

Engineering A Continuing Bibliography with Indexes

Aeronautical Engine N81-27037 -SP-7037 (135)) AERONAUTICAL A CONTINUING BIBLIOGRAPHY WITH SUPPLEMENT 135, MAY 1981 (National Unclas Aeronautics and Space Administration) 178 p 30483

ACCESSION NUMBER RANGES

Accession numbers cited in this Supplement fall within the following ranges.

STAR (N-10000 Series) N81-15968 - N81-17980

IAA (A-10000 Series) A81-19673 - A81-23368

This bibliography was prepared by the NASA Scientific and Technical Information Facility operated for the National Aeronautics and Space Administration by PRC Data Services Company.

AERONAUTICAL ENGINEERING

A Continuing Bibliography

Supplement 135

A selection of annotated references to unclassified reports and journal articles that were introduced into the NASA scientific and technical information system and announced in April 1981 in

- Scientific and Technical Aerospace Reports (STAR)
- International Aerospace Abstracts (IAA).

This supplement is available as NTISUB/141/093 from the National Technical Information Service (NTIS), Springfield, Virginia 22161 at the price of \$5.00 domestic; \$10.00 foreign.

INTRODUCTION

Under the terms of an interagency agreement with the Federal Aviation Administration this publication has been prepared by the National Aeronautics and Space Administration for the joint use of both agencies and the scientific and technical community concerned with the field of aeronautical engineering. The first issue of this bibliography was published in September 1970 and the first supplement in January 1971. Since that time, monthly supplements have been issued.

This supplement to Aeronautical Engineering -- A Continuing Bibliography (NASA SP-7037) lists 536 reports, journal articles, and other documents originally announced in April 1981 in Scientific and Technical Aerospace Reports (STAR) or in International Aerospace Abstracts (IAA).

The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.

Each entry in the bibliography consists of a standard bibliographic citation accompanied in most cases by an abstract. The listing of the entries is arranged in two major sections, IAA Entries and STAR Entries, in that order. The citations, and abstracts when available, are reproduced exactly as they appeared originally in IAA and STAR, including the original accession numbers from the respective announcement journals. This procedure, which saves time and money, accounts for the slight variation in citation appearances.

Three indexes -- subject, personal author, and contract number -- are included. An annual cumulative index will be published.

AVAILABILITY OF CITED PUBLICATIONS

IAA ENTRIES (A81-10000 Series)

All publications abstracted in this Section are available from the Technical Information Service, American Institute of Aeronautics and Astronautics, Inc. (AIAA), as follows: Paper copies of accessions are available at \$7.00 per document up to a maximum of 40 pages. The charge for each additional page is \$0.25. Microfiche ⁽¹⁾ of documents announced in *IAA* are available at the rate of \$3.00 per microfiche on demand, and at the rate of \$1.25 per microfiche for standing orders for all *IAA* microfiche. The price for the *IAA* microfiche by category is available at the rate of \$1.50 per microfiche plus a \$1.00 service charge per category per issue. Microfiche of all the current AIAA Meeting Papers are available on a standing order basis at the rate of \$1.50 per microfiche.

Minimum air-mail postage to foreign countries is \$1.00 and all foreign orders are shipped on payment of pro-forma invoices.

All inquiries and requests should be addressed to AIAA Technical Information Service. Please refer to the accession number when requesting publications.

STAR ENTRIES (N81-10000 Series)

One or more sources from which a document announced in STAR is available to the public is ordinarily given on the last line of the citation. The most commonly indicated sources and their acronyms or abbreviations are listed below. If the publication is available from a source other than those listed, the publisher and his address will be displayed on the availability line or in combination with the corporate source line.

Avail: NTIS. Sold by the National Technical Information Service. Prices for hard copy (HC) and microfiche (MF) are indicated by a price code followed by the letters HC or MF in the STAR citation. Current values for the price codes are given in the tables on page viii.

Documents on microfiche are designated by a pound sign (#) following the accession number. The pound sign is used without regard to the source or quality of the microfiche.

Initially distributed microfiche under the NTIS SRIM (Selected Research in Microfiche) is available at greatly reduced unit prices. For this service and for information concerning subscription to NASA printed reports, consult the NTIS Subscription Section, Springfield, Va. 22161.

NOTE ON ORDERING DOCUMENTS: When ordering NASA publications (those followed by the * symbol), use the N accession number. NASA patent applications (only the specifications are offered) should be ordered by the US-Patent-Appl-SN number. Non-NASA publications (no asterisk) should be ordered by the AD, PB, or other *report* number shown on the last line of the citation, not by the N accession number. It is also advisable to cite the title and other bibliographic identification.

Avail: SOD (or GPO). Sold by the Superintendent of Documents, U.S. Government Printing Office, in hard copy. The current price and order number are given following the availability line. (NTIS will fill microfiche requests, at the standard \$3.50 price, for those documents identified by a # symbol.)

⁽¹⁾ A microfiche is a transparent sheet of film, 105 by 148 mm in size, containing as many as 60 to 98 pages of information reduced to micro images (not to exceed 26:1 reduction).

- Avail: NASA Public Document Rooms. Documents so indicated may be examined at or purchased from the National Aeronautics and Space Administration, Public Documents Room (Room 126), 600 Independence Ave., S.W., Washington, D.C. 20546, or public document rooms located at each of the NASA research centers, the NASA Space Technology Laboratories, and the NASA Pasadena Office at the Jet Propulsion Laboratory.
- Avail: DOE Depository Libraries. Organizations in U.S. cities and abroad that maintain collections of Department of Energy reports, usually in microfiche form, are listed in Energy Research Abstracts. Services available from the DOE and its depositories are described in a booklet, DOE Technical Information Center Its Functions and Services (TID-4660), which may be obtained without charge from the DOE Technical Information Center.
- Avail: Univ. Microfilms. Documents so indicated are dissertations selected from *Dissertation Abstracts* and are sold by University Microfilms as xerographic copy (HC) and microfilm. All requests should cite the author and the Order Number as they appear in the citation.
- Avail: USGS. Originals of many reports from the U.S. Geological Survey, which may contain color illustrations, or otherwise may not have the quality of illustrations preserved in the microfiche or facsimile reproduction, may be examined by the public at the libraries of the USGS field offices whose addresses are listed in this introduction. The libraries may be queried concerning the availability of specific documents and the possible utilization of local copying services, such as color reproduction.
- Avail: HMSO. Publications of Her Majesty's Stationery Office are sold in the U.S. by Pendragon House, Inc. (PHI), Redwood City, California. The U.S. price (including a service and mailing charge) is given, or a conversion table may be obtained from PHI.
- Avail: BLL (formerly NLL): British Library Lending Division, Boston Spa, Wetherby, Yorkshire, England. Photocopies available from this organization at the price shown. (If none is given, inquiry should be addressed to the BLL.)
- Avail: Fachinformationszentrum, Karlsruhe. Sold by the Fachinformationszentrum Energie, Physik, Mathematik GMBH, Eggenstein Leopoldshafen, Federal Republic of Germany, at the price shown in deutschmarks (DM).
- Avail: Issuing Activity, or Corporate Author, or no indication of availability. Inquiries as to the availability of these documents should be addressed to the organization shown in the citation as the corporate author of the document.
- Avail: U.S. Patent and Trademark Office. Sold by Commissioner of Patents and Trademarks, U.S. Patent and Trademark Office, at the standard price of 50 cents each, postage free.
- Other availabilities: If the publication is available from a source other than the above, the publisher and his address will be displayed entirely on the availability line or in combination with the corporate author line.

GENERAL AVAILABILITY

All publications abstracted in this bibliography are available to the public through the sources as indicated in the STAR Entries and IAA Entries sections. It is suggested that the bibliography user contact his own library or other local libraries prior to ordering any publication inasmuch as many of the documents have been widely distributed by the issuing agencies, especially NASA. A listing of public collections of NASA documents is included on the inside back cover.

SUBSCRIPTION AVAILABILITY

This publication is available on subscription from the National Technical Information Service (NTIS). The annual subscription rate for the monthly supplements is \$50.00 domestic; \$100.00 foreign. All questions relating to the subscriptions should be referred to NTIS, Attn: Subscriptions, 5285 Port Royal Road, Springfield Virginia 22161.

ADDRESSES OF ORGANIZATIONS

American Institute of Aeronautics and Astronautics Technical Information Service 555 West 57th Street, 12th Floor New York, New York 10019

British Library Lending Division, Boston Spa, Wetherby, Yorkshire, England

Commissioner of Patents and Trademarks U.S. Patent and Trademark Office Washington, D.C. 20231

Department of Energy Technical Information Center P.O. Box 62 Oak Ridge, Tennessee 37830

ESA-Information Retrieval Service ESRIN Via Galileo Galilei 00044 Frascati (Rome) Italy

Fachinformationszentrum Energie, Physik, Mathematik GMBH 7514 Eggenstein Leopoldshafen Federal Republic of Germany

Her Majesty's Stationery Office P.O. Box 569, S.E. 1 London, England

NASA Scientific and Technical Information Facility P.O. Box 8757 B. W. I. Airport, Maryland 21240

National Aeronautics and Space
Administration
Scientific and Technical Information
Branch (NST-41)
Washington, D.C. 20546

National Technical Information Service 5285 Port Royal Road Springfield, Virginia 22161

Pendragon House, Inc. 899 Broadway Avenue Redwood City, California 94063

Superintendent of Documents U.S. Government Printing Office Washington, D.C. 20402

University Microfilms
A Xerox Company
300 North Zeeb Road
Ann Arbor, Michigan 48106

University Microfilms, Ltd. Tylers Green London, England

U.S. Geological Survey 1033 General Services Administration Building Washington, D.C. 20242

U.S. Geological Survey 601 E. Cedar Avenue Flagstaff, Arizona 86002

U.S. Geological Survey 345 Middlefield Road Menlo Park, California 94025

U.S. Geological Survey Bldg. 25, Denver Federal Center Denver, Colorado 80225

NTIS PRICE SCHEDULES

Schedule A STANDARD PAPER COPY PRICE SCHEDULE

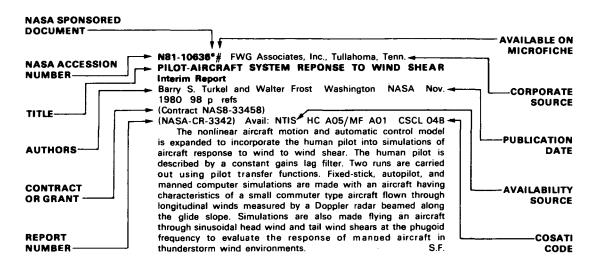
(Effective January 1, 1981)

Price	Page Range	North American	Foreign
Code		Price	Price
A01	Microfiche	\$ 3.50	\$ 7.00
A02	001-025	5.00	10.00
A03	026-050	6.50	13.00
A04	051-075	8.00	16.00
A05	076-100	9.50	19.00
A06	101-125	11.00	22.00
A07	126-150	12.50	25.00
A08	151-175	14.00	28.00
A09	176-200	15.50	31.00
A10 .	201-225	17.00	34.00
A11	226-250	18.50	37.00
A12	251-275	20.00	40.00
A13	276-300	21.50	43.00
A14	301-325	23.00	46.00
A15	326-350	24.50	49.00
A16	351-375	26.00	52.00
A17	376-400	27.50	55.00
A18	401-425	29.00	58.00
A19	426-450	30.50	61.00
A20	451-475	32.00	64.00
A21	476-500	33.50	, 67.00
A22	501-525	35.00	70.00
A23	526-550	38.50	73.00
A24	551-575	38.00	76.00
A25	576-600	39.50	79.00
	601-up	1/	2/

499 - Write for quote

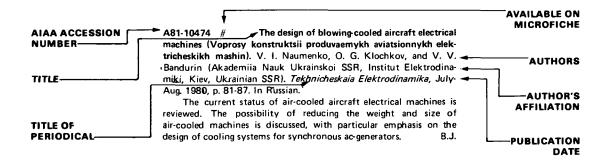
- 1/ Add \$1.50 for each additional 25 page increment or portion thereof for 601 pages up.
- 2/ Add \$3.00 for each additional 25 page increment or portion thereof for 601 pages and more.

Schedule E EXCEPTION PRICE SCHEDULE


Paper Copy & Microfiche

Frice	North American	Foreign
Code	Price	Price
E01	\$ 5.50	\$ 11.50
E02	6.50	13.50
E03	. 8.50	17.50
E04 -	10.50	21.50
E05	12.50	25.50
ε06	; 14.50	29.50
E07	16.50	33.50
E08	18.50	37.50
E09	20.50	41.50
£10	22.50	45.50
E11 ·	24.50	49.50
E12	27.50	55.50
£13	30.50	61.50
E14	33.50	67.50
E15	36.50	. 73.50
£16	39.50	79.50
E17	42.50	85.50
£18	45.50	91.50
£19	50.50	100.50
€20	60.50	121.50
E99 - Write for quote		
N01	28.00	40.00

TABLE OF CONTENTS


IAA Entries	149
STAR Entries	185
Subject Index	A-1
Personal Author Index	B-1
Contract Number Index	

TYPICAL CITATION AND ABSTRACT FROM STAR

TYPICAL CITATION AND ABSTRACT FROM IAA

5. E

AERONAUTICAL ENGINEERING

A Continuing Bibliography (Suppl. 135)

IAA ENTRIES

A81-19799 # Angle of attack - Its measurement and usage. I (Kat natarcia - Jego pomiar i wykorzystanie. I). J. Dabrowska (Instytut Lotnictwa, Warsaw, Poland). Techika Lotnicza i Astronautyczna, vol. 35, Dec. 1980, p. 9, 10. In Polish.

The dependences of aerodynamic lift and drag coefficients on the angle of attack are explained and used to demonstrate the importance of the angle of attack as a flight control parameter. Landing approach maneuvers, flight times, and maximum range are shown to be affected by proper control of the angle of attack. Methods of measuring this variable are described.

T.M.

A81-19800 # Runway surface loading during aircraft landings (Obciazenie nawierzchni drogi startowej w czasie iadowania samolotu). J. Rakowski. *Technika Lotnicza i Astronautyczna*, vol. 35, Dec. 1980, p. 22-24. In Polish.

Forces acting on an aircraft during landing are related to the forces exerted on the runway surface. Instrumentation used to measure runway loading patterns is explained, and an equivalent model is described for the surface loading caused by a landing aircraft.

T.M.

A81-19836 Computer-aided process planning system for aircraft engine rotating parts. V. A. Tipnis, S. A. Vogel, and C. E. Lamb. In: Advanced manufacturing technology: Programming research and operations logistics; Proceedings of the Fourth International Conference, Ann Arbor, Mich., May 21-23, 1979.

Amsterdam, North-Holland Publishing Co., 1980, p. 151-169. 6 refs.

A computer-aided process planning system for aircraft engine rotating parts (RPO) was developed to aid the planner with an up-to-date machining technology data base, computer graphics analysis, retrieval capacity, and new technology. This system was compared with the 'varient' process which is unsuitable due to lack of machining and manufacturing requirements for rotating parts, and with the 'generative' approach which requires four man-months to prepare a decision model. The RPO system comprises several software modules for process planning, quality control, and machine tool diagnostics; the software module creates cost estimates, process plans, monitors planning, and communicates with the work center. The feeds, speeds, and tool changes are accomplished by economic analyses which consider metal removal, setup, and cutting tool costs.

A81-19845 New developments of data processing in computer-controlled manufacturing systems /DNC, FMS/. M. Weck,

K. Zenner, and Y. Tuchelmann. In: Advanced manufacturing technology: Programming research and operations logistics; Proceedings of the Fourth International Conference, Ann Arbor, Mich., May 21-23, 1979.

Amsterdam, North-Holland Publishing Co., 1980, p. 349-368.

A computer-controlled manufacturing system DNC was constructed by using standardized process peripherals (CAMAC) and modular process control software written in a Process-FORTRAN language. The systems concept allows easy integration of supplemental functions such as acquisition of operating data and material-flow control. The DNC-system is being equipped with additional functions for handling and process monitoring for profile milling of aircraft components and rotational parts.

A81-19872 # On a linear theory of a supersonic flow past a delta wing with subsonic leading edges. S. Kubo (Kyoto University, Kyoto, Japan). Japan Society for Aeronautical and Space Sciences, Transactions, vol. 23, Nov. 1980, p. 127-138. 21 refs.

The wing form is obtained theoretically in a supersonic flow past a delta wing with a thin but finite thickness at an angle of attack when the leading edges are subsonic for a given velocity potential, which is a known solution of a linearized equation with a simplified boundary condition. The boundary condition is set exactly in order to study the detailed behaviours of the flow around the leading edge. The results support the linearization of the equation qualitatively, when there is no crossflow shock. The wing form is a little modified in the neighbourhood of the leading edge. The limit, beyond which the crossflow can be supersonic, of the angle of attack is found vs. the Mach number of the uniform flow. (Author)

A81-19873 # Lifting-line theory of oblique wings - Application of the Galerkin method to the lifting-line equation. T. Kida (Osaka Prefecture, University, Sakai, Japan). Japan Society for Aeronautical and Space Sciences, Transactions, vol. 23, Nov. 1980, p. 139-154. 21 refs.

This paper is concerned with the lifting-line approximation for a steady oblique wing with a high aspect ratio in an incompressible fluid flow. The lifting-line theory is constructed more systematically by using an asymptotic method than by using Prandti's lifting-line theory, and a singular linear integro-differential equation is derived. The method of Galerkin for obtaining approximate solutions is applied to this equation, and the chordwise and spanwise distributions, which were originally introduced by Watkin et al., are used as approximation functions. This approximate method is first applied to a flat-plate elliptic wing without yawing in order to examine the availability of this method, so that it is found that an asymptotic expansion of the lift-slope obtained by the second order chordwise and spanwise approximations is the same as in Van Dyke's lifting-line theory. Therefore, the second-order chordwise and spanwise approximation are secondly applied to the basic integral equation of the oblique wing and the numerical results are compared with earlier (Author) theories.

A81-19940 Improving surface current injection techniques via one and two-dimensional models. J. W. Williams, L. T. Simpson

(Mission Research Corp., Albuquerque, N. Mex.), and K. S. Kunz (LuTech, Inc., Albuquerque, N. Mex.). (IEEE, U.S. Defense Nuclear Agency, Jet Propulsion Laboratory, and DOE, Annual Conference on Nuclear and Space Radiation Effects, 17th, Ithaca, N.Y., July 15-18, 1980.) IEEE Transactions on Nuclear Science, vol. NS-27, Dec. 1980, p. 1845-1850. Research supported by the U.S. Defense Nuclear Agency; Contract No. N60921-77-C-0117.

A basic objective in the development of a surface current injection technique (SCIT) is to provide an inexpensive, transportable simulator which will allow electromagnetic pulse (EMP) hardness checks of aircraft in the field. The development effort has been conducted as a combined theoretical and experimental study. Detailed solutions for free field scattering problems are obtained from computer models such as the THREDE finite difference code. It has been found that simplified one- and two-dimensional models can be used to provide insight and understanding less easily obtained from more detailed numerical models. These models appear to be especially useful in the study of basic symmetry and polarity requirements which are likely to be employed in any direct injection scheme. Electrical and mechanical analogs are developed and applied to EMP simulation by direct injection. Predictions of the simplified models are compared to results obtained with the THREDE finite difference code.

A81-20023 # Considerations of the use of vitiated preheat.

J. Odgers and D. Kretschmer (Université Laval, Quebec, Canada).

Journal of Engery, vol. 4, Nov.-Dec. 1980, p. 260-265. 12 refs.

Research supported by the National Research Council of Canada.

It is widely held in industry that the use of vitiated heaters is to be avoided in combustion tests. The present paper reviews the situation and gives results which suggest the magnitude of the problem with respect to the various combustion test measurements. Vitiation temperatures up to 800 K are considered, and the effects are assessed against: (1) gas temperatures within the combustor, (2) combustor wall temperatures, (3) flame radiation, (4) air/fuel distribution within primary zone, and (5) pollutant formation. It is demonstrated that some of these effects may be minimized by using oxygen replenishment. The paper concludes that in no circumstances should vitiated preheating be used. Oxygen replenishment, while largely overcoming these deleterious effects, is not sufficient to overcome the effects upon the formation of pollutants, particularly oxides of nitrogen. (Author)

A81-20051 Symposium on Internal Noise in Helicopters, University of Southampton, Southampton, England, July 17-20, 1979, Proceedings. Southampton, England, University of Southampton, 1980. 337 p.

Helicopter internal noise is discussed with regard to the acoustic environment, noise sources, vibration transmissibility, structures and acoustic radiation, and noise control. Particular papers are presented on such topics as speech communication considerations for helicopter interiors, gear unit noise and transmission errors, impact excited mobility measurements in the audio frequency range, acoustic radiation from uniform and honeycomb sandwich plates, and helicopter rotor system isolation.

A81-20053 # US Army working group on aircraft noise. S. Moreland (U.S. Army, Directorate for Development and Qualification, St. Louis, Mo.). In: Symposium on Internal Noise in Helicopters, Southampton, England, July 17-20, 1979, Proceedings. Southampton, England, University of Sout

ton, 1980, p. A2 1-A2 30. 15 refs.

The research carried out by a U.S. Army working group on the internal noise of helicopters is discussed. A new noise standard is felt to be needed because the standard used to date has never been considered adequate for helicopters and because of the Surgeon General's hearing conservation program. Attention is given to the preliminary considerations of the working group, and data on current noise levels and on aircrew exposure to noise are presented. The two

noise limit curves (for helicopters weighing less than/more than 20,000 lbs) proposed by the working group for the design of helicopters are discussed. It is concluded that while current technology is able to bring noise levels in helicopters having a gross weight of less than 20,000 lbs within acceptable limits, reduction of internal noise in helicopters weighing more than 20,000 lbs poses a major problem.

C.R.

A81-20054 # An overview of the research conducted in Aerospatiale on internal noise. F. N. d'Ambra and H. J. Marze (Société Nationale Industrielle Aérospatiale, Marignane, Bouches-du-Rhône, France). In: Symposium on Internal Noise in Helicopters, Southampton, England, July 17-20, 1979, Proceedings.

Southampton, England, University of Southampton, 1980, p. A3 1-A3 32.

A research program conducted with the objective of helicopter cabin noise reduction is reviewed with reference to qualification and identification of annoyance, meshing noise reduction in the main gear box, and improvement of the internal noise levels by optimizing the cabin acoustic treatment. The combined application of treatments at the source, transfer of vibratory energy level, and optimization of soundproofing have made it possible to achieve a pure tone (1850 Hz) reduction of about 53 dB. The overall noise level expressed in dB SIL and dBA has been improved by 30 dB. V.L.

A81-20055 # Helicopter internal noise - An overview. J. W. Leverton and J. S. Pollard (Westland Helicopters, Ltd., Yeovil, Somerset, England). In: Symposium on Internal Noise in Helicopters, Southampton, England, July 17-20, 1979, Proceedings. Southampton, England, University of Southampton, 1980, p. A4 1-A4 22. 16 refs.

The basic mechanisms involved in the generation of helicopter cabin noise are discussed together with the engineering constraints and other issues relevant to the noise reduction task. Consideration is given to gearbox isolation, damping, soundproofing, inner cabin concept, and the low frequency problem.

A81-20060 # Gear unit noise and transmission errors. B. A. Shotter and C. Barker (Westland Helicopters, Ltd., Yeovil, Somerset, England). In: Symposium on Internal Noise in Helicopters, Southampton, England, July 17-20, 1979, Proceedings. Southampton, England, University of Southampton, 1980, p. C1 1-C1 11.

Helicopter cabin noise is ordinarily traced to transmission units. With output shaft speed for main rotor drives usually between 200 and 500 rpm, and with gear tooth numbers usually associated with output stage gearing, low-frequency noise is almost unavoidable. Although cabin levels may be reduced with the installation of acoustic materials, these materials add weight and take up space. The paper investigates the nature of gear-tooth motion errors and their contribution to the noise emanating from the Lynx helicopter output stage gears. Theodolites were used for quasi-static observations of the three main driveshafts over 13 as well as 2-3 tooth-mesh cycles, after which full-speed loaded tests were run. Although major errors in tooth geometry were corrected, the motion error curve changed little. It is suspected that the final stage gear noise is linked with gear-tooth stiffness variations and their interaction with the position of actual contact between the gear teeth.

A81-20061 * # Gear meshing action as a source of vibratory excitation. W. D. Mark and R. W. Fischer (Bolt Beranek and Newman, Inc., Cambridge, Mass.). In: Symposium on Internal Noise in Helicopters, Southampton, England, July 17-20, 1979, Proceedings.

Southampton, England, University of Southampton, 1980, p. C2 1-C2 13. 8 refs. NASA-supported research.

A81-20062 # Development and application of an analytical method for predicting helicopter transmission noise. M. A. Bowes (Kaman Aerospace Corp., Bloomfield, Conn.). In: Symposium on Internal Noise in Helicopters, Southampton, England, July 17-20,

1979, Proceedings. Southampton, England, University of Southampton, 1980, p. C3 1 - C3 17 . 10 refs.

A method is presented for predicting the noise generation and radiation properties of a helicopter transmission which can model it as a fully coupled dynamic system consisting of rotating gearshafts, the shaft support bearings, and the housing. The modeling method can be applied during preliminary design to make rough estimates of the transmission, and in detail design by using finite element techniques; finally, during hardware development, improved elemental models can be constructed by using mobility test data.

A.T.

A81-20063 # Modelling techniques for the reduction of noise and vibration in gearboxes. D. G. Astridge and M. L. W. Salzer (Westland Helicopters, Ltd., Mechanical Research Dept., Yeovil, Somerset, England). In: Symposium on Internal Noise in Helicopters, Southampton, England, July 17-20, 1979, Proceedings.

Southampton, England, University of Southampton, 1980, p. C4 1-C4 14. 14 refs.

Helicopter noise and vibration may be eliminated with modification of the dynamic response of the gearbox. The paper presents an analytical model which determines the overall system dynamic matrix from geometric data for shafts and certain casing components and from directly input local stiffness matrices for bearings. Natural frequencies and mode shapes are evaluated, and forced response to any given mesh excitation is determined via summation of normal mode responses. Torsion-only natural frequencies are compared with combined torsion-lateral frequencies for five modes. The overall system technique has been applied to a single mesh spiral level gearbox.

A81-20064 # Measurements of structural mobility on helicopter structures. D. J. Ewins and J. M. M. Silva (Imperial College of Science and Technology, London, England). In: Symposium on Internal Noise in Helicopters, Southampton, England, July 17-20, 1979, Proceedings. Southampton, England, University of Southampton, 1980, p. D1 1-D1 19. 6 refs. Research supported by the Westland Helicopters, Ltd. and Ministry of Defence (Procurement Executive).

The complexity of helicopter structures requires mathematical models using measurements on a scale model or the actual component in addition to modelling by purely theoretical methods. The acquisition of suitable experimental data is discussed along with the analysis stages following measurement which are necessary for modelling the helicopter structures. All the data is collected for use with the impedance coupling method. Mobility measurements relating to the complete airframe, the external platform structure, and the tailcone are investigated. Measurements of translation and rotation motion encompassing a frequency range of 3 to 500 Hz are examined.

A81-20069 # Sandwich structures with high transmission loss. D. J. Mead (Southampton, University, Southampton, England). In: Symposium on Internal Noise in Helicopters, Southampton, England, July 17-20, 1979, Proceedings. Southampton, England, University of Southampton, 1980, p. E2 1, E2 2.

A81-20070 # Acoustic radiation from honeycomb sandwich plates. K. H. Heron (Royal Aircraft Establishment, Aerodynamics Dept., Farnborough, Hants., England). In: Symposium on Internal Noise in Helicopters, Southampton, England, July 17-20, 1979, Proceedings. Southampton, England, University of Southampton, 1980, p. E3 1-E3 14.8 refs.

The growing use of honeycomb sandwich panels in helicopter cabins requires an improved design that lowers core-shear stiffness without reducing static bending stiffness. Using the Kurtze and Watters (1959) concept, the paper outlines the basic theory associated with the modern panels and predicts their acoustic properties. Five sandwich plates constructed from resin-impregnated paper honeycomb cores with aluminum skins are then subjected to mechanical excitation tests in a reverberant room of 64 cubic meters. Held in a 70-kg frame inset in antivibration mounts attached to a wall, the plates, 1.4 m x 0.9 m, were hard-bolted to the frame every

8 cm. Nine 0.5-g accelerometers were then attached at various points on each plate, with five microphones positioned randomly about the room. Results show good agreement with the theory in terms of radiation ratio, power ratio, and transmission loss, when the plate damping value is 1%.

A81-20073 # Gearbox isolation for reducing gear tooth noise in single rotor helicopter. J. I. Smullin (Cambridge Collaborative, Inc., Cambridge, Mass.). In: Symposium on Internal Noise in Helicopters, Southampton, England, July 17-20, 1979, Proceedings. Southampton, England, University of Southampton, 1980, p. F3 1 -F3 12.

Results of a program for developing in-cabin noise-reduction treatments for a single-rotor helicopter are reviewed with emphasis on methods for isolating the main transmission gear tooth frequency vibration from the main airframe structure. It is shown that, as a minimum design goal, it is necessary to consider the tuning of the gear mounting system, whether rigid or elastic, in order to avoid resonant amplification of gear tones. A higher design goal is to generate peak isolation at the gear tone frequencies.

A81-20074 Problems of voice communication in helicopters. F. B. Johnson (Royal Signals and Radar Establishment, Malvern, Worcs., England). In: Symposium on Internal Noise in Helicopters, Southampton, England, July 17-20, 1979, Proceedings.

Southampton, England, University of Southampton, 1980, p. F4 1-F4 9. 5 refs.

A81-20079 Measurement of radar in radio service aircraft (Radarvermessung im Radarführungsdienst Luftwaffe). Mr. Manz (Luftwaffe, Luftwaffenführungsdienstkommando, Cologne, West Germany). In: Symposium on Radar Technology, 4th, Werthhoven; West Germany, November 6-8, 1979, Reports.

Düsseldorf, Deutsche Gesellschaft für Ortung und Navigation, 1980.

Düsseldorf, Deutsche Gesellschaft für Ortung und Navigation, 1980. 29 p. In German.

This paper discusses the evaluation of radar equipment from the radio service aircraft. A circular search radar with a range of 450 km and distortion suppression capabilities is investigated along with an altitude measuring radar with a range of 360 km. A reflection measuring device for video and high frequency circuits is used for the evaluation along with free flying and fastened radio sondes. Antenna tilt, the antenna reflected ray, and position accuracy are measured in the evaluation.

A81-20083 Improved secondary radar angennas for flight safety installations (Verbesserte Sekundärradarantennen für Flugsicherungsanlagen). D. Siebert (Bundesanstalt für Flugsicherung, Franktur am Main, West Germany). In: Symposium on Radar Technology, 4th, Werthhoven, West Germany, November 6-8, 1979, Reports.

Düsseldorf, Deutsche Gesellschaft für Ortung und Navigation, 1980. 27 p. In German.

Characteristics of secondary surveillance radar antennas are examined in relation to the development of open array antennas and integrated primary radar/secondary surveillance antennas. Emphasis is placed on improved vertical focussing. Results with an integrated primary radar/secondary radar antenna are examined. A procedure for diminishing the influence of the primary radar diagram is discussed, and improved suppression of false targets is observed.

R.C.

A81-20084 New ways in antenna technology for optimal adjustment of the background clutter (Neue Wege der Antennentechnik zur optimalen Anpassung an die Clutterumgebung). A. Rupp (Telefunken AG, Ulm, West Germany). In: Symposium on Radar Technology, 4th, Werthhoven, West Germany, November 6-8, 1979, Reports.

Düsseldorf, Deutsche Gesellschaft für Ortung und Navigation, 1980, 29 p. In German.

This paper examines the problem of radar clutter with emphasis on residual clutter that is independent of geographical location. The origins of residual clutter in the scanning effect and instability in the radar sender are examined. Methods for reducing clutter by using frequency diversity, coherent senders, and sensitivity time control are discussed. The SRE-M5 antenna operating in the L-band is investigated in relation to reduced clutter.

A81-20089 The state of development and design of target data processing of the ELRA system (Stand der Arbeiten und Struktur der Zieldatenverarbeitung des ELRA-Systems). G. van Keuk (Gesellschaft zur Förderung der astrophysikalischen Forschung, Forschungsinstitut für Funk und Mathematik, Werthhoven, West Germany). In: Symposium on Radar Technology, 4th, Werthhoven, West Germany, November 6-8, 1979, Reports.

Düsseldorf, Deutsche Gesellschaft für Ortung und Navigation, 1980. 12 p. 12 refs. In German.

Characteristic features and early results from the ELRA system are investigated. Multiple tracking is considered with emphasis on the degree of freedom of multifunction systems. The clear display of real targets is examined in relation to the tracking logic and sensor control. Minimal interference with the operation of the computer and the use of higher program languages are discussed for the design of software. Experimental results of a test flight with an army commando helicopter are also examined.

A81-20090 Increased target resolution and minor lobe reduction with active group antennas (Erhöhte Zielauflösung und bereichsweise Nebenzipfelabsenkung bei aktiven Gruppenantennen).

U. Nickel and I. Gröger (Gesellschaft zur Förderung der astrophysikalischen Forschung, Forschungsinstitut für Funk und Mathematik, Werthhoven, West Germany). In: Symposium on Radar Technology, 4th, Werthhoven, West Germany, November 6-8, 1979, Reports.

Düsseldorf, Deutsche Gesellschaft für Ortung und Navigation, 1980. 17 p. 7 refs. In German.

The falsification of radar bearings at low elevations due to ground reflection is discussed. A procedure for the suppression of multipath errors which permits angle resolution of direct and reflected paths is examined. A sequential evaluation method is derived from the Maximum-Likelihood estimation for the calculation of two point targets. Diagram formation is discussed in relation to evaluation of individual antennas in the group. Minor lobe reduction is examined along with the maximization of a weighted antenna gain.

A81-20091 Improvement of effective minor lobe behavior of radar antennas through signal processing (Zur Verbesserung des effektiven Nebenzipfelverhaltens von Radarantennen durch Signalverarbeitung). H.-W. Bock and K. Krücker (Forschungsgesellschaft für angewandte Naturwissenschaften, Forschungsinstitut für Hochfrequenzphysik, Werthhoven, West Germany). In: Symposium on Radar Technology, 4th, Werthhoven, West Germany, November 6-8, 1979, Reports.

Düsseldorf, Deutsche Gesellschaft für Ortung und Navigation, 1980. 18 p. 21 refs. In German.

The method of spatial filtering for processing the element signal of a group antenna is examined. Applications and limits to adaptive spatial filtering are investigated. Results with an analog and digital operating spatial filter experimental system integrated in a short range radar are discussed. Improvement of radar antenna minor lobe damping with small aperture measurements is observed.

R.C.

A81-20092 Side lobe suppression with digital signal processing (Nebenzipfelunterdrückung mit digitaler Signalverarbeitung). Mr. Hauptmann. In: Symposium on Radar Technology, 4th, Werthhoven, West Germany, November 6-8, 1979, Reports.

Düsseldorf, Deutsche Gesellschaft für Ortung und Navigation, 1980. 15 p. 5 refs. In German.

The size of surveillance antennas for locating low flying aircraft is minimized for mobility and to decrease the likelihood of discovery. Specifications for a small antenna and a high gain result in a trade-off in side lobe damping. Side lobe suppression methods are examined to dampen noise without influencing the radar signal. Emphasis is placed on digital methods and the influence of the noise environment radar sensor on side lobe supression. Side lobe blanking and side lobe cancelling procedures are investigated.

R.C.

A81-20094 Target detection and parameter estimation in surveillance radars using MTI-FFT processing (Zielentdeckung und Parameterschätzung in Rundsuchradars mit MTI-FFT-Verabeitung). A. Ludloff, M. Minker, and N. Füchter (Telefunken AG, Ulm, West Germany). In: Symposium on Radar Technology, 4th, Werthhoven, West Germany, November 6-8, 1979, Reports.

Düsseldorf, Deutsche Gesellschaft für Ortung und Navigation, 1980. 30 p. 9 refs. In German.

A surveillance radar system with 10 to 20 hits per scan using an MTI-FFT filter bank processor is examined. The system design is investigated along with criteria for selection of the transmitter signal. Comparisons are made for several Doppler filters and MTI moving window processing. A 20 dB improvement in ground clutter is observed with a 30 dB improvement in rain clutter, and a reduction in the number of false alarms.

A81-20097 Coherent signal processing in frequency agile pulse radar units (Zur kohärenten Signalverarbeitung in frequenzagilen Puls-Radargeräten). W. Bühring (Gesellschaft zur Förderung der astrophysikalischen Forschung, Forschungsinstitut für Funk und Mathematik, Werthhoven, West Germany). In: Symposium on Radar Technology, 4th, Werthhoven, West Germany, November 6-8, 1979, Reports.

Düsseldorf, Deutsche Gesellschaft für Ortung und Navigation, 1980. 18 p. 11 refs. In German.

Signals from a radar unit can be received by a discriminator and evaluated for electronic interference and a weapon attack on the radar. A radar signal form with a frequency change between impulses and unequal impulse distances complicates the evaluation of signals from individual radar units. The signal form and signal processing is examined for a radar unit with electronically controlled group antennas. A processing method for the coherent staggered echo series is derived for the suppression of ground and weather interference.

R.C.

A81-20098 A mobile computer-aided detection and tracking system for low-flying attack aircraft (Ein mobiles rechnergestitztes System zur Tieffliegererfassung und -leitung). W. Schwarz (Siemens AG, Munich, West Germany). In: Symposium on Radar Technology, 4th, Werthhoven, West Germany, November 6-8, 1979, Reports.

Düsseldorf, Deutsche Gesellschaft für Ortung und Navigation, 1980. 22 p. In German.

Advances in weaponry and aircraft systems, such as the terrain-following radar, have provided for flying attack capability at speeds up to Mach = 1. The present paper deals with a sophisticated system devised for detecting low-flying attack aircraft which, at the same time, uses a digital computer to provide tracking data to the intercepter aircraft.

V.P.

A81-20099 Detection of direction changes of flying targets from position coordinates of the radar data (Entdeckung von Richtungsänderungen bei Flugzielen aus den Positionskoordinaten der Radarinformation). R. Ehrmanntraut (EUROCONTROL, Beek, Netherlands). In: Symposium on Radar Technology, 4th, Werthhoven, West Germany, November 6-8, 1979, Reports.

Düsseldorf, Deutsche Gesellschaft für Ortung und Navigation, 1980. 21 p. In German.

A81-20100 Evaluation of false alarm information with the ELRA (Auswertung der Falschmeldeinformation bei ELRA). W. Fleskes (Gesellschaft zur Förderung der Astrophysikalischen Forschung, Forschungsinstitut für Funk und Mathematik, Werthhoven, West Germany). In: Symposium on Radar Technology, 4th, Werthhoven, West Germany, November 6-8, 1979, Reports.

Düsseldorf, Deutsche Gesellschaft für Ortung und Navigation, 1980. 8 p. 6 refs. In German.

The information from false alarms is reintegrated into the ELRA system. The modules of the central computer software are examined for the construction of a clutter map. Variations in the computer load are investigated using a search mode along the horizon and a recovery procedure for the information in the clutter map.

R.C.

A81-20101 Application of Doppler information to automatic target tracking (Zur Verwendung von Doppler-Information bei der automatischen Zielverfolgung). J. Bümmerstede (Gesellschaft zur Förderung der astrophysikalischen Forschung, Forschungsinstitut für Funk und Mathematik, Werthhoven, West Germany). In: Symposium on Radar Technology, 4th, Werthhoven, West Germany, November 6-8, 1979, Reports.

Düsseldorf, Deutsche Gesellschaft für Ortung und Navigation, 1980. 16 p. 5 refs. In German.

A81-20102 New techniques for the monopulse-radar tracking of high-maneuverability aircraft (Neue Verfahrenswege bei der Monoradarzielverfolgung von Flugzeugen mit hoher Manövrierfähigkeit). H. Völker (Telefunken AG, Ulm, West Germany). In: Symposium on Radar Technology, 4th, Werthhoven, West Germany, November 6-8, 1979, Reports. Düsseldorf, Deutsche Gesellschaft für Ortung und Navigation, 1980. 21 p. 6 refs. In German.

A81-20103 New techniques and development trends in the system architecture of EDP systems for radar data processing and airspace control (Neue Wege und Entwicklungstrends der Systemarchitektur von EDV Systemen zur Radardatenverarbeitung, Luftraumkontrolle). H. Ebert (Telefunken AG, Ulm, West Germany). In: Symposium on Radar Technology, 4th, Werthhoven, West Germany, November 6-8, 1979, Reports.

Düsseldorf, Deutsche Gesellschaft für Ortung und Navigation, 1980. 39 p. 9 refs. In German.

A81-20110 # Application of low frequency eddy-current for inspection of civil aircraft. G. Nagel and F. Schur (Deutsche Lufthansa AG, Hamburg, West Germany). In: World Conference on Non-destructive Testing, 9th, Melbourne, Australia, November 19-23, 1979, Sessions 2A(1-8), 2B, and 4B. Parkville, Victoria, Australia, Australian Institute for Nondestructive Testing, 1980. (2A-2). 10 p.

The development of low frequency eddy-current inspection is demonstrated with examples of various applications. The applications discussed include corrosion inspection, wing-splice inspection, and lap-joint inspection. Future developments in equipment performance, signal processing, and probe layout are also discussed.

B.J.

A81-20135 # Evaluation and comparison of nondestructive service inspection methods. E. A. B. De Graaf and P. De Rijk (Nationaal Lucht- en Ruimtevaartlaboratorium, Emmeloord, Netherlands). In: World Conference on Non-destructive Testing, 9th, Melbourne, Australia, November 19-23, 1979, Sessions 1C(1-6), 3B(1-6), and 4A(1-7). Parkville, Victoria, Australia, Australian Institute for Nondestructive Testing, 1980. (4A-1). 8 p. Research supported by the Royal Netherlands Air Force.

Fatigue cracks in 102 specimens were inspected with eddy currents, ultrasonics, X-rays and penetrants. The specimens were then corroded and the inspections repeated. Inspection results were verified by fractographic examination of the opened up fatigue cracks.

(Author)

A81-20162 # Non-destructive testing of adhesive-bonded joints. E. A. Lloyd, D. S. Wadhwani, and A. F. Brown (City University, London, England). In: World Conference on Non-destructive Testing, 9th, Melbourne, Australia, November 19-23, 1979, Sessions 6, 7(182), 5A/5B, and 4H(1-6). Parkville, Victoria, Australia, Australian Institute for Nondestructive Testing, 1980. (5B-1). 8 p.

Ultrasonic spectroscopy has been used to monitor the early stages of hydrothermal degradation of adhesive-bonded joints of the type used in aircraft. In this paper, attention is given to the experimental setup, the ultrasonic technique, the interpretation of the spectra, and the detection of hydrothermal degradation.

A81-20168 # New NDT techniques used for aircraft maintenance. R. Macleod (Quantas Airways, Ltd., Sydney, Australia). In:

World Conference on Non-destructive Testing, 9th, Melbourne, Australia, November 19-23, 1979, Sessions 2A, 4H, and 7.

Parkville, Victoria, Australia, Australian Institute for Nondestructive Testing, 1980. (2ADD-2). 10 p.

Description of various NDT techniques used to ensure reliable and efficient maintenance and operation of the Quantas fleet of transport aircraft. Isotope inspection and eddy current inspection methods used to monitor engine condition are discussed along with airframe fatigue measurements, fuselage sampling inspections, wheel hub inspections, and assurance of correct post-overhaul component assembly.

A81-20211 # Acoustic emission and corrosion. I. G. Scott (Department of Defence, Aeronautical Research Laboratories, Melbourne, Australia). In: World Conference on Non-destructive Testing, 9th, Melbourne, Australia, November 19-23, 1979, Sessions 4D, 4G, and 4J. Parkville, Victoria, Australia, Australian Institute for Nondestructive Testing, 1980. (4J-5). 8 p. 8 refs.

The use of acoustic emission (AE) for the practical detection and characterization of corrosion is examined from an experimental viewpoint. An attempt is made to characterize AE signals in terms of spectral content, signal amplitude distribution, etc. The role of bubbles in AE is discussed and some NDI applications of AE are described. (Author)

A81-20214 # The use of acoustic emission for detecting and evaluating of fatigue cracks severity during static and cyclic loading of structure elements. A. F. Selikhov, Iu. P. Borodin, I. V. Gulevskii (Tsentral'nyi Aerogidrodinamicheskii Institut, Moscow, USSR), V. I. Ivanov, V. N. Kuranov, and A. N. Riabov (Tsentral'nyi Nauchnolssledovatel'skii Institut Tekhnologii i Mashinostroeniia, Moscow, USSR). In: World Conference on Non-destructive Testing, 9th, Melbourne, Australia, November 19-23, 1979, Sessions 4D, 4G, and 4J. Parkville, Victoria, Australia, Australian Institute for Nondestructive Testing, 1980. (4J-8). 8 p.

A81-20223 * Radiation boundary conditions for wave-like equations. A. Bayliss (Institute for Computer Applications in Science and Engineering, Hampton, Va.; New York University, New York, N.Y.) and E. Turkel (New York University, New York, N.Y.; Tel Aviv University, Tel Aviv, Israel). Communications on Pure and Applied Mathematics, vol. 33, Nov. 1980, p. 707-725, 21 refs. Contract No. NAS1-14101; Grant No. AF-AFOSR-76-2881.

In the numerical computation of hyperbolic equations it is not practical to use infinite domains; instead, the domain is truncated with an artificial boundary. In the present study, a sequence of radiating boundary conditions is constructed for wave-like equations. It is proved that as the artificial boundary is moved to infinity the solution approaches the solution of the infinite domain as O(r exp -m-1/2) for the m-th boundary condition. Numerical experiments with problems in jet acoustics verify the practical nature of the boundary conditions.

A81-20297 Thermal considerations in the patching of metal sheets with composite overlays. R. Jones and J. Callinan (Department of Defence, Aeronautical Research Laboratories, Melbourne, Australia). Journal of Structural Mechanics, vol. 8, no. 2, 1980, p. 143-149. 8 refs.

In the reinforcing of structures or the patching of cracks with a bonded overlay of high strength composite material, the thermal mismatch between the composite patch and the underlying material is often thought to be a major problem. This paper shows that the temperature fields used in the repair process together with the support conditions cause a significant lowering of the effective coefficient of expansion in the structure which is being repaired, which in turn results in low values for the residual thermal stresses.

(Author)

A81-20349 # Adaptive airfoils and wings for efficient transonic flight. H. Sobieczky (Deutsche Forschungs- und Versuchs-

anstalt für Luft- und Raumfahrt, Göttingen, West Germany) and A. R. Seebass (Arizona, University, Tucson, Ariz.). *International Council of the Aeronautical Sciences, Congress, 12th, Munich, West Germany, Oct. 12-17, 1980, Paper.* 25 p. 18 refs.

The elliptic continuation shock-free flow design method was applied to test examples to provide a theoretical basis for the design of adaptive wing geometry at variable operating conditions. A system is proposed for automatic shape variations of wings based on experience with systematic computational design. The special designs and the adaptive shape control system must be tested experimentally, possibly in combination with the new aerodynamic concepts for higher efficiency of transonic aircraft like variable geometry and boundary layer control investigations.

A.T.

A81-20350 # Fuel consumption aspects of some noise abatement procedures. N. M. Standen and S. E. Rosborough (Transport Canaca, Otrawa, Canada). International Council of the Aeronautical Sciences, Congress, 12th, Munich, West Germany, Oct. 12-17, 1980, Paper. 15 p. 11 refs.

A computer program has been developed to assess the fuel consumption of jet transport aircraft in terminal area operations. Performance characteristics of the Boeing 737 type aircraft have been used to determine the fuel consumed and the noise levels produced under several departure profiles normally considered as noise abatement procedures. An index is suggested which is intended to provide a measure of the relative effects of fuel consumed and noise level experienced by groundbased observers. (Author)

A81-20351 # Delta canard configuration at high angle of attack. W. Kraus (Messerschmitt-Bölkow-Blohm GmbH, Ottobrunn, West Germany). International Council of the Aeronautical Sciences, Congress, 12th, Munich, West Germany, Oct. 12-17, 1980, Paper. 34

The usefulness of a high angle of attack regime in a dogfight is discussed, together with the role of a delta canard configuration to control instability in transonic and supersonic flight. The area of poststall utilization is indicated, noting that good angles of attack are between 25 and 90 degrees for Mach numbers between 0.3 and 1 depending on altitude. It is shown that there are no problems for the configuration at high angles of attack regarding longitudinal characteristics, neither for trimming nor control. Spin susceptibility can be avoided at stall conditions by inproving yaw control and finally, lateral stability can be improved by a special trim schedule.

A81-20352 # Influence of jet location on the efficiency of spanwise blowing. W. Staudacher (Messerschmitt-Bölkow-Blohm GmbH, Ottobrunn, West Germany). International Council of the Acronautical Sciences, Congress, 12th, Munich, West Germany, Oct. 12-17, 1980, Paper. 29 p. 28 refs. Research sponsored by the Bundesministerium der Verteidigung.

An experimental study of the optimization of the jet location for concentrated spanwise blowing over the upper surface of the wing was made. Variations of 45 nozzle positions were performed including jet locations in the body, over flaps and controls and over the basic wing. Optimum jet positions were determined as functions of improvements in performance, stability and control. A correlation of the effects of spanwise blowing with lift-drag development was attempted through the use of the Polhamus leading edge suction analogy.

N.D.

A81-20353 # Some aspects of advanced flight management systems and their application to modern transport aircraft. H. Griem (Vereinigte Flugtechnische Werke GmbH, Bremen, West Germany). International Council of the Aeronautical Sciences, Congress, 12th, Munich, West Germany, Oct. 12-17, 1980, Paper. 34 p. Research supported by the Bundesministerium für Forschung und Technologie.

Various aspects of takeoff, landing approach, and landing are discussed in relation to the maximum stress exerted on the cockpit crew and ATC personnel and maximum accident frequency during these phases. The separation of flight paths used for automatic

control is defined, and elements of the flight test system (HFB S 1) used in the studies are described, namely the sensor system, control system, mode concept and control system, displays and operation, set-value computation, and flight control computer. The most important results from eight test flights involving approaches to the Braunschweig terminal in West Germany are presented. C.R.

A81-20418 # High-level languages in affordable aircraft simulators. P. H. Ackermans (CAE Electronics, Ltd., St. Laurent, Quebec, Canada). Astronautics and Aeronautics, vol. 19, Jan. 1981, p. 53-55.

Extended versions of the minicomputer, so-called 'superminicomputers', have been designed for use with high-level languages in aircraft simulators. The languages, including FORTRAN, COBOL and BASIC, yield program statements that are very near English. As an example, the VAX-11/780 model has a physical memory capacity of 8 megabytes and can store and execute complex programs. The demand for memory is minimized by using a FORTRAN IV-plus compiler which translates the programs into an efficient, machineusable code. The high-level languages have been shown to significantly increase simulation detail. Special subroutines, called 'handlers', may be integrated so that the system recognizes and works with interfaces to input and control simulator elements. Simulators are designed for the particular features of a specific aircraft, and can be updated to reflect later changes made to the aircraft.

S.C.S.

A81-20419 # Laser measurement of angle of attack on wind-tunnel models. C. R. Pond and E. G. Hill (Boeing Commercial-Airplane Co., Renton, Wash.). Astronautics and Aeronautics, vol. 19, Jan. 1981, p. 56, 57, 79.

A Laser Angle Meter (LAM), that yields angle-of-attack measurements for wind-tunnel models with a precision of 0.005 deg has been developed. The LAM measures model pitch altitude at working distances of 4-5 miles and is free from temperature and model vibration effects. The high-response level of the LAM permits essentially real-time measurements and rapid data acquisition. The system determines angle of attack by detecting the phase-shift of fringes produced when a collimated light beam rebounds off a reflector attached to the body spar. The angle of attack is given by the periodic variation in fringe amplitude. The collimated light beam passes through a code disk and the reflected signal is amplitudemodulated at 21.6 kHz, where the model attitude determines the phase of the AM signal. A shearing interferometer is used as the reflector assembly. The change in signal phase relative to the reference phase is displayed on an electronic processor. As the model is tracked, a reference reflector compensates for the angular change of the optical unit. LAM accuracy is particularly applicable to sting-mounted models.

A81-20448

A correlated random numbers generator and its use to estimate false alarm rates of airplane sensor failure detection algorithms. Y. K. Chan and R. W. Edsinger (Boeing Computer Services, Inc., Tukwila, Wash.). In: Conference on Decision and Control, and Symposium on Adaptive Processes, 18th, Fort Lauderdale, Fla., December 12-14, 1979, Proceedings. Volume 1.

Piscataway, N.J., Institute of Electrical and Electronics Engineers, Inc., 1979, p. 242-246. 8 refs. Research supported by the Boeing Commercial Airplane Co.

A routine procedure is presented to generate random number series with specified power spectral density and composite Gaussian probability distribution functions. This can be used to simulate airplane sensor outputs in the synthesis and evaluation of failure detection schemes for redundant sensor sets. An example is given comparing some statistics of simulated sensor outputs to their observed counterparts. (Author)

A81-20450 Precision correlation tracking via optimal weighting functions. J. M. Fitts (Hughes Aircraft Co., Culver City, Calif.). In: Conference on Decision and Control, and Symposium on Adaptive Processes, 18th, Fort Lauderdale, Fla., December 12-14,

1979, Proceedings. Volume 1. Piscataway, N.J., Institute of Electrical and Electronics Engineers, Inc., 1979, p. 280-283.

A brief description of correlation tracker techniques is given, with particular attention paid to the mathematical background. It is noted that one distinguishing feature of the correlation tracker developed by the Hughes Aircraft Company (Time Optimal, Target Adaptive Correlation, Digital Tracker) is that the optimal weighting function is the negative derivative of the signal. The weighting function is effectively matched to the signal. It is pointed out that the centroid and edge trackers are special cases of this correlation tracker. Because of these optimal or matched weighting functions, a gate is not needed to reduce noise as is required for the centroid tracker. It is shown through computer simulations that the correlation tracker is far superior to the centroid tracker and in fact provides better tracking if the tracking gage encompasses the full image.

C.R.

A81-20454 Design of disturbance-rejection controllers for linear multivariable discrete-time systems using entire eigenstructure assignment. J. D'Azzo (USAF, Institute of Technology, Wright-Patterson AFB, Ohio). In: Conference on Decision and Control, and Symposium on Adaptive Processes, 18th, Fort Lauderdale, Fla., December 12-14, 1979, Proceedings. Volume 1.
Piscataway, N.J., Institute of Electrical and Eiectronics Engineers,

Piscataway, N.J., Institute of Electrical and Electronics Engineers, Inc., 1979, p. 315-321, 23 refs.

The method of entire eigenstructure assignment constitutes a powerful new method for the design of on-board digital flight controllers. This fact is demonstrated by the presentation of a technique for the design of finite settling time disturbance-rejection controllers for linear multivariable discrete-time systems incorporating digital integrators. The computational attractiveness of the method of entire eigenstructure assignment is illustrated by designing a time-optimal disturbance-rejection controller for the lateral dynamics of the F-4 aircraft. The transient-response characteristics of the controlled aircraft are illustrated by the presentation of the results of simulation studies for a number of sampling periods when the aircraft is subjected to a very severe yaw-torque disturbance.

(Author)

A81-20465 Operational energy conservation strategies in commercial aviation. R. R. Covey, G. J. Mascetti, W. U. Roessler (Aerospace Corp., El Segundo, Calif.), and R. L. Bowles (U.S. Department of Energy, Washington, D.C.). In: Conference on Decision and Control, and Symposium on Adaptive Processes, 18th, Fort Lauderdale, Fla., December 12-14, 1979, Proceedings. Volume 1. Piscataway, N.J., Institute of Electrical and Electronics Engineers, Inc., 1979, p. 408-414. 12 refs.

Various fuel conservation strategies that are applicable to commercial aviation and that lend themselves to real-time decision and control techniques are discussed. It is noted that these 12 strategies could potentially save 12 percent of current fuel usage. The strategies are as follows: optimized takeoff procedures, optimized cruise Mach number selection, optimized altitude selection, optimized descent procedures, reduced/delayed flap approaches, flow control, linear holding, gate holding, profile descent, reduced final approach spacing, area navigation/direct routing, and airborne performance computer systems. It is concluded that since the costs incurred and benefits derived in implementing these techniques and strategies are intimately related to fuel prices, comprehensive parametric analyses are needed to clearly identify those strategies for which automatic decision and control can provide the highest energy conservation returns on investment.

A81-20466 * Application of trajectory optimization principles to minimize aircraft operating costs. J. A. Sorensen (Analytical Mechanics Associates, Inc., Mountain View, Calif.), S. A. Morello (NASA, Langley Research Center, Hampton, Va.), and H. Erzberger (NASA, Ames Research Center, Moffett Field, Calif.). In: Conference on Decision and Control, and Symposium on Adaptive Processes, 18th, Fort Lauderdale, Fla., December 12-14, 1979, Proceedings. Volume 1.

tute of Electrical and Electronics Engineers, Inc., 1979, p. 415-421. $31\ refs.$

This paper summarizes various applications of trajectory optimization principles that have been or are being devised by both government and industrial researchers to minimize aircraft direct operating costs (DOC). These costs (time and fuel) are computed for aircraft constrained to fly over a fixed range. Optimization theory is briefly outlined, and specific algorithms which have resulted from application of this theory are described. Typical results which demonstrate use of these algorithms and the potential savings which they can produce are given. Finally, need for further trajectory optimization research is presented. (Author)

A81-20468 Integration of fuel conservative procedures in the high density terminal area. R. G. Dear (California State University, Fullerton, Calif.). In: Conference on Decision and Control, and Symposium on Adaptive Processes, 18th, Fort Lauderdale, Fla., December 12-14, 1979, Proceedings. Volume 1.

Piscataway, N.J., Institute of Electrical and Electronics Engineers, Inc., 1979, p. 427-431. 8 refs.

Fuel conservative procedures reduce fuel consumption in high density thermal areas if properly planned, but their effectiveness is affected by air traffic controls. Real-time pilot-and-control-in-the-loop simulations showed that fuel savings can be made under moderately heavy traffic conditions; in heavy traffic, high controller workload and lower fuel savings indicate that time-controlled aircraft guidance and computer scheduling may be required to realize the possibilities of fuel conservative procedures.

A.T.

A81-20470 Adaptive control for electronic countermeasures. B. Friedlander and A. J. Rockmore (Systems Control, Inc., Palo Alto, Calif.). In: Conference on Decision and Control, and Symposium on Adaptive Processes, 18th, Fort Lauderdale, Fla., December 12-14, 1979, Proceedings. Volume 2.

Piscataway, N.J., Institute of Electrical and Electronics Engineers, Inc., 1979, p. 621-623. 10 refs. Contract No. N00039-79-C-0124.

The deception of a tracking radar by electronic countermeasures is formulated as the problem of controlling a dynamic system with unknown parameters. Adaptive controllers are derived for destabilizing the radar and for inducing fixed tracking errors. The structure of the controllers is that of a self-tuning regulator, with some special features arising from the requirements of this application. (Author)

A81-20471 * VTOL control for shipboard landing in high sea states. C. G. McMuldroch, G. Stein, and M. Athans (MIT, Cambridge, Mass.). In: Conference on Decision and Control, and Symposium on Adaptive Processes, 18th, Fort Lauderdale, Fla., December 12-14, 1979, Proceedings. Volume 2. Piscataway, N.J., Institute of Electrical and Electronics Engineers,

Piscataway, N.J., Institute of Electrical and Electronics Engineers, Inc., 1979, p. 626-629. Grant No. NGL-22-009-124.

A control algorithm is developed for a VTOL type aircraft landing on a small ship in rough seas. The work covers modelling the dynamics of the two vehicles, the design of an aircraft-tracking-shipmotion controller, and the specification of an actual landing control algorithm. The landing controller design is more practical and found to perform better than the hover controller. In addition to outlining a design technique, the results provide design guidelines and performance bounds for practical landing control systems. (Author)

A81-20473 Robust autoregressive models for predicting aircraft motion from noisy data. S. F. Huling, M. Mintz (Pennsylvania, University, Philadelphia, Pa.), S. A. Goodman, and W. Dziwak (U.S. Army, Armament Research and Development Command, Dover, N.J.). In: Conference on Decision and Control, and Symposium on Adaptive Processes, 18th, Fort Lauderdale, Fla., December 12-14, 1979, Proceedings. Volume 2. Piscataway, N.J., Institute of Electrical and Electronics Engineers, Inc., 1979, p. 638-643. 6 refs.

It was found previously (Huling, et al., 1971) that in a noiseless environment higher order autoregressive models provided robust predictors which could significantly improve the capabilities of an antiaircraft artillery weapon system against a large class of aircraft

maneuvers at extended times of flight. This study examines the case where the observations made by the weapon system are corrupted by noise. The achieved results show that robust higher order autoregressive models still yield considerable improvement, especially in the filtering of the sensor signals. (Author)

A81-20474 Parameter identification and discriminant analysis for jet engine mechanical state diagnosis. C. Baskiotis, J. Raymond, and A. Rault (ADERSA/GERBIOS, Palaiseau, Essonne, France). In: Conference on Decision and Control, and Symposium on Adaptive Processes, 18th, Fort Lauderdale, Fla., December 12-14, 1979, Proceedings. Volume 2. Piscataway, N.J., Institute of Electrical and Electronics Engineers, Inc., 1979, p. 648-650. 5 refs. Research supported by the Institut de Recherches d'Informatique et d'Automatique; Ministère de la Défense Contract No. 77,93304,00.

A general methodology has been developed for diagnosing systems whose internal wear has an effect on their dynamic performance. The methodology involves (1) measurement of performance; (2) determination and measurement of the mechanical state on a test population; (3) establishment of relationships between the performance and the mechanical state; and (4) diagnosis of the mechanical state directly from performance measurement. Results of the methodology application to jet engines are presented.

A81-20475 A frequency-domain technique for aeroelastic mode estimation. A. Cumani and R. Del Bello (Istituto Elettrotecnico Nazionale, Turin, Italy). In: Conference on Decision and Control, and Symposium on Adaptive Processes, 18th, Fort Lauderdale, Fla., December 12-14, 1979, Proceedings. Volume 2.

Piscataway, N.J., Institute of Electrical and Electronics Engineers, Inc., 1979, p. 651, 652. 5 refs. Research supported by Aeritalia S.p.A.

A frequency-domain identification technique has been developed for flutter analysis which can resolve coupled modes even with substantial noise in the input-output data. The proposed method has been implemented in a software package which is the central part of an interactive minicomputer-based flutter analysis system. The identification procedure is illustrated by a simulated example. V.L.

A81-20476 Development and demonstration of an automatic control and recovery system for remotely piloted vehicles. B. Hardy (U.S. Naval Weapons Center, China Lake, Calif.) and W. R. Sturgeon (Systems Analysis and Control, Ridgecrest, Calif.). In: Conference on Decision and Control, and Symposium on Adaptive Processes, 18th, Fort Lauderdale, Fla., December 12-14, 1979, Proceedings. Volume 2. Piscataway, N.J., Institute of Electrical and Electronics Engineers, Inc., 1979, p. 653, 654.

The need for an automatic system for the rapid, safe recovery of remotely piloted vehicles (RPVs) is stressed. A new recovery system developed under the Hybrid Terminal Assist Landing (HYTAL) program is discussed, with the system's conceptual layout presented schematically. Factors considered in the design of the system are given, for example, the steady-state position error arising from a constant wind and the undesirably large attitudes and velocities resulting from large changes in the commanded position. Flight tests are described wherein each axis of control (pitch, roll, and vertical) was separately tested, the axes not under test remaining under the control of the operator. It is noted that automatically controlled takeoff, hover, translation, and landing were demonstrated. C.R.

A81-20485 Some implementation considerations for numerically stable flight filters. S. M. Strickland (Boeing Co., Seattle, Wash.) and J. Vagners (Washington, University, Seattle, Wash.). In: Conference on Decision and Control, and Symposium on Adaptive Processes, 18th, Fort Lauderdale, Fla., December 12-14, 1979, Proceedings. Volume 2. Piscataway, N.J., Institute of Electrical and Electronics Engineers, Inc., 1979, p. 828, 829. 9 refs.

An efficient error covariance reset scheme is presented for upper-unitary triangular-diagonal (U-D) factored multimode filter applications. The numerical sensitivity of the U-D measurement update algorithm to state vector ordering is analyzed, and the algorithm is shown to be sensitive to ordering of the measurement matrix with respect to zero and non-zero elements. An ordering scheme that takes advantage of this sensitivity is suggested by the results. It is demonstrated that position states should be last in the state vector for maximum accuracy benefits from position fix updates, for example. This ordering is compatible with that necessary for the simplified error state reset.

A81-20508 A new technique for tracking sequences of digitized images. M. Llewellyn and S. Dougherty (USAF, Avionics and Armament Development Div., Wright-Patterson AFB, Ohio). In: Conference on Decision and Control, and Symposium on Adaptive Processes, 18th, Fort Lauderdale, Fla., December 12-14, 1979, Proceedings. Volume 2.

Piscataway, N.J., Institute of Electrical and Electronics Engineers, Inc., 1979, p. 1028-1031.

The middle ground between point trackers and correlation trackers is discussed, and it is noted that feature extraction techniques can be employed to reduce the computation normally associated with correlation tracking while preserving high accuracy. It is found that ways exist to reduce the number of pixels in the reference set and at the same time increase the effective tracking signal-to-noise ratio for a correlation tracker. The success of this approach to reducing the required computation rate depends on the application of high speed feature extraction techniques (here, gradient magnitude estimation) and an adaptive Kalman filter. C.R.

A81-20526 # Particle dynamics of inlet flow fields with swirling vanes. A. Hamed (Cincinnati, University, Cincinnati, Ohio). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0001. 15 p. 12 refs. Contract No. N00014-78-C-0590.

The particle trajectories are investigated in an inlet flow field, of a helicopter engine with swirling vanes and particle separator. The flow field resulting from the swirling vanes is first computed on a hub-shroud mid-channel stream surface. The trajectories of the solid particles are then determined in this flow field, including particle impacts with the hub, tip, and vane surfaces. The particle rebounding velocity and direction after each impact is determined using empirical correlations derived from experiments conducted in a special tunnel. Different particle sizes, are considered, and the resulting trajectories and separator effectiveness are presented.

(Author)

A81-20527 # Body-fitted 3-D full-potential flow analysis of complex ducts and inlets. C. K. Forester (Boeing Military Airplane Co., Seattle, Wash.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0002. 27 p. 34 refs.

A full-potential three-dimensional flow analysis is developed using a nonorthogonal constructed-coordinate system, finite-difference techniques, and coupled multiple-mapping methods. The flow field is divided into subdomains coupled at suitable interfaces; simple grid generators using parametric and elliptic equations are cost effective. Results of the three-dimensional analysis are presented for a rectangular-to-round diffuser, jet engine noise suppressor lobe mixer passageways and mixing chamber, and a jet engine thrust reverser duct.

A.T.

A81-20531 # Experimental study of the influence of supports on the aerodynamic loads on an ogive cylinder at high angles of attack. T. N. Canning and J. N. Nielsen (Nielsen Engineering and Research, Inc., Mountain View, Calif.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0007. 8 p. 5 refs. Contract No. F08635-79-C-0119.

The influence of the model support system on an ogive cylinder at high angles of attack has been determined in subsonic and transonic tests. Stings of varying diameter and struts in various orientations were studied. The stings did not alter the development of large side loads resulting from asymmetric vortex separation and had only moderate progressive effects on in-plane forces and moments. Struts supporting the model through its leeward meridian seriously altered normal and side forces and sharply reduced base drag at several combinations of Mach number and angle of attack. A strut supporting the model at its windward meridian (near the base) yielded results like those for the stings. (Author)

A81-20532 * # Wing-alone aerodynamic characteristics at high angles of attack. R. L. Stallings, Jr. and M. Lamb (NASA, Langley Research Center, High-Speed Aerodynamics Div., Hampton, Va.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0008. 8 p. 6 refs.

An experimental investigation has been conducted to determine wing-alone supersonic aerodynamic characteristics at high angles of attack. The family of wings tested varied in aspect ratio from 0.5 to 4.0 and taper ratio from 0.0 to 1.0. The wings were tested at angles of attack ranging from 0 to 60 deg and Mach numbers from 1.6 to 4.6. The aerodynamic characteristics were obtained by integrating local pressures measured over the wing surface. Comparison of these data with the limited available data from the literature indicate the present data are free of sting interference effects through the test range of angle of attack. Presented and discussed are results showing—the effects of model geometry, Mach number and angle of attack on aerodynamic characteristics consisting of normal force, pitching moment, bending moment, longitudinal center-of-pressure locations, and lateral center-of-pressure locations. (Author)

A81-20535 # An analytical solution of lift loss for a round planform with a central lifting jet. K. T. Yen (U.S. Naval Material Command, Naval Air Development Center, Warminster, Pa.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0011.9 p. 11 refs. Navy-sponsored research.

An analysis of the lift loss for a round planform fitted with a centrally-located round jet is presented. The pressure distribution over the lower surface of the planform is solved analytically by matching an inner viscous solution with an outer potential solution. By comparing the calculated pressure distributions with NACA experimental data, satisfactory agreement has been obtained, although the planforms are not exactly the same. In addition, Wyatt's formula for the lift loss is found to be essentially valid, but only under limited conditions, and an improved formula is suggested. Additional works, both experimental and theoretical, needed to solve the lift loss problem are discussed with recommendations. (Author)

A81-20537 # Prediction of tilt rotor outwash. R. K. Wernicke (Bell Helicopter Textron, Fort Worth, Tex.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0013. 12 p. 6 refs.

Increased disc loadings (the ratio of gross weight to rotor area) have made working beneath a hovering aircraft difficult. A review of downwash/outwash data for various rotor craft with disc loadings of 4-40 psf indicates that the flow field in the area under the craft at 1.2-1.6 rotor radii from the center of the rotor produces the highest overturning moments. If it is unsteady, however, the downwash may become upsetting at a relatively low velocity, suggesting that parameters other than disc loading also effect downwash pressure and, consequently, overturning moments. Although the flow fields beneath the rotors of tilt rotor aircraft like the XV-15 are essentially identical to those of a single-rotor craft, they create an additional outwash from the vehicle's nose and tail. This outwash is problematic though at disc loadings greater than 25 psf.

A81-20538 * # Scale effects on turbulent boundary layer development and flow separation around V/STOL inlets at high incidence. D. C. Chou, J. H. Baek (New Mexico, University, Albuquerque, N. Mex.), R. W. Luiden, and N. O. Stockman (NASA, Lewis Research Center, Wind Tunnel and Flight Div., Cleveland, Ohio). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0014.8 p. 18 refs.

Numerical methods for calculating laminar and turbulent boundary layers development around V/STOL engine inlets at high incidence angles, along with the procedures for predicting flow separation, are presented. Results of scale-effects, which are obtained by a numerical scaling procedure on the boundary layer characteristics and incidence angles at onset of separation are discussed. The interesting 'cross-over' phenomena, where the full-scale models actually exhibit earlier separation than the scaled-models, is illustrated for a typical V/STOL inlet at a certain operating condition. Some of the numerical results are compared with the existing wind-tunnel test data for a 1/6 scale inlet model to demonstrate the validity of the numerical approach. (Author)

A81-20539 # Numerical calculation of jet-induced ground effect in VTOL. J. C. Hwang and F. K. Tsou (Drexel University, Philadelphia, Pa.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0015. 9 p. 9 refs. Contract No. N68335-79-C-2055.

Numerical schemes based on Navier-Stokes equations and a k-turbulence kinetic energy-turbulence dissipation energy model of turbulence have been utilized to obtain solutions for an undeveloped two-dimensional jet impinging on a ground plane. In order to save time of computation, a 17 x 24 nonuniform grid system has been used. The results including flow velocities, fluid entrainment, turbulence energy and dissipation, and pressures are presented. Comparison of the present results with available data indicates that the application of the present model is satisfactory. (Author)

A81-20540 * # Numerical optimization of circulation control airfoils. T. C. Tai (U.S. Naval Material Command, David W. Taylor Naval Ship Research and Development Center, Bethesda, Md.), G. H. Kidwell, Jr. (NASA, Ames Research Center, Helicopter and Powered Lift System Div., Moffett Field, Calif.), and G. N. Vanderplaats (U.S. Naval Postgraduate School, Monterey, Calif.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0016. 8 p. 17 refs. Navy-supported research.

A numerical procedure for optimizing circulation control airfoils, which consists of the coupling of an optimization scheme with a viscous potential flow analysis for blowing jet, is presented. The desired airfoil is defined by a combination of three baseline shapes (cambered ellipse, and cambered ellipse with drooped and spiralled trailing edges). The coefficients of these shapes are used as design variables in the optimization process. Under the constraints of lift augmentation and lift-to-drag ratios, the optimal airfoils are found to lie between those of cambered ellipse and the drooped trailing edge, towards the latter as the angle of attack increases. Results agree qualitatively with available experimental data.

(Author)

A81-20541 * # Classical and modern control design of a speed-hold system for a STOL airplane. J. D. Blight and D. Gangsaas (Boeing Commercial Airplane Co., Seattle, Wash.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0017. 9 p. Contract No. NAS2-9081.

A speed-hold system for an experimental short takeoff and landing jet airplane has been designed using both classical root-locus and modern optimal control synthesis techniques. The purpose of the speed-hold system is to maintain airspeed during final approach in the presence of wind shears, gusts, engine failures, and pilot control inputs. Designs were based on using airspeed as a single measurement and two symmetrically deployed upper surface blown

flaps as a single control. An optimal control law feeding back all the states and the integral of airspeed through constant gains provided superior performance in terms of speed tracking and control surface activity. However, when a constant-gain Kalman filter was inserted to estimate the states using only the measurement of airspeed, the performance of the optimal control law was reduced to the same as that of a much simpler classical proportional-path plus integral-path control law. To improve the performance of the optimal control law, additional measurements would be required. (Author)

A81-20542 * # Disturbance estimation for a STOL transport during landing. J. A. Bossi (Washington, University, Seattle, Wash.) and A. E. Bryson, Jr. (Stanford University, Stanford, Calif.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0018. 10 p. 19 refs. Grant No. NGR-05-020-019.

Transport aircraft can experience dangerously high sink rates if wind shear or thrust loss are encountered during landing approach. This is of special concern for STOL aircraft that use engine thrust for lift augmentation. Such conditions must be detected quickly and available power increased promptly to avoid serious flight path deviations. This study demonstrates the feasibility of designing constant-gain estimators, which use on-board instrumentation, to detect such conditions with sufficient speed and accuracy to provide adequate warning. Estimator design techniques are discussed and simulation results presented. (Author)

A81-20543 # Application of singular perturbation theory to onboard aircraft trajectory optimization. A. J. M. Chakravarty and J. Vagners (Washington, University, Seattle, Wash.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0019. 9 p. 13 refs. Research supported by the Boeing Co.

This paper formulates the problem of minimizing direct operating cost in dollars (combined cost per hour and cost of fuel per hour) for a typical commercial jet transport model. Singular perturbation theory is applied to reduce the computational burden of solving the resulting optimal control problem. The work of previous investigators is extended to include the aircraft weight variation in the state equations and the resulting seven-state model is analyzed for time scale separation. It is shown that a realistic time scale separation involves only two scales. The resulting model is then used to develop the inner and outer solutions as dictated by singular perturbation theory. A comprehensive model for the aerodynamic and fuel flow terms appearing in the equations is developed for use in optimal trajectory computation. Numerical results are presented that illustrate the nature of the optimal trajectory and the control variables. (Author)

A81-20544 * # Practical gust load alleviation and flutter suppression control laws based on a LQG methodology. D. Gangsaas, U. Ly, and D. C. Norman (Boeing Commercial Airplane Co., Seattle, Wash.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0021. 11 p. 5 refs. Contract No. NAS1-15325.

A modified linear quadratic Gaussian (LQG) synthesis procedure has been used to design low-order robust multiloop controllers for a flexible airplane. The introduction of properly constructed fictitious Gauss-Markov processes in the control loops allowed meeting classical frequency-domain stability criteria using the direct synthesis procedures of modern time-domain control theory. Model reduction was used to simplify the control laws to the point where they could be easily implemented on onboard flight computers. These control laws provided excellent gust load and flutter mode control with good stability margins and compared very favorably to other control laws synthesized by the classical root-locus technique. (Author)

A81-20545 # Robustness properties of a new multirate digital control system. D. P. Glasson (Analytic Sciences Corp., Reading, Mass.). American Institute of Aeronautics and Astronautics,

Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0022. 7 p. 6 refs.

A new approach for designing multirate digital flight control systems based on optimal control theory is described. The robustness properties of control systems designed by the new technique are investigated through a case study. The example considered is the F-14 aircraft controlled by a multirate proportional-plus-integral (PI) controller. The aircraft/controller system is 'flown' through a turbulent atmosphere; a covariance analysis of state variable errors determines the ability of the controller to reject turbulence-induced errors. The controller sample rate and control sequence are varied to determine their influence on the disturbance rejection properties of the controller. Finally, a sample rate optimization scheme based on a robustness/computation tradeoff is presented. (Author)

A81-20559 # Numerical investigation of a model of turbulent combustion of hydrocarbons. R. Borghi and E. Pourbaix (ONERA, Châtillon-sous-Bagneux, Hauts-de-Seine, France). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0039. 11 p. 23 refs.

The probability density function (PDF) method can take into account the coupling of turbulent combustion with complicated flow fields and various types of flow flames in predicting combustion in turbomachines. It is shown that a type of skeleton of PDF can be determined in a multidimensional space even with complicated chemistry; the case of hydrocarbon combustion in a premixed turbulent flame stabilized by a pilot jet in a constant area duct is used as an example.

A81-20563 # The numerical solution of incompressible turbulent flow over airfoils. H. A. Hegna (USAF, Wright Aeronautical Laboratories, Wright-Patterson AFB, Ohio). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0047. 12 p. 50 refs.

Numerical solutions are obtained for two-dimensional incompressible turbulent viscous flow over airfoils of arbitrary geometry. A body-fitted coordinate system is numerically transformed to a rectangular grid in the computational plane. The time dependent Reynolds averaged Navier-Stokes equations in the primitive variables of velocity and pressure are used. Turbulence is modelled with an algebraic eddy viscosity technique modified for separated adverse pressure gradient flows. The set of transformed partial differential equations is solved with an implicit finite difference method. Numerical solutions for a NACA 0012 airfoil near stall at a chord Reynolds number of 170,000 are favorably compared with surface pressure and velocity field measurements. A small laminar separation bubble near the suction pressure peak is observed. Computed lift and drag coefficients agree well with experimental values. (Author)

A81-20564 # Numerical simulation of wing-fuselage interference. J. S. Shang (USAF, Flight Dynamics Laboratory, Wright-Patterson AFB, Ohio). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0048. 9 p. 19 refs.

Numerical solutions of the mass-averaged Navier-Stokes equations were accomplished for a nominal Mach number of six and Reynolds number of fifteen million. The wing-fuselage configuration consists of a tangent-ogive forebody and a highly swept wedge delta wing. The numerical results were verified by comparing with experimental measurements and solutions of Euler equations under identical free stream conditions. The flow field structure is delineated by identifying the shock wave and the cross flow velocity field. The computations were performed on the CRAY 1 computer using a vectorized version of the Navier-Stokes code. (Author)

A81-20566 * # A numerical simulation of hypersonic viscous flow over arbitrary geometries at angle of attack. D. S. Chaussee, P. Kutler, T. H. Pulliam (NASA, Ames Research Center, Moffett Field,

Calif.), J. L. Patterson (USAF, Wright Aeronautical Laboratories, Wright-Patterson AFB, Ohio), and J. L. Steger (Stanford University, Stanford, Calif.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0050. 15 p. 25 refs. Contract No. F33615-79-C-3001.

An implicit conservative, noniterative, finite-difference algorithm that predicts the supersonic, laminar or turbulent viscous flow about arbitrary geometries at large angles of attack is presented. The three-dimensional parabolized form of the thin-layer Navier-Stokes equations are written in generalized coordinates. These equations are solved using the delta form of the Beam-Warming implicit algorithm. Flow field simulations have been obtained for a blunt biconic with windward and leeward cuts and an X-24C lifting body for both laminar and turbulent flow at various Mach numbers and angles of attack. When compared with experiment or with previous theories, these computational predictions show good agreement. (Author)

A81-20567 # Viscous-inviscid interaction on oscillating airfoils in subsonic flow. W. J. McCroskey and S. L. Pucci (U.S. Army, Aeromechanics Laboratory, Moffett Field, Calif.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0051. 17 p. 11 refs.

Selected results from an extensive oscillating-airfoil experiment are analyzed and reviewed. Four distinct regimes of viscous-inviscid interaction are identified, corresponding to varying degrees of unsteady flow separation. The dominant fluid dynamic phenomena are described for each regime. Ten specific test cases, including the appropriate flow conditions and experimental results, are proposed for evaluating unsteady viscous theories and computational methods.

(Author)

A81-20568 * # Prediction and experimental verification of transient airfoil motion in a small wind tunnel. S. M. Rock (Systems Control, Inc., System Identification and Control Div., Palo Alto, Calif.) and D. B. DeBra (Stanford University, Stanford, Calif.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0052. 12 p. 28 refs. Grant No. NsG-4002.

The theory for aerodynamic loading associated with transient motion of an airfoil in a wind tunnel has been extended and verified experimentally. A generalized Theodorsen Function which includes wall effects is described, and finite-state approximations are developed for large wing-semichord to wall-spacing ratios. Finally, experimental results are presented which verify the theoretical predictions for transient airfoil motions. These results were obtained using a small, low-subsonic wind tunnel with a unique airfoil suspension design that provides uncoupled sensing and actuation for two degrees of freedom. (Author)

A81-20570 # Sound sources in aerodynamics - Fact and fiction. J. E. Ffowcs Williams (Cambridge University, Cambridge, England). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0056. 12 p. 15 refs.

Sound and sound sources are defined as non-overlapping in space, and surface sources are incorporated within this definition by a formal mathematical step. Linear noise sources, the sound of compact sources, non-compact sources, acoustic coincidence, and nonlinear sources are examined. An analysis in which aerodynamic source terms appear as linear is used to illustrate the importance of vorticity in the aerodynamic generation of sound. Viscous sources of sound are considered, and it is pointed out that such sources cannot be neglected near the sharp edge of aerofoils.

V.L.

A81-20578 # Dynamic pressure response with stall on axial flow compressor rotor blades. W. T. Cousins, W. F. O'Brien, Jr. (Virginia Polytechnic Institute and State University, Blacksburg, Va.), and M. R. Sexton (Virginia, University, Charlottesville, Va.). American Institute of Aeronautics and Astronautics, Aerospace

Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0069. 7 p. 9 refs. Navy-supported research.

Measurements and related analyses are presented for dynamic pressure variations observed in a single-stage compressor which was instrumented with high-response, on-rotor pressure transducers. A circumferential flow distortion was imposed at the inlet of the compressor by means of wire screens. Rotor inlet conditions were measured, and the resulting dynamic pressure response was recorded at several chordwise locations on the suction and pressure sides of a rotor blade passage. Fourier analysis techniques provided insight into the dynamic behavior of the pressures at each location. The results can be useful in compressor models where dynamic behavior is important. (Author)

A81-20579 # Turbo-compressors surge and surge control. A. Mobarak, M. Elaraby, and Y. Shash (Cairo University, Cairo, Egypt). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0070. 10 p. 13 refs.

The paper presents a theoretical study of the surge phenomena in turbocompressors. A linear model is developed to predict the dynamic behavior of a compression system subjected to a perturbation from steady operating conditions. The effect of system parameters on the flow stability is studied, showing under what conditions compressors will surge. An available experimental set of characteristics is used to get the surge line, which defines the maximum limit of operating points. In turbocompressors surging can be controlled by shifting the operating point toward a higher mass flow to the right from the surge limit line. One method of doing this is to open a bypass valve to recycle part of the gas from the discharge piping to the suction piping. Based on the surge line, a control equation is derived to be a basis for the control system design. The control system will operate a recirculation valve if the operating point approaches the critical region, in order to increase the flow rate at the suction of the compressor.

A81-20581 # Effects of design variables on spoiler control effectiveness, hinge moments, and wake turbulence. W. H. Wentz, Jr., C. Ostowari (Wichita State University, Wichita, Kan.), and H. C. Seetharam (Boeing Commercial Airplane Co., Seattle, Wash.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0072. 9 p. 6 refs.

Wind tunnel tests have been conducted to determine effects of certain design variables on spoiler performance and spoiler flow field characteristics. Measurements include forces and surface pressures, oil flow surveys on a vertical splitter plate, wake pressures, and wake velocity and turbulence measurements using a dual split-film anemometer system. Results include the effects of spoiler design variables, such as: spoiler slope for constant projection height, hingeline gap, lower surface venting and deflector, spoiler trailing edge notching and spoiler porosity. Hingeline gap, porosity, lower surface venting and lower surface deflector can be designed to reduce control dead-band tendency. Wake turbulence studies show that certain modifications can be utilized to diminish peak frequencies in the wake. (Author)

A81-20582 * # Application of a tip-fin controller to the Shuttle Orbiter for improved yaw control. R. W. Powell and D. C. Freeman, Jr. (NASA, Langley Research Center, Space Systems Div., Hampton, Va.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0074.8 p.

Aerodynamic and flight control analyses have shown that the application of the tip-fin controller and removal of the centerline vertical tail does not produce improved flyability of the Shuttle Orbiter in the supersonic speed regime. Preliminary design studies show that removal of the centerline vertical tail and the installation of tip-fin controllers could result in savings up to 900 kg. It is also shown that the reaction control system could be deactivated much sooner than it is possible with the present nominal orbiter configuration.

A.T.

A81-20588 * # Electromagnetic measurement of lightning strikes to aircraft. F. L. Pitts (NASA, Langley Research Center, Hampton, Va.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0083. 8 p. 7 refs.

Recent in-flight direct-strike lightning research, using an NASA F-1068 aircraft, is reviewed. The instrumentation system which records the rates of change of electric and magnetic flow density at several locations on the aircraft and rate of change of strike current to the boom is described. The measurement parameters are: rate of change of electric flux density over a range of 50 amperes per square meter, rate of change of magnetic flux density over a range of 20,000 tesla per second, and rate of change of strike current over a range of 100 kilo-amperes per microsecond. The isolated and shielded instrumentation system employs high-sample-rate digital transient recorders with augmented memory capacity and a wideband analog recorder for data acquisition and recording. The data obtained during the 1980 flight test program are presented and the data significance is discussed. (Author)

A81-20589 # Aircraft and environmental factors influencing lightning strike. P. B. Corn (USAF, Flight Dynamics Laboratory, Wright-Patterson AFB, Ohio). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0084. 6 p. 18 refs.

The hypothesis of lightning triggering by aircraft in a high static electric field region in or near an active thunderstorm area is supported by known information. The aircraft factors affecting lightning trigger and statistical probability of an encounter are predicted by the Pierce-Nanevicz criterion, field measurements, and incomplete incident records to be the aircraft flight profile and aircraft size. Lightning transient detection and display systems have aided the avoidance of active lightning regions and storm-assisted turbulence.

A.T.

A81-20591 # The Global Positioning System versus gravity disturbance modeling in an inertial navigation system. J. Hopkins - (U.S. Defense Mapping Agency, Aerospace Center, St. Louis Air Force Station, Mo.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0087. 12 p. 11 refs.

The Global Positioning System provides a real-time means of updating an aircraft inertial navigation system to reduce position and velocity errors due, in part, to an inexact knowledge of the gravity field in which the aircraft is flying. Gravity disturbance modeling via such techniques as point mass or finite element modeling provides a real-time means of reducing this gravity field error. This paper demonstrates that should the navigator be denied the GPS signal, the modeling of gravity disturbances can adequately minimize the navigation error. In the presence of the GPS signal, the gravity disturbance component information, combined with GPS data via Kalman filtering, constitutes a further refinement in the system.

(Author)

A81-20593 # Control strategy for tracking a maneuverable model. M. N. Wagdi (Riyadh, University, Riyadh, Saudi Arabia). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0089. 7 p. 8 refs.

A method is presented for synthesizing a control strategy that causes the outputs of a given system to track those of a maneuverable model. Stochastic plant and model conditions are considered. The present problem is cast into an (LQG) format with a nonhomogeneous differential constraint. The resulting control strategy is composed of a feed forward of the model measurement vector, the estimate of the model nonobservable subvector of state and the model control vector and a feed back of the plant measurement vector and the estimate of the plant nonobservable subvector of state. The present control logic does not require the construction of a filter (observer) since reduced order observers for the nonobservable subvectors of state for both plant and model are already imbedded in the algorithm. The computational time and the storage

capacity required for the present control strategy are thus greatly reduced. (Author)

A81-20594 # Noise generation mechanism of low pressure propeller fans. H. Fijita (Hitachi, Ltd., Mechanical Engineering Research Laboratory, Tsuchiura, Ibaraki, Japan). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0090. 7 p. 10 refs.

Blade passing noise of a low pressure propeller fan is separated from broad band noise by means of periodic sampling and averaging technique, and the characteristics of the noise in relation to the fan efficiency is studied experimentally together with the usual narrow band spectral measurements. Blade passing noise is found to be dominant in high efficiency operating region while broad band noise dominates in low efficiency range. Comparison of the experimental results with existing aerodynamic noise theories indicates that blade passing noise is mainly produced by a few per cent of thrust fluctuation of the blade, which is supposed to be caused by inlet flow distortion. Blades seem to be sensitive to the inlet flow fluctuation and produce high rate of thrust fluctuation in high efficiency range. When flow separation occurs over the blade, wide wake results in higher drag force or lower efficiency and lower thrust fluctuation but higher broad band noise is produced due to random vortex shedding in the wake. Validity of unsteady Kutta condition at the blade trailing edge in relation to the blade passing noise is also discussed.

A81-20595 # A lifting surface theory for the sound generated by the interaction of velocity disturbances with a leaned vane stator. J. B. H. M. Schulten (Nationaal Lucht- en Ruimtevaart-laboratorium, Amsterdam, Netherlands). American Institute of Aëronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0091. 15 p. 15 refs. Research sponsored by the Nederlands Instituut voor Vliegtuigontwikkeling en Ruimtevaart.

An unsteady 3-D lifting surface theory to predict the sound field of a stator with leaned, i.e., nonradial, vanes in an annular duct is presented. The duct carries a uniform subsonic main flow and is assumed to be anechoic. The sound is generated by the interaction of velocity disturbances with the stator vanes. The problem is formulated as an integral equation for the pressure jump across the vanes. This equation is solved by a Fourier series expansion, followed by a collocation procedure. The effect of vane lean on the sound field of a typical stator exposed to the viscous wake system of a rotor is studied. The modal distribution proves to be very sensitive to lean variation. Unless the rotor speed is very low (1 mode cut-on), no reduction of acoustic power at the blade passing frequency is found for any lean angle. On the contrary, even a moderate amount of lean raises the power significantly. (Author)

A81-20596 * # Acoustics of rotors utilizing circulation control. M. Mosher (NASA, Ames Research Center, Moffett Field, Calif.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0092. 13 p. 7 refs.

The acoustic characteristics of circulation-controlled rotors are examined by comparing data from three full-scale rotors: a conventional rotor, the X-Wing rotor, and the Circulations Control Rotor. Both the X-Wing rotor and Circulation Control Rotor had higher sound levels than the conventional rotor at identical advancing-tip Mach numbers. There is excess noise due to the compressor on the X-Wing rotor and excess broadband noise on the Circulation Control Rotor. The X-Wing rotor had lower sound levels than the conventional rotor at identical forward speeds because of the lower tip speed feasible with the use of circulation control. (Author)

A81-20597 * # A general mapping procedure for variable area duct acoustics. J. W. White (Tennessee, University, Knoxville, Tenn.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0094. 8 p. 34 refs. Contract No. NAG3-18.

A general mapping procedure is described and applied to the study of noise propagation in variable area ducts. The mapping provides a boundary fitted co-ordinate system which is ideal for the finite difference solution of acoustic fields with irregular boundaries, without the burden of large matrices required by finite element methods. The procedure is first described in general and then applied to a particular two-dimensional geometry under current experimental investigation. This method should be ideally suited to the study of high frequency noise propagation in variable area ducts and in cases where the far field is included in the calculation procedure. Moreover, the current approach can be directly extended to three-dimensions, resulting in numerical calculation over a rectangular parallelepiped in the transformed plane. (Author)

A81-20598 * # Unsteady fan blade pressure and acoustic radiation from a JT15D-1 turbofan engine at simulated forward speed. J. S. Preisser, J. A. Schoenster, R. A. Golub (NASA, Langley Research Center, Hampton, Va.), and C. Horne (NASA, Ames Research Center, Moffett Field, Calif.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0096. 13 p. 12 refs.

Tests have been conducted on a JT15D-1 turbofan engine both statically and at simulated forward speed in the Ames 12 x 24 Meter Wind Tunnel. Both far-field acoustic data and unsteady pressure data from transducers mounted on the fan blades were acquired. Results showed a sound power reduction of about 10 dB in the far-field acoustic levels with simulated forward speed over those measured without forward speed. Blade mounted transducer results showed rotor-turbulence interaction dominated the noise field at very low speeds while an interaction between the rotor and internal struts dominated at higher speeds. Results are presented to show the effects of varying engine rpm, changing the angle-of-attack of the engine inlet to tunnel flow and mounting an aircraft wing to simulate an installation condition on an actual aircraft. (Author)

A81-20623 * # A head-up display for low-visibility approach and landing. R. S. Bray (NASA, Ames Research Center, Moffett Field, Calif.) and B. C. Scott (FAA, Moffett Field, Calif.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0130. 13 D.

An electronic flight-guidance display format was designed for use in evaluations of the collimated head-up display concept in low-visibility landings of transport aircraft. In the design process of iterative evaluation and modification, some general principles, or guidelines, applicable to such flight displays were suggested. The usefulness of an indication of instantaneous inertial flightpath was clearly demonstrated, particularly in low-altitude transition to visual references. Evaluator pilot acceptance of the unfamiliar display concepts was very positive when careful attention was given to indoctrination and training. (Author)

A81-20632 # Experimental development of an advanced circulation control wing system for Navy STOL aircraft. J. H. Nichols, Jr., R. J. Englar, M. J. Harris, and G. G. Huson (U.S. Naval Material Command, David W. Taylor Naval Ship Research and Development Center, Bethesda, Md.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0151. 11 p. 14 refs.

An advanced high lift system is being developed which combines a Circulation Control Wing (CCW) with Upper Surface Blowing (USB) to produce significant lift for STOL operations by Navy aircraft. The concept uses circulation control to pneumatically deflect USB engine thrust and thus augment aerodynamic wing lift produced by the outboard CCW. Two series of wind tunnel investigations have confirmed significant thrust turning to angles near 160 deg, suggesting the possibility for a simple, highly effective STOL and thrust reverser system. Two-dimensional investigations of reduced diameter CCW trailing edges suggest their application as a no-moving-parts high lift system with minimal cruise penalty. The

paper presents these experimental results and summarizes the technology development progressing towards an advanced STOL aircraft. (Author)

A81-20633 * # QSRA Joint Navy/NASA sea trials. S. Queen (U.S. Naval Air Test Center, Patuxent River, Md.) and J. Cochrane (NASA, Ames Research Center, Quiet Short-Haul Aircraft Office, Moffett Field, Calif.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0152. 10 p.

The Quiet Short-Haul Research Aircraft (QSRA), used to conduct a broad program of terminal area and low speed propulsive-lift flight research, is discussed. Flight performance of the QSRA is presented together with the results of the joint Navy/NASA flight program. It is found that both free-deck takeoffs and unarrested landings can be conducted with winds across the deck of zero to 35 knots on an aircraft carrier the size of the USS Kitty Hawk with all engines operating. QSRA characteristics and aerodynamic data are included.

A81-20635 # The XV-15 - An initial Navy look. W. S. Lawrence and D. A. DuFresne (U.S. Naval Air Test Center, Patuxent River, Md.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0155. 11 p. 6 refs.

Navy flight test measurements with the XV-15 tilt rotor are investigated. Pilot qualitative flying data are presented and evaluated with the Cooper-Harper rating scale. Tests using a Developmental Stability and Control Augmentation System (SCAS) and a Force Feel System (FFS) are also discussed. Observations on gust response are reported along with airspeed control and retention, cockpit field-of-view, and pilot workload. An airspeed indicator designed with sensitivity in low and high speed flight is examined.

A81-20636 * # Measurements of flow quality in the Ames 2 x 2ft transonic wind tunnel. F. K. Owen (Complere, Inc., Palo Alto, Calif.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0156. 7 p. USAF-supported research; Contract No. NAS2-10352.

For decades, wind tunnel testing has been conducted in test section environments which have not been adequately documented. However, with the advent of the energy shortage, the need for improved fuel-efficient transports employing supercritical or LFC airfoils has increased the awareness of the possible influence of freestream turbulence on advanced experimental testing. This has already lead to detailed flow quality measurements in NASA transonic wind tunnels. The purpose of this paper is to present results of a study in the Ames 2 x 2 ft transonic wind tunnel.

(Author)

A81-20638 # A new concept for dynamic stability testing.
M. E. Beyers (South African Council for Scientific and Industrial Research, Pretoria, Republic of South Africa). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0158. 13 p. 9 refs.

A new approach to dynamic stability testing is introduced, based on the concept of orbital fixed-plane motion. An apparatus is conceived with which an aircraft model is forced in an orbital path while constrained to the fixed-plane reference system. An exposition of the concept is given and the potential advantages in captive model testing and applications in flight mechanics are indicated. Using a single apparatus, it is possible to (1) determine all of the first-order, dynamic stability derivatives, (2) vary the relationships between the pertinent motion parameters, and (3) simulate representative motions of the aircraft under consideration. An aerodynamic-data/mathematical model validation scheme is presented to show how the considerable flexibility of this captive testing method and the 2-degree-of-freedom nature of the dynamic derivative data may be exploited. (Author)

A81-20639 # Computational design of large-scale blast simulators. A. Mark (U.S. Army, Ballistics Research Laboratory, Aberdeen Proving Ground, Md.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0159. 11 p. 9 refs.

The quasi one-dimensional Euler equations are applied to a geometrically complicated shock tube and integrated by an implicit numerical technique. The driver section consists of many contractions so that rarefaction waves generated there catch up to the main shock and mitigate it progressively to the point where it has the appearance of an exponentially decaying wave of the type generated by a free air blast. The computational capability is tested to an extreme because of the severe area contractions and high initial diaphragm pressures. The shock capturing numerical technique used for these cases employ coordinate stretching and clustering for sharp shock definition. Operation of a rarefaction wave eliminator is computationally exercised and is shown to well define a blast-type waveform if its closure rate is selected judiciously. (Author)

A81-20640 # Numerical simulations of a segmented-plenum, perforated, adaptive-wall wind tunnel. J. C. Erickson, Jr. and G. F. Homicz (Calspan Advanced Technology Center, Buffalo, N.Y.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0160. 15 p. 39 refs. Navy-USAF-sponsored research.

Flow within a tunnel is simulated by modeling incompressible interaction of the transpired turbulent boundary layers on the walls with flow over the airfoil. Unconfined flow about the airfoil with a finite number of plenum chambers is investigated. Velocity differences produced at control surfaces outside the boundary layers by changing the pressure in the plenum chambers are examined. Influence functions away from the immediate vicinity of a plenum appear to depend only on the integrated normal velocity. Implications for tunnel design and automation are also discussed.

A81-20659 * # Numerical study of a scramjet engine flow field. J. P. Drummond and E. H. Weidner (NASA, Langley Research Center, High-Speed Aerodynamics Div., Hampton, Va.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0186. 14 p. 15 refs.

A computer program has been developed to analyze the turbulent reacting flow field in a two-dimensional scramjet engine configuration. The program numerically solves the full two-dimensional Navier-Stokes and species equations in the engine inlet and combustor, allowing consideration of flow separation and possible inlet-combustor interactions. The current work represents an intermediate step towards development of a three-dimensional program to analyze actual scramjet engine flow fields. Results from the current program are presented that predict the flow field for two inlet-combustor configurations, and comparisons of the program with experiment are given to allow assessment of the modeling that is employed. (Author)

A81-20661 # Calculation of viscous, sonic flow over hemisphere-cylinder at 19 deg incidence - The capturing of nose vortices. T. Hsieh (U.S. Navy, Naval Surface Weapons Center, Silver Spring, Md.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0189. 9 p. 15 refs. Navy-supported research.

Numerical simulation of viscous, sonic flow over a hemisphere-cylinder at 19 deg incidence using the computer code of Pulliam and Steger, who solve the three dimensional unsteady Navier-Stokes equations with 'thin-layer' approximation, and comparison with experimental data have been carried out. Most features of three dimensional separation, particularly the physical reasoning about the formation of nose vortex made previously by Hsieh and Wang are confirmed by the numerical results. The limitation of the numerical simulation of such a complicated three dimensional separated flowfield and the discrepancy between the numerical results and measured data are discussed. (Author)

A81-20684 # Aircraft lateral parameter estimation from flight data with unsteady aerodynamic modelling. W. R. Wells (Wright State University, Dayton, Ohio), S. S. Banda, and D. L. Quam (Dayton, University, Dayton, Ohio). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0221. 9 p. 7 refs.

An unsteady aerodynamic model for the aircraft lateral motion was considered in the development of a parameter extraction algorithm in the frequency domain. This algorithm was applied to flight test data. The data were transformed into the frequency domain by the use of FFT algorithms. The results indicate that modelling of unsteady aerodynamics results in significant differences in the parameters in various flights. The sensitivity of the extracted parameters to the control input with the inclusion of unsteady aerodynamic modelling was also investigated. (Author)

A81-20685 # Application of aerodynamic jump prediction theory to supersonic, high fineness ratio, cruciform finned bodies. L. E. Lijewski (USAF, Armament Laboratory, Eglin AFB, Fla.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0222. 12 p. 21 refs.

A jump angle prediction theory for supersonic free flight missiles used six-degree-of-freedom calculations to determine that it accurately predicts the jump angle of finned bodies for a wide range of conditions. The data are fitted to a 4th order polynomial and an epicyclic motion using initial conditions and jump angles of actual missiles established by test firings of flechettes. Analysis of firing data shows that the initial conditions result from an impulse imparted to the flechette through sabot separation and asymmetrical muzzle blast. The maximum yaw location places the initial conditions of free flight; the initial momentum balance is the reason for the dispersion of flechettes.

A81-20688 # Designing the Hornet for improved R and M. R. D. Dighton (McDonnell Aircraft Co., St. Louis, Mo.). American Institute of Aeronautics and Astronautics, Aerospace Sciences' Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0230. 10 p.

Major emphasis has been placed on designing superior reliability (R) and maintainability (M) characteristics into the F/A-18. Principal reliability features include avionics equipment derating, better avionics cooling, and fewer parts in the major subsystems such as radar, engine and crew station. The Hornet's F404 engine is also about four times more reliable than the J79. Maintainability features of the F/A-18 design include better equipment access, extensive Built-In-Test (BIT) and fault isolation, an APU for ground maintenance, and corrosion resistant materials. The Hornet flight test program is demonstrating that the challenging R and M requirements are being met and often exceeded. (Author)

A81-20690 # AV-8B composite fuselage design. J. C. Watson (McDonnell Aircraft Co., St. Louis, Mo.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0232. 7 p.

The AV-8B composite forward fuselage development structure was designed as a flight vehicle. Thus, the design incorporates provisions for all functional systems as they relate to the structure. The final design required efforts in structure layout, functional systems integration, trade studies, materials characterization, process development, and configuration iteration. Primary considerations were low cost and light weight. The approach was to design with as few parts and fasteners as possible. This was accomplished by cocuring large graphite/epoxy structural components which required no secondary bonding operations. Component sizes were based on practical geometric shapes, complex tooling limitations, inspection accessibility, and manufacturing assembly sequences. (Author)

A81-20691 # Pulsed Doppler radar detects weather hazards to aviation. D. S. Zrnic' and J. T. Lee (NOAA, National Severe Storms Laboratory, Norman, Okla.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0235. 12 p. 21 refs. U.S. Department of Transportation Contract No. FA77WAI-808; Contract No. AT(49-25)-1004.

Over the last several years experiments were conducted with a pulsed Doppler radar that have significant consequences for hazard detection in the en route and terminal areas. Mesocyclones can be detected to over 250 km while tornadoes are seen to about 150 km. The radar can detect strong straight winds if they have a significant component along the beam. It is definitely demonstrated that aircraft measured turbulence correlates with the spread of the Doppler spectrum, but caution must be exercised in interpreting the Doppler spectrum width data because these are more prone to gross errors due to noise, antenna sidelobes, ground clutter, etc. Measurements of transient wind phenomena associated with thunderstorms near the airport require a suitably located radar, but it is not yet clear whether these can be always recognized. It appears that monitoring of winds along an aircraft glide path in clear air or otherwise is feasible. (Author)

A81-20692 # New airborne weather radar systems. G. A. Lucchi (RCA, Avionics Systems Div., Van Nuys, Calif.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0237. 10

The paper traces the evolution of airborne weather radar from the C-band system flown in 1955 to the solid-state coherent transmitter/receiver now in its final design stage. Although packages smaller than the 125-pound C-band were developed in the late 1950s and early 1960s, the airline industry requested transmitters of 65 KW or more, with pulse widths of up to 6 seconds and a range of 300 nautical miles. The digital radar evolution in the 1970s, introduced among other things post-detection correlation schemes which made adequate radar range achievable with lower-powered systems, led to the development of the solid-state converter and, eventually, the shadow-mask, 8-color CRT with 3-plane memory. The designers of solid-state radar have not only improved airborne weather-range detection as a whole, but have also developed state-of-the-art technology suitable for almost all powered aircraft.

A81-20694 * # Design and preliminary tests of an IR-airborne LLWS remote sensing system. F. Caracena (NOAA, Environmental Research Laboratories, Boulder, Colo.), P. M. Kuhn (Raven Systems and Research, Inc., Boulder, Colo.), and R. Kurkowski (NASA, Ames Research Center, Moffett Field, Calif.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0239. 7 p. 8 refs.

Recent history underscores the need for in-cockpit alerts of LLWS for takeoffs and landings. The 13-15 micron portion of the CO2 molecular spectrum can be used to remote sense LLWS in and around thunderstorms. A radiometer with a designed look-distance of about 10 km remote senses an average air temperature along a forward, horizontal path. Wind shear alerts are based on the difference between this forward air temperature and the air temperature near the aircraft. Although spectral ranging, a major design improvement of an IR LLWS alert system, is not at present feasible with noncooled detectors, it is an important technique to keep in mind, given the rapid advance in IR technology. (Author)

A81-20702 # A computational model for low speed flows past airfoils with spoilers. N. J. Pfeiffer and G. W. Zumwalt (Wichita State University, Wichita, Kan.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0253. 10 p. 23 refs.

A computer model has been developed to simulate low speed flow past an airfoil with a spoiler. An outer solution calculates the potential flow around an effective, closed-wake body. This body is formed by adding to the original airfoil and spoiler geometry: the boundary layer displacement thickness; a closed wake behind the spoiler; and a trapped vortex at the spoiler hinge. An inner flow solution uses a turbulent jet mixing analysis and conservation of mass and momentum to simulate the time average flow within the wake. The final solution is obtained by iterative matching outer and inner solutions. (Author)

A81-20703 * # Three-dimensional turbulent boundary layer development and separation in V/STOL engine inlets at incidence with small-cross flow and curvature influences. D. C. Chou, Z.-J. Yang (New Mexico, University, Albuquerque, N. Mex.), R. W. Luiden, and N. O. Stockman (NASA, Lewis Research Center, Wind Tunnel and Flight Div., Cleveland, Ohio). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0254. 12 p. 33 refs.

The study concerns the influence of the three-dimensional cross flows on the compressible turbulent boundary layer development and flow separation prediction around V/STOL engine inlets at high incidence. The governing equations for the three-dimensional boundary layer flow with small-cross approximation are solved numerically on an intrinsic streamline coordinate system. Results are presented to illustrate the effects of small cross-flow, compressibility and streamline curvatures on the flow. Comparisons of the results with the wind tunnel data for scaled model and with data obtained from another existing compressible axisymmetric turbulent boundary layer scheme are included in the analysis. (Author)

A81-20704 # Forced vortices near a wall. H. Viets, M. Ball (Wright State University, Dayton, Ohio), and M. Piatt. American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0256. 10 p. 17 refs. Grant No. AF-AFOSR-78-3525.

Transverse vortices are created near a flat wall by means of an active cam shaped rotor. The flowfield is examined with a hot wire anemometer operating in a conditioned sampling mode triggered by the vortex generator. The instantaneous flowfields are thereby determined and the vortices extracted from the data. The vortex trajectories are found and related to previous investigations of the rotor generator. (Author)

A81-20705 # Solutions for slightly over- or under-expanded hot supersonic jets exhausting into cold subsonic mainstreams. V. N. Vatsa, M. J. Werle, O. L. Anderson, and G. B. Hankins, Jr. (United Technologies Research Center, East Hartford, Conn.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0257. 12 p. 15 refs. Research supported by the United Technologies Corp.; Contract No. F33615-76-C-2036.

An efficient method for solving the problem of a slightly underor over-expanded supersonic jet exhausting into a subsonic coflowing
stream is presented. This paper extends an earlier work on 2-D and
axisymmetric flows to general 3-D flows with specific application to
high aspect ratio slot-jet flows. The viscous problem is rendered
parabolic through a unique use of an approximate inviscid flow
intrinsic coordinate system to estimate only the streamline curvatures. This inviscid problem is formulated in terms of linearized
perturbation potentials for ease of solution. The results of application of this approach to axisymmetric and high aspect ratio slot-jet
flows will be presented. (Author)

A81-20720 # 3-D viscous analysis of ducts and flow splitters. W. L. Blackmore and C. E. Thompson (AiResearch Manufacturing Company of Arizona, Phoenix, Ariz.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0277. 7 p. 10 refs.

Until recently, viscous compressible flow solutions have not been sufficiently accurate for practical application to problems associated with internal, three-dimensional (3-D) duct flow. However, to analyze the effects and predict the losses due to secondary and corner flows in nonaxisymmetric ducts with flow splitters, a

fully viscous, 3-D compressible flow solution is required. This paper compares the results of the 3-D viscous analysis to those of conventional methods and scale model test data for several mixernozzle lobe designs. The comparison demonstrates that this 3-D viscous analysis accurately predicts velocity and static pressure distributions. The analysis also reliably predicts relative ranking with regard to losses. These capabilities enhance design optimization and can provide insight for test program development and reduce program test costs. (Author)

A81-20732 # Extraction of wavedrag from airfoil wake measurements. G. M. Elfstrom (National Research Council, Ottawa, Canada). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0291. 8 p. 10 refs.

The possibility of determining airfoil wavedrag using routine wake drag measurements is examined. Two approaches are considered, one which utilizes the unsymmetrical nature of a wake profile when wavedrag is present, and another which reconstructs the deficit profile due to the wavedrag alone. The two methods are shown to agree reasonably well, but the latter one is preferred because it exhibits less data scatter. Checks on the reasonableness of the results are given, and several examples showing the utility of the method as a diagnostic tool are presented. (Author)

A81-20735 * # An airborne sensor for the avoidance of clear air turbulence. B. L. Gary (California Institute of Technology, Jet Propulsion Laboratory, Observational Systems Div., Pasadena, Calif.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0297, 7 p. 7 refs.

This paper describes an airborne microwave radiometer that may be able to provide altitude guidance away from layers containing clear air turbulence, CAT. The sensor may also be able to predict upper limits for the severity of upcoming CAT. The 55 GHz radiometer is passive, not radar, and it measures the temperature of oxygen molecules in the viewing direction (averaged along a several-kilometer path). A small computer directs the viewing direction through elevation angle scans, and converts observed quantities to an 'altitude temperature profile'. The principle for CAT avoidance is that CAT is found statistically more often within inversion layers and at the tropopause, both of which are easily located from sensor-generated altitude temperature profiles.

(Author)

A81-20736 # A survey of recent atmospheric turbulence measurements from a subsonic aircraft. L. J. Otten, A. L. Pavel, W. E. Finley (USAF, Weapons Laboratory, Kirtland AFB, N. Mex.), and W. C. Rose (USAF, Weapons Laboratory, Kirtland AFB, N. Mex.), Rose Engineering and Research, Inc., Incline Village, Nev.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0298. 12 p. 8 refs.

The operation of constant temperature and constant current fine wire and thin film anemometers on an Air Force NC-135A aircraft is discussed. A review of the theory of anemometry measurements of atmospheric turbulence at high subsonic speeds is presented along with a discussion of the differences between thin film and fine wire sensors. Instrumentation has allowed data with a 10 kHz bandwidth to be gathered. Atmospheric turbulence data, including fluctuating velocity, temperature, and density, gathered at flight Mach numbers of 0.28 to 0.83 and operating altitudes of 3.6 km MSL to 12.5 km MSL, are presented. Samples of results from studies of orographic turbulence, stratospheric turbulence, the turbulence structure of the tropopause boundary, and turbulence influence on aircraft motion, are described. (Author)

A81-20739 # Atmospheric disturbance models and requirements for the flying qualities Military Standard and Handbook. R. K. Heffley, W. F. Jewell (Systems Technology, Inc., Mountain View, Calif.), R. H. Hoh (Systems Technology, Inc., Hawthorne, Calif.),

and D. J. Moorhouse (USAF, Flight Dynamics Laboratory, Wright-Patterson AFB, Ohio). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0302. 12 p. 50 refs.

The new Military Standard for flying qualities involves the review, refinement, and possible revision of atmospheric disturbance models. The Standard is based on maintaining a simple modeling form and parameters with direct relationships to aircraft dynamics or flying qualities. The Standard will involve atmospheric disturbance models usually in the general Dryden form, and a deterministic model containing mean wind and wind shear effects. Special applications may require turbulence patchiness parameters, aircraft size effects, gust gradient and gust derivative effects, and synoptic meteorological phenomena such as generic frontal passage wind shear model.

A.T.

A81-20740 * # Ozone contamination in aircraft cabins - Results from GASP data and analyses. J. D. Holdeman (NASA, Lewis Research Center, Combustion and Pollution Research Branch, Cleveland, Ohio) and G. D. Nastrom (Control Data Corp., Minneapolis, Minn.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0305. 10 p. 21 refs. U.S. Department of Transportation Contract No. FA78WAI-893.

The paper reviews results from the NASA Global Atmospheric Sampling Program (GASP) pertaining to the problem of ozone contamination in commercial aircraft cabins. Specifically, analyses of GASP data have (1) confirmed the high ozone levels in aircraft cabins and documented the ratio of ozone inside and outside the cabins of two B747 airliners, including the effects of air conditioning modifications on that ratio; (2) defined ambient ozone climatology at commercial aircraft cruise altitudes, including tabulation of encounter frequency data; and (3) outlined procedures for estimating the frequency of flights encountering high cabin ozone levels using climatological ambient ozone data and verified these procedures against cabin measurements. (Author)

A81-20741 * # Aircraft NO/x/ emissions and stratospheric ozone reductions - Another look. R. P. Turco (R & D Associates, Marina del Rey, Calif.), R. C. Whitten, O. B. Toon, E. C. Y. Inn (NASA, Ames Research Center, Moffett Field, Calif.), and P. Hamilli (Systems and Applied Sciences Corp., Hampton, Va.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0306. 7 p. 33 refs. Contract No. NAS2-9881.

New estimates for stratospheric ozone perturbations attributable to supersonic transport (SST) emissions are presented. First, a review is given of recent data pointing to lower OH concentrations below 30 km, as compared to the values predicted by photochemical models. The evidence for lower OH comes from a wide range of laboratory and atmospheric studies. The sensitivity of theoretical estimates of ozone change to OH abundances, and the coupling mechanisms between the O(x)-NO(x)-HO(x)-CI(x) families which are responsible for the sensitivity, are discussed. Updated calculations for SSTinduced ozone alterations are compared with older predictions. For example, assuming continuous aircraft injection of NO2 at 20 km at a rate of 1 x 10 to the 9th kg per year (globally), a 4% ozone decrease, is now calculated where earlier a 3% ozone increase was found. This large variance from previous forecasts suggests that new assessments of certain other polluting agents, particularly nitrogen fertilizers, are needed.

A81-20743 # Aircraft pollution in the vicinity of airports. H. M. Segal (FAA, Office of Environment and Energy, Washington, D.C.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0309. 9 p. 7 refs. USAF-supported research.

A study carried out by the FAA and the Environmental Protection Agency that reassessed the impact of aircraft emissions on air quality around airports is discussed. Improvements in measuring techniques, for example, the use of vertical towers at different elevations, made it possible to compare emissions with the National

Ambient Air Quality Standards (NAAQS). For CO, it was found that one-hour average concentrations never exceeded seven ppm, which is to be compared with the 35 ppm limiting level of the NAAQS. Emissions of NO2 were only 10% of the long-term NAAQS standard. With regard to the short-term standard, however, the measurements were inconclusive because it is not yet known how much of the NO emitted by the engine is converted into NO2 before reaching populated areas.

C.R.

A81-20751 # Three-dimensional model of spray combustion in gas turbine combustors. F. Boysan, W. H. Ayers, J. Swithenbank, and Z. Pan (Sheffield, University, Sheffield, England). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0324. 8 p. 26 refs. Grant No. AF-AFOSR-80-0174.

A mathematical model of the three-dimensional two-phase reacting flows in gas turbine combustors has been developed which takes into account the mass, momentum and energy coupling between the phases. The fundamental equations of motion of the droplets are solved numerically in a Lagrangian frame of reference using a finite difference solution of the governing equations of the gas. Well known relations are used to model the heat and mass transfer processes and the initial droplet heat-up is allowed for. The entire fuel spray is constructed using a finite number of size ranges obeying a two parameter droplet size distribution. The results are found to be in close agreement with experimental data. An important feature of this analytical technique is that it permits the rational selection or specification of fuel nozzle design. (Author)

A81-20753 # On the derivation of universal indicial functions. D. Nixon (Nielsen Engineering and Research, Inc., Mountain View, Calif.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0328. 9 p. 7 refs. Contract No. F49620-79-C-0054.

The accurate prediction of unsteady loads in transonic flow is essential to an adequate prediction of aeroelastic effects. A relatively inexpensive means of predicting the loads is by the indicial formulation, which in transonic flow is usually estimated by using an expensive numerical prediction method. The present work concerns the derivation of a universal indicial function which removes the need for a lengthy unsteady transonic flow computation. A theory is developed, using the concepts of the transonic integral equation technique, which effectively reparameterizes the time variable in a known indicial function to give the desired function. Results of the theory are presented. (Author)

A81-20761 * # Flight experiments with a slender cone at angle of attack. D. J. Peake (3-D Flowz, Inc., Moffett Field, Calif.), D. F. Fisher (NASA, Flight Research Center, Edwards AFB, Calif.), and D. S. McRae (USAF, Moffett Field, Calif.), American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0337. 23 p. 17 refs. Contract No. NAS2-10578.

The three-dimensional leeward separation about a 5 deg semiangle cone at an 11 deg angle of attack was investigated in flight, in the wind tunnel, and by numerical computations. The test conditions were Mach numbers of 0.6, 1.5, and 1.8 at Reynolds numbers between 7 and 10 million based on free-stream conditions and a 30-inch wetted length or surface. The surface conditions measured included mean static and fluctuating pressures; skin friction magnitudes and separation line positions were obtained using obstacle blocks. The mean static pressures from flight and wind tunnel were in good agreement. The computed results gave the same distributions, but were slightly more positive in magnitude. The experimentally measured primary and secondary separation line locations compared closely with computed results. There were substantial differences in level and in trend between the surface root-meansquare pressure fluctuations obtained in flight and in the wind tunnel, due, it is thought, to a relatively high acoustic disturbance level in the tunnel compared with the quiescent conditions in flight. (Author)

A81-20767 * # A model for the analysis of premixing-prevaporizing fuel-air mixing passages. O. L. Anderson, L. M. Chiappetta, and J. B. McVey (United Technologies Research Center, East Hartford, Conn.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0345. 11 p. 16 refs. Contract No. NAS3-21269.

A model for predicting the distribution of liquid fuel droplets and fuel vapor in premixing-prevaporizing fuel-air mixing passages has been developed. The analysis involves successive application of computer codes which calculate the two dimensional or axisymmetric air flow field; calculate the three dimensional fuel droplet trajectories and evaporation rates; and calculate the fuel vapor diffusing through a moving air stream. A description of the more important features of the model and the results of a design study on two premixing fuel-air passages are presented. (Author)

A81-20768 # Non-isoenergetic turbulent jet mixing in a constant area duct. W. Tabakoff and J. H. Blasenak (Cincinnati, University, Cincinnati, Ohio). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0347. 15 p. 23 refs. Grant No. DAHC04-69-C-0016.

A study of non-isoenergetic turbulent jet mixing between two streams has been conducted. Using a theoretical analysis for ducted mixing, an experimental investigation was performed to verify this theory and to determine the non-isoenergetic turbulent jet mixing characteristics in a constant area duct. Temperature profiles were measured at several axial locations in the duct for both a concentric and an eccentric configuration. It was determined that the theoretical and experimental temperature profiles agreed fairly well for both cases, although the concentric case showed better agreement than the eccentric case. It was concluded that the mixing theory introduced was good for a fairly simplified analysis. (Author)

A81-20775 # The aerodynamics of inverted leading edge flaps on delta wings. J. F. Marchman, III (Virginia Polytechnic Institute and State University, Blacksburg, Va.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0356. 9 p. 5 refs.

Subsonic wind tunnel tests were conducted to determine the aerodynamic effects of leading edge flaps deflected upward from 60 and 75 deg sweep delta wings. Leading edge flaps of various sizes and shapes were tested at a range of flap deflection angles. It was found that inverted flaps cause a strong vortex lift at low to moderate angles of attack and give large increases in lift coefficient C(L) at those angles. The lift increase, accompanied by increased drag, suggests application to landing conditions where this combination may be desirable in certain classes of aircraft. Examination of pitching moment data reveals that the lift increases due to inverted flap use are not necessarily accompanied by the large changes in pitching moment which are associated with trailing edge flap deployment. With a properly shaped leading edge flap a negative flap deflection can give substantial increases in C(L) with no change in longitudinal stability. (Author)

A81-20776 * # Hinged strakes for enhanced maneuverability at high angles of attack. D. M. Rao (Vigyan Research Associates, Inc., Hampton, Va.) and J. K. Huffman (NASA, Langley Research Center, Hampton, Va.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0357. 8 p. 7 refs. NASA-supported research.

A controllable-strake concept for alleviating the adverse effects of strake vortex breakdown and asymmetry on the longitudinal and lateral aerodynamics of strake-wing configurations at high angles of attack is presented. The concept aims to control the strake load independently of angle of attack and sideslip by varying the anhedral angle of strakes hinged along the root chord. The strakes may be deflected in a symmetrical or nonsymmetrical mode for a variety of control functions. Results are presented of an exploratory windtunnel investigation to evaluate the potential of the hinged-strake

concept for enhancing the three-axis controllability in post-stall flight. (Author)

A81-20783 # An analysis of gap effects on wing-elevon aerodynamic characteristics. J. M. Abernathy. American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0364. 11 p. 21 refs. Research supported by the Auburn University; Grant No. DAAG29-78-G-0036.

An investigation of the aerodynamic characteristics of a wingelevon lifting surface when an air gap exists between the wing trailing edge and the elevon leading edge is discussed. Analytical results are formulated using a lifting surface (Kernel function) method. The solution procedure allows closed form results to be obtained for the elevon hinge moments. Fuselage effects and leading edge suction are also used to apply results to a general configuration. Variation of the characteristics as a function of gap distance is studied. Of primary importance is the effect on hinge moments, which dictate control forces. Results indicate good agreement between theory and experiment for several general configurations. Also, it is shown that the loading on the elevon increases slightly with gap distance. (Author)

A81-20784 # Initial development for a flutter analysis of damaged T-38 horizontal stabilators using NASTRAN. J. O. Lassiter (USAF, Institute of Technology, Wright-Patterson AFB, Ohio). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 31-0365, 22 p. 16 refs.

This thesis demonstrates the development and response of a finite element model of the T-38 horizontal stabilator using the computer program NASTRAN. The model is to be used in a flutter analysis of damaged or repaired stabilators. The objective of the flutter analysis is to determine absolute values and degradations of the flutter speeds due to different types of damages or repairs. Verification of the model's static and dynamic response proved to be adequate. But a NASTRAN flutter speed different from previous studies shows that the finite element model needs more study with respect to modeling errors, convergence, and aerodynamic airload verification. (Author)

*A81-20785 # Structural weight comparison of a joined wing and a conventional wing. M. F. Samuels. American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0366. 9 p. 10 refs.

A structural weight comparison was made between a new concept wing design, called a joined wing, and a reference conventional wing-plus-horizontal tail (Boeing 727). The joined wing analysis includes two cases that differ only in minimum gage skin thickness. The comparison was accomplished by constructing finite computer models of each wing configuration, analyzing each for optimum skin thickness, then determining the structural weight of each wing. The optimizations were based on a fully stressed design concept using a von Mises criterion for maximum allowable stress. The joined wing was found to be lighter by 12-22%. (Author)

A81-20786 # Prediction method for the overall performance of turbofan engines. A. J. M. van der Hoeven (Kansas, University, Lawrence, Kan.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0367. 15 p.

A method is presented for estimating the off-design performance of a turbofan engine with a coupled fan/low pressure compressor. The engine is fixed by a design-point condition; the calculation of the off-design performance is based on the assumption of a choked turbine which determines the operating conditions of the engine components upstream of this aerodynamic throat. The method uses gasdynamic relationships only and does not require detailed component information; the performance estimation of turbojet engines can utilize the same thermodynamic analyses.

A.T.

A81-20788 * # A computer graphics display technique for the examination of aircraft design data. N. A. Talcott, Jr. (NASA, Langley Research Center, High-Speed Aerodynamics Div., Hampton, Va.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0370. 9 p. 8 refs.

An interactive computer graphics technique has been developed for quickly sorting and interpreting large amounts of aerodynamic data. It utilizes a graphic representation rather than numbers. The geometry package represents the vehicle as a set of panels. These panels are ordered in groups of ascending values (e.g., equilibrium temperatures). The groups are then displayed successively on a CRT building up to the complete vehicle. A zoom feature allows for displaying only the panels with values between certain limits. The addition of color allows a one-time display thus eliminating the need for a display build up. (Author)

A81-20789 * # A computer-aided design system geared toward conceptual design in a research environment. S. H. Stack (NASA, Langley Research Center, High-Speed Aerodynamics Div., Hampton, Va.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0372. 11 p. 7 refs.

A computer-aided design system has recently been developed specifically for the small research group environment. The system is implemented on a Prime 400 minicomputer linked with a CDC 6600 computer. The goal was to assign the minicomputer specific tasks, such as data input and graphics, thereby reserving the large mainframe computer for time-consuming analysis codes. The basicstructure of the design system consists of GEMPAK, a computer code that generates detailed configuration geometry from a minimum of input; interface programs that reformat GEMPAK geometry for input to the analysis codes; and utility programs that simplify computer access and data interpretation. The working system has had a large positive impact on the quantity and quality of research performed by the originating group. This paper describes the system, the major factors that contributed to its particular form, and presents examples of its application. (Author)

A81-20794 # Higher-accuracy finite-difference schemes for transonic airfoil flowfield calculations. L.-T. Chen (McDonnell Douglas Corp., St. Louis, Mo.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0381. 10 p. Research supported by the McDonnell Douglas Independent Research and Development Program.

Higher-order-accurate finite-difference schemes using a third-order element have been developed for transonic flowfield calculations about airfoils. The finite-difference approximations for velocity components and boundary conditions are one order higher than those obtained with the conventional five-point operator; therefore the flowfield solution is third-order accurate in subsonic regions. To stabilize the relaxation procedure, a second-order-accurate, non-conservative or conservative, artificial viscosity term is introduced in locally supersonic regions where the flowfield solution becomes second-order accurate. Solutions calculated with improved accuracy are compared with conventional finite-difference solutions obtained with relatively dense grids. (Author)

A81-20796 # A cost-effective method for shock-free supercritical wing design. P. Raj, L. R. Miranda (Lockheed-California Co., Burbank, Calif.), and A. R. Seebass (Arizona, University, Tucson, Ariz.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0383. 10 p. 21 refs. Research supported by the Lockheed-California Independent Research and Development Program.

A computationally efficient procedure for the design of shock-free supercritical wings is described. The method utilizes the fictitious gas concept coupled with an improved version of the Jameson-Caughey full-potential finite-difference code, FLO 22, for analyzing three-dimensional wings. The computation of the velocity

components at the plane of symmetry in the analysis code is modified to simulate the flow on isolated wings more accurately. In addition, the improved version of FLO 22 is capable of handling the wing-fuselage interference effect. The present design method computes the surface-geometry beneath the supersonic region so as to eliminate the shock waves normally associated with transonic flight. Results for redesigned rectangular and swept wings are presented that indicate significant wave-drag reduction and improved aerodynamic characteristics when compared with the baseline wing. (Author)

A81-20798 * # Microbursts as an aviation wind shear hazard. T. T. Fujita (Chicago, University, Chicago, III.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0386. 10 p. 12 refs. NSF Grant No. ATM-79-21260; Contract No. NOAA-NA-80AAD0001; Grant No. NGR-14-001-008.

The downburst-related accidents or near-misses of jet aircraft have been occurring at the rate of once or twice a year since 1975. A microburst with its field comparable to the length of runways can induce a wind shear which endangers landing or liftoff aircraft; the latest near miss landing of a 727 aircraft at Atlanta, Ga. in 1979 indicated that some microbursts are too small to trigger the warning device of the anemometer network at major U.S. airports. The nature of microbursts and their possible detection by Doppler radar are discussed, along with proposed studies of small-scale microbursts.

A.T

A81-20799 # Analysis of wind vector components in the lower troposphere - Applications to aircraft operations at terminals. R. C. Goff (FAA, Technical Center, Atlantic City, N.J.). American in Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0387. 10 p. 12 refs.

A long series of discrete vertical and horizontal wind observations from a 444m meteorological tower in Central Oklahoma have been analyzed. The characteristics of the three components of the wind in the tower layer have been determined for atmospheric scales at which potential degradation of aircraft flight quality is known to be high. Through inspection of frequency distributions and wind spectra, there is ample evidence that, in general, temporally long or spatially extensive vertical motions are virtually nonexistent. In thunderstorms and behind cold fronts much more kinetic energy is present in the horizontal wind field than in the vertical motion field at scales near representative aircraft phugoid frequencies. (Author)

A81-20800 * # The effect of heavy rain on windshear attributed accidents. J. K. Luers and P. A. Haines (Dayton, University, Dayton, Ohio). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0390. 9 p. 16 refs. NASA-supported research.

In recent years several commercial aircraft accidents have occurred as an aircraft attempted landing in a thunderstorm cell. The horizontal and vertical windshear associated with the cell have been identified as the factors responsible for the accident. In addition to the wind shear encounter, several of these aircraft simultaneously penetrated a heavy rain cell. Heavy rain affects the aircraft by imparting a momentum penalty, and a drag penalty, due to the rain roughening of the airfoil. These penalties have been evaluated by a computer model that, when incorporated with a landing simulation program, was used to assess the relative influence of heavy rain versus wind shear. Using this model, an assessment was made of the influence of heavy rain on several wind shear attributed accidents.

(Author)

A81-20801 # Sources and detection of atmospheric wind shear. A. J. Bedard, Jr. (NOAA, Wave Propagation Laboratory, Boulder, Colo.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0391. 11 p. 22 refs.

This paper reviews a range of phenomena producing significant atmospheric wind shears, providing more details on the shears related

to thunderstorm gust fronts. A case study from a winter time, Colorado front-range experiment (Project AEOLUS) documents strong wind gradients that can occur in the lees of mountains. Strengths and weaknesses of some detection methods are discussed emphasizing evaluations of both remote sensor and in-situ sensor approaches for detecting atmospheric wind shear. (Author)

A81-20809 # Computer simulation of airfoil icing without runback. E. P. Lozowski (Alberta, University, Edmonton, Canada) and M. M. Oleskiw. American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0402. 8 p. 12 refs. Grant No. DACA89-79-C-0004.

A numerical model has been developed to predict the time-dependent characteristics of ice accretion upon an arbitrarily shaped, longitudinally symmetric airfoil in subsonic incompressible flow. The surface vorticity method is employed to generate a potential flow field. Equations describing the accelerated motion of supercooled cloud droplets are integrated with a variable time step to yield the trajectories. Assuming that droplets freeze immediately upon airfoil impact, their collision locations lead to a determination of the accretion thickness via a collision efficiency calculation. The resulting airfoil shape modified by the accretion allows re-calculation of the airflow and trajectories thus incorporating a stepwise time-dependence of accretion. Collision efficiencies and accretion shapes and thicknesses are compared to other theoretical and experimental results. (Author)

A81-20810 * # An analytical approach to airfoil icing. M. B. Bragg, G. M. Gregorek (Ohio State University, Columbus, Ohio), and R. J. Shaw (NASA, Lewis Research Center, Cleveland, Ohio). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0403. 18 p. 26 refs. Grant No. NAG3-28.

An analytical procedure has been developed to predict rime ice growth on unprotected airfoil sections and to evaluate the aerodynamic performance. A time stepping method is used in which: (1) water droplet trajectories are calculated, (2) a rime ice shape determined, (3) the flowfield around the iced airfoil is recalculated, and (4) the build-up process iterated upon until the desired icing time is reached. The performance of the iced airfoil shapes are then determined from existing analytic methods. Rime ice shapes determined in the NASA Lewis Icing Research Tunnel on a modified NACA 64 series airfoil agree well with the shapes predicted by the analytical method. Measured and predicted increases in drag due to the rime ice also agree favorably. A simplified scaling analysis is also presented and verified which provides the duplication of full scale results of rime ice accretions in small scale model tests. (Author)

A81-20811 * # Simulated aircraft takeoff performance with frosted wings. M. A. Dietenberger (Dayton, University, Dayton, Ohio). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0404. 6 p. 12 refs. Contract No. NAS8-33369.

The absolute and relative safety of certain nocturnal frost formations on general aviation and transport type airfoils is evaluated by a computer simulation program. The frost layer aerodynamic penalty and takeoff program was used to calculate the frost thickness distribution on an airfoil with time, as well as the aerodynamic penalties associated with the frost layer during takeoff. The program was validated by nocturnal frost formation experiments on an inclined flat plate and by comparisons with documented aerodynamic penalties of an arbitrarily roughened airfoil. For various meteorological conditions and runway take-off velocities, a frost layer can be determined that produces no aerodynamic penalty, thus inferring the absolute safety of the airfoil with respect to frost. The relative safety of a frosted airfoil depends on the ability of the engine power reserve to overcome both as much as doubling of airfoil drag and an (Author) increased stall speed due to lift penalties.

A81-20812 # United States Army helicopter icing qualification 1980. C. E. Frankenberger (U.S. Army, Edwards AFB, Calif.).

American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0406. 4 p.

In the winter of 1980, the Army conducted tests to develop the operational envelope for operating in icing conditions for the UH-60A, the CH-47D, and the UH-1H with ice phobic coating. The envelope was to be defined by temperature and liquid water content. Tests were conducted in both artificial and natural icing clouds with the Helicopter Icing Spray System (HISS) furnishing the artificial cloud. The HISS is a CH-47C helicopter equipped with an 1800 gallon internal water tank and an external spray boom. HISS improvements performed prior to testing produced an 8 x 32-ft cloud with 30 micron water droplet mean volumetric diameter. Natural and artificial results were quite similar and both provided the basis for qualification. (Author)

A81-20813 # 40 years of helicopter ice protection experience at Sikorsky Aircraft. K. M. Rosen and M. L. Potash (United Technologies Corp., Sikorsky Aircraft, Stratford, Conn.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0407. 16 p. 6 refs.

Each area of helicopter ice protection is discussed, and the evolution of system analysis, design, fabrication techniques, and performance is traced from World War II to the present time. Specific design analysis procedures are described, which yield droplet trajectory solutions for inlets as well as for rotor blades and which lead to the definition of an optimized (minimum energy expenditure) inlet convective heat exchanger flow path. Recommendations are developed to use a modern four-bladed helicopter having an advanced airfoil and properly fitted with ice protection equipment for use as a research vehicle to systematically probe the effects of simulated and natural icing environments on helicopter operations.

A81-20814 # A parametric study of the static longitudinal aerodynamic characteristics of parallel lift delta wing configurations at low Reynolds numbers. J. A. Ham (U.S. Army, Military Academy, West Point, N.Y.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0409. 8 p. 13 refs.

Wind tunnel tests have been conducted at the U.S. Military Academy on a proposed configuration for a second-generation Space Shuttle. The configuration is based on a NASA concept for a reusable, flyback horizontal-takeoff system. The test model consisted of a 60 deg delta main wing with two smaller 'booster' delta wings attached underneath. The results of the test showed that increasing vertical separation of the 'booster' wings from the main wing caused a significant increase in C(Lmax), a decrease in C(DOmin), and an increase in pitching stability. Static pitch stability was also enhanced. The proximity of the main wing to the 'booster' wings is believed to cause premature bursting of the leading-edge vortices of the 'booster' wings. It is concluded that the most promising configuration should have the most feasible vertical separation and rearward placement.

(Author)

A81-20816 # Flow visualization through the use of the smoke-wire technique. B. J. Jansen, Jr. (Notre Dame, University, Notre Dame, Ind.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0412. 7 p. 5 refs.

A technique for flow visualization in low speed wind tunnels, called the smoke-wire technique, is described. This technique allows for the introduction of very fine smoke streaklines into the flow field. These streaklines are generated through the resistive heating of a very small diameter wire which is coated with oil and which spans the wind tunnel test section upstream of the test object. The description of an electronic control circuit to aid in photography is given. Several practical applications for this technique are demonstrated and streakline data from still photography are presented.

(Author)

A81-20817 # The design, testing, certification and production of an emergency parachute for use in light aircraft. M. C. Butler,

Jr. (Texas, University, Austin, Tex.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0413. 9 p.

This paper discusses the design, prototype construction, test program, and certification of an emergency parachute design for use in light aircraft and sport aviation. The process is traced from the origin of the concept, through the various design processes and prototypes, to the final production version of the parachute system. A short description of a basic parachute assembly is given (to familiarize the reader with the terminology) followed by a description and evaluation of several of the currently available emergency parachutes in order to contrast the features of the design project which are felt to be improvements on existing models. The test program is covered briefly and is intended to be supplemented by a slide and motion picture presentation. (Author)

A81-20818 # Experiments on the linear and non-linear evolution of the double helical instability in jets. R. E. Betzig (California Institute of Technology, Pasadena, Calif.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0415. 7 p. 9 refs. Contract No. N00014-76-C-0260.

A unique magnetic deformation system was used to drive the second helical mode of jet instability. Extensive measurements were made of both linear and nonlinear effects. Near field measurements were found to be qualitatively consistent with existing models of linearized jet stability. A partial physical description was obtained of the subsequent nonlinear evolution of the disturbance vorticity. These are the first detailed measurements of the double helical mode, largely because of the limitations of past excitation systems. The data may aid in the development of numerical models of three dimensional flows. The mode itself is possibly relevant to the production of jet noise. (Author)

A81-20829 * # Perspectives on jet noise. H. S. Ribner (NASA, Langley Research Center, Hampton, Va.; Toronto, University, Downsview, Ontario, Canada). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0428. 18 p. 73 refs. Research supported by the National Sciences and Engineering Research Council of Canada.

Jet noise is a byproduct of turbulence. Until recently turbulence was assumed to be known statistically, and jet noise was computed therefrom. As a result of new findings though on the behavior of vortices and instability waves, a more integrated view of the problem has been accepted lately. After presenting a simple view of jet noise, the paper attempts to resolve the apparent differences between Lighthill's and Lilley's interpretations of mean-flow shear, and examines a number of ad hoc approaches to jet noise suppression.

R.S.

A81-20830 * # Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fan. L. M. Shaw and F. W. Glaser (NASA, Lewis Research Center, Cleveland, Ohio). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0208. 16 p. 15 refs.

Mean rotor wake properties at several downstream distances behind the rotor of a loaded 1.2 pressure ratio fan were measured with a cross film anemometer in an anechoic wind tunnel. Mean wake characteristics in the midspan and near tip region were determined utilizing an ensemble averaging technique. The upwash and streamwise components of the velocity behind the rotor indicate a complex structure superimposed on the major velocity defects at a downstream spacing of 0.5 rotor chords. Spectral analysis indicates high levels of the second and fourth harmonics of the blade passage frequency in the midspan region while the blade passage frequency and its second and third harmonic are predominant in the tip region. (Author)

A81-20837 * # Icing tunnel tests of a glycol-exuding porous leading edge ice protection system on a general aviation airfoil. D. L.

Kohlman, W. G. Schweikhard (Kansas, University, Lawrence, Kan.), and P. Evanich (NASA, Lewis Research Center, Cleveland, Ohio). *American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0405*. 10 p.

Tests were conducted in the Icing Research Tunnel at the NASA Lewis Research Center to determine the characteristics of an ice protection system that distributes a glycol solution onto the leading edge of an airfoil through a porous surface material. Minimum fluid flow rates required to achieve anti-icing (no ice formation) were determined for various flight conditions and angles of attack. The ability of the system to remove ice formed on the airfoil before system activation was also investigated. (Author)

A81-20838 # A computerized study of wave characteristics in a time dependent compressible flow. F. W. Botero (U.S. Navy, Orlando, Fla.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0410. 7 p.

A computerized application of Riemann's method of characteristics has been developed to study non-steady, time dependent flow behavior. The method of characteristics is shown to lend itself to computerization well as numerous calculations and precise graphing are required. System qualities of terminal oscillatory or damped behavior are analyzed and presented. The computerized method utilizing characteristics presents an alternative solution to the complex Navier-Stokes equations for non-steady flow engine design. A pulse jet engine is modeled and results indicate that the computerized method can be a flexible and useful tool for practical engine design which is capable of further refinement and application. (Author)

A81-20840 * # Compressible boundary-layer stability calculations for sweptback wings with suction. L. M. Mack (California Institute of Technology, Jet Propulsion Laboratory, Pasadena, Calif.). American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, Mo., Jan. 12-15, 1981, Paper 81-0196. 10 p. 18 refs. Contract No. NAS7-100.

The stability of the laminar boundary layers on two transonic wings of infinite span with distributed suction is investigated with the compressible, parallel-flow stability theory. Both wings have supercritical airfoil sections; one has a sweep angle of 23 deg, the other of 35 deg. Zero-frequency disturbances are used to represent cross-flow instability, and disturbances with the wavenumber vector aligned with the local flow direction represent traveling-wave instability. In both cases, the maximum spatial amplification rate is used as a measure of the instability. For the suction, distributions with constant mass flux downstream of the starting point are used. The main objective is to determine how the maximum amplification rate varies with the magnitude and starting point of the suction. It is found for both types of disturbances that the maximum amplification rate varies almost linearly with the suction magnitude up to at least the point where the amplification rate is halved. Different starting locations for the suction in the first 4% of the chord were found to affect cross-flow instability, but to have little influence on (Author) traveling-wave instability.

A81-20861 High-solids coatings for exterior aircraft. R. E. Wolf, C. J. Ray, G. McKay, and J. M. Butler (DeSoto, Inc., Des Plaines, III.). In: Resins for aerospace; Proceedings of the Symposium, Honolulu, Hawaii, April 3-6, 1979. Washington, D.C., American Chemical Society, 1980, p. 115-126.

The paper reports progress made toward the development of a sprayable high-performance 65%-volume-solids two-package polyure-thane exterior coating for military aircraft in an effort to reduce solvent emissions from the application of large volumes of coatings and paints. In particular, data are given on one polyol component of a two-package urethane system, an oxazolidine supplied at 85% volume solids in ethoxy ethyl acetate. The data include viscosity-concentration profiles at varying shear rates and Casson plots. V.L.

A81-20873 Acoustic fatigue strength of fiber-reinforced plastic panels. T. Fujii, T. Fukuda (Osaka City University, Osaka, Japan), S. Iida, and M. Sano (National Aerospace Laboratory, Chofu, Tokyo, Japan). In: Resins for aerospace; Proceedings of the Symposium, Honolulu, Hawaii, April 3-6, 1979.
Washington, D.C., American Chemical Society, 1980, p. 305-315. 5

Four kinds of FRP panels with three layers of roving glass and/or glass-fiber mat reinforced unsaturated polyester resin were acoustically excited and fatigue tested. The glass-fiber mat test panel was more isotropic in the failure mode than the roving glass reinforced specimens; the acoustic fatigue strength of FRP panels was much lower than that of FRP tested under constant stress. Laminating the carbon woven tapes simultaneously during fabrication resulted in greater increase in fatigue strength.

A.T.

A81-20914 Air traffic control problems - A pilot's view. F. D. Fowler (Fowler, Fuehrer and Associates, Orlando, Fla.). *Human Factors*, vol. 22, Dec. 1980, p. 645-653. 11 refs.

Specific examples of crashes and near midair collisions are used to identify existing and potential human error sources. System-induced human errors caused by radar and information-processing limitations, inadequate communication capabilities, and Federal Aviation Administration policy decisions are discussed. An overall reconsideration of human error analysis and prevention is proposed. (Author)

A81-20915 Bilingual air traffic control in Canada. P. Stager (York University, Toronto, Canada), P. Proulx, B. Walsh, and T. Fudakowski (Transport Canada, Ottawa, Canada). *Human Factors*, vol. 22, Dec. 1980, p. 655-670. 17 refs.

Simulation exercises with bilingual controllers from Montreal Center were conducted in order to develop procedures for the safe implementation of bilingual communications for aircraft operating under instrument flight rules in the Province of Quebec. Representative pilots from professional and general aviation associations flew aircraft simulators linked to the Air Traffic Control simulator in order to evaluate the proposed bilingual system and to generate data on the party-line aspect of the listening watch in air-ground communications. The effects of language, type of sector, traffic characteristics, and exceptional conditions on communication characteristics and controller performance were observed in four different studies. In addition, data on controllers' communications in actual operations and on reported incidents involving the listening watch were obtained. Information from both the simulations and the real-world operations were then analyzed to determine the implications for control procedures and to assess the general impact of bilingual control on system safety. (Author)

A81-21010 * # Economics of technological change - A joint model for the aircraft and airline industries. J. T. Kneafsey and N. K. Taneja (MIT, Cambridge, Mass.). *Journal of Aircraft*, vol. 18, Jan. 1981, p. 35-42, 17 refs. Grant No. NsG-2129.

The principal focus of this econometric model is on the process of technological change in the U.S. aircraft manufacturing and airline industries. The problem of predicting the rate of introduction of current technology aircraft into an airline's fleet during the period of research, development, and construction for new technology aircraft arises in planning aeronautical research investments. The approach in this model is a statistical one. It attempts to identify major factors that influence transport aircraft manufacturers and airlines, and to correlate them with the patterns of delivery of new aircraft to the domestic trunk carriers. The functional form of the model has been derived from several earlier econometric models on the economics of innovation, acquisition, and technological change. (Author)

A81-21011 # Spanwise distribution of control points in the method of finite elementary solutions. J.-G. An. (American Institute

of Aeronautics and Astronautics, Aircraft Systems and Technology Meeting, New York, N.Y., Aug. 20-22, 1979, Paper 79-1879.) Journal of Aircraft, vol. 18, Jan. 1981, p. 59-61. 9 refs.

The method of finite elementary solutions (MFES) is widely used in the field of subsonic aerodynamics. The paper employs MFES to calculate induced drag in a problem involving complex wing geometry, concluding that correct induced drag cannot be obtained for certain planar wings with traditional midpanel control points. A projected spanwise location of control points, however, yields accurate calculations for both lift coefficient and planform factor, even with a small number of spanwise panels, and eliminates overload phenomena at wing-tip regions.

A81-21013 # Effect of rear stagnation point position and trailing edge bluntness on airfoil characteristics. V. Baskaran and V. S. Holla (Indian Institute of Science, Bangalore, India). *Journal of Aircraft*, vol. 18, Jan. 1981, p. 63, 64.

Calculation of the pressure distribution over an airfoil plays an important part in predicting the airfoil's aerodynamic characteristics. Using the Hess and Smith method, and assuming the flow to be steady, incompressible, and two-dimensional, calculations for the pressure distributions for various rear stagnation points on RAE 101 profiles with both sharp and blunt trailing edges are presented. It is found that as the rear stagnation point on the upper surface is moved away from the trailing edge, the static pressure on the upper surface increases (as a result of the deceleration of flow), whereas it decreases on the lower surface. The reverse is true when the stagnation point is on the lower surface. Lift and momentum coefficients also vary with stagnation point location, the change, in both cases, being more marked for the blunt profile than for the sharp one. When the rear stagnation point, however, is at the trailing edge, the momentum coefficient appears to be more sensitive to the bluntness than does the lift coefficient. RS

A81-21060 # Damping of aircraft wing vibrations by automatically controlled internal forces (Dempfirovanie kolebanii kryla samoleta avtomaticheski upravliaemymi vnutrennimi silami). V. I. Merkulov. PMTF - Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Sept.-Oct. 1980, p. 91-99. In Russian.

Various methods of damping elastic vibrations in aircraft wings include automatic control of amplitude, frequency, and phase of the acting forces. Weight shifting, internal tension, flexible shafts, and gyrometers were examined as controlling elements; these methods are effective in airport operations where aircraft is subjected to maximum dynamic loads.

A.T.

A81-21075 Bounds for the additional cost of near-optimal controls. A. M. Steinberg (Technion - Israel Institute of Technology, Haifa, Israel) and I. Forte. *Journal of Optimization Theory and Applications*, vol. 31, July 1980, p. 385-395. 5 refs.

Near-optimal controls are considered for singular problems with a constrained control. These controls result in a higher cost than the optimal cost. Bounds for the additional cost are derived for problems with fixed terminal time or free terminal time and for minimal time problems. An illustrative example is solved of an optimal evasive control of an aircraft against a homing missile. (Author)

A81-21083 # Longitudinal instability in braked landing gear. R. R. Allen (California, University, Los Angeles, Calif.) and R. C. O'Massey (Douglas Aircraft Co., Long Beach, Calif.). American Society of Mechanical Engineers, Winter Annual Meeting, Chicago, Ill., Nov. 16-21, 1980, Paper 80-WA/DSC-12. 9 p. 14 refs. Members, \$2.00; nonmembers, \$4.00. Research sponsored by the Douglas Aircraft Co.

An instability in the form of a self-excited, bounded longitudinal oscillation may occur in aircraft landing gear when one or more wheels lock due to excessive braking. The instability usually appears at ground speeds below 40 knots (20 m/s) and results from interaction between structural elasticity and the nonlinear character-

istics of tire-runway friction. A nonlinear mathematical model is developed to study the dynamics of this divergence in a braked, dual tire landing gear. Analytical methods are presented to determine critical ground speeds in terms of runway friction characteristics and to predict the amplitude of steady-state oscillations. The effect of design variables on longitudinal stability is evaluated and design guidelines are presented which insure reduction of the severity of this divergent dynamic behavior.

(Author)

A81-21120 * # Numerical techniques in linear duct acoustics - A status report. K. J. Baumeister (NASA, Lewis Research Center, Cleveland, Ohio). American Society of Mechanical Engineers, Winter Annual Meeting, Chicago, III., Nov. 16-21, 1980, Paper 80-WA/NC-2. 16 p. 72 refs. Members, \$2.00; nonmembers, \$4.00.

A review is presented covering both finite difference and finite element analysis of small amplitude (linear) sound propagation in straight and variable area ducts with flow, as might be found in a typical turbojet engine duct, muffer, or industrial ventilation system. Both 'steady' state and transient theories are discussed. Emphasis is placed on the advantages and limitations associated with the various numerical techniques. Examples of practical problems are given for which the numerical techniques have been applied. (Author)

A81-21168 # The linear instability due to the compressible crossflow on a swept wing. S. G. Lekoudis (Georgia Institute of Technology, Atlanta, Ga.). ASME, Transactions, Journal of Fluids Engineering, vol. 102, Dec. 1980, p. 502-509. 14 refs. Research supported by the Lockheed-Georgia Independent Research and Development Program.

The problem of the propagation of three-dimensional laminar instabilities, due to crossflow, in a three-dimensional compressible boundary layer, is examined using linear theory. The theory is applied to the case of a transonic swept wing. It is shown that compressibility has a mild stabilizing effect in the regions where the crossflow is strong. The problem of defining the direction of propagation of the disturbances is discussed. (Author)

A81-21197 Numerical solution of transonic flow through a cascade with stender profiles. K. Kozel, J. Polasek, and M. Vavrincova (Ceske Vysoke Uceni Technicke, Prague, Czechoslovakia). In: International Conference on Numerical Methods in Fluid Dynamics, 6th, Tiflis, Georgian SSR, June 21-24, 1978, Proceedings.

