stated project requirements.

The detailed design document presents the unit-level software system

design proposed to satisfy the requirements. It describes, at a detailed

level, the structure of all the software identified and presented in the

functional design document. The detailed information necessary to develop

the basic individual software components, or units, of each program is

provided. In addition to program specifications, this document includes

the detailed descriptions of all data files and external interfaces

utilized within the processing environment. The detailed design also

includes a detailed milestone software build schedule and implementation

3



b

a
41 A r..

.^ c4 x
r° -fog 4a

O In

r— tie
0, 43

8210 kO•r Yf

--.

it

o
W
Eti

4•

v 'D C f

M	
1 u

I	 + I CI 1	 N ^t	 C •w
IA	 w	 R'+D + 

0011 `
 CL	 7LI

+rw C a '3 V ^L
"
'bi.

a.►

J 4J0 v^o	 o'fla
C 4
Zj E '00 -, 40- 2 t ii O
o c
+r +r

ou N
C 

O 
N N
X IA VI +r N ^a •r a •r- O +^ ^ Idyl►

.04jU1 O L L.9	 ..O
29	 42>a

. n

n	 w
vl a

C ^ C

os.^s.o^f
O ^ .0 4Vi Cwf.U`r rtlQ

W	 I	 14)

16 U 10JccV(d41 +Jaa

C N C t/1 f^» r Vf O R!
^i N O 4 

r+ 
t. 0

eta 4j 4j N Q $14-J

r .0 •U 40

a 4J (A In	 C to

06V)-^ >,aC^ yIA t7 1r 4-

f 0"o

r
.0 +r a 4-
O 1 t0 r+r E(A0	 44La0GLtr:to

N 4-) 
^'Q a C

IAA 06 ICC 4rJ

C
+O

L ^"

V W

b 0^J 4j	 J
C ^L Q.'

C 	 L N+r a r-	 rn 'fl v1 p, In va
IAA +0- ^ L IAA '^ IAA 4J "a VI
aL y 2Iv 4ICCi^
H u 'C 4- 4J.0 4J •	 4r Id 	

r-` Cw Q^'

`Q C C C	 4J w-- +r C a .r. r. b 0,+1 .4f .r	 r >4./ •r

r Q14J r^ 4^J 2 $ wo	 a •^ "q'̂ L'M •r C •U Z C'- b^ O U L .0 S. IT+^44 v► 	 CJ G. ,4J ++ to 4- O 5.. 4J 06 0 ^ al
'OC Gvl.•C O 'a to	 O. C d 9 4J D.

w	 n
ij

f	 6	 C	
w IA

py	 +	 !^+t

C '^ C ^ ^ •1-^ t11 L t 3 Q1 ^ vO r- 4A 06 ^O CU tebM 4J44 4	 Oy!'L3 U4JS.- ZS.
ûC 	l'iA C ^	 0 vi 4t- L G L C pVO^f B
LA. 4 •, "Do M. 'O N 4 ^r- V =

..J

r-

	
aNN

1
	 W

N	 f--
LIJ

Da-a	 W
tx.	 ..J

t-+

D

9 z
O

CF.1 W

q*

Vl r41 a 4J
C U N 1

C C tuJ L EC •r	 - C C

4G

O ro
00CL CC

5.-40- a O C1
+r+>'p 'r Q +r Ip ,yt

*r

1
W

O
V F-^

'O 	4J
r.

	

b aC	 V

4J r C LU S.O. 0^ r 06C U' +r L +r r^ _ Laa 4r a> 0 r o w
o" wb 0 4)4tJ *34+ 0

Z	 wO
1-ti	 a.
V	 ^

R
LL



H

f^i ia1

W

p

W
a.
C7

I

I

ulW

I

a
a

C L
2

"

All 
,O

6 N
L C

Q ^ d

^^ `^ +O+
r^

r a u
C' j' ur c c

4°- cae
p e to Rf 4+ iv

x `s 0 0 +nFes- a d C
F^-M a

00

'
O

b ofw w, '^ a
!--

b iCME Rf b

Q.
o c L ca sa. a

c

•Q1 c
^ rn

i w

to C
c ^ +a

UJ
^V)

Qemu► r
C

10 4J0
A ^s.

ii

4
Ĵ
J

ha*A

Z7	 1^

VI

r
u	 41

dJ ^Q

uc	 C
°	 ocr-

Aw R!	 06
S.	 S.. a
41	 41 u
N	 in

to

ro

U.

v «°' ci
v, c r •.-
a •r. >

I v

r̂O C
to

C

a > a# aCL

JC fy w T' V

^ m Hbp

o .-
c^. r rt

c •° c

c
.^ cv, cm Cw ,o'r

t^ roto
c c

c+o ar'

' 4J 0
V

u to 0i
,- .%c u 44 u 44 u a+.+

U.. '°U ^ V° la m° ^ of

In

1R M

r CC b C
A ^ C	 ^► cEJ

b O i C c^
q^

C CT
ZW 06

u ^C

^j {d^
fQ0 ^iL i G Q 00

4-

°►̂ - ++
2 C^ C

' O
X W G
uj

N Oa
4n
^

^^i 1
126

'C ++ •r-
C;

aa
CWC

to
w
►.r

H
U
4

t	 9

3

^r

s
a

3
W

7
W

N
N
v

O
GC
d



matrit, to be used in conjunction with the test plan during the imple.

mentation phase.

The test plans specify the proposed techniques and mechanics to

be employed in the validation and verification of the software during

the implementation phase of the system development cycle.

Configuration control is a systematic and discip lined approach to

applying administrative direction and maintaining surveillance over software

related activities. It is used to control and account for changes to

software, and to verify that deliverables contain only approved changes.

The implementation phase develops the system in ancordance with the

requirements, dc;ign, test pl=in, and configuration procedures.

The testing strategy is bated on the fact that systems are developed

and tested incrementally in i! series of builds proceedin g from a minimal

capability in a series of well planned stages. This type of testing

procedure of "build-a-little:, test-a-little, use-a-little" is very

successful and has the following advantages:
	 , 1

o	 Interface problems can be discovered early.

o	 Increments of system capabilities can be demonstrated before

completion of the total system.

o	 It allows user feedback to validate the requirements before

the end of implementation.

The operational phase begins when the completed system is installed

in the user's environment and accepted by the project.

The maintenance 'phase consists of making modifications to the code,

..	 the documentation, and/or data for the purpose of correcting errors in

the system. System enhancements are also included in this phase and con-

s-., 5 4. of responding to changes in the system requirements or other user needs.

6



3. SOFTWARE DEVELOPMENT ACTIVITIES

31 Requirements

The activity of the requirements phase is to specify the requirements

that the system must satisfy and to gain project approval of the specifica,

tion of these requirements. Inputs to this phase may include results from

previous efforts, such as feasibility study results, concept descriptions,

and trade-off study results..

Proper execution of requirements specification activities is critical

to providing a system that meets user requirements and minimizes overall

life cycle costs. User requirements are captured, analyzed, and synthesized

to provide clear, concise, unambiguous, and complete requirements state-

ments that can be verified, tested, and/or demonstrated. These statements

are organized and documented in the Functional Requirements Document,

This documen t. is absolutely essential for the success of a development

effort, since it forms the basis of communications about the developing

system. Omissions, errors, or misunderstandings at this stage can later

cause major problems. When several individuals or organizations are

involved in development projects, it is critical that all requirements

be recorded in writing.

The requirements are defined through an iterative dialog between

the system users and the development group, in which general requirements

are gradually translated into specific functions. The requirements

document produced by this phase describes what is to be accomplished by

the software system. In contrast, follow-on design documents describe

how the requirements will be satisfied and show the required software

modules/routines, their functions and interrelationships.

7



The written requirements specification will be the definitive

reference for all future developmer'Z activity and must be updated

periodically (e.g., after each design review) to reflect changes or

additions. The specification should describe areas of uncertainty or

missing information, as well as what is certain. The requirements

specifications must be properly maintained, since they Wray be used by

the project/task managers, design personnel, and other project personnel

(e.g., the testing group), and users. An accurate requirements spec-

ification is also essential for meaningful testing aotd verification of

the completed software system.

The Functional Requirements Document divides requirements into

logically related groups, such as those presented it Figure 3. 1. A well_

organized presentation of requirements states what is to be done and

provides a means for evaluating the results; that is, the statement of

requirements provides both the basic "design to" guide for the development

group and the standard by which the manager can evaluate the resulting

system.

The outline presented in Figure 3-1 describes one possible means of

specifying requirements. Individual projects may develop more suitable

outlines and better mthods of presentation, Although the format of

requirements specifications may vary, the contents should ba.Pically include

those areas covered in Figure 3-1 which are applicable to that project.

Most important, however, is that the requirements be uniquely identified



FIGURE 3-1. Functional Requirements Document Outline

1. General Information

^	 a
1.1 Summary - Summarize the general nature of the system to be developed

1.2 Environment - Identify the project, developer, users, and computer

complex where the system is to be implemented

1.3 References

2. Overview

2.1 Background - Present the purpose and scope of the system

2.2 ObJectives - State the major performance objectives of the system,

types of users, data bases, interfaces, and operational changes

which are to be supported.

2.3
k

Existing Methods and Procedures - Describe the current methods and

proceei,a) es for satisfying the existing objectives.

2.4 Proposed Methods and Procedures - Describe the proposed system and

its capabilities.	 Identify techniques and procedures from other

r systems that will be used or that will become part of the proposed

system.	 1.0ontify the requirements that will be satisfied by the

r

proposed system.

3.	 Requirements

3.1 Functions - State the functions required of the software in quantitative

and qualitative terms, and how these functions will satisfy the

performance objectives.