Berlin, Springer-Verlag, 1979, p. 333-338. 7 refs.

A solution for the plane steady inviscid transonic flow through a cascade with thin and low cambered profiles is presented. A weak solution of the boundary value problem and the difference method approximating the differential problem are formulated; the difference problem is solved by the successive line relaxation method. The numerical results determine a change of the flowfield in the cascade with the change attack angle, the upstream Mach number, the stagger angle, and present a numerical test of the influence of boundary layer effects.

A.T.

A81-21201 Calculation of supersonic gas flows about wings. A. N. Minailos (Tsentral'nyi Aerogidrodinamicheskii Institut, Zhukovskiy, USSR). In: International Conference on Numerical Methods in Fluid Dynamics, 6th, Tiflis, Georgian SSR, June 21-24, 1978, Proceedings.
p. 393-399. 12 refs.

A81-21366 Use of speckle-holographic interferometry to study the strain-strain state of a gas-turbine engine disk close to the blade root fixing. A. A. Rassokha (Khar'kovskii Aviatsionnyi Institut, Kharkov, Ukrainian SSR). (Problemy Prochnosti, May 1980, p. 116-118.) Strength of Materials, vol. 12, no. 5, Jan. 1981, p. 662-664. 5 refs. Translation.

The paper describes a method combining holographic interferometry and speckle interferometry for the investigation of the stress-strain state of a turbine disk near a scarf joint with a blade. Experimental results are presented and compared with finite element computations; good agreement is shown.

B.J.

A81-21367 Application of excelectron emission for quality control of gas-turbine engine parts. V. S. Kortov, A. M. Sulima, A. I. Slesarev, and V. V. Shorin (Ural'skii Politekhnicheskii Institut, Sverdlovsk, USSR). (Problemy Prochnosti, May 1980, p. 119-121.) Strength of Materials, vol. 12, no. 5, Jan. 1981, p. 665-667. 6 refs. Translation.

The paper deals with the application of exoelectron emission to the nondestructive testing of the physicochemical state of the surface layer of turbine engine blades and other components. The effectiveness of the method in detecting fatigue damage is demonstrated.

V.P

A81-21505 Semi-empirical correlations for gas turbine emissions, ignition, and flame stabilization. A. M. Mellor (Purdue University, West Lafayette, Ind.). (NATO, AGARD, Specialists Meeting on Combustor Modeling, 54th, Cologne, West Germany, Sept. 24-28, 1979.) Progress in Energy and Combustion Science, vol. 6, no. 4, 1980, p. 347-358. 49 refs. Research supported by the U.S. Environmental Protection Agency, General Motors Corp., Ford Motor Co., General Electric Co., and U.S. Army; Contract No. F33615-77-C-2069.

A81-21552 * # New approach to the solution of large, full matrix equations. R. W. Clark (Douglas Aircraft Co., Long Beach, Calif.) and R. M. James (Boeing Co., Seattle, Wash.). AIAA Journal, vol. 19, Feb. 1981, p. 184-190. 5 refs. Contract No. NAS1-14892.

A new approach to the solution of matrix equations resulting infrom integral equations is presented and applied to the solution of *two-dimensional Neumann problems describing the inviscid, incompressible flow past an airfoil. The problem is reformulated in terms of a preselected set of mode functions giving an equivalent matrix equation to be solved for the mode-function expansion coefficients. Because of the inherent smoothness of the original problem, the . coefficient problem can be solved approximately without significantly affecting the accuracy of the final solution. Very promising stwo-dimensional results are obtained and the extension of the method to three-dimensional problems is investigated. On the basis nof these results it is shown that the computing time for the matrix solution for a large three-dimensional panel method calculation could be reduced by an order of magnitude compared with that required for a direct solution. (Author)

A81-21555 # Three-dimensional wing boundary layer calculated with eight different methods. D. A. Humphreys (Flygtekniska Forsoksanstalten, Bromma, Sweden). AIAA Journal, vol. 19, Feb. 1981, p. 232-234. 15 refs. Air Materiel Department of Sweden Contracts No. AU-1283; No. AU-1379.

Eight different boundary-layer calculation methods were comparatively evaluated by application to the same three-dimensional wing boundary layer test case. Graphs of results obtained with the different methods illustrate the chordwise crossflow angle variation, total skin friction coefficient variation, and shape parameter variation at 0 and 8 deg incidence. It is concluded that much remains to be done in improving such calculations to reach concensus for even a straightforward case.

T.M.

A81-21574 # Developments at VFW/Rhein-Flugzeugbau GmbH, Mönchengladbach (Entwicklungen bei VFW/Rhein-Flugzeugbau GmbH, Mönchengladbach). H. Fischer (Rhein-Flugzeugbau GmbH, Mönchengladbach, West Germany). Internationale Luftfahrtausstellung, Hanover, West Germany, Apr. 24-May 1, 1980, Paper. 22 p. In German.

A cost comparison for similar German and American aircraft is presented. The design of glider aircraft with fiber strengthened material is investigated in relation to aircraft with metal construction. Engine performance and cruising speed are examined in Fanliner and Traveler aircraft. Emphasis is placed on the level of noise, fuel consumption and the use of a rotary piston engine in aircraft with fan design.

R.C.

A81-21575 # Flight companies present new aircraft - Boeing 737-200 advanced (Fluggesellschaften präsentieren ihre neuen Flugzeuge - Boeing 737-200 advanced). J. Weber (Deutsche Lufthansa AG, Hamburg, West Germany). Internationale Luftfahrtausstellung, Hanover, West Germany, Apr. 24-May 1, 1980, Paper. 24 p. In German.

Characteristics of the Boeing 737-200 advanced model are examined along with selection procedures for the Lufthansa fleet. Production improvements in the Boeing 737 leading to the 737-200 advanced model are discussed. The seating capacity is investigated in relation to the Boeing 727 fleet and the training cost for technical personnel and energy conservation are considered. Emphasis is placed on integration of the automatic pilot and automatic throttle systems, the CAT III landing system, and the navigation computer system.

R.C.

A81-21591 Sound radiation from vortex systems. T. Kambe and T. Minota (Kyushu University, Fukuoka, Japan). *Journal of Sound and Vibration*, vol. 74, Jan. 8, 1981, p. 61-72. 14 refs.

Sound radiation from a localized, weakly compressible flow in an inviscid fluid is investigated. A matching method enables the surrounding acoustic field to be related to the local eddy flow associated with a system of compact vortices. By using an asymptotic expansion of the velocity potential associated with the vorticity distribution, a general expression for the acoustic pressure is found to depend linearly on the vorticity, in accord with the theories of Möhring and Obermeier. This scheme is applied to an interacting system of coaxial circular vortex rings, and in particular two examples are presented of the time histories of the radiated acoustic pressures which are generated by interactions of two identical vortex rings, in 'head-on collision' and in 'mutual threading', respectively.

(Author)

A81-21595 Convective amplification of gas turbine engine internal noise sources. R. S. Larson (United Technologies Corp., Commercial Products Div., East Hartford, Conn.). *Journal of Sound and Vibration*, vol. 74, Jan. 8, 1981, p. 123-137. 12 refs.

A theoretical model is used to determine the convective amplification factor for the internal noise sources of a gas turbine engine, which factor is required to predict in-flight noise levels from engine noise measured in static tests. A general formulation is presented for calculating the propagation of sound in an arbitrary mean flow field, and applied to the static model problem, in which a porous sphere is placed in a radial mean flow field that decreases in magnitude with distance from the sphere, and the flight model problem, in which a spherical cap is placed in an axial flow field, with the same inlet mean flow boundary condition. It is found that convection amplification effects for the internal noise sources of a gas turbine engine depend on the characteristic frequency parameter, with low frequencies resulting in an amplification factor equal to the inverse fourth power of the difference between 1 and the product of the source Mach number with the cosine of the angle with the direction of motion of the source, and high frequencies resulting in a factor which depends on flight speed, radiation angle and inlet geometry.

A81-21673 # Piloting techniques on the backside - Flight path angle control. N. Goto and N. Morizumi. Kyushu University, Technology Reports, vol. 53, Aug. 1980, p. 413-421. 14 refs. In Japanese.

A81-21709 * Operation and evaluation of the Terminal Configured Vehicle Mission Simulator in an automated terminal area metering and spacing ATC environment. J. A. Houck (NASA, Langley Research Center, Hampton, Va.). In: Summer Computer Simulation Conference, Toronto, Canada, July 16-18, 1979, Proceedings.

Montvale, N.J., AFIPS Press, 1980, p. 267-273. 9 refs.

This paper describes the work being done at the National Aeronautics and Space Administration's Langley Research Center on the development of a mission simulator for use in the Terminal Configured Vehicle Program. A brief description of the goals and objectives of the Terminal Configured Vehicle Program is presented. A more detailed description of the Mission Simulator, in its present configuration, and its components is provided. Finally, a description of the first research study conducted in the Mission Simulator is presented along with a discussion of some preliminary results from this study.

A81-21718 Air traffic simulation as a validation tool. D. K. Sakaguchi (Aerospace Corp., El Segundo, Calif.). In: Summer Computer Simulation Conference, Toronto, Canada, July 16-18, 1979, Proceedings.

Montvale, N.J., AFIPS Press, 1980, p. 602-604.

A simulation of aircraft flying in an air traffic control environment has been developed. Included in the conditions simulated are aircraft characteristics, controller decision criteria, Air Traffic Control procedures, regulations, weather conditions, airport and airway geometry, and sophisticated approach modeling. The accuracy of the simulation has been demonstrated by comparing its output with actual radar tracking data, and the model has reached a level of acceptance such that it may now be used as a tool for validation. (Author)

A81-21721 A case study - Real time simulation and structured design. C. A. Vaccarino (USAF, Avionics Laboratory, Wright-Patterson AFB, Ohio). In: Summer Computer Simulation Conference, Toronto, Canada, July 16-18, 1979, Proceedings.

Montvale, N.J., AFIPS Press, 1980, p. 629-634.

A set of programs used in real-time simulation to verify the F-15 Tactical Electronic Warfare System is described. The design approach was informal with structure and modularity established using an intuitive approach combined with engineering knowledge of the design concepts of decomposing a large problem into its component parts and solving each of the parts individually. The design methodology is compared to the formal discipline outlined by Yourdon and Constantine (1978). The improvements that may have been feasible to these programs in the light of subsequent training and experience are considered.

A81-21730 Effect of load spectrum variables on fatigue crack initiation and propagation; Proceedings of the Symposium, San Francisco, Calif., May 21, 1979. Symposium sponsored by the American Society for Testing and Materials. Edited by D. F. Bryan (Boeing Wichita Co., Wichita, Kan.) and J. M. Potter (USAF, Flight Dynamics Laboratory, Wright-Patterson AFB, Ohio). Philadelphia, Pa., American Society for Testing and Materials (ASTM Special Technical Publication, No. 714), 1980. 244 p. \$27.

The symposium focused on load spectra of engineering structures, gas turbines, windmill structures, analytical and experimental fatigue and fracture data, the effects of spectrum editing, time dependent changes in material characteristics, compression loads, and gust alleviation. Topics include 7XXX Al alloy fatigue crack growth resistance under constant amplitude and spectrum loading, crack retardation resulting from the load sequencing characteristic of military gas turbine operation, and the effects of fighter attack spectrum on crack growth.

A.T.

A81-21737 An engineering model for assessing load sequencing effects. J. T. Wozumi, T. Spamer (Boeing Co., Seattle, Wash.), and G. E. Lambert (Boeing Co., Wichita, Kan.). In: Effect of load spectrum variables on fatigue crack initiation and propagation; Proceedings of the Symposium, San Francisco, Calif., May 21, 1979.

Philadelphia, Pa., American Society for Testing and Materials. 1980, p. 128-142. 8 refs.

An engineering model of the effect of load spectrum variables on fatigue crack growth in metal structures based on the effective stress concept of Willenborg (1971) and Gallagher (1974) was extended to include the retardation/acceleration in transport spectra. The model can evaluate crack growth rates without resort to cycle-by-cycle integration. The predictive accuracy of the model was compared to crack propagation test data on center-cracked 7075 and 2024 Al specimens subjected to transport wing and fin load spectra; altitude, flight duration, speed, and touch-and-go landing parameters were investigated. The model provides greater accuracy than other currently used models.

A81-21738 Effect of transport aircraft wing loads spectrum variation on crack growth. P. R. Abelkis (Douglas Aircraft Co., Long Beach, Calif.). In: Effect of load spectrum variables on fatigue crack initiation and propagation; Proceedings of the Symposium, San Francisco, Calif., May 21, 1979. Philadelphia, Pa., American Society for Testing and Materials, 1980, p. 143-169. 9 refs. Research sponsored by the McDonnell Douglas Independent Research and Development Program; Contracts No. F33615-76-C-3116; No. F33700-78-C-0001.

The effects of spectrum loading variations on 7475, 2024, and 7075 Al alloys were assessed using C-15, KC-10A, and DC-10 transport aircraft wing loads. A total of 134 spectrum variations were produced in 13 categories including baseline spectra, mission mix, individual flight length, flight segments, and clipping of large loads. The largest effect on crack growth resulted from mission mix, flight length, design stress level or usage severity, high infrequent loads, load alleviation system, and a change from a wing type to a vertical tail type spectrum.

A81-21739 Effect of gust load alleviation on fatigue and crack growth in ALCLAD 2024-T3. J. B. de Jonge and A. Nederveen (Nationaal Lucht- en Ruimtevaartlaboratorium, Amsterdam, Netherlands). In: Effect of load spectrum variables on fatigue crack initiation and propagation; Proceedings of the Symposium, San Francisco, Calif., May 21, 1979. Philadelphia, Pa., American Society for Testing and Materials, 1980, p. 170-184. 8 refs.

Active controls can be used to reduce gust induced loads on transport aircraft wings. Fatigue tests under flight simulation loading were done on simply notched sheet specimens made of ALCLAD 2024-T3 to assess the fatigue life increase that can be obtained by gust alleviation. Test results did show an important increase in crack initiation life. However, crack propagation life was hardly affected. The observed effect on fatigue life could be reasonably well predicted by Miner type life calculations. Minor type calculations, however, are bound to fail in predicting the effect of spectrum-variations such as deletion of ground-air-ground cycle or small gust cycles. (Author)

A81-21741 Effects of fighter attack spectrum on crack growth. H. D. Dill, C. R. Saff (McDonnell Aircraft Co., St. Louis, Mo.), and J. M. Potter (USAF, Flight Dynamics Laboratory, Wright-Patterson AFB, Ohio). In: Effect of load spectrum variables on fatigue crack initiation and propagation; Proceedings of the

Symposium, San Francisco, Calif., May 21, 1979.

Philadelphia, Pa., American Society for Testing and Materials, 1980, p. 205-217. 5 refs. Contract No. F33615-75-C-3112.

A systematical evaluation of the effect of variations in flight stress spectra on crack propagation is presented using analysis together with experimental correlations. More than 100 spectrum variations derived from four baseline spectra were generated; three constant amplitude and 30 spectrum tests were made to verify predictions of the effect of spectrum variations and to provide data for structural verification of future aircraft. Spectrum variations which have the greatest influence on crack growth life also affect the maximum peak stresses.

A.T.

A81-21742 Evaluating spectrum effects in U.S. Air Force attack/fighter/trainer individual aircraft tracking. C. E. Larson, D. J. White, and T. D. Gray (Vought Corp., Dallas, Tex.). In: Effect of load spectrum variables on fatigue crack initiation and propagation; Proceedings of the Symposium, San Francisco, Calif., May 21, 1979.

Philadelphia, Pa., American Society for Testing

and Materials, 1980, p. 218-227. USAF-supported research.

An analysis is presented of damage rates at several points in an aircraft structure subjected to usage variations. The counting accelerometer (CA) devices are superior to the mechanical strain recorders (MSR) in providing a damage index; but a possible higher cost of data retrieval and processing could outweigh the accuracy limitations of the CA. It is also shown that an individual aircraft tracking program (IAT) can track damage at remote locations through a reference station; the locations associated with the aircraft wing track well, the fuselage not so well, and the tails do not track at all. It is concluded that the successful IAT can be accomplished with aircraft wing critical structures, but that aircraft with a wide distribution of critical locations may require multiple indicators.

A.T.

A81-21825 In-flight calibration of aircraft antenna radiation patterns. H. Bothe (Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt, Institut für Flugführung, Braunschweig, West Germany). (IEEE, Volkswagenwerk AG, Siemens AG, and Helmholtz Fonds, Conference on Precision Electromagnetic Measurements, Braunschweig, West Germany, June 23-27, 1980.) IEEE Transactions on Instrumentation and Measurement, vol. IM-29, Dec. 1980, p. 439-444. 5 refs.

A measuring system for the in-flight determination and calibration of aircraft antenna radiation patterns is outlined. Relative radiation pattern measurements and the calibration method are described. The radiation pattern measurements require a system with on-board transducers, a telemetry link, and data-processing facilities on the ground. Diagrams of the configuration of the measuring system are given and its installation is described. The total average error in calibrating aircraft antenna radiation patterns amounts to 1.6 dB for the horizontal and 2.2 dB for the vertical pattern. The main errors are caused by the amplitude characteristic of the logarithmic amplifier, which is specified to a plus or minus 1.5 dB error over a full range of 70 dB.

A81-21828 SPASYN - An electromagnetic relative position and orientation tracking system. J. B. Kuipers (Calvin College, Grand Rapids, Mich.). (IEEE, Volkswagenwerk AG, Siemens AG, and Helmholtz Fonds, Conference on Precision Electromagnetic Measurements, Braunschweig, West Germany, June 23-27, 1980.) IEEE Transactions on Instrumentation and Measurement, vol. IM-29, Dec. 1980, p. 462-466. Research supported by the Austin Co.

Two relatively remote independent body coordinate frames are related in both position and orientation (six degrees of freedom) using precise electromagnetic field measurements. Antenna triads are fixed in each body frame. Variously polarized excitations in one body are correlated with signals detected in the remote body. Near-field and far-field processing strategies are presented with applications. (Author)

A81-21869 Band sharing - A case study. A. L. Covitt and D. D. Neuman (Mitre Corp., Bedford, Mass.). In: NTC '79; National Telecommunications Conference, Washington, D.C., November 27-29, 1979, Conference Record. Volume 2.

Piscataway, N.J., Institute of Electrical and Electronics Engineers, Inc., 1979, p. 22.3.1-22.3.7.

Various aspects of the decision to allow the DOD Joint Tactical Information Distribution System (JTIDS) to operate in the 960-1215 MHz band simultaneously with existing TACAN/DME radio navigation services and Air Traffic Control Radar Beacon System (ATCRBS) air traffic control services are examined. Attention is given to the technical factors that must be considered in band sharing. It is pointed out that the desired signal power delivered to the receivers must, with high probability, exceed an acceptable threshold value to ensure high detection probability of the shortest unit signal element the receiver is capable of recognizing. Another requirement is that in the presence of interference the signal-tointerference ratio during an interval coincident with the time-ofarrival of a unit signal element must exceed an acceptable threshold with high probability. An account is given of an electromagnetic compatibility test program. It is stressed that this experiment in band sharing, the first for the U.S., will require continued attention within both the DOD and FAA to be successful.

A81-21880 An airborne integrated communications network utilizing fiber optics. C. R. Husbands (Mitre Corp., Bedford, Mass.). In: NTC '79; National Telecommunications Conference, Washington, D.C., November 27-29, 1979, Conference Record. Volume 3. Piscataway, N.J., Institute of Electrical and Electronics Engineers, Inc., 1979, p. 42.1.1-42.1.5. Contract No. F19628-79-C-0001.

The use of fiber optics as an alternative to coaxial cable for the Airborne Integrated Communications installation is examined. Two multi-terminal fiber optic networks, designed and built as part of an alternative transmission medium study, are evaluated. It is noted that the fiber bundle system suffers from excessive transmission losses, which preclude its application to the aircraft problem under consideration. The single fiber system while low in system losses, requires high-power, temperature-dependent sources in order to achieve an adequate optical power margin for reliable operational performance. While these sources are found to be more than adequate for ground tactical systems, their temperature sensitivity poses a problem in avionics applications. It is concluded that the problem will be solved by recently developed low-loss, large-core glass-on-glass fibers.

C.R.

A81-21912 Air traffic control and position location by satellite constellation in equatorial orbit. S. M. El-Sagir and C. R. Carter (McMaster University, Hamilton, Ontario, Canada). In: NTC '79; National Telecommunications Conference, Washington, D.C., November 27-29, 1979, Conference Record, Volume 3.

Piscataway, N.J., Institute of Electrical and Electronics Engineers, Inc., 1979, p. 58.4.1-58.4.6. 5 refs. Research supported by the Natural Sciences and Engineering Research Council of Canada.

One of the most important factors which must be considered in the design of a satellite system is the cost factor. This may be expressed in terms of the total number of satellites and satellite altitude. To date, no analytical approach has appeared for the optimization of satellite systems designed for multiple, continuous, partial or global coverage. In such a system, any user in the coverage area must observe continuously a specified minimum number of satellites, L. In this paper, a satellite constellation in an equatorial orbit is described for multiple, partial coverage excluding the polar regions. System design is optimized, applying a new analytical approach, according to the minimum number of satellites criterion. An algorithm has been developed for the general problem considering L as a variable.

A81-21913 GPS receiver simulation. J. D. Holmes (Texas Instruments, Inc., Dallas, Tex.). In: NTC '79; National Telecommuni-

cations Conference, Washington, D.C., November 27-29, 1979, Conference Record. Volume 3. Piscataway, N.J., Institute of Electrical and Electronics Engineers, Inc., 1979, p. 58.5.1-58.5.5. Contract No. F04701-78-C-0021.

GPS Receiver Simulation is a receiver capable of tracking the signal from a Global Positioning System (GPS) satellite containing carrier and code tracking loops characterized by their bandwidth and order. A math model of a GPS receiver that uses Monte Carlo techniques to simulate the many effects to be modeled if one is to predict the performance of a GPS receiver when it is operating near its SNR threshold is described. Among these are: (1) predetection filter characteristics, (2) dynamic stress effects, (3) phase of frequency loop error characteristics, (4) envelope detector algorithm, (5) post detection filtering characteristics, (6) code loop error characteristics, (7) noise sample generation with proper degree of correlation, (8) effect on carrier and code loops when carrier oscillator has a frequency error, (9) effect on carrier and code loops when code loop has a phase error, (10) sampled data effects on carrier and code loop filters and digital oscillators, and (11) the threshold improvement as a result of narrower loop bandwidths when inertial aiding is possible.

A81-21917 # Wind tunnel model support, controlled by four microprocessors. R. Tisseau (ONERA, Châtillon-sous-Bagneux, Hauts-de-Seine, France). (International Measurement Confederation and International Federation of Automatic Control, Symposium on Application of Microprocessors in Devices for Instrumentation and Automatic Control, London, England, Nov. 17-20, 1980.) ONERA, TP no. 1980-149, 1980. 11 p.

A new test facility has been built by the French Aerospace Research Institute for advanced aircraft low speed aerodynamics studies. The facility consists of a pressurized subsonic wind tunnel of large dimensions which makes it possible to test models up to 3 m in span. The model holder is equipped with an advanced command/control system with on-line adaptive control capability.

A81-21922 The spectral analysis of nonstationary random processes - Applications to aircraft overflight-type noises (Analyse spectrale des processus aléatoires non stationnaires - Applications aux bruits de type 'survol d'avion'). M. Ernoult. Paris XI, Université, Docteur d'Etat Thesis, 1979. 181 p. 91 refs. In French. Research supported by the Direction Générale de l'Aviation Civile and Société Nationale d'Etude et de Construction de Moteurs d'Aviation.

Consideration is given to the study of the nonstationary noise detected by a fixed microphone during the passage of a moving sound source, such as in an aircraft overflight, as a problem of the spectral analysis of nonstationary random processes. The concept of the instantaneous spectrum of a nonstationary process is introduced and a definition of the time-frequency representation of the energy of nonstationary random processes is presented. The estimation of the spectral density of stationary random processes is reviewed, and the estimation of the power of an amplitude-modulated stationary Gaussian Markovian processes and of the instantaneous spectral density by means of filtering are considered. The spectral analysis of a microphone signal created by a moving source of jet noise by means of third-octave filters is then discussed. Knowledge of source motion is applied to the stationarization of microphone signals by the suppression of the Doppler effect and modulation due to the variation of the source-microphone distance, and theoretical results are verified for measurements of noise from a moving point source of known characteristics and moving jet noise. A brief description of a hybrid nonstationary noise generator is also presented.

A81-21966 # Airline navigation planning. D. M. Page (British Caledonian Airways, Ltd., Horley, Surrey, England). Journal of Navigation, vol. 34, Jan. 1981, p. 68-76; Discussion, p. 76, 77.

Advances in air navigation and flight planning techniques are discussed with emphasis on computer-controlled automatic systems. The importance of bringing aircraft navigation and air traffic control together into a single automated system is emphasized.

V.L.

A81-21967 # The evaluation of aircraft collision probabilities at intersecting air routes. D. A. Hsu (Wisconsin, University, Milwaukee, Wis.). Journal of Navigation, vol. 34, Jan. 1981, p. 78-102. 13 refs. U.S. Department of Transportation Contract No. FA72NA-741.

Formulas useful for the calculation of aircraft mid-air collision probabilities at intersecting air routes are developed. The aircraft overlap density, a key parameter in the calculation, is expressed as a function of the intersection angle of air routes, aircraft speeds, the nominal separation, and parameters in the position-error distribution. Two representative probability models for position errors are used to illustrate the computational procedures suggested. A method of approximation over large navigation systems is also proposed.

(Author)

A81-21968 # The flight assessment and applications of DME/DME. I, II. R. C. Rawlings (Royal Aircraft Establishment, Farnborough, Hants., England) and R. J. Talbot. *Journal of Navigation*, vol. 34, Jan. 1981, p. 103-130; Discussion, p. 130-133.

Computer simulation and flight trials have been undertaken to establish the aircraft navigation performance that can be achieved using the currently available ground aids - VHF omni-directional radio and distance measuring equipment (DME) - with noise reduction techniques which make use of velocity data from onboard sensors. Consideration is given to DME accuracy, DME/DME position fixing, frequency-scanning DME's, and multi-DME fixing. V.L.

A81-21969 # Characterizing cross-track error distributions for continental jet routes. N. W. Polhemus (Princeton University, Princeton, N.J.) and D. Livingston (FAA, Washington, D.C.). Journal of Navigation, vol. 34, Jan. 1981, p. 134-141. 8 refs. FAA-supported research.

Data collected as part of a study of navigational performance on high-altitude jet routes in the United States VOR environment are briefly reviewed. Distribution fitting results and their implications for jet route separation are discussed.

A81-22076 Survival and Flight Equipment Association, Annual Symposium, 17th, Las Vegas, Nev., December 2-6, 1979, Proceedings. Canoga Park, Calif., Survival and Flight Equipment Association, 1980. 283 p. \$25.

Papers are presented on technologies and problems of flight safety and survival systems. Specific topics include a full-head enclosed breathing system for extended high-altitude exposure, a ram air emergency personnel parachute, the evolution of aircraft ejection systems, onboard oxygen generation, an automatic opening lap buckle for aircrew restraint, limb flail injuries and extremity restraints in aircraft ejections, the effectiveness of immersion hypothermia protection equipment, the computerized analysis of bird-resistant aircraft transparencies, and the design of gas-operated firing mechanisms. Attention is also given to an inflatable aircraft passenger seat, computerized assessment of crew station-crew member compatibility, inland search and rescue techniques, triage in airport disasters, piezoelectric polyvinylidene fluoride communications transducers, helicopter emergency underwater escape, and aircraft accident investigation as it relates to life support equipment.

A81-22078 Development of the first ram air emergency parachute for personnel applications. E. Puskas (Para-Flite, Inc., Pennsauken, N.J.). In: Survival and Flight Equipment Association, Annual Symposium, 17th, Las Vegas, Nev., December 2-6, 1979, Proceedings.

Canoga Park, Calif., Survival and Flight Equipment Association, 1980, p. 24-27.

The principles, design and development of the first emergency parachute for personnel use utilizing a gliding ram air canopy are discussed. The statistical background demonstrating the extremely high reliability of ram air parachutes compared to conventional emergency parachutes is presented as the motivation for the development of ram air emergency parachutes, and the original

design of ram air parachutes is indicated. Improvements to the original design achieved by a reduction in wing area, the development of a lighter fabric and a smaller diameter suspension line and the reduction of the number of reinforcing tapes are discussed, and test results of the improved design which indicated areas of modification in deployment mechanism, the deployment brake system and suspension lines are indicated. Results of final design testing are then indicated, and it is concluded that the ram air emergency parachute is at least an order of magnitude more reliable than conventional emergency parachutes, while offering advantages in the areas of controllability, glide ratio and forward speed.

A.L.W.

A81-22080 Ejection system evolution. R. C. Brashears (USAF, Aeronautical Systems Div., Wright-Patterson AFB, Ohio). In: Survival and Flight Equipment Association, Annual Symposium, 17th, Las Vegas, Nev., December 2-6, 1979, Proceedings.

Canoga Park, Calif., Survival and Flight Equipment Association, 1980, p. 38-41.

The evolution of ejection systems for military aircraft since the early 1940s is outlined. Consideration is given to the development of catapult-type ejection seat systems based on German designs which were demonstrated in jet aircraft in the late 1940's, and to subsequent improvements in canopy removal systems, downward ejection seat systems, encapsulated seats and through-the-canopy ejection. Work on low-level on-the-runway capabilities in the 1950s is indicated, and the designs of the Convair B supersonic open ejection seat, the B-58 encapsulated seat, the F-111 ejectable crew module escape system and the B-1 escape capsule are discussed. Increases in cost and weight accompanying the increases in system complexity are pointed out, and the Advanced Concept Ejection Seat is described. Finally, areas for improvement in the design of ejection systems for future high-performance aircraft, including acceleration level reduction, stability, windblast protection and restraint, as well as life cycle costs, are indicated. AIW

A81-22087 Computer analysis of bird-resistant aircraft transparencies. R. E. McCarty (USAF, Flight Dynamics Laboratory, Wright-Patterson AFB, Ohio). In: Survival and Flight Equipment Association, Annual Symposium, 17th, Las Vegas, Nev., December 2-6, 1979, Proceedings.

Canoga Park, Calif., Survival and Flight Equipment Association, 1980, p. 93-97. 13 refs.

The application of computerized structural analysis methods in the design and evaluation of aircraft transparent crew enclosures for resistance to bird impacts is discussed. Air Force aircraft and crew losses attributed to windshield birdstrikes since 1966 are briefly reviewed, and programs undertaken to improve the birdstrike resistance of existing transparencies are indicated, noting the high cost of these primarily empirical programs. The finite element method of structural analysis is then presented, and the development of the IMPACT program for transparency birdstrike analysis is discussed. Glass windshield studies performed with the linear program are shown to result in strains 50% less than those measured experimentally, due to nonlinear effects, and the development status of the adaptation of the nonlinear MAGNA program to transparency birdstrike analysis is discussed. It is concluded that the analysis capability currently undergoing validation tests will result in safer windshield and canopy systems at lower development costs. A.L.W.

A81-22088 Escape systems testing on the Holloman high speed test track. C. D. Gragg (USAF, Holloman AFB, N. Mex.) and J. E. Coulter (USAF, Instrumentation Branch, Holloman AFB, N. Mex.). In: Survival and Flight Equipment Association, Annual Symposium, 17th, Las Vegas, Nev., December 2-6, 1979, Proceedings.

Canoga Park, Calif., Survival and Flight Equipment Association, 1980, p. 98-101. 6 refs.

An overview is given of 15 years of escape system tests at the High Speed Test Track at Holloman Air Force Base, New Mexico. The technique of this type of testing is discussed and a brief description given of the facility and its capabilities. A summary of the specific and general test objectives and military specifications which most tests attempt to meet is given. The scope of testing

includes most of the escape systems now in the Air Force inventory and those planned for the immediate future as well as some presently in use by other governmental agencies and foreign governments. The testing has included module, ejection seat and extraction seat escape systems.

(Author)

A81-22089 SAFEST computer simulation of ejection seat performance. L. A. Jines (USAF, Flight Dynamics Laboratory, Wright-Patterson, AFB, Ohio). In: Survival and Flight Equipment Association, Annual Symposium, 17th, Las Vegas, Nev., December 2-6, 1979, Proceedings.

Canoga Park, Calif., Survival and Flight Equipment Association, 1980, p. 102-107.

Experimental data obtained from track tests of an advanced concept ejection seat are compared with the predictions of the Simulation and Analysis of In-Flight Escape System Techniques (SAFEST) computer program in a validation test of the program. The SAFEST program includes mathematical models which provide a six-degree-of-freedom simulation of aircraft maneuvers, flexible ejection seat guide rails, stabilization and deceleration devices and ejection seat rocket propulsion to calculate the trajectory dynamics of an ejection seat and crew member as the combination is catapulted into free flight along a set of flexible rails. For the preliminary correlation, performance data from high-speed (445 knots equivalent airspeed) and low-speed (165 knots equivalent airspeed) track tests of the ACES II ejection seat using a 95th percentile instrumented dummy crew member were compared with predictions of body axes translational accelerations, body axes angular rates, earth axes displacements, catapult pressure and dynamic response index. Correlations presented reveal the accuracy of dynamic response index and angular rate predictions, and indicate the need for further work in modeling and input parameters to improve the correlation of the remaining parameters. A.I.W.

A81-22091 An inflatable seat for aircraft passengers. D. C. Reader (USAF, School of Aerospace Medicine, Brooks AFB, Tex.). In: Survival and Flight Equipment Association, Annual Symposium, 17th, Las Vegas, Nev., December 2-6, 1979, Proceedings.

Canoga Park, Calif., Survival and Flight Equipment Association, 1980, p. 129-131.

An inflatable passenger seat for use in military transport aircraft is presented. The seat consists of two separate airbags used as base and backrest made of rubberized neoprene similar to that used in crashworthy fuel tanks, and is intended to accommodate three passengers side by side. Experiments conducted with subjects encompassing a wide range of body sizes have demonstrated the seat to be comfortable to up to three soldiers in full battle kit, with comfort depending on seat inflation pressure. Vibration tests of the seat and one, two or three occupants revealed the natural frequencies of the seat to be between 2.7 and 3.8 Hz, and vibrations above 5 Hz were attenuated. Impact tests performed with 95th percentile dummies have demonstrated the resistance of the seat to deceleration forces, which, together with its comfort, light weight and ease of removal and installation, show the feasibility of the inflatable seat. Further development work is however required before the seat can be fitted to aircraft. A.L.W.

A81-22093 High 'Q' ejection protection device. C. C. Woodward and M. Schwartz (U.S. Naval Material Command, Naval Air Development Center, Warminster, Pa.). In: Survival and Flight Equipment Association, Annual Symposium, 17th, Las Vegas, Nev., December 2-6, 1979, Proceedings.

Canoga Park, Calif., Survival and Flight Equipment Association, 1980, p. 148-152.

The development, status and future plans for a passive-type restraint system to protect aviator limbs from windblast exposure during aircraft ejection are discussed. The system, which consists of straps, netting and deployment bladders packaged within the sides of the seat and can be deployed within 250 msec, was tested statically and dynamically on an ejection tower and in a windblast facility. Dummy and human tests demonstrated system deployment and restraining effectiveness during simulated ejection, and restraint effectiveness in windblasts from 413 to 614 knots at seven different

seat attitudes. Results of the tests have shown the feasibility of the system in providing necessary protection and in meeting the requirement of passive operation. Current efforts are being undertaken to prepare for additional testing a refined prototype with better performance, increased reliability, and simplified packaging, with the ultimate objective of developing a restraint system which will reduce crew member exposure to aerodynamic and deceleration forces and assure his physical well-being following ejection. A.L.W.

A81-22094 Low level, adverse attitude escape using a vertical seeking ejection seat. J. J. Tyburski, L. A. D'Aulerio (U.S. Naval Material Command, Naval Air Development Center, Warminster, Pa.), and G. D. Frish (U.S. Naval Aerospace Medical Center, Naval Aerospace Medical Research Laboratory, New Orleans, La.). In: Survival and Flight Equipment Association, Annual Symposium, 17th, Las Vegas, Nev., December 2-6, 1979, Proceedings.

Canoga Park, Calif., Survival and Flight Equipment Association, 1980, p. 153-158. 5 refs.

The development of the Maximum Performance Ejection Seat (MPES), a vertical-seeking seat applicable to escape at low altitudes and adverse attitudes, by flight tests and computerized simulation is discussed. The MPES is a significant advance in escape system technology, incorporating a structural subsystem with soft pack survival kit, a survival subsystem containing an oxygen accumulator for emergency breathing, occupant positioning and restraint by a series of active and passive components, recovery subsystem, and propulsion and control subsystem providing seat steering and stabilization to allow ejection from inverted aircraft at 50 feet altitude and ground level escape at up to 90 deg roll attitude. Ejection tests have demonstrated the feasibility of the verticalseeking capability at 90 and 175 deg roll attitude with acceptable linear and angular acceleration levels. Mathematical modeling of occupant dynamic response is currently under way to determine the effects of crew member initial position relative to the crew station and initial inertial aircraft conditions, and define an idealized seating position. A.L.W.

A81-22096 Escape from military fighters - A modern perspective. R. J. Dobbek (USAF, Flight Dynamics Laboratory, Wright-Patterson AFB, Ohio). In: Survival and Flight Equipment Association, Annual Symposium, 17th, Las Vegas, Nev., December 2-6, 1979, Proceedings. Canoga Park, Calif., Survival and Flight Equipment Association, 1980, p. 171-175. 6 refs.

A discussion relating the currently new and early future fighter aircraft, their designs and their performance, to certain performance characteristics and design features of the open ejection seat type of escape system is presented. Against these criteria critical areas of emphasis are uncovered where escape capabilities are currently lacking and the understanding is yet low. Particular areas of discussion include ejection seat stability, high dynamic pressure operation and ejection under an impressed G field. Conclusions are drawn bringing critical approaches to bear that offer possibilities for successful ejection seat designs. (Author)

A81-22097 Extension of ejection seat capability for high speed conditions. J. M. Peters (USAF, Flight Dynamics Laboratory, Wright-Patterson AFB, Ohio). In: Survival and Flight Equipment Association, Annual Symposium, 17th, Las Vegas, Nev., December 2-6, 1979, Proceedings.

Canoga Park, Calif., Survival and Flight Equipment Association, 1980, p. 176-179. 6 refs.

The high percentage of major injuries and fatalities which occur as a result of ejection at speeds above 400 KEAS requires that a new look be taken at concepts to reduce these injuries. A current contracted effort sponsored by the Air Force Flight Dynamics Laboratory will address the problems of escape in an ejection seat at dynamic pressures up to 1600 psf. The goal of the program is to provide a stable seat which incorporates provision for protection of the occupant from windblast, high accelerations and limb flail. Flow diverters, windblast screens, stabilizer/drag reducer located aft of the seat, vectoring of the main escape rocket, and total restraint systems are examples of concepts which will be evaluated. The program will encompass wind tunnel testing, performance assessment, preliminary

design and construction of a functional ejection seat/crew station mockup. (Author)

A81-22098 Ejection experience in F/FB-111 aircraft - 1967-1978. W. D. Harrison (USAF, San Antonio Air Logistics Center, Kelly AFB, Tex.). In: Survival and Flight Equipment Association, Annual Symposium, 17th, Las Vegas, Nev., December 2-6, 1979, Proceedings.

Canoga Park, Calif., Survival and Flight Equipment Association, 1980, p. 180-182.

The ejectable cockpit module used on F/FB-111 aircraft is briefly described and ejection results over a 12-year period are summarized. Although the system takes 11 seconds to operate, the ejection success rate is found to be 81%, which is comparable to that of open ejection seats.

V.L.

A81-22099 A new technology - Piezoelectric polyvinylidene fluoride communications transducers. J. W. Castine, R. Loewenstern (U.S. Naval Material Command, Naval Air Development Center, Warminster, Pa.), and D. Mackiernan (JMR Systems Corp., Derry, N.H.). In: Survival and Flight Equipment Association, Annual Symposium, 17th, Las Vegas, Nev., December 2-6, 1979, Proceedings.

Canoga Park, Calif., Survival and Flight Equipment Association, 1980, p. 197-200.

The development of microphones and earphones based on polyvinylidene fluoride technology is reported. The development involves maximizing of the material activity through poling techniques without degradation of the mechanical structure. This will be accomplished by optimizing the poling voltages and temperature for a given film thickness.

A81-22100 The influence of beards on the efficiency of aviators' oxygen masks. D. deSteiguer and K. E. Hudson (FAA, Protection and Survival Laboratory, Oklahoma City, Okla.). In: Survival and Flight Equipment Association, Annual Symposium, 17th, Las Vegas, Nev., December 2-6, 1979, Proceedings.

Canoga Park, Calif., Survival and Flight Equipment Association, 1980, p. 207-210. 5 refs.

A81-22101 Helicopter emergency underwater escape. S. G. Maness (U.S. Coast Guard, Washington, D.C.). In: Survival and Flight Equipment Association, Annual Symposium, 17th, Las Vegas, Nev., December 2-6, 1979, Proceedings.

Canoga Park, Calif., Survival and Flight Equipment Association, 1980, p. 211-213.

The problems of egress from a capsized aircraft are identified with an emphasis on the provision of oxygen. The development of a dual cell inflatable life preserver-survival vest that incorporates oxygen enriched gas instead of carbon dioxide for the inflation of one cell is evaluated. The rebreather cell is equipped with a valve mouthpiece and a breathing tube in place of an oral inflation valve. The breathing air cell is also used for flotation and provides 42 pounds of buoyancy.

A81-22102 Delayed ejection. R. H. Shannon (Talley Industries, Inc., Highland, Calif.). In: Survival and Flight Equipment Association, Annual Symposium, 17th, Las Vegas, Nev., December 2-6, 1979, Proceedings. Canoga Park, Calif., Survival and Flight Equipment Association, 1980, p. 219-221.

The decision factor, that is, the aspect of pilot escape that depends on the actions of the pilot, is discussed. It is noted that the decision to eject is often delayed until it is too late and that despite system refinements and training programs, the problem persists. It is pointed out that the crewman often fails to recognize that he has reached a point of no return. It is felt that a device is needed to give the pilot information regarding the minimum height at which escape action may be taken.

C.R.

A81-22103 Aircraft accident investigation as it relates to life support equipment. R. W. Bailey (JABAL, Inc., Enterprise, Ala.) and G. L. Johnson (U.S. Army, Aeromedical Research Laboratory, Fort Rucker, Ala.). In: Survival and Flight Equipment Association,

Annual Symposium, 17th, Las Vegas, Nev., December 2-6, 1979, Proceedings.

Canoga Park, Calif., Survival and Flight Equipment Association, 1980, p. 230-232.

The need for a maintenance program for life support equipment is stressed. Attention is given to a study carried out on protective helmets in 1977 in which it was found that more than 90% of the helmets were compromised by defects that in some cases were so severe that the helmet was nonfunctional and could not have performed properly if involved in an accident. It is recommended that life support equipment be monitored during use and that improvements be made in the components of the equipment whenever necessary. The need for a program of destructive and nondestructive testing is also stressed.

C.R.

A81-22104 The apparent ignoring of pilot fatigue by the NTSB in airline crashes. W. J. Price (United Air Lines, Inc., Redwood City, Calif.). In: Survival and Flight Equipment Association, Annual Symposium, 17th, Las Vegas, Nev., December 2-6, 1979, Proceedings.

Canoga Park, Calif., Survival and Flight Equipment Association, 1980, p. 241-247. 8 refs.

The trip sequence of a United Airlines DC-8 freighter which crashed near Kaysville, Utah on Dec. 18, 1977 is examined. A model demonstrating how fatigue could have been a contributing factor in the accident is presented with a view toward sleep disruption, circadian desynchronosis and sleep reversal. The symptoms attending sleep loss and desynchronosis include short term memory loss, forgetfulness, inattention to detail, relaxation of personal standards and irritability. In normal human circadian rhythm, the zenith should occur between the 1500 to 1700 home domicile. It is noted that of the 81 human factor items outlined by the National Transportation Safety Board for accident investigation, not one pertains to pilot fatigue.

A81-22115 Death and injury in aerial spraying - Pre-crash, crash, and post-crash prevention strategies. E. D. Richter (Jerusalem, Hebrew University; Ministry of Health, Jerusalem, Israel), M. Gordon, M. Halamish (Ministry of Transport, Civil Air Examiner's Office, Jerusalem, Israel), and B. Gribetz (City University, New York, N.Y.). Aviation, Space, and Environmental Medicine, vol. 52, Jan. 1981, p. 53-56. 13 refs.

The high risk of death and injury faced by pilots carrying out agricultural spraying is discussed. It is noted that the nature of the work is such that crashes cannot be completely eliminated. Therefore, crash proof cockpits are felt to be essential. It is suggested that power and cable lines adjacent to sprayed areas be buried. Measures are also proposed to prevent the chemical being sprayed from affecting the pilot. It is suggested that an international convention or code of practices may be advisable.

A81-22167 New navigation systems for helicopters (Neue Navigationssysteme für Hubschrauber). D. Wurster. *Elektronik*, vol. 30, Jan. 30, 1981, p. 77-84. 10 refs. In German.

The physical principles of Doppler radar navigation are reviewed along with some current developments in this field. Particular attention is given to the design of the AN/ASN-128 Doppler navigation system; the integrated system for helicopters is described.

A81-22182 # Evaluation of compressor blade endurance limits by an accelerated method (K voprosu ob otsenke vynoslivosti lopatok kompressora uskorennym metodom). R. S. Bekbulatov, M. E. Kolotnikov, and I. G. Sipukhin. *Problemy Prochnosti*, Jan. 1981, p. 68-70. 5 refs. In Russian.

The Locati accelerated testing method for compressor blades is examined. Analytical procedures for computing endurance limits using accelerated test results are proposed; these methods are based on linear and corrected hypotheses of damage accumulation. The results of fatigue studies of a heat resistant alloy turbine blades are presented; the proposed analytical methods are compared with semigraphical data processing techniques.

A.T.

A81-22192 Standardisation - An alternative approach to ATC automation. H. Westermark (Datasaab AB, Jarfalla, Sweden).

The Controller, vol. 19, 4th Quarter, 1980, p. 14, 15.

The Airwatch series of ATC equipment is described with a view to major components and operational features. Modular design allows adaptation to individual needs over a wide range. Potential advantages of the standardized system include simplified maintenance and lower costs.

L.S.

A81-22193 Maximizing the capacity of a single-runway airport. T. K. Vickers. *The Controller*, vol. 19, 4th Quarter, 1980, p. 30, 31.

Simple low-cost changes to the airport layout are discussed. These are based on the concepts of reducing the average runway interval, minimizing runway occupancy time, and separating the arrival and departure taxi routes. Illustrations demonstrating layouts and techniques are provided.

L.S.

A81-22203 # Comparison of systems of power generation during emergencies /aboard aircraft/ (Confronto tra sistemi per generazione di potenza in condizioni di emergenza /a bordo di velivoli/). S. Chiesa (Torino, Politecnico, Turin, Italy). Ingegneria, Nov.-Dec. 1980, p. 337-348. In Italian.

Two aircraft power generation systems for use during emergencies are described and compared: a battery-based system and a RAT (ram air turbine) based system. A parametric analysis is carried out, and the two systems are compared in terms of weight and operating time.

B.J.

A81-22344 Analytical methods for store separation flight test. V. S. Ritchey (USAF, Flight Test Center, Edwards AFB, Calif.). Society of Flight Test Engineers, Journal, vol. 3, Jan. 1981, p. 2-34.

This paper presents mathematical specifications and describes applications for an integrated computer analysis tool/method for store separation flight tests. This package includes a computer-generated sketch for output, various analog and digital computer inputs, a comprehensive, but simplified, state variable model of the store separation physics, and a Kalman filter optimal estimator for the store trajectory and the aircraft flow field. This combination can provide fast computer-aided data processing; point-to-point clearance analyses; planning analyses for parameter sensitivity studies and test point selection; and aircraft flow-field maps for subsequent separation tests. Instrumentation requirements consist of conventional separation cameras and time-correlated aircraft parameters. The state vector estimates derived from the flight test data should be adequate for weapon delivery accuracy analyses. (Author)

A81-22374 * # Civil aviation applications of Navstar/GPS through differential techniques. W. E. Howell, W. T. Bundick, and W. F. Hodge (NASA, Langley Research Center, Hampton, Va.). Institute of Electrical and Electronics Engineers, National Telecommunications Conference, Houston, Tex., Nov. 30-Dec. 4, 1980, Paper. 28 p. 10 refs.

Prior studies implying significant benefits from using Navstar/GPS in civil aviation are seen as meriting further technical evaluation. While an uncorrupted C/A code and a P-code are seen as highly desirable in civil aviation, the differential GPS using C/A code only that is considered here and that also takes into account rather significant intentional degradation is found to hold promise. It is noted that such a technique may even approach the requirements associated with the conventional ILS window. It is stressed that since the receiver sequencing period/update rate appears to be an important parameter in differential GPS, sophisticated algorithms should be developed and evaluated in order to determine the full potential of the differential technique.

C.R.

A81-22493 LPI, short-range communications between aircraft in rendezvous. L. B. Stotts, R. T. Kihm, R. L. Mather, M. E. Hyde, and G. C. Mooradian (U.S. Naval Ocean Systems Center, San Diego, Calif.). In: Electro-Optics/Laser 79 Conference and Exposition, Anaheim, Calif., October 23-25, 1979, Proceedings.

Chicago, Industrial and Scientific Conference Management, Inc., 1979, p. 166-171. 5 refs.

The paper examines the tradeoffs between two distinct communication systems designed to allow LPI (low probability of intercept) hand-over between aircraft: one based on millimeter-wave technology and the other based on electrooptical technology. It is shown that under ideal interception conditions, both systems have the potential to provide at the appropriate wavelengths significantly better LPI than the current UHF systems. Both systems have comparable performance levels under identical source divergence and receiver field-of-view conditions.

A81-22495 Tri-bar reading correction for oblique imagery.
E. L. Gliatti and T. Stanzione (USAF, Avionics Laboratory, Wright-Patterson AFB, Ohio). In: Electro-Optics/Laser 79 Conference and Exposition, Anaheim, Calif., October 23-25, 1979, Proceedings.
Chicago, Industrial and Scientific Conference Management, Inc., 1979, p. 191-204. 7 refs.

A laboratory experiment set up to simulate oblique imagery in order to determine what effects the changing aspect ratio has on the accuracy of tri-bar readings after the insertion of normal geometrical corrections is discussed. It is shown that changes in aspect ratio significantly affect the accuracy of tri-bar resolution readings in the inline direction when imaging targets at particularly large oblique angles. It is pointed out that this finding contradicts the previous assumptions that no geometric or other correction need be applied in this direction. The experimentally determined aspect ratio correction factor can be represented by a third order polynomial equation. It is noted that oblique imaged crossline target resolution readings require the use of only the normal geometric (cosine) correction factor since the normalized data were not found to differ significantly with angle. Over the contrast ratio range examined, the geometric and aspect ratio correction factors were found to be independent of contrast ratio. For the two orientations tested, inline correction factors are found to differ slightly due to the apparent crowding of the elements in the one orientation. This suggests that different type targets may have different correction factors.

A81-22503 Fiber optics study technology for military aircraft. M. K. Zaman (Lockheed-California Co., Burbank, Calif.). In: Electro-Optics/Laser 79 Conference and Exposition, Anaheim, Calif., October 23-25, 1979, Proceedings. Chicago, Industrial and Scientific Conference Management, Inc., 1979, p. 351-363. 10 refs.

Fiber optics interconnect technology is discussed with emphasis on its feasibility for use in the data bus of military aircraft. Consideration is given to the effect of radiation on fiber optics, mechanical and environmental test results, data bus design, and performance characteristics. It is shown that the high tensile strength and environmental endurance make the optical cables well suited not only for the installation on military aircraft but also for retrofit, stand alone applications where the cable is not harnessed with other cables.

V.L.

A81-22526 * # Stability of large horizontal-axis axisymmetric wind turbines. M. S. Hirschbein (NASA, Lewis Research Center, Cleveland, Ohio) and M. I. Young (Delaware, University, Newark, Del.). Miami International Conference on Alternative Energy Sources, 3rd, Miami, Fla., Dec. 15-17, 1980, Paper. 35 p. 19 refs.

The stability of large horizontal-axis, axisymmetric, power producing wind turbines is examined within the framework of an analytical model which includes dynamic coupling of the rotor, tower, and power generating system. The aerodynamic loading is derived from blade element theory. Stability is determined by the eigenvalues of a set of linearized constant-coefficient differential equations. All results presented are based on a 3-bladed, 300-ft diameter, 2.0-MW wind turbine. It is shown that unstable or weakly stable behavior can be caused by aerodynamic forces due to motion of the rotor blades and tower in the plane of rotation or by mechanical coupling between the rotor system and the tower. V.L.

A81-22527 * # New interpretations of shock-associated noise with and without screech. U. von Glahn (NASA, Lewis Research Center, Cleveland, Ohio). Acoustical Society of America, Meeting, 100th, Los Angeles, Calif., Nov. 17-21, 1980, Paper. 23 p. 14 refs.

Anomalous trends in present convergent nozzle (Mach 1) shock-associated noise analyses and predictions, with particular emphasis on the roles of screech and jet temperature, are discussed. Experimentally measured values of shock-associated noise are used to reassess data trends, including both frequency and sound pressure level. The data used includes model-scale nozzles, varying in nominal diameter from 5 cm to 13 cm, and full-scale engine nozzles up to 48 cm. All data were obtained at static conditions. From this reassessment of the measured data, new empirical methods for the prediction of shock-associated noise are developed. Separate procedures are presented for screech-free and screech-contaminated shock-associated noise. In the present approach, shock-associated noise spectra are developed from considerations that include the peak sound pressure level and its frequency, the low frequency sound pressure level slope, and the high frequency sound pressure level slope or roll-off; the latter is shown to vary with directivity angle.

(Author)

A81-22531 * # Core noise measurements from a small, general aviation turbofan engine. M. Reshotko and A. Karchmer (NASA, Lewis Research Center, Fluid Mechanics and Acoustics Div., Cleveland, Ohio). Acoustical Society of America, Meeting, 100th, Los Angeles, Calif., Nov. 17-21, 1980, Paper. 27 p. 10 refs.

As part of a program to investigate combustor and other core noises, simultaneous measurements of internal fluctuating pressure and far field noise were made with a JT15D turbofan engine. Acoustic waveguide probes, located in the engine at the combustor, at the turbine exit and in the core nozzle wall, were used to measure internal fluctuating pressures. Low frequency acoustic power determined at the core nozzle exit corresponds in level to the far-field acoustic power at engine speeds below 65% of maximum, the approach condition. At engine speeds above 65% of maximum, the jet noise dominates in the far-field, greatly exceeding that of the core. From coherence measurements, it is shown that the combustor is the dominant source of the low frequency core noise. The results obtained from the JT15D engine were compared with those obtained previously from a YF102 engine, both engines having reverse flow annular combustors and being in the same size class. (Author)

A81-22532 * # Effect of a semi-annular thermal acoustic shield on jet exhaust noise. J. Goodykoontz (NASA, Lewis Research Center, Cleveland, Ohio). Acoustical Society of America, Meeting, 100th, Los Angeles, Calif., Nov. 17-21, 1980, Paper. 19 p. 13 refs.

The effect of a semi-annular acoustic shield on jet exhaust noise is investigated with the rationale that such a configuration would reduce or eliminate the multiple reflection mechanism. A limited range of flow conditions for one nozzle/shield configuration were studied at model scale. Noise measurements for a 10 cm conical nozzle with a semi-annular acoustical shield are presented in terms of lossless free field data at various angular locations with respect to the nozzle. Measurements were made on both the shielded and unshielded sides of the nozzle. Model scale overall sound pressure level directivity patterns and comparisons of model scale spectral data are provided. The results show that a semi-annular thermal acoustic shield consisting of a low velocity, high temperature gas stream partially surrounding a central jet exhibits lower noise levels than when the central jet is operated alone. The results are presented parametrically, showing the effects of various shield and central system velocities and temperatures.

A81-22534 * # Effect of facility variation on the acoustic characteristics of three single stream nozzles. O. A. Gutierrez (NASA, Lewis Research Center, Cleveland, Ohio). Acoustical Society of America, Meeting, 100th, Los Angeles, Calif., Nov. 17-21, 1980, Paper. 36 p. 12 refs.

The characteristics of the jet noise produced by three single stream nozzles have been investigated statically at the NASA-Lewis Research Center outdoor jet acoustic facility. The nozzles consisted

of a 7.6 cm diameter convergent conical, a 10.2 cm diameter convergent conical and an 8-lobe daisy nozzle with 7.6 cm equivalent diameter flow area. The acoustic experiments at NASA covered pressure ratios from 1.4 to 2.5 at total temperatures of 811 K and ambient. The data obtained with four different microphone arrays are compared. (Author)

A81-22535 * # NASA's activities in the conservation of strategic aerospace materials. J. R. Stephens (NASA, Lewis Research Center, Cleveland, Ohio). American Society for Metals, Fall Meeting, Cleveland, Ohio, Oct. 28-30, 1980, Paper. 22 p. 7 refs.

The United States imports 50-100 percent of certain metals critical to the aerospace industry, namely, cobalt, columbium, chromium, and tantalum. In an effort to reduce this dependence on foreign sources, NASA is planning a program called Conservation of Strategic Aerospace Materials (COSAM), which will provide technology minimizing strategic metal content in the components of aerospace structures such as aircraft engines. With a proposed starting date of October 1981, the program will consist of strategic element substitution, process technology development, and alternate materials research. NASA's two-fold pre-COSAM studies center on, first, substitution research involving nickel-base and cobalt-base superalloys (Waspaloy, Udimet-700, MAE-M247, René 150, HA-188) used in turbine disks, low-pressure blades, turbine blades, and combustors; and, second, alternate materials research devoted initially to investigating possible structural applications of the intermetallic alloys nickel aluminide and iron aluminide.

A81-22549 * # Flight test evaluation of a digital controller used in a VTOL automatic approach and landing system. D. R. Downing and W. H. Bryant (NASA, Langley Research Center, Flight Electronics Div., Hampton, Va.). Institute of Electrical and Electronics Engineers, Conference on Decision and Control, Fort Lauderdale, Fla., Dec. 12-14, 1979, Paper. 9 p. 9 refs.

As part of the NASA Langley Research Center's effort to develop technology for VTOL operation in the air transportation system in the late 1980's and beyond, research has been conducted faimed at developing digital controller design procedures. This paper describes the verification of one design procedure by the flight evaluation of an advanced digital control algorithm. The control Balgorithm, operating at 10 iterations per second, follows step guidance commands with zero steady state error and thus provides an autotrim capability for the nonlinear vehicle. Changes in vehicle dynamics are accounted for using a gain scheduling technique. This control algorithm is combined with sensor filters, a trajectory generator, and a closed loop guidance algorithm to form a VTOL autoland system. A CH-47 tandem rotor helicopter which contains a set of sensors, onboard digital flight computers and electro-hydraulic actuators is used in the evaluation. All software, except input-output routines, is coded in FORTRAN using floating point arithmetic and executed in the flight computer. This autoland system is exercised by automatically flying straight-in descending decelerating trajectories typical of VFR manual approaches to a predetermined landing pad. (Author)

A81-22568 * A discrete vortex method for the non-steady separated flow over an airfoil. J. Katz (NASA, Ames Research Center, Moffett Field, Calif.). Journal of Fluid Mechanics, vol. 102, Jan. 1981, p. 315-328. 23 refs.

A discrete vortex method was used to analyze the separated non-steady flow about a cambered airfoil. The foil flow modelling is based on the thin lifting-surface approach, where the chordwise location of the separation point is assumed to be known from experiments or flow-visualization data. Calculated results provided good agreement when compared with the post-stall aerodynamic data of two airfoils. Those airfoil sections differed in the extent of travel of the separation point with increasing angle of attack. Furthermore, the periodic wake shedding was analyzed and its time-dependent influence on the airfoil was investigated. (Author)

A81-22603 * # Qualification of HiMAT flight systems. A. F. Myers and S. G. Sheets (NASA, Flight Research Center, Edwards AFB, Calif.). In: Association for Unmanned Vehicle Systems, Annual Technical Symposium, 7th, Dayton, Ohio, June 16-18, 1980, Proceedings. Dayton, Ohio, Association for Unmanned Vehicle Systems, 1980, p. 1-10.

The highly maneuverable aircraft technology (HiMAT) remotely piloted research vehicle is discussed with emphasis on the advanced composite and metallic structures, digital fly-by-wire controls, and digitally implemented integrated propulsion control systems. Techniques used to qualify the systems for flight are examined. Computation and simulation of the HiMAT system are investigated in relation to Cyber-Varian simulation. The techniques used in flight qualification are complicated by ground based flight critical systems and severe onboard volume constraints imposed by the scale design.

A81-22608 # High altitude launch of the Cruise Missile. J. H. Denovchek (General Dynamics Corp., Convair Div., San Diego, Calif.). In: Association for Unmanned Vehicle Systems, Annual Technical Symposium, 7th, Dayton, Ohio, June 16-18, 1980, Proceedings. Dayton, Ohio, Association for Unmanned Vehicle Systems, 1980, p. 38-43.

From the high altitudes of the launch envelope, Air Launched Cruise Missile (ALCM) survivability considerations require that the time from launch to insertion into low cruise or terrain following altitudes be minimized while remaining within design Mach number limits of the air vehicle. All requirements have been achieved through the implementation of a constant high Mach descent logic developed around the aerodynamic characteristics of the AGM-109 ALCM. The constant high Mach descent logic is derived using relations of power off glide lift-drag ratio in combination with drag rise Mach data. B.J.

A81-22611 # The BQM-74C target as a flying computer - Its language and its peripherals. M. G. Krebs (Northrop Corp., Ventura Div., Newbury Park, Calif.). In: Association for Unmanned Vehicle Systems, Annual Technical Symposium, 7th, Dayton, Ohio, June 16-18, 1980, Proceedings. Dayton, Ohio, Association for Unmanned Vehicle Systems, 1980, p. 85-91. 5 refs.

A microprocessor Avionics Control High Level Language, MACH 1, has been implemented for mission programming of the Navy's BQM-74C Mobile Sea Range target. The language is a high level one which accomodates complex real-time sequencing and air vehicle peripheral device interactions. The statements of the language are those necessary to control each independent function implemented in air vehicle hardware. The mission specification written in MACH 1 is directly executed during the mission on the BQM-74C Digital Avionics Processor, DAP. The DAP is a microprocessor based central computer that performs stabilization, preprogrammed flight, and interfacing functions between the air vehicle and its many peripheral devices, including sensors, actuators, and command links.

A81-22612 # QF-100 Full-Scale Aerial Target program. R. C. Eslinger (Sperry Flight Systems, Phoenix, Ariz.). In: Association for Unmanned Vehicle Systems, Annual Technical Symposium, 7th, Dayton, Ohio, June 16-18, 1980, Proceedings. Dayton, Ohio, Association for Unmanned Vehicle Systems, 1980, p. 102-108.

The QF-100 Full-Scale Aerial Target (FSAT) program involves the use of a multiservice interim target to provide air-to-air and ground-to-air missile evaluation and combat crew training. This paper examines the overall FSAT program, with a specific discussion of the digital flight control system and how it is applied to the QF-100. B.J.

A81-22613 # A low cost multiple drone command and tracking system. I. B. Moore (Pacific Aerosystem, Inc., San Diego, Calif.). In: Association for Unmanned Vehicle Systems, Annual Technical Symposium, 7th, Dayton, Ohio, June 16-18, 1980, Proceedings. Dayton, Ohio, Association for Unmanned Vehicle Systems, 1980, p. 109-115.

The paper describes ALAMAK, a unified command, tracking, and telemetry system. In its basic configuration, ALAMAK is a single land, sea, or air drone tracking system; but it can be configured for multiple vehicle operation. The system is low cost and can be implemented quickly and reliably because of the large extent to which presently available equipment is utilized. Both the single-vehicle and multiple-vehicle concepts are described.

B.J.

A81-22615 # The ANK - A four dimensional navigation/flight management system for today. P. A. Hicks (Pacific Aerosystem, Inc., San Diego, Calif.). In: Association for Unmanned Vehicle Systems, Annual Technical Symposium, 7th, Dayton, Ohio, June 16-18, 1980, Proceedings.

Association for Unmanned Vehicle Systems, 1980, p. 123-130.

The ANK (Automatic Navigation Kit) uses differential omega to fly a drone aircraft over a preprogrammed path with up to 99 waypoints; expected accuracy is 400 meter CEP. At each waypoint it is possible to command a new heading, speed, and altitude, to actuate cameras or other sensors, activate or deactivate data links, and provide other commands. A dead reckoning return to a recovery point is possible in the case of navigation system failure.

B.J.

A81-22618 # A distributed airborne surveillance system. J. B. Fuller (Mitre Corp., Bedford, Mass.). In: Association for Unmanned Vehicle Systems, Annual Technical Symposium, 7th, Dayton, Ohio, June 16-18, 1980, Proceedings.

Dayton, Ohio, Association for Unmanned Vehicle Systems, 1980, p.

A quck-look study to assess the feasibility of a drone-borne distributed radar surveillance system is presented. Both coherent and noncoherent monostatic and bistatic approaches to radar systems are considered. The noncoherent system offers the advantage of simplicity and low technical risk as compared to a coherent system. The bistatic system has the advantage of eliminating a data link from beyond the FEBA. Example radar parameters are summarized for each case.

B.J.

A81-22619 # Mini-RPV radar test program. L. Kosowsky, D. Pratt, K. Koester (United Technologies Corp., Norden Systems, Norwalk Conn.), and W. Johnson (U.S. Army Electronics Research and Development Command, Fort Monmouth, N.J.). In: Association for Unmanned Vehicle Systems, Annual Technical Symposium, 7th, Dayton, Ohio, June 16-18, 1980, Proceedings.

Dayton, Ohio, Association for Unmanned Vehicle Systems, 1980, p. 156-162. 12 refs. Grant No. DAAB07-76-C-0843.

A millimeter wave radar operating at 95 GHz has been developed and tested for potential use in the Mini-RPV. The merits of the radar sensor are discussed in the context of the RPV artillery support mission. Results of a ground based measurements program are presented to demonstrate the salient features of high resolution ground map, fixed target enhancement, and moving target detection.

(Author)

A81-22620 # A versatile miniature solid state television camera /CCD/. L. Klementowski (USAF, Aeronautical Systems Div., Wright-Patterson AFB, Ohio) and M. Vicars-Harris (Fairchild Camera and Instrument Corp., Syosset, N.Y.). In: Association for Unmanned Vehicle Systems, Annual Technical Symposium, 7th, Dayton, Ohio, June 16-18, 1980, Proceedings.

Dayton, Ohio, Association for Unmanned Vehicle Systems, 1980, p. 163-167.

The Cockpit Television Sensor System (CTVS) is an all solid-state TV camera which uses a silicon CCD sensor. CTVS has the advantages of small size, versatility, and ruggedness, combined with 'hands-off' dawn-to-dusk performance. This paper describes the current application of the CTVS in fighter aircraft as well as pending applications in unmanned vehicles and space. A technical description of the camera is provided, and future developments are discussed.

R.I

A81-22623 Helicopter fatigue qualification. G. P. Pisso (Costruzioni Aeronautiche Giovanni Agusta S.p.A., Gallarate, Italy).

In: Conference on Fatigue in Aerospace Structures, Turin, Italy, February 22, 23, 1978, Proceedings. Turin, Editrice Levrotto e Bella, 1979, p. 17-30. 12 refs.

Procedures involved in the fatigue qualification of civil aircraft are reviewed with emphasis on helicopters. The key points examined include: adopted fatigue philosophy and regulations, test techniques and analysis of test results, airworthiness requirements, instrumentation, operational spectrum, flight tests, flight data analysis, and damage and fatigue life calculation.

V.L.

A81-22624 Fatigue design criteria and fleet fatigue life survey at Aeronautica Macchi. G. L. De Otto (Aeronautica Macchi. S.p.A., Varese, Italy). In: Conference on Fatigue in Aerospace Structures, Turin, Italy, February 22, 23, 1978, Proceedings.

Turin, Editrice Levrotto e Bella, 1979, p. 31-40.

The approach to the aircraft fatigue problem adopted by Aeronautica Macchi is examined with reference to the stages of fatigue design, fatigue testing, and control of expended fatigue life. It is shown that fatigue tests on complete structures are the basis for verifying mathematical fatigue life prediction models developed during the design phase.

V.L.

A81-22625 Project and experimental fatigue test of the wing of a modern combat aircraft. L. Casalegno (Aeritalia S.p.A., Turin, Italy). In: Conference on Fatigue in Aerospace Structures, Turin, Italy, February 22, 23, 1978, Proceedings. Turin, Editrice Levrotto e Bella, 1979, p. 41-58.

Classic criteria of fatigue design and fracture mechanics have been applied to the design of a new multimission combat aircraft with variable wing geometry in order to develop a method for rational assessment of structural inspections during service. The damage tolerance approach is emphasized.

A81-22626 Definition of loading sequence for full scale fatigue test. A. Del Core and G. Terracciano (Aeritalia S.p.A., Naples, Italy). In: Conference on Fatigue in Aerospace Structures, Turin, Italy, February 22, 23, 1978, Proceedings. Turin, Editrice Levrotto e Bella, 1979, p. 59-65. 12 refs.

Representative full-scale fatigue test loads are defined with reference to G 222 test. Load spectra are presented in a graphical form for different flight segments (departure, takeoff, climb, cruise, descent, approach, and arrival) and sequences of load cycles are shown for four different flight types.

V.L.

A81-22628

Ductile fracture mechanic assessments of 2219-T851, 2024-T3 and 7075-T6 aluminum alloys. A. Frediani (Pisa, Università, Pisa, Italy). In: Conference on Fatigue in Aerospace Structures, Turin, Italy, February 22, 23, 1978, Proceedings. Turin, Editrice Levrotto e Bella, 1979, p.

83-100. 14 refs.

A81-22629 Crack propagation in lugs. A. Nappi (SIAI, Marchetti S.p.A., Sesto Calende, Italy). In: Conference on Fatigue in Aerospace Structures, Turin, Italy, February 22, 23, 1978, Proceedings.

Turin, Editrice Levrotto e Bella, 1979, p. 101-109. 17 refs.

Several theoretical approaches to the problem of crack growth rate determinations are examined with particular reference to crack growth in lugs. A computer program written in FORTRAN is presented which allows easy insertion of new subroutines for the calculation of stress intensity factors and crack growth rates (computed by the Froman equation) and for including the retardation effect (introduced through the Willenborg model).

A81-22631 Fatigue life evaluation of a helicopter main rotor hub. A. Russo, G. Biassoni, and A. Brivio (Costruzioni Aeronautiche Giovanni Agusta S.p.A., Gallarate, Italy). In: Conference on Fatigue in Aerospace Structures, Turin, Italy, February 22, 23, 1978, Proceedings.

Bella, 1979, p. 121-153. 9 refs.

A finite element model is presented for analytical evaluation of the fatigue life of a helicopter rotor hub. The validity of the proposed model is verified against experimental results.

V.L.

A81-22632 Crack growth propagation under variable amplitude loading in aerospace structures. G. Cavallini (Pisa, Università, Pisa, Italy). In: Conference on Fatigue in Aerospace Structures, Turin, Italy, February 22, 23, 1978, Proceedings.

Turin, Editrice Levrotto e Bella, 1979, p. 155-164. Research

sponsored by the Consiglio Nazionale delle Ricerche.

Methods for predicting fatigue crack growth in aerospace structures under operating conditions are evaluated. An evaluation procedure is proposed which is based on statistical analysis of experimental and calculation results and comparison with the corresponding data for constant-amplitude loading. The application of the procedure is demonstrated using a set of crack propagation data.

V.L.

A81-22633 Study of a crack propagation on the flap rail of a transport aircraft. N. Giani and S. Peyronel (Aeronautica Macchi S.p.A., Varese, Italy). In: Conference on Fatigue in Aerospace Structures, Turin, Italy, February 22, 23, 1978, Proceedings. Turin, Editrice Levrotto e Bella, 1979, p. 165-174. 6 refs.

The theoretical determination of the propagation of cracks in structural members with complex geometry, is of the utmost importance to evaluate the dependability of the different theories and of the factors by which they are governed. In the preceding work, the lack of data regarding the overstress coefficients was compensated by the setting up of an analysis method which, while yielding appreciable results, permitted complex calculations to be avoided as well as the costs that the application of more refined methods would have inevitably involved. To the effects of the results, attention is also laid on the importance of the initial length of the assumed crack and of the choice of the propagation law and relevant coefficients. The theoretical results thus obtained are then compared to the experimental measurements taken during a series of fatigue tests carried out at Aeronautica Macchi. (Author)

A81-22635 Mathematical aspects of the probabilistic evaluations of structural safety and NDI capabilities. E. Antona (Torino, Politecnico, Turin, Italy). In: Conference on Fatigue in Aerospace Structures, Turin, Italy, February 22, 23, 1978, Proceedings.

Turin, Editrice Levrotto e Bella, 1979, p. 181-198, 6 refs.

It is noted that probability considerations are coming to play a greater role in aeronautics and astronautics in the analysis of structure failure loads, crack propagation, and nondestructive inspection method capabilities. Probabilistic fundamentals, including probability distributions, analytical tools, and practical assumptions, are discussed. Applications are given, among them an interpretation of nondestructive inspection methods capability tests and a probabilistic interpretation of safety in static load failure. The influence of the loaded zone extension on fatigue behavior is discussed, and attention is given to certain statistical considerations regarding the validity of Miner's rule.

A81-22636 The 1980's - Payoff decade for advanced materials; Proceedings of the Twenty-fifth National Symposium and Exhibition, San Diego, Calif., May 6-8, 1980. Symposium sponsored by the Society for the Advancement of Material and Process Engineering. Azusa, Calif., Society for the Advancement of Material and Process Engineering (Science of Advanced Materials and Process Engineering Series. Volume 25), 1980. 786 p. \$55.

The symposium focuses on recent developments in advanced structural materials and adhesive formulations, material characterization, processing techniques, design and fabrication of composite structures, testing methods, and applications. Papers are presented on the advanced composite hardware utilized on the Intelsat V spacecraft, the development of advanced structural materials for fusion power, an instrumented tensile impact method for composite

materials, and prospects for bonding primary aircraft structures in the 80's.

A81-22641 Progress in P/M superalloy and titanium for aircraft applications. E. J. Dulis, J. H. Moll, V. K. Chandhok (Colt Crucible Research Center, Pittsburgh, Pa.), and J. C. Hebeisen (Colt Industries, Oakdale, Pa.). In: The 1980's - Payoff decade for advanced materials; Proceedings of the Twenty-fifth National Symposium and Exhibition, San Diego, Calif., May 6-8, 1980.

Azusa, Calif., Society for the Advancement of

Material and Process Engineering, 1980, p. 75-89. 8 refs.

High-quality powder metallurgy shaped parts with excellent strength and ductility levels and room- and elevated-temperature tensile properties are being developed for a range of aircraft products. The use of inert (argon) gas and vacuum systems for powder making, handling, and containerization and the use of hot isostatic pressing for compaction produce parts for gas turbine engines that require fewer processing steps, less starting material, and less energy. An array of tables and figures illustrate the ceramic mold process for making complex near-net shapes from superalloy which is being adapted for use with titanium. The P/M process for titanium alloy shapes is similar to that described for the superalloy except that the starting prealloyed powder is produced by the rotating electrode method.

A81-22646 Adhesive bonding of avionic structures. R. W. Malarik (Lear Siegler, Inc., Instrument Div., Grand Rapids, Mich.). In: The 1980's - Payoff decade for advanced materials; Proceedings of the Twenty-fifth National Symposium and Exhibition, San Diego, Calif., May 6-8, 1980. Azusa, Calif., Society for the Advancement of Material and Process Engineering, 1980, p. 167-175

This paper examines adhesive bonding as an alternative assembly method for avionics chassis. Attention is given to an epoxy paste adhesive which eliminates the need for elaborate fixturing and curing facilities. Characteristics of an aluminum filled epoxy, an asbestos filled epoxy, and a general purpose epoxy are compared. Tests for moisture and temperature resistance are reported along with vibration in commercial and fighter aircraft.

A81-22647 Development program for a graphite/PMR 15 polyimide duct for the F404 engine. C. L. Stotler (General Electric Co., Aircraft Engine Group, Evendale, Ohio). In: The 1980's - Payoff decade for advanced materials; Proceedings of the Twenty-fifth National Symposium and Exhibition, San Diego, Calif., May 6-8, 1980.

Azusa, Calif., Society for the Advancement of Material and Process Engineering, 1980, p. 176-187.

It is noted that this development program will produce efficient autoclave processing techniques that will permit the major portion of the duct structure of the F404 engine to be fabricated using woven graphite cloth in a PMR 15 resin matrix. The four ducts to be produced during the program will be used for a variety of static, fatigue, and environmental testing as well as ground testing. Some of the background work that led to the selection of the materials to be used for the program is discussed, and the preliminary design of the duct emerging from this background work is defined. It is noted that this preliminary design indicates that an advanced composite F404 outer duct would be 20% lighter than the current titanium duct and would achieve significant cost savings.

A81-22648 Composite fuselage development for Naval aircraft. J. J. Minecci and T. E. Hess (U.S. Naval Material Command, Naval Air Development Center, Warminster, Pa.). In: The 1980's - Payoff decade for advanced materials; Proceedings of the Twenty-fifth National Symposium and Exhibition, San Diego, Calif., May 6-8, 1980.

Azusa, Calif., Society for the Advancement of Material and Process Engineering, 1980, p. 188-201. 8 refs.

A summary is presented of current Navy programs for the development of composite fuselage structures. Included are the cost

and weight payoffs which are expected for these design applications. Supporting technology programs which are being pursued to complement this work are also indicated. (Author)

A81-22664 * Design, durability and low cost processing technology for composite fan exit guide vanes. S. S. Blecherman (United Technologies Corp., Pratt and Whitney Aircraft Group, Middletown, Conn.). In: The 1980's - Payoff decade for advanced materials; Proceedings of the Twenty-fifth National Symposium and Exhibition, San Diego, Calif., May 6-8, 1980.

Azusa, Calif., Society for the Advancement of Material and Process Engineering, 1980, p. 403-417. 5 refs. Contract No. NAS3-21037.

A program was conducted to design, fabricate and test a durable, low cost, lightweight composite fan exit guide vane for high bypass ratio gas turbine engine application. Eight candidate material/design combinations were evaluated by NASTRAN finite element analysis. Four of these candidate systems were selected for composite vane fabrication by two vendors. A core and shell vane design was chosen in which the unidirectional graphite core fiber was the same for all candidates. The shell material, fiber orientation and ply configuration were varied. Material tests were performed on raw material and composite specimens to establish specification requirements. Composite vanes were nondestructively inspected and subsequently fatigue tested in both dry and 'wet' conditions. The program provided relevant data with respect to design analysis, materials properties, inspection standards, improved durability, weight benefits and part price of the composite fan exit guide vane. (Author)

A81-22665 * Graphite polyimide fabrication research for supersonic cruise aircraft. W. T. Freeman, Jr. (Kentron International, Inc., Hampton, Va.) and R. M. Baucom (NASA, Langley Research Center, Hampton, Va.). In: The 1980's - Payoff decade for advanced materials; Proceedings of the Twenty-fifth National Symposium and Exhibition, San Diego, Calif., May 6-8, 1980.

Azusa, Calif., Society for the Advancement of Material and Process Engineering, 1980, p. 418-432. 5 refs.

Advanced fabrication processes and adhesive bonding methods have been developed for the fabrication of full scale fiberglass-polyimide honeycomb stiffened HTS-1 graphite/PMR-15 polyimide panels that meet the design criteria for an upper wing panel of the NASA YF-12 aircraft. Detailed manufacturing, bonding, and autoclave cure procedures are presented. Nondestructive test methods including pulse echo and through-transmission ultrasonic C-scan and laser holography were developed to detect flaws in components and the completed panels. Panels were tested in shear at room temperature and 533 K (500 F) following a variety of thermal exposures to obtain load, deflection and failure analysis data. (Author)

A81-22676 Effect of impact damage on the XFV-12A composite wing box. L. W. Gause, M. S. Rosenfeld, and R. E. Vining, Jr. (U.S. Naval Material Command, Naval Air Development Center, Warminster, Pa.). In: The 1980's - Payoff decade for advanced materials; Proceedings of the Twenty-fifth National Symposium and Exhibition, San Diego, Calif., May 6-8, 1980.

Azusa, Calif., Society for the Advancement of Material and Process Engineering, 1980, p. 679-690. 8 refs.

Impact tests were performed on a graphite/epoxy wing box structure. Both sub-visual and visual level impact damage were studied; the structure experienced no effect from the impact damage under spectrum fatigue loading to 150 per cent of Design Limit Load (D.L.L.). Failure originated from an approximately 2 inch diameter impact induced delamination at a static load of 164 per cent D.L.L. (Author)

A81-22678 Experiences with composite aircraft structures. S. J. Dastin and H. A. Erbacher (Grumman Aerospace Corp., Bethpage, N.Y.). In: The 1980's - Payoff decade for advanced materials; Proceedings of the Twenty-fifth National Symposium and Exhibition, San Diego, Calif., May 6-8, 1980.

Azusa, Calif., Society for the Advancement of Material and Process Engineering, 1980, p. 706-715. 6 refs.

The inherent damage-tolerance of composite structures renders them suitable for use in military aircraft. Grumann Aerospace has developed fabrication techniques in which controlled orientation of fibers reduces the brittleness of a composite and reinforces it in the short transverse, with crack control provided by the placement of S glass-fiber strips within the graphite/epoxy laminate. Translaminar reinforcement (TLR) and the application of hybrid epoxy mixtures have been found to retard local delamination, a rapid-degradation fracture mode caused by impact and resulting from the inhomogeneous layered structures of composites. Small delaminations are repaired in-shop with catalyzed-resin injections, whereas throughholes and large-scale damage are relaminated, the orientation of the new layers matching that of the layers removed. A field-repair methodology has also been developed for highly loaded boron-epoxy structures based on load introduction and shear lag. Through-skin damage is corrected in this case by applying titanium-bonded foils to two plies of fiberglass-epoxy oriented plus or minus 45 degrees to the major axis over a film epoxy adhesive. With the completion of fatigue studies, composite repair methodology and technology should be throughly established. R.S.

A81-22679 Prospects for bonding primary aircraft structure in the 80's. E. W. Thrall, Jr. (Douglas Aircraft Co., Long Beach, Calif.). In: The 1980's - Payoff decade for advanced materials; Proceedings of the Twenty-fifth National Symposium and Exhibition, San Diego, Calif., May 6-8, 1980. Azusa, Calif., Society for the Advancement of Material and Process Engineering, 1980, p. 716-727. 6 refs.

It is noted that corrosion/disbond problems long associated with bonded joints are understood and controllable. The Primary Adhesively Bonded Structure Technology (PABST) program has validated the metal bonding technology so that it can be used with confidence. Technical problems which remain and which are discussed include repeatable optimum surface treatment control, prebonding adhesive moisture control, and cure monitoring.

C.R.

A81-22681 * Effects of commercial aircraft operating environment on composite materials. A. J. Chapman (NASA, Langley Research Center, Hampton, Va.), D. J. Hoffman (Boeing Commercial Airplane Co., Renton, Wash.), and W. T. Hodges (U.S. Army, Structures Laboratory, Hampton, Va.). In: The 1980's Payoff decade for advanced materials; Proceedings of the Twenty-fifth National Symposium and Exhibition, San Diego, Calif., May 6-8, 1980.

Azusa, Calif., Society for the Advancement of Material and Process Engineering, 1980, p. 737-751.

Long term effects of commercial aircraft operating environment on the properties and durability of composite materials are being systematically explored. Composite specimens configured for various mechanical property tests are exposed to environmental conditions on aircraft in scheduled airline service, on racks at major airports, and to controlled environmental conditions in the laboratory. Results of tests following these exposures will identify critical parameters affecting composite durability, and correlation of the data will aid in developing methods for predicting durability. Interim results of these studies show that mass change of composite specimens on commercial aircraft depends upon the regional climate and season, and that mass loss from composite surfaces due to ultraviolet radiation can be largely prevented by aircraft paint.

(Author)

A81-22692 Controls of aeronautical structures under fatigue testing by holographic pulsed lasers interferometry. H. Fagot, F. Albe, P. Smigielski, A. Stimpfling (Institut Franco-Allemand de Recherches, Saint-Louis, Haut-Rhin, France), and J. L. Arnaud (Société Nationale Industrielle Aérospatiale, Suresnes, Hauts-de-Seine, France). In: European Congress on Optics Applied to Metrology (METROP), 2nd, Strasbourg, France, November 26-30, 1979, Proceedings.

Bellingham, Wash., Society of Photo-Optical Instrumentation Engineers, 1980, p. 154-158. Re-

search supported by the Direction des Recherches, Etudes et Techniques.

A compact, mobile holographic camera with two ruby lasers has been developed for the fatigue testing of aeronautical structures subjected to periodic tensile stress. The lasers may be triggered with respect to the phase of a periodic signal by adjusting the delays and accounting for pumping time. Tests have been conducted with a mechanical traction machine that applies periodic traction constraints on the order of one ton at a resonance frequency of about 100 Hz. The resulting deformations vary considerably, and clear visualizations have been obtained for time lapses between two laser impulses from 20 microsec to 1 millisec during a cycle. Lapses of the order of 100 millisec may be used to follow the evolution of a fissure. The technique has many aeronautical applications including the visualization of loosenings, disbondings, inhomogeneities and surface defaults.

S.C.S.

A81-22973 # Design of guidance and control digital autopilots. W. Albanes (Computer Sciences Corp., Defense Systems Div., Huntsville, Ala.). Journal of Guidance and Control, vol. 4, Mar.-Apr. 1981, p. 126-133. 8 refs. Army-supported research.

The miniaturization, availability, and low cost of digital hardware has made possible a digital autopilot package for antitank homing missiles comparable in size and cost to existing analog controllers. The paper discusses the design, implementation, and validation of a digital guidance and control autopilot based upon current sampled-data techniques and methodologies. This controller is considered state-of-the-art technology, performing as well as or better than analog versions, and having been flown in small homing antitank missiles. It performs the classical flight control autopilot functions of attitude stabilization and gyro filtering, and provides actuator control, seeker signal filtering, and guidance shaping. The digital guidance and control autopilot uses a laser seeker to fautomatically pursue and impact its target without operator guidance intervention.

(Author)

A81-22984 Analysis of a symmetric transonic aerofoil with the finite element method - A new upwinding technique. J. E. Marsh and F. E. Eastep (USAF Institute of Technology, Wright-Patterson AFB, Ohio). International Journal for Numerical Methods in Engineering, vol. 16, Oct. 1980, p. 137-148. 16 refs.

The nonlinear small-disturbance velocity-potential equation for steady flow over a thin symmetric nonlifting airfoil is solved by the finite element method. Pressure distributions are computed for flow regimes ranging from incompressible flow to transonic flow with weak shocks. Convergence of solution algorithms occurs rapidly for all subsonic flows, but fails for transonic or mixed flows when the supersonic bubble is larger than one-half of an element. For transonic flows, a new upwinding scheme is used to modify the formulations for elements within the supersonic bubble.

B.J.

A81-23034 A solid-state airborne sensing system for remote sensing. R. M. Hodgson, F. M. Cady, and D. Pairman (Canterbury, University, Christchurch, New Zealand). *Photogrammetric Engineering and Remote Sensing*, vol. 47, Feb. 1981, p. 177-182. 12 refs. Research supported by the University of Canterbury and University Grants Committee.

Currently most non-satellite multispectral remote sensing in the visible and near infrared is carried out using clusters of conventional photographic cameras. A project is in progress which exploits microcomputer and solid-state technology in the development of a multispectral scanner to be flown in light aircraft. Such systems offer the potential advantages of improved linearity and dynamic range, extended spectral response, the direct generation of digital data, and the real time display of captured images. The problems of sensor selection, stored array size, and pixel quantization are discussed. A prototype single camera system based on the use of a 100 by 100 element charge coupled device area sensor has recently been flight tested. A four-camera system that will allow the simultaneous capture and storage of 128 by 128 element images in four spectral bands in the 400-1100 nm range is under development. (Author)

A81-23095 Development of a shadow mask type high-resolution color picture tube for cockpit display. K. Hayashi, K. Nakamura, M. Matsushita (Mitsubishi Electric Corp., Kyoto Works, Nagaokakyo, Japan), and F. Kishimoto (Mitsubishi Electric Corp., Central Research Laboratory, Amagasaki, Japan). In: Biennial Display Research Conference, 6th, Cherry Hill, N.J., October 21-23, 1980, Conference Record. Conference sponsored by IEEE, SID, and DOD. Piscataway, N.J., Institute of Electrical and Electronics Engineers, Inc., 1980, p. 120, 121.

A81-23359 Multipath and interference effects in secondary surveillance radar systems. M. C. Stevens (Cossor Electronics, Ltd., Harlow, Essex, England). *IEE Proceedings, Part F - Communications, Radar and Signal Processing*, vol. 128, pt. F, no. 1, Feb. 1981, p. 43-53. 7 refs.

Secondary surveillance radar for air traffic control is compared with primary radar for improved performance. System problems associated with SSR are less easily tolerated because of increasing reliance being placed on SSR by air traffic control. Problems arising from multipath and mutual line interference effects are examined. Many deficiencies can be overcome by adopting improved antennas and using more impulse direction finding techniques.

R.C.

A81-23366 # Critical field length calculations for preliminary design. S. A. Powers (Vought Corp., Dallas, Tex.). *Journal of Aircraft*, vol. 18, Feb. 1981, p. 103-107. 6 refs.

Two methods are presented for determining the critical field length for multiple-engine jet aircraft during the preliminary design process. The first method includes the effects of thrust deflection, thrust variation with velocity, and head or tail winds. The second approximation is based upon zero wind and constant thrust values, and has been programmed on a personal calculator. While the principal application of this method has been to military aircraft, the method can be applied to civil aircraft performance when suitably modified. (Author)

A81-23367 # Transonic flow calculations over two-dimensional canard-wing systems. V. Shankar, N. D. Malmuth (Rockwell International Science Center, Thousand Oaks, Calif.), and J. D. Cole (California, University, Los Angeles, Calif.). (American Institute of Aeronautics and Astronautics, Fluid and Plasma Dynamics Conference, 12th, Williamsburg, Va., July 23-25, 1979, Paper 79-1565.) Journal of Aircraft, vol. 18, Feb. 1981, p. 108-114. 12 refs. Contract No. F744620-76-C0044.

As a prototype for the three-dimensional interaction problem, the transonic interference flowfields over two-dimensional canard-wing systems are computed using transonic small disturbance theory. In the calculation, the two airfoils comprising the lifting 'biplane' system are placed in separate computational planes with an overlapped region across which information from one airfoil to the other is transferred at the end of each relaxation cycle. Results showing the favorable interference in overall lift are presented and compared with linear theory calculations. Far field expressions for solid, slotted, and free jet wind tunnel wall cases that correspond to the canard-wing arrangement are also described. (Author)

A81-23368 # Stochastic modeling of an aircraft traversing a runway using time series analysis. C. Venkatesan and V. Krishnan (Indian Institute of Science, Bangalore, India). Journal of Aircraft, vol. 18, Feb. 1981, p. 115-120. 9 refs.

Time series analysis is applied to problems concerning runway-induced vibrations of an aircraft. A simple mathematical model based on this technique is fitted to obtain the impulse response coefficients of an aircraft system considered as a whole for a particular type of operation. By using this model, the output which is the aircraft response can be obtained with lesser computation time for any runway profile as the input. (Author)

Page Intentionally Left Blank

STAR ENTRIES

N81-15970* # National Aeronautics and Space Administration, Washington, D. C.

THE HIGH-SPEED AIRFOIL PROGRAM

In its The High-Speed Frontier 1980 p 3-60

Avail: NTIS MF A01; SOD HC \$6.50 CSCL 01A

A case history is presented of the work done in the field of supersonic flow and serodynamics. Emphasis is placed on the development of supercritical wings and the study of the effects of supersonic speeds on propeller blades for aircraft. A review is presented of important milestones in the development of supercritical and transonic aerodynamic theory.

N81-15971*# National Aeronautics and Space Administration, Washington, D. C.

TRANSONIC WIND TUNNEL DEVELOPMENT (1940 -1950)

In its The High-Speed Frontier 1980 p 61-118

Avail: NTIS MF A01; SOD HC \$6.50 CSCL 14B

A case history is presented for the wind tunnel program of the National Advisory Committee for Aeronautics. The choking problem is discussed and the development of the repowered 8-foot high speed tunnel is described. Transonic airfoil facilities of interest include the annular transonic tunnel and the slotted transonic tunnel. High speed research airplanes used for wind tunnel testing and wing-flow and bump methods are also discussed.

N81-15972*# National Aeronautics and Space Administration, Washington, D. C.

THE HIGH-SPEED PROPELLER PROGRAM

In its The High-Speed Frontier 1980 p 119-138

Avail: NTIS MF A01; SOD HC \$6.50 CSCL 01A A case history is presented for the propeller program of the National Advisory Committee for Aeronautics. The work was

concerned with the development of supersonic airfoils for aircraft applications. Propeller blade pressure distributions at high speeds were investigated. High speed flight tests of various propeller configurations were conducted and a high speed dynamometer was developed.

N81-15973*# National Aeronautics and Space Administration, Washington, D. C.

HIGH-SPEED COWLINGS, AIR INLETS AND OUTLETS, AND INTERNAL-FLOW SYSTEMS

In its the High-Speed Frontier 1980 p 139-165

Avail: NTIS MF A01; SOD HC \$8.50 CSCL 01C

A case history is presented of the National Advisory Committee on Aeronautics' program of aircraft engine development. The ramjet engine is described and its development is traced through work done in the field of supersonic inlets. The effects of heat and compressibility on internal flow systems in engines are discussed. T.M.

N81-15974*# Kansas Univ., Lawrence.

A FEASIBILITY STUDY FOR ADVANCED TECHNOLOGY INTEGRATION FOR GENERAL AVIATION Final Report, 10 Apr. 1979 - 9 Apr. 1980

David L. Kohlman, Garey T. Matsuyama, Kevin E. Hawley, and Paul T. Meredith Nov. 1980 533 p refs

(Contract NAS1-15770) (NASA-CR-159381; KU-FRL-414-1) Avail: NTIS

HC A24/MF A01 CSCL 01B An investigation was conducted to identify candidate technologies and specific developments which offer greatest promise for improving safety, fuel efficiency, performance, and utility of general aviation airplanes. Interviews were conducted with general aviation airframe and systems manufacturers and NASA research centers. The following technologies were evaluated for use in airplane design tradeoff studies conducted during the study: avionics, aerodynamics, configurations, structures, flight controls, and propulsion. Based on industry interviews and design tradeoff studies, several recommendations were made for further high payoff research. The most attractive technologies for use by the general aviation industry appear to be advanced engines, composite materials, natural laminar flow airfoils, and advanced integrated avionics systems. The integration of these technologies in airplane design can yield significant increases in speeds, ranges, and payloads over present aircraft with 40 percent to 50 percent reductions in fuel used.

N81-15975# Air Force Inst. of Tech., Wright-Patterson AFB, Ohio. School of Engineering.

A FEASIBILITY STUDY FOR ADVANCED TECHNOLOGY INTEGRATION FOR GENERAL AVIATION Ph.D. Thesis -Kansas Univ. Final Report

Garey T. Matsuyama May 1980 529 p refs

(AD-A092437: AFIT-CI-80-22D) HC A23/MF A01 CSCL 01/3 NTIS

A study directed toward the identification and evaluation of applicable advanced technologies for general aviation was performed. An extensive data base was generated through visits to 31 general aviation manufacturers and 3 NASA research centers as well as through an exhaustive literature search. An evaluation technique was developed which allowed candidate technologies to be ranked according to potential benefit. Finally, design studies were performed for a 6-passenger personal/business airplane and a 19-passenger commuter airplane. The General Aviation Synthesis Program (GASP) was utilized during the design studies for propulsion system and vehicle sizing as well as mission performance analysis.

N81-15976*# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.

EFFECTS OF SIDEWALL GEOMETRY ON THE INSTALLED PERFORMANCE OF NONAXISYMMETRIC CONVERGENT-**DIVERGENT EXHAUST NOZZLES**

Jeffery A. Yetter (George Washington Univ., Hampton, Va.) and Laurence D. Leavitt Dec. 1980 119 p refs

(NASA-TP-1771; L-13826) Avail: NTIS HC A06/MF A01 CSCL 01A

The investigation was conducted at static conditions and over a Mach number range from 0.6 to 1.2. Angle of attack was held constant at 0 deg. High pressure air was used to simulate jet exhaust flow at ratios of jet total pressure to free-stream static pressure from 1 (jet off) to approximately 10. Sidewall cutback appears to be a viable way of reducing nozzle weight and cooling requirements without compromising installed performance.

N81-15977*# Boeing Co., Seattle, Wash.
A SYSTEM FOR AERODYNAMIC DESIGN AND ANALYSIS OF SUPERSONIC AIRCRAFT. PART 4: TEST CASES Final Report, Sep. 1978 - Aug. 1980

W. D. Middleton and J. L. Lundry Washington NASA Dec. 1980 225 p refs 4 Vol. (Contract NAS1-15534)

(NASA-CR-3354; D6-41840-4) NTIS HC A10/MF A01 CSCL 01A

An integrated system of computer programs was developed for the design and analysis of supersonic configurations. The system uses linearized theory methods for the calculation of surface pressures and supersonic area rule concepts in combination with linearized theory for calculation of aerodynamic force coefficients. Interactive graphics are optional at the user's request. Representative test cases and associated program output are presented.

N81-15978*# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.

EFFECT OF WING LOCATION AND STRAKES ON STABILITY AND CONTROL CHARACTERISTICS OF A MONOPLANAR CIRCULAR MISSILE WITH LOW-PROFILE TAIL FINS AT SUPERSONIC SPEEDS

A. B. Blair, Jr. Dec. 1980 200 p refs

(NASA-TM-81878; L-13852) Avail: NTIS HC A10/MF A01 CSCL 01A

A wind tunnel test was conducted at Mach numbers from 1.70 to 2.86 to extend the aerodynamic data base for wing tail effect on stability and control characteristics of monoplanar missiles. The results are summarized to show the effects of tail fin dihedral angle, wing location, and nose body strakes. The results indicate that an increase in tail fin dihedral angle produces positive increments in directional stability that allow greater trimmed lift coefficient values (maneuver potential) to be obtained. An increase in wing tail gap for the Mach number range reduces the aerodynamic center travel and produces reductions in directional stability at the lower angles of attack. A change in wing height (vertical location) strongly influences the angle of attack at which pitch up and the most directional stability occur. The addition of strakes to the baseline configuration increases directional stability, which allows a significant increase in stable trimmed maneuver capability. The tail fins of the baseline configuration are effective in producing roll and yaw control that are accompanied by favorable yaw and roll, respectively. R.C.T.

N81-15982*# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.

A FLIGHT INVESTIGATION OF PERFORMANCE AND LOADS FOR A HELICOPTER WITH RC-SC2 MAIN-ROTOR BLADE SECTIONS

Charles E. K. Morris, Jr., Robert L. Tomaine, and Dariene D. Stevens Dec. 1980 140 p Prepared in cooperation with Army Aviation Research and Development Command, Hampton, Va.

(NASA-TM-81898; AVRADCOM-TM-81-B-1) Avail; NTIS HC A07/MF A01 CSCL 01A

The test envelope included hover, forward-flight speed sweeps from 33 to 74 m/sec (65 to 144 knots), and collective-fixed maneuvers at about 0.25 tip-speed ratio. The data set for each test point describes vehicle flight states, control positions, rotor loads, power requirements and blade motions. Rotor loads were reviewed primarily in terms of peak-to-peak and harmonic content. Lower frequency components predominated for most loads and generally increased with increased airspeed, but not necessarily with increased maneuver load factor.

T.M.

N81-15983*# National Aeronautics and Space Administration, Washington, D. C.

FLOW PHENOMENA ALONG FUSELAGES AND WING-FUSELAGE SYSTEMS OF GLIDERS

Jerzy Ostrowski, Mieczyslaw Litwinczyk, and Lukasz Turkowski Dec. 1980 16 p refs Transl. into ENGLISH from Arch. Budowy Maszyn (Poland), v. 25, no. 1, 1978 p 91-104 Original language document was announced as A78-36203 Transl. by Kanner (Leo) Associates, Redwood City, Calif.

(NASA-TM-75401) Copyright. Avail: NTIS HC A02/MF A01 CSCL 01A

The results are presented for visualization tests and measurements of the velocity field in diffusion regions (with a positive pressure gradient) for fuselages and transition regions between the wing and the fuselage. Wind tunnel and flight tests were performed. Specific emphasis was placed on examining the secondary flow influencing separation acceleration and the influence of the geometrical form of the wing fuselage system manifested by the occurrence of secondary flows of various types.

R.C.T.

N81-15984*# National Aeronautics and Space Administration, Washington, D. C.

DISCUSSION OF TEST RESULTS IN THE DESIGN OF LAMINAR AIRFOILS FOR COMPETITION GLIDERS

Jerzy Ostrowski, Stanisław Skrzynski, and Mieczyslaw Litwinczyk Dec. 1980 21 p refs Transl. into ENGLISH from Arch. Budowy Maszyn (Poland), v. 25, no. 1, 1978 p 105-120 Original language document was announced as A78-36204 Transl. by Kanner (Leo) Associates, Redwood City, Calif.

(NASA-TM-75402) Avail: NTIS HC A02/MF A01 CSCL

The deformation of flow in the boundary layer and the local separation of a laminar layer (laminar bubbles) from various airfoils were investigated. These phenomena were classified and their influence is discussed. Various aerodynamic characteristics are discussed and the principles for prescribing pressure distribution to attain a high value of c sub z max with a possibly low drag coefficient are described.

T.M.

N81-15985*# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.

SOME WAKE-RELATED OPERATIONAL LIMITATIONS OF ROTORCRAFT

Harry H. Heyson Dec. 1980 53 p refs Presented at the Fourth Midwest Helicopter Safety Seminar, Joliet, Ill., 3-5 Feb. 1981; sponsored by the Illinois Dept. of Transportation and the FAA

(NASA-TM-81920) Avail: NTIS HC A04/MF A01 CSCL 01B

Wind tunnel measurements show that the wake of a rotor, except at near hovering speeds, is not like that of a propeller. The wake is more like that of a wing except that, because of the slow speeds, the wake velocities may be much greater. The helicopter can produce a wake hazard to following light aircraft that is disproportionately great compared to an equivalent fixed wing aircraft. This hazard should be recognized by both pilots. and airport controllers when operating in congested areas. Ground effect is generally counted as a blessing since it allows overloaded takeoffs; however, it also introduces additional operation problems: These problems include premature blade stall in hover, settling in forward transition, shuddering in approach to touchdown and complications with yaw control. Some of these problems were treated analytically in an approximate manner and reasonable experiment agreement was obtained. An awareness of these effects can prepare the user for their appearance and their T.M. consequences.

N81-15986*# Mississippi Univ., University. Engineering and Industrial Research Station.

AN APPLICATION OF WAKE SURVEY RAKES TO THE EXPERIMENTAL DETERMINATION OF THRUST FOR A PROPELLER DRIVEN AIRCRAFT Final Report

K. R. Hall, S. J. Miley, and H. J. Tsai Feb. 1981 76 p refs (Grant NsG-1454)

(NASA-CR-163920; MSSU-EIRS-ASE-81-3) Avail: NTIS HC A05/MF A01 CSCL 01A

The lack of slipstream static pressure distribution seriously affected the results but recommendations for removing the deficiency are discussed. The wake survey rake is shown to be a valuable tool in aircraft flight testing. Flow characteristics in the wake of the propeller were examined.

T.M.

N81-15992# Flow Research, Inc., Kent, Wash.
APPLICATION OF TRANSONIC POTENTIAL CALCULATIONS TO AIRCRAFT AND WIND TUNNEL CONFIGURATIONS

John E. Mercer and Earll M. Murman In AGARD Subsonic/ Transonic Configuration Aerodyn. Sep. 1980 15 p refs

(Contract N00014-78-C-0079; F4D600-79-C-0001) Avail: NTIS HC A19/MF A01

The computation of inviscid transonic flow modeled by the full potential equation is presented for two geometrical configurations. The Jameson-Caughey finite volume method is used to solve the governing equations in conservative form. The development of suitable computational meshes together with computed results are presented for a swept wing in a wind tunnel and for a wing body configuration.

Author

N81-15994# Avions Marcel Dassault, Saint-Cloud (France). Dept. des Etudes Theoriques Aerodyn.

FINITE ELEMENT METHOD STUDY OF WING-FUSELAGE-NACELLE INTERACTIONS OF A FALCON 20 TYPE AIR-CRAFT AT MACH = 0.79 [ETUDE PAR LA METHODE DES ELEMENTS FINIS DES INTERACTIONS VOILURE FUSELAGE-NACELLE D'UN AVION DU TYPE FALCON A MACH = 0.79]

Gilbert Heckmann In AGARD Subsonic/Transonic Configuration Aerodyn. Sep. 1980 11 p refs In FRENCH

Avail: NTIS HC A19/MF A01

Adaptation of the Garrett ATF3-6 engine on the twin engine Falcon 20, equipped in series with a General Electric CF 700 engine, revealed an important and predicted growth of drag in transonic flow. Wind tunnel tests of the new configuration showed shocks on the front of the engine nacelle and on the back of the wing at the top face of the socket at Mach = 0.79. Air flow between the wing and the nacelle was locally supersonic. The shape and position of the nacelle and mast were modified. This complex fuselage wing mast nacelle configuration should be studied in supercritical flow while considering the flow from the engine. The finite element method permits calculation in three dimensional and transonic flow with shock waves in a geometric domain under conditions of the required limits. It is shown that the matrix from a transonic calculation method provides solutions to aerodynamic problems previously detectable only by flight and wind tunnel tests. Mathematical tools are described and results obtained on the original nacelle and on the definitive nacelle with modified shape and position are discussed. Transl. by A.R.H.

• N81-15996# Aircraft Research Association Ltd., Bedford (England).

*PROSPECTS FOR EXPLOITING FAVOURABLE AND MINIMIZING ADVERSE AERODYNAMIC INTERFERENCE IN EXTERNAL STORE INSTALLATIONS

A. B. Haines In AGARD Subsonic/Transonic Configuration Aerodyn. Sep. 1980 25 p refs

Avail: NTIS HC A19/MF A01

External store installations are frequently a source of considerable adverse aerodynamic interference giving large increases in drag, reductions in usable lift, and poor store release chiaracteristics. Research has shown how this adverse interference can be greatly alleviated or even transformed into favorable interference. Some of the available evidence for a wide variety of arrangements are reviewed. The nature of the interference, both adverse and favorable, is described, particular emphasis being placed on the major adverse interference in standard multiple carriers and in some underwing installations. The possible benefits of wing tip carriage and carefully arranged underfuselage arrays are noted. The fact that dramatic improvements might be possible by adopting a radical approach to store carriage is stressed.

E.D.K.

N81-15997# Messerschmitt-Boelkow-Blohm G.m.b.H., Munich (West Germany).

EVALUATION OF AIRCRAFT INTERFERENCE EFFECTS ON EXTERNAL STORES AT SUBSONIC AND TRANSONIC SPEEDS

Ronald Deslandes *In* AGARD Subsonic/Transonic Configuration Aerodyn. Sep. 1980 11 p refs

Avail: NTIS HC A19/MF AQ1

In order to analyse the separation behavior of external stores from a combat aircraft, the store loads must be evaluated at all times after release. The resulting forces and moments are highly unsteady and depend upon the nonuniform flow field around the aircraft and the store motion itself. The exact evaluation of unsteady aerodynamics of such complicated configurations is nearly impossible, due to the required computer capacity and cost effectiveness. Simplificating assumptions leads to the quasilinearization of the time dependence to omit unsteady calculations and to the use of the flow angularity technique to minimize computational time. The MBB store separation program

system is presented as a possible solution. The mixed experimental analytical approach is not restricted by compressibility effects, but is mainly described at subsonic flows. However, the transonic and supersonic extensions are mentioned, as well as the application of the program system to realistic combat aircraft missions under realistic conditions, such as jettison at high g maneuver, multiple jettison, and rail and drop launch of missiles.

N81-15998# Nielsen Engineering and Research, Inc., Mountain View, Calif.

STUDY OF TRANSONIC FLOW FIELDS ABOUT AIRCRAFT: APPLICATION TO EXTERNAL STORES

Stephen S. Stahara In AGARD Subsonic/Transonic Configuration Aerodyn. Sep. 1980 18 p refs

(Contract F44620-75-C-0047)

Avail: NTIS HC A19/MF A01

A review is presented of an extensive experimental/theoretical program directed toward establishing a predictive method for determining (1) three dimensional transonic flow fields about parent aircraft and (2) loading distributions on external stores located in these nonuniform flow fields. The work represents several stages in the systematic development of a theoretical capability for enabling aircraft/store compatibility studies at transonic speeds with applications to aircraft/store design optimization and store certification programs. The objectives are two fold: (1) to describe the extensive companion experimental program and present highlights of those results, which include detailed measurements of both flow fields and surface pressures (parent and external store), taken in a systematic component buildup; and (3) to discuss the development of the associated theoretical method, describe its application to a class of idealized fighter bomber configurations, and display comparisons with data from the parallel experimental programs, including both flow field and store loading distribution results.

N81-15999# Dornier-Werke G.m.b.H., Friedrichshafen (West Germany). Theoretical Aerodynamics Dept.

AERODYNAMIC SUBSONIC/TRANSONIC AIRCRAFT DESIGN STUDIES BY NUMERICAL METHODS

Wolfgang Schmidt In AGARD Subsonic/Transonic Configuration Aerodyn. Sep. 1980 26 p refs

Avail: NTIS HC A19/MF A01

The need and use of computational aerodynamics in the design of aircraft and missile configurations in steady flow conditions is explored through several examples. These include aircraft and missile synthesis programs for predesign and evaluation work of aircraft and missile weapon systems, subsonic and transonic airfoil and high lift design, subsonic and transonic inviscid and viscous wing and aircraft design including leading edge vortex flows, aircraft engine integration, and three dimensional flows with separation. Use of these numerical and semiempirical methods can substantially increase airplane performance capabilities while reducing risk, flow time, and testing requirements and thus total cost. The capabilities of current aerodynamic methods are demonstrated by comparison with windtunnel results and by case studies.

N81-16000# Institut fuer Theoretische Stroemungsmechanik, Goettingen (West Germany).

DESIGN OF ADVANCED TECHNOLOGY TRANSONIC AIRFOILS AND WINGS

H. Sobieczky /n AGARD Subsonic/Transonic Configuration Aerodyn. Sep. 1980 13 p refs

Avail: NTIS HC A19/MF A01

A systematic method to design supercritical shock free 2D and 3D configurations is described. Simplified examples were chosen from airfoils and wings which are used in advanced technology aerodynamic concepts. With the outlined methods theoretical tools are presented to extend essentially subsonic design aerodynamic into the transonic regime.

T.M.

N81-16001# British Aerospace Aircraft Group, Hertfordshire (England). Fluid Dynamics Dept.

INTERFERENCE ASPECTS OF THE A310 HIGH SPEED WING CONFIGURATION

Avail: NTIS HC A19/MF A01

The effect of the fuselage representation on the inboard wing transonic design and the influence of the tailplane in the optimization of the wing twist for minimium drag are discussed. Highlights from the wind tunnel testing program are presented and include the development of the wing root leading edge fillet to improve wing/fuselage viscous interference, and the optimization of the flap support fairings for the minimum high speed interference.

N81-16002# Vereinigte Flugtechnische Werke G.m.b.H., Bremen (West Germany).

TRANSONIC WING TECHNOLOGY FOR TRANSPORT AIRCRAFT

G. Krenz and B. Ewald /n AGARD Subsonic/Transonic Configuration Aerodyn. Sep. 1980 p 12 refs

Avail: NTIS HC A19/MF A01

The Aircraft Energy Efficiency Program is described. Results from the program are presented which describe the standard transonic wing aerodynamics, taking into account impacts on structure and aeroelastics. The main objectives of the program are the development of high aspect ration wings, better wing engine integration, and the development of active control with movable wing parts.

T.M.

N81-16003# Deutsche Forschungsanstalt fuer Luft- und Raumfahrt, Brunswick (West Germany). Inst. fuer Entwurfsaerodynamik.

DESIGN AND EXPERIMENTAL VERIFICATION OF A TRANSONIC WING FOR A TRANSONIC AIRCRAFT
G. Redeker, N. Schmidt, and R. Mueller In AGARD Subsonic/Transonic Configuration Aerodyn. Sep. 1980 p 14 refs

Avail: NTIS HC A19/MF A01

Force, moment, and wing surface pressure measurements were made on a half scale model of a wing fuselage configuration. Drag reduction was the major design concept and thus the basis for all modifications to the slender wing. Modifications include: increasing average wing thickness from 10.5% to 12.5%; reducing the leading edge sweep angle from 30 deg to 27 deg; and increasing the cruising lift coefficient to c sub L = 0.5. T.M.

N81-16004# National Research Council of Canada, Ottawa (Ontario).

THE TALE OF TWO WINGS

E. Atraghji, L. Thornquist (Saab-Scania), and L. Torngren (Aeronautical Res. Inst. of Sweden) *In* AGARD Subsonic/Transonic Configuration Aerodyn. Sep. 1980 p 10 refs

Avail: NTIS HC A19/MF A01

Two design philosophies for a wing for an attack aircraft were investigated experimentally. In the first case, the wing was equipped with a leading edge that could be deflected mechanically to cope with leading and maneuvering cases without suffering extensive drag. In the second case, the wing leading edge profile is permanently set as a compromise for all flight conditions. Results indicate that, using the second concept, a carefully tailored wing can be generated which need not suffer a drag penalty or a reduction in maneuver capability. Such a wing has the advantage of simplicity and lighter weight also.

T.M.

N81-16005# British Aerospace Aircraft Group, Brough (England). Aerodynamics Dept.

SOMÉ PARTICULAR CONFIGURATION EFFECTS ON A THIN SUPERCRITICAL VARIABLE CAMBER WING

D. R. Holt and B. Probert *In* AGARD Subsonic/Transonic Configuration Aerodyn. Sep. 1980 p 18 refs

Avail: NTIS HC A19/MF A01

Variable camber devices were shown to represent a powerful means of matching a variety of disparate transonic points for a thin wing if designed into the wing from the outset. In particular, trailing edge devices allow for the provision of good high lift performance without degrading the sea level dash capability. Strakes were designed with only a small drag penalty by matching the strake to the wing streamlines at particular incidences. T.M.

N81-16006# National Aerospace Lab., Amsterdam (Netherlands). Theoretical Aerodynamics Dept.

A CONSTRAINED INVERSE METHOD FOR THE AERODY-NAMIC DESIGN OF THICK WINGS WITH GIVEN PRESSURE DISTRIBUTION IN SUBSONIC FLOW

J. M. J. Fray and J. W. Slooff *In* AGARD Subsonic/Transonic Configuration Aerodyn. Sep. 1980 p 9 refs

Avail: NTIS HC A19/MF A01

The method combines well established linear techniques for the analysis of thick wing configurations, and for the design of asymptotically thin wings. These techniques are used in an iterative way. The design codes were constructed in such a way that constraints on the spanwise distributions of thickness, twist, leading edge radius, and trailing edge angle can be taken into account. In this way the designer may execute control over the geometry at the cost of a penalty in the pressure distribution. Examples of application to a swept wing and a wing body configuration are presented.

N81-16007# British Aerospace Aircraft Group, Warton (England).

JET WING INTERACTION TO GIVE IMPROVED COMBAT,
PERFORMANCE

A. Vint In AGARD Subsonic/Transonic Configuration Aerodyn. Sep. 1980 p 12 refs

Avail: NTIS HC A19/MF A01

Prediction techniques showed that a conventional propulsive jet at the wing trailing edge gives a significant improvement in the high lift characteristics of the wing providing deflections of up to 30 deg can be provided. Application of the predicted effects to a projected aircraft showed that the best configuration would be the canard, to provide beneficial trim effects of the deflected thrust, and that large improvements in sustained turn rate at low speed and in peak attained turn rate at low level would be obtained. Weight penalties associated with the required deflecting nozzles are presented.

T.M.

N81-16008# Salford Univ. (England).
JET WING INTERFERENCE FOR AN OVERWING ENGINE
CONFIGURATION

R. A. Sawyer and M. P. Metcalfe (British Aerospace, Manchester, England) *In* AGARD Subsonic/Transonic Configuration Aerodyn. Sep. 1980 p 10 refs

Avail: NTIS HC A19/MF A01

Detailed pressure distributions over the wing are presented for jet to free stream velocity ratios of 2:1, 3:1, and 5:1, over a range of incidence. The configuration of the jet nozzle, wing section, and the relative positions of the engine and the wing, correspond to a moderate by-pass ratio engine mounted over the wing of a low wing feeder liner aircraft. Entrainment rates into the jet and the path of the jet relative to the wing were established by flow measurement and flow visualization. Theoretical considerations showed that it is the bound vorticity associated with jet curvature which produces the pressure increments on the wing surface.

N81-16009# Messerschmitt-Boelkow-Blohm G.m.b.H., Munich (West Germany).

INTERFERENCE EFFECTS OF CONCENTRATED BLOWING AND VORTICES ON A TYPICAL FIGHTER CONFIGURATION

W. Staudacher In AGARD Subsonic/Transonic Configuration Aerodyn. Sep. 1980 p 13 refs

Avail: NTIS HC A19/MF A01

Generation and/or stabilization and control of these vortex systems was obtained by planform variation (such as strakes, short coupled canards); modifications of wing section (shape and camber of leading edges and leading edge flaps); and concentrated spanwise blowing for arbitrary planforms. Specific and combined results of these modifications are presented. Optimum jet positions, in respect of various criteria applied, were derived. The effects of strakes and/or spanwise blowing on performance, stability and control, dynamic characteristics, and flow distributions are discussed.

N81-16010# Office National d'Etudes et de Recherches Aerospatiales, Paris (France).

EXPERIMENTAL STUDY OF THE INTERACTION BETWEEN THE WING OF A SUBSONIC AIRCRAFT AND A NACELLE OF A HIGH BY-PASS RATIO ENGINE [ETUDE EXPERIMENTALE DE L'INTERACTION ENTRE UNE VOILURE L'AVION SUBSONIQUE RAPIDE ET UNE NACELLE DE MOTEUR A HAUT TAUX DE DILUTION]

P. Levant In AGARD Subsonic/Transonic Configuration Aerodyn. Sep. 1980 11 p refs In FRENCH; ENGLISH summary

Avail: NTIS HC A19/MF A01

The oncoming of a new generation of subsonic transport aircraft (with supercritical wing and high by-pass ratio turbofans) has led to an experimental study of wing nacelle jet pylon interference in transonic flow. To this end, a test set-up was developed at the ONERA S3Ch wind tunnel. The nacelle models represent a turbofan by means of two compressed air jets. The scale is 1/18,5. The nacelles are fixed on a thrust balance measuring afterbody thrust and discharge coefficients. The wing is located between the sidewalls of the test section. Pressures are measured through 456 holes located on 8 airfoils. Drag coefficient of the wing is obtained by wake survey. The following parameters can vary: (1) wing/nacelle position; (2) upstream Mach number (from 0.3 to 0.8); (3) jet pressure ratio: (4), with/without pylon; and (5) type of nacelle. Wing nacelle interference can be studied by means of total thrust drag analysis. as a function of the various parameters. The test set-up is described, and examples of results are presented illustrating the possibilities of this set-up.

N81-16011# Air Force Wright Aeronautical Labs., Wright-Patterson AFB, Ohio. Flight Dynamics Lab. A WIND TUNNEL INVESTIGATION OF THE AERODYNAMIC CHARACTERISTICS OF FORWARD SWEPT WINGS

T. M. Weeks, G. C. Uhuad, and R. Large In AGARD Subsonic/ Transonic Configuration Aerodyn. Sep. 1980 15 p

Avail: NTIS HC A19/MF A01

An experimental investigation of a forward swept wing and a state of the art equivalent aft swept wing was conducted to compare the relative performance of both wings at identical transonic maneuver design conditions and to determine any associated drag penalty of the forward swept wing for a high supersonic cruise condition. At the transonic maneuver design condition, the results indicate a significant reduction in the profile drag of the forward swept wing relative to the aft swept wing. The forward swept wing drag exhibited extreme sensitivity to wing root height and incidence variations. A relocation of the FSW root from a mid to high body position and an increase in incidence of 0.8 degrees resulted in a two hundred count drag reduction at C sub L = 0.9. A drag penalty was recorded at M = 2.0 for the forward swept 'cruise wing' which had the same sweep and 'box geometry' as the transonic maneuver wing but with reduced camber and twist accomplished by flap deflection. The drag penalty decreased at lower supersonic Mach numbers. The results indicate that aft swept wing transonic aerodynamic design methods can be used to design and analyze forward swept wings with only minor modifications.

N81-16012# Aeronautical Research Inst. of Sweden, Bromma. Aerodynamics Dept.

AN INVESTIGATION OF A SWEPT WING-BODY CONFIGURATION WITH DROOPED LEADING EDGE AT LOW AND TRANSONIC SPEEDS

Georg Drougge $\mbox{\it In}$ AGARD Subsonic/Transonic Configuration Aerodyn. Sep. 1980 10 p refs

Avail: NTIS HC A19/MF A01

A basic, non-drooped wing was designed (using an inverse transonic small disturbance method) to have a critical Mach Number of around M = 0.85 at C sub L = 0.2. The sweep angle is 25 deg, the aspect ratio 4 and the taper ratio 0.4. Several drooped leading edges, about 15 percent of the local chord and also including spanwise variation, were designed and tested. Numerical calculations were done for the low speed high lift case using a vortex lattice panel method and for the transonic speed case, first using a small disturbance method, later a full potential equation method (Jameson's FLO22) and finally also a full Euler equations method (Rizzi). The experimental investigations were performed at low speeds at FFA (Re approximately 3 x 10 to the 6th power) at transonic speeds at FFA (Re approximately 1.5 to 4 x 10 to the 6th power) and at NAE, Canada (Re approximately 12 to 18 x 10 to the 6th power). These are mainly balance measurements but also some pressure distribution measurements have been obtained. The results indicate that it is possible to design a wing which has no transonic cruise drag penalty but which has a higher maximum coefficient of left and also better maneuver performance than the wing without droop. Author

N81-16013# Office National d'Etudes et de Recherches Aerospatiales, Paris (France).

AERODYNAMIC INTERACTION BETWEEN A CLOSE-COUPLED CANARD AND A SWEPTBACK WING IN TRANSONIC FLOW (INTERACTION AERODYNAMIQUE ENTRE UN CANARD PROCHE ET UNE AILE EN FLECHE EN ECOULEMENT TRANSSONIQUE)

Yves Brocard and Volker Schmitt /n AGARD Subsonic/Transonic Configuration Aerodyn. Sep. 1980 23 p refs in FRENCH

Avail: NTIS HC A19/MF A01

A swept wing model was tested with and without a canard in the transonic wind tunnel S2MA to study the effects of a closed coupled canard on the flow around the main wing. The most significant results in terms of force and pressure measurements on the main wing and wall flow visualizations are presented. The compressibility effect analysis for the wing alone configuration shows that the Mach number has a marked effect on the lift gradient at low incidence and on the vortex onset angle of attack. In transonic flow, the canard changes the flow field on the wing in a similar way as it does in incompressible flow: a decrease in the lift gradient and a delay in the vortex development. But the vortex lift decay is delayed so that the maximum lift is about the same with or without canard. The canard attenuates the discontinuity due to the vortex breakdown migration but increases two other discontinuities which occur at higher angles of attack and which are connected with the formation and the bursting of a quite strong secondary vortex.

N81-16014# Royal Aircraft Establishment, Farnborough (England).

SOME AERODYNAMIC INTERFERENCE EFFECTS THAT INFLUENCE THE TRANSONIC PERFORMANCE OF COMBAT AIRCRAFT

D. Treadgold and K. H. Wilson *In* AGARD Subsonic/Transonic Configuration Aerodyn. Sep. 1980 17 p refs

Avail: NTIS HC A19/MF A01

The magnitude of the effects of viscous interactions, aeroelasticity and the aerodynamic interaction between the wing and fuselage are discussed in the context of a swept wing planform typical of some designs of combat aircraft. Illustrations drawn from experimental measurements and theoretical calculations show the significant influence of these factors on the form of the supercritical flow development at high subsonic speeds. Some

experimental measurements are given which indicate how small changes to the contour of the fuselage can produce significant changes in the drag measured at high subsonic speeds. The example shows that fuselage shaping can contribute to the development of a desirable form of supercritical flow on the wing with consequential benefit in drag levels at these speeds.

N81-16015# Royal Netherlands Aircraft Factories Fokker, Schiphol-Oost. Aerodynamics Dept.

DESIGN STUDY FOR THE INNER WING OF A TRANSONIC WING-BODY COMBINATION OF ASPECT RATIO 8

N. Voogt and J. Th. v. d. Kolk *In* AGARD Subsonic/Transonic Configuration Aerodyn. Sep. 1980 11 p refs

Avail: NTIS HC A19/MF A01

A transonic design procedure for wing body combinations combines direct and inverse panel type computations and is based on the relationship between the exact transonic solution and an equivalent subsonic pressure distribution. The latter can be obtained by applying the subsonic panel method at the design condition for a shock free airfoil designed by hodograph theory. Several problems arise in the design of the inner wing because of the three dimensional character of the flow, which prevents a unique determination of the equivalent subsonic pressure distribution. Two essentially different approaches were followed by prescribing either a subcritical or a supercritical flow condition at the wing root. It is shown that the subcritical flow condition at the wing root can be achieved for a range of wing geometries with leading edge extensions on the inner wing or alternatively, by applying extensive body contouring to a wing originally designed to have supercritical flow at the root. A.R.H.

N81-16016*# Grumman Aerospace Corp., Bethpage, N.Y. COMPLEX CONFIGURATION ANALYSIS AT TRANSONIC SPEEDS

C. W. Boppe and P. V. Aidala *In* AGARD Subsonic/Transonic Configuration Aerodyn. Sep. 1980 13 p refs

(Contracts NAS1-14732; F33615-78-C-3014) Avail: NTIS HC A19/MF A01 CSCL 01A

Advanced performance requirements of new combat and transport aircraft together with design time constraints intensify the development and application of three dimensional computational analyses. A computational method which was developed for the specific purpose of providing an engineering analysis of complex aircraft configurations at transonic speeds. Particular attention is given to the recently incorporated wing viscous interaction and canard capabilities. The treatment of fuselage fairings, nacelles, and pylons is reviewed. The means for keeping computing resources at reasonable levels are identified. Three configurations were selected for correlations with experimental data. Taken together, the comparisons illustrate the full extent of current analysis capabilities. The configurations include: (1) a wing fuselage canard fighter; (2) a transport with fuselage fairings. four nacelles, four pylons; and (3) a space vehicle which includes an external fuel tank and rocket boosters (transonic launch configuration).

N81-16017*# Boeing Military Airplane Development, Seattle, Wash. Advanced Airplane Branch.

THEORETICAL AND EXPERIMENTAL STUDIES OF AERO-DYNAMIC INTERFERENCE EFFECTS

I. H. Rettie *In* AGARD Subsonic/Transonic Configuration Aerodyn. Sep. 1980 19 p refs Supported in part by NASA and USAF

Avail: NTIS HC A19/MF A01 CSCL 01A

Theoretical studies of aerodynamic forces on winglets shed considerable light on the mechanism by which these devices can reduce drag at constant total lift and on the necessity for proper alignment and cambering to achieve optimum favorable interference. Results of engineering studies, wind tunnel tests and performance predictions are reviewed for installations proposed for the AMST YC-14 and the KC-135 airplanes. The other major area of aerodynamic interference discussed is that of engine nacelle installations. Slipper and overwing nacelles

have received much attention because of their potential for noise reduction, propulsive lift and improved ground clearance. A major challenge is the integration of such nacelles with the supercritical flow on the upper surface of a swept wing in cruise at high subsonic speeds.

A.R.H.

 $\textbf{N81-16018}^{\bullet}\#$ Nielsen Engineering and Research, Inc., Mountain View, Calif.

DATA BASE FOR THE PREDICTION OF INLET EXTERNAL DRAG

O. J. McMillan, E. W. Perkins, and S. C. Perkins, Jr. In AGARD Subsonic/Transonic Configuration Aerodyn. Sep. 1980 23 p. refe.

(Contracts NAS2-8874; NAS2-9513)

Avail: NTIS HC A19/MF A01 CSCL 01A

Results are presented from a study to define and evaluate the data base for predicting an airframe/propulsion system interference effect shown to be of considerable importance, inlet external drag. The study is focused on supersonic tactical aircraft with highly integrated jet propulsion systems, although some information is included for supersonic strategic aircraft and for transport aircraft designed for high subsonic or low supersonic cruise. The data base for inlet external drag is considered to consist of the theoretical and empirical prediction methods as well as the experimental data identified in an extensive literature search. The state of the art in the subsonic and transonic speed regimes is evaluated. The experimental data base is organized and presented in a series of tables in which the test article, the quantities measured and the ranges of test conditions covered are described for each set of data; in this way, the breadth of coverage and gaps in the existing experimental data are evident. Prediction methods are categorized by method of solution, type of inlet and speed range to which they apply, major features, are given, and their accuracy is assessed by means of comparison Authorto experimental data.

N81-16019# Vereinigte Flugtechnische Werke G.m.b.H., Bremen (West Germany).

PHILOSOPHY AND RESULTS OF STEADY AND UNSTEADY TEST TECHNIQUES ON A LARGE SCALE TRANSPORT AIRCRAFT MODEL IN THE ONERA TRANSONIC TUNNEL S1 MA. PART 1: PHILOSOPHY AND RESULTS OF STEADY TESTS. PART 2: INTEREST OF LARGE MODELS IN UNSTEADY AERODYNAMICS

G. Anders, A. Giacchetto (ONERA, Modane, France), and A. Gravelle (ONERA, Paris) /n AGARD Subsonic/Transonic Configuration Aerodyn. Sep. 1980 25 p refs Partly in ENGLISH and FRENCH

Avail: NTIS HC A19/MF A01

Steady and unsteady wind tunnel tests with a large scale half model performed in the large ONERA transonic wind tunnel S1 MA within the German technology program ZKP and the development phase of the A 310 Airbus are considered. Various test techniques are introduced, their advantages and problems are discussed. The test arrangement concept is described and typical results for each of the investigated items are presented. Test results are compared with those on a complete model at lower Reynolds numbers. Stationary measurements are described and discussed. Characteristic results from unsteady tests are also presented and correlations are shown.

N81-16020*# Douglas Aircraft Co., Inc., Long Beach, Calif. CABIN FIRE SIMULATOR LAVATORY TESTS Final Report, Jun. 1978 - Jun. 1980

Kenneth J. Schutter and David M. Klinck May 1980 344 p refs

(Contract NAS9-15591)

(NASA-CR-160909; MDC-J4649) HC A15/MF A01 CSCL 01C Avail: NTIS

All tests were conducted in the Douglas Cabin Fire Simulator under in-flight ventilation conditions. All tests were allowed to continue for a period of one hour. Data obtained during these tests included: heat flux and temperatures of the lavatory; cabin temperature variations; gas analyses for O2, CO2, CO, HF, HCI, and HCN; respiration and electrocardiogram data on instrumented animal subjects (rats) exposed in the cabin; and color motion pictures. All tests resulted in a survivable cabin condition;

190

however, occupants of the cabin would have been subjected to noxious fumes.

N81-16021*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

OZONE CONTAMINATION IN AIRCRAFT CABINS: RESULTS FROM GASP DATA AND ANALYSES

J. D. Holdeman and G. D. Nastrom (Control Data Corp., Minneapolis, Minn.) 1981 15 p refs Presented at the 19th Aerospace Sci. Meeting, St. Louis, 12-15 Jan. 1981; sponsored by the American Inst. of Aeronautics and Astronautics (NASA-TM-81671; E-693) Avail: NTIS HC A02/MF A01 CSCL

The global atmospheric sampling program pertaining to the problem of ozone contamination in commercial airplane cabins is described. Specifically, analyses of GASP data have: confirmed the occurrence of high ozone levels in aircraft cabins and documented the ratio of ozone inside and outside the cabins of two B747 airliners, including the effects of air conditioning modifications on that ratio; defined ambient ozone climatology at commercial airplane cruise altitudes, including tabulation of encounter frequency data which were not available before GASP; and outlined procedures for estimating the frequency of flights encountering high cabin ozone levels using climatological ambient ozone data, and verified these procedures against cabin measurements.

Author

N81-16022* National Aeronautics and Space Administration.
American Center, Moffett Field, Calif.

HUMAN FACTORS OF FLIGHT-DECK AUTOMATION: NASA/INDUSTRY WORKSHOP

Deborah A. Boehm-Davis, Renwick E. Curry, Earl L. Wiener (Miami Univ., Coral Gables, Fla.), and R. Leon Harrison Jan. 1981 26 p refs Workshop held at Burlingame, Calif., 17-18 Jul. 1980

(NASA-TM-81260; A-8432) Avail: NTIS HC A03/MF A01 CSCL 01C

The scope of automation, the benefits of automation, and automation-induced problems were discussed at a workshop held to determine whether those functions previously performed manually on the flight deck of commercial aircraft should always be automated in view of various human factors. Issues which require research for resolution were identified. The research questions developed are presented.

A.R.H.

N81-16023# Air Force Inst. of Tech., Wright-Patterson AFB, Ohio. Dept. of Industrial and Systems Engineering.

AIRCREW COMPLIANCE WITH STANDARD OPERATING PROCEDURES AS A COMPONENT OF AIRLINE SAFETY Ph.D. Thesis - Ohio State Univ.

Jeffrey Edward Schofield 1980 183 p refs

(AD-A092443; AFIT-CI-80-30D) Avail: NTIS HC A09/MF A01 CSCL 01/2

Improving the safety of complex human-machine systems is a continuing challenge. Available information concerning system failures, which are usually called accidents, incidents, or mishaps, regularly points to human operators as the 'brittle elements.' The need for greater understanding of operator behavior is recognized in a variety of technologically sophisticated systems, for example, industrial processes, health care, public utilities and national defense; but nowhere is it more obvious than in the aftermath of a commerical airline accident. Following the November 1979 crash of an Air New Zealand DC-10 which killed 257 people in Antarctica, United Press International noted that the ten worst disasters in aviation history have all occurred since October 1972. Although the degree of operator culpability varies, the fact that the five deadliest accidents have occurred since March 1974 is particularly significant. At least one commercial airliner was completely destroyed and over 200 people were killed in each of the five crashes. Wide-body jetliners, either Boeing 747 or McDonnell Douglas DC-10 aircraft, were involved in each instance. The sheer size of such vehicles portends grave consequences in case of system failure, be it human mechanical or a combination of the two.

N81-16024# Federal Aviation Administration, Washington, D.C. Office of Aviation Safety.

SPECIAL AVIATION FIRE AND EXPLOSION REDUCTION (SAFER) ADVISORY COMMITTEE, VOLUME 1 Final Report, 26 Jun. 1978 - 26 Jun. 1980

J. H. Enders and E. C. Wood 26 Jun. 1980 86 p refs (AD-A092016; FAA-ASF-80-4-Vol-1) Avail: NTIS HC A05/MF A01 CSCL 13/12

The Special Aviation Fire and Explosion Reduction (SAFER) Advisory Committee and its technical supporting groups spent nearly 13 months from May 1979 through June 1980 examining the factors affecting the ability of the aircraft cabin occupant to survive in the post-crash fire environment and the range of solutions available. Having only a limited amount of time available, the Committee confined its examination to large transport category aircraft reasoning that recommendations developed could provide the necessary guidance for the FAA to address the broader spectrum of airplane and rotorcraft fire safety improvement. During the course of this assignment, certain topics that were outside the scope of the Committee, yet have some bearing on aircraft fire in general, were identified but not discussed by the Committee. Some of these topics were felt to be worthy of further examination by the FAA or by some other body of advisors constituted for that purpose. These topics are not addressed in this report. Presentations were made to the SAFER Committee by Committee members, technical supporting groups, the FAA, citizens and private firms. The broadly-constituted body of information developed and presented to the Committee formed the basis for Committee Findings and Recommendations. The Committee focused its recommendations on solutions or interim improvements.

N81-16025# Naval Air Development Center, Warminster, Pa. Aircraft and Crew Systems Technology Directorate.
DESIGN, FABRICATION, AND TESTING OF THE MAXIMUM PERFORMANCE EJECTION SYSTEM (MPES) SEAT STRUCTURE

Thomas J. Zenobi and William C. Ward Nov. 1980 106 p (AD-A092292; NADC-80208-60) Avail: NTIS HC A06/MF A01 CSCL 01/3

Navy has undertaken an effort to utilize an ejection seat structure composed of aluminum honeycomb sandwich composite material. This report documents the design, fabrication procedures and acceptance testing of the seat structure. Due to higher fabrication costs, tradeoffs between strength, weight and cost will have to be addressed.

N81-16026# Rose-Hulman Inst. of Tech., Terre Haute, Ind. Civil and Mechanical Engineering Div.

COMPUTER CODE FOR THE DETERMINATION OF EJECTION SEAT/MAN AERODYNAMIC PARAMETERS Final Report

NTIS

The first phase of an effort concerning adaptation of Mark IV computer program (1) as an engineering tool to be used in day-by-day design and development work by the members of Air Crew Escape Group (AFWAL/FIER) was carried out. This research effort consisted of the following two parts: (1) modeling the ejection seat/man configuration, namely, representing its surface with a finite number of rectangular elements and inputting the geometry data of the model into the computer in a format acceptable to the Mark IV computer program, (2) computing the six aerodynamic coefficients using an appropriate pressure law option provided by the Mark IV computer program, and comparing the values predicted by the computer with those obtained from wind tunnel test. A total of five computer models patterned after the models used in wind tunnel test were created. Aerodynamic coefficients were computed for each model over an angle-of-attack range of -40 to 60 degrees and a yaw angle range of 0 to 30 degrees. By adjusting various factors which affect the outcome of computation, an attempt was made to identify an optimum computation method.

N81-16027# Federal Aviation Administration, Washington, D.C. Office of Aviation Safety.

SUMMARY OF AVIATION SAFETY PROGRAM RESUMES. CABIN SAFETY

J. H. Harrison et al Oct. 1980 27 p (AD-A091938: FAA-ASF-80-3)

Avail:

HC A03/MF A01 CSCL 01/2

This report contains a Program Activity Resume and a Project Details listing of those activities supporting the FAA Cabin Safety Program. The Cabin Safety Activity Resume identifies three sub-programs relating to Inflight, Crashworthiness and Post Crash safety activities. The sub-programs are identified and reported in the Project Details listing which includes: Inflight Fire, Operational Hazards, Training Duties, Crash Scenario Definition, Structural Load Analysis, Crashworthy Fuel Tanks, Fuel Fire Hazard, Cabin Interior Materials, Crew Considerations, Crash Rescue, SAFER Advisory Committee and Evacuation Systems.

N81-16028# National Transportation Safety Board, Washington, D. C. Bureau of Technology.

BRIEFS OF FATAL ACCIDENTS INVOLVING WEATHER AS A CAUSE/FACTOR, US GENERAL AVIATION, 1978

5 Aug. 1980 313 p

NTIS

(PB81-110827; NTSB-AMM-80-5) HC A14/MF A01 CSCL 01B

Included are 322 fatal accidents in the brief format. This format presents the facts, conditions, circumstances, and probable cause(s) for each accident. Additional statistical information was tabulated on all accidents involving weather as a cause/factor by types of accident, phase of operation, injury index, aircraft damage, pilots certificate, injuries and cause/factor(s). The publication is published annually.

N81-16029# Naval Postgraduate School, Monterey, Calif. RADIO DIRECTION FINDING ON HIGH FREQUENCY SHORT DURATION SIGNALS M.S. Thesis
Dennis Dean Sheppard Jun. 1980 175 p refs
(AD-A092136) Avail: NTIS HC A08/MF A01 CSCL 17/3

The feasibility of accomplishing high frequency direction finding against short duration (100-1000 ms) HF skywave signals using narrow aperture antennas is investigated. Two statistical procedures for estimating the signal bearing are proposed and compared. These procedures employ time averaging to reduce the large instantaneous bearing error caused by the phase and amplitude distortion of the wavefront due to scattering and multipath interference. Results are presented using data collected with the Southwest Research Institute Coaxial Spaced Loop HFDF system. It is shown that for a limited sample of data from this system the standard deviation of the bearing estimate for a 200 ms signal varied from 15 to 59 degrees.

N81-16030# Analytic Sciences Corp., Reading, Mass. OMEGA SIGNAL COVERAGE PREDICTION DIAGRAMS FOR 10.2 KHz. VOLUME 1: TECHNICAL APPROACH Final Report, Sep. 1979 - Oct. 1980

Radha R. Gupta, Stephen F. Donnelly, Paul M. Creamer, and Suzanne Sayer Oct. 1980 57 p refs

(Contract DOT-CG-951480-A)

(AD-A092741: TASC-TR-3077-2-Vol-1) NTIS Avail:

HC A04/MF A01 CSCL 17/7

Individual Omega station and composite (Omega Navigation System) 10.2 kHz signal coverage prediction diagrams have been developed for eight times. The diagrams show the global accessibility of 'usable' 10.2 kHz signals at eight fixed diurnal/ seasonal times for two usable signal access criteria. Criterion I requires: signal-to-noise ratio (SNR) > or = -20 dB (in a 100 Hz noise bandwidth) and delta phi < or = 20 centicycles (cen). where delta phi is the modal interference-induced phase deviation in the signal phase relative to the reference signal phase. Criterion II differs from Criterion I in that the SNR > or = .-30 dB. Volume I presents the diagram development methodology and contains individual station nighttime modal interference diagrams. Each modal interference diagram identifies regions throughout the world where delta phi < or = 20 cec for nighttime propagation conditions.

N81-16031# Analytic Sciences Corp., Reading, Mass. OMEGA SIGNAL COVERAGE PREDICTION DIAGRAMS FOR 10.2 KHz. VOLUME 2: INDIVIDUAL STATION DIAGRAMS Final Report, Sep. 1979 - Oct. 1980

Radha R. Gupta, Stephen F. Donnelly, Paul M. Creamer, and Suzanne Sayer Oct. 1980 72 p 4 Vol. (AD-A092742; TASC-TR-3077-2-Vol-2) NTIS

HC A04/MF A01 CSCL 17/7

Individual Omega station and composite (Omega Navigation System) 10.2 kHz signal coverage prediction diagrams have been developed for eight times. The diagrams show the global accessibility of 'usable' 10.2 kHz signals at eight fixed diurnal/ seasonal times for two usable signal access criteria. Criterion I requires: signal-to-noise ratio (SNR) = to or < -20 dB (in a 100 Hz noise bandwidth) and delta phi + or - 20 centicycles (cen), where delta phi is the modal interference-induced phase deviation in the signal phase relative to the reference signal phase. Criterion II differs from Criterion I in that the SNR = to or < -30 dB. Volume II presents 64 individual Omega station diagrams (Mercator projection): eight selected coverage times for each of eight stations. Each diagram displays the SNR and delta phi contours for a designated signal access criterion and coverage time.

N81-16032# Analytic Sciences Corp., Reading, Mass. OMEGA SIGNAL COVERAGE PREDICTION DIAGRAMS FOR 10.2 kHz. VOLUME 4: BEARING ANGLE TABLES Final Report, Sep. 1979 - Oct. 1980

Radha R. Gupta, Stephen F. Donnelly, Paul M. Creamer, and Suzanne Sayer Oct. 1980 56 p 4 Vol. (Contract DOT-CG-951480-A)

(AD-A092744; , TASC-TR-3077-2-Vol-4) NTIS HC A04/MF A01 CSCL 17/7

Individual Omega station and composite (Omega Navigation System) 10.2 kHz signal coverage prediction diagrams have been developed for eight times. The diagrams show the global accessibility of 'usable' 10.2 kHz signals at eight fixed diurnal/ seasonal times for two usable signal access criteria. Criterion 1 requires: signal-to-noise ratio (SNR) = to or < -20 dB (in a 100 Hz noise bandwidth) and delta phi + or - 20 centicycles (cen). where delta phi is the modal interference-induced phase deviation in the signal phase relative to the reference signal phase. Criterion 2 differs from Criterion 1 in that the SNR = to or < -30 dB. Volume 4 tabulates the bearing angles of great circles to each Omega station. These angles are computed at latitude/ longitude grid points having a uniform spacing of four degrees.

N81-16033# Naval Training Equipment Center, Orlando, Fla. GLIDESLOPE DESCENT-RATE CUING TO AID CARRIER LANDINGS Final Report

Charles E. Kaul, Stanley C. Collyer, and Gavan Lintern 1980 62 p refs (AD-A092193;

NAVTRAEQUIPC-IH-322) NTIS Avail: HC A04/MF A01 CSCL 01/2

Two techniques for providing descent rate information to pilots making carrier landings were evaluated and shown to be effective in a flight simulator. Landing performance of experienced Naval aviators was tested with a conventional Fresnel lens optical landing system (FLOLS) and with a simple modification to the FLOLS to include variable length vertical light arrays, or arrows. Aircraft system dynamics can create substantial lags between an incorrect control input and the resulting error indication from the FLOLS. The techniques that were evaluated compensated for that lag by providing first order or rate information to the pilot. One system, designated the RATE display, showed the difference between the aircraft's actual descent rate and the descent rate that would maintain its present glideslope angle with respect to the FLOLS. The other, designated the COMMAND display, showed the magnitude of descent rate correction needed, and indicated a no error condition when the pilot was tracking the glideslope or returning to it at an appropriate rate of closure. Both displays improved glideslope tracking performance significantly throughout the approach. Author

N81-16034# Federal Aviation Administration, Atlantic City, N.J. CONSOLIDATED CAR DISPLAY: A SUMMARY REPORT OF THE PROCESS AND THE RESULTS OF THE CONSOLIDATION OF CRITICAL AND SUPPLEMENTARY TERMINAL AREA AIR TRAFFIC CONTROL INFORMATION FOR DISPLAY PRESENTATION Final Report, Jan. 1978 - Jun. 1979

Gerard Spanier Sep. 1980 49 p refs

(AD-A092450; FAA-CT-80-20; FAA-RD-80-73) Avail: NTIS HC A03/MF A01 CSCL 17/7

This report describes the work performed within the Systems Simulation and Analysis Division, ACT-200, to produce an engineering requirement for a terminal area display system for field implementation by the Airway Facilities Service. The report details the basic project efforts to define a data display system to consolidate many of the Terminal Radar Approach Control Facility (TRACON) and tower cab controller's indicators, displays, alarms, controls, status lights, weather data presentations, etc., to reduce physical size, improve work station efficiency and enhance the management and use of Air Traffic Control (ATC) oriented data. The report covers the data collection process; the requirements determination process; the technology assessment performed; the design development and validation of certain hardware/software components; a risk assessment of the unique aspects of the system design; and the engineering requirement form.

N81-16035# Army Missile Command, Redstone Arsenal, Ala. Guidance and Control Directorate.

FIELD EVALUATION OF THE LR80 LAND NAVIGATION SYSTEM

L. J. Little Apr. 1980 81 p

(AD-A091885; AD-E950035; DRSMI/RG-80-22) Avail: NTIS HC A05/MF A01 CSCL 17/7

This report contains the results of a field evaluation of the Litton Industries LR80 Land Navigation System conducted by the Guidance and Control Directorate at Redstone Arsenal, Al. The overall performance of the system established a north alignment with .021 deg, a position accuracy of .33 percent of the distance traveled and the elevation variation was so great that an accuracy value was not considered.

N81-16036# Human Engineering Labs., Aberdeen Proving Ground, Md.

L'A PRELIMINARY HUMAN FACTORS FLIGHT ASSESSMENT OF A MARCONI AUTOMATIC MAP Final Report

Thomas L. Frezell Oct. 1980 20 p refs

(AD-A092585; HEL-TN-14-80) Avail:

HC A02/MF A01 CSCL 17/7

A Marconi Automatic Map Reader was flight tested in low level, enroute, and nap-of-the-earth flight profiles to determine its suitability for navigation. The results obtained from these flights demonstrated a viable potential of the Marconi AMR as an interim navigation system.

N81-16037# Sandia Labs., Albuquerque, N. Mex.

A SINGLE GIMBAL/STRAPDOWN INERTIAL NAVIGATION SYSTEM FOR USE ON SPIN STABILIZED FLIGHT TEST VEHICLES

Alfred C. Watts and Ronald D. Andreas 1980 7 p refs Sponsored by DOE

(SAND-80-2479C; CONF-801211-1) Avail: NTIS HC A02/MF A01

A hybrid strapdown inertial navigation system intended for use on spin stabilized flight test vehicles is described. The configuration of the navigator consists of three floated rate integrating gyros, one of which is used in conjunction with the remaining two operated in a rate gyro mode. Outputs from the two strapdown gyros and three accelerometers are digitized and processed by a high performance computer. The navigation algorithms utilize a direction cosine matrix formulation for the attitude computation implemented in the digital computer. The implementation of this algorithm for the single gimbal configuration is described. An accuracy model and results for a reentry vehicle flight test trajectory are presented. Finally, the flight test performance from launch to reentry is presented. M.G.

N81-16038# National Technical Information Service, Springfield,

COLLISION AVOIDANCE SYSTEMS. CITATIONS FROM THE NTIS DATA BASE Progress Report, 1964 - Jul. 1980 Guy E. Habercom, Jr. Aug. 1980 425 p Supersedes NTIS/PS-79/0960; NTIS/PS-78/0883

(PB80-815020: NTIS/PS-79/0960: NTIS/PS-78/0883) Avail: NTIS HC \$30.00/MF \$30.00 CSCL 01B

Collision avoidance systems in three modes of transportation (i.e. air, surface, marine) are investigated in these research reports. Section 1 pertains to air transportation. Traffic scheduling, automatic ground based stations, and onboard warning systems are researched. Contains 300 abstracts. Section 2 delineates sensors and detectors relative to marine transportation collision avoidance. Contains 68 abstracts. Section 3 relates to engineering research relative to highway and rail collision avoidance. Contains 46 abstracts. This updated bibliography contains 416 citations, 33 of which are new entries to the previous edition. GRA

N81-16039*# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.

USE OF CONSTRAINED OPTIMIZATION IN THE CONCEPTUAL DESIGN OF A MEDIUM-RANGE SUBSONIC TRANSPORT

Steven M. Sliwa Dec. 1980 38 p refs (NASA-TP-1762: L-13946) Avail: NTIS HC A03/MF A01 CSCL 01C

Constrained parameter optimization was used to perform the optimal conceptual design of a medium range transport configuration. The impact of choosing a given performance index was studied, and the required income for a 15 percent return on investment was proposed as a figure of merit. A number of design constants and constraint functions were systematically varied to document the sensitivities of the optimal design to a variety of economic and technological assumptions. A comparison was made for each of the parameter variations between the baseline configuration and the optimally redesigned configuration.

N81-16040*# National Aeronautics and Space Administration.
Ames Research Center, Moffett Field, Calif.
SAMPLE DATA EFFECTS OF HIGH-PASS FILTERS
David O. Chin Jan. 1981 32 p refs
(NASA-TP-1797; A-8361) Avail: NTIS HC A03/MF A01 CSCL 01C

Four mathematical models of linear first and second order high pass washout filters were analyzed. These models were Euler's Integration, Zero-Order Hold, Bilinear Transformation, and Second-Order Adams-Bashforth Integration. Bode responses for each model at various sample rates were compared to the continuous filter response. Higher sample rates produced Bode responses approaching the continuous response and the Bilinear Transformation model produced the best responses over the frequency spectrum and sample rates. Pole location analysis of each model in the z-plane showed the Bilinear Transformation and Zero-Order Hold models gave stable poles regardless of time step size, whereas the other models did not display stable poles. A near constant gain error over the entire frequency spectrum was discovered in the Zero-Order Hold cases and a correction gain was calculated for the first-order high-pass filter case.

S.F.