3.2 Performance - Specify the performance requirements, such as

accuracy, validation,, timing, and flexibility

3.3 Inputs/Outputs - Specify and show examples of the various data

inputs and outputs

9



3.4 Data Characteristics - Describe the data and estimate total storao*

requirements based on the system's expected grrwth

3.5 Failure Contingencies - Specify the ,possible failures of the system,

alternative courses of action, and consequences. Include back-up,

fallback, and recovery and restart in the failure analysis.

4.	 Operating Environment

4.1 Equipmnt Identify the equipment required for the operation of

the system.

4.2 Support Software - Identify the needed support software.

4.3 Interfaces -t Describe the interfaces with other systems

4.4 Security and Privacy - Describe the overall security and privacy

requirements imposed on the system

4,.5 Controls	 Describe the operational controls imposed on the system

F

10



3,2 Functional Design

The functional or preliminary design phase consists of analyzing

the requirements specified in the functional requirements document and

designing a software system at the highest level, which will perform those

functions. That is, the functional design describes how the proposed

system will perform the required functions. Processing strategies and data

structures are considered, and subsystems and their interfaces and inter-

actions are described. The principal product of the functional design phase

is a functional design document or ^,et of document sections for incorporation

into a later document. The outline of the design document can serve as

an organizational mechanism for design activity, since designing the system

and writing the document are nearly synonymous.

The purpose of a formal design document is to allow review by all

affected ortian = zations to ensure tha4 a workable system has been planned

which will satisfy all requirements. User acceptability is a primary

consideration during the functional design phase. User or other operations

interfaces should be described in enough detail to allow potential users

to evaluate the system from their point of view.

The Functional Design Document consists of the following sections—

Introduction, Overview, and Subsystems.

A. Introduction

The Introduction briefly identifies the system, its purposes, users,

environn►ent, and identifies the related requirements documrMnt and any other

relevant information.

B. Overview

The Overview section contains the following:

1)	 A block diagram of the system which illustrates and concisely names

11



all software subsystems, I/O devices and associated miles, and upecial

purpose hardoare.

2) A data flow diagram which depicts the flow of all data throughout

the system, from raw input through data base to user, and concisely

identifies all data types and output products, (This diagram may be

combined with the system block diagram, depending on complexity.)

3) A description of the overall system in terms of how it meets the

functional requirements. It briefly describes the subsystems shown in

the block diagram and how they interact; discusses and justifies major

design decisions where alternate approaches were considered; describes

the input data, all data files, and output products; describes user inter-

action and operational procedures; that is, how the user would porform

specific functions mentioned in the functional requirements document; and

discusses theoretical approaches taken in solving specific analysis problems.

C.	 Subsystems

This section provides a logical flow chart for each subsystem and

discusses each subsystem's function. It describes, using text and tables,

the interface to each subsystem, e.g., subroutine arguments, common blocks,

inter-task communication packets, and contents of I/O records. (Note

that a subsystem may be defined as a subroutine or as an independent

program, depending on the size of the system.) It describes, for each

subsystem, any specific analysis algorithms, computational accuracy

considerations, speed requirements, etc., as necessitated by the functional

requirements.

12



T1
3.3 Detailed Design

The detailed design phase consists of refining the functional design

into a complete, detailed system blueprint, essentially a code -to specifica-

tion. The detailed desiitn is formally documented in order to allow review,

to communicate the design to the programmers and to serve as the basis

for final system documentation.

The Detailed Design Document consists of the following sections--

Introduction, Subsystems, Formats, and Schedules.

A. Introduction

The Introduction briefly identifies the system, its purpose, users,

environment, and identifies the related Functional Design Document and

any other relevant information.

B. Subsystems

This sec J on describes in detail each software subsystem as defined

in the Functional Design Document. Each subsystem description includes

the following:

o	 Logical flow chart illustrating subsystem function

o	 Block diagram showing and naming each module within the system

o	 Overview of the subsystem briefly describing each module and

inter-module interactions and describing how the subsystem

function is achieved

0	 Description of each module, to include a ')rolog as defined in

Appendix B, a description of the module r * , Program Design

Language (PDL) and, optionally, a flow chart.

Prologs may be in the form of computer listings appended to the

design document. All modules must conform to the module characteristics

as described in Appendix A.

13



C. formats

This section describes, to the level necessary for programming,

the formats of all I/O files and records, all output products (punched

cards, television displays, plots, graphs, listings, etc.), all global

storage areas (COMMON blocks), inter-task communication packets, interactive

user language and menu formats, and any other software constructs other

than actual code. Formats may be in the form of tables, diagrams and

text.

D. Schedules

System development is achieved as a top-down sequence of software

builds. This section of the Detailed Design Document describes each

build by listing the modules contained in it, the tests to be performed,

and the functional capabilities. (The final build is the completed

system.) A milestone schedule is included in this section which specifies

the delivery date for each build.

.

14



3.4 Test Plans

There are three phases of test puns necessary for the staged system

implementation and acceptance: (1) module test plans; (2) build test

plans (system increments), and (3) integration and acceptance test plans.

The technical inputs to the test plans are the Functional Requirements

Document, the Functional Design Document, and the Detailed Design

Document. The management inputs to the test plans are the software develop--

ment plan generated during the requirements phase and the software build

schedule and implementation matrix generated during the detailed design

phase,

The nodule test plan preparation and specification coincides with

the preparation of the module prolog and logic specification. The formats

for prologs are defined in the detailed design section 3.3. and Appendices

A and Q,

The build test is composed mainly of the combination of the module

identifies the individual

the build performs its

requirement has been

the input, the expected

to perform each specified

tests of the modules contained in the build. It

test cases that are required to demonstrate that

functions and to show that the software and data

implemented. The build test procedures describe

output, and the step-by-step procedures required

build test case.

The objective of the integration test plan is to integrate th,G nodules

of the current build with the modules from the previous builds. The

primary inputs to the integration tests are the tested modules of the current

build with any builds previously integrated and tested. Having met the above

criteria the new build is integrated by testing the new capabilities and

determining that they satisfy the system requirements.

15



W

Once all the software builds have been successfully integrated,

the system is then ready for acceptance testing. Acceptance testing

consists of running the build tests, demonstrating the system capabilities

to project personnel and users, and thus obtaining approval and acceptance

of the system.

A general outline of the contents of a typical test plan is shown

in Figure 3-2. This outline is based in part-on FIPS publication 38.

16

Y



FIGURE 3-2. Outline of Test Plan

1,	 General Information

1.1 Summary - Summarizes the functions of the software and the tests to

be performed

1.2 Environment - Describes the test environment, summarizes the needed

equipment, inputs, etc.

2. Plan

2.1 Test Description - Briefly identifies the inputs, outputs, and

functions of the software being tested, specifies the step-by-step

procedures to accomplish the test, including test setup, initialization,

and termination.

2.2 Milestones - Gives the projected test date

2.3 Testing

2.3.1 Requirements - Lists the functional requirements the test

will satisfy, and identifies the equipment and other software

needed to support the test.

2.3.2 Testing Materials - Lists the materials needed for the test,

such as documentation, input data, and output data.

3. Specifications and Evaluation

3.1 Specifications and Evaluation - Lists the tests to be performed and

relates them to the functions of the software module or build.

3.2 Methods and Constraints

3.2.1 Methodology Describes the general method or strategy of

the test.

3.2.2 Conditions - Specifies the input data to be used as well as the



3.2.3 Data Recording - Discusses the method to be used for recording

the test results

3.2.3 Constraints - Indicates anticipated limitations on the test

due to interfaces, data bases, functions being completed in

another module or build, etc.

3.3 Evaluation - Describes the criteria and techniques used to evaluate

the test results.

18



tation,

19

3.5 Configuration Control

Configuration control is comprised of three area,: the configuration

control board, configuration management, and the configuration management

procedure.

The configuration control board is composed of personnel from the

project/designers/users/operations and maintenance organizations. It

is responsible for reviewing proposed changes to the system, assessing

the impact of the change request, and either approving, disapproving, or

delaying the implementation of the proposed change.

Configuration management encompasses change control, configuration

accounting and reporting, and configuration reviews.

Configuration management procedures are necessary because as a

rule data processing systems undergo considerable change and evolution

during development; it is, therefore, desirable to control changes to

the system requirements and design. This is made possible by well-defined

procedures for coding (Section 3.3), along with a formal mechanism for

requesting software changes and reporting software problems.

The formal mechanism for requesting a design change or reporting

a software problem or documentation discrepancy is the configuration

control form (CCF), illustrated in Figure 3-3.

The CCF is a four part form for reporting and/or requesting system

changes to requirements, design, software, and documentation. The CCF

is classified as one of three types: (1) software problem, for program

malfunctions; (2) design change requests, for changes in requirements or

design; and (3) documentation, for updates and changes to existing



The change control process of the confi guration management procedure

is described in the items below.

o	 The CCF may be initiated by any individual involved in the

system. The initiator will complete the "INITIATOR Description"

portion of the CCF, and submit the form along with sufficient

information to justify the request,

o	 The analyst reviews the request and assigns a problem type

designation in the space provided. The analyst determines the

amount and kind of information needed, performs the analysis,

and includes this information in the "analysis" portion of

the CCF, with additional sheets as required. The analyst

describes the required modifications and the anticipated impact

on the hardware/software resources, schedules, manpower, and cost.

When the analysis has been completed it is suomitted for approval.

o	 If the change is approved by the configuration control board,

it is sent to the implementation personnel for inclusion in

the development schedule. The change could also be deferred

or rejected by the control board.

o	 Change approval means that the implementation group is expected

to work the new activity into the development schedule. When

the change and testing has been completed, the "change" portion

of the CCF is filled in. Descriptions of modifications to the

software must be specific because the information is required

for verification activifiies. The supervisor reviews the modifica-

tions for correctness and conformance to software standards

and signs the CCF on the line denoted "work reviewed by:".