N81-16041*# Lockheed-Georgia Co., Marietta. TURBOPROP CARGO AIRCRAFT SYSTEMS STUDY, PHASE 1

J. C. Muehlbauer, James G. Hewell, Jr., Stephen P. Lindenbaum, Charles C. Randall, Norm Searle, and F. Robert Stone, Jr. Nov. 1980 192 p refs

(Contract NAS1-15708)

(NASA-CR-159355; LG80ER0112) Avail: NTIS HC A09/MF A01 CSCL 01C

The effects of advanced propellers (propfan) on aircraft direct operating costs, fuel consumption, and noiseprints were determined. A comparison of three aircraft selected from the results with competitive turbofan aircraft shows that advanced turboprop

NTIS

aircraft offer these potential benefits, relative to advanced turbofan aircraft: 21 percent fuel saving, 26 percent higher fuel efficiency, 15 percent lower DOCs, and 25 percent shorter field lengths. Fuel consumption for the turboprop is nearly 40 percent less than for current commercial turbofan aircraft. Aircraft with both types of propulsion satisfy current federal noise regulations. Advanced turboprop aircraft have smaller noiseprints at 90 EPNdB than advanced turbofan aircraft, but large noiseprints at 70 and 80 EPNdB levels, which are usually suggested as quietness goals. Accelerated development of advanced turboprops is strongly recommended to permit early attainment of the potential fuel saving. Several areas of work are identified which may produce quieter turboprop aircraft.

N81-16042*# Boeing Aerospace Co., Seattle, Wash. Engineering Technology.

DESIGN, FABRICATION AND TEST OF GRAPHITE/POLYIMIDE COMPOSITE JOINTS AND ATTACHMENTS FOR ADVANCED AEROSPACE VEHICLES Technical Progress Report, 1 Feb. - 30 Apr. 1980

19 May 1980 31 p refs (Contract NAS1-15644)

(NASA-CR-159112; QTPR-5) Avail: NTIS HC A03/MF A01 CSCL 01C

Principal program activities dealt with the literature survey, design of joint concepts, assessment of GR/PI material quality, fabrication of test panels and specimens, and small specimen testing. Bonded and bolted designs are presented for each of the four major attachment types. Quality control data are presented for prepreg Lots 2W4651 and 3W2020. Preliminary design allowables test results for tension tests and compression tests of laminates are also presented.

N81-16043# Air Force Academy, Colo. Dept. of Engineering Mechanics

MODAL ANALYSIS FOR AIRCRAFT RESPONSE TO RUNWAY SURFACE ROUGHNESS Final Report, 1 Jun. 1978 - 30 Jun. 80

Ralph R. Gajewski Jun. 1980 42 p refs (AF Proj. 2104)

(AD-A092057: AFESC/ESL-TR-80-32) Avail: NTIS HC A03/MF A01 CSCL 01/3

This report develops one and three degree-of-freedom linear vibration models for the prediction of aircraft response to runway surface roughness. The equations of motion are integrated in principal coordinates using modal analysis. The modal parameters required are natural frequency, damping ratio, and mode shape for each degree of freedom. Comparison of results is made with the TAXI code that has a nonlinear strut model. Results are presented for asymmetric motion due to spall profiles in the GRA

N81-16044# Naval Ship Research and Development Center, Bethesda, Md. Aviation and Surface Effects Dept.

P-3 ORION FUEL-SAVING MODIFICATION WIND TUNNEL STUDY

Andrew G. Lee Jun. 1980 66 p (AD-A091906; DTNSRDC/ASED-80/14) NTIS HC A04/MF A01 CSCL 20/4

A joint investigation was conducted on the potential drag reduction of the P-3 Orion aircraft through various modifications to the engine nacelles. A 1/16-scale model was used in the 7by 10-foot transonic wind tunnel experiments conducted over an angle of attack range of -4 to 7 deg. Force data were taken on 14 different model configurations with all modifications in the engine nacelle areas. The experiments were conducted as part of the P-3 Fuel-Saving Modifications Program.

N81-16045# Army Aviation Engineering Flight Activity, Edwards

PRELIMINARY AIRWORTHINESS EVALUATION AH-18 (PROD) HELICOPTER EQUIPPED WITH A SUBSTITUTE STRAIGHT EXHAUST PIPE Final Report

Patrick M. Morris, Ralph Woratschek, John R. Niemann, and Charles E. Frankenberger, Jr. Jun. 1980 36 p.

(AD-A092614; USAAEFA-79-09) HC A03/MF A01 CSCL 01/3

A limited performance and handling qualities evaluation and an engine and transmission cooling survey of an AH-1S (PROD) Helicopter equipped with a substitute straight exhaust pipe was performed at Edwards Air Force Base between 20 and 23 August 1979. A total of 8 hours, 6.3 of which were productive, was required. No significant changes in performance or handling qualities were found as a result of the substitute straight exhaust pipe installation. The engine and transmission cooling characteristics were similar to those of a production AH-1S and were satisfactory. No previously unreported shortcomings or deficiencies were identified.

NTIS

N81-16046# Army Aviation Engineering Flight Activity, Edwards AFB, Calif.

PRELIMINARY AIRWORTHINESS EVALUATION (PAE 1) OF THE YCH-47D HELICOPTER Final Report, Sep. - Dec. 1979

Grady W. Wilson, Charles F. Adam, Stuart F. Arthur, John R. Niemann, and Frame J. Bowers May 1980 150 p refs Avail: (AD-A092633; USAAEFA-79-06) HC A07/MF A01 CSCL 01/3

The Preliminary Airworthiness Evaluation of the YCH-47D helicopter was conducted between 11 September and 6 December 1979. Seventeen flights were required for a total of 41.4 hours, of which 32.8 hours were productive. Testing was conducted at the Boeing Flight Test Facility at Wilmington, Delaware. The YCH-47D exhibits improved lift capability at a hover (both in and out of ground effect) when compared to the CH-47C with fiberglass rotor blades and T55-L-712 engines. Higher airspeeds are also possible at high gross weights. The AFCS was found: to be an enhancing characteristic. Twenty shortcomings and one deficiency were also documented during the test. The deficiency. of delay in power steering activation should be corrected prior to operational deployment. The noise level in the cockpit and cabin showed no apparent improvement over previous models and was of sufficient magnitude to induce temporary hearing loss without adequate protection. The vibration levels became excessive above 145 KIAS, increasing to unacceptable prior to V sub H, with 6 per rev vibrations being predominant. GRA

N81-16047# Environmental Research Inst. of Michigan, Anni Arbor. Radar and Optics Div.

AN ASSESSMENT OF TECHNICAL FACTORS INFLUENCE. ING THE POTENTIAL USE OF RPVS FOR MINEFIELD DETECTION

Yuji Morita and Henry McKenney Jul. 1980 65 p refs (Contract DAAK70-78-C-0198)

ERIM-138300-57-T) (AD-A092682;

HC A04/MF A01 CSCL 17/8

An assessment is made of the use of television and FLIR sensors carried on RPVs as remote minefield detection systems, based on four major scenarios for Soviet mine warfare operations involving the use of TM-46 metallic and PM-60 plastic antivehicular mines. The RPV system minefield detection capability, response time and search rate are functions of the sensor resolution, field of view and sensitivity capabilities; the obscuration due to vegetation, atmospheric attenuation, terrain and weather; the radiance contrast existing between mines and background; the airborne platform characteristics; data link characteristics; the man/machine interface; and command, control and communication system characteristics. These factors are considered in this study to initially define the minefield detection capability of currently planned RPVs, to indicate areas where additional data is needed to provide a better definition of RPV minefield detection capabilities and to indicate parameters for an improved next generation sensor system.

N81-16048# Air Force Packaging Evaluation Agency, Wright-Patterson AFB, Ohio.

EVALUATION/REDESIGN OF THE F-105 PITCH RATE GYRO PACK

James D. Heck Oct. 1980 10 p (AFPEA Proj. 80-P7-21)

(AD-A092109; PTPT-80-16) Avail: NTIS HC A02/MF A01 CSCL 13/4

The F-105 Pitch Rate Gyro Pack was subjected to rough handling tests in compliance with Federal Test Method Standard 101B. The objective of this testing was to determine the level of shock protection provided for the Pitch Rate Gyro and to redesign the container if the current pack does not provide a 15 G level of protection, the rated fragility value for the item. It was determined that the pack presently used does not provide the required level of protection, therefore the pack was redesigned to provide a 15 G level of protection.

N81-16049# Systems and Applied Sciences Corp., Riverdale, Md.

A SURVEY OF COMPUTER SIMULATIONS OF DIGITAL AVIONICS SYSTEMS Final Report, 1 Jul. 1979 - 1 Feb.

James Watson, J. Davis, and R. Satterfield Wright-Patterson AFB, Ohio AFWAL Sep. 1980 82 p refs

(Contract F33615-79-C-1870; AF Proj. 2003)

(AD-A091943; AFWAL-TR-80-1057) NTIS Avail:

HC A05/MF A01 CSCL 09/2

Three simulation systems (GCSS, DSDS and DAS/DDPM) can meet AFWAL's requirements for flexible, all-software, engineering tool. All factors considered, GCSS can meet those needs best for the short-term, and in so doing, serve as a test vehicle for better definition of AFAL's long-term requirements.

R81-16050°# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

COLD-AIR INVESTIGATION OF FIRST STAGE OF 4-1/2-STAGE, FAN DRIVE TURBINE WITH AVERAGE STAGE-LOADING FACTOR OF 4.66

Warren J. Whitney, Thomas P. Moffitt, and Frank P. Behning Jan 1981 15 p refs

(NASA-TP-1780; E-461) Avail: NTIS HC A02/MF A01 CSCL 21E"

. The design procedure and the development of the blading geometry for the 4 and 1/2 stage turbine are discussed. Results obtained with the first stage, operated as a single stage turbine, are presented. A free vortex design meets the design requirements without incurring problems such as excessive turning, negative reaction, or high Mach number. Cold air tests of the single stage turbine showed that the turbine developed design work (stage loading factor of 5.26) at an efficiency of 0.86, which was the efficiency predicted by a reference method. The mass flow at this condition was 0.88, which occurred at design speed and a pressure ratio of 1.407, corresponding to a stage loading factor of 4.35. The efficiency at this condition was 0.003 higher than that predicted by the reference method.

N81-16051*# General Electric Co., Cincinnati, Ohio. Aircraft Engine Group.

CORE COMPRESSOR EXIT STAGE STUDY. VOLUME 2: DATA AND PERFORMANCE REPORT FOR THE BASELINE CONFIGURATION

D. C. Wisler Nov. 1980 178 p refs

(Contract NAS3-20070)

(NASA-CR-159498; R80AEG312-Vol-2) NTIS

HC A09/MF A01 CSCL 21E

The objective of the program is to develop rear stage blading designs that have lower losses in their endwall boundary layer regions. The overall technical approach in this efficiency improvement program utilized General Electric's Low Speed Research Compressor as the principal investigative tool. Tests were conducted in two ways: using four identical stages of blading so that test data would be obtained in a true multistage environment and using a single stage of blading so that comparison with the multistage test results could be made.

N81-16052°# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

AN OVERVIEW OF GENERAL AVIATION PROPULSION RESEARCH PROGRAMS AT NASA LEWIS RESEARCH

Edward A. Willis and William C. Strack 1981 48 p refs

Proposed for presentation at the Natl. Business Aircraft Meeting, 13-15 Apr. 1981, Wichita, Kansas; sponsored by SAE (NASA-TM-81666; E-686) Avail: NTIS HC A03/MF A01 CSCL 21E

The review covers near-term improvements for current-type piston engines, as well as studies and limited corroborative research on several advanced g/a engine concepts, including diesels, small turboprops and both piston and rotary stratifiedcharge engines. Also described is basic combustion research, cycle modeling and diagnostic instrumentation work that is required to make new engines a reality.

N81-16053* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

MEAN ROTOR WAKE CHARACTERISTICS OF AN AERODY-NAMICALLY LOADED 0.5 m DIAMETER FAR

L. M. Shaw and F. W. Glaser 1981 18 p refs Presented at 19th Aerospace Sci. Meeting, St. Louis, 12-15 Jan. 1981; sponsored by AIAA

(NASA-TM-81657; E-674) Avail: NTIS HC A02/MF A01 CSCL 01A

Mean rotor wake properties at several downstream distances behind the rotor of a loaded 1.2 pressure ratio fan were measured with a cross film anemometer in an anechoic wind tunnel. Mean wake characteristics in the midspan and near tip region were determined utilizing an ensemble averaging technique. The upwash and streamwise components of the velocity behind the rotor indicate a complex structure superimposed on the major velocity defects at a down stream spacing of 0.5 rotor chords. Spectral analysis indicates high levels of the second and fourth harmonics of the blade passage frequency in the midspan region while the blade passage frequency and its second and third harmonic are predominant in the tip region.

원81-16054*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

EXPERIMENTAL ANALYSIS OF IMEP IN A ROTARY COMBUSTION ENGINE

H. J. Schock, W. J. Rice, and P. R. Meng 1981 44 p refs Presented at Intern. Symp. of Automotive Engr., Detroit, 23-27 Feb. 1981

(NASA-TM-81662; E-680) Avail: NTIS HC A03/MF A01 CSCL

A real time indicated mean effective pressure measurement system is described which is used to judge proposed improvements in cycle efficiency of a rotary combustion engine. This is the first self-contained instrument that is capable of making real time measurements of IMEP in a rotary engine. Previous methods used require data recording and later processing using a digital computer. The unique features of this instrumentation include its ability to measure IMEP on a cycle by cycle, real time basis and the elimination of the need to differentiate volume function in real time. Measurements at two engine speeds (2000 and 3000 rpm) and a full range of loads are presented, although the instrument was designed to operate to speeds of 9000 rpm. Author

M81-16055°# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

PROPULSION SYSTEM MATHEMATICAL MODEL FOR A LIFT/CRUISE FAN V/STOL AIRCRAFT

Gary L. Cole, James F. Sellers, and Bruce E. Tinling (NASA. Ames Research Center) Dec. 1980 48 p refs

(NASA-TM-81663; E-681) Avail: NTIS HC A03/MF A01 CSCL 21E

A propulsion system mathematical model is documented that allows calculation of internal engine parameters during transient operation. A non-realtime digital computer simulation of the model is presented. It is used to investigate thrust response and modulation requirements as well as the impact of duty cycle on engine life and design criteria. Comparison of simulation results with steady-state cycle deck calculations showed good agreement. The model was developed for a specific 3-fan subsonic V/STOL aircraft application, but it can be adapted for use with any similar Author lift/cruise V/STOL configuration.

N81-16056*# Jet Propulsion Lab., California Inst. of Tech., Pasadena

TWO-STAGE COMBUSTION FOR REDUCING POLLUTANT **EMISSIONS FROM GAS TURBINE COMBUSTORS**

Richard M. Clayton and David H. Lewis 1 Feb. 1981 86 p

(Contract NAS7-100)

(NASA-CR-163877; JPL-Pub-80-63) NTIS Avail:

HC A05/MF A01 CSCL 21E

Combustion and emission results are presented for a premix combustor fueled with admixtures of JP5 with neat H2 and of JP5 with simulated partial-oxidation product gas. The combustor was operated with inlet-air state conditions typical of cruise power for high performance aviation engines. Ultralow NOx, CO and HC emissions and extended lean burning limits were achieved simultaneously. Laboratory scale studies of the non-catalyzed rich-burning characteristics of several paraffin-series hydrocarbon fuels and of JP5 showed sooting limits at equivalence ratios of about 2.0 and that in order to achieve very rich sootless burning it is necessary to premix the reactants thoroughly and to use high levels of air preheat. The application of two-stage combustion for the reduction of fuel NOx was reviewed. An experimental combustor designed and constructed for two-stage combustion experiments is described.

N81-16057*# Avco Lycoming Div., Stratford, Conn.

DESIGN AND EVALUATION OF AN INTEGRATED QUIET CLEAN GENERAL AVIATION TURBOFAN (OCGAT) ENGINE AND AIRCRAFT PROPULSION SYSTEM Final Report, Dec. 1976 - Apr. 1980

Jon German, Philip Fogel, and Craig Wilson Apr. 1980 226 p refs

(Contract NAS3-20584)

(NASA-CR-165185; LYC-80-27) Avail: NASA Industrial Application Center CSCL 21E

The engine and nacelle system design was to demonstrate the applicability of large turbofan engine technology to small turbofans suitable for the general aviation market. The design was based on the LTS-101 engine family for the core engine. A high bypass fan design (BPR = 9.4) was incorporated to provide reduced fuel consumption for the design mission. All acoustic and pollutant emissions goals were achieved. A discussion of the preliminary design of a business jet suitable for the developed propulsion system is also included. Large engine technology can be successfully applied to small turbofans, and noise or pollutant levels need not be constraints for the design of future small general aviation turbofan engines.

N81-16058*# Mississippi State Univ., Mississippi State. Engineering and Industrial Research Station.

PROPELLER PROPULSION INTEGRATION, PHASE 1 Final Report

George Bennett, Keith Koenig, Stan J. Miley, John McWhorter, and Graham Wells Feb. 1981 131 p refs (Grant NsG-1402)

(NASA-CR-163921; MSSU-EIRS-ASE-81-4) Avail: NTIS HC A07/MF A01 CSCL 01C

A bibliography was compiled of all readily available sources of propeller analytical and experimental studies conducted during the 1930 through 1960 period. A propeller test stand was developed for the measurement of thrust and torque characteristics of full scale general aviation propellers and installed in the LaRC 30 x 60 foot full scale wind tunnel. A tunnel entry was made during the January through February 1980 period. Several propellers were tested, but unforseen difficulties with the shaft thrust torque balance severely degraded the data quality.

N81-16060# Naval Postgraduate School, Monterey, Calif. VALIDATION OF A TWO DIMENSIONAL PRIMITIVE VARIABLE COMPUTER CODE FOR FLOW FIELDS IN JET ENGINE TEST CELLS M.S. Thesis

Paul Joseph Mallon Jun. 1980 76 p refs

(AD-A092138) Avail: NTIS HC A05/MF A01 CSCL 21/5

Pressure and velocity data were collected in a full scale jet engine test cell in order to validate the predictive accuracy of a two dimensional and axisymmetric primitive variable computer

code. It was found that the model reasonably predicted the velocity profiles in the augmentor tube. Inaccuracy increased at higher engine thrust settings at positions far downstream in the augmentor tube. Predicted pressure profiles were reasonable but the magnitudes were in considerable error at high flow rates.

N81-16062# Virginia Univ., Charlottesville. Dept. of Mechanical and Aerospace Engineering.

NONLINEAR ANALYSIS OF SQUEEZE FILM DAMPERS APPLIED TO GAS TURBINE HELICOPTER ENGINES Final Report, 15 Jan. 1977 - 31 May 1980

E. J. Gunter, L. E. Barrett, and P. E. Allaire Nov. 1980 13 p (Contract DAAG29-77-C-0009) NTIS

(AD-A091905; ARO-14100.1-E) Avail.

HC A02/MF A01 CSCL 21/5

Application of the finite length correction factor for the analysis of the finite length squeeze film bearings has been made, and a method has been found to be highly efficient. The modal transient program, to include linear rotor acceleration, has been developed and various analyses of rotor systems have been done. A rapid method to calculate the load capacity and dynamics characteristics of a journal or squeeze film bearing has been developed using a finite element approach coupled with an end leakage correction factor. A procedure has been developed to balance a multistage turbine without having to first apply trial weights to generate a set of influence coefficients. This procedure represents a major advance in the technology of flexible rotor balancing. It is incorporated into a minicomputer system which can collect GRA and analyze the rotor data.

N81-16063# Calspan Advanced Technology Center, Buffalo, NY

NUCLEAR BLAST RESPONSE OF AIRBREATHING PROPUL-SION SYSTEMS. LABORATORY MEASUREMENTS WITH. AN OPERATIONAL J-85-5 TURBOJET ENGINE Final Report, 1 Feb. 1979 - 31 Mar. 1980

Michael G. Dunn 31 Mar. 1980 67 p refs (Contract DNA001-79-C-0155)

(AD-A092229; CALSPAN-6486-A-1; DNA-5268F) Avail: NTIS HC A04/MF A01 CSCL 21/5

The work discussed in this report represents a technology development program in which an experimental technique has been developed for the performance of controlled laboratory measurements of simulated nuclear blast response of airbreathing propulsion systems. The technology program utilized an available J-85-5 turbojet engine located in the test section of the Calspan Ludwieg-tube facility. Significant modifications, described herein, were made to this facility in order to adapt it to the desired configuration. The J-85-5 engine had previously been used at Calspan for other purposes and thus came equipped with a total of eight pressure transducers at four axial locations along with compressor section. These transducers have a frequency response on the order of 40 KHz. Preliminary comparisons have been made between the measured pressure histories at selected compressor locations and predicted pressure histories using a simple computer code. The development of the code was initiated under this contract and completed as part of an ongoing IR D effort at Calspan in computational fluid dynamics and problem areas related to engine dynamics.

N81-16064# Federal Aviation Administration, Atlantic City, N.J. **EXHAUST EMISSION CHARACTERISTICS AND VARIABIL-**ITY FOR MAINTAINED GENERAL ELECTRIC CF6-50 TURBOFAN ENGINES Final Report, Jul. - Oct. 1979

Gary Frings Sep. 1980 57 p refs (FAA Proj. 201-521-100)

(AD-A092291; FAA-CT-80-36)

NTIS Avail:

HC A04/MF A01 CSCL 21/5

Five General Electric (GE) CF6-50 turbofan engines were tested at the GE overhaul facility in Ontario, California, to quantify and determine the variability of the exhaust emission levels. The effects of heavy maintenance on these emission levels were also studied. Only two of the engines tested actually received major maintenance. Consequently, the data collected is limited in quantity. Conclusions, observations and recommendations are

presented based on this limited data base. No correlation of exhaust emission levels and type of maintenance was possible. The exhaust emission levels of carbon monoxide (CO) and oxides of nitrogen (NOx) have been determined; total hydrocarbon (THC) levels are not quantified. The variability of the CO and NOx species is less than five percent. THC variability is almost 30 percent. The engine emissions did not meet the current or proposed federal standards. Ninety percent of the turbine engine exhaust emissions are produced at the idle power mode. The operational parameters for this important (from the standpoint of emission data collection) mode are vague and should be more defined. The type of fuel used for emission testing has a significant effect on the resultant exhaust emission levels.

N81-16065# Cincinnati Univ., Ohio. Dept. of Aerospace Engineering and Applied Mechanics.

THREE DIMENSIONAL INTERNAL FLOWS IN TURBO-MACHINERY, VOLUME 1 Final Report, Jan. 1978 - Jun. 1980

Awatef A. Hamed Jun. 1980 51 p refs (Contract F49620-78-C-0041; AF Proj. 2307) (AD-A092737; AFOSR-80-1214TR) HC A04/MF A01 CSCL 20/4

Avail: NTIS

This report describes an efficient numerical scheme developed for investigating secondary flows, and outlines the design of an experimental set-up for obtaining detail in channel three dimensional secondary flow measurements. The analysis applies to inviscid internal rotational flow fields and leads to a very efficient numerical scheme for predicting the secondary flow phenomena. The analysis is applied to the rotational flow in a 90 deg bend with rectangular cross section and then compared with the experimental data. It is concluded from the comparison that the physics of the secondary flow problem are well represented in the analysis. The analysis can be adapted with some modifications to variable area ducts, and turbomachinery passages.

N81-16066*# Kansas Univ. Center for Research, Inc., Lawrence. THE STATE OF THE ART OF GENERAL AVIATION **AUTOPILOTS**

Michael J. See and David Levy Aug. 1980 95 p refs (Contract NAS1-16255)

(NASA-CR-159371) Avail: NTIS HC A05/MF A01 CSCL

The study is based on the information obtained from a general literature search, product literature, and visitations and interviews with manufacturers, users, and service centers. State of the art autopilots are documented with respect to total systems, components, and functions. Recommendations concerning potential areas of further research are also presented.

N81-16067# Air Force Inst. of Tech., Wright-Patterson AFB, Ohio. Dept. of Industrial Engineering.

THE EFFECTS OF THE DIRECTION OF CONTROL LOADING A ONE-DIMENSIONAL TRACKING ON TASK M.S. Thesis - Georgia Institute of Technology

James Michael Carlin Mar. 1980 70 p refs (AD-A092459;

AFIT-CI-80-10T) NTIS HC A04/MF A01 CSCL 01/2

Modern fighter aircraft flight controls are activated by the pilot through a joystick. Because of heavy loads on the control surfaces, the flight controls are finally actuated by powerful hydraulic actuators. Artificial feel systems of varying complexity are utilized to give some feedback to the pilot to aid in control. Regardless of the system, virtually all are equipped with thumb-actuated pitch and roll trim. This feature allows the pilot to quickly and easily change the fore and aft or lateral stick force required to control the pitch and roll of the aircraft. During precise tracking tasks such as flying close formation maneuvers, or tracking an air or ground target in an aiming device, many pilots desire to trim the stick forward. A smaller proportion constantly strive for zero pressure in a precise tracking situation. Virtually none trim aft stick pressure in this environment. This study is strictly concerned with uni-directional control loading.

N81-16068# Grumman Aerospace Corp., Bethpage, N.Y. DEMONSTRATION OF A METHOD FOR DETERMINING CRITICAL STORE CONFIGURATIONS FOR WING STORE FLUTTER Final Report

Richard R. Chipman and Edward J. Laurie May 1980 132 p

(Contract N00019-79-C-0062)

(AD-A092257; ADCR-80-1) Avail: NTIS HC A07/MF A01 CSCL 20/4

The A-6E aircraft and its extensive store inventory were analyzed. Searches of the inventory singled out the potentially critical configurations that gave flutter speeds well within the flight envelope for low assumed values of structural damping. Comparisons were made with previous results from A-6 studies and possible explanations for the apparent anomaly were explored. The method offers an efficient alternative to existing practices for determining potentially flutter critical store combinations from the many thousands of store loadings that can occur on attack aircraft.

N81-16069# European Space Agency, Paris (France). GRAVIMETRIC INVESTIGATION OF THE PARTICLE NUMBER DENSITY DISTRIBUTION FUNCTION IN THE HIGH SPEED CASCADE WIND TUNNEL FOR LASER ANEMOMETRY MEASUREMENTS

Harro Bessling and Torsten Hinz Sep. 1980 34 p refs Transl. into ENGLISH of "Gravimetrische Untersuchung der Partikelzahldichteverteilungsfunktionen im Hochgeschwindigkeits terwindkamal fuer laser anemometrische Messungen", DFVLR-FB 79-12, Brunswick, Jan. 1979 38 p. Original report in GERMAN previously announced as X80-75089 Original German report available from DFVLR, Cologne DM 8,50 (ESA-TT-625: DFVLR-FB-79-12) HC A03/MF A01

Laser anemometry requires a minimum concentration of scattering particles in the flow. Before an L2F velocimeter could be used, the natural dust content in the low pressure tank of the high speed cascade wind tunnel had to be evaluated for this type of measurement. A Coulter counter was used for the necessary dust analysis by the gravimetric method. The result showed that the behavior of the particle number density distribution functions is dynamic and particularly dependent upon the flow velocity. A self cleaning effect, which is very important for laser anemometry, was found to make the tunnel dust free in the minimum amount of time, and a model concept was developed to explain the loss mechanism. Author

N81-16070# IIT Research Inst., Chicago, III. Control Information and Analysis Center.

EVALUATION OF RF ANECHOIC CHAMBER FIRE PROTEC-TION SYSTEMS Final Report

Thomas E. Waterman, John A. Campbell, Larry D. Paarmann, Irving N. Indel, and Charles W. Smoots Jul. 1980 177 p refs

(Contract DSA900-77-C-3840)

(AD-A092478; AD-E900032; GACIAC-SR-80-02;

NWC-TP-6211) Avail: NTIS HC A09/MF A01 CSCL 14/2

The increasing use of microwave anechoic chambers plus several recent chamber fires was the impetus for this special study. The report identifies and collects in one document the various issues and problems associated with the fire protection of anechoic chambers. It also addresses the interfaces between personnel groups including the chamber designers, operators, maintenance and the fire department. It is not a design report; i.e., it does not contain enough detail to design either a chamber or the fire protection system. Instead, it presents the pros and cons of the various fire protection options available to the designers (smoke and heat detectors, alarm systems, sprinkler heads, preferred physical locations, fire suppressant agents, etc.) and relates these to the chamber operation. The report also identifies several areas where additional investigation is required such as detection of deep-seated combustion, testing of new more fire-resistant absorber materials, and analysis of the combustion products of halogen-type suppressants. An extensive list of references is included.

N81-16071# Oklahoma State Univ., Stillwater. School of Civil Engineering.

POTENTIAL USE OF GEOTECHNICAL FABRIC IN AIRFIELD RUNWAY DESIGN Final Report

T. Allen Haliburton, Jack D. Lawmaster, and John K. King Oct. 1980 130 p refs

(Contract AF-AFOSR-0087-79; AF Proj. 2307)

(AD-A092686; AFOSR-80-1192TR) Avail: NTIS

HC A07/MF A01 CSCL 13/3

A state-of-the-art literature review and laboratory experimental study of the mechanisms of geotechnical fabric separation and lateral restraint reinforcement were performed. Fabrics of dissimilar physical properties were evaluated for use in lateral restraint reinforcement of a cohensionless soil mass. Though considerable increases in strength and load-deformation modulus were obtained for the fabric-reinforced soil systems, no significant difference in behavior was noted among the four fabrics tested, despite wide variations in their physical properties. Fabric prestressing had little effect on behavior. Lateral restraint reinforcement occurred as a result of fabric interference with development of zones of radial shear, underneath and adjacent to the loaded area. The effect is to produce horizontal restraint and confinement, which increases the applied soil stress necessary to develop plastic equilibrium and increases the initial deformation modulus and ultimate load capacity of the system. Lateral confinement induces initial elasto-plastic behavior of the reinforced mass which approximates the classic general shear failure conditions postulated by Terzaghi. An optimum depth of placement for fabric was determined which provides maximum deformation modulus and initial strength and minimizes soil yielding necessary to develop strain hardening effects. The optimum depth is related to the width of the loaded contact area and frictional properties of the reinforced soil.

N81-16072# Canyon Research Group, Inc., Westlake Village, Calif

CRITICAL RESEARCH ISSUES AND VISUAL SYSTEM REQUIREMENTS FOR A V/STOL TRAINING RESEARCH SIMULATOR Final Technical Report, 15 Jun. 1978 - 14 Jun. 1979

Robert T. Hennessy, Dennis J. Sullivan, and Herbert D. Cooles

Oct. 1980 153 p refs (Contract N61339-78-C-0076)

(AD-A092561; RTH-0180; NAVTRAEQUIPC-78-C-0076-1) Avail: NTIS HC A08/MF A01 CSCL 14/2

Critical research issues for Vertical/Short Takeoff and Landing (V/STOL) flight simulator visual systems and the functional requirements for a visual system necessary to support the research were developed. It was concluded from analyses of mission and training requirements that the V/STOL unique tasks, those performed during thrust-borne flight, are the most likely candidates for simulator training. A task analysis was subsequently performed for these tasks to determine the visual information requirements. It became apparent, however, that there is no logical way to derive displayed scene requirements from the information requirements and what is known about visual perception. Consideration of general visual requirements for flying, the ecological role of visual perception and the purpose of flight training in a simulator, led to the formulation of four categories of critical research issues. These four categories are: (1) scene content, (2) perceptual learning, (3) use of visual augmentation, and (4) display characteristics.

N81-16073# IIT Research Inst., Chicago, III.
SHIELDED ENCLOSURE TEST BED REQUIREMENT Final
Report, 29 Jan. 1979 - 29 Feb. 1980
L. Valcik 30 Apr. 1980 40 p refs

(Contract DNA001-79-C-0205)

(AD-A092589; DNA-5341F) Avail: NTIS HC A03/MF A01 CSCL 14/2

A shielded enclosure Test Bed Facility is recommended for obtaining data relating EMP shield design to the internal fields and internal cable coupling. The facility should accommodate a shielded enclosure approximately 10 ft high x 20 ft wide x 50 ft long, to study a variety of shield design parameters, e.g., shield panel material and thickness, joint construction, and penetrant configurations. It should provide for excitation by CW

injected current and a radiated pulse. Several analytical and laboratory tasks are recommended in support of the test bed experiments.

N81-16114*# National Aeronautics and Space Administration, Washington, D. C.

ANNUAL REPORT TO THE NASA ADMINISTRATOR BY THE AEROSPACE SAFETY ADVISORY PANEL ON THE SPACE SHUTTLE PROGRAM. PART 2: SUMMARY OF INFORMATION DEVELOPED IN THE PANEL'S FACT-FINDING ACTIVITIES Annual Report

Jun. 1976 312 p refs

(NASA-TM-82252) Avail: NTIS HC A14/MF A01 CSCL 22A

Safety management areas of concern include the space shuttle main engine, shuttle avionics, orbiter thermal protection system, the external tank program, and the solid rocket booster program. The ground test program and ground support equipment system were reviewed. Systems integration and technical conscience were of major priorities for the investigating teams.

N81-16137*# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.

LARGE-SCALE CARBON FIBER TESTS
Richard A. Pride Dec. 1980 104 p refs

(NASA-TM-80218) Avail: NTIS HC A06/MF A01 CSCL

A realistic release of carbon fibers was established by burning a minimum of 45 kg of carbon fiber composite aircraft structural components in each of five large scale, outdoor aviation jet fuel fire tests. This release was quantified by several independent assessments with various instruments developed specifically for these tests. The most likely values for the mass of single carbon fibers released ranged from 0.2 percent of the initial mass of carbon fiber for the source tests (zero wind velocity) to a maximum of 0.6 percent of the initial carbon fiber mass for dissemination tests (5 to 6 m/s wind velocity). Mean fiber lengths for fibers greater than 1 mm in length ranged from 2.5 to 3.5 mm. Mean diameters ranged from 3.6 to 5.3 micrometers which was indicative of significant oxidation. Footprints of downwind dissemination of the fire released fibers were measured to 19.1 km from the fire. E.D.K.

N81-16139*# Boeing Commercial Airplane Co., Seattle, Wash. Advanced Structural Concepts Organization.

ENVIRONMENTAL EXPOSURE EFFECTS ON COMPOSITE MATERIALS FOR COMMERCIAL AIRCRAFT Quarterly Technical Progress Report, 1 Nov. 1979 - 30 Aug. 1980 Daniel J. Hoffman Aug. 1980 56 p refs

(Contract NAS1-15148)

(NASA-CR-165649; D6-44815-9; QTPR-9) Avail: NTIS HC A04/MF A01 CSCL 11D

The test program concentrates on three major areas: flight exposure; ground based exposure; and accelerated environmental effects and data correlation. Among the parameters investigated were: geographic location, flight profiles, solar heating effects ultraviolet degradation, retrieval times, and test temperatures. Data from the tests can be used to effectively plan the cost of production and viable alternatives in materials selection. T.M.

N81-16145*# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.

CURRENT AND PROJECTED USE OF CARBON COM-POSITES IN UNITED STATES AIRCRAFT Robert Leonard and Daniel R. Mulville (Naval Air Systems

Robert Leonard and Daniel R. Mulville (Naval Air Systems Command, Washington, D.C.) In AGARD Electromagnetic Effects of (Carbon) Composite Mater. Upon Avionics Systems Oct. 1980 19 p. refs

Avail: NTIS HC A16/MF A01 CSCL 11D

Carbon composite materials are finding limited use in both civil and military aircraft structures to exploit their weight saving potential for improved performance or fuel efficiency. Since these needs are growing, and a manufacturing cost savings potential

is also recognized, wider use of composites in the near future may be expected. Carbon composites generally involve fiber volume fractions in excess of 60 percent in a variety of orthotropic sandwich or solid laminates. Bidirectional woven carbon cloth, common in recently designed structure, may provide higher, more uniform laminate conductivities than tape.

N81-16146# Societe Nationale Industrielle Aerospatiale, Paris (France)

THE EFFECT OF THE IN-SERVICE ENVIRONMENT ON COMPOSITE MATERIALS (RESUME OF THE APRIL 1980 ATHENS CONFERENCE) [EFFET DE L'ENVIRONMENT EN SERVICE SUR LES MATERIAUX COMPOSITES (RESUME DUE CONGRES D'ATHENES-AVRIL 80)]

George Jube In its Electromagnetic Effects of (Carbon) Composite Mater. Upon Avionics Systems Oct. 1980 4 p In FRENCH

Avail: NTIS HC A16/MF A01

Reported experience of the effect of physical and mechanical aggressions (environment) on composite materials and structures is summarized. Topics covered include: (1) the physical chemistry of the environment and the sensitivity of the composite materials to humidity; (2) the behavior of composite materials in spatial ambience, particularly in vacuum; (3) rules for predicting damage to composite structures and the effect of accidental impact; (4) atmospheric physical phenomena, particularly lightning and rain erosion; and (5) the in service behavior of helicopter blades, NASA experience with transport aircraft structures, and USAF and Navy experience with boron and carbon fiber composites.

Transl. by A.R.H.

N81-16147# British Aerospace Aircraft Group, Preston (England).
APPLICATION OF CARBON FIBRE COMPOSITES TO MILITARY AIRCRAFT STRUCTURES

T. Sharples In AGARD Electromagnetic Effects of (Carbon) Composite Mater. Upon Avionics Systems Oct. 1980 17 p.

Avail: NTIS HC A16/MF A01

The high specific strength of CFC offers weight saving potential to the aircraft structural engineers. Design and manufacturing studies have shown that this potential can be realized and that a maximum utilization, where 40 percent of the aircraft structure is made from CFC, mass savings of about 12 percent can be expected. These savings can be increased to as much as 20 percent if the aircraft is resized for constant performance. Cost studies indicate that, if full advantage is taken of automated techniques and the weight reductions structures containing CFC should cost less than for the metal equivalents. Work is continuing to assess the EMC problems in order to ensure that full advantage can be taken of these potential weight and cost savings on future military aircraft.

N81-16152# Messerschmitt-Boelkow-Blohm G.m.b.H., Ottobrunn (West Germany).

EMC, LIGHTNING AND NEMP-PROTECTION-NEW REQUIREMENTS FOR APPROVED SPECIFICATIONS WHEN USING CFRP

D. Jaeger and K. H. Rippl In AGARD Electromagnetic Effects of (Carbon) Composite Mater. Upon Avionics Systems Oct. 1980 18 p. refs

Avail: NTIS HC A16/MF A01

The use of carbon fiber reinforced plastics (CFRP) in modern aircraft achieves good advantages for mechanical strength and is weightsaving, compared with aluminum structures. In spite of the advantages there are disadvantages in using CFRP materials. These are mainly unwanted electromagnetic effects on electronic equipment, caused by electromagnetic interference lightning, electrostatic discharges, and nuclear electromagnetic pulse (NEMP). The reason for these problems is lower shielding effectiveness of the aircraft structure as compared to aluminum. Specifications used for aircraft today do not pay regard to the requirements of these materials. Proposals are made as to how the specifications should be modified.

N81-16153# Allen Clark Research Centre, Towcester (England).
THE ELECTRICAL EFFECTS OF JOINTS AND BONDS IN

CARBON FIBER COMPOSITES

J. Brettle, K. J. Lodge, and R. Poole (Plessey Electronic Systems Research, Havant, England) In AGARD Electromagnetic Effects of (Carbon) Composite Mater. Upon Avionics Systems Oct. 1980 17 p refs

Avail: NTIS HC A16/MF A01

The types of joint investigated include dry compression joints, bolted joints, and adhesively bonded structures. Their electrical properties were evaluated from dc up to 50 MHz, as well as certain specific higher frequencies. A variety of pretreatments and assembly methods were investigated. All the joints as initially produced to current aircraft practice had too high an impedance for the electrical requirements of an airframe. Various methods of reducing the joint impedance were proposed and subjected to electrical and environmental tests. It is now possible to produce electrically invisible bolted joints and adhesive joints with much improved conductivity. It was found possible to permanently alter the joint impedance by the passage of a current through the joint. This effect was investigated and a possible mechanism of this effect suggested. The investigation of the possible production of radio frequency intermodulation products at joints were carried out, but few intermodulation products were found from any of the joints examined other than butt joints made with exposed carbon fibers in the joint. E.D.K.

N81-16154# Royal Aircraft Establishment, Farnborough (England).

THE UK MINISTRY OF DEFENCE PROGRAMME ON THE ELECTROMAGNETIC PROPERTIES OF CARBON FIBER COMPOSITES

J. M. Thomson and R. H. Evans *In* AGARD Electromagnetic Effects of (Carbon) Composite Mater. Upon Avionics Systems Oct. 1980 9 p refs

Avail: NTIS HC A16/MF A01

With some exceptions, work on the electrical properties of carbon fiber composites (CFV) is regarded as part of an overall program on electromagnetic effects (EMC, EMP, lightning, etc.). The relationship of the CFC work to the remainder of the program is discussed, and the principal investigations outlined and reviewed. One particular package, shielding measurements on a cockpit section is described in detail. It is shown that the major areas of concern are the bonding and jointing of the material and its characteristics at HF and below. This latter topic has an impact on shielding (including EMP and lightning sources) and aerial installation. Finally, the use which is to be made of the information from these programs is discussed.

N81-16155# Office National d'Etudes et de Recherches Aerospatiales, Paris (France).

A FRENCH FLIGHT TEST PROGRAM ON THE ELECTRO-MAGNETIC EFFECTS OF LIGHTNING [PROGRAMME FRANÇAIS D'ESSAIS EN VOL SUR LES EFFETS ELECTRO-MAGNETIQUES DE LA FOUDRE]

J. C. Alliot and D. Gall (Centre d'Essasis Aeronautiques, Toulouse) In AGARD Electromagnetic Effects of (Carbon) Composite Mater. Upon Avionics Systems Oct. 1980 9 p refs In FRENCH

Avail: NTIS HC A16/MF A01

Under the aegis of the French Aeronautical Technical Service. a flight test program for evaluating electromagnetic perturbations of lightning has been operating since 1978. This test program, conducted by CEAT, CEV, and ONERA, uses an Air Force TRANSALL C160 carrying instrumentation for detecting phenomena associated with direct or near lightning strikes. These include the current of the lightning (impulsive and continuous components) the current on the skin of different parts of the structure; the internal and external electromagnetic fields; and the overvoltages on diverse equipment and circuits on board. Various sensors allow characterization of the electric state of the aircraft at the time of the lightning strikes (equilibrium potential, current of the charge of the triboelectric origin, external atmospheric electric field). The behavior of panel structures made of composite materials are studied with regard to electromagnetic radiation in order to define protection systems. Following diverse modifications and additions to the instrumentation used in tests since 1978, a new experimental program begins in 1980.

Transl. by A.R.H.

N81-16156# Westland Helicopters Ltd., Yeovil (England).
AIRCRAFT MANUFACTURERS APPROACH TO THE
E.M.C./AVIONICS PROBLEMS ASSOCIATED WITH THE
USE OF COMPOSITE MATERIALS

G. Barton and I. P. MacDiarmid (British Aerospace, Warton, England) In AGARD Electromagnetic Effects of (Carbon) Composite Mater. Upon Avionics Systems Oct. 1980 23 p refs

Avail: NTIS HC A16/MF A01

Detailed examples are given of the approach taken by the U.K. aircraft manufacturers to the EMC/avionic problems associated with the use of carbon fiber composites (CFC). Examples of structures that required flight clearance within relatively short timescales are discussed. These are the fitting of CFC panels to Jaguar and lightning strike investigations on composite demonstrator rotor blades. The work undertaken to address the long term problems of composite aircraft and their effects on avionic systems is outlined. This includes CFC fuselage investigations, conductivity measurements, and an Earth return study.

N81-16158# Centre d'Essai Aeronautique, Toulouse (France).
TENSION INDUCED IN THE CABLES INSIDE CLOSED
METAL STRUCTURES AND IN CARBON EPOXY SUBMITTED TO A LIGHTNING-TYPE IMPULSE CURRENT [TENSION INDUITE DANS LES CABLES A L'INTERIEUR DE
STRUCTURES FERMEES METALLIQUES ET EN CARBONE
EPOXY SOUMISES A UNE IMPULSION DE COURANT TYPE
FOUDRE]

Denis Gall In AGARD Electromagnetic Effects of (Carbon) Composite Mater. Upon Avionics Systems Oct. 1980 11 p. In FRENCH

Avail: NTIS HC A16/MF A01

Results are presented of theoretical and experimental studies on the mechanics of the induction of overvoltages in electric cables located in the interior of closed structures when they are surrounded by an impulse current of the lightning type. The contribution of two parameters, the diffusion of current on the skin and the internal magnetic field, is considered and compared for a structure made of an aluminum alloy and one made of carbon fibers.

N81-16159# McDonnell Aircraft Co., St. Louis, Mo. ELECTROMAGNETIC INTEGRATION OF COMPOSITE STRUCTURE IN AIRCRAFT

G. L. Weinstock In AGARD Electromagnetic Effects of (Carbon) Composite Mater. Upon Avionics Systems Oct. 1980 16 p

Avail: NTIS HC A16/MF A01

Certain U.S. Navy and Marine Corps aircraft are being designed and produced which have significant portions of the skin and substructure fabricated from graphite/epoxy composite material. The F-18 Hornet has approximately 50% of its surface area composite and the AV-8B V/STOL utilizes composite material for its wing, tail, and forward fuselage. Extensive analysis and testing was performed during the last seven years to define those parameters necessary for successful electromagnetic integration of graphite/epoxy composite into these aircraft. Descriptions of the tests, analyses, and design processes including procedures, methods, results, and design improvements are presented in this paper. The specific investigations addressed are: (1) basic material properties; (2) inherent electromagnetic shielding; (3) intermodulation effects; (4) effects on antennas; (5) panel shielding; (6) joint effects and improvements; (7) joint impedance; (8) access door design and improvements; (9) bonding: (10) large fuselage section shielding; and (11) complete wing shielding. The above tests and supporting analyses were performed on different types of composite construction, thickness, and size and were usually related to comparable aluminum articles. Some of the variations assessed and described in the paper are aluminum honeycomb, syntactic core and monolithic materials, combinations of lap and shear joints, and selected metallic coatings.

N81-16160# Office National d'Etudes et de Recherches Aerospatiales, Paris (France).

FLIGHT TESTS FOR STUDYING RADIOELECTRIC PERTURBATIONS OF AN ELECTROSTATIC ORIGIN [ESSAIS EN VOL POUR L'ETUDE DES PERTURBATIONS RADIOELECTRIQUES D'ORIGINE ELECTROSTATIQUE]

P. Laroche, R. Weber (Societe Nationale Industrielle Aerospatiale, Suresnes, France), and D. Gall (Centre d'Essais Aeronautiques Toulouse) /n AGARD Electromagnetic Effects of (Carbon) Composite Mater. Upon Avionics Systems Oct. 1980 11 prefs In FRENCH

Avail: NTIS HC A16/MF A01

The French Official Aeronautical Services originated a flight test program using the METEOR NF11 aircraft. The program is designed to reduce the radioelectric perturbations of an electrostatic origin. Antistatic protection of an aircraft consists of making the insolated parts of the structure conductive on the surface and installing dissipators of the potential. The flight experiments were preceeded by ground tests of high tension polarization in order to simulate the effects of triboelectricity. Dissipation of the potential was tested by making the entire aircraft conductive. Some instrumented dielectric panels were then put into place by detecting the eventual appearance of rampant electric discharges. Some general results from these tests are presented.

N81-16166# Syracuse Research Corp., N. Y. ELECTROMAGNETIC COUPLING TO ADVANCED COMPOSITE AIRCRAFT WITH APPLICATION TO TRADE-OFF AND SPECIFICATION DETERMINATION

R. Wallenberg, E. Burt, and G. Dike In AGARD Electromagnetic Effects of (Carbon) Composite Mater. Upon Avionics Systems Oct. 1980 22 p refs

Avail: NTIS HC A16/MF A01

A major concern with the increasing use of composite materials and low voltage electronics is the amount of electromagnetic coupling to the interior of an aircraft and to the cables and electronic devices within it. Simple methods are described for determining the shielding provided by an aircraft's exterior surface and the coupling of the interior fields to cables and transmission lines within aircraft cavities. The results can be used to determine tradeoffs between electromagnetic shielding, weight, and cost.

E.D.K.

N81-16213# Rockwell International Corp., El Segundo, Calif. North American Div.

SUPERPLASTIC FORMED AND DIFFUSION BONDED TITANIUM LANDING GEAR COMPONENT FEASIBILITY STUDY Final Report, Mar. 1979 - Jul. 1980

Vernon E. Wilson Wright-Patterson AFB, Ohio AFFDL Jul. 1980 80 p

(Contract F33615-79-C-3401; AF Proj. 2402)

(AD-A092788; NA-80-333) Avail: NTIS HC A05/MF A01 CSCL 11/6

This report describes the development, fabrication and testing of a section of a main landing gear outer cylinder. The program demonstrated the feasibility of using the SuperPlastic Forming with concurrent Diffusion Bonding (SPF/DB) fabrication process to build a titanium cylindrical sandwich structure with a weight savings of 8-1/2 percent over the baseline steel cylinder. The development of joints, stop-off application and tooling is described. Structural analysis and subsequent structural testing proved that the cylindrical sandwich design is capable of meeting the loads that the outer cylinder of the landing gear would be subjected to in a current first line fighter aircraft.

N81-16253* National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.

THE 17TH JANNAF COMBUSTION MEETING, VOLUME 1
Debra Sue Eggleston, ed. Nov. 1980 669 p refs Meeting
held at Hampton. Va., 22-26 Sep. 1980 Prepared in cooperation
with APL, Laurel, Md. 4 Vol.
(Contract N00024-78-C-5384)

(NASA-TM-82238; AD-A094820; CPIA-Publ-329-Vol-1) Avail:

NTIS

GRA

Chemical Propulsion Information Agency, Laurel, Md. CSCL 21D

The combustion of solid rocket propellants and combustion in ramjets is addressed. Subjects discussed include metal burning, steady-state combustion of composite propellants, velocity coupling and nonlinear instability, vortex shedding and flow effects on combustion instability, combustion instability in solid rocket motors, combustion diagnostics, subsonic and supersonic ramjet combustion, characterization of ramburner flowfields, and injection and combustion of ramjet fuels.

N81-16357# Ohio State Univ., Columbus. **ElectroScience**

AIRBORNE ANTENNA PATTERN CODE: USER'S MANUAL Interim Report

W. D. Burnside Griffiss AFB, N.Y. RADC Sep. 1980 108 p refs

(Contracts F30602-79-C-0068; N62269-78-C-0379; AF Proj. 4519)

(AD-A092316; ESL-711679-2; RADC-TR-80-302) Avail: NTIS HC A06/MF A01 CSCL 20/14

This report describes the use of a computer code to analyze antenna mounted on aircraft fuselage. Ram jet configurations can be handled as a special case by this code. The pattern can be taken in terms of an arbitrary conical cut. The organization of the code, definition of input and output data, multiple finite plate approach to simulate the structures on aircraft and various examples are presented. The analysis is based on the geometrical theory of diffraction, and various computed patterns are compared with experimental results.

N81-16375# Army Test and Evaluation Command, Aberdeen Proving Ground, Md.

FUNCTIONAL TESTING COMMUNICATION EQUIPMENT (AVIONICS) Final Report

31 Jul 1980 35 p refs Supersedes MTP-6-3-025 and MTP-6-3-024

(AD-A092825; TOP-6-3-025; MTP-6-3-025; MTP-6-3-024) Avail: NTIS HC A03/MF A01 CSCL 17/2

This document provides guidance and procedures for performance testing airborne communication equipment. The document addresses the following: Communication Range, Transmission Pattern, Homing, Retransmission, Effects of Atmospheric Conditions and Durability. It provides the test project officer with general information and guidance in test preparation, test controls, test conduct and data reduction.

N81-16388* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

HIGH TEMPERATURE ELECTRONIC REQUIREMENTS IN AEROPROPULSION SYSTEMS

William C. Nieberding and J. Anthony Powell 1981 5 p refs Proposed for presentation at High-Temp. Electron. Conf., Tucson, Ariz., 25-27 Mar. 1981; sponsored by NASA, DOE and IEEE (NASA-TM-81682; E-708) Avail: NTIS HC A02/MF A01 CSCL 09C

This paper discusses the needs for high temperature electronic and electrooptic devices as they would be used on aircraft engines in either research and development applications, or operational applications. The conclusion reached is that the temperature at which the devices must be able to function is in the neighborhood of 500 to 600 C either for research and development or for operational applications. In research and development applications, the devices must function in this temperature range when-in the engine but only for a moderate period of time. On an operational engine, the reliability requirements dictate that the devices be able to be burned-in at temperatures significantly higher than those at which they will function on the engine. The major point made is that semiconductor technology must be pushed well beyond the level at which silicon will be able to function.

N81-16416*# Lockheed Missiles and Space Co., Huntsville,

HYPERBOLIC/PARABOLIC DEVELOPMENT FOR THE

GIM-STAR CODE Progress Report

L. W. Spradley, J. F. Stalnaker, and A. W. Ratliff Dec. 1980. 177 p refs

(Contracts NAS1-15783; NAS1-15795)

(NASA-CR-3369; LMSC-HREC-TR-D697882) HC A09/MF A01 CSCL 20D

Flow fields in supersonic inlet configurations were computed using the eliptic GIM code on the STAR computer. Spillage flow under the lower cowl was calculated to be 33% of the incoming stream. The shock/boundary layer interaction on the upper propulsive surface was computed including separation. All shocks produced by the flow system were captured. Linearized block implicit (LBI) schemes were examined to determine their application to the GIM code. Pure explicit methods have stability limitations and fully implicit schemes are inherently inefficient; however, LBI schemes show promise as an effective compromise. A quasiparabolic version of the GIM code was developed using elastical parabolized Navier-Stokes methods combined with quasitime relaxation. This scheme is referred to as quasiparabolic although it applies equally well to hyperbolic supersonic inviscid flows. Second order windward differences are used in the marching coordinate and either explicit or linear block implicit time relaxation can be incorporated.

N81-16430# Aeronautical Research Labs., Wright-Patterson AFB, Ohio.

AN IMPROVED FLIGHT DATA TRANSCRIBER

A. J. Farrell Feb. 1980 30 p refs (AD-A091981; ARL/AERO-TM-318)

Avail: HC A03/MF A01 CSCL 14/3

HC A03/MF A01 CSCL 05/1

monitoring systems are also outlined.

A unit is described which converts serial data recorded on the MKI or MKII Aero. Division Airborne Data Acquisition Package into a form suitable for recording on 7 track computer compatible tape. It is an improved version of a previous unit designed to work with the MKI Data Acquisition Package. GRA

N81-16627# Federal Aviation Agency, Washington, D.C. Office of Environment and Energy.

THE NEED FOR AIRPORT NOISE MONITORING SYSTEMS. THEIR USES, AND VALUE IN PROMOTING CIVIL AVIATION Final Report

J. Steven Newman Sep. 1980 41 p refs (AD-A092240: NTIS FAA-EE-80-40) Avail:

The need for airport noise monitoring systems is addressed from a variety of perspectives focusing on potential benefits to airport proprietors, the airlines, noise impacted airport communities, and civil aviation in general. The operation and cost of typical noise monitoring systems is discussed. Various techniques for noise data presentation are also reviewed. The uses of radar tracking data in providing aircraft identification, position and ground track information is explored. Legal requirements for monitoring are specified and airport use restrictions are discussed. A list of U.S. and foreign airports with noise monitoring systems is presented. FAA research efforts pertaining to airport noise

N81-16628# Argonne National Lab., III. Energy and Environmental Systems Div.

IMPACT OF AIRCRAFT EMISSIONS ON AIR QUALITY IN THE VICINITY OF AIRPORTS. VOLUME 1: RECENT AIRPORT MEASUREMENT PROGRAMS, DATA ANALYSES, AND SUBMODEL DEVELOPMENT Final Report, Jan. 1978 - Jul. 1980

R. J. Yamartino, D. G. Smith, S. A. Bremer, D. Heinold, D. Lamich, and B. Taylor Jul. 1980 168 p refs

(Contract DOT-FA77WAI-736)

(AD-A089962; FAA-EE-80-09A) Avail: NTIS

HC A08/MF A01 CSCL 01/5

This report documents the results of the Federal Aviation Administration (FAA)/Environmental Protection Agency (EPA) air quality study which has been conducted to assess the impact of aircraft emissions of carbon monoxide (CO), hydrocarbons (HC), and oxides of nitrogen (NOx) in the vicinity of airports. This assessment includes the results of recent modeling and monitoring efforts at Washington National (DCA), Los Angeles International (LAX), Dulles International (IAD), and Lakeland, Florida airports and an updated modeling of aircraft generated pollution at LAX, John F. Kennedy (JFK) and Chicago O'Hare (ORD) airports. The Airport Vicinity Air Pollution (AVAP) model which was designed for use at civil airports was used in this assessment. In addition the results of the application of the military version of the AVAP model and the Air Quality Assessment Model (AQAM), are summarized.

N81-16629# Bolt, Beranek, and Newman, Inc., Cambridge, Mass. A GUIDANCE DOCUMENT ON AIRPORT NOISE CONTROL Final Report

Andrew S. Harris, Robert L. Miller, and Joan M. Mahoney Aug. 1980 173 p

(Contract DOT-FA78WA-4105)

(AD-A092228: BBN-10667-10676: FAA-EE-80-37) Avail: NTIS HC A08/MF A01 CSCL 01/5

This guidance document contains a general discussion of noise and noise control. Also given are sections on how humans respond to noise, noise control planning, noise descriptors that are used in the FAA's Integrated Noise MOdel, airport noise contours and land use planning, and citizen involvement in noise control planning. This document describes noise control actions and their benefits and costs; it reflects the Department of Transportation/Federal Aviation Administration Airport Noise Abatement Policy of 1976, a detailed, straightforward statement of the problems of airport noise and the shared responsibilities of those who must work to control it. The Federal legislature and administrative mandates for noise control are also reviewed.

N81-16677*# National Aeronautics and Space Administration. Pasadena Office, Calif.

CAT ALTITUDE AVOIDANCE SYSTEM Patent Application Bruce L. Gary, inventor (to NASA) (JPL, California Inst. of Technology, Pasadena) Filed 12 Jan. 1981 21 p (Contract NAS7-100)

(NASA-Case-NPO-15351-1; US-Patent-Appl-SN-224231) Avail: NTIS HC A02/MF A01 CSCL 04B

A method and apparatus are described for indicating the altitude of the tropopause or of an inversion layer in which clear air turbulence (CAT) may occur and the likely severity of any such CAT. A plot of altitude (with respect to an aircraft) versus temperature of the air at that altitude can indicate when an inversion layer is present and can indicate the altitude of the tropopause or of such an inversion layer. The plot can also indicate the severity of any CAT in an inversion layer. If CAT was detected in the general area, then the aircraft can be flown at an altitude to avoid the tropopause or inversion layer. The detection method can also be utilized to enable an aircraft to fly at an altitude at which the winds are most favorable for reducing fuel consumption.

N81-16681*# MCS, Inc., Boulder, Colo.

AN AIRPORT WIND SHEAR DETECTION AND WARNING SYSTEM USING DOPPLER RADAR: A FEASIBILITY STUDY

John McCarthy, Edward F. Blick, and Kim L. Elmore Jan. 1981 95 p refs

(Contract NAS8-33458)

(NASA-CR-3379) Avail: NTIS HC A05/MF A01 CSCL 04B

A feasibility study was conducted to determine whether ground based Doppler radar could measure the wind along the path of an approaching aircraft with sufficient accuracy to predict aircraft performance. Forty-three PAR approaches were conducted, with 16 examined in detail. In each, Doppler derived longitudinal winds were compared to aircraft measured winds; in approximately 75 percent of the cases, the Doppler and aircraft winds were in acceptable agreement. In the remaining cases, errors may have been due to a lack of Doppler resolution, a lack of co-location of the two sampling volumes, the presence of eddy or vortex like disturbances within the pulse volume, or the presence of point targets in antenna side lobes. It was further concluded that shrouding techniques would have reduced the

side lobe problem. A ground based Doppler radar operating in the optically clear air, provides the appropriate longitudinal winds along an aircraft's intended flight path.

N81-16699# Air Weather Service, Scott AFB, III. Forecasting Services Div.

THE WC-130 METEOROLOGICAL SYSTEM AND ITS UTILIZATION IN OPERATIONAL WEATHER RECONNAISSANCE

Rodney S. Henderson Aug. 1980 91 p refs (AD-A092637; AWS/TR-80-002) Avail: HC A05/MF A01 CSCL 04/2

This report discusses the U.S. Air Force WC-130 weather reconnaissance system. It starts with a brief history of weather reconnaissance, then describes the Air Force WC-130 weather reconnaissance system including descriptions of the instrumentation used. The discussion of data dissemination and quality control is followed by discussion of the applications of weather reconnaissance in watching tropical cyclones and in weather modification.

N81-16770# Naval Research Lab., Washington, D. C.
ABSTRACT INTERFACE SPECIFICATIONS FOR THE A-7E
DEVICE INTERFACE MODULE

Robert A. Parker, Kathryn L. Heininger, David L. Parnas, and John E. Shore 20 Nov. 1980 177 p refs (ZF21242001)

(AD-A092696:

6; NRL-MR-4385)

interface approach on other software projects.

Avail: NTIS

NTIS

HC A09/MF A01 CSCL 09/2 As part of the experimental redesign of the flight software for the Navy's A-7 aircraft, software modules were designed to encapsulate the characteristics of hardware devices connected to the computer. The purpose of these device interface modules is to allow the remainder of the software to remain unchanged when devices are changed or replaced. To achieve this purpose, the modules were designed according to the abstract interface principle, documented according to a standard organization and reviewed by a systematic procedure based on the properties expected of abstract interfaces. This report contains: (1) an explanation of the abstract interface approach, (2) a description of the standard organization for inteface specifications, (3) a description of the review procedure, and (4) interface specifications for all the device interface modules in the A-7 software. As well as serving as development and maintenance documentation for the A-7 redesign, this document is intended to serve as a model for the other people interested in applying the abstract

N81-16825# Naval Postgraduate School, Monterey, Calif. Dept. of Operations Research.

METHODOLOGY FOR DETERMINING SAMPLING INTER-VALS

H. J. Larson and T. Jayachandran Nov. 1980 35 p refs (AD-A092591; NPS53-81-001) Avail: NTIS HC A03/MF A01 CSCL 12/1

A new methodology for the determination of sampling intervals to be used with the spectrometric oil analysis program has been developed. The methodology has been tested with preliminary data and appears to perform well.

N81-16853*# Pratt and Whitney Aircraft Group, East Hartford, Conn. Commercial Products Div.

STUDIES ON PROPER SIMULATION DURING STATIC TESTING OF FORWARD SPEED EFFECTS ON FAN NOISE Final Report

A. A. Peracchio, U. W. Ganz, M. R. Gedge, and K. Robbins Sep. 1980 103 p refs Prepared in cooperation with Boeing Commercial Airplane Co., Seattle

(Contract NAS1-15085)

(NASA-CR-165626) Avail: NTIS HC A06/MF A01 CSCL 20A

Significant differences exist in the noise generated by engines in flight and engines operating on the test stand. It was observed that these differences can be reduced by the use of an inflow

control structure (ICS) in the static test configuration. The results of the third phase of a three phase program are described. The work performed in the first two phases which dealt with the development of a model for atmospheric turbulence, studies of fan noise generated by rotor turbulence interaction, and the development of an inflow control structure design system are summarized. The final phase of the program covers procedures for performing static testing with an ICS projecting the resulting static test data to actual flight test data. Included is a procedures report which covers the design system and techniques for static testing and projecting the static data to flight.

N81-16854*# General Electric Co., Cincinnati, Ohio. Engine Group.

ACOUSTIC AND AERODYNAMIC PERFORMANCE INVES-TIGATION OF INVERTED VELOCITY PROFILE COANNULAR PLUG NOZZLES Final Report

P. R. Knott, J. T. Blozy, and P. S. Staid Washington NASA Feb. 1981 259 p refs

(Contract NAS3-19777)

(NASA-CR-3149; R79AEG388)

NTIS Avail:

HC A12/MF A01 CSCL 20A

The results of model scale parametric static and wind tunnel aerodynamic performance tests on unsuppressed coannular plug nozzle configurations with inverted velocity profile are discussed. The nozzle configurations are high-radius-ratio coannular plug nozzles applicable to dual-stream exhaust systems typical of a variable cycle engine for Advanced Supersonic Transport application. In all, seven acoustic models and eight aerodynamic eperformance models were tested. The nozzle geometric variables included outer stream radius ratio, inner stream to outer stream ratio, and inner stream plug shape. When compared to a conical nozzle at the same specific thrust, the results of the static acoustic tests with the coannular nozzles showed noise reductions of up to 7 PNdB. Extensive data analysis showed that the overall acoustic results can be well correlated using the mixed stream welocity and the mixed stream density. Results also showed that suppression levels are geometry and flow regulation dependent with the outer stream radius ratio, inner stream-to-outer stream velocity ratio and inner stream velocity ratio and inner stream plug shape, as the primary suppression parameters. In addition, high-radius ratio coannular plug nozzles were found to yield shock associated noise level reductions relative to a conical Snozzle. The wind tunnel aerodynamic tests showed that static and simulated flight thrust coefficient at typical takeoff conditions are quite good - up to 0.98 at static conditions and 0.974 at a takeoff Mach number of 0.36. At low inner stream flow conditions significant thrust loss was observed. Using an inner stream conical plug resulted in 1% to 2% higher performance levels than nozzle geometries using a bent inner plug. M.G.

N81-16952# Committee on Science and Technology (U. S. House).

POSTURE HEARINGS (NASA AND FAA)

Washington GPO 1980 110 p Hearing before the Comm. on Sci. and Technol., 96th Congr., 2nd Sess., no. 112, 29 Jan.

(GPO-65-265) Avail: Committee on Science and Technology Highlights of NASA activities in the 1960's and 1970's are assessed and plans for the 1980's are examined in the light of the President's proposed NASA budget of \$5.737 billion for fiscal year 1981 and a supplemental fiscal year 1980 approximation of \$300 million for space shuttle development. Planning for other programs, in addition to the space transportation system, is described. The status of the FAA engineering and developing program is also reviewed. Difficulties in maintaining adequate staffing are discussed. A.R.H.

N81-16953# Committee on Science and Technology (U. S.

NASA AUTHORIZATION, 1981

Washington GPO 1980 204 p Index for Hearings on H. R. 6413 before the Comm. on Sci. and Technol., 96th Congr., 2nd Sess., no. 158, for v. 1-5

(GPO-71-290) Avail: Committee on Science and Technology

A subject and name index is provided for testimony delivered and statements received in support of NASA's request for funding for research and development, program management and construction of facilities. A.R.H.

N81-16983# Army Research and Technology Labs., Moffett Field, Calif. Aeromechanics Lab.

VISCOUS-INVISCID INTERACTION ON OSCILLATING AIRFOILS IN SUBSONIC FLOW

W. J. McCroskey (NASA Ames) and S. L. Pucci 15 Jan. 1981 17 p refs Presented at the 19th AIAA Aerospace Sci. Meeting, St. Louis, 12-15 Jan. 1981

(AD-A093970; AIAA-81-0051) Avail: NTIS

HC A02/MF A01 CSCL 20/4

Selected results from an extensive oscillating airfoil experiment are analyzed and reviewed. Four distinct regimes of viscousinviscid interaction are identified corresponding to varying degrees of unsteady flow separation. The dominant fluid dynamic phenomena are described for each regime. Ten specific test cases, including the appropriate flow conditions and experimental results, are proposed for evaluating unsteady viscous theories and computational methods.

N81-16984# California Univ., Berkeley. Dept. of Mechanical Engineering.

SUPERCRITICAL FLOW PAST SYMMETRICAL AIRFOILS Ph.D. Thesis. Interim Report

Kon-Ming Li Dec. 1980 50 p refs

(Grant AF-AFOSR-0230-80; AF Proj. 2307)

(AD-A093300: AFOSR-80-1357TR) Avail: NTIS

HC A03/MF A01 CSCL 20/4

A numerical method is developed for computing steady supercritical flow about an ellipse at zero angle to attack. The flow is assumed to be two dimensional, inviscid, isentropic, and irrotational. The free stream Mach number lies in the high subsonic range so that a shock wave occurs locally near the body. The full potential equations are solved by Telenin's Method and the Method of Lines. Smooth interpolating functions are assumed for the unknown flow variables in selected coordinate directions. The resulting set of ordinary differential equations is then integrated away from or along the body depending upon whether the flow is smooth or discontinuous. Jump conditions of the governing equations are applied across the shock wave so that it is perfectly sharp. A doublet solution for flow past a closed body is used as the far field boundary condition. Supercritical flow calculations have been performed for ellipses with thickness ratio of 0.2 and 0.4 at various free stream Mach numbers. The present results are compared with the shock-capturing method, and good agreement is obtained.

N81-16987# Messerschmidt-Boelkow G.m.b.H., Ottobrunn (West Germany). "Unternehmensbereich Flugzeuge.

A THEORETICAL METHOD FOR THE SIMULATION OF SEPARATION BEHAVIOR OF AIRCRAFT EXTERNAL STORES [EIN THEORETISCHES VERFAHREN ZUR SIMULATION DES ABGANGSVERHALTENS VON AUS-SENLASTEN VOM TRAEGER

R. Deslandes 26 Nov. 1979 16 p refs in GERMAN Presented at DGLR Wehrtech, Symp, on der Abgang von Lasten u. Waffen vom Traeger, Bad Neuenahr, West Germany, 26-27 Nov. 1979 (MBB-FE-122/S/PUB/16: DGLR-79-091) Avail: NTIS HC A02/MF A01

A computer program which predicts store separation trajectories for fighter aircraft configurations is presented. The calculation method is based on finite elements and takes into account drag and other aerodynamic interference effects on stores. It includes a mathematical model of jettison (or launch/drop) forces and portrays store behavior as equations of motion with six degrees of freedom. Interference calculation results for a typical wing-fuselage stores configuration are compared with wind tunnel captive trajectory measurements and are shown to be Author (ESA) satisfactory.

N81-16988# Messerschmidt-Boelkow G.m.b.H., Ottobrunn (West Germany). "Unternehmensbereich Flugzeuge. STORE SEPARATION SIMULATION IN SUBSONIC WIND

TUNNELS [AUSSENLASTTECHNIKEN IN UNTERSCHALL-WINDKANAELEN]

R. Leistner 21 Nov. 1979 37 p refs In GERMAN Presented at DGLR Wehrtech. Symp. on der Abgang von Lasten u. Waffen vom Traeger, Bad Neuenahr, West Germany, 26-27 Nov. 1979 (MBB-FE-123/S/PUB/20; DGLR-79-098) Avail: NTIS HC A03/MF A01

Wind tunnel simulation techniques for studying the ejection behavior and trajectories of fighter aircraft external stores are considered. The aerodynamics of a fixed store model in a subsonic flow are examined. The dynamic case of a free model is covered in detail. Scaling methods, particularly Froude scaling, are discussed. The construction and calibration of a dynamically similar model is described. The setup of a store separation wind tunnel study is outlined, emphasizing immediately necessary measurements as well as measurements which could be useful in aircraft design.

Author (ESA)

N81-16989# Centre d'Essai Aeronautique, Toulouse (France).
UNSTEADY WAKES DOWNSTREAM FROM A PROFILE
OBCILLATING IN INCIDENCE [SILLAGES INSTATIONNAIRES A L'AVAL D'UN PROFIL EN OSCILLATIONS D'INCIDENCE]

J. Coulomb and J. Verriere Paris Association Aeronautique et Astronautique de France 1980 33 p refs In FRENCH Presented at 16th Colloq. d'Aerodyn. Appl., Lille, 13-15 Nov. 1979 (AAAF-NT-80-10; ISBN-2-7170-0606-0) Avail: NTIS

HC A03/MF A01; CEDOCAR, Paris FF 40 (France and EEC) FF 45 (others)

Velocity profiles in a turbulent wake downstream from a wing model oscillating in incidence were determined by hot wire anomometry in a rectangular wind tunnel at a flow speed of 50 m/sec. A Fourier analysis of measurements was made. Results show a considerable modification of the velocity distribution in the wakes outside the quasistationary domain. Motion in the wake structure also perturbs the potential flow. It results that calculation of drag coefficients by the Betz method becomes uncertain. The evolution of velocity profiles in function of oscillating frequency is illustrated.

Author (ESA)

N81-16992# Association Aeronautique et Astronautique de France, Paris.

EXAMINATION OF THE VORTEX REGIME FOR HIGHLY SWEPT WINGS BY EXTRAPOLATION OF THE JONES METHOD [ESSAI D'ETUDE DU REGIME TOURBILLONNAIRE DES AILES DE FORTE FLECHE PAR EXTRAPOLATION DE LA METHODE DE JONES]

R. Hirsch 1980 24 p In FRENCH; ENGLISH summary Presented at 16th Colloq, d'Aerodyn, Appl., Lille, 13-15 Nov. 1979 (AAAF-NT-80-25; ISBN-2-7170-0621-4) Avail: NTIS HC A02/MF A01; CEDOCAR, Paris FF 25 (France and EEC) FF 30 (others)

The formation of vortex sheets along the surface of a separated flow over the leading edge of a sweptback wing is discussed. A phenomenological explanation based on representations and hypotheses from simplifying calculations inspired by Jones approximation is offered. Four conditions for fixing vortex sheet configurations and their intensity are defined. A correction algorithm for the Jones approximation is also given. Calculations were done on a HP-97 computer and are compred with various experimental measurements (delta wings, ducktail, strakes, etc.); results are satisfactory.

Author (ESA)

N81-16994*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, Calif.

THE USE OF TOTAL SIMULATOR TRAINING IN TRANSI-TIONING AIR-CARRIER PILOTS: A FIELD EVALUATION Robert J. Randle, Jr., Trieve A. Tanner, Joy A. Hamerman (Ford Aerospace and Communications Corp., Sunnyvale, Calif.), and

Thomas H. Showalter (Stanford Univ., Calif.) Jan. 1981 99 p refs

(NASA-TM-81250; A-8411) Avail: NTIS HC A05/MF A01 CSCL 051

A field study was conducted in which the performance of air carrier transitioning pilots who had landing training in a landing maneuver approved simulator was compared with the performance of pilots who had landing training in the aircraft. Forty-eight trainees transitioning to the B-727 aircraft and eighty-seven trainees transitioning to the DC-10 were included in the study. The study results in terms of both objectively measured performance indicants and observer and check-pilot ratings did not demonstrate a clear distinction between the two training groups. The results suggest that, for these highly skilled transitioning pilots, a separate training module in the aircraft may be of dubious value.

T.M.

N81-16995# Dayton Univ., Ohio. Research Inst.
EVALUATION OF BIRD LOAD MODELS FOR DYNAMIC
ANALYSIS OF AIRCRAFT TRANSPARENCIES Final Report,
Jan. 1978 - Dec. 1979

Blaine S. West and Robert A. Brockman Aug. 1980 87 p refs

(Contract F33615-76-C-3103; AF Proj. 2202)

(AD-A092909; UDR-TR-80-59; AFWAL-TR-80-3092) Avail: NTIS HC A05/MF A01 CSCL 01/3

The objective of the program was to experimentally and analytically examine the range of applicability of existing bird loading models. The program consisted of two primary tasks: (1) the design of an experiment and the collection of experimental data for actual bird impact on a flexible target, and (2) the computation of the response to the experimental impact conditions using the MAGNA code and existing bird loading models. Projectiles made of bird simulant material were launched at specially designed aluminum targets at velocities in the range of 60 to 300 m/sec. Impacts were at angles of 90 (normal), 45, and 25 degrees for nominal bird weights of 77 and 560 grams. Time history of target out-of-plane surface displacement was measured for all impacts and strain gage data was collected for selected impacts. Calculated response data is compared to experimental data for selected impact conditions. It is demonstrated that good results can be obtained with an uncoupled loading model using a priori information to modify the loading model.

N81-16996# Honeywell Systems and Research Cerfter, Minneapolis, Minn.

TWO-AXIS, FLUIDICALLY CONTROLLED THRUST VECTOR CONTROL SYSTEM FOR AN EJECTION SEAT Final Report, 1 Apr. 1976 - 1 Oct. 1979

Robert B. Beale, Robert V. Burton, and Norman E. Miller Wright-Patterson AFB, Ohio AFWAL Jul. 1980 150 p refs (Contract F33615-76-C-3070; AF Proj. 2402)

(AD-A093888; HONEYWELL-80SRC22; AFWAL-TR-80-3080) Avail: NTIS HC A07/MF A01 CSCL 01/3

A two-axis, hydrofluidic, thrust vector control (TVC) system was designed to stabilize an ejection seat during the critical rocket burn portion of the trajectory which should reduce the g loads on the crewmember and result in higher trajectories. The dynamic performance of a seat with a fluidic TVC system was analytically evaluated against established ejection seat requirements and physiological limits. This analysis showed that pitch rates were reduced by 60 percent and yaw rates by 90 percent when compared with a seat with no stabilizing system. Breadboard hardware was fabricated and tested with the components meeting requirements. A prototype integrated fluidic circuit and a moveable nozzle was then designed, fabricated and tested. The prototype system did not meet all the requirements due to a null bias instability in the fluidic amplifier which was caused by a nozzle asymmetry in the fluidic amplifier mold. The FTVC System included a vortex rate sensor, fluidic lag-lead compensator, and a four-stage fluidic servovalve. These components will use hot gas pressurized oil to drive a hydrostatically supported, piston actuated ball and socket nozzle with 20 deg of deflection of a 3500 lb thrust rocket. Initial nozzle breakaway friction was 170 in-lb. Operating friction was 135 in-lb and running friction was 80 in-lb.

N81-16997# Simula, Inc., Tempe, Ariz.
AIRCRAFT CRASH SURVIVAL DESIGN GUIDE,
VOLUME 1: DESIGN CRITERIA AND CHECKLISTS,
REVISION Final Report

S. P. Desjardins, D. H. Laananen, and G. T. Singley, III Dec. 1980 272 p refs

(Contract DAAJ02-77-C-0021: DA Proj. 1L1-62209-AH-79) (AD-A093784: TR-7927: USARTL-TR-79-22A) Avail: NTIS HC A12/MF A01 CSCL 01/2

This five-volume document has been assembled to assist design engineers in understanding the problems associated with the development of crashworthy U. S. Army aircraft. Contained herein are not only a collection of available information and data pertinent to aircraft crashworthiness but suggested design conditions and criteria as well. The five volumes of the Aircraft Crash Survival Design Guide cover the following topics: Volume 1 - Design Criteria and Checklists; Volume 2 - Aircraft Crash Environment and Human Tolerance; Volume 3 - Aircraft Structural Crashworthiness; Volume 4 - Aircraft Seats, Restraints, Litters, and Padding; and Volume 5 - Aircraft Postcrash Survival. This volume contains concise criteria drawn from Volumes 2 - 5, supplemented by checklists intended to assist designers in implementation of the criteria.

N81-16998# Human Engineering Labs., Aberdeen Proving Ground, Md.

AN INVESTIGATION OF THE FIVE POINT RESTRAINT SYSTEM FOR AVIATORS Final Report

William B. DeBellis Oct. 1980 29 p

(AD-A093065; HEL-TM-21-80) Avail: NTIS

HC A03/MF A01 CSCL 01/2

This report investigated a purported restriction on aircrew leg movements due to the anchor point location of the five point restraint system in the Advanced Attack helicopter (AAH). The system was investigated with aviators wearing both body armor and survival vest. An adjustable AAH crew seat mock-up was used which contained production cushions with anti-torque pedals with toe brakes. Results showed that the current configuration would not restrict the leg motion of the pilot. However, the restraint system did interfere with the body armor and survival vest. This effect confounded the results. GRA

N81-16999# National Transportation Safety Board, Washington, D. C. Bureau of Technology.

LISTING OF ACCIDENTS/INCIDENTS BY AIRCRAFT MAKE AND MODEL, UNITED STATES CIVIL AVIATION, 1978

5 Aug. 1980 210 p

(PB81-110280; NTSB-AMM-80-1) Avail: NTIS

HC A10/MF A01 CSCL 01B

Included are the file number, aircraft registration number, date and location of the accident, aircraft make and model and injury index for all 4,675 accidents/incidents occurring in this period. This publication is published annually.

N81-17010# North Atlantic Treaty Organization, Bodo (Norway). SEAT PACK FOR FIGHTER AIRCRAFT OPERATING ON THE NATO NORTHERN FLANK

T. M. Arestol /n AGARD Aircrew Safety and Survivability (Ltd. to Combat Aircraft) Oct. 1980 3 p

Avail: NTIS HC A08/MF A01

The survival seatpack for fighter aircraft is discussed. The seatpack is suited for arctic survival in winter as well as in summer and can sustain life for weeks when used effectively. The kit contains signaling and protective equipment, survival tools, and rations.

N81-17011# Centre d'Essais en Vol. Bretigny-Air (France). Lab. de Medecine Aerospatiale.

ERGONOMETRIC STUDY OF EJECTION THROUGH A BREAKABLE CANOPY [ETUDE ERGONOMIQUE L'EJEC-TION A TRAVERS VERRIERE FRAGILISEE]

B. Vettes In AGARD Aircrew Safety and Survivability (Ltd. to Combat Aircraft) Oct. 1980 9 p In FRENCH

Avail: NTIS HC A08/MF A01

In order to do away with the delay necessary for ejecting the canopy before seat separation in classic systems, tests of passage directly through the canopy have been conducted at the Brittany Flight Test Center's Aerospace Medicine Laboratory

since 1962. Although it presents some risks such as acceleration. deterioration of equipment, and impact on the pilot, this method of evacuation can be seen as being of value for canopies whose thickness does not exceed 9 mn. The systemization of a means for preliminary breakage can be considered. Some static and dynamic tests (between 0 and 600 kt) performed on Mirage F.1 and Delta 2000 dummies gave satisfactory results. However, the application of the system to aircraft with freely falling canopies involves a certain number of difficulties. Aerodynamic forces are such that some pieces of plexiglass fall back on the pilot, which creates important risks. To overcome these inconveniences, a number of breakage devices were tested. Those giving the greatest satisfaction involve a two cycle breaking. In the first cycle, a pyrotechnic decoupling of the dome above the pilot takes place; in the second cycle, the rest breaks away from the canopy just before the knees pass. Transl. by A.R.H.

N81-17012# Milan Univ. (Italy). Inst. of Neurosurgery. NEUROTRAMATOLOGICAL ASPECTS IN EJECTED PI-

V. A. Sironi, P. M. Rampini, E. Guerrisi (Italian Air Force, Milan), and U. Vitale (Italian Air Force, Milan) In AGARD Aircrew Safety and Survivability (Ltd. to Combat Aircraft) Oct. 1980 7 p refs

Avail: NTIS HC A08/MF A01

Neurological and neurosurgical aspects in injured jet pilots after ejection are considered. Observations were carried out on 108 military and civil jet pilots, that from 1958 to 1978 performed a total of 110 ejections (80 from R84, and G91 and 30 from F104). The injuries were classified into none, minor, major, and fatal. The analysis of results shows that 42.% had no injuries, 19% had minor injuries, 25.5% had major injuries, and 12.8% had fatal injuries. In 24 cases (21.8%) vertebral injuries were present: in 16 cases vertebral fractures (62.% in dorso-lumbar tract and 25% in dorsal tract), in 2 cases dislocations and in 10 cases sprains and strains. Neurological signs were present in 12 cases: spinal cord injuries in 5 cases, head trauma in 6 cases, and peripheral nerve injuries in 3 cases. The importance of the correct diagnosis and treatment, the follow-up of these cases in relation to the pathogenetic mechanisms and the prevention of the permanent neurological deficits are presented and discussed.

N81-17016# Institute of Aviation Medicine, Farnborough (England).

THE EVOLUTION OF THE HELICOPTER SEAT PAN MOUNTED PERSONAL SURVIVAL PACK (PSP)

A. Steele-Perkins In AGARD Aircrew Safety and Survivability (Ltd. to Combat Aircraft) Oct. 1980 3 p refs

Avail: NTIS HC A08/MF A01

A seat pan mounted personal survival pack of glass reinforced fiber construction was developed for use in all military helicopters. This offers much improved crashworthiness and increased comfort. These improvements are discussed, as well as the evolution of the survival pack through experience and application of ergonomics.

R.C.T.

N81-17017# Army Aviation Research and Development Command, Fort Eustis, Va. Applied Technology Lab.
TEST AND EVALUATION OF IMPROVED AIRCREW RESTRAINT SYSTEMS FOR COMBAT HELICOPERS
George T. Singley, III In AGARD Aircrew Safety and Survivability (Ltd. to Combat Aircraft) Oct. 1980 16 p refs

Avail: NTIS HC A08/MF A01

US Army aviation accident data shows that a majority of all injuries in attack helicopters could have been avoided if these aircraft had been equipped with crashworthy seat and restraint systems. The compactness of the cockpit and the close proximity of mission equipment to the crew in attack and scout helicopters pose serious crash impact hazards. Although not desirable from a crashworthiness standpoint, operational considerations may dictate that mission equipment and structure be located within the occupant's crash impact motion envelope. Given this situation,

it is critical to the occupant's crach impact survival chances that he be provided with a restraint system that minimizes his crash impact motion envelope, particularly for his head. The cockpit can be delethalized further when the improved restraint is complemented by padding potential strike surfaces in the cockpit, making contact surface frangible, and providing weapon system sights with frangibility, telescoping, and/or swing-away features.

N81-17024# Federal Aviation Administration, Atlantic City, N.J. Technical Center.

MICROWAVE LANDING SYSTEM (MLS) CLEARANCE FORMAT ASSESSMENT TESTS Data Report, Jan. - Fob. 1980

Robert McFadden Dec. 1980 55 p (AD-A093553; FAA-CT-80-46) Avail: HC A04/MF A01 CSCL 17/7

The purpose of this experiment was to provide static and flight test data with the proposed Microwave Landing System (MLS) clearance format to support the MLS International Standards and Recommended Practices (SARPS) development by the International Civil Aviation Organization (ICAO) working group.

NG1-17026# IIT Research Inst., Annapolis, Md.
AMALYTIC DETERMINATION OF INTERFERENCE THRESMOLDS FOR MICROWAVE LANDING SYSTEM EQUIPMENT
AND TACAN/DME EQUIPMENT Intorim Roport
Ved P. Nanda Aug. 1980 150 p refs
(Contracts F19628-78-C-0006; DOT-FA76WAI-612)
(AD-A093448; ECAC-PR-80-008; FAA-RD-80-89) Avail: NTIS
HC A07/MF A01 CSCL 17/7

This report analytically estimates the interference thresholds of the Time Reference Scanning Beam (TRSB) Microwave Landing System (MLS) which is comprised of the C-Band angle guidance and the L-Band PDME range guidance equipments. Furthermore, interference thresholds and separation distance requirements of the coexisting TACAN/DME L-Band equipment are determined.

NS1-17026# IIT Research Inst., Annapolis; Md.
MLS CMANNEL ASSIGNMENT MODEL Intorim Roport
Thomas Hensler and Andrew Koshar Aug. 1980 108 p refs
(Contracts F19628-78-C-0006; DOT-FA76WAI-612)
(AD-A093449; ECAC-PR-80-012; FAA-RD-80-91) Avail: NTIS
HC A06/MF A01 CSCL 17/7

An automated channel assignment model was constructed in response to an FAA need to assess the assignment feasibility of planned MLS angle-guidance equipment in C-band, and its associate L-band Precision Distance Measurement Equipment (PDME). The intersite interference analysis and channel-assignment algorithm capabilities are described. A trial assignment of MLS equipments was performed for a Southwest United States airport environment and the results are summarized. GRA

NS1-17027# Defense Mapping Agency Hydrographic and Topographic Center, Washington, D.C. Electronic Navigation Div.

DMANTC'S SUPPORT TO NATIONAL OCEAN SURVEY LORAN-C-CHARTING

John J. Speight and Edwin O. Danford Dec. 1980 41 p Presented at the 8th Natl. Ocean Survey Hydrographic Survey Conf.

(AD-A093748) Avail: NTIS HC A03/MF A01 CSCL 17/7
The selection of LORAN-C as the primary Radionavigation
System for the U.S. Coastal Confluence Zone requires by, joint
agreement, that DMAHTC, USCG, and NOS provide corrections
to LORAN-C Lattices overprinted on NOS Charts. This paper
reviews the techniques used to compute these corrections. It
also gives the status of the LORAN-C System.

GRA

NG1-17026# Defense Mapping Agency Hydrographic and Topographic Center, Washington, D.C. Electronic Navigation

PRODUCTION OF LORAN-C RELIABILITY DIAGRAMS AT THE DEFENSE MAPPING AGENCY

Clarence L. Worrell 20 Nov. 1980 11 p refs Presented at the Inst. of Navigation Natl. Marine Meeting, New Orleans (AD-A093749) Avail: NTIS HC A02/MF A01 CSCL 17/7

LORAN-C reliability diagrams depict two types of data, the maximum usable groundwave signal limit, which aids the LORAN-C user in determining which transmitters provide coverage in his area of operation, and the predicted uncertainty of a LORAN-C hyperbolic fix. Signal limits are computed using Bremmer's field prediction formula and an algorithm that predicts the range for a signal of predetermined signal-to-noise ratio propagating along an electrically inhomogeneous transmission path. Fix uncertainty predictions are based on a formula relating fix uncertainty to crossing angle between lines of position, system standard deviation, and the divergence of hyperbolic lines of position. Actual range and fix uncertainty may differ from values shown on reliability diagrams, depending on such factors as weather, the occurrence of geomagnetic disturbances, and the user's direction of travel. Reliability diagrams currently produced show signal limits and fix uncertainties for LORAN-C chains at a scale of 1:5,000,000; a new generation of reliability diagrams could show data at a reduced scale (1:10,000,000) for each LORAN-C triad (one master and two slave transmitters), making more chain and transmitter selection information available to the user. GRA

NB1-17029# Defense Mapping Agency Hydrographic and Topographic Center, Washington, D.C.

HYDROGRAPHIC APPLICATIONS OF THE GLOBAL POSITIONING SYSTEM

Penny D. Dunn and John W. Rees, II Dec. 1980 8 p refs Presented at the 8th Natl. Ocean Survey Hydrographic Survey Conf. Prepared in cooperation with Naval Oceanographic Office; Bay St. Louis, Miss.

(AD-A093750) Avail: NTIS HC A02/MF A01 CSCL 17/7 Global Positioning satellites have been tested under a variety of conditions and demonstrated exceptional accuracy. The most portable of the Phase 1 development equipment is the manpack/ vehicle user equipment (MVUE of manpack). The purpose of this study was to determine if a manpack is suitably accurate for large scale coastal hydrographic surveying. The manpack was placed aboard in the Naval Postgraduate School Research Vessel, R/V ACANIA. This objective required the testing of the manpack under varying survey conditions to determine the degradation of positional accuracy. The limit of the survey scale to which the unprocessed manpack data could be employed in a real-time operation was found to be 1:80,000 and smaller by the positioning error criteria of 0.5mm to the scale of the survey. Applications of differential techniques during the post-processing of the manpack position data increased the limit of the survey scale to 1:60,000 using the same position criteria.

R81-17030# Department of Transportation, Washington, D. C. Office of Assistant Secretary for Systems Development and Technology.

FEDERAL RADIONAVIGATION PLAN. VOLUME 1: RADIONAVIGATION PLANS AND POLICY Final Report, Doc. 1979 - Jun. 1980

Jul. 1980 90 p Prepared in cooperation with DOD, Washington, D.C. 4 Vol.

(AD-A093774; DOT-TSC-RSPA-80-16-Vol-1;

DOD-4650.4-P-Vol-1) Avail: NTIS HC A05/MF A01 CSCL 17/7

The Federal Radionavigation Plan (FRP) has been jointly developed by the U.S. Departments of Defense and Transportation to ensure efficient use of resources and full protection of National interests. The plan sets forth the Federal interagency approach to the implementation and operation of radionavigation systems. The Federal Radionavigation Plan delineates policies and plans for Government-provided radionavigation services. The document describes respective areas of authority and responsibility, and provides a management structure by which the individual operating agencies will define requirements and meet them in a cost-effective manner. It replaces the DOT National Plan for Navigation, and those sections of the DOD Joint Chiefs of Staff (JCS) Master Navigation Plan dealing with common user systems. Volume 1 is

a summary document which delineates plans, policies, and authority and responsibility for providing radionavigation services. An integrated management plan describing how DOT and DOD will determine requirements and coordinate research, development, and implementation of radionavigation systems is provided. GRA

NB1-17031# Department of Transportation, Washington, D. C. Office of Assistant Secretary for Systems Development and Technology.

FEDERAL RADIONAVIGATION PLAN. VOLUME 2: REQUIREMENTS Final Report, Doc. 1979 - Jun. 1980 Jul. 1980 50 p Prepared in cooperation with DOD, Washington, D.C. 4 Vol.

(AD-A093775; DOT-TSC-RSPA-80-16-Vol-2;

DOD-4650.4-P-Vol-2) Avail: NTIS HC A03/MF A01 CSCL 17/7

The user requirements and the processes that were used to determine them are described. Both general and specific requirements related to various applications and phases of navigation are discussed. Present and future anticipated needs are also discussed. The requirements of civil and military users defined for radio navigational services are based upon the technical and operational performance needed for military missions, transportation safety, and economic efficiency.

T.M.

R81-17032# Department of Transportation, Washington, D. C. Office of Assistant Secretary for Systems Development and Technology.

FEDERAL RADIONAVIGATION PLAN. VOLUME 3: RADIONAVIGATION SYSTEM CHARACTERISTICS Final Report, Dec. 1979 - Jun. 1980

Jul. 1980 46 p Prepared in cooperation with DOD, Washington, D.C. 4 Vol.

(AD-A093776; DOT-TSC-RSPA-80-16-Vol-3;

DOD-4650.4-P-Vol-3) Avail: NTIS HC A03/MF A01 CSCL

Present and planned navigation systems are described in terms of nine major parameters: signal characteristics, accuracy, availability, coverage, reliability, fix rate, fix dimensions, capacity, and ambiguity. The characteristics, capabilities, and limitations of existing and proposed major radio navigation systems are discussed. All of the systems considered are defined in terms of system performance parameters which determine the utilization and limitations of the individual systems.

NB1-17033# Department of Transportation, Washington, D. C. Office of Assistant Secretary for Systems Development and Technology.

FEDERAL RADIONAVIGATION PLAN. VOLUME 4: RADIONAVIGATION RESEARCH, ENGINEERING AND DEVELOPMENT Final Report, Dec. 1979 - Jun. 1980

Jul. 1980 120 p Prepared in cooperation with DOD, Washington,

(AD-A093777; DOT-TSC-RSPA-80-16-Vol-4;

DOD-4650.4-P-Vol-4) Avail: NTIS HC A06/MF A01 CSCL 17/7

The federal radio navigation R.E&D plan together with individual R.E&D plans for military and civil air, land, marine applications are summarized. Open issues and the means for their resolution are discussed. A key feature is a discussion on how the individual agency R.E&D plans will be coordinated to help assure that all aspects of each system are thoroughly evaluated while avoiding duplication of activitites.

N81-17035# Federal Aviation Administration, Atlantic City, N.J. Technical Center.

OMEGA TRANSMITTER OUTAGES, JANUARY TO DE-CEMBER 1979

Lorraine Rzonca Oct. 1980 18 p

(FAA Proj. 043-311-520)

D.C. 4 Vol.

(AD-A093425; FAA-CT-80-196; FAA-RD-80-113) Avail: NTIS HC A02/MF A01 CSCL 17/7

An investigation of Omega transmitter outages during 1979 was conducted with emphasis on the occurrence of simultaneous

downtimes. Data presented includes frequency and duration of outages and total yearly percentage shutdown for each transmitter, with scheduled outages specifically noted. The most significant dual outage lasted more than 5 days when Norway antenna repairs were coincident with Argentina annual maintenance.GRA

N81-17036# Federal Aviation Administration, Atlantic City, N.J.
DETECTION OF MILITARY AIRCRAFT IN AM AIR TRAFFIC
CONTROL RADAR BEACON SYSTEM (ATCRBS) ENVIRONMENT Final Report, paried ending Jun. 1980

Carl Hazelwood Dec. 1980 28 p refs (AD-A093427; FAA-CT-80-37)

HC A03/MF A01 CSCL 17/7

Avail: NTIS

An initial survey and analysis of military Air Traffic Control Radar Beacon System (ATCRBS) transponder problems was conducted as a result of transponder performance analyzer (TPA) measurement difficulties encountered at Dobbins Air Force Base, Georgia, and from field problem reports from the Atlanta Terminal, New York and Washington Centers, and other areas. The information assembled and presented in this report demonstrates potential ATCRBS problems with high performance military aircraft in fringe areas of coverage and particularly with the Automated Radar Terminal Systems (ART's). Aircraft antenna patterns and switching are of primary concern.

N81-17037# National Technical Information Service, Springfield,

AIR TRAFFIC CONTROL SIMULATION MODELS. CITA-TIONS FROM THE NTIS DATA BASE Progress Report, 1976 - Sop. 1980

Guy E. Habercom, Jr. Oct. 1980 208 p Supersedes NTIS/PS-79/0799; NTIS/PS-78/0788 (PB81-800104; NTIS/PS-79/0799; NTIS/PS-78/0788) Avail:

(PB81-800104; NTIS/PS-79/0799; NTIS/PS-78/0788) Avail NTIS HC \$30.00/MF \$30.00 CSCL 17G

Enroote and terminal air traffic control facilities are investigated by use of mathematical models and computerized simulations. Ground based and satellite navigational aids are modeled for present and predicted air traffic requirements. Worldwide networks for traffic scheduling are simulated. This updated bibliography contains 203 citations, 34 of which are new entries to the previous edition.

N81-17036*# Kansas Univ. Center for Research, Inc., Lawrence.
THE DAST-1 REMOTELY PILOTED RESEARCH VEHICLE
DEVELOPMENT AND INITIAL FLIGHT TESTING Final
Report

Alexandros Kotsabasis Feb. 1981 229 p refs (Grant NsG-4017) (NASA-CR-163105) Avail: NTIS HC A11/MF A01 CS 01C

The development and initial flight testing of the DAST (drones for aerodynamic and structural testing) remotely piloted research vehicle, fitted with the first aeroelastic research wing ARW-I are presented. The ARW-I is a swept supercritical wing, designed to exhibit flutter within the vehicle's flight envelope. An active flutter suppression system (FSS) designed to increase the ARW-I flutter boundary speed by 20 percent is described. The development of the FSS was based on prediction techniques of structural and unsteady aerodynamic characteristics. A description of the supporting ground facilities and aircraft systems involved in the remotely piloted research vehicle (RPRV) flight test technique is given. The design, specification, and testing of the remotely augmented vehicle system are presented. A summary of the preflight and flight test procedures associated with the RPRV operation is given. An evaluation of the blue streak test flight and the first and second ARW-I test flights is presented. R.C.T.

R81-17039*# Rensselaer Polytechnic Inst., Troy, N. Y. School of Engineering.

COMPOSITE STRUCTURAL MATERIALS Semiennual Progress Report, May - Sep. 1980

George S. Ansell, Robert G. Loewy, and Stephen E. Wiberley Jan. 1981 214 p refs (Grant NGL-33-018-003)

(NASA-CR-163946; SAPR-39) Avail: NTIS HC A10/MF A01 CSCL 11D

The development of composite materials for aircraft applications is addressed with specific consideration of physical properties, structural concepts and analysis, manufacturing, reliability, and life prediction. The design and flight testing of composite ultralight gliders is documented. Advances in computer aided design and methods for nondestructive testing are also discussed.

M.G.

N81-17040# Advisory Group for Aerospace Research and Development, Neuilly-Sur-Seine (France).

AGARD FLIGHT TEST INSTRUMENTATION SERIES. VOLUME 10 ON HELICOPTER FLIGHT TEST INSTRUMENTATION

K. R. Ferrell (Army Aviation Research and Development Command, Edwards AFB, Calif.), A. Pool, ed., and K. C. Sanderson, ed. Jul. 1980 63 p refs

(AGARD-AG-160-Vol-10; AGARDograph-160-Vol-10; ISBN-92-835-1367-3) Avail: NTIS HC A04/MF A01

The helicopter characteristics with which the instrumentation must contend is discussed and the typical tests that are conducted are outlined. Major aircraft components and systems which may be instrumented are listed and suggestions are made for sensors, locations, and installation. Details are provided for instruments peculiar to helicopters. Interface of the test instrumentation with data recording systems and ground support facilities were also considered. A summary of instrumentation requirements is provided along with recommended range, accuracy, and resolution. A sample instrumentation management technique is also included.

N81-17041# Naval Aerospace Medical Research Lab., Pensacola, Fla

ENERGY MANEUVERABILITY DISPLAY FOR THE AIR COMBAT MANEUVERING RANGE/TACTICAL TRAINING SYSTEM (ACMR/TACTS) Final Report

V. R. Pruitt, W. F. Moroney, and C. Lau Aug. 1980 69 p refs

(AD-A092974; NAMRL-SR-80-4) HC A04/MF A01 CSCL 01/2 Avail: NTIS

This report describes the development of an integrated analog display (turn rate vs calibrated airspeed) for use as a debriefing aid on the Air Combat Maneuvering Range (ACMR). The ACMR gathers in-flight data from aircraft while they are engaged in air combat maneuvering. Upon returning from the ACMR, aircrew are presented with (1) a pictorial display of the engagement, and (2) a digital printout of selected encounter parameters (e.g., velocity 'g', altitude of each aircraft, range between aircraft). The display integrates these relevant energy maneuverability data into an analog format, thus providing an immediate comparison of the performance of each aircraft with respect to the maneuvering envelope of that aircraft and that of the opponent. The display also allows the aircrew to recognize very rapidly whether they are gaining or loosing energy and the rate of gain or loss. The maneuvering envelopes of the F-14, F-4, A-4 and F-5 aircraft can be displayed in this dynamic format. It is expected that this new format (1) will provide a better means for pilots to determine how well they have maximized the performance of their aircraft, and (2) may serve as an aid in tactics development. A brief discussion of the nature of energy maneuverability is contained in an Appendix. GRA

N81-17042# Naval Air Development Center, Warminster, Pa. Aircraft and Crew Systems Technology Directorate.

ZDRAFT-A GRAPHITE CODE FOR VTOL AIRCRAFT GROUND FOOTPRINT VISUALIZATION Final Report, Oct. 1978 - Jan. 1980

J. J. Zanine and K. A. Green $\,$ Jan. 1980 $\,$ 115 $\,$ p $\,$ refs. Sponsored by the Navy Dept.

(AD-A093311; NADC-80109-60)

Avail: NTIS

HC A06/MF A01 CSCL 01/3

The computer program, entitled 'ZDRAFT,' generates a graphic display of VTOL aircraft and their associated ground flow fields. The actual flow field data is calculated by another computer

program. The 'ZDRAFT' computer code rapidly assimilates and displays this flow field data. The display consists of pertinent flow field characteristics, such as stagnation lines, upwash flow and ground plane wall jet conditions, superimposed over a scaled aircraft planform. This visual form allows easy assessment of various configurations and operating conditions.

N81-17043# National Aeronautical Establishment, Ottawa (Ontario).

A METHOD FOR THE PREDICTION OF WING RESPONSE TO NONSTATIONARY BUFFET LOADS

B. H. K. Lee Jul. 1980 74 p In ENGLISH; FRENCH summary

(AD-A093037; NAE-LR-601; NRC-18629) Avail: NTIS HC A04/MF A01 CSCL 01/3

A method for the prediction of the response of a wing to nonstationary buffet loads is presented. The time history of the applied load is segmented into a number of time intervals. In each time segment, the nonstationary load is represented by the produce of a deterministic shaping function and a statistically stationary random function. An approximate modelling of the load on the wing is given. The wing is divided into panels or elements, and the load is computed from measured or estimated pressure fluctuations at the center of each panel. A series representation, with terms of the correlated noise type, is used to curve fit the experimentally determined complex buffet pressure power spectral densities. Using the correlated noise form of power spectral density for the random part of the applied load, analytic expressions are derived for the mean square displacement and acceleration response of the wing. An illustration using data available for the F-4E aircraft is included. Author (GRA)

N81-17044# Aeronautical Systems Div., Wright-Patterson AFB, Ohio.

COMPARISON OF FLIGHT LOAD MEASUREMENTS OBTAINED FROM CALIBRATED STRAIN GAGES AND PRESSURE TRANSDUCERS Final Report, Nov. 1976 - Feb. 1979

John W. Rustenburg Oct. 1980 52 p refs (AD-A093758; ASD-TR-80-5038) Avail: NTIS HC A04/MF A01 CSCL 20/11

Net shear, bending moment, and torsion at one wing station derived from concurrent strain gage and pressure transducer measurements are compared. Comparisons are made for results from normal and abrupt symmetrical pullup/pushdown, and rolling pullout maneuvers at subsonic and supersonic speeds and four wing sweeps. With few exceptions good to very good correlation is shown.

N81-17045# Southampton Univ. (England). Dept. of Electrical Engineering.

STATIC CHARGE IN AIRCRAFT FUEL TANKS Final Technical Report, 1 Jul. 1977 - 30 Sep. 1979

Charles R. Martel Sep. 1980 38 p refs

(Grant AF-AFOSR-3373-77; AF Proj. 2301; AF Proj. 3048) (AD-A093552; AFWAL-TR-80-2049) Avail: NTIS HC A03/MF A01 CSCL 01/2

This program investigates electrostatic hazards associated with aircraft fueling. The tribo electric phenomena of reticulated polyurethane foam charging was examined using JP-4. An attempt was made to understand the basic electrostatic phenomena involved when fuel is pumped into aircraft fuel tanks containing reticulated, polyurethane foam. The investigation also involved the development and study of alternative foam materials having enhanced electrical and charge dissipation characteristics as a means of eliminating the electrostatic hazards during refueling.

N81-17046# Air Force Wright Aeronautical Labs., Wright-Patterson AFB, Ohio. Fire Protection Branch.

FLAME TUBE AND BALLISTIC EVALUATION OF EXPLOSAFE ALUMINUM FOIL FOR AIRCRAFT FUEL TANK EXPLOSION PROTECTION Final Report, Aug. 1977 - Mar. 1979

Thomas A. Hogan and Charles Pedriani Apr. 1980 107 p refs

(AF Proj. 3048; DA Proj. 1L1-62209-AH-76) (AD-A093542; AFWAL-TR-80-2031) Avail: NTIS HC A06/MF A01 CSCL 11/6

This report presents the combustion and gunfire testing conducted by the AFWAL/PO and the AVRADCOM/Applied Technology Laboratory in support of a joint USAF/Army and Canadian Government project to evaluate an advanced metal foil explosion suppressor called Explosafe for potential use in protecting sircraft fuel tanks. This material is manufactured by Vulcan Industrial Packaging Limited, (VIPL), Explosafe Division, and is processed by slitting, expanding and stacking aluminum foil into batts. The density is varied either by changing the foil thickness at a constant expansion width or by changing the expansion width at a constant foil thickness. The scope of this in-house program was to determine: (1) the material's ability to suppress combustion overpressures through small scale laboratory testing and through full scale ballistic testing, (2) to establish an optimum material density versus performance and (3) to compare the results to the reticulated polyurethane foam. The AFWAL/PO conducted the laboratory tests in a flame tube over several densities of 3 foil thicknesses and the Army conducted the ballistic tests in a heavy structural fuel tank over 3 densities of 3 foil thicknesses. Results of these tests indicated that a 2.0 mil foil around the 2.0 no./cu ft region was an optimum foil thickness and weight density to be used in the remaining tests of the joint program.

N81-17047# Vulcan Industrial Packaging Ltd.; Rexdale (Ontario). EXPLOSAFE Div.

EVALUATION OF EXPLOSAFE. EXPLOSION SUPPRESSION SYSTEM FOR AIRCRAFT FUEL TANK PROTECTION Final Report, Jul. 1977 - Jul. 1 1980

Andrew Szego, Karim Premji, and Robert D. Appleyard Wright-Patterson AFB, Ohio AFWAL Jul. 1980 465 p (Contract F33615-77-C-3115; AF Proj. 3048)

(AD-A093125; EDR-010-047; AFWAL-TR-80-2) Avail: NTIS HC A20/MF Au1 CSCL 01/3

A joint USAF/ Canadian government development program conducted to evaluate the fuel tank ullage explosion suppression performance and to qualify the airborne military use of EXPLOSAFE void filler material, is reported. The material was subjected to laboratory testing to characterize its performance with regard to the manufacturing variables and subsequently exposed to typical ballistic threats up to 23mm HEI-T. The material properties are extensively defined together with the operational penalties associated with its use. Operational and environmental tests are described which determined the tolerance of the material to static loading, fuel slosh vibration, and exposure to fuel, fuel and additives, and corrosive fuel contaminants. Further tests demonstrate that the material does not affect fuel system operation with regard to flow, free motion of fuel during aircraft inversion and fuel tank venting. Installation studies were conducted on fuel tanks of varying complexity to demonstrate feasibility of assembly using existing apertures.

N81-17048# Texas Univ. at Austin. Center for Aeronautical Research.

THE EFFECTS OF WARHEAD-INDUCED DAMAGE ON THE AEROELASTIC CHARACTERISTICS OF LIFTING SURFACES, VOLUME 2: AERODYNAMIC EFFECTS Fine! Report, 1 Feb. 1979 - 1 Mar. 1980

J. C. Westkeemper and R. M. Chandrasekharan Jul. 1980 116 p. refs

(Grant AF-AFOSR-3569-78; AF Proj. 2301)

(AD-A093063; AFOSR-80-1040TR) Avail: NTIS HC A06/MF A01 CSCL 20/4

Tests were made in a subsonic wind tunnel to determine the effects of damage on the aerodynamic characteristics of a T-38 aircraft stabilator half. Six damage configurations were used, one circular and the remainder trapezoidal in planform, with areas of up to 2 percent of the stabilator area. The damage holes were all ahead of the 50 percent chord line, with centers at 43, 60, and 75 percent span. Surface pressure distributions and lift and drag coefficients were measured. The 65A0O4 airfoil used is subject to leading edge separation which strongly

influenced the results. In the absence of separation, damage effects tended to be localized and serodynamic degradation was modest. With extensive separation, the damage influence propagated completely across the span, with more substantial degradation. There was up to 300 percent increase on CD sub o, but at moderate lift coefficients the drag increase was generally insignificant. The decrease in C sub L was more consistent, ranging up to 10 percent for the larger damage holes.

N81-17049# Technische Hochschule, Aachen (West Germany). Lehrstuhl fuer Luft- und Raumfahrt.

ON THE FLIGHT MECHANICS OF REMOTELY PILOTED VEHICLES [ZUR FLUGMECHANIK VON RPV'S]

R. Staufenbiel Bonn Bundesministerium fuer Verteidigung 1979 71 p refs in GERMAN; ENGLISH summary Sponsored by Bundesministerium fuer Verteidigung

(BMVg-FBWT-79-28) Avail: NTIS HC A04/MF A01

The dynamic characteristics which are important for the design of small remotely piloted vehicles (RPVs: MINI-RPVs) are considered. In particular, the influence of vehicle size on longitudinal motion stability, vehicle response to vertical and longitudinal gusts, and on performance are examined. Results show that longitudinal motion can be scaled for vehicles of different size by introducing a suitable reference length and a relative mass parameter. Gust sensitivity and landing technique are shown to be important aspects for small RPVs. A special configuration, based on a circular wing, was developed for a MINI-RPV and was successfully in a wind tunnel as well as during remotely controlled test flights.

Author (ESA)

N81-17050# Societe Nationale Industrielle Aerospatiale, Cannes (France).

EVOLUTION OF MATERIALS AND ASSOCIATED TECHNOLOGIES IN THE MAKEUP OF AEROSPACE MATERIALS, PART 1 [EVOLUTION DES MATERIAUX ET DES TECHNOLOGIES ASSOCIEES DANS LES STRUCTURES DE MATERIELS AEROSPATIAUX. PREMIERE PARTIE]

G. Sertour and G. Hilaire Paris Association Aeronautique et Astronautique de France 1979 29 p In FRENCH Presented at 14th Intern. AAAF Aeron. Congr., Peris, 6-8 Jun. 1979 2 Vol.

(AAAF-NT-79-22-Pt-1; ISBN-2-7170-0569-2) Avail: NTIS HC A03/MF A01; CEDOCAR, Paris FF 34 (France and EEC) FF 39 (others)

A historical survey of the aerospace construction industry is presented. Emphasis is on the development of aluminum alloys and on laboratory techniques for testing their in service behavior. Crack propagation studies and results concerning stress corrosion cracking are covered. Manufacturing techniques, notably press forming, are examined. Recent results in the use of plastics, mainly carbon epoxy composites, are mentioned and their development, is seen as opening a new era in aerospace technology.

Author (ESA)

N81-17061# Societe Nationale Industrielle Aerospatiale, Cannes (France).

EVOLUTION OF MATERIALS AND ASSOCIATED TECHNOL-OGIES IN THE MAKEUP OF AEROSPACE MATERIALS. PART 2: EXAMPLES [EVOLUTION DES MATERIAUX ET DES TECHNOLOGIES ASSOCIEES DANS LES STRUCTURES DE MATERIELS AEROSPATIAUX. DEUXIEME PARTIE]

G. Sertour and G. Hilaire Paris Association Aeronautique et Astronautique de France 1979 31 p In FRENCH Presented at 14th Intern. AAAF Aeron. Congr., Paris, 6-8 Jun. 1979 2 Vol.

(AAAF-NT-79-22-Pt-2; ISBN-2-7170-0570-6) Avail: NTIS HC A02/MF A01; CEDOCAR, Paris FF 34 (France and EEC) FF 39 (others)

As part of a historical survey of the aerospace construction industry, examples of the use of technological advances in materials sciences and process engineering are offered. These include an overview of the fabrication of first stage fuel tanks for ARIANE as well as of the development of a double payload launch system (SYLDA) for the same vehicle. Also covered are in exhaust nozzle housing (MIRAGE 2000), a swing wing tip

(CONCORDE), a lift dumper (AIRBUS A 300 B), and a light alloy casing (INTELSAT 5). The MARECS satellite antenna, a rigid solar generator, carbon carbon composites, and the use of Kevlar are discussed as well.

Author (ESA)

NG1-17052# Societe Nationale Industrielle Aerospatiale, Marignane (France.) Dept. Scientifique.
NEW MATERIALS AND MELICOPTER CERTIFICATION [MATERIAUX NOUVEAUX ET CERTIFICATION DES

HELICOPTERES)

F. Liard Paris Association Aeronautique et Astronautique de France 1979 25 p In FRENCH Presented at 14th Intern. AAAF Aeron. Congr., Paris, 6-8 Jun. 1979 (AAAF-NT-79-26; ISBN-2-7170-0574-9) Avail: NTIS

(AAAF-NT-79-26; ISBN-2-7170-0574-9) Avail: NTIS HC A02/MF A01; CEDOCAR, Paris FF 22 (France and EEC) FF 27 (others)

Citing the AS 350 series helicopter as an example, problems posed for the certification of an aircraft whose structure is made up of newly developed or experimental materials, mainly fiber reinforced plastic composites or laminates, are discussed. Defining the resistance of a sturcture as to static strength and fatigue strength is dealt with. The influence of aging, either artificially for test purposes or natural aging, is also considered. Quality control, crash behavior, reaction to fire, and vibration stress behavior of helicopter structures are mentioned. Comparison with metallic materials is made.

Author (ESA)

N⊠1-17063# Avions Marcel Dassault-Breguet Aviation, Saint-Cloud (France).

A CONVERSATIONAL TOPOLOGICAL GRID METHOD AND OPTIMIZATION OF STRUCTURAL CALCULATIONS INVOLVING FINITE ELEMENTS [MAILLAGE PAR METHODE TOPOLOGIQUE CONVERSATIONNELLE ET OPTIMISATION DANS LES CALCULS DE STRUCTURE PAR ELEMENTS FINIS]

C. Petiau Paris Association Aeronautique et Astronautique de France 1979 32 p refs In FRENCH Presented at 14th Intern. AAAF Aeron. Congr., Paris, 6-8 Jun. 1979

(AAAF-NT-79-30; ISBN-2-7170-0578-I) Avail: NTIS HC A03/MF A01; CEDOCAR, Paris FF 34 (France and EEC) FF 39 (others)

A finite element code used in the structural analysis and design of MIRAGE aircraft is studied. Particular attention is given to two modules of this program: (1) the elaboration of a three dimensional grid representation, based on a topological method; and (2) a linear optimization of the structural stability parameters. A progressive shift in data input techniques towards a man machine conversational mode is also discussed. Stress concentration results, including aeroelasticity data, and associated computer graphics are shown, using the MIRAGE 2000 aircraft as an example.

MS1-17054# Avions Marcel Dassault-Breguet Aviation, Saint-Cloud (France). Bureau de Calculs des Structures. LIMITING APPLICATION OF THE CONCEPT 'DAMAGE TOLERANCE' WITH REGARD TO FIGHTER AIRCRAFT [LES LIMITES DE L'APPLICATION DE LA CONCEPTION TOLERANCE AUX DOMMAGES AUX AVIONS D'ARMES]

D. Chaumette Paris Association Aeronautique et Astronautique de France 1979 29 p In FRENCH Presented at 14th Intern. AAAF Aeron. Congr., Paris, 6-8 Jun. 1979

(AAAF-NT-79-32; ISBN-2-7170-0580-3) Avail: NTIS HC A03/MF A01; CEDOCAR, Paris FF 34 (France and EEC) FF 39 (others)

The safety standard concepts fail safe, safe life, and damage tolerance as defined by civil norms and military specifications are examined. Specifically, their application to a coherent maintenance program for military aircraft is considered. Experience gained with MIRAGE aircraft justifies using damage tolerance norms, however, this concept as detailed in US MIL 83444 is seen as too rigid. A more pragmatic approach, making use of fatigue tests in designing structures that are both reasonably resistant to fabrication defects and easily inspected in service, is suggested.

Author (ESA)

RQ1-17065# Lille Univ. (France). Inst. de Mecanique des Fluides.

LABORATORY STUDIES OF FLIGHT MECHANICS USING CATAPULT LAUNCHED MODELS [ETUDES DE MECANIQUE DU YOL PAR MAQUETTES CATAPULTEES EN LABORATOIRE]

J. L. Cocquerez Paris Association Aeronautique et Astronautique

de France 1980 51 p In FRENCH Presented at 16th Colloq. d'Aerodyn. Appl., Lille, 13-15 Nov. 1979 (AAAF-NT-80-15; ISBN-2-7170-0611-7) Avail: NTIS HC AO4/MF AO1; CEDOCAR, Paris FF 40 (France and EEC)

FF 45 (others)

A laboratory installation for the free flight testing of aircraft scale models is described. Models two to three meters in length and weighing up to 40 kg can be handled. The use of miniaturized high performance sensors and flight controls associated with numerical systems for telemetry and remote control is also shown. Results obtained using catapult launched models of commercial and fighter aircraft are given as examples of typical test programs. These include aircraft response to lateral gusts simulated in a wind tunnel, impact study of a belly landing, and flight characteristics at high angle of incidence for the Mirage 2000 as well as aircraft response to vertical turbulence for the same aircraft model.

N81-1703G# Lille Univ. (France). Inst. de Mecanique des

MODELING, ACQUISITION AND PROCESSING DURING LARGE DISPLACEMENTS [MODELISATION - ACQUISITION - TRAITEMENT LORS DE GRANDS MOUVEMENTS] W. Charon and P. Coton Paris Association Aeronautique et Astronautique de France 1980 24 p in FRENCH Presented at 16th Colloq, d'Aerodyn, Appl., Lille, 13-15 Nov. 1979 (AAAF-NT-80-16: ISBN-2-7170-0612-5) Avail: NTIS: HC A02/MF A01: CEDOCAR, Paris FF 25 (France and EEC) FF 30 (others)

Data conditioning and analysis methods, generally downline from data collection on experiments in flight mechanics, are briefly described. An optimal PCM telemetry data acquisition chain is outlined. The restitution of experimental parameters from raw data through the use of sampling windows is discussed. Numerical filtering techniques are cited. Mathematical modeling, especially of nonlinear systems, is treated and the possibility of a model which covers the entire domain of dynamic response of an aircraft in flight is considered. Experimental error detection and the setting of confidence limits relative to the calculation of aerodynamic coefficients are also covered.

Author (ESA)

N81-17067° National Aeronautics and Space Administration. Hugh L. Dryden Flight Research Center, Edwards, Calif.
SKIN FRICTION MEASURING DEVICE FOR AIRCRAFT Potomt

Lawrence C. Montoya and Donald R. Bellman, inventors (to NASA) Issued 23 Dec. 1980 8 p Filed 7 Aug. 1979 Supersedes N79-31139 (17 - 22, p 2895)

(NASA-Case-FRC-11029-1; US-Patent-4,240,290;

US-Patent-Appl-SN-164617; US-Patent-Class-73-178R;

US-Patent-Class-73-147) Avail: US Patent and Trademark Office CSCL 01D

A skin friction measuring device for measuring the resistance of an aerodynamic surface to an airstream is described. It was adapted to be mounted on an aircraft and is characterized by a friction plate adapted to be disposed in a flush relationship with the external surface of the aircraft and be displaced in response to skin friction drag. As an ahstream is caused to flow over the surface, a potentiometer connected to the plate for providing an electrical output indicates the magnitude of the drag.

Official Gazette of the U.S. Patent and Trademark Office

M81-17068# Crew Systems Consultants, Yellow Springs, Ohio.

OPERATIONAL PROBLEMS ASSOCIATED WITH HEAD-UP
DISPLAYS DURING INSTRUMENT FLIGHT Finol Roport
Richard L. Newman Oct. 1980 231 p refs
(Contract F33615-79-C-0521; AF Proj. 7184)
(AD-A092992: AFAMRL-TR-80-116) Avail: NTIS
HC A11/MF A01 CSCL 05/8

Because of the interest in using head-up displays (HUDs) as primary flight references in instrument meteorological conditions (IMC), a survey of operational pilots flying HUD-equipped airplanes was undertaken. This survey revealed several problem areas that were common to most of the HUDs used. These common problem areas were: the HUDs were too bright at night; the field of view was too limited; and the location of the design eye reference point does not correspond to the typical pilot practice of sitting as high as possible to maintain good visibility. Other problem areas were reported, including: the response of the HUD symbols is not adequately controlled by existing specifications; pilots have an increased tendency toward disorientation while flying by reference to the HUD; the instrument landing system (ILS) displays in use are not satisfactory; and the balance between presenting necessary information and presenting too much is not always achieved on today's HUDs. Concurrently with the review of operational problems, a review of HUD-related training was undertaken. This review shows that very little attention is being paid to initial and recurrent HUD training or to the development of HUD procedures for flight in IMC.

NG1-17059# Simmonds Precision Products, Inc., Vergennes, Vermont. Instrument Systems Div. EFFECTS ON ANTI-STATIC ADDITIVES ON AIRCRAFT Capacitance fuel gaging systems final Roport.

P. Weitz and D. Slade Jun. 1980 58 p (Contract F33657-79-C-0378; AF Proj. 3048)

(AD-A092907; E-2239; AFWAL-TR-80-2058) Avail: NTIS

HC:A04/MF A01 CSCL 21/4

May - Nov. 1979

The effects of increasing the electrical conductivity of JP-4 and Jet A jet fuels on aircraft capacitance fuel guaging systems were determined. Fuel tank capacitance probes from the KC-135, A-7; F-15, and F-16 aircraft were tested in JP-4 and Jet A fuels having electrical conductivities ranging from less than 20 pS/m to 5,000 pS/m. Additives ASA-3 (Shell Chemical Company) and Stadis 450 (E.I. Du Pont de Nemours and Company) were used to increase the conductivity of the fuel. The fuel "tank capacitance guaging system parameters of accuracy, sensitivity, speed of response, and High Z null voltage were measured. The F-15 and the F-16 systems were unaffected by fuel conductivities up to 5,000 pS/m. The A-7 and KC-135 systems indicated negligible effects at fuel conductivities up to 500 pS/m, and increasing system degradation at higher conductivity levels. GRA

M&1-17030# McDonnell Aircraft Co., St. Louis, Mo. ENVIRONMENTAL BURN-IN EFFECTIVENESS Final Report, May 1979 - Aug. 1980

J. R. Anderson Wright-Patterson AFB, Ohio AFWAL Aug. 1980 168 p refs

(Contract F33615-79-C-3411; AF Proj. 2402)

(AD-A093307; AFWAL-TR-80-3086) HC A08/MF A01 CSCL 14/2 Avail: NTIS

This report considers the effectiveness of current industry practice in the burn-in of avionics equipment. The burn-in test results for six avionics systems are analyzed using the chance Defective Exponential model for the failure rate. Based on the mode, effectiveness measures for burn-in are developed. Flight test results are also evaluated to determine the adequacy of current burn-in techniques. Cost effectiveness considerations for the burn-in process are addressed. Results of an industry survey on current practice and opinions concerning various issues in the burn-in of avionics are presented. GRA

NG1-17061# Perceptronics, Inc., Woodland Hills, Calif. ANALYSIS AND MODELING OF INFORMATION HANDLING TASKS IN SUPERVISORY CONTROL OF ADVANCED AIRCRAFT Annual Technical Report

Yee-Yee Chu, Randall Steeb, and Amos Freedy Jun. 1980 123 p refs

(Contract F49620-79-C-0130; AF Proj. 2313)

(AD-A092906: PATR-1080-80-6; AFOSR-80-1190TR) Avail: NTIS HC A06/MF A01 CSCL 01/2

This report describes research and development centered on evaluation of information needs and automated management of

information displays in advanced aircraft operations. Techniques for information selection were developed based on Multi-Attribute Utility (MAU) models and queueing theory formulations. These techniques take into account both subjective factors and objective situational conditions, as well as the immediate information monitoring and control needs of the operator and the impact on other unattended processes. The combined MAU/queueing model was tested in a Monte Carlo simulation. The experiment compared performance of the MAU-based policy to other priority policies both in event selection and information source selection. Initial results suggest that the value-based model is suitable for concurrent evaluation of information source and event sequence. The information management concept based on the MAU model seems to be superior to those based on traditional priority assignment. Possible applications of the approaches and the plan for further validation are also discussed.

NS1-17032# Dynamics Research Corp., Wilmington, Mass. DIGITAL AVIONICS INFORMATION SYSTEM (DAIS): LIFE CYCLE COST IMPACT MODELING SYSTEM (LCCIM). A MANAGERIAL OVERVIEW Final Roport John C. Goclowski and H. Anthony Baran Brooks AFB, Tex. AFHRL Nov. 1980 41 p refs

(Contract F33615-75-C-5218; AF Proj. 2051)

AFHRL-TR-79-4) (AD-A093281: NTIS HC A03/MF A01 CSCL 05/1

This report provides an overview of the Life Cycle Cost Impact Modeling System (LCCIM). The LCCIM can be used to assess the impact of weapon system characteristics on system support resource requirements and life cycle cost (LCC). It was developed to enhance present Air Force capability to conduct tradeoffs between competing design, manpower, and ligistics alternatives early in the weapon systems acquisition process. This report also contains a general description of the initial application of the LCCIM an analysis of the potential impacts of the Digital Avionics Information System (DAIS) Concept of avionics integration on LCC and system support personnel requirements. References are provided for other related reports which describe that application, document the development of LCCIM components and provide user's guide information and computer program

N81-17063# Advisory Group for Aerospace Research and Development, Neuilly-Sur-Seine (France). ADVANCEMENT ON VISUALIZATION TECHNIQUES Walter M. Hollister, ed. (MIT) Oct. 1980 217 p refs (AGARD-AG-255; AGARDograph-255; ISBN-920835-1371-1) Avail: NTIS HC A10/MF A01

Principles, technology, and applications in the field of visualization and display in aircraft cockpits are discussed. Topics include liquid crystals, light emitting diodes, electroluminescent displays, and gas plasma panels, as well as, helmet mounted display devices and human factors engineering.

NB1-17034# Cranfield Inst. of Tech., Bedfordshire (England). THE PRESENTATION OF STATIC INFORMATION ON AIR TRAFFIC CONTROL DISPLAYS Ph.D. Thoois R. J. G. Edwards In AGARD Advan. on Visualization Tech. Oct. 1980 44 p refs

Avail: NTIS HC A10/MF A01

The physical characteristics of display consistent with human performance are defined. Eight display characteristics were selected as critically important, they are: (1) frame rate; (2) contrast ratio; (3) ambient illumination; (4) symbol characteristics; (5) resolution; (6) bandwidth; (7) registration; and (8) phosphor type. The exact priority of each characteristics and the specific result of their interrelationships is a function of the particular application and is considered with respect to an ATC display environment.

M81-17035# Naval Air Development Center, Warminster, Pa. FLAT PANEL DISPLAY TECHNOLOGY REVIEW James Brindle, Brad Gurman (Army Avionics Res. and Develop. Activity, Ft. Monmouth,). Joseph Redford (Army Aviation

Res. and Develop. Command, St. Louis), Elliot Schlam (Army Electron. Res. and Develop. Command, Ft. Monmouth), William Mulley, Parviz Soltan (Naval Ocean Systems Center, San Diego), George Tsaparas (Naval Air Systems Command, Arlington), Keith B. Urnette (AFFDL, Wright-Patterson AFB), John Coonrod (AFAL, Wright-Patterson AFB), and Walter Melnick (AFFDL, Wright-Patterson AFB) In AGARD Advan. on Visualization Tech. Oct. 1980 5 p

Avail: NTIS HC A10/MF A01

There are three display media presently receiving the most attention and which appear to be the most promising. These are: (1) electroluminescence (EL); (2) light emitting diode (LED); and (3) liquid crystal (LC). There are other technologies that also appear promising but that have not advanced in development to the point where they are receiving serious consideration for aircraft use or that have serious limitations, some of which may be eliminated in time. These include plasma, electrochromic, electrophoretic, ferroelectric, magnetic particle, and microchannel playe display technologies. In order to exploit flat panel display media, development of suitable addressing techniques is required. Three representative methods of addressing display media (silicon, thin-film transistor (TFT) and crossed electrodes) are discussed. E.D.K.

N81-17066# Royal Aircraft Establishment, Farnborough (England).

THE ELECTRO-OPTICAL DISPLAY/VISUAL SYSTEM INTERFACE: HUMAN FACTORS CONSIDERATIONS J. Laycock and R. A. Chorley (Aerospace & Defence Systems Co., Cheltenham, England) In AGRAD Advan. on Visualization Tech. Oct. 1980 15 p refs

Avail: NTIS HC A10/MF A01

Display systems are currently developed by a cyclical two stage process. Equipment is developed, and there is then a period in which its suitability for use by an operator is assessed. The results of the evaluation determine the modifications to be introduced into the next cycle of the process. This paper considers the possibility of adopting a design strategy which initially asseses operator performance and then uses the result of this assessment to determine what equipment development would best meet the requirements of the operator. As the subject under consideration is visual display systems, the text considers only the visual aspects of human performance and relates these attributes to display parameters. Author

R81-17067# Ferranti Ltd., Edinburgh (Scotland). Electronics Systems Dept.

INTEGRATION OF SENSORS WITH DISPLAYS

Alan C. Wesley and Ian T. B. Blackie In AGARD Advan, on Visualization Tech. Oct. 1980 25 p

Avail: NTIS HC A10/MF A01

The sensors commonly found on military aircraft often provide information for display. The various categories of displays available are described with their signal characteristics, cockpit location, and operational uses, together with a discussion on their particular suitability to provide integrated sensor/display systems.

N81-17088# Royal Signals and Radar Establishment, Malvern (England).

LICUID CRYSTAL DISPLAYS

A. J. Hughes In AGARD Advan. on Visualization Tech. Oct. 1980 15 p refs Avail: NTIS HC A10/MF A01

An introduction is given to the physical properties of liquid crystals and the electro-optic effects that may be used for display purposes. A more detailed description follows of both the twisted nematic effect, as used in the vast majority of current liquid crystal displays, and of the dyed phase-change effect, which is a likely candidate eventually to supercede the twisted nematic' display. The performance and limitations of simple, directly driven digplays are analyzed, and the problems and difficulties associated with more complex, matrix addressed displays are described. Finally, a brief description is given of a selection of laboratory

prototypes and drive methods that demonstrate the progress of liquid crystal research towards solving the various problems associated with high complexity displays.

N81-17039# Thorn-Brimar Ltd., Chadderton (England). CATHODE RAY TUBES AND PLASMA PANELS AS DISPLAY DEVICES FOR AIRCRAFT DISPLAYS

Stewart Woodcock In AGARD Advan, on Visualization Tech. Oct. 1980 8 p refs

Avail: NTIS HC A10/MF A01

The various types of electronic display presently being incorporated in aircraft and the displays being proposed for future use are reviewed and their technical requirements examined. These include head-up displays, neimet mounted displays, and various head-down displays which can be generated by TV techniques. The state of the art of CRT and d.c. plasma technology is described and the suitability of these two devices for the different displays is discussed, along with possible future improvements in performance. Author

N81-17070# Thomson-CSF, Paris (France). Div. Tubes Electroniques.

LARGE AREA GAS DISCHARGE DISPLAYS

J. P. Michel In AGARD Advan. on Visualization Tech. Oct. 1980 6 p refs Avail: NTIS HC A10/MF A01

Gas discharge displays or plasma displays are generally classed as a.c. displays, and d.c. displays. In d.c. displays the electrodes or resistive extension of these are immersed in the gas (ac operation would be possible but almost always discharge currents are unidirectional). In a.c. displays, a dielectric surface isolates the electrodes from the gas with which they only have an electrostatic coupling and only a.c. operation is possible. Both can be operated in a storage or nonstorage mode (storage meaning that the memory is inherent to the display device, whereas in the nonstorage or cyclic mode the memory is external to the display and the image information is transferred to the display device sequentially and refreshed frequently enough to avoid flicker).

N81-17071# Air Force Human Resources Lab., Wright-Patterson AFB, Ohio. "Operational Training Div.

OPTICAL INFINITY LENS DEVELOPMENT FOR FLIGHT SIMULATOR VISUAL DISPLAYS

William B. Albery and Joseph A. LaRussa In AGARD Advan. on Visualization Tech. Oct. 1980 9 p refs Prepared in cooperation with Farrand Optical Co., Inc., Valhalla, N.Y.

Avail: NTIS HC A10/MF A01

A very fast, large aperture magnifying optical package was developed which can present to the observer a displayed image at optical infinity. The Pancake Window, so called because of its minimal depth and relatively flat appearance, is currently being used in two Air Force flight simulator visual displays. The optical quality of this magnifier is due to the fact that it is comprised of reflective, and not refractive elements. The advantages of its configuration as an on-axis reflective system and the optical properties of its elements are presented. The latest improvement to its development, incorporation of a spherical holographic beamsplitter mirror, is discussed. This development holds promise for reducing both the cost and weight of the package. A technique for reducing unwanted optical effects by tilting the birefringent package of the window is also discussed. E.D.K.

N81-17072# Ferranti Ltd., Edinburgh (Scotland). Inertial Systems Dept.

EVOLUTION OF TACTICAL AND MAP DISPLAYS FOR HIGH PERFORMANCE AIRCRAFT

W. H. McKinlay In AGARD Advan. on Visualization Tech. Oct. 1980 8 p refs

Avail: NTIS HC A10/MF A01

The operational problems which determine the display characteristics of high performance military aircraft are particularly exacting in tactical operations flown at low altitudes over land. Because these operations are related to the terrain, situation displays having map like characteristics have become important and are now being embodied in full electronic display systems for aircraft. In such aircraft, the need to conserve display area and handle sensor data in the context of the terrain has led to combined display techniques. The display requirements and the available technologies are considered. It is suggested that the optically combined display based on film storage is the most notable solution available today although several different electronic solutions are being or could be developed. Some conclusions as to the relative significance of the difference alternative solutions are given.

N81-17073# Aerospace Medical Research Labs., Wright-Patterson AFB, Ohio. Visual Display Systems Branch. HELMET MOUNTED DISPLAYS: DESIGN CONSIDERA-TIONS

H. Lee Task, Dean F. Kocian, and James H. Brindle In AGARD Advan. on Visualization Tech. Oct. 1980 13 p refs Prepared in cooperation with Naval Air Development Center, Warminster, Pa.

Avail: NTIS HC A10/MF A01

Several parameters that must be considered in the design of a helmet mounted display (HMD) are described. The parameters discussed include: size, weight, exit pupil, eye relief, field of view, collimation, distortion, and image quality. Detailed discussion and specific related equations are provided for many of these variables. Optical design approaches to HMD's are discussed with reference to specific systems. A summary table is included that shows the values of many HMD design parameters for six HMD's. The HMD image sources, both present and future, are presented.

N81-17074*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, Calif. AN ADVANCED ELECTRONIC COCKPIT INSTRUMENTA-

TION SYSTEM: THE COORDINATED COCKPIT DISPLAY D. L. Baty and M. L. Watkins In AGARD Advan. on Visualization Tech. Oct. 1980 11 p refs Prepared in cooperation with San Jose State University Foundation, Calif.

Avail: NTIS HC A10/MF A01 CSCL 01D

Cathode ray tube (CRT) and computer technologies have reached the stage where current flight and engine instruments can economically be replaced by computer controlled CRT displays. This provides a tremendous opportunity for flexibility to the cockpit display designer, but the use of this flexibility should stay within the realities of the flight environment. One approach to the replacement of flight instruments is described, using three separate color CRT's. Each CRT displays information pertinent to one of the three orthogonal projections of the aircraft flight situation. Three airline pilots made a preliminary assessment of this display set. Comments, rankings, and ratings show that, in general, the pilots accepted the concept of pictorial flight displays.

N81-17075# British Aerospace Aircraft Group, Brough (England). Kingston-Brough Div.

THE INFLUENCE OF VISUAL REQUIREMENTS ON THE DESIGN OF MILITARY COCKPITS

J. W. Lyons and G. Roe In AGARD Advan. on Visualization Tech. Oct. 1980 29 p refs

Avail: NTIS HC A10/MF A01

The effect of visual requirements for combat aircraft is discussed with emphasis on the next generation of fighters. External vision is vital for success in air to air engagements, hence the need to define canopy lines with extreme care. The criteria for doing this are discussed in some detail. Problems of internal vision are discussed next. Cockpit display layout is considered from the point of view of moding and presentation of information as well as the more human factors problems of search. An insight into the workload aspects of cockpit assessment is included. E.D.K.

N81-17076# Grumman Aerospace Corp., Bethpage, N.Y. Guidance and Control Dept.

DISPLAY CONCEPTS FOR CONTROL CONFIGURED VEHICLES

Robert W. Klein and Walter M. Hollister In AGARD Advan. on Visualization Tech. Oct. 1980 13 p refs Prepared in cooperation with MIT, Cambridge

(Grant AF-AFOSR-3260-78) Avail: NTIS HC A10/MF A01

The unique flight modes of a control configured vehicle (CCV) need to be taken into account in the design of displays for these craft. Several compensatory displays are suggested and evaluated using a fixed base, F-16 CCV simulation. The displays were found to enhance the improved tracking performance available when CCV modes are used in comparison to conventional fliaht.

N81-17077# National Aeronautics and Space Administration. Langley Research Center, Hampton, Va. Flight Mechanics Div. EXPERIMENTS USING ELECTRONIC DISPLAY INFORMA-

Samuel A. Morello In AGARD Advan. on Visualization Tech. Oct. 1980 10 p refs

Avail: NTIS HC A10/MF A01 CSCL 01D

The results of research experiments concerning pilot display information requirements and visualization techniques for electronic display systems are presented. Topics deal with display related piloting tasks in flight controls for approach-to-landing, flight management for the descent from cruise, and flight operational procedures considering the display of surrounding air traffic. Planned research of advanced integrated display formats for primary flight control throughout the various phases of flight is also discussed. FDK

N81-17078*# General Electric Co., Cincinnati, Ohio. Aircraft Engine Group.

TURBINE MODELING TECHNIQUE TO GENERATE OFF-DESIGN PERFORMANCE DATA FOR BOTH SINGLE AND MULTISTAGE AXIAL-FLOW TURBINES Contractor Report, Aug. 1979 - Aug. 1980

G. L. Converse Feb. 1981 46 p refs (Contract NAS3-21999)

R81AEG219) Avail: NTIS (NASA-CR-165244:

HC A03/MF A01 CSCL 21E

This technique is applicable to larger axial flow turbines which may or may not incorporate variable geometry in the first stage stator. A user specified option will also permit the calculation of design point cooling flow levels and the corresponding change in turbine efficiency. The modeling technique was incorporated into a time sharing computer program in order to facilitate its use. Because this report contains a description of the input output data, values of typical inputs, and example cases, it is suitable TM as a user's manual.

N81-17079*# Pratt and Whitney Aircraft Group, East Hartford, Conn

COMBUSTOR LINER DURABILITY ANALYSIS Final Report

V. Moreno Feb. 1981 84 p refs (Contract NAS3-21836) (NASA-CR-165250; PWA-5684-19)

NTIS

HC A05/MF A01 CSCL 21E An 18 month combustor liner durability analysis program was conducted to evaluate the use of advanced three dimensional transient heat transfer and nonlinear stress-strain analyses for modeling the cyclic thermomechanical response of a simulated combustor liner specimen. Cyclic life prediction technology for creep/fatigue interaction is evaluated for a variety of state-of-theart tools for crack initiation and propagation. The sensitivity of the initiation models to a change in the operating conditions is also assessed. A.R.H.

NG1-170000 Pratt and Whitney Aircraft Group, East Hartford, Conn. Commercial Products Div.

JTDD-16/17 MIGM PRESSURE TURBINE ROOT DIS-CMARGED GLADE PERFORMANCE IMPROVEMENT Contractor Roport, Sop. 1978 - Aug. 1980

A. S. Janus 18 Feb. 1981 60 p refs

(Contract NAS3-20630)

(NASA-CR-165220; PWA-5515-138) Avail: NTIS

HC A04/MF A01 CSCL 21E

The JTSD high pressure turbine blade and seal were modified, using a more efficient blade cooling system, improved airfoil serodynamics, more effective control of secondary flows, and improved blade tip sealing. Engine testing was conducted to determine the effect of these improvements on performance. The modified turbine package demonstrated significant thrust specific fuel consumption and exhaust gas temperature improvements in see level and altitude engine tests. Inspection of the improved blade and seal hardware after testing revealed no unusual weer or degradation. R.C.T.

NO1-17031°# Pratt and Whitney Aircraft Group, East Hartford, Conn. Commercial Products Div.

MODEL AERODYNAMIC TEST RESULTS FOR TWO VARIABLE CYCLE ENGINE COANNULAR EXHAUST SYSTEMS AT SIMULATED TAKEOFF AND CRUISE CONDITIONS. COMPREHENSIVE DATA REPORT. VOLUME 1: DESIGN LAYOUTS

D. P. Nelson Jan. 1981 40 p refs

(Contract NAS3-20061)

(NASA-CR-159819-Vol-1; PWA-5550-50-Vol-1) Avail: NTIS HC A03/MF A01 CSCL 21E

The design layouts and detailed design drawings of coannular exhaust nozzle models for a supersonic propulsion system are presented. The layout drawings show the assembly of the component parts for each configuration. A listing of the component parts is also given.

NG1-17032°# Pratt and Whitney Aircraft Group, East Hartford, Conn. Commercial Products Div.

MODEL AERODYNAMIC TEST RESULTS FOR TWO VARIABLE CYCLE ENGINE COANNULAR EXMAUST SYSTEMS AT SIMULATED TAKEOFF AND CRUISE CONDITIONS. COMPREHENSIVE DATA REPORT. VOLUME 2: TABULATED AEROYNAMIC DATA BOOK 1 D. P. Nelson Jan. 1981 400 p refs (Contract NAS3-20061)

(NASA-CR-159819-Vol-2-Bk-1; PWA-5550-50-Vol-2-Bk-1) Avail: NTIS HC A17/MF A01 CSCL 21E

Tabulated data from wind tunnel tests conducted to evaluate the aerodynamic performance of an advanced coannular exhaust nazzle for a future supersonic propulsion system are presented. Tests were conducted with two test configurations: (1) a short flap mechanism for fan stream control with an isentropic contoured flow splitter, and (2) an iris fan nozzle with a conical flow splitter. Both designs feature a translating primary plug and an auxiliary inlet ejector. Tests were conducted at takeoff and simulated cruise conditions. Data were acquired at Mach numbers of 0, 0.36, 0.9, and 2.0 for a wide range of nozzle operating conditions. At simulated supersonic cruise, both configurations demonstrated good performance, comparable to levels assumed in earlier advanced supersonic propulsion studies. However, at subsonic cruise, both configurations exhibited performance that was 6 to 7.5 percent less than the study assumptions. At takeoff conditions. the iris configuration performance approached the assumed levels, while the short flap design was 4 to 6 percent less. Data are provided through test run 25.

NO1-170330# Pratt and Whitney Aircraft Group, East Hartford, Conn. Commercial Products Div.

MODEL AERODYNAMIC TEST RESULTS FOR TWO Variable cycle engine coannular exhaust SYSTEMS AT SIMULATED TAKEOFF AND CRUISE CONDITIONS. COMPREHENSIVE DATA REPORT. VOLUME 2: TABULATED AERODYNAMIC DATA BOOK 2 D. P. Nelson Jan. 1981 446 p refs (Contract NAS3-20061)

(NASA-CR-159819-Vol-2-Bk-2; PWA-5550-50-Vol-2-Bk-2)

Avail: NTIS HC A19/MF A01 CSCL 21E
Tabulated aerodynamic data from coannular nozzle performance tests are given for test runs 26 through 37. The data include nozzle thrust coefficient parameters, nozzle discharge M.G. coefficients, and static pressure tap measurements.

M81-17094°# Pratt and Whitney Aircraft Group, East Hartford, Conn. Commercial Products Div.

MODEL AERODANAMIC TEST RESULTS FOR TWO VARIABLE CYCLE ENGINE COANNULAR EXMAUST SYSTEMS AT SIMULATED TAKEOFF AND CRUISE CONDITIONS. COMPREHENSIVE DATA REPORT. VOLUME 2: TABULATED AERODYNAMIC DATA BOOK 3 D. P. Nelson Jan. 1981 467 p refs

(Contract NAS3-20061)

(NASA-CR-159819-Vol-2-Bk-3; PWA-5550-5-Vol-2-Bk-3) Avail: NTIS HC A20/MF A01 CSCL 21E

Tabulated data from wind tunnel tests evaluating the aerodynamic performance of coannular exhaust nozzles are given for test runs 37 through 65.

N81-17035°# Pratt and Whitney Aircraft Group, East Hartford, Conn. Commercial Products Div.

MODEL AERODYNAMIC TEST RESULTS FOR TWO VARIABLE CYCLE ENGINE COANNULAR EXMAUST SYSTEMS AT SIMULATED TAKEOFF AND CRUISE CONDITIONS. COMPREMENSIVE DATA REPORT: VOLUME 3: GRAPHICAL DATA BOOK 1

D. P. Nelson Jan. 1981 411 p refs

(Contract NAS3-20061)

(NASA-CR-159819-Vol-3-Bk-1; PWA-5550-50-Vol-3-Bk-1). Avail: NTIS HC A16/MF A01 CSCL 21E

A graphical presentation of the aerodynamic data acquired during coannular nozzle performance wind tunnel tests is given. The graphical data consist of plots of nozzle gross thrust coefficient, fan nozzle discharge coefficient, and primary nozzle discharge coefficient. Normalized model component static pressure distributions are presented as a function of primary total pressure. fan total pressure, and ambient static pressure for selected operating conditions. In addition, the supersonic cruise configuration data include plots of nozzle efficiency and secondary-to-fan total pressure pumping characteristics. Supersonic and subsonic cruise data are given.

RB1-17036*# Pratt and Whitney Aircraft Group, East Hartford, Conn. Commercial Products Div.

MODEL AERODANAMIC YEST RESULTS FOR TWO VARIABLE CYCLE ENGINE COANNULAR EXMAUST SYSTEMS AT SIMULATED TAKEOFF AND CRUISE CONDITIONS. COMPREHENSIVE DATA REPORT. VOLUME 3: GRAPHICAL DATA BOOK 2

D. P. Nelson Jan. 1981 482 p

(Contract NAS3-20061)

(NASA-CR-159819-Vol-3-Bk-2; PWA-5550-50-Vol-3-Bk-2) Avail: NTIS HC A21/MF A01 CSCL 21E

Graphical data from wind tunnel tests of variable cycle engine coannular exhaust nozzles are given. Specifically, aerodynamic data for takeoff conditions are presented.

NS1-17037# General Electric Co., Cincinnati, Ohio. Aircraft Engine Group.

SAMARIUM COBALT (SMCO) GENERATOR/ENGINE INTEGRATION STUDY Final Roport, Aug. 1977 - Sop.

Herbert F. Demel, Eike Richter, Charles F. Triebel, Robert C. Webb, and Max Baumgardner Wright-Patterson AFB, Ohio AFWAL Apr. 1980 348 p refs

(Contract F33615-77-C-2018; AF Proj. 3145)

(AD-A092904; R79AEG123; AFWAL-TR-80-2022) Avail: NTIS HC A15/MF A01 CSCL 21/5

This study consists of integrating a generator/starter internally on the engine rotor shaft, providing both secondary electric power and engine starting. The integrated engine generator/starter (IEG/S) has been analyzed and conceptually designed for three power levels and three engine categories. The preliminary layouts and supporting analysis of the rate earth, permanent magnet machine indicate that the IEG/S concept is a technically feasible approach to secondary power extraction and engine starting.

GR/

M31-17038# Systems Control, Inc., Palo Alto, Calif.
TURBINE ENGINE FAULT DETECTION AND ISOLATION
PROGRAM, PMASE 1. VOLUME 2: REQUIREMENTS
DEFINITION FOR AN INTEGRATED ENGINE MONITORING
SYSTEM Final Roport, 15 Nov. 1978 - 15 Aug. 1979
Laura E. Baker, Ronald L. DeHoff, and W. Earl Hall, Jr.
Wright-Patterson AFB, Ohio AFWAL Apr. 1980 270 p
(Contract F33615-78-C-2162; AF Proj. 3066)
(AD-A093226; AFWAL-TR-80-2053-Vol-2) Avail: NTIS
HC A12/MF A01 CSCL 21/5

Contents: Appendix A: Orientation Interview Analysis; Appendix B: Survey Design and Analysis; Appendix C: Engine Maintenance Support System Survey Responses; Appendix D: Task Force Review Transcripts. GRA

N31-17039# Systems Control, Inc., Palo Alto, Calif.
TURBINE ENGINE FAULT DETECTION AND ISOLATION
PROGRAM, PMASE 1. VOLUME 1: REQUIREMENTS
DEFINITION FOR AN INTEGRATED ENGINE MONITORING
SYSTEM Final Report, 15 Nov. 1978 - 15 Aug. 1979
Laura E. Baker, Ronald L. Dehoff, and W. Earl Hall, Jr.
Wright-Patterson AFB, Ohio AFWAL Apr. 1980 124 p. refs

(AD-A093225; AFWAL-TR-80-2053-Vol-1) Avail: NTIS

HC A06/MF A01 CSCL 21/5

Automated engine monitoring has emerged as an important element in the Air Force's strategy to reduce propulsion system support costs and to improve aircraft operational availability. There has been a long history of development activity directed towards engine monitoring. These systems have demonstrated that sensor and automated data acquisition can be implemented effectively in both prototype and operational applications. Historically, however, no Air Force system has resulted in validated improvement in the engine maintenance and logistics process nor in a substantial cost savings. This situation is due in part to the fact that the performance data were not reduced to a concise, usable format relevant to the decision process of the maintenance personnel. Moreover, there was no procedure developed for integrating the performance data into the maintenance framework. This report presents the results of an intensive study of the Air Force maintenance/logistics process based on a selected sample of tactical bases, depots, and major commands. The objective is to define the requirements that the Air Force engine management structure imposes on automated data integration, in general, and engine performance monitoring, in particular. Such an automated integration of turbine engine monitoring system data with current data systems requries coordination between a variety of sources, both manual and automated. The results of this study are the requirements for such integration based on typical Air Force maintenance needs.

N81-17090# Cincinnati Univ., Ohio. Dept. of Aerospace Engineering and Applied Mechanics.

THREE-DIMENSIONAL INTERNAL FLOWS IN TURBOMA-CMINERY, VOLUME 2 Final Report, Jon. 1978 - Jun. 1980 Kirti N. Ghia and Urmila Ghia Jun. 1980 70 p refs (Contract F49520-78-C-0041; AF Proj. 2307) (AD-A093130; AFOSR-80-1215TR) Avail: NTIS HC A04/MF A01 CSCL 20/4

Several aspects of viscous internal flows, related to turbomachinery applications, are examined and studied with the use of appropriate model problems. Laminar as well as turbulent flows are considered. In particular, duct flows are studied in detail so as to better understand the physical phenomena occurring therein. This enables their appropriate formulation and, consequently, permits accurate numerical solutions to be obtained efficiently. Configurations involving complex geometry, transverse curvature, longitudinal curvature and streamwise flow separation are studied in detail. Turbulent flows through regular cross-section ducts

are studied via the use of a two-equation model for the turbulence kinetic energy and its dissipation rate. Two approaches for treating the wall regions are examined and compared. Detailed results are obtained for flow through curved ducts of polar cross section. Some effort is also made towards modelling anisotropy and compressibility in turbulent flow using simple model problems. In the entire study, emphasis is given to the accuracy and efficiency of the numerical solutions. This has involved the study and implementation of implicit and semi-implicit numerical schemes of higher-order accuracy and higher efficiency.