20	
3-,)op olIALITV



21

0	 The implementation is reviewed by the software system technical

monitor to determine what additional tests if any are required

for final verification. When the verification actions have been

completed, the technical monitor signs the CCF and returns it

to the control board for final disposition.

o	 The system version is filled in with date of system availability,

and the change is advertised to the user community as completed

and ready for use.



oWiMNAL 'AGE IS
fir POOR QUALITY

Availability of Chp nge (System/Version)

DP1ES: INITIATOR /ANALYST/CONFIGURATION CONTROLLER /VERIFIER

Name	 Date

CONFIGURATION CONTROL. FORM

REQUEST NUMBER:

	

	 _._...
	 PROJECT: ,--. „

YR ► MON # DAY *SEQ

STATUS:	 PROBLEM TYPE:

Received.	 Software Problem

Analysis;	 Desir GhanM

Implementation: , 	 Nrry Requirement

Verification:

	

^aesaer^r	 is
INITIATOR DESCRIPTION:

INITIATOR: 	 ^---4----^
Name	 Organization	 Phone No,

STATEMENT OF PROBLEM TYPE:

	^--^ 	 *---- additional pages 0

ANALYSIS:
Name	 Date

Software/Hardware	 --

Schedule;

Resources:

Other (Documentation, etc,):
additional pages 0

CHANGE ( Description of work performed, include test %cures a—i far verification):

Software/Hardware Affected:

Work Performed by:
Name	 Date

Work Reviewed by (supervisor):
Name	 Date

VERIFICATION:
Name
	 Date



3.6 Implementation

The implementation phase includes coding of software modules, module

testing, integration of modules into builds, build testing, and integration

and acceptance testing, This phase also includes the development of the

User, Operations, and Maintenance manuals.

This phase of software development has traditionally had low management

visibility and as a result has presented opportunities for uncontrolled

schedule slips. To avoid or at least anticipate schedule problems in

the implementation phase, top down system development methodology is used

and the system is broken into software builds, where at least one visible,

verifiable event is scheduled each month.

The top down methodology consists of developing the highest level

software modules first, i.e., the main control module followed by the

modules called by the main program. Following this, the next ' nvnil of

modules are then developed. This process continues until the lowest level

modules are finished. At each level, the modules to be called on the next

lowest level are represented by stubs. A stub consists of a prolog,

output message, and a return to the calling module. Using the top down

method the system is tested from the start of development as each software

build is finished.

A build is a software subset which fulfills some of the system

requirements. The advantages of builds are:

o	 Software functions become visible early during development

o	 Testing and development proceed concurrently

o	 If development is halted, the status of the system is well

defined

o	 Management can more easily track the system development.

23



24

The objective of the build concept (Figure 3-4) is to reduce dependence

on final testing and to develop a usable subset of the system capabilities

with the delivery of each build. Thus, a build can be functionally tested

at a high level and can be operationally demonstrated to the user. From

the developer's view, the build ccnsists of a number of modules which have

been individually tested and then integrated. The build plan is developed

during the detailed design phase. An example of a build implementation

matrix is given in Figure 3-5, The build implementation matrix shows

all the software builds across the top. The left side of the matrix

indicates tho subsystems and the requirements fulfilled by each subsystem.

The right side of the matrix indicates the test performed to satisfy the

requirement. The asterisks indicate in which build the requirement will

be available for operational use;

Build test, integration and acceptance test plans are required

under this developimnt methodology and are; defined in the test plan

section 3.4. The build test plan defines test cases needed to demonstrate

that the build is internally correct. Integration and acceptance test

plans are designed to demonstrate the correctness of interfaces, data

flows, and to verify that the system performs all the capabilities defined

in the design,

The system documentation developed during the implementation phase

are the User, Operation and Maintenance guides. These guides are defined

in sections 3.8 and 3,9.



cy

a

V)
W,

C)
"C'

cz
w

LU

0

CD

w tc-

Ln CD
>- Lu

H

Ll

(6 to to
LLJ LU LU
-j C.1 -j CD -j
=:) Ld =) uj
m cl m C-

w
ni D cz

C) C) CD C) C) CD

ca

DO co -j ca

Lo

I--
CL
uju
Z:
C)

C)
0-4
F-

LLJ I
CJ

ti
vt

ti
LU

Q

co
w

ca

(nw

C-71
ra

cco,
w
F-



wx
w

F-- c.>
wa +

G	
1-- CL r N M z

+)
Nr-^

co
N

F^ {^ Fa
N

H h

b W
W A.

dt6 P'-

i CL
"I-- =;5
= =) O Q
CIO O U-°

ow
UJ G

N	 F-
°	 1-^

M m is
w O d

00 W LL D

w
tVMr Q ^

J F-- HMMN ^k

co M to

(n

.,
r-

+^"â r N M
PAGE IS

Z z
ca

F—
4J

e
-P
w N a

• R^	 IN,4L

E.3 ^ PWR QUALITYz r- E E E E E E
W^ L 5- d L S.-
F^ w

> ►̂ ^
4J
N

•r
O

•r
^

+^
N

•r
^

}w

N
•s-

OC

an d .0 w Ct d' p
N ce V) N

z

a'

x

S-

C
O.I..
4J
m
+-)
c
a
Eof
r- 	 tD
CL NEM
ror
m
Ln

iA
a
i.

^r
U.



3.7 Testing

The test phase, which begins during the implementation phase, carries

out the plans as previously developed (Section 3.4). The tests performed

occur at tine module, build, integration, and acceptance levels, By

using the strategy of testing at various levels the system is developed,

tested, and used incrementally from modules to builds to final system,

beginning with minimal capability and ending with full system capability.

This testing procedure of "build-a-little, test-a-little, use-a-little"

is very successful and has the advantages of early discovery of problems,

early demonstratable partial system, and early user interaction.

3.7.1 Module Testing

The purpose of module testing is to verity the correctness

of the module design and the module code. Since module testing is used as

an internal means of verification it does not have to be a formal process.

The only requirement is that the module pass a set of standard tests.

These tests certify that the module is ready to be integrated into a software

build and subjected to build testing.

The standard module test verifies that:

o	 The module provides the software capability allocated to

it in the design document

o	 All processing paths between successive decision points

identified in the module design function correctly.

o	 All the module interfaces to the data base are correct

o	 All processing of user and computer inputs is done correctly

o	 Correct responses are generated for user and computer inputs.

27



3.7,2 Build Testing

The purpose of build testing is to verify that the build as

produced reflects the design. When build testing is successfully carried

out it signifies that the integration test is ready to commence. The

build configuration is subjected to a series of tests which verify that

the build as produced reflects the design as described in the detailed

design document.

The standard build test verifies that:

o	 All the module software capabilities specified in the design

document are provided for in the build

o	 All the software interfaces to records, groups, and subgroups

in the data base are correct

o	 All the software interfaces between modules are correct

o	 All user input and the resulting responses specified in the

User's Manual (Section 3.8) are correctly processed and generated

by the build

o	 All computer operations input and the resulting responses

specified in the Operations Manual (Section 3.8) are correctly

processed and generated by the build.

3.7.3 Integration and Acceptance Testing

The purpose of integration and acceptance testing is to

demonstrate that the system as designed and coded meets the capabilities

as defined in the requirements and design documents. The standard integration

and acceptance test verifies that:

op BOOR QUA Tryy

28



o	 All capabilities specified in the requirements and design

documents ate provided for by the system

o	 All the performance requirements established in the require-

ments document are met by the system

o	 All data base requirements defined in the requirements and

design documents are met by the system

o	 All the quality criteria set forth in the requirements and design

document are met by the system

o	 All the interface requirements between the system and other

systems, as specified in the requirements and design documents,

are satisfied.

3.7.4 Build, Integration, and Acceptance Test Analysis Reports

The purpose of a test analysis report is to document the test

results and Findings, to describe the demonstrated capabilities, and to

provide a basis for preparing a statement of system readiness.

Figure 3-6 presents a general outline for the test analysis report.

29



FIGURE 3»6. Outline of rest Analysis Report

1. Identifies the test.

2. Identifies and presents the test results, including data input and

output results.

3. Identifies and describes the findings for each function the test

is fulfilling, including performance evaluation, and identifies

the deficiencies, limitations, and constraints detected in the

software during testing.

4. Analysis Summary

4.1 Describes the capabilities of the software as demonstrated

by the tests.

4.2 Describes the deficiencies of the software as demonstrated

by the tests.

4.3 Describes the readiness of the software for inclusion into

the system.

^n
a ^

30



3.6 Operations

The operational phase of the system life cycle has two main

objectives: (1) to use the system to perform its required functions, and

(2) to provide the operational support needed in the use of the system.

3.8.1 Users

The major activities performed by the system users are:

o	 Perform user functions for which the system was developed

o	 Identify errors or deficiencies which inhibit full use of

the system and file a problem report (Section 3.5)

o	 Evaluate and report on system capabilities from the point of

view of user satisfaction

o	 Suggest system improvements.

A user manual is developed to describe sufficiently the functions

performed by the system, so that the user community can determine how

to use the system. The manual serves as a reference document for

preparation of input data and parameters and interpretation of results

by the users.

Figure 3-7 presents a sample outline for a Users Manual.

Im

31



s^

FIGURE 3-7. Outline of Users Manual

1. General Information

1.1 Introduction - Summarizes tht applications and general functions

of the software system.

1.2 Overview - Identifies the user organization, the computer center,

and general data flow,

1.3 References.

2. Application

2.1 Description	 Describss when and how the software is used and the

unique support provided to the users.

2.2 Operation - Shows the operating relationships between. the system

capabilities and the users. Describes security and privacy con-

siderations.

2.3 Equipment - Describes the hardware on which the system is running

and the degree of system transportability.

2.4 Structure - Shows the structure of the software and describes the

rote of each component in the operation of the system.

2.5 Performance - Describes the performance capabilities of the system.

2.6 Data Base - Describes all data files in the data base that are

referenced, supported, or kept current by the system, and indicates

the purpose of each file.

2,7 Input, Processing, and Outputs - Describes the inputs, flow of data

through the data processing, and the resultant outputs.