N81-17091# Pratt and Whitney Aircraft Group, East Hartford, Conn. Commercial Products Div.

JT8D ENGINE INTERNAL EXHAUST MIXER TECHNOLOGY PROGRAM Finol Report

F. H. Pond and R. A. Heinz Washington FAA Apr. 1980 147 p Sponsored by FAA (AD-A093057; PWA-5584-33; FAA-RD-80-69) Avail: NTIS HC A07/MF A01 CSCL 21/5

This technology program was directed towards demonstrating the reduction in jet noise achieved by the use of an internal exhaust mixer. The effort focused on static engine acoustic testing of different mixer configurations suitable for JT8D-powered commercial aircraft. A series of 12 lobe mixers with different lobe geometries was evaluated for performance and acoustic characteristics. On the basis of test results, the final mixer configuration selected for JT8D-17-powered DC-9 aircraft showed a reduction in jet noise of 2.0 PNdB at static takeoff power with an attendant 0.3 percent improvement in fuel consumption. A second mixer configuration, define on a preliminary basis for JT8D-powered 727 aircraft, demonstrated a 4.7 PNdB reduction in jet noise at takeoff power. However, a penalty of 1.3 percent in fuel consumption was incurred, and this, combined with an incompatibility in the reverse thrust mode, indicated that significant additional development work is required to demonstrate a viable configuration for 727 aircraft. Testing was also successful in demonstrating the structural integrity of the mixer. In addition, the presence of the mixer did not impart any adverse interactive effects on the stress levels of other engine components.

N81-17092# Teledyne CAE, Toledo, Ohio.
MULTI-PLANE MIGH SPEED BALANCING TECHNIQUES
AND THE USE OF A HIGH SPECIFIC STIFFNESS TI-BORSIC
MATERIAL FOR VIBRATION CONTROL

Glenn Hamburg and W. Pentek Wright-Patterson AFB, Ohio AFWAL Feb. 1980 116 p refs Prepared in cooperation with Mechanical Technology Inc.

(Contract F33615-79-C-2018; AF Proj. 3066)

(AD-A093122; TCAE-1701; AFWAL-TR-80-2056) Avail: NTIS HC A06/MF A01 CSCL 21/5

This report documents results of multi-plane high-speed balancing demonstration of a flexible rotor and a preliminary design analysis for a high specific stiffness composite material shaft. Both studies had as their objective the management of small turbofan engine low pressure shaft bending critical speeds. The prototype flexible rotor was successfully balanced through 3 critical speeds reaching a maximum of 28,000 rpm, which was 74% of the maximum intended rotor speed of 38,000 rpm. Balancing for operation above the 4th critical speed, which was predicted to occur at 33,000 rpm, was prevented due to a sub-synchronous rotor instability. Causes of the instability were attributed to the configuration of the squeeze film bearing damper and the engine rotor support structure as opposed to any limitation of the balancing techniques employed. The preliminary composite shaft design was completed assuming that a Ti-Borsic metal matrix composite with 60% fiber volume and 40% metal matrix would be used. This 'stiff' shaft was designed as a direct substitute for the multi-plane high speed balancing demonstrator rotor. Analytical studies indicate that the composite rotor will have a 24% third critical speed margin when operating at 38,00 rpm.

N81-17093# General Electric Co., Lynn, Mass. Aircraft Engine Group.

HIGH BYPASS TURBOFAN COMPONENT DEVELOPMENT.

MODIFICATION 2 Final Report, Aug. - Nov. 1979

G. W. Armstrong, J. A. Palladino, and L. I. Zirin Wright-Patterson AFB, Ohio AFWAL Mar. 1980 94 p

(Contract F33615-78-C-2060; AF Proj. 3066)

(AD-A093156; AFWAL-TR-80-2032) HC A05/MF A01 CSCL 21/5 NTIS Avail:

The assembly, instrumentation, and test of a fan shaft dynamics simulation vehicle was completed under this contract. Testing included low speed mechanical checkout, followed by operation up to 45,000 RPM using high speed model balancing, as required. The procedure was repeated for two sets of bearing support stiffness values. Balance sensitivity of the rotor system was investigated by creating various amounts of unbalance in the fan disk, the turbine disk, and the shaft, and recording the vibratory response up to 45,000 RPM. Finally, a ten hour endurance test was conducted, completing the requirements of

N81-17094# Naval Air Development Center, Warminster, Pa. Aircraft and Crew Systems Technology Directorate.

PREDICTION AND EVALUATION OF THRUST AUGMENT-ING EJECTOR PERFORMANCE AT THE CONCEPTUAL DESIGN STAGE Final Report, Oct. 1978 - Sep. 1978

K. A. Green 30 Apr. 1980 59 p refs (WF41400000)

(AD-A093953; NADC-80094-60)

Avail: NTIS HC A04/MF A01 CSCL 21/5 The performance characteristics of thrust augmenting ejectors,

based on a computerized one dimensional analysis technique, are shown. Various loss mechanisms within the ejector are described and the sensitivity of the ejector performance to these loss mechanisms are illustrated. Performance estimates have been made for several ejector configurations for which experimental data are available. Despite the assumptions that have to be made, in order that the problem be tractable for the one dimensional analysis, good agreement between the predicted and experimental values have been obtained. Other more complex (2D and 3D) codes have also been examined but were found to be expensive to run and in some cases limited in application.

N81-17095# Systems Control, Inc., Palo Alto, Calif.

MULTIVARIABLE CONTROL SYNTHESIS PROGRAM: CONTROL ASPECTS OF THE F100 ALTITUDE DEMON-STRATION OF THE MULTIVARIABLE CONTROL SYSTEM Final Report, 1 Apr. 1978 - 31 Mar. 1979

Ronald L. Dehoff, Stephen Rock, W. Earl Hall, Jr., and Richard J. Adams Wright-Patterson AFB, Ohio AFWAL Mar. 1980 80 p refs

(Contract F33615-75-C-2053; AF Proj. 3066)

AFWAL-TR-80-2010) (AD-A093868; NTIS Avail:

HC A05/MF A01 CSCL 21/5

This report describes the engine test demonstration phase of the F100 multivariable control synthesis program. Details of the control system design procedure and results of the hybrid simulation tests are described in AFAPL-TR-77-35, Volumes 1 and 2. The analytical design of the F100 multivariable control system included a validation of the controller performance using a hybrid simulation. The hybrid simulation represented an 'average' F100 turbofan engine and assumed a one dimensional flow path. Of course, real engine test hardware, which includes the engine, sensing, and control actuator hardware, will behave differently. These differences are recognized by the control designers and, prior to extensive testing at critical design points, these differences and their impact on the controller performance must be quantified. This report describes the results of the activities to determine the base line engine and sensor/actuator hardware performance. The validation of the engine reference point and trim schedules are included. An analysis of the Delta P/P (Fan exit Mach number) instrumentation, the response characteristics of the basic fuel delivery system, and the contributions due to the response rate of the test facility are presented. GRA

N\$1-17096# Societe Nationale d'Etude et de Construction de Moteurs d'Aviation, Suresnes (France). MATERIAL AND STRUCTURAL PROBLEMS IN AIRCRAFT

ENGINE TECHNOLOGY [PROBLEMES NOUVEAUX DE MATERIAUX ET DE STRUCTURE DANS LA TECHNOLOGIE DES MOTEURS D'AVIONS]

J. F. Chevalier Paris Association Aeronautique et Astronautique de France 1979 24 p In FRENCH Presented at 14th Intern. AAAF Aeron. Congr., Paris, 6-8 Jun. 1979

(AAAF-NT-79-23: ISBN-2-7170-0571-4) Avail: HC A02/MF A01; CEDOCAR, Paris FF 22 (France and EEC) FF 27

Citing the CFM-56 turbofan engine as an example, the development and improvement of jet aircraft engine structures and materials is discussed. Increasing engine operating temperature in order to diminish developing better high temperature alloys, and dimensioning of blades by photoelastic methods are treated. Metallurgical problems related to casting, forging, and machining of materials in other engine parts is also suggested. Author (ESA)

N81-17097*# Technion - Israel Inst. of Tech., Haifa. of Aeronautical Engineering.

ACTIVE CONTROLS FOR FLUTTER SUPPRESSION AND GUST ALLEVIATION IN SUPERSONIC AIRCRAFT Final Report

E. Nissim Nov. 1980 269 p refs

(Grant NsG-7373)

(NASA-CR-163934) Avail: NTIS HC A12/MF A01 CSCL

Results of work done on active controls on the modified YF-17 flutter model are summarized. The basic derivation; of a suitable control law is discussed. It is shown that discrepencies found between analysis and wind tunnel tests originate - from the lack of proper implementation of the desired control law. Program capabilities are described. , A.R.H.

N81-17098# Committee on Science and Technology (U. S. House).

SPIN RECOVERY TRAINING

Washington GPO 1980 242 p refs Hearings before the Subcomm. on Invest. and Oversight of the Comm. on Sci. and Technol., 96th Congr., 2nd Sess., no. 172, 17-19 1980 (GPO-67-439) Avail: Subcommittee on Investigations and

Oversight

Regulations for licensing of private aircraft pilots are discussed. The major area of focus is on spin recovery training and whether it contributes significantly to flight safety. Statistical and economical analyses are presented. The FAA substitute pilot stall awareness program is described.

N81-17099# Naval Postgraduate School, Monterey, Calif. A STUDY OF STATE FEEDBACK IMPLICIT MODEL FOR **VSTOL** FOLLOWING CONTROL AIRCRAFT M.S. Thesis

Lawrence Ernest Epley Sep. 1980 158 p refs (AD-A093253) Avail: NTIS HC A08/MF A01 CSCL 01/4

The State Rate Feedback Implicit Model Follower control concept is examined in detail from a classical and modern control theory viewpoint. State Rate Feedback Implicit Model Following (SRFIMF) is a concept whereby control of the dynamic response of a system is achieved by the measurement and feedback of a state rate, normally acceleration. In addition to a basic description of the concept, emphasis is placed on the effect of noise in the measurement of the required feedback quantities. Control of the pitch attitude of the AV-8A Harrier VTOL aircraft is used as an example of the application of the control concept. The model of the Harrier used in this study includes the effect of both sensor

N81-17100# Bell Helicopter Co., Fort Worth, Tex. FAULT-TOLERANT ACTUATION CONCEPT FOR A RE-SEARCH TEST AIRCRAFT Final Report, Sep. 1979 - Jul. 1980

Delbert E. Haskins Oct. 1980 99 p (Contract N62269-79-C-0292) (AD-A093113: NADC-79125-60) HC A05/MF A01 CSCL 13/7

measurement errors and gust load inputs.

Avail:

NTIS

The fault-tolerant actuation system uses 4 active electrical control paths to control a dualized hydraulic actuator. A simple failure management system operates in conjunction with some of the inherent features of the basic system to provide a failure tolerance level of dual fail-operate for the electrical control paths. The concept is characterized by its fundamental simplicity and inherent ability to tolerate failures. The concept has application to fixed wing as well as rotary wing aircraft.

N81-17101# Auburn Univ., Ala. Engineering Experiment Station

AUTOMATIC HANDOFF OF MULTIPLE TARGETS Final Technical Report, 18 Dec. 1979 - 30 Sep. 1980

J. S. Boland, III and H. S. Ranganath 30 Sep. 1980 118 p refs

(Contract DAAH01-80-C-0258)

(AD-A093483: AD-E950071) Avail: NTIS HC A06/MF A01 CSCL 17/5

In order to fully utilize the potential of the 'fire and forget' class of helicopter-borne missiles, it is necessary to solve the technical problems associated with acquiring and handing off multiple targets from a precision pointing and tracking system (PTS) to several missile seekers simultaneously or almost so in a short period of time. The multiple target problem is that of locating targets and missile seeker aim points within the PTS field of view, deciding which target is to be assigned to each missile, generating error signals to the torquers in order to slew the missile LOS such that its assigned target is in the center of its FOV, and initiating automatic seeker tracking. The task of locating a given smaller image within a larger image is known as 'image registration'. A detailed comparison of the important multiple image registration methods based on the number of arithmetic operations for software implementation and the complexity of hardware for real time implementation is presented. New methods of accomplishing multiple image registration which are computationally more efficient than the most commonly used template matching techniques (correlation and sequential similarity detection algorithm) are described. Conclusions and recommendations are given.

N81-17102# Engins Matra, Velizy (France).
AUTO-ADAPTIVE PILOTING [PIL

AUTO-ADAPTIVE PILOTING {PILOTAGE AUTO ADAPTATIF}

Yves Wesse, ed. and Alain Pechon, ed. Jul. 1978 124 p refs In ERENCH; ENGLISH summary

(GÁ-380) Avail: NTIS HC A06/MF A01

An auto-adpative numerical pilot for tactical missiles, primarily ground-to-air and air-to-air, is defined to assure the functions of stabilization and guidance over a wide range of dynamic pressure values. A simplified mathematical model of a finned missile and its pilot is given and was programmed on an IBM 370-158 computer. Simulation results are used to tune a system of differential equations evolving in hyperspace (dynamic parameters) which describes the servo control loops. Analysis of response to changes in dynamic pressure in fact shows the importance of this parameter and simulation results are given for extreme (high and low pressure) flight conditions.

Author (ESA)

N81-17103# Shaker Research Corp., Ballston Lake, N. Y. COMPRESSOR BLADE MONITORING SYSTEM FOR A VA1310 (ALLIS CHALMERS) WIND TUNNEL COMPRESSOR Final Report, Jul. 1979 - May 1980

Final Report, Jul. 1979 - May 1980

Donald S. Wilson and John F. Frarey Jul. 1980 58 p refs (Contract F33615-79-C-3019; AF Proj. 2414)

(AD-A092920: AFWAL-TR-80-3072) Avail: NTIS HC A04/MF A01 CSCL 21/5

The purpose of the work summarized in this report is to identify and develop a cost effective, reliable procedure for identifying potential blade failures in time to prevent the actual occurrence. The procedure is developed for application to an Allis-Chalmers ten-stage, axial flow compressor, Model VA 1310. The approach followed in conducting this study included a review of the current techniques used to insure blade integrity, a review of other approaches as described in literature for verifying the

condition of compressor blades and, finally, development of a technique suitable for use with the VA 1310 compressor. GRA

N81-17104# Princeton Univ., N. J. Dept. of Mechanical and Aerospace Engineering.

WIND TUNNEL WALL INTERFERENCE Interim Report,
1 Apr. 1979 - 31 May 1980

1 Apr. 1979 - 31 May 1980 D. B. Bliss Nov. 1980 25 p refs

(Grant AF-AFOSR-3337-77; AF Proj. 2307) (AD-A093301; AFOSR-80-1359TR)

HC A02/MF A01 CSCL 20/4

Avail: NTIS

The previous analysis of the aerodynamics of an isolated slender slot in a wall has been extended to include the effect of a streamwise pressure gradient. For certain slot planforms, an analytical solution is available for the case of a linear pressure gradient. The effect of aerodynamic interference for a single infinite row of slots was also studied. Solutions were obtained numerically for various Mach numbers, slot spacings, and aspect ratios. The effect of interaction between slots was to increase the slot flow rate for a given pressure differential. A wavy wall problem was posed to study the proper method of obtaining an average wall boundary condition given the behavior of individual holes or performations. This problem contains all the important physics and allows the basic parameters to be controlled in such a way that the important efforts can be clearly identified. Due to computational difficulties, the solution is being reformulated in a more efficient and useful form. However, preliminary calculations with the original approach did show that the boundary condition should be constructed differently for subsonic and supersonic flows, and that there are effects of pressure gradient and hole location become apparent as the pressure field wavelength is decreased. Some work was also done on isolated slot aerodynamics with large free surface displacement and on the compliant wall wind tunnel concept. GRA

N81-17105# ARO, Inc., Arnold Air Force Station, Tenn.
LASER SCATTERING APPLICATIONS DEVELOPMENT TEST
IN AEDC TUNNEL B AT MACH NUMBER 8 Final Report,
16 Jan. 1980 - 12 Feb. 1980

W. T. Strike and L. L. Price AEDC Mar. 1980 51 p refs Sponsored by AF

(AD-A093929; AEDC-TSR-80-V16) Avail: NTIS HC A04/MF A01 CSCL 14/2

Free stream and local flow field measurements on a blunt (0.375 in. radius) nose 5 deg cone were made in Tunnel B at Mach number 8. The nonintrusive flow field measurements were made using various laser scattering optical systems to determine the free stream and local flow field particulate concentration and size distribution, the nitrogen molecule number density, and the local stream velocity using a Fabry-Perot interferometer system. The 5 deg cone pressure distributions were used to confirm the test section Mach number and to produce a known local flow field which could be used to demonstrate potentially useful laser scattering measuring techniques.

N81-17106# ARO, Inc., Amold Air Force Station, Tenn.
EVALUATION OF THE ACOUSTIC AND AERODYNAMIC
CHARACTERISTICS OF SEVERAL SLOT-BAFFLE CONFIGURATIONS FOR TRANSONIC WIND TUNNEL WALLS
Final Report, 20 Oct. - 15 Nov. 1978

J. L. Jacocks, D. W. Sinclair, and R. L. Parker AEDC Jan. 1981 51 p refs Sponsored by AF (AD-A093957; AEDC-TR-79-59) Avail: NTIS HC A04/MF A01 CSCL 14/2

An experimental investigation was conducted to record the acoustic and aerodynamic performance of several slotted walls with transverse baffles in the slots for transonic test sections. Primary configuration variables were the baffle angle inclination relative to the airstream and a wire mesh screen on the airside wall surface. At all baffle angles, the addition of the screen overlay decreased the acoustic noise level and improved the flow generation and supersonic wave cancellation properties of the wall but increased the subsonic wall interference effects.

GRA

N81-17107# Naval Postgraduate School, Monterey, Calif. Dept. of Aeronautics.

EVALUATION OF A SUBSONIC CASCADE WIND TUNNEL FOR COMPRESSOR BLADE TESTING M.S. Thooks

David A. DuVal Sep. 1980 87 p refs

(AD-A093591) Avail: NTIS HC A05/MF A01 CSCL 20/4 Development of the subsonic cascade wind tunnel facility required determination of the two dimensionality and periodicity of the airflow in the test section with test cascade installed. Data acquisition procedures were developed and data were recorded for two facility configurations. The flow was shown to be unsatisfactory at a diffusion factor of approximately 0.58 and aspect ratio 1.25, and to be acceptably two dimensional and periodic at a diffusion factor of approximately 0.39 and aspect GRA ratio 1.95.

NS1-17103# Lille Univ. (France). Inst. de Mecanique des Fluides.

A ROTATING, WIND TUNNEL BALANCE AND ASSOCIATED EXPERIMENTAL TECHNIQUES [BALANCE ROTATIVE DE L'INSTITUT DE MECANIQUE DES FLUIDES DE LILLE ET TECHNIQUES EXPERIMENTALES ASSOCIEES]

R. Verbrugge Paris Association Aeronautique et Astronautique de France 1980 52 p In FRENCH Presented at 16th Colloq. d'Aerodyn. Appl., Lille, 13-15 Nov. 1979

(AAAF-NT-80-13; ISBN-2-7170-0609-5) HC A04/MF A01; CEDOCAR, Paris FF 40 (France and EEC) FF 45 (others)

Aerodynamic phenomena at steep angles of incidence associated with large amplitude movements incorporating continuous rotation are discussed in terms of coupling effects. generally nonlinear, necessary to formulating equations of motion. A rotating wind tunnel balance adapted to the similation of these flight conditions is described. Steep attack angle flight leading to loss of control and stalling regimes relative to aircraft spin were studied. Results obtained with a Mirage type aircraft model are shown. Author (ESA)

N81-17109# Avions Marcel Dassault-Breguet Aviation, Saint-Cloud. (France).

FIRST RESULTS OBTAINED WITH A ROTATING CON-STRUCTION [PREMIERS RESULTATS OBTENUS PAR LA SOCIETE AVIONS MARCEL DASSAULT-BREGUET AVIA-TION SUR LE MONTAGE TOURNANT DE L'INSTITUT DE MECANIQUE DES FLUIDES, LILLE]

C. Couedor Paris Association Aeronautique et Astronautique de France 1980 22 p In FRENCH Presented at 16th Colloq. d'Aerondyn. Appl., Lille, 13-15 Nov. 1979

(AAAF-NT-80-14; ISBN-2-7170-0610-9) NTIS Avail: HC AQ2/MF AQ1: CEDOCAR, Paris FF 25 (France and EEC) FF 30 (others)

A rotating wind tunnel balance used to study the behavior of aircraft flying at steep angles of attack is described. A particular study carried out on a model of a Mirage type fighter plane, characterized by its delta wing design, is reported on. Measurement signal acquisition and processing are covered. Flight characteristics for both the model stationary and in motion were defined and the significance of these data is discussed.

Author (ESA)

N81-17110# Forschungsinstitut fuer Funk und Mathematik, Werthoven (West Germany).

FORMATION TRACKING. PART 2: TRACKING AND CONTROL PROCEDURES

G. Binias Apr. 1979 75 p refs In GERMAN; ENGLISH summarv

(FFM-279-Pt-2) Avail: NTIS HC A04/MF A01

Tracking procedures based on a formation track initiation procedure are described and compared to single target tracking. Formation tracking is shown to be a collectivizing method of target data processing aimed at the control of the mean cinematic behavior of the formation targets and the control of a distinguished group of marginal targets which support the formation track in computer controlled target tracking. The control procedures enable the system to detect configuration variations in the formation and initiate branchings of formation tracks or junctions of formation

tracks with other tracks in response. In order to comprehend the influence of maneuvers by the entire formation, control variables are determined in a central track oriented coordinate system. Simulation results are presented which demonstrate the effectiveness of these tracking and control procedures.

№81-17171*# Boeing Commercial Airplane Co., Seattle, Wash. ASSESSMENT OF RISK TO BOEING COMMERICAL TRANSPORT AIRCRAFT FROM CARBON FIBERS Final Report, Sap. 1978 - Jan. 1980

C. A. Clarke and E. L. Brown Jun. 1980 94 p refs (Contract NAS1-15510). D6-48855)

(NASA-CR-159211; HC A05/MF A01 CSCL 11D NTIS

The possible effects of free carbon fibers on aircraft avionic equipment operation, removal costs, and safety were investigated. Possible carbon fiber flow paths, flow rates, and transfer functions into the Boeing 707, 727, 737, 747 aircraft and potentially vulnerable equipment were identified. Probabilities of equipment removal and probabilities of aircraft exposure to carbon fiber were derived. JMS

N81-17175*# HITCO, Gardena, Calif. Defense Products Div. FABRICATION AND PHYSICAL TESTING OF GRAPHITE COMPOSITE PANELS UTILIZING WOVEN GRAPHITE FABRIC WITH CURRENT AND ADVANCED STATE-OF-THE-

ART RESIN SYSTEMS Final Report Samuel C. S. Lee Jun. 1979 26 p refs (Contract NAS2-9977)

(NASA-CR-152292) Avail: NTIS HC A03/MF A01

Three weaves were evaluated; a balanced plain weave, a balanced 8-harness satin weave, and a semiunidirectional crowfoot satin weave. The current state-of-the-art resin system selected was Fiberite's 934 Epoxy; the advanced resin systems evaluated were Phenolic, Phenolic/Novolac, Benzyl and Bismaleimide. The panels were fabricated for testing on NASA/Ames Research Center's Composites Modification Program. Room temperature mechanical tests only were performed by Hitco; the results are presented. T:M.

MG1-17235∯ General Electric Co., Cincinnati, Ohio. Materials and Process Technology Labs. Crack growth modeling in an advanced powder METALLURGY ALLOY Final Tochnical Report, 1 Sap. 1977 - 1 Fob. 1960

David A. Utah Jul. 1980 146 p refs (Contract F33615-77-C-5082; AF Proj. 2420)

AFWAL-TR-80-4098) (AD-A093992;

HC A07/MF A01 CSCL 11/6

An interpolative model has been developed to calculate the cyclic crack growth rate of an advanced aircraft engine disk alloy (AF115). The test variables included within the model consists of stress ratio, temperature, frequency, and hold time. The model was based on experimental results conducted within a statistically designed test program. A nonsymmetric Sigmoidal equation consisting of six independent coefficients was used to equate stress intensity range to cyclic growth rate. Two varification tests were conducted at two conditions other than those used during the development of the model to evaluate the model.

GRA

NTIS

Avail:

CSCL

٠,:

NTIS

RI81-17242# McDonnell Aircraft Co., St. Louis, Mo. Environment-load interaction effects on Crack GROWTH IN LANDING GEAR STEELS Final Report, Aug. 1979 - Aug. 1980

C. R. Saff Oct. 1980 155 p refs (Contract N62269-79-C-0275; WF41400000)

(AD-A093803; NADC-79095-60)

HC A08/MF A01 CSCL 11/6

The objective of this program was to investigate chemical environment-load interaction effects on crack propagation. Dry air (+10 percent relative humidity) was used as a reference environment. Alternate immersion in synthetic sea water was used to simulate the aggressive chemical environment to which Navy carrier based aircraft are subjected. Tests were performed to determine the behavior of 300 M and HP-9-4-30 steel in both environments under a variety of stress ratios and load wave shapes. A crack growth prediction capability developed through analysis and test accounts for environment and load interaction effects. A flight-by-flight test stress history was developed for a landing gear of a carrier based Navy aircraft. Crack growth predictions were prepared and tests performed to verify the chemical environment-spectrum loading analysis capability. A comparison of landing gear spectra under Air Force and Navy design conditions is presented.

N81-17281# Exxon Research and Engineering Co., Linden, N.J. Products Research Div.

EFFECT OF REFINING VARIABLES ON THE PROPERTIES AND COMPOSITION OF JP-5 Final Report, Sep. 1978 -Feb. 1980

Martin Lieberman and William F. Taylor Nov. 1980 161 p

(Contract NO0140-78-C-1491)

(AD-A093842; EXXON/RL.2PE.80)

HC A08/MF A01 CSCL 21/4

Avail: NTIS

The primary objective of this program was to identify potential future problem areas that could arise from changes in the composition, properties and potential availability of JP-5 produced in the near future. The study employed a systems type approach, looking at the various processing trains used to make JP-5 in the U.S. and abroad, the types of crudes used with the different processing trains and the crude-processing interactions that might impact on the quality and potential availability of JP-5 produced in the near future. Analyses were made separately for the two major geographical regions (PADs) currently producing JP-5 for the U.S. Navy. Potential fuel problems concerning thermal stability, lubricity, low temperature flow, combustion, and the effect of the use of specific additives on fuel properties and performance were identified and discussed.

N81-17299# Naval Civil Engineering Lab., Port Hueneme, Calif. SHRINKAGE-COMPENSATING CEMENT FOR AIRPORT PAVEMENT. PHASE 3: FIBROUS CONCRETES. AD-DENDUM Final Report, Jan. 1979 - May 1980

ପ୍ରର୍ଗନ R. Keeton Sep. 1980 27 p refs (AD-A092945; CEL-TN-1561-ADD; FAA-RD-79-11-ADD) Avail: NTIS HC A03/MF A01 CSCL 11/2

Details of a research study on shrinkage-compensating fibrous concrete for airport pavements are presented. A total of 77 slab-type prisms 1 sq ft and 4, 6, and 8 in. thick were subjected to shrinkage in 50% RH. Concrete mixes containing 5.5, 6.5, and 7.5 bags of shrinkage-compensating cement were used in the study. Fly ash was also used for better workability and later added strength. Fiber contents used were 1.0, 1.5, and 2.0% by volume of the concrete. Residual concrete compressive stresses are used as a basis for recommendation of transverse joint spacing of 150 ft for expansive fibrous concrete overlays.

N81-17327# Network Analysis Corp., Vienna, Va. COMMUNICATIONS SUPPORT FOR NATIONAL FLIGHT DATA CENTER INFORMATION SYSTEM Final Report,

1979 - 1980 Washington DOT Nov. 1980 160 p refs (Contract DOT-FA79WA-4355)

(AD-A093095; NAC/FR;3030/01; FAA-RD-80-116) Avail: NTIS HC A08/MF A01 CSCL 17/2

The National Flight Data Center/Information System (NFDC/ IS) data communications requirements were analyzed to determine the technical feasibility and the most cost beneficial approach of NADIN support. The following conclusions were made: The most cost/beneficial approach to NADIN support of the NFDC/IS data communications requirements provides for the use of NADIN for interactive and message traffic and dedicated facilities for the point-to-point, source-to-sink batch traffic. The most significant aspect of NADIN support for the NFDC/IS data communications requirements is in providing the communications link between the NFDC host system and the external systems with which it must interface.

N81-17333# Mission Research Corp., Albuquerque, N. Mex. AIRCRAFT EMP ISOLATION STUDY Final Report A. Finci, H. Price, P. Chao, S. Mercer, and T. Naff Kirtland AFB, N. Mex. AFWL Jul. 1980 97 p refs (Contract F29601-78-C-0082; AF Proj. 1209) (AD-A093772; AD-E200630; AFWL-TR-79-156) Avail: NTIS HC A05/MF A01 CSCL 20/14

This report presents the results of a preliminary study into methods for electrically isolating the E-4B, the EC-135, and the EC-130 aircraft during EMP tests where the aircraft under test is directly driven by a high-voltage pulser.

N81-17342# IIT Research Inst., Annapolis, Md. A SUPPLEMENTARY EMC ANALYSIS OF THE PROPOSED AIRPORT SURFACE DETECTION EQUIPMENT (ASDE-3) RADAR

G. Larry Brown Aug. 1980 30 p refs (Contracts F19628-78-C-0006; DOT-FA77WAI-778) (AD-A092965; ECAC-CR-80-044; FAA-RD-80-123) NTIS HC A03/MF A01 CSCL 17/9

This report supplements information in an earlier report which identified electromagnetic compatibility (EMC) problems associated with the deployment of Airport Surface Detection Equipment (ASDE-3) Radars at a number of proposed sites in the United States. Subsequent to the earlier study, several operational parameters of the ASDE-3 radar have been modified in a direction to lessen the probability of causing or receiving interference, thereby necessitating a reanalysis of portions of the earlier study. As before, interferring signal levels are compared against established receiver thresholds to determine operational compatibility and frequency management techniques are identified as a solution to potential interference cases, where applicable. GRA

N81-17387# Massachusetts Inst. of Tech., Cambridge. Turbine and Plasma Dynamics Lab.

CURRENT PROBLEMS IN TURBOMACHINERY FLUID DYNAMICS Interim Report, 1 Jun. 1979 - 30 Sep. 1980 Edward M. Greitzer, William T. Thompkins, Jr., James E. McCune, Alan H. Epstein, Choon S. Tan, Jack L. Kerrebrock, and William R. Hawthorne 26 Nov. 1980 104 p refs

(Contract F49620-78-C-0084; AF Proj. 2307)

(AD-A093375; AFOSR-80-1355TR) HC A06/MF A01 CSCL 20/4 NTIS Avail:

A multi-investigator effort on problems of current interest in turbomachinery fluid dynamics is being carried out in the Gas Turbine and Plasma Dynamics Laboratory of MIT. Within the overall program four different tasks having to do with a wide range of design and off-design flow fields have been identified. These are: (1) investigation of fan and compressor design point fluid dynamics (including formulation of design procedures using current three dimensional transonic codes and development of techniques for instantaneous measurements in transonic fans); (2) studies of compressor stability enhancement (including basic investigations of the fluid dynamics of rotor casing treatment); (3) fluid mechanics of gas turbine engine operation in inlet flow distortion (including inlet vortex distortion); and (4) investigations of three dimensional flows in highly loaded turbomachines (including actuator duct theory and blade-to-blade flow analysis) and linearized analysis of swirling three dimensional flows in turbomachines. This interim report summarizes progress made to date as well as indicates the direction of future efforts on the various tasks. GRA

N81-17466# Detroit Diesel Allison, Indianapolis, Ind.
MODEL 250-C30/C28B COMPRESSOR DEVELOPMENT Dennis C. Chapman In AGARD Centrifugal Compressors, Flow Phenomena and Performance Nov. 1980 6 p

Avail: NTIS HC A15/MF A01

The performance of advanced versions of the Allison Model 250 engine series in production for the Sikorsky S76 and Bell Long Ranger helicopters is discussed. These engines, designated 250-C30 and -C28B respectively, use a single stage centrifugal compressor matched at 8.7:1 pressure ratio at design speed. The initial design met flow, pressure ratio, and efficiency requirements, but encountered both a localized deficiency in the surge line around 85% speed and excessive impeller blade vibratory stress at high speed. Several potential remedies were tried unsuccessfully and the compressor was redesigned. The redesign featured redistributed impeller blade loading, revised impeller blade thickness, and increased number of diffuser vanes. These changes eliminated the vibratory stress problem. A unique inducer shroud bleed system, requiring no control, resolved the surge line problem and improved high speed flow and efficiency

N81-17467# Noel Penny Turbines Ltd., Toll Bar End (England). CENTRIFUGAL COMPRESSORS FOR SMALL AERO AND **AUTOMOTIVE GAS TURBINE ENGINES**

R. W. Chevis and R. J. Varley In AGARD Centrifugal Compressors, Flow Phenomena and Performance Nov. 1980 18 p refs

Avail: NTIS HC A15/MF A01

Compressor design requirements for three engine types are briefly discussed. These types are the expendable turbojet, the low cost single shaft turbopropeller engine, and the automotive truck gas turbine engine. Technical and test data are presented for representative types of compressors.

N81-17476# Battelle Columbus Labs., Ohio.

FEASIBILITY EVALUATION OF ADVANCED MULTIFRE-QUENCY EDDY CURRENT TECHNOLOGY FOR USE IN NAVAL AIR MAINTENANCE ENVIRONMENT Final Report, 25 Oct. 1978 - 23 Jul. 1979

Donald T. Hayford and Stephen D. Brown 8 Dec. 1980 80 p (Contract N68335-78-C-1121)

(AD-A093314; NAEC-92-143) Avail: NTIS HC A05/MF A01 CSCL 14/2

The optimization of a multifrequency eddy current test was performed for the detection and characterization of second-number corrosion using computer programs. The results of the analytical studies showed that both inner and outer surface corrosion could be detected and quantified. Air gap variations could also be distinguished from corrosion using multifrequency data. These results were confirmed experimentally using phase-sensitive eddy current instrumentation. GRA

N81-17480°# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio. COMPOSITE CONTAINMENT SYSTEMS FOR JET ENGINE FAN BLADES

G. T. Smith 1981 18 p refs Presented at the 36th Ann. Conf. of the Reinforced Plastics/Composites Inst. of the Soc. of the Plastics Ind., Inc., Washington, D.C., 16-20 Feb. 1981 (NASA-TM-81675; E-700) Avail: NTIS HC A02/MF A01 CSCL

The use of composites in fan blade containment systems is investigated and the associated structural benefits of the composite system design are identified. Two basic types of containment structures were investigated. The short finned concept was evaluated using Kevlar/epoxy laminates for fins which were mounted in a 6061 T-6 aluminum ring. The long fin concept was evaluated with Kevlar/epoxy, 6AI4V titanium, and 2024 T-3 aluminum fins. The unfinned configurations consisted of the base-line steel sheet, a circumferentially oriented aluminum honeycomb, and a Kevlar cloth filled ring. Results obtained show that a substantial reduction in the fan blade containment system weight is possible. Minimization of damage within the engine arising from impact interaction between blade debris and the engine structure is also achieved. M.G.

NS1-17483# Messerschmitt-Boelkow-Blohm G.m.b.H., Ottobrunn (West Germany). Unternehmensbereich Flugzeuge THE INFLUENCE OF THE COMPRESSIBILITY IN SIMULA-TING THE CONDUCT OF EXTERIOR LOADS OF A CARRIER

DER EINFLUSS DER KOMPRESSIBILITAET ZUR SIMULA-TION DES ABGANGSVERHALTENS VON AUSSENLASTEN VOM TRAEGER]

K. Thomas 26 Nov. 1979 21 p refs in GERMAN Presented at DGLR Wehrtech, Symp. on der Abgang von Lasten und Waffen vom Traeger, Bad Neuenahr, West Germany, 26-27 Nov. 1979 (MBB-FE-122/S/PUB/17; DGLR-79-094) Avail: HC A02/MF A01

The panel method was used in the computation of the flow field of an aircraft, the pressure distribution on the upper surface. and the aerodynamic loads. With this method the effect of compressibility on pressure distribution can be relatively well understood when Gothert's Rule is applied. However, this rule is not applicable on the flow field of the aircraft. A flow field model was developed based on Gothert's Rule and the panel method, in order to obtain an appropriate solution for compressibility effects. Results from the computations on the flow field model are presented. Transl. by E.A.K.

N81-17623°# Northwestern Univ., Evanston, III. TRANSPORT JET AIRCRAFT NOISE ABATEMENT IN FOREIGN COUNTRIES: GROWTH, STRUCTURE, IMPACT. VOLUME 1: EUROPE, JULY 1980 Final Report Frank A. Spencer Jul. 1980 230 p refs

(Grant NsG-2328)

(NASA-CR-152358) Avail: NTIS HC A11/MF A01 13B

The development and implementation of aircraft noise control regulations in various European states are described. The countries include the United Kingdom, France, Switzerland, Federal Republic of Germany, Sweden, Denmark, and the Netherlands. Topics discussed include noise monitoring, airport curfews, land use planning, and the government structure for noise regulation.T.M.

N81-17624* # Northwestern Univ., Evanston, III. TRANSPORT JET AIRCRAFT NOISE ABATEMENT IN FOREIGN COUNTRIES: GROWTH, STRUCTURE, IMPACT. VOLUME 2: PACIFIC BASIN, AUGUST 1980 Final Report

Frank A. Spencer Aug. 1980 202 p (Grant NsG-3238)

(NASA-CR-152357-Vol-2) Avail: NTIS HC A10/MF A01 CSCL

Noise control measures at the international airports of Hawaii, New Zealand, Australia, Hong Kong, Japan, and Singapore were studied. Factors in noise control, such as government structure are examined. The increasing power of environmental agencies vis-a-vis aviation departments is noted. The following methods of dealing with aircraft noise are examined by type of control: noise at the source control; noise emmission controls, zoning, building codes, subsidies for relocation, insulation, loss in property values, and for TV, radio and telephone interference; and noise-related landing charges.

N81-17846* General Electric Co., Cincinnati, Ohio. Aircraft Engine Business Group.

AERODYNAMIC/ACOUSTIC PERFORMANCE OF YJ101/ DOUBLE BYPASS VCE WITH COANNULAR PLUG NOZZLE **Final Report**

John W. Vdoviak, Paul R. Knott, and Jon J. Ebacker 1981 307 p refs

(Contract NAS3-20582)

R80AEG369) (NASA-CR-159869; HC A14/MF A01 CSCL 20A

Avail: NTIS

Results of a forward Variable Area Bypass Injector test and a Coannular Nozzle test performed on a YJ101 Double Bypass Variable Cycle Engine are reported. These components are intended for use on a Variable Cycle Engine. The forward Variable Area Bypass Injector test demonstrated the mode shifting capability between single and double bypass operation with less than predicted aerodynamic losses in the bypass duct. The acoustic nozzle test demonstrated that coannular noise suppression was between 4 and 6 PNdB in the aft quadrant. The YJ101 VCE equipped with the forward VABI and the coannular exhaust nozzle performed as predicted with exhaust system aerodynamic losses. lower than predicted both in single and double bypass modes. Extensive acoustic data were collected including far field, near

field, sound separation/ internal probe measurements as Laser Author: Velocimeter traverses.

N81-17848# DyTec Engineering, Inc., Long Beach, Calif. EVALUATION OF ALTERNATIVE PROCEDURES FOR ATMOSPHERIC ABSORPTION ADJUSTMENTS DURING NOISE CERTIFICATION. VOLUME 3: TABLES OF ATMOSPHERIC ABSORPTION LOSSES Final Report

Alan H. Marsh Oct. 1980 65 p (Contract DOT-FA78WA-4121)

(AD-A093144; DYTEC-7928; FAA-EE-80-46-Vol-3) Avail: NTIS HC A04/MF A01 CSCL 20/1

The work reported here extends that in FAA-RD-77-167, December 1977, to the problem of adjusting actual aircraft noise 1/3 octave-band spectra measured at 0.5 s intervals. Test-day spectra are used to calculate, PNL, PNLT, EPNL, AL, and SEL. The test-day spectrum at the time of PNLTM and at the time of ALM are adjusted to acoustical-reference conditions using the atmospheric-absorption method in American National Standard ANS S1.26-1978 and applied, using measurements of air temperature and relative humidity at various heights above the ground, by integrating over the frequency range of the passband of ideal filters and by calculating the absorption at the exact band center frequencies only. SAE ARP866A is also used with the vertical-profile temperature/humidity data and with data at 10.0 m to determine adjustments from test to reference conditions. The adjustment methods are applied to noise data from 9 aircraft. Volume 1 describes the analyses and results of the study. Volume 2 presents the computer program that was developed and illustrates its use with a test case. Volume 3 presents tables of attenuation due to atmospheric absorption over a 300 m path. Attenuatons were calculated using ANS S1.26-1978 for pure tones at band center frequencies and for 3 noise spectral slopes by a band-integration method, and using SAE ARP866A. For each of the 5 methods, the tables cover 34 air temperatures from 2 to 35C, 10 relative humidities from 10 to 100 percent, and 24 nominal band center frequencies from 50 to 10.000 Hz.

N81-17849# Bolt, Beranek, and Newman, Inc., Cambridge, Mass. NOISECHECK PROCEDURES FOR MEASURING NOISE EXPOSURE FROM AIRCRAFT OPERATIONS Final Report Dwight E. Bishop, Andrew S. Harris, Joan Mahoney, and Peter È. Rentz Nov 1980 96 p

(Contract F33615-77-C-0514; AF Proj. 7231)

(AD-A093948; BBN-3869) Avail: NTIS HC A05/MF A01

NOISECHECK is a measurement program used (1) when an engineer is uncertain about a Sound Exposure Level (SEL) resulting from a particular type of operation or (2) to check noise contours determined by NOISEMAP - an Air Force computer program. The file of aircraft noise data used by NOISEMAP is called NOISEFILE. The NOISECHECK measurement program uses portable noise monitors that measure Day-Night Sound Levels (DNLs) over one or more days as well as individual Sound Exposure Levels (SELs). The measured DNLs are then compared with the DNLs calculated by NOISEMAP, or they contribute SEL data for comparison with NOISEFILE. This report delineates the field test data acquisition and analysis procedures used to conduct NOISECHECK type measurement studies. A companion report, AMRL-TR-78-125, Development of NOISECHECK Technology for Measuring Aircraft Noise Exposure, describes the instrumentation development and subsequent field test conducted at Barksdale AFB as part of this research effort.

N81-17851# Federal Aviation Administration, Washington, D.C. Office of Environment and Energy.

HELICOPTER NOISE CONTOUR DEVELOPMENT TECH-NIQUES AND DIRECTIVITY ANALYSIS

J. Steven Newman Sep. 1980 43 p refs

(AD-A093426; FAA-EE-80-41) NTIS Avail: HC A03/MF A01 CSCL 20/1

This paper briefly summarizes techniques which have been developed for use in creating helicopter air-to-ground, noisedistance relationships. Discussion is provided concerning FAA efforts to establish an accurate and practical method (which considers source directivity) for modeling the noise impact associated with helicopter operations. Plots of normalized directivity vectors are provided for eight helicopters in various modes of flight.

N81-17852# Federal Aviation Administration, Washington, D.C. Office of Environment and Energy.

CORRELATION OF HELICOPTER NOISE LEVELS WITH PHYSICAL AND PERFORMANCE CHARACTERISTICS

J. Steven Newman Sep. 1980 31 p refs

(AD-A093428; FAA-EE-80-42)

HC A03/MF A01 CSCL 01/3

This report investigates the correlation between physical and performance characteristics of helicopters and the noise levels which they generate in various operational modes. The analysis is generally empirical although several theoretical functions described in the literature have been examined. The EPNL is the acoustical metric employed in this study. One, two, and three-step multiple regression analyses are conducted for takeoff, approach, and level flyover operations. Plots are provided for the three best single variable regression models for each mode

N81-17853# DyTec Engineering, Inc., Long Beach, Calif. EVALUATION OF ALTERNATIVE PROCEDURES FOR ATMOSPHERIC ABSORPTION ADJUSTMENTS DURING NOISE CERTIFICATION. VOLUME 2: COMPUTER PROGRAM Final Report

Alan H. Marsh Oct. 1980 98 p

(AD-A093267; DYTEC-7927-Vol-2; FAA-EE-80-46-Vol-2) Avail: NTIS HC A05/MF A01 CSCL 20/1

The work reported here extends that in FAA-RD-77-167, December 1977, to the problem of adjusting actual aircraft noise 1/3-octave-band spectra measured at 0.5-s intervals. Test-day spectra are used to calculate, PNL, PNLT, EPNL, AL, and SEL. The test-day spectrum at the time of PNLTM and at the time of ALM are adjusted to acoustical-reference conditions using the atmospheric-absorption method in American National Standard ANS S1.26-1978 and applied, using measurements of air temperature and relative humidity at various heights above the ground, by integrating over the frequency range of the passband of ideal filters and by calculating the absorption at the exact band center frequencies only. SAE ARP866A is also used with the vertical-profile temperature/humidity data and with data at 10.0 m to determine adjustments from test to reference conditions. The adjustment methods are applied to noise data from 9 aircraft. Volume 1 describes the analyses and results of the study. Volume 2 presents the computer program that was developed and illustrates its use with a test case. Volume 3 presents tables of attenuation due to atmospheric absorption over a 300 m path. Attenuations were calculated using ANS S1.26-1978 for pure tones at band center frequencies and for 3 noise spectral slopes by a band-integration method, and using SAE ARP866A. For each of the 5 methods, the tables cover 34 air temperatures from 2 to 35C, 10 relative humidities from 10 to 100 percent, and 24 nominal band center frequencies from 50 to 10,000 Hz. GRA

N81-17902# Boeing Aerospace Co., Seattle, Wash. AIRBORNE-FIBER OPTICS MANUFACTURING TECHNOL-OGY, AIRCRAFT INSTALLATION PROCESSES Final Report, May 1978 - Jun. 1980

G. Kosmos and R. A. Greenwell San Diego, Calif. Naval Ocean Systems Center 19 Aug. 1980 348 p refs

(Contract N00123-78-C-0193) (AD-A093304:

NOSC/TR-591)

NTIS Avail:

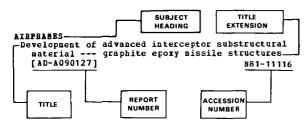
HC A15/MF A01 CSCL 20/6

Manufacturing processes were developed for installation of optical fiber harnesses and 'stand alone' links on military aircraft. Fabrication and installation plans and procedures were developed and a routing analysis was performed to provide a basis for installation of fiber optics in military aircraft. A life cycle cost analysis of the optical fiber harness indicates economic advantages. GRA

N81-17936# Department of Energy, Bartlesville, Okla. Energy Technology Center.

THERMODYNAMICS OF ORGANIC COMPOUNDS Final Report, 1 Oct. 1979 - 30 Sep. 1980

W. D. Good, R. H. P. Thomas, B. E. Gammon, S. Lee-Bechtold, J. E. Callanan, and N. K. Smith 1980 29 p refs (Grant AFOSR ISSA-80-0004: AF Proj. 2308)


(AD-A093087) Avail: NTIS HC A03/MF A01 CSCL 07/3 Basic and applied research have continued on the thermodynamic properties of currently used high density/high energy fuels and of pure chemical compounds that may be constituents of high energy fuels of the future. Enthalpy of combustion was measured for three compounds that are constituents of current ramjet fuels--hexacyclic exo, exo-dihydrodinorbornadiene, hexacyendo, endo-dihydrodinorbornadiene and exotetrahydrodicyclopentadiene (JP-10). Heat capacities of exotetrahydrodicyclopentadiene (JP-10) and RJ-6, a blend of JP-10 and the hydrogenated dimers of norbornadiene, were measured by differential scanning calorimetry. Enthalpy of combustion was measured for two pure hydrocarbons, 1,7-dimethylindan and 1,4-dimethyl-2-isobutylbenzene, that are expected to have high steric interaction energies of alkyl substituents in the ring structure, and measurements are in progress on methylnaphthalene and 1,6-dimethylidan.

SUBJECT INDEX

AERONAUTICAL ENGINEERING /A Continuing Bibliography (Suppl. 135)

MAY 1981

Typical Subject Index Listing

The title is used to provide a description of the subject matter. When the title is insufficiently descriptive of the document content, a title extension is added, separated from the title by three hyphens. The NASA or AIAA accession number is included in each entry to assist the user in locating the abstract in the abstract section of this supplement. If applicable, a report number is also included as an aid in identifying the document.

Α	
A-7 AIRCRAFT	
Abstract interface specifications for the A device interface module	-7E
(AD-A092696)	N81-16770
CCELERATED LIPE TESTS	
Evaluation of compressor blade endurance li	mits by
an accelerated method	A81-22182
ACCELERATION (PHYSICS)	101 22 102
Two-axis, fluidically controlled thrust vec	tor
control system for an ejection seat	NO4-16006
[AD-A093888] ACCELERATION TOLERANCE	N81-16996
Escape from military fighters - A modern pe	rspective
•	A81-22096
ACCIDENT INVESTIGATION	L. MMCD
The apparent ignoring of pilot fatigue by t in airline crashes	he MTSB
In dilline classes	A81-22104
ACCIDENT PREVENTION	_
Death and injury in aerial spraying - Pre-c	rash,
crash, and post-crash prevention strategi	.es A81-22115
CAT altitude avoidance system	
[NA SA - CASE-NPO-15351-1]	N81-16677
Evaluation of explosafe. Explosion suppres system for aircraft fuel tank protection	sion
[AD-A093125]	N81-17047
CCURACY	
AGARD flight test instrumentation series.	
10 on Helicopter flight test instrumentat	.101 N81-17040
COUSTIC ATTROUTION	101-17040
Sandwich structures with high transmission	
	A81-20069
Evaluation of alternative procedures for atmospheric absorption adjustments during	noiso
certification. Volume 2: Computer progr	an
[AD-A093267]	N81-17853
COUSTIC DUCTS	
A general mapping procedure for variable ar acoustics	ea duct
[AIAA PAPER 81-0094]	A81-20597
Numerical techniques in linear duct acousti	.cs - A
status report	.01 01100
[ASME PAPER 60-WA/NC-2]	A81-21120
Acoustic emission and corrosion	
	A81-20211

The use of acoustic emission for detecting	and
evaluating of fatigue cracks severity dur	
static and cyclic loading of structure el	ements A81-20214
Evaluation of alternative procedures for	BO1 202.4
Evaluation of alternative procedures for atmospheric absorption adjustments during	noise
certification. Volume 3: Tables of atmo absorption losses aircraft noise	spheric
[AD-A093144]	N81-17848
ACOUSTIC EXCITATION	
Acoustic fatigue strength of fiber-reinford	ed
plastic panels	A81-20873
ACOUSTIC MEASUREMENTS	
Helicopter noise contour development techni	ques
and directivity analysis [AD-A093426]	N81-17851
ACOUSTIC PROPAGATION	
Convective amplification of gas turbine eng	ine
internal noise sources	A81-21595
Effect of a semi-annular thermal acoustic s	
on jet exhaust noise	
ACOUSTIC PROPERTIES	A81-22532
Acoustic radiation from honeycomb sandwich	plates
	A81-20070
Acoustics of rotors utilizing circulation of [AIAA PAPER 81-0092]	a81-20596
Perspectives on jet noise	A01 20330
[AIAA PAPER 81-0428]	A81-20829
Effect of facility variation on the acousti	
characteristics of three single stream no	A81-22534
Evaluation of the acoustic and aerodynamic	
characteristics of several slot-baffle	11.
configurations for transonic wind tunnel [AD-A093957]	N81-17106
ACOUSTIC VELOCITY	
Calculation of viscous, sonic flow over	m) -
hemisphere-cylinder at 19 deg incidence - capturing of nose vortices	rne
[AIAA PAPER 81-0189]	A81-20661
ACTIVE CONTROL	
Numerical simulations of a segmented-plenum	١,
perforated, adaptive-wall wind tunnel [AIAA PAPBB 81-0160]	A81-20640
Transonic wing technology for transport air	
Active controls for flutter suppression and	N81-16002
alleviation in supersonic aircraft YE	-17
flutter model	
[NASA-CR-163934] ACTUATORS	พ81-17097
The effects of the direction of control los	ding on
a one-dimensional tracking task	_
[AD-A092459]	N81-16067
Fault-tolerant actuation concept for a rese test aircraft	alcu
[AD-A093113]	N81-17100
ADAPTIVE CONTROL Adaptive airfoils and wings for efficient	
transonic flight	
· ·	A81-20349
Adaptive control for electronic countermeas	ures A81-20470
Wind tunnel model support, controlled by fo	
Bicroprocessors	JUL
[ONERA, TP NO. 1980-149]	A81-21917
[ONERA, TP NO. 1980-149] ADDITIVES	A81-21917
[ONERA, TP NO. 1980-149]	A81-21917

ADHESION TESTS	A wind tunnel investigation of the aerodynamic
Non-destructive testing of adhesive-bonded joints A81-20162	characteristics of forward swept wings supersonic cruise aircraft research
Adhesive bonding of avionic structures A81-22646	N81-1601 Computer code for the determination of ejection
ADHESIVE BONDING	seat/man aerodynamic parameters
Non-destructive testing of adhesive-bonded joints	[AD-A092721] N81-16026
A81-20162	Turboprop Cargo Aircraft Systems study, phase 1 [NASA-CR-159355] N81-16041
The 1980's - Payoff decade for advanced materials; Proceedings of the Twenty-fifth National	[NASA-CR-159355] N81-16041 . Acoustic and aerodynamic performance investigation
Symposium and Exhibition, San Diego, Calif., May	of inverted velocity profile coannular plug
6-8, 1980	nozzles variable cycle engines
A81-22636	[NASA-CR-3149] N81-16854
Adhesive bonding of avionic structures A81-22646	Model aerodynamic test results for two variable cycle engine coannular exhaust systems at
Graphite polyimide fabrication research for	simulated takeoff and cruise conditions.
supersonic cruise aircraft	Comprehensive data report. Volume 1: Design
A81-22665	layouts
Prospects for bonding primary aircraft structure in the 80's	[BASA-CR-159819-VOL-1] N81-17081 Model aerodynamic test results for two variable
A81-22679	cycle engine coannular exhaust systems at
ARRIAL PHOTOGRAPHY	simulated takeoff and cruise conditions.
Tri-bar reading correction for oblique imagery	Comprehensive data report. Volume 2: Tabulated
A01-22495 A solid-state airborne sensing system for remote	aeroynamic data book 1 [NASA-CE-159819-VOL-2-BK-1] N81-17082
sensing	Model aerodynamic test results for two variable
A81-23034	cycle engine coannular exhaust systems at
ABROACOUSTICS	simulated takeoff and cruise conditions.
Radiation boundary conditions for wave-like equations numerical jet acoustics	Comprebensive data report. Volume 2: Tabulated aerodynamic data book 2
experimentation	[NASA-CR-159819-VOL-2-BK-2] N81-17083
A81-20223	Model aerodynamic test results for two variable
Sound sources in aerodynamics - Pact and fiction	cycle engine coannular exhaust systems at
[AIAA PAPER 81-0056] A81-20570 Experiments on the linear and non-linear evolution	simulated takeoff and cruise conditions. Comprehensive data report. Volume 2: Tabulated
of the double helical instability in jets	aerodynamic data book 3
[AIAA PAPER 87-0415] A81-20818	[NASA-CH-159819-VOL-2-BK-3] N81-17084
ABRODYNAMIC CHARACTERISTICS	Model aerodynamic test results for two variable
Lifting-line theory of oblique wings - Application of the Galerkin method to the lifting-line	cycle engine coannular exhaust systems at simulated takeoff and cruise conditions.
equation	Comprehensive data report. Volume 3: Graphical
A81-19873	data book 1
Experimental study of the influence of supports on the aerodynamic loads on an ogive cylinder at	[NASA-CR-159819-VOL-3-BK-1] N81-17085 Model aerodynamic test results for two variable
high angles of attack	cycle engine coannular exhaust systems at
[AIAA PAPER 81-0007] A81-20531	simulated takeoff and cruise conditions.
Wing-alone aerodynamic characteristics at high	Comprehensive data report. Volume 3: Graphical
angles of attack [AIAA PAPER 81-0008] A81-20532	data book 2 [NASA-CR-159819-VOL-3-BK-2] N81-17086
An analytical solution of lift loss for a round	Evaluation of the acoustic and aerodynamic
planform with a central lifting jet	characteristics of several slot-baffle
[AIAA PAPER 81-0011] A81-20535	configurations for transonic wind tunnel walls
Numerical optimization of circulation control airfoils	[AD-A093957] N8 1-17106 ARRODYNAMIC COEFFICIENTS
[AIAA PAPER 81-0016] A81-20540	A system for aerodynamic design and analysis of
Aircraft lateral parameter estimation from flight	supersonic aircraft. Part 4: Test cases
data with unsteady aerodynamic modelling [AIAA PAPER 81-0221] A81-20684	[NASA-CR-3354] N81-15977
Application of aerodynamic jump prediction theory	A constrained inverse method for the aerodynamic design of thick wings with given pressure
to supersonic, high fineness ratio, cruciform	distribution in subsonic flow
finned bodies	N81-16006
[AIAA PAPER 81-0222] A81-20685 The aerodynamics of inverted leading edge flaps on	ABRODYNAMIC CONFIGURATIONS Influence of jet location on the efficiency of
delta wings	spanwise blowing
[AIAA PAPER 81-0356] A81-20775	A81-20352
An analysis of gap effects on wing-elevon	Body-fitted 3-D full-potential flow analysis of
aerodynamic characteristics [AIAA PAPER 81-0364] A81-20783	complex ducts and inlets [AIAA PAPER 81-0002] A81-20527
A parametric study of the static longitudinal	The numerical solution of incompressible turbulent
aerodynamic characteristics of parallel lift	flow over airfoils
delta wing configurations at low Reynolds numbers [AIAA PAPER 81-0409] A81-20814	[AIAA PAPER 81-0047] A81-20563
[AIAA PAPER 81-0409] A81-20814 Spanwise distribution of control points in the	A system for aerodynamic design and analysis of supersonic aircraft. Part 4: Test cases
method of finite elementary solutions	[NASA-CR-3354] N81-15977
[AIAA PAPER 79-1879] A81-21011	Study of transonic flow fields about aircraft:
Effect of rear stagnation point position and trailing edge bluntness on airfoil characteristics	Application to external stores
A81-21013	N8 1-15998 Aerodynamic subsonic/transonic aircraft design
Effect of wing location and strakes on stability	studies by numerical methods
and control characteristics of a monoplanar	N81-15999
circular missile with low-profile tail fins at supersonic speeds	Design of advanced technology transonic airfoils and wings
[NASA-TH-81878] N81-15978	and wings N81-16000
Discussion of test results in the design of	Computer code for the determination of ejection
laminar airfoils for competition gliders	seat/man aerodynamic parameters
[NASA-TH-75402] H81-15984 The tale of two wings	[AD-A092721] N81-16026 P-3 Orion fuel-saving modification wind tunnel study
ne care of two wings	(AD-A0919061 N81-16044

ΔE	RODYNAMIC DRAG	The influence of the compressibility in simul	ating
	Angle of attack - Its measurement and usage. I A81-19799	the conduct of exterior loads of a carrier	
	Transonic wind tunnel development (1940 - 1950) N81-15971	AERODYNAMIC BOISE	31-17483
	An application of wake survey rakes to the	Noise generation mechanism of low pressure propeller fans	
	experimental determination of thrust for a		31-20594
	propeller driven aircraft [NASA-CR-163920] N81-15986	A lifting surface theory for the sound genera by the interaction of velocity disturbances	
	Skin friction measuring device for aircraft	a leaned vane stator	· PICH
	[NA SA-CASE-FRC-11029-1] N81-17057		31-20595
AΕ	RODYNAMIC INTERPERENCE	Mean rotor wake characteristics of an	
	Numerical simulation of wing-fuselage interference [AIAA PAPER 81-0048] A81-20564	aerodynamically loaded 0.5 m diameter fan [AIAA PAPER 81-0208]	31-20830
	A cost-effective method for shock-free	Sound radiation from vortex systems	1-20030
	supercritical wing design		1-21591
	[AIAA PAPER 81-0383] A81-20796 Pinite element method study of	ABRODYNAMIC STABILITY	
	wing-fuselage-nacelle interactions of a Palcon	Delta canard configuration at high angle of a	11-20351
	20 type aircraft at Mach = 0.79	A new concept for dynamic stability testing -	
	N81-15994 Prospects for exploiting favourable and minimizing	for aircraft model in orbital path	1 20620
	adverse aerodynamic interference in external	[AIAA PAPER 81-0158] Some wake-related operational limitations of	31-20638
	store installations	rotoccraft	
	N81-15996		1-15985
	Evaluation of aircraft interference effects on external stores at subsonic and transonic speeds	Preliminary airworthiness evaluation AH-1S (I helicopter equipped with a substitute strai	
	N81-15997	exhaust pipe	gne
	Interference aspects of the A310 high speed wing		31-16045
	configuration N81-16001	Demonstration of a method for determining cri store configurations for wing store flutter	
	Interference effects of concentrated blowing and		31-16068
	vortices on a typical fighter configuration	AERODYNAMIC STALLING	
	N81-16009 Experimental study of the interaction between the	Dynamic pressure response with stall on axial	flow
	wing of a subsonic aircraft and a nacelle of a	compressor rotor blades [AIAA PAPER 81-0069] A6	31-20578
٠.	high by-pass ratio engine	ABRODYNAMICS	
	N81-16010	Sound sources in aerodynamics - Fact and fict	
	Aerodynamic interaction between a close-coupled canard and a sweptback wing in transonic flow	[AIAA PAPER 81-0056] Extraction of wavedrag from airfoil wake	31-20570
	N81-16013	measurements	
	Some aerodynamic interference effects that influence the transonic performance of combat		31-20732
	aircraft	Three-dimensional wing boundary layer calculated with eight different methods	rea
,	N81-16014		31-21555
	Complex configuration analysis at transonic speeds	The high-speed airfoil program	. 45070
	N81-16016 Theoretical and Experimental studies of	Transonic wind tunnel development (1940 - 19	31-15970 501
_	aerodynamic interference effects aerodynamic		15971
٠	forces on winglets and on wing nacelle	The high-speed propeller program	45033
	configurations for the YC-14 and KC-135 aircraft N81-16017	High-speed cowlings, air inlets and outlets,	81-15972 and
٠	Data base for the prediction of inlet external drag	internal-flow systems	
	N81-16018 Philosophy and results of steady and unsteady test		31-15973
	techniques on a large scale transport aircraft	A feasibility study for advanced technology integration for general aviation	
	model in the ONERA transonic tunnel S1 MA. Part		1-15974
	1: Philosophy and results of steady tests.	The tale of two wings	
	Part 2: Interest of large models in unsteady aerodynamics	Some particular configuration effects on a th	31-16004 in
	N81-16019	supercritical variable camber wing	
УB	RODYNAMIC LOADS		1-16005
	Experimental study of the influence of supports on the aerodynamic loads on an ogive cylinder at	A constrained inverse method for the aerodyna design of thick wings with given pressure	IMIC
	high angles of attack	distribution in subsonic flow	
	[AIAA PAPER 81-0007] A81-20531		31-16006
	Prediction and experimental verification of transient airfoil motion in a small wind tunnel	Jet wing interaction to give improved combat performance	
	[AIAA PAPER 81-0052] A81-20568		1-16007
	On the derivation of universal indicial functions	Jet wing interference for an overwing engine	
	for unsteady transonic flow [AIAA PAPER 81-0328] A81-20753	configuration .	31-16008
	Mean rotor wake characteristics of an	Interference effects of concentrated blowing	
	aerodynamically loaded 0.5 m diameter fan	vortices on a typical fighter configuration	
	[AIAA PAPER 81-0208] A flight investigation of performance and loads	ABROELASTICITY	31-16009
	for a helicopter with RC-SC2 main-rotor blade	A frequency-domain technique for aeroelastic	mode
	sections	estimation	
	[NASA-TH-81898] N81-15982 Mean rotor wake characteristics of an	At On the derivation of universal indicial funct	1-20475
٠.	aerodynamically loaded 0.5 m diameter fan	for unsteady transonic flow	.10113
	[NASA-TM-81657] N81-16053	[AIAA PAPER 81-0328] A8	31-20753
	A method for the prediction of wing response to nonstationary buffet loads	Damping of aircraft wing vibrations by automatically controlled internal forces	
	[AD-A093037] N81-17043		1-21060
	Comparison of flight load measurements obtained	A method for the prediction of wing response	to
	from calibrated strain gages and pressure transducers	nonstationary buffet loads [AD-A093037] N8	1-17043
		ניבסבכסש מש ב	
	[AD-A093758] N81-17044		

AERONAUTICAL REGINEERING SUBJECT INDEX

AERONAUTICAL ENGINEERING	AIR POLLUTION
A feasibility study for advanced technology	Aircraft pollution in the vicinity of airports
integration for general aviation	[AIAA PAPER 81-0309] A81-20743
[NASA-CR-159381] N81-15974	
Posture hearings (NASA and PAA)	Impact of aircraft emissions on air quality in the
[GPO-65-265] N81-16952	
Aircraft crash survival design guide. Volume 1:	measurement programs, data analyses, and
Design criteria and checklists, revision	submodel development
[AD-A093784] N81-16997	
AERONAUTICS	AIR TRAFFIC
Communications support for National Plight Data	Collision avoidance systems. Citations from the
Center information system [AD-A093095] N81-17327	NTIS data base 7
[AD-A093095] N81-17327 AEROSPACE ENGIMERRING	Transport jet aircraft noise abatement in foreign
Design, fabrication and test of graphite/polyimide	countries: Growth, structure, impact. Volume
composite joints and attachments for advanced	1: Europe, July 1980
aerospace vehicles	[NASA-CR-152356] N81-17623
[NASA-CR-159112] N81-16042	
Posture hearings (NASA and FAA)	countries: Growth, structure, impact. Volume
[GPO-65-265] N81-16952	
Evolution of materials and associated technologies	[NASA-CR-152357-VOL-2] N81-17624
in the makeup of aerospace materials, part 1	AIR TRAFFIC CONTROL
[AAAP-NT-79-22-PT-1] N81-17050	
Evolution of materials and associated technologies	system architecture of EDP systems for radar
in the makeup of aerospace materials. Part 2:	data processing and airspace control
Examples	A81-20103
[AAAF-NT-79-22-PT-2] N81-17051	Some aspects of advanced flight management systems
ABROSPACE INDUSTRY	and their application to modern transport aircraft
NASA's activities in the conservation of strategic	A81-20353
aerospace materials	Integration of fuel conservative procedures in the
A81-22535	high density terminal area
AEROSPACE MEDICINE	A81-20468
Ergonometric study of ejection through a breakable	Air traffic control problems - A pilot's view
canopy	A81-20914 ·
N81-17011	
AEROSPACE SCIENCES	A81-20915/36*
Evolution of materials and associated technologies	Operation and evaluation of the Terminal
in the makeup of aerospace materials. Part 2:	Configured Vehicle Mission Simulator in an
Examples	automated terminal area metering and spacing ATC 🐩
[AAAP-NT-79-22-PT-2] N81-17051	environment
AGRICULTURAL AIRCRAFT	A81-21709 "
Death and injury in aerial spraying - Pre-crash,	Air traffic simulation as a validation tool
crash, and post-crash prevention strategies	A81-21718
A81-22115	
AH-1G HELICOPTER	181-21869
A flight investigation of performance and loads	Air traffic control and position location by
for a helicopter with RC-SC2 main-rotor blade	satellite constellation in equatorial orbit A81-21912
sections [NASA-TM~81898] N81-15982	
[NASA-TM-81898] N81-15982	Airline navigation planning A81-21966
Considerations of the use of vitiated preheat	Standardisation - An alternative approach to ATC
for engine inlets	automation
181-20023	
AIR JETS	Multipath and interference effects in secondary
Influence of jet location on the efficiency of	surveillance radar systems
spanwise blowing	A81-23359
A81-20352	
AIR LAUBCHING	process and the results of the consolidation of
High altitude launch of the Cruise Missile	critical and supplementary terminal area air
A81-22608	traffic control information for display
AIR NAVIGATION A81-22608	presentation
AIR NAVIGATION Improved secondary radar antennas for flight	presentation [AD-A092450] N81-16034
AIR NAVIGATION Improved secondary radar antennas for flight safety installations	presentation [AD-A092450] N81-16034 Federal Radionavigation Plan. Volume 1:
AIR NAVIGATION Improved secondary radar antennas for flight safety installations A81-20063	presentation [AD-A092450] Rederal Radionavigation Plan. Volume 1: Radionavigation plans and policy
AIR NAVIGATION Improved secondary radar antennas for flight safety installations	presentation [AD-A092450] Federal Radionavigation Plan. Volume 1: Radionavigation plans and policy [AD-A093774] 881-17030
AIR NAVIGATION Improved secondary radar antennas for flight safety installations A81-20083 Some implementation considerations for numerically stable flight filters	presentation [AD-A092450] Rederal Radionavigation Plan. Volume 1: Radionavigation plans and policy [AD-A093774] Rederal Radionavigation Plan. Volume 2:
AIR NAVIGATION Improved secondary radar antennas for flight safety installations A81-20083 Some implementation considerations for numerically stable flight filters A81-20485	presentation [AD-A092450] Federal Radionavigation Plan. Volume 1: Radionavigation plans and policy [AD-A093774] Pederal Radionavigation Plan. Volume 2: Requirements
AIR NAVIGATION Improved secondary radar antennas for flight safety installations A81-20083 Some implementation considerations for numerically stable flight filters A81-20485 The Global Positioning System versus gravity	presentation [AD-A092450] Federal Radionavigation Plan. Volume 1: Radionavigation plans and policy [AD-A093774] Federal Radionavigation Plan. Volume 2: Requirements [AD-A093775] N81-17031
AIR NAVIGATION Improved secondary radar antennas for flight safety installations A81-20083 Some implementation considerations for numerically stable flight filters A81-20485 The Global Positioning System versus gravity disturbance modeling in an inertial navigation	presentation [AD-A092450] Federal Radionavigation Plan. Volume 1: Radionavigation plans and policy [AD-A093774] Federal Radionavigation Plan. Volume 2: Requirements [AD-A093775] Rederal Radionavigation Plan. Volume 3:
AIR NAVIGATION Improved secondary radar antennas for flight safety installations A81-20083 Some implementation considerations for numerically stable flight filters A81-20485 The Global Positioning System versus gravity disturbance modeling in an inertial navigation system error reduction at aircraft altitude	presentation [AD-N02450] Federal Radionavigation Plan. Volume 1: Radionavigation plans and policy [AD-N093774] Pederal Radionavigation Plan. Volume 2: Requirements [AD-N093775] Federal Radionavigation Plan. Volume 3: Radionavigation system characteristics
AIR NAVIGATION Inproved secondary radar antennas for flight safety installations A81-20083 Some implementation considerations for numerically stable flight filters A81-20485 The Global Positioning System versus gravity disturbance modeling in an inertial navigation system error reduction at aircraft altitude [AIAA PAPER 81-0087] A81-20591	presentation [AD-A092450] Federal Radionavigation Plan. Volume 1: Radionavigation plans and policy [AD-A093774] Pederal Radionavigation Plan. Volume 2: Requirements [AD-A093775] Federal Radionavigation Plan. Volume 3: Radionavigation System characteristics [AD-A093776] M81-17032
AIR NAVIGATION Improved secondary radar antennas for flight safety installations A81-20083 Some implementation considerations for numerically stable flight filters A81-20485 The Global Positioning System versus gravity disturbance modeling in an inertial navigation system error reduction at aircraft altitude [AIAA PAPER 81-0087] Airline navigation planning	presentation [AD-A092450] Federal Radionavigation Plan. Volume 1: Radionavigation plans and policy [AD-A093774] Federal Radionavigation Plan. Volume 2: Requirements [AD-A093775] Federal Radionavigation Plan. Volume 3: Radionavigation system characteristics [AD-A093776] Federal Radionavigation Plan. Volume 4:
AIR NAVIGATION Improved secondary radar antennas for flight safety installations A81-20083 Some implementation considerations for numerically stable flight filters A81-20485 The Global Positioning System versus gravity disturbance modeling in an inertial navigation system error reduction at aircraft altitude [AIAA PAPER 81-0087] Airline navigation planning A81-21966	presentation [AD-A093776] Federal Radionavigation Plan. Volume 1: Radionavigation Plans and policy [AD-A093774] Pederal Radionavigation Plan. Volume 2: Requirements [AD-A093775] Pederal Radionavigation Plan. Volume 3: Radionavigation Plan. Volume 3: Radionavigation Plan. Volume 3: Radionavigation Plan. Volume 4: Radionavigation Plan. Volume 4:
AIR NAVIGATION Improved secondary radar antennas for flight safety installations A81-20083 Some implementation considerations for numerically stable flight filters A81-20485 The Global Positioning System versus gravity disturbance modeling in an inertial navigation system error reduction at aircraft altitude [AIAA PAPER 81-0087] Airline navigation planning A81-21966 The flight assessment and applications of DME/DME.	presentation [AD-A092450] Federal Radionavigation Plan. Volume 1: Radionavigation plans and policy [AD-A093774] Federal Radionavigation Plan. Volume 2: Requirements [AD-A093775] Federal Radionavigation Plan. Volume 3: Radionavigation System characteristics [AD-A093776] Federal Radionavigation Plan. Volume 4: Radionavigation research, engineering and development
AIR NAVIGATION Improved secondary radar antennas for flight safety installations A81-20083 Some implementation considerations for numerically stable flight filters A81-20485 The Global Positioning System versus gravity disturbance modeling in an inertial navigation system error reduction at aircraft altitude [AIAA PAPER 81-0087] Airline navigation planning A81-20591 A81-21966 The flight assessment and applications of DME/DME. I, II	presentation [AD-A092450] Federal Radionavigation Plan. Volume 1: Radionavigation Plans and policy [AD-A093774] Pederal Radionavigation Plan. Volume 2: Requirements [AD-A093775] Federal Radionavigation Plan. Volume 3: Radionavigation system characteristics [AD-A093776] Pederal Radionavigation Plan. Volume 4: Radionavigation research, engineering and development [AD-A093777] N81-17033
AIR NAVIGATION Improved secondary radar antennas for flight safety installations A81-20083 Some implementation considerations for numerically stable flight filters A81-20485 The Global Positioning System versus gravity disturbance modeling in an inertial navigation system error reduction at aircraft altitude [AIAA PAPER 81-0087] Airline navigation planning A81-21966 The flight assessment and applications of DME/DME. 1, II	presentation [AD-A093775] Federal Radionavigation Plan. Volume 1: Radionavigation Plans and policy [AD-A093774] Pederal Radionavigation Plan. Volume 2: Requirements [AD-A093775] Federal Radionavigation Plan. Volume 3: Radionavigation Plan. Volume 3: Radionavigation Plan. Volume 3: Radionavigation Plan. Volume 4: Radionavigation Plan. Volume 3: Radionavigation Plan. Volume 4:
AIR NAVIGATION Improved secondary radar antennas for flight safety installations A81-20083 Some implementation considerations for numerically stable flight filters A81-20485 The Global Positioning System versus gravity disturbance modeling in an inertial navigation system error reduction at aircraft altitude [AIAA PAPER 81-0087] Airline navigation planning A81-20591 The flight assessment and applications of DME/DME. I, II A81-21966 Characterizing cross-track error distributions for	presentation [AD-A092450] Federal Radionavigation Plan. Volume 1: Radionavigation plans and policy [AD-A093774] Federal Radionavigation Plan. Volume 2: Requirements [AD-A093775] Federal Radionavigation Plan. Volume 3: Radionavigation Plan. Volume 3: Radionavigation Plan. Volume 3: Radionavigation Plan. Volume 4: Radionavigation Plan. Volume 4: Radionavigation Plan. Volume 4: Radionavigation research, engineering and development [AD-A093777] Betection of military aircraft in an Air Traffic Control Radar Beacon System (ATCRBS) environment
AIR NAVIGATION Improved secondary radar antennas for flight safety installations A81-20083 Some implementation considerations for numerically stable flight filters A81-20485 The Global Positioning System versus gravity disturbance modeling in an inertial navigation system error reduction at aircraft altitude [AIAA PAPER 81-0087] Airline navigation planning A81-20591 Airline navigation planning A81-21966 The flight assessment and applications of DME/DME. I, II A81-21966 Characterizing cross-track error distributions for continental jet routes	presentation [AD-A092450] Federal Radionavigation Plan. Volume 1: Radionavigation Plans and policy [AD-A093774] Pederal Radionavigation Plan. Volume 2: Requirements [AD-A093775] Pederal Radionavigation Plan. Volume 3: Radionavigation System characteristics [AD-A093776] Pederal Radionavigation Plan. Volume 3: Radionavigation System characteristics [AD-A093776] Pederal Radionavigation Plan. Volume 4: Radionavigation research, engineering and development [AD-A093777] Betection of military aircraft in an Air Traffic Control Radar Beacon System (ATCRBS) environment [AD-A093427] N81-17036
AIR NAVIGATION Improved secondary radar antennas for flight safety installations A81-20083 Some implementation considerations for numerically stable flight filters A81-20485 The Global Positioning System versus gravity disturbance modeling in an inertial navigation system error reduction at aircraft altitude [AIAA PAPER 81-0087] A81-20591 Airline navigation planning A81-21966 The flight assessment and applications of DME/DME. I, II A81-21966 Characterizing cross-track error distributions for continental jet routes	presentation [AD-A093450] Federal Radionavigation Plan. Volume 1: Radionavigation plans and policy [AD-A093774] Pederal Radionavigation Plan. Volume 2: Requirements [AD-A093775] Pederal Radionavigation Plan. Volume 3: Radionavigation Plan. Volume 3: Radionavigation Plan. Volume 3: Radionavigation Plan. Volume 4: Radionavigation Plan. Volume 4: Radionavigation Plan. Volume 4: Radionavigation Plan. Volume 4: Radionavigation research, engineering and development [AD-A093777] Detection of military aircraft in an Air Traffic Control Radar Beacon System (ATCRBS) environment [AD-A093427] Air traffic control simulation models. Citations
AIR NAVIGATION Improved secondary radar antennas for flight safety installations A81-20083 Some implementation considerations for numerically stable flight filters A81-20485 The Global Positioning System versus gravity disturbance modeling in an inertial navigation system error reduction at aircraft altitude [AIAA PAPER 81-0087] Airline navigation planning A81-20591 The flight assessment and applications of DME/DME. I, II A81-21966 Characterizing cross-track error distributions for continental jet routes A81-21965	presentation [AD-A092450] Federal Radionavigation Plan. Volume 1: Radionavigation plans and policy [AD-A093774] Federal Radionavigation Plan. Volume 2: Requirements [AD-A093775] Federal Radionavigation Plan. Volume 3: Radionavigation Plan. Volume 3: Radionavigation Plan. Volume 3: Radionavigation Plan. Volume 4: Radionavigation Plan. Volume 4: Radionavigation Plan. Volume 4: Radionavigation research, engineering and development [AD-A093777] Detection of military aircraft in an Air Traffic Control Radar Beacon System (ATCRBS) environment [AD-A093427] Air traffic control simulation models. Citations from the NTIS data base
AIR NAVIGATION Improved secondary radar antennas for flight safety installations A81-20083 Some implementation considerations for numerically stable flight filters A81-20485 The Global Positioning System versus gravity disturbance modeling in an inertial navigation system error reduction at aircraft altitude [AIAA PAPER 81-0087] Airline navigation planning A81-20591 Airline navigation planning A81-21966 Characterizing cross-track error distributions for continental jet routes A81-21968 New navigation systems for helicopters	presentation [AD-A092450] Federal Radionavigation Plan. Volume 1: Radionavigation Plans and policy [AD-A093774] Pederal Radionavigation Plan. Volume 2: Requirements [AD-A093775] Federal Radionavigation Plan. Volume 3: Radionavigation System characteristics [AD-A093776] Federal Radionavigation Plan. Volume 3: Radionavigation System characteristics [AD-A093776] Federal Radionavigation Plan. Volume 4: Radionavigation research, engineering and development [AD-A093777] B81-17033 Detection of military aircraft in an Air Traffic Control Radar Beacon System (ATCRBS) environment [AD-A093427] Air traffic control simulation models. Citations from the NTIS data base [PB81-800104]
AIR NAVIGATION Improved secondary radar antennas for flight safety installations A81-20083 Some implementation considerations for numerically stable flight filters A81-20485 The Global Positioning System versus gravity disturbance modeling in an inertial navigation system error reduction at aircraft altitude [AIAA PAPER 81-0087] Airline navigation planning A81-20591 A81-21966 Characterizing cross-track error distributions for continental jet routes A81-21966 New navigation systems for helicopters A81-22167 Civil aviation applications of Navstar/GPS through	presentation [AD-A092450] Federal Radionavigation Plan. Volume 1: Radionavigation plans and policy [AD-A093774] Pederal Radionavigation Plan. Volume 2: Requirements [AD-A093775] Pederal Radionavigation Plan. Volume 3: Radionavigation Plan. Volume 3: Radionavigation Plan. Volume 3: Radionavigation Plan. Volume 4: Radionavigation Plan. Volume 4: Radionavigation Plan. Volume 4: Radionavigation research, engineering and development [AD-A093777] Detection of military aircraft in an Air Traffic Control Radar Beacon System (ATCRBS) environment [AD-A093427] Air traffic control simulation models. Citations from the NTIS data base [PB81-800104] AIR TRAFFIC CONTROLLERS (PERSONNEL)
AIR NAVIGATION Improved secondary radar antennas for flight safety installations A81-20083 Some implementation considerations for numerically stable flight filters A81-20485 The Global Positioning System versus gravity disturbance modeling in an inertial navigation system error reduction at aircraft altitude [AIAA PAPER 81-0087] Airline navigation planning A81-20591 A81-21966 The flight assessment and applications of DME/DME. I, II A81-21966 Characterizing cross-track error distributions for continental jet routes A81-21966 New navigation systems for helicopters A81-22167 Civil aviation applications of Navstar/GPS through differential techniques	presentation [AD-A092450] Federal Radionavigation Plan. Volume 1: Radionavigation plans and policy [AD-A093774] Federal Radionavigation Plan. Volume 2: Requirements [AD-A093775] Federal Radionavigation Plan. Volume 3: Radionavigation Plan. Volume 3: Radionavigation Plan. Volume 3: Radionavigation Plan. Volume 4: Radionavigation Plan. Volume 4: Radionavigation Plan. Volume 4: Radionavigation research, engineering and development [AD-A093777] Detection of military aircraft in an Air Traffic Control Radar Beacon System (ATCRBS) environment [AD-A093427] Air traffic control simulation models. Citations from the NTIS data base [PB81-800104] N81-17037 AIR TBAPPIC CONTBOLLERS (PERSONNEL) Some aspects of advanced flight management systems
AIR NAVIGATION Improved secondary radar antennas for flight safety installations A81-20083 Some implementation considerations for numerically stable flight filters A81-20485 The Global Positioning System versus gravity disturbance modeling in an inertial navigation system error reduction at aircraft altitude [AIAA PAPER 81-0087] A81-20591 Airline navigation planning A81-21966 The flight assessment and applications of DBE/DBE. I, II A81-21966 Characterizing cross-track error distributions for continental jet routes A81-21965 New navigation systems for helicopters A81-22167 Civil aviation applications of Navstar/GPS through differential techniques	presentation [AD-A092450] Federal Radionavigation Plan. Volume 1: Radionavigation Plans and policy [AD-A093774] Pederal Radionavigation Plan. Volume 2: Requirements [AD-A093775] Federal Radionavigation Plan. Volume 3: Radionavigation System Characteristics [AD-A093776] Federal Radionavigation Plan. Volume 3: Radionavigation System Characteristics [AD-A093776] Federal Radionavigation Plan. Volume 4: Radionavigation research, engineering and development [AD-A093777] Betection of military aircraft in an Air Traffic Control Radar Beacon System (ATCRBS) environment [AD-A093427] Air traffic control simulation models. Citations from the NTIS data base [PB81-800104] N81-17037 AIR TRAFFIC CONTROLLERS (PERSONNEL) Some aspects of advanced flight management systems and their application to modern transport aircraft
AIR NAVIGATION Improved secondary radar antennas for flight safety installations A81-20083 Some implementation considerations for numerically stable flight filters A81-20485 The Global Positioning System versus gravity disturbance modeling in an inertial navigation system error reduction at aircraft altitude [AIAA PAPER 81-0087] Airline navigation planning A81-20591 A81-21966 The flight assessment and applications of DME/DME. I, II A81-21966 Characterizing cross-track error distributions for continental jet routes A81-21966 New navigation systems for helicopters Civil aviation applications of Navstar/GPS through differential techniques A81-2274 The ANK - A four dimensional navigation/flight	presentation [AD-A092450] Federal Radionavigation Plan. Volume 1: Radionavigation plans and policy [AD-A093774] Pederal Radionavigation Plan. Volume 2: Requirements [AD-A093775] Pederal Radionavigation Plan. Volume 3: Radionavigation Plan. Volume 3: Radionavigation Plan. Volume 3: Radionavigation Plan. Volume 3: Radionavigation Plan. Volume 4: Radionavigation Plan. Volume 4: Radionavigation research, engineering and development [AD-A093777] Betection of military aircraft in an Air Traffic Control Radar Beacon System (ATCRBS) environment [AD-A093427] Air traffic control simulation models. Citations from the NTIS data base [PB81-800104] AIR TRAFFIC CONTROLLERS (PERSONNEL) Some aspects of advanced flight management systems and their application to modern transport aircraft
AIR NAVIGATION Improved secondary radar antennas for flight safety installations Some implementation considerations for numerically stable flight filters A81-20485 The Global Positioning System versus gravity disturbance modeling in an inertial navigation system error reduction at aircraft altitude [AIAA PAPER 81-0087] Airline navigation planning A81-20591 Airline navigation planning A81-21966 The flight assessment and applications of DME/DME. I, II A81-21966 Characterizing cross-track error distributions for continental jet routes A81-21965 New navigation systems for helicopters Civil aviation applications of Navstar/GPS through differential techniques A81-22374 The ANK - A four dimensional navigation/flight management system for today	presentation [AD-A092450] Federal Radionavigation Plan. Volume 1: Radionavigation plans and policy [AD-A093774] Pederal Radionavigation Plan. Volume 2: Requirements [AD-A093775] Rederal Radionavigation Plan. Volume 3: Radionavigation Plan. Volume 3: Radionavigation Plan. Volume 3: Radionavigation Plan. Volume 4: Radionavigation Plan. Volume 4: Radionavigation Plan. Volume 4: Radionavigation research, engineering and development [AD-A093777] Detection of military aircraft in an Air Traffic Control Radar Beacon System (ATCRBS) environment [AD-A093427] Air traffic control simulation models. Citations from the NTIS data base [PB81-800104] AIR TRAPPIC CONTROLLERS (PERSONNEL) Some aspects of advanced flight management systems and their application to modern transport aircraft A81-20353 Integration of fuel conservative procedures in the
AIR NAVIGATION Improved secondary radar antennas for flight safety installations A81-20083 Some implementation considerations for numerically stable flight filters A81-20485 The Global Positioning System versus gravity disturbance modeling in an inertial navigation system error reduction at aircraft altitude [AIAA PAPER 81-0087] Airline navigation planning A81-20591 A81-21966 The flight assessment and applications of DME/DME. I, II A81-21966 Characterizing cross-track error distributions for continental jet routes A81-21966 New navigation systems for helicopters Civil aviation applications of Navstar/GPS through differential techniques A81-2274 The ANK - A four dimensional navigation/flight	presentation [AD-A092450] Federal Radionavigation Plan. Volume 1: Radionavigation plans and policy [AD-A093774] Pederal Radionavigation Plan. Volume 2: Requirements [AD-A093775] Rederal Radionavigation Plan. Volume 3: Radionavigation Plan. Volume 3: Radionavigation Plan. Volume 3: Radionavigation Plan. Volume 4: Radionavigation Plan. Volume 4: Radionavigation Plan. Volume 4: Radionavigation research, engineering and development [AD-A093777] Detection of military aircraft in an Air Traffic Control Radar Beacon System (ATCRBS) environment [AD-A093427] Air traffic control simulation models. Citations from the NTIS data base [PB81-800104] N81-17037 AIR TRAFFIC CONTROLLERS (PERSONNEL) Some aspects of advanced flight management systems and their application to modern transport aircraft A81-20353 Integration of fuel conservative procedures in the

IRBORNE RQUIPMENT Design and preliminary tests of an IR-airborne LLWS remote sensing system Low Level Wind	A new technology - Piezoelectric polyvinylidene fluoride communications transducers A81-22099
Shear [AIAA PAPER 81-0239] An airborne sensor for the avoidance of clear air	LPI, short-range communications between aircraft in rendezvous Low Probability of Intercept &81-22493
turbulence	Functional testing communication equipment
[AIAA PAPER 81-0297] A81-20735	(avionics)
An airborne integrated communications network	[AD-A092825] N81-16375
utilizing fiber optics	AIRCRAFT COMPARTMENTS
A81-21880	An overview of the research conducted in
A distributed airborne surveillance system	Aerospatiale on internal noise
A81-22618	A81-20054
A solid-state airborne sensing system for remote sensing	Helicopter internal noise - An overview A81-20055
An improved flight data transcriber	Acoustic radiation from honeycomb sandwich plates A81-20070
[AD-A091981] N81-16430	Ozone contamination in aircraft cabins - Results
IRBORNE/SPACEBORNE COMPUTERS	from GASP data and analyses
Airline navigation planning	[AIAA PAPER 81-0305] A81-20740
A81-21966	Cabin fire simulator lavatory tests
Flight test evaluation of a digital controller	[NASA-CR-160909] N81-16020
used in a VTOL automatic approach and landing	Summary of aviation safety program resumes. Cabin
System	safety
A81-22549	[AD-A091938] N81-16027
The BQM-74C target as a flying computer - Its	AIRCRAFT CONFIGURATIONS
language and its peripherals	Jet wing interaction to give improved combat
A81-22611	performance
Abstract interface specifications for the A-7E	N81-16007
device interface module	Interference effects of concentrated blowing and
[AD-A092696] N81-16770	vortices on a typical fighter configuration
IRCRAFT ACCIDENT INVESTIGATION	N81-16009
Aircraft accident investigation as it relates to	Complex configuration analysis at transonic speeds
life support equipment	N81-16016
101-22102	Demonstration of a method for determining critical
IRCHAFT ACCIDENTS	
	store configurations for Wing store flutter
Microbursts as an aviation wind shear hazard	[AD-A092257] N81-16068
[AIAA PAPER 81-0386] A81-20798	AIRCRAFT CONSTRUCTION MATERIALS
The effect of heavy rain on windshear attributed	High-solids coatings for exterior aircraft
accidents	A81-20861
· [AIAA PAPER 81-0390] A81-20800	Effect of gust load alleviation on fatigue and
Air traffic control problems - A pilot's view	crack growth in ALCLAD 2024-T3
Δ81-20914	A81-21739
The evaluation of aircraft collision probabilities	Helicopter fatigue qualification
at interpolice of monton	101-22623
at intersecting air routes	A81-22623
at intersecting air routes A81-21967	Progress in P/M superalloy and titanium for
A81-21967	Progress in P/M superalloy and titanium for
Helicopter emergency underwater escape	Progress in P/M superalloy and titanium for aircraft applications
Helicopter emergency underwater escape A81-21967 A81-22101	Progress in P/M superalloy and titanium for aircraft applications A81-22641
Helicopter emergency underwater escape A81-21967 A81-22101 Delayed ejection decision factor importance	Progress in P/M superalloy and titanium for aircraft applications A81-22641 Graphite polyimide fabrication research for
Helicopter emergency underwater escape A81-21967 A81-22101 Delayed ejection decision factor importance for pilot safety	Progress in P/M superalloy and titanium for aircraft applications A81-22641 Graphite polyimide fabrication research for supersonic cruise aircraft
Helicopter emergency underwater escape A81-21967 A81-22101 Delayed ejection decision factor importance for pilot safety A81-22102	Progress in P/M superalloy and titanium for aircraft applications A81-22641 Graphite polyimide fabrication research for supersonic cruise aircraft A81-22665
Helicopter emergency underwater escape A81-21967 Belayed ejection decision factor importance for pilot safety A81-22102 The apparent ignoring of pilot fatigue by the NTSB	Progress in P/M superalloy and titanium for aircraft applications A81-22641 Graphite polyimide fabrication research for supersonic cruise aircraft A81-22665 Effects of commercial aircraft operating
Helicopter emergency underwater escape A81-22101 Delayed ejection decision factor importance for pilot safety A81-22102 The apparent ignoring of pilot fatigue by the NTSB in airline crashes	Progress in P/M superalloy and titanium for aircraft applications A81-22641 Graphite polyimide fabrication research for supersonic cruise aircraft A81-22665 Effects of commercial aircraft operating environment on composite materials
Helicopter emergency underwater escape A81-21967 A81-22101 Delayed ejection decision factor importance for pilot safety A81-22102 The apparent ignoring of pilot fatigue by the NTSB in airline crashes A81-22104	Progress in P/M superalloy and titanium for aircraft applications A81-22641 Graphite polyimide fabrication research for supersonic cruise aircraft A81-22665 Effects of commercial aircraft operating environment on composite materials A81-22681
Helicopter emergency underwater escape A81-2101 Delayed ejection decision factor importance for pilot safety A81-22102 The apparent ignoring of pilot fatigue by the NTSB in airline crashes A81-22104 Death and injury in aerial spraying - Pre-crash,	Progress in P/M superalloy and titanium for aircraft applications A81-22641 Graphite polyimide fabrication research for supersonic cruise aircraft A81-22665 Effects of commercial aircraft operating environment on composite materials A81-22681 Large-scale carbon fiber tests
Helicopter emergency underwater escape A81-2101 Delayed ejection decision factor importance for pilot safety A81-22102 The apparent ignoring of pilot fatigue by the NTSB in airline crashes A81-22104 Death and injury in aerial spraying - Pre-crash, crash, and post-crash prevention strategies	Progress in P/M superalloy and titanium for aircraft applications A81-22641 Graphite polyimide fabrication research for supersonic cruise aircraft A81-22665 Effects of commercial aircraft operating environment on composite materials A81-22681 Large-scale carbon fiber tests [MASA-TM-80218] N81-16137
Helicopter emergency underwater escape A81-2101 Delayed ejection decision factor importance for pilot safety A81-22102 The apparent ignoring of pilot fatigue by the NTSB in airline crashes A81-22104 Death and injury in aerial spraying - Pre-crash, crash, and post-crash prevention strategies A81-22115	Progress in P/M superalloy and titanium for aircraft applications A81-22641 Graphite polyimide fabrication research for supersonic cruise aircraft A81-22665 Effects of commercial aircraft operating environment on composite materials A81-22681 Large-scale carbon fiber tests [NASA-TM-80218] Current and projected use of carbon composites in
Helicopter emergency underwater escape A81-2101 Delayed ejection decision factor importance for pilot safety A81-22102 The apparent ignoring of pilot fatigue by the NTSB in airline crashes A81-22104 Death and injury in aerial spraying - Pre-crash, crash, and post-crash prevention strategies A81-22115 Comparison of systems of power generation during	Progress in P/M superalloy and titanium for aircraft applications A81-22641 Graphite polyimide fabrication research for supersonic cruise aircraft A81-22665 Effects of commercial aircraft operating environment on composite materials A81-22681 Large-scale carbon fiber tests [NASA-TM-80218] Current and projected use of carbon composites in United States aircraft
Helicopter emergency underwater escape A81-22101 Delayed ejection decision factor importance for pilot safety A81-22102 The apparent ignoring of pilot fatigue by the NTSB in airline crashes A81-22104 Death and injury in aerial spraying - Pre-crash, crash, and post-crash prevention strategies A81-22115 Comparison of systems of power generation during emergencies /aboard aircraft/	Progress in P/M superalloy and titanium for aircraft applications A81-22641 Graphite polyimide fabrication research for supersonic cruise aircraft A81-22665 Effects of commercial aircraft operating environment on composite materials A81-22681 Large-scale carbon fiber tests [NASA-TM-80218] Current and projected use of carbon composites in United States aircraft N81-16145
Helicopter emergency underwater escape A81-22101 Delayed ejection decision factor importance for pilot safety A81-22102 The apparent ignoring of pilot fatigue by the NTSB in airline crashes A81-22104 Death and injury in aerial spraying - Pre-crash, crash, and post-crash prevention strategies A81-22115 Comparison of systems of power generation during emergencies /aboard aircraft/	Progress in P/M superalloy and titanium for aircraft applications A81-22641 Graphite polyimide fabrication research for supersonic cruise aircraft A81-22665 Effects of commercial aircraft operating environment on composite materials A81-22681 Large-scale carbon fiber tests [NASA-TM-80218] Current and projected use of carbon composites in United States aircraft N81-16145 The effect of the in-service environment on
Helicopter emergency underwater escape A81-22101 Delayed ejection decision factor importance for pilot safety A81-22102 The apparent ignoring of pilot fatigue by the NTSB in airline crashes A81-22104 Death and injury in aerial spraying - Pre-crash, crash, and post-crash prevention strategies A81-22115 Comparison of systems of power generation during emergencies /aboard aircraft/	Progress in P/M superalloy and titanium for aircraft applications A81-22641 Graphite polyimide fabrication research for supersonic cruise aircraft A81-22665 Effects of commercial aircraft operating environment on composite materials A81-22681 Large-scale carbon fiber tests [NASA-TM-80218] Current and projected use of carbon composites in United States aircraft N81-16145
Helicopter emergency underwater escape A81-22101 Delayed ejection decision factor importance for pilot safety A81-22102 The apparent ignoring of pilot fatigue by the NTSB in airline crashes A81-22104 Death and injury in aerial spraying - Pre-crash, crash, and post-crash prevention strategies A81-22115 Comparison of systems of power generation during emergencies /aboard aircraft/	Progress in P/M superalloy and titanium for aircraft applications A81-22641 Graphite polyimide fabrication research for supersonic cruise aircraft A81-22665 Effects of commercial aircraft operating environment on composite materials A81-22681 Large-scale carbon fiber tests [NASA-TM-80218] Current and projected use of carbon composites in United States aircraft N81-16145 The effect of the in-service environment on composite materials (resume of the April 1980 Athens conference)
Helicopter emergency underwater escape A81-22101 Delayed ejection decision factor importance for pilot safety A81-22102 The apparent ignoring of pilot fatigue by the NTSB in airline crashes A81-22104 Death and injury in aerial spraying - Pre-crash, crash, and post-crash prevention strategies A81-22115 Comparison of systems of power generation during emergencies /aboard aircraft/ Briefs of fatal accidents involving weather as a cause/factor, US General Aviation, 1978 [PB81-110827]	Progress in P/M superalloy and titanium for aircraft applications A81-22641 Graphite polyimide fabrication research for supersonic cruise aircraft A81-22665 Effects of commercial aircraft operating environment on composite materials A81-22681 Large-scale carbon fiber tests [NASA-TH-80218] Current and projected use of carbon composites in United States aircraft The effect of the in-service environment on composite materials (resume of the April 1980 Athens conference) N81-16146
Helicopter emergency underwater escape A81-2101 Delayed ejection decision factor importance for pilot safety A81-22102 The apparent ignoring of pilot fatigue by the NTSB in airline crashes A81-22104 Death and injury in aerial spraying - Pre-crash, crash, and post-crash prevention strategies A81-22115 Comparison of systems of power generation during emergencies /aboard aircraft/ Briefs of fatal accidents involving weather as a cause/factor, US General Aviation, 1978	Progress in P/M superalloy and titanium for aircraft applications A81-22641 Graphite polyimide fabrication research for supersonic cruise aircraft A81-22665 Effects of commercial aircraft operating environment on composite materials A81-22681 Large-scale carbon fiber tests [NASA-TM-80218] Current and projected use of carbon composites in United States aircraft N81-16145 The effect of the in-service environment on composite materials (resume of the April 1980 Athens conference)
Helicopter emergency underwater escape A81-2101 Delayed ejection decision factor importance for pilot safety A81-22102 The apparent ignoring of pilot fatigue by the NTSB in airline crashes A81-22104 Death and injury in aerial spraying - Pre-crash, crash, and post-crash prevention strategies A81-22115 Comparison of systems of power generation during emergencies /aboard aircraft/ A81-2203 Briefs of fatal accidents involving weather as a cause/factor, US General Aviation, 1978 [PB81-110827] Aircraft crash survival design guide. Volume 1:	Progress in P/M superalloy and titanium for aircraft applications A81-22641 Graphite polyimide fabrication research for supersonic cruise aircraft A81-22665 Effects of commercial aircraft operating environment on composite materials A81-22681 Large-scale carbon fiber tests [NASA-TM-80218] Current and projected use of carbon composites in United States aircraft N81-16145 The effect of the in-service environment on composite materials (resume of the April 1980 Athens conference) N81-16146 Application of carbon fibre composites to military
Helicopter emergency underwater escape A81-2101 Delayed ejection decision factor importance for pilot safety A81-22102 The apparent ignoring of pilot fatigue by the NTSB in airline crashes A81-22104 Death and injury in aerial spraying - Pre-crash, crash, and post-crash prevention strategies A81-22115 Comparison of systems of power generation during emergencies /aboard aircraft/ Briefs of fatal accidents involving weather as a cause/factor, US General Aviation, 1978 [PB81-110827] Aircraft crash survival design guide. Volume 1: Design criteria and checklists, revision	Progress in P/M superalloy and titanium for aircraft applications A81-22641 Graphite polyimide fabrication research for supersonic cruise aircraft A81-22665 Effects of commercial aircraft operating environment on composite materials A81-22681 Large-scale carbon fiber tests [NASA-TM-80218] Current and projected use of carbon composites in United States aircraft The effect of the in-service environment on composite materials (resume of the April 1980 Athens conference) N81-16146 Application of carbon fibre composites to military aircraft structures
Helicopter emergency underwater escape A81-2101 Delayed ejection decision factor importance for pilot safety A81-22102 The apparent ignoring of pilot fatigue by the NTSB in airline crashes A81-22104 Death and injury in aerial spraying - Pre-crash, crash, and post-crash prevention strategies A81-22115 Comparison of systems of power generation during emergencies /aboard aircraft/ A81-2203 Briefs of fatal accidents involving weather as a cause/factor, US General Aviation, 1978 [PB81-110827] Aircraft crash survival design guide. Volume 1: Design criteria and checklists, revision [AD-A093784]	Progress in P/M superalloy and titanium for aircraft applications A81-22641 Graphite polyimide fabrication research for supersonic cruise aircraft A81-22665 Effects of commercial aircraft operating environment on composite materials A81-22681 Large-scale carbon fiber tests [NASA-TM-80218] Current and projected use of carbon composites in United States aircraft N81-16145 The effect of the in-service environment on composite materials (resume of the April 1980 Athens conference) N81-16146 Application of carbon fibre composites to military aircraft structures
Helicopter emergency underwater escape A81-2101 Delayed ejection decision factor importance for pilot safety A81-22102 The apparent ignoring of pilot fatigue by the NTSB in airline crashes A81-22104 Death and injury in aerial spraying - Pre-crash, crash, and post-crash prevention strategies A81-22115 Comparison of systems of power generation during emergencies /aboard aircraft/ A81-2203 Briefs of fatal accidents involving weather as a cause/factor, US General Aviation, 1978 [PB81-110827] Aircraft crash survival design guide. Volume 1: Design criteria and checklists, revision [AD-A093784] Listing of accidents/incidents by aircraft make	Progress in P/M superalloy and titanium for aircraft applications A81-22641 Graphite polyimide fabrication research for supersonic cruise aircraft A81-22665 Effects of commercial aircraft operating environment on composite materials A81-22681 Large-scale carbon fiber tests [NASA-TM-80218] Current and projected use of carbon composites in United States aircraft The effect of the in-service environment on composite materials (resume of the April 1980 Athens conference) N81-16146 Application of carbon fibre composites to military aircraft structures N81-16147 EMC, lightning and NEMP-protection-new
Helicopter emergency underwater escape A81-2101 Delayed ejection decision factor importance for pilot safety A81-22102 The apparent ignoring of pilot fatigue by the NTSB in airline crashes A81-22104 Death and injury in aerial spraying - Pre-crash, crash, and post-crash prevention strategies A81-22115 Comparison of systems of power generation during emergencies /aboard aircraft/ A81-2203 Briefs of fatal accidents involving weather as a cause/factor, US General Aviation, 1978 [PB81-110827] Aircraft crash survival design guide. Volume 1: Design criteria and checklists, revision [AD-A093784] Listing of accidents/incidents by aircraft make and model, United States Civil Aviation, 1978	Progress in P/M superalloy and titanium for aircraft applications A81-22641 Graphite polyimide fabrication research for supersonic cruise aircraft A81-22665 Effects of commercial aircraft operating environment on composite materials Large-scale carbon fiber tests [NASA-TH-80218] Current and projected use of carbon composites in United States aircraft The effect of the in-service environment on composite materials (resume of the April 1980 Athens conference) N81-16146 Application of carbon fibre composites to military aircraft structures N81-16147 EMC, lightning and NEMP-protection-new requirements for approved specifications when
Helicopter emergency underwater escape A81-22101 Delayed ejection decision factor importance for pilot safety A81-22102 The apparent ignoring of pilot fatigue by the NTSB in airline crashes A81-22104 Death and injury in aerial spraying - Pre-crash, crash, and post-crash prevention strategies A81-22115 Comparison of systems of power generation during emergencies /aboard aircraft/ A81-2203 Briefs of fatal accidents involving weather as a cause/factor, US General Aviation, 1978 [PB81-110827] Aircraft crash survival design guide. Volume 1: Design criteria and checklists, revision [AD-A093784] Listing of accidents/incidents by aircraft make and model, United States Civil Aviation, 1978 [PB81-110280]	Progress in P/M superalloy and titanium for aircraft applications A81-22641 Graphite polyimide fabrication research for supersonic cruise aircraft A81-22665 Effects of commercial aircraft operating environment on composite materials A81-22681 Large-scale carbon fiber tests [NASA-TM-80218] Current and projected use of carbon composites in United States aircraft N81-16137 The effect of the in-service environment on composite materials (resume of the April 1980 Athens conference) N81-16146 Application of carbon fibre composites to military aircraft structures N81-16147 EMC, lightning and NEMP-protection-new requirements for approved specifications when using CFRP
Helicopter emergency underwater escape A81-2101 Delayed ejection decision factor importance for pilot safety A81-22102 The apparent ignoring of pilot fatigue by the NTSB in airline crashes A81-22104 Death and injury in aerial spraying - Pre-crash, crash, and post-crash prevention strategies A81-22115 Comparison of systems of power generation during emergencies /aboard aircraft/ A81-2203 Briefs of fatal accidents involving weather as a cause/factor, US General Aviation, 1978 [PB81-110827] Aircraft crash survival design guide. Volume 1: Design criteria and checklists, revision [AD-A093784] Listing of accidents/incidents by aircraft make and model, United States Civil Aviation, 1978 [PB81-110280] IRCRAFT ANTERWAS	Progress in P/M superalloy and titanium for aircraft applications A81-22641 Graphite polyimide fabrication research for supersonic cruise aircraft A81-22665 Effects of commercial aircraft operating environment on composite materials A81-22681 Large-scale carbon fiber tests [NASA-TH-80218] Current and projected use of carbon composites in United States aircraft N81-16145 The effect of the in-service environment on composite materials (resume of the April 1980 Athens conference) N81-16146 Application of carbon fibre composites to military aircraft structures N81-16147 EMC, lightning and NEMP-protection-new requirements for approved specifications when using CPRP N81-16152
Helicopter emergency underwater escape A81-2101 Delayed ejection decision factor importance for pilot safety A81-22102 The apparent ignoring of pilot fatigue by the NTSB in airline crashes A81-22104 Death and injury in aerial spraying - Pre-crash, crash, and post-crash prevention strategies A81-22115 Comparison of systems of power generation during emergencies /aboard aircraft/ A81-2203 Briefs of fatal accidents involving weather as a cause/factor, US General Aviation, 1978 [PB81-110827] Aircraft crash survival design guide. Volume 1: Design criteria and checklists, revision [AD-A093784] Listing of accidents/incidents by aircraft make and model, United States Civil Aviation, 1978 [PB81-110280] INCEAPT ANTERNAS In-flight calibration of aircraft antenna	Progress in P/M superalloy and titanium for aircraft applications A81-22641 Graphite polyimide fabrication research for supersonic cruise aircraft A81-22665 Effects of commercial aircraft operating environment on composite materials Large-scale carbon fiber tests [NASA-TH-80218] Current and projected use of carbon composites in United States aircraft The effect of the in-service environment on composite materials (resume of the April 1980 Athens conference) N81-16146 Application of carbon fibre composites to military aircraft structures N81-16147 EMC, lightning and NEMP-protection-new requirements for approved specifications when using CPRP N81-16152 The electrical effects of joints and bonds in
Helicopter emergency underwater escape A81-2101 Delayed ejection decision factor importance for pilot safety A81-22102 The apparent ignoring of pilot fatigue by the NTSB in airline crashes A81-22104 Death and injury in aerial spraying - Pre-crash, crash, and post-crash prevention strategies A81-22115 Comparison of systems of power generation during emergencies /aboard aircraft/ Briefs of fatal accidents involving weather as a cause/factor, US General Aviation, 1978 [PB81-110827] Aircraft crash survival design guide. Volume 1: Design criteria and checklists, revision [AD-A093784] Listing of accidents/incidents by aircraft make and model, United States Civil Aviation, 1978 [PB81-110280] IRCRAPT ANTENNAS In-flight calibration of aircraft antenna radiation patterns	Progress in P/M superalloy and titanium for aircraft applications A81-22641 Graphite polyimide fabrication research for supersonic cruise aircraft A81-22665 Effects of commercial aircraft operating environment on composite materials A81-22681 Large-scale carbon fiber tests [NASA-TM-80218] Current and projected use of carbon composites in United States aircraft N81-16137 The effect of the in-service environment on composite materials (resume of the April 1980 Athens conference) N81-16146 Application of carbon fibre composites to military aircraft structures N81-16147 EMC, lightning and NEMP-protection-new requirements for approved specifications when using CFRP N81-16152 The electrical effects of joints and bonds in carbon fiber composites
Helicopter emergency underwater escape A81-2101 Delayed ejection decision factor importance for pilot safety A81-22102 The apparent ignoring of pilot fatigue by the NTSB in airline crashes A81-22104 Death and injury in aerial spraying - Pre-crash, crash, and post-crash prevention strategies A81-22115 Comparison of systems of power generation during emergencies /aboard aircraft/ A81-2203 Briefs of fatal accidents involving weather as a cause/factor, US General Aviation, 1978 [PB81-110827] Aircraft crash survival design guide. Volume 1: Design criteria and checklists, revision [AD-A093784] Listing of accidents/incidents by aircraft make and model, United States Civil Aviation, 1978 [PB81-110280] IRCRAPT ANTENNAS In-flight calibration of aircraft antenna radiation patterns	Progress in P/M superalloy and titanium for aircraft applications A81-22641 Graphite polyimide fabrication research for supersonic cruise aircraft A81-22665 Effects of commercial aircraft operating environment on composite materials A81-22681 Large-scale carbon fiber tests [NASA-TH-80218] Current and projected use of carbon composites in United States aircraft The effect of the in-service environment on composite materials (resume of the April 1980 Athens conference) N81-16146 Application of carbon fibre composites to military aircraft structures N81-16147 EMC, lightning and NEMP-protection-new requirements for approved specifications when using CPRP N81-16152 The electrical effects of joints and bonds in carbon fiber composites
Helicopter emergency underwater escape A81-22101 Delayed ejection decision factor importance for pilot safety A81-22102 The apparent ignoring of pilot fatigue by the NTSB in airline crashes A81-22104 Death and injury in aerial spraying - Pre-crash, crash, and post-crash prevention strategies A81-22115 Comparison of systems of power generation during emergencies /aboard aircraft/ A81-2203 Briefs of fatal accidents involving weather as a cause/factor, US General Aviation, 1978 [PB81-110827] Aircraft crash survival design guide. Volume 1: Design criteria and checklists, revision [AD-A093784] Listing of accidents/incidents by aircraft make and model, United States Civil Aviation, 1978 [PB81-110280] INCEAPT ANTENHAS In-flight calibration of aircraft antenna radiation patterns A81-21825 Airborne antenna pattern code: User's manual	Progress in P/M superalloy and titanium for aircraft applications A81-22641 Graphite polyimide fabrication research for supersonic cruise aircraft A81-22665 Effects of commercial aircraft operating environment on composite materials A81-22681 Large-scale carbon fiber tests [NASA-TM-80218] Current and projected use of carbon composites in United States aircraft N81-16137 The effect of the in-service environment on composite materials (resume of the April 1980 Athens conference) N81-16146 Application of carbon fibre composites to military aircraft structures N81-16147 EMC, lightning and NEMP-protection-new requirements for approved specifications when using CPRP The electrical effects of joints and bonds in carbon fiber composites N81-16153 Aircraft manufacturers approach to the
Helicopter emergency underwater escape A81-22101 Delayed ejection decision factor importance for pilot safety A81-22102 The apparent ignoring of pilot fatigue by the NTSB in airline crashes A81-22104 Death and injury in aerial spraying - Pre-crash, crash, and post-crash prevention strategies A81-22115 Comparison of systems of power generation during emergencies /aboard aircraft/ Briefs of fatal accidents involving weather as a cause/factor, US General Aviation, 1978 [PB81-110827] Aircraft crash survival design guide. Volume 1: Design criteria and checklists, revision [AD-A093784] Listing of accidents/incidents by aircraft make and model, United States Civil Aviation, 1978 [PB81-110280] IRCRAPT ANTENNAS In-flight calibration of aircraft antenna radiation patterns A81-21825 Airborne antenna pattern code: User's manual [AD-A092316] N81-16357	Progress in P/M superalloy and titanium for aircraft applications A81-22641 Graphite polyimide fabrication research for supersonic cruise aircraft A81-22665 Effects of commercial aircraft operating environment on composite materials A81-22681 Large-scale carbon fiber tests [NASA-TM-80218] Current and projected use of carbon composites in United States aircraft N81-16137 The effect of the in-service environment on composite materials (resume of the April 1980 Athens conference) N81-16146 Application of carbon fibre composites to military aircraft structures N81-16147 EMC, lightning and NEMP-protection-new requirements for approved specifications when using CFRP N81-16152 The electrical effects of joints and bonds in carbon fiber composites N81-16153 Aircraft manufacturers approach to the E.M.C./Avionics problems associated with the use
Helicopter emergency underwater escape A81-2101 Delayed ejection decision factor importance for pilot safety A81-22102 The apparent ignoring of pilot fatigue by the NTSB in airline crashes A81-22104 Death and injury in aerial spraying - Pre-crash, crash, and post-crash prevention strategies A81-22115 Comparison of systems of power generation during emergencies /aboard aircraft/ A81-2203 Briefs of fatal accidents involving weather as a cause/factor, US General Aviation, 1978 [PB81-110827] Aircraft crash survival design guide. Volume 1: Design criteria and checklists, revision [AD-A093784] Listing of accidents/incidents by aircraft make and model, United States Civil Aviation, 1978 [PB81-110280] IRCRAPT ANTENNAS In-flight calibration of aircraft antenna radiation patterns A81-21825 Airborne antenna pattern code: User's manual [AD-A092316] IRCRAPT CARRIERS	Progress in P/M superalloy and titanium for aircraft applications A81-22641 Graphite polyimide fabrication research for supersonic cruise aircraft A81-22665 Effects of commercial aircraft operating environment on composite materials A81-22681 Large-scale carbon fiber tests [NASA-TM-80218] Current and projected use of carbon composites in United States aircraft N81-16145 The effect of the in-service environment on composite materials (resume of the April 1980 Athens conference) N81-16146 Application of carbon fibre composites to military aircraft structures N81-16147 EMC, lightning and NEMP-protection-new requirements for approved specifications when using CPRP N81-16152 The electrical effects of joints and bonds in carbon fiber composites N81-16153 Aircraft manufacturers approach to the E.M.C./Avionics problems associated with the use of composite materials
Helicopter emergency underwater escape A81-22101 Delayed ejection decision factor importance for pilot safety A81-22102 The apparent ignoring of pilot fatigue by the NTSB in airline crashes A81-22104 Death and injury in aerial spraying - Pre-crash, crash, and post-crash prevention strategies A81-22115 Comparison of systems of power generation during emergencies /aboard aircraft/ Briefs of fatal accidents involving weather as a cause/factor, US General Aviation, 1978 [PB81-110827] Aircraft crash survival design guide. Volume 1: Design criteria and checklists, revision [AD-A093784] Listing of accidents/incidents by aircraft make and model, United States Civil Aviation, 1978 [PB81-110280] IRCRAPT ANTENNAS In-flight calibration of aircraft antenna radiation patterns A81-21825 Airborne antenna pattern code: User's manual [AD-A092316] N81-16357	Progress in P/M superalloy and titanium for aircraft applications A81-22641 Graphite polyimide fabrication research for supersonic cruise aircraft A81-22665 Effects of commercial aircraft operating environment on composite materials Large-scale carbon fiber tests [NASA-TH-80218] Current and projected use of carbon composites in United States aircraft The effect of the in-service environment on composite materials (resume of the April 1980 Athens conference) N81-16146 Application of carbon fibre composites to military aircraft structures N81-16147 EMC, lightning and NEMP-protection-new requirements for approved specifications when using CFRP N81-16152 The electrical effects of joints and bonds in carbon fiber composites N81-16153 Aircraft manufacturers approach to the E.M.C./Avionics problems associated with the use of composite materials
Helicopter emergency underwater escape A81-2101 Delayed ejection decision factor importance for pilot safety A81-22102 The apparent ignoring of pilot fatigue by the NTSB in airline crashes A81-22104 Death and injury in aerial spraying - Pre-crash, crash, and post-crash prevention strategies A81-22115 Comparison of systems of power generation during emergencies /aboard aircraft/ A81-2203 Briefs of fatal accidents involving weather as a cause/factor, US General Aviation, 1978 [PB81-110827] Aircraft crash survival design guide. Volume 1: Design criteria and checklists, revision [AD-A093784] Listing of accidents/incidents by aircraft make and model, United States Civil Aviation, 1978 [PB81-110280] IRCRAPT ANTENNAS In-flight calibration of aircraft antenna radiation patterns A81-21825 Airborne antenna pattern code: User's manual [AD-A092316] IRCRAPT CARRIERS	Progress in P/M superalloy and titanium for aircraft applications A81-22641 Graphite polyimide fabrication research for supersonic cruise aircraft A81-22665 Effects of commercial aircraft operating environment on composite materials A81-22681 Large-scale carbon fiber tests [NASA-TM-80218] Current and projected use of carbon composites in United States aircraft N81-16145 The effect of the in-service environment on composite materials (resume of the April 1980 Athens conference) N81-16146 Application of carbon fibre composites to military aircraft structures N81-16147 EMC, lightning and NEMP-protection-new requirements for approved specifications when using CPRP N81-16152 The electrical effects of joints and bonds in carbon fiber composites N81-16153 Aircraft manufacturers approach to the E.M.C./Avionics problems associated with the use of composite materials
Helicopter emergency underwater escape A81-22101 Delayed ejection decision factor importance for pilot safety A81-22102 The apparent ignoring of pilot fatigue by the NTSB in airline crashes A81-22104 Death and injury in aerial spraying - Pre-crash, crash, and post-crash prevention strategies A81-22115 Comparison of systems of power generation during emergencies /aboard aircraft/ A81-22203 Briefs of fatal accidents involving weather as a cause/factor, US General Aviation, 1978 [PB81-110827] Aircraft crash survival design guide. Volume 1: Design criteria and checklists, revision [AD-A093784] Listing of accidents/incidents by aircraft make and model, United States Civil Aviation, 1978 [PB81-110280] IRCRAFT ANTENNAS In-flight calibration of aircraft antenna radiation patterns A81-21825 Airborne antenna pattern code: User's manual [AD-A092316] IRCRAFT CARRIERS VTOL control for shipboard landing in high sea	Progress in P/M superalloy and titanium for aircraft applications A81-22641 Graphite polyimide fabrication research for supersonic cruise aircraft A81-22665 Effects of commercial aircraft operating environment on composite materials Large-scale carbon fiber tests [NASA-TH-80218] Current and projected use of carbon composites in United States aircraft The effect of the in-service environment on composite materials (resume of the April 1980 Athens conference) N81-16146 Application of carbon fibre composites to military aircraft structures N81-16147 EMC, lightning and NEMP-protection-new requirements for approved specifications when using CFRP N81-16152 The electrical effects of joints and bonds in carbon fiber composites N81-16153 Aircraft manufacturers approach to the E.M.C./Avionics problems associated with the use of composite materials
Helicopter emergency underwater escape A81-22101 Delayed ejection decision factor importance for pilot safety A81-22102 The apparent ignoring of pilot fatigue by the NTSB in airline crashes A81-22104 Death and injury in aerial spraying - Pre-crash, crash, and post-crash prevention strategies A81-22115 Comparison of systems of power generation during emergencies /aboard aircraft/ A81-2203 Briefs of fatal accidents involving weather as a cause/factor, US General Aviation, 1978 [PB81-110827] Aircraft crash survival design guide. Volume 1: Design criteria and checklists, revision [AD-A093784] Listing of accidents/incidents by aircraft make and model, United States Civil Aviation, 1978 [PB81-110280] IRCRAPT ANTENNAS In-flight calibration of aircraft antenna radiation patterns A81-21825 Airborne antenna pattern code: User's manual [AD-A0932316] IRCRAPT CARRIERS VTOL control for shipboard landing in high sea states	Progress in P/M superalloy and titanium for aircraft applications A81-22641 Graphite polyimide fabrication research for supersonic cruise aircraft A81-22665 Effects of commercial aircraft operating environment on composite materials A81-22681 Large-scale carbon fiber tests [NASA-TM-80218] Current and projected use of carbon composites in United States aircraft N81-16137 The effect of the in-service environment on composite materials (resume of the April 1980 Athens conference) N81-16146 Application of carbon fibre composites to military aircraft structures N81-16147 EMC, lightning and NEMP-protection-new requirements for approved specifications when using CFRP N81-16152 The electrical effects of joints and bonds in carbon fiber composites N81-16153 Aircraft manufacturers approach to the E.M.C./Avionics problems associated with the use of composite materials N81-16156 Electromagnetic integration of composite structure
Helicopter emergency underwater escape A81-22101 Delayed ejection decision factor importance for pilot safety A81-22102 The apparent ignoring of pilot fatigue by the NTSB in airline crashes A81-22104 Death and injury in aerial spraying - Pre-crash, crash, and post-crash prevention strategies A81-22115 Comparison of systems of power generation during emergencies /aboard aircraft/ A81-22203 Briefs of fatal accidents involving weather as a cause/factor, US General Aviation, 1978 [PB81-110827] Aircraft crash survival design guide. Volume 1: Design criteria and checklists, revision [AD-A093784] Listing of accidents/incidents by aircraft make and model, United States Civil Aviation, 1978 [PB81-110280] IRCRAFT ANTENNAS In-flight calibration of aircraft antenna radiation patterns A81-21825 Airborne antenna pattern code: User's manual [AD-A092316] IRCRAFT CARRIBES VTOL control for shipboard landing in high sea states A81-20471 Glideslope descent-rate cuing to aid carrier	Progress in P/M superalloy and titanium for aircraft applications A81-22641 Graphite polyimide fabrication research for supersonic cruise aircraft A81-22665 Effects of commercial aircraft operating environment on composite materials A81-22681 Large-scale carbon fiber tests [NASA-TM-80218] Current and projected use of carbon composites in United States aircraft N81-16137 The effect of the in-service environment on composite materials (resume of the April 1980 Athens conference) N81-16146 Application of carbon fibre composites to military aircraft structures N81-16147 EMC, lightning and NEMP-protection-new requirements for approved specifications when using CPRP The electrical effects of joints and bonds in carbon fiber composites N81-16152 Aircraft manufacturers approach to the E.M.C./Avionics problems associated with the use of composite materials N81-16156 Electromagnetic integration of composite structure in aircraft
Helicopter emergency underwater escape A81-22101 Delayed ejection decision factor importance for pilot safety A81-22102 The apparent ignoring of pilot fatigue by the NTSB in airline crashes A81-22104 Death and injury in aerial spraying - Pre-crash, crash, and post-crash prevention strategies A81-22115 Comparison of systems of power generation during emergencies /aboard aircraft/ Briefs of fatal accidents involving weather as a cause/factor, US General Aviation, 1978 [PB81-110827] Aircraft crash survival design guide. Volume 1: Design criteria and checklists, revision [AD-A093784] Listing of accidents/incidents by aircraft make and model, United States Civil Aviation, 1978 [PB81-110280] IRCRAPT ANTENNAS In-flight calibration of aircraft antenna radiation patterns A81-21825 Airborne antenna pattern code: User's manual [AD-A092316] IRCRAPT CARRIERS VTOL control for shipboard landing in high sea states A81-20471 Glideslope descent-rate Cuing to aid carrier	Progress in P/M superalloy and titanium for aircraft applications A81-22641 Graphite polyimide fabrication research for supersonic cruise aircraft A81-22665 Effects of commercial aircraft operating environment on composite materials A81-22681 Large-scale carbon fiber tests [NASA-TM-80218] Current and projected use of carbon composites in United States aircraft The effect of the in-service environment on composite materials (resume of the April 1980 Athens conference) N81-16146 Application of carbon fibre composites to military aircraft structures N81-16147 EMC, lightning and NEMP-protection-new requirements for approved specifications when using CFEP The electrical effects of joints and bonds in carbon fiber composites N81-16152 The electrical effects of joints and bonds in carbon fiber composites N81-16155 Aircraft manufacturers approach to the E.M.C./Avionics problems associated with the use of composite materials N81-16156 Electromagnetic integration of composite structure in aircraft N81-16159 Electromagnetic coupling to advanced composite
Helicopter emergency underwater escape A81-22101 Delayed ejection decision factor importance for pilot safety A81-22102 The apparent ignoring of pilot fatigue by the NTSB in airline crashes A81-22104 Death and injury in aerial spraying - Pre-crash, crash, and post-crash prevention strategies A81-22115 Comparison of systems of power generation during emergencies /aboard aircraft/ A81-2203 Briefs of fatal accidents involving weather as a cause/factor, US General Aviation, 1978 [PB81-110827] Aircraft crash survival design guide. Volume 1: Design criteria and checklists, revision [AD-A093784] Listing of accidents/incidents by aircraft make and model, United States Civil Aviation, 1978 [PB81-110280] IRCRAPT ANTENNAS In-flight calibration of aircraft antenna radiation patterns A81-21825 Airborne antenna pattern code: User's manual [AD-A093216] IRCRAPT CARRIERS VTOL control for shipboard landing in high sea states A81-20471 Glideslope descent-rate cuing to aid carrier landings [AD-A092193] N81-16033	Progress in P/M superalloy and titanium for aircraft applications A81-22641 Graphite polyimide fabrication research for supersonic cruise aircraft A81-22665 Effects of commercial aircraft operating environment on composite materials A81-22681 Large-scale carbon fiber tests [NASA-TH-80218] Current and projected use of carbon composites in United States aircraft The effect of the in-service environment on composite materials (resume of the April 1980 Athens conference) N81-16146 Application of carbon fibre composites to military aircraft structures N81-16147 EMC, lightning and NEMP-protection-new requirements for approved specifications when using CPEP N81-16152 The electrical effects of joints and bonds in carbon fiber composites N81-16153 Aircraft manufacturers approach to the E.M.C./Avionics problems associated with the use of composite materials N81-16156 Electromagnetic integration of composite structure in aircraft Electromagnetic coupling to advanced composite aircraft with application to trade-off and
Helicopter emergency underwater escape A81-22101 Delayed ejection decision factor importance for pilot safety A81-22102 The apparent ignoring of pilot fatigue by the NTSB in airline crashes A81-22104 Death and injury in aerial spraying - Pre-crash, crash, and post-crash prevention strategies A81-22115 Comparison of systems of power generation during emergencies /aboard aircraft/ A81-2203 Briefs of fatal accidents involving weather as a cause/factor, US General Aviation, 1978 [PB81-110827] Aircraft crash survival design guide. Volume 1: Design criteria and checklists, revision [AD-A093784] Listing of accidents/incidents by aircraft make and model, United States Civil Aviation, 1978 [PB81-110280] IRCRAPT ANTENNAS In-flight calibration of aircraft antenna radiation patterns Airborne antenna pattern code: User's manual [AD-A092316] IRCRAPT CARRIERS VTOL control for shipboard landing in high sea states Glideslope descent-rate cuing to aid carrier landings [AD-A092193] IRCRAPT COMMUNICATION	Progress in P/M superalloy and titanium for aircraft applications A81-22641 Graphite polyimide fabrication research for supersonic cruise aircraft A81-22665 Effects of commercial aircraft operating environment on composite materials A81-22681 Large-scale carbon fiber tests [NASA-TM-80218] Current and projected use of carbon composites in United States aircraft N81-16137 The effect of the in-service environment on composite materials (resume of the April 1980 Athens conference) N81-16145 Application of carbon fibre composites to military aircraft structures N81-16147 EMC, lightning and NEMP-protection-new requirements for approved specifications when using CPRP The electrical effects of joints and bonds in carbon fiber composites N81-16152 Aircraft manufacturers approach to the E.M.C./Avionics problems associated with the use of composite materials N81-16156 Electromagnetic integration of composite structure in aircraft N81-16159 Electromagnetic coupling to advanced composite aircraft with application to trade-off and specification determination
Helicopter emergency underwater escape A81-22101 Delayed ejection decision factor importance for pilot safety A81-22102 The apparent ignoring of pilot fatigue by the NTSB in airline crashes A81-22104 Death and injury in aerial spraying - Pre-crash, crash, and post-crash prevention strategies A81-22115 Comparison of systems of power generation during emergencies /aboard aircraft/ Briefs of fatal accidents involving weather as a cause/factor, US General Aviation, 1978 [PB81-110827] Aircraft crash survival design guide. Volume 1: Design criteria and checklists, revision [AD-A093784] Listing of accidents/incidents by aircraft make and model, United States Civil Aviation, 1978 [PB81-110280] IRCRAPT ANTENNAS In-flight calibration of aircraft antenna radiation patterns A81-21825 Airborne antenna pattern code: User's manual [AD-A092316] IRCRAPT CARRIERS VTOL control for shipboard landing in high sea states A81-20471 Glideslope descent-rate cuing to aid carrier landings [AD-A092193] IRCRAPT COMMUNICATION Problems of voice communication in helicopters	Progress in P/M superalloy and titanium for aircraft applications A81-22641 Graphite polyimide fabrication research for supersonic cruise aircraft A81-22665 Effects of commercial aircraft operating environment on composite materials A81-22681 Large-scale carbon fiber tests [NASA-TM-80218] Current and projected use of carbon composites in United States aircraft The effect of the in-service environment on composite materials (resume of the April 1980 Athens conference) N81-16146 Application of carbon fibre composites to military aircraft structures N81-16147 EMC, lightning and NEMP-protection-new requirements for approved specifications when using CFEP The electrical effects of joints and bonds in carbon fiber composites N81-16152 The electrical effects of joints and bonds in carbon fiber composites N81-16155 Aircraft manufacturers approach to the E.M.C./Avionics problems associated with the use of composite materials N81-16156 Electromagnetic integration of composite structure in aircraft N81-16159 Electromagnetic coupling to advanced composite aircraft with application to trade-off and specification determination N81-16166
Helicopter emergency underwater escape A81-22101 Delayed ejection decision factor importance for pilot safety A81-22102 The apparent ignoring of pilot fatigue by the NTSB in airline crashes A81-22104 Death and injury in aerial spraying - Pre-crash, crash, and post-crash prevention strategies A81-22115 Comparison of systems of power generation during emergencies /aboard aircraft/ A81-2203 Briefs of fatal accidents involving weather as a cause/factor, US General Aviation, 1978 [PB81-110827] Aircraft crash survival design guide. Volume 1: Design criteria and checklists, revision [AD-A093784] Listing of accidents/incidents by aircraft make and model, United States Civil Aviation, 1978 [PB81-110280] IRCRAPT ANTENNAS In-flight calibration of aircraft antenna radiation patterns AB1-21825 Airborne antenna pattern code: User's manual [AD-A093216] IRCRAPT CARRIERS VTOL control for shipboard landing in high sea states Glideslope descent-rate cuing to aid carrier landings [AD-A092193] IRCRAPT COMBUNICATION Problems of voice communication in helicopters A81-20074	Progress in P/M superalloy and titanium for aircraft applications A81-22641 Graphite polyimide fabrication research for supersonic cruise aircraft A81-22665 Effects of commercial aircraft operating environment on composite materials A81-22681 Large-scale carbon fiber tests [NASA-TH-80218] Current and projected use of carbon composites in United States aircraft The effect of the in-service environment on composite materials (resume of the April 1980 Athens conference) N81-16146 Application of carbon fibre composites to military aircraft structures N81-16147 EMC, lightning and NEMP-protection-new requirements for approved specifications when using CPEP N81-16152 The electrical effects of joints and bonds in carbon fiber composites N81-16153 Aircraft manufacturers approach to the E.M.C./Avionics problems associated with the use of composite materials N81-16156 Electromagnetic integration of composite structure in aircraft Electromagnetic coupling to advanced composite aircraft with application to trade-off and specification determination N81-16166 Composite structural materials aircraft
Helicopter emergency underwater escape A81-22101 Delayed ejection decision factor importance for pilot safety A81-22102 The apparent ignoring of pilot fatigue by the NTSB in airline crashes A81-22104 Death and injury in aerial spraying - Pre-crash, crash, and post-crash prevention strategies A81-22115 Comparison of systems of power generation during emergencies /aboard aircraft/ Briefs of fatal accidents involving weather as a cause/factor, US General Aviation, 1978 [PB81-110827] Aircraft crash survival design guide. Volume 1: Design criteria and checklists, revision [AD-A093784] Listing of accidents/incidents by aircraft make and model, United States Civil Aviation, 1978 [PB81-110280] IRCRAPT ANTENNAS In-flight calibration of aircraft antenna radiation patterns A81-21825 Airborne antenna pattern code: User's manual [AD-A092316] IRCRAPT CARRIERS VTOL control for shipboard landing in high sea states A81-20471 Glideslope descent-rate cuing to aid carrier landings [AD-A092193] IRCRAPT COMMUNICATION Problems of voice communication in helicopters	Progress in P/M superalloy and titanium for aircraft applications A81-22641 Graphite polyimide fabrication research for supersonic cruise aircraft A81-22665 Effects of commercial aircraft operating environment on composite materials A81-22681 Large-scale carbon fiber tests [NASA-TM-80218] Current and projected use of carbon composites in United States aircraft The effect of the in-service environment on composite materials (resume of the April 1980 Athens conference) N81-16146 Application of carbon fibre composites to military aircraft structures N81-16147 EMC, lightning and NEMP-protection-new requirements for approved specifications when using CFEP The electrical effects of joints and bonds in carbon fiber composites N81-16152 The electrical effects of joints and bonds in carbon fiber composites N81-16155 Aircraft manufacturers approach to the E.M.C./Avionics problems associated with the use of composite materials N81-16156 Electromagnetic integration of composite structure in aircraft N81-16159 Electromagnetic coupling to advanced composite aircraft with application to trade-off and specification determination N81-16166

A81-20508

AIRCRAFT CONTROL SUBJECT INDEX

: 1

Evolution of materials and associated technologies	Critical field length calculations for preliminary
in the makeup of aerospace materials, part 1 [AAAF-NT-79-22-PT-1] N81-17050	design A81-23366
Evolution of materials and associated technologies in the makeup of aerospace materials. Part 2:	The high-speed airfoil program N81-15970
Examples	Transonic wind tunnel development (1940 - 1950)
[AAAF-NT-79-22-PT-2] N81-17051 AIRCRAFT CONTROL	The high-speed propeller program
A correlated random numbers generator and its use	, N8 1-15972
to estimate false alarm rates of airplane sensor failure detection algorithms	A feasibility study for advanced technology integration for general aviation
A81-20448 VTOL control for shipboard landing in high sea states	[NASA-CR-159381] N81-15974 A system for aerodynamic design and analysis of supersonic aircraft. Part 4: Test cases
A81-20471 Classical and modern control design of a speed-hold system for a STOL airplane	[NASA-CR-3354] Prospects for exploiting favourable and minimizing adverse aerodynamic interference in external
[AIAA PAPER 81-0017] A81-20541 Robustness properties of a new multirate digital	store installations N81-15996
control system	Study of transonic flow fields about aircraft:
[AIAA PAPER 81-0022] A81-20545 Aircraft lateral parameter estimation from flight	Application to external stores 881-15998
data with unsteady aerodynamic modelling [AIAA PAPER 81-0221] A81-20684	<pre>Aerodynamic subsonic/transonic aircraft design studies by numerical methods</pre>
Hinged strakes for enhanced maneuverability at high angles of attack	N81-15999 Design of advanced technology transonic airfoils
[AÏAA PAPER 81-0357] Bounds for the additional cost of near-optimal	and wings N81-16000
controls A81-21075	Interference aspects of the A310 high speed wing configuration
Airline navigation planning A81-21966	N81-16001 Transonic wing technology for transport aircraft
The effects of the direction of control loading on a one-dimensional tracking task	N81-16002 Design and experimental verification of a
[AD-A092459] N81-16067 Analysis and modeling of information handling	transonic wing for a transonic aircraft N81-16003
tasks in supervisory control of advanced aircraft	The tale of two wings
[AD-A092906] N81-17061	N81-16004
AIRCRAPT DESIGN	Jet wing interference for an overwing engine
Adaptive airfoils and wings for efficient transonic flight	configuration N81-16008
A81-20349 A frequency-domain technique for aeroelastic mode	Design study for the inner wing of a transonic wing-body combination of aspect ratio 8
estimation A81-20475	N81-16015 AIRCRAFT DETECTION
Numerical optimization of circulation control airfoils	Detection of military aircraft in an Air Traffic Control Radar Beacon System (ATCRBS) environment
Numerical optimization of circulation control airfoils [AIAA PAPER 81-0016] A81-20540 Experimental development of an advanced	Detection of military aircraft in an Air Traffic Control Radar Beacon System (ATCRBS) environment [AD-A093427] N81-17036 AIRCRAFT ENGINES
Numerical optimization of circulation control airfoils [AIAA PAPER 81-0016] Experimental development of an advanced circulation control wing system for Navy STOL	Detection of military aircraft in an Air Traffic Control Radar Beacon System (ATCRBS) environment [AD-A093427] N81-17036 AIRCRAFT ENGINES Computer-aided process planning system for
Numerical optimization of circulation control airfoils [ATAA PAPER 81-0016] A81-20540 Experimental development of an advanced circulation control wing system for Navy STOL aircraft	Detection of military aircraft in an Air Traffic Control Radar Beacon System (ATCRBS) environment [AD-A093427] N81-17036 AIRCRAFT ENGINES
Numerical optimization of circulation control airfoils [ATAA PAPER 81-0016] A81-20540 Experimental development of an advanced circulation control wing system for Navy STOL aircraft	Detection of military aircraft in an Air Traffic Control Radar Beacon System (ATCRBS) environment [AD-A093427] N81-17036 AIRCRAFT ENGINES Computer-aided process planning system for aircraft engine rotating parts
Numerical optimization of circulation control airfoils [AIAA PAPER 81-0016] Experimental development of an advanced circulation control wing system for Navy STOL aircraft [AIAA PAPER 81-0151] AV-8B composite fuselage design [AIAA PAPER 81-0232] A81-20690	Detection of military aircraft in an Air Traffic Control Radar Beacon System (ATCRBS) environment [AD-A093427] N81-17036 AIRCRAFT ENGINES Computer-aided process planning system for aircraft engine rotating parts A81-19836 Scale effects on turbulent boundary layer development and flow separation around V/STOL
Numerical optimization of circulation control airfoils [AIAA PAPER 81-0016] Experimental development of an advanced circulation control wing system for Navy STOL aircraft [AIAA PAPER 81-0151] AV-8B composite fuselage design	Detection of military aircraft in an Air Traffic Control Radar Beacon System (ATCRBS) environment [AD-A093427] N81-17036 AIRCRAFT ENGINES Computer-aided process planning system for aircraft engine rotating parts A81-19836 Scale effects on turbulent boundary layer
Numerical optimization of circulation control airfoils [AIAA PAPER 81-0016] Experimental development of an advanced circulation control wing system for Navy STOL aircraft [AIAA PAPER 81-0151] AV-8B composite fuselage design [AIAA PAPER 81-0232] Structural weight comparison of a joined wing and a conventional wing [AIAA PAPER 81-0366] A81-20785	Detection of military aircraft in an Air Traffic Control Radar Beacon System (ATCRBS) environment [AD-A093427] N81-17036 AIRCRAFT ENGINES Computer-aided process planning system for aircraft engine rotating parts A81-19836 Scale effects on turbulent boundary layer development and flow separation around V/STOL inlets at high incidence [AIAA PAPER 81-0014] A81-20538 Designing the Hornet for improved R and M
Numerical optimization of circulation control airfoils [AIAA PAPER 81-0016] Experimental development of an advanced circulation control wing system for Navy STOL aircraft [AIAA PAPER 81-0151] A81-20632 AV-8B composite fuselage design [AIAA PAPER 81-0232] Structural weight comparison of a joined wing and a conventional wing	Detection of military aircraft in an Air Traffic Control Radar Beacon System (ATCRBS) environment [AD-A093427] N81-17036 AIRCRAFT ENGINES Computer-aided process planning system for aircraft engine rotating parts A81-19836 Scale effects on turbulent boundary layer development and flow separation around V/STOL inlets at high incidence [AIAA PAPER 81-0014] A81-20538
Numerical optimization of circulation control airfoils [ATAA PAPER 81-0016] A81-20540 Experimental development of an advanced circulation control wing system for Navy STOL aircraft [ATAA PAPER 81-0151] A81-20632 AV-8B composite fuselage design [ATAA PAPER 81-0232] A81-20690 Structural weight comparison of a joined wing and a conventional wing [ATAA PAPER 81-0366] A81-20785 A computer graphics display technique for the examination of aircraft design data [ATAA PAPER 81-0370] A81-20788	Detection of military aircraft in an Air Traffic Control Radar Beacon System (ATCRBS) environment [AD-A093427] N81-17036 AIRCRAFT ENGINES Computer-aided process planning system for aircraft engine rotating parts A81-19836 Scale effects on turbulent boundary layer development and flow separation around V/STOL inlets at high incidence [AIAA PAPER 81-0014] Designing the Hornet for improved R and M [AIAA PAPER 81-0230] A81-20688 Aircraft pollution in the vicinity of airports [AIAA PAPER 81-0309] A81-20743
Numerical optimization of circulation control airfoils [ATAA PAPER 81-0016] A81-20540 Experimental development of an advanced circulation control wing system for Navy STOL aircraft [ATAA PAPER 81-0151] A81-20632 AV-8B composite fuselage design [ATAA PAPER 81-0232] A81-20690 Structural weight comparison of a joined wing and a conventional wing [ATAA PAPER 81-0366] A81-20785 A computer graphics display technique for the examination of aircraft design data [ATAA PAPER 81-0370] A81-20788 A computer-aided design system geared toward	Detection of military aircraft in an Air Traffic Control Radar Beacon System (ATCRBS) environment [AD-A093427] AIRCRAFT ENGINES Computer-aided process planning system for aircraft engine rotating parts A81-19836 Scale effects on turbulent boundary layer development and flow separation around V/STOL inlets at high incidence [AIAA PAPER 81-0014] Designing the Hornet for improved R and M [AIAA PAPER 81-0230] A81-20688 Aircraft pollution in the vicinity of airports [AIAA PAPER 81-0309] Prediction method for the overall performance of
Numerical optimization of circulation control airfoils [ATAA PAPER 81-0016] A81-20540 Experimental development of an advanced circulation control wing system for Navy STOL aircraft [ATAA PAPER 81-0151] A81-20632 AV-8B composite fuselage design [AIAA PAPER 81-0232] A81-20690 Structural weight comparison of a joined wing and a conventional wing [ATAA PAPER 81-0366] A81-20785 A computer graphics display technique for the examination of aircraft design data [ATAA PAPER 81-0370] A81-20788 A computer-aided design system geared toward conceptual design in a research environment	Detection of military aircraft in an Air Traffic Control Radar Beacon System (ATCRBS) environment [AD-A093427] AIRCRAFT ENGINES Computer-aided process planning system for aircraft engine rotating parts A81-19836 Scale effects on turbulent boundary layer development and flow separation around V/STOL inlets at high incidence [AIAA PAPER 81-0014] Designing the Hornet for improved R and M [AIAA PAPER 81-0230] A81-20688 Aircraft pollution in the vicinity of airports [AIAA PAPER 81-0309] Prediction method for the overall performance of turbofan engines
Numerical optimization of circulation control airfoils [ATAA PAPER 81-0016] A81-20540 Experimental development of an advanced circulation control wing system for Navy STOL aircraft [AIAA PAPER 81-0151] A81-20632 AV-8B composite fuselage design [AIAA PAPER 81-0232] A81-20690 Structural weight comparison of a joined wing and a conventional wing [AIAA PAPER 81-0366] A81-20785 A computer graphics display technique for the examination of aircraft design data [AIAA PAPER 81-0370] A81-20788 A computer-aided design system geared toward conceptual design in a research environment for hypersonic vehicles [AIAA PAPER 81-0372] A81-20789	Detection of military aircraft in an Air Traffic Control Radar Beacon System (ATCRBS) environment [AD-A093427] AIRCRAFT ENGINES Computer-aided process planning system for aircraft engine rotating parts A81-19836 Scale effects on turbulent boundary layer development and flow separation around V/STOL inlets at high incidence [AIAA PAPER 81-0014] Designing the Hornet for improved R and M [AIAA PAPER 81-0230] A81-20688 Aircraft pollution in the vicinity of airports [AIAA PAPER 81-0309] Prediction method for the overall performance of turbofan engines [AIAA PAPER 81-0367] Developments at VFW/Rhein-Plugzeugbau GmbH,
Numerical optimization of circulation control airfoils [ATAA PAPER 81-0016] A81-20540 Experimental development of an advanced circulation control wing system for Navy STOL aircraft [ATAA PAPER 81-0151] A81-20632 AV-8B composite fuselage design [ATAA PAPER 81-0232] A81-20690 Structural weight comparison of a joined wing and a conventional wing [ATAA PAPER 81-0366] A81-20785 A computer graphics display technique for the examination of aircraft design data [ATAA PAPER 81-0370] A81-20788 A computer-aided design system geared toward conceptual design in a research environment for hypersonic vehicles	Detection of military aircraft in an Air Traffic Control Radar Beacon System (ATCRBS) environment [AD-A093427] N81-17036 AIRCRAFT ENGINES Computer-aided process planning system for aircraft engine rotating parts Scale effects on turbulent boundary layer development and flow separation around V/STOL inlets at high incidence [AIAA PAPER 81-0014] A81-20538 Designing the Hornet for improved R and M [AIAA PAPER 81-0230] A81-20688 Aircraft pollution in the vicinity of airports [AIAA PAPER 81-0309] A81-20743 Prediction method for the overall performance of turbofan engines [AIAA PAPER 81-0367] A81-20786
Numerical optimization of circulation control airfoils [ATAA PAPER 81-0016] A81-20540 Experimental development of an advanced circulation control wing system for Navy STOL aircraft [AIAA PAPER 81-0151] A81-20632 AV-8B composite fuselage design [AIAA PAPER 81-0232] A81-20690 Structural weight comparison of a joined wing and a conventional wing [AIAA PAPER 81-0366] A81-20785 A computer graphics display technique for the examination of aircraft design data [AIAA PAPER 81-0370] A81-20788 A computer-aided design system geared toward conceptual design in a research environment for hypersonic vehicles [ATAA PAPER 81-0372] A81-20789 Effect of rear stagnation point position and trailing edge bluntness on airfoil characteristics	Detection of military aircraft in an Air Traffic Control Radar Beacon System (ATCRBS) environment [AD-A093427] AIRCRAFT ENGINES Computer-aided process planning system for aircraft engine rotating parts A81-19836 Scale effects on turbulent boundary layer development and flow separation around V/STOL inlets at high incidence [AIAA PAPER 81-0014] Designing the Hornet for improved R and M [AIAA PAPER 81-0230] A81-2058 Aircraft pollution in the vicinity of airports [AIAA PAPER 81-0309] Prediction method for the overall perforance of turbofan engines [AIAA PAPER 81-0367] Developments at VFW/Rhein-Plugzeugbau GmbH, Moenchengladbach trainer aircraft design A81-21574 Core noise measurements from a small, general
Numerical optimization of circulation control airfoils [ATAA PAPER 81-0016] A81-20540 Experimental development of an advanced circulation control wing system for Navy STOL aircraft [AIAA PAPER 81-0151] A81-20632 AV-8B composite fuselage design [AIAA PAPER 81-0232] A81-20690 Structural weight comparison of a joined wing and a conventional wing [AIAA PAPER 81-0366] A81-20785 A computer graphics display technique for the examination of aircraft design data [AIAA PAPER 81-0370] A81-20788 A computer-aided design system geared toward conceptual design in a research environment for hypersonic vehicles [AIAA PAPER 81-0372] A81-20789 Effect of rear stagnation point position and trailing edge bluntness on airfoil characteristics A81-21013 Developments at VFW/Rhein-Plugzeugbau GmbH, Moenchengladbach trainer aircraft design	Detection of military aircraft in an Air Traffic Control Radar Beacon System (ATCRBS) environment [AD-A093427] AIRCRAFT ENGINES Computer-aided process planning system for aircraft engine rotating parts Scale effects on turbulent boundary layer development and flow separation around V/STOL inlets at high incidence [AIAA PAPER 81-0014] Designing the Hornet for improved R and M [AIAA PAPER 81-0230] A81-20538 Aircraft pollution in the vicinity of airports [AIAA PAPER 81-0309] A81-20743 Prediction method for the overall performance of turbofan engines [AIAA PAPER 81-0367] Developments at VFW/Rhein-Plugzeugbau GmbH, Moenchengladbach trainer aircraft design A81-21574 Core noise measurements from a small, general aviation turbofan engine A81-22531
Numerical optimization of circulation control airfoils [ATAA PAPER 81-0016] A81-20540 Experimental development of an advanced circulation control wing system for Navy STOL aircraft [ATAA PAPER 81-0151] A81-20632 AV-8B composite fuselage design [AIAA PAPER 81-0232] A81-20690 Structural weight comparison of a joined wing and a conventional wing [AIAA PAPER 81-0366] A81-20785 A computer graphics display technique for the examination of aircraft design data [AIAA PAPER 81-0370] A81-20788 A computer-aided design system geared toward conceptual design in a research environment for hypersonic vehicles [AIAA PAPER 81-0372] A81-20789 Effect of rear stagnation point position and trailing edge bluntness on airfoil characteristics A81-21013 Developments at VFW/Rhein-Plugzeughau GmbH, Moenchengladbach trainer aircraft design A81-21574 Flight companies present new aircraft - Boeing	Detection of military aircraft in an Air Traffic Control Radar Beacon System (ATCRBS) environment [AD-A093427] AIRCRAFT ENGINES Computer-aided process planning system for aircraft engine rotating parts A81-19836 Scale effects on turbulent boundary layer development and flow separation around V/STOL inlets at high incidence [AIAA PAPER 81-0014] Designing the Hornet for improved R and M [AIAA PAPER 81-0230] A81-2058 Aircraft pollution in the vicinity of airports [AIAA PAPER 81-0309] Prediction method for the overall performance of turbofan engines [AIAA PAPER 81-0367] Developments at VFW/Rhein-Plugzeughau GmbH, Moenchengladbach trainer aircraft design A81-21574 Core noise measurements from a small, general aviation turbofan engine A81-22531 High-speed cowlings, air inlets and outlets, and internal-flow systems
Numerical optimization of circulation control airfoils [ATAA PAPER 81-0016] A81-20540 Experimental development of an advanced circulation control wing system for Navy STOL aircraft [AIAA PAPER 81-0151] A81-20632 AV-8B composite fuselage design [AIAA PAPER 81-0232] A81-20690 Structural weight comparison of a joined wing and a conventional wing [AIAA PAPER 81-0366] A81-20785 A computer graphics display technique for the examination of aircraft design data [AIAA PAPER 81-0370] A81-20788 A computer-aided design system geared toward conceptual design in a research environment for hypersonic vehicles [AIAA PAPER 81-0372] A81-20789 Effect of rear stagnation point position and trailing edge bluntness on airfoil characteristics A81-21013 Developments at VFW/Rhein-Flugzeughau GmbH, Noenchengladbach trainer aircraft design A81-21574 Flight companies present new aircraft - Boeing 737-200 advanced aircraft characteristics and airline selection procedures	Detection of military aircraft in an Air Traffic Control Radar Beacon System (ATCRBS) environment [AD-A093427] AIRCRAFT ENGINES Computer-aided process planning system for aircraft engine rotating parts Scale effects on turbulent boundary layer development and flow separation around V/STOL inlets at high incidence [AIAA PAPER 81-0014] Designing the Hornet for improved R and M [AIAA PAPER 81-0230] A81-2058 Aircraft pollution in the vicinity of airports [AIAA PAPER 81-0309] Prediction method for the overall performance of turbofan engines [AIAA PAPER 81-0367] Developments at VFW/Rhein-Plugzeugbau GmbH, Moenchengladbach trainer aircraft design A81-21574 Core noise measurements from a small, general aviation turbofan engine A81-22531 High-speed cowlings, air inlets and outlets, and internal-flow systems N81-15973 An overview of general aviation propulsion
Numerical optimization of circulation control airfoils [ATAA PAPER 81-0016] A81-20540 Experimental development of an advanced circulation control wing system for Navy STOL aircraft [AIAA PAPER 81-0151] A81-20632 AV-8B composite fuselage design [AIAA PAPER 81-0232] A81-20690 Structural weight comparison of a joined wing and a conventional wing [AIAA PAPER 81-0366] A81-20785 A computer graphics display technique for the examination of aircraft design data [AIAA PAPER 81-0370] A81-20788 A computer-aided design system geared toward conceptual design in a research environment for hypersonic vehicles [AIAA PAPER 81-0372] A81-20789 Effect of rear stagnation point position and trailing edge bluntness on airfoil characteristics A81-21013 Developments at VFW/Rhein-Plugzeugbau GmbH, Moenchengladbach trainer aircraft design A81-21574 Plight companies present new aircraft - Boeing 737-200 advanced aircraft characteristics	Detection of military aircraft in an Air Traffic Control Radar Beacon System (ATCRBS) environment [AD-A093427] AIRCRAFT ENGINES Computer-aided process planning system for aircraft engine rotating parts Scale effects on turbulent boundary layer development and flow separation around V/STOL inlets at high incidence [AIAA PAPER 81-0014] Designing the Hornet for improved R and M [AIAA PAPER 81-0230] A81-20538 Aircraft pollution in the vicinity of airports [AIAA PAPER 81-0309] A81-20743 Prediction method for the overall performance of turbofan engines [AIAA PAPER 81-0367] Developments at VFW/Rhein-Plugzeugbau GmbH, Moenchengladbach trainer aircraft design A81-21574 Core noise measurements from a small, general aviation turbofan engine A81-22531 High-speed cowlings, air inlets and outlets, and internal-flow systems
Numerical optimization of circulation control airfoils [ATAA PAPER 81-0016] A81-20540 Experimental development of an advanced circulation control wing system for Navy STOL aircraft [AIAA PAPER 81-0151] A81-20632 AV-8B composite fuselage design [AIAA PAPER 81-0232] A81-20690 Structural weight comparison of a joined wing and a conventional wing [AIAA PAPER 81-0366] A81-20785 A computer graphics display technique for the examination of aircraft design data [AIAA PAPER 81-0370] A81-20788 A computer-aided design system geared toward conceptual design in a research environment for hypersonic vehicles [AIAA PAPER 81-0372] A81-20789 Effect of rear stagnation point position and trailing edge bluntness on airfoil characteristics A81-21013 Developments at VFW/Rhein-Plugzeugbau GmbH, Moenchengladbach trainer aircraft design A81-21574 Flight companies present new aircraft - Boeing 737-200 advanced aircraft characteristics and airline selection procedures	Detection of military aircraft in an Air Traffic Control Radar Beacon System (ATCRBS) environment [AD-A093427] N81-17036 AIRCRAFT ENGINES Computer-aided process planning system for aircraft engine rotating parts Scale effects on turbulent boundary layer development and flow separation around V/STOL inlets at high incidence [AIAA PAPER 81-0014] A81-20538 Designing the Hornet for improved R and M [AIAA PAPER 81-0230] A81-20688 Aircraft pollution in the vicinity of airports [AIAA PAPER 81-0309] A81-20743 Prediction method for the overall performance of turbofan engines [AIAA PAPER 81-0367] A81-20786 Developments at VFW/Rhein-Plugzeugbau GmbH, Moenchengladbach trainer aircraft design A81-21574 Core noise measurements from a small, general aviation turbofan engine A81-22531 High-speed cowlings, air inlets and outlets, and internal-flow systems N81-15973 An overview of general aviation propulsion research programs at NASA Lewis Research Center [NASA-TM-81666] N81-16052 Experimental analysis of IMEP in a rotary combustion engine [NASA-TM-81662] N81-16054
Numerical optimization of circulation control airfoils [ATAA PAPER 81-0016] A81-20540 Experimental development of an advanced circulation control wing system for Navy STOL aircraft [AIAA PAPER 81-0151] A81-20632 AV-8B composite fuselage design [AIAA PAPER 81-0232] A81-20690 Structural weight comparison of a joined wing and a conventional wing [AIAA PAPER 81-0366] A81-20785 A computer graphics display technique for the examination of aircraft design data [AIAA PAPER 81-0370] A81-20788 A computer-aided design system geared toward conceptual design in a research environment for hypersonic vehicles [AIAA PAPER 81-0372] A81-20789 Effect of rear stagnation point position and trailing edge bluntness on airfoil characteristics A81-21013 Developments at VFW/Rhein-Flugzeugbau GmbH, Moenchengladbach trainer aircraft design A81-21574 Flight companies present new aircraft - Boeing 737-200 advanced aircraft characteristics and airline selection procedures A81-21575 Computer analysis of bird-resistant aircraft transparencies A81-22087 High 'Q' ejection protection device A81-22093 Escape from military fighters - A modern perspective	Detection of military aircraft in an Air Traffic Control Radar Beacon System (ATCRBS) environment [AD-A093427] AIRCRAFT ENGIBES Computer-aided process planning system for aircraft engine rotating parts A81-19836 Scale effects on turbulent boundary layer development and flow separation around V/STOL inlets at high incidence [AIAA PAPER 81-0014] Designing the Hornet for improved R and M [AIAA PAPER 81-0230] A81-20688 Aircraft pollution in the vicinity of airports [AIAA PAPER 81-0309] Prediction method for the overall performance of turbofan engines [AIAA PAPER 81-0367] Developments at VFW/Rhein-Flugzeugbau GmbH, Moenchengladbach trainer aircraft design A81-21574 Core noise measurements from a small, general aviation turbofan engine A81-22531 High-speed cowlings, air inlets and outlets, and internal-flow systems A81-22531 A81-22531 A81-22531 A81-22531 A81-22531 High-speed rowlings, air inlets and outlets, and internal-flow systems A81-15973 An overview of general aviation propulsion research programs at NASA Levis Research Center [NASA-TH-81666] Experimental analysis of IMEP in a rotary combustion engine [NASA-TH-81662] Propulsion system mathematical model for a lift/cruise fan V/STOL aircraft
Numerical optimization of circulation control airfoils [ATAA PAPER 81-0016] A81-20540 Experimental development of an advanced circulation control wing system for Navy STOL aircraft [AIAA PAPER 81-0151] A81-20632 AV-8B composite fuselage design [AIAA PAPER 81-0232] A81-20690 Structural weight comparison of a joined wing and a conventional wing [AIAA PAPER 81-0366] A81-20785 A computer graphics display technique for the examination of aircraft design data [AIAA PAPER 81-0370] A81-20788 A computer-aided design system geared toward conceptual design in a research environment for hypersonic vehicles [AIAA PAPER 81-0372] A81-20789 Effect of rear stagnation point position and trailing edge bluntness on airfoil characteristics A81-21013 Developments at VFW/Rhein-Flugzeughau GmbH, Moenchengladbach trainer aircraft design A81-21574 Flight companies present new aircraft - Boeing 737-200 advanced aircraft characteristics and airline selection procedures A81-21575 Computer analysis of bird-resistant aircraft transparencies B81-22087 High 'Q' ejection protection device A81-22093 Escape from military fighters - A modern perspective A81-22096 Extension of ejection seat capability for high speed conditions	Detection of military aircraft in an Air Traffic Control Radar Beacon System (ATCRBS) environment [AD-A093427] AIRCRAFT ENGIBES Computer-aided process planning system for aircraft engine rotating parts A81-19836 Scale effects on turbulent boundary layer development and flow separation around V/STOL inlets at high incidence [AIAA PAPER 81-0014] Designing the Hornet for improved R and M [AIAA PAPER 81-0230] A81-2058 Aircraft pollution in the vicinity of airports [AIAA PAPER 81-0309] Prediction method for the overall performance of turbofan engines [AIAA PAPER 81-0367] Developments at VFW/Rhein-Flugzeugbau GmbH, Moenchengladbach trainer aircraft design A81-21574 Core noise measurements from a small, general aviation turbofan engine A81-22531 High-speed cowlings, air inlets and outlets, and internal-flow systems A81-2531 High-speed cowlings, air inlets and outlets, and internal-flow systems A81-15973 An overview of general aviation propulsion research programs at NASA Lewis Research Center [MASA-TM-81666] Experimental analysis of IMEP in a rotary combustion engine [MASA-TM-81663] Propulsion system mathematical model for a lift/cruise fan V/STOL aircraft [NASA-TM-81663] High temperature electronic requirements in aeropropulsion systems
Numerical optimization of circulation control airfoils [ATAA PAPER 81-0016] A81-20540 Experimental development of an advanced circulation control wing system for Navy STOL aircraft [AIAA PAPER 81-0151] A81-20632 AV-8B composite fuselage design [AIAA PAPER 81-0232] A81-20690 Structural weight comparison of a joined wing and a conventional wing [AIAA PAPER 81-0366] A81-20785 A computer graphics display technique for the examination of aircraft design data [AIAA PAPER 81-0370] A81-20788 A computer-aided design system geared toward conceptual design in a research environment for hypersonic vehicles [AIAA PAPER 81-0372] A81-20789 Effect of rear stagnation point position and trailing edge bluntness on airfoil characteristics A81-21013 Developments at VFW/Rhein-Plugzeugbau GmbH, Boenchengladbach trainer aircraft design A81-21574 Flight companies present new aircraft - Boeing 737-200 advanced aircraft characteristics and airline selection procedures A81-21575 Computer analysis of bird-resistant aircraft transparencies A81-22087 High 'Q' ejection protection device A81-22096 Extension of ejection seat capability for high speed conditions	Detection of military aircraft in an Air Traffic Control Radar Beacon System (ATCRBS) environment [AD-A093427] N81-17036 AIRCRAFT ENGINES Computer-aided process planning system for aircraft engine rotating parts Scale effects on turbulent boundary layer development and flow separation around V/STOL inlets at high incidence [AIAA PAPER 81-0014] A81-20538 Designing the Hornet for improved R and M [AIAA PAPER 81-0230] A81-20688 Aircraft pollution in the vicinity of airports [AIAA PAPER 81-0309] A81-20743 Prediction method for the overall performance of turbofan engines [AIAA PAPER 81-0367] A81-20786 Developments at VFW/Rhein-Plugzeugbau GmbH, Moenchengladbach trainer aircraft design A81-21574 Core noise measurements from a small, general aviation turbofan engine A81-22531 High-speed cowlings, air inlets and outlets, and internal-flow systems N81-15973 An overview of general aviation propulsion research programs at NASA Lewis Research Center [MASA-TH-81666] N81-16052 Experimental analysis of IMEP in a rotary combustion engine [MASA-TH-81662] N81-16054 Propulsion system mathematical model for a lift/cruise fan V/STOL aircraft [MASA-TH-81663] N81-16055 High temperature electronic requirements in aeropropulsion systems [NASA-TH-81662] N81-16388
Numerical optimization of circulation control airfoils [ATAA PAPER 81-0016] A81-20540 Experimental development of an advanced circulation control wing system for Navy STOL aircraft [AIAA PAPER 81-0151] A81-20632 AV-8B composite fuselage design [AIAA PAPER 81-0232] A81-20690 Structural weight comparison of a joined wing and a conventional wing [AIAA PAPER 81-0366] A81-20785 A computer graphics display technique for the examination of aircraft design data [AIAA PAPER 81-0370] A81-20788 A computer-aided design system geared toward conceptual design in a research environment for hypersonic vehicles [AIAA PAPER 81-0372] A81-20789 Effect of rear stagnation point position and trailing edge bluntness on airfoil characteristics A81-21013 Developments at VFW/Rhein-Flugzeughau GmbH, Moenchengladbach trainer aircraft design A81-21574 Flight companies present new aircraft - Boeing 737-200 advanced aircraft characteristics and airline selection procedures A81-21575 Computer analysis of bird-resistant aircraft transparencies B81-22087 High 'Q' ejection protection device A81-22093 Escape from military fighters - A modern perspective A81-22096 Extension of ejection seat capability for high speed conditions	Detection of military aircraft in an Air Traffic Control Radar Beacon System (ATCRBS) environment [AD-A093427] AIRCRAFT ENGIBES Computer-aided process planning system for aircraft engine rotating parts A81-19836 Scale effects on turbulent boundary layer development and flow separation around V/STOL inlets at high incidence [AIAA PAPER 81-0014] Designing the Hornet for improved R and M [AIAA PAPER 81-0230] A81-2058 Aircraft pollution in the vicinity of airports [AIAA PAPER 81-0309] Prediction method for the overall performance of turbofan engines [AIAA PAPER 81-0367] Developments at VFW/Rhein-Flugzeugbau GmbH, Moenchengladbach trainer aircraft design A81-21574 Core noise measurements from a small, general aviation turbofan engine A81-22531 High-speed cowlings, air inlets and outlets, and internal-flow systems A81-2531 High-speed cowlings, air inlets and outlets, and internal-flow systems A81-15973 An overview of general aviation propulsion research programs at NASA Lewis Research Center [MASA-TM-81666] Experimental analysis of IMEP in a rotary combustion engine [MASA-TM-81663] Propulsion system mathematical model for a lift/cruise fan V/STOL aircraft [NASA-TM-81663] High temperature electronic requirements in aeropropulsion systems

SUBJECT INDEX AIRCRAFT MOISE

Turbine engine fault detection and isolation	Environmental burn-in effectiveness
program, phase 1. Volume 2: Requirements	[AD-A093307] N81-17060
definition for an integrated engine monitoring	Integration of sensors with displays N81-17067
system [AD-A093226] N81-17088	Cathode ray tubes and plasma panels as display
Turbine engine fault detection and isolation	devices for aircraft displays
program, phase 1. Volume 1: Requirements	N81-17069
definition for an integrated engine monitoring	Evolution of tactical and map displays for high
system	performance aircraft
[AD-A093225] N81-17089 Centrifugal compressors for small aero and	N81-17072 Display concepts for control configured vehicles
automotive gas turbine engines	N81-17076
N81-17467	AIRCRAFT LANDING
AIRCRAFT EQUIPMENT	Runway surface loading during aircraft landings
Measurement of radar in radio service aircraft	A81-19800
A81-20079 An inflatable seat for aircraft passengers	Some aspects of advanced flight management systems and their application to modern transport aircraft
AN INITIATEDIC SEAT FOR AITCENIT PASSENGERS A81-22091	A81-20353
A versatile miniature solid state television	VTOL control for shipboard landing in high sea
camera /CCD/	states
A81-22620	A81-20471
The state of the art of general aviation autopilots [NASA-CR-159371] N81-16066	Disturbance estimation for a STOL transport during landing
Functional testing communication equipment	[AIAA PAPER 81-0018] A81-20542
(avionics)	A head-up display for low-visibility approach and
[AD-A092825] N81-16375	landing
AIRCRAFT POBL SYSTEMS	[AIAA PAPER 81-0130] A81-20623
Evaluation of explosafe. Explosion suppression system for aircraft fuel tank protection	AIRCRAFT MAINTENANCE New NDT techniques used for aircraft maintenance
[AD-A093125] N81-17047	A81-20168
AIRCRAFT FUBLS	Designing the Hornet for improved R and M
Fuel consumption aspects of some noise abatement	[AIAA PAPER 81-0230] A81-20688
procedures A81-20350	Feasibility evaluation of advanced multifrequency eddy current technology for use in naval air
. Integration of fuel conservative procedures in the	maintenance environment
high density terminal area	[AD-A093314] N81-17476
A81-20468	AIRCRAFT MANEUVERS
Effect of refining variables on the properties and	New techniques for the monopulse-radar tracking of
composition of JP-5 [AD-A093842] N81-17281	high-maneuverability aircraft A81-20102
AIRCRAFT GUIDANCE	Robust autoregressive models for predicting
A head-up display for low-visibility approach and	aircraft motion from noisy data
landing	A81-20473
[AIAA PAPER 81-0130] A81-20623	Control strategy for tracking a maneuverable model [AIAA PAPER 81-0089] A81-20593
An airborne sensor for the avoidance of clear air	[AIAA PAPER 81-0089] A81-20593 Bounds for the additional cost of near-optimal
[AIAA PAPER 81-0297] A81-20735	controls
Design of guidance and control digital autopilots	A81-21075
A81-22973	Energy maneuverability display for the Air Combat
AIRCRAFT HAZARDS Aircraft and environmental factors influencing	Maneuvering Range/Tactical Training System
Alichart and environmental factors influencing	(ACHE/TACTS) [AD-A092974] N81-17041
[AIAA PAPER 81-0084] A81-20589	AIRCRAFT MODELS
Microbursts as an aviation wind shear hazard	High-level languages in affordable aircraft
[AIAA PAPER 81-0386] A81-20798	simulators A81-20418
Analysis of wind vector components in the lower troposphere Applications to aircraft operations	A new concept for dynamic stability testing
at terminals	for aircraft model in orbital path
[AIAA PAPER 81-0387] A81-20799	[AIAA PAPER 81-0158] A81-20638
Simulated aircraft takeoff performance with	Aircraft lateral parameter estimation from flight
frosted wings [AIAA PAPER 81-0404] A81-20811	data with unsteady aerodynamic modelling
	[AIAA PAPER 81-0221] A81-20684
The evolution of the helicopter seat pan mounted Personal Survival Pack (PSP)	[AIAA PAPER 81-0221] A81-20684 Laboratory studies of flight mechanics using catapult launched models
The evolution of the helicopter seat pan mounted Personal Survival Pack (PSP) N81-17016	[AIAA PAPER 81-0221] A81-20684 Laboratory studies of flight mechanics using catapult launched models [AAAF-NT-80-15] N81-17055
The evolution of the helicopter seat pan mounted Personal Survival Pack (PSP) N81-17016 Static charge in aircraft fuel tanks	[AIAA PAPER 81-0221] A81-20684 Laboratory studies of flight mechanics using catapult launched models [AAAF-NT-80-15] N81-17055 AIRCRAPT NOISE
The evolution of the helicopter seat pan mounted Personal Survival Pack (PSP) N81-17016 Static charge in aircraft fuel tanks [AD-A093552] N81-17045	[ATAA PAPER 81-0221] A81-20684 Laboratory studies of flight mechanics using catapult launched models [AAAF-NT-80-15] N81-17055 AIRCRAPT NOISE Symposium on Internal Noise in Helicopters,
The evolution of the helicopter seat pan mounted Personal Survival Pack (PSP) N81-17016 Static charge in aircraft fuel tanks [AD-A093552] AIRCRAFT HYDRAULIC SYSTEMS	[ATAA PAPER 81-0221] A81-20684 Laboratory studies of flight mechanics using catapult launched models [AAAF-NT-80-15] N81-17055 AIRCRAFT NOISE Symposium on Internal Noise in Helicopters, University of Southampton, Southampton, England,
The evolution of the helicopter seat pan mounted Personal Survival Pack (PSP) N81-17016 Static charge in aircraft fuel tanks [AD-A093552] AIRCRAFT HYDRAULIC SYSTEMS Fault-tolerant actuation concept for a research test aircraft	[ATAA PAPER 81-0221] A81-20684 Laboratory studies of flight mechanics using catapult launched models [AAAF-NT-80-15] N81-17055 AIRCRAPT NOISE Symposium on Internal Noise in Helicopters, University of Southampton, Southampton, England, July 17-20, 1979, Proceedings A81-20051
The evolution of the helicopter seat pan mounted Personal Survival Pack (PSP) N81-17016 Static charge in aircraft fuel tanks [AD-A093552] N81-17045 AIRCRAFT HYDRAULIC SYSTEMS Fault-tolerant actuation concept for a research test aircraft [AD-A093113] N81-17100	[AIAA PAPER 81-0221] A81-20684 Laboratory studies of flight mechanics using catapult launched models [AAAF-NT-80-15] N81-17055 AIRCRAFT NOISE Symposium on Internal Noise in Helicopters, University of Southampton, Southampton, England, July 17-20, 1979, Proceedings A81-20051 US Army working group on aircraft noise
The evolution of the helicopter seat pan mounted Personal Survival Pack (PSP) N81-17016 Static charge in aircraft fuel tanks [AD-A093552] N81-17045 AIRCRAFT HYDRAULIC SYSTEMS Fault-tolerant actuation concept for a research test aircraft [AD-A093113] AIRCRAFT INDUSTRY	[AIAA PAPER 81-0221] A81-20684 Laboratory studies of flight mechanics using catapult launched models [AAAF-NT-80-15] N81-17055 AIRCRAFT NOISE Symposium on Internal Noise in Helicopters, University of Southampton, Southampton, England, July 17-20, 1979, Proceedings A81-20051 US Army working group on aircraft noise A81-20053
The evolution of the helicopter seat pan mounted Personal Survival Pack (PSP) N81-17016 Static charge in aircraft fuel tanks [AD-A093552] N81-17045 AIRCRAFT HYDRAULIC SYSTEMS Fault-tolerant actuation concept for a research test aircraft [AD-A093113] N81-17100 AIRCRAFT INDUSTRY Economics of technological change - A joint model	[ATAA PAPER 81-0221] A81-20684 Laboratory studies of flight mechanics using catapult launched models [AAAF-NT-80-15] N81-17055 AIRCRAPT NOISE Symposium on Internal Noise in Helicopters, University of Southampton, Southampton, England, July 17-20, 1979, Proceedings A81-20051 US Army working group on aircraft noise An overview of the research conducted in
The evolution of the helicopter seat pan mounted Personal Survival Pack (PSP) N81-17016 Static charge in aircraft fuel tanks [AD-A093552] N81-17045 AIRCRAFT HYDRAULIC SYSTEMS Fault-tolerant actuation concept for a research test aircraft [AD-A093113] AIRCRAFT INDUSTRY	[AIAA PAPER 81-0221] A81-20684 Laboratory studies of flight mechanics using catapult launched models [AAAF-NT-80-15] N81-17055 AIRCRAFT NOISE Symposium on Internal Noise in Helicopters, University of Southampton, Southampton, England, July 17-20, 1979, Proceedings A81-20051 US Army working group on aircraft noise A81-20053
The evolution of the helicopter seat pan mounted Personal Survival Pack (PSP) N81-17016 Static charge in aircraft fuel tanks [AD-A093552] N81-17045 AIRCRAFT HYDRAULIC SYSTEMS Fault-tolerant actuation concept for a research test aircraft [AD-A093113] N81-17100 AIRCRAFT INDUSTRY Economics of technological change - A joint model for the aircraft and airline industries A81-21010 A feasibility study for advanced technology	[ATAA PAPER 81-0221] A81-20684 Laboratory studies of flight mechanics using catapult launched models [AAAF-NT-80-15] N81-17055 AIRCRAPT NOISE Symposium on Internal Noise in Helicopters, University of Southampton, Southampton, England, July 17-20, 1979, Proceedings A81-20051 US Army working group on aircraft noise An overview of the research conducted in Aerospatiale on internal noise Helicopter internal noise - An overview
The evolution of the helicopter seat pan mounted Personal Survival Pack (PSP) N81-17016 Static charge in aircraft fuel tanks [AD-A093552] AIRCRAPT HYDRAULIC SYSTEMS Fault-tolerant actuation concept for a research test aircraft [AD-A093113] N81-17100 AIRCRAPT INDUSTRY Economics of technological change - A joint model for the aircraft and airline industries A feasibility study for advanced technology integration for general aviation	[AIAA PAPER 81-0221] A81-20684 Laboratory studies of flight mechanics using catapult launched models [AAAF-NT-80-15] N81-17055 AIRCRAFT NOISE Symposium on Internal Noise in Helicopters, University of Southampton, Southampton, England, July 17-20, 1979, Proceedings US Army working group on aircraft noise An overview of the research conducted in Aerospatiale on internal noise Helicopter internal noise - An overview 881-20054
The evolution of the helicopter seat pan mounted Personal Survival Pack (PSP) N81-17016 Static charge in aircraft fuel tanks [AD-A093552] N81-17045 AIRCRAPT HYDRAULIC SYSTEMS Fault-tolerant actuation concept for a research test aircraft [AD-A093113] N81-17100 AIRCRAPT INDUSTRY Economics of technological change - A joint model for the aircraft and airline industries A81-21010 A feasibility study for advanced technology integration for general aviation [AD-A092437] N81-15975	[ATAA PAPER 81-0221] Laboratory studies of flight mechanics using catapult launched models [AAAF-NT-80-15] N81-17055 AIRCRAFT NOISE Symposium on Internal Noise in Helicopters, University of Southampton, Southampton, England, July 17-20, 1979, Proceedings A81-20051 US Army working group on aircraft noise A81-20053 An overview of the research conducted in Aerospatiale on internal noise Helicopter internal noise - An overview Gear unit noise and transmission errors
The evolution of the helicopter seat pan mounted Personal Survival Pack (PSP) N81-17016 Static charge in aircraft fuel tanks [AD-A093552] N81-17045 AIRCRAFT HYDRAULIC SYSTEMS Fault-tolerant actuation concept for a research test aircraft [AD-A093113] N81-17100 AIRCRAFT INDUSTRY Economics of technological change - A joint model for the aircraft and airline industries A81-21010 A feasibility study for advanced technology integration for general aviation [AD-A092437] N81-15975 Aircraft manufacturers approach to the	[AIAA PAPER 81-0221] A81-20684 Laboratory studies of flight mechanics using catapult launched models [AAAF-NT-80-15] N81-17055 AIRCRAFT NOISE Symposium on Internal Noise in Helicopters, University of Southampton, Southampton, England, July 17-20, 1979, Proceedings US Army working group on aircraft noise An overview of the research conducted in Aerospatiale on internal noise Helicopter internal noise - An overview 881-20054
The evolution of the helicopter seat pan mounted Personal Survival Pack (PSP) N81-17016 Static charge in aircraft fuel tanks [AD-A093552] N81-17045 AIRCRAPT HYDRAULIC SYSTEMS Fault-tolerant actuation concept for a research test aircraft [AD-A093113] N81-17100 AIRCRAPT INDUSTRY Economics of technological change - A joint model for the aircraft and airline industries A81-21010 A feasibility study for advanced technology integration for general aviation [AD-A092437] N81-15975	[ATAA PAPER 81-0221] Laboratory studies of flight mechanics using catapult launched models [AAAF-NT-80-15] N81-17055 AIRCRAFT NOISE Symposium on Internal Noise in Helicopters, University of Southampton, Southampton, England, July 17-20, 1979, Proceedings A81-20051 US Army working group on aircraft noise A81-20053 An overview of the research conducted in Aerospatiale on internal noise Helicopter internal noise - An overview Gear unit noise and transmission errors helicopter system A81-20060 Development and application of an analytical
The evolution of the helicopter seat pan mounted Personal Survival Pack (PSP) N81-17016 Static charge in aircraft fuel tanks [AD-A093552] N81-17045 AIRCRAFT HYDRAULIC SYSTEMS Fault-tolerant actuation concept for a research test aircraft [AD-A093113] N81-17100 AIRCRAFT INDUSTRY Economics of technological change - A joint model for the aircraft and airline industries A81-21010 A feasibility study for advanced technology integration for general aviation [AD-A092437] N81-15975 Aircraft manufacturers approach to the E.M.C./Avionics problems associated with the use of composite materials	[ATAM PAPER 81-0221] A81-20684 Laboratory studies of flight mechanics using catapult launched models [AAAF-NT-80-15] N81-17055 AIRCRAPT NOISE Symposium on Internal Noise in Helicopters, University of Southampton, Southampton, England, July 17-20, 1979, Proceedings A81-20051 US Army working group on aircraft noise A81-20053 An overview of the research conducted in Aerospatiale on internal noise Helicopter internal noise - An overview A81-20054 Gear unit noise and transmission errors helicopter system A81-20060 Development and application of an analytical method for predicting helicopter transmission
The evolution of the helicopter seat pan mounted Personal Survival Pack (PSP) N81-17016 Static charge in aircraft fuel tanks [AD-A093552] AIRCRAFT HYDRAULIC SYSTEMS Fault-tolerant actuation concept for a research test aircraft [AD-A093113] N81-17100 AIRCRAFT INDUSTRY Economics of technological change - A joint model for the aircraft and airline industries A81-21010 A feasibility study for advanced technology integration for general aviation [AD-A092437] Aircraft manufacturers approach to the E.M.C./Avionics problems associated with the use of composite materials. N81-16156 AIRCRAFT INSTRUMENTS	[AIAA PAPER 81-0221] Laboratory studies of flight mechanics using catapult launched models [AAAF-NT-80-15] AIRCHAPT NOISE Symposium on Internal Noise in Helicopters, University of Southampton, Southampton, England, July 17-20, 1979, Proceedings A81-20051 US Army working group on aircraft noise An overview of the research conducted in Aerospatiale on internal noise Helicopter internal noise - An overview Gear unit noise and transmission errors helicopter system A81-20060 Development and application of an analytical method for predicting helicopter transmission noise
The evolution of the helicopter seat pan mounted Personal Survival Pack (PSP) N81-17016 Static charge in aircraft fuel tanks [AD-A093552] N81-17045 AIRCRAFT HYDRAULIC SYSTEMS Fault-tolerant actuation concept for a research test aircraft [AD-A093113] N81-17100 AIRCRAFT INDUSTRY Economics of technological change - A joint model for the aircraft and airline industries A81-21010 A feasibility study for advanced technology integration for general aviation [AD-A092437] N81-15975 Aircraft manufacturers approach to the E.M.C./Avionics problems associated with the use of composite materials N81-16156 AIRCRAFT INSTRUMENTS Disturbance estimation for a STOL transport during	[AIAA PAPER 81-0221] Laboratory studies of flight mechanics using catapult launched models [AAAF-NT-80-15] N81-17055 AIRCRAFT NOISE Symposium on Internal Noise in Helicopters, University of Southampton, Southampton, England, July 17-20, 1979, Proceedings A81-20051 US Army working group on aircraft noise A81-20053 An overview of the research conducted in Aerospatiale on internal noise Helicopter internal noise - An overview Gear unit noise and transmission errors helicopter system A81-20060 Development and application of an analytical method for predicting helicopter transmission noise A81-20062
The evolution of the helicopter seat pan mounted Personal Survival Pack (PSP) N81-17016 Static charge in aircraft fuel tanks [AD-A093552] AIRCRAFT HYDRAULIC SYSTEMS Fault-tolerant actuation concept for a research test aircraft [AD-A093113] N81-17100 AIRCRAFT INDUSTRY Economics of technological change - A joint model for the aircraft and airline industries A81-21010 A feasibility study for advanced technology integration for general aviation [AD-A092437] Aircraft manufacturers approach to the E.M.C./Avionics problems associated with the use of composite materials. N81-16156 AIRCRAFT INSTRUMENTS	[ATAA PAPER 81-0221] A81-20684 Laboratory studies of flight mechanics using catapult launched models [AAAF-NT-80-15] N81-17055 AIRCRAPT NOISE Symposium on Internal Noise in Helicopters, University of Southampton, Southampton, England, July 17-20, 1979, Proceedings A81-20051 US Army working group on aircraft noise A81-20053 An overview of the research conducted in Aerospatiale on internal noise A81-20054 Helicopter internal noise - An overview Gear unit noise and transmission errors helicopter system A81-20060 Development and application of an analytical method for predicting helicopter transmission noise
The evolution of the helicopter seat pan mounted Personal Survival Pack (PSP) N81-17016 Static charge in aircraft fuel tanks [AD-A093552] AIRCRAFT HYDRAULIC SYSTEMS Fault-tolerant actuation concept for a research test aircraft [AD-A093113] N81-17100 AIRCRAFT INDUSTRY Economics of technological change - A joint model for the aircraft and airline industries A81-21010 A feasibility study for advanced technology integration for general aviation [AD-A092437] Aircraft manufacturers approach to the E.M.C./Avionics problems associated with the use of composite materials N81-16156 AIRCRAFT INSTRUMENTS Disturbance estimation for a STOL transport during landing [AIAA PAPER 81-0018] A81-20542 AGARD flight test instrumentation series. Volume	[AIAA PAPER 81-0221] Laboratory studies of flight mechanics using catapult launched models [AAAF-NT-80-15] N81-17055 AIRCRAFT NOISE Symposium on Internal Noise in Helicopters, University of Southampton, Southampton, England, July 17-20, 1979, Proceedings A81-20051 US Army working group on aircraft noise A81-20053 An overview of the research conducted in Aerospatiale on internal noise Helicopter internal noise - An overview A81-20055 Gear unit noise and transmission errors helicopter system A81-20060 Development and application of an analytical method for predicting helicopter transmission noise A81-20062 Modelling techniques for the reduction of noise and vibration in gearboxes A81-20063
The evolution of the helicopter seat pan mounted Personal Survival Pack (PSP) N81-17016 Static charge in aircraft fuel tanks [AD-A093552] AIRCRAFT HYDRAULIC SYSTEMS Fault-tolerant actuation concept for a research test aircraft [AD-A093113] N81-17100 AIRCRAFT INDUSTRY Economics of technological change - A joint model for the aircraft and airline industries A81-21010 A feasibility study for advanced technology integration for general aviation [AD-A092437] N81-15975 Aircraft manufacturers approach to the E.M.C./Avionics problems associated with the use of composite materials. N81-16156 AIRCRAFT INSTRUMENTS Disturbance estimation for a STOL transport during landing [AIAA PAPER 81-0018] A81-20542	[AIAA PAPER 81-0221] Laboratory studies of flight mechanics using catapult launched models [AAAF-NT-80-15] N81-17055 AIRCHAPT NOISE Symposium on Internal Noise in Helicopters, University of Southampton, Southampton, England, July 17-20, 1979, Proceedings A81-20051 US Army working group on aircraft noise A81-20053 An overview of the research conducted in Aerospatiale on internal noise A81-20054 Helicopter internal noise - An overview A81-20055 Gear unit noise and transmission errors helicopter system A81-20060 Development and application of an analytical method for predicting helicopter transmission noise A81-20062 Modelling techniques for the reduction of noise and vibration in gearboxes

AIRCRAFT PERFORMANCE SUBJECT INDEX

Gearbox isolation for reducing gear tooth noise in single rotor helicopter	Computer code for the determination of ejection seat/man aerodynamic parameters
A81-20073 Sound sources in aerodynamics - Fact and fiction	[AD-A092721] N81-16026 Summary of aviation safety program resumes. Cabin
[AIAA PAPER 81-0056] A81-20570 Acoustics of rotors utilizing circulation control	safety [AD-A091938] N81-16027
[AIAA PAPER 81-0092] A81-20596 A general mapping procedure for variable area duct	AIRCRAFT SPECIFICATIONS Airborne-fiber optics manufacturing technology,
acoustics [AIAA PAPER 81-0094] A81-20597	aircraft installation processes [AD-A093304] N81-17902
Convective amplification of gas turbine engine internal noise sources	AIRCRAFT STABILITY Gear meshing action as a source of vibratory
A81-21595	excitation A81-20061
The need for airport noise monitoring systems. Their uses, and value in promoting civil aviation	Disturbance estimation for a STOL transport during
[AD-A092240] N81-16627 A guidance document on airport noise control	landing [AIAA PAPER 81-0018] A81-20542
[AD-A092228] N81-16629 Evaluation of alternative procedures for	Practical gust load alleviation and flutter suppression control laws based on a LQG
atmospheric absorption adjustments during noise certification. Volume 3: Tables of atmospheric	methodology Linear Quadratic Gaussian [AIAA PAPER 81-0021] A81-20544
absorption losses aircraft noise [AD-A093144] N81-17848	A new concept for dynamic stability testing for aircraft model in orbital path
NOISECHECK procedures for measuring noise exposure from aircraft operations	[AIAA PAPER 81-0158] A81-20638 Damping of aircraft wing vibrations by
[AD-A093948] N81-17849 Helicopter noise contour development techniques	automatically controlled internal forces A81-21060
and directivity analysis [AD-A093426] N81-17851	Preliminary Airworthiness Evaluation (PAE 1) of the YCH-47D helicopter
Correlation of helicopter noise levels with physical and performance characteristics	[AD-A092633] N81-16046 AIRCHAFT STRUCTURES
[AD-A093428] N81-17852 Evaluation of alternative procedures for	Improving surface current injection techniques via one- and two-dimensional models
atmospheric absorption adjustments during noise certification. Volume 2: Computer program	A81-19940 Measurements of structural mobility on helicopter: "
[AD-A093267] N81-17853	structures
Application of trajectory optimization principles to minimize aircraft operating costs	Application of low frequency eddy-current for inspection of civil aircraft
A81-20466 Simulated aircraft takeoff performance with	A81-20110 Evaluation and comparison of nondestructive
frosted wings [AIAA PAPER 81-0404] A81-20811	service inspection methods A81-20135
Escape from military fighters - A modern perspective A81-22096	New NDT techniques used for aircraft maintenance A81-20168
Stochastic modeling of an aircraft traversing a runway using time series analysis A81-23368	The use of acoustic emission for detecting and evaluating of fatigue cracks severity during static and cyclic loading of structure elements
An airport wind shear detection and warning system using Doppler radar: A feasibility study [NASA-CR-3379] N81-16681	A81-20214 Acoustic fatigue strength of fiber-reinforced plastic panels
Correlation of helicopter noise levels with physical and performance characteristics	A81-20873 Effect of load spectrum variables on fatique crack
[AD-A093428] N81-17852	initiation and propagation; Proceedings of the
Some aspects of advanced flight management systems and their application to modern transport aircraft	Symposium, San Francisco, Calif., May 21, 1979 A81-21730 An engineering model for assessing load sequencing
A81-20353 Spin recovery training	effects cracks in aircraft structures A81-21737
[GPO-67-439] N81-17098	Evaluating spectrum effects in U.S. Air Force attack/fighter/trainer individual aircraft
New NDT techniques used for aircraft maintenance A81-20168	tracking A81-21742
Designing the Hornet for improved R and M [ATAA PAPER 81-0230] A81-20688	Fatigue design criteria and fleet fatigue life survey at Aeronautica Macchi
Helicopter fatigue qualification A81-22623	A81-22624 Project and experimental fatigue test of the wing
AIRCHAFT SAFETY Design and preliminary tests of an IR-airborne	of a modern combat aircraft A81-22625
LLWS remote sensing system Low Level Wind Snear	Definition of loading sequence for full scale fatigue test
[ATAA PAPER 81-0239] 40 years of helicopter ice protection experience	A81-22626 Ductile fracture mechanic assessments of
at Sikorsky Aircraft [AIAA PAPER 81-0407] A81-20813	2219-T851, 2024-T3 and 7075-T6 aluminum alloys A81-22628
Bilingual air traffic control in Canada A81-20915	Crack propagation in lugs A81-22629
Escape systems testing on the Holloman high speed test track A81-22088	Crack growth propagation under variable amplitude loading in aerospace structures A81-22632
Aircrew compliance with standard operating procedures as a component of airline safety	Composite fuselage development for Naval aircraft A81-22648
[AD-A092443] N81-16023 Special Aviation Fire and Explosion Reduction (SAFER) advisory committee, volume 1	Effect of impact damage on the XFV-12A composite wing box
[AD-A092016] N81-16024 Design, fabrication, and testing of the Maximum	A81-22676 Experiences with composite aircraft structures A81-22678
Performance Ejection System (MPES) seat structure [AD-A092292] N81-16025	A81-22678

SUBJECT INDEX ANGLE OF ATTACK

Prospects for bonding primary aircraft structure in the 80°s	Supercritical flow past symmetrical airfoils [AD-A093300] N81-16984
A81-22679 Controls of aeronautical structures under fatigue testing by holographic pulsed lasers	AIRPRAME MATERIALS Environmental exposure effects on composite materials for commercial aircraft
interferometry A81-22692	[NASA-CR-165649] N81-16139 AIRFRAMES
A French flight test program on the electromagnetic effects of lightning	The electrical effects of joints and bonds in carbon fiber composites
พ81-16155	N81-16153
Composite structural materials aircraft applications	AIRLIBE OPERATIONS Application of trajectory optimization principles
[NASA-CR-163946] N81-17039	to minimize aircraft operating costs
A conversational, topological grid method and	A81-20466
optimization of structural calculations involving finite elements	Analysis of wind vector components in the lower troposphere Applications to aircraft operations
[AAAP-NT-79~30] N81-17053	at terminals
AIRCRAFT SURVIVABILITY	[AIAA PAPER 81-0387] A81-20799
Aircraft crash survival design guide. Volume 1: Design criteria and checklists, revision	<pre>Economics of technological change - A joint model for the aircraft and airline industries</pre>
[AD-A093784] N81-16997	A81-21010
AIRCRAPT WAKES	Flight companies present new aircraft - Boeing
Extraction of wavedrag from airfoil wake measurements	737-200 advanced aircraft characteristics and airline selection procedures
[AIAA PAPER 81-0291] A81-20732	A81-21575
An application of wake survey rakes to the	AIRPORT PLANNING
experimental determination of thrust for a propeller driven aircraft	Air traffic simulation as a validation tool A81-21718
[NASA-CR-163920] N81-15986	Maximizing the capacity of a single-runway airport
Mean rotor wake characteristics of an	A81-22193
aerodynamically loaded 0.5 m diameter fan [NASA-TM-81657] N81-16053	AIRPORT SURPACE DETECTION EQUIPMENT A supplementary EMC analysis of the proposed
AIRPOIL PROPILES	Airport Surface Detection Equipment (ASDE-3) radar
Adaptive airfoils and wings for efficient	[AD-A092965] N81-17342
transonic flight A81-20349	AIRPORT TOWERS Consolidated car display: A summary report of the
Viscous-inviscid interaction on oscillating	process and the results of the consolidation of
airfoils in subsonic flow	critical and supplementary terminal area air
[AIAA PAPER 81-0051] A81-20567 Prediction and experimental verification of	traffic control information for display presentation
Prediction and experimental verification of transient airfoil motion in a small wind tunnel	[AD-A092450] N81-16034
[ATAM FREE 81-0032] A01-20308	Air traffic control simulation models. Citations
Extraction of wavedrag from airfoil wake measurements	from the NTIS data base [PB81-800104] N81-17037
[AT AA PAPER 81-0291] A81-20732	AIRPORTS
Computer simulation of airfoil icing without runback [AIAA PAPER 81-0402] A81-20809	Aircraft pollution in the vicinity of airports [AIAA PAPER 81-0309] A81-20743
An analytical approach to airfoil icing	The need for airport noise monitoring systems.
[AIAA PAPER 81-0403] A81-20810	Their uses, and value in promoting civil aviation
Icing tunnel tests of a glycol-exuding porous leading edge ice protection system on a general aviation airfoil	[AD-A092240] N81-16627 Impact of aircraft emissions on air quality in the
aviation airfoil	vicinity of airports. Volume 1: Recent airport
AVIATION AITTOIL [AIAA PARER 81-0405] All-20837 All-20837	measurement programs, data analyses, and submodel development
separated flow over an airfoil	[AD-A089962] N81-16628
AS1-22568 AIRFOILS	A guidance document on airport noise control [AD-A092228] N81-16629
The numerical solution of incompressible turbulent	[AD-A092228] N81-16629 An airport wind shear detection and warning system
flow over airfoils	using Doppler radar: A feasibility study
[AIAA PAPER 81-0047] A81-20563 Higher-accuracy finite-difference schemes for	[NASA-CR-3379] N81-16681
transonic airfoil flowfield calculations	A correlated random numbers generator and its use
[AIAA PAPER 81-0381] A81-20794	to estimate false alarm rates of airplane sensor failure detection algorithms
The effect of heavy rain on windshear attributed accidents	A81-20448
[AIAA PAPER 81-0390] A81-20800	ALUMINUM ALLOYS
Effect of rear stagnation point position and trailing edge bluntness on airfoil characteristics	Effect of gust load alleviation on fatigue and crack growth in ALCLAD 2024-T3
A81-21013	A81-21739
New approach to the solution of large, full matrix equations Neumann problem for inviscid	Ductile fracture mechanic assessments of 2219-T851, 2024-T3 and 7075-T6 aluminum alloys
incompressble flow past airfoils	A81-22628
A81-21552	Tension induced in the cables inside closed metal
Effect of wing location and strakes on stability and control characteristics of a monoplanar	structures and in carbon epoxy submitted to a lightning-type impulse current
circular missile with low-profile tail fins at	N81-16158
supersonic speeds [NASA-TM-81878] N81-15978	Plame tube and ballistic evaluation of Explosafe aluminum foil for aircraft fuel tank explosion
[NASA-TM-81878] N81-15978 Design of advanced technology transonic airfoils	protection suppressing combustion overpressure
and wings	[AD-A093542] N81-17046
N81-16000 The tale of two wings	ANECHOIC CHAMBERS Evaluation of RF anechoic chamber fire protection
ne tale of two wings	systems
Jet wing interaction to give improved combat	[AD-A092478] N81-16070 ANGLE OF ATTACK
performance N81-16007	Angle of attack - Its measurement and usage. I
Viscous-inviscid interaction on oscillating	A81-19799
airfoils in subsonic flow [AD-A093970] N81-16983	Delta canard configuration at high angle of attack A81-20351

ANTENNA ARRAIS SUBJECT INDEX

Laser measurement of angle of attack on wind-tunnel models		Sources and detection of atmospheric wind : [AIAA PAPER 81-0391]	shear A81-2080
Experimental study of the influence of supp the aerodynamic loads on an ogive cylinde		ATTACK AIRCRAFT A mobile computer-aided detection and trac system for low-flying attack aircraft	_
high angles of attack	A81-20531	Evaluating spectrum effects in U.S. Air Fo.	A81-2009
Wing-alone aerodynamic characteristics at h		attack/fighter/trainer individual aircra	
angles of attack [AIAA PAPER 81-0008]	A81-20532	tracking	A81-2174
Hinged strakes for enhanced maneuverability high angles of attack	at	Demonstration of a method for determining of store configurations for wing store flut	
[AIAA PAPER 81-0357]	A81-20776	[AD-A092257]	N81-1606
Unsteady wakes downstream from a profile oscillating in incidence aerodynamic	flov	An investigation of the five point restrai system for aviators	
tests on helicopter rotor blade profiles [AAAF-NT-80-10]	N81-16989	[AD-A093065] ATTITUDE INDICATORS	N8 1- 1699
ANTENNA ARRAYS Increased target resolution and minor lobe		SPASYN - An electromagnetic relative posit orientation tracking system	ion and
reduction with active group antennas	.01 20000	• •	A81-2182
ABTERNA RADIATION PATTERNS	A81-20090	AUTOMATIC CONTROL Damping of aircraft wing vibrations by	
Improvement of effective minor lobe behavio radar antennas through signal processing	r of	automatically controlled internal forces	A81-2106
	A81-20091	AUTOMATIC PLIGHT CONTROL	
In-flight calibration of aircraft antenna radiation patterns	•	Operational energy conservation strategies commercial aviation	in
	A81-21825		A81-2046
Airborne antenna pattern code: User's manu [AD-A092316]	aı N81-16357	Development and demonstration of an automa- control and recovery system for remotely	
ANTIAIRCRAFT MISSILES Robust autoregressive models for predicting		vehicles	A81-2047
aircraft motion from noisy data.		Airline navigation planning	
APPROACH CONTROL	A81-20473	The ANK - A four dimensional navigation/fl	A81-21 96 ight
Plight test evaluation of a digital control		management system for today	
used in a VTOL automatic approach and lan system	aing	A study of State Peedback Implicit Model fo	A81-2261 ollowing
APPROACH INDICATORS	A81-22549	control for VSTOL aircraft	N81-1709
A head-up display for low-visibility approa- landing	ch and	[AD-A093253] AUTOMATIC LAMBING CONTROL	
[AIAA PAPER 81-0130]	A81-20623	VTOL control for shipboard landing in high states	
Glideslope descent-rate cuing to aid carrie landings	r	Flight test evaluation of a digital control	A81-2047
[AD-A092193]	N81-16033	used in a VTOL automatic approach and la	
APPROPRIATIONS NASA authorization, 1981		system	A81-2254
[GPO-71-290]	พ81-16953	AUTOMATIC PILOTS	
ARCHITECTURE (COMPUTERS) New techniques and development trends in th	e	Design of guidance and control digital auto	A81-2297
system architecture of EDP systems for ra data processing and airspace control	dar	Human Factors of Plight-deck Automation: NASA/Industry Workshop	
	A81-20103	[NASA-TM-81260]	N81-1602
ASPECT RATIO Design study for the inner wing of a transo.	nic	The state of the art of general aviation as [NASA-CR-159371]	utopilots N81-1606
wing-body combination of aspect ratio 8		AUTOMATION	
ATMOSPHERIC ATTENUATION	N81-16015	Standardisation - An alternative approach to automation	
Evaluation of alternative procedures for atmospheric absorption adjustments during	naica	* COO NODITE PROTERS	A81-2219
certification. Volume 3: Tables of atmos		AUTOMOBILE ENGINES Centrifugal compressors for small aero and	
absorption losses aircraft noise [AD-A093144]	N81-17848	automotive gas turbine engines	พ81-1746
ATMOSPHERIC EPPECTS	107 17040	AUTOREGRESSIVE PROCESSES	
Effects of commercial aircraft operating environment on composite materials		Robust autoregressive models for predicting aircraft motion from noisy data	g
	A81-22681		A81-2047
ATMOSPHERIC MODELS Atmospheric disturbance models and requirem	ents	AUXILIARY POWER SOURCES Comparison of systems of power generation of	during
for the flying qualities Military Standar		emergencies /aboard aircraft/	_
Handbook [AIAA PAPER 81-0302]	A81-20739	AVIONICS	A81-2220
ATMOSPHERIC TEMPERATURE Evaluation of alternative procedures for		Electromagnetic measurement of lightning so to aircraft	trikes
atmospheric absorption adjustments during		[AIAA PAPER 81-0083]	A81-2058
certification. Volume 2: Computer programmer [AD-A093267]	am N81-17853	Designing the Hornet for improved R and M [AIAA PAPER 81-0230]	A81-2068
ATMOSPHERIC TURBULENCE	,	The BOM-74C target as a flying computer - :	
Disturbance estimation for a STOL transport landing	during	language and its peripherals	A81-2261
[AIAA PAPER 81-0018]	A81-20542	Adhesive bonding of avionic structures	
A survey of recent atmospheric turbulence measurements from a subsonic aircraft		Development of a shadow mask type high-reso	A81-2264 olution
	A81-20736	color picture tube for cockpit display	A81-2309
for the flying qualities Military Standar		A feasibility study for advanced technology	
Handbook [AIAA PAPER 81-0302]	A81-20739	integration for general aviation [NASA-CR-159381]	ม81-1597
[B + 4 B + B + B + B + B + B + B + B + B	201 64133	1 0 0 2 0 - C 0 - 1 3 3 3 0 1 1	

Duclining we biguenthings Pugluation (DIP	1) of	DODY_UTUC IND MITT CONFICURING	
Preliminary Airworthiness Evaluation (PAE the YCH-47D helicopter	1) 01	BODY-WING AND TAIL CONFIGURATIONS Application of a tip-fin controller to the	Shu++la
[AD-A092633]	N81-16046	Orbiter for improved yaw control	Shuccie
A survey of computer simulations of digita	1		A81-20582
avionics systems		Structural weight comparison of a joined wi	ng and
[AD-A091943]	N81-16049	a conventional wing	
Annual report to the NASA Administrator by		[AIAA PAPER 81-0366] BODY-WING CONFIGURATIONS	A81-20785
Aerospace Safety Advisory Panel on the s shuttle program. Part 2: Summary of	pace	Transonic flow calculations over two-dimens	iona l
information developed in the panel's		canard-wing systems	201142
fact-finding activities			A81-23367
[NASA-TH-82252]	N81-16114	Application of transonic potential calculat	ions to
Tension induced in the cables inside close structures and in carbon epoxy submitted		aircraft and wind tunnel configurations	w01 15000
lightning-type impulse current	to a	Finite element method study of	N81-15992
and and a second second	N81-16158	wing-fuselage-nacelle interactions of a Po	alcon
Functional testing communication equipment		20 type aircraft at Mach = 0.79	
(avionics)	*** ******		N81-15994
[AD-A092825] AGARD flight test instrumentation series.	N81~16375	Interference aspects of the A310 high speed configuration	Wing
10 on Helicopter flight test instrumenta			N81-16001
[AGARD-AG-160-VOL-10]	N81-17040	A constrained inverse method for the aerody	
Operational problems associated with head-	up	design of thick wings with given pressure	
displays during instrument flight		distribution in subsonic flow	
[AD-A092992] Environmental burn-in effectiveness	N81-17058		N81-16006
[AD-A093307]	N81-17060	An investigation of a swept wing-body configuration with drooped leading edge a	t low
Analysis and modeling of information handl		and transonic speeds	. 101
tasks in supervisory control of advanced			N81-16012
[AD-A092906]	N81-17061	Some aerodynamic interference effects that	
Assessment of risk to Boeing commerical tr		influence the transonic performance of co	mbat
aircraft from carbon fibers fiber re from graphite/epxoy materials	Tease	aircraft	N81-16014
[NASA-CR-159211]	N81-17171	Design study for the inner wing of a transo	
AXIAL FLOW TURBINES		wing-body combination of aspect ratio 8	
Turbine modeling technique to generate off			N81-16015
performance data for both single and mul axial-flow turbines	tistage	BORING AIRCRAFT Assessment of risk to Boeing commercial tra	nanart
[NASA-CR-165244]	N81-17078	aircraft from carbon fibers fiber rel	
Current problems in turbomachinery fluid d		from graphite/epxoy materials	
[AD-A093375]	N81-17387		N81-17171
AXISYMBTRIC PLOW		BORING 737 AIRCRAFT	4
Non-isoenergetic turbulent jet mixing in a constant area duct in turbofan engin		Flight companies present new aircraft - Boe 737-200 advanced aircraft characteris	
	A81-20768		
[AIAA PAPER 81-0347]		and airline selection procedures	A81-21575
[AIAA PAPER 81-0347]		and airline selection procedures BOBIEG 747 AIRCRAFT	A81-21575
[AIAA PAPER 81-0347]		and airline selection procedures BOBIBG 747 AIRCRAPT Ozone contamination in aircraft cabins - Re-	A81-21575
[AIAA PAPER 81-0347] BALANCING Multi-plane high speed balancing technique	A81-20768	and airline selection procedures BOBIBG 747 AIRCRAPT Ozone contamination in aircraft cabins - Re from GASP data and analyses	A81-21575
[AIAA PAPER 81-0347] BALANCING Hulti-plane high speed balancing technique the use of a high specific stiffness Ti-	A81-20768	and airline selection procedures BOBING 747 AIRCRAPT Ozone contamination in aircraft cabins - Refrom GASP data and analyses [AIAA PAPER 81-0305] BOREDOM	A81-21575 sults
[AIAA PAPER 81-0347] BALANCING Hulti-plane high speed balancing technique , the use of a high specific stiffness Ti- material for vibration control	A81-20768 s and Borsic	and airline selection procedures BOBIBG 747 AIRCRAFT Ozone contamination in aircraft cabins - Refrom GASP data and analyses [AIAA PAPER 81-0305] BOREDOM Human Factors of Flight-deck Automation:	A81-21575 sults
BBALANCING Hulti-plane high speed balancing technique the use of a high specific stiffness Ti- material for vibration control [AD-A09 3122]	A81-20768	and airline selection procedures BOBING 747 AIRCHAPT Ozone contamination in aircraft cabins - Refrom GASP data and analyses [AIAA PAPER 81-0305] BOREDOM Human Factors of Flight-deck Automation: NASA/Industry Workshop	A81-21575 sults A81-20740
BBALLNCING Multi-plane high speed balancing technique the use of a high specific stiffness Ti- imaterial for vibration control [AD-A093122] BBDS (PROCESS ENGINEERING)	A81-20768 s and Borsic	and airline selection procedures BOBING 747 AIRCRAPT Ozone contamination in aircraft cabins - Refrom GASP data and analyses [AIAA PAPER 81-0305] BOREDON Human Factors of Flight-deck Automation: NASA/Industry Workshop [NASA-TH-81260]	A81-21575 sults
BBALANCING Hulti-plane high speed balancing technique the use of a high specific stiffness Ti- material for vibration control [AD-A09 3122]	A81-20768 s and Borsic	and airline selection procedures BOBING 747 AIRCHAPT Ozone contamination in aircraft cabins - Refrom GASP data and analyses [AIAA PAPER 81-0305] BOREDOM Human Factors of Flight-deck Automation: NASA/Industry Workshop	A81-21575 sults A81-20740 N81-16022
BBALANCING Multi-plane high speed balancing technique the use of a high specific stiffness Ti- material for vibration control [AD-A093122] BBDS (PROCESS ENGINEERING) Shielded enclosure test bed requirement [AD-A092589] BIBLIOGRAPHIES	81-20768 s and Borsic N81-17092	and airline selection procedures BOBING 747 AIRCRAPT Ozone contamination in aircraft cabins - Refrom GASP data and analyses [AIAA PAPER 81-0305] BOREDOM Human Factors of Flight-deck Automation: NASA/Industry Workshop [NASA-TH-81260] BOUNDARY LAYER CONTROL Influence of jet location on the efficiency spanwise blowing	A81-21575 sults A81-20740 N81-16022
[AIAA PAPER 81-0347] BALLANCING Multi-plane high speed balancing technique the use of a high specific stiffness Ti- material for vibration control [AD-A093122] BEDS (PROCESS ENGINEERING) Shielded enclosure test bed requirement [AD-A092589] BIBLIOGRAPHIES Collision avoidance systems. Citations fr	81-20768 s and Borsic N81-17092	and airline selection procedures BOBIEG 747 AIRCRAPT Ozone contamination in aircraft cabins - Reform GASP data and analyses [AIAA PAPER 81-0305] BOREDOM Human Factors of Flight-deck Automation: NASA/Industry Workshop [NASA-TH-81260] BOUNDARY LAYER CONTROL Influence of jet location on the efficiency spanwise blowing	A81-21575 sults A81-20740 N81-16022 of A81-20352
BBALANCING BUILT-plane high speed balancing technique the use of a high specific stiffness Ti- material for vibration control [AD-A09 3122] BEDS (PROCESS ENGINERRING) Shielded enclosure test bed requirement (AD-A092589) BIBLIOGRAPHIES Collision avoidance systems. Citations fr NTIS data base	A81-20768 s and Borsic N81-17092 N81-16073 om the	and airline selection procedures BOBIEG 747 AIRCRAFT Ozone contamination in aircraft cabins - Refrom GASP data and analyses [AIAA PAPER 81-0305] BOREDOM Human Factors of Flight-deck Automation: NASA/Industry Workshop [NASA-TH-81260] BOUNDARY LAYER CONTROL Influence of jet location on the efficiency spanwise blowing Discussion of test results in the design of	A81-21575 sults A81-20740 N81-16022 of A81-20352
BALANCING Multi-plane high speed balancing technique the use of a high specific stiffness Ti- material for vibration control [AD-A093122] BBDS (PROCESS ENGINEERING) Shielded enclosure test bed requirement [AD-A092589] BIBLIOGRAPHIES Collision avoidance systems. Citations fr NTIS data base [PB80-815020]	A81-20768 s and Borsic N81-17092 N81-16073 om the N81-16038	and airline selection procedures BOBING 747 AIRCRAPT Ozone contamination in aircraft cabins - Refrom GASP data and analyses [AIAA PAPER 81-0305] BOREDOM Human Factors of Flight-deck Automation: NASA/Industry Workshop [NASA-TM-81260] BOUNDARY LAYER CONTROL Influence of jet location on the efficiency spanwise blowing Discussion of test results in the design of laminar airfoils for competition gliders	A81-21575 sults A81-20740 N81-16022 of A81-20352
BBALANCING Multi-plane high speed balancing technique the use of a high specific stiffness Ti- material for vibration control [AD-A09 3122] BEDS (PROCESS ENGINERRING) Shielded enclosure test bed requirement [AD-A092589] BIBLIOGRAPHIES Collision avoidance systems. Citations fr NTIS data base [PB80-815020] Air traffic control simulation models. Ci from the NTIS data base	A81-20768 s and Borsic N81-17092 N81-16073 om the N81-16038 tations	and airline selection procedures BOBING 747 AIRCRAFT Ozone contamination in aircraft cabins - Refrom GASP data and analyses [AIAA PAPER 81-0305] BOREDOM Human Factors of Flight-deck Automation: NASA/Industry Workshop [NASA-TH-81260] BOUNDARY LAYER CONTROL Influence of jet location on the efficiency spanwise blowing Discussion of test results in the design of laminar airfoils for competition gliders [NASA-TH-75402] BOUNDARY LAYER FLOW	A81-21575 sults A81-20740 N81-16022 of A81-20352
BALLNCING Multi-plane high speed balancing technique the use of a high specific stiffness Ti- material for vibration control [AD-A093122] BBDS (PROCESS ENGINEERING) Shielded enclosure test bed requirement [AD-A092589] BIBLIOGRAPHIES Collision avoidance systems. Citations fr NTIS data base [PB80-815020] Air traffic control simulation models. Ci from the NTIS data base [PB81-800104]	A81-20768 s and Borsic N81-17092 N81-16073 om the N81-16038	and airline selection procedures BOBING 747 AIRCRAPT Ozone contamination in aircraft cabins - Refrom GASP data and analyses [AIAA PAPER 81-0305] BOREDOM Human Factors of Flight-deck Automation: NASA/Industry Workshop [NASA-TM-81260] BOUNDARY LAYER CONTROL Influence of jet location on the efficiency spanwise blowing Discussion of test results in the design of laminar airfoils for competition gliders [NASA-TM-75402] BOUNDARY LAYER FLOW A computational model for low speed flows p	A81-21575 sults A81-20740 N81-16022 of A81-20352
BALLNCING BALLNCING Multi-plane high speed balancing technique the use of a high specific stiffness Ti- material for vibration control [AD-A093122] BBDS (PROCESS ENGINEERING) Shielded enclosure test bed requirement [AD-A092589] BIBLIOGRAPHIES Collision avoidance systems. Citations fr NTIS data base [PB0-815020] Air traffic control simulation models. Ci from the NTIS data base [PB81-800104] BIONEDICAL DATA	A81-20768 s and Borsic N81-17092 N81-16073 om the N81-16038 tations	and airline selection procedures BOEING 747 AIRCRAPT Ozone contamination in aircraft cabins - Refrom GASP data and analyses [AIAA PAPER 81-0305] BOREDOM Human Factors of Flight-deck Automation: NASA/Industry Workshop [NASA-TM-81260] BOUNDARY LAYER CONTROL Influence of jet location on the efficiency spanwise blowing Discussion of test results in the design of laminar airfoils for competition gliders [NASA-TM-75402] BOUNDARY LAYER FLOW A computational model for low speed flows pairfoils with spoilers	A81-21575 sults A81-20740 N81-16022 of A81-20352 N81-15984 ast
BALANCING Multi-plane high speed balancing technique the use of a high specific stiffness Ti- material for vibration control [AD-A09 3122] BEDS (PROCESS ENGINEBRING) Shielded enclosure test bed requirement (AD-A092589) BIBLIOGRAPHIES Collision avoidance systems. Citations fr NTIS data base [PB80-815020] Air traffic control simulation models. Ci from the NTIS data base [PB81-800104] BIOMEDICAL DATA Cabin fire simulator lavatory tests	A81-20768 s and Borsic N81-17092 N81-16073 om the N81-16038 tations	and airline selection procedures BOBIEG 747 AIRCRAFT Ozone contamination in aircraft cabins - Refrom GASP data and analyses [AIAA PAPER 81-0305] BOREDOM Human Factors of Flight-deck Automation: NASA/Industry Workshop [NASA-TM-81260] BOUNDARY LAYER CONTROL Influence of jet location on the efficiency spanwise blowing Discussion of test results in the design of laminar airfoils for competition gliders [NASA-TM-75402] BOUNDARY LAYER FLOW A computational model for low speed flows pairfoils with spoilers [AIAA PAPER 81-0253]	A81-21575 sults A81-20740 N81-16022 of A81-20352
BALLNCING Multi-plane high speed balancing technique the use of a high specific stiffness Ti- material for vibration control [AD-A093122] BBDS (PROCESS ENGINEERING) Shielded enclosure test bed requirement [AD-A092589] BIBLIOGRAPHIES Collision avoidance systems. Citations fr NTIS data base [PB80-815020] Air traffic control simulation models. Ci from the NTIS data base [PB81-800104] BIOMEDICAL DATA Cabin fire simulator lavatory tests [NASA-CR-160909]	A81-20768 s and Borsic N81-17092 N81-16073 om the N81-16038 tations	and airline selection procedures BOBING 747 AIRCRAPT Ozone contamination in aircraft cabins - Refrom GASP data and analyses [AIAA PAPER 81-0305] BOREDOM Human Factors of Flight-deck Automation: NASA/Industry Workshop [NASA-TM-81260] BOUNDARY LAYER CONTROL Influence of jet location on the efficiency spanwise blowing Discussion of test results in the design of laminar airfoils for competition gliders [NASA-TM-75402] BOUNDARY LAYER FLOW A computational model for low speed flows p airfoils with spoilers [AIAA PAPER 81-0253] BOUNDARY LAYER SEPARATION	A81-21575 sults A81-20740 N81-16022 of A81-20352 N81-15984 ast
BALANCING Multi-plane high speed balancing technique the use of a high specific stiffness Ti- material for vibration control [AD-A09 3122] BEDS (PROCESS ENGINEBRING) Shielded enclosure test bed requirement (AD-A092589) BIBLIOGRAPHIES Collision avoidance systems. Citations fr NTIS data base [PB80-815020] Air traffic control simulation models. Ci from the NTIS data base [PB81-800104] BIOMEDICAL DATA Cabin fire simulator lavatory tests	A81-20768 s and Borsic N81-17092 N81-16073 om the N81-16038 tations N81-17037	and airline selection procedures BOBIEG 747 AIRCRAFT Ozone contamination in aircraft cabins - Refrom GASP data and analyses [AIAA PAPER 81-0305] BOREDOM Human Factors of Flight-deck Automation: NASA/Industry Workshop [NASA-TM-81260] BOUNDARY LAYER CONTROL Influence of jet location on the efficiency spanwise blowing Discussion of test results in the design of laminar airfoils for competition gliders [NASA-TM-75402] BOUNDARY LAYER FLOW A computational model for low speed flows pairfoils with spoilers [AIAA PAPER 81-0253]	A81-21575 sults A81-20740 N81-16022 of A81-20352 N81-15984 ast A81-20702
BALLNCING Multi-plane high speed balancing technique the use of a high specific stiffness Ti- material for vibration control [AD-A093122] BBDS (PROCESS ENGINEERING) Shielded enclosure test bed requirement [AD-A092589] BIBLIOGRAPHIES Collision avoidance systems. Citations fr NTIS data base [PB80-815020] Air traffic control simulation models. Ci from the NTIS data base [PB81-800104] BIOMEDICAL DATA Cabin fire simulator lavatory tests [NASA-CR-160909] BIRD-AIRCRAFT COLLISIONS	A81-20768 s and Borsic N81-17092 N81-16073 om the N81-16038 tations N81-17037 N81-16020	and airline selection procedures BOBING 747 AIRCRAPT Ozone contamination in aircraft cabins - Refrom GASP data and analyses [AIAA PAPER 81-0305] BOREDOM Human Factors of Flight-deck Automation: NASA/Industry Workshop [NASA-TM-81260] BOUNDARY LAYER CONTROL Influence of jet location on the efficiency spanwise blowing Discussion of test results in the design of laminar airfoils for competition gliders [NASA-TM-75402] BOUNDARY LAYER FLOW A computational model for low speed flows p airfoils with spoilers [AIAA PAPER 81-0253] BOUNDARY LAYER SEPARATION Scale effects on turbulent boundary layer development and flow separation around V/inlets at high incidence	A81-21575 sults A81-20740 N81-16022 of A81-20352 N81-15984 ast A81-20702
BALLNCING Multi-plane high speed balancing technique the use of a high specific stiffness Ti- material for vibration control [AD-A093122] BBDS (PROCESS ENGINEERING) Shielded enclosure test bed requirement [AD-A092589] BIBLIOGRAPHIES Collision avoidance systems. Citations fr NTIS data base [PB80-815020] Air traffic control simulation models. Ci from the NTIS data base [PB81-800104] BIOMEDICAL DATA Cabin fire simulator lavatory tests [NASA-CR-160909] BIRD-AIRCHAFT COLLISIONS Computer analysis of bird-resistant aircra transparencies	A81-20768 s and Borsic N81-17092 N81-16073 om the N81-16038 tations N81-17037 N81-16020 ft A81-22087	and airline selection procedures BOEING 747 AIRCRAPT Ozone contamination in aircraft cabins - Refrom GASP data and analyses [AIAA PAPER 81-0305] BOREDOM Human Factors of Flight-deck Automation: NASA/Industry Workshop [NASA-TH-81260] BOUNDARY LAYER COMPROL Influence of jet location on the efficiency spanwise blowing Discussion of test results in the design of laminar airfoils for competition gliders [NASA-TH-75402] BOUNDARY LAYER FLOW A computational model for low speed flows pairfoils with spoilers [AIAA PAPER 81-0253] BOUNDARY LAYER SEPARATION Scale effects on turbulent boundary layer development and flow separation around V/inlets at high incidence [AIAA PAPER 81-0014]	A81-21575 sults A81-20740 N81-16022 of A81-20352 N81-15984 ast A81-20702
BALANCING BALANCING Multi-plane high speed balancing technique the use of a high specific stiffness Ti- material for vibration control [AD-A09 3122] BEDS (PROCESS ENGINEBRING) Shielded enclosure test bed requirement (AD-A092589) BIBLIOGRAPHIES Collision avoidance systems. Citations fr NTIS data base [PB80-815020] Air traffic control simulation models. Ci from the NTIS data base [PB81-800104] BIOMEDICAL DATA Cabin fire simulator lavatory tests [NASA-CR-160909] BIRD-AIRCRAFT COLLISIOMS Computer analysis of bird-resistant aircra transparencies Evaluation of bird load models for dynamic	A81-20768 s and Borsic N81-17092 N81-16073 om the N81-16038 tations N81-17037 N81-16020 ft A81-22087	and airline selection procedures BOBING 747 AIRCRAFT Ozone contamination in aircraft cabins - Refrom GASP data and analyses [AIAA PAPER 81-0305] BOREDOM Human Factors of Flight-deck Automation: NASA/Industry Workshop [NASA-TM-81260] BOUNDARY LAYER CONTROL Influence of jet location on the efficiency spanwise blowing Discussion of test results in the design of laminar airfoils for competition gliders [NASA-TM-75402] BOUNDARY LAYER FLOW A computational model for low speed flows p airfoils with spoilers [AIAA PAPER 81-0253] BOUNDARY LAYER SEPARATION Scale effects on turbulent boundary layer development and flow separation around V/inlets at high incidence [AIAA PAPER 81-0014] Three-dimensional turbulent boundary layer	A81-21575 sults A81-20740 N81-16022 of A81-20352 N81-15984 ast A81-20702 STOL
BALLNCING Multi-plane high speed balancing technique the use of a high specific stiffness Ti- material for vibration control [AD-A093122] BBDS (PROCESS ENGINEERING) Shielded enclosure test bed requirement [AD-A092589] BIBLIOGRAPHIES Collision avoidance systems. Citations fr NTIS data base [PB80-815020] Air traffic control simulation models. Ci from the NTIS data base [PB81-800104] BIOMEDICAL DATA Cabin fire simulator lavatory tests [NASA-CR-160909] BIRD-AIRCHAFT COLLISIONS Computer analysis of bird-resistant aircra transparencies	A81-20768 s and Borsic N81-17092 N81-16073 om the N81-16038 tations N81-17037 N81-16020 ft A81-22087	and airline selection procedures BOEING 747 AIRCRAPT Ozone contamination in aircraft cabins - Refrom GASP data and analyses [AIAA PAPER 81-0305] BOREDOM Human Factors of Flight-deck Automation: NASA/Industry Workshop [NASA-TH-81260] BOUNDARY LAYER COMPROL Influence of jet location on the efficiency spanwise blowing Discussion of test results in the design of laminar airfoils for competition gliders [NASA-TH-75402] BOUNDARY LAYER FLOW A computational model for low speed flows pairfoils with spoilers [AIAA PAPER 81-0253] BOUNDARY LAYER SEPARATION Scale effects on turbulent boundary layer development and flow separation around V/inlets at high incidence [AIAA PAPER 81-0014]	A81-21575 sults A81-20740 N81-16022 of A81-20352 N81-15984 ast A81-20702 STOL A81-20538 ne
BALANCING BALLANCING Multi-plane high speed balancing technique the use of a high specific stiffness Ti- material for vibration control [AD-A093122] BEDS (PROCESS ENGINEBRING) Shielded enclosure test bed requirement (AD-A092589) BIBLIOGRAPHIES Collision avoidance systems. Citations fr NTIS data base [PB80-815020] Air traffic control simulation models. Ci from the NTIS data base [PB81-800104] BIOMEDICAL DATA Cabin fire simulator lavatory tests [NASA-CR-160909] BIRD-AIRCHAFT COLLISIOMS Computer analysis of bird-resistant aircra transparencies Evaluation of bird load models for dynamic analysis of aircraft transparencies [AD-A092909] BLAST LOADS	A81-20768 s and Borsic N81-17092 N81-16073 om the N81-16038 tations N81-17037 N81-16020 ft A81-22087	and airline selection procedures BOBING 747 AIRCRAFT Ozone contamination in aircraft cabins - Refrom GASP data and analyses [AIAA PAPER 81-0305] BOREDOM Human Factors of Flight-deck Automation: NASA/Industry Workshop [NASA-TM-81260] BOUNDARY LAYER CONTROL Influence of jet location on the efficiency spanwise blowing Discussion of test results in the design of laminar airfoils for competition gliders [NASA-TM-75402] BOUNDARY LAYER FLOW A computational model for low speed flows p airfoils with spoilers [AIAA PAPER 81-0253] BOUNDARY LAYER SEPARATION Scale effects on turbulent boundary layer development and flow separation around V/inlets at high incidence [AIAA PAPER 81-0014] Three-dimensional turbulent boundary layer development and separation in V/STOL engineless at incidence with small-cross flow curvature influences	A81-21575 sults A81-20740 N81-16022 of A81-20352 N81-15984 ast A81-20702 STOL A81-20538 ne and
BALLNCING Multi-plane high speed balancing technique the use of a high specific stiffness Ti- material for vibration control [AD-A093122] BBDS (PROCESS ENGINEERING) Shielded enclosure test bed requirement [AD-A092589] BIBLIOGRAPHIES Collision avoidance systems. Citations fr NTIS data base [PB80-815020] Air traffic control simulation models. Ci from the NTIS data base [PB81-800104] BIOMEDICAL DATA Cabin fire simulator lavatory tests [NASA-CR-160909] BIRD-AIRCRAPT COLLISIONS Computer analysis of bird-resistant aircra transparencies Evaluation of bird load models for dynamic analysis of aircraft transparencies [AD-A092909] BIAST LOADS Computational design of large-scale blast	A81-20768 s and Borsic N81-17092 N81-16073 om the N81-16038 tations N81-17037 N81-16020 ft A81-22087 N81-16995 simulators	and airline selection procedures BOBING 747 AIRCRAPT Ozone contamination in aircraft cabins - Refrom GASP data and analyses [AIAA PAPER 81-0305] BOREDOM Human Factors of Flight-deck Automation: NASA/Industry Workshop [NASA-TM-81260] BOUNDARY LAYER CONTROL Influence of jet location on the efficiency spanwise blowing Discussion of test results in the design of laminar airfoils for competition gliders [NASA-TM-75402] BOUNDARY LAYER PLOW A computational model for low speed flows p airfoils with spoilers [AIAA PAPER 81-0253] BOUNDARY LAYER SEPARATION Scale effects on turbulent boundary layer development and flow separation around V/inlets at high incidence [AIAA PAPER 81-0014] Three-dimensional turbulent boundary layer development and separation in V/STOL enginalets at incidence with small-cross flow curvature influences [AIAA PAPER 81-0254]	A81-21575 sults A81-20740 N81-16022 of A81-20352 N81-15984 ast A81-20702 STOL A81-20538 ne
BALANCING Multi-plane high speed balancing technique the use of a high specific stiffness Ti- material for vibration control [AD-A093122] BBDS (PROCESS ENGINEERING) Shielded enclosure test bed requirement [AD-A092589] BIBLIOGRAPHIES Collision avoidance systems. Citations fr NTIS data base [PB80-815020] Air traffic control simulation models. Ci from the NTIS data base [PB81-800104] BIOMEDICAL DATA Cabin fire simulator lavatory tests [NASA-CR-160909] BIRD-AIRCRAFT COLLISIONS Computer analysis of bird-resistant aircra transparencies Evaluation of bird load models for dynamic analysis of aircraft transparencies [AD-A092909] BLAST LOADS Computational design of large-scale blast [ATAA PAPER 81-0159]	A81-20768 s and Borsic N81-17092 N81-16073 om the N81-16038 tations N81-17037 N81-16020 ft A81-22087 N81-16995 simulators A81-20639	and airline selection procedures BOBING 747 AIRCRAPT Ozone contamination in aircraft cabins - Refrom GASP data and analyses [AIAA PAPER 81-0305] BOREDOM Human Factors of Flight-deck Automation: NASA/Industry Workshop [NASA-TM-81260] BOUNDARY LAYER CONTROL Influence of jet location on the efficiency spanwise blowing Discussion of test results in the design of laminar airfoils for competition gliders [NASA-TM-75402] BOUNDARY LAYER FLOW A computational model for low speed flows pairfoils with spoilers [AIAA PAPER 81-0253] BOUNDARY LAYER SEPARATION Scale effects on turbulent boundary layer development and flow separation around V/inlets at high incidence [AIAA PAPER 81-0014] Three-dimensional turbulent boundary layer development and separation in V/STOL enginers in lets at incidence with small-cross flow curvature influences [AIAA PAPER 81-0254] BOUNDARY LAYER STABILITY	A81-21575 sults A81-20740 N81-16022 of A81-20352 N81-15984 ast A81-20702 STOL A81-20538 De and A81-20703
BALANCING BALLANCING Multi-plane high speed balancing technique the use of a high specific stiffness Ti- material for vibration control [AD-A09 3122] BEDS (PROCESS ENGINERRING) Shielded enclosure test bed requirement (AD-A092589) BIBLIOGRAPHIES Collision avoidance systems. Citations fr NTIS data base [PB80-815020] Air traffic control simulation models. Ci from the NTIS data base [PB81-800104] BIOMEDICAL DATA Cabin fire simulator lavatory tests [NASA-CR-160909] BIRD-AIRCRAFT COLLISIOMS Computer analysis of bird-resistant aircra transparencies Evaluation of bird load models for dynamic analysis of aircraft transparencies [AD-A092909] BLAST LOADS Computational design of large-scale blast [AIAA PAPER 81-0159] Nuclear blast response of airbreathing pro-	A81-20768 s and Borsic N81-17092 N81-16073 om the N81-16038 tations N81-17037 N81-16020 ft A81-22087 N81-16995 simulators A81-20639 pulsion	and airline selection procedures BOBING 747 AIRCRAFT Ozone contamination in aircraft cabins - Refrom GASP data and analyses [AIAA PAPER 81-0305] BOREDOM Human Factors of Flight-deck Automation: NASA/Industry Workshop [NASA-TM-81260] BOUNDARY LAYER CONTROL Influence of jet location on the efficiency spanwise blowing Discussion of test results in the design of laminar airfoils for competition gliders [NASA-TM-75402] BOUNDARY LAYER FLOW A computational model for low speed flows p airfoils with spoilers [AIAA PAPER 81-0253] BOUNDARY LAYER SEPARATION Scale effects on turbulent boundary layer development and flow separation around V/inlets at high incidence [AIAA PAPER 81-0014] Three-dimensional turbulent boundary layer development and separation in V/STOL enginets at incidence with small-cross flow curvature influences [AIAA PAPER 81-0254] BOUNDARY LAYER STABILITY Compressible boundary-layer stability calcu	A81-21575 sults A81-20740 N81-16022 of A81-20352 N81-15984 ast A81-20702 STOL A81-20538 De and A81-20703
BALANCING Multi-plane high speed balancing technique the use of a high specific stiffness Ti- material for vibration control [AD-A093122] BBDS (PROCESS ENGINEERING) Shielded enclosure test bed requirement [AD-A092589] BIBLIOGRAPHIES Collision avoidance systems. Citations fr NTIS data base [PB80-815020] Air traffic control simulation models. Ci from the NTIS data base [PB81-800104] BIOMEDICAL DATA Cabin fire simulator lavatory tests [NASA-CR-160909] BIRD-AIRCRAFT COLLISIONS Computer analysis of bird-resistant aircra transparencies Evaluation of bird load models for dynamic analysis of aircraft transparencies [AD-A092909] BLAST LOADS Computational design of large-scale blast [ATAA PAPER 81-0159]	A81-20768 s and Borsic N81-17092 N81-16073 om the N81-16038 tations N81-17037 N81-16020 ft A81-22087 N81-16995 simulators A81-20639 pulsion	and airline selection procedures BOBING 747 AIRCRAPT Ozone contamination in aircraft cabins - Refrom GASP data and analyses [AIAA PAPER 81-0305] BOREDOM Human Factors of Flight-deck Automation: NASA/Industry Workshop [NASA-TM-81260] BOUNDARY LAYER CONTROL Influence of jet location on the efficiency spanwise blowing Discussion of test results in the design of laminar airfoils for competition gliders [NASA-TM-75402] BOUNDARY LAYER FLOW A computational model for low speed flows pairfoils with spoilers [AIAA PAPER 81-0253] BOUNDARY LAYER SEPARATION Scale effects on turbulent boundary layer development and flow separation around V/inlets at high incidence [AIAA PAPER 81-0014] Three-dimensional turbulent boundary layer development and separation in V/STOL enginels at incidence with small-cross flow curvature influences [AIAA PAPER 81-0254] BOUNDARY LAYER STABILITY Compressible boundary-layer stability calcufor sweptback wings with suction [AIAA PAPER 81-0196]	A81-21575 sults A81-20740 N81-16022 of A81-20352 N81-15984 ast A81-20702 STOL A81-20538 ne and A81-20703 lations A81-20840
BALANCING BALLANCING Multi-plane high speed balancing technique the use of a high specific stiffness Ti- material for vibration control [AD-A09 3122] BEDS (PROCESS ENGINEBRING) Shielded enclosure test bed requirement (AD-A092589) BIBLIOGRAPHIES Collision avoidance systems. Citations fr NTIS data base [PB80-815020] Air traffic control simulation models. Ci from the NTIS data base [PB81-800104] BIOMEDICAL DATA Cabin fire simulator lavatory tests [NASA-CR-160909] BIRD-AIRCRAFT COLLISIOMS Computer analysis of bird-resistant aircra transparencies Evaluation of bird load models for dynamic analysis of aircraft transparencies [AD-A092909] BLAST LOADS Computational design of large-scale blast [AIAA PAPER 81-0159] Nuclear blast response of airbreathing pro systems. Laboratory measurements with a operational J-85-5 turbojet engine [AD-A092229]	A81-20768 s and Borsic N81-17092 N81-16073 om the N81-16038 tations N81-17037 N81-16020 ft A81-22087 N81-16995 simulators A81-20639 pulsion	and airline selection procedures BOBIEG 747 AIRCRAFT Ozone contamination in aircraft cabins - Refrom GASP data and analyses [AIAA PAPER 81-0305] BOREDOM Human Factors of Flight-deck Automation: NASA/Industry Workshop [NASA-TM-81260] BOUNDARY LAYER CONTROL Influence of jet location on the efficiency spanwise blowing Discussion of test results in the design of laminar airfoils for competition gliders [NASA-TM-75402] BOUNDARY LAYER FLOW A computational model for low speed flows p airfoils with spoilers [AIAA PAPER 81-0253] BOUNDARY LAYER SEPARATION Scale effects on turbulent boundary layer development and flow separation around V/inlets at high incidence [AIAA PAPER 81-0014] Three-dimensional turbulent boundary layer development and separation in V/STOL enginales at incidence with small-cross flow curvature influences [AIAA PAPER 81-0254] BOUNDARY LAYER STABILITY Compressible boundary-layer stability calcuration sweptback wings with suction [AIAA PAPER 81-0196] The linear instability due to the compressi	A81-21575 sults A81-20740 N81-16022 of A81-20352 N81-15984 ast A81-20702 STOL A81-20538 ne and A81-20703 lations A81-20840
BALLNCING Multi-plane high speed balancing technique the use of a high specific stiffness Ti- material for vibration control [AD-A092122] BEDS (PROCESS ENGINEERING) Shielded enclosure test bed requirement [AD-A092589] BIBLIOGRAPHIES Collision avoidance systems. Citations fr NTIS data base [PB80-815020] Air traffic control simulation models. Ci from the NTIS data base [PB81-800104] BIOMEDICAL DATA Cabin fire simulator lavatory tests [NASA-CR-160909] BIRD-AIRCRAPT COLLISIONS Computer analysis of bird-resistant aircra transparencies Evaluation of bird load models for dynamic analysis of aircraft transparencies [AD-A092209] BIAST LOADS Computational design of large-scale blast [AIAA PAPER 81-0159] Nuclear blast response of airbreathing pro systems. Laboratory measurements with a operational J-85-5 turbojet engine [AD-A092229] BLOWING	A81-20768 s and Borsic N81-17092 N81-16073 om the N81-16038 tations N81-16020 ft A81-22087 N81-16995 simulators A81-20639 pulsion N81-16063	BOBING 747 AIRCRAPT Ozone contamination in aircraft cabins - Refrom GASP data and analyses [AIAA PAPER 81-0305] BOREDOM Human Factors of Flight-deck Automation: NASA/Industry Workshop [NASA-TM-81260] BOUNDARY LAYER CONTROL Influence of jet location on the efficiency spanwise blowing Discussion of test results in the design of laminar airfoils for competition gliders [NASA-TM-75402] BOUNDARY LAYER PLOW A computational model for low speed flows pairfoils with spoilers [AIAA PAPER 81-0253] BOUNDARY LAYER SEPARATION Scale effects on turbulent boundary layer development and flow separation around V/inlets at high incidence [AIAA PAPER 81-0014] Three-dimensional turbulent boundary layer development and separation in V/STOL enginalets at incidence with small-cross flow curvature influences [AIAA PAPER 81-0254] BOUNDARY LAYER STABILITY Compressible boundary-layer stability calcufor sweptback wings with suction [AIAA PAPER 81-0196] The linear instability due to the compressicus crossflow on a swept wing	A81-21575 sults A81-20740 N81-16022 of A81-20352 N81-15984 ast A81-20702 STOL A81-20538 ne and A81-20703 lations A81-20840 ble
BALANCING Hulti-plane high speed balancing technique the use of a high specific stiffness Ti- material for vibration control [AD-A093122] BBDS (PROCESS ENGINERRING) Shielded enclosure test bed requirement [AD-A092589] BIBLIOGRAPHIES Collision avoidance systems. Citations fr NTIS data base [PB80-815020] Air traffic control simulation models. Ci from the NTIS data base [PB81-800104] BIOMEDICAL DATA Cabin fire simulator lavatory tests [NASA-CR-160909] BIRD-ATRCRAFT COLLISIONS Computer analysis of bird-resistant aircra transparencies Evaluation of bird load models for dynamic analysis of aircraft transparencies [AD-A092909] BIAST LOADS Computational design of large-scale blast [ATAA PAPER 81-0159] Nuclear blast response of airbreathing pro systems. Laboratory measurements with a operational J-85-5 turbojet engine [AD-A092229] BLOWING Interference effects of concentrated blowi	A81-20768 s and Borsic N81-17092 N81-16073 on the N81-16038 tations N81-17037 N81-16020 ft A81-22087 N81-16995 simulators A81-20639 pulsion N81-16063 ng and	and airline selection procedures BOBING 747 AIRCRAPT Ozone contamination in aircraft cabins - Refrom GASP data and analyses [AIAA PAPER 81-0305] BOREDOM Human Factors of Flight-deck Automation: NASA/Industry Workshop [NASA-TM-81260] BOUNDARY LAYER CONTROL Influence of jet location on the efficiency spanwise blowing Discussion of test results in the design of laminar airfoils for competition gliders [NASA-TH-75402] BOUNDARY LAYER FLOW A computational model for low speed flows pairfoils with spoilers [AIAA PAPER 81-0253] BOUNDARY LAYER SEPARATION Scale effects on turbulent boundary layer development and flow separation around V/inlets at high incidence [AIAA PAPER 81-0014] Three-dimensional turbulent boundary layer development and separation in V/STOL enginal inlets at incidence with small-cross flow curvature influences [AIAA PAPER 81-0254] BOUNDARY LAYER STABILITY Compressible boundary-layer stability calcuring for sweptback wings with suction [AIAA PAPER 81-0196] The linear instability due to the compressing crossflow on a swept wing	A81-21575 sults A81-20740 N81-16022 of A81-20352 N81-15984 ast A81-20702 STOL A81-20538 ne and A81-20703 lations A81-20840
BALLNCING Multi-plane high speed balancing technique the use of a high specific stiffness Ti- material for vibration control [AD-A092122] BEDS (PROCESS ENGINEERING) Shielded enclosure test bed requirement [AD-A092589] BIBLIOGRAPHIES Collision avoidance systems. Citations fr NTIS data base [PB80-815020] Air traffic control simulation models. Ci from the NTIS data base [PB81-800104] BIOMEDICAL DATA Cabin fire simulator lavatory tests [NASA-CR-160909] BIRD-AIRCRAPT COLLISIONS Computer analysis of bird-resistant aircra transparencies Evaluation of bird load models for dynamic analysis of aircraft transparencies [AD-A092209] BIAST LOADS Computational design of large-scale blast [AIAA PAPER 81-0159] Nuclear blast response of airbreathing pro systems. Laboratory measurements with a operational J-85-5 turbojet engine [AD-A092229] BLOWING	A81-20768 s and Borsic N81-17092 N81-16073 on the N81-16038 tations N81-17037 N81-16020 ft A81-22087 N81-16995 simulators A81-20639 pulsion N81-16063 ng and	BOBING 747 AIRCRAPT Ozone contamination in aircraft cabins - Refrom GASP data and analyses [AIAA PAPER 81-0305] BOREDOM Human Factors of Flight-deck Automation: NASA/Industry Workshop [NASA-TM-81260] BOUNDARY LAYER CONTROL Influence of jet location on the efficiency spanwise blowing Discussion of test results in the design of laminar airfoils for competition gliders [NASA-TM-75402] BOUNDARY LAYER PLOW A computational model for low speed flows pairfoils with spoilers [AIAA PAPER 81-0253] BOUNDARY LAYER SEPARATION Scale effects on turbulent boundary layer development and flow separation around V/inlets at high incidence [AIAA PAPER 81-0014] Three-dimensional turbulent boundary layer development and separation in V/STOL enginalets at incidence with small-cross flow curvature influences [AIAA PAPER 81-0254] BOUNDARY LAYER STABILITY Compressible boundary-layer stability calcufor sweptback wings with suction [AIAA PAPER 81-0196] The linear instability due to the compressicus crossflow on a swept wing	A81-21575 sults A81-20740 N81-16022 of A81-20352 N81-15984 ast A81-20702 STOL A81-20538 ne and A81-20703 lations A81-20840 ble A81-21168
BALANCING BALANCING Hulti-plane high speed balancing technique the use of a high specific stiffness Ti- material for vibration control [AD-A093122] BEDS (PROCESS ENGINERRING) Shielded enclosure test bed requirement [AD-A092589] BIBLIOGRAPHIES Collision avoidance systems. Citations fr NTIS data base [PB80-815020] Air traffic control simulation models. Ci from the NTIS data base [PB81-800104] BIOMEDICAL DATA Cabin fire simulator lavatory tests [NASA-CR-160909] BIRD-ATRCRAFT COLLISIONS Computer analysis of bird-resistant aircra transparencies Evaluation of bird load models for dynamic analysis of aircraft transparencies [AD-A092909] BIAST LOADS Computational design of large-scale blast [ATAA PAPER 81-0159] Nuclear blast response of airbreathing pro systems. Laboratory measurements with a operational J-85-5 turbojet engine [AD-A092229] BLOWING Interference effects of concentrated blowi vortices on a typical fighter configurate	A81-20768 s and Borsic N81-17092 N81-16073 om the N81-16038 tations N81-17037 N81-16020 ft A81-22087 N81-16995 simulators A81-20639 pulsion N81-16063 ng and ion N81-16009	and airline selection procedures BOBING 747 AIRCRAPT Ozone contamination in aircraft cabins - Refrom GASP data and analyses [AIAA PAPER 81-0305] BOREDOM Human Factors of Flight-deck Automation: NASA/Industry Workshop [NASA-TM-81260] BOUNDARY LAYER CONTROL Influence of jet location on the efficiency spanwise blowing Discussion of test results in the design of laminar airfoils for competition gliders [NASA-TM-75402] BOUNDARY LAYER FLOW A computational model for low speed flows pairfoils with spoilers [AIAA PAPER 81-0253] BOUNDARY LAYER SEPARATION Scale effects on turbulent boundary layer development and flow separation around V/inlets at high incidence [AIAA PAPER 81-0014] Three-dimensional turbulent boundary layer development and separation in V/STOL enginels at incidence with small-cross flow curvature influences [AIAA PAPER 81-0254] BOUNDARY LAYER STABILITY Compressible boundary-layer stability calcuring for sweptback wings with suction [AIAA PAPER 81-0196] The linear instability due to the compression crossflow on a swept wing BOUNDARY LAYER TRANSITION Core compressor exit stage study. Volume 2 and performance report for the baseline	A81-21575 sults A81-20740 N81-16022 of A81-20352 N81-15984 ast A81-20702 STOL A81-20538 ne and A81-20703 lations A81-20840 ble A81-21168
BALANCING Multi-plane high speed balancing technique, the use of a high specific stiffness Timaterial for vibration control [AD-A09 3122] BEDS (PROCESS ENGINERRING) Shielded enclosure test bed requirement (AD-A092589) BIBLIOGRAPHIES Collision avoidance systems. Citations from the NTIS data base [PB80-815020] Air traffic control simulation models. Cifrom the NTIS data base [PB81-800104] BIOMEDICAL DATA Cabin fire simulator lavatory tests [NASA-CR-160909] BIRD-AIRCRAFT COLLISIOMS Computer analysis of bird-resistant aircratransparencies Evaluation of bird load models for dynamic analysis of aircraft transparencies [AD-A092909] BLAST LOADS Computational design of large-scale blast [AIAA PAPER 81-0159] Nuclear blast response of airbreathing prosystems. Laboratory measurements with a operational J-85-5 turbojet engine [AD-A092229] BLOWING Interference effects of concentrated blowity ortices on a typical fighter configurates.	A81-20768 s and Borsic N81-17092 N81-16073 om the N81-16038 tations N81-17037 N81-16020 ft A81-22087 N81-16995 simulators A81-20639 pulsion N81-16063 ng and ion N81-16009 nd	and airline selection procedures BOBIEG 747 AIRCRAFT Ozone contamination in aircraft cabins - Refrom GASF data and analyses [AIAA PAPER 81-0305] BOREDOM Human Factors of Flight-deck Automation: NASA/Industry Workshop [NASA-TM-81260] BOUNDARY LAYER CONTROL Influence of jet location on the efficiency spanwise blowing Discussion of test results in the design of laminar airfoils for competition gliders [NASA-TM-75402] BOUNDARY LAYER FLOW A computational model for low speed flows p airfoils with spoilers [AIAA PAPER 81-0253] BOUNDARY LAYER SEPARATION Scale effects on turbulent boundary layer development and flow separation around V/inlets at high incidence [AIAA PAPER 81-0014] Three-dimensional turbulent boundary layer development and separation in V/STOL enginets at incidence with small-cross flow curvature influences [AIAA PAPER 81-0254] BOUNDARY LAYER STABILITY Compressible boundary-layer stability calcured for sweptback wings with suction [AIAA PAPER 81-0196] The linear instability due to the compressing crossflow on a swept wing BOUNDARY LAYER TRANSITION Core compressor exit stage study. Volume 2 and performance report for the baseline configuration	A81-21575 sults A81-20740 N81-16022 of A81-20352 N81-15984 ast A81-20702 STOL A81-20538 ne and A81-20703 lations A81-20840 ble A81-21168 : Data
BALANCING BALANCING Hulti-plane high speed balancing technique the use of a high specific stiffness Ti- material for vibration control [AD-A093122] BEDS (PROCESS ENGINERRING) Shielded enclosure test bed requirement [AD-A092589] BIBLIOGRAPHIES Collision avoidance systems. Citations fr NTIS data base [PB80-815020] Air traffic control simulation models. Ci from the NTIS data base [PB81-800104] BIOMEDICAL DATA Cabin fire simulator lavatory tests [NASA-CR-160909] BIRD-ATRCRAFT COLLISIONS Computer analysis of bird-resistant aircra transparencies Evaluation of bird load models for dynamic analysis of aircraft transparencies [AD-A092909] BIAST LOADS Computational design of large-scale blast [ATAA PAPER 81-0159] Nuclear blast response of airbreathing pro systems. Laboratory measurements with a operational J-85-5 turbojet engine [AD-A092229] BLOWING Interference effects of concentrated blowi vortices on a typical fighter configurate	A81-20768 s and Borsic N81-17092 N81-16073 om the N81-16038 tations N81-17037 N81-16020 ft A81-22087 N81-16995 simulators A81-20639 pulsion N81-16063 ng and ion N81-16009 nd	BOBIEG 747 AIRCRAFT Ozone contamination in aircraft cabins - Refrom GASF data and analyses [AIAA PAPER 81-0305] BOREDOM Human Factors of Flight-deck Automation: NASA/Industry Workshop [NASA-TM-81260] BOUNDARY LAYER CONTROL Influence of jet location on the efficiency spanwise blowing Discussion of test results in the design of laminar airfoils for competition gliders [NASA-TM-75402] BOUNDARY LAYER FLOW A computational model for low speed flows p airfoils with spoilers [AIAA PAPER 81-0253] BOUNDARY LAYER SEPARATION Scale effects on turbulent boundary layer development and flow separation around V/inlets at high incidence [AIAA PAPER 81-0014] Three-dimensional turbulent boundary layer development and separation in V/STOL enginets at incidence with small-cross flow curvature influences [AIAA PAPER 81-0254] BOUNDARY LAYER STABILITY Compressible boundary-layer stability calcur for sweptback wings with suction [AIAA PAPER 81-0196] The linear instability due to the compressing crossflow on a swept wing BOUNDARY LAYER TRANSITION Core compressor exit stage study. Volume 2 and performance report for the baseline configuration	A81-21575 sults A81-20740 N81-16022 of A81-20352 N81-15984 ast A81-20702 STOL A81-20538 ne and A81-20703 lations A81-20840 ble A81-21168

BRIGHTNESS SUBJECT INDEX

BRIGHTHESS Operational problems associated with head-up	Tension induced in the cables inside closed metal structures and in carbon epoxy submitted to a
displays during instrument flight [AD-A092992] N81-17	lightning-type impulse current 058 N81-16158
The presentation of static information on air	Assessment of risk to Boeing commerical transport
traffic control displays 881-17	aircraft from carbon fibers fiber release from graphite/epxoy materials
BUPPETING	[NASA-CR-159211] N81-17171
A method for the prediction of wing response to nonstationary buffet loads	CARGO AIRCHAFT Turboprop Cargo Aircraft Systems study, phase 1
[AD-A093037] N81-17	043 [NASA-CR-159355] N81-16041
	CASCADE CONTROL Practical gust load alleviation and flutter
<u></u>	suppression control laws based on a LQG
C-135 AIRCRAPT Theoretical and Experimental studies of	methodology Linear Quadratic Gaussian [AIAA PAPER 81-0021] A81-20544
aerodynamic interference effects aerodynamic	CASCADE PLOU
forces on winglets and on wing nacelle configurations for the YC-14 and KC-135 aircraf	Numerical solution of transonic flow through a cascade with slender profiles
N81-16	D17 A81-21197
CABIN ATMOSPHERES Ozone contamination in aircraft cabins - Results	CASCADE WIND TOWNELS Gravimetric investigation of the particle number
from GASP data and analyses	density distribution function in the high speed
[AIAA PAPER 81-0305] A81-20 Ozone contamination in aircraft cabins: Results	740 cascade wind tunnel for laser anemometry measurements
from GASP data and analyses	[ESA-TT-625] N81-16069
[NASA-TM-81671] N81-160 CALIBRATING	O21 Evaluation of a subsonic cascade wind tunnel for compressor blade testing
In-flight calibration of aircraft antenna	[AD-A093591] N81-17107
radiation patterns	CASE HISTORIES 825 The high-speed airfoil program
AGARD flight test instrumentation series. Volume	N8 1-15970
10 on Helicopter flight test instrumentation [AGARD-AG-160-VOL-10] N81-170	Transonic wind tunnel development (1940 - 1950) 040 881-15971
CAMBERED WINGS	The high-speed propeller program N81-15972
Some particular configuration effects on a thin supercritical variable camber wing	High-speed cowlings, air inlets and outlets, and:
N81-16	005 internal-flow systems 2% N81-15973
CAWADA Bilingual air traffic control in Canada	CATAPULTS
A81-209 CANARD CONFIGURATIONS	
Delta canard configuration at high angle of attack	catapult launched models k [AAAF-NT-80-15] N81-17055
A81-20. Transonic flow calculations over two-dimensional	351 CATHODE RAY TUBES Development of a shadow mask type high-resolution
canard-wing systems	color picture tube for cockpit display
[AIAA PAPER 79-1565] A81-23. Interference effects of concentrated blowing and	367 Advancement on visualization techniques
vortices on a typical fighter configuration	[AGARD-AG-255] N81-17063
N81-16 Aerodynamic interaction between a close-coupled	009 Cathode ray tubes and plasma panels as display devices for aircraft displays
canard and a sweptback wing in transonic flow	N81-17069
N81-16	O13 An advanced electronic cockpit instrumentation system: The coordinated cockpit display
Ergonometric study of ejection through a breakable	N81-17074
canopy N81-170	CEMENTS D11 Shrinkage-compensating cement for airport
CAPACITIVE FUEL GAGES	pavement. Phase 3: Firous concretes. Addendum
Effects on anti-static additives on aircraft capacitance fuel gaging systems	[AD-A092945] N81-17299 CENTRIFUGAL COMPRESSORS
[AD-A092907] N81-170 CARBON FIBER REINFORCED PLASTICS	
EMC, lightning and NEMP-protection-new	Centrifugal compressors for small aero and
requirements for approved specifications when using CPRP	automotive gas turbine engines N81-17467
N81-16	152 CERTIFICATION
CARBON FIBERS Large-scale carbon fiber tests	New materials and helicopter certification exigencies of certification regulation
[NASA-TM-80218] N81-16	137 [AAAF-NT-79-26] N81-17052
Current and projected use of carbon composites in United States aircraft	CH-47 HELICOPTER Preliminary Airworthiness Evaluation (PAE 1) of
N81-16	the YCH-47D helicopter
Application of carbon fibre composites to military aircraft structures	Y [AD-A092633] N81-16046 CHARGE COUPLED DEVICES
N81-16	147 A versatile miniature solid state television
The electrical effects of joints and bonds in carbon fiber composites	camera /CCD/ A81-22620
N81-16	
The UK Ministry of Defence programme on the electromagnetic properties of carbon fiber	Effect of refining variables on the properties and composition of JP-5
composites	[AD-A093842] N81-17281
N81-16 Aircraft manufacturers approach to the	Environment-load interaction effects on crack
B.M.C./Avionics problems associated with the use of composite materials	growth in landing gear steels
N81-16	156 CIRCUIT RELIABILITY
	Electromagnetic measurement of lightning strikes to aircraft
	[AIAA PAPEE 81-0083] A81-20588

SUBJECT INDEX COMMERCIAL AIRCRAFT

CIRCULATION CONTROL AIRFOILS Numerical optimization of circulation contrairfoils	col	Test and evaluation of improved aircrew rest systems for combat helicopers	raint 81-17017
[AIAA PAPER 81-0016] Experimental development of an advanced	A81-20540	An advanced electronic cockpit instrumentation system: The coordinated cockpit display	
circulation control wing system for Navy aircraft [AIAA PAPER 81-0151]	A81-20632	No. The influence of visual requirements on the of military cockpits	81-17074 design
CIRCULATION CONTROL ROTORS		n e	81-17075
Acoustics of rotors utilizing circulation of [AIAA PAPER 81-0092] CIVIL AVIATION	181-20596	COMEREMY RADAR Coherent signal processing in frequency agil- pulse radar units	е
Operational energy conservation strategies	in	Ai	81-20097
commercial aviation	A81-20465	The evaluation of aircraft collision probabi.	lities
Operation and evaluation of the Terminal Configured Vehicle Mission Simulator in a	ın	at intersecting air routes	81-21967
automated terminal area metering and space		Collision avoidance systems. Citations from NTIS data base	
	A81-21709	[PB80-815020] N	81-16038
Civil aviation applications of Navstar/GPS differential techniques	through	COMBAT Energy maneuverability display for the Air Co	ombat
Helicopter fatigue qualification	A81-22374	Maneuvering Range/Tactical Training System (ACMR/TACTS)	
	A81-22623	[AD-A092974] N	81-17041
A feasibility study for advanced technology integration for general aviation	•	COMBUSTIBLE PLOW Three-dimensional model of spray combustion	in gas
[NASA-CR-159381] A feasibility study for advanced technology	N81-15974	turbine combustors . [AIAA PAPER 81-0324] A	81-20751
integration for general aviation [AD-A092437]	N81-15975	COMBUSTION CHAMBERS Considerations of the use of vitiated prehea	
Summary of aviation safety program resumes.		for engine inlets	
safety [AD-A091938]	N81-16027	Two-stage combustion for reducing pollutant	81-20023
* Briefs of fatal accidents involving weather cause/factor, US General Aviation, 1978	casa	emissions from gas turbine combustors [NASA-CR-163877] N	81-16056
[PB81-110827] An overview of general aviation propulsion	N81-16028	Combustor liner durability analysis	81-17079
research programs at NASA Lewis Research		COMBUSTION PHYSICS	01-17079
The state of the art of general aviation as	N81-16052 utopilots	An overview of general aviation propulsion research programs at NASA Lewis Research C	enter
[NASA-CR-159371] The use of total simulator training in	N81-16066	[NASA-TM-81666] N COMBUSTION PRODUCTS	81-16052
transitioning air-carrier pilots: A fiel	Ld	Exhaust emission characteristics and variabi	
evaluation [NASA-TM-81250]	N81-16994	for maintained General Electric CF6-50 tur engines	
Listing of accidents/incidents by aircraft and model, United States Civil Aviation,		[AD-A092291] N	81-16064
Pederal Radionavigation Plan. Volume 1:	N81-16999	Field evaluation of the LR80 land navigation [AD-A091885]	system 81-16035
A. Pradionavigation plans and policy	WO.4 43030	COMMAND GUIDANCE	
√ → [AD-A093774] Federal Radionavigation Plan. Volume 2:	N81-17030	A low cost multiple drone command and tracki system	-
Requirements [AD-A093775]	N81-17031	COMMERCIAL AIRCRAFT	81-22613
Pederal Radionavigation Plan. Volume 3: Radionavigation system characteristics		Application of low frequency eddy-current for inspection of civil aircraft	Г
[AD-A093776]	N81-17032	a.	81-20110
Pederal Radionavigation Plan. Volume 4: Radionavigation research, engineering and	i	Operational energy conservation strategies i commercial aviation	n
development [AD-A093777]	N81-17033	A The effect of heavy rain on windshear attrib	81-20465 uted
Spin recovery training [GPO-67-439]	N81-17098	accidents [AIAA PAPER 81-0390] A	81-20800
Transport jet aircraft noise abatement in f	foreign	Effects of commercial aircraft operating	20000
countries: Growth, structure, impact. V 1: Europe, July 1980			81-22681
[NASA-CR-152356] Transport jet aircraft noise abatement in f	N81-17623 foreign	Ozone contamination in aircraft cabins: Res from GASP data and analyses	ults
countries: Growth, structure, impact. V 2: Pacific basin, August 1980	Volume	[NASA-TM-81671] No. Design and evaluation of an integrated Quiet	81-16021
[NASA-CR-152357-VOL-2]	N81-17624	General Aviation Turbofan (OCGAT) engine a	
An airborne sensor for the avoidance of cle	ar air	(<u>-</u>	81-16057
turbulence [AIAA PAPER 81-0297]	A81-20735	Environmental exposure effects on composite materials for commercial aircraft	
CAT altitude avoidance system [NASA-CASE-NPO-15351-1]	N81-16677	[NASA-CR-165649] N JT8D engine internal exhaust mixer technolog	81-16139
CLOUD COVER		program	
Computer simulation of airfoil icing withou [AIAA PAPER 81-0402]	1t runback A81-20809	Transport jet aircraft noise abatement in fo	
COCKPITS Development of a shadow mask type high-reso	olution	countries: Growth, structure, impact. Vo. 1: Europe, July 1980	lume
color picture tube for cockpit display	A81-23095		81-17623 reign
Human Factors of Plight-deck Automation:	AB 1-23095	countries: Growth, structure, impact. Vo.	
NASA/Industry Workshop [NASA-TM-81260]	N81-16022	2: Pacific basin, August 1980 [NASA-CR-152357-VOL-2]	81-17624

SUBJECT INDEX

COMMUNICATION CARLING	m1 111 1 1 1 1 6 6 1 1 1 1 1 1 1 1 1 1 1
COMMUNICATION CABLES Fiber optics study technology for military aircraft	The high-speed airfoil program N81-1597
A81-22503	COMPRESSOR BLADES
COMMUNICATION EQUIPMENT	Evaluation of compressor blade endurance limits by
Problems of voice communication in helicopters	an accelerated method
A81-20074 Functional testing communication equipment	A81-2218: Core compressor exit stage study. Volume 2: Data
(avionics)	and performance report for the baseline
[AD-A092825] N81-16375	configuration
COMMUNICATION NETWORKS	[NASA-CR-159498] N81-1605
An airborne integrated communications network utilizing fiber optics	Compressor blade monitoring system for a VA1310
A81-21880	(Allis Chalmers) Wind Tunnel Compressor [AD-A092920] N81-1710
Communications support for National Flight Data	Evaluation of a subsonic cascade wind tunnel for
Center information system	compressor blade testing
[AD-A093095] N81-17327	[AD-A093591] N81-1710
COMMUNICATION SATELLITES Air traffic control and position location by	COMPRESSOR EFFICIENCY Turbo-compressors surge and surge control
satellite constellation in equatorial orbit	[AIAA PAPER 81-0070] A81-2057
A81-21912	COMPUTATIONAL PLUID DYNAMICS
COMPOSITE MATERIALS	Radiation boundary conditions for wave-like
Design, fabrication, and testing of the Maximum Performance Ejection System (MPES) seat structure	equations numerical jet acoustics experimentation
[AD-A092292] N81-16025	A81-2022
Large-scale carbon fiber tests	Numerical calculation of jet-induced ground effect
[NASA-TH-80218] N81-16137	in VTOL
Environmental exposure effects on composite materials for commercial aircraft	The numerical solution of incompressible turbulent
[NASA-CR-165649] N81-16139	flow over airfoils
Current and projected use of carbon composites in	[AIAA PAPER 81-0047] A81-2056
United States aircraft	Numerical study of a scramjet engine flow field
N81-16145 The effect of the in-service environment on	[AIAA PAPER 81-0186] A81-2065: A computational model for low speed flows past
composite materials (resume of the April 1980	airfoils with spoilers
Athens conference)	[AIAA PAPER 81-0253] A81-2070
N81-16146	Solutions for slightly over- or under-expanded hot
Application of carbon fibre composites to military aircraft structures	supersonic jets exhausting into cold subsonic mainstreams
N81-16147	[AIAA PAPER 81-0257] A81-2070
The electrical effects of joints and bonds in	3-D viscous analysis of ducts and flow splitters
carbon fiber composites	[AIAA PAPER 81-0277] A81-20720
N81-16153 The UK Ministry of Defence programme on the	Compressible boundary-layer stability calculations for sweptback wings with suction
electromagnetic properties of carbon fiber	[AIAA PAPER 81-0196] A81-20840
composites	Spanwise distribution of control points in the
N81-16154	method of finite elementary solutions
Aircraft manufacturers approach to the E.M.C./Avionics problems associated with the use	[AIAA PAPER 79-1879] A81-2101
of composite materials	Numerical techniques in linear duct acoustics - A status report
N81-16156	[ASME PAPER 80-Wa/NC-2] A81-21120
Electromagnetic coupling to advanced composite	Numerical solution of transonic flow through a
aircraft with application to trade-off and specification determination	cascade with slender profiles
N81-16166	A81-2119 Calculation of supersonic gas flows about wings
Composite structural materials aircraft	A81-2120
applications	New approach to the solution of large, full matrix
[NASA-CR-163946] N81-17039 COMPOSITE STRUCTURES	equations Neumann problem for inviscid incompressble flow past airfoils
Thermal considerations in the patching of metal	A81-21552
sheets with composite overlays	Three-dimensional wing boundary layer calculated
A81-20297 ·	with eight different methods
AV-8B composite fuselage design [AIAA PAPER 81-0232] A81-20690	A81-21555 Analysis of a symmetric transonic aerofoil with
Design, durability and low cost processing	the finite element method - A new upwinding
technology for composite fan exit guide vanes	technique
A81-22664	181-22984
Experiences with composite aircraft structures A81-22678	Transonic flow calculations over two-dimensional canard-wing systems
A French flight test program on the	[AIAA PAPER 79-1565] A81-2336
electromagnetic effects of lightning	Complex configuration analysis at transonic speeds
N81-16155	N81-16010
Composite structural materials aircraft applications	Theoretical and Experimental studies of aerodynamic interference effects aerodynamic
[NASA-CR-163946] N81-17039	forces on winglets and on wing nacelle
Composite containment systems for jet engine fan	configurations for the YC-14 and KC-135 aircraft
blades	N81-1601
[NASA-TM-81675] N81-17480 COMPRESSIBLE BOUNDARY LAYER	Data base for the prediction of inlet external drag
Compressible boundary-layer stability calculations	N81-1601 Hyperbolic/parabolic development for the GIM-STAR
for sweptback wings with suction	code flow fields in supersonic inlets
[AIAA PAPER 81-0196] A81-20840	[NASA-CR-3369] N81-16416
The linear instability due to the compressible crossflow on a swept wing	The influence of the compressibility in simulating the conduct of exterior loads of a carrier
A81-21168	[MBB-FE-122/S/PUB/17] N81-1748
COMPRESSIBLE FLOW	COMPUTER GRAPHICS
A computerized study of wave characteristics in a	Computer-aided process planning system for
time dependent compressible flow	aircraft engine rotating parts

SUBJECT INDEX CONICAL MOZZLES

A computer graphics display technique for the	Simulated aircraft takeoff performance with
examination of aircraft design data [AIAA PAPER 81-0370] A81-20788	frosted wings [AIAA PAPER 81-0404] A81-20811
The presentation of static information on air	Air traffic simulation as a validation tool
traffic control displays N81-17064	A81-21718 A case study - Real time simulation and structured
COMPUTER PROGRAMMING A survey of computer simulations of digital	design A81-21721
avionics systems	The flight assessment and applications of DME/DME.
[AD-A091943] N81-16049	I, II
COMPUTER PROGRAMS Puel consumption aspects of some noise abatement	A81-21968 SAPEST computer simulation of ejection seat
procedures	performance
A81-20350	A81-22089
A computerized study of wave characteristics in a	Low level, adverse attitude escape using a
time dependent compressible flow [AIAA PAPER 81-0410] A81-20838	vertical seeking ejection seat A81-22094
Airborne antenna pattern code: User's manual	Crack propagation in lugs
[AD-A092316] N81-16357	A81-22629
Hyperbolic/parabolic development for the GIM-STAR	A survey of computer simulations of digital
code flow fields in supersonic inlets [NASA-CR-3369] N81-16416	avionics systems [AD-A091943] N81-16049
Abstract interface specifications for the A-7E	Propulsion system mathematical model for a
device interface module	lift/cruise fan V/STOL aircraft
[AD-A092696] N81-16770	[NASA-TM-81663] N81-16055
<pre>ZDRAFT-A graphite code for VTOL aircraft ground footprint visualization</pre>	Validation of a two dimensional primitive variable computer code for flow fields in jet engine test
[AD-A093311] N81-17042	cells
NOISECHECK procedures for measuring noise exposure	[AD-A092138] N81-16060
from aircraft operations [AD-A093948] N81-17849	Airborne antenna pattern code: User's manual [AD-A092316] N81-16357
Evaluation of alternative procedures for	[AD-A092316] N81-16357 A theoretical method for the simulation of
atmospheric absorption adjustments during noise	separation behavior of aircraft external stores
certification. Volume 2: Computer program	applications to computerized wind tunnel tests
[AD-A093267] N81-17853 COMPUTER SYSTEMS DESIGN	[MBB-FE-122/S/PUB/16] N81-16987 Air traffic control simulation models. Citations
New developments of data processing in	from the NTIS data base
computer-controlled manufacturing systems /DNC,	[PB81-800104] N81-17037
PMS/	ZDRAFT-A graphite code for VTOL aircraft ground
COMPUTER SYSTEMS PROGRAMS	footprint visualization [AD-A093311] N81-17042
·A system for aerodynamic design and analysis of	CONCRETES
supersonic aircraft. Part 4: Test cases	Shrinkage-compensating cement for airport
[NASA-CR-3354] N81-15977 COMPUTER TECHNIQUES	pavement. Phase 3: Firous concretes. Addendum [AD-A092945] N81-17299
The state of development and design of target data	[AD-A092945] N81-17299 CONFERENCES
processing of the ELRA system	Symposium on Internal Noise in Helicopters,
A81-20089	University of Southampton, Southampton, England,
Evaluation of false alarm information with the BLRA A81-20100	July 17-20, 1979, Proceedings A81-20051
Analytical methods for store separation flight test	Effect of load spectrum variables on fatigue crack
A81-22344	initiation and propagation; Proceedings of the
An advanced electronic cockpit instrumentation	Symposium, San Prancisco, Calif., May 21, 1979 A81-21730
system: The coordinated cockpit display	Survival and Flight Equipment Association, Annual
COMPUTERIZED DESIGN	Symposium, 17th, Las Vegas, Nev., December 2-6,
Computer-aided process planning system for	1979, Proceedings A81-22076
aircraft engine rotating parts A81-19836	The 1980's - Payoff decade for advanced materials:
A computer-aided design system geared toward	Proceedings of the Twenty-fifth National
conceptual design in a research environment	Symposium and Exhibition, San Diego, Calif., May
for hypersonic wehicles [AIAA PAPER 81-0372] A81-20789	6-8, 1980 A81-22636
Computer code for the determination of ejection	The 17th JANNAF combustion meeting, volume 1
seat/man aerodynamic parameters	[NASA-TM-82238] N81-16253
[AD-A092721] N81-16026	Advancement on visualization techniques [AGARD-AG-255] N81-17063
A conversational, topological grid method and optimization of structural calculations	[AGARD-AG-255] N81-17063 CONFIGURATION MANAGEMENT
involving finite elements	Prediction and evaluation of thrust augmenting
[AAAF-NT-79-30] N81-17053	ejector performance at the conceptual design stage
COMPUTERIZED SIMULATION Improving surface current injection techniques via	[AD-A093953] N81-17094 CONGRESSIONAL REPORTS
one- and two-dimensional models	Posture hearings (NASA and PAA)
A81-19940	[GPO-65-265] N81-16952
High-level languages in affordable aircraft	NASA authorization, 1981
simulators A81-20418	[GPO-71-290] N81-16953 Spin recovery training
Numerical simulations of a segmented-plenum,	[GPO-67-439] N81-17098
perforated, adaptive-wall wind tunnel	CONICAL PLOW
[AIAA PAPER 81-0160] Calculation of viscous, sonic flow over	Flight experiments with a slender cone at angle of
hemisphere-cylinder at 19 deg incidence - The	attack [AIAA PAPER 81-0337] A81-20761
capturing of nose vortices	CONICAL NOZZLES
[AIAA PAPER 81-0189] A81-20661	Effect of facility variation on the acoustic
A computational model for low speed flows past airfoils with spoilers	characteristics of three single stream nozzles A81-22534
[AIAA PAPER 81-0253] A81-20702	201 22331
Computer simulation of airfoil icing without runback [AIAA PAPER 81-0402] A81-20809	

CONTAINMENT SUBJECT INDEX

CONTAINMENT	COWLINGS
Composite containment systems for jet engine fan blades	High-speed cowlings, air inlets and outlets, and internal-flow systems
[NASA-TH-81675] N81-17480	N8 1-1597
CONTOURS	CRACK INITIATION
Helicopter noise contour development techniques and directivity analysis	Crack growth modeling in an advanced powder metallurgy alloy
[AD-A093426] N81-17851	[AD-A093992] N81-1723
CONTROL COMPIGURED VEHICLES Adaptive airfoils and wings for efficient	CRACK PROPAGATION Effect of load spectrum variables on fatigue crack
transonic flight	initiation and propagation; Proceedings of the
A81-20349	Symposium, San Francisco, Calif., May 21, 1979
Display concepts for control configured vehicles N81-17076	A81-2173 An engineering model for assessing load sequencing
CONTROL EQUIPMENT	effects cracks in aircraft structures
Standardisation - An alternative approach to ATC	A81-2173 Effect of transport aircraft wing loads spectrum
automation . A81-22192	variation on crack growth
Multivariable control synthesis program: Control	A81-2173
aspects of the 1900 altitude demonstration of the multivariable control system	Effect of gust load alleviation on fatigue and crack growth in ALCLAD 2024-T3
[AD-A093868] N81-17095	A81-2173
CONTROL SINULATION	Effects of fighter attack spectrum on crack growth
Air traffic simulation as a validation tool A81-21718	A81-2174 Definition of loading sequence for full scale
CONTROL STICKS	fatigue test
The effects of the direction of control loading on	Ductile fracture mechanic assessments of
a one-dimensional tracking task [AD-A092459] N81-16067	2219-T851, 2024-T3 and 7075-T6 aluminum alloys
CONTROL SURFACES	A81-2262
Application of a tip-fin controller to the Shuttle Orbiter for improved yaw control	Crack propagation in lugs
[AIAA PAPER 81-0074] A81-20582	Crack growth propagation under variable amplitude
Spanwise distribution of control points in the method of finite elementary solutions	loading in aerospace structures A81-2263
[AIAA PAPER 79-1879] A81-21011	Study of a crack propagation on the flap rail of a
CONTROL THEORY	transport aircraft
Practical gust load alleviation and flutter suppression control laws based on a LQG	A81-2263 Environment-load interaction effects on crack
methodology Linear Quadratic Gaussian	growth in landing gear steels
[AIAA PAPER 81-0021] A81-20544	[AD-A093803] N81-1724
Control strategy for tracking a maneuverable model [AIAA PAPER 81-0089] A81-20593	CRACKING (FRACTURING) Evaluation and comparison of nondestructive
A study of State Peedback Implicit Model following	service inspection methods
control for VSTOL aircraft [AD-A093253] N81-17099	A81-2013 The use of acoustic emission for detecting and
CONTROLLABILITY	evaluating of fatigue cracks severity during
The tale of two wings	static and cyclic loading of structure elements
N81-16004 Preliminary Airworthiness Evaluation (PAE 1) of	A81-2021 Compressor blade monitoring system for a VA1310
the YCH-47D helicopter	(Allis Chalmers) Wind Tunnel Compressor
[AD-A092633] N81-16046 CONVERGENT MOZZLES	[AD-A092920] N81-1710 CRASH LANDING
New interpretations of shock-associated noise with	Listing of accidents/incidents by aircraft make
and without screech A81-22527	and model, United States Civil Aviation, 1978 [PB81-110280] N81-1699
CONVERGENT-DIVERGENT NOZZLES	CRASHES
Effects of sidewall geometry on the installed	Summary of aviation safety program resumes. Cabin
performance of nonaxisymmetric convergent-divergent exhaust nozzles	safety [AD-A091938] N81-1602
[NASA-TP-1771] N81-15976	Briefs of fatal accidents involving weather as a
CORRELATION Semi-empirical correlations for gas turbine	cause/factor, US General Aviation, 1978 [PB81-110827] N81-1602
emissions, ignition, and flame stabilization	Aircraft crash survival design guide. Volume 1:
A81-21505	Design criteria and checklists, revision
CORROSION RESISTANCE Prospects for bonding primary aircraft structure	[AD-A093784] N81-1699 CRITICAL LOADING
in the 80's	Mathematical aspects of the probabilistic
CORROSION TESTS	evaluations of structural safety and NDI
Acoustic emission and corrosion	capabilities A81-2263
A81-20211	CRITICAL VELOCITY
COST ANALYSIS Use of constrained optimization in the conceptual	The high-speed propeller program N81-1597
design of a medium-range subsonic transport	Cold-air investigation of first stage of
[NASA-TP-1762] N81-16039	4-1/2-stage, fan drive turbine with average
COST EFFECTIVENESS A cost-effective method for shock-free	stage-loading factor of 4.66 [NASA-TP-1780] N81-1605
supercritical wing design	CROSS CORRELATION
[ATAA PAPER 81-0383] A81-20796 Environmental burn-in effectiveness	Correlation of helicopter noise levels with physical and performance characteristics
[AD-A093307] N81-17060	[AD-A093428] N81-1785
Compressor blade monitoring system for a VA1310	CROSS FLOR
(Allis Chalmers) Wind Tunnel Compressor [AD-A092920] N81-17103	The linear instability due to the compressible crossflow on a swept wing
COST REDUCTION	A81-2116
Application of trajectory optimization principles to minimize aircraft operating costs	
co minimize different obergeting copes	

A81-20466

SUBJECT INDEX DIGITAL PILTERS

CRUDE OIL Effect of refining variables on the proper	ties and	DEFENSE PROGRAM Band sharing - A case study	
composition of JP-5 [AD-A093842]	N81-17281	DEGRADATION	81-21869
CROISE MISSILES High altitude launch of the Cruise Missile		Hydrographic applications of the global positioning system	
CUMULATIVE DAMAGE	A81-22608	[AD-A093750] NDELTA WINGS	81-17029
Limiting application of the concept 'damag tolerance' with regard to fighter aircra		On a linear theory of a supersonic flow past delta wing with subsonic leading edges	
[AAAF-NT-79-32] CYCLIC LOADS An engineering model for assessing load se		Delta canard configuration at high angle of	81-19872 attack 81-20351
effects cracks in aircraft structure Definition of loading sequence for full so fatigue test	es A81-21737	Numerical simulation of wing-fuselage interf [AIAA PAPER 81-0048] A The aerodynamics of inverted leading edge fl delta wings	81-20564
Crack growth propagation under variable am loading in aerospace structures		A parametric study of the static longitudina aerodynamic characteristics of parallel li	.ft
CYLINDRICAL BODIES Experimental study of the influence of sup	A81-22632	delta wing configurations at low Reynolds [AIAA PAPER 81-0409] ADESCENT	81-20814
the aerodynamic loads on an ogive cylind bigh angles of attack		Glideslope descent-rate cuing to aid carrier landings	
[AIAA PAPER 81-0007]	A81-20531	DESCRIT TRAJECTORIES	81-16033
D			81-22608
DAMAGE ASSESSMENT The effects of warhead-induced damage on taleroelastic characteristics of lifting s		DESIGN ANALYSIS Effects of design variables on spoiler contr effectiveness, hinge moments, and wake tur [ATAM PAPER 81-0072]	
Volume 2: Aerodynamic effects [AD-A093063] Assessment of risk to Boeing commerical tr aircraft from carbon fibers fiber re		A computer-aided design system geared toward conceptual design in a research environment for hypersonic vehicles	١ _
from graphite/epxoy materials [NASA-CR-159211] DATA ACQUISITION	N81-17171	The design, testing, certification and produ of an emergency parachute for use in light	
Energy maneuverability display for the Air Maneuvering Range/Tactical Training Syst (ACHR/TACTS) [AD-A092974]		aircraft [ATAA PAPER 81-0413] Standardisation - An alternative approach to automation	81-20817 ATC
DATA MANAGEMENT Analysis and modeling of information bandl	ling	A system for aerodynamic design and analysis	81-22192 of
tasks in supervisory control of advanced [AD-A092906] DATA PROCESSING	l aircraft N81-17061	Design and experimental verification of a	181 -1 5977
New developments of data processing in computer-controlled manufacturing system FMS/	ns /DNC,	transonic wing for a transonic aircraft N Use of constrained optimization in the conce	181-16003
The state of development and design of tar processing of the ELRA system		Cold-air investigation of first stage of	181-16039
A computer graphics display technique for examination of aircraft design data	A81-20089 the	4-1/2-stage, fan drive turbine with averag stage-loading factor of 4.66 [NASA-TP-1780]	181-16050
[AIAA PAPER 81-0370] DATA PROCESSING EQUIPMENT	A81-20788	Test and evaluation of improved aircrew rest systems for combat helicopers	
Sample data effects of high-pass filters [NASA-TP-1797] An improved flight data transcriber	N81-16040	Helmet mounted displays: Design considerati	181-17017 Lons 181-17073
[AD-A091981] DATA REDUCTION	N81-16430	Multi-plane high speed balancing techniques the use of a high specific stiffness Ti-Bo	
Analytical methods for store separation fl	light test A81-22344	material for wibration control [AD-A093122] DETECTION	181-17092
DMAHTC's support to National Ocean Survey LORAN-C-charting [AD-A093748]	N 81-17027	An assessment of technical factors influence potential use of RPVS for minefield detect	
DATA SAMPLING Ozone contamination in aircraft cabins - F	Results	[AD-A092682] DIAGRAMS	181-16047
from GASP data and analyses [AIAA PAPER 81-0305] DATA SISTEMS	A81-20740	Production of LORAN-C reliability diagrams a Defense Mapping Agency [AD-A093749] [AD-A093749]	it the
An improved flight data transcriber [AD-&091981]	N81-16430	DIFFRACTION PATTERNS Airborne antenna pattern code: User's manua	
DATA TRANSMISSION Communications support for National Plight		[AD-A092316] DIFFUSION WELDING	181-16357
Center information system [AD-A093095] DECISION MAKING	N 81-17327	Superplastic formed and diffusion bonded tit landing gear component feasibility study [AD-A02788]	anium 181-16213
Delayed ejection decision factor import for pilot safety	ctance'	[AD-A092788] DIGITAL COMPUTERS A mobile computer-aided detection and tracki	
Analysis and modeling of information handl		system for low-flying attack aircraft	81-20098
tasks in supervisory control of advanced [AD-A092906]	l aircraft N81-17061	DIGITAL FILTERS A new technique for tracking sequences of digitized images	
			81-20508

DIGITAL NAVIGATION SUBJECT INDEX

DIGITAL NAVIGATION Design of disturbance-rejection controllers in		Evolution of tactical and map displays for h performance aircraft	
linear multivariable discrete-time systems entire eigenstructure assignment onboar digital flight system of P-4 aircraft		An advanced electronic cockpit instrumentati system: The coordinated cockpit display	81-17072 on
	81-20454 er		81-17074 design
used in a VTOL automatic approach and landi system	ing	of military cockpits	81-17075
DIGITAL RADAR SYSTEMS	81-22549		81-17076
Target detection and parameter estimation in surveillance radars using MTI-PFT processi			tion 81-17077
New techniques and development trends in the		ISTANCE MEASURING EQUIPMENT The flight assessment and applications of DM	E/DME.
system architecture of EDP systems for rada data processing and airspace control	81-20103		81-21968
DIGITAL SYSTEMS	01-20103	MLS channel assignment model [AD-A093449] N	81-17026
Robustness properties of a new multirate digital control system	ital Di	ISTRIBUTION FUNCTIONS Gravimetric investigation of the particle nu	
[AIAA PAPER 81-0022] A8	81-20545	density distribution function in the high	
	ilots 81-22973	cascade wind tunnel for laser anemometry measurements	
A survey of computer simulations of digital avionics systems		OPPLER EFFECT	81-16069
Energy maneuverability display for the Air Co	81-16049 ombat	Application of Doppler information to automated target tracking	
Maneuvering Range/Tactical Training System (ACMR/TACTS)	DC	ADPPLER NAVIGATION	81-20101
	81-17041	New mawigation systems for helicopters	81-22167
Cycle Cost Impact Modeling System (LCCIM).		OPPLER RADAR	
	81-17062	An airport wind shear detection and warning using Doppler radar: A feasibility study	system
Multivariable control synthesis program: Con aspects of the P100 altitude demonstration		[NASA-CR-3379] DUNTIME	81-16681
the multivariable control system	81-17095	Omega transmitter outages, January to Decemb	er 1979 81-17035
DIGITAL TECHNIQUES	DE	RAG MEASUREMENT	01-17033
Side lobe suppression with digital signal pro At Precision correlation tracking via optimal	81-20092	Skin friction measuring device for aircraft [NASA-CASE-PRC-11029-1] NAGREDUCTION	81-17057
weighting functions	81-20450	Interference aspects of the A310 high speed configuration	Wing
DIRECTIVITY		N	81-16001
Helicopter noise contour development technique and directivity analysis	ies	Design and experimental verification of a transonic wing for a transonic aircraft	
[AD-A093426] NE	81-17851	Nome particular configuration effects on a the	81-16003
Development of a shadow mask type high-resolution color picture tube for cockpit display	ition	supercritical variable camber wing	81-16005
∆∆	81-23095	Jet wing interaction to give improved combat	
Consolidated car display: A summary report of process and the results of the consolidation	on of		81-16007
critical and supplementary terminal area and traffic control information for display	ir	P-3 Orion fuel-saving modification wind tunn [AD-A091906]	el study 81-16044
presentation [AD-A092450] N8	DE 81-16034	RONE AIRCRAPT A low cost multiple drone command and tracki	Dα
A preliminary human factors flight assessment Marconi automatic map		system	-, 81-22613
	81-16036 ombat	The ANK - A four dimensional navigation/fligmanagement system for today	
Maneuvering Range/Tactical Training System		A	81-22615
	81-17041	ROOPRD AIRPOILS An investigation of a swept wing-body	
Advancement on visualization techniques [AGARD-AG-255] N8	81-17063	configuration with drooped leading edge at and transonic speeds	low
The presentation of static information on air traffic control displays		ROP TRSTS	81-16012
	81-17064	Evaluation/redesign of the P-105 pitch rate pack	g¥ro
	81-17065		81-16048
interface: Human factors considerations	B1-17066	A model for the analysis of premixing-prevaporizing fuel-air mixing pa	ssages
Integration of sensors with displays			81-20767
Liquid crystal displays	81-17068	Body-fitted 3-D full-potential flow analysis complex ducts and inlets	of
Cathode ray tubes and plasma panels as displa devices for aircraft displays	ау		81-20527 ters
Large area gas discharge displays	81-17069	Non-isoenergetic turbulent jet mixing in a	81-20720
NE Optical infinity lens development for flight simulator visual displays	81-17070	constant area duct in turbofan engines [AIAA PAPER 81-0347]	81-20768
	81-17071		

SUBJECT INDEX BLECTROLUMINESCENCE

DUCTS	Ergonometric study of ejection through a breakable
Development program for a graphite/PMR 15	canopy
polyimide duct for the P404 engine	N81-17011
A81-22	2647 BJECTION INJURIES
DURABILITY	Extension of ejection seat capability for high
Effects of commercial aircraft operating	speed conditions
environment on composite materials	A81-22097
A81-22	
DYNAMIC CONTROL	N81-17012
Adaptive control for electronic countermeasures A81-20	BJECTION SEATS 0470 Ejection system evolution
DYNAMIC MODELS	A81-22080
Control strategy for tracking a maneuverable mode	
[AIAA PAPER 81-0089] A81-20	
Stability of large horizontal-axis axisymmetric	A81-22088
wind turbines	SAPEST computer simulation of ejection seat
A81-22	2526 performance
DYNAMIC PRESSURE	A81-22089
Dynamic pressure response with stall on axial flo	
compressor rotor blades	A81-22093
[AIAA PAPER 81-0069] A81-20	
DYNAMIC RESPONSE	Vertical seeking ejection seat
Dynamic pressure response with stall on axial flo compressor rotor blades	A81-22094 Escape from military fighters - A modern perspective
[AIAA PAPER 81-0069] A81-20	
Stochastic modeling of an aircraft traversing a	Extension of ejection seat capability for high
runway using time series analysis	speed conditions
A81-23	
Modal analysis for aircraft response to runway	Ejection experience in F/FB-111 aircraft - 1967-1978
surface roughness	A81-22098
[AD-A092057] N81-16	
Nuclear blast response of airbreathing propulsion	
systems. Laboratory measurements with an	[AD-A092292] N81-16025
operational J-85-5 turbojet engine	Two-axis, fluidically controlled thrust vector
[AD-A092229] N81-16	5063 control system for an ejection seat [AD-A093888] N81-16996
Evaluation of bird load models for dynamic analysis of aircraft transparencies	EJECTORS .
/ [AD-A092909] N81-16	
Combustor liner durability analysis	Performance Ejection System (MPES) seat structure
[NASA-CR-165250] N81-17	
High bypass turbofan component development,	Prediction and evaluation of thrust augmenting
modification 2	ejector performance at the conceptual design stage
[AD-A093156] N81-17	7093 [AD-A093953] N81-17094
A study of State Feedback Implicit Model following	ng ELASTIC PROPERTIES
control for VSTOL aircraft	Longitudinal instability in braked landing gear
[AD-A093253] N81-17	
DYNAMIC STRUCTURAL ANALYSIS	BLASTIC WAVES
Measurements of structural mobility on helicopter	
structures	[AIAA PAPER 81-0159] A81-20639 0064 BLECTRIC BATTERIES
DY HA HOMETERS	Comparison of systems of power generation during
The high-speed propeller program	emergencies /aboard aircraft/
N81-15	
	ELECTRIC GENERATORS
-	Comparison of systems of power generation during
E	emergencies /aboard aircraft/
EARPHONES	A81-22203
A new technology - Piezoelectric polyvinylidene	Samarium cobalt (SMCO) generator/engine
fluoride communications transducers	integration study
A81-22	
ECONOMICS Reconomics of technological change - A joint model	The electrical effects of joints and bonds in
Economics of technological change - A joint model for the aircraft and airline industries	The electrical effects of joints and bonds in carbon fiber composites
A81-2	
EDDY CURRENTS	BLECTRICAL RESISTIVITY
Application of low frequency eddy-current for	Effects on anti-static additives on aircraft
inspection of civil aircraft	capacitance fuel gaging systems
A81-20	
Peasibility evaluation of advanced multifrequency	
eddy current technology for use in naval air	LPI, short-range communications between aircraft
maintenance environment	in rendezvous Low Probability of Intercept
[AD-A093314] N81-13	
EFFECTIVE PERCEIVED NOISE LEVELS	High temperature electronic requirements in
A guidance document on airport noise control [AD-A092228] N81-16	aeropropulsion systems 6629 [NASA-TH-81682] N81-16388
RIGENVALUES NOT-10	The electro-optical display/visual system
Design of disturbance-rejection controllers for	interface: Human factors considerations
linear multivariable discrete-time systems using	
entire eigenstructure assignment onboard	Integration of sensors with displays
digital flight system of P-4 aircraft	N81-17067
A81-20	
Stability of large horizontal-axis axisymmetric	N8 1-1706 8
wind turbines	ELECTROACOUSTIC TRANSDUCERS
A81-22	
Bolaved education and design factor important	fluoride communications transducers
Delayed ejection decision factor importance for pilot safety	A81-22099
A81-22	
R01 22	[AGARD-AG-255] N81-17063

SUBJECT INDEX

Flat panel display technology review		ELEVATION ANGLE	_
ELECTROMAGNETIC ABSORPTION	N81-17065	Helicopter noise contour development techn and directivity analysis	iques
Liquid crystal displays	N81-17068	[AD-A093426]	N81-1785
ELECTROMAGNETIC COMPATIBILITY	NO 1- 17000	ELEVONS	
Aircraft manufacturers approach to the		An analysis of gap effects on wing-elevon	
	h the use	aerodynamic characteristics	A81-2078
E.M.C./Avionics problems associated with	u the use	[AIAA PAPER 81-0364] EMERGENCY LIPE SUSTAINING SYSTEMS	A0 1-20 /0
of composite materials	N81-16156		Annual
Plantronometic integration of compasite		Survival and Flight Equipment Association,	
Electromagnetic integration of composite s in aircraft	structure	Symposium, 17th, Las Vegas, Nev., Decemb 1979, Proceedings	er 2-0,
in ulicialt	N81-16159	1979, Floceedings	A81-2207
A supplementary EMC analysis of the propos		Ejection experience in F/FB-111 aircraft -	
Airport Surface Detection Equipment (ASI		Djootion Capelioned in 1/15 (11 will be 101	A81-2209
[AD-A092965]	N81-17342	ENERGY CONSERVATION	
ELECTROMAGNETIC INTERPERENCE		Operational energy conservation strategies	in
Multipath and interference effects in seco	ondary	commercial aviation	
surveillance radar systems			A81-2046
	A81-23359	ENERGY DISSIPATION	
ELECTROMAGNETIC MEASUREMENT		Core compressor exit stage study. Volume	2: Data
Electromagnetic measurement of lightning s	strikes	and performance report for the baseline	
to aircraft	101-20500	configuration	N81-1605
[AIAA PAPER 81-0083] In-flight calibration of aircraft antenna	A81-20588	[NASA-CR-159498] ENGINE CONTROL	1003
radiation patterns		Turbo-compressors surge and surge control	
14414414	A81-21825	[AIAA PAPER 81-0070]	A81-2057
SPASYN - An electromagnetic relative posit		ENGINE DESIGN	
orientation tracking system		Designing the Hornet for improved R and M	
· ·	A81-21828	[AIAA PAPER 81-0230]	A81-2068
ELECTROMAGNETIC PROPERTIES		Prediction method for the overall performa	nce of
EMC, lightning and NEMP-protection-new		turbofan engines	
requirements for approved specifications	s when	[AIAA PAPER 81-0367]	A81-2078
using CFRP	N81-16152	Developments at VFW/Rhein-Flugzeugbau GmbH Moenchengladbach trainer aircraft de	
The UK Ministry of Defence programme on th		noenchengiaubach trainer afferant de	A81-2157
electromagnetic properties of carbon file		Design, durability and low cost processing	
composites		technology for composite fan exit guide	vanes
	N81-16154		A81-2266
ELECTROMAGNETIC PULSES		An overview of general aviation propulsion	
Aircraft EMP isolation study		research programs at NASA Levis Research	
[AD-A093772] ELECTROMAGNETIC RADIATION	N81-17333	[NASA-TM-81666]	N81-1605
A Prench flight test program on the		Propulsion system mathematical model for a lift/cruise fan V/STOL aircraft	
electromagnetic effects of lightning		[NASA-TM-81663]	N81-1605
	N81-16155	Design and evaluation of an integrated Qui	
Flight tests for studying radioelectric		General Aviation Turbofan (OCGAT) engine	
perturbations of an electrostatic origin		aircraft propulsion system	
	N81-16160	[NASA-CR-165185]	N81-1605
Aircraft EMP isolation study		JT8D-15/17 high pressure turbine root disc	
[AD-A093772]	N81-17333	blade performance improvement engine	
ELECTROMAGNETIC SHIELDING Electromagnetic measurement of lightning s	etrikoe	[NASA-CR-165220] Multi-plane high speed balancing technique	N81-1708
to aircraft	SCLINGS	the use of a high specific stiffness Ti-	
[ATAA PAPER 81-0083]	A81-20588	material for vibration control	DOLUE
Shielded enclosure test bed requirement		[AD-A093122]	N8 1-1709
[AD-A092589]	N81-16073	Material and structural problems in aircra	
The UK Ministry of Defence programme on the	he	engine technology CFM-56 engine	
electromagnetic properties of carbon file	per	[AAAF-NT-79-23]	N81-1709
composites		Model 250-C30/C28B compressor development	
ma	N81-16154		N81-1746
Electromagnetic coupling to advanced compo aircraft with application to trade-off a		Critical field length calculations for pre] imina
specification determination		design	TIMINGIA
-100777000000 00000000000000000000000000	N81-16166	acordn	A81-2336
ELECTROMAGNETISM		ENGINE INLETS	
Application of carbon fibre composites to	military	Scale effects on turbulent boundary layer	*
aircraft structures	-	development and flow separation around V	/STOL
	N 8 1 - 16 14 7	inlets at high incidence	
ELECTRON EMISSION		[AIAA PAPER 81-0014]	A81-2053
Application of excelectron emission for qu	lality	Three-dimensional turbulent boundary layer	
control of gas-turbine engine parts	A81-21367	<pre>development and separation in V/STOL eng inlets at incidence with small-cross flo</pre>	
ELECTRONIC AIRCRAFT	~01 &1301	curvature influences	- and
Aircraft EMP isolation study		[AIAA PAPER 81-0254]	A81-2070
[AD-A093772]	N81-17333	High-speed cowlings, air inlets and outlet	
ELECTRONIC CONTROL		internal-flow systems	-
A case study - Real time simulation and st	tructured		N81-1597
design	104 24701	EBGINE BOISE	
ELECTRONIC COUNTERNEASURES	A81-21721	Unsteady fan blade pressure and acoustic r	
Adaptive control for electronic countermea	SILLS	from a JT15D-1 turbofan engine at simula	rea
"aabeine constor for steestoure coducetmes	A81-20470	forward speed [AIAA PAPER 81-0096]	A81-2059
ELECTROSTATIC CHARGE	AU : 204/U	Convective amplification of gas turbine en	
Flight tests for studying radioelectric		internal noise sources	
perturbations of an electrostatic origin	1		A81-2159
•	N81-16160	New interpretations of shock-associated no	
Static charge in aircraft fuel tanks		and without screech	
	N S 1 - 17005		191-2252

SUBJECT INDEX EXHAUST BOZZLES

Core noise measurements from a small, gen	eral	EQUATIONS	
aviation turbofan engine	A81-22531	Application of transonic potential calculat aircraft and wind tunnel configurations	tions to
Design and evaluation of an integrated Qu			N81-15992
General Aviation Turbofan (OCGAT) engin	e and	EQUATIONS OF MOTION	_
aircraft propulsion system [NASA-CR-165185]	N81-16057	Supercritical flow past symmetrical airfoi: [AD-A093300]	LS N81-16984
Studies on proper simulation during stati		Active Controls for flutter suppression and	
of forward speed effects on fan noise		alleviation in supersonic aircraft Y	
[NASA-CR-165626]	N81-16853	flutter model	
Acoustic and aerodynamic performance inve		[NASA-CR-163934]	N81-17097
of inverted velocity profile coannular nozzles variable cycle engines	prug	EQUATORIAL ORBITS Air traffic control and position location 1	hv
[NASA-CR-3149]	N81-16854	satellite constellation in equatorial or	
REGIER PARTS		_	A81-21912
Computer-aided process planning system fo	ı	BRROR CORRECTING DEVICES	
aircraft engine rotating parts	A81-19836	Increased target resolution and minor lobe reduction with active group antennas	
Application of excelectron emission for q		reduction with decive group discounts	A81-20090
control of gas-turbine engine parts	-	BSCAPE (ABANDONMENT)	
- 1	A81-21367	Delayed ejection decision factor impor-	tance
Development program for a graphite/PMR 15 polyimide duct for the F404 engine	1	for pilot safety	A81-22102
polyimide duct for the 1404 engine	A81-22647	ESCAPE SYSTEMS	A01-22102
ENGINE STARTERS		Escape systems testing on the Holloman high	h speed
Samarium cobalt (SMCO) generator/engine		test track	
integration study	N81-17087	Wigh 101 ejection prohection derice	A81-22088
[AD-A092904] ENGINE TESTS	No 1- 17007	High 'Q' ejection protection device	A81-22093
Considerations of the use of vitiated pre	heat	Low level, adverse attitude escape using a	
for engine inlets		vertical seeking ejection seat	
Domanotom idambidigabia, and dinamininant	A81-20023	Bogono from militana fishtona . 1 modona n	A81-22094
Parameter identification and discriminant for jet engine mechanical state diagnos		Escape from military fighters - A modern p	A81-22096
	A81-20474	Extension of ejection seat capability for	
Experimental analysis of IMEP in a rotary	!	speed conditions	•
combustion engine			A81-22097
Walidation of a two dimensional aminiting	N81-16054	Helicopter emergency underwater escape	A81-22101
Validation of a two dimensional primitive computer code for flow fields in jet en		EUROPE	HO1 2210
cells	.,	Transport jet aircraft noise abatement in .	foreign
[AD-A092138]	N81-16060	countries: Growth, structure, impact.	Volume
Multivariable control synthesis program:		1: Europe, July 1980	N81-17623
aspects of the F100 altitude demonstrat the multivariable control system	101 01	[NASA-CR-152356] BVALUATION	NO 1-17023
[AD-A093868]	N81-17095	Hydrographic applications of the global	
ENVIRONMENT EFFECTS		positioning system	
Impact of aircraft emissions on air quali		[AD-A093750]	N81-17029
vicinity of airports. Volume 1: Recen measurement programs, data analyses, an	it alrport	EVASIVE ACTIONS Bounds for the additional cost of near-opt	imal
submodel development	· -	controls	
submodel development [AD-A089962]	N81-16628		A81-21075
ENVIRONMENT SIMULATION		EXHAUST EMISSION	0.707.0
Improving surface current injection techn one- and two-dimensional models	itdnes Aig	Aircraft NO/x/ emissions and stratospheric reductions - Another look	Ozone
one and two dimensional models	A81-19940	[AIAA PAPER 81-0306]	A81-20741
Computational design of large-scale blast		Aircraft pollution in the vicinity of airp	
[AIAA PAPER 81-0159]	A81-20639	[AIAA PAPER 81-0309]	A81-20743
ENVIRONMENTAL TESTS Aircraft and environmental factors influe	ncina	Two-stage combustion for reducing pollutan emissions from gas turbine combustors	t
lightning strike	meing	[NASA-CR-163877]	N81-16056
[AĪAA PAPER 81-0084]	A81-20589	Exhaust emission characteristics and varia	
Adhesive bonding of avionic structures	.04 00646	for maintained General Electric CP6-50 t	urbofan
Effects of commercial aircraft operating	A81-22646	engines [AD-A092291]	N81-16064
environment on composite materials		Impact of aircraft emissions on air qualit	
	A81-22681	vicinity of airports. Volume 1: Recent	airport
ENVIRONMENTS	•	measurement programs, data analyses, and	
Environment-load interaction effects on c growth in landing gear steels	rack	submodel development [AD-A089962]	N81-16628
[AD-A093803]	N81-17242	BXHAUST PLOW SIMULATION	101 1002
EPOXY MATRIX COMPOSITE MATERIALS		Effects of sidewall geometry on the instal	led
Effects of commercial aircraft operating	•	performance of nonaxisymmetric	
environment on composite materials	101-22601	convergent-divergent exhaust nozzles [NASA-TP-1771]	N81-15976
New materials and helicopter certification	A81-22681	RXHAUST GASES	101 15570
exigencies of certification regulation	•	Semi-empirical correlations for gas turbin	
[AAAF-NT-79-26]	N81-17052	emissions, ignition, and flame stabiliza	tion
POXY RESINS		TERN anding internal agrees migar technol	A81-21505
Adhesive bonding of avionic structures	A81-22646	<pre>JT8D engine internal exhaust mixer technol program</pre>	-91
Pabrication and physical testing of graph		[AD-A093057]	ม8 1-1709 1
composite panels utilizing woven graphi		EXHAUST NOZZLES	
with current and advanced state-of-the-			
	art resin	Effect of a semi-annular thermal acoustic	spiera
systems [NASA-CR-152292]	N81-17175	Effect of a semi-annular thermal acoustic on jet exhaust noise	81-22532