32



3.	 Procedures and Requirements

This section provides information about initiation procedures and

the preparation of data and parameter inputs for the system. This

information is logically arranged and sufficiently precise and complete

to enable the user to prepare all required inputs. This section also

explains in detail the characteristics and meaning of all system

outputs. It also describes error, recovery, and query procedures.

3.1 Initiation - Describes step-by-step procedures required to initiate

processing.

3.2 Input - Describes the preparation for preparing input data and

parameters.

3.3 Output= Describes the content, format, and intepretation of each

system output.

3.4 Error and Recovery - Lists error codes or conditions generated by

the system and corrective action to be taken by the user. Indicates

procedures to be followed by the user to ensure that any restart

and recovery capability can be used.

33



3.8.2 Operational Support

The system is considered to be operational once it has passed

all integration and acceptance testing, and an Operations Manual is made

available to the operations personnel. The operations personnel have

the responsibility to.

o	 Operate the system.

o	 Identify system operational problem.areas, errors, and deficiencies

and file a problem report about them (Section 3.5).

o	 Monitor, evaluate, and report on system performance.

o	 Make recommendations to solve operational problems and to

improve the system.

The Operations Manual provided with the system is intended to provide

system operations personnel with a description of the software and of

the operational environment. Figure 3-8 presents a sample outline for

an Operations Manual.

34



FIGURE 3-8. Outline of Operations Manual

1.	 General Information

1.1 Introduction - Summarizes the general functions of the software

1.2 Environment - Identifies the user organization and the computer center

1.3 References

2. Overview

2.1 System Organization - Provides a diagram showing the inputs, outputs,

data files, and sequence of operations of the system

2.2 Program Inventory - Identifies each program

2.3 File Inventory - Identifies each permanent file that is referenced,

created, or updated by the system.

3. Description of Tasks

3.1 Task Inventory - Lists the various tasks possible, summarizes the

purpose of each task, and shows the programs that are executed

during each task.

3.2 Task Progression - Describes the manner in which progression advances

from one task to another so that the entire task cycle is shown

3.3 Task Description	 Organizes the information on each task into

the most useful presentation for the operations personnel involved

4. Non-Routine Porcedures

Provides all information necessary concerning emergency or non-

routine operations, such as switchover to a back-up system and procedures

for turnover to maintenance personnel.

35



3.9 Maintenance and Enhancements

The maintenance and enhancement phase is the last phase of the system

'ife cycle and consists of making modifications to the code, the documenta-

tion, and/or data for the purpose ofcorrecting errors and improving the

system.

A Maintenance Manual is provided to complement the Operations Manual

and User's Manual. The Maintenance Manual provides the information

necessary to understand the system, its operating environment-, and its

maintenance procedures. Continued additions to this document, such as

new operating procedures, new processing algorithms, or any other specific

technical enhancement or modification to the system will keep the documentation

current and abreast with the system changes.

Figure 3-9 presents a sample outline to be used as a guide in

developing a Maintenance Manual.

36



FIGURE 3-9. Outline of Maintenance Manual

1. General Information

1.1 Introduction - Summarizes the general nature of the software to

be maintained

1.2 References

2. Program Descriptions

Describes the programs in the system to be maintained

2.1 Program Attributes for Programs

2.1.1 Programming language

*2.1.2 Input (reference User's Guide)

*2.1.3 Processing features (variables, algorithms, error handling,

linkages, etc.) (reference Users Guide)

*2.1.4 Outputs (reference User's Guide)

*2.1.5 Interfaces (reference Detailed Design Document)

*2.1.5 Operating procedures to run the program (reference User's Guide)

2.N Program Attributes for Program N (repeat 2.1)

3. Program Environment

Identifies the resources necessary for running the programs

3.1 Resources for Programs

3.1.1 Program size (memory used)

3.1.2 Data storage on line and off line

3.1.3 Input/Output devices used (tape and disk drives, etc.)

3.1.4 Transmission lines

3.N Resources for Program N (repeat 3.1)

37

_



FIGURE 3-9 continued

4	 Maintenance Procedures

*4,1 Programming Conventions (refer to detailed design Section 3.3)

*4.2 Verification Procedures (refer to test plans and testing Sections 3.4

and 3,?)

4,3 Error Correction Procedures -- Describes all error conditions, their

sources, and procedures for correcting them

4.4 Special Maintenance Procedures - Describes any special procedures

required for the maintenance of the programs

45 Program Listings

*This feature is described in detail in the referenced document or section

and is only mentioned here for completeness.



APPENDIX A

D6TAILEO DESIGN MODULE CHARAC1

Definition

A module is the smallest software element i

i.e. subroutine, and performs a maximum of one 1

Module Characteristics

A module shall conform to the following chc

1. It shall perform only one function.

2. It shall have a unique name.

3. It shall constitute a single compilation ov

Q.

	

	 As a guideline it should consist of no more than 100 executable

statepiunts .

5. It shall have only one point of entry and one point of exit.

6. When invoked by another module, it shall return to the point

immediately following the invocation.