A81-22532

EXHAUST SYSTEMS SUBJECT INDEX

	•
Effects of sidewall geometry on the installed	A rotating, wind tunnel balance and associated
performance of nonaxisymmetric	experimental techniques
convergent-divergent exhaust nozzles	[AAAF-NT-80-13] N81-17108
[NASA-TP-1771] N81-15976 Model aerodynamic test results for two variable	EXPERIMENTATION Modeling, acquisition and processing during large
cycle engine coannular exhaust systems at	displacements associated with experiments in
simulated takeoff and cruise conditions.	flight mechanics
Comprehensive data report. Volume 1: Design	[AAAF-NT-80-16] #81-17056
layouts	EXPLOSIONS
[NASA-CR-159819-VOL-1] N81-17081 Model aerodynamic test results for two variable	Special Aviation Fire and Explosion Reduction (SAFER) advisory committee, volume 1
cycle engine coannular exhaust systems at	[AD-A092016] N81-16024
simulated takeoff and cruise conditions.	Flame tube and ballistic evaluation of Explosafe
Comprehensive data report. Volume 2: Tabulated	aluminum foil for aircraft fuel tank explosion
aeroynamic data book 1	protection suppressing combustion overpressure
[NASA-CR-159819-VOL-2-BK-1] N81-17082	[AD-A093542] 881-17046
Model aerodynamic test results for two variable cycle engine coannular exhaust systems at	Evaluation of explosafe. Explosion suppression system for aircraft fuel tank protection
simulated takeoff and cruise conditions.	[AD-A093125] N81-17047
Comprehensive data report. Volume 2: Tabulated	EXPOSURE
aerodynamic data book 2	The effect of the in-service environment on
[NA SA-CR-159819-VOL-2-BK-2] N81-17083	composite materials (resume of the April 1980
Model aerodynamic test results for two variable cycle engine coannular exhaust systems at	Athens conference) N81-16146
simulated takeoff and cruise conditions.	EXTERNAL STORE SEPARATION
Comprehensive data report. Volume 2: Tabulated	Analytical methods for store separation flight test
aerodynamic data book 3	A81-22344
[NASA-CR-159819-VOL-2-BK-3] N81-17084	Evaluation of aircraft interference effects on
Model aerodynamic test results for two variable cycle engine coannular exhaust systems at	external stores at subsonic and transonic speeds 81-15997
simulated takeoff and cruise conditions.	A theoretical method for the simulation of
Comprehensive data report. Volume 3: Graphical	separation behavior of aircraft external stores
data book 1	applications to computerized wind tunnel tests
[NASA-CR-159819-VOL-3-BK-1] N81-17085	[MBB-PE-122/S/PUB/16] N81-16987
Model aerodynamic test results for two variable cycle engine coannular exhaust systems at	Store separation simulation in subsonic wind tunnels [MBB-FE-123/S/PUB/20] N81-16988
simulated takeoff and cruise conditions.	EXTERNAL STORES
Comprehensive data report. Volume 3: Graphical	Prospects for exploiting favourable and minimizing
data book 2	adverse aerodynamic interference in external
[NASA-CR-159819-VOL-3-BK-2] N81-17086	store installations
Aerodynamic/acoustic performance of YJ101/double bypass VCE with coannular plug nozzle	N81-15996 Study of transonic flow fields about aircraft:
[NASA-CR-159869] N81-17846	Application to external stores
EXHAUST SYSTEMS	N81-15998
Preliminary airworthiness evaluation AH-1S (PROD)	Demonstration of a method for determining critical
helicopter equipped with a substitute straight	store configurations for wing store flutter
exhaust pipe [AD-A092614]	[AD-A092257] N81-16068 EXTERNAL SURFACE CURRENTS
Model aerodynamic test results for two variable	Improving surface current injection techniques via
cycle engine coannular exhaust systems at	one- and two-dimensional models
simulated takeoff and cruise conditions.	A81-19940
Comprehensive data report. Volume 1: Design layouts	EXTRAPOLATION Examination of the vortex regime for highly swept
[NASA-CR-159819-VOL-1] N81-17081	wings by extrapolation of the Jones method
Model aerodynamic test results for two variable	[AAAP-NT-80-25] N81-16992
cycle engine coannular exhaust systems at	EXTREMUM VALUES
simulated takeoff and cruise conditions.	Bounds for the additional cost of near-optimal
Comprehensive data report. Volume 2: Tabulated aeroynamic data book 1	controls A81-21075
[NASA-CR-159819-VOL-2-BK-1] N81-17082	
Model aerodynamic test results for two variable	F
cycle engine coannular exhaust systems at	-
simulated takeoff and cruise conditions. Comprehensive data report. Volume 2: Tabulated	<pre>P-4 AIRCRAFT Design of disturbance-rejection controllers for</pre>
aerodynamic data book 2	linear multivariable discrete-time systems using
[NASA-CR-159819-VOL-2-BK-2] N81-17083	entire eigenstructure assignment onboard
Model aerodynamic test results for two variable	digital flight system of F-4 aircraft
cycle engine coannular exhaust systems at	A81-20454
simulated takeoff and cruise conditions.	F-14 AIRCRAFT Robustness properties of a new multirate digital
Comprehensive data report. Volume 2: Tabulated aerodynamic data book 3	control system
[NASA-CR-159819-VOL-2-BK-3] N81-17084	[AIAA PAPER 81-0022] A81-20545
Model aerodynamic test results for two variable	F-15 AIRCRAFT
cycle engine coannular exhaust systems at	A case study - Real time simulation and structured
simulated takeoff and cruise conditions. Comprehensive data report. Volume 3: Graphical	design A81-21721
data book 1	F-17 AIRCRAFT
[NASA-CR-159819-VOL-3-BK-1] N81-17085	Active controls for flutter suppression and gust
Model aerodynamic test results for two variable	alleviation in supersonic aircraft YF-17
cycle engine coannular exhaust systems at	flutter model
simulated takeoff and cruise conditions. Comprehensive data report. Volume 3: Graphical	[NASA-CR-163934] N81-17097 F-18 AIRCRAFT
data book 2	Designing the Hornet for improved R and M
[NASA-CR-159819-VOL-3-BK-2] N81-17086	[AIAA PAPER 81-0230] A81-20688
EXPERIMENTAL DESIGN	F-106 AIRCRAFT
Shielded enclosure test bed requirement	Electromagnetic measurement of lightning strikes
[AD-A092589] N81-16073	to aircraft [AIAA PAPER 81-0083] A81-20588
	I mama agrap 0:-0003 M01-20300

SUBJECT INDEX FIGHTER AIRCRAFT

P-111 AIBCRAFT Ejection experience in F/FB-111 aircraft - 1967-1978	Helicopter fatigue qualification A81-22623
A81-22098	Project and experimental fatigue test of the wing of a modern combat aircraft
Graphite polyimide fabrication research for	A81-22625
supersonic cruise aircraft A81-22665	Definition of loading sequence for full scale fatigue test
Design, fabrication and test of graphite/polyimide composite joints and attachments for advanced	A81-22626 Study of a crack propagation on the flap rail of a
aerospace vehicles [NASA-CR-159112] Fabrication and physical testing of graphite	transport aircraft A81-22633 Controls of aeronautical structures under fatigue
composite panels utilizing woven graphite fabric with current and advanced state-of-the-art resin systems	testing by holographic pulsed lasers interferometry A81-22692
[NASA-CE-152292] N81-17175 PABRICS	PAULT TOLERANCE Fault-tolerant actuation concept for a research
Potential use of geotechnical fabric in airfield	test aircraft
runway design reinforced soil systems [AD-A092686] N81-16071	[AD-A093113] N81-17100 PRASIBILITY AWALYSIS
PABRY-PEROT INTERFEROMETERS Laser scattering applications development test in	A feasibility study for advanced technology integration for general aviation
AEDC tunnel B at Mach number 8 [AD-A093929] N81-17105	[NASA-CR-159381] N81-15974 A feasibility study for advanced technology
FAILURE ANALYSIS	integration for general aviation
A correlated random numbers generator and its use to estimate false alarm rates of airplane sensor failure detection algorithms	[AD-A092437] An airport wind shear detection and warning system using Doppler radar: A feasibility study
A81-20448	[NASA-CR-3379] N81-16681
Compressor blade monitoring system for a VA1310 (Allis Chalmers) Wind Tunnel Compressor	FEDERAL BUDGETS Posture hearings (NASA and FAA)
[AD-A092920] N81-17103 FAN BLADES	[GPO-65-265] N81-16952 NASA authorization, 1981
Unsteady fan blade pressure and acoustic radiation from a JT15D-1 turbofan engine at simulated	[GPO-71-290] N81-16953 FREDBACK CONTROL
. forward speed	Robustness properties of a new multirate digital
[AIAA PAPER 81-0096] A81-20598 Mean rotor wake characteristics of an	control system [AIAA PAPER 81-0022] A81-20545
aerodynamically loaded 0.5 m diameter fan [AIAA PAPER 81-0208] A81-20830	A study of State Peedback Implicit Model following control for VSTOL aircraft
Cold-air investigation of first stage of 4-1/2-stage, fan drive turbine with average	[AD-A093253] N81-17099 FIBER OPTICS
stage-loading factor of 4.66 [NASA-TP-1780] N81-16050	An airborne integrated communications network utilizing fiber optics
v Composite containment systems for jet engine fan	A81-21880
blades [NASA-TM-81675] N81-17480	Fiber optics study technology for military aircraft A81-22503
PATIGUE (MATERIALS) The use of acoustic emission for detecting and	Airborne-fiber optics manufacturing technology, aircraft installation processes
evaluating of fatigue cracks severity during static and cyclic loading of structure elements	[AD-A093304] N81-17902 FIBER REINFORCED COMPOSITES
A81-20214 Compressor blade monitoring system for a VA1310	Composite fuselage development for Naval aircraft A81-22648
(Allis Chalmers) Wind Tunnel Compressor [AD-A092920] N81-17103	FIBER RELEASE Assessment of risk to Boeing commerical transport
Crack growth modeling in an advanced powder	aircraft from carbon fibers fiber release
metallurgy alloy [AD-A093992] N81-17235	from graphite/epxoy materials [NASA-CR-159211] N81-17171
PATIGUE LIFE Evaluating spectrum effects in U.S. Air Force	PIGHTER AIRCRAFT A computer graphics display technique for the
attack/fighter/trainer individual aircraft tracking	examination of aircraft design data [AIAA PAPER 81-0370] A81-20788
A81-21742 Fatigue design criteria and fleet fatigue life	Effects of fighter attack spectrum on crack growth A81-21741
survey at Aeronautica Macchi A81-22624	<pre>Evaluating spectrum effects in U.S. Air Force attack/fighter/trainer individual aircraft</pre>
Definition of loading sequence for full scale fatigue test	tracking A81-21742
A81-22626 Fatigue life evaluation of a helicopter main rotor	Escape from military fighters - A modern perspective A81-22096
hub A81-22631	Project and experimental fatigue test of the wing of a modern combat aircraft
Crack growth propagation under variable amplitude loading in aerospace structures	A81-22625 Evaluation of aircraft interference effects on
A81-22632 Environmental exposure effects on composite	external stores at subsonic and transonic speeds N81-15997
materials for commercial aircraft [NASA-CR-165649] N81-16139 PATIGUE TESTS	Interference effects of concentrated blowing and vortices on a typical fighter configuration N81-16009
Acoustic fatigue strength of fiber-reinforced plastic panels	Some aerodynamic interference effects that influence the transonic performance of combat
A81-20873 Application of exoelectron emission for quality	aircraft N81-16014
control of gas-turbine engine parts A81-21367 Effect of gust load alleviation on fatigue and	Seat pack for fighter aircraft operating on the NATO Northern Plank N81-17010
crack growth in ALCLAD 2024-T3	The influence of visual requirements on the design
A81-21739	of military cockpits

N81-17075

PISITE DIFFERENCE THEORY SUBJECT INDEX

PINITE DIPPERENCE THEORY	- 61	PLIGHT CONDITIONS	
A numerical simulation of hypersonic viscou over arbitrary geometries at angle of att		Atmospheric disturbance models and require for the flying qualities Military Standa.	
	A81-20566	Handbook	Lu anu
Higher-accuracy finite-difference schemes f		[AIAA PAPER 81-0302]	A81-20739
transonic airfoil flowfield calculations		FLIGHT CONTROL	
	A81-20794	Angle of attack - Its measurement and usag	e. I
A cost-effective method for shock-free		-	A81-19799
supercritical wing design		Design of disturbance-rejection controller	
	A81-20796	linear multivariable discrete-time syste	
PINITE BLEMENT METHOD	44	entire eigenstructure assignment onb	oard
Spanwise distribution of control points in method of finite elementary solutions	rne	digital flight system of P-4 aircraft	A81-20454
	A81-21011	Application of singular perturbation theor	
Fatigue life evaluation of a helicopter mai		onboard aircraft trajectory optimization	
hub		commercial jet transport aircraft	
	A81-22631	[AIAA PAPER 81-0019]	A81-20543
Analysis of a symmetric transonic aerofoil		Robustness properties of a new multirate d.	igital
the finite element method - A new upwindi	ng	control system	
technique		[AIAA PAPER 81-0022]	A81-20545
	A81-22984	Application of a tip-fin controller to the	Shuttle
Finite element method study of		Orbiter for improved yaw control	104 20502
wing-fuselage-nacelle interactions of a P	alcon	[AIAA PAPER 81-0074]	A81-20582
20 type aircraft at Mach = 0.79	N81-15994	A head-up display for low-visibility appro-	acn and
Nonlinear analysis of squeeze film dampers		landing [AIAA PAPER 81-0130]	A81-20623
to gas turbine helicopter engines	appried	Piloting techniques on the backside - Flig	
	N81-16062	angle control	Fa-n
A conversational, topological grid method a		angle control	A81-21673
optimization of structural calculations	•	The effects of the direction of control lo	
involving finite elements		a one-dimensional tracking task	_
[AAAF-NT-79-30]	N81-17053	[AD-A092459]	N81-16067
PINNED BODIES		Display concepts for control configured ve.	
Application of aerodynamic jump prediction			N81-17076:
to supersonic, high fineness ratio, cruci	form	PLIGHT CREWS	of
finned bodies	*04 00/05	The influence of beards on the efficiency	of
<u> </u>	A81-20685	aviators' oxygen masks	
PINS Application of a tip-fin controller to the	Shu++1a	lingrou compliance With standard energting	A81-22100
Orbiter for improved yaw control	Surcte	Aircrew compliance with standard operating procedures as a component of airline safe	
	A81-20582	[AD-A092443]	N81-16023
PIRE CONTROL	101 10302	An investigation of the five point restrain	
Automatic handoff of multiple targets		system for aviators	·.
	N81-17101		N81-16998 ·
		I AU-AU93UDD I	
PIRE DAMAGE	201 17101	[AD-A093065] Test and evaluation of improved aircrew real	
FIRE DAMAGE Cabin fire simulator lavatory tests	N81-16020	Test and evaluation of improved aircrew re-	
FIRE DAMAGE Cabin fire simulator lavatory tests [NASA-CR-160909] FIRE PREVENTION	N81-16020	Test and evaluation of improved aircrew res systems for combat helicopers PLIGHT PATIGUE	straint N81-17017
PIRE DAMAGE Cabin fire simulator lavatory tests [NASA-CR-160909] PIRE PREVENTION Special Aviation Fire and Explosion Reducti	N81-16020	Test and evaluation of improved aircrew res systems for combat helicopers FLIGHT FATIGUE The apparent ignoring of pilot fatigue by	straint N81-17017
PIRE DAMAGE Cabin fire simulator lavatory tests [NASA-CR-160909] PIRE PREVENTION Special Aviation Fire and Explosion Reducti (SAFER) advisory committee, volume 1	N81-16020 on	Test and evaluation of improved aircrew res systems for combat helicopers PLIGHT PATIGUE	straint N81-17017 the NTSB
FIRE DAMAGE Cabin fire simulator lavatory tests [NASA-CR-160909] FIRE PREVENTION Special Aviation Fire and Explosion Reducti (SAFER) advisory committee, volume 1 [AD-A092016]	N81-16020 on N81-16024	Test and evaluation of improved aircrew researchers for combat helicopers PLIGHT FATIGUE The apparent ignoring of pilot fatigue by in airline crashes	straint N81-17017 the NTSB
FIRE DAMAGE Cabin fire simulator lavatory tests [NASA-CR-160909] FIRE PREVENTION Special Aviation Fire and Explosion Reducti (SAFER) advisory committee, volume 1 [AD-A092016] Evaluation of RF anechoic chamber fire prot	N81-16020 on N81-16024	Test and evaluation of improved aircrew respectives for combat helicopers PLIGHT PATIGUE The apparent ignoring of pilot fatigue by in airline crashes PLIGHT HAZARDS	n81-17017 the NTSB
PIRE DAMAGE Cabin fire simulator lavatory tests [NASA-CR-160909] PIRE PREVENTION Special Aviation Fire and Explosion Reducti (SAFER) advisory committee, volume 1 [AD-A092016] Evaluation of RF anechoic chamber fire prot systems	N81-16020 on N81-16024 ection	Test and evaluation of improved aircrew respectively systems for combat helicopers FLIGHT FATIGUE The apparent ignoring of pilot fatigue by in airline crashes FLIGHT HAZARDS Pulsed Doppler radar detects weather hazar	n81-17017 the NTSB
FIRE DAMAGE Cabin fire simulator lavatory tests [NASA-CR-160909] FIRE PREVENTION Special Aviation Fire and Explosion Reducti (SAFER) advisory committee, volume 1 [AD-A092016] Evaluation of RF anechoic chamber fire prot systems [AD-A092478]	N81-16020 on N81-16024	Test and evaluation of improved aircrew resystems for combat helicopers PLIGHT FATIGUE The apparent ignoring of pilot fatigue by in airline crashes PLIGHT HAZARDS Pulsed Doppler radar detects weather hazar aviation	straint N81-17017 the NTSB A81-22104 ds to
FIRE DAMAGE Cabin fire simulator lavatory tests [NASA-CR-160909] FIRE PREVENTION Special Aviation Fire and Explosion Reducti (SAFER) advisory committee, volume 1 [AD-A092016] Evaluation of RF anechoic chamber fire prot systems [AD-A092478] FIRES	N81-16020 on N81-16024 ection	Test and evaluation of improved aircrew respectives for combat helicopers PLIGHT FATIGUE The apparent ignoring of pilot fatigue by in airline crashes PLIGHT HAZARDS Pulsed Doppler radar detects weather hazar aviation [AIAA PAPER 81-0235]	N81-17017 the NTSB A81-22104 ds to A81-20691
FIRE DAMAGE Cabin fire simulator lavatory tests [NASA-CR-160909] FIRE PREVENTION Special Aviation Fire and Explosion Reducti (SAFER) advisory committee, volume 1 [AD-A092016] Evaluation of RF anechoic chamber fire prot systems [AD-A092478] FIRES Large-scale carbon fiber tests	N81-16020 on N81-16024 ection	Test and evaluation of improved aircrew resystems for combat helicopers PLIGHT FATIGUE The apparent ignoring of pilot fatigue by in airline crashes PLIGHT HAZARDS Pulsed Doppler radar detects weather hazar aviation	N81-17017 the NTSB A81-22104 ds to A81-20691
FIRE DAMAGE Cabin fire simulator lavatory tests [NASA-CR-160909] FIRE PREVENTION Special Aviation Fire and Explosion Reducti (SAFER) advisory committee, volume 1 [AD-A092016] Evaluation of RF anechoic chamber fire prot systems [AD-A092478] FIRES Large-scale carbon fiber tests	N81-16020 on N81-16024 ection N81-16070	Test and evaluation of improved aircrew resystems for combat helicopers PLIGHT FATIGUE The apparent ignoring of pilot fatigue by in airline crashes PLIGHT HAZARDS Pulsed Doppler radar detects weather hazar aviation [AIAA PAPER 81-0235] Hicrobursts as an aviation wind shear hazar	%81-17017 the MTSB A81-22104 ds to A81-20691 rd A81-20798
FIRE DAMAGE Cabin fire simulator lavatory tests [NASA-CR-160909] FIRE PREVENTION Special Aviation Fire and Explosion Reducti (SAFER) advisory committee, volume 1 [AD-A092016] Evaluation of RF anechoic chamber fire prot systems [AD-A092478] FIRES Large-scale carbon fiber tests [NASA-TH-80218] FLAME STABILITY Numerical investigation of a model of turbu	N81-16020 on N81-16024 ection N81-16070 N81-16137	Test and evaluation of improved aircrew resystems for combat helicopers PLIGHT FATIGUE The apparent ignoring of pilot fatigue by in airline crashes PLIGHT HAZARDS Pulsed Doppler radar detects weather hazar aviation [AIAA PAPER 81-0235] Hicrobursts as an aviation wind shear hazar [AIAA PAPER 81-0386] Sources and detection of atmospheric wind [AIAA PAPER 81-0391]	%81-17017 the MTSB A81-22104 ds to A81-20691 rd A81-20798
FIRE DAMAGE Cabin fire simulator lavatory tests [NASA-CR-160909] FIRE PREVENTION Special Aviation Fire and Explosion Reducti (SAFER) advisory committee, volume 1 [AD-A092016] Evaluation of RF anechoic chamber fire prot systems [AD-A092478] FIRES Large-scale carbon fiber tests [NASA-TH-80218] FLAME STABILITY Numerical investigation of a model of turbu combustion of hydrocarbons	N81-16020 on N81-16024 ection N81-16070 N81-16137	Test and evaluation of improved aircrew resystems for combat helicopers PLIGHT PATIGUE The apparent ignoring of pilot fatigue by in airline crashes PLIGHT HAZARDS Pulsed Doppler radar detects weather hazar aviation [AIAA PAPER 81-0235] Hicrobursts as an aviation wind shear hazar [AIAA PAPER 81-0386] Sources and detection of atmospheric wind: [AIAA PAPER 81-0391] An analytical approach to airfoil icing	M81-17017 the MTSB A81-22104 ds to A81-20691 rd A81-20798 shear A81-20801
FIRE DAMAGE Cabin fire simulator lavatory tests [NASA-CR-160909] FIRE PREVENTION Special Aviation Fire and Explosion Reducti (SAFER) advisory committee, volume 1 [AD-A092016] Evaluation of RF anechoic chamber fire prot systems [AD-A092478] FIRES Large-scale carbon fiber tests [NASA-TH-80218] FLAME STABILITY Numerical investigation of a model of turbu combustion of hydrocarbons [ATAA PAPER 81-0039]	N81-16020 on N81-16024 ection N81-16070 N81-16137 lent A81-20559	Test and evaluation of improved aircrew respectives for combat helicopers PLIGHT FATIGUE The apparent ignoring of pilot fatigue by in airline crashes PLIGHT HAZARDS Pulsed Doppler radar detects weather hazar aviation [AIAA PAPER 81-0235] Microbursts as an aviation wind shear hazar [AIAA PAPER 81-0386] Sources and detection of atmospheric wind (AIAA PAPER 81-0391) An analytical approach to airfoil icing [AIAA PAPER 81-0403]	N81-17017 the NTSB A81-22104 ds to A81-20691 rd A81-20798 shear A81-20801 A81-20810
FIRE DAMAGE Cabin fire simulator lavatory tests [NASA-CR-160909] FIRE PREVENTION Special Aviation Fire and Explosion Reducti (SAFER) advisory committee, volume 1 [AD-A092016] Evaluation of RF anechoic chamber fire prot systems [AD-A092478] FIRES Large-scale carbon fiber tests [NASA-TM-80218] FLAME STABILITY Numerical investigation of a model of turbu combustion of hydrocarbons [AIAA PAPER 81-0039] Semi-empirical correlations for gas turbine	N81-16020 on N81-16024 ection N81-16070 N81-16137 lent	Test and evaluation of improved aircrew resystems for combat helicopers PLIGHT FATIGUE The apparent ignoring of pilot fatigue by in airline crashes PLIGHT HAZARDS Pulsed Doppler radar detects weather hazar aviation [AIAA PAPER 81-0235] Hicrobursts as an aviation wind shear hazar [AIAA PAPER 81-0386] Sources and detection of atmospheric wind [AIAA PAPER 81-0391] An analytical approach to airfoil icing [AIAA PAPER 81-0403] Summary of aviation safety program resumes.	N81-17017 the NTSB A81-22104 ds to A81-20691 rd A81-20798 shear A81-20801 A81-20810
Cabin fire simulator lavatory tests [NASA-CR-160909] PIRE PREVENTION Special Aviation Fire and Explosion Reducti (SAFER) advisory committee, volume 1 [AD-A092016] Evaluation of RF anechoic chamber fire prot systems [AD-A092478] PIRES Large-scale carbon fiber tests [NASA-TM-80218] PIAME STABILITY Numerical investigation of a model of turbu combustion of hydrocarbons [ATAA PAPER 81-0039] Semi-empirical correlations for gas turbine emissions, ignition, and flame stabilizat.	N81-16020 on N81-16024 ection N81-16070 N81-16137 lent A81-20559 ion	Test and evaluation of improved aircrew resystems for combat helicopers PLIGHT PATIGUE The apparent ignoring of pilot fatigue by in airline crashes PLIGHT HAZARDS Pulsed Doppler radar detects weather hazar aviation [AIAA PAPER 81-0235] Hicrobursts as an aviation wind shear hazar [AIAA PAPER 81-0386] Sources and detection of atmospheric wind: [AIAA PAPER 81-0391] An analytical approach to airfoil icing [AIAA PAPER 81-0403] Summary of aviation safety program resumes safety	M81-17017 the MTSB A81-22104 ds to A81-20691 rd A81-20798 shear A81-20801 A81-20810
PIRE DAMAGE Cabin fire simulator lavatory tests [NASA-CR-160909] PIRE PREVENTION Special Aviation Fire and Explosion Reducti (SAFER) advisory committee, volume 1 [AD-A092016] Evaluation of RF anechoic chamber fire prot systems [AD-A092478] PIRES Large-scale carbon fiber tests [NASA-TH-80218] PLAME STABILITY Numerical investigation of a model of turbu combustion of hydrocarbons [ATAA PAPER 81-0039] Semi-empirical correlations for gas turbine emissions, ignition, and flame stabilizat.	N81-16020 on N81-16024 ection N81-16070 N81-16137 lent	Test and evaluation of improved aircrew respectives for combat helicopers PLIGHT FATIGUE The apparent ignoring of pilot fatigue by in airline crashes PLIGHT HAZARDS Pulsed Doppler radar detects weather hazar aviation [AIAA PAPER 81-0235] Hicrobursts as an aviation wind shear hazar [AIAA PAPER 81-0386] Sources and detection of atmospheric wind [AIAA PAPER 81-0391] An analytical approach to airfoil icing [AIAA PAPER 81-0403] Summary of aviation safety program resumes safety [AD-A091938]	M81-22104 ds to A81-20691 rd A81-20798 shear A81-20801 A81-20810 Cabin M81-16027
FIRE DAMAGE Cabin fire simulator lavatory tests [NASA-CR-160909] FIRE PREVENTION Special Aviation Fire and Explosion Reducti (SAFER) advisory committee, volume 1 [AD-A092016] Evaluation of RF anechoic chamber fire prot systems [AD-A092478] FIRES Large-scale carbon fiber tests [NASA-TM-80218] FLAME STABILITY Numerical investigation of a model of turbu combustion of hydrocarbons [AIAA PAPER 81-0039] Semi-empirical correlations for gas turbine emissions, ignition, and flame stabilizat. FLAPS (CONTROL SURFACES)	N81-16020 on N81-16024 ection N81-16070 N81-16137 lent A81-20559 ion A81-21505	Test and evaluation of improved aircrew resystems for combat helicopers PLIGHT FATIGUE The apparent ignoring of pilot fatigue by in airline crashes PLIGHT HAZARDS Pulsed Doppler radar detects weather hazar aviation [AIAA PAPER 81-0235] Microbursts as an aviation wind shear hazar [AIAA PAPER 81-0386] Sources and detection of atmospheric wind [AIAA PAPER 81-0391] An analytical approach to airfoil icing [AIAA PAPER 81-0403] Summary of aviation safety program resumes safety [AD-A091938] Briefs of fatal accidents involving weather	M81-22104 ds to A81-20691 rd A81-20798 shear A81-20801 A81-20810 Cabin M81-16027
Cabin fire simulator lavatory tests [NASA-CR-160909] PIRE PREVENTION Special Aviation Fire and Explosion Reducti (SAFER) advisory committee, volume 1 [AD-A092016] Evaluation of RF anechoic chamber fire prot systems [AD-A092478] PIRES Large-scale carbon fiber tests [NASA-TM-80218] PIAME STABILITY Numerical investigation of a model of turbu combustion of hydrocarbons [ATAA PAPER 81-0039] Semi-empirical correlations for gas turbine emissions, ignition, and flame stabilizat. PLAPS (CONTROL SURFACES) Study of a crack propagation on the flap ra	N81-16020 on N81-16024 ection N81-16070 N81-16137 lent A81-20559 ion A81-21505	Test and evaluation of improved aircrew resystems for combat helicopers PLIGHT FATIGUE The apparent ignoring of pilot fatigue by in airline crashes PLIGHT HAZARDS Pulsed Doppler radar detects weather hazar aviation [AIAA PAPER 81-0235] Microbursts as an aviation wind shear hazar [AIAA PAPER 81-0386] Sources and detection of atmospheric wind: [AIAA PAPER 81-0391] An analytical approach to airfoil icing [AIAA PAPER 81-0403] Summary of aviation safety program resumes safety [AD-A091938] Briefs of fatal accidents involving weather cause/factor, US General Aviation, 1978	M81-17017 the MTSB A81-22104 ds to A81-20691 rd A81-20798 shear A81-20801 A81-20810 Cabin N81-16027
Cabin fire simulator lavatory tests [NASA-CR-160909] PIRE PREVENTION Special Aviation Fire and Explosion Reducti (SAFER) advisory committee, volume 1 [AD-A092016] Evaluation of RF anechoic chamber fire prot systems [AD-A092478] PIRES Large-scale carbon fiber tests [NASA-TM-80218] PLAME STABILITY Numerical investigation of a model of turbu combustion of hydrocarbons [AIAA PAPER 81-0039] Semi-empirical correlations for gas turbine emissions, ignition, and flame stabilizat PLAPS (CONTROL SURFACES) Study of a crack propagation on the flap ra- transport aircraft	N81-16020 on N81-16024 ection N81-16070 N81-16137 lent A81-20559 ion A81-21505	Test and evaluation of improved aircrew respystems for combat helicopers PLIGHT FATIGUE The apparent ignoring of pilot fatigue by in airline crashes PLIGHT HAZARDS Pulsed Doppler radar detects weather hazar aviation [AIAA PAPER 81-0235] Microbursts as an aviation wind shear hazar [AIAA PAPER 81-0386] Sources and detection of atmospheric wind [AIAA PAPER 81-0391] An analytical approach to airfoil icing [AIAA PAPER 81-0403] Summary of aviation safety program resumes safety [AD-A091938] Briefs of fatal accidents involving weather cause/factor, US General Aviation, 1978	M81-22104 ds to A81-20691 rd A81-20798 shear A81-20801 A81-20810 Cabin M81-16027
Cabin fire simulator lavatory tests [NASA-CR-160909] PIRE PREVENTION Special Aviation Fire and Explosion Reducti (SAFER) advisory committee, volume 1 [AD-A092016] Evaluation of RF anechoic chamber fire prot systems [AD-A092478] PIRES Large-scale carbon fiber tests [NASA-TM-80218] PLAME STABILITY Numerical investigation of a model of turbu combustion of hydrocarbons [AIAA PAPER 81-0039] Semi-empirical correlations for gas turbine emissions, ignition, and flame stabilizat PLAPS (CONTROL SURFACES) Study of a crack propagation on the flap ra- transport aircraft	N81-16020 on N81-16024 ection N81-16070 N81-16137 lent A81-20559 ion A81-21505	Test and evaluation of improved aircrew resystems for combat helicopers PLIGHT FATIGUE The apparent ignoring of pilot fatigue by in airline crashes PLIGHT HAZARDS Pulsed Doppler radar detects weather hazar aviation [AIAA PAPER 81-0235] Microbursts as an aviation wind shear hazar [AIAA PAPER 81-0386] Sources and detection of atmospheric wind: [AIAA PAPER 81-0391] An analytical approach to airfoil icing [AIAA PAPER 81-0403] Summary of aviation safety program resumes safety [AD-A091938] Briefs of fatal accidents involving weather cause/factor, US General Aviation, 1978	M81-17017 the MTSB A81-22104 ds to A81-20691 rd A81-20798 shear A81-20801 A81-20810 Cabin N81-16027
PIRE DAMAGE Cabin fire simulator lavatory tests [NASA-CR-160909] PIRE PREVENTION Special Aviation Fire and Explosion Reducti (SAFER) advisory committee, volume 1 [AD-A092016] Evaluation of RF anechoic chamber fire prot systems [AD-A092478] PIRES Large-scale carbon fiber tests [NASA-TH-80218] PLAME STABILITY Numerical investigation of a model of turbu combustion of hydrocarbons [AIAA PAPER 81-0039] Semi-empirical correlations for gas turbine emissions, ignition, and flame stabilizat PLAPS (CONTROL SURFACES) Study of a crack propagation on the flap ra- transport aircraft PLEXIBILITY Nulti-plane high speed balancing techniques	N81-16020 on N81-16024 ection N81-16070 N81-16137 lent A81-20559 ion A81-21505 il of a A81-22633 and	Test and evaluation of improved aircrew resystems for combat helicopers PLIGHT PATIGUE The apparent ignoring of pilot fatigue by in airline crashes PLIGHT HAZARDS Pulsed Doppler radar detects weather hazar aviation [AIAA PAPER 81-0235] Microbursts as an aviation wind shear hazar [AIAA PAPER 81-0386] Sources and detection of atmospheric wind [AIAA PAPER 81-0391] An analytical approach to airfoil icing [AIAA PAPER 81-0403] Summary of aviation safety program resumes safety [AD-A091938] Briefs of fatal accidents involving weather cause/factor, US General Aviation, 1978 [PB81-110827] CAT altitude avoidance system	M81-17017 the MTSB A81-22104 ds to A81-20691 rd A81-20798 shear A81-20801 A81-20810 Cabin N81-16027 r as a
FIRE DAMAGE Cabin fire simulator lavatory tests [NASA-CR-160909] FIRE PREVENTION Special Aviation Fire and Explosion Reducti (SAFER) advisory committee, volume 1 [AD-A092016] Evaluation of RF anechoic chamber fire prot systems [AD-A092478] FIRES Large-scale carbon fiber tests [NASA-TM-80218] FLAME STABILITY Numerical investigation of a model of turbu combustion of hydrocarbons [AIAA PAPER 81-0039] Semi-empirical correlations for gas turbine emissions, ignition, and flame stabilizat. FLAPS (CONTROL SURFACES) Study of a crack propagation on the flap ra transport aircraft FLEXIBILITY Multi-plane high speed balancing techniques the use of a high specific stiffness Ti-B	N81-16020 on N81-16024 ection N81-16070 N81-16137 lent A81-20559 ion A81-21505 il of a A81-22633 and	Test and evaluation of improved aircrew resystems for combat helicopers PLIGHT FATIGUE The apparent ignoring of pilot fatigue by in airline crashes PLIGHT HAZARDS Pulsed Doppler radar detects weather hazar aviation [AIAA PAPER 81-0235] Microbursts as an aviation wind shear hazar [AIAA PAPER 81-0386] Sources and detection of atmospheric wind: [AIAA PAPER 81-0391] An analytical approach to airfoil icing [AIAA PAPER 81-0403] Summary of aviation safety program resumes safety [AD-A091938] Briefs of fatal accidents involving weather cause/factor, US General Aviation, 1978 [PB81-110827] CAT altitude avoidance system [NASA-CASE-NFO-15351-1]	M81-17017 the MTSB A81-22104 ds to A81-20691 rd A81-20798 shear A81-20801 A81-20810 Cabin N81-16027 r as a N81-16028
FIRE DAMAGE Cabin fire simulator lavatory tests [NASA-CR-160909] FIRE PREVENTION Special Aviation Fire and Explosion Reducti (SAFER) advisory committee, volume 1 [AD-A092016] Evaluation of RF anechoic chamber fire prot systems [AD-A092478] FIRES Large-scale carbon fiber tests [NASA-TM-80218] FIAME STABILITY Numerical investigation of a model of turbu combustion of hydrocarbons [ATAA PAPER 81-0039] Semi-empirical correlations for gas turbine emissions, ignition, and flame stabilizat. FLAPS (CONTROL SURFACES) Study of a crack propagation on the flap ra transport aircraft FLEXIBILITY Multi-plane high speed balancing techniques the use of a high specific stiffness Ti-B material for vibration control	N81-16020 on N81-16024 ection N81-16070 N81-16137 lent A81-20559 ion A81-21505 il of a A81-22633 and orsic	Test and evaluation of improved aircrew respystems for combat helicopers PLIGHT FATIGUE The apparent ignoring of pilot fatigue by in airline crashes PLIGHT HAZARDS Pulsed Doppler radar detects weather hazar aviation [AIAA PAPER 81-0235] Microbursts as an aviation wind shear hazar [AIAA PAPER 81-0386] Sources and detection of atmospheric wind [AIAA PAPER 81-0391] An analytical approach to airfoil icing [AIAA PAPER 81-0403] Summary of aviation safety program resumes safety [AD-A091938] Briefs of fatal accidents involving weather cause/factor, US General Aviation, 1978 [PB81-110827] CAT altitude avoidance system [NASA-CASE-NPO-15351-1] FLIGHT INSTRUBERTS	M81-17017 the MTSB A81-22104 ds to A81-20691 rd A81-20798 shear A81-20801 A81-20810 Cabin N81-16027 r as a N81-16028 N81-16677 erically
PIRE DAMAGE Cabin fire simulator lavatory tests [NASA-CR-160909] PIRE PREVENTION Special Aviation Fire and Explosion Reducti (SAFER) advisory committee, volume 1 [AD-A092016] Evaluation of RF anechoic chamber fire prot systems [AD-A092478] PIRES Large-scale carbon fiber tests [NASA-TH-80218] PLAME STABILITY Numerical investigation of a model of turbu combustion of hydrocarbons [AIAA PAPER 81-0039] Semi-empirical correlations for gas turbine emissions, ignition, and flame stabilizat PLAPS (CONTROL SURFACES) Study of a crack propagation on the flap ra transport aircraft PLEXIBILITY Multi-plane high speed balancing techniques the use of a high specific stiffness Ti-B material for vibration control [AD-A093122]	N81-16020 on N81-16024 ection N81-16070 N81-16137 lent A81-20559 ion A81-21505 il of a A81-22633 and	Test and evaluation of improved aircrew resystems for combat helicopers PLIGHT FATIGUE The apparent ignoring of pilot fatigue by in airline crashes PLIGHT HAZARDS Pulsed Doppler radar detects weather hazar aviation [AIAA PAPER 81-0235] Microbursts as an aviation wind shear hazar [AIAA PAPER 81-0386] Sources and detection of atmospheric wind: [AIAA PAPER 81-0391] An analytical approach to airfoil icing [AIAA PAPER 81-0403] Summary of aviation safety program resumes safety [AD-A091938] Briefs of fatal accidents involving weather cause/factor, US General Aviation, 1978 [PB81-110827] CAT altitude avoidance system [NASA-CASE-NPO-15351-1] PLIGHT INSTRUMENTS Some implementation considerations for nume stable flight filters	M81-17017 the MTSB A81-22104 ds to A81-20691 rd A81-20798 shear A81-20801 A81-20810 Cabin N81-16027 r as a N81-16078 erically A81-20485
FIRE DAMAGE Cabin fire simulator lavatory tests [NASA-CR-160909] FIRE PREVENTION Special Aviation Fire and Explosion Reducti (SAFER) advisory committee, volume 1 [AD-A092016] Evaluation of RF anechoic chamber fire prot systems [AD-A092478] FIRES Large-scale carbon fiber tests [NASA-TM-80218] FLAME STABILITY Numerical investigation of a model of turbu combustion of hydrocarbons [AIAA PAPER 81-0039] Semi-empirical correlations for gas turbine emissions, ignition, and flame stabilizat FLAPS (CONTROL SURFACES) Study of a crack propagation on the flap ra transport aircraft FLEXIBILITY fluti-plane high speed balancing techniques the use of a high specific stiffness Ti-B material for vibration control [AD-A093122] FLIGHT CHARACTERISTICS	N81-16020 on N81-16024 ection N81-16070 N81-16137 lent A81-20559 ion A81-21505 il of a A81-22633 and orsic N81-17092	Test and evaluation of improved aircrew resystems for combat helicopers PLIGHT FATIGUE The apparent ignoring of pilot fatigue by in airline crashes PLIGHT HAZARDS Pulsed Doppler radar detects weather hazar aviation [AIAA PAPER 81-0235] Microbursts as an aviation wind shear hazar [AIAA PAPER 81-0386] Sources and detection of atmospheric wind [AIAA PAPER 81-0391] An analytical approach to airfoil icing [AIAA PAPER 81-0403] Summary of aviation safety program resumes safety [AD-A091938] Briefs of fatal accidents involving weather cause/factor, US General Aviation, 1978 [PB81-110827] CAT altitude avoidance system [NASA-CASE-NPO-15351-1] PLIGHT INSTRUBERTS Some implementation considerations for nume stable flight filters Operational problems associated with head-	M81-17017 the MTSB A81-22104 ds to A81-20691 rd A81-20798 shear A81-20801 A81-20810 Cabin N81-16027 r as a N81-16078 erically A81-20485
PIRE DAMAGE Cabin fire simulator lavatory tests [NASA-CR-160909] PIRE PREVENTION Special Aviation Fire and Explosion Reducti (SAFER) advisory committee, volume 1 [AD-A092016] Evaluation of RF anechoic chamber fire prot systems [AD-A092478] PIRES Large-scale carbon fiber tests [NASA-TM-80218] PIAME STABILITY Numerical investigation of a model of turbu combustion of hydrocarbons [ATAA PAPER 81-0039] Semi-empirical correlations for gas turbine emissions, ignition, and flame stabilizat. PLAPS (CONTROL SURFACES) Study of a crack propagation on the flap ra- transport aircraft PLEXIBILITY Multi-plane high speed balancing techniques the use of a high specific stiffness Ti-B material for vibration control [AD-A093122] PLIGHT CHARACTERISTICS Aircraft lateral parameter estimation from	N81-16020 on N81-16024 ection N81-16070 N81-16137 lent A81-20559 ion A81-21505 il of a A81-22633 and orsic N81-17092	Test and evaluation of improved aircrew resystems for combat helicopers PLIGHT FATIGUE The apparent ignoring of pilot fatigue by in airline crashes PLIGHT HAZARDS Pulsed Doppler radar detects weather hazar aviation [AIAA PAPER 81-0235] Hicrobursts as an aviation wind shear hazar [AIAA PAPER 81-0386] Sources and detection of atmospheric wind: [AIAA PAPER 81-0391] An analytical approach to airfoil icing [AIAA PAPER 81-0403] Summary of aviation safety program resumes safety [AD-A091938] Briefs of fatal accidents involving weather cause/factor, US General Aviation, 1978 [PB81-110827] CAT altitude avoidance system [NASA-CASE-NPO-15351-1] FLIGHT INSTRUMENTS Some implementation considerations for nume stable flight filters Operational problems associated with head-displays during instrument flight	M81-17017 the MTSB A81-22104 ds to A81-20691 rd A81-20798 shear A81-20801 A81-20810 Cabin N81-16027 r as a N81-16028 N81-16028 N81-16028
PIRE DAMAGE Cabin fire simulator lavatory tests [NASA-CR-160909] PIRE PREVENTION Special Aviation Fire and Explosion Reducti (SAFER) advisory committee, volume 1 [AD-A092016] Evaluation of RF anechoic chamber fire prot systems [AD-A092478] PIRES Large-scale carbon fiber tests [NASA-TH-80218] PLAME STABILITY Numerical investigation of a model of turbu combustion of hydrocarbons [AIAA PAPER 81-0039] Semi-empirical correlations for gas turbine emissions, ignition, and flame stabilizat PLAPS (CONTROL SURFACES) Study of a crack propagation on the flap ra transport aircraft PLEXIBILITY Multi-plane high speed balancing techniques the use of a high specific stiffness Ti-B material for vibration control [AD-A093122] PLIGHT CHARACTERISTICS Aircraft lateral parameter estimation from data with unsteady aerodynamic modelling	N81-16020 on N81-16024 ection N81-16070 N81-16137 lent A81-20559 ion A81-21505 il of a A81-22633 and orsic N81-17092 flight	Test and evaluation of improved aircrew resystems for combat helicopers PLIGHT FATIGUE The apparent ignoring of pilot fatigue by in airline crashes PLIGHT HAZARDS Pulsed Doppler radar detects weather hazar aviation [AIAA PAPER 81-0235] Microbursts as an aviation wind shear hazar [AIAA PAPER 81-0386] Sources and detection of atmospheric wind: [AIAA PAPER 81-0391] An analytical approach to airfoil icing [AIAA PAPER 81-0403] Summary of aviation safety program resumes safety [AD-A091938] Briefs of fatal accidents involving weather cause/factor, US General Aviation, 1978 [PB81-110827] CAT altitude avoidance system [NASA-CASE-NFO-15351-1] PLIGHT INSTRUMENTS Some implementation considerations for nume stable flight filters Operational problems associated with head-indisplays during instrument flight [AD-A092992]	M81-17017 the MTSB A81-22104 ds to A81-20691 rd A81-20798 shear A81-20801 A81-20810 Cabin N81-16027 r as a N81-16078 erically A81-20485 up N81-17058
FIRE DAMAGE Cabin fire simulator lavatory tests [NASA-CR-160909] FIRE PREVENTION Special Aviation Fire and Explosion Reducti (SAFER) advisory committee, volume 1 [AD-A092016] Evaluation of RF anechoic chamber fire prot systems [AD-A092478] FIRES Large-scale carbon fiber tests [NASA-TM-80218] FLAME STABILITY Numerical investigation of a model of turbu combustion of hydrocarbons [AIAA PAPER 81-0039] Semi-empirical correlations for gas turbine emissions, ignition, and flame stabilizat. FLAPS (CONTROL SURFACES) Study of a crack propagation on the flap ra transport aircraft FLEXIBILITY Multi-plane high speed balancing techniques the use of a high specific stiffness Ti-B material for vibration control [AD-A093122] FLIGHT CHARACTERISTICS Aircraft lateral parameter estimation from data with unsteady aerodynamic modelling [AIAA PAPER 81-0221]	N81-16020 on N81-16024 ection N81-16070 N81-16137 lent A81-20559 ion A81-21505 il of a A81-22633 and orsic N81-17092 flight A81-20684	Test and evaluation of improved aircrew resystems for combat helicopers PLIGHT FATIGUE The apparent ignoring of pilot fatigue by in airline crashes PLIGHT HAZARDS Pulsed Doppler radar detects weather hazar aviation [AIAA PAPER 81-0235] Microbursts as an aviation wind shear hazar [AIAA PAPER 81-0386] Sources and detection of atmospheric wind [AIAA PAPER 81-0391] An analytical approach to airfoil icing [AIAA PAPER 81-0403] Summary of aviation safety program resumes safety [AD-A091938] Briefs of fatal accidents involving weather cause/factor, US General Aviation, 1978 [PB81-110827] CAT altitude avoidance system [NASA-CASE-NFO-15351-1] FLIGHT INSTRUBERTS Some implementation considerations for nume stable flight filters Operational problems associated with head-displays during instrument flight [AD-A092992] Evolution of tactical and map displays for	M81-17017 the MTSB A81-22104 ds to A81-20691 rd A81-20798 shear A81-20801 A81-20810 Cabin N81-16027 r as a N81-16078 erically A81-20485 up N81-17058
PIRE DAMAGE Cabin fire simulator lavatory tests [NASA-CR-160909] PIRE PREVENTION Special Aviation Fire and Explosion Reducti (SAFER) advisory committee, volume 1 [AD-A092016] Evaluation of RF anechoic chamber fire prot systems [AD-A092478] PIRES Large-scale carbon fiber tests [NASA-TM-80218] PIAME STABILITY Numerical investigation of a model of turbu combustion of hydrocarbons [ATAA PAPER 81-0039] Semi-empirical correlations for gas turbine emissions, ignition, and flame stabilizat. PLAPS (CONTROL SURFACES) Study of a crack propagation on the flap ra transport aircraft PLEXIBILITY Multi-plane high speed balancing techniques the use of a high specific stiffness Ti-B material for vibration control [AD-A093122] PLIGHT CHARACTERISTICS Aircraft lateral parameter estimation from data with unsteady aerodynamic modelling [ATAA PAPER 81-0221] A flight investigation of performance and 1	N81-16020 on N81-16024 ection N81-16070 N81-16137 lent A81-20559 ion A81-21505 il of a A81-22633 and orsic N81-17092 flight A81-20684 oads	Test and evaluation of improved aircrew resystems for combat helicopers PLIGHT FATIGUE The apparent ignoring of pilot fatigue by in airline crashes PLIGHT HAZARDS Pulsed Doppler radar detects weather hazar aviation [AIAA PAPER 81-0235] Microbursts as an aviation wind shear hazar [AIAA PAPER 81-0386] Sources and detection of atmospheric wind: [AIAA PAPER 81-0391] An analytical approach to airfoil icing [AIAA PAPER 81-0403] Summary of aviation safety program resumes safety [AD-A091938] Briefs of fatal accidents involving weather cause/factor, US General Aviation, 1978 [PB81-110827] CAT altitude avoidance system [NASA-CASE-NFO-15351-1] PLIGHT INSTRUMENTS Some implementation considerations for nume stable flight filters Operational problems associated with head-indisplays during instrument flight [AD-A092992]	M81-17017 the MTSB A81-22104 ds to A81-20691 rd A81-20798 shear A81-20801 A81-20801 Cabin N81-16027 r as a N81-16028 N81-16028 N81-16028 N81-16028 N81-16079 erically A81-20485 ap N81-17058 high
PIRE DAMAGE Cabin fire simulator lavatory tests [NASA-CR-160909] PIRE PREVENTION Special Aviation Fire and Explosion Reducti (SAFER) advisory committee, volume 1 [AD-A092016] Evaluation of RF anechoic chamber fire prot systems [AD-A092478] PIRES Large-scale carbon fiber tests [NASA-TM-80218] PIAME STABILITY Numerical investigation of a model of turbu combustion of hydrocarbons [ATAA PAPER 81-0039] Semi-empirical correlations for gas turbine emissions, ignition, and flame stabilizat PLAPS (CONTROL SURFACES) Study of a crack propagation on the flap ra transport aircraft PLEXIBILITY Multi-plane high speed balancing techniques the use of a high specific stiffness Ti-B material for vibration control [AD-A093122] PLIGHT CHARACTERISTICS Aircraft lateral parameter estimation from data with unsteady aerodynamic modelling [ATAA PAPER 81-0221] A flight investigation of performance and 1 for a helicopter with RC-SC2 main-rotor D.	N81-16020 on N81-16024 ection N81-16070 N81-16137 lent A81-20559 ion A81-21505 il of a A81-22633 and orsic N81-17092 flight A81-20684 oads	Test and evaluation of improved aircrew resystems for combat helicopers PLIGHT FATIGUE The apparent ignoring of pilot fatigue by in airline crashes PLIGHT HAZARDS Pulsed Doppler radar detects weather hazar aviation [AIAA PAPER 81-0235] Hicrobursts as an aviation wind shear hazar [AIAA PAPER 81-0386] Sources and detection of atmospheric wind [AIAA PAPER 81-0391] An analytical approach to airfoil icing [AIAA PAPER 81-0403] Summary of aviation safety program resumest safety [AD-A091938] Briefs of fatal accidents involving weather cause/factor, US General Aviation, 1978 [PB81-110827] CAT altitude avoidance system [NASA-CASE-NFO-15351-1] PLIGHT INSTRUBERTS Some implementation considerations for nume stable flight filters Operational problems associated with head-displays during instrument flight [AD-A092992] Evolution of tactical and map displays for performance aircraft	M81-17017 the MTSB A81-22104 ds to A81-20691 rd A81-20801 A81-20801 A81-20801 A81-16027 r as a N81-16027 r as a N81-16078 erically A81-20485 ap N81-17058 high N81-17072
PIRE DAMAGE Cabin fire simulator lavatory tests [NASA-CR-160909] PIRE PREVENTION Special Aviation Fire and Explosion Reducti (SAFER) advisory committee, volume 1 [AD-A092016] Evaluation of RF anechoic chamber fire prot systems [AD-A092478] PIRES Large-scale carbon fiber tests [NASA-TM-80218] PLAME STABILITY Numerical investigation of a model of turbu combustion of hydrocarbons [AIAA PAPER 81-0039] Semi-empirical correlations for gas turbine emissions, ignition, and flame stabilizat PLAPS (CONTROL SURFACES) Study of a crack propagation on the flap ra transport aircraft PLEXIBILITY Multi-plane high speed balancing techniques the use of a high specific stiffness Ti-B material for vibration control [AD-A093122] PLIGHT CHARACTERISTICS Aircraft lateral parameter estimation from data with unsteady aerodynamic modelling [AIAA PAPER 81-0221] A flight investigation of performance and 1- for a helicopter with EC-SC2 main-rotor b.	N81-16020 on N81-16024 ection N81-16070 N81-16137 lent A81-20559 ion A81-21505 il of a A81-22633 and orsic N81-17092 flight A81-20684 oads	Test and evaluation of improved aircrew resystems for combat helicopers PLIGHT FATIGUE The apparent ignoring of pilot fatigue by in airline crashes PLIGHT HAZARDS Pulsed Doppler radar detects weather hazar aviation [AIAA PAPER 81-0235] Microbursts as an aviation wind shear hazar [AIAA PAPER 81-0386] Sources and detection of atmospheric wind [AIAA PAPER 81-0391] An analytical approach to airfoil icing [AIAA PAPER 81-0403] Summary of aviation safety program resumes safety [AD-A091938] Briefs of fatal accidents involving weather cause/factor, US General Aviation, 1978 [PB81-110827] CAT altitude avoidance system [NASA-CASE-NFO-15351-1] FLIGHT INSTRUBERTS Some implementation considerations for nume stable flight filters Operational problems associated with head-displays during instrument flight [AD-A092992] Evolution of tactical and map displays for	M81-17072 the MTSB A81-22104 ds to A81-20691 rd A81-20798 shear A81-20801 A81-20810 Cabin N81-16027 r as a N81-16077 erically A81-20485 up M81-17058 high N81-17072 tions
PIRE DAMAGE Cabin fire simulator lavatory tests [NASA-CR-160909] PIRE PREVENTION Special Aviation Fire and Explosion Reducti (SAFER) advisory committee, volume 1 [AD-A092016] Evaluation of RF anechoic chamber fire prot systems [AD-A092478] PIRES Large-scale carbon fiber tests [NASA-TM-80218] PLAME STABILITY Numerical investigation of a model of turbu combustion of hydrocarbons [AIAA PAPER 81-0039] Semi-empirical correlations for gas turbine emissions, ignition, and flame stabilizat PLAPS (CONTROL SURFACES) Study of a crack propagation on the flap ra transport aircraft PLEXIBILITY Multi-plane high speed balancing techniques the use of a high specific stiffness Ti-B material for vibration control [AD-A093122] PLIGHT CHARACTERISTICS Aircraft lateral parameter estimation from data with unsteady aerodynamic modelling [AIAA PAPER 81-0221] A flight investigation of performance and 1- for a helicopter with RC-SC2 main-rotor b.	N81-16020 on N81-16024 ection N81-16070 N81-16137 lent A81-20559 ion A81-21505 il of a A81-22633 and orsic N81-17092 flight A81-20684 oads lade N81-15982	Test and evaluation of improved aircrew resystems for combat helicopers PLIGHT FATIGUE The apparent ignoring of pilot fatigue by in airline crashes PLIGHT HAZARDS Pulsed Doppler radar detects weather hazar aviation [AIAA PAPER 81-0235] Hicrobursts as an aviation wind shear hazar [AIAA PAPER 81-0386] Sources and detection of atmospheric wind [AIAA PAPER 81-0391] An analytical approach to airfoil icing [AIAA PAPER 81-0403] Summary of aviation safety program resumest safety [AD-A091938] Briefs of fatal accidents involving weather cause/factor, US General Aviation, 1978 [PB81-110827] CAT altitude avoidance system [NASA-CASE-NFO-15351-1] PLIGHT INSTRUBERTS Some implementation considerations for nume stable flight filters Operational problems associated with head-displays during instrument flight [AD-A092992] Evolution of tactical and map displays for performance aircraft	M81-17017 the MTSB A81-22104 ds to A81-20691 rd A81-20798 shear A81-20801 A81-20801 Cabin M81-16027 r as a M81-16028 M81-16028 M81-17078 M81-17058 M81-17072 tions M81-17073
PIRE DAMAGE Cabin fire simulator lavatory tests [NASA-CR-160909] PIRE PREVENTION Special Aviation Fire and Explosion Reducti (SAFER) advisory committee, volume 1 [AD-A092016] Evaluation of RF anechoic chamber fire prot systems [AD-A092478] PIRES Large-scale carbon fiber tests [NASA-TM-80218] PLAME STABILITY Numerical investigation of a model of turbu combustion of hydrocarbons [AIAA PAPER 81-0039] Semi-empirical correlations for gas turbine emissions, ignition, and flame stabilizat PLAPS (CONTROL SURFACES) Study of a crack propagation on the flap ra transport aircraft PLEXIBILITY Multi-plane high speed balancing techniques the use of a high specific stiffness Ti-B material for vibration control [AD-A093122] PLIGHT CHARACTERISTICS Aircraft lateral parameter estimation from data with unsteady aerodynamic modelling [AIAA PAPER 81-0221] A flight investigation of performance and 1 for a helicopter with RC-SC2 main-rotor b sections [NASA-TM-81898] On the flight mechanics of remotely piloted [BHVG-FBNT-79-28]	N81-16020 on N81-16024 ection N81-16070 N81-16137 lent A81-20559 ion A81-21505 il of a A81-22633 and orsic N81-17092 flight A81-20684 oads lade N81-15982 wehicles N81-17049	Test and evaluation of improved aircrew resystems for combat helicopers PLIGHT FATIGUE The apparent ignoring of pilot fatigue by in airline crashes PLIGHT HAZARDS Pulsed Doppler radar detects weather hazaraviation [AIAA PAPER 81-0235] Hicrobursts as an aviation wind shear hazaraviation and detection of atmospheric wind: [AIAA PAPER 81-0386] Sources and detection of atmospheric wind: [AIAA PAPER 81-0391] An analytical approach to airfoil icing [AIAA PAPER 81-0403] Summary of aviation safety program resumes. Safety [AD-A091938] Briefs of fatal accidents involving weather cause/factor, US General Aviation, 1978 [PB81-110827] CAT altitude avoidance system [NASA-CASE-NPO-15351-1] FLIGHT INSTRUMENTS Some implementation considerations for numeratable flight filters Operational problems associated with headdisplays during instrument flight [AD-A092992] Evolution of tactical and map displays for performance aircraft Helmet mounted displays: Design considerations	M81-17017 the MTSB A81-22104 ds to A81-20691 rd A81-20798 shear A81-20801 A81-20801 Cabin M81-16027 r as a M81-16028 M81-16028 M81-17078 M81-17058 M81-17072 tions M81-17073
PIRE DAMAGE Cabin fire simulator lavatory tests [NASA-CR-160909] PIRE PREVENTION Special Aviation Fire and Explosion Reducti (SAFER) advisory committee, volume 1 [AD-A092016] Evaluation of RF anechoic chamber fire prot systems [AD-A092478] PIRES Large-scale carbon fiber tests [NASA-TM-80218] PIAME STABILITY Numerical investigation of a model of turbu combustion of hydrocarbons [ATAA PAPER 81-0039] Semi-empirical correlations for gas turbine emissions, ignition, and flame stabilizat. FLAPS (CONTROL SURFACES) Study of a crack propagation on the flap ra- transport aircraft PLEXIBILITY Multi-plane high speed balancing techniques the use of a high specific stiffness Ti-B- material for vibration control [AD-A093122] PLIGHT CHARACTERISTICS Aircraft lateral parameter estimation from data with unsteady aerodynamic modelling [ATAA PAPER 81-0221] A flight investigation of performance and 1 for a helicopter with RC-SC2 main-rotor b- sections [NASA-TM-81898] On the flight mechanics of remotely piloted [BMVG-FEWT-79-28] First results obtained with a rotating cons	N81-16020 on N81-16024 ection N81-16070 N81-16137 lent A81-20559 ion A81-21505 il of a A81-22633 and orsic N81-17092 flight A81-20684 oads lade N81-15982 vehicles N81-17049 truction	Test and evaluation of improved aircrew resystems for combat helicopers PLIGHT FATIGUE The apparent ignoring of pilot fatigue by in airline crashes PLIGHT HAZARDS Pulsed Doppler radar detects weather hazaraviation [AIAA PAPER 81-0235] Hicrobursts as an aviation wind shear hazaraviation [AIAA PAPER 81-0386] Sources and detection of atmospheric wind faIAA PAPER 81-0391] An analytical approach to airfoil icing [AIAA PAPER 81-0403] Summary of aviation safety program resumes safety [AD-A091938] Briefs of fatal accidents involving weather cause/factor, US General Aviation, 1978 [PB81-110827] CAT altitude avoidance system [NASA-CASE-NPO-15351-1] FLIGHT INSTRUMENTS Some implementation considerations for nume stable flight filters Operational problems associated with headdisplays during instrument flight [AD-A092992] Evolution of tactical and map displays for performance aircraft Helmet mounted displays: Design consideration advanced electronic cockpit instrumentary system: The coordinated cockpit display	M81-17072 the NTSB A81-22104 ds to A81-220691 rd A81-20798 shear A81-20801 A81-20801 Cabin N81-16027 r as a N81-16028 N81-16028 N81-17078 m81-17078 m81-17078 m81-17072 m81-17073 m81-17074
FIRE DAMAGE Cabin fire simulator lavatory tests [NASA-CR-160909] FIRE PREVENTION Special Aviation Fire and Explosion Reducti (SAFER) advisory committee, volume 1 [AD-A092016] Evaluation of RF anechoic chamber fire prot systems [AD-A092478] FIRES Large-scale carbon fiber tests [NASA-TM-80218] FLAME STABILITY Numerical investigation of a model of turbu combustion of hydrocarbons [AIAA PAPER 81-0039] Semi-empirical correlations for gas turbine emissions, ignition, and flame stabilizat FLAPS (CONTROL SURFACES) Study of a crack propagation on the flap ratransport aircraft FLEXIBILITY Multi-plane high speed balancing techniques the use of a high specific stiffness Ti-Bi material for vibration control [AD-A093122] FLIGHT CHARACTERISTICS Aircraft lateral parameter estimation from data with unsteady aerodynamic modelling [AIAA PAPER 81-0221] A flight investigation of performance and 1 for a helicopter with RC-SC2 main-rotor b sections [NASA-TM-81898] On the flight mechanics of remotely piloted [BMVG-FBWT-79-28] First results obtained with a rotating cons used in measuring flying qualities of	N81-16020 on N81-16024 ection N81-16070 N81-16137 lent A81-20559 ion A81-21505 il of a A81-22633 and orsic N81-17092 flight A81-20684 oads lade N81-15982 vehicles N81-17049 truction	Test and evaluation of improved aircrew resystems for combat helicopers PLIGHT FATIGUE The apparent ignoring of pilot fatigue by in airline crashes PLIGHT HAZARDS Pulsed Doppler radar detects weather hazaraviation [AIAA PAPER 81-0235] Hicrobursts as an aviation wind shear hazaraviation [AIAA PAPER 81-0386] Sources and detection of atmospheric wind allow [AIAA PAPER 81-0391] An analytical approach to airfoil icing [AIAA PAPER 81-0403] Summary of aviation safety program resumestafety [AD-A091938] Briefs of fatal accidents involving weather cause/factor, US General Aviation, 1978 [PB81-110827] CAT altitude avoidance system [NASA-CASE-NPO-15351-1] FLIGHT INSTRUBENTS Some implementation considerations for nume stable flight filters Operational problems associated with head-displays during instrument flight [AD-A092992] Evolution of tactical and map displays for performance aircraft Helmet mounted displays: Design consideration and advanced electronic cockpit instruments	N81-1027 r as a N81-1028 N81-1607 r as a N81-1058 N81-17078 N81-17078 N81-17073 tion N81-17074 mation
FIRE DAMAGE Cabin fire simulator lavatory tests [NASA-CR-160909] FIRE PREVENTION Special Aviation Fire and Explosion Reducti (SAFER) advisory committee, volume 1 [AD-A092016] Evaluation of RF anechoic chamber fire prot systems [AD-A092478] FIRES Large-scale carbon fiber tests [NASA-TM-80218] FLAME STABILITY Numerical investigation of a model of turbu combustion of hydrocarbons [AIAA PAPER 81-0039] Semi-empirical correlations for gas turbine emissions, ignition, and flame stabilizat FLAPS (CONTROL SURFACES) Study of a crack propagation on the flap ra transport aircraft FLEXIBILITY Multi-plane high speed balancing techniques the use of a high specific stiffness Ti-B material for vibration control [AD-A093122] FLIGHT CHARACTERISTICS Aircraft lateral parameter estimation from data with unsteady aerodynamic modelling [AIAA PAPER 81-0221] A flight investigation of performance and 1 for a helicopter with RC-SC2 main-rotor b sections [NASA-TM-81898] On the flight mechanics of remotely piloted [BNYG-FBNT-79-28] First results obtained with a rotating cons used in measuring flying qualities of tunnel aircraft models	N81-16020 on N81-16024 ection N81-16070 N81-16137 lent A81-20559 ion A81-21505 il of a A81-22633 and orsic N81-17092 flight A81-20684 oads lade N81-15982 vehicles N81-17049 truction	Test and evaluation of improved aircrew resystems for combat helicopers PLIGHT FATIGUE The apparent ignoring of pilot fatigue by in airline crashes PLIGHT HAZARDS Pulsed Doppler radar detects weather hazaraviation [AIAA PAPER 81-0235] Hicrobursts as an aviation wind shear hazaraviation [AIAA PAPER 81-0386] Sources and detection of atmospheric wind faIAA PAPER 81-0391] An analytical approach to airfoil icing [AIAA PAPER 81-0403] Summary of aviation safety program resumes safety [AD-A091938] Briefs of fatal accidents involving weather cause/factor, US General Aviation, 1978 [PB81-110827] CAT altitude avoidance system [NASA-CASE-NPO-15351-1] FLIGHT INSTRUMENTS Some implementation considerations for nume stable flight filters Operational problems associated with headdisplays during instrument flight [AD-A092992] Evolution of tactical and map displays for performance aircraft Helmet mounted displays: Design consideration advanced electronic cockpit instrumentary system: The coordinated cockpit display	M81-17072 the NTSB A81-22104 ds to A81-220691 rd A81-20798 shear A81-20801 A81-20801 Cabin N81-16027 r as a N81-16028 N81-16028 N81-17078 m81-17078 m81-17078 m81-17072 m81-17073 m81-17074

SUBJECT INDEX PLOS DISTRIBUTION

PLIGHT MECHANICS	PLIGHT	T TEST VEHICLES	
Laboratory studies of flight mechanics using		single gimbal/strapdown inertial navigati	
catapult launched models [AAAP-NT-80-15] N81-		system for use on spin stabilized flight	test
Bodeling, acquisition and processing during law	ge {	SAND-80-2479C]	N81-16037
displacements associated with experiments		P TESTS	• _
flight mechanics [AAAF-NT-80-16] N81-		velopment and demonstration of an automat control and recovery system for remotely	
PLIGHT OPERATIONS		vehicles	-
Human Pactors of Plight-deck Automation: NASA/Industry Workshop	ጥ ከ e	e XV-15 - An initial Navy look	A81-20476
			A81-20635
PLIGHT PATHS		ight experiments with a slender cone at a	angle of
Piloting techniques on the backside - Flight pa angle control		Attack AIAA PAPER 81-0337]	A81-20761
A81-		level, adverse attitude escape using a	
The evaluation of aircraft collision probabilit at intersecting air routes	ies V	vertical seeking ejection seat	A81-22094
	21967 Ana	alytical methods for store separation fli	ight test
PLIGHT PLANS	p] i	ight tost oralization of a digital control	A81-22344
Airline navigation planning A81-		ight test evaluation of a digital control ised in a VTOL automatic approach and lan	
FLIGHT RECORDERS		system	_
An improved flight data transcriber [AD-A091981] N81-	16430 An	application of wake survey rakes to the	A81-22549
PLIGHT SAPRTY		experimental determination of thrust for	
Improved secondary radar antennas for flight		propeller driven aircraft	NO.1 15007
safety installations		[NASA-CR-163920] eliminary airworthiness evaluation AH-1s	N81-15986 (PROD)
Survival and Flight Equipment Association, Annu	al l	helicopter equipped with a substitute str	
Symposium, 17th, Las Vegas, Nev., December 2- 1979, Proceedings		exhaust pipe [AD-A092614]	N81-16045
		eliminary Airworthiness Evaluation (PAE 1	
Computer analysis of bird-resistant aircraft	t	the YCH-47D helicopter	
transparencies		[AD-A092633] French flight test program on the	N81-16046
Cabin fire simulator lavatory tests		electromagnetic effects of lightning	
[NASA-CR-160909] N81-	16020	ialt toota for atulaina rediceleatria	N81-16155
Annual report to the NASA Administrator by the Aerospace Safety Advisory Panel on the space		ight tests for studying radioelectric perturbations of an electrostatic origin	
shuttle program. Part 2: Summary of		,	N81-16160
information developed in the panel's fact-finding activities		dies on proper simulation during static of forward speed effects on fan moise	testing
	16114 [NASA-CR-165626]	N81-16853
Test and evaluation of improved aircrew restrain		crowave Landing System (MLS) clearance for	ormat
systems for combat helicopers		assessment tests [AD-A093553]	N81-17024
Spin recovery training	The	e DAST-1 remotely piloted research vehicl	Le
PLIGHT SINULATION		development and initial flight testing [NASA-CR-163105]	N81-17038
" A new concept for dynamic stability testing	PLIR I	DETECTORS	
for aircraft model in orbital path	. An	assessment of technical factors influence potential use of RPVS for minefield detec	
AS1- Operation and evaluation of the Terminal		AD-A0926821	N81-16047
Configured Vehicle Mission Simulator in an		CHARACTERISTICS	
automated terminal area metering and spacing environment		lutions for slightly over- or under-expar supersonic jets exhausting into cold subs	
	21709	mainstreams	
Effect of gust load alleviation on fatigue and		[AIAA PAPER 81-0257]	A81-20705
crack growth in ALCLAD 2024-T3 A81-		CHARTS survey of computer simulations of digital	ι.
The flight assessment and applications of DME/		avionics systems	NO. 16040
I, II		[AD-A091943] DEFLECTION	N81-16049
Qualification of Hihar flight systems	Efi	fects of design variables on spoiler cont	trol
		effectiveness, hinge moments, and wake to [AIAA PAPER 81-0072]	arbulence A81-20581
PLIGHT SIMULATORS High-level languages in affordable aircraft		DISTORTION	
simulators		e numerical solution of incompressible to	urbulent
Critical research issues and visual system		flow over airfoils [AIAA PAPER 81-0047]	A81-20563
requirements for a V/STOL training research	Dyi	namic pressure response with stall on ar	ial flow
simulator		compressor rotor blades [AIAA PAPER 81-0069]	A81-20578
[AD~A092561] The use of total simulator training in		scussion of test results in the design of	
transitioning air-carrier pilots: A field		laminar airfoils for competition gliders	
evaluation [NASA-TM-81250] N81		[NASA-TH-75402] DISTRIBUTION	N81-15984
Optical infinity leas development for flight	Par	rticle dynamics of inlet flow fields with	h
simulator visual displays		swirling vanes [AIAA PAPER 81-0001]	A81-20526
PLIGHT STRESS		merical study of a scramjet engine flow :	
Effects of fighter attack spectrum on crack gro	wth [[AIAA PAPER 81-0186]	A81-20659
A81- PLIGHT TEST INSTRUMENTS		gher-accuracy finite-difference schemes : transonic airfoil flowfield calculations	
AGARD flight test instrumentation series. Volu	.me ([AIAA PAPER 81-0381]	A81-20794
10 on Helicopter flight test instrumentation		ow visualization through the use of the smoke-wire technique	
[AGARD-AG-160-VOL-10] N81		[AIAA PAPER 81-0412]	A81-20816
	-		

PLOW EQUATIONS SUBJECT INDEX

A discrete vortex method for the non-steady separated flow over an airfoil A81-22568	PLUID PLOW Icing tunnel tests of a glycol-exuding por leading edge ice protection system on a	
Transonic flow calculations over two-dimensional canard-wing systems	aviation airfoil [AIAA PAPER 81-0405]	A81-2083
[AIAA PAPER 79-1565] A81-23367	PLUIDICS	
Study of transonic flow fields about aircraft: Application to external stores	Two-axis, fluidically controlled thrust ve control system for an ejection seat	ector
N81-15998	[AD-A093888]	N81-1699
Aerodynamic subsonic/transonic aircraft design studies by numerical methods	PLUORIDES A new technology - Piezoelectric polywinyl	.idene
N81-15999 Aerodynamic interaction between a close-coupled	fluoride communications transducers	A81-2209
canard and a sweptback wing in transonic flow	PLUTTER	
#81-16013 Validation of a two dimensional primitive variable	Practical gust load alleviation and flutte suppression control laws based on a LQG	er.
computer code for flow fields in jet engine test cells	methodology Linear Quadratic Gaussia [AIAA PAPER 81-0021]	A81-2054
[AD-A092138] N81-16060	Demonstration of a method for determining	critical
Three dimensional internal flows in turbomachinery, volume 1	store configurations for wing store flut [AD-A092257]	ter N81-1606
[AD-A092737] N81-16065 ZDRAFT-A graphite code for VTOL aircraft ground	PLUTTER ABALYSIS A frequency-domain technique for aeroelast	ic mode
footprint visualization	estimation	
[AD-A093311] Laser scattering applications development test in	Initial development for a flutter analysis	A81-2047: of
ABDC tunnel Bat Mach number 8 [AD-A093929] N81-17105	damaged T-38 horizontal stabilators usin	g NASTRAN
The influence of the compressibility in simulating	[AIAA PAPER 81-0365] Active controls for flutter suppression an	
the conduct of exterior loads of a carrier [MBB-FE-122/S/PUB/17] N81-17483	alleviation in supersonic aircraft Y flutter model	P-17
PLOW EQUATIONS	[NASA-CR-163934]	N81-1709
Body-fitted 3-D full-potential flow analysis of complex ducts and inlets	FLY BY WIRE CONTROL Fault-tolerant actuation concept for a res	earch
[AIAA PAPER 81-0002] A81-20527 New approach to the solution of large, full matrix	test aircraft [AD-A093113]	N81-1710
equations Neumann problem for inviscid	PLYING EJECTION SEATS	
incompressble flow past airfoils A81-21552	Computer code for the determination of eje seat/man aerodynamic parameters	
PLOW GROMETRY A numerical simulation of hypersonic viscous flow	[AD-A092721] POILS (MATERIALS)	N81-1602
over arbitrary geometries at angle of attack [AIAA PAPER 81-0050] A81-20566	Flame tube and ballistic evaluation of Exp aluminum foil for aircraft fuel tank exp	
Turbine modeling technique to generate off-design	protection suppressing combustion ov	erpressur
performance data for both single and multistage axial-flow turbines	[AD-A093542] Practure Mechanics	N81-1704
[NASA-CR-165244] N81-17078 PLOW MEASUREMENT	Effect of load spectrum variables on fatig initiation and propagation; Proceedings	
Measurements of flow quality in the Ames 2 x 2ft	Symposium, San Prancisco, Calif., May 21	, 1979
transonic wind tunnel [AIAA PAPER 81-0156] A81-20636	An engineering model for assessing load se	A81-2173 quencing
A survey of recent atmospheric turbulence measurements from a subsonic aircraft	effects cracks in aircraft structure	s A81-2173
[AIAA PAPER 81-0298] A81-20736	Ductile fracture mechanic assessments of	
PLOW STABILITY Experiments on the linear and non-linear evolution	2219-T851, 2024-T3 and 7075-T6 aluminum	A81-2262
of the double helical instability in jets [AIAA PAPER 81-0415] A81-20818	PREE PLOW Jet wing interference for an overwing engi	n e
FLOW THEORY	configuration	
Non-isoenergetic turbulent jet mixing in a constant area duct in turbofan engines	Laser scattering applications development	N81-1600 test in
[AIAA PAPER 81-0347] A81-20768 The high-speed airfoil program	AEDC tunnel B at Mach number 8 [AD-A093929]	N81-1710
N81-15970	PREQUENCY ASSIGNMENT	
A computational model for low speed flows past	Band sharing - A case study	A81-2186
airfoils with spoilers [AIAA PAPEE 81-0253] A81-20702	PREQUENCY MEASUREMENT A frequency-domain technique for aeroelast	ic mode
PLOW VISUALIZATION A parametric study of the static longitudinal	estimation	A81-2047
aerodynamic characteristics of parallel lift	PRICTION	
delta wing configurations at low Reynolds numbers [AIAA PAPER 81-0409] A81-20814	Longitudinal instability in braked landing [ASMB PAPBR 80-WA/DSC-12]	gear A81-2108:
<pre>Plow visualization through the use of the smoke-wire technique</pre>	FUEL CONSUMPTION Fuel consumption aspects of some noise aba	tomont-
[AIAA PAPER 81-0412] A81-20816	procedures	
<pre>Flow phenomena along fuselages and wing-fuselage systems of gliders</pre>	Operational energy conservation strategies	A81-2035
[NASA-TM-75401] N81-15983 Some aerodynamic interference effects that	connercial aviation	A81-2046
influence the transonic performance of combat	Integration of fuel conservative procedure	
aircraft N81-16014	high density terminal area	A81-2046
PLUID DYNABICS Current problems in turbomachinery fluid dynamics	Measurements of flow quality in the Ames 2 transonic wind tunnel	
[AD-A093375] N81-17387	[AIAA PAPER 81-0156]	A81-2063
	A feasibility study for advanced technolog integration for general aviation	
	[NASA-CR-159381]	N81-1597

P-3 Orion fuel-saving modification wind to [AD-A091906]	nnel study N81-16044	Large area gas discharge displays . N81-17070
UEL CONTROL	201 10011	GAS DYNAMICS
A model for the analysis of		Calculation of supersonic gas flows about wings
premixing-prevaporizing fuel-air mixing [AIAA PAPER 81-0345]	A81-20767	GAS HEATING A81-21201
DEL PLON		Considerations of the use of vitiated preheat
Three-dimensional model of spray combustic	on in gas	for engine inlets
turbine combustors [AIAA PAPER 81-0324]	A81-20751	GAS TURBINE ENGINES A81-20023
UBL INJECTION	10. 20/51	Considerations of the use of vitiated preheat
A model for the analysis of		for engine inlets
premixing-prevaporizing fuel-air mixing	passages A81~20767	3-D viscous analysis of ducts and flow splitters
[AIAA PAPER 81-0345] UBL PRODUCTION	ACT 20707	[AIAA PAPER 81-0277] A81-20720
Effect of refining variables on the proper	cties and	Three-dimensional model of spray combustion in gas
composition of JP-5	N81~17281	turbine combustors [AIAA PAPER 81-0324] A81-20751
[AD-A093842] URL TANKS	MO1-1/201	Use of speckle-holographic interferometry to study
Static charge in aircraft fuel tanks		the strain-strain state of a gas-turbine engine
[AD-A093552]	N81~17045	disk close to the blade root fixing A81-21366
Flame tube and ballistic evaluation of Expanding aluminum foil for aircraft fuel tank expanding the state of		Application of excelectron emission for quality
protection suppressing combustion or		control of gas-turbine engine parts
[AD-A093542]	N81-17046	A81-21367
Evaluation of explosafe. Explosion suppressive system for aircraft fuel tank protection		Convective amplification of gas turbine engine internal noise sources
[AD-A093125]	N81-17047	. A81-21595
UEL-AIR BATIO		New interpretations of shock-associated noise with
A model for the analysis of premixing-prevaporizing fuel-air mixing	nassages	and without screech
[AIAA PAPER 81-0345]	A81-20767	Progress in P/M superalloy and titanium for
ULL SCALE TESTS		aircraft applications
QF-100 Pull-Scale Aerial Target program	A81-22612	Development program for a graphite/PMR 15
Definition of loading sequence for full so		polyimide duct for the F404 engine
fatigue test		A81-22647
` 	A81-22626	Nonlinear analysis of squeeze film dampers applied
Validation of a two dimensional primitive computer code for flow fields in jet end		to gas turbine helicopter engines [AD-A091905] N81-16062
cells	,	Centrifugal compressors for small aero and
[AD-A092138]	N81-16060	automotive gas turbine engines
UNCTIONAL DESIGN SPECIFICATIONS Flight companies present new aircraft - Bo	ne i na	GAS TURBINES N81-17467
737-200 advanced aircraft characters		Semi-empirical correlations for gas turbine
and airline selection procedures		emissions, ignition, and flame stabilization
Auto-adaptive piloting of missiles	A81-21575	A81-21505 Two-stage combustion for reducing pollutant
[GA-380]	N81-17102	emissions from gas turbine combustors
USELAGES	_	[NASA-CR-163877] N81-16056
Numerical simulation of wing-fuselage interpretation [AIAA PAPER 81-0048]	erference A81-20564	Samarium cobalt (SMCO) generator/engine integration study
AV-8B composite fuselage design	A01-20304	[AD-A092904] N81-17087
[AIAA PAPER 81-0232]	A81-20690	Turbine engine fault detection and isolation
Composite fuselage development for Naval a	aircraft A81-22648	<pre>program, phase 1. Volume 2: Requirements definition for an integrated engine monitoring</pre>
Flow phenomena along fuselages and wing-fo		system
systems of gliders		[AD-A093226] N81-17088
[NASA-TM-75401]	ม81-15983	Turbine engine fault detection and isolation
Design and experimental verification of a transonic wing for a transonic aircraft		program, phase 1. Volume 1: Requirements definition for an integrated engine monitoring
C10200220 1229 122 0 12(N81-16003	system
V-12A AIBCRAFT		[AD-A093225] N81-17089
Effect of impact damage on the XFV-12A con	mposite	Prediction and evaluation of thrust augmenting ejector performance at the conceptual design stage
Wind pox	A81-22676	[AD-A093953] N81-17094
		GEAR TEETR
G		Gear meshing action as a source of vibratory excitation
ALERKIN BETHOD		A81-20061
Lifting-line theory of oblique wings - App		Gearbox isolation for reducing gear tooth noise in
of the Galerkin method to the lifting-1:	ine	single rotor helicopter A81-20073
equation	A81-19873	GEARS
APS		Gear unit noise and transmission errors
An analysis of gap effects on wing-elevon		helicopter system
aerodynamic characteristics [AIAA PAPER 81-0364]	A81-20783	Modelling techniques for the reduction of noise
AS ABALYSIS	201 20703	and vibration in gearboxes
Cabin fire simulator lavatory tests		A8 1- 20063
[NASA-CR-160909]	N81-16020	GBHERAL AVIATION AIRCRAFT
Erhaust emission characteristics and variation for maintained General Electric CF6-50		An analytical approach to airfoil icing [AIAA PAPER 81-0403] A81-20810
engines		Icing tunnel tests of a glycol-exuding porous
[AD-A092291]	N81-16064	leading edge ice protection system on a general
AS DISCHARGES Advancement on visualization techniques		aviation airfoil [AIAA PAPER 81-0405] A81-20837
[AGABD-AG-255]	N81-17063	[Lazan ant an 01 0203]

GIMBALS SOBJECT INDEX

	Core noise measurements from a small, gene	eral	GRAVITATIONAL BPPECTS	
	aviation turbofan engine	A81-22531	The Global Positioning System Versus gravit disturbance modeling in an inertial navig	
	An application of wake survey rakes to the	•	system error reduction at aircraft a	Ltitude
	experimental determination of thrust for propeller driven aircraft	: a	[AIAA PAPER 81-0087] GROUND BASED CONTROL	A81-20591
	[NASA-CR-163920]	N81-15986	A supplementary EMC analysis of the propose	
	Design and evaluation of an integrated Qui General Aviation Turbofan (OCGAT) engine		Airport Surface Detection Equipment (ASD)	8-3) radar N81-17342
	aircraft propulsion system	e anu	[AD-A092965] GROUND RFFECT	401 17542
	[NASA-CR-165185]	N81-16057	Some wake-related operational limitations)f
	GIMBALS A single gimbal/strapdown inertial navigat	ion	rotorcraft [NASA-TM-81920]	N81-15985
	system for use on spin stabilized flight		GROUND EFFECT (ABRODYNAMICS)	
	vehicles [SAND-80-2479C]	N81-16037	Numerical calculation of jet-induced ground in VTOL	leffect
	GLASS FIBER REINFORCED PLASTICS			A81-20539
	Acoustic fatigue strength of fiber-reinfor plastic panels	ced	GROUND SPEED Longitudinal instability in braked landing	70 2 F
	brasere baners	A81-20873	[ASME PAPER 80-WA/DSC-12]	A81-21083
	GLIDE PATHS		GROUND STATIONS	for 10 2
	Glideslope descent-rate cuing to aid carri landings	ier	Omega signal coverage prediction diagrams to kHz. Volume 2: Individual station diagrams	
	[AD-A092193]	N81-16033	[AD-A092742]	N81-16031
	GLIDERS Flow phenomena along fuselages and wing-fu	selage	GROUND TESTS SAFEST computer simulation of ejection seaf	٤
	systems of gliders	-	performance	
	[NASA-TM-75401] GLOBAL AIR SAMPLING PROGRAM	N81-15983	GROUND-AIR-GROUND COMMUNICATIONS	A81-22089
	Ozone contamination in aircraft cabins - B	Results	Problems of voice communication in helicopt	
	from GASP data and analyses [AIAA PAPER 81-0305]	A81-20740	Bilingual air traffic control in Canada	A81-20074
	GLOBAL ATMOSPHERIC RESEARCH PROGRAM		Dilligati dil tidilio convect in convec	A81-20915.
	Ozone contamination in aircraft cabins: B from GASP data and analyses	Results	GUIDE VAMES Particle dynamics of inlet flow fields with	
	[NASA-TM-81671]	N81-16021	swirling vanes	
	GLOBAL POSITIONING SYSTEM		[AIAA PAPER 81-0001]	A81-20526.
	The Global Positioning System versus gravi disturbance modeling in an inertial navi		Design, durability and low cost processing technology for composite fan exit guide v	anes
	system error reduction at aircraft a	ltitude		A81-22664
	[AIAA PAPER 81-0087] Air traffic control and position location	A81-20591	GULP OF MEXICO Production of LORAN-C reliability diagrams	at the
	satellite constellation in equatorial or	bit	Defense Mapping Agency	
	GPS receiver simulation	A81-21912	[AD-A093749] GUST ALLEVIATORS	N81-17028
		A81-21913	Practical gust load alleviation and flutter	:
•	Civil aviation applications of Navstar/GPS differential techniques	through	suppression control laws based on a LQG methodology Linear Quadratic Gaussian	1
•	-	A81-22374	[AIAA PAPER 81-0021]	A81-20544
	GLYCOLS Icing tunnel tests of a glycol-exuding por	Olle	Effect of gust load alleviation on fatigue crack growth in ALCLAD 2024-T3	and
	leading edge ice protection system on a		•	A81-21739
	aviation airfoil [AIAA PAPER 81-0405]	A81-20837	Active controls for flutter suppression and alleviation in supersonic aircraft YI	
	GRAPHITE-EPOXY COMPOSITE MATERIALS	A01-20037	flutter model	,
	AV-8B composite fuselage design	A81-20690	[NASA-CR-163934] GYROSCOPES	N81-17097
	[AIAA PAPER 81-0232] Effect of impact damage on the XFV-12A com		Evaluation/redesign of the F-105 pitch rate	gyro
	wing box	101 22676	pack	NO 1 - 16 A (1 B
	Electromagnetic integration of composite s	A81-22676 structure	[AD-A092109]	N81-16048
	in aircraft		ш	
	Assessment of risk to Boeing commerical tr	N81-16159 ansport	HAIR	
	aircraft from carbon fibers fiber re		The influence of beards on the efficiency of) £
	from graphite/epxoy materials [NASA-CR-159211]	N81-17171	· aviators, oxygen masks	A81-22100
	Pabrication and physical testing of graphi	.te	HARBESSES	
	composite panels utilizing woven graphit with current and advanced state-of-the-a	e fabric	Airborne-fiber optics manufacturing technol aircraft installation processes	.ogy,
	systems		[AD-A093304]	N81-17902
	[NASA-CR-152292] GRAPHITE-POLYIMIDE COMPOSITES	N81-17175	HARRIER AIRCRAFT AV-8B composite fuselage design	
	Development program for a graphite/PMR 15		[AIAA PAPER 81-0232]	A81-20690
	polyimide duct for the P404 engine	A81-22647	HEAD-UP DISPLATS	ch and
	Graphite polyimide fabrication research fo		A head-up display for low-visibility approx landing	ich and
	supersonic cruise aircraft	101 22665	[AIAA PAPER 81-0130]	A81-20623
	Design, fabrication and test of graphite/p	A81-22665 olyimide	Operational problems associated with head-u displays during instrument flight	ıp
	composite joints and attachments for adv		[AD-A092992]	N81-17058
	aerospace vehicles [NASA-CR-159112]	N81-16042	FRAT RESISTANT ALLOYS Progress in P/M superalloy and titanium for	
	GRAVINETRY		aircraft applications	
	Gravimetric investigation of the particle density distribution function in the high		HBAT SHIELDING	A81-22641
	cascade wind tunnel for laser anemometry		Effect of a semi-annular thermal acoustic s	shield
	measurements [ESA-TT-625]	N81-16069	on jet exhaust noise	A81-22532

SUBJECT INDEX HOVERING STABILITY

FRICAL PLOW Experiments on the linear and non-linear evolution	Preliminary airworthiness evaluation AH-15 (PROD)
of the double helical instability in jets	helicopter equipped with a substitute straight exhaust pipe
[AIAA PAPER 81-0415] A81-20818	[AD-A092614] N81-16045
BELICOPTER CONTROL	An investigation of the five point restraint
Acoustics of rotors utilizing circulation control	system for aviators
[AIAA PAPER 81-0092] A81-20596	[AD-A093065] N81-16998
######################################	The evolution of the helicopter seat pan mounted Personal Survival Pack (PSP)
A81-20053	N81-17016
An overview of the research conducted in	Helicopter noise contour development techniques
Aerospatiale on internal noise	and directivity analysis
A81-20054	[AD-A093426] N81-17851
Measurements of structural mobility on helicopter	Correlation of helicopter noise levels with
structures A81-20064	physical and performance characteristics [AD-A093428] N81-17852
Sandwich structures with high transmission loss	[AD-A093428] N81-17852 HELMET MOUNTED DISPLAYS
A81-20069	Helmet mounted displays: Design considerations
Acoustic radiation from honeycomb sandwich plates	N81-17073
A81-20070	HRMISPHERE CYLINDER BODIES
40 years of helicopter ice protection experience	Calculation of viscous, sonic flow over
at Sikorsky Aircraft [AIAA PAPER 81-0407] A81-20813	hemisphere-cylinder at 19 deg incidence - The capturing of nose vortices
New navigation systems for helicopters	[AIAA PAPER 81-0189] A81-20661
A81-22167	HIGH ALTITUDE ENVIRONMENTS
AGARD flight test instrumentation series. Volume	Characterizing cross-track error distributions for
10 on Helicopter flight test instrumentation	continental jet routes
[AGARD-AG-160-VOL-10] N81-17040	A81-21969
New materials and helicopter certification exigencies of certification regulation	HIGH PREQUENCIES Radio direction finding on high frequency short
[AAAF-NT-79-26] N81-17052	duration signals
HELICOPTER ENGINES	[AD-A092136] N81-16029
Particle dynamics of inlet flow fields with	HIGH LEVEL LANGUAGES
swifting vanes	High-level languages in affordable aircraft
[AIAA PAPER 81-0001] A81-20526 Preliminary airworthiness evaluation AH-1S (PROD)	simulators
helicopter equipped with a substitute straight	A81-20418 The BQM-74C target as a flying computer - Its
exhaust pipe	language and its peripherals
· [AD-A092614] #81-16045	A81-22611
Nonlinear analysis of squeeze film dampers applied	HIGH PASS PILTERS
to gas turbine helicopter engines	Sample data effects of high-pass filters
10002	[NASA-TP-1797] N81-16040 HIGH PRESSURE
Model 250-C30/C28B compressor development	DIGG PRESSURE
	JT8D-15/17 high pressure turbine root discharged
N81-17466 HELICOPTER PERFORMANCE	JT8D-15/17 high pressure turbine root discharged blade performance improvement engine design
N81-17466	JT8D-15/17 high pressure turbine root discharged blade performance improvement engine design [NSD-CR-165220] NS1-17080
N81-17466 HELICOPTER PERFORMANCE Symposium on Internal Noise in Helicopters, University of Southampton, Southampton, England,	blade performance improvement engine design [NASA-CR-165220] N81-17080 HIGH SPEED
N81-17466 HELICOPTER PERFORMANCE Symposium on Internal Noise in Helicopters, University of Southampton, Southampton, England, July 17-20, 1979, Proceedings	blade performance improvement engine design [MASA-CR-165220] N81-17080 HIGH SPEED Extension of ejection seat capability for high
HELICOPTER PERFORMANCE Symposium on Internal Noise in Helicopters, University of Southampton, Southampton, England, July 17-20, 1979, Proceedings A81-20051	blade performance improvement engine design [NASA-CR-165220] N81-17080 HIGH SPBED Extension of ejection seat capability for high speed conditions
N81-17466 HELICOPTER PERFORMANCE Symposium on Internal Noise in Helicopters, University of Southampton, Southampton, England, July 17-20, 1979, Proceedings	blade performance improvement engine design [NASA-CE-165220] N81-17080 HIGH SPEED Extension of ejection seat capability for high speed conditions A81-22097
HELICOPTER PERFORMANCE Symposium on Internal Noise in Helicopters, University of Southampton, Southampton, England, July 17-20, 1979, Proceedings Helicopter fatigue qualification	blade performance improvement engine design [NASA-CR-165220] N81-17080 HIGH SPBED Extension of ejection seat capability for high speed conditions
HELICOPTER PERFORMANCE Symposium on Internal Noise in Helicopters, University of Southampton, Southampton, England, July 17-20, 1979, Proceedings A81-20051 Helicopter fatigue qualification A flight investigation of performance and loads for a helicopter with RC-SC2 main-rotor blade	blade performance improvement engine design [NASA-CR-165220] N81-17080 HIGH SPEED Extension of ejection seat capability for high speed conditions A81-22097 BIGH TEMPERATURE ENVIRONMENTS High temperature electronic requirements in aeropropulsion systems
HELICOPTER PERFORMANCE Symposium on Internal Noise in Helicopters, University of Southampton, Southampton, England, July 17-20, 1979, Proceedings A81-20051 Helicopter fatigue qualification A81-22623 A flight investigation of performance and loads for a helicopter with RC-SC2 main-rotor blade sections	blade performance improvement engine design [N81-17080] N81-17080 HIGH SPEED Extension of ejection seat capability for high speed conditions A81-22097 HIGH TEMPERATURE ENVIRONMENTS High temperature electronic requirements in aeropropulsion systems [N85A-TH-81662] N81-16388
HELICOPTER PERFORMANCE Symposium on Internal Noise in Helicopters, University of Southampton, Southampton, England, July 17-20, 1979, Proceedings A81-20051 Helicopter fatigue qualification A'flight investigation of performance and loads for a helicopter with RC-SC2 main-rotor blade sections [MSA-TM-81898] N81-15982	blade performance improvement engine design [NASA-CR-165220] N81-17080 HIGH SPEED Extension of ejection seat capability for high speed conditions A81-22097 HIGH TEMPERATURE ENVIRONMENTS High temperature electronic requirements in aeropropulsion systems [NASA-TH-81682] N81-16388 HIGH VOLTAGES
HELICOPTER PERFORMANCE Symposium on Internal Noise in Helicopters, University of Southampton, Southampton, England, July 17-20, 1979, Proceedings A81-20051 Helicopter fatigue qualification A flight investigation of performance and loads for a helicopter with RC-SC2 main-rotor blade sections [NASA-TM-81898] Preliminary Airworthiness Evaluation (PAE 1) of	blade performance improvement engine design [NASA-CR-165220] N81-17080 HIGH SPEED Extension of ejection seat capability for high speed conditions A81-22097 HIGH TEMPERATURE ENVIRONMENTS High temperature electronic requirements in aeropropulsion systems [NASA-TH-81682] N81-16388 HIGH VOLTAGES Aircraft EMP isolation study
HELICOPTER PERFORMANCE Symposium on Internal Noise in Helicopters, University of Southampton, Southampton, England, July 17-20, 1979, Proceedings A81-20051 Helicopter fatigue qualification A'flight investigation of performance and loads for a helicopter with RC-SC2 main-rotor blade sections [MSA-TM-81898] N81-15982	blade performance improvement engine design [NASA-CR-165220] N81-17080 HIGH SPEED Extension of ejection seat capability for high speed conditions A81-22097 HIGH TEMPERATURE ENVIRONMENTS High temperature electronic requirements in aeropropulsion systems [NASA-TM-81682] N81-16388 HIGH VOLTAGES Aircraft EMP isolation study [AD-A093772] N81-17333 HIBGES
HELICOPTER PERFORMANCE Symposium on Internal Noise in Helicopters, University of Southampton, Southampton, England, July 17-20, 1979, Proceedings A81-20051 Helicopter fatigue qualification A'flight investigation of performance and loads for a helicopter with RC-SC2 main-rotor blade sections [NNSA-TM-81698] Preliminary Airworthiness Evaluation (PAE 1) of the YCH-47D helicopter [AD-A092633] HELICOPTER PROPELLER DRIVE	blade performance improvement engine design [NASA-CR-165220] N81-17080 HIGH SPEED Extension of ejection seat capability for high speed conditions A81-22097 HIGH TEMPERATURE ENVIRONMENTS High temperature electronic requirements in aeropropulsion systems [NASA-TH-81682] N81-16388 HIGH VOLTAGES Aircraft EMP isolation study [AD-A093772] N81-17333 HIEGES Hinged strakes for enhanced maneuverability at
HELICOPTER PERFORMANCE Symposium on Internal Noise in Helicopters, University of Southampton, Southampton, England, July 17-20, 1979, Proceedings A81-20051 Helicopter fatigue qualification A81-22623 Alflight investigation of performance and loads for a helicopter with RC-SC2 main-rotor blade sections [NASA-TM-81898] Preliminary Airworthiness Evaluation (PAE 1) of the YCH-47D helicopter [AD-A092633] BELICOPTER PERPELLER DRIVE Gear unit noise and transmission errors	blade performance improvement engine design [NASA-CR-165220] N81-17080 HIGH SPEED Extension of ejection seat capability for high speed conditions A81-22097 HIGH TEMPERATURE ENVIRONMENTS High temperature electronic requirements in aeropropulsion systems [NASA-TM-81682] N81-16388 HIGH VOLTAGES Aircraft EMP isolation study [AD-A093772] N81-17333 HIGGES Highes High angles of attack
HELICOPTER PERFORMANCE Symposium on Internal Noise in Helicopters, University of Southampton, Southampton, England, July 17-20, 1979, Proceedings A81-20051 Helicopter fatigue qualification A81-22623 A flight investigation of performance and loads for a helicopter with RC-SC2 main-rotor blade sections [NASA-TH-81898] Preliminary Airworthiness Evaluation (PAE 1) of the YCH-47D helicopter [AD-A092633] HELICOPTER PROPELLER DRIVE Gear unit noise and transmission errors helicopter system	blade performance improvement engine design [MSA-CR-165220] N81-17080 HIGH SPEED Extension of ejection seat capability for high speed conditions A81-22097 HIGH TEMPERATURE ENVIRONMENTS High temperature electronic requirements in aeropropulsion systems [NASA-TM-81602] N81-16388 HIGH VOLTAGES Aircraft EMP isolation study [AD-A093772] N81-17333 HINGES Hinged strakes for enhanced maneuverability at high angles of attack [ATAA PAPER 81-0357] A81-20776
HELICOPTER PERFORMANCE Symposium on Internal Noise in Helicopters, University of Southampton, Southampton, England, July 17-20, 1979, Proceedings A81-20051 Helicopter fatigue qualification A'flight investigation of performance and loads for a helicopter with RC-SC2 main-rotor blade sections [NASA-TM-81898] Preliminary Airworthiness Evaluation (PAE 1) of the YCH-47D helicopter [AD-A092633] BELICOPTER PROPELIER DRIVE Gear unit noise and transmission errors helicopter system A81-20060	blade performance improvement engine design [NASA-CR-165220] N81-17080 HIGH SPEED Extension of ejection seat capability for high speed conditions A81-22097 HIGH TEMPERATURE ENVIRONMENTS High temperature electronic requirements in aeropropulsion systems [NASA-TH-81682] N81-16388 HIGH VOLTAGES Aircraft EMP isolation study [AD-A093772] N81-17333 HIGGS Hinged strakes for enhanced maneuverability at high angles of attack [AIAA PAPER 81-0357] HOLOGRAPHIC INTERPROMETRY
HELICOPTER PERFORMANCE Symposium on Internal Noise in Helicopters, University of Southampton, Southampton, England, July 17-20, 1979, Proceedings A81-20051 Helicopter fatigue qualification A81-22623 A flight investigation of performance and loads for a helicopter with RC-SC2 main-rotor blade sections [NASA-TH-81898] Preliminary Airworthiness Evaluation (PAE 1) of the YCH-47D helicopter [AD-A092633] HELICOPTER PROPELLER DRIVE Gear unit noise and transmission errors helicopter system	blade performance improvement engine design [NASA-CR-165220] N81-17080 HIGH SPEED Extension of ejection seat capability for high speed conditions A81-22097 HIGH TEMPERATURE ENVIRONMENTS High temperature electronic requirements in aeropropulsion systems [NASA-TM-81682] N81-16388 HIGH VOLTAGES Aircraft ENP isolation study [AD-A093772] N81-17333 HIEGES Binged strakes for enhanced maneuverability at high angles of attack [AIAN PAPER 81-0357] A81-20776 HOLOGRAPHIC INTERPEROMETRY Use of speckle-holographic interferometry to study
HELICOPTER PERFORMANCE Symposium on Internal Noise in Helicopters, University of Southampton, Southampton, England, July 17-20, 1979, Proceedings A81-20051 Helicopter fatigue qualification A'flight investigation of performance and loads for a helicopter with RC-SC2 main-rotor blade sections [NNSA-TM-81898] Preliminary Airworthiness Evaluation (PAE 1) of the YCH-47D helicopter [AD-A092633] HELICOPTER PROPELLER DRIVE Gear unit noise and transmission errors helicopter system A81-20060 Gear meshing action as a source of vibratory excitation A81-20061	blade performance improvement engine design [NASA-CR-165220] N81-17080 HIGH SPEED Extension of ejection seat capability for high speed conditions A81-22097 HIGH TEMPERATURE ENVIRONMENTS High temperature electronic requirements in aeropropulsion systems [NASA-TM-81682] N81-16388 HIGH VOLTAGES Aircraft EMP isolation study [AD-A093772] N81-17333 HIBGES Hinged strakes for enhanced maneuverability at high angles of attack [AIAA PAPER 81-0357] HOLOGRAPHIC INTERPEBONETRY Use of speckle-holographic interferometry to study the strain-strain state of a gas-turbine engine disk close to the blade root fixing
HELICOPTER PERFORMANCE Symposium on Internal Noise in Helicopters, University of Southampton, Southampton, England, July 17-20, 1979, Proceedings A81-20051 Helicopter fatigue qualification A81-22623 Alflight investigation of performance and loads for a helicopter with RC-SC2 main-rotor blade sections [NASA-TM-81898] Preliminary Airworthiness Evaluation (PAE 1) of the YCH-47D helicopter [AD-A092633] MELICOPTER PROPELIER DRIVE Gear unit noise and transmission errors helicopter system A81-20060 Gear meshing action as a source of vibratory excitation A81-20061 Development and application of an analytical	blade performance improvement engine design [NASA-CR-165220] N81-17080 HIGH SPEED Extension of ejection seat capability for high speed conditions A81-22097 HIGH TEMPERATURE ENVIRONMENTS High temperature electronic requirements in aeropropulsion systems [NASA-TH-81682] N81-16388 HIGH VOLTAGES Aircraft EMP isolation study [AD-A093772] N81-17333 HIGES Hinged strakes for enhanced maneuverability at high angles of attack [AIAA PAPER 81-0357] A81-20776 HOLOGRAPHIC INTERPEROMETRY Use of speckle-holographic interferometry to study the strain-strain state of a gas-turbine engine disk close to the blade root fixing
HELICOPTER PERFORMANCE Symposium on Internal Noise in Helicopters, University of Southampton, Southampton, England, July 17-20, 1979, Proceedings A81-20051 Helicopter fatigue qualification A81-22623 A flight investigation of performance and loads for a helicopter with RC-SC2 main-rotor blade sections [MASA-TM-81898] Preliminary Airworthiness Evaluation (PAE 1) of the YCH-47D helicopter [AD-A092633] HELICOPTER PROPELLER DRIVE Gear unit noise and transmission errors helicopter system A81-20060 Gear meshing action as a source of vibratory excitation Development and application of an analytical method for predicting helicopter transmission	blade performance improvement engine design N81-17080 HIGH SPEED Extension of ejection seat capability for high speed conditions A81-22097 HIGH TEMPERATURE ENVIRONMENTS High temperature electronic requirements in aeropropulsion systems (NASA-TH-81682) HIGH VOLTAGES Aircraft EMP isolation study (AD-A093772) HIGGES Hinged strakes for enhanced maneuverability at high angles of attack (AIAA PAPER 81-0357) HOLOGRAPHIC INTERPENONETRY Use of speckle-holographic interferometry to study the strain-strain state of a gas-turbine engine disk close to the blade root fixing A81-21366 Controls of aeronautical structures under fatigue
HELICOPTER PERFORMANCE Symposium on Internal Noise in Helicopters, University of Southampton, Southampton, England, July 17-20, 1979, Proceedings A81-20051 Helicopter fatigue qualification A*flight investigation of performance and loads for a helicopter with RC-SC2 main-rotor blade sections [NASA-TM-81898] Preliminary Airworthiness Evaluation (PAE 1) of the YCH-47D helicopter [AD-A092633] HELICOPTER PROPELLER DRIVE Gear unit noise and transmission errors helicopter system A81-20060 Gear meshing action as a source of vibratory excitation Development and application of an analytical method for predicting helicopter transmission noise	blade performance improvement engine design [NASA-CR-165220] N81-17080 HIGH SPEED Extension of ejection seat capability for high speed conditions A81-22097 HIGH TEMPERATURE ENVIRONMENTS High temperature electronic requirements in aeropropulsion systems [NASA-TM-81682] N81-16388 HIGH VOLTAGES Aircraft EMP isolation study [AD-A093772] N81-17333 HIGGES Hinged strakes for enhanced maneuverability at high angles of attack [AIAA PAPER 81-0357] HOLOGRAPHIC INTERPEBONETRY Use of speckle-holographic interferometry to study the strain-strain state of a gas-turbine engine disk close to the blade root fixing A81-21366 Controls of aeronautical structures under fatigue testing by holographic pulsed lasers
HELICOPTER PERFORMANCE Symposium on Internal Noise in Helicopters, University of Southampton, Southampton, England, July 17-20, 1979, Proceedings A81-20051 Helicopter fatigue qualification A81-22623 A flight investigation of performance and loads for a helicopter with RC-SC2 main-rotor blade sections [NASA-TM-81898] Preliminary Airworthiness Evaluation (PAE 1) of the YCH-47D helicopter [AD-A092633] HELICOPTER PROPELIER DRIVE Gear unit noise and transmission errors helicopter system A81-20060 Gear meshing action as a source of vibratory excitation A81-20061 Development and application of an analytical method for predicting helicopter transmission noise A81-20062	blade performance improvement engine design N81-17080 HIGH SPEED Extension of ejection seat capability for high speed conditions A81-22097 HIGH TEMPERATURE ENVIRONMENTS High temperature electronic requirements in aeropropulsion systems (NASA-TH-81682) HIGH VOLTAGES Aircraft EMP isolation study (AD-A093772) HIGGES Hinged strakes for enhanced maneuverability at high angles of attack (AIAA PAPER 81-0357) HOLOGRAPHIC INTERPENOMERTRY Use of speckle-holographic interferometry to study the strain-strain state of a gas-turbine engine disk close to the blade root fixing A81-21366 Controls of aeronautical structures under fatigue
HELICOPTER PERFORMANCE Symposium on Internal Noise in Helicopters, University of Southampton, Southampton, England, July 17-20, 1979, Proceedings A81-20051 Helicopter fatigue qualification A*flight investigation of performance and loads for a helicopter with RC-SC2 main-rotor blade sections [NASA-TM-81898] Preliminary Airworthiness Evaluation (PAE 1) of the YCH-47D helicopter [AD-A092633] HELICOPTER PROPELLER DRIVE Gear unit noise and transmission errors helicopter system A81-20060 Gear meshing action as a source of vibratory excitation Development and application of an analytical method for predicting helicopter transmission noise	blade performance improvement engine design [NASA-CR-165220] N81-17080 HIGH SPEED Extension of ejection seat capability for high speed conditions A81-22097 HIGH TEMPERATURE ENVIRONMENTS High temperature electronic requirements in aeropropulsion systems [NASA-TM-81682] N81-16388 HIGH VOLTAGES Aircraft ENP isolation study [AD-A093772] N81-17333 HIEGES Binged strakes for enhanced maneuverability at high angles of attack [AIAN PAPER 81-0357] A81-20776 HOLOGRAPHIC INTERPEROMETRY Use of speckle-holographic interferometry to study the strain-strain state of a gas-turbine engine disk close to the blade root fixing A81-21366 Controls of aeronautical structures under fatigue testing by holographic pulsed lasers interferometry
BELICOPTER PERFORMANCE Symposium on Internal Noise in Helicopters, University of Southampton, Southampton, England, July 17-20, 1979, Proceedings A81-20051 Helicopter fatigue qualification A81-22623 A flight investigation of performance and loads for a helicopter with RC-SC2 main-rotor blade sections [NASA-TM-81898] Preliminary Airworthiness Evaluation (PAE 1) of the YCH-47D helicopter [AD-A092633] BELICOPTER PROPELIER DRIVE Gear unit noise and transmission errors helicopter system A81-20060 Gear meshing action as a source of vibratory excitation A81-20061 Development and application of an analytical method for predicting helicopter transmission noise A81-20062 Modelling techniques for the reduction of noise and vibration in gearboxes	blade performance improvement engine design [NASA-CR-165220] N81-17080 HIGH SPEED Extension of ejection seat capability for high speed conditions A81-22097 HIGH TEMPERATURE ENVIRONMENTS High temperature electronic requirements in aeropropulsion systems [NASA-TM-81682] N81-16388 HIGH VOLTAGES Aircraft EMP isolation study [AD-A093772] N81-17333 HIEGES Hinged strakes for enhanced maneuverability at high angles of attack [AIAN PAPER 81-0357] A81-20776 HOLOGRAPHIC INTERPREMENTEY Use of speckle-holographic interferometry to study the strain-strain state of a gas-turbine engine disk close to the blade root fixing A81-21366 Controls of aeronautical structures under fatigue testing by holographic pulsed lasers interferometry A81-22692 HOBEYCOMB CORES Graphite polyimide fabrication research for
HELICOPTER PERFORMANCE Symposium on Internal Noise in Helicopters, University of Southampton, Southampton, England, July 17-20, 1979, Proceedings A81-20051 Helicopter fatigue qualification A81-22623 A. flight investigation of performance and loads for a helicopter with RC-SC2 main-rotor blade sections [NASA-TH-81898] Preliminary Airworthiness Evaluation (PAE 1) of the YCH-47D helicopter [AD-A092633] HELICOPTER PROPELLER DRIVE Gear unit noise and transmission errors helicopter system A81-20060 Gear meshing action as a source of vibratory excitation Development and application of an analytical method for predicting helicopter transmission noise A81-20062 Modelling techniques for the reduction of noise and vibration in gearboxes A81-20063	blade performance improvement engine design [NASA-CR-165220] N81-17080 HIGH SPEED Extension of ejection seat capability for high speed conditions A81-22097 HIGH TRMPERATURE ENVIRONMENTS High temperature electronic requirements in aeropropulsion systems [NASA-TH-81682] N81-16388 HIGH VOLTAGES Aircraft EMP isolation study [AD-A093772] 881-17333 HIGGS Hinged strakes for enhanced maneuverability at high angles of attack [AIAM PAPER 81-0357] A81-20776 HOLOGRAPHIC INTERPREOMETRY Use of speckle-holographic interferometry to study the strain-strain state of a gas-turbine engine disk close to the blade root fixing Controls of aeronautical structures under fatigue testing by holographic pulsed lasers interferometry A81-22692 HOMEYCOMB CORES Graphite polyimide fabrication research for supersonic cruise aircraft
HELICOPTER PERFORMANCE Symposium on Internal Noise in Helicopters, University of Southampton, Southampton, England, July 17-20, 1979, Proceedings As1-20051 Helicopter fatigue qualification As1-22623 As1flight investigation of performance and loads for a helicopter with RC-SC2 main-rotor blade sections [NASA-TM-81898] Preliminary Airworthiness Evaluation (PAE 1) of the YCH-47D helicopter [AD-A092633] HELICOPTER PROPELLER DRIVE Gear unit noise and transmission errors helicopter system A81-20060 Gear meshing action as a source of vibratory excitation Development and application of an analytical method for predicting helicopter transmission noise A81-20062 Modelling techniques for the reduction of noise and vibration in gearboxes HELICOPTER WAKES Some wake-related operational limitations of	blade performance improvement engine design [NASA-CR-165220] N81-17080 HIGH SPEED Extension of ejection seat capability for high speed conditions A81-22097 HIGH TEMPERATURE ENVIRONMENTS High temperature electronic requirements in aeropropulsion systems [NASA-TM-81682] N81-16388 HIGH VOLTAGES Aircraft EMP isolation study [AD-A093772] N81-17333 HIGGES Hinged strakes for enhanced maneuverability at high angles of attack [AIAA PAPER 81-0357] A81-20776 HOLOGRAPHIC INTERPEBONETRY Use of speckle-holographic interferometry to study the strain-strain state of a gas-turbine engine disk close to the blade root fixing Controls of aeronautical structures under fatigue testing by holographic pulsed lasers interferometry HOMENCOMB CORES Graphite polyimide fabrication research for supersonic cruise aircraft
HELICOPTER PERFORMANCE Symposium on Internal Noise in Helicopters, University of Southampton, Southampton, England, July 17-20, 1979, Proceedings A81-20051 Helicopter fatigue qualification A81-22623 A flight investigation of performance and loads for a helicopter with RC-SC2 main-rotor blade sections [NASA-TH-81898] Preliminary Airworthiness Evaluation (PAE 1) of the YCH-47D helicopter [AD-A092633] HELICOPTER PROPELLER DRIVE Gear unit noise and transmission errors helicopter system A81-20060 Gear meshing action as a source of vibratory excitation Development and application of an analytical method for predicting helicopter transmission noise A81-20062 Modelling techniques for the reduction of noise and vibration in gearboxes HELICOPTER WAKES Some wake-related operational limitations of rotorcraft	blade performance improvement engine design [NASA-CR-165220] N81-17080 HIGH SPEED Extension of ejection seat capability for high speed conditions A81-22097 HIGH TEMPERATURE ENVIRONMENTS High temperature electronic requirements in aeropropulsion systems [NASA-TM-81682] N81-16388 HIGH VOLTAGES Aircraft EMP isolation study [AD-A093772] N81-17333 HIMGES Hinged strakes for enhanced maneuverability at high angles of attack [AIAM PAPER 81-0357] A81-20776 HOLOGRAPHIC INTERPREMENTENT Use of speckle-holographic interferometry to study the strain-strain state of a gas-turbine engine disk close to the blade root fixing A81-21366 Controls of aeronautical structures under fatigue testing by holographic pulsed lasers interferometry A81-22692 HOMEYCOMB CORES Graphite polyimide fabrication research for supersonic cruise aircraft A81-22665
HELICOPTER PERFORMANCE Symposium on Internal Noise in Helicopters, University of Southampton, Southampton, England, July 17-20, 1979, Proceedings As1-20051 Helicopter fatigue qualification As1-22623 As1flight investigation of performance and loads for a helicopter with RC-SC2 main-rotor blade sections [NASA-TM-81898] Preliminary Airworthiness Evaluation (PAE 1) of the YCH-47D helicopter [AD-A092633] HELICOPTER PROPELLER DRIVE Gear unit noise and transmission errors helicopter system A81-20060 Gear meshing action as a source of vibratory excitation Development and application of an analytical method for predicting helicopter transmission noise A81-20062 Modelling techniques for the reduction of noise and vibration in gearboxes HELICOPTER WAKES Some wake-related operational limitations of	blade performance improvement engine design [NASA-CR-165220] N81-17080 HIGH SPEED Extension of ejection seat capability for high speed conditions A81-22097 HIGH TEMPERATURE ENVIRONMENTS High temperature electronic requirements in aeropropulsion systems [NASA-TM-81682] N81-16388 HIGH VOLTAGES Aircraft EMP isolation study [AD-A093772] N81-17333 HIGGES Hinged strakes for enhanced maneuverability at high angles of attack [AIAA PAPER 81-0357] A81-20776 HOLOGRAPHIC INTERPEBONETRY Use of speckle-holographic interferometry to study the strain-strain state of a gas-turbine engine disk close to the blade root fixing Controls of aeronautical structures under fatigue testing by holographic pulsed lasers interferometry HOMENCOMB CORES Graphite polyimide fabrication research for supersonic cruise aircraft
HELICOPTER PERFORMANCE Symposium on Internal Noise in Helicopters, University of Southampton, Southampton, England, July 17-20, 1979, Proceedings A81-20051 Helicopter fatigue qualification A81-22623 A. flight investigation of performance and loads for a helicopter with RC-SC2 main-rotor blade sections [MASA-TH-81898] Preliminary Airworthiness Evaluation (PAE 1) of the YCH-47D helicopter [AD-A092633] HELICOPTER PROPELLER DRIVE Gear unit noise and transmission errors helicopter system A81-20060 Gear meshing action as a source of vibratory excitation Development and application of an analytical method for predicting helicopter transmission noise A81-20062 Modelling techniques for the reduction of noise and vibration in gearboxes HELICOPTER WAKES Some wake-related operational limitations of rotorcraft [MASA-TH-81920] HELICOPTERS Helicopter internal noise - An overview	blade performance improvement engine design [NASA-CR-165220] N81-17080 HIGH SPEED Extension of ejection seat capability for high speed conditions A81-22097 HIGH TEMPERATURE ENVIRONMENTS High temperature electronic requirements in aeropropulsion systems [NASA-TM-81682] N81-16388 HIGH VOLTAGES Aircraft EMP isolation study [AD-A093772] N81-17333 HIEGES Hinged strakes for enhanced maneuverability at high angles of attack [AIAA PAPER 81-0357] A81-20776 HOLOGRAPHIC INTERPREMENTEY Use of speckle-holographic interferometry to study the strain-strain state of a gas-turbine engine disk close to the blade root fixing A81-21366 Controls of aeronautical structures under fatigue testing by holographic pulsed lasers interferometry A81-22692 HOMEYCOMB CORES Graphite polyimide fabrication research for supersonic cruise aircraft A81-22665 HOMEYCOMB STRUCTURES Acoustic radiation from honeycomb sandwich plates A81-20070 Design, fabrication, and testing of the Maximum
HELICOPTER PERFORMANCE Symposium on Internal Noise in Helicopters, University of Southampton, Southampton, England, July 17-20, 1979, Proceedings A81-20051 Helicopter fatigue qualification A81-22623 A. flight investigation of performance and loads for a helicopter with RC-SC2 main-rotor blade sections [MASA-TH-81898] Preliminary Airworthiness Evaluation (PAE 1) of the YCH-47D helicopter [AD-A092633] HELICOPTER PROPELLER DRIVE Gear unit noise and transmission errors helicopter system A81-20060 Gear meshing action as a source of vibratory excitation Development and application of an analytical method for predicting helicopter transmission noise Modelling techniques for the reduction of noise and vibration in gearboxes HELICOPTER WAKES Some wake-related operational limitations of rotorcraft [MASA-TH-81920] N81-15985 HELICOPTERS Helicopter internal noise - An overview	blade performance improvement engine design [NASA-CR-165220] N81-17080 HIGH SPEED Extension of ejection seat capability for high speed conditions A81-22097 HIGH TRMPERATURE ENVIRONMENTS High temperature electronic requirements in aeropropulsion systems [NASA-TM-81682] N81-16388 HIGH VOLTAGES Aircraft EMP isolation study [AD-A093772] 881-17333 HIGES Hinged strakes for enhanced maneuverability at high angles of attack [AIAM PAPER 81-0357] A81-20776 HOLOGRAPHIC INTERPREOMETRY Use of speckle-holographic interferometry to study the strain-strain state of a gas-turbine engine disk close to the blade root fixing Controls of aeronautical structures under fatigue testing by holographic pulsed lasers interferometry A81-22692 HOMEYCOMB CORES Graphite polyimide fabrication research for supersonic cruise aircraft A81-22665 HOBEYCOMB STRUCTURES Acoustic radiation from honeycomb sandwich plates A81-20070 Design, fabrication, and testing of the Maximum Performance Ejection System (MPES) seat structure
HELICOPTER PERFORMANCE Symposium on Internal Noise in Helicopters, University of Southampton, Southampton, England, July 17-20, 1979, Proceedings As1-20051 Helicopter fatigue qualification As1-22623 As1flight investigation of performance and loads for a helicopter with RC-SC2 main-rotor blade sections [NASA-TM-81898] Preliminary Airworthiness Evaluation (PAE 1) of the YCH-47D helicopter [AD-A092633] HELICOPTER PROPELLER DRIVE Gear unit noise and transmission errors helicopter system A81-20060 Gear meshing action as a source of vibratory excitation Development and application of an analytical method for predicting helicopter transmission noise A81-20062 Modelling techniques for the reduction of noise and vibration in gearboxes HELICOPTER WAKES Some wake-related operational limitations of rotorcraft [NASA-TM-81920] HELICOPTERS Helicopter internal noise - An overview A81-20055 Gearbox isolation for reducing gear tooth noise in	blade performance improvement engine design [NaSA-CR-165220] N81-17080 HIGH SPEED Extension of ejection seat capability for high speed conditions A81-22097 HIGH TEMPERATURE ENVIRONMENTS High temperature electronic requirements in aeropropulsion systems [NaSA-TM-81602] N81-16388 HIGH VOLTAGES Aircraft EMP isolation study [AD-A093772] N81-17333 HIGGES Hinged strakes for enhanced maneuverability at high angles of attack [AIAA PAPER 81-0357] A81-20776 HOLOGRAPHIC INTERPEBONETRY Use of speckle-holographic interferometry to study the strain-strain state of a gas-turbine engine disk close to the blade root fixing Controls of aeronautical structures under fatigue testing by holographic pulsed lasers interferometry HOMEICOMB CORES Graphite polyimide fabrication research for supersonic cruise aircraft A81-22692 HOMEICOMB STRUCTURES Acoustic radiation from honeycomb sandwich plates A81-20070 Design, fabrication, and testing of the Maximum Performance Ejection System (MPES) seat structure [AD-A092292]
HELICOPTER PERFORMANCE Symposium on Internal Noise in Helicopters, University of Southampton, Southampton, England, July 17-20, 1979, Proceedings A81-20051 Helicopter fatigue qualification A81-22623 A. flight investigation of performance and loads for a helicopter with RC-SC2 main-rotor blade sections [MASA-TH-81898] Preliminary Airworthiness Evaluation (PAE 1) of the YCH-47D helicopter [AD-A092633] HELICOPTER PROPELLER DRIVE Gear unit noise and transmission errors helicopter system A81-20060 Gear meshing action as a source of vibratory excitation Development and application of an analytical method for predicting helicopter transmission noise A81-20061 Modelling techniques for the reduction of noise and vibration in gearboxes HELICOPTER WAKES Some wake-related operational limitations of rotorcraft [MASA-TH-81920] HELICOPTERS Helicopter internal noise - An overview A81-20055 Gearbox isolation for reducing gear tooth noise in single rotor helicopter	blade performance improvement engine design [NASA-CR-165220] N81-17080 HIGH SPEED Extension of ejection seat capability for high speed conditions A81-22097 HIGH TEMPERATURE ENVIRONMENTS High temperature electronic requirements in aeropropulsion systems [NASA-TM-81682] N81-16388 HIGH VOLTAGES Aircraft EMP isolation study [AD-A093772] N81-17333 HIEGES Hinged strakes for enhanced maneuverability at high angles of attack [AIAA PAPER 81-0357] A81-20776 HOLOGRAPHIC INTERPREMENTENT Use of speckle-holographic interferometry to study the strain-strain state of a gas-turbine engine disk close to the blade root fixing A81-21366 Controls of aeronautical structures under fatigue testing by holographic pulsed lasers interferometry HOMEYCOMB CORES Graphite polyimide fabrication research for supersonic cruise aircraft A81-22665 HOMEYCOMB STRUCTURES Acoustic radiation from honeycomb sandwich plates A81-20070 Design, fabrication, and testing of the Maximum Performance Ejection System (MPES) seat structure [AD-A092292] HORIZOHTAL ORIENTATION
HELICOPTER PERFORMANCE Symposium on Internal Noise in Helicopters, University of Southampton, Southampton, England, July 17-20, 1979, Proceedings A81-20051 Helicopter fatigue qualification A81-22623 A. flight investigation of performance and loads for a helicopter with RC-SC2 main-rotor blade sections [NASA-TH-81898] Preliminary Airworthiness Evaluation (PAE 1) of the YCH-47D helicopter [AD-A092633] HELICOPTER PROPELLER DRIVE Gear unit noise and transmission errors helicopter system A81-20060 Gear meshing action as a source of vibratory excitation Development and application of an analytical method for predicting helicopter transmission noise A81-20061 Modelling techniques for the reduction of noise and vibration in gearboxes A81-20063 HELICOPTER WAKES Some wake-related operational limitations of rotorcraft [NASA-TH-81920] N81-15985 Helicopter internal noise - An overview A81-20055 Gearbox isolation for reducing gear tooth noise in single rotor helicopter	blade performance improvement engine design [NaSA-CR-165220] N81-17080 HIGH SPEED Extension of ejection seat capability for high speed conditions A81-22097 HIGH TEMPERATURE ENVIRONMENTS High temperature electronic requirements in aeropropulsion systems [NaSA-TM-81602] N81-16388 HIGH VOLTAGES Aircraft EMP isolation study [AD-A093772] N81-17333 HIGGES Hinged strakes for enhanced maneuverability at high angles of attack [AIAA PAPER 81-0357] A81-20776 HOLOGRAPHIC INTERPEBONETRY Use of speckle-holographic interferometry to study the strain-strain state of a gas-turbine engine disk close to the blade root fixing Controls of aeronautical structures under fatigue testing by holographic pulsed lasers interferometry HOMEICOMB CORES Graphite polyimide fabrication research for supersonic cruise aircraft A81-22692 HOMEICOMB STRUCTURES Acoustic radiation from honeycomb sandwich plates A81-20070 Design, fabrication, and testing of the Maximum Performance Ejection System (MPES) seat structure [AD-A092292]
HELICOPTER PERFORMANCE Symposium on Internal Noise in Helicopters, University of Southampton, Southampton, England, July 17-20, 1979, Proceedings A81-20051 Helicopter fatigue qualification A81-22623 A. flight investigation of performance and loads for a helicopter with RC-SC2 main-rotor blade sections [MASA-TH-81898] Preliminary Airworthiness Evaluation (PAE 1) of the YCH-47D helicopter [AD-A092633] HELICOPTER PROPELLER DRIVE Gear unit noise and transmission errors helicopter system A81-20060 Gear meshing action as a source of vibratory excitation Development and application of an analytical method for predicting helicopter transmission noise A81-20061 Modelling techniques for the reduction of noise and vibration in gearboxes HELICOPTER WAKES Some wake-related operational limitations of rotorcraft [MASA-TH-81920] HELICOPTERS Helicopter internal noise - An overview A81-20055 Gearbox isolation for reducing gear tooth noise in single rotor helicopter	blade performance improvement engine design [NASA-CR-165220] N81-17080 HIGH SPEED Extension of ejection seat capability for high speed conditions A81-22097 HIGH TEMPERATURE ENVIRONMENTS High temperature electronic requirements in aeropropulsion systems [NASA-TM-81682] N81-16388 HIGH VOLTAGES Aircraft EMP isolation study [AD-A093772] N81-17333 HIEGES Hinged strakes for enhanced maneuverability at high angles of attack [AIAA PAPER 81-0357] A81-20776 HOLOGRAPHIC INTERPREMENTEY Use of speckle-holographic interferometry to study the strain-strain state of a gas-turbine engine disk close to the blade root fixing A81-21366 Controls of aeronautical structures under fatigue testing by holographic pulsed lasers interferometry A81-22692 HOMEYCOMB CORES Graphite polyimide fabrication research for supersonic cruise aircraft A81-22665 HOMEYCOMB STRUCTURES Acoustic radiation from honeycomb sandwich plates A81-20070 Design, fabrication, and testing of the Maximum Performance Ejection System (MPES) seat structure [AD-A092292] HORIZONTAL ORIENTATION Stability of large horizontal-axis axisymmetric wind turbines
HELICOPTER PERFORMANCE Symposium on Internal Noise in Helicopters, University of Southampton, Southampton, England, July 17-20, 1979, Proceedings A81-20051 Helicopter fatigue qualification A81-22623 A. flight investigation of performance and loads for a helicopter with RC-SC2 main-rotor blade sections [MASA-TH-81898] Preliminary Airworthiness Evaluation (PAE 1) of the YCH-47D helicopter [AD-A092633] HELICOPTER PROPELLER DRIVE Gear unit noise and transmission errors helicopter system A81-20060 Gear meshing action as a source of vibratory excitation A81-20061 Development and application of an analytical method for predicting helicopter transmission noise A81-20062 Modelling techniques for the reduction of noise and vibration in gearboxes A81-20063 HELICOPTER WAKES Some wake-related operational limitations of rotorcraft [MASA-TH-81920] BELICOPTERS Helicopter internal noise - An overview A81-20055 Gearbox isolation for reducing gear tooth noise in single rotor helicopter A81-20073 Problems of voice communication in helicopters A81-20074 Helicopter emergency underwater escape	blade performance improvement engine design [NASA-CR-165220] N81-17080 HIGH SPEED Extension of ejection seat capability for high speed conditions A81-22097 HIGH TRMPERATURE ENVIRONMENTS High temperature electronic requirements in aeropropulsion systems [NASA-TH-81682] N81-16388 HIGH VOLTAGES Aircraft EMP isolation study [AD-A093772] N81-17333 HIGGS Hinged strakes for enhanced maneuverability at high angles of attack [AIAM PAPER 81-0357] A81-20776 HOLOGRAPHIC INTERPREDENTRY Use of speckle-holographic interferometry to study the strain-strain state of a gas-turbine engine disk close to the blade root fixing Controls of aeronautical structures under fatigue testing by holographic pulsed lasers interferometry A81-22692 HOMEYCOMB CORES Graphite polyimide fabrication research for supersonic cruise aircraft A81-22665 HOWEYCOMB STRUCTURES Acoustic radiation from honeycomb sandwich plates A81-20070 Design, fabrication, and testing of the Maximum Performance Ejection System (MPES) seat structure [AD-A092292] HORIZOHTAL ORIBETATION Stability of large horizontal-axis axisymmetric wind turbines A81-22526
HELICOPTER PERFORMANCE Symposium on Internal Noise in Helicopters, University of Southampton, Southampton, England, July 17-20, 1979, Proceedings A81-20051 Helicopter fatigue qualification A81-22623 A. flight investigation of performance and loads for a helicopter with RC-SC2 main-rotor blade sections [MASA-TH-81898] Preliminary Airworthiness Evaluation (PAE 1) of the YCH-47D helicopter [AD-A092633] HELICOPTER PROPELLER DRIVE Gear unit noise and transmission errors helicopter system A81-20060 Gear meshing action as a source of vibratory excitation Development and application of an analytical method for predicting helicopter transmission noise A81-20061 Modelling techniques for the reduction of noise and vibration in gearboxes HELICOPTER WAKES Some wake-related operational limitations of rotorcraft [MASA-TH-81920] HELICOPTERS Helicopter internal noise - An overview Gearbox isolation for reducing gear tooth noise in single rotor helicopter A81-20073 Problems of voice communication in helicopters A81-20074	blade performance improvement engine design [NASA-CR-165220] N81-17080 HIGH SPEED Extension of ejection seat capability for high speed conditions A81-22097 HIGH TEMPERATURE ENVIRONMENTS High temperature electronic requirements in aeropropulsion systems [NASA-TM-81682] N81-16388 HIGH VOLTAGES Aircraft EMP isolation study [AD-A093772] N81-17333 HIEGES Hinged strakes for enhanced maneuverability at high angles of attack [AIAA PAPER 81-0357] A81-20776 HOLOGRAPHIC INTERPREMENTEY Use of speckle-holographic interferometry to study the strain-strain state of a gas-turbine engine disk close to the blade root fixing A81-21366 Controls of aeronautical structures under fatigue testing by holographic pulsed lasers interferometry A81-22692 HOMEYCOMB CORES Graphite polyimide fabrication research for supersonic cruise aircraft A81-22665 HOMEYCOMB STRUCTURES Acoustic radiation from honeycomb sandwich plates A81-20070 Design, fabrication, and testing of the Maximum Performance Ejection System (MPES) seat structure [AD-A092292] HORIZONTAL ORIENTATION Stability of large horizontal-axis axisymmetric wind turbines

HUBS SUBJECT INDEX

HOBS	Icing tunnel tests of a glycol-exuding porous
Patigue life evaluation of a helicopter main rot hub	or leading edge ice protection system on a general aviation airfoil
A81-2	2631 [AIAA PAPER 81-0405] A81-2083
HUMAN FACTORS ENGINEERING Air traffic control problems - A pilot's view A81-2	IMAGE PROCESSIMG A new technique for tracking sequences of digitized images
High 'Q' ejection protection device A81-2	A81-20508
<pre>Human Factors of Flight-deck Automation: NASA/Industry Workshop</pre>	sensing 181-23034
[NASA-TH-81260] N81-1	6022 IMAGE RESOLUTION
Summary of aviation safety program resumes. Cabi safety	n Tri-bar reading correction for oblique imagery A81-2249
[AD-A091938] N81-1	
A preliminary human factors flight assessment of Marconi automatic map [AD-A092585] N81-1	weighting functions
The effects of the direction of control loading	on A new technique for tracking sequences of
a one-dimensional tracking task [AD-A092459] N81-1	digitized images 5067 A81-20508
An investigation of the five point restraint system for aviators	IMPACT DAMAGE Effect of impact damage on the XPV-12A composite
[AD-A093065] N81-1	5998 wing box
Ergonometric study of ejection through a breakab. canopy	Le A81-22676 IMPACT TESTS
N 8 1 – 1	
Operational problems associated with head-up displays during instrument flight	pack [AD-A092109] N81-16048
[AD-A092992] N81-1 Advancement on visualization techniques	7058 IN-FLIGHT MONITORING In-flight calibration of aircraft antenna
[AGARD-AG-255] N81-1	7063 radiation patterns
The electro-optical display/visual system interface: Human factors considerations	A French flight test program on the
N81-1 The influence of visual regairements on the desi	
of military cockpits	Plight tests for studying radioelectric
HUMAN REACTIONS	7075 perturbations of an electrostatic origin N81-1616
A guidance document on airport noise control [AD-A092228] N81-1	Energy maneuverability display for the Air Combat 6629 Maneuvering Range/Tactical Training System
HYDROCARBON COMBUSTION	(ACHR/TACTS)
Numerical investigation of a model of turbulent combustion of hydrocarbons	[AD-A092974] N81-1704
[AIAA PAPER 81-0039] A81-2	
Hydrographic applications of the global	[AIAA PAPER 81-0047] A81-20563
positioning system [AD-A093750] N81-1	Computer simulation of airfoil icing without runbact 7029 [AIAA PAPER 81-0402] A81-2080
HYPERBOLIC COORDINATES Hyperbolic/parabolic development for the GIM-STA	New approach to the solution of large, full matrix
code flow fields in supersonic inlets	incompressble flow past airfoils
[NASA-CR-3369] N81-1 HYPERBOLIC NAVIGATION	6416 A81-21557 INDEXES (DOCUMENTATION)
Production of LORAN-C reliability diagrams at th	NASA authorization, 1981
Defense Mapping Agency [AD-A093749] N81-1	7028 INDICATING INSTRUMENTS
HYPERSONIC PLOW A numerical simulation of hypersonic viscous flo	Helmet mounted displays: Design considerations w N81-1707;
over arbitrary geometries at angle of attack	Experiments using electronic display information
[AIAA PAPER 81-0050] A81-2 HYPERSONIC VEHICLES	INERTIAL HAVIGATION
A computer-aided design system geared toward conceptual design in a research environment	Some implementation considerations for numerically stable flight filters
for hypersonic vehicles	A81-2048
[AIAA PAPER 81-0372] A81-2	0789 The Global Positioning System versus gravity disturbance modeling in an inertial navigation
1	system error reduction at aircraft altitude [AIAA PAPER 81-0087] A81-2059
ICE BAVIRONNETS	A single gimbal/strapdown inertial navigation
Seat pack for fighter aircraft operating on the NATO Northern Plank	system for use on spin stabilized flight test vehicles
ICE FORMATION	7010 [SAND-80-2479C] N81-1603 INPLATABLE STRUCTURES
An analytical approach to airfoil icing.	An inflatable seat for aircraft passengers
[AIAA PAPER 81-0403] Simulated aircraft takeoff performance with	IMPORMATION SYSTEMS
frosted wings [AIAA PAPER 81-0404] A81-2	Communications support for National Flight Data 0811 Center information system
United States Army helicopter icing qualificatio	n [AD-A093095] N81-1732
1980 [AIAA PAPER 81-0406] A81-2	IMPRARED INSTRUMENTS 0812 Design and preliminary tests of an IR-airborne
ICE PREVENTION Computer simulation of airfoil icing without run	LLWS remote sensing system Low Level Wind
[AIAA PAPER 81-0402] A81-2	
40 years of helicopter ice protection experience at Sikorsky Aircraft	•
[AIAA PAPER 81-0407] A81-2	0813

	•
[BFRARED SUPPRESSION	JET AIRCRAFT NOISE
Preliminary airworthiness evaluation Am-1S (PROD) helicopter equipped with a substitute straight	<pre>Puel consumption aspects of some noise abatement procedures</pre>
exhaust pipe	A81-20350
[AD-A092614] N81-16045	Numerical techniques in linear duct acoustics - A status report
Particle dynamics of inlet flow fields with	[ASME PAPER 80-WA/NC-2] A81-21120
swirling wanes [AIAA PAPER 81-0001] A81-20526	The spectral analysis of nonstationary random
Body-fitted 3-D full-potential flow analysis of	<pre>processes - Applications to aircraft overflight-type noises Prench thesis</pre>
complex ducts and inlets	A81-21922
[AIAA PAPER 81-0002] A81-20527	Effect of a semi-annular thermal acoustic shield
Hyperbolic/parabolic development for the GIM-STAR code flow fields in supersonic inlets	on jet exhaust noise A81-22532
[NASA-CR-3369] N81-16416	Effect of facility variation on the acoustic
INLET TEMPERATURE	characteristics of three single stream nozzles
Considerations of the use of vitiated preheat for engine inlets	A81-22534 JT8D engine internal exhaust mixer technology
A81-20023	program
INSPECTION	[AD-A093057] N81-17091
Application of low frequency eddy-current for	Transport jet aircraft noise abatement in foreign
inspection of civil aircraft A81-20110	countries: Growth, structure, impact. Volume 1: Europe, July 1980
INSTRUMENT ERRORS	[NASA-CR-152356] N81-17623
Evaluation of false alarm information with the ELRA	Transport jet aircraft noise abatement in foreign
INTAKE SYSTEMS	countries: Growth, structure, impact. Volume 2: Pacific basin, August 1980
Studies on proper simulation during static testing	[NASA-CR-152357-VOL-2] N8 1-17624
of forward speed effects on fan noise	Aerodynamic/acoustic performance of YJ101/double
[NASA-CR-165626] N81-16853	bypass VCE with coannular plug nozzle
INTEGRAL EQUATIONS On the derivation of universal indicial functions	[NASA-CR-159869] N81-17846 JET BOUEDARIES
for unsteady transonic flow	Radiation boundary conditions for wave-like
[AIAA PAPBR 81-0328] A81-20753	equations numerical jet acoustics
INTERCEPTION LPI, short-range communications between aircraft : '	experimentation A81-20223
in rendezvous Low Probability of Intercept	JET ENGINE FUELS
" . A81-22493	Effects on anti-static additives on aircraft
INTERPACES Abstract interface specifications for the A-7E	capacitance fuel gaging systems [AD-A092907] N81-17059
device interface module	Thermodynamics of organic compounds
[AD-A092696] N81-16770	[AD-A093087] N81-17936
INTERPERENCE	JET ENGINES.
Analytic determination of interference thresholds for microwave landing system equipment and	Parameter identification and discriminant analysis for jet engine mechanical state diagnosis
TACAN/DME equipment	A8 1-20 474
[AD-A093448] N81-17025 INTERNAL COMPRESSION INLETS	A computerized study of wave characteristics in a time dependent compressible flow
High-speed cowlings, air inlets and outlets, and	[AIAA PAPER 81-0410] A81-20838
internal-flow systems	Validation of a two dimensional primitive váriable
N81-15973	computer code for flow fields in jet engine test cells
Viscous-inviscid interaction on oscillating	[AD-A092138] N81-16060
airfoils in subsonic flow	Composite containment systems for jet engine fan
[AIAA PAPER 81-0051] A81-20567 New approach to the solution of large, full matrix	blades [NASA-TM-81675] N81-17480
equations Neumann problem for inviscid	JET RIHAUST
incompressble flow past airfoils	Solutions for slightly over- or under-expanded hot
A81-21552	supersonic jets exhausting into cold subsonic
Three-dimensional wing boundary layer calculated with eight different methods	mainstreams [AIAA PAPEE 81-0257] A81-20705
A81-21555	Aircraft NO/x/ emissions and stratospheric ozone
Sound radiation from vortex systems	reductions - Another look
A81-21591 Application of transonic potential calculations to	[AIAA PAPER 81-0306] A81-20741 Effects of sidewall geometry on the installed
aircraft and wind tunnel configurations	performance of nonaxisymmetric
× 81−15992	convergent-divergent exhaust nozzles
Viscous-inviscid interaction on oscillating airfoils in subsonic flow	[NASA-TP-1771] N81-15976 Impact of aircraft emissions on air quality in the
[AD-A093970] N81-16983	vicinity of airports. Volume 1: Recent airport
IRON COMPOUNDS	measurement programs, data analyses, and
Methodology for determining sampling intervals [AD-A092591] N81-16825	submodel development [AD-A089962] N81-16628
[10025	[AD-A089962] N81-16628
.1	Numerical calculation of jet-induced ground effect
JET AIRCRAFT	in VTOL [AIAA PAPER 81-0015] A81-20539
Characterizing cross-track error distributions for	Experiments on the linear and non-linear evolution
continental jet routes	of the double helical instability in jets
A81-21969 Critical field length calculations for preliminary	[AIAA PAPER 81-0415] A81-20818 Perspectives on jet noise
design	[AIAA PAPER 81-0428] A81-20829
A81-23366 Design and evaluation of an integrated Quiet Clean	Jet wing interaction to give improved combat performance
General Aviation Turbofan (OCGAT) engine and	N81-16007
aircraft propulsion system	Jet wing interference for an overwing engine
[NASA-CR-165185] N81-16057	configuration N81-16008

JET IMPINGEMENT SUBJECT INDEX

JET IMPINGEMENT		Environment-load interaction effects on C	rack
Numerical calculation of jet-induced group	nd effect	growth in landing gear steels	
in VTOL	104 20530	[AD-A093803]	N81-17242
[AIAA PAPER 81-0015] JET MIXING PLOW	A81-20539	LANDING LOADS Runway surface loading during aircraft la	ndinas ,
Solutions for slightly over- or under-expa	anded hot	add-1 d-trace at-drag during drivers and	▲81-19800
supersonic jets exhausting into cold sub		LANDING SINULATION	
mainstreams		Glideslope descent-rate cuing to aid carr:	ier
[AIAA PAPER 81-0257]	A81-20705	landings [AD-A092193]	N81-16033
Non-isoenergetic turbulent jet mixing in a constant area duct in turbofan engin	i nes	The use of total simulator training in	#01-10033
[AIAA PAPER 81-0347]	A81-20768	transitioning air-carrier pilots: A fie	eld
JET NOZZLES		evaluation	
Effect of a semi-annular thermal acoustic	shield	[NASA-TM-81250]	N81-16994
on jet exhaust noise	A81-22532	LANGUAGES Bilingual air traffic control in Canada	
JET STREAMS (METEOROLOGY)	A01 22332	Difference of the control of the conduct	A81-20915
CAT altitude avoidance system		LASER ABENOMETERS	
[MASK-CASE-850-12321-1]	N81-16677	Gravimetric investigation of the particle	
JET THRUST		density distribution function in the hig cascade wind tunnel for laser anemometr	
Experimental development of an advanced circulation control wing system for Navy	STOL	measurements	z
aircraft		[ESA-TT-625]	N81-16069
[AIAA PAPER 81-0151.]	A81-20632	LASER APPLICATIONS	
JETTISON SYSTEMS	roskahla	Laser measurement of angle of attack on wind-tunnel models	
Ergonometric study of ejection through a b canopy	reakabte	ernd-fauner moders	A81-20419
	N81-17011	Laser scattering applications development	
JOINTS (JUNCTIONS)		AEDC tunnel B at Mach number 8	
Non-destructive testing of adhesive-bonded		[AD-A093929]	ม8 1- 17 105
Design, fabrication and test of graphite/p	A81-20162	LATERAL CONTROL Aircraft lateral parameter estimation from	m fliaht
composite joints and attachments for adv		data with unsteady aerodynamic modelling	
aerospace Vehicles		[AIAA PAPER 81-0221]	A81-20684
[NASA-CR-159112]	N81-16042	LEADING RDGE PLAPS	
JOURNAL BRARINGS Nonlinear analysis of squeeze film dampers	. annlied	The aerodynamics of inverted leading edge delta wings	riaps on
to gas turbine helicopter engines	applied	[AIAA PAPER 81-0356]	A81-20775
[AD-A091905]	N81-16062	LEADING RDGES	••
JP-5 JET FUEL		On a linear theory of a supersonic flow pa	ast a
Two-stage combustion for reducing pollutar emissions from gas turbine combustors	it	delta wing with subsonic leading edges	A81-19872
(NASA-CR-163877)	N81-16056	Icing tunnel tests of a glycol-exuding por	
priece of rerinted Aditables on the brober	ties and	leading edge ice protection system on a	generaı
Effect of refining variables on the proper composition of JP-5		aviation airfoil	
	n81-17281	aviation airfoil [AIAA PAPBB 81-0405]	A81-20837
composition of JP-5 [AD-A093842]		aviation airfoil [AIAA PAPER 81-0405] An investigation of a swept wing-body	A81-20837
composition of JP-5		aviation airfoil [AIAA PAPBB 81-0405]	A81-20837
composition of JP-5 [AD-A093842] KALHAN FILTERS	พ81-17281	aviation airfoil [AIAA PAPPE 81-0405] An investigation of a swept wing-body configuration with drooped leading edge and transonic speeds	A81-20837
composition of JP-5 [AD-A093842] K KALHAN FILTERS Some implementation considerations for num	พ81-17281	aviation airfoil [AIAA PAPER 81-0405] An investigation of a swept wing-body configuration with drooped leading edge and transonic speeds LENSES	A81-20837 at low N81-16012
composition of JP-5 [AD-A093842] KALHAN FILTERS	N81-17281 merically	aviation airfoil [AIAA PAPER 81-0405] An investigation of a swept wing-body configuration with drooped leading edge and transonic speeds LENSES Optical infinity lens development for flig	A81-20837 at low N81-16012
composition of JP-5 [AD-A093842] K KALHAN FILTERS Some implementation considerations for num	พ81-17281	aviation airfoil [AIAA PAPER 81-0405] An investigation of a swept wing-body configuration with drooped leading edge and transonic speeds LENSES	A81-20837 at low N81-16012
composition of JP-5 [AD-A093842] K KALHAN FILTERS Some implementation considerations for num	N81-17281 merically	aviation airfoil [AIAA PAPER 81-0405] An investigation of a swept wing-body configuration with drooped leading edge and transonic speeds LENSES Optical infinity lens development for flig simulator visual displays LICENSING	A81-20837 at low N81-16012 ght
composition of JP-5 [AD-A093842] KALMAN FILTERS Some implementation considerations for numerable flight filters	N81-17281 merically	aviation airfoil [AIAA PAPER 81-0405] An investigation of a swept wing-body configuration with drooped leading edge and transonic speeds LENSES Optical infinity lens development for flig simulator visual displays LICENSIEG Spin recovery training	A81-20837 at low N81-16012 ght N81-17071
COMPOSITION OF JP-5 [AD-A093842] KALMAN FILTERS Some implementation considerations for numerable flight filters L LABORATORY EQUIPMENT	N81-17281 Merically A81-20485	aviation airfoil [AIAA PAPER 81-0405] An investigation of a swept wing-body configuration with drooped leading edge and transonic speeds LENSES Optical infinity lens development for flig simulator visual displays LICENSING Spin recovery training [GPO-67-439] LIFE (DURNBILITY)	A81-20837 at low N81-16012 ght
composition of JP-5 [AD-A093842] KALMAN FILTERS Some implementation considerations for numerable flight filters	N81-17281 Merically A81-20485	aviation airfoil [AIAA PAPER 81-0405] An investigation of a swept wing-body configuration with drooped leading edge and transonic speeds LENSES Optical infinity lens development for flig simulator visual displays LICENSING Spin recovery training [GPO-67-439] LIFE (DURNBILITY)	A81-20837 at low N81-16012 ght N81-17071 N81-17098
Composition of JP-5 [AD-A093842] KALMAN FILTERS Some implementation considerations for numerable flight filters LABORATORY EQUIPMENT Laboratory studies of flight mechanics using catapult launched models [AAAF-NT-80-15]	N81-17281 Merically A81-20485	aviation airfoil [AIAA PAPER 81-0405] An investigation of a swept wing-body configuration with drooped leading edge and transonic speeds LENSES Optical infinity lens development for flights simulator visual displays LICENSING Spin recovery training [GPO-67-439] LIPE (DURABILITY) Combustor liner durability analysis [NASA-CR-165250]	A81-20837 at low N81-16012 ght N81-17071
Composition of JP-5 [AD-A093842] K KALHAB PILTERS Some implementation considerations for numerable flight filters L LABORATORY EQUIPMENT Laboratory studies of flight mechanics using catapult launched models [AAAF-NT-80-15] LAMIBAR BOUNDARY LAVER	N81-17281 Merically A81-20485 Ling N81-17055	aviation airfoil [AIAA PAPER 81-0405] An investigation of a swept wing-body configuration with drooped leading edge and transonic speeds LENSES Optical infinity lens development for flic simulator visual displays LICENSING Spin recovery training [GPO-67-439] LIPE (DURABILITY) Combustor liner durability analysis [NASA-CR-165250] LIPE CYCLE COSTS	A81-20837 at low N81-16012 ght N81-17071 N81-17098
Composition of JP-5 [AD-A093842] K KALMAN FILTERS Some implementation considerations for numerable flight filters L LABORATORY EQUIPMENT Laboratory studies of flight mechanics using catapult launched models [AMAP-NT-80-15] LAMINAR BOUNDARY LAYER Compressible boundary-layer stability calculated the stable of	N81-17281 Merically A81-20485 Ling N81-17055	aviation airfoil [AIAA PAPER 81-0405] An investigation of a swept wing-body configuration with drooped leading edge and transonic speeds LENSES Optical infinity lens development for flic simulator visual displays LICENSIEG Spin recovery training [GPO-67-439] LIPE (DURABILITY) Combustor liner durability analysis [NASA-CR-165250] LIPE CYCLE COSTS Digital Avionics Information System (DAIS)	A81-20837 at low N81-16012 ght N81-17071 N81-17098 N81-17079
Composition of JP-5 [AD-A093842] K KALHAN PILTERS Some implementation considerations for numerable flight filters LABORATORY EQUIPMENT Laboratory studies of flight mechanics using catapult launched models [AAAF-NT-80-15] LAMINAR BOUNDARY LAVER Compressible boundary-layer stability calculation for sweptback wings with suction [AIAA PAPER 81-0196]	N81-17281 Merically A81-20485 Ling N81-17055	aviation airfoil [AIAA PAPER 81-0405] An investigation of a swept wing-body configuration with drooped leading edge and transonic speeds LENSES Optical infinity lens development for flig simulator visual displays LICENSING Spin recovery training [GPO-67-439] LIFE (DURABILITY) Combustor liner durability analysis [NASA-CRE-165250] LIPE CYCLE COSTS Digital Avionics Information System (DAIS) Cycle Cost Impact Modeling System (ICCI) managerial overview	A81-20837 at low N81-16012 ght N81-17071 N81-17098 N81-17079): Life M). A
COMPOSITION OF JP-5 [AD-A093842] K KALHAN FILTERS Some implementation considerations for numerical stable flight filters L LABORATORY EQUIPMENT Laboratory studies of flight mechanics using catapult launched models [AAAF-NT-80-15] LAMINAR BOUNDARY LAYER Compressible boundary-layer stability calculated for sweptback wings with suction [AIAA PAPER 81-0196] LAMINAR FLOE	N81-17281 merically A81-20485 ing N81-17055	aviation airfoil [AIAA PAPER 81-0405] An investigation of a swept wing-body configuration with drooped leading edge and transonic speeds LENSES Optical infinity lens development for flic simulator visual displays LICENSING Spin recovery training [GPO-67-439] LIPE (DURABILITY) Combustor liner durability analysis [NASA-CR-165250] LIPE CYCLE COSTS Digital Avionics Information System (DAIS) Cycle Cost Impact Modeling System (LCCI) managerial overview [AD-A093281]	A81-20837 at low N81-16012 ght N81-17071 N81-17098 N81-17079): Life N81-17062
COMPOSITION OF JP-5 [AD-A093842] K KALMAN FILTERS Some implementation considerations for numerable flight filters L LABORATORY EQUIPMENT Laboratory studies of flight mechanics using catapult launched models [AAAF-NT-80-15] LAMINAR BOUNDARY LAYER Compressible boundary-layer stability calculated for sweptback wings with suction [AIAA PAPER 81-0196] LAMINAR PLOW Three-dimensional internal flows in	N81-17281 merically A81-20485 ing N81-17055	aviation airfoil [AIAA PAPER 81-0405] An investigation of a swept wing-body configuration with drooped leading edge and transonic speeds LENSES Optical infinity lens development for flig simulator visual displays LICENSING Spin recovery training [GP0-67-439] LIFE (DURABILITY) Combustor liner durability analysis [NASA-CB-165250] LIFE CYCLE COSTS Digital Avionics Information System (DAIS) Cycle Cost Impact Modeling System (LCCT) managerial overview [AD-A093281] Airborne-fiber optics manufacturing technol	A81-20837 at low N81-16012 ght N81-17071 N81-17098 N81-17079): Life N81-17062
COMPOSITION OF JP-5 [AD-A093842] K KALMAN PILTERS Some implementation considerations for numerated stable flight filters LABORATORY EQUIPMENT Laboratory studies of flight mechanics using catapult launched models [AAAF-NT-80-15] LAMINAR BOUNDARY LAYER Compressible boundary-layer stability calculated for sweptback wings with suction [AIAA PAPER 81-0196] LAMINAR PLOW Three-dimensional internal flows in turbomachinery, volume 2	N81-17281 Defrically A81-20485 Ling N81-17055 Culations A81-20840	aviation airfoil [AIAA PAPER 81-0405] An investigation of a swept wing-body configuration with drooped leading edge and transonic speeds LENSES Optical infinity lens development for flig simulator visual displays LICENSING Spin recovery training [GPO-67-439] LIPE (DURABILITY) Combustor liner durability analysis [NASA-CR-165250] LIPE CYCLE COSTS Digital Avionics Information System (DAIS) Cycle Cost Impact Modeling System (ICCI) managerial overview [AD-A093281] Airborne-fiber optics manufacturing technolaircraft installation processes	A81-20837 at low N81-16012 ght N81-17071 N81-17098 N81-17079): Life M). A N81-17062 ology,
Composition of JP-5 [AD-A093842] K KALMAN FILTERS Some implementation considerations for numerical stable flight filters L LABORATORY EQUIPMENT Laboratory studies of flight mechanics using catapult launched models [AAAF-NT-80-15] LAMINAR BOUNDARY LAYER Compressible boundary-layer stability calculated for sweptback wings with suction [AIAA PAPER 81-0196] LAMINAR PLOW Three-dimensional internal flows in turbomachinery, volume 2 [AD-A093130] LAMINAR PLOW AIRPOILS	N81-17281 merically A81-20485 ing N81-17055 culations A81-20840 N81-17090	aviation airfoil [AIAA PAPER 81-0405] An investigation of a swept wing-body configuration with drooped leading edge and transonic speeds LENSES Optical infinity lens development for flig simulator visual displays LICENSING Spin recovery training [GPO-67-439] LIFE (DURABILITY) Combustor liner durability analysis [NASA-CR-165250] LIFE CYCLE COSTS Digital Avionics Information System (LCCT) managerial overview [AD-A093281] Airborne-fiber optics manufacturing technolic aircraft installation processes [AD-A093304] LIFE SUPPORT SYSTEMS	A81-20837 at low N81-16012 ght N81-17071 N81-17098 N81-17079): Life N). A N81-17062 ology, N81-17902
Composition of JP-5 [AD-A093842] K KALMAN FILTERS Some implementation considerations for numerical stable flight filters L LABORATORY EQUIPMENT Laboratory studies of flight mechanics using catapult launched models [AAAP-NT-80-15] LAHINAR BOUNDARY LAYER Compressible boundary-layer stability calculated for sweptback wings with suction [AIAA PAPER 81-0196] LAMINAR FLOW Three-dimensional internal flows in turbomachinery, volume 2 [AD-A093130] LAMINAR PLOW AIRPOILS Discussion of test results in the design of	N81-17281 Defrically A81-20485 Ling N81-17055 Culations A81-20840 N81-17090 Def	aviation airfoil [AIAA PAPER 81-0405] An investigation of a swept wing-body configuration with drooped leading edge and transonic speeds LENSES Optical infinity lens development for flig simulator visual displays LICENSING Spin recovery training [GPO-67-439] LIFE (DURABILITY) Combustor liner durability analysis [NASA-CR-165250] LIFE CYCLE COSTS Digital Avionics Information System (LCCI) managerial overview [AD-A093281] Airborne-fiber optics manufacturing technolarization installation processes [AD-A093304] LIFE SUPPORT SYSTEMS The influence of beards on the efficiency	A81-20837 at low N81-16012 ght N81-17071 N81-17098 N81-17079): Life N). A N81-17062 ology, N81-17902
COMPOSITION OF JP-5 [AD-A093842] K KALMAN FILTERS Some implementation considerations for numerical stable flight filters L LABORATORY EQUIPMENT Laboratory studies of flight mechanics using catapult launched models [AAAF-NT-80-15] LAMINAR BOUNDARY LAYER Compressible boundary-layer stability calculated for sweptback wings with suction [AIAA PAPER 81-0196] LAMINAR PLOW Three-dimensional internal flows in turbomachinery, volume 2 [AD-A093130] LAMINAR PLOW AIRPOILS Discussion of test results in the design of laminar airfoils for competition gliders	N81-17281 merically A81-20485 ing N81-17055 culations A81-20840 N81-17090 of	aviation airfoil [AIAA PAPER 81-0405] An investigation of a swept wing-body configuration with drooped leading edge and transonic speeds LENSES Optical infinity lens development for flig simulator visual displays LICENSING Spin recovery training [GPO-67-439] LIFE (DURABILITY) Combustor liner durability analysis [NASA-CR-165250] LIFE CYCLE COSTS Digital Avionics Information System (LCCT) managerial overview [AD-A093281] Airborne-fiber optics manufacturing technolic aircraft installation processes [AD-A093304] LIFE SUPPORT SYSTEMS	A81-20837 at low N81-16012 ght N81-17071 N81-17098 N81-17079): Life N81-17062 ology, N81-17902 of
Composition of JP-5 [AD-A093842] K KALMAN FILTERS Some implementation considerations for numerical stable flight filters L LABORATORY EQUIPMENT Laboratory studies of flight mechanics using catapult launched models [AAAP-NT-80-15] LAHINAR BOUNDARY LAYER Compressible boundary-layer stability calculated for sweptback wings with suction [AIAA PAPER 81-0196] LAMINAR FLOW Three-dimensional internal flows in turbomachinery, volume 2 [AD-A093130] LAMINAR PLOW AIRPOILS Discussion of test results in the design of	N81-17281 Defrically A81-20485 Ling N81-17055 Culations A81-20840 N81-17090 Def	aviation airfoil [AIAA PAPER 81-0405] An investigation of a swept wing-body configuration with drooped leading edge and transonic speeds LENSES Optical infinity lens development for flig simulator visual displays LICENSING Spin recovery training [GP0-67-439] LIFE (DURABILITY) Combustor liner durability analysis [NASA-Ch-165250] LIFE CYCLE COSTS Digital Avionics Information System (LCCT) managerial overview [AD-A093281] Airborne-fiber optics manufacturing technolic aircraft installation processes [AD-A093304] LIFE SUPPORT SYSTEMS The influence of beards on the efficiency aviators' oxygen masks	A81-20837 at low N81-16012 ght N81-17071 N81-17098 N81-17079): Life N). A N81-17062 ology, N81-17902
COMPOSITION OF JP-5 [AD-A093842] K KALHAN FILTERS Some implementation considerations for numerical stable flight filters L LABORATORY EQUIPMENT Laboratory studies of flight mechanics using catapult launched models [AAAF-NT-80-15] LAMINAR BOUNDARY LAYER Compressible boundary-layer stability calculated for sweptback wings with suction [AIAA PAPER 81-0196] LAMINAR PLOW Three-dimensional internal flows in turbomachinery, volume 2 [AD-A093130] LAMINAR PLOW AIRFOILS Discussion of test results in the design of laminar airfoils for competition gliders [NASA-TM-75402] LAMINATES Acoustic fatigue strength of fiber-reinford	N81-17281 derically A81-20485 ing N81-17055 culations A81-20840 N81-17090 off N81-15984	aviation airfoil [AIAA PAPER 81-0405] An investigation of a swept wing-body configuration with drooped leading edge and transonic speeds LENSES Optical infinity lens development for flick simulator visual displays LICENSING Spin recovery training [GPO-67-439] LIPE (DURABILITY) Combustor liner durability analysis [NASA-CR-165250] LIPE CYCLE COSTS Digital Avionics Information System (DAIS) Cycle Cost Impact Modeling System (ICCI) managerial overview [AD-A093281] Airborne-fiber optics manufacturing technolic aircraft installation processes [AD-A093304] LIPE SUPPORT SYSTEMS The influence of beards on the efficiency aviators' oxygen masks Helicopter emergency underwater escape	A81-20837 at low N81-16012 ght N81-17071 N81-17098 N81-17079): Life N). A N81-17062 ology, N81-17902 of A81-22100 A81-22101
Composition of JP-5 [AD-A093842] K KALMAN FILTERS Some implementation considerations for numerical stable flight filters L LABORATORY EQUIPMENT Laboratory studies of flight mechanics using catapult launched models [AAAP-NT-80-15] LAHINAR BOUNDARY LAYER Compressible boundary-layer stability calculated for sweptback wings with suction [AIAA PAPER 81-0196] LAMINAR FLOW Three-dimensional internal flows in turbomachinery, volume 2 [AD-A093130] LAMINAR PLOW AIRFOILS Discussion of test results in the design of laminar airfoils for competition gliders [NASA-TM-75402] LAMINATES	N81-17281 merically A81-20485 ing N81-17055 culations A81-20840 N81-17090 of N81-15984	aviation airfoil [AIAA PAPER 81-0405] An investigation of a swept wing-body configuration with drooped leading edge and transonic speeds LENSES Optical infinity lens development for flig simulator visual displays LICENSING Spin recovery training [GP0-67-439] LIFE (DURABILITY) Combustor liner durability analysis [NASA-CB-165250] LIFE CYCLE COSTS Digital Avionics Information System (DAIS) Cycle Cost Impact Modeling System (LCCI) managerial overview [AD-A093281] Airborne-fiber optics manufacturing technolaircraft installation processes [AD-A093304] LIFE SUPPORT SYSTEMS The influence of beards on the efficiency aviators' oxygen masks Helicopter emergency underwater escape	A81-20837 at low N81-16012 ght N81-17071 N81-17098 N81-17079): Life N). A N81-17062 ology, N81-17902 of A81-22100 A81-22101
Composition of JP-5 [AD-A093842] K KALMAN FILTERS Some implementation considerations for numerical stable flight filters L LABORATORY EQUIPMENT Laboratory studies of flight mechanics using catapult launched models [AAAP-NT-80-15] LAMINAR BOUNDARY LAYER Compressible boundary-layer stability calculated for sweptback wings with suction [AIAA PAPER 81-0196] LAMINAR FLOW Three-dimensional internal flows in turbomachinery, volume 2 [AD-A093130] LAMINAR PLOW AIRFOILS Discussion of test results in the design of laminar airfoils for competition gliders [NASA-TM-75402] LAMINATES Acoustic fatigue strength of fiber-reinford plastic panels	N81-17281 derically A81-20485 ing N81-17055 culations A81-20840 N81-17090 off N81-15984	aviation airfoil [AIAA PAPER 81-0405] An investigation of a swept wing-body configuration with drooped leading edge and transonic speeds LENSES Optical infinity lens development for flick simulator visual displays LICENSING Spin recovery training [GPO-67-439] LIPE (DURABILITY) Combustor liner durability analysis [NASA-CR-165250] LIPE CYCLE COSTS Digital Avionics Information System (DAIS) Cycle Cost Impact Modeling System (ICCI) managerial overview [AD-A093281] Airborne-fiber optics manufacturing technolic aircraft installation processes [AD-A093304] LIPE SUPPORT SYSTEMS The influence of beards on the efficiency aviators' oxygen masks Helicopter emergency underwater escape	A81-20837 at low N81-16012 ght N81-17071 N81-17098 N81-17079): Life N). A N81-17062 ology, N81-17902 of A81-22100 A81-22101 ates to
COMPOSITION OF JP-5 [AD-A093842] K KALHAN FILTERS Some implementation considerations for numerical stable flight filters L LABORATORY EQUIPMENT Laboratory studies of flight mechanics using catapult launched models [AAAF-NT-80-15] LAMINAR BOUNDARY LAYER Compressible boundary-layer stability calculated for sweptback wings with suction [AIAA PAPER 81-0196] LAMINAR PLOW Three-dimensional internal flows in turbomachinery, volume 2 [AD-A093130] LAMINAR PLOW AIRFOILS Discussion of test results in the design of laminar airfoils for competition gliders [NASA-TM-75402] LAMINATES Acoustic fatigue strength of fiber-reinfor plastic panels	N81-17281 serically A81-20485 ing N81-17055 culations A81-20840 N81-17090 off S N81-15984 cced A81-20873	aviation airfoil [AIAA PAPER 81-0405] An investigation of a swept wing-body configuration with drooped leading edge and transonic speeds LENSES Optical infinity lens development for flig simulator visual displays LICENSING Spin recovery training [GP0-67-439] LIFE (DURABILITY) Combustor liner durability analysis [NASA-CB-165250] LIFE CYCLE COSTS Digital Avionics Information System (DAIS) Cycle Cost Impact Modeling System (LCCI) managerial overview [AD-A093281] Airborne-fiber optics manufacturing technolaircraft installation processes [AD-A093304] LIFE SUPPORT SYSTEMS The influence of beards on the efficiency aviators' oxygen masks Helicopter emergency underwater escape	A81-20837 at low N81-16012 ght N81-17071 N81-17098 N81-17079): Life N). A N81-17062 ology, N81-17902 of A81-22100 A81-22101
Composition of JP-5 [AD-A093842] K KALMAN FILTERS Some implementation considerations for numerical stable flight filters L LABORATORY EQUIPMENT Laboratory studies of flight mechanics using catapult launched models [AAAP-NT-80-15] LAMINAR BOUNDARY LAYER Compressible boundary-layer stability calculated for sweptback wings with suction [AIAA PAPER 81-0196] LAMINAR FLOW Three-dimensional internal flows in turbomachinery, volume 2 [AD-A093130] LAMINAR PLOW AIRPOILS Discussion of test results in the design of laminar airfoils for competition gliders [NASA-TH-75402] LAMINATES Acoustic fatigue strength of fiber-reinfor plastic panels LANDING AIDS Microwave Landing System (NLS) clearance for assessment tests	N81-17281 serically A81-20485 ing N81-17055 culations A81-20840 N81-17090 off S N81-15984 cced A81-20873	aviation airfoil [AIAA PAPER 81-0405] An investigation of a swept wing-body configuration with drooped leading edge and transonic speeds LENSES Optical infinity lens development for flick simulator visual displays LICENSING Spin recovery training [GPO-67-439] LIPE (DURABILITY) Combustor liner durability analysis [NASA-CR-165250] LIPE CYCLE COSTS Digital Avionics Information System (DAIS) Cycle Cost Impact Modeling System (ICCI) managerial overview [AD-A093281] Airborne-fiber optics manufacturing technolic aircraft installation processes [AD-A093304] LIPE SUPPORT SYSTEMS The influence of beards on the efficiency aviators' oxygen masks Helicopter emergency underwater escape Aircraft accident investigation as it relative to the support equipment	A81-20837 at low N81-16012 ght N81-17071 N81-17098 N81-17079): Life N). A N81-17062 ology, N81-17902 of A81-22100 A81-22101 ates to A81-22103 ge. I
Composition of JP-5 [AD-A093842] K KALHAN FILTERS Some implementation considerations for numerical stable flight filters Laboratory studies of flight mechanics using catapult launched models [AAAP-NT-80-15] LAMINAR BOUNDARY LAYRR Compressible boundary-layer stability calculated for sweptback wings with suction [AIAA PAPER 81-0196] LAMINAR PLOW Three-dimensional internal flows in turbomachinery, volume 2 [AD-A093130] LAMINAR PLOW AIRPOILS Discussion of test results in the design of laminar airfoils for competition gliders [NASA-TM-75402] LAMINATES Acoustic fatigue strength of fiber-reinfor plastic panels LANDING AIDS Microwave Landing System (MLS) clearance for assessment tests [AD-A093553]	N81-17281 serically A81-20485 ing N81-17055 culations A81-20840 N81-17090 off S N81-15984 cced A81-20873	aviation airfoil [AIAA PAPER 81-0405] An investigation of a swept wing-body configuration with drooped leading edge and transonic speeds LENSES Optical infinity lens development for flick simulator visual displays LICENSING Spin recovery training [GPO-67-439] LIPE (DURABILITY) Combustor liner durability analysis [NASA-CR-165250] LIPE CYCLE COSTS Digital Avionics Information System (DAIS) Cycle Cost Impact Modeling System (ICCI) managerial overview [AD-A093281] Airborne-fiber optics manufacturing technolic installation processes [AD-A093304] LIPE SUPPORT SYSTEMS The influence of beards on the efficiency aviators' oxygen masks Helicopter emergency underwater escape Aircraft accident investigation as it relative support equipment LIPT Angle of attack - Its measurement and usage	A81-20837 at low N81-16012 ght N81-17071 N81-17098 N81-17079): Life N). A N81-17902 of A81-22100 A81-22101 ates to
Composition of JP-5 [AD-A093842] K KALHAN FILTERS Some implementation considerations for numerature stable flight filters L LABORATORY EQUIPMENT Laboratory studies of flight mechanics using catapult launched models [AAAP-NT-80-15] LAMINAR BOUNDARY LAYER Compressible boundary-layer stability calculated for sweptback wings with suction [AIAA PAPER 81-0196] LAMINAR PLOW Three-dimensional internal flows in turbomachinery, volume 2 [AD-A093130] LAMINAR PLOW AIRPOILS Discussion of test results in the design of laminar airfoils for competition gliders [NASA-TM-75402] LAMINATES Acoustic fatigue strength of fiber-reinfor plastic panels LAHDING AIDS Microwave Landing System (MLS) clearance for assessment tests [AD-A093553] MLS channel assignment model	N81-17281 merically A81-20485 ing N81-17055 culations A81-20840 N81-17090 of S N81-15984 cced A81-20873 format N81-17024	aviation airfoil [AIAA PAPER 81-0405] An investigation of a swept wing-body configuration with drooped leading edge and transonic speeds LENSES Optical infinity lens development for flict simulator visual displays LICENSING Spin recovery training [GP0-67-439] LIFE (DURABILITY) Combustor liner durability analysis [NASA-CR-165250] LIFE CYCLE COSTS Digital Avionics Information System (DAIS) Cycle Cost Impact Modeling System (LCCI) managerial overview [AD-A093261] Airborne-fiber optics manufacturing technolaircraft installation processes [AD-A093304] LIFE SUPPORT SYSTEMS The influence of beards on the efficiency aviators' oxygen masks Helicopter emergency underwater escape Aircraft accident investigation as it relative support equipment LIFT Angle of attack - Its measurement and usage Experimental development of an advanced	A81-20837 at low N81-16012 ght N81-17071 N81-17098 N81-17079): Life N). A N81-17902 of A81-22100 A81-22101 ates to A81-22103 ge. I A81-19799
Composition of JP-5 [AD-A093842] K KALHAN FILTERS Some implementation considerations for numerical stable flight filters Laboratory studies of flight mechanics using catapult launched models [AAAP-NT-80-15] LAMINAR BOUNDARY LAYRR Compressible boundary-layer stability calculated for sweptback wings with suction [AIAA PAPER 81-0196] LAMINAR PLOW Three-dimensional internal flows in turbomachinery, volume 2 [AD-A093130] LAMINAR PLOW AIRPOILS Discussion of test results in the design of laminar airfoils for competition gliders [NASA-TM-75402] LAMINATES Acoustic fatigue strength of fiber-reinfor plastic panels LANDING AIDS Microwave Landing System (MLS) clearance for assessment tests [AD-A093553]	N81-17281 merically A81-20485 ing N81-17055 culations A81-20840 N81-17090 of SN81-15984 cced A81-20873	aviation airfoil [AIAA PAPER 81-0405] An investigation of a swept wing-body configuration with drooped leading edge and transonic speeds LENSES Optical infinity lens development for flick simulator visual displays LICENSING Spin recovery training [GPO-67-439] LIPE (DURABILITY) Combustor liner durability analysis [NASA-CR-165250] LIPE CYCLE COSTS Digital Avionics Information System (DAIS) Cycle Cost Impact Modeling System (ICCI) managerial overview [AD-A093281] Airborne-fiber optics manufacturing technolic installation processes [AD-A093304] LIPE SUPPORT SYSTEMS The influence of beards on the efficiency aviators' oxygen masks Helicopter emergency underwater escape Aircraft accident investigation as it relative support equipment LIPT Angle of attack - Its measurement and usage	A81-20837 at low N81-16012 ght N81-17071 N81-17098 N81-17079): Life N). A N81-17902 of A81-22100 A81-22101 ates to A81-22103 ge. I A81-19799
COMPOSITION OF JP-5 [AD-A093842] K KALHAN FILTERS Some implementation considerations for numeratable flight filters L LABORATORY EQUIPMENT Laboratory studies of flight mechanics using catapult launched models [AAAF-NT-80-15] LAMINAR BOUNDARY LAYER Compressible boundary-layer stability calculated for sweptback wings with suction [AIAA PAPER 81-0196] LAMINAR PLOW Three-dimensional internal flows in turbomachinery, volume 2 [AD-A093130] LAMINAR PLOW AIRPOILS Discussion of test results in the design of laminar airfoils for competition gliders [NASA-TH-75402] LAMINATES Acoustic fatigue strength of fiber-reinfor plastic panels LAHDING AIDS Microwave Landing System (MLS) clearance for assessment tests [AD-A093553] MLS channel assignment model [AD-A093449] LAHDING GEAR Longitudinal instability in braked landing	N81-17281 serically A81-20485 ing N81-17055 culations A81-20840 N81-17090 off S N81-15984 cced A81-20873 format N81-17024	aviation airfoil [AIAA PAPER 81-0405] An investigation of a swept wing-body configuration with drooped leading edge and transonic speeds LENSES Optical infinity lens development for flig simulator visual displays LICENSING Spin recovery training [GP0-67-439] LIFE (DURABILITY) Combustor liner durability analysis [NASA-CR-165250] LIFE CYCLE COSTS Digital Avionics Information System (DAIS) Cycle Cost Impact Modeling System (LCCI) managerial overview [AD-A093281] Airborne-fiber optics manufacturing technolic aircraft installation processes [AD-A093304] LIFE SUPPORT SYSTEMS The influence of beards on the efficiency aviators' oxygen masks Helicopter emergency underwater escape Aircraft accident investigation as it relatife support equipment LIFT Angle of attack - Its measurement and usage in the support of a system for Naviaticraft [AIAA PAPER 81-0151]	A81-20837 at low N81-16012 ght N81-17071 N81-17098 N81-17079): Life N). A N81-17902 of A81-22100 A81-22101 ates to A81-22103 ge. I A81-19799
Composition of JP-5 [AD-A093842] K KALMAN FILTERS Some implementation considerations for numerical stable flight filters L LABORATORY EQUIPMENT Laboratory studies of flight mechanics using catapult launched models [AAAP-NT-80-15] LAMINAR BOUNDARY LAYER Compressible boundary-layer stability calculated for sweptback wings with suction [AIAA PAPER 81-0196] LAMINAR FLOW Three-dimensional internal flows in turbomachinery, volume 2 [AD-A093130] LAMINAR PLOW AIRFOILS Discussion of test results in the design of laminar airfoils for competition gliders [NASA-TM-75402] LAMINATES Acoustic fatigue strength of fiber-reinform plastic panels LANDING AIDS Microwave Landing System (NLS) clearance for assessment tests [AD-A093553] MLS channel assignment model [AD-A093449] LANDING GEAR Longitudinal instability in braked landing [ASME PAPER 80-WA/DSC-12]	N81-17281 merically A81-20485 ing N81-17055 culations A81-20840 N81-17090 of N81-15984 cced A81-20873 format N81-17024 W81-17026 J gear A81-21083	aviation airfoil [AIAA PAPER 81-0405] An investigation of a swept wing-body configuration with drooped leading edge and transonic speeds LENSES Optical infinity lens development for flig simulator visual displays LICENSIEG Spin recovery training [GPO-67-439] LIPE (DURABILITY) Combustor liner durability analysis [NASA-CR-165250] LIPE CYCLE COSTS Digital Avionics Information System (DAIS) Cycle Cost Impact Modeling System (LCCI) managerial overview [AD-A093281] Airborne-fiber optics manufacturing technological information processes [AD-A093304] LIPE SUPPORT SYSTEMS The influence of beards on the efficiency aviators' oxygen masks Helicopter emergency underwater escape Aircraft accident investigation as it relative support equipment LIPT Angle of attack - Its measurement and usage Experimental development of an advanced circulation control wing system for Naviaircraft [AIAA PAPER 81-0151] LIFT AUGRESTATIOS	A81-20837 at low N81-16012 ght N81-17071 N81-17098 N81-17079): Life N81-17062 ology, N81-17902 of A81-22100 A81-22101 ates to A81-22103 ge. I A81-19799 y STOL A81-20632
COMPOSITION OF JP-5 [AD-A093842] K KALHAN FILTERS Some implementation considerations for numeratable flight filters L LABORATORY EQUIPMENT Laboratory studies of flight mechanics using catapult launched models [AAAF-NT-80-15] LAMINAR BOUNDARY LAYER Compressible boundary-layer stability calculated for sweptback wings with suction [AIAA PAPER 81-0196] LAMINAR PLOW Three-dimensional internal flows in turbomachinery, volume 2 [AD-A093130] LAMINAR PLOW AIRPOILS Discussion of test results in the design of laminar airfoils for competition gliders [NASA-TH-75402] LAMINATES Acoustic fatigue strength of fiber-reinfor plastic panels LAHDING AIDS Microwave Landing System (MLS) clearance for assessment tests [AD-A093553] MLS channel assignment model [AD-A093449] LAHDING GEAR Longitudinal instability in braked landing	N81-17281 serically A81-20485 ing N81-17055 culations A81-20840 N81-17090 off S N81-15984 cced A81-20873 format N81-17024 N81-17026 J gear A81-21083 jtanium	aviation airfoil [AIAA PAPER 81-0405] An investigation of a swept wing-body configuration with drooped leading edge and transonic speeds LENSES Optical infinity lens development for flig simulator visual displays LICENSING Spin recovery training [GP0-67-439] LIFE (DURABILITY) Combustor liner durability analysis [NASA-CR-165250] LIFE CYCLE COSTS Digital Avionics Information System (DAIS) Cycle Cost Impact Modeling System (LCCI) managerial overview [AD-A093281] Airborne-fiber optics manufacturing technolic aircraft installation processes [AD-A093304] LIFE SUPPORT SYSTEMS The influence of beards on the efficiency aviators' oxygen masks Helicopter emergency underwater escape Aircraft accident investigation as it relatife support equipment LIFT Angle of attack - Its measurement and usage in the support of a system for Naviaticraft [AIAA PAPER 81-0151]	A81-20837 at low N81-16012 ght N81-17071 N81-17098 N81-17079): Life N81-17062 ology, N81-17902 of A81-22100 A81-22101 ates to A81-22103 ge. I A81-19799 y STOL A81-20632

SUBJECT INDEX HAWAGEMENT SYSTEMS

LIFT DRAG BATIO	na+	Turbine engine fault detection and isolation	
Jet wing interaction to give improved comb performance	Jat	program, phase 1. Volume 2: Requirement definition for an integrated engine moni-	
F0-10-10-1	N81-16007	system	
LIPTIEG BODIES		[AD-A093226]	N81-17088
A lifting surface theory for the sound gen by the interaction of velocity disturban	erated ces with	LONG TERM RFFRCTS Effects of commercial aircraft operating	
a leaned vane stator		environment on composite materials	
[AIAA PAPER 81-0091]	A81-20595		A81-22681
An analysis of gap effects on wing-elevon		Environmental exposure effects on composit	e
aerodynamic characteristics [AIAA PAPER 81-0364]	A81-20783	materials for commercial aircraft [NASA-CR-165649]	ม81-16139
The effects of warhead-induced damage on	the	LONGITUDINAL CONTROL	
aeroelastic characteristics of lifting s	surfaces.	Piloting techniques on the backside - Flig	ht path
Volume 2: Aerodynamic effects [AD-A093063]	N81-17048	angle control	A81-21673
LIGHT AIRCRAFT		LONGITUDINAL STABILITY	
The design, testing, certification and pro	oduction	Longitudinal instability in braked landing	
of an emergency parachute for use in ligaircraft	JAT	[ASME PAPER 80-WA/DSC-12]	A81-21083
[AIAA PAPER 81-0413]	A81-20817	DMAHTC's support to National Ocean Survey	
LIGHT EMITTING DIODES		LORAN-C-charting	
Advancement on visualization techniques	N81-17063	[AD-A093748] Production of LORAN-C reliability diagrams	N81-17027
[AGARD-AG-255] Flat panel display technology review	HO1 17005	Defense Mapping Agency	at the
	N81-17065	[AD-A093749]	N81-17028
LIGHT SCATTERING		LOW ALTITUDE	
Liquid crystal displays	N81-17068	Low level, adverse attitude escape using a vertical seeking ejection seat	
LIGHTWING	20	vertical beening ejection boat	A81-22094
Electromagnetic measurement of lightning	strikes	LOW LEVEL TURBULENCE	_
to aircraft [AIAA PAPER 81-0083]	A81-20588	Microbursts as an aviation wind shear haza: [AIAA PAPER 81-0386]	rd A81-20798
A French flight test program on the	A01 20300	LOW PRESSURE	401 20790
electromagnetic effects of lightning		Noise generation mechanism of low pressure	•
manada da the sebleg incide class	N81-16155	propeller fans	301-2050#
Tension induced in the cables inside close structures and in carbon epoxy submitted		[AIAA PAPER 81-0090] LOW SPEED WIND TUNNELS	A81-20594
lightning-type impulse current		Plow visualization through the use of the	
	N81-16158	smoke-wire technique	
LIGHTHING SUPPRESSION Aircraft and environmental factors influe	ncina	[AIAA PAPER 81-0412] LOW VISIBILITY	A81-20816
lightning strike	icing	A head-up display for low-visibility appro-	ach and
[AIAA PAPER 81-0084]	A81-20589	landing	
LINBAR EQUATIONS Numerical techniques in linear duct acoust	tion - 1	[AIAA PAPER 81-0130] LUGS	A81-20623
status report	LICS R	Crack propagation in lugs	
[ASME PAPER 80-WA/NC-2]	A81-21120		A81-22629
LININGS Corbustor liner dumability analysis			
Combustor liner durability analysis [NASA-CR-165250]	N81-17079	M	
LIQUID CRYSTALS		MAGNETIC INDUCTION	
Advancement on visualization techniques	N81-17063	Tension induced in the cables inside close structures and in carbon epoxy submitted	
[AGARD-AG-255] Flat panel display technology review	HO1-17003	lightning-type impulse current	to a
F 3	N81-17065		N81-16158
Liquid crystal displays	¥01_17060	MAGNETIC MATERIALS	idono
LISTS	N81-17068	A new technology - Piezoelectric polywinyl fluoride communications transducers	1dene
Listing of accidents/incidents by aircraft	t make		A81-22099
and model, United States Civil Aviation		MAGNIFICATION	
[PB81-110280] LOAD TESTS	N81-16999	Optical infinity lens development for flig simulator visual displays	At
The use of acoustic emission for detecting	and	practice around arobiding	N81-17071
evaluating of fatigue cracks severity d	uring	HAB HACHINE SYSTEMS	
static and cyclic loading of structure	A81-20214	Air traffic control problems - A pilot's V	1e v 181-20914
Effect of load spectrum variables on fation		Aircrew compliance with standard operating	201 20314
initiation and propagation; Proceedings	of the	procedures as a component of airline saf	
Symposium, San Prancisco, Calif., May 2	1, 1979 A81-21730	[AD-A092443] MANAGEMENT PLANNING	N81-16023
Effect of transport aircraft wing loads s		Federal Radionavigation Plan. Volume 1:	
variation on crack growth		Radionavigation plans and policy	
Reference of fighter ottock sportrum on area	A81-21738	[AD-A093774]	N81-17030
Effects of fighter attack spectrum on crac	A81-21741	Pederal Radionavigation Plan. Volume 2: Requirements	
LOADS (PORCES)	201 21111	[AD-A093775]	N81-17031
Cold-air investigation of first stage of		Pederal Radionavigation Plan. Volume 3:	
4-1/2-stage, fan drive turbine with aver stage-loading factor of 4.66	cage	Radionavigation system characteristics [AD-A093776]	พ81-17032
[NASA-TP-1780]	N81-16050	Pederal Radionavigation Plan. Volume 4:	2012
Environment-load interaction effects on c	rack	Radionavigation research, engineering an	d
growth in landing gear steels	N81-17242	development [AD-A093777]	N81-17033
[AD-A093803] LOGISTICS MANAGEMENT	801-1/242	HANAGERENT SYSTEMS	40 1- 17033
Digital Avionics Information System (DAIS)		Digital Avionics Information System (DAIS)	
Cycle Cost Impact Modeling System (LCCI) managerial overview	5). A	Cycle Cost Impact Modeling System (LCCIM). A
		managerial operator	
[AD-A093281]	ม81-17062	managerial overview [AD-A093281]	N81-17062

MANEOVERABILITY SUBJECT INDEX

			•
MADEUVERABILITY		Active controls for flutter suppression an	
Energy maneuverability display for the Air		alleviation in supersonic aircraft Y	P-17
Maneuvering Range/Tactical Training Syst	e¤	flutter model	
(ACMR/TACTS)		[NASA-CR-163934]	N81-17097
[AD-A092974]	N81-17041	MATRICES (MATREMATICS)	14-1-
MANOPACTURING		New approach to the solution of large, ful	
New developments of data processing in	a (DNC	equations Neumann problem for invisc	14
computer-controlled manufacturing system FMS/	s /Dac,	incompressble flow past airfoils	A81-21552
rasy	A81-19845	HATTS (SYSTEMS)	MO 1-21332
A feasibility study for advanced technolog		Formation tracking. Part 2: Tracking and	control
integration for general aviation	1	procedures	Concret
[AD-A092437]	N81-15975	[FFM-279-PT-2]	N81-17110
MAPPING		MEASURING INSTRUMENTS	
A general mapping procedure for variable a	rea duct	Skin friction measuring device for aircraf	t
acoustics		[NASA-CASE-FRC-11029-1]	N81-17057
[AIAA PAPER 81-0094]	A81-20597	MECHANICAL DRIVES	
Helicopter noise contour development techn	iques	Experimental analysis of IMEP in a rotary	
and directivity analysis		combustion engine	
[AD-A093426]	N81-17851	[NASA-TM-81662]	N81-16054
MARINE TRANSPORTATION		MECHANICAL PROPERTIES	
QSBA Joint Navy/NASA sea trials Quiet	Short	Environmental exposure effects on composit	е
Haul Research Aircraft	101-20622	materials for commercial aircraft	NO1-16130
	A81-20633	[NASA-CR-165649]	พ81-16139
MATERIALS RECOVERY NASA's activities in the conservation of s	tratonic	BETAL BONDING Prospects for bonding primary aircraft str	neturo
aerospace materials	trategic	in the 80's	actare
derospace materials	A81-22535	In the ours	A81-22679
MATERIALS TESTS	201 22333	METAL PATIGUE	BO1 22013
The 1980's - Payoff decade for advanced ma	terials:	Evaluation and comparison of nondestructiv	e
Proceedings of the Twenty-fifth National		service inspection methods	-
Symposium and Exhibition, San Diego, Cal			A81-20135
6-8, 1980	•	An engineering model for assessing load se	quencing
	A81-22636	effects cracks in aircraft structure	s
Experiences with composite aircraft struct	ures		A81-21737
	A81-22678	METAL JOINTS	,
Controls of aeronautical structures under	fatigue	Use of speckle-holographic interferometry	
testing by holographic pulsed lasers		the strain-strain state of a gas-turbine	engine
interferometry		disk close to the blade root fixing	
	A81-22692	D	A81-21366
HATHEHATICAL HODELS		Prospects for bonding primary aircraft str	ncrure .
Economics of technological change - A join for the aircraft and airline industries	f model	in the 80's	A81-22679
for the afforder and affiline industries	A81-21010	METAL MATRIX COMPOSITES	801-22073
Analytical methods for store separation fl		The 1980's - Payoff decade for advanced ma	toriale.
and the feet actions for store separation in	A81-22344	Proceedings of the Twenty-fifth National	
Stochastic modeling of an aircraft travers		Symposium and Exhibition, San Diego, Cal	
runway using time series analysis	, -	6-8, 1980	,
	A81-23368		A81-22636
Application of transonic potential calcula	tions to	METAL SHEETS	•
aircraft and wind tunnel configurations		Thermal considerations in the patching of	metal
	N81-15992	sheets with composite overlays	
Sample data effects of high-pass filters			A81-20297
[NASA-TP-1797]	N81-16040	BETALLOGRAPHY	
Propulsion system mathematical model for a		Acoustic emission and corrosion	
lift/cruise fan V/STOL aircraft	**** 4COFF	MDMDODOLOGICAL INCMANDUMO	A81-20211
[NASA-TM-81663]	N81-16055	METEOROLOGICAL INSTRUMENTS	
Validation of a two dimensional primitive computer code for flow fields in jet eng		The WC-130 meteorological system and its utilization in operational weather recon	naiceanes
cells	The cest	[AD-A092637]	N81-16699
[AD-A092138]	N81-16060	METROROLOGICAL RADAR	801 10033
Demonstration of a method for determining		Pulsed Doppler radar detects weather hazar	ds to
store configurations for wing store flut		aviation	
[AD-A092257]	N81-16068	[AIAA PAPER 81-0235]	A81-20691
Evaluation of bird load models for dynamic		New airborne weather radar systems	
analysis of aircraft transparencies		[AIAA PAPER 81-0237]	A81-20692
[AD-A092909]	N81-16995	METROROLOGY	
Air traffic control simulation models. Ci	tations	Microbursts as an aviation wind shear haza	
from the NTIS data base		[AIAA PAPER 81-0386]	A81-20798
[PB81-800104]	N81-17037	MICROPHONES	
A method for the prediction of wing respon	se to	A new technology - Piezoelectric polyvinyl	idene
nonstationary buffet loads	NO.1. 170#2	fluoride communications transducers	A81-22099
[AD-A093037] Modeling, acquisition and processing durin	N81-17043	MICROPROCESSORS	A01-22099
displacements associated with experi		Wind tunnel model support, controlled by f	OHE
flight mechanics	meneo 11	microprocessors	041
[AAAF-NT-80-16]	N81-17056	[ONERA, TP NO. 1980-149]	A81-21917
Analysis and modeling of information handl		MICROWAVE EQUIPMENT	
tasks in supervisory control of advanced		Microwave Landing System (MLS) clearance f	ormat
[AD-A092906]			
Turbine modeling technique to generate off	N81-17061	assessment tests	
	N81-17061 -design	[AD-A093553]	N8 1- 17024
performance data for both single and mul	N81-17061 -design	[AD-A093553] Analytic determination of interference thr	esholds
axial-flow turbines	N81-17061 -design tistage	<pre>[AD-A093553] Analytic determination of interference thr for microwave landing system equipment a</pre>	esholds
axial-flow turbines [NASA-CR-165244]	N81-17061 -design	[AD-A093553] Analytic determination of interference thr for microwave landing system equipment a TACAN/DME equipment	esholds nd
axial-flow turbines [NASA-CR-165244] Combustor liner durability analysis	N81-17061 -design tistage N81-17078	[AD-A093553] Analytic determination of interference thr for microwave landing system equipment a TACAN/DME equipment [AD-A093448]	esholds
axial-flow turbines [NASA-CR-165244]	N81-17061 -design tistage	[AD-A093553] Analytic determination of interference thr for microwave landing system equipment a TACAN/DME equipment	esholds nd

SUBJECT INDEX . HASTRAN

STADOGLED ILEDING GERMANA	
BICROWAVE LANDING SYSTEMS	Auto-adaptive piloting of missiles
Analytic determination of interference thresholds	[GA-380] N81-17102
for microwave landing system equipment and	MISSILE DESIGN
TACAN/DME equipment	Wing-alone aerodynamic characteristics at high
[AD-A093448] N81-17025	angles of attack
MICROWAVE RADIOMETERS	[AIAA PAPER 81-0008] A81-20532
An airborne sensor for the avoidance of clear air	A computer-aided design system geared toward
turbulence	conceptual design in a research environment
[AIAA PAPER 81-0297] A81-20735	for hypersonic vehicles
CAT altitude avoidance system	[AIAA PAPER 81-0372] A81-20789
[NASA-CASE-NPO-15351-1] N81-16677	MISSILES
MIDAIR COLLISIONS	Automatic handoff of multiple targets
Air traffic control problems - A pilot's view	[AD-A093483] N81-17101
181-20914	MIXBRS
Listing of accidents/incidents by aircraft make	JT8D engine internal exhaust mixer technology
and model, United States Civil Aviation, 1978	program
[PB81-110280] N81-16999	[AD-A093057] N81-17091
MILITARY AIRCRAFT	MONITORS
Atmospheric disturbance models and requirements	Turbine engine fault detection and isolation
for the flying qualities Military Standard and	program, phase 1. Volume 1: Requirements
Handbook	definition for an integrated engine monitoring
[AIAA PAPER 81-0302] A81-20739	system
An inflatable seat for aircraft passengers	[AD-A093225] N81-17089
A81-22091	MONOPULSE RADAR
Analytical methods for store separation flight test	New techniques for the monopulse-radar tracking of
A81-22344	high-maneuverability aircraft
Piber optics study technology for military aircraft	A81-20102
A81-22503	MONTE CARLO METHOD
Airborne-fiber optics manufacturing technology,	Analysis and modeling of information handling
aircraft installation processes	tasks in supervisory control of advanced aircraft
[AD-A093304] N81-17902	[AD-A092906] N81-17061
MILITARY HELICOPTERS	MOTION SIMULATORS
US Army working group on aircraft noise	Sample data effects of high-pass filters
A81-20053	[NASA-TP-1797] N81-16040
United States Army helicopter icing qualification	Store separation simulation in subsonic wind tunnels
1980	[MBB-PE-123/S/PUB/20] N81-16988
[AIAA PAPER 81-0406] A81-20812	HOVING TARGET INDICATORS
Test and evaluation of improved aircrew restraint	Target detection and parameter estimation in
systems for combat helicopers	surveillance radars using MTI-FFT processing
N81-17017	A81-20094
MILITARY OPERATIONS	Detection of direction changes of flying targets
An assessment of technical factors influencing the	from position coordinates of the radar data
potential use of RPVS for minefield detection	A81-20099
[AD-A092682] N81-16047	Mini-RPV radar test program
MILITARY TROUBOLOGY	A81-22619
Measurement of radar in radio service aircraft	MULTIRNGIAR VRHICLRS
. Measurement of radar in radio service aircraft A81-20079	MULTIENGINE VEHICLES Critical field length calculations for preliminary
A81-20079	Critical field length calculations for preliminary
A81-20079 . A case study - Real time simulation and structured	Critical field length calculations for preliminary design
A81-20079 . A case study - Real time simulation and structured design	Critical field length calculations for preliminary design A81-23366
A81-20079 A case study - Real time simulation and structured design A81-21721	Critical field length calculations for preliminary design A81-23366
A81-20079 A case study - Real time simulation and structured design A81-21721 Development of the first ram air emergency	Critical field length calculations for preliminary design A81-23366 HULTIPATH TRANSMISSION Multipath and interference effects in secondary
A81-20079 A case study - Real time simulation and structured design A81-21721 Development of the first ram air emergency parachute for personnel applications	Critical field length calculations for preliminary design A81-23366 HULTIPATH TRANSMISSION Multipath and interference effects in secondary surveillance radar systems
A81-20079 A case study - Real time simulation and structured design A81-21721 Development of the first ram air emergency parachute for personnel applications A81-22078	Critical field length calculations for preliminary design A81-23366 HULTIPATH TRANSMISSION Multipath and interference effects in secondary surveillance radar systems A81-23359
A81-20079 A case study - Real time simulation and structured design A81-21721 Development of the first ram air emergency parachute for personnel applications Ejection system evolution	Critical field length calculations for preliminary design A81-23366 HULTIPATH TRANSMISSION Multipath and interference effects in secondary surveillance radar systems A81-23359 Radio direction finding on high frequency short
A81-20079 A case study - Real time simulation and structured design A81-21721 Development of the first ram air emergency parachute for personnel applications Bjection system evolution A81-22080	Critical field length calculations for preliminary design A81-23366 MULTIPATH TRANSMISSION Multipath and interference effects in secondary surveillance radar systems A81-23359 Radio direction finding on high frequency short duration signals
A81-20079 A case study - Real time simulation and structured design A81-21721 Development of the first ram air emergency parachute for personnel applications Ejection system evolution A81-22080 QF-100 Full-Scale Aerial Target program	Critical field length calculations for preliminary design A81-23366 HULTIPATH TRANSHISSION Multipath and interference effects in secondary surveillance radar systems A81-23359 Radio direction finding on high frequency short duration signals [AD-A092136] N81-16029
A81-20079 A case study - Real time simulation and structured design A81-21721 Development of the first ram air emergency parachute for personnel applications Ejection system evolution QF-100 Full-Scale Aerial Target program A81-22080	Critical field length calculations for preliminary design A81-23366 MULTIPATH TRANSMISSION Multipath and interference effects in secondary surveillance radar systems A81-23359 Radio direction finding on high frequency short duration signals [AD-A092136] MULTISPECTRAL BAND SCANNERS
A81-20079 A case study - Real time simulation and structured design A81-21721 Development of the first ram air emergency parachute for personnel applications Ejection system evolution QF-100 Full-Scale Aerial Target program A81-22612 A low cost multiple drone command and tracking	Critical field length calculations for preliminary design A81-23366 **BULTIPATH TRANSMISSION** Multipath and interference effects in secondary surveillance radar systems A81-23359 Radio direction finding on high frequency short duration signals [AD-A092136] N81-16029 **BULTISPECTRAL BAND SCANNERS A solid-state airborne sensing system for remote
A81-20079 A case study - Real time simulation and structured design A81-21721 Development of the first ram air emergency parachute for personnel applications Ejection system evolution QF-100 Full-Scale Aerial Target program A81-22080 A81-22612 A low cost multiple drone command and tracking system	Critical field length calculations for preliminary design A81-23366 HULTIPATH TRANSMISSION Multipath and interference effects in secondary surveillance radar systems A81-23359 Radio direction finding on high frequency short duration signals [AD-A092136] MULTISPECTRAL BAND SCANNERS A solid-state airborne sensing system for remote sensing
A81-20079 A case study - Real time simulation and structured design A81-21721 Development of the first ram air emergency parachute for personnel applications A81-22078 Ejection system evolution QF-100 Full-Scale Aerial Target program A81-22612 A low cost multiple drone command and tracking system A81-22613	Critical field length calculations for preliminary design A81-23366 MULTIPATH TRANSMISSION Multipath and interference effects in secondary surveillance radar systems A81-23359 Radio direction finding on high frequency short duration signals [AD-A092136] MULTISPECTRAL BAND SCANNERS A solid-state airborne sensing system for remote sensing A81-23034
A81-20079 A case study - Real time simulation and structured design A81-21721 Development of the first ram air emergency parachute for personnel applications Ejection system evolution A81-22078 Ejection system evolution A81-22080 QF-100 Full-Scale Aerial Target program A81-22612 A low cost multiple drone command and tracking system A81-22613 A distributed airborne surveillance system	Critical field length calculations for preliminary design A81-23366 HULTIPATH TRANSMISSION Multipath and interference effects in secondary surveillance radar systems A81-23359 Radio direction finding on high frequency short duration signals [AD-A092136] MULTISPECTRAL BAND SCANNERS A solid-state airborne sensing system for remote sensing A81-23034 HISTERE 20 AIRCEAFT
A81-20079 A case study - Real time simulation and structured design A81-21721 Development of the first ram air emergency parachute for personnel applications Ejection system evolution QF-100 Full-Scale Aerial Target program A81-22612 A low cost multiple drone command and tracking system A81-22613 A distributed airborne surveillance system A81-22618	Critical field length calculations for preliminary design A81-23366 HULTIPATH TRANSMISSION Multipath and interference effects in secondary surveillance radar systems A81-23359 Radio direction finding on high frequency short duration signals [AD-A092136] MULTISPECTRAL BAND SCANNERS A soild-state airborne sensing system for remote sensing MYSTERE 20 AIRCRAFT Finite element method study of
A81-20079 A case study - Real time simulation and structured design A81-21721 Development of the first ram air emergency parachute for personnel applications Bjection system evolution QF-100 Full-Scale Aerial Target program A81-22080 QF-100 Full-Scale Aerial Target program A81-22612 A low cost multiple drone command and tracking system A81-22613 A distributed airborne surveillance system A81-22618	Critical field length calculations for preliminary design A81-23366 HULTIPATH TRANSMISSION Multipath and interference effects in secondary surveillance radar systems A81-23359 Radio direction finding on high frequency short duration signals [AD-A092136] MULTISPECTRAL BAND SCANNERS A solid-state airborne sensing system for remote sensing A81-23034 HISTERE 20 AIRCHAFT Finite element method study of wing-fuselage-nacelle interactions of a Palcon
A81-20079 A case study - Real time simulation and structured design A81-21721 Development of the first ram air emergency parachute for personnel applications Ejection system evolution QF-100 Full-Scale Aerial Target program A81-22080 QF-100 Full-Scale Aerial Target program A81-22612 A low cost multiple drone command and tracking system A81-22613 A distributed airborne surveillance system A81-22618 A81-22618 A81-22618 A81-22618	Critical field length calculations for preliminary design A81-23366 HULTIPATH TRANSHISSION Multipath and interference effects in secondary surveillance radar systems A81-23359 Radio direction finding on high frequency short duration signals [AD-A092136] MULTISPECTRAL BAND SCANNERS A solid-state airborne sensing system for remote sensing A81-23034 HISTERE 20 AIRCRAFT Finite element method study of wing-fuselage-nacelle interactions of a Palcon 20 type aircraft at Mach = 0.79
A81-20079 A case study - Real time simulation and structured design A81-21721 Development of the first ram air emergency parachute for personnel applications Ejection system evolution A81-22078 Ejection system evolution A81-22080 QF-100 Full-Scale Aerial Target program A81-22612 A low cost multiple drone command and tracking system A distributed airborne surveillance system A81-22613 A distributed airborne surveillance system A81-22618 BILLIMPTER WAVES LPI, short-range communications between aircraft in rendezvous Low Probability of Intercept	Critical field length calculations for preliminary design A81-23366 HULTIPATH TRANSMISSION Multipath and interference effects in secondary surveillance radar systems A81-23359 Radio direction finding on high frequency short duration signals [AD-A092136] MULTISPECTRAL BAND SCANNERS A solid-state airborne sensing system for remote sensing A81-23034 HISTERE 20 AIRCHAFT Finite element method study of wing-fuselage-nacelle interactions of a Palcon
A81-20079 A case study - Real time simulation and structured design A81-21721 Development of the first ram air emergency parachute for personnel applications Ejection system evolution QF-100 Full-Scale Aerial Target program A81-22080 QF-100 Full-Scale Aerial Target program A81-22612 A low cost multiple drone command and tracking system A81-22613 A distributed airborne surveillance system A81-22618 A81-22618 A81-22618 A81-22618 A81-22618 A81-22618 A81-22618	Critical field length calculations for preliminary design A81-23366 HULTIPATH TRANSMISSION Multipath and interference effects in secondary surveillance radar systems A81-23359 Radio direction finding on high frequency short duration signals [AD-A092136] MULTISPECTRAL BAND SCANNERS A solid-state airborne sensing system for remote sensing A81-23034 MYSTERE 20 AIRCRAFT Finite element method study of wing-fuselage-nacelle interactions of a Falcon 20 type aircraft at Mach = 0.79 N81-15994
A81-20079 A case study - Real time simulation and structured design A81-21721 Development of the first ram air emergency parachute for personnel applications Ejection system evolution A81-22078 Ejection system evolution A81-22080 QF-100 Full-Scale Aerial Target program A81-22612 A low cost multiple drone command and tracking system A81-22613 A distributed airborne surveillance system A81-22618 MILLIMETER WAVES LPI, short-range communications between aircraft in rendezvous Low Probability of Intercept A81-22493 MINES (ORDNANCE)	Critical field length calculations for preliminary design A81-23366 HULTIPATH TRANSMISSION Multipath and interference effects in secondary surveillance radar systems A81-23359 Radio direction finding on high frequency short duration signals [AD-A092136] MULTISPECTRAL BAND SCANNERS A solid-state airborne sensing system for remote sensing A81-23034 MYSTERE 20 AIRCRAFT Finite element method study of wing-fuselage-nacelle interactions of a Falcon 20 type aircraft at Mach = 0.79 N81-15994
A81-20079 A case study - Real time simulation and structured design A81-21721 Development of the first ram air emergency parachute for personnel applications Ejection system evolution A81-22078 Ejection system evolution A81-22080 QF-100 Full-Scale Aerial Target program A81-22612 A low cost multiple drone command and tracking system A81-22613 A distributed airborne surveillance system A81-22618 A81-22618 A81-22618 A81-22493 A81-22493 A81-22493 A81-22493 A81-22493 A81-22493 A81-22493 A81-22493 A81-22493	Critical field length calculations for preliminary design A81-23366 HULTIPATH TRANSMISSION Multipath and interference effects in secondary surveillance radar systems A81-23359 Radio direction finding on high frequency short duration signals [AD-A092136] MULTISPECTRAL BAND SCANNERS A solid-state airborne sensing system for remote sensing A81-23034 HISTERE 20 AIRCRAFT Finite element method study of wing-fuselage-nacelle interactions of a Falcon 20 type aircraft at Mach = 0.79 N81-15994
A81-20079 A case study - Real time simulation and structured design A81-21721 Development of the first ram air emergency parachute for personnel applications Ejection system evolution A81-22080 QF-100 Full-Scale Aerial Target program A81-22612 A low cost multiple drone command and tracking system A81-22613 A distributed airborne surveillance system A81-22618 MILLIMETER WAVES LPI, short-range communications between aircraft in rendezvous Low Probability of Intercept A81-22493 MINES (ORDNANCE) An assessment of technical factors influencing the potential use of RPVS for minefield detection	Critical field length calculations for preliminary design A81-23366 HULTIPATH TRANSMISSION Multipath and interference effects in secondary surveillance radar systems A81-23359 Radio direction finding on high frequency short duration signals [AD-A092136] MULTISPECTRAL BAND SCANNERS A solid-state airborne sensing system for remote sensing A81-23034 HISTERE 20 AIRCHAFT Finite element method study of wing-fuselage-nacelle interactions of a Palcon 20 type aircraft at Mach = 0.79 NA1-15994
A81-20079 A case study - Real time simulation and structured design A81-21721 Development of the first ram air emergency parachute for personnel applications Ejection system evolution A81-22078 Ejection system evolution A81-22080 QF-100 Full-Scale Aerial Target program A81-22612 A low cost multiple drone command and tracking system A81-22613 A distributed airborne surveillance system A81-22618 MILLIMETER WAVES LPI, short-range communications between aircraft in rendezvous Low Probability of Intercept A81-22493 MIMES (ORDNANCE) An assessment of technical factors influencing the potential use of RPVS for minefield detection [AD-A092682]	Critical field length calculations for preliminary design A81-23366 HULTIPATH TRANSHISSION Multipath and interference effects in secondary surveillance radar systems A81-23359 Radio direction finding on high frequency short duration signals [AD-A092136] MULTISPECTRAL BAND SCANNERS A solid-state airborne sensing system for remote sensing A81-23034 HISTERE 20 AIRCEAFT Finite element method study of wing-fuselage-nacelle interactions of a Palcon 20 type aircraft at Mach = 0.79 NO MACELLES P-3 Orion fuel-saving modification wind tunnel study
A81-20079 A case study - Real time simulation and structured design A81-21721 Development of the first ram air emergency parachute for personnel applications Ejection system evolution A81-22078 Ejection system evolution A81-22080 QF-100 Full-Scale Aerial Target program A81-22612 A low cost multiple drone command and tracking system A81-22613 A distributed airborne surveillance system A81-22618 A81-2618 A81-22618 A81-2261	Critical field length calculations for preliminary design A81-23366 HULTIPATH TRANSMISSION Multipath and interference effects in secondary surveillance radar systems Radio direction finding on high frequency short duration signals [AD-A092136] MULTISPECTRAL BAND SCANNERS A solid-state airborne sensing system for remote sensing A81-23034 HISTERE 20 AIRCHAFT Finite element method study of wing-fuselage-nacelle interactions of a Palcon 20 type aircraft at Mach = 0.79 NACELLES P-3 Orion fuel-saving modification wind tunnel study [AD-A091906] N81-16044
A81-20079 A case study - Real time simulation and structured design A81-21721 Development of the first ram air emergency parachute for personnel applications Ejection system evolution A81-22080 QF-100 Full-Scale Aerial Target program A81-22612 A low cost multiple drone command and tracking system A81-22613 A distributed airborne surveillance system A81-22618 MILLIMETER WAVES LPI, short-range communications between aircraft in rendezvous Low Probability of Intercept A81-22493 MIMES (ORDNANCE) An assessment of technical factors influencing the potential use of RPVS for minefield detection [AD-A092682] MINIATORIZATION Mini-RPV radar test program	Critical field length calculations for preliminary design A81-23366 HULTIPATH TRANSMISSION Multipath and interference effects in secondary surveillance radar systems A81-23359 Radio direction finding on high frequency short duration signals [AD-A092136] MULTISPECTRAL BAND SCANNERS A solid-state airborne sensing system for remote sensing A81-23034 MYSTERE 20 AIRCRAFT Finite element method study of wing-fuselage-nacelle interactions of a Palcon 20 type aircraft at Bach = 0.79 NULTISPECTRAL BACKELES P-3 Orion fuel-saving modification wind tunnel study [AD-A091906] Aircraft EMP isolation study
A81-20079 A case study - Real time simulation and structured design A81-21721 Development of the first ram air emergency parachute for personnel applications Ejection system evolution A81-22078 Ejection system evolution A81-22080 QF-100 Full-Scale Aerial Target program A81-22612 A low cost multiple drone command and tracking system A81-22613 A distributed airborne surveillance system A81-22618 MILLIMETER WAVES LPI, short-range communications between aircraft in rendezvous Low Probability of Intercept A81-22493 MIMES (ORDNANCE) An assessment of technical factors influencing the potential use of RPVS for minefield detection [AD-A092682] MINIATURIZATION Mini-BPV radar test program A81-22619	Critical field length calculations for preliminary design A81-23366 BULTIPATH TRANSHISSION Multipath and interference effects in secondary surveillance radar systems Radio direction finding on high frequency short duration signals [AD-A092136] BULTISPECTRAL BAND SCANNERS A solid-state airborne sensing system for remote sensing N81-23034 HISTERE 20 AIRCEAFT Finite element method study of wing-fuselage-nacelle interactions of a Palcon 20 type aircraft at Nach = 0.79 N81-15994 N BACELLES P-3 Orion fuel-saving modification wind tunnel study [AD-A091906] Aircraft RMP isolation study [AD-A093772] N81-17333
A81-20079 A case study - Real time simulation and structured design A81-21721 Development of the first ram air emergency parachute for personnel applications Ejection system evolution A81-22078 Ejection system evolution A81-22080 QF-100 Full-Scale Aerial Target program A81-22612 A low cost multiple drone command and tracking system A81-22613 A distributed airborne surveillance system A81-22618 MILLIMETER WAVES LPI, short-range communications between aircraft in rendezvous Low Probability of Intercept A81-22493 MINES (ORDNACE) An assessment of technical factors influencing the potential use of RPVs for minefield detection [AD-A092682] MINIATURIZATION Mini-RPV radar test program A81-22619 MIRAGE AIRCRAFT	Critical field length calculations for preliminary design A81-23366 HULTIPATH TRANSMISSION Multipath and interference effects in secondary surveillance radar systems Radio direction finding on high frequency short duration signals [AD-A092136] MULTISPECTRAL BAND SCANNERS A solid-state airborne sensing system for remote sensing MISTERE 20 AIRCRAFT Finite element method study of wing-fuselage-nacelle interactions of a Palcon 20 type aircraft at Mach = 0.79 NACELLES P-3 Orion fuel-saving modification wind tunnel study [AD-A091906] Aircraft EMP isolation study [AD-A093772] HASA PROGRAMS
A81-20079 A case study - Real time simulation and structured design A81-21721 Development of the first ram air emergency parachute for personnel applications Ejection system evolution A81-22080 QF-100 Full-Scale Aerial Target program A81-22612 A low cost multiple drone command and tracking system A distributed airborne surveillance system A81-22618 AILIMETER WAVES LPI, short-range communications between aircraft in rendezvous Low Probability of Intercept A81-22493 MIMES (ORDNAMCE) An assessment of technical factors influencing the potential use of RPVS for minefield detection [AD-A092682] MINIATORIZAATION Mini-RPV radar test program M81-22619 MIRAGE AIRCRAFT Limiting application of the concept 'damage	Critical field length calculations for preliminary design A81-23366 HULTIPATH TRANSMISSION Multipath and interference effects in secondary surveillance radar systems Radio direction finding on high frequency short duration signals [AD-A092136] MULTISPECTRAL BAND SCANNERS A solid-state airborne sensing system for remote sensing A81-23034 MYSTERE 20 AIRCRAFT Finite element method study of wing-fuselage-nacelle interactions of a Falcon 20 type aircraft at Mach = 0.79 NO MACELLES P-3 Orion fuel-saving modification wind tunnel study [AD-A091906] Aircraft EMP isolation study [AD-A093772] N81-17333 BASA PROGRAMS NASA's activities in the conservation of strategic
A81-20079 A case study - Real time simulation and structured design A81-21721 Development of the first ram air emergency parachute for personnel applications Ejection system evolution A81-22078 Ejection system evolution A81-22080 QF-100 Full-Scale Aerial Target program A81-22612 A low cost multiple drone command and tracking system A81-22613 A distributed airborne surveillance system A81-22618 MILLIMETER WAVES LPI, short-range communications between aircraft in rendezvous Low Probability of Intercept A81-22493 MINES (ORDNANCE) An assessment of technical factors influencing the potential use of RPVS for minefield detection [AD-A092682] MINIATORIZATION Mini-RPV radar test program MIRAGE AIRCRAFT Limiting application of the concept 'damage tolerance' with regard to fighter aircraft	Critical field length calculations for preliminary design A81-23366 HULTIPATH TRANSHISSION Multipath and interference effects in secondary surveillance radar systems Radio direction finding on high frequency short duration signals [AD-A092136] MULTISPECTRAL BAND SCANNERS A solid-state airborne sensing system for remote sensing A81-23034 HISTERE 20 AIRCRAFT Finite element method study of wing-fuselage-nacelle interactions of a Palcon 20 type aircraft at Mach = 0.79 NO MACELLES P-3 Orion fuel-saving modification wind tunnel study [AD-A091906] Aircraft EMP isolation study [AD-A093772] N81-17333 NASA's activities in the conservation of strategic aerospace materials
A81-20079 A case study - Real time simulation and structured design A81-21721 Development of the first ram air emergency parachute for personnel applications Ejection system evolution A81-22078 Ejection system evolution A81-22080 QF-100 Full-Scale Aerial Target program A81-22612 A low cost multiple drone command and tracking system A81-22613 A distributed airborne surveillance system A81-22618 MILLIMETER WAVES LPI, short-range communications between aircraft in rendezvous Low Probability of Intercept A81-22493 MINES (ORDNANCE) An assessment of technical factors influencing the potential use of RPVs for minefield detection [AD-A092682] MINIATURIZATION Mini-RPV radar test program MERGE AIRCRAFT Limiting application of the concept 'damage tolerance' with regard to fighter aircraft [AAAP-NT-79-32] N81-17054	Critical field length calculations for preliminary design A81-23366 HULTIPATH TRANSMISSION Multipath and interference effects in secondary surveillance radar systems Radio direction finding on high frequency short duration signals [AD-A092136] MULTISPECTRAL BAND SCANNERS A solid-state airborne sensing system for remote sensing A81-23034 MISTERE 20 AIRCRAFT Finite element method study of wing-fuselage-nacelle interactions of a Palcon 20 type aircraft at Mach = 0.79 NO MACRILES P-3 Orion fuel-saving modification wind tunnel study [AD-A091906] Aircraft EMP isolation study [AD-A093772] HASA PROGRAMS NASA's activities in the conservation of strategic aerospace materials
A81-20079 A case study - Real time simulation and structured design A81-21721 Development of the first ram air emergency parachute for personnel applications Ejection system evolution A81-22080 QF-100 Full-Scale Aerial Target program A81-22612 A low cost multiple drone command and tracking system A81-22613 A distributed airborne surveillance system A81-22618 AILLIMETER WAVES LPI, short-range communications between aircraft in rendezvous low Probability of Intercept A81-22493 MINES (ORDHANCE) An assessment of technical factors influencing the potential use of RPVS for minefield detection [AD-A092682] MINIATURIZATION Mini-RPV radar test program A81-22619 MIRAGE AIRCRAFT Limiting application of the concept 'damage tolerance' with regard to fighter aircraft [AAAF-NT-79-32] MISSILE COMPIGURATIONS	Critical field length calculations for preliminary design A81-23366 HULTIPATH TRANSMISSION Multipath and interference effects in secondary surveillance radar systems Radio direction finding on high frequency short duration signals [AD-A092136] MULTISPRCTRAL BAND SCANNERS A solid-state airborne sensing system for remote sensing A81-23034 MYSTERE 20 AIRCRAFT Finite element method study of wing-fuselage-nacelle interactions of a Falcon 20 type aircraft at Mach = 0.79 NACELLES P-3 Orion fuel-saving modification wind tunnel study [AD-A091906] Aircraft EMP isolation study [AD-A093772] N81-17333 HASA PROGRAMS NASA's activities in the conservation of strategic aerospace materials A81-22535 An overview of general aviation propulsion
A81-20079 A case study - Real time simulation and structured design A81-21721 Development of the first ram air emergency parachute for personnel applications Ejection system evolution A81-22078 Ejection system evolution A81-22080 QF-100 Full-Scale Aerial Target program A81-22612 A low cost multiple drone command and tracking system A81-22613 A distributed airborne surveillance system A81-22618 MILLIMETER WAVES LPI, short-range communications between aircraft in rendezvous Low Probability of Intercept A81-22493 MINES (ORDNANCE) An assessment of technical factors influencing the potential use of RPVS for minefield detection [AD-A092682] MINIATORIZATION Mini-RPV radar test program MIRAGE AIRCRAFT Limiting application of the concept 'damage tolerance' with regard to fighter aircraft [AAAP-NT-79-32] MISSILE COMPIGURATIONS Effect of wing location and strakes on stability	Critical field length calculations for preliminary design A81-23366 HULTIPATH TRANSHISSION Multipath and interference effects in secondary surveillance radar systems Radio direction finding on high frequency short duration signals [AD-A092136] MULTISPECTRAL BAND SCANNERS A solid-state airborne sensing system for remote sensing A81-23034 HISTERE 20 AIRCRAFT Finite element method study of wing-fuselage-nacelle interactions of a Palcon 20 type aircraft at Mach = 0.79 NO MACELLES P-3 Orion fuel-saving modification wind tunnel study [AD-A093772] NS1-16044 Aircraft EMP isolation study [AD-A093772] NS1-17333 HASA PROGRAMS NASA's activities in the conservation of strategic aerospace materials An overview of general aviation propulsion research programs at NASA Lewis Research Center
A81-20079 A case study - Real time simulation and structured design A81-21721 Development of the first ram air emergency parachute for personnel applications Ejection system evolution A81-22078 Ejection system evolution A81-22080 QF-100 Full-Scale Aerial Target program A81-22612 A low cost multiple drone command and tracking system A81-22613 A distributed airborne surveillance system A81-22613 A distributed airborne surveillance system A81-22618 MILLIMETER WAVES LPI, short-range communications between aircraft in rendezvous Low Probability of Intercept A81-22493 MINES (ORDNANCE) An assessment of technical factors influencing the potential use of RPVS for minefield detection [AD-A092682] MINIATURIZATION Mini-RPV radar test program A81-22619 MIRAGE AIRCRAPT Limiting application of the concept 'damage tolerance' with regard to fighter aircraft [AAAP-NT-79-32] MISSILE COMPIGURATIONS Effect of wing location and strakes on stability and control characteristics of a monoplanar	Critical field length calculations for preliminary design A81-23366 HULTIPATH TRANSMISSION Multipath and interference effects in secondary surveillance radar systems Radio direction finding on high frequency short duration signals [AD-A092136] MULTISPECTRAL BAND SCANNERS A solid-state airborne sensing system for remote sensing A81-23034 MYSTERE 20 AIRCRAPT Finite element method study of wing-fuselage-nacelle interactions of a Falcon 20 type aircraft at Mach = 0.79 N MACRILES P-3 Orion fuel-saving modification wind tunnel study [AD-A091906] Aircraft EMP isolation study [AD-A093772] MASA PROGRAMS NASA's activities in the conservation of strategic aerospace materials A81-22535 An overview of general aviation propulsion research programs at NASA Lewis Research Center [NASA-TH-81666]
A case study - Real time simulation and structured design A81-21721 Development of the first ram air emergency parachute for personnel applications Ejection system evolution A81-22080 QF-100 Full-Scale Aerial Target program A81-22612 A low cost multiple drone command and tracking system A81-22613 A distributed airborne surveillance system A81-22618 AILLIMETER WAVES LPI, short-range communications between aircraft in rendezvous Low Probability of Intercept A81-22493 MINES (ORDWANCE) An assessment of technical factors influencing the potential use of RPVS for minefield detection [AD-A092682] MINIATURIZATION Mini-RPV radar test program A81-22619 MINAGE AIRCRAFT Limiting application of the concept 'damage tolerance' with regard to fighter aircraft [AAMP-NT-79-32] MISSILE COMPIGURATIONS Effect of wing location and strakes on stability and control characteristics of a monoplanar circular missile with low-profile tail fins at	Critical field length calculations for preliminary design A81-23366 HULTIPATH TRANSMISSION Multipath and interference effects in secondary surveillance radar systems A81-23359 Radio direction finding on high frequency short duration signals [AD-A092136] MULTISPECTRAL BAND SCANNERS A solid-state airborne sensing system for remote sensing A81-23034 HISTERE 20 AIRCRAFT Finite element method study of wing-fuselage-nacelle interactions of a Falcon 20 type aircraft at Mach = 0.79 NAI-15994 NACELLES P-3 Orion fuel-saving modification wind tunnel study [AD-A091906] Aircraft RMP isolation study [AD-A093772] HASA PROGRAMS NASA's activities in the conservation of strategic aerospace materials A81-22535 An overview of general aviation propulsion research programs at NASA Lewis Research Center [NASA-TM-81666] Posture hearings (NASA and PAA)
A case study - Real time simulation and structured design A81-21721 Development of the first ram air emergency parachute for personnel applications Ejection system evolution A81-22078 Ejection system evolution A81-22080 QF-100 Full-Scale Aerial Target program A81-22612 A low cost multiple drone command and tracking system A81-22613 A distributed airborne surveillance system A81-22618 MILLIMETER WAVES LPI, short-range communications between aircraft in rendezvous Low Probability of Intercept A81-22493 MINES (ORDNANCE) An assessment of technical factors influencing the potential use of RPVS for minefield detection [AD-A092682] MINIATORIZATION Mini-RPV radar test program MIRAGE AIRCRAFT Limiting application of the concept 'damage tolerance' with regard to fighter aircraft [AAAP-NT-79-32] MISSILE COMPIGURATIONS Effect of wing location and strakes on stability and control characteristics of a monoplanar circular missile with low-profile tail fins at supersonic speeds	Critical field length calculations for preliminary design A81-23366 HULTIPATH TRANSMISSION Multipath and interference effects in secondary surveillance radar systems Radio direction finding on high frequency short duration signals [AD-A092136] MULTISPECTRAL BAND SCANNERS A solid-state airborne sensing system for remote sensing A81-23034 HISTERE 20 AIRCRAFT Finite element method study of wing-fuselage-nacelle interactions of a Palcon 20 type aircraft at Mach = 0.79 NO MACELLES P-3 Orion fuel-saving modification wind tunnel study [AD-A091906] Aircraft EMP isolation study [AD-A093772] N81-16044 Aircraft EMP isolation study [AD-A093772] N8ASA PROGRAMS NASA's activities in the conservation of strategic aerospace materials An overview of general aviation propulsion research programs at NASA Lewis Research Center [NASA-TM-81666] Posture hearings (NASA and PAA) [GPO-65-265] N81-16952
A case study - Real time simulation and structured design A81-21721 Development of the first ram air emergency parachute for personnel applications Ejection system evolution A81-22078 Ejection system evolution A81-22080 QF-100 Full-Scale Aerial Target program A81-22612 A low cost multiple drone command and tracking system A81-22613 A distributed airborne surveillance system A81-22618 MILLIMETER WAVES LPI, short-range communications between aircraft in rendezvous Low Probability of Intercept A81-22493 MINES (ORDHANCE) An assessment of technical factors influencing the potential use of RPVS for minefield detection [AD-A092682] MINIATURIZATION Mini-RPV radar test program A81-22619 MIRAGE AIRCRAPT Limiting application of the concept 'damage tolerance' with regard to fighter aircraft [AAAP-NT-79-32] MISSILE COMPIGURATIONS Effect of wing location and strakes on stability and control characteristics of a monoplanar circular missile with low-profile tail fins at supersonic speeds [NASA-TH-81878] N81-15978	Critical field length calculations for preliminary design A81-23366 HULTIPATH TRANSMISSION Multipath and interference effects in secondary surveillance radar systems Radio direction finding on high frequency short duration signals [AD-A092136] MULTISPECTRAL BAND SCANNERS A solid-state airborne sensing system for remote sensing A81-23034 HYSTERE 20 AIRCHAPT Finite element method study of wing-fuselage-nacelle interactions of a Falcon 20 type aircraft at Mach = 0.79 NO MACRILES P-3 Orion fuel-saving modification wind tunnel study [AD-A091906] Aircraft EMP isolation study [AD-A093772] HASA PROGRAMS NASA's activities in the conservation of strategic aerospace materials A81-22535 An overview of general aviation propulsion research programs at NASA Lewis Research Center [NASA-TH-81666] Posture hearings (NASA and FAA) [GPO-65-265] NASA authorization, 1981
A case study - Real time simulation and structured design A81-21721 Development of the first ram air emergency parachute for personnel applications Ejection system evolution A81-22078 Ejection system evolution A81-22080 QF-100 Full-Scale Aerial Target program A81-22612 A low cost multiple drone command and tracking system A81-22613 A distributed airborne surveillance system A81-22618 AILLIMETER WAVES LPI, short-range communications between aircraft in rendezvous Low Probability of Intercept A81-22493 MINES (ORDHANCE) An assessment of technical factors influencing the potential use of RPVS for minefield detection [AD-A092682] MINIATORIZATION Mini-RPV radar test program A81-22619 MIRAGE AIRCRAFT Limiting application of the concept 'damage tolerance' with regard to fighter aircraft [AARP-NT-79-32] MISSILE COMPIGURATIONS Effect of wing location and strakes on stability and control characteristics of a monoplanar circular missile with low-profile tail fins at supersonic speeds [NASA-TH-81878] Aerodynamic subsonic/transonic aircraft design	Critical field length calculations for preliminary design A81-23366 HULTIPATH TRANSMISSION Hultipath and interference effects in secondary surveillance radar systems Radio direction finding on high frequency short duration signals [AD-A092136] HULTISPECTRAL BAND SCANNERS A solid-state airborne sensing system for remote sensing A81-23034 HISTERE 20 AIRCRAFT Finite element method study of wing-fuselage-nacelle interactions of a Falcon 20 type aircraft at Mach = 0.79 NACELLES P-3 Orion fuel-saving modification wind tunnel study [AD-A091906] Aircraft RMP isolation study [AD-A093772] HASA PROGRAMS NASA's activities in the conservation of strategic aerospace materials A81-22535 An overview of general aviation propulsion research programs at NASA Lewis Research Center [NASA-TH-81666] Posture hearings (NASA and PAA) [GPO-65-265] NASA authorization, 1981 [GPO-71-290] N81-16953
A case study - Real time simulation and structured design A81-21721 Development of the first ram air emergency parachute for personnel applications Ejection system evolution A81-22078 Ejection system evolution A81-22080 QF-100 Full-Scale Aerial Target program A81-22612 A low cost multiple drone command and tracking system A81-22613 A distributed airborne surveillance system A81-22618 MILLIMETER WAVES LPI, short-range communications between aircraft in rendezvous Low Probability of Intercept A81-22493 MINES (ORDNANCE) An assessment of technical factors influencing the potential use of RPVS for minefield detection (AD-A092682) MINIATORIZATION Mini-RPV radar test program MIRAGE AIRCRAFT Limiting application of the concept 'damage tolerance' with regard to fighter aircraft (AAAP-NT-79-32) MISSILE COMPIGURATIONS Effect of wing location and strakes on stability and control characteristics of a monoplanar circular missile with low-profile tail fins at supersonic speeds (NASA-TH-81878) Aerodynamic subsonic/transonic aircraft design studies by numerical methods	Critical field length calculations for preliminary design A81-23366 HULTIPATH TRANSMISSION Multipath and interference effects in secondary surveillance radar systems Radio direction finding on high frequency short duration signals [AD-A092136] MULTISPECTRAL BAND SCANNERS A solid-state airborne sensing system for remote sensing A81-23034 HISTERE 20 AIRCRAFT Finite element method study of wing-fuselage-nacelle interactions of a Palcon 20 type aircraft at Mach = 0.79 NO MACELLES P-3 Orion fuel-saving modification wind tunnel study [AD-A091906] Aircraft EMP isolation study [AD-A093772] NASA PROGRAMS NASA's activities in the conservation of strategic aerospace materials An overview of general aviation propulsion research programs at NASA Lewis Research Center [NASA-TM-81666] Posture hearings (NASA and PAA) [GPO-65-265] NASA authorization, 1981 [GPO-71-290] HASTARAN
A case study - Real time simulation and structured design A81-21721 Development of the first ram air emergency parachute for personnel applications Ejection system evolution A81-22078 Ejection system evolution A81-22080 QF-100 Full-Scale Aerial Target program A81-22612 A low cost multiple drone command and tracking system A81-22613 A distributed airborne surveillance system A81-22618 MILLIMETER WAVES LPI, short-range communications between aircraft in rendezvous Low Probability of Intercept A81-22493 MINES (ORDNAMCE) An assessment of technical factors influencing the potential use of RPVs for minefield detection [AD-A092682] MINIATURIZATION Mini-RPV radar test program A81-22619 MINIATURIZATION Mini-RPV radar test program A81-22619 MINIATURIZATION Effect of wing location of the concept 'damage tolerance' with regard to fighter aircraft [AAAP-NT-79-32] MISSILE COMPIGURATIONS Effect of wing location and strakes on stability and control characteristics of a monoplanar circular missile with low-profile tail fins at supersonic speeds [NASA-TH-81878] Aerodynamic subsonic/transonic aircraft design studies by numerical methods	Critical field length calculations for preliminary design A81-23366 HULTIPATH TRANSMISSION Multipath and interference effects in secondary surveillance radar systems Radio direction finding on high frequency short duration signals [AD-A092136] MULTISPECTRAL BAND SCANNERS A solid-state airborne sensing system for remote sensing A81-23034 HYSTERE 20 AIRCRAFT Finite element method study of wing-fuselage-nacelle interactions of a Falcon 20 type aircraft at Mach = 0.79 N HACELLES P-3 Orion fuel-saving modification wind tunnel study [AD-A091906] Aircraft EMP isolation study [AD-A093772] HASA PROGRAMS NASA's activities in the conservation of strategic aerospace materials A81-22535 An overview of general aviation propulsion research programs at NASA Lewis Research Center [NASA-TH-81666] Posture hearings (NASA and FAA) [GPO-65-265] NASA authorization, 1981 [GPO-71-290] N81-16953 HASTRAN Initial development for a flutter analysis of
A case study - Real time simulation and structured design A81-21721 Development of the first ram air emergency parachute for personnel applications Ejection system evolution A81-22078 Ejection system evolution A81-22080 QF-100 Full-Scale Aerial Target program A81-22612 A low cost multiple drone command and tracking system A81-22613 A distributed airborne surveillance system A81-22618 AILLHETER WAVES LPI, short-range communications between aircraft in rendezvous low Probability of Intercept A81-22493 MINES (ORDHANCE) An assessment of technical factors influencing the potential use of RPVS for minefield detection [AD-A092682] MINIATURIZATION Mini-RPV radar test program A81-22619 MIRAGE AIRCRAPT Limiting application of the concept 'damage tolerance' with regard to fighter aircraft [AAAP-NT-79-32] MISSILE COMPIGURATIONS Effect of wing location and strakes on stability and control characteristics of a monoplanar circular missile with low-profile tail fins at supersonic speeds [NASA-TM-81878] Aerodynamic subsonic/transonic aircraft design studies by numerical methods MISSILE CONTROL	Critical field length calculations for preliminary design A81-23366 HULTIPATH TRANSMISSION Multipath and interference effects in secondary surveillance radar systems A81-23359 Radio direction finding on high frequency short duration signals [AD-A092136] MULTISPRCTRAL BAND SCANNERS A solid-state airborne sensing system for remote sensing A81-23034 HISTERE 20 AIRCRAFT Finite element method study of wing-fuselage-nacelle interactions of a Falcon 20 type aircraft at Mach = 0.79 NACELLES P-3 Orion fuel-saving modification wind tunnel study [AD-A091906] Aircraft RMP isolation study [AD-A093772] HASA PROGRAMS NASA's activities in the conservation of strategic aerospace materials A81-22535 An overview of general aviation propulsion research programs at NASA Lewis Research Center [NASA-TH-81666] Posture hearings (NASA and PAA) [GPO-65-265] NASA authorization, 1981 [GPO-71-290] N81-16953 HASTRAN Initial development for a flutter analysis of damaged T-38 horizontal stabilators using NASTRAN
A case study - Real time simulation and structured design A81-21721 Development of the first ram air emergency parachute for personnel applications Ejection system evolution A81-22078 Ejection system evolution A81-22080 QF-100 Full-Scale Aerial Target program A81-22612 A low cost multiple drone command and tracking system A81-22613 A distributed airborne surveillance system A81-22618 MILLIMETER WAVES LPI, short-range communications between aircraft in rendezvous Low Probability of Intercept A81-22493 MIMES (ORDMANCE) An assessment of technical factors influencing the potential use of RPVS for minefield detection (AD-A092682) MINIATURIZATION Mini-RPV radar test program MIRAGE AIRCRAFT Limiting application of the concept 'damage tolerance' with regard to fighter aircraft (AAAP-NT-79-32) MISSILE COMPIGURATIONS Effect of wing location and strakes on stability and control characteristics of a monoplanar circular missile with low-profile tail fins at supersonic speeds (NASA-TM-81878) Aerodynamic subsonic/transonic aircraft design studies by numerical methods MISSILE CONTROL Design of guidance and control digital autopilots	Critical field length calculations for preliminary design A81-23366 HULTIPATH TRANSMISSION Multipath and interference effects in secondary surveillance radar systems Radio direction finding on high frequency short duration signals [AD-A092136] MULTISPECTRAL BAND SCANNERS A solid-state airborne sensing system for remote sensing A81-23034 HYSTERE 20 AIRCRAFT Finite element method study of wing-fuselage-nacelle interactions of a Falcon 20 type aircraft at Mach = 0.79 N HACELLES P-3 Orion fuel-saving modification wind tunnel study [AD-A091906] Aircraft EMP isolation study [AD-A093772] HASA PROGRAMS NASA's activities in the conservation of strategic aerospace materials A81-22535 An overview of general aviation propulsion research programs at NASA Lewis Research Center [NASA-TH-81666] Posture hearings (NASA and FAA) [GPO-65-265] NASA authorization, 1981 [GPO-71-290] N81-16953 HASTRAN Initial development for a flutter analysis of
A case study - Real time simulation and structured design A81-21721 Development of the first ram air emergency parachute for personnel applications Ejection system evolution A81-22078 Ejection system evolution A81-22080 QF-100 Full-Scale Aerial Target program A81-22612 A low cost multiple drone command and tracking system A81-22613 A distributed airborne surveillance system A81-22618 AILLHETER WAVES LPI, short-range communications between aircraft in rendezvous low Probability of Intercept A81-22493 MINES (ORDHANCE) An assessment of technical factors influencing the potential use of RPVS for minefield detection [AD-A092682] MINIATURIZATION Mini-RPV radar test program A81-22619 MIRAGE AIRCRAPT Limiting application of the concept 'damage tolerance' with regard to fighter aircraft [AAAP-NT-79-32] MISSILE COMPIGURATIONS Effect of wing location and strakes on stability and control characteristics of a monoplanar circular missile with low-profile tail fins at supersonic speeds [NASA-TM-81878] Aerodynamic subsonic/transonic aircraft design studies by numerical methods MISSILE CONTROL	Critical field length calculations for preliminary design A81-23366 HULTIPATH TRANSMISSION Multipath and interference effects in secondary surveillance radar systems A81-23359 Radio direction finding on high frequency short duration signals [AD-A092136] MULTISPRCTRAL BAND SCANNERS A solid-state airborne sensing system for remote sensing A81-23034 HISTERE 20 AIRCRAFT Finite element method study of wing-fuselage-nacelle interactions of a Falcon 20 type aircraft at Mach = 0.79 NACELLES P-3 Orion fuel-saving modification wind tunnel study [AD-A091906] Aircraft RMP isolation study [AD-A093772] HASA PROGRAMS NASA's activities in the conservation of strategic aerospace materials A81-22535 An overview of general aviation propulsion research programs at NASA Lewis Research Center [NASA-TH-81666] Posture hearings (NASA and PAA) [GPO-65-265] NASA authorization, 1981 [GPO-71-290] N81-16953 HASTRAN Initial development for a flutter analysis of damaged T-38 horizontal stabilators using NASTRAN

Patigue life evaluation of a helicopter main rotor hub A81-22631	Transport jet aircraft noise abatement in foreign countries: Growth, structure, impact. Volume 1: Europe, July 1980
NAVIRE-STOKES EQUATION	[NASA-CR-152356] N81-17623
Numerical study of a scramjet engine flow field	Transport jet aircraft noise abatement in foreign
[AIAA PAPER 81-0186] A81-20659	countries: Growth, structure, impact. Volume
NAVIGATION AIDS	2: Pacific basin, August 1980
Improved secondary radar antennas for flight	[NASA-CR-152357-VOL-2] N81-17624
safety installations	NOISECHECK procedures for measuring noise exposure
A81-20083	from aircraft operations
New techniques and development trends in the	[AD-A093948] N81-17849
system architecture of EDP systems for radar	HOISE PREDICTION (AIRCRAFT)
data processing and airspace control	Development and application of an analytical
A81-20103	method for predicting helicopter transmission
Pulsed Doppler radar detects weather hazards to	noise
aviation [AIAA PAPER 81-0235] A81-20691	A81-20062 Acoustic radiation from honeycomb sandwich plates
New navigation systems for helicopters	A81-20070
A81-22167	A lifting surface theory for the sound generated
The ANK - A four dimensional navigation/flight	by the interaction of velocity disturbances with
management system for today	a leaned wane stator
A81-22615	[AIAA PAPER 81-0091] A81-20595
A preliminary human factors flight assessment of a	Experiments on the linear and non-linear evolution
Marconi automatic map	of the double helical instability in jets
[AD-A092585] N81-16036	[AIAA PAPER 81-0415] A81-20818
DMAHTC's support to National Ocean Survey	HOISE PROPAGATION
LORAN-C-charting [AD-A093748] N81-17027	Gear unit noise and transmission errors helicopter system
[AD-A093748] N81-17027 Hydrographic applications of the global	A81-20060
positioning system	Sandwich structures with high transmission loss
[AD-A093750] N81-17029	A81-20069
BAVIGATION SATELLITES	A general mapping procedure for variable area duct
Hydrographic applications of the global	acoustics
positioning system	[AIAA PAPER 81-0094] A81-20597
[AD-A093750] N81-17029	NOISE REDUCTION
WAVSTAR SATELLITES	Symposium on Internal Noise in Helicopters,
Civil aviation applications of Navstar/GPS through differential techniques	University of Southampton, Southampton, England, July 17-20, 1979, Proceedings
A81-22374	M81-20051.
NERVOUS SYSTEM	US Army working group on aircraft noise
Neurotramatological aspects in ejected pilots	A81-20053
N81-17012	An overview of the research conducted in
METWORK SYNTHESIS	Aerospatiale on internal noise
Design of guidance and control digital autopilots	A81-20054
№81-22973	Helicopter internal noise - An overview
New approach to the solution of large, full matrix	A81-20055 Development and application of an analytical
equations Neumann problem for inviscid	method for predicting helicopter transmission
incompressble flow past airfoils	noise
A81-21552	A81-20062
NEUROLOG Y	Modelling techniques for the reduction of noise
Neurotramatological aspects in ejected pilots	and vibration in gearboxes
N81-17012	A81-20063
NIGHT VISION	Sandwich structures with high transmission loss
Operational problems associated with head-up displays during instrument flight	A81-20069 Acoustic radiation from honeycomb sandwich plates
[AD-A092992] N81-17058	A81-20070
NITROGEN OXIDES	Gearbox isolation for reducing gear tooth noise in
Aircraft NO/x/ emissions and stratospheric ozone	single rotor helicopter
reductions - Another look	A81-20073
[AIAA PAPER 81-0306] A81-20741	Puel consumption aspects of some noise abatement
NOISE GENERATORS	procedures
Noise generation mechanism of low pressure propeller fans	A81-20350
[AIAA PAPER 81-0090] A81-20594	A general mapping procedure for variable area duct acoustics
A lifting surface theory for the sound generated	[AIAA PAPER 81-0094] A81-20597
by the interaction of velocity disturbances with	Numerical techniques in linear duct acoustics - A
a leaned vane stator	status report
[AIAA PAPER 81-0091] A81-20595	[ASME PAPER 80-WA/NC-2] A81-21120
Perspectives on jet noise	Effect of a semi-annular thermal acoustic shield
[AIAA PAPER 81-0428] A81-20829	on jet exhaust noise
Core noise measurements from a small, general aviation turbofan engine	A81-22532
A81-22531	A guidance document on airport noise control [AD-A092228] N81-16629
NOISE INTERSITY	JT8D engine internal exhaust mixer technology
Helicopter internal noise - An overview	program
A81-20055	[AD-A093057] N81-17091
Fuel consumption aspects of some noise abatement	Transport jet aircraft noise abatement in foreign
procedures	countries: Growth, structure, impact. Volume
A81-20350	1: Europe, July 1980
WOISE MEASUREMENT	[NASA-CR-152356] N81-17623
The spectral analysis of nonstationary random processes - Applications to aircraft	Transport jet aircraft noise abatement in foreign countries: Growth, structure, impact. Volume
overflight-type noises Prench thesis	2: Pacific basin, August 1980
A81-21922	[NASA-CE-152357-VOL-2] N81-17624
The need for airport noise monitoring systems.	Aerodynamic/acoustic performance of YJ101/double
Their uses, and value in promoting civil aviation	bypass WCE with coannular plug nozzle
[AD-A092240] N81-16627	[NASA-CR-159869] N81-17846

SUBJECT INDEX ONE DIMENSIONAL PLON

DISE SPECTRA	Pormation tracking. Part 2: Tracking and control
Acoustics of rotors utilizing circulation control	procedures
[AIAA PAPER 81-0092] The spectral analysis of nonstationary random	[FPH-279-PT-2] N81-17110 NUMERICAL FLOW VISUALIZATION
processes - Applications to aircraft	Numerical investigation of a model of turbulent
overflight-type noises French thesis	combustion of hydrocarbons
DEDESTRUCTIVE TESTS A81-21922	[AIAA PAPER 81-0039] A81-20559
Application of low frequency eddy-current for	Numerical simulation of wing-fuselage interference [AIAA PAPER 81-0048] A81-20564
inspection of civil aircraft	A numerical simulation of hypersonic viscous flow
A81-20110	over arbitrary geometries at angle of attack
Evaluation and comparison of nondestructive service inspection methods	[AIAA PAPER 81-0050] A81-20566
A81-20135	Three-dimensional model of spray combustion in gas turbine combustors
Non-destructive testing of adhesive-bonded joints	[AIAA PAPER 81-0324] A81-20751
A81-20162	On the derivation of universal indicial functions
New NDT techniques used for aircraft maintenance A81-20168	for unsteady transonic flow [AIAA PAPER 81-0328] A81-20753
Acoustic emission and corrosion	Flight experiments with a slender cone at angle of
A81-20211	attack
Application of excelectron emission for quality control of gas-turbine engine parts	[AIAA PAPER 81-0337] A81-20761
A81-21367	Three dimensional internal flows in turbomachinery, volume 1
Mathematical aspects of the probabilistic	[AD-A092737] N81-16065
evaluations of structural safety and NDI	ZDRAPT-A graphite code for VTOL aircraft ground
capabilities A81-22635	footprint visualization [AD-A093311] N81-17042
Feasibility evaluation of advanced multifrequency	NUMERICAL STABILITY
eddy current technology for use in naval air	Some implementation considerations for numerically
maintenance environment [AD-A093314] N81-17476	stable flight filters
ONLINEAR PROGRAMMING	A81-20485
Use of constrained optimization in the conceptual	lack
design of a medium-range subsonic transport [NASA-TP-1762] N81-16039	ODITORD STREET
[NASA-TP-1762] N81-16039 ONUNIFORM FLOW	OBLIQUE WINGS Lifting-line theory of oblique wings - Application
The linear instability due to the compressible	of the Galerkin method to the lifting-line
crossflow on a swept wing	equation
A81-21168 DRMAL DRESITY FUNCTIONS	OFF-ON CONTROL
A correlated random numbers generator and its use	Bounds for the additional cost of near-optimal
to estimate false alarm rates of airplane sensor	controls
failure detection algorithms A81-20448	A81-21075
OZZLE DESIGN	
OZZLE DESIGN Effects of sidewall geometry on the installed	Experimental study of the influence of supports on the aerodynamic loads on an ogive cylinder at
OZZLE DESIGN Effects of sidewall geometry on the installed performance of nonaxisymmetric	Experimental study of the influence of supports on the aerodynamic loads on an ogive cylinder at high angles of attack
OZZLE DESIGN Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles	Experimental study of the influence of supports on the aerodynamic loads on an ogive cylinder at high angles of attack [AIAA PAPER 81-0007] A81-20531
OZZLE DESIGN Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] N81-15976	Experimental study of the influence of supports on the aerodynamic loads on an ogive cylinder at high angles of attack
OZZLE DESIGN Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] N81-15976 OZZLE FLOW Effect of facility variation on the acoustic	Experimental study of the influence of supports on the aerodynamic loads on an ogive cylinder at high angles of attack [AIAA PAPER 81-0007] A81-20531 OILS Methodology for determining sampling intervals [AD-A092591] N81-16825
DZZLE DESIGN Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] N81-15976 DZZLE FLOW Effect of facility variation on the acoustic characteristics of three single stream nozzles	Experimental study of the influence of supports on the aerodynamic loads on an ogive cylinder at high angles of attack [AIAA PAPER 81-0007] OILS Methodology for determining sampling intervals [AD-A092591] OMEGA MAVIGATION SYSTEM
OZZLE DESIGN Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] N81-15976 OZZLE FLOW Effect of facility variation on the acoustic	Experimental study of the influence of supports on the aerodynamic loads on an ogive cylinder at high angles of attack [AIAA PAPER 81-0007] A81-20531 OILS Methodology for determining sampling intervals [AD-A092591] N81-16825
DZZLE DESIGN Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] DZZLE PLOW Effect of facility variation on the acoustic characteristics of three single stream nozzles A81-22534 Jet wing interference for an overwing engine configuration	Experimental study of the influence of supports on the aerodynamic loads on an ogive cylinder at high angles of attack [AIAA PAPER 81-0007] A81-20531 OILS Methodology for determining sampling intervals [AD-A092591] N81-16825 OMEGA NAVIGATION SYSTEM Omega signal coverage prediction diagrams for 10.2 kHz. Volume 1: Technical approach [AD-A092741] N81-16030
DZZLE DRSIGN Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] N81-15976 DZZLE FLOW Effect of facility variation on the acoustic characteristics of three single stream nozzles A81-22534 Jet wing interference for an overwing engine configuration N81-16008	Experimental study of the influence of supports on the aerodynamic loads on an ogive cylinder at high angles of attack [AIAA PAPER 81-0007] OILS Methodology for determining sampling intervals [AD-A092591] OMEGA NAVIGATION SISTEM Omega signal coverage prediction diagrams for 10.2 kHz. Volume 1: Technical approach [AD-A092741] Omega signal coverage prediction diagrams for 10.2
DZZLE DESIGN Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] DZZLE PLOW Effect of facility variation on the acoustic characteristics of three single stream nozzles A81-22534 Jet wing interference for an overwing engine configuration	Experimental study of the influence of supports on the aerodynamic loads on an ogive cylinder at high angles of attack [AIAA PAPER 81-0007] A81-20531 OILS Methodology for determining sampling intervals [AD-A092591] N81-16825 OMEGA NAVIGATION SYSTEM Omega signal coverage prediction diagrams for 10.2 kHz. Volume 1: Technical approach [AD-A092741] N81-16030
DZZLE DRSIGN Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] N81-15976 DZZLE FLOW Effect of facility variation on the acoustic characteristics of three single stream nozzles A81-22534 Jet wing interference for an overwing engine configuration N81-16008 Exhaust emission characteristics and variability for maintained General Electric CP6-50 turbofan engines	Experimental study of the influence of supports on the aerodynamic loads on an ogive cylinder at high angles of attack [AIAA PAPER 81-0007] N81-20531 OILS Methodology for determining sampling intervals [AD-A092591] OMEGA NAVIGATION SISTEM Omega signal coverage prediction diagrams for 10.2 kHz. Volume 1: Technical approach [AD-A092741] Omega signal coverage prediction diagrams for 10.2 kHz. Volume 2: Individual station diagrams [AD-A092742] Omega signal coverage prediction diagrams
DZZLE DRSIGN Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] DZZLE PLOW Effect of facility variation on the acoustic characteristics of three single stream nozzles A81-22534 Jet wing interference for an overwing engine configuration N81-16008 Exhaust emission characteristics and variability for maintained General Electric CF6-50 turbofan engines [AD-A092291] N81-16064	Experimental study of the influence of supports on the aerodynamic loads on an ogive cylinder at high angles of attack [AIAA PAPER 81-0007] N81-20531 OILS Methodology for determining sampling intervals [AD-A092591] N81-16825 OMEGA NAVIGATION SYSTEM Omega signal coverage prediction diagrams for 10.2 kHz. Volume 1: Technical approach [AD-A092741] N81-16030 Omega signal coverage prediction diagrams for 10.2 kHz. Volume 2: Individual station diagrams [AD-A092742] Omega signal coverage prediction diagrams for 10.2 kHz. Volume 4: Bearing angle tables
DZZLE DRSIGN Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] DZZLE FLOW Effect of facility variation on the acoustic characteristics of three single stream nozzles A81-22534 Jet wing interference for an overwing engine configuration Exhaust emission characteristics and variability for maintained General Electric CF6-50 turbofan engines [AD-A092291] DZZLE GEOMETEN N81-16064	Experimental study of the influence of supports on the aerodynamic loads on an ogive cylinder at high angles of attack [AIAA PAPER 81-0007] A81-20531 OILS Methodology for determining sampling intervals [AD-A092591] N81-16825 OMEGA NAVIGATION SYSTEM Omega signal coverage prediction diagrams for 10.2 kHz. Volume 1: Technical approach [AD-A092741] N81-16030 Omega signal coverage prediction diagrams for 10.2 kHz. Volume 2: Individual station diagrams [AD-A092742] N81-16031 Omega signal coverage prediction diagrams for 10.2 kHz. Volume 4: Bearing angle tables [AD-A0927444] N81-16032
DZZLE DRSIGN Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] DZZLE FLOW Effect of facility variation on the acoustic characteristics of three single stream nozzles A81-22534 Jet wing interference for an overwing engine configuration N81-16008 Exhaust emission characteristics and variability for maintained General Electric CF6-50 turbofan engines [AD-A092291] N81-16064 DZZLE GROMBERN Effects of sidewall geometry on the installed performance of nonaxisymmetric	Experimental study of the influence of supports on the aerodynamic loads on an ogive cylinder at high angles of attack [AIAA PAPER 81-0007] N81-20531 OILS Methodology for determining sampling intervals [AD-A092591] N81-16825 OMEGA NAVIGATION SYSTEM Omega signal coverage prediction diagrams for 10.2 kHz. Volume 1: Technical approach [AD-A092741] Omega signal coverage prediction diagrams for 10.2 kHz. Volume 2: Individual station diagrams [AD-A092742] Omega signal coverage prediction diagrams for 10.2 kHz. Volume 4: Bearing angle tables [AD-A092744] Omega transmitter outages, January to December 1979 [AD-A093425] N81-17035
DZZLE DRSIGN Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] DZZLE FLOW Effect of facility variation on the acoustic characteristics of three single stream nozzles Jet wing interference for an overwing engine configuration Exhaust emission characteristics and variability for maintained General Electric CP6-50 turbofan engines [AD-A092291] N81-16064 DZZLE GROMETRY Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles	Experimental study of the influence of supports on the aerodynamic loads on an ogive cylinder at high angles of attack [AIAA PAPER 81-0007] OILS Methodology for determining sampling intervals [AD-A092591] OMEGA NAVIGATION SYSTEM Omega signal coverage prediction diagrams for 10.2 kHz. Volume 1: Technical approach [AD-A092741] Omega signal coverage prediction diagrams for 10.2 kHz. Volume 2: Individual station diagrams [AD-A092742] Omega signal coverage prediction diagrams for 10.2 kHz. Volume 2: Individual station diagrams [AD-A092742] Omega tignal coverage prediction diagrams for 10.2 kHz. Volume 4: Bearing angle tables [AD-A092744] Omega transmitter outages, January to December 1979 [AD-A093425] OMEOARD DATA PROCESSING
DZZLE DRSIGN Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] NASI-15976 DZZLE FLOW Effect of facility variation on the acoustic characteristics of three single stream nozzles A81-22534 Jet wing interference for an overwing engine configuration NASI-16008 Exhaust emission characteristics and variability for maintained General Electric CP6-50 turbofan engines [AD-A092291] NASI-16064 DZZLE GROMETRY Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] NASI-15976	Experimental study of the influence of supports on the aerodynamic loads on an ogive cylinder at high angles of attack [AIAA PAPER 81-0007] OILS Methodology for determining sampling intervals [AD-A092591] OMEGA MAVIGATION SYSTEM Omega signal coverage prediction diagrams for 10.2 kHz. Volume 1: Technical approach [AD-A092741] Omega signal coverage prediction diagrams for 10.2 kHz. Volume 2: Individual station diagrams [AD-A092742] Omega signal coverage prediction diagrams for 10.2 kHz. Volume 4: Bearing angle tables [AD-A092744] Omega signal coverage prediction diagrams for 10.2 kHz. Volume 4: Bearing angle tables [AD-A093744] Omega transmitter outages, January to December 1979 [AD-A093425] OMBOARD DATA PROCESSING Application of singular perturbation theory to
DZZLE DESIGN Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] DZZLE FLOW Effect of facility variation on the acoustic characteristics of three single stream nozzles Jet wing interference for an overwing engine configuration Exhaust emission characteristics and variability for maintained General Electric CF6-50 turbofan engines [AD-A092291] N81-16064 DZZLE GROMETRY Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] N81-15976 DZZLE WALLS Effects of sidewall geometry on the installed	Experimental study of the influence of supports on the aerodynamic loads on an ogive cylinder at high angles of attack [AIAA PAPER 81-0007] OILS Methodology for determining sampling intervals [AD-A092591] N81-16825 OMEGA NAVIGATION SYSTEM Omega signal coverage prediction diagrams for 10.2 kHz. Volume 1: Technical approach [AD-A092741] Omega signal coverage prediction diagrams for 10.2 kHz. Volume 2: Individual station diagrams [AD-A092742] Omega signal coverage prediction diagrams for 10.2 kHz. Volume 2: Individual station diagrams [AD-A092742] Omega signal coverage prediction diagrams for 10.2 kHz. Volume 4: Bearing angle tables [AD-A092744] Omega transmitter outages, January to December 1979 [AD-A093425] ONBOARD DATA PROCESSING Application of singular perturbation theory to onboard aircraft trajectory optimization for commercial jet transport aircraft
DZZLE DRSIGN Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] DZZLE FLOW Effect of facility variation on the acoustic characteristics of three single stream nozzles A81-22534 Jet wing interference for an overwing engine configuration N81-16008 Exhaust emission characteristics and variability for maintained General Electric CF6-50 turbofan engines [AD-A092291] N81-16064 DZZLE GROMETRY Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] N81-15976 DZZLE WALLS Effects of sidewall geometry on the installed performance of nonaxisymmetric	Experimental study of the influence of supports on the aerodynamic loads on an ogive cylinder at high angles of attack [AIAA PAPER 81-0007] Methodology for determining sampling intervals [AD-A092591] OMEGA MAVIGATION SYSTEM Omega signal coverage prediction diagrams for 10.2 kHz. Volume 1: Technical approach [AD-A092741] Omega signal coverage prediction diagrams for 10.2 kHz. Volume 2: Individual station diagrams [AD-A092742] Omega signal coverage prediction diagrams for 10.2 kHz. Volume 4: Bearing angle tables [AD-A092744] Omega signal coverage prediction diagrams for 10.2 kHz. Volume 4: Bearing angle tables [AD-A092744] Omega transmitter outages, January to December 1979 [AD-A093425] OMBOARD DATA PROCESSING Application of singular perturbation theory to onboard aircraft trajectory optimization for commercial jet transport aircraft [AIAA PAPER 81-0019] A81-20543
DZZLE DRSIGN Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] DZZLE FLOW Effect of facility variation on the acoustic characteristics of three single stream nozzles A81-22534 Jet wing interference for an overwing engine configuration N81-16008 Exhaust emission characteristics and variability for maintained General Electric CF6-50 turbofan engines [AD-A092291] N81-16064 DZZLE GROMETRY Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] DZZLE WALLS Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles	Experimental study of the influence of supports on the aerodynamic loads on an ogive cylinder at high angles of attack [AIAA PAPER 81-0007] Methodology for determining sampling intervals [AD-A092591] N81-16825 OMEGA MAVIGATION SISTEM Omega signal coverage prediction diagrams for 10.2 kHz. Volume 1: Technical approach [AD-A092741] Omega signal coverage prediction diagrams for 10.2 kHz. Volume 2: Individual station diagrams [AD-A092742] Omega signal coverage prediction diagrams for 10.2 kHz. Volume 4: Bearing angle tables [AD-A092744] N81-16031 Omega signal coverage prediction diagrams for 10.2 kHz. Volume 4: Bearing angle tables [AD-A092744] Omega transmitter outages, January to December 1979 [AD-A093425] OMBOARD DATA PROCESSING Application of singular perturbation theory to onboard aircraft trajectory optimization for commercial jet transport aircraft [AIAA PAPER 81-0019] New airborne weather radar systems
DZZLE DRSIGN Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] DZZLE FLOW Effect of facility variation on the acoustic characteristics of three single stream nozzles A81-22534 Jet wing interference for an overwing engine configuration N81-16008 Exhaust emission characteristics and variability for maintained General Electric CF6-50 turbofan engines [AD-A092291] N81-16064 DZZLE GROMETRY Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] SEffects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] N81-15976 DZZLE WALLS Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] N81-15976	Experimental study of the influence of supports on the aerodynamic loads on an ogive cylinder at high angles of attack [AIAA PAPER 81-0007] Methodology for determining sampling intervals [AD-A092591] OMEGA MAVIGATION SYSTEM Omega signal coverage prediction diagrams for 10.2 kHz. Volume 1: Technical approach [AD-A092741] Omega signal coverage prediction diagrams for 10.2 kHz. Volume 2: Individual station diagrams [AD-A092742] Omega signal coverage prediction diagrams for 10.2 kHz. Volume 4: Bearing angle tables [AD-A092744] Omega signal coverage prediction diagrams for 10.2 kHz. Volume 4: Bearing angle tables [AD-A092744] Omega transmitter outages, January to December 1979 [AD-A093425] OMBOARD DATA PROCESSING Application of singular perturbation theory to onboard aircraft trajectory optimization for commercial jet transport aircraft [AIAA PAPER 81-0019] A81-20543
DZZLE DRSIGN Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] DZZLE FLOW Effect of facility variation on the acoustic characteristics of three single stream nozzles A81-22534 Jet wing interference for an overwing engine configuration N81-16008 Exhaust emission characteristics and variability for maintained General Electric CF6-50 turbofan engines [AD-A092291] N81-16064 DZZLE GROMETRY Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] DZZLE WALLS Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] DZZLE WALLS Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] N81-15976 DZBREICAL AWALYSIS Radiation boundary conditions for wave-like	Experimental study of the influence of supports on the aerodynamic loads on an ogive cylinder at high angles of attack [AIAA PAPER 81-0007] Methodology for determining sampling intervals [AD-A092591] N81-16825 OMEGA MAVIGATION SYSTEM Omega signal coverage prediction diagrams for 10.2 kHz. Volume 1: Technical approach [AD-A092741] N81-16030 Omega signal coverage prediction diagrams for 10.2 kHz. Volume 2: Individual station diagrams [AD-A092742] N81-16031 Omega signal coverage prediction diagrams for 10.2 kHz. Volume 4: Bearing angle tables [AD-A092744] N81-16032 Omega transmitter outages, January to December 1979 [AD-A093425] OMBOARD DATA PROCESSING Application of singular perturbation theory to onboard aircraft trajectory optimization for commercial jet transport aircraft [AIAA PAPER 81-0019] New airborne weather radar systems [AIAA PAPER 81-0237] OMBOARD BQUIPMENT Design of disturbance-rejection controllers for
DZZLE DRSIGN Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] N81-15976 DZZLE FLOW Effect of facility variation on the acoustic characteristics of three single stream nozzles A81-22534 Jet wing interference for an overwing engine configuration N81-16008 Exhaust emission characteristics and variability for maintained General Electric CP6-50 turbofan engines [AD-A092291] N81-16064 DZZLE GROMETRY Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] N81-15976 DZZLE HALLS Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] N81-15976 DJERRICAL AMALYSIS Radiation boundary conditions for wave-like equations numerical jet acoustics	Experimental study of the influence of supports on the aerodynamic loads on an ogive cylinder at high angles of attack [AIAA PAPER 81-0007] OILS Methodology for determining sampling intervals [AD-A092591] OMEGA NAVIGATION SYSTEM Omega signal coverage prediction diagrams for 10.2 kHz. Volume 1: Technical approach [AD-A092741] Omega signal coverage prediction diagrams for 10.2 kHz. Volume 2: Individual station diagrams [AD-A092741] Omega signal coverage prediction diagrams for 10.2 kHz. Volume 2: Individual station diagrams [AD-A092742] Omega signal coverage prediction diagrams for 10.2 kHz. Volume 4: Bearing angle tables [AD-A092744] Omega transmitter outages, January to December 1979 [AD-A093425] OWBOARD DATA PROCESSING Application of singular perturbation theory to onboard aircraft trajectory optimization for commercial jet transport aircraft [AIAA PAPER 81-0019] New airborne weather radar systems [AIAA PAPER 81-0237] OMBOARD ROUTPMENT Design of disturbance-rejection controllers for linear multivariable discrete-time systems using
DZZLE DRSIGN Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] DZZLE FLOW Effect of facility variation on the acoustic characteristics of three single stream nozzles A81-22534 Jet wing interference for an overwing engine configuration N81-16008 Exhaust emission characteristics and variability for maintained General Electric CF6-50 turbofan engines [AD-A092291] N81-16064 DZZLE GROMETRY Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] DZZLE WALLS Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] DZZLE WALLS Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] N81-15976 DZBREICAL AWALYSIS Radiation boundary conditions for wave-like	Experimental study of the influence of supports on the aerodynamic loads on an ogive cylinder at high angles of attack [AIAA PAPER 81-0007] Methodology for determining sampling intervals [AD-A092591] N81-16825 OMEGA MAVIGATION SISTEM Omega signal coverage prediction diagrams for 10.2 kHz. Volume 1: Technical approach [AD-A092741] Omega signal coverage prediction diagrams for 10.2 kHz. Volume 2: Individual station diagrams [AD-A092742] Omega signal coverage prediction diagrams for 10.2 kHz. Volume 2: Individual station diagrams [AD-A092742] Omega signal coverage prediction diagrams for 10.2 kHz. Volume 4: Bearing angle tables [AD-A092744] Omega transmitter outages, January to December 1979 [AD-A093425] OMBOARD DATA PROCESSING Application of singular perturbation theory to onboard aircraft trajectory optimization for commercial jet transport aircraft [AIAA PAPER 81-0019] New airborne weather radar systems [AIAA PAPER 81-0237] OMBOARD RQUIPMENT Design of disturbance-rejection controllers for linear multivariable discrete-time systems using entire eigenstructure assignment onboard
DZZLE DRSIGN Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] N81-15976 DZZLE FLOW Effect of facility variation on the acoustic characteristics of three single stream nozzles A81-22534 Jet wing interference for an overwing engine configuration N81-16008 Exhaust emission characteristics and variability for maintained General Electric CF6-50 turbofan engines [AD-A092291] N81-16064 DZZLE GEOMETRY Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] N81-15976 DZZLE WALLS Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] N81-15976 JHERICAL ANALYSIS Radiation boundary conditions for wave-like equations numerical jet acoustics experimentation A81-20223 Convective amplification of gas turbine engine	Experimental study of the influence of supports on the aerodynamic loads on an ogive cylinder at high angles of attack [AIAA PAPER 81-0007] N81-20531 OILS Methodology for determining sampling intervals [AD-A092591] N81-16825 OMEGA NAVIGATION SYSTEM Omega signal coverage prediction diagrams for 10.2 kHz. Volume 1: Technical approach [AD-A092741] N81-16030 Omega signal coverage prediction diagrams for 10.2 kHz. Volume 2: Individual station diagrams [AD-A092742] Omega signal coverage prediction diagrams for 10.2 kHz. Volume 4: Bearing angle tables [AD-A092744] Omega transmitter outages, January to December 1979 [AD-A093425] OBBOARD DATA PROCESSING Application of singular perturbation theory to onboard aircraft trajectory optimization for commercial jet transport aircraft [AIAA PAPER 81-0019] New airborne weather radar systems [AIAA PAPER 81-0237] OBBOARD ROUTPMENT Design of disturbance-rejection controllers for linear multivariable discrete-time systems using entire eigenstructure assignment onboard digital flight system of P-4 aircraft
DZZLE DRSIGN Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] DZZLE FLOW Effect of facility variation on the acoustic characteristics of three single stream nozzles A81-22534 Jet wing interference for an overwing engine configuration N81-16008 Exhaust emission characteristics and variability for maintained General Electric CF6-50 turbofan engines [AD-A092291] N81-16064 DZZLE GROMETRY Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] N81-15976 DZZLE WALLS Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] N81-15976 DZZLE WALLS Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] N81-15976 DEFICAL AWALYSIS Radiation boundary conditions for wave-like equations numerical jet acoustics experimentation A81-20223 Convective amplification of gas turbine engine internal noise sources	Experimental study of the influence of supports on the aerodynamic loads on an ogive cylinder at high angles of attack [AIAA PAPER 81-0007] Methodology for determining sampling intervals [AD-A092591] N81-16825 OMEGA MAVIGATION SYSTEM Omega signal coverage prediction diagrams for 10.2 kHz. Volume 1: Technical approach [AD-A092741] Omega signal coverage prediction diagrams for 10.2 kHz. Volume 2: Individual station diagrams [AD-A092742] Omega signal coverage prediction diagrams for 10.2 kHz. Volume 2: Individual station diagrams [AD-A092742] Omega signal coverage prediction diagrams for 10.2 kHz. Volume 4: Bearing angle tables [AD-A092744] Omega transmitter outages, January to December 1979 [AD-A093425] OMBOARD DATA PROCESSING Application of singular perturbation theory to onboard aircraft trajectory optimization for commercial jet transport aircraft [AIAA PAPER 81-0019] New airborne weather radar systems [AIAA PAPER 81-0237] OMBOARD EQUIPMENT Design of disturbance-rejection controllers for linear multivariable discrete-time systems using entire eigenstructure assignment onboard digital flight system of F-4 aircraft A81-20454 Collision avoidance systems. Citations from the
DZZLE DRSIGN Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] N81-15976 DZZLE FLOW Effect of facility variation on the acoustic characteristics of three single stream nozzles A81-22534 Jet wing interference for an overwing engine configuration N81-16008 Exhaust emission characteristics and variability for maintained General Electric CF6-50 turbofan engines [AD-A092291] N81-16064 DZZLE GEOMETRY Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] N81-15976 DZZLE WALLS Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] N81-15976 JHERICAL ANALYSIS Radiation boundary conditions for wave-like equations numerical jet acoustics experimentation A81-20223 Convective amplification of gas turbine engine	Experimental study of the influence of supports on the aerodynamic loads on an ogive cylinder at high angles of attack [AIAA PAPER 81-0007] Methodology for determining sampling intervals [AD-A092591] N81-16825 OMEGA MAVIGATION SISTEM Omega signal coverage prediction diagrams for 10.2 kHz. Volume 1: Technical approach [AD-A092741] Omega signal coverage prediction diagrams for 10.2 kHz. Volume 2: Individual station diagrams [AD-A092742] Omega signal coverage prediction diagrams for 10.2 kHz. Volume 4: Bearing angle tables [AD-A092744] Omega signal coverage prediction diagrams for 10.2 kHz. Volume 4: Bearing angle tables [AD-A092744] Omega transmitter outages, January to December 1979 [AD-A093425] OMBOARD DATA PROCESSING Application of singular perturbation theory to onboard aircraft trajectory optimization for commercial jet transport aircraft [AIAA PAPER 81-0019] New airborne weather radar systems [AIAA PAPER 81-0237] OMBOARD ROUIPMENT Design of disturbance-rejection controllers for linear multivariable discrete-time systems using entire eigenstructure assignment onboard digital flight system of P-4 aircraft A81-20454 Collision avoidance systems. Citations from the NTIS data base
DZZLE DRSIGN Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] Effect of facility variation on the acoustic characteristics of three single stream nozzles A81-22534 Jet wing interference for an overwing engine configuration N81-16008 Exhaust emission characteristics and variability for maintained General Electric CF6-50 turbofan engines [AD-A092291] N81-16064 DZZLE GROMETRY Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] N81-15976 DZZLE WALLS Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] N81-15976 DZZLE WALLS Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] N81-15976 CONVECTIVE WALLSIS Radiation boundary conditions for wave-like equations numerical jet acoustics experimentation A81-20223 Convective amplification of gas turbine engine internal noise sources Aerodynamic subsonic/transonic aircraft design studies by numerical methods	Experimental study of the influence of supports on the aerodynamic loads on an ogive cylinder at high angles of attack [AIAA PAPER 81-0007] Methodology for determining sampling intervals [AD-A092591] N81-16825 OMEGA MAVIGATION SISTEM Omega signal coverage prediction diagrams for 10.2 kHz. Volume 1: Technical approach [AD-A092741] Omega signal coverage prediction diagrams for 10.2 kHz. Volume 2: Individual station diagrams [AD-A092742] Omega signal coverage prediction diagrams for 10.2 kHz. Volume 2: Individual station diagrams [AD-A092742] Omega signal coverage prediction diagrams for 10.2 kHz. Volume 4: Bearing angle tables [AD-A092744] Omega transmitter outages, January to December 1979 [AD-A093425] OMBOARD DATA PROCESSING Application of singular perturbation theory to onboard aircraft trajectory optimization for commercial jet transport aircraft [AIAA PAPER 81-0019] New airborne weather radar systems [AIAA PAPER 81-0237] OMBOARD RQUIPMENT Design of disturbance-rejection controllers for linear multivariable discrete-time systems using entire eigenstructure assignment onboard digital flight system of P-4 aircraft Collision avoidance systems. Citations from the NTIS data base [PB80-815020] Seat pack for fighter aircraft operating on the
DZZLE DRSIGN Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] DZZLE FLOW Effect of facility variation on the acoustic characteristics of three single stream nozzles A81-22534 Jet wing interference for an overwing engine configuration N81-16008 Exhaust emission characteristics and variability for maintained General Electric CP6-50 turbofan engines [AD-A092291] N81-16064 DZZLE GROMETRY Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] DZZLE WALLS Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] N81-15976 DZRRICAL AMALYSIS Radiation boundary conditions for wave-like equations numerical jet acoustics experimentation A81-20223 Convective amplification of gas turbine engine internal noise sources A81-21595 Aerodynamic subsonic/transonic aircraft design studies by numerical methods	Experimental study of the influence of supports on the aerodynamic loads on an ogive cylinder at high angles of attack [AIAA PAPER 81-0007] Methodology for determining sampling intervals [AD-A092591] N81-16825 OMEGA MAVIGATION SISTEM Omega signal coverage prediction diagrams for 10.2 kHz. Volume 1: Technical approach [AD-A092741] Omega signal coverage prediction diagrams for 10.2 kHz. Volume 2: Individual station diagrams [AD-A092742] Omega signal coverage prediction diagrams for 10.2 kHz. Volume 4: Bearing angle tables [AD-A092744] Omega signal coverage prediction diagrams for 10.2 kHz. Volume 4: Bearing angle tables [AD-A092744] Omega transmitter outages, January to December 1979 [AD-A093425] OMBOARD DATA PROCESSING Application of singular perturbation theory to onboard aircraft trajectory optimization for commercial jet transport aircraft [AIAA PAPER 81-0019] New airborne weather radar systems [AIAA PAPER 81-0237] OMBOARD BQUIPMENT Design of disturbance-rejection controllers for linear multivariable discrete-time systems using entire eigenstructure assignment onboard digital flight system of P-4 aircraft Collision avoidance systems. Citations from the NTIS data base [PB80-815020] Seat pack for fighter aircraft operating on the NATO Northern Flank
Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] N81-15976 DZZLE FLOW Effect of facility variation on the acoustic characteristics of three single stream nozzles A81-22534 Jet wing interference for an overwing engine configuration N81-16008 Exhaust emission characteristics and variability for maintained General Electric CF6-50 turbofan engines [AD-A092291] N81-16064 DZZLE GROMETHY Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] N81-15976 DZZLE WALLS Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] N81-15976 DZZLE WALLS Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] N81-15976 DERRICAL AWALYSIS Radiation boundary conditions for wave-like equations numerical jet acoustics experimentation A81-20223 Convective amplification of gas turbine engine internal noise sources A81-21595 Aerodynamic subsonic/transonic aircraft design studies by numerical methods N81-15999	Experimental study of the influence of supports on the aerodynamic loads on an ogive cylinder at high angles of attack [AIAA PAPER 81-0007] Methodology for determining sampling intervals [AD-A092591] N81-16825 OMEGA MAVIGATION SYSTEN Omega signal coverage prediction diagrams for 10.2 kHz. Volume 1: Technical approach [AD-A092741] Omega signal coverage prediction diagrams for 10.2 kHz. Volume 2: Individual station diagrams [AD-A092742] Omega signal coverage prediction diagrams for 10.2 kHz. Volume 2: Individual station diagrams [AD-A092742] Omega signal coverage prediction diagrams for 10.2 kHz. Volume 4: Bearing angle tables [AD-A092744] Omega transmitter outages, January to December 1979 [AD-A093425] OBBOARD DATA PROCESSING Application of singular perturbation theory to onboard aircraft trajectory optimization for commercial jet transport aircraft [AIAA PAPER 81-0019] New airborne weather radar systems [AIAA PAPER 81-0237] OBBOARD EQUIPMENT Design of disturbance-rejection controllers for linear multivariable discrete-time systems using entire eigenstructure assignment onboard digital flight system of P-4 aircraft Collision avoidance systems. Citations from the NTIS data base [PB80-815020] N81-17010
Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] N81-15976 DZZLE FLOW Effect of facility variation on the acoustic characteristics of three single stream nozzles A81-22534 Jet wing interference for an overwing engine configuration N81-16008 Exhaust emission characteristics and variability for maintained General Electric CP6-50 turbofan engines [AD-A092291] N81-16064 DZZLE GEOMETRI Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] N81-15976 DZZLE WALLS Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] N81-15976 DJERRICAL AMALYSIS Radiation boundary conditions for wave-like equations numerical jet acoustics experimentation A81-20223 Convective amplification of gas turbine engine internal noise sources A81-21595 Aerodynamic subsonic/transonic aircraft design studies by numerical methods N81-15999 DMERICAL CONTROL New developments of data processing in computer-controlled manufacturing systems / DNC,	Experimental study of the influence of supports on the aerodynamic loads on an ogive cylinder at high angles of attack [AIAA PAPER 81-0007] Methodology for determining sampling intervals [AD-A092591] N81-16825 OMEGA MAVIGATION SYSTEM Omega signal coverage prediction diagrams for 10.2 kHz. Volume 1: Technical approach [AD-A092741] Omega signal coverage prediction diagrams for 10.2 kHz. Volume 2: Individual station diagrams [AD-A092742] Omega signal coverage prediction diagrams for 10.2 kHz. Volume 4: Bearing angle tables [AD-A092744] Omega signal coverage prediction diagrams for 10.2 kHz. Volume 4: Bearing angle tables [AD-A092744] Omega transmitter outages, January to December 1979 [AD-A093425] OMBOARD DATA PROCESSING Application of singular perturbation theory to onboard aircraft trajectory optimization for commercial jet transport aircraft [AIAA PAPER 81-0019] New airborne weather radar systems [AIAA PAPER 81-0237] OMBOARD ROUIPMENT Design of disturbance-rejection controllers for linear multivariable discrete-time systems using entire eigenstructure assignment onboard digital flight system of P-4 aircraft Collision avoidance systems. Citations from the NTIS data base [PB80-815020] Seat pack for fighter aircraft operating on the NATO Northern Flank N81-17010 OME DIMENSIOBAL PLOW Computational design of large-scale blast simulators
Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] N81-15976 DZZLE PLOW Effect of facility variation on the acoustic characteristics of three single stream nozzles A81-22534 Jet wing interference for an overwing engine configuration N81-16008 Exhaust emission characteristics and variability for maintained General Electric CF6-50 turbofan engines [AD-A092291] N81-16064 DZZLE GEOMETRY Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] N81-15976 DZZLE WALLS Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] N81-15976 DZZLE WALLS Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] N81-15976 DZZLE WALLS Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] N81-15976 DZZLE WALLS Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] N81-15976 DZZLE WALLS Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] N81-15976 DZZLE WALLS Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [N81-15976] DZZLE WALLS Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [N81-15976] DZZLE WALLS Effects of sidewall geometry on the installed performance of nonaxisymmetric not performance of nonaxisymmetric nonexistence of nonaxisymmetric not performance of nonaxisymmetric not performance of nonaxisymmetric not performance not	Experimental study of the influence of supports on the aerodynamic loads on an ogive cylinder at high angles of attack [AIAA PAPER 81-0007] Methodology for determining sampling intervals [AD-A092591] N81-16825 OMEGA MAVIGATION SYSTEM Omega signal coverage prediction diagrams for 10.2 kHz. Volume 1: Technical approach [AD-A092741] Omega signal coverage prediction diagrams for 10.2 kHz. Volume 2: Individual station diagrams [AD-A092742] Omega signal coverage prediction diagrams for 10.2 kHz. Volume 2: Individual station diagrams [AD-A092742] Omega signal coverage prediction diagrams for 10.2 kHz. Volume 4: Bearing angle tables [AD-A092744] Omega transmitter outages, January to December 1979 [AD-A093425] OMBOARD DATA PROCESSING Application of singular perturbation theory to onboard aircraft trajectory optimization for commercial jet transport aircraft [AIAA PAPER 81-0019] New airborne weather radar systems [AIAA PAPER 81-0237] OMBOARD EQUIPMENT Design of disturbance-rejection controllers for linear multivariable discrete-time systems using entire eigenstructure assignment onboard digital flight system of F-4 aircraft Collision avoidance systems. Citations from the NTIS data base [PB80-815020] Seat pack for fighter aircraft operating on the NATO Northern Flank N81-17010
Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] N81-15976 DZZLE FLOW Effect of facility variation on the acoustic characteristics of three single stream nozzles A81-22534 Jet wing interference for an overwing engine configuration N81-16008 Exhaust emission characteristics and variability for maintained General Electric CP6-50 turbofan engines [AD-A092291] N81-16064 DZZLE GEOMETRI Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] N81-15976 DZZLE WALLS Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles [NASA-TP-1771] N81-15976 DJERRICAL AMALYSIS Radiation boundary conditions for wave-like equations numerical jet acoustics experimentation A81-20223 Convective amplification of gas turbine engine internal noise sources A81-21595 Aerodynamic subsonic/transonic aircraft design studies by numerical methods N81-15999 DMERICAL CONTROL New developments of data processing in computer-controlled manufacturing systems / DNC,	Experimental study of the influence of supports on the aerodynamic loads on an ogive cylinder at high angles of attack [AIAA PAPER 81-0007] Methodology for determining sampling intervals [AD-A092591] N81-16825 OMEGA MAVIGATION SYSTEM Omega signal coverage prediction diagrams for 10.2 kHz. Volume 1: Technical approach [AD-A092741] Omega signal coverage prediction diagrams for 10.2 kHz. Volume 2: Individual station diagrams [AD-A092742] Omega signal coverage prediction diagrams for 10.2 kHz. Volume 4: Bearing angle tables [AD-A092744] Omega signal coverage prediction diagrams for 10.2 kHz. Volume 4: Bearing angle tables [AD-A092744] Omega transmitter outages, January to December 1979 [AD-A093425] OMBOARD DATA PROCESSING Application of singular perturbation theory to onboard aircraft trajectory optimization for commercial jet transport aircraft [AIAA PAPER 81-0019] New airborne weather radar systems [AIAA PAPER 81-0237] OMBOARD ROUIPMENT Design of disturbance-rejection controllers for linear multivariable discrete-time systems using entire eigenstructure assignment onboard digital flight system of P-4 aircraft Collision avoidance systems. Citations from the NTIS data base [PB80-815020] Seat pack for fighter aircraft operating on the NATO Northern Flank N81-17010 OME DIMENSIOBAL PLOW Computational design of large-scale blast simulators

. .