7. It shall not relinquish control to another module other than by

invocation or by return to the module which invoked 1t.

8. It shall be documented as a unit.

g .

	

	 Its internal logic shall be independent of the internal logic of

all other modules.

10. It shall be serially reusable, i.e. no assumptions shall be made

regarding its previous execution.

11. The organization of the module shall be as follows:

a.	 Purpose of the module



b. Module prolog

c. Module flow description statements interspersed among executable

statements.

w

40



APPENDIX B

DETAILED DESIGN MODULE PROLOG CN.ARACTERISTICS

B,l Prolog Contents	 j

All headings listed below shall be a part of every module prolog

from the beginning of module design. Those items for which information

is not available at that time shall contain the entry "NOT AVAILABLE".

As coding progresses and the information becomes available, it shall be

entered into the appropriate place within the prolog. When coding is

completed, the prolog shall be checked for completeness, for accuracy,

and for consistency with the code.

1. Module Name. The module invocation name and the English language

name (full name or phrase from which the module invocation name

is derived).

2. Function: .A concise description of the function of the module.

The function is the net effect of one execution module; it is not

an explanation of how the module accomplishes its function. A

module shall have only one function.

3. Author Names: The names (first initial and last name) and

organizational affiliations of the module designer(s) and module

progranllner(s) ,

4. Calling Sequence: A list and brief description of the parameters

of the calling sequence. Any constraints on size or range of values

shall be noted here. Each parameter shall be labeled as an input

parameter (used inside the module without initialization) or an

output parameter (modified by this module). The use of parameters

on both input and output parameters shall be avoided.



i
shall be clearly specified.

ORIGINAL PAGE IS

OF POOR QUATATY

5. Method: A brief narrative describing the module processing shall

be specified. This shall be written so that the reader can easily

relate the narrative to the module function (item 2) and to the

module flow (item 15).

6. Error Processing: All error or exception conditions which can be

detected by this module shall be identified along with the response

to each condition.

7. File References: Each file, including data base elements, shall be

listed by name, purpose of reference, and type of reference (e.g.,

Write, Read, Store, Retrieve, Update, Create, Delete).

8. Global Storage References: All global storage blocks (e.g., named

COMMON blocks in Fortran) which are referenced by this module shall

be listed by name, purpose of reference, and type of reference (i.e.,

Store or Retrieve). Include list and description of each variable

contained.in the global storage blocks.

9. External Module{!Macro References: All references to external modules

or macros shall be listed by name and purpose of reference.

10. Internal Tables and Variables: The format of each nontrivial

table, buffer, or work area shall be described. Include list and

purpose of each major internal variable.

11. Dependencies: Any known dependencies on a specific computer, operating

system, or compiler shall be described.

12. Assumptions/Restructions: All assumptions (especially those which

result in algorithm simplification) and restrictions (e.g., unit

conventions, size limitations) regarding processing logic or data

42



IL:

13. Reference: References to any additional information regarding

the module not covered above, such as file formats, data structures,

or mathematical/scientific techniques shall be clearly identified.

14. Change History: All changes shall be listed here. Each entry

shall contain the following information: name (first initial, last

name) and organization affiliation of the person making the change,

date of implementation of the change, project identification informatiVII

(project name, contract number, task number, etc.), references

to pertinent change control documents, and a short (one line) des-

cription of the purpose of the chan5 p . Change history data shall

be listed in reverse order of implementation, i.e., the most recent

change shall be listed first and the oldest change listed last.

15. Module Flow: A detailed description of the module processing will

be provided. The description will use structured design constructs,

such as If-Then-Else, Do-While, in combination with an English

language vocabulary. The description will address each decision

path and loop and will clearly indicate decision path and loop

dependencies.

B.2 Prolog Maintenance

The prolog represents the final documentation of the module. Because

other personnel will use the prolog for interface information and for

understanding the module, the prolog shall be updated each time the

module is modified.

43


	1981018210.pdf
	0001A02.jpg
	0001A02.tif
	0001A03.tif
	0001A04.tif
	0001A05.tif
	0001A06.tif
	0001A07.tif
	0001A08.tif
	0001A09.tif
	0001A10.tif
	0001A11.tif
	0001A12.tif
	0001A13.tif
	0001A14.tif
	0001B01.tif
	0001B02.tif
	0001B03.tif
	0001B04.tif
	0001B05.tif
	0001B06.tif
	0001B07.tif
	0001B08.tif
	0001B09.tif
	0001B10.tif
	0001B11.tif
	0001B12.tif
	0001B13.tif
	0001B14.tif
	0001C01.tif
	0001C02.tif
	0001C03.tif
	0001C04.tif
	0001C05.tif
	0001C06.tif
	0001C07.tif
	0001C08.tif
	0001C09.tif
	0001C10.tif
	0001C11.tif
	0001C12.tif
	0001C13.tif
	0001C14.tif
	0001D01.tif
	0001D02.tif
	0001D03.tif
	0001D04.tif
	0001D05.tif
	0001D06.tif
	0001D07.tif