OPERATIONS RESEARCH SUBJECT INDEX

OPERATIONS RESEARCE	PACKAGING
Annual report to the NASA Administrator by the	Evaluation/redesign of the F-105 pitch rate gyro
Aerospace Safety Advisory Panel on the space	pack
shuttle program. Part 2: Summary of information developed in the panel's	[AD-A092109] N81-16048 PANEL METHOD (PLUID DYNAMICS)
fact-finding activities	Numerical optimization of circulation control
[NASA-TM-82252] N81-16114	airfoils
OPTICAL COMMUNICATION	[AIAA PAPER 81-0016] A81-20540
An airborne integrated communications network	The influence of the compressibility in simulating
utilizing fiber optics	the conduct of exterior loads of a carrier
A81-21880	[MBB-FE-122/S/PUB/17]
LPI, short-range communications between aircraft in rendezvous Low Probability of Intercept	PANELS Acoustic fatigue strength of fiber-reinforced
A81-22493	plastic panels
OPTICAL CORRECTION PROCEDURE	A81-20873
Tri-bar reading correction for oblique imagery	Pabrication and physical testing of graphite
A81-22495	composite panels utilizing woven graphite fabric
OPTICAL MRASURING INSTRUMENTS Laser measurement of angle of attack on	with current and advanced state-of-the-art resin
wind-tunnel models	[NASA-CR-152292] N81-17175
A81-20419	PARABOLIC DIFFERENTIAL EQUATIONS
OPTICAL TRACKING	Hyperbolic/parabolic development for the GIM-STAR
Precision correlation tracking via optimal	code flow fields in supersonic inlets
weighting functions A81-20450	[NASA-CR-3369] N81-16416 PARACHUTES
OPTIMAL CONTROL	The design, testing, certification and production
Precision correlation tracking via optimal	of an emergency parachute for use in light
weighting functions	aircraft
A81-20450	[AIAA PAPER 81-0413] A81-20817
Classical and modern control design of a	Development of the first ram air emergency
speed-hold system for a STOL airplane [AIAA PAPER 81-0017] A81-20541	parachute for personnel applications A81-22078
Application of singular perturbation theory to	PARAMETER IDENTIFICATION
onboard aircraft trajectory optimization for	Parameter identification and discriminant analysis
commercial jet transport aircraft	for jet engine mechanical state diagnosis
[AIAA PAPER 81-0019] A81-20543	A81-20474
Robustness properties of a new multirate digital control system	Aircraft lateral parameter estimation from flight data with unsteady aerodynamic modelling
[AIAA PAPER 81-0022] A81-20545	[AIAA PAPER 81-0221] A81-20684
Bounds for the additional cost of near-optimal	Federal Radionavigation Plan. Volume 3:
controls	Radionavigation system characteristics
A81-21075	[AD-A093776] N81-17032
Piloting techniques on the backside - Flight path angle control	Modeling, acquisition and processing during large displacements associated with experiments in
A81-21673	flight mechanics
OPTI MIZATIOE	[AAAF-NT-80-16] N81-17056
New ways in antenna technology for optimal	PARTICLE DEBSITY (CONCENTRATION)
adjustment of the background clutter	Gravimetric investigation of the particle number
M81-20084 Use of constrained optimization in the conceptual	density distribution function in the high speed cascade wind tunnel for laser anemometry
design of a medium-range subsonic transport	neasurements
[NASA-TP-1762] N81-16039	[ESA-TT-625] N81-16069
ORGANIC COMPOUNDS	PARTICLE SIZE DISTRIBUTION
Thermodynamics of organic compounds	Laser scattering applications development test in
[AD-A093087] N81-17936 OSCILLATING PLOW	AEDC tunnel B at Mach number 8 [AD-A093929] N81-17105
Viscous-inviscid interaction on oscillating	PARTICLE TRAJECTORIES
airfoils in subsonic flow	Particle dynamics of inlet flow fields with
[AIAA PAPER 81-0051] A81-20567	swirling wanes
A computerized study of wave characteristics in a	[AIAA PAPER 81-0001] A81-20526
time dependent compressible flow [AIAA PAPER 81-0410] A81-20838	PASSENGER AIRCRAFT An overview of the research conducted in
OXIGEN MASKS	Aerospatiale on internal noise
The influence of beards on the efficiency of	A81-20054
aviators' oxygen masks	New NDT techniques used for aircraft maintenance
A81-22100 OZOBE	A81-20168 An inflatable seat for aircraft passengers
Aircraft NO/x/ emissions and stratospheric ozone	AN INTIACABLE Seat for afficiant passengers A81-22091
reductions - Another look	PATTERN REGISTRATION
[AIAA PAPER 81-0306] A81-20741	Automatic handoff of multiple targets
Ozone contamination in aircraft cabins: Results	[AD-A093483] N81-17101
from GASP data and analyses [NASA-TM-81671] N81-16021	PAVEREBTS Shrinkage-gennengating generating innert
OZONOMETRY	Shrinkage-compensating cement for dirport pavement. Phase 3: Pirous concretes. Addendum
Ozone contamination in aircraft cabins - Results	[AD-A092945] N81-17299
from GASP data and analyses	PCM TELEMETRY
[AIAA PAPER 81-0305] A81-20740	Modeling, acquisition and processing during large
<u>_</u>	displacements associated with experiments in
P	flight mechanics [AAAP-NT-80-16] N81-17056
P-3 AIRCRAFT	PERFORMANCE
P-3 Orion fuel-saving modification wind tunnel study	JT8D-15/17 high pressure turbine root discharged
[AD-A091906] N81-16044	blade performance improvement engine design
PACIFIC ISLANDS Transport jet aircraft noise abatement in foreign	[NASA-CR-165220] N81-17080
Transport jet aircraft noise abatement in foreign countries: Growth, structure, impact. Volume	PERFORMANCE PREDICTION Application of aerodynamic jump prediction theory
2: Pacific basin, August 1980	to supersonic, high fineness ratio, cruciform
[NASA-CR-152357-VOL-2] N81-17624	finned bodies
	[AIAA PAPER 81-0222] A81-20685

An analytical approach to airfoil icing		POLICIES	
[AIAA PAPER 81-0403] Semi-empirical correlations for gas turbin	A81-20810	Transport jet aircraft noise abatement in countries: Growth, structure, impact.	
emissions, ignition, and flame stabiliza		1: Europe, July 1980	AOLGNE
,,	A81-21505	[NASA-CR-152356]	N81-17623
Escape systems testing on the Holloman hig	h speed	Transport jet aircraft noise abatement in	
test track	A81-22088	countries: Growth, structure, impact.	Volume
SAFEST computer simulation of ejection sea		2: Pacific basin, August 1980 [NASA-CR-152357-VOL-2]	N81-17624
performance	•	POLLUTION CONTROL	201 11021
	A81-22089	Two-stage combustion for reducing pollutar	ıt.
Prediction and evaluation of thrust augme ejector performance at the conceptual de		emissions from gas turbine combustors	NO. 16056
[AD-A093953]	N81-17094	[NASA-CR-163877] Design and evaluation of an integrated Qui	N81-16056 iet Clean
PERFORMANCE TESTS	•	General Aviation Turbofan (OCGAT) engine	
United States Army helicopter icing qualif	ication	aircraft propulsion system	
1980 [AIAA PAPER 81-0406]	A81-20812	[NASA-CR-165185] POLLUTION MONITORING	N81-16057
The design, testing, certification and pro-		Aircraft pollution in the vicinity of air;	orts
of an emergency parachute for use in lig		[AIAA PAPER 81-0309]	A81-20743
aircraft		Exhaust emission characteristics and varia	
[AIAA PAPER 81-0413] PERIPHERAL EQUIPMENT (COMPUTERS)	A81-20817	for maintained General Electric CP6-50 tengines	urbotan
The BQM-74C target as a flying computer -	Its	[AD-A092291]	N81-16064
language and its peripherals		Impact of aircraft emissions on air qualit	
DODGE TO THE STREET	A81-22611	vicinity of airports. Volume 1: Recent	
PERTURBATION THEORY Application of singular perturbation theor	w +0	measurement programs, data analyses, and submodel development	1
onboard aircraft trajectory optimization		[AD-A089962]	N81-16628
commercial jet transport aircraft		POLYESTER RESINS	
[AIAA PAPER 81-0019]	A81-20543	Acoustic fatigue strength of fiber-reinfor	ced
PHASE DETECTORS Omega signal coverage prediction diagrams	for 10 2	plastic panels	A81-20873
kHz. Volume 4: Bearing angle tables	101 10.2	POLYMER MATRIX COMPOSITE MATERIALS	A01-20075
[AD-A092744]	N81-16032	The 1980's - Payoff decade for advanced ma	
PHENOLIC RESINS		Proceedings of the Twenty-fifth National	
rabrication and physical testing of graphic composite panels utilizing woven graphit		Symposium and Exhibition, San Diego, Cal 6-8, 1980	ii., may
with current and advanced state-of-the-a		0 0, 1500	A81-22636
systems		POLYMBRIC FILMS	
NASA-CR-152292] PILOT BRROR	N81-17175	High-solids coatings for exterior aircraft	
Air traffic control problems - A pilot's v	iew	POLYURETHANE RESINS	A81-20861
	A81-20914	High-solids coatings for exterior aircraft	:
PILOT PERFORMANCE	A81-20914	High-solids coatings for exterior aircraft	A81-20861
Delayed ejection decision factor impor	A81-20914	High-solids coatings for exterior aircraft POSITION (LOCATION)	A81-20861
<pre>pelayed ejection decision factor impor for pilot safety</pre>	A81-20914 tauce A81-22102	High-solids coatings for exterior aircraft	A81-20861 argets
pelayed ejection decision factor important for pilot safety The apparent ignoring of pilot fatigue by	A81-20914 tauce A81-22102	High-solids coatings for exterior aircraft POSITION (LOCATION) Detection of direction changes of flying t from position coordinates of the radar of	A81-20861 argets lata A81-20099
<pre>pelayed ejection decision factor impor for pilot safety</pre>	A81-20914 tance A81-22102 the NTSB	High-solids coatings for exterior aircraft POSITION (LOCATION) Detection of direction changes of flying t from position coordinates of the radar of Pield evaluation of the LR80 land navigation	A81-20861 argets lata A81-20099 on system
Delayed ejection decision factor impor for pilot safety The apparent ignoring of pilot fatigue by in airline crashes	A81-20914 tauce A81-22102	High-solids coatings for exterior aircraft POSITION (LOCATION) Detection of direction changes of flying t from position coordinates of the radar of Pield evaluation of the LR80 land navigati [AD-A091885]	A81-20861 argets lata A81-20099
Pelayed ejection decision factor import for pilot safety The apparent ignoring of pilot fatigue by in airline crashes The use of total simulator training in transitioning air-carrier pilots: A fie	A81-20914 tance A81-22102 the NTSB A81-22104	High-solids coatings for exterior aircraft POSITION (LOCATION) Detection of direction changes of flying t from position coordinates of the radar of Pield evaluation of the LR80 land navigation	A81-20861 argets lata A81-20099 on system N81-16035
Pelayed ejection decision factor imporfor pilot safety The apparent ignoring of pilot fatigue by in airline crashes The use of total simulator training in transitioning air-carrier pilots: A fie evaluation	A81-20914 tance A81-22102 the NTSB A81-22104	High-solids coatings for exterior aircraft POSITION (LOCATION) Detection of direction changes of flying to from position coordinates of the radar of the LR80 land navigation [AD-A091885] POSITION REPORS The Global Positioning System versus graving disturbance modeling in an inertial navigation.	A81-20861 cargets lata A81-20099 on system N81-16035
Pelayed ejection decision factor impor for pilot safety The apparent ignoring of pilot fatigue by in airline crashes The use of total simulator training in transitioning air-carrier pilots: A fie evaluation [NASA-TR-81250]	A81-20914 tance A81-22102 the NTSB A81-22104	High-solids coatings for exterior aircraft POSITION (LOCATION) Detection of direction changes of flying to from position coordinates of the radar of Field evaluation of the LR80 land navigation [AD-A091885] POSITION ERRORS The Global Positioning System versus gravidisturbance modeling in an inertial navisystem error reduction at aircraft as the system error reduction	A81-20861 cargets lata A81-20099 con system N81-16035 ity gation lititude
Pelayed ejection decision factor imporfor pilot safety The apparent ignoring of pilot fatigue by in airline crashes The use of total simulator training in transitioning air-carrier pilots: A fie evaluation	A81-20914 tance A81-22102 the NTSB A81-22104 A81-16994	High-solids coatings for exterior aircraft POSITION (LOCATION) Detection of direction changes of flying to from position coordinates of the radar of the LR80 land navigation [AD-A091885] POSITION REPORS The Global Positioning System versus graving disturbance modeling in an inertial navigation.	A81-20861 cargets lata A81-20099 on system N81-16035
Pelayed ejection decision factor impor for pilot safety The apparent ignoring of pilot fatigue by in airline crashes The use of total simulator training in transitioning air-carrier pilots: A fie evaluation [NASA-TH-81250] PILOT TRAINING Critical research issues and visual system requirements for a V/STOL training resea	A81-20914 tance A81-22102 the NTSB A81-22104 A81-22104	High-solids coatings for exterior aircraft POSITION (LOCATION) Detection of direction changes of flying to from position coordinates of the radar of Field evaluation of the LR80 land navigation (AD-A091885) POSITION ERBORS The Global Positioning System versus graving disturbance modeling in an inertial naving system error reduction at aircraft of [AIAA PAPER 81-0087] POSITION INDICATORS SPASYN - An electromagnetic relative position	A81-20861 argets lata A81-20099 on system N81-16035 ity gation lititude A81-20591
Pelayed ejection decision factor impor for pilot safety The apparent ignoring of pilot fatigue by in airline crashes The use of total simulator training in transitioning air-carrier pilots: A fie evaluation [NASA-TR-81250] PILOT TRAINING Critical research issues and visual system requirements for a V/STOL training resea simulator	A81-20914 ttance A81-22102 the NTSB A81-22104 A81-16994	High-solids coatings for exterior aircraft POSITION (LOCATION) Detection of direction changes of flying to from position coordinates of the radar of the LR80 land navigation [AD-A091885] POSITION BRRORS The Global Positioning System versus gravit disturbance modeling in an inertial navigation system error reduction at aircraft of [AIAA PAPER 81-0087] POSITION INDICATORS	A81-20861 cargets lata A81-20099 on system N81-16035 cty gation lititude A81-20591
Pelayed ejection decision factor impor for pilot safety The apparent ignoring of pilot fatigue by in airline crashes The use of total simulator training in transitioning air-carrier pilots: A fie evaluation [NASA-TH-81250] PILOT THAINING Critical research issues and visual system requirements for a V/STOL training resea simulator [AD-A092561]	A81-20914 tance A81-22102 the NTSB A81-22104 A81-22104	High-solids coatings for exterior aircraft POSITION (LOCATION) Detection of direction changes of flying to from position coordinates of the radar of the LR80 land navigation (AD-A091885) POSITION BRRORS The Global Positioning System versus gravit disturbance modeling in an inertial navigation system error reduction at aircraft of [ATAA PAPER 81-0087] POSITION INDICATORS SPASYN - An electromagnetic relative position orientation tracking system	A81-20861 argets lata A81-20099 on system N81-16035 ity gation lititude A81-20591
Pelayed ejection decision factor impor for pilot safety The apparent ignoring of pilot fatigue by in airline crashes The use of total simulator training in transitioning air-carrier pilots: A fie evaluation [NASA-TR-81250] PILOT TRAINING Critical research issues and visual system requirements for a V/STOL training resea simulator	A81-20914 ttance A81-22102 the NTSB A81-22104 ild N81-16994	High-solids coatings for exterior aircraft POSITION (LOCATION) Detection of direction changes of flying to from position coordinates of the radar of Field evaluation of the LR80 land navigation (AD-A091885) POSITION ERBORS The Global Positioning System versus graving disturbance modeling in an inertial naving system error reduction at aircraft of [AIAA PAPER 81-0087] POSITION INDICATORS SPASYN - An electromagnetic relative position	A81-20861 Largets Lata A81-20099 On system N81-16035 Lty gation Littude A81-20591 Lion and A81-21828
Pelayed ejection decision factor impor for pilot safety The apparent ignoring of pilot fatigue by in airline crashes The use of total simulator training in transitioning air-carrier pilots: A fie evaluation [NASA-TR-81250] PILOT THAINING Critical research issues and visual system requirements for a V/STOL training resea simulator [AD-A092561] The use of total simulator training in transitioning air-carrier pilots: A fie evaluation	A81-20914 ttance A81-22102 the NTSB A81-22104 A81-16994 A81-16072	High-solids coatings for exterior aircraft POSITION (LOCATION) Detection of direction changes of flying to from position coordinates of the radar of the LR80 land navigation (AD-A091885) POSITION BRRORS The Global Positioning System versus gravity disturbance modeling in an inertial navigation (AIAA PAPER 81-0087) POSITION INDICATORS SPASYN - An electromagnetic relative posity orientation tracking system POTENTIAL FLOW Body-fitted 3-D full-potential flow analyst complex ducts and inlets	A81-20861 argets lata A81-20099 on system N81-16035 ity gation lititude A81-20591 ion and A81-21828 sis of
Pelayed ejection decision factor impor for pilot safety The apparent ignoring of pilot fatigue by in airline crashes The use of total simulator training in transitioning air-carrier pilots: A fie evaluation [NASA-TH-81250] PILOT TRAINING Critical research issues and visual system requirements for a V/STOL training reseasimulator [AD-A092561] The use of total simulator training in transitioning air-carrier pilots: A fie evaluation [NASA-TH-81250]	A81-20914 ttance A81-22102 the NTSB A81-22104 ild N81-16994	High-solids coatings for exterior aircraft POSITION (LOCATION) Detection of direction changes of flying to from position coordinates of the radar of the LR80 land navigation (AD-A091885) POSITION ERBORS The Global Positioning System versus gravidisturbance modeling in an inertial navisystem error reduction at aircraft of AIAA PAPER 81-0087] POSITION INDICATORS SPASYN - An electromagnetic relative positioning system POTENTIAL PLOW Body-fitted 3-D full-potential flow analysic complex ducts and inlets [AIAA PAPER 81-0002]	A81-20861 Largets Lata A81-20099 On system N81-16035 Lty gation Littude A81-20591 Lion and A81-21828
Pelayed ejection decision factor impor for pilot safety The apparent ignoring of pilot fatigue by in airline crashes The use of total simulator training in transitioning air-carrier pilots: A fie evaluation [NASA-TR-81250] PILOT TRAINING Critical research issues and visual system requirements for a V/STOL training resea simulator [AD-A092561] The use of total simulator training in transitioning air-carrier pilots: A fie evaluation [NASA-TR-81250] Spin recovery training	A81-20914 Itance A81-22102 the NTSB A81-22104 Id N81-16994 Icch N81-16072	High-solids coatings for exterior aircraft POSITION (LOCATION) Detection of direction changes of flying to from position coordinates of the radar of the LR80 land navigation (AD-A091885) POSITION ERRORS The Global Positioning System versus gravities of the modeling in an inertial navigation that the system error reduction at aircraft at (AIAA PAPER 81-0087) POSITION INDICATORS SPASYN - An electromagnetic relative position orientation tracking system POTENTIAL PLON Body-fitted 3-D full-potential flow analyse complex ducts and inlets (AIAA PAPER 81-0002) POWDER METALLURGY	A81-20861 argets lata
Pelayed ejection decision factor impor for pilot safety The apparent ignoring of pilot fatigue by in airline crashes The use of total simulator training in transitioning air-carrier pilots: A fie evaluation [NASA-TM-81250] PILOT TRAINING Critical research issues and visual system requirements for a V/STOL training reseasimulator [AD-A092561] The use of total simulator training in transitioning air-carrier pilots: A fie evaluation [NASA-TM-81250] Spin recovery training [GPO-67-439] PLANFORMS	A81-20914 Itance A81-22102 the NTSB A81-22104 Id N81-16994 ICCh N81-16072 Id N81-16994 N81-17098	High-solids coatings for exterior aircraft POSITION (LOCATION) Detection of direction changes of flying to from position coordinates of the radar of the LR80 land navigation (AD-A091885) POSITION ERBORS The Global Positioning System versus gravidisturbance modeling in an inertial navisystem error reduction at aircraft of AIAA PAPER 81-0087] POSITION INDICATORS SPASYN - An electromagnetic relative positioning system POTENTIAL PLOW Body-fitted 3-D full-potential flow analysic complex ducts and inlets [AIAA PAPER 81-0002]	A81-20861 argets lata
Pelayed ejection decision factor impor for pilot safety The apparent ignoring of pilot fatigue by in airline crashes The use of total simulator training in transitioning air-carrier pilots: A fie evaluation [NASA-TR-81250] PILOT TRAINING Critical research issues and visual system requirements for a V/STOL training resea simulator [AD-A092561] The use of total simulator training in transitioning air-carrier pilots: A fie evaluation [NASA-TR-81250] Spin recovery training [GPO-67-439] PLAFFORMS An analytical solution of lift loss for a	A81-20914 Itance A81-22102 the NTSB A81-22104 Id N81-16994 ICCh N81-16072 Id N81-16994 N81-17098	High-solids coatings for exterior aircraft POSITION (LOCATION) Detection of direction changes of flying to from position coordinates of the radar of the LR80 land navigation (AD-A091885) POSITION ERRORS The Global Positioning System versus graving disturbance modeling in an inertial navigation that the companies of the LR80 land navigation in the companies of the companies	A81-20861 argets lata
Pelayed ejection decision factor impor for pilot safety The apparent ignoring of pilot fatigue by in airline crashes The use of total simulator training in transitioning air-carrier pilots: A fie evaluation [NASA-TH-81250] PILOT THAINING Critical research issues and visual system requirements for a V/STOL training resea simulator [AD-A092561] The use of total simulator training in transitioning air-carrier pilots: A fie evaluation [NASA-TH-81250] Spin recovery training [GPO-67-439] PLAMFORMS An analytical solution of lift loss for a planform with a central lifting jet	A81-20914 ttance A81-22102 the NTSB A81-22104 A81-16994 ARTCh N81-16072 ARTCH N81-16994 N81-16994 N81-17098 round	POSITION (LOCATION) Detection of direction changes of flying to from position coordinates of the radar of the LR80 land navigation (AD-A091885) POSITION ERRORS The Global Positioning System versus gravity disturbance modeling in an inertial navisystem error reduction at aircraft of (AIAA PAPER 81-0087) POSITION INDICATORS SPASYN - An electromagnetic relative posity orientation tracking system POTENTIAL PLOW Body-fitted 3-D full-potential flow analyst complex ducts and inlets [AIAA PAPER 81-0002] POWDER METALLURGY Progress in P/M superalloy and titanium for aircraft applications Crack growth modeling in an advanced powder	A81-20861 argets lata
Pelayed ejection decision factor impor for pilot safety The apparent ignoring of pilot fatigue by in airline crashes The use of total simulator training in transitioning air-carrier pilots: A fie evaluation [NASA-TR-81250] PILOT TRAINING Critical research issues and visual system requirements for a V/STOL training resea simulator [AD-A092561] The use of total simulator training in transitioning air-carrier pilots: A fie evaluation [NASA-TR-81250] Spin recovery training [GPO-67-439] PLAFFORMS An analytical solution of lift loss for a	A81-20914 Itance A81-22102 the NTSB A81-22104 Id N81-16994 ICCh N81-16072 Id N81-16994 N81-17098	POSITION (LOCATION) Detection of direction changes of flying to from position coordinates of the radar of Field evaluation of the LR80 land navigation (AD-A091885) POSITION REBORS The Global Positioning System versus gravidisturbance modeling in an inertial navisystem error reduction at aircraft of AIAA PAPER 81-0087) POSITION INDICATORS SPASYN - An electromagnetic relative positionientation tracking system POTENTIAL FLOW Body-fitted 3-D full-potential flow analystomplets ducts and inlets [AIAA PAPER 81-0002] POWDER METALLURGY Progress in P/M superalloy and titanium for aircraft applications Crack growth modeling in an advanced powder metallurgy alloy	A81-20861 argets lata
Pelayed ejection decision factor impor for pilot safety The apparent ignoring of pilot fatigue by in airline crashes The use of total simulator training in transitioning air-carrier pilots: A fie evaluation [NASA-TH-81250] PILOT THAINING Critical research issues and visual system requirements for a V/STOL training resea simulator [AD-A092561] The use of total simulator training in transitioning air-carrier pilots: A fie evaluation [NASA-TH-81250] Spin recovery training [GPO-67-439] PLANFORMS An analytical solution of lift loss for a planform with a central lifting jet [AIAA PAPER 81-0011] PLASMAS (PHYSICS) Cathode ray tubes and plasma panels as dis	A81-20914 Itance A81-22102 The NTSB A81-22104 Id N81-16994 ICh N81-16072 Id N81-16994 N81-17098 Found A81-20535	High-solids coatings for exterior aircraft POSITION (LOCATION) Detection of direction changes of flying to from position coordinates of the radar of the LR80 land navigation (AD-A091885) POSITION ERRORS The Global Positioning System versus gravity disturbance modeling in an inertial navisystem error reduction at aircraft of (AIAA PAPER 81-0087) POSITION INDICATORS SPASYN - An electromagnetic relative posity orientation tracking system POTENTIAL PLOW Body-fitted 3-D full-potential flow analyst complex ducts and inlets [AIAA PAPER 81-0002] POWDER METALLURGY Progress in P/M superalloy and titanium for aircraft applications Crack growth modeling in an advanced powder metallurgy alloy [AD-A093992] POWER LIMES	A81-20861 argets lata A81-20099 On system N81-16035 aty ligation lititude A81-20591 alion and A81-21828 alion A81-20527 alion A81-20527 alion A81-20527 alion A81-22641 argets N81-17235
Pelayed ejection decision factor impor for pilot safety The apparent ignoring of pilot fatigue by in airline crashes The use of total simulator training in transitioning air-carrier pilots: A fie evaluation [NASA-TR-81250] PILOT TRAINING Critical research issues and visual system requirements for a V/STOL training resea simulator [AD-A092561] The use of total simulator training in transitioning air-carrier pilots: A fie evaluation [NASA-TR-81250] Spin recovery training [GPO-67-439] PLAMFORMS An analytical solution of lift loss for a planform with a central lifting jet [AIAA PAPER 81-0011] PLASHAS (PHYSICS)	A81-20914 Itance A81-22102 the NTSB A81-22104 Id N81-16994 Ich N81-16072 Id N81-16994 N81-17098 round A81-20535	High-solids coatings for exterior aircraft POSITION (LOCATION) Detection of direction changes of flying to from position coordinates of the radar of Field evaluation of the LR80 land navigation (AD-A091885) POSITION ERRORS The Global Positioning System versus graving disturbance modeling in an inertial navingstem error reduction at aircraft of AIAA PAPER 81-0087) POSITION INDICATORS SPASYN - An electromagnetic relative positionientation tracking system POTENTIAL FLOW Body-fitted 3-D full-potential flow analystic complex ducts and inlets [AIAA PAPER 81-0002] POWDER METALLURGY Progress in P/M superalloy and titanium for aircraft applications Crack growth modeling in an advanced powder metallurgy alloy [AD-A093992] POWER LINES Tension induced in the cables inside close	A81-20861 argets lata A81-20099 On system N81-16035 lty gation lititude A81-20591 ion and A81-21828 sis of A81-20527 or A81-22641 er N81-17235 ed metal
Pelayed ejection decision factor import for pilot safety The apparent ignoring of pilot fatigue by in airline crashes The use of total simulator training in transitioning air-carrier pilots: A fie evaluation [NASA-TH-81250] PILOT TRAINING Critical research issues and visual system requirements for a V/STOL training reseatimulator [AD-A092561] The use of total simulator training in transitioning air-carrier pilots: A fie evaluation [NASA-TH-81250] Spin recovery training [GP0-67-439] PLAMFORMS An analytical solution of lift loss for a planform with a central lifting jet [AIAA PAPER 81-0011] PLASMAS (PHYSICS) Cathode ray tubes and plasma panels as dis devices for aircraft displays	A81-20914 Itance A81-22102 The NTSB A81-22104 Id N81-16994 ICh N81-16072 Id N81-16994 N81-17098 Found A81-20535	High-solids coatings for exterior aircraft POSITION (LOCATION) Detection of direction changes of flying to from position coordinates of the radar of Pield evaluation of the LR80 land navigation (AD-A091885) POSITION RENORS The Global Positioning System versus graving disturbance modeling in an inertial naving system error reduction at aircraft at (AIAA PAPER 81-0087) POSITION INDICATORS SPASYN - An electromagnetic relative positionientation tracking system POTENTIAL PLON Body-fitted 3-D full-potential flow analyst complex ducts and inlets (AIAA PAPER 81-0002) POWDER METALLURGY Progress in P/M superalloy and titanium for aircraft applications Crack growth modeling in an advanced powder metallurgy alloy (AD-A093992) POWER LIMES Tension induced in the cables inside close structures and in carbon epoxy submitted	A81-20861 argets lata A81-20099 On system N81-16035 lty gation lititude A81-20591 ion and A81-21828 sis of A81-20527 or A81-22641 er N81-17235 ed metal
Pelayed ejection decision factor impor for pilot safety The apparent ignoring of pilot fatigue by in airline crashes The use of total simulator training in transitioning air-carrier pilots: A fie evaluation [NASA-TH-81250] PILOT TRAINING Critical research issues and visual system requirements for a V/STOL training resea simulator [AD-A092561] The use of total simulator training in transitioning air-carrier pilots: A fie evaluation [NASA-TH-81250] Spin recovery training [GPO-67-439] PLANFORMS An analytical solution of lift loss for a planform with a central lifting jet [AIAA PAPER 81-0011] PLANMAS (PHYSICS) Cathode ray tubes and plasma panels as dis devices for aircraft displays	A81-20914 Itance A81-22102 the NTSB A81-22104 Id N81-16994 Ich N81-16072 Id N81-16994 N81-17098 round A81-20535	High-solids coatings for exterior aircraft POSITION (LOCATION) Detection of direction changes of flying to from position coordinates of the radar of Field evaluation of the LR80 land navigation (AD-A091885) POSITION ERRORS The Global Positioning System versus graving disturbance modeling in an inertial navingstem error reduction at aircraft of AIAA PAPER 81-0087) POSITION INDICATORS SPASYN - An electromagnetic relative positionientation tracking system POTENTIAL FLOW Body-fitted 3-D full-potential flow analystic complex ducts and inlets [AIAA PAPER 81-0002] POWDER METALLURGY Progress in P/M superalloy and titanium for aircraft applications Crack growth modeling in an advanced powder metallurgy alloy [AD-A093992] POWER LINES Tension induced in the cables inside close	A81-20861 argets lata A81-20099 On system N81-16035 lty gation lititude A81-20591 ion and A81-21828 sis of A81-20527 or A81-22641 er N81-17235 ed metal
Pelayed ejection decision factor import for pilot safety The apparent ignoring of pilot fatigue by in airline crashes The use of total simulator training in transitioning air-carrier pilots: A fie evaluation [NASA-TH-81250] PILOT TRAINING Critical research issues and visual system requirements for a V/STOL training reseatimulator [AD-A092561] The use of total simulator training in transitioning air-carrier pilots: A fie evaluation [NASA-TH-81250] Spin recovery training [GPO-67-439] PLAMFORMS An analytical solution of lift loss for a planform with a central lifting jet [AIAA PAPER 81-0011] PLASMAS (PHYSICS) Cathode ray tubes and plasma panels as dis devices for aircraft displays Large area gas discharge displays	A81-20914 Itance A81-22102 the NTSB A81-22104 Id N81-16994 Ich N81-16072 Id N81-16994 N81-17098 round A81-20535 Iplay N81-17069 N81-17069	High-solids coatings for exterior aircraft POSITION (LOCATION) Detection of direction changes of flying to from position coordinates of the radar of from position coordinates of the radar of the LR80 land navigating (AD-A091885) POSITION RENORS The Global Positioning System versus graving disturbance modeling in an inertial naving system error reduction at aircraft of (AIAA PAPER 81-0087) POSITION INDICATORS SPASYN - An electromagnetic relative positionientation tracking system POTENTIAL FLOW Body-fitted 3-D full-potential flow analyst complex ducts and inlets [AIAA PAPER 81-0002] POWDER METALLURGY Progress in P/M superalloy and titanium for aircraft applications Crack growth modeling in an advanced powder metallurgy alloy [AD-A093992] POWER LINES Tension induced in the cables inside close structures and in carbon epoxy submitted lightning-type impulse current	A81-20861 argets lata
Pelayed ejection decision factor impor for pilot safety The apparent ignoring of pilot fatigue by in airline crashes The use of total simulator training in transitioning air-carrier pilots: A fie evaluation [NASA-TR-81250] PILOT THAINING Critical research issues and visual system requirements for a V/STOL training resea simulator [AD-A092561] The use of total simulator training in transitioning air-carrier pilots: A fie evaluation [NASA-TR-81250] Spin recovery training [GPO-67-439] PLANFORMS An analytical solution of lift loss for a planform with a central lifting jet [AIAA PAPER 81-0011] PLASMAS (PHYSICS) Cathode ray tubes and plasma panels as dis devices for aircraft displays Large area gas discharge displays PLENUM CHAMBERS Numerical simulations of a segmented-plenu	A81-20914 Itance A81-22102 the NTSB A81-22104 Id N81-16994 Ich N81-16072 Id N81-16994 N81-17098 round A81-20535 Iplay N81-17069 N81-17069	POSITION (LOCATION) Detection of direction changes of flying to from position coordinates of the radar of from position coordinates of the radar of the LR80 land navigation (AD-A091885) POSITION ERRORS The Global Positioning System versus graving disturbance modeling in an inertial naving system error reduction at aircraft of (AIAA PAPER 81-0087) POSITION INDICATORS SPASYN - An electromagnetic relative positionientation tracking system POTENTIAL PLOW Body-fitted 3-D full-potential flow analyse complex ducts and inlets [AIAA PAPER 81-0002] POWDER METALLURGY Progress in P/M superalloy and titanium for aircraft applications Crack growth modeling in an advanced powder metallurgy alloy [AD-A093992] POWER LINES Tension induced in the cables inside close structures and in carbon epoxy submitted lightning-type impulse current	A81-20861 argets lata
Pelayed ejection decision factor import for pilot safety The apparent ignoring of pilot fatigue by in airline crashes The use of total simulator training in transitioning air-carrier pilots: A fie evaluation [NASA-TH-81250] PILOT TRAINING Critical research issues and visual system requirements for a V/STOL training reseatimulator [AD-A092561] The use of total simulator training in transitioning air-carrier pilots: A fie evaluation [NASA-TH-81250] Spin recovery training [GPO-67-439] PLAMFORMS An analytical solution of lift loss for a planform with a central lifting jet [AIAA PAPER 81-0011] PLASMAS (PHYSICS) Cathode ray tubes and plasma panels as dis devices for aircraft displays Large area gas discharge displays	A81-20914 Itance A81-22102 the NTSB A81-22104 Id N81-16994 Ich N81-16072 Id N81-16994 N81-17098 round A81-20535 Splay N81-17069 N81-17070	POSITION (LOCATION) Detection of direction changes of flying to from position coordinates of the radar of from position coordinates of the radar of from position coordinates of the radar of from position of the LR80 land navigation (AD-A091885) POSITION REBORS The Global Positioning System versus gravidisturbance modeling in an inertial navisystem error reduction at aircraft of AIAA PAPER 81-0087) POSITION INDICATORS SPASYN - An electromagnetic relative positionientation tracking system POTENTIAL FLOW Body-fitted 3-D full-potential flow analystic complex ducts and inlets [AIAA PAPER 81-0002] POWDER METALLURGY Progress in P/M superalloy and titanium for aircraft applications Crack growth modeling in an advanced powder metallurgy alloy [AD-A093992] POWER LIMES Tension induced in the cables inside close structures and in carbon epoxy submitted lightning-type impulse current POWER SPECTRA A method for the prediction of wing respondents	A81-20861 argets lata
Pelayed ejection decision factor impor for pilot safety The apparent ignoring of pilot fatigue by in airline crashes The use of total simulator training in transitioning air-carrier pilots: A fie evaluation [NASA-TR-81250] PILOT TRAINING Critical research issues and visual system requirements for a V/STOL training resea simulator [AD-A092561] The use of total simulator training in transitioning air-carrier pilots: A fie evaluation [NASA-TR-81250] Spin recovery training [GPO-67-439] PLANFORMS An analytical solution of lift loss for a planform with a central lifting jet [AIAA PAPER 81-0011] PLASMAS (PHYSICS) Cathode ray tubes and plasma panels as dis devices for aircraft displays Large area gas discharge displays PLENUM CHAMBERS Numerical simulations of a segmented-plenu perforated, adaptive-wall wind tunnel [AIAA PAPER 81-0160] PLUG MOZZLES	A81-20914 Itance A81-22102 the NTSB A81-22104 Id N81-16994 Ich N81-16072 Id N81-16994 N81-17098 round A81-20535 Iplay N81-17070 III A81-20640	High-solids coatings for exterior aircraft POSITION (LOCATION) Detection of direction changes of flying to from position coordinates of the radar of from position coordinates of the radar of the LR80 land navigation (AD-A091885) POSITION ERRORS The Global Positioning System versus graving disturbance modeling in an inertial naving system error reduction at aircraft of (AIAA PAPER 81-0087) POSITION INDICATORS SPASYN - An electromagnetic relative position orientation tracking system POTENTIAL PLOW Body-fitted 3-D full-potential flow analyse complex ducts and inlets [AIAA PAPER 81-0002] POWDER METALLURGY Progress in P/M superalloy and titanium for aircraft applications Crack growth modeling in an advanced powder metallurgy alloy [AD-A09392] POWER LINES Tension induced in the cables inside close structures and in carbon epoxy submitted lightning-type impulse current POWER SPECTRA A method for the prediction of wing responsible to the cables in the cabl	A81-20861 argets lata A81-20099 on system N81-16035 ty igation litude A81-20591 ion and A81-21828 sis of A81-22641 er N81-17235 ed metal to a N81-16158 ase to N81-17043
Pelayed ejection decision factor impor for pilot safety The apparent ignoring of pilot fatigue by in airline crashes The use of total simulator training in transitioning air-carrier pilots: A fie evaluation [NASA-TR-81250] PILOT TRAINING Critical research issues and visual system requirements for a V/STOL training resea simulator [AD-A092561] The use of total simulator training in transitioning air-carrier pilots: A fie evaluation [NASA-TR-81250] Spin recovery training [GPO-67-439] PLANFORMS An analytical solution of lift loss for a planform with a central lifting jet [AIAA PAPER 81-0011] PLASMAS (PHYSICS) Cathode ray tubes and plasma panels as dis devices for aircraft displays Large area gas discharge displays PLENUM CHAMBERS Numerical simulations of a segmented-plenu perforated, adaptive-wall wind tunnel [AIAA PAPER 81-0160] PLUG MOZZLES Acoustic and aerodynamic performance inves	A81-20914 Itance A81-22102 the NTSB A81-22104 Id N81-16994 ICh N81-16072 Id N81-17098 round A81-20535 Eplay N81-17069 N81-17070 III A81-20640 Itigation	High-solids coatings for exterior aircraft POSITION (LOCATION) Detection of direction changes of flying to from position coordinates of the radar of from position coordinates of the radar of from position coordinates of the radar of from position of the LR80 land navigation (AD-A091885) POSITION REBORS The Global Positioning System versus graving disturbance modeling in an inertial navigation of the LR80 land navigation system error reduction at aircraft of AIAA PAPER 81-0087] POSITION INDICATORS SPASYN - An electromagnetic relative position orientation tracking system POTENTIAL FLOW Body-fitted 3-D full-potential flow analyst complex ducts and inlets (AIAA PAPER 81-0002) POWDER METALLURGY Progress in P/M superalloy and titanium for aircraft applications Crack growth modeling in an advanced powder metallurgy alloy [AD-A093992] POWER LIMES Tension induced in the cables inside close structures and in carbon epoxy submitted lightning-type impulse current POWER SPECTRA A method for the prediction of wing response in AD-A093037] PREDICTION ANALYSIS TECHNIQUES Numerical investigation of a model of turn	A81-20861 argets lata A81-20099 on system N81-16035 ty igation litude A81-20591 ion and A81-21828 sis of A81-22641 er N81-17235 ed metal to a N81-16158 ase to N81-17043
Pelayed ejection decision factor impor for pilot safety The apparent ignoring of pilot fatigue by in airline crashes The use of total simulator training in transitioning air-carrier pilots: A fie evaluation [NASA-TR-81250] PILOT TRAINING Critical research issues and visual system requirements for a V/STOL training resea simulator [AD-A092561] The use of total simulator training in transitioning air-carrier pilots: A fie evaluation [NASA-TR-81250] Spin recovery training [GP0-67-439] PIANYORMS An analytical solution of lift loss for a planform with a central lifting jet [AIAA PAPER 81-0011] PLASHAS (PHYSICS) Cathode ray tubes and plasma panels as dis devices for aircraft displays Large area gas discharge displays PLENUM CHAMBERS Numerical simulations of a segmented-plenu perforated, adaptive-wall wind tunnel [AIAA PAPER 81-0160] PLUG MOZZLES Acoustic and aerodynamic performance inves of inverted velocity profile coannular p	A81-20914 Itance A81-22102 the NTSB A81-22104 Id N81-16994 ICh N81-16072 Id N81-17098 round A81-20535 Eplay N81-17069 N81-17070 III A81-20640 Itigation	High-solids coatings for exterior aircraft POSITION (LOCATION) Detection of direction changes of flying to from position coordinates of the radar of from position coordinates of the radar of the LR80 land navigation (AD-A091885) POSITION RENORS The Global Positioning System versus graving disturbance modeling in an inertial naving system error reduction at aircraft of (AIAA PAPER 81-0087) POSITION INDICATORS SPASYN - An electromagnetic relative positionientation tracking system POTENTIAL FLOW Body-fitted 3-D full-potential flow analyst complex ducts and inlets (AIAA PAPER 81-0002) POWDER METALLURGY Progress in P/M superalloy and titanium for aircraft applications Crack growth modeling in an advanced powder metallurgy alloy (AD-A093992) POWER LINES Tension induced in the cables inside close structures and in carbon epoxy submitted lightning-type impulse current POWER SPECTRA A method for the prediction of wing responsions to the prediction of a model of turk combustion of hydrocarbons	A81-20861 argets lata
Pelayed ejection decision factor impor for pilot safety The apparent ignoring of pilot fatigue by in airline crashes The use of total simulator training in transitioning air-carrier pilots: A fie evaluation [NASA-TR-81250] PILOT TRAINING Critical research issues and visual system requirements for a V/STOL training resea simulator [AD-A092561] The use of total simulator training in transitioning air-carrier pilots: A fie evaluation [NASA-TR-81250] Spin recovery training [GPO-67-439] PLANFORMS An analytical solution of lift loss for a planform with a central lifting jet [AIAA PAPER 81-0011] PLASMAS (PHYSICS) Cathode ray tubes and plasma panels as dis devices for aircraft displays Large area gas discharge displays PLENUM CHAMBERS Numerical simulations of a segmented-plenu perforated, adaptive-wall wind tunnel [AIAA PAPER 81-0160] PLUG MOZZLES Acoustic and aerodynamic performance inves	A81-20914 Itance A81-22102 the NTSB A81-22104 Id N81-16994 ICh N81-16072 Id N81-17098 round A81-20535 Eplay N81-17069 N81-17070 III A81-20640 Itigation	High-solids coatings for exterior aircraft POSITION (LOCATION) Detection of direction changes of flying to from position coordinates of the radar of from position coordinates of the radar of from position coordinates of the radar of from position of the LR80 land navigation (AD-A091885) POSITION REBORS The Global Positioning System versus graving disturbance modeling in an inertial navigation of the LR80 land navigation system error reduction at aircraft of AIAA PAPER 81-0087] POSITION INDICATORS SPASYN - An electromagnetic relative position orientation tracking system POTENTIAL FLOW Body-fitted 3-D full-potential flow analyst complex ducts and inlets (AIAA PAPER 81-0002) POWDER METALLURGY Progress in P/M superalloy and titanium for aircraft applications Crack growth modeling in an advanced powder metallurgy alloy [AD-A093992] POWER LIMES Tension induced in the cables inside close structures and in carbon epoxy submitted lightning-type impulse current POWER SPECTRA A method for the prediction of wing response in AD-A093037] PREDICTION ANALYSIS TECHNIQUES Numerical investigation of a model of turn	A81-20861 argets lata A81-20099 on system N81-16035 ty igation litude A81-20591 ion and A81-21828 sis of A81-22641 r N81-17235 ed metal to a N81-16158 lise to N81-17043 sulent A81-20559
Pelayed ejection decision factor impor for pilot safety The apparent ignoring of pilot fatigue by in airline crashes The use of total simulator training in transitioning air-carrier pilots: A fie evaluation [NASA-TR-81250] PILOT TRAINING Critical research issues and visual system requirements for a V/STOL training resea simulator [AD-A092561] The use of total simulator training in transitioning air-carrier pilots: A fie evaluation [NASA-TR-81250] Spin recovery training [GPO-67-439] PLANFORNS An analytical solution of lift loss for a planform with a central lifting jet [AIAA PAPER 81-0011] PLASMAS (PHYSICS) Cathode ray tubes and plasma panels as dis devices for aircraft displays Large area gas discharge displays PLENUM CHAMBERS Numerical simulations of a segmented-plenu perforated, adaptive-wall wind tunnel [AIAA PAPER 81-0160] PLUG MOZZLES ACOUSTIC and aerodynamic performance inves of inverted velocity profile coannular pnozzles variable cycle engines	A81-20914 Itance A81-22102 The NTSB A81-22104 Id N81-16994 Ich N81-16072 Id N81-16994 N81-17098 Found A81-20535 Iplay N81-17069 N81-17070 Im. A81-20640 Itigation	High-solids coatings for exterior aircraft POSITION (LOCATION) Detection of direction changes of flying to from position coordinates of the radar of from position coordinates of the radar of the LR80 land navigating [AD-A091885] POSITION ERBORS The Global Positioning System versus graving disturbance modeling in an inertial naving system error reduction at aircraft of [AIAA PAPER 81-0087] POSITION INDICATORS SPASYN - An electromagnetic relative posity orientation tracking system POTENTIAL PLON Body-fitted 3-D full-potential flow analyst complex ducts and inlets [AIAA PAPER 81-0002] POWDER METALLURGY Progress in P/M superalloy and titanium for aircraft applications Crack growth modeling in an advanced powder metallurgy alloy [AD-A093992] POWER LIMES Tension induced in the cables inside closed structures and in carbon epoxy submitted lightning-type impulse current POWER SPECTRA A method for the prediction of wing responsible to the prediction of wing responsible to the prediction of a model of turn combustion and papers an	A81-20861 argets lata A81-20099 on system N81-16035 ty igation litude A81-20591 ion and A81-21828 sis of A81-22641 r N81-17235 ed metal to a N81-16158 lise to N81-17043 sulent A81-20559

PREDICTIONS SUBJECT INDEX

Study of transonic flow fields about aircr	aft:	PROPAGATION VELOCITY	
Application to external stores	N81-15998	Crack propagation in lugs	A81-22629
Data base for the prediction of inlet exte	rnal drag	PROPELLER BLADES	201 22023
A method for the prediction of wing respon	N81-16018 se to	The high-speed airfoil program	N81-15970
nonstationary buffet loads		The high-speed propeller program	
[AD-A093037] PREDICTIONS	N81-17043	PROPELLER FANS	N81-15972
Robust autoregressive models for predictin	g	Noise generation mechanism of low pressure	
aircraft motion from noisy data	A81-20473	propeller fans [AIAA PAPER 81-0090]	A81-20594
PREMIXED PLANES		PROPELLER SLIPSTREAMS	
Numerical investigation of a model of turb combustion of hydrocarbons	ulent	An application of wake survey rakes to the • experimental determination of thrust for	
[AIAA PAPER 81-0039]	A81-20559	propeller driven aircraft	N81-15986
PREMIXING A model for the analysis of		[NASA-CR-163920] PROPELLERS	80 1-13900
Premixing-prevaporizing fuel-air mixing [AIAA PAPER 81-0345]	passages A81-20767.	Propeller propulsion integration, phase 1 conducted in langley 30 by 60 foot full:	
PRESSURE DISTRIBUTION	A01-20707.	wind tunnel	
A constrained inverse method for the aerod design of thick wings with given pressur		[NASA-CR-163921] PROPULSION SYSTEM PERFORMANCE	N81-16058
distribution in subsonic flow		Propulsion system mathematical model for a	
Jet wing interference for an overwing engi	N81-16006	lift/cruise fan V/STOL aircraft [NASA-TM-81663]	N81-16055
configuration		Propeller propulsion integration, phase 1	
PRESSURE EPPECTS	N81-16008	conducted in langley 30 by 60 foot full : wind tunnel	scale
Core compressor exit stage study. Volume	2: Data	[NASA-CR-163921]	พ81-16058
and performance report for the baseline configuration		PROTECTION Flame tube and ballistic evaluation of Exp.	losafe
[NASA-CR-159498] PRESSURE GRADIENTS	N81-16051	aluminum foil for aircraft fuel tank exp	
Wind tunnel wall interference		protection suppressing combustion over [AD-A093542]	N81-17046
[AD-A093301] PRESSURE MEASUREMENTS	N81-17104	PULSE DOPPLER RADAR Pulsed Doppler radar detects weather hazard	de to
Unsteady fan blade pressure and acoustic r		aviation	
from a JT15D-1 turbofan engine at simula forward speed	ted	[AIAA PAPER 81-0235] PULSE GENERATORS	A81-2069.1.
[AIAA PAPER 81-0096]	A81-20598	Aircraft EMP isolation study	
PRESSURE REDUCTION Flame tube and ballistic evaluation of Exp	losafe	[AD-A093772] PULSE RADAR	N8 1- 17333
aluminum foil for aircraft fuel tank exp	losion	Coherent signal processing in frequency ag	ile
protection suppressing combustion ov [AD-A093542]	erpressure N81-17046	pulse radar units	A81-20097
PRESSURE SENSORS	ainad	PULSED LASERS	Fations
Comparison of flight load measurements obt from calibrated strain gages and pressure		Controls of aeronautical structures under a testing by holographic pulsed lasers	racigue;
transducers [AD-A093758]	N81-17044	interferometry	A81-22692
PRESSURE VESSELS		PURSUIT TRACKING	٠
The use of acoustic emission for detecting evaluating of fatigue cracks severity du		Formation tracking. Part 2: Tracking and procedures	control
static and cyclic loading of structure e	lements	[PFM-279-PT-2]	N8 1-17 110
PREV APORIZATION	A81-20214	•	
A model for the analysis of premixing-prevaporizing fuel-air mixing	D2552705	QUALITY CONTROL	
[AIAA PAPER 81-0345]	A81-20767	Evaluation and comparison of nondestructive	е
PROBABILITY THEORY The evaluation of aircraft collision proba	hilities	service inspection methods	A81-20135
at intersecting air routes		Application of excelectron emission for qua	
Mathematical aspects of the probabilistic	A81-21967	control of gas-turbine engine parts	A81-21367
evaluations of structural safety and NDI capabilities		Aircraft accident investigation as it rela	tes to
-	A81-22635	life support equipment	A81-22103
PROCESS CONTROL (INDUSTRY) New developments of data processing in		Prospects for bonding primary aircraft strain the 80°s	ucture
computer-controlled manufacturing system	s /DNC,		A81-22679
Pas/	A81-19845	QUIET ENGINE PROGRAM QSRA Joint Navy/NASA sea trials Quiet :	Short
PRODUCTION ENGINEERING		Haul Research Aircraft	
Environmental burn-in effectiveness [AD-A093307]	N81-17060	[AIAA PAPER 81-0152]	A81-20633
PRODUCTION PLANNING		R	
Computer-aided process planning system for aircraft engine rotating parts		RADAR ANTENNAS	
New developments of data processing in	A81-19836	Improved secondary radar antennas for fligs safety installations	ht
computer-controlled manufacturing system	s /DNC,	-	A8 1- 20083
PMS/	A 81-19845	New ways in antenna technology for optimal adjustment of the background clutter	
PROGRAM VERIFICATION (COMPUTERS)			A81-20084
Validation of a two dimensional primitive computer code for flow fields in jet eng	variabie ine test	Increased target resolution and minor lobe reduction with active group antennas	
cells			A81-20090
[AD-A092138]	N81-16060		

SUBJECT INDEX

Improvement of effective minor lobe behavior of	RADIO PREQUENCY INTERPERENCE
radar antennas through signal processing A81-20091	A supplementary EMC analysis of the proposed Airport Surface Detection Equipment (ASDE-3) radar
Side lobe suppression with digital signal processing	[AD-A092965] N81-17342
RADAR BRACONS	RADIO HAVIGATION SPASIN - An electromagnetic relative position and
Detection of military aircraft in an Air Traffic	orientation tracking system
Control Radar Beacon System (ATCRBS) environment [AD-A093427] N81-17036	A81-21828 Band sharing - A case study
RADAR CLUTTER MAPS	A81-21869
New ways in antenna technology for optimal adjustment of the background clutter	Federal Radionavigation Plan. Volume 1:
A81-20084	Radionavigation plans and policy [AD-A093774] N81-17030
Evaluation of false alarm information with the ELRA	Federal Radionavigation Plan. Volume 2:
RADAR DATA	Requirements [AD-A093775] N81-17031
The state of development and design of target data	Pederal Radionavigation Plan. Volume 3:
processing of the ELRA system A81-20089	Radionavigation system characteristics [AD-A093776] N81-17032
New techniques and development trends in the	Federal Radionavigation Plan. Volume 4:
system architecture of RDP systems for radar	Radionavigation research, engineering and
data processing and airspace control	development [AD-A093777] N81-17033
RADAR DETECTION	RADIO PROBING
Adaptive control for electronic countermeasures A81-20470	Measurement of radar in radio service aircraft A81-20079
Mini-RPV radar test program	RADIO RECEIVERS
A81-22619	GPS receiver simulation
RADAR EQUIPMENT Measurement of radar in radio service aircraft	A81-21913 RAILS
A81-20079	Study of a crack propagation on the flap rail of a
Coherent signal processing in frequency agile pulse radar units	transport aircraft A81-22633
A81-20097	RAIN BROSION
RADAR FILTERS	The effect of the in-service environment on
Target detection and parameter estimation in surveillance radars using MTI-PPT processing	composite materials (resume of the April 1980 Athens conference)
A81-20094	N81-16146
RADAR IMAGERY * New airborne weather radar systems	RAINSTORMS The effect of heavy rain on windshear attributed
[AIAA PAPER 81-0237] A81-20692	accidents
SRADAR HAPS	[AIAA PAPER 81-0390] A81-20800
A preliminary human factors flight assessment of a Marconi automatic map	RAMJET ENGINES Comparison of systems of power generation during
[AD-A092585] N81-16036	emergencies /aboard aircraft/
RADAR TARGETS N.The state of development and design of target data	A81-22203 High-speed cowlings, air inlets and outlets, and
processing of the ELRA system	internal-flow systems
Detection of direction changes of flying targets	N81-15973 The 17th JANNAF combustion meeting, volume 1
from position coordinates of the radar data	[NASA-TM-82238] N81-16253
A81-20099	RANDON NOISE
RADAR TRACKING **** A mobile computer-aided detection and tracking	Robust autoregressive models for predicting aircraft motion from noisy data
system for low-flying attack aircraft	A81-20473
A81-20098 Detection of direction changes of flying targets	The spectral analysis of nonstationary random processes - Applications to aircraft
from position coordinates of the radar data	overflight-type noises Prench thesis
A81-20099	RANDOM NUMBERS
Application of Doppler information to automatic target tracking	A correlated random numbers generator and its use
A81-20101	to estimate false alarm rates of airplane sensor
New techniques for the monopulse-radar tracking of high-maneuverability aircraft	failure detection algorithms A81-20448
A81-20102	RANDOM PROCESSES
Adaptive control for electronic countermeasures A81-20470	The spectral analysis of nonstationary random processes - Applications to aircraft
SPASYN - An electromagnetic relative position and	overflight-type noises French thesis
orientation tracking system	A81-21922
RADAR TRANSMISSION	READERS A preliminary human factors flight assessment of a
Multipath and interference effects in secondary	Marconi automatic map
surveillance radar systems A81-23359	[AD-A092585] N81-16C36 REAL TIME OPERATION
RADIATION DISTRIBUTION	A case study - Real time simulation and structured
Radiation boundary conditions for wave-like equations numerical jet acoustics	design A81-21721
experimentation	Experimental analysis of IMEP in a rotary
A81-20223	combustion engine
RADIATION HARDENING Improving surface current injection techniques via	[NASA-TH-81662] N81-16054 RECEPTION DIVERSITY
one- and two-dimensional models	Omega signal coverage prediction diagrams for 10.2
A81-19940 RADIO DIRECTION FINDERS	kHz. Volume 1: Technical approach [AD-A092741] N81-16030
Radio direction finding on high frequency short	REPIBLEG REPLECTIONS
duration signals	Effect of refining variables on the properties and
[AD-A092136] N81-16029	composition of JP-5 . [AD-A093842] N81-17281

REFUELING SUBJECT INDEX

REPO ELING	RESOLUTION
Static charge in aircraft fuel tanks	The presentation of static information on air.
[AD-A093552] N81-17045	traffic control displays
REGRESSION ANALYSIS	N81-1706
Methodology for determining sampling intervals	RESOURCES MANAGEMENT
[AD-A092591] N81-16825	NASA's activities in the conservation of strategic
REGULATIONS	aerospace materials
Transport jet aircraft noise abatement in foreign	A81-2253
countries: Growth, structure, impact. Volume	RETRIEVAL
1: Europe, July 1980	Development and demonstration of an automatic
[NA SA-CR-152356] N81-17623	control and recovery system for remotely piloted
Transport jet aircraft noise abatement in foreign	vehicles
countries: Growth, structure, impact. Volume	A81-2047
2: Pacific basin, August 1980	ROBUSTNESS (MATHEMATICS)
[NASA-CR-152357-VOL-2] N81-17624	Robust autoregressive models for predicting
REINFORCEMENT (STRUCTURES)	aircraft motion from noisy data
Thermal considerations in the patching of metal	A81-2047.
	Robustness properties of a new multirate digital
sheets with composite overlays	
A81-20297	control system
Potential use of geotechnical fabric in airfield	[AIAA PAPER 81-0022] A81-2054
runway design reinforced soil systems	ROTARY WINGS
[AD-A092686] N81-16071	Patigue life evaluation of a helicopter main rotor
RELIABILITY	hub
Omega transmitter outages, January to December 1979	A81-2263
[AD-A093425] N81-17035	A flight investigation of performance and loads
RELIABILITY AWALYSIS	for a helicopter with RC-SC2 main-rotor blade
Mathematical aspects of the probabilistic	sections
evaluations of structural safety and NDI	[NASA-TM-81898] N81-1598
capabilities	Nonlinear analysis of squeeze film dampers applied
A81-22635	to gas turbine helicopter engines
RELIABILITY ENGINEERING	[AD-A091905] N81-1606
Design, fabrication, and testing of the Maximum	Unsteady wakes downstream from a profile
Performance Ejection System (MPES) seat structure	oscillating in incidence aerodynamic flow
[AD-A092292] N81-16025	tests on helicopter rotor blade profiles
The electro-optical display/visual system	[AAAP-NT-80-10] N81-16989
interface: Human factors considerations	ROTATING BODIES
N81-17066	Computer-aided process planning system for
REMOTE SENSING	aircraft engine rotating parts
Design and preliminary tests of an IR-airborne	A81-1983
LLWS remote sensing system Low Level Wind	A rotating, wind tunnel balance and associated
Shear	experimental techniques
[AIAA PAPER 81-0239] A81-20694	[AAAP-NT-80-13] N81-1710
Tri-bar reading correction for oblique imagery	First results obtained with a rotating construction
A81-22495	used in measuring flying qualities of wind
RRMOTR SRNSORS	
REMOTE SENSORS	tunnel aircraft models
An airborne sensor for the avoidance of clear air	[AAAF-NT-80-14] N81-1710
An airborne sensor for the avoidance of clear air turbulence	[AAAF-NT-80-14] N81-17109 ROTATING DISKS
An airborne sensor for the avoidance of clear air turbulence [AIAA PAPER 81-0297] A81-20735	[AAAF-NT-80-14] B81-17109 ROTATING DISKS Use of speckle-holographic interferometry to study
An airborne sensor for the avoidance of clear air turbulence [AIAA PAPER 81-0297] A81-20735 Mini-BPV radar test program	[AAAF-NT-80-14] 881-1710: ROTATING DISKS Use of speckle-holographic interferometry to study the strain-strain state of a gas-turbine engine
An airborne sensor for the avoidance of clear air turbulence [AIAA PAPER 81-0297] A81-20735 Mini-RPV radar test program A81-22619	[AAAF-NT-80-14] 881-1710: ROTATING DISKS Use of speckle-holographic interferometry to study the strain-strain state of a gas-turbine engine disk close to the blade root fixing
An airborne sensor for the avoidance of clear air turbulence [AIAA PAPER 81-0297] A81-20735 Mini-BPV radar test program A81-22619 A solid-state airborne sensing system for remote	[AAAF-NT-80-14] 881-1710: ROTATING DISKS Use of speckle-holographic interferometry to study the strain-strain state of a gas-turbine engine disk close to the blade root fixing A81-21360
An airborne sensor for the avoidance of clear air turbulence [AIAA PAPER 81-0297] A81-20735 Mini-RPV radar test program A81-22619 A solid-state airborne sensing system for remote sensing	[AAAF-NT-80-14] 881-1710: ROTATING DISKS Use of speckle-holographic interferometry to study the strain-strain state of a gas-turbine engine disk close to the blade root fixing
An airborne sensor for the avoidance of clear air turbulence [AIAA PAPER 81-0297] A81-20735 Mini-RPV radar test program A81-22619 A solid-state airborne sensing system for remote sensing A81-23034	[AAAF-NT-80-14] 881-1710: ROTATING DISKS Use of speckle-holographic interferometry to study the strain-strain state of a gas-turbine engine disk close to the blade root fixing ROTOR AERODYNAMICS Prediction of tilt rotor outwash
An airborne sensor for the avoidance of clear air turbulence [AIAA PAPER 81-0297] A81-20735 Mini-RPV radar test program A81-22619 A solid-state airborne sensing system for remote sensing	[AAAP-NT-80-14] R81-1710: ROTATING DISKS Use of speckle-holographic interferometry to study the strain-strain state of a gas-turbine engine disk close to the blade root fixing A81-21366 ROTOR AERODYBANICS
An airborne sensor for the avoidance of clear air turbulence [AIAA PAPER 81-0297] A81-20735 Mini-RPV radar test program A81-22619 A solid-state airborne sensing system for remote sensing A81-23034	[AAAF-NT-80-14] 881-1710: ROTATING DISKS Use of speckle-holographic interferometry to study the strain-strain state of a gas-turbine engine disk close to the blade root fixing ROTOR AERODYNAMICS Prediction of tilt rotor outwash [AIAA PAPER 81-0013] A81-2053
An airborne sensor for the avoidance of clear air turbulence [AIAA PAPER 81-0297] A81-20735 Mini-RPV radar test program A81-22619 A solid-state airborne sensing system for remote sensing A81-23034 REMOTELY PILOTED VEHICLES Development and demonstration of an automatic	[AAAP-NT-80-14] N81-1710: ROTATING DISKS Use of speckle-holographic interferometry to study the strain-strain state of a gas-turbine engine disk close to the blade root fixing ROTOR AERODYNAMICS Prediction of tilt rotor outwash [AIAA PAPER 81-0013] A81-2053: Noise generation mechanism of low pressure
An airborne sensor for the avoidance of clear air turbulence [AIAA PAPER 81-0297] A81-20735 Mini-RPV radar test program A81-22619 A solid-state airborne sensing system for remote sensing A81-23034 REMOTELY PILOTED VEHICLES	[AAAF-NT-80-14] ROTATING DISKS Use of speckle-holographic interferometry to study the strain-strain state of a gas-turbine engine disk close to the blade root fixing ROTOR AERODINAMICS Prediction of tilt rotor outwash [AIAA PAPER 81-0013] Noise generation mechanism of low pressure propeller fans
An airborne sensor for the avoidance of clear air turbulence [AIAA PAPER 81-0297] Mini-RPV radar test program A81-22619 A solid-state airborne sensing system for remote sensing A81-23034 REMOTELY PILOTED VEHICLES Development and demonstration of an automatic control and recovery system for remotely piloted vehicles	[AAAF-NT-80-14] 881-1710: ROTATING DISKS Use of speckle-holographic interferometry to study the strain-strain state of a gas-turbine engine disk close to the blade root fixing ROTOR AERODYNAMICS Prediction of tilt rotor outwash [AIAA PAPER 81-0013] A81-2053: Noise generation mechanism of low pressure propeller fans [AIAA PAPER 81-0090] A81-2059
An airborne sensor for the avoidance of clear air turbulence [AIAA PAPER 81-0297] A81-20735 Mini-RPV radar test program A81-22619 A solid-state airborne sensing system for remote sensing A81-23034 REMOTELY PILOTED VEHICLES Development and demonstration of an automatic control and recovery system for remotely piloted vehicles A81-20476.	[AAAP-NT-80-14] ROTATING DISKS Use of speckle-holographic interferometry to study the strain-strain state of a gas-turbine engine disk close to the blade root fixing ROTOR AERODYNAMICS Prediction of tilt rotor outwash [AIAA PAPER 81-0013] Noise generation mechanism of low pressure propeller fans [AIAA PAPER 81-0090] ROTOR AERODYNAMICS Prediction of tilt rotor outwash [AIAA PAPER 81-0090] ROTOR AERODYNAMICS AERODYNAM
An airborne sensor for the avoidance of clear air turbulence [AIAA PAPER 81-0297] A81-20735 Mini-RPV radar test program A81-22619 A solid-state airborne sensing system for remote sensing REMOTELY PILOTED VEHICLES Development and demonstration of an automatic control and recovery system for remotely piloted vehicles Qualification of HiMAT flight systems	[AAAF-NT-80-14] ROTATING DISKS Use of speckle-holographic interferometry to study the strain-strain state of a gas-turbine engine disk close to the blade root fixing ROTOR AERODYNAMICS Prediction of tilt rotor outwash [AIAA PAPER 81-0013] Noise generation mechanism of low pressure propeller fans [AIAA PAPER 81-0090] Porced vortices near a wall [AIAA PAPER 81-0256] A81-2070
An airborne sensor for the avoidance of clear air turbulence [AIAA PAPER 81-0297] Mini-BPV radar test program A81-22619 A solid-state airborne sensing system for remote sensing A81-23034 REMOTELY PILOTED VEHICLES Development and demonstration of an automatic control and recovery system for remotely piloted vehicles Qualification of HiMAT flight systems A81-22603	[AAAF-NT-80-14] ROTATING DISKS Use of speckle-holographic interferometry to study the strain-strain state of a gas-turbine engine disk close to the blade root fixing ROTOR AERODYNAMICS Prediction of tilt rotor outwash [AIAA PAPER 81-0013] Noise generation mechanism of low pressure propeller fans [AIAA PAPER 81-0090] Porced vortices near a wall [AIAA PAPER 81-0256] A flight investigation of performance and loads
An airborne sensor for the avoidance of clear air turbulence [AIAA PAPER 81-0297] A81-20735 Mini-RPV radar test program A81-22619 A solid-state airborne sensing system for remote sensing 81-23034 REMOTELY PILOTED VEHICLES Development and demonstration of an automatic control and recovery system for remotely piloted vehicles Qualification of HiMAT flight systems Mini-RPV radar test program	[AAAP-NT-80-14] ROTATING DISKS Use of speckle-holographic interferometry to study the strain-strain state of a gas-turbine engine disk close to the blade root fixing ROTOR AERODYNAMICS Prediction of tilt rotor outwash [AIAA PAPER 81-0013] Noise generation mechanism of low pressure propeller fans [AIAA PAPER 81-0090] Porced vortices near a wall [AIAA PAPER 81-0256] A flight investigation of performance and loads for a helicopter with RC-SC2 main-rotor blade
An airborne sensor for the avoidance of clear air turbulence [AIAA PAPER 81-0297] A81-20735 Mini-RPV radar test program A81-22619 A solid-state airborne sensing system for remote sensing REMOTELY PILOTED VEHICLES Development and demonstration of an automatic control and recovery system for remotely piloted vehicles Qualification of HiMAT flight systems Mini-RPV radar test program A81-22619	[AAAP-NT-80-14] ROTATING DISKS Use of speckle-holographic interferometry to study the strain-strain state of a gas-turbine engine disk close to the blade root fixing ROTOR AERODYNAMICS Prediction of tilt rotor outwash [AIAA PAPER 81-0013] Noise generation mechanism of low pressure propeller fans [AIAA PAPER 81-0090] Porced vortices near a wall [AIAA PAPER 81-0256] A flight investigation of performance and loads for a helicopter with RC-SC2 main-rotor blade sections
An airborne sensor for the avoidance of clear air turbulence [AIAA PAPER 81-0297] Mini-BPV radar test program A81-22619 A solid-state airborne sensing system for remote sensing BENOTELY PILOTED VEHICLES Development and demonstration of an automatic control and recovery system for remotely piloted vehicles Qualification of HiMAT flight systems A81-22603 Mini-RPV radar test program A81-22619 An assessment of technical factors influencing the	[AAAF-NT-80-14] ROTATING DISKS Use of speckle-holographic interferometry to study the strain-strain state of a gas-turbine engine disk close to the blade root fixing ROTOR AERODYNAMICS Prediction of tilt rotor outwash [AIAA PAPER 81-0013] Noise generation mechanism of low pressure propeller fans [AIAA PAPER 81-0090] Porced vortices near a wall [AIAA PAPER 81-0256] A flight investigation of performance and loads for a helicopter with RC-SC2 main-rotor blade sections [NASA-TM-81898] N81-1598:
An airborne sensor for the avoidance of clear air turbulence [AIAA PAPER 81-0297] A81-20735 Mini-RPV radar test program A81-22619 A solid-state airborne sensing system for remote sensing A81-23034 REMOTELY PILOTED VEHICLES Development and demonstration of an automatic control and recovery system for remotely piloted vehicles A81-20476. Qualification of HiMAT flight systems A81-22603 Mini-RPV radar test program A81-22619 An assessment of technical factors influencing the potential use of RPVS for minefield detection	[AAAF-NT-80-14] ROTATING DISKS Use of speckle-holographic interferometry to study the strain-strain state of a gas-turbine engine disk close to the blade root fixing A81-2136 ROTOR AERODYNAMICS Prediction of tilt rotor outwash [AIAA PAPER 81-0013] Noise generation mechanism of low pressure propeller fans [AIAA PAPER 81-0090] Porced vortices near a wall [AIAA PAPER 81-0256] A flight investigation of performance and loads for a helicopter with RC-SC2 main-rotor blade sections [NASA-TH-81898] Some wake-related operational limitations of
An airborne sensor for the avoidance of clear air turbulence [AIAA PAPER 81-0297] A81-20735 Mini-RPV radar test program A81-22619 A solid-state airborne sensing system for remote sensing BENOTELY PILOTED VEHICLES Development and demonstration of an automatic control and recovery system for remotely piloted vehicles A81-20476. Qualification of HiMAT flight systems A81-22603 Mini-RPV radar test program A81-22619 An assessment of technical factors influencing the potential use of RPVS for minefield detection [AD-A092682]	[AAAP-NT-80-14] ROTATING DISKS Use of speckle-holographic interferometry to study the strain-strain state of a gas-turbine engine disk close to the blade root fixing ROTOR AERODYNAMICS Prediction of tilt rotor outwash [AIAA PAPER 81-0013] Noise generation mechanism of low pressure propeller fans [AIAA PAPER 81-0090] Porced vortices near a wall [AIAA PAPER 81-0256] A flight investigation of performance and loads for a helicopter with RC-SC2 main-rotor blade sections [NASA-TM-81898] Some wake-related operational limitations of rotorcraft
An airborne sensor for the avoidance of clear air turbulence [AIAA PAPER 81-0297] Mini-BPV radar test program A81-22619 A solid-state airborne sensing system for remote sensing A81-23034 REMOTELY PILOTED VEHICLES Development and demonstration of an automatic control and recovery system for remotely piloted vehicles Qualification of HiMAT flight systems A81-22603 Mini-RPV radar test program A81-22619 An assessment of technical factors influencing the potential use of RPVS for minefield detection [AD-A092682] The DAST-1 remotely piloted research vehicle	[AAAF-NT-80-14] ROTATING DISKS Use of speckle-holographic interferometry to study the strain-strain state of a gas-turbine engine disk close to the blade root fixing ROTOR AERODYNAMICS Prediction of tilt rotor outwash [AIAA PAPER 81-0013] Noise generation mechanism of low pressure propeller fans [AIAA PAPER 81-0090] Porced vortices near a wall [AIAA PAPER 81-0256] A flight investigation of performance and loads for a helicopter with RC-SC2 main-rotor blade sections [NASA-TH-81898] Some wake-related operational limitations of rotorcraft [NASA-TH-81920] N81-1598:
An airborne sensor for the avoidance of clear air turbulence [AIAA PAPER 81-0297] A81-20735 Mini-RPV radar test program A81-22619 A solid-state airborne sensing system for remote sensing REMOTELY PILOTED VEHICLES Development and demonstration of an automatic control and recovery system for remotely piloted vehicles A81-20476. Qualification of HiMAT flight systems A81-22603 Mini-RPV radar test program A81-22619 An assessment of technical factors influencing the potential use of RPVS for minefield detection [AD-A092682] N81-16047 The DAST-1 remotely piloted research vehicle development and initial flight testing	[AAAF-MT-80-14] ROTATING DISKS Use of speckle-holographic interferometry to study the strain-strain state of a gas-turbine engine disk close to the blade root fixing ROTOR AERODYNAMICS Prediction of tilt rotor outwash [AIAA PAPER 81-0013] Noise generation mechanism of low pressure propeller fans [AIAA PAPER 81-0090] Porced vortices near a wall [AIAA PAPER 81-0256] A flight investigation of performance and loads for a helicopter with RC-SC2 main-rotor blade sections [NASA-TH-81898] Some wake-related operational limitations of rotorcraft [NASA-TH-81920] Hean rotor wake characteristics of an
An airborne sensor for the avoidance of clear air turbulence [AIAA PAPER 81-0297] A81-22619 Mini-RPV radar test program A81-22619 A solid-state airborne sensing system for remote sensing BEMOTELY PILOTED VEHICLES Development and demonstration of an automatic control and recovery system for remotely piloted vehicles A81-20476. Qualification of HiMAT flight systems A81-22603 Mini-RPV radar test program A81-22619 An assessment of technical factors influencing the potential use of RPVS for minefield detection [AD-A092682] The DAST-1 remotely piloted research vehicle development and initial flight testing [NASA-CR-163105] N81-17038	[AAAP-NT-80-14] ROTATING DISKS Use of speckle-holographic interferometry to study the strain-strain state of a gas-turbine engine disk close to the blade root fixing ROTOR AERODYNAMICS Prediction of tilt rotor outwash [AIAA PAPER 81-0013] Noise generation mechanism of low pressure propeller fans [AIAA PAPER 81-0090] Porced vortices near a wall [AIAA PAPER 81-0256] A flight investigation of performance and loads for a helicopter with RC-SC2 main-rotor blade sections [NASA-TH-81898] Some wake-related operational limitations of rotorcraft [NASA-TH-81920] Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fan
An airborne sensor for the avoidance of clear air turbulence [AIAA PAPER 81-0297] A81-20735 Mini-RPV radar test program A81-22619 A solid-state airborne sensing system for remote sensing REMOTELY PILOTED VEHICLES Development and demonstration of an automatic control and recovery system for remotely piloted vehicles A81-20476. Qualification of HiMAT flight systems A81-22603 Mini-RPV radar test program A81-22619 An assessment of technical factors influencing the potential use of RPVS for minefield detection [AD-A092682] N81-16047 The DAST-1 remotely piloted research vehicle development and initial flight testing	[AAAF-MT-80-14] ROTATING DISKS Use of speckle-holographic interferometry to study the strain-strain state of a gas-turbine engine disk close to the blade root fixing ROTOR AERODYNAMICS Prediction of tilt rotor outwash [AIAA PAPER 81-0013] Noise generation mechanism of low pressure propeller fans [AIAA PAPER 81-0090] Porced vortices near a wall [AIAA PAPER 81-0256] A flight investigation of performance and loads for a helicopter with RC-SC2 main-rotor blade sections [NASA-TH-81898] Some wake-related operational limitations of rotorcraft [NASA-TH-81920] Hean rotor wake characteristics of an
An airborne sensor for the avoidance of clear air turbulence [AIAA PAPER 81-0297] A81-22619 Mini-RPV radar test program A81-22619 A solid-state airborne sensing system for remote sensing BEMOTELY PILOTED VEHICLES Development and demonstration of an automatic control and recovery system for remotely piloted vehicles A81-20476. Qualification of HiMAT flight systems A81-22603 Mini-RPV radar test program A81-22619 An assessment of technical factors influencing the potential use of RPVS for minefield detection [AD-A092682] The DAST-1 remotely piloted research vehicle development and initial flight testing [NASA-CR-163105] N81-17038	[AAAP-NT-80-14] ROTATING DISKS Use of speckle-holographic interferometry to study the strain-strain state of a gas-turbine engine disk close to the blade root fixing ROTOR AERODYNAMICS Prediction of tilt rotor outwash [AIAA PAPER 81-0013] Noise generation mechanism of low pressure propeller fans [AIAA PAPER 81-0090] Porced vortices near a wall [AIAA PAPER 81-0256] A flight investigation of performance and loads for a helicopter with RC-SC2 main-rotor blade sections [NASA-TM-81898] Some wake-related operational limitations of rotorcraft [NASA-TM-81920] Bean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fan
An airborne sensor for the avoidance of clear air turbulence [AIAA PAPER 81-0297] Mini-BPV radar test program A81-22619 A solid-state airborne sensing system for remote sensing BENOTELY PILOTED VEHICLES Development and demonstration of an automatic control and recovery system for remotely piloted vehicles A81-20476. Qualification of HiMAT flight systems A81-22603 Mini-RPV radar test program A81-22619 An assessment of technical factors influencing the potential use of RPVS for minefield detection [AD-A092682] The DAST-1 remotely piloted research vehicle development and initial flight testing [N81-17038] On the flight mechanics of remotely piloted vehicles	[AAAF-NT-80-14] R81-1710! ROTATING DISKS Use of speckle-holographic interferometry to study the strain-strain state of a gas-turbine engine disk close to the blade root fixing ROTOR AERODYNAMICS Prediction of tilt rotor outwash [AIAA PAPER 81-0013] A81-2053! Noise generation mechanism of low pressure propeller fans [AIAA PAPER 81-0090] A81-2059! Forced vortices near a wall [AIAA PAPER 81-0256] A81-2070! A flight investigation of performance and loads for a helicopter with RC-SC2 main-rotor blade sections [NASA-TH-81898] Some wake-related operational limitations of rotorcraft [NASA-TH-81920] N81-1598! Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fan [NASA-TH-81657] N81-1605!
An airborne sensor for the avoidance of clear air turbulence [AIAA PAPER 81-0297] A81-22619 A solid-state airborne sensing system for remote sensing A81-22619 A solid-state airborne sensing system for remote sensing REMOTELY PILOTED VEHICLES Development and demonstration of an automatic control and recovery system for remotely piloted vehicles A81-20476. Qualification of HiMAT flight systems A81-22603 Mini-RPV radar test program A81-22619 An assessment of technical factors influencing the potential use of RPVS for minefield detection [AD-A092682] The DAST-1 remotely piloted research vehicle development and initial flight testing [NASA-CR-163105] N81-17038 On the flight mechanics of remotely piloted vehicles [BHVG-PBWT-79-28] N81-17049	[AAAF-MT-80-14] ROTATING DISKS Use of speckle-holographic interferometry to study the strain-strain state of a gas-turbine engine disk close to the blade root fixing A81-21366 ROTOR AERODYNAMICS Prediction of tilt rotor outwash [AIAA PAPER 81-0013] Noise generation mechanism of low pressure propeller fans [AIAA PAPER 81-0090] A81-2053 Porced vortices near a wall [AIAA PAPER 81-0256] A flight investigation of performance and loads for a helicopter with RC-SC2 main-rotor blade sections [NASA-TH-81898] Some wake-related operational limitations of rotorcraft [NASA-TH-81920] Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fan [NASA-TH-81657] ROTOR BLADES (TURBORACHIMERY)
An airborne sensor for the avoidance of clear air turbulence [AIAA PAPER 81-0297] Mini-BPV radar test program A81-22619 A solid-state airborne sensing system for remote sensing BENOTELY PILOTED VEHICLES Development and demonstration of an automatic control and recovery system for remotely piloted vehicles A81-20476. Qualification of HiMAT flight systems A81-22603 Mini-RPV radar test program A81-22619 An assessment of technical factors influencing the potential use of RPVS for minefield detection [AD-A092682] The DAST-1 remotely piloted research vehicle development and initial flight testing [NASA-CR-163105] On the flight mechanics of remotely piloted vehicles [BMVG-PBWT-79-28] RESEARCH AIRCRAFT QSRA Joint Navy/NASA sea trials Quiet Short	[AAAF-NT-80-14] ROTATING DISKS Use of speckle-holographic interferometry to study the strain-strain state of a gas-turbine engine disk close to the blade root fixing ROTOR AERODYNAMICS Prediction of tilt rotor outwash [AIAA PAPER 81-0013] Noise generation mechanism of low pressure propeller fans [AIAA PAPER 81-0090] Porced vortices near a wall [AIAA PAPER 81-0256] A flight investigation of performance and loads for a helicopter with RC-SC2 main-rotor blade sections [NASA-TH-81898] Some wake-related operational limitations of rotorcraft [NASA-TH-81920] Nean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fan [NASA-TH-81657] ROTOR BLADES (TURBOMACHIEENT) Dynamic pressure response with stall on axial flow compressor rotor blades
An airborne sensor for the avoidance of clear air turbulence [AIAA PAPER 81-0297] A81-22619 A solid-state airborne sensing system for remote sensing A81-22619 A solid-state airborne sensing system for remote sensing REMOTELY PILOTED VEHICLES Development and demonstration of an automatic control and recovery system for remotely piloted vehicles A81-20476. Qualification of Himat flight systems A81-22603 Mini-RPV radar test program A81-22619 An assessment of technical factors influencing the potential use of RPVS for minefield detection [AD-A092682] The DAST-1 remotely piloted research vehicle development and initial flight testing [NASA-CR-163105] N81-17038 On the flight mechanics of remotely piloted vehicles [BHVG-PBWT-79-28] N81-17049 RESBARCH AIRCRAFT QSRA Joint Navy/NASA sea trials Quiet Short Haul Research Aircraft	[AAAF-MT-80-14] ROTATING DISKS Use of speckle-holographic interferometry to study the strain-strain state of a gas-turbine engine disk close to the blade root fixing A81-21366 ROTOR AERODYNAMICS Prediction of tilt rotor outwash [AIAA PAPER 81-0013] Noise generation mechanism of low pressure propeller fans [AIAA PAPER 81-0090] A81-2053 Porced vortices near a wall [AIAA PAPER 81-0090] A flight investigation of performance and loads for a helicopter with RC-SC2 main-rotor blade sections [NASA-TM-81898] Some wake-related operational limitations of rotorcraft [NASA-TM-81920] Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fan [NASA-TM-81657] ROTOR BLADES (TURBOMACHIMENY) Dynamic pressure response with stall on axial flow compressor rotor blades [AIAA PAPER 81-0069] A81-2057
An airborne sensor for the avoidance of clear air turbulence [AIAA PAPER 81-0297] Mini-RPV radar test program A81-22619 A solid-state airborne sensing system for remote sensing BEMOTELY PILOTED WEHICLES Development and demonstration of an automatic control and recovery system for remotely piloted vehicles A81-20476. Qualification of HiMAT flight systems A81-22603 Mini-RPV radar test program A81-22619 An assessment of technical factors influencing the potential use of RPVS for minefield detection [AD-A092682] The DAST-1 remotely piloted research vehicle development and initial flight testing [NASA-CR-163105] On the flight mechanics of remotely piloted vehicles [BNG-PBWT-79-28] RESEARCH AIRCRAFT QSRA Joint Navy/NASA sea trials Quiet Short Haul Besearch Aircraft [AIAA PAPER 81-0152] A81-20633	[AAAP-NT-80-14] ROTATING DISKS Use of speckle-holographic interferometry to study the strain-strain state of a gas-turbine engine disk close to the blade root fixing A81-2136. ROTOR AERODYNAMICS Prediction of tilt rotor outwash [AIAA PAPER 81-0013] Noise generation mechanism of low pressure propeller fans [AIAA PAPER 81-0090] Porced vortices near a wall [AIAA PAPER 81-0256] A flight investigation of performance and loads for a helicopter with RC-SC2 main-rotor blade sections [NASA-TH-81898] Some wake-related operational limitations of rotorcraft [NASA-TH-81920] Hean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fan [NASA-TH-81657] ROTOR BLADES (TURBOMACHIBERY) Dynamic pressure response with stall on axial flow compressor rotor blades [AIAA PAPER 81-0069] Hean rotor wake characteristics of an
An airborne sensor for the avoidance of clear air turbulence [AIAA PAPER 81-0297] Mini-BPV radar test program A81-22619 A solid-state airborne sensing system for remote sensing BENOTELY PILOTED VEHICLES Development and demonstration of an automatic control and recovery system for remotely piloted vehicles A81-20476. Qualification of HiMAT flight systems A81-22603 Mini-RPV radar test program A81-22619 An assessment of technical factors influencing the potential use of RPVS for minefield detection [AD-A092682] The DAST-1 remotely piloted research vehicle development and initial flight testing [NASA-CR-163105] On the flight mechanics of remotely piloted vehicles [BMVG-PBWT-79-28] RESEARCH AIRCRAPT QSRA Joint Navy/NASA sea trials Quiet Short Haul Research Aircraft [AIAA PAPER 81-0152] Qualification of HiMAT flight systems	[AAAF-MT-80-14] R81-1710! ROTATING DISKS Use of speckle-holographic interferometry to study the strain-strain state of a gas-turbine engine disk close to the blade root fixing A81-2136! ROTOR AERODYNAMICS Prediction of tilt rotor outwash [AIAA PAPER 81-0013] A81-2053! Noise generation mechanism of low pressure propeller fans [AIAA PAPER 81-0090] A81-2059! Porced vortices near a wall [AIAA PAPER 81-0256] A81-2070! A flight investigation of performance and loads for a helicopter with RC-SC2 main-rotor blade sections [NASA-TH-81898] N81-1598! Some wake-related operational limitations of rotorcraft [NASA-TH-81920] N81-1598! Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fan [NASA-TH-81657] ROTOR BIADES (TURBOMACHIERN) Dynamic pressure response with stall on axial flow compressor rotor blades [AIAA PAPER 81-0069] A81-2057! Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fan
An airborne sensor for the avoidance of clear air turbulence [AIAA PAPER 81-0297] A81-20735 Mini-RPV radar test program A81-22619 A solid-state airborne sensing system for remote sensing REMOTELY PILOTED VEHICLES Development and demonstration of an automatic control and recovery system for remotely piloted vehicles A81-20476. Qualification of HiMAT flight systems A81-22603 Mini-RPV radar test program A81-22619 An assessment of technical factors influencing the potential use of RPVS for minefield detection [AD-A092682] The DAST-1 remotely piloted research vehicle development and initial flight testing [NASA-CR-163105] N81-17038 On the flight mechanics of remotely piloted vehicles [BHVG-PBWT-79-28] RESEARCH AIRCRAPT QSRA Joint Navy/NASA sea trials Quiet Short Haul Research Aircraft [AIAA PAPER 81-0152] A81-22603 A81-22603	[AAAF-MT-80-14] ROTATING DISKS Use of speckle-holographic interferometry to study the strain-strain state of a gas-turbine engine disk close to the blade root fixing A81-21366 ROTOR AERODYNAMICS Prediction of tilt rotor outwash [AIAA PAPER 81-0013] Noise generation mechanism of low pressure propeller fans [AIAA PAPER 81-0090] A81-2053 Porced vortices near a wall [AIAA PAPER 81-0090] A flight investigation of performance and loads for a helicopter with RC-SC2 main-rotor blade sections [NASA-TM-81898] Some wake-related operational limitations of rotorcraft [NASA-TM-81920] Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fan [NASA-TM-81657] ROTOR BLADES (TURBOMACHIMEN) Dynamic pressure response with stall on axial flow compressor rotor blades [AIAA PAPER 81-0069] Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fan [AIAA PAPER 81-0069] Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fan [AIAA PAPER 81-0069] Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fan [AIAA PAPER 81-0069] Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fan [AIAA PAPER 81-0089] A81-2083
An airborne sensor for the avoidance of clear air turbulence [AIAA PAPER 81-0297] A81-20735 Mini-BPV radar test program A81-22619 A solid-state airborne sensing system for remote sensing A81-23034 BEMOTELY PILOTED VEHICLES Development and demonstration of an automatic control and recovery system for remotely piloted vehicles A81-20476. Qualification of HiMAT flight systems A81-22603 Mini-RPV radar test program A81-22609 An assessment of technical factors influencing the potential use of RPVS for minefield detection [AD-A092682] The DAST-1 remotely piloted research vehicle development and initial flight testing [NASA-CR-163105] On the flight mechanics of remotely piloted vehicles [BHVG-PBWT-79-28] BESEARCH AIRCRAPT QSRA Joint Navy/NASA sea trials Quiet Short Haul Research Aircraft [AIAA PAPER 81-0152] Qualification of BiMAT flight systems A81-22603 RESEARCH AIRCRAPT ARESEARCH AIRCRAPT QSRA DOWNELOPMENT	[AAAF-MT-80-14]
An airborne sensor for the avoidance of clear air turbulence [AIAA PAPER 81-0297] Mini-BPV radar test program A81-22619 A solid-state airborne sensing system for remote sensing BENOTELY PILOTED VEHICLES Development and demonstration of an automatic control and recovery system for remotely piloted vehicles A81-20476. Qualification of HiMAT flight systems A81-22603 Mini-RPV radar test program A81-22619 An assessment of technical factors influencing the potential use of BPVS for minefield detection [AD-A092682] The DAST-1 remotely piloted research vehicle development and initial flight testing [NASA-CR-163105] On the flight mechanics of remotely piloted vehicles [BMVG-PBWT-79-28] RESEARCH AIRCRAFT QSRA Joint Navy/NASA sea trials Quiet Short Haul Research Aircraft [AIAA PAPER 81-0152] Qualification of BiMAT flight systems A81-22603 RESEARCH AND DEVELOPMENT A computer-aided design system geared toward	[AAAF-MT-80-14] R81-1710! ROTATING DISKS Use of speckle-holographic interferometry to study the strain-strain state of a gas-turbine engine disk close to the blade root fixing A81-2136! ROTOR AERODYNAMICS Prediction of tilt rotor outwash [AIAA PAPER 81-0013] A81-2053! Noise generation mechanism of low pressure propeller fans [AIAA PAPER 81-0090] A81-2059! Forced vortices near a wall [AIAA PAPER 81-0256] A81-2070! A flight investigation of performance and loads for a helicopter with RC-SC2 main-rotor blade sections [NASA-TH-81898] N81-1598! Some wake-related operational limitations of rotorcraft [NASA-TH-81920] N81-1598! Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fan [NASA-TH-81657] ROTOR BLADES (TURBOMACHIEGHT) Dynamic pressure response with stall on axial flow compressor rotor blades [AIAA PAPER 81-0069] A81-2057! Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fan [AIAA PAPER 81-0208] A81-2083! Stability of large horizontal-axis axisymmetric wind turbines
An airborne sensor for the avoidance of clear air turbulence [AIAA PAPER 81-0297] A81-22619 A solid-state airborne sensing system for remote sensing A81-22619 A solid-state airborne sensing system for remote sensing REMOTELY PILOTED VEHICLES Development and demonstration of an automatic control and recovery system for remotely piloted vehicles A81-20476. Qualification of Himat flight systems A81-22603 Mini-RPV radar test program A81-22619 An assessment of technical factors influencing the potential use of RPVS for minefield detection [AD-A092682] The DAST-1 remotely piloted research vehicle development and initial flight testing [NASA-CR-163105] On the flight mechanics of remotely piloted vehicles [BHVG-PBWT-79-28] RESEARCH AIRCRAPT QSRA Joint Navy/NASA sea trials Quiet Short Haul Research Aircraft [AIAA PAPER 81-0152] Qualification of Bimat flight systems RESEARCH AND DEVELOPHERT A computer-aided design system geared toward conceptual design in a research environment	[AAAF-MT-80-14] ROTATING DISKS Use of speckle-holographic interferometry to study the strain-strain state of a gas-turbine engine disk close to the blade root fixing A81-21366 ROTOR AERODYNAMICS Prediction of tilt rotor outwash [AIAA PAPER 81-0013] Noise generation mechanism of low pressure propeller fans [AIAA PAPER 81-0090] A81-2053 Porced vortices near a wall [AIAA PAPER 81-0256] A flight investigation of performance and loads for a helicopter with RC-SC2 main-rotor blade sections [NASA-TM-81898] Some wake-related operational limitations of rotorcraft [NASA-TM-81920] Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fan [NASA-TM-81920] BOTOR BLADES (TURBOMACHIMERY) Dynamic pressure response with stall on axial flow compressor rotor blades [AIAA PAPER 81-0069] Nean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fan [AIAA PAPER 81-0069] Nean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fan [AIAA PAPER 81-0069] Nean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fan [AIAA PAPER 81-0089] Nean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fan [AIAA PAPER 81-0208] Stability of large horizontal-axis axisymmetric wind turbines
An airborne sensor for the avoidance of clear air turbulence [AIAA PAPER 81-0297] Mini-BPV radar test program A81-22619 A solid-state airborne sensing system for remote sensing A81-23034 REMOTELY PILOTED WEHICLES Development and demonstration of an automatic control and recovery system for remotely piloted vehicles A81-22603 Mini-BPV radar test program A81-22603 Mini-RPV radar test program A81-22619 An assessment of technical factors influencing the potential use of BPVS for minefield detection [AD-A092682] The DAST-1 remotely piloted research vehicle development and initial flight testing [NASA-CR-163105] On the flight mechanics of remotely piloted vehicles (BMVG-PBWT-79-28] RESEARCH AIRCRAFT QSRA Joint Navy/NASA sea trials Quiet Short Haul Research Aircraft [AIAA PAPER 81-0152] Qualification of BiMAT flight systems RESEARCH AND DEVELOPMENT A computer-aided design system geared toward conceptual design in a research environment for hypersonic vehicles	[AAAF-MT-80-14]
An airborne sensor for the avoidance of clear air turbulence [AIAA PAPER 81-0297] Mini-RPV radar test program A81-22619 A solid-state airborne sensing system for remote sensing BENOTELY PILOTED VEHICLES Development and demonstration of an automatic control and recovery system for remotely piloted vehicles A81-20476. Qualification of HiMAT flight systems A81-22603 Mini-RPV radar test program A81-22619 An assessment of technical factors influencing the potential use of RPVS for minefield detection [AD-A092682] The DAST-1 remotely piloted research vehicle development and initial flight testing [NASA-CR-163105] On the flight mechanics of remotely piloted vehicles [BHVG-PBWT-79-28] RESEARCH AIRCRAFT QSRA Joint Navy/NASA sea trials Quiet Short Haul Research Aircraft [AIAA PAPER 81-0152] Qualification of BiMAT flight systems A81-22603 RESEARCH AND DEVELOPMENT A computer-aided design system geared toward conceptual design in a research environment for hypersonic vehicles [AIAA PAPER 81-0372] A81-20789	[AAAF-MT-80-14] ROTATING DISKS Use of speckle-holographic interferometry to study the strain-strain state of a gas-turbine engine disk close to the blade root fixing A81-21366 ROTOR AERODYNAMICS Prediction of tilt rotor outwash [AIAA PAPER 81-0013] Noise generation mechanism of low pressure propeller fans [AIAA PAPER 81-0090] Porced vortices near a wall [AIAA PAPER 81-0256] A flight investigation of performance and loads for a helicopter with RC-SC2 main-rotor blade sections [NASA-TH-81898] Some wake-related operational limitations of rotorcraft [NASA-TH-81920] Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fan [NASA-TH-81657] ROTOR BIADES (TURBOMACHIERN) Dynamic pressure response with stall on axial flow compressor rotor blades [AIAA PAPER 81-0069] Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fan [AIAA PAPER 81-0069] Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fan [AIAA PAPER 81-0069] Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fan [AIAA PAPER 81-0208] Stability of large horizontal-axis axisymmetric wind turbines A81-22526 Multi-plane high speed balancing techniques and the use of a high specific stiffness Ti-Borsic
An airborne sensor for the avoidance of clear air turbulence [AIAA PAPER 81-0297] As1-22619 A solid-state airborne sensing system for remote sensing As1-22619 A solid-state airborne sensing system for remote sensing BEMOTELY PILOTED WEHICLES Development and demonstration of an automatic control and recovery system for remotely piloted vehicles As1-20476. Qualification of Himat flight systems As1-22603 Mini-RPV radar test program As1-22619 An assessment of technical factors influencing the potential use of RPVS for minefield detection [AD-A092682] The DAST-1 remotely piloted research vehicle development and initial flight testing [NASA-CR-163105] On the flight mechanics of remotely piloted vehicles [BHVG-PBWT-79-28] RESEMBRCH AIRCRAFT QSRA Joint Navy/NASA sea trials Quiet Short Haul Besearch Aircraft [AIAA PAPER 81-0152] Qualification of Bimat flight systems As1-22603 RESEMBCH AND DEVELOPMENT A computer-aided design system geared toward conceptual design in a research environment for hypersonic vehicles [AIAA PAPER 81-0372] The state of the art of general aviation autopilots	[AAAF-MT-80-14] ROTATING DISKS Use of speckle-holographic interferometry to study the strain-strain state of a gas-turbine engine disk close to the blade root fixing A81-21366 ROTOR AERODYNAMICS Prediction of tilt rotor outwash [AIAA PAPER 81-0013] Noise generation mechanism of low pressure propeller fans [AIAA PAPER 81-0090] A81-2053 Noise generation mechanism of low pressure propeller fans [AIAA PAPER 81-0090] A81-2059 Porced vortices near a wall [AIAA PAPER 81-0256] A flight investigation of performance and loads for a helicopter with RC-SC2 main-rotor blade sections [NASA-TM-81898] Some wake-related operational limitations of rotorcraft [NASA-TM-81920] Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fan [NASA-TM-81920] N81-1598 ROTOR BLADES (TURBOMACHIMERY) Dynamic pressure response with stall on axial flow compressor rotor blades [AIAA PAPER 81-0069] N81-2057 Nean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fan [AIAA PAPER 81-0069] N81-2057 Nean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fan [AIAA PAPER 81-0208] Stability of large horizontal-axis axisymmetric wind turbines A81-2252 Multi-plane high speed balancing techniques and the use of a high specific stiffness Ti-Borsic material for vibration control
An airborne sensor for the avoidance of clear air turbulence [AIAA PAPER 81-0297] As1-20735 Mini-BPV radar test program As1-22619 A solid-state airborne sensing system for remote sensing As1-23034 REMOTELY PILOTED VEHICLES Development and demonstration of an automatic control and recovery system for remotely piloted vehicles As1-20476. Qualification of HiMAT flight systems As1-22603 Mini-RPV radar test program As1-22619 An assessment of technical factors influencing the potential use of BPVS for minefield detection [AD-A092682] The DAST-1 remotely piloted research vehicle development and initial flight testing [NASA-CR-163105] On the flight mechanics of remotely piloted vehicles [BHVG-PBWT-79-28] MS1-17038 On the flight mechanics of remotely piloted vehicles [BHVG-PBWT-79-28] MS1-17049 MSSBARCH AIRCRAPT QSRA Joint Navy/NASA sea trials Quiet Short Haul Research Aircraft [AIAA PAPER 81-0152] As1-20633 Qualification of BiMAT flight systems As1-22603 RESEARCH AND DEVELOPMENT A computer-aided design system geared toward conceptual design in a research environment for hypersonic vehicles [AIAA PAPER 81-0372] The state of the art of general aviation autopilots [NASA-CR-159371] N81-16066	[AAAF-MT-80-14] ROTATING DISKS Use of speckle-holographic interferometry to study the strain-strain state of a gas-turbine engine disk close to the blade root fixing ROTOR AERODYNAMICS Prediction of tilt rotor outwash [AIAA PAPER 81-0013] Noise generation mechanism of low pressure propeller fans [AIAA PAPER 81-0090] Porced vortices near a wall [AIAA PAPER 81-025] A flight investigation of performance and loads for a helicopter with RC-SC2 main-rotor blade sections [NASA-TH-81898] Some wake-related operational limitations of rotorcraft [NASA-TH-81920] Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fan [NASA-TH-81657] ROTOR BLADES (TURBOMACHIMERY) Dynamic pressure response with stall on axial flow compressor rotor blades [AIAA PAPER 81-0069] Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fan [AIAA PAPER 81-0069] Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fan [AIAA PAPER 81-0069] Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fan [AIAA PAPER 81-0069] Mean cotor wake characteristics of an aerodynamically loaded 0.5 m diameter fan [AIAA PAPER 81-0208] Stability of large horizontal-axis axisymmetric wind turbines M81-2252 Multi-plane high speed balancing techniques and the use of a high specific stiffness Ti-Borsic material for vibration control [AD-A093122] N81-17092
An airborne sensor for the avoidance of clear air turbulence [AIAA PAPER 81-0297] Mini-RPV radar test program A81-22619 A solid-state airborne sensing system for remote sensing BENOTELY PILOTED VEHICLES Development and demonstration of an automatic control and recovery system for remotely piloted vehicles A81-20476. Qualification of HiMAT flight systems A81-22603 Mini-RPV radar test program A81-22619 An assessment of technical factors influencing the potential use of RPVS for minefield detection [AD-A092682] The DAST-1 remotely piloted research vehicle development and initial flight testing [NASA-CR-163105] On the flight mechanics of remotely piloted vehicles [BHVG-PBWT-79-28] RESEARCH AIRCRAFT QSRA Joint Navy/NASA sea trials Quiet Short Haul Research Aircraft [AIAA PAPER 81-0152] Qualification of BiMAT flight systems A81-22603 RESEARCH AND DEVELOPMENT A computer-aided design system geared toward conceptual design in a research environment for hypersonic vehicles [AIAA PAPER 81-0372] The state of the art of general aviation autopilots [NASA-CR-159371] RESIM MATRIX COMPOSITES	[AAAF-MT-80-14] ROTATING DISKS Use of speckle-holographic interferometry to study the strain-strain state of a gas-turbine engine disk close to the blade root fixing A81-21366 ROTOR AERODYNAMICS Prediction of tilt rotor outwash [AIAA PAPER 81-0013] Noise generation mechanism of low pressure propeller fans [AIAA PAPER 81-0090] A81-2053 Noise generation mechanism of low pressure propeller fans [AIAA PAPER 81-0090] A81-2059 Porced vortices near a wall [AIAA PAPER 81-0256] A flight investigation of performance and loads for a helicopter with RC-SC2 main-rotor blade sections [NASA-TM-81898] Some wake-related operational limitations of rotorcraft [NASA-TM-81920] Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fan [NASA-TM-81920] N81-1598 ROTOR BLADES (TURBOMACHIMERY) Dynamic pressure response with stall on axial flow compressor rotor blades [AIAA PAPER 81-0069] N81-2057 Nean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fan [AIAA PAPER 81-0069] N81-2057 Nean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fan [AIAA PAPER 81-0208] Stability of large horizontal-axis axisymmetric wind turbines A81-2252 Multi-plane high speed balancing techniques and the use of a high specific stiffness Ti-Borsic material for vibration control
An airborne sensor for the avoidance of clear air turbulence [AIAA PAPER 81-0297] As1-20735 Mini-BPV radar test program As1-22619 A solid-state airborne sensing system for remote sensing As1-23034 REMOTELY PILOTED VEHICLES Development and demonstration of an automatic control and recovery system for remotely piloted vehicles As1-20476. Qualification of HiMAT flight systems As1-22603 Mini-RPV radar test program As1-22619 An assessment of technical factors influencing the potential use of BPVS for minefield detection [AD-A092682] The DAST-1 remotely piloted research vehicle development and initial flight testing [NASA-CR-163105] On the flight mechanics of remotely piloted vehicles [BHVG-PBWT-79-28] MS1-17038 On the flight mechanics of remotely piloted vehicles [BHVG-PBWT-79-28] MS1-17049 MSSBARCH AIRCRAPT QSRA Joint Navy/NASA sea trials Quiet Short Haul Research Aircraft [AIAA PAPER 81-0152] As1-20633 Qualification of BiMAT flight systems As1-22603 RESEARCH AND DEVELOPMENT A computer-aided design system geared toward conceptual design in a research environment for hypersonic vehicles [AIAA PAPER 81-0372] The state of the art of general aviation autopilots [NASA-CR-159371] N81-16066	[AAAF-MT-80-14] ROTATING DISKS Use of speckle-holographic interferometry to study the strain-strain state of a gas-turbine engine disk close to the blade root fixing ROTOR AERODYNAMICS Prediction of tilt rotor outwash [AIAA PAPER 81-0013] Noise generation mechanism of low pressure propeller fans [AIAA PAPER 81-0090] Porced vortices near a wall [AIAA PAPER 81-025] A flight investigation of performance and loads for a helicopter with RC-SC2 main-rotor blade sections [NASA-TH-81898] Some wake-related operational limitations of rotorcraft [NASA-TH-81920] Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fan [NASA-TH-81657] ROTOR BLADES (TURBOMACHIBERY) Dynamic pressure response with stall on axial flow compressor rotor blades [AIAA PAPER 81-0069] Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fan [AIAA PAPER 81-0069] Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fan [AIAA PAPER 81-0069] Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fan [AIAA PAPER 81-0069] Mean cotor wake characteristics of an aerodynamically loaded 0.5 m diameter fan [AIAA PAPER 81-0069] Mean cotor wake characteristics of an aerodynamically loaded 0.5 m diameter fan [AIAA PAPER 81-0069] Mean cotor wake characteristics of an aerodynamically loaded 0.5 m diameter fan [AIAA PAPER 81-0069] Mean cotor wake characteristics of an aerodynamically loaded 0.5 m diameter fan [AIAA PAPER 81-0069] Mean cotor wake characteristics of an aerodynamically loaded 0.5 m diameter fan [AIAA PAPER 81-0069] Mean cotor wake characteristics of an aerodynamically loaded 0.5 m diameter fan [AIAA PAPER 81-0069] Mean cotor wake characteristics of an aerodynamically loaded 0.5 m diameter fan [AIAA PAPER 81-0069] Mean cotor wake characteristics of an aerodynamically loaded 0.5 m diameter fan [AIAA PAPER 81-0069] Mean cotor wake characteristics of an aerodynamically loaded 0.5 m diameter fan [AIAA PAPER 81
An airborne sensor for the avoidance of clear air turbulence [AIAA PAPER 81-0297] Mini-RPV radar test program A81-22619 A solid-state airborne sensing system for remote sensing BENOTELY PILOTED VEHICLES Development and demonstration of an automatic control and recovery system for remotely piloted vehicles A81-20476. Qualification of HiMAT flight systems A81-22603 Mini-RPV radar test program A81-22619 An assessment of technical factors influencing the potential use of RPVS for minefield detection [AD-A092682] The DAST-1 remotely piloted research vehicle development and initial flight testing [NASA-CR-163105] On the flight mechanics of remotely piloted vehicles [BHVG-PBWT-79-28] RESEARCH AIRCRAFT QSRA Joint Navy/NASA sea trials Quiet Short Haul Research Aircraft [AIAA PAPER 81-0152] Qualification of BiMAT flight systems A81-22603 RESEARCH AND DEVELOPMENT A computer-aided design system geared toward conceptual design in a research environment for hypersonic vehicles [AIAA PAPER 81-0372] The state of the art of general aviation autopilots [NASA-CR-159371] RESIM MATRIX COMPOSITES	[AAAF-MT-80-14] ROTATING DISKS Use of speckle-holographic interferometry to study the strain-strain state of a gas-turbine engine disk close to the blade root fixing A81-2136 ROTOR AERODYNAMICS Prediction of tilt rotor outwash [AIAA PAPER 81-0013] Noise generation mechanism of low pressure propeller fans [AIAA PAPER 81-0090] Porced vortices near a wall [AIAA PAPER 81-0256] A flight investigation of performance and loads for a helicopter with RC-SC2 main-rotor blade sections [NASA-TH-81898] Some wake-related operational limitations of rotorcraft [NASA-TH-81920] Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fan [NASA-TH-81657] ROTOR BLADES (TURBOMACHIERN) Dynamic pressure response with stall on axial flow compressor rotor blades [AIAA PAPER 81-0069] Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fan [AIAA PAPER 81-0069] Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fan [AIAA PAPER 81-0208] Sability of large horizontal-axis axisymmetric wind turbines A81-2252 Multi-plane high speed balancing techniques and the use of a high specific stiffness Ti-Borsic material for vibration control [AD-A093122] Compressor blade monitoring system for a VA1310

ROUTES Characterizing cross-track error distribut	ions for	Philosophy and results of steady and unstead	
continental jet routes	.1015 101	techniques on a large scale transport air model in the ONERA transonic tunnel S1 MA	
concinental jet loutes	A81-21969	1: Philosophy and results of steady test	
RUNWAY CONDITIONS		Part 2: Interest of large models in unst	
Maximizing the capacity of a single-runway	airport	aerodynamics	-
	A81-22193		N81-16019
Modal analysis for aircraft response to ru	inway	Store separation simulation in subsonic wir	
surface roughness [AD-A092057]	N81-16043	[HBB-FE-123/S/PUB/20] SEA STATES	N8 1- 16988
RUNWAYS	101 10043	VTOL control for shipboard landing in high	502
Runway surface loading during aircraft lan	ndings	states	Dea
, ,	A81-19800		A81-20471
Stochastic modeling of an aircraft travers	sing a	SEATS	
runway using time series analysis	101 22260	An inflatable seat for aircraft passengers	
Potential use of geotechnical fabric in ai	A81-23368	SECONDARY PLOW	A81-22091
runway design reinforced soil system		Core compressor exit stage study. Volume 2	. Data
[AD-A092686]	N81-16071	and performance report for the baseline	. Ducu
Shrinkage-compensating cement for airport		configuration	
pavement. Phase 3: Pirous concretes.		[NASA-CR-159498]	N81-16051
[AD-A092945]	N81-17299	Three dimensional internal flows in	
_	,	turbomachinery, volume 1	NO 1 - 1 6 0 6 E
S		[AD-A092737] SECONDARY RADAR	N81-16065
SABOT PROJECTILES		Improved secondary radar antennas for fligh	nt
Application of aerodynamic jump prediction	theory	safety installations	_
to supersonic, high fineness ratio, cruc	iform		A81-20083
finned bodies		Multipath and interference effects in secon	ndary
[AIAA PAPER 81-0222]	A81-20685	surveillance radar systems	104 02350
SAPETY DEVICES High 'Q' ejection protection device		SELF ADAPTIVE CONTROL SYSTEMS	A81-23359
might of election biorection device	A81-22093	Auto-adaptive piloting of missiles	
Test and evaluation of improved aircrew re		[GA-380]	N81-17102
systems for combat helicopers		SEMICONDUCTOR DEVICES	
	N81-17017	High temperature electronic requirements in	1
SAFETY PACTORS		aeropropulsion systems	
The influence of beards on the efficiency	ot	[NASA-TM-81682]	N81-16388
aviators' oxygen masks	A81-22100	SENSORS Integration of sensors with displays	
Human Factors of Flight-deck Automation:		integration of Seasons with dispitals	N8 1-17067
NASA/Industry Workshop		SEPARATED PLOW	
[NASA-TM-81260]	N81-16022	Viscous-inviscid interaction on oscillating	J
SAPETY NAWAGENERT		airfoils in subsonic flow	
A feasibility study for advanced technolog	J Y	[AIAA PAPER 81-0051]	A81-20567
integration for general aviation [NASA-CE-159381]	N81-15974	Calculation of viscous, sonic flow over	. mbo
Cabin fire simulator lavatory tests	MOI-13574	hemisphere-cylinder at 19 deg incidence - capturing of nose vortices	1116
[NASA-CR-160909]	N81-16020	[AIAA PAPER 81-0189]	A81-20661
Evaluation of RF anechoic chamber fire pro	otection	3-D viscous analysis of ducts and flow spli	itters
systems		[AIAA PAPER 81-0277]	A81-20720
[AD-A092478]	N81-16070	Flight experiments with a slender cone at a	angle of
Annual report to the NASA Administrator by Aerospace Safety Advisory Panel on the s		attack [AIAA PAPER 81-0337]	A81-20761
shuttle program. Part 2: Summary of	Puoc	A discrete vortex method for the non-steady	
information developed in the panel's		separated flow over an airfoil	•
fact-finding activities			A81-22568
[NASA-TM-82252]	N81-16114	Discussion of test results in the design of	•
SAMPLING Methodology for determining sampling inter	10	laminar airfoils for competition gliders	N81-15984
[AD-A092591]	N81-16825	[NASA-TM-75402] SERVICE LIFE	NO 1- 13964
SANDUICH STRUCTURES		Patigue design criteria and fleet fatigue	Life
Sandwich structures with high transmission		survey at Aeronautica Macchi	
	A81-20069		A81-22624
Acoustic radiation from honeycomb sandwich	n plates A81-20070	SHAPTS (MACHINE ELEMENTS)	
Current and projected use of carbon compos		High bypass turbofan component development, modification 2	•
United States aircraft	11.62 II	[AD-A093156]	N81-17093
	N81-16145	SHIELDING	
SATELLITE METWORKS	,	EMC, lightning and NEMP-protection-new	
Air traffic control and position location		requirements for approved specifications	when
satellite constellation in equatorial or		using CFRP	16150
SATELLITE TRACKING	A81-21912	SHIPS	N81-16152
GPS receiver simulation		Collision avoidance systems. Citations from	om the
·	A81-21913	NTIS data base	
SCALE EFFECT		[PB80-815020]	N81-16038
Scale effects on turbulent boundary layer		SHOCK RESISTANCE	
development and flow separation around w	//STOL	Evaluation/redesign of the F-105 pitch rate	gyro
inlets at high incidence [AIAA PAPER 81-0014]	A81-20538	pack [AD-A092109]	N81-16048
SCALE MODELS	AU 1- 20 J30	SHOCK TUBES	#0 I - I 0 0 4 B
Measurements of structural mobility on hel	licopter	Computational design of large-scale blast	simulators
structures	-	[AIAA PAPER 81-0159]	A81-20639
	A81-20064	SHOCK WAVE ATTENUATION	
		Design of advanced technology transonic air	rioils
		and wings	

SHOCK BAVES SUBJECT INDEX

SHOCK WAVES	SLENDER BODIES
A cost-effective method for shock-free	Numerical solution of transonic flow through a
supercritical wing design [AIAA PAPER 81-0383] A81-20796	cascade with slender profiles A81-21197
New interpretations of shock-associated noise with	SLENDER CONES
and without screech	Flight experiments with a slender cone at angle of attack
SHORT HAUL AIRCRAFT	[AIAA PAPER 81-0337] A81-20761
QSRA Joint Navy/NASA sea trials Quiet Short	SLENDER WINGS
Haul Research Aircraft [AIAA PAPER 81-0152] A81-20633	Lifting-line theory of oblique wings - Application of the Galerkin method to the lifting-line
SHORT TAKEOFF AIRCRAFT	equation
Classical and modern control design of a	A81-19873
speed-hold system for a STOL airplane [AIAA PAPER 81-0017] A81-20541	Transonic wing technology for transport aircraft N81-16002
Disturbance estimation for a STOL transport during	Design and experimental verification of a
landing	transonic wing for a transonic aircraft
[AIAA PAPER 81-0018] A81-20542 Experimental development of an advanced	N81-16003 SLOTS
circulation control wing system for Navy STOL	Wind tunnel wall interference
aircraft	[AD-A093301] N81-17104
[AIAA PAPER 81-0151] A81-20632 Piloting techniques on the backside - Plight path	SLOTTED WIND TUNNELS Transonic wind tunnel development (1940 - 1950)
angle control	N81-15971
SHORT WAVE RADIO TRANSMISSION	<pre>Pvaluation of the acoustic and aerodynamic characteristics of several slot-baffle</pre>
Radio direction finding on high frequency short	configurations for transonic wind tunnel walls
duration signals	[AD-A093957] N81-17106
[AD-A092136] N81-16029 SHRINKAGE	SMALL PERTURBATION FLOW Numerical solution of transonic flow through a
Shrinkage-compensating cement for airport	cascade with slender profiles
pavement. Phase 3: Firous concretes. Addendum [AD-A092945] N81-17299	A81-21197
SIPELOBE REDUCTION	Analysis of a symmetric transonic aerofoil with the finite element method - A new upwinding
Increased target resolution and minor lobe	technique
reduction with active group antennas A81-20090	A81-22984: Transonic flow calculations over two-dimensional
Improvement of effective minor lobe behavior of	canard-wing systems
radar antennas through signal processing	[AIAA PAPER 79-1565] A81-23367
A81-20091 Side lobe suppression with digital signal processing	SOILS Potential use of geotechnical fabric in airfield
A81-20092	runway design reinforced soil systems
SIGNAL DETECTION	[AD-A092686] N81-16071
SPASYN - An electromagnetic relative position and orientation tracking system	SOLID PROPELLANT COMBUSTION The 17th JANNAP combustion meeting, volume 1
A81-21828	[NASA-TM-82238] N81-16253
SIGNAL PROCESSING Improvement of effective minor lobe behavior of	SOLID PROPRILANT ROCKET ENGINES The 17th JANNAP combustion meeting, volume 1
radar antennas through signal processing	[NASA-TM-82238] N81-16253
A81-20091	SOLID ROCKET PROPELLANTS
Side lobe suppression with digital signal processing A81-20092	The 17th JANNAP combustion meeting, volume 1 [NASA-TM-82238] N81-16253
. Target detection and parameter estimation in	SOLID STATE DEVICES
surveillance radars using MTI-PPT processing A81-20094	A versatile miniature solid state television
Coherent signal processing in frequency agile	camera /CCD/ A81-22620
pulse radar units	A solid-state airborne sensing system for remote
A81-20097 Application of Doppler information to automatic	sensing A81-23034
target tracking	SOLVENT EXTRACTION
A81-20101 Some implementation considerations for numerically	High-solids coatings for exterior aircraft A81-20861
stable flight filters	SOUND GENERATORS
A81-20485	Sound sources in aerodynamics - Fact and fiction
New airborne weather radar systems [AIAA PAPER 81-0237] A81-20692	[AIAA PAPEE 81-0056] A81-20570 SOUND INTENSITY
SPASYN - An electromagnetic relative position and	NOISECHECK procedures for measuring noise exposure
orientation tracking system	from aircraft operations
SIGNAL TO NOISE RATIOS	[AD-A093948] H81-17849 SOURD PROPAGATION
Omega signal coverage prediction diagrams for 10.2	Numerical techniques in linear duct acoustics - A
kHz. Volume 1: Technical approach [AD-A092741] N81-16030	status report [ASME PAPER 80-WA/NC-2] A81-21120
Omega signal coverage prediction diagrams for 10.2	Sound radiation from wortex systems
kHz. Volume 2: Individual station diagrams	A81-21591
[AD-A092742] N81-16031 Omega signal coverage prediction diagrams for 10.2	SPACE PROGRAMS Posture hearings (NASA and FAA)
kHz. Volume 4: Bearing angle tables	[GPO-65-265] N81-16952
[AD-A092744] N81-16032	SPACE SHUTTLE ORBITERS
DMAHTC's support to National Ocean Survey LOBAN-C-charting	Application of a tip-fin controller to the Shuttle Orbiter for improved yaw control
[AD-A093748] N81-17027	[AIAA PAPER 81-0074] A81-20582
Production of LORAN-C reliability diagrams at the Defense Mapping Agency	Annual report to the HASA Administrator by the Aerospace Safety Advisory Panel on the space
[AD-A093749] N81-17028	shuttle program. Part 2: Summary of
SKIN PRICTION	information developed in the panel's
Skin friction measuring device for aircraft [NASA-CASE-FBC-11029-1] N81-17057	fact-finding activities [NASA-TM-82252] N81-16114

SPACE SHUTTLES	STATIC		
A parametric study of the static longitudinal		ematical aspects of the probabilistic	
aerodynamic characteristics of parallel lift delta wing configurations at low Reynolds nu		aluations of structural safety and NDI pabilities	
	-20814		A81-22635
SPACECRAPT STRUCTURES	STATIC		10. 2 2055
Crack growth propagation under variable amplit	ude Stud	ies on proper simulation during static	testing
loading in aerospace structures	of	forward speed effects on fan noise	_
			N81-16853
SPANUISE BLOWING		ICAL ANALYSIS	12444
Influence of jet location on the efficiency of spanwise blowing		k growth propagation under variable amp ading in aerospace structures	TICUGE
	-20352		A81-22632
SPARK IGHITION		elation of helicopter noise levels with	
Semi-empirical correlations for gas turbine		ysical and performance characteristics	
emissions, ignition, and flame stabilization			N81-17852
	-21505 STATORS		
SPATIAL FILTERING		fting surface theory for the sound gene	
Improvement of effective minor lobe behavior of radar antennas through signal processing		the interaction of velocity disturbanc leaned vane stator	es with
			A81-20595
SPECKLE PATTERNS		ine modeling technique to generate off-	
Use of speckle-holographic interferometry to s		rformance data for both single and mult	
the strain-strain state of a gas-turbine eng		ial-flow turbines	
disk close to the blade root fixing			N81-17078
SPECTRUM AWALYSIS	-21366 STEADY		du toot
The spectral analysis of nonstationary random		osophy and results of steady and unstea chniques on a large scale transport air	
processes - Applications to aircraft		del in the ONERA transonic tunnel S1 MA	
overflight-type noises Prench thesis		Philosophy and results of steady test	
		rt 2: Interest of large models in unst	
Methodology for determining sampling intervals		rodynamics	-
	-16825		N81-16019
SPRED CONTROL	STEBLS		
Classical and modern control design of a		ronment-load interaction effects on cra	CK
speed-hold system for a STOL airplane [AIAA PAPER 81-0017] A81		owth in landing gear steels D-A093803]	N81-17242
SPOILERS		TIC PROCESSES	
Effects of design variables on spoiler control		hastic modeling of an aircraft traversi	ng a
effectiveness, hinge moments, and wake turbu	lence ru	nway using time series analysis	
	-20581		A81-23368
A computational model for low speed flows past		ENERGY METHODS	
airfoils with spoilers [AIAA PAPER 81-0253] A81	rati I-20702 hu	gue life evaluation of a helicopter mai	n rotor
	1-20/02 HG		A81-22631
SPEAIDD CUBIINGS			
SPRAYED COATINGS High-solids coatings for exterior aircraft	STRAIN		20. 22.03.
High-solids coatings for exterior aircraft	-20861 Comp	GAGES arison of flight load measurements obta	ined
High-solids coatings for exterior aircraft A81 SPRAYEES	-20861 Comp fr	GAGBS parison of flight load measurements obta om calibrated strain gages and pressure	ined
High-solids coatings for exterior aircraft A81 SPRAYERS United States Army helicopter icing qualificat	-20861 Comp fr ion tr	GAGES arison of flight load measurements obta om calibrated strain gages and pressure ansducers	ined
High-solids coatings for exterior aircraft SPRAYERS United States Army helicopter icing qualificat 1980	-20861 Comp fr ion tr [A	GAGES arison of flight load measurements obta com calibrated strain gages and pressure ansducers D-A093758]	ined
High-solids coatings for exterior aircraft SPRAYERS United States Army helicopter icing qualificat 1980 [AIAA PAPER 81-0406] A81	-20861 Comp fr -ion tr -20812 STRAIN	GAGES arrison of flight load measurements obta om calibrated strain gages and pressure ansducers D-A093758] HARDENING	ined : N81-17044
High-solids coatings for exterior aircraft SPRAYERS United States Army helicopter icing qualificat 1980 [AIAA PAPER 81-0406] A81 SPRAYING	-20861 Comp fr ion tr -20812 STRAIN Pote	GAGES arison of flight load measurements obta om calibrated strain gages and pressure ansducers D-A093758] HARDENING intial use of geotechnical fabric in air	ined N81-17044
High-solids coatings for exterior aircraft SPRAYERS United States Army helicopter icing qualificat 1980 [AIAA PAPER 81-0406] A81	-20861 Comp fr -20812 STRAIN -20812 STRAIN Pote	GAGES arison of flight load measurements obta om calibrated strain gages and pressure ansducers D-A093758] BARDENING intial use of geotechnical fabric in air nway design reinforced soil systems	ined N81-17044
High-solids coatings for exterior aircraft SPRAYERS United States Army helicopter icing qualificat 1980 [AIAA PAPER 81-0406] SPRAYING Death and injury in aerial spraying - Pre-cras crash, and post-crash prevention strategies A81	-20861 Comp fr -ion tr -20812 STRAIN -20814 Pote sh, ru -22115 STRAKES	GAGES arison of flight load measurements obta om calibrated strain gages and pressure ansducers D-A093758] HARDENING intial use of geotechnical fabric in air inway design reinforced soil systems D-A092686]	ined N81-17044 field N81-16071
High-solids coatings for exterior aircraft SPRAYERS United States Army helicopter icing qualificat 1980 [AIAM PAPER 81-0406] SPRAYING Death and injury in aerial spraying - Pre-cras crash, and post-crash prevention strategies SQUREZE FILES	-20861 Comp fr -20812 STRAIN -20812 Pote sh, ru -22115 STRAKES Hing	GAGES arison of flight load measurements obta om calibrated strain gages and pressure ansducers .D-A093758] HARDENING Initial use of geotechnical fabric in air inway design reinforced soil systems .D-A092686] ied strakes for enhanced maneuverability	ined N81-17044 field N81-16071
High-solids coatings for exterior aircraft SPRAYERS United States Army helicopter icing qualificat 1980 [AIAA PAPER 81-0406] A81 SPRAYING Death and injury in aerial spraying - Pre-cras crash, and post-crash prevention strategies SQUREZE FILMS Nonlinear analysis of squeeze film dampers app	-20861 Comp fr -ion fr -20812 STRAIN -20814 Pote sh, ru -22115 STRAIRS Hing	GAGES arison of flight load measurements obta om calibrated strain gages and pressure ansducers D-A093758] HARDNING intial use of geotechnical fabric in air nway design reinforced soil systems D-A092686] jed strakes for enhanced maneuverability gh angles of attack	ined
High-solids coatings for exterior aircraft SPRAYERS United States Army helicopter icing qualificat 1980 [AIAA PAPER 81-0406] SPRAYING Death and injury in aerial spraying - Pre-cras crash, and post-crash prevention strategies SQUREZE FILES Nonlinear analysis of squeeze film dampers app to gas turbine helicopter engines	-20861 Comp fr -ion tr -20812 STRAIN -20815 FOR COMP 	GAGES arison of flight load measurements obta om calibrated strain gages and pressure ansducers D-A093758] HARDENING Intial use of geotechnical fabric in air Inway design reinforced soil systems D-A092686] jed strakes for enhanced maneuverability gh angles of attack IAA PAPER 81-0357]	ined N81-17044 field N81-16071
High-solids coatings for exterior aircraft SPRAYERS United States Army helicopter icing qualificat 1980 [AIAA PAPER 81-0406] A81 SPRAYING Death and injury in aerial spraying - Pre-cras crash, and post-crash prevention strategies A81 SQUREZE FILMS Nonlinear analysis of squeeze film dampers app to gas turbine helicopter engines [AD-A091905] N81	-20861 Comp fr -ion tr -20812 STRAIN 	GAGES arison of flight load measurements obta om calibrated strain gages and pressure ansducers D-A093758] HARDENING Intial use of geotechnical fabric in air inway design reinforced soil systems D-A092686] ed strakes for enhanced maneuverability gh angles of attack IAAA PAPER 81-0357] INN IMERTIAL GUIDANCE	ined N81-17044 field N81-16071 at
High-solids coatings for exterior aircraft SPRAYERS United States Army helicopter icing qualificat 1980 [AIAA PAPER 81-0406] A81 SPRAYING Death and injury in aerial spraying - Pre-cras crash, and post-crash prevention strategies SQUREZE FILMS Nonlinear analysis of squeeze film dampers app to gas turbine helicopter engines [AD-A091905] N81 STABILITY TESTS	-20861 Comp fr -20812 STRAIN -20812 STRAIN -20815 STRAIN -22115 STRAINES 	GAGES arison of flight load measurements obta om calibrated strain gages and pressure ansducers D-A093758] HARDENING Intial use of geotechnical fabric in air Inway design reinforced soil systems D-A092686] jed strakes for enhanced maneuverability gh angles of attack IAA PAPER 81-0357]	ined N81-17044 field N81-16071 at
High-solids coatings for exterior aircraft SPRAYERS United States Army helicopter icing qualificat 1980 [AIAA PAPER 81-0406] A81 SPRAYING Death and injury in aerial spraying - Pre-cras crash, and post-crash prevention strategies A81 SQUREZE FILMS Nonlinear analysis of squeeze film dampers app to gas turbine helicopter engines [AD-A091905] N81	-20861 Comp fr -20812 STRAIN -20812 STRAIN -20815 STRAKES 	GAGES arison of flight load measurements obta om calibrated strain gages and pressure ansducers D-A093758] HARDENING Intial use of geotechnical fabric in air Inway design reinforced soil systems D-A092686] ed strakes for enhanced maneuverability gh angles of attack IAA PAPER 81-0357] NN IMERTIAL GUIDAMCE devaluation of the LR80 land navigatic	ined N81-17044 field N81-16071 at A81-20776 on system N81-16035
High-solids coatings for exterior aircraft SPRAYERS United States Army helicopter icing qualificat 1980 [AIAA PAPER 81-0406] SPRAYING Death and injury in aerial spraying - Pre-cras crash, and post-crash prevention strategies SQUEEZE FILMS Nonlinear analysis of squeeze film dampers app to gas turbine helicopter engines [AD-A091905] STABILITY TESTS A new concept for dynamic stability testing for aircraft model in orbital path [AIAA PAPER 81-0158]	-20861 Comp fr ion fr -20812 STRAIN -20812 STRAIN -22115 STRAKES 	GAGES arison of flight load measurements obta om calibrated strain gages and pressure ansducers D-A093758] HARDENING Intial use of geotechnical fabric in air nway design reinforced soil systems D-A092686] ged strakes for enhanced maneuverability gh angles of attack IAA PAPER 81-0357] NNN IMERTIAL GUIDAMCE d evaluation of the LR80 land navigatic D-A091885] Ingle gimbal/strapdown inertial navigatic stem for use on spin stabilized flight	ned N81-17044 field N81-16071 at A81-20776 on system N81-16035
High-solids coatings for exterior aircraft SPRAYERS United States Army helicopter icing qualificat 1980 [AIAA PAPER 81-0406] SPRAYING Peath and injury in aerial spraying - Pre-cras crash, and post-crash prevention strategies SQUREZE FILMS Nonlinear analysis of squeeze film dampers app to gas turbine helicopter engines [AD-A091905] STABILITY TESTS A new concept for dynamic stability testing for aircraft model in orbital path [AIAA PAPER 81-0158] A81 STABILIZATION	-20861 Comp fr ion fr -20812 STRAIN -20812 STRAIN -2015 STRAKES 	GAGES arison of flight load measurements obta om calibrated strain gages and pressure ansducers D-A093758] HARDENING ential use of geotechnical fabric in air inway design reinforced soil systems D-A092686] jed strakes for enhanced maneuverability gh angles of attack IAA PAPER 81-0357] WM IERRITAL GUIDANCE d evaluation of the LR80 land navigation D-A091885] ingle gimbal/strapdown inertial navigation stem for use on spin stabilized flight shicles	ined N81-17044 field N81-16071 at A81-20776 on system N81-16035 on test
High-solids coatings for exterior aircraft SPRAYERS United States Army helicopter icing qualificat 1980 [AIAA PAPER 81-0406] Death and injury in aerial spraying - Pre-cras crash, and post-crash prevention strategies A81 SQUREZE FILMS Nonlinear analysis of squeeze film dampers app to gas turbine helicopter engines [AD-A091905] STABILITY TESTS A new Concept for dynamic stability testing for aircraft model in orbital path [AIAA PAPER 81-0158] STABILIZATION TWO-axis, fluidically controlled thrust vector	-20861 Comp fr -20812 STRAIN -20812 STRAIN -20815 STRAKES -22115 STRAKES -16062 STRAPDO 	GAGES arison of flight load measurements obta om calibrated strain gages and pressure ansducers (D-A093758] HARDENING initial use of geotechnical fabric in air (nway design reinforced soil systems (D-A092686] ged strakes for enhanced maneuverability (gh angles of attack (IAA PAPER 81-0357) (WM IMERTIAL GUIDAMCE (d evaluation of the LR80 land navigation (D-A091885) ingle gimbal/strapdown inertial navigation (stem for use on spin stabilized flight (shincles (AND-80-2479C)	ned N81-17044 field N81-16071 at A81-20776 on system N81-16035
High-solids coatings for exterior aircraft SPRAYERS United States Army helicopter icing qualificat 1980 [AIAA PAPER 81-0406] SPRAYING Death and injury in aerial spraying - Pre-cras crash, and post-crash prevention strategies SQUEEZE FILMS Nonlinear analysis of squeeze film dampers app to gas turbine helicopter engines [AD-A091905] STABILITY TESTS A new concept for dynamic stability testing for aircraft model in orbital path [AIAA PAPER 81-0158] STABILIZATION TWO-axis, fluidically controlled thrust vector control system for an ejection seat	-20861 Comp fr ion fr -20812 STRAIN -20812 STRAIN -22115 STRAKES 	GAGES arison of flight load measurements obta om calibrated strain gages and pressure ansducers D-A093758] HARDENING Initial use of geotechnical fabric in air Inway design reinforced soil systems D-A092686] ed strakes for enhanced maneuverability gh angles of attack IAA PAPER 81-0357] WN IMERTIAL GUIDAMCE devaluation of the LR80 land navigation ID-A091885] Ingle gimbal/strapdown inertial navigation incles shicles SAND-80-2479C] IPHERE	ned N81-17044 field N81-16071 at A81-20776 on system N81-16035 on test
High-solids coatings for exterior aircraft SPRAYERS United States Army helicopter icing qualificat 1980 [AIAA PAPER 81-0406] SPRAYING Peath and injury in aerial spraying - Pre-cras crash, and post-crash prevention strategies SQUREZE FILMS Nonlinear analysis of squeeze film dampers app to gas turbine helicopter engines [AD-A091905] STABILITY TESTS A new concept for dynamic stability testing for aircraft model in orbital path [AIAA PAPER 81-0158] STABILIZATION Two-axis, fluidically controlled thrust vector control system for an ejection seat [AD-A093888]	-20861 Comp fr ion fr -20812 STRAIN -20812 STRAIN -20813 STRAKES 	GAGES arison of flight load measurements obta on calibrated strain gages and pressure ansducers D-A093758] HARDRHING Initial use of geotechnical fabric in air inway design reinforced soil systems D-A092686] iged strakes for enhanced maneuverability gh angles of attack IAA PAPER 81-0357] WM IERRITIAL GUIDANCE devaluation of the LR80 land navigation D-A091885] ingle gimbal/strapdown inertial navigation Stem for use on spin stabilized flight thicles iAND-80-2479C] igherer igherer ight NO/x/ emissions and stratospheric	ned N81-17044 field N81-16071 at A81-20776 on system N81-16035 on test
High-solids coatings for exterior aircraft SPRAYERS United States Army helicopter icing qualificat 1980 [AIAA PAPER 81-0406] A67 SPRAYING Death and injury in aerial spraying - Pre-cras crash, and post-crash prevention strategies SQUREZE FILMS Nonlinear analysis of squeeze film dampers app to gas turbine helicopter engines [AD-A091905] N87 STABILITY TESTS A new concept for dynamic stability testing for aircraft model in orbital path [AIAA PAPER 81-0158] A87 STABILIZATION TWO-axis, fluidically controlled thrust vector control system for an ejection seat [AD-A093888] N87 STABILIZERS (FLUID DYNAMICS)	-20861 Comp fr -20812 STRAIN -20812 STRAIN -20815 STRAES 	GAGES arison of flight load measurements obta om calibrated strain gages and pressure ansducers D-A093758] HARDENING Initial use of geotechnical fabric in air Inway design reinforced soil systems D-A092686] ed strakes for enhanced maneuverability gh angles of attack IAA PAPER 81-0357] WN IMERTIAL GUIDAMCE devaluation of the LR80 land navigation ID-A091885] Ingle gimbal/strapdown inertial navigation incles shicles SAND-80-2479C] IPHERE	ned N81-17044 field N81-16071 at A81-20776 on system N81-16035 on test
High-solids coatings for exterior aircraft SPRAYERS United States Army helicopter icing qualificat 1980 [AIAA PAPER 81-0406] SPRAYING Death and injury in aerial spraying - Pre-cras crash, and post-crash prevention strategies SQUREZE FILMS Nonlinear analysis of squeeze film dampers app to gas turbine helicopter engines [AD-A091905] STABILITY TRSTS A new concept for dynamic stability testing for aircraft model in orbital path [AIAA PAPER 81-0158] STABILIZATION Two-axis, fluidically controlled thrust vector control system for an ejection seat [AD-A093888] STABILIZERS (FLOID DYNAMICS) Initial development for a flutter analysis of damaged T-38 horizontal stabilators using NA	-20861 Comp from from from from from from from from	GAGES arison of flight load measurements obta on calibrated strain gages and pressure ansducers D-A093758] HARDRHING Initial use of geotechnical fabric in air inway design reinforced soil systems D-A092686] ied strakes for enhanced maneuverability gh angles of attack IAA PAPER 81-0357] WM IMERTIAL GUIDAMCE devaluation of the LR80 land navigation D-A091885] ingle gimbal/strapdown inertial navigation stem for use on spin stabilized flight thicles iAND-80-2479C] implementation of the land individual stratus including the stabilized flight thicles iAND-80-2479C] implementation of the land individual stratus individual stratu	ned N81-17044 field N81-16071 at A81-20776 on system N81-16035 on test N81-16037
High-solids coatings for exterior aircraft SPRAYERS United States Army helicopter icing qualificat 1980 [AIAA PAPER 81-0406] SPRAYING Death and injury in aerial spraying - Pre-cras crash, and post-crash prevention strategies SQUEEZE FILES Nonlinear analysis of squeeze film dampers app to gas turbine helicopter engines [AD-A091905] STABILITY TESTS A new concept for dynamic stability testing for aircraft model in orbital path [AIAA PAPER 81-0158] STABILIZATION Two-axis, fluidically controlled thrust vector control system for an ejection seat [AD-A093888] STABILIZEBS (FLUID DYNAMICS) Initial development for a flutter analysis of damaged T-38 horizontal stabilators using NM [AIAA PAPER 81-0365] A86	-20861 Comp from from from from from from from from	GAGES arison of flight load measurements obta om calibrated strain gages and pressure ansducers D-A093758] HARDENING intial use of geotechnical fabric in air inway design reinforced soil systems D-A092686] ied strakes for enhanced maneuverability gh angles of attack IAA PAPER 81-0357] NN INERTIAL GUIDANCE d evaluation of the LR80 land navigation D-A091885] ingle gimbal/strapdown inertial navigation incles	ned N81-17044 field N81-16071 at A81-20776 on system N81-16035 on test N81-16037
High-solids coatings for exterior aircraft SPRAYERS United States Army helicopter icing qualificated 1980 [AIAA PAPER 81-0406] SPRAYING Death and injury in aerial spraying - Pre-crass crash, and post-crash prevention strategies SQUEEZE FILMS Nonlinear analysis of squeeze film dampers appropriate to gas turbine helicopter engines [AD-A091905] STABILITY TESTS A new concept for dynamic stability testing -for aircraft model in orbital path [AIAA PAPER 81-0158] STABILIZATION Two-axis, fluidically controlled thrust vector control system for an ejection seat [AD-A093888] STABILIZERS (FLUID DYNAMICS) Initial development for a flutter analysis of damaged T-38 horizontal stabilators using NA [AIAA PAPER 81-0365] The effects of warhead-induced damage on the	-20861 Comp fr	GAGES arison of flight load measurements obta om calibrated strain gages and pressure ansducers D-A093758] HANDENING Initial use of geotechnical fabric in air inway design reinforced soil systems D-A092686] ed strakes for enhanced maneuverability gh angles of attack IAA PAPER 81-0357] WM IMERTIAL GUIDAMCE IA evaluation of the LR80 land navigation D-A091885] ingle gimbal/strapdown inertial navigation Stem for use on spin stabilized flight thicles IAAD-80-2479C] IPHERE Eraft NO/x/ emissions and stratospheric ductions - Another look IAA PAPER 81-0306] MEASUREMENT Luation of bird load models for dynamic lalysis of aircraft transparencies	ned N81-17044 field N81-16071 at A81-20776 on system N81-16035 on test N81-16037 ozone A81-20741
High-solids coatings for exterior aircraft SPRAYERS United States Army helicopter icing qualificated 1980 [AIAA PAPER 81-0406] SPRAYING Death and injury in aerial spraying - Pre-crass crash, and post-crash prevention strategies SQUEEZE FILMS Nonlinear analysis of squeeze film dampers approximate to gas turbine helicopter engines [AD-A091905] STABILITY TRSTS A new concept for dynamic stability testing -for aircraft model in orbital path [AIAA PAPER 81-0158] STABILIZATION TWO-axis, fluidically controlled thrust vector control system for an ejection seat [AD-A093888] STABILIZERS (FLUID DYNAMICS) Initial development for a flutter analysis of damaged T-38 horizontal stabilators using NA [AIAA PAPER 81-0365] The effects of warhead-induced damage on the aeroelastic characteristics of lifting surface	-20861	GAGES arison of flight load measurements obta on calibrated strain gages and pressure ansducers D-A093758] HARDENING ential use of geotechnical fabric in air inway design reinforced soil systems D-A092686] ied strakes for enhanced maneuverability gh angles of attack IAA PAPER 81-0357] WN IMERTIAL GUIDANCE devaluation of the LR80 land navigation D-A091885] ingle gimbal/strapdown inertial navigation stem for use on spin stabilized flight chicles AND-80-2479C] PHERE	ned N81-17044 field N81-16071 at A81-20776 on system N81-16035 on test N81-16037
High-solids coatings for exterior aircraft SPRAYERS United States Army helicopter icing qualificat 1980 [AIAA PAPER 81-0406] Death and injury in aerial spraying - Pre-cras crash, and post-crash prevention strategies SQUREZE FILES Nonlinear analysis of squeeze film dampers app to gas turbine helicopter engines [AD-A091905] STABILITY TESTS A new concept for dynamic stability testing for aircraft model in orbital path [AIAA PAPER 81-0158] STABILIZATION TWO-axis, fluidically controlled thrust vector control system for an ejection seat [AD-A093888] STABILIZERS (PLUID DYNAMICS) Initial development for a flutter analysis of damaged T-38 horizontal stabilators using NA [AIAA PAPER 81-0365] The effects of warhead-induced damage on the aeroelastic characteristics of lifting surfavolume 2: Aerodynamic effects	-20861 Comp fr	GAGES arison of flight load measurements obta om calibrated strain gages and pressure ansducers D-A093758] HARDENING Intial use of geotechnical fabric in air inway design reinforced soil systems D-A092686] ied strakes for enhanced maneuverability gh angles of attack IAA PAPER 81-0357) NN IMERITIAL GUIDANCE devaluation of the LR80 land navigation D-A091885] ingle gimbal/strapdown inertial navigation istem for use on spin stabilized flight istem for use on spin stabilized flig	ined N81-17044 field N81-16071 at A81-20776 On system N81-16035 on test N81-16037 ozone A81-20741
High-solids coatings for exterior aircraft SPRAYERS United States Army helicopter icing qualificated 1980 [AIAA PAPER 81-0406] SPRAYING Death and injury in aerial spraying - Pre-crass crash, and post-crash prevention strategies SQUEEZE FILMS Nonlinear analysis of squeeze film dampers appropriate to gas turbine helicopter engines [AD-A091905] STABILITY TESTS A new concept for dynamic stability testingfor aircraft model in orbital path [AIAA PAPER 81-0158] STABILIZATION Two-axis, fluidically controlled thrust vector control system for an ejection seat [AD-A093888] STABILIZERS (PLUID DYNAMICS) Initial development for a flutter analysis of damaged T-38 horizontal stabilators using NATABA PAPER 81-0365] The effects of warhead-induced damage on the aeroelastic characteristics of lifting surfavolume 2: Aerodynamic effects [AD-A093063]	-20861	GAGES arison of flight load measurements obta om calibrated strain gages and pressure ansducers D-A093758] HANDENING thial use of geotechnical fabric in air nway design reinforced soil systems D-A092686] ed strakes for enhanced maneuverability gh angles of attack IAA PAPER 81-0357] WNN IMERTIAL GUIDAMCE de evaluation of the LR80 land navigatic ID-A091885] ingle gimbal/strapdown inertial navigatic stem for use on spin stabilized flight thicles (AND-80-2479C) IPHERE Eraft NO/x/ emissions and stratospheric ductions - Another look IAA PAPER 81-0306] MEASUREMENT uation of bird load models for dynamic allysis of aircraft transparencies ID-A092909] STRAIN RELATIONSHIPS of speckle-holographic interferometry to	ined N81-17044 field N81-16071 at A81-20776 on system N81-16035 on test N81-16037 ozone A81-20741 N81-16995 o study
High-solids coatings for exterior aircraft SPRAYERS United States Army helicopter icing qualificated 1980 [AIAA PAPER 81-0406] SPRAYING Death and injury in aerial spraying - Pre-crass crash, and post-crash prevention strategies SQUREZE FILMS Nonlinear analysis of squeeze film dampers appropriate to gas turbine helicopter engines [AD-A091905] STABILITY TESTS A new concept for dynamic stability testingfor aircraft model in orbital path [AIAA PAPER 81-0158] STABILIZATION Two-axis, fluidically controlled thrust vector control system for an ejection seat [AD-A093888] STABILIZERS (FLUID DYNAMICS) Initial development for a flutter analysis of damaged T-38 horizontal stabilators using Namical Analysis of damaged T-38 horizontal stabilators using Namical Control season of the aeroelastic characteristics of lifting surface volume 2: Aerodynamic effects [AD-A093063] STAGENTION POINT Effect of rear stagnation point position and	-20861	GAGES arison of flight load measurements obta om calibrated strain gages and pressure ansducers D-A093758] HARDENING Intial use of geotechnical fabric in air inway design reinforced soil systems D-A092686] ied strakes for enhanced maneuverability gh angles of attack IAA PAPER 81-0357) NN IMERITIAL GUIDANCE devaluation of the LR80 land navigation D-A091885] ingle gimbal/strapdown inertial navigation istem for use on spin stabilized flight istem for use on spin stabilized flig	ined N81-17044 field N81-16071 At A81-20776 On system N81-16035 on test N81-16037 ozone A81-20741 N81-16995 o study engine
High-solids coatings for exterior aircraft SPRAYERS United States Army helicopter icing qualificated 1980 [AIAA PAPER 81-0406] SPRAYING Death and injury in aerial spraying - Pre-crass crash, and post-crash prevention strategies SQUREZE FILMS Nonlinear analysis of squeeze film dampers appropriate to gas turbine helicopter engines [AD-A091905] STABILITY TESTS A new concept for dynamic stability testing -for aircraft model in orbital path [AIAA PAPER 81-0158] STABILIZATION Two-axis, fluidically controlled thrust vector control system for an ejection seat [AD-A093888] STABILIZERS (FLUID DYNAMICS) Initial development for a flutter analysis of damaged T-38 horizontal stabilators using Nath [AIAA PAPER 81-0365] The effects of warhead-induced damage on the aeroelastic characteristics of lifting surfavolume 2: Aerodynamic effects [AD-A093063] STAGNATION POINT Effect of rear stagnation point position and trailing edge bluntness on airfoil characters	-20861 Comp fr	GAGES arison of flight load measurements obta om calibrated strain gages and pressure ansducers D-A093758] HANDENING Intial use of geotechnical fabric in air inway design reinforced soil systems D-A092686] ed strakes for enhanced maneuverability gh angles of attack IMA PAPER 81-0357] WMN IMERITIAL GUIDAMCE de evaluation of the LR80 land navigation ID-A091885] ingle gimbal/strapdown inertial navigation Stem for use on spin stabilized flight status AND-80-2479C] IPHERE ITAL NO/X/ emissions and stratospheric sductions - Another look IMA PAPER 81-0306] MEASGREMENT uation of bird load models for dynamic salysis of aircraft transparencies ID-A092909] STRAIN RELATIONSHIPS of speckle-holographic interferometry to strain-strain state of a gas-turbine sk close to the blade root fixing	ined N81-17044 field N81-16071 at A81-20776 on system N81-16035 on test N81-16037 ozone A81-20741 N81-16995 o study
High-solids coatings for exterior aircraft SPRAYERS United States Army helicopter icing qualificated 1980 [AIAA PAPER 81-0406] SPRAYING Death and injury in aerial spraying - Pre-crass crash, and post-crash prevention strategies SQUEEZE FILMS Nonlinear analysis of squeeze film dampers appropriate to gas turbine helicopter engines [AD-A091905] STABILITY TRSTS A new concept for dynamic stability testing -for aircraft model in orbital path [AIAA PAPER 81-0158] STABILIZATION Two-axis, fluidically controlled thrust vector control system for an ejection seat [AD-A093888] STABILIZERS (FLUID DYNAMICS) Initial development for a flutter analysis of damaged T-38 horizontal stabilators using NA [AIAA PAPER 81-0365] The effects of warhead-induced damage on the aeroelastic characteristics of lifting surfavolume 2: Aerodynamic effects [AD-A093063] STAGBATION POINT Effect of rear stagnation point position and trailing edge bluntness on airfoil character.	-20861 Comp from from from from from from from from	GAGES arison of flight load measurements obtained calibrated strain gages and pressure cansducers D-A093758] HARDENING Initial use of geotechnical fabric in air inway design reinforced soil systems D-A092686] ied strakes for enhanced maneuverability gh angles of attack IAA PAPER 81-0357] WN IMERITIAL GUIDANCE devaluation of the LR80 land navigation D-A091885] ingle gimbal/strapdown inertial navigation stem for use on spin stabilized flight chicles AND-80-2479C] PRHERE PR	ined N81-17044 field N81-16071 at A81-20776 In system N81-16035 On test N81-16037 Ozone A81-20741 N81-16995 O study engine A81-21366
High-solids coatings for exterior aircraft SPRAYERS United States Army helicopter icing qualificat 1980 [AIAA PAPER 81-0406] SPRAYING [Death and injury in aerial spraying - Pre-cras crash, and post-crash prevention strategies SQUREZE FILMS Nonlinear analysis of squeeze film dampers app to gas turbine helicopter engines [AD-A091905] STABILITY TESTS A new concept for dynamic stability testing for aircraft model in orbital path [AIAA PAPER 81-0158] STABILIZATION Two-axis, fluidically controlled thrust vector control system for an ejection seat [AD-A093888] STABILIZERS (PLUID DYNAMICS) Initial development for a flutter analysis of damaged T-38 horizontal stabilators using NA [AIAA PAPER 81-0365] The effects of warhead-induced damage on the aeroelastic characteristics of lifting surfa Volume 2: Aerodynamic effects [AD-A093063] STAGBARION POINT Effect of rear stagnation point position and trailing edge bluntness on airfoil character A81	-20861 Comp from from from from from from from from	GAGES arison of flight load measurements obta om calibrated strain gages and pressure ansducers D-A093758] HARDENING Initial use of geotechnical fabric in air inway design reinforced soil systems D-A092686] ied strakes for enhanced maneuverability gh angles of attack IAA PAPER 81-0357] NN INERTIAL GUIDANCE de evaluation of the LR80 land navigation D-A091885] ingle gimbal/strapdown inertial navigation D-A091885 ingle gimbal/strapdown inertial flight inicles EAND-80-2479C] IPHERE Traft NO/x/ emissions and stratospheric Eductions - Another look IAA PAPER 81-0306] MEASGRENERT Usation of bird load models for dynamic alysis of aircraft transparencies D-A092909] STRAIN BELATIONSHIPS of speckle-holographic interferometry to estrain-strain state of a gas-turbine isk close to the blade root fixing MAL DESIGN D flight test instrumentation series.	ined N81-17044 field N81-16071 at A81-20776 On system N81-16035 On test N81-16037 Ozone A81-20741 N81-16995 O study engine A81-21366 Volume
High-solids coatings for exterior aircraft SPRAYERS United States Army helicopter icing qualificated 1980 [AIAA PAPER 81-0406] SPRAYING Death and injury in aerial spraying - Pre-crass crash, and post-crash prevention strategies SQUEEZE FILMS Nonlinear analysis of squeeze film dampers appropriate to gas turbine helicopter engines [AD-A091905] STABILITY TESTS A new concept for dynamic stability testingfor aircraft model in orbital path [AIAA PAPER 81-0158] STABILIZATION TWO-axis, fluidically controlled thrust vector control system for an ejection seat [AD-A093888] STABILIZERS (FLUID DYNAMICS) Initial development for a flutter analysis of damaged T-38 horizontal stabilators using NA [AIAA PAPER 81-0365] The effects of warhead-induced damage on the aeroelastic characteristics of lifting surfavolume 2: Aerodynamic effects [AD-A093063] STAGNATION POINT Effect of rear stagnation point position and trailing edge bluntness on airfoil character and a standardisation - An alternative approach to Assert and Analysis an	-20861 Comp fr	GAGES arison of flight load measurements obta om calibrated strain gages and pressure ansducers D-A093758] HANDENING antial use of geotechnical fabric in air nway design reinforced soil systems D-A092686] ed strakes for enhanced maneuverability gh angles of attack IAA PAPER 81-0357] WNN IMERITIAL GUIDANCE d evaluation of the LR80 land navigatic D-A091885] ingle gimbal/strapdown inertial navigatic stem for use on spin stabilized flight sticles (AND-80-2479C) HENERE ETAGE NO/X/ emissions and stratospheric ductions - Another look IAAA PAPER 81-0306] HEASUREMENT uation of bird load models for dynamic alysis of aircraft transparencies D-A092909] STRAIN RELATIONSHIPS of speckle-holographic interferometry to sk close to the blade root fixing (RAL DESIGN D flight test instrumentation series. D flight test instrumentation series.	nined N81-17044 field N81-16071 at A81-20776 on system N81-16035 on test N81-16037 ozone A81-20741 N81-16995 o study engine A81-21366 volume ion
High-solids coatings for exterior aircraft SPRAYERS United States Army helicopter icing qualificated 1980 [AIAA PAPER 81-0406] SPRAYING Death and injury in aerial spraying - Pre-crass, and post-crash prevention strategies SQUEEZE FILMS Nonlinear analysis of squeeze film dampers approach to gas turbine helicopter engines [AD-A091905] STABILITY TESTS A new concept for dynamic stability testing -for aircraft model in orbital path [AIAA PAPER 81-0158] STABILIZATION Two-axis, fluidically controlled thrust vector control system for an ejection seat [AD-A093888] STABILIZERS (FLUID DYNAMICS) Initial development for a flutter analysis of damaged T-38 horizontal stabilators using NA [AIAA PAPER 81-0365] The effects of warhead-induced damage on the aeroelastic characteristics of lifting surface volume 2: Aerodynamic effects [AD-A093063] STAGBATION POINT Effect of rear stagnation point position and trailing edge bluntness on airfoil character ASTANDARDIZATION Standardisation - An alternative approach to A	-20861 Comp from from from from from from from from	GAGES arison of flight load measurements obtained calibrated strain gages and pressure cansducers D-A093758] HARDENING Initial use of geotechnical fabric in air inway design reinforced soil systems D-A092686] ied strakes for enhanced maneuverability gh angles of attack IAA PAPER 81-0357] WN IBERTIAL GUIDANCE devaluation of the LR80 land navigation D-A091885] ingle gimbal/strapdown inertial navigation stem for use on spin stabilized flight chicles AND-80-2479C] PHHERE Fraft NO/x/ emissions and stratospheric conductions - Another look IAA PAPER 81-0306] HEASUREMENT LUAL OF bird load models for dynamic calysis of aircraft transparencies D-A09209] STRAIN RELATIONSHIPS of speckle-holographic interferometry to the strain-strain state of a gas-turbine is close to the blade root fixing HEAL DESIGN D flight test instrumentation series. On Helicopter flight test instrumentation GARD-AG-160-VOL-10]	ined N81-17044 field N81-16071 at A81-20776 On system N81-16035 On test N81-16037 Ozone A81-20741 N81-16995 O study engine A81-21366 Volume
High-solids coatings for exterior aircraft SPRAYERS United States Army helicopter icing qualificated 1980 [AIAA PAPER 81-0406] SPRAYING Death and injury in aerial spraying - Pre-crass, and post-crash prevention strategies SQUEEZE FILMS Nonlinear analysis of squeeze film dampers approach to gas turbine helicopter engines [AD-A091905] STABILITY TRSTS A new concept for dynamic stability testing -for aircraft model in orbital path [AIAA PAPER 81-0158] STABILIZATION Two-axis, fluidically controlled thrust vector control system for an ejection seat [AD-A093888] STABILIZERS (FLUID DYNAMICS) Initial development for a flutter analysis of damaged T-38 horizontal stabilators using NA [AIAA PAPER 81-0365] The effects of warhead-induced damage on the aeroelastic characteristics of lifting surface volume 2: Aerodynamic effects [AD-A093063] STAGBATION POINT Effect of rear stagnation point position and trailing edge bluntness on airfoil character ASTANDARDIZATION Standardisation - An alternative approach to A	-20861 Comp from from from from from from from from	GAGES arison of flight load measurements obta om calibrated strain gages and pressure ansducers D-A093758] HANDENING antial use of geotechnical fabric in air nway design reinforced soil systems D-A092686] ed strakes for enhanced maneuverability gh angles of attack IAA PAPER 81-0357] WNN IMERITIAL GUIDANCE d evaluation of the LR80 land navigatic D-A091885] ingle gimbal/strapdown inertial navigatic stem for use on spin stabilized flight sticles (AND-80-2479C) HENERE ETAGE NO/X/ emissions and stratospheric ductions - Another look IAAA PAPER 81-0306] HEASUREMENT uation of bird load models for dynamic alysis of aircraft transparencies D-A092909] STRAIN RELATIONSHIPS of speckle-holographic interferometry to sk close to the blade root fixing (RAL DESIGN D flight test instrumentation series. D flight test instrumentation series.	ned N81-17044 field N81-16071 at A81-20776 On system N81-16035 on test N81-16037 ozone A81-20741 N81-16995 o study engine A81-21366 Volume ion N81-17040
High-solids coatings for exterior aircraft SPRAYERS United States Army helicopter icing qualificated 1980 [AIAA PAPER 81-0406] SPRAYING Death and injury in aerial spraying - Pre-crass crash, and post-crash prevention strategies SQUEEZE FILMS Nonlinear analysis of squeeze film dampers approach to gas turbine helicopter engines [AD-A091905] STABILITY TRSTS A new concept for dynamic stability testing -for aircraft model in orbital path [AIAA PAPER 81-0158] STABILIZATION Two-axis, fluidically controlled thrust vector control system for an ejection seat [AD-A093888] STABILIZERS (FLUID DYNAMICS) Initial development for a flutter analysis of damaged T-38 horizontal stabilators using NA [AIAA PAPER 81-0365] The effects of warhead-induced damage on the aeroelastic characteristics of lifting surface volume 2: Aerodynamic effects [AD-A093063] STAGBATION POINT Effect of rear stagnation point position and trailing edge bluntness on airfoil character STANDARDIZATION Standardisation - An alternative approach to A automation AST	-20861 Comp from from from from from from from from	GAGES arison of flight load measurements obta om calibrated strain gages and pressure ansducers D-A093758] HARDENING intial use of geotechnical fabric in air inway design reinforced soil systems D-A092686] ged strakes for enhanced maneuverability gh angles of attack IAA PAPER 81-0357] WAN IMERITIAL GUIDAMCE d evaluation of the LR80 land navigation D-A091885] ingle gimbal/strapdown inertial navigation Stem for use on spin stabilized flight staff NO/x/ emissions and stratospheric stuctions - Another look IAA PAPER 81-0306] MEASUREMENT STRAIN BELATIONSHIPS of speckle-holographic interferometry to se strain-strain state of a gas-turbine sk close to the blade root fixing MEAL DESIGN D flight test instrumentation series. On Helicopter flight test instrumentat GARD-AG-160-VOL-10] IRAL DESIGN CRITERIA	ined N81-17044 field N81-16071 at A81-20776 In system N81-16035 On test N81-16037 OZONE A81-20741 N81-16995 O study engine A81-21366 Volume ion N81-17040 ife
High-solids coatings for exterior aircraft SPRAYERS United States Army helicopter icing qualificated 1980 [AIAA PAPER 81-0406] SPRAYING Death and injury in aerial spraying - Pre-crass crash, and post-crash prevention strategies SQUREZE FILMS Nonlinear analysis of squeeze film dampers approach to gas turbine helicopter engines [AD-A091905] STABILITY TESTS A new concept for dynamic stability testingfor aircraft model in orbital path [AIAA PAPER 81-0158] STABILIZATION TWO-axis, fluidically controlled thrust vector control system for an ejection seat [AD-A093888] STABILIZERS (FLUID DYNAMICS) Initial development for a flutter analysis of damaged T-38 horizontal stabilators using NM 1AIAA PAPER 81-0365] The effects of warhead-induced damage on the aeroelastic characteristics of lifting surface volume 2: Aerodynamic effects [AD-A093063] STAGBATION POINT Effect of rear stagnation point position and trailing edge bluntness on airfoil character automation STANDARDS US Army working group on aircraft noise	-20861 Comp from from from from from from from from	GAGES arison of flight load measurements obtained calibrated strain gages and pressure cansducers D-A093758] HARDRING Initial use of geotechnical fabric in air inway design reinforced soil systems D-A092686] ight angles of attack LIAA PAPER 81-0357] NNI IERRITAL GUIDANCE devaluation of the LR80 land navigation D-A091885] ingle gimbal/strapdown inertial navigation D-A091885, ingle gimbal/strapdown inertial navigation Stem for use on spin stabilized flight whicles HAND-80-2479C] SPHERE FRATH NO/x/ emissions and stratospheric ductions - Another look LIAA PAPER 81-0306] MEASUREMENT USAND-80-2479C interference of the stratospheric ductions of bird load models for dynamic calysis of aircraft transparencies D-A092909] STRAIN RELATIONSHIPS of speckle-holographic interferemetry to strain-strain state of a gas-turbine sk close to the blade root fixing MEAL DESIGN D flight test instrumentation series. On Helicopter flight test instrumentat GARD-A6-160-VOL-10] MEAL DESIGN CRITERIA gue design criteria and fleet fatigue larvey at Aeronautica Macchi	ned N81-17044 field N81-16071 at A81-20776 On system N81-16035 on test N81-16037 ozone A81-20741 N81-16995 o study engine A81-21366 Volume ion N81-17040
High-solids coatings for exterior aircraft SPRAYERS United States Army helicopter icing qualificated 1980 [AIAA PAPER 81-0406] SPRAYING Death and injury in aerial spraying - Pre-crass crash, and post-crash prevention strategies SQUEEZE FILMS Nonlinear analysis of squeeze film dampers appropriate to gas turbine helicopter engines [AD-A091905] STABILITY TESTS A new concept for dynamic stability testing for aircraft model in orbital path [AIAA PAPER 81-0158] STABILIZATION TWO-axis, fluidically controlled thrust vector control system for an ejection seat [AD-A093888] STABILIZERS (FLUID DYNAMICS) Initial development for a flutter analysis of damaged T-38 horizontal stabilators using Nath [AIAA PAPER 81-0365] The effects of warhead-induced damage on the aeroelastic characteristics of lifting surfavolume 2: Aerodynamic effects [AD-A093063] STABILION POINT Effect of rear stagnation point position and trailing edge bluntness on airfoil character automation ASTANDARDS US Army working group on aircraft noise Limiting application of the concept 'damage	-20861 Comp from from from from from from from from	GAGES arison of flight load measurements obta om calibrated strain gages and pressure ansducers D-A093758] HANDENING Intial use of geotechnical fabric in air inway design reinforced soil systems D-A092686] ed strakes for enhanced maneuverability (gh angles of attack IAA PAPER 81-0357] WMN IMERITIAL GUIDAMCE de evaluation of the LR80 land navigation ID-A091885] ingle gimbal/strapdown inertial navigation IND-80-2479C] IMERET IND-8	ined N81-17044 field N81-16071 at A81-20776 In system N81-16035 On test N81-16037 OZONE A81-20741 N81-16995 O study engine A81-21366 Volume N81-17040 ife
High-solids coatings for exterior aircraft SPRAYERS United States Army helicopter icing qualificated 1980 [AIAA PAPER 81-0406] SPRAYING Death and injury in aerial spraying - Pre-crass crash, and post-crash prevention strategies SQUEEZE FILMS Nonlinear analysis of squeeze film dampers approach to gas turbine helicopter engines [AD-A091905] STABILITY TESTS A new concept for dynamic stability testing -for aircraft model in orbital path [AIAA PAPER 81-0158] STABILIZATION Two-axis, fluidically controlled thrust vector control system for an ejection seat [AD-A093888] STABILIZERS (FLUID DYNAMICS) Initial development for a flutter analysis of damaged T-38 horizontal stabilators using NA [AIAA PAPER 81-0365] The effects of warhead-induced damage on the aeroelastic characteristics of lifting surfavolume 2: Aerodynamic effects [AD-A093063] STAGBATION POINT Effect of rear stagnation point position and trailing edge bluntness on airfoil character automation STANDARDIZATION Standardisation - An alternative approach to a automation STANDARDS US Army working group on aircraft noise Limiting application of the concept 'damage tolerance' with regard to fighter aircraft	-20861 Comp from from from from from from from from	GAGES arison of flight load measurements obtained calibrated strain gages and pressure cansducers D-A093758] HARDRING Initial use of geotechnical fabric in air inway design reinforced soil systems D-A092686] ight angles of attack LIAA PAPER 81-0357] NNI IERRITAL GUIDANCE devaluation of the LR80 land navigation D-A091885] ingle gimbal/strapdown inertial navigation D-A091885, ingle gimbal/strapdown inertial navigation Stem for use on spin stabilized flight whicles HAND-80-2479C] SPHERE FRATH NO/x/ emissions and stratospheric ductions - Another look LIAA PAPER 81-0306] MEASUREMENT USAND-80-2479C interference of the stratospheric ductions of bird load models for dynamic calysis of aircraft transparencies D-A092909] STRAIN RELATIONSHIPS of speckle-holographic interferemetry to strain-strain state of a gas-turbine sk close to the blade root fixing MEAL DESIGN D flight test instrumentation series. On Helicopter flight test instrumentat GARD-A6-160-VOL-10] MEAL DESIGN CRITERIA gue design criteria and fleet fatigue larvey at Aeronautica Macchi	ined N81-17044 field N81-16071 at A81-20776 In system N81-16035 On test N81-16037 OZONE A81-20741 N81-16995 O study engine A81-21366 Volume N81-17040 ife

STRUCTURAL RUGIURERIUG SUBJECT INDEX

On the flight mechanics of remotely piloted vehicles [BMVG-FBWT-79-28] Material and structural problems in aircraft	SUPERCRIFICAL PLOW Design of advanced technology transonic airfoils and wings
engine technology CFM-56 engine [AAAF-NT-79-23] N81-17096 STRUCTURAL ENGINEERING	N81-16000 Design study for the inner wing of a transonic wing-body combination of aspect ratio 8
Potential use of geotechnical fabric in airfield	N81-16015
runway design reinforced soil systems [AD-A092686] N81-16071 STRUCTURAL FAILURE	Supercritical flow past symmetrical airfoils [AD-A093300] N81-16984 SUPERCRITICAL WINGS
New NDT techniques used for aircraft maintenance	Extraction of wavedrag from airfoil wake
A81-20168	measurements
Mathematical aspects of the probabilistic evaluations of structural safety and NDI capabilities	[ATAA PAPER 81-0291] A81-20732 A cost-effective method for shock-free supercritical wing design
A81-22635	[AIAA PAPER 81-0383] A81-20796
STRUCTURAL RELIABILITY	The high-speed airfoil program
Application of low frequency eddy-current for inspection of civil aircraft	#81-15970 Transonic wing technology for transport aircraft
A81-20110	N81-16002
Evaluating spectrum effects in U.S. Air Porce attack/fighter/trainer individual aircraft tracking	Some particular configuration effects on a thin supercritical variable camber wing N81-16005
A81-21742	Experimental study of the interaction between the
STRUCTURAL STABILITY Stability of large horizontal-axis axisymmetric	wing of a subsonic aircraft and a nacelle of a high by-pass ratio engine
wind turbines	N81-16010
A81-22526	SUPERPLASTICITY
STRUCTURAL VIBRATION	Superplastic formed and diffusion bonded titanium
Gear meshing action as a source of vibratory excitation	landing gear component feasibility study [AD-A092788] B81-16213
A81-20061	SUPERSONIC AIRCRAFT
Measurements of structural mobility on helicopter	A system for aerodynamic design and analysis of
structures	supersonic aircraft. Part 4: Test cases
A81-20064 STRUCTURAL WEIGHT	[NASA-CR-3354] N81-15977 SUPERSONIC AIRPOILS
Structural weight comparison of a joined wing and	The high-speed airfoil program
a conventional wing	N81-15970
[AIAA PAPER 81-0366] A81-20785	The high-speed propeller program
SUBASSEMBLIES Design, fabrication and test of graphite/polyimide	N81-15972 Some aerodynamic interference effects that
composite joints and attachments for advanced	influence the transonic performance of combat
aerospace vehicles	aircraft
[NASA-CR-159112] N81-16042	N81-16014
SUBSONIC AIRCRAFT	Design study for the inner wing of a transonic
A survey of recent atmospheric turbulence	wing-hody combination of aspect ratio 8
A survey of recent atmospheric turbulence measurements from a subsonic aircraft	wing-body combination of aspect ratio 8 H81-16015
measurements from a subsonic aircraft [AIAA PAPER 81-0298] A81-20736	N81-16015 SUPBRSORIC COMBUSTION RAMJET ENGINES
measurements from a subsonic aircraft [AIAA PAPER 81-0298] A81-20736 SUBSOBIC FLOW	N81-16015 SUPERSORIC COMBUSTION RAMJET ENGINES Numerical study of a scramjet engine flow field
measurements from a subsonic aircraft [AIAA PAPER 81-0298] A81-20736	N81-16015 SUPBRSORIC COMBUSTION RAMJET ENGINES
measurements from a subsonic aircraft [AIAA PAPER 81-0298] A81-20736 SUBSOBIC PLOW Viscous-inviscid interaction on oscillating airfoils in subsonic flow [AIAA PAPER 81-0051] A81-20567	SUPERSOURC COMBUSTION RAMJET ENGINES Numerical study of a scramjet engine flow field [AIAA PAPER 81-0186] A81-20659 SUPERSOURC CRUISE AIRCRAFT RESEARCH A wind tunnel investigation of the aerodynamic
measurements from a subsonic aircraft [AIAA PAPER 81-0298] A81-20736 SUBSOBIC FLOW Viscous-inviscid interaction on oscillating airfoils in subsonic flow [AIAA PAPER 81-0051] A81-20567 Solutions for slightly over- or under-expanded hot	SUPERSONIC COMBUSTION RAMJET ENGINES Numerical study of a scramjet engine flow field [AIAA PAPER 81-0186] A81-20659 SUPERSONIC CRUISE AIRCRAFT RESEARCH A wind tunnel investigation of the aerodynamic characteristics of forward swept wings
measurements from a subsonic aircraft [AIAA PAPER 81-0298] A81-20736 SUBSOBIC PLOW Viscous-inviscid interaction on oscillating airfoils in subsonic flow [AIAA PAPER 81-0051] A81-20567 Solutions for slightly over- or under-expanded hot supersonic jets exhausting into cold subsonic	SUPERSOURC COMBUSTION RAMJET ENGINES Numerical study of a scramjet engine flow field [ATAA PAPER 81-0186] A81-20659 SUPERSOURC CRUISE AIRCRAFT RESEARCH A wind tunnel investigation of the aerodynamic characteristics of forward swept wings supersonic cruise aircraft research
measurements from a subsonic aircraft [AIAA PAPER 81-0298] A81-20736 SUBSOBIC FLOW Viscous-inviscid interaction on oscillating airfoils in subsonic flow [AIAA PAPER 81-0051] A81-20567 Solutions for slightly over- or under-expanded hot supersonic jets exhausting into cold subsonic mainstreams [AIAA PAPER 81-0257] A81-20705	SUPERSONIC COMBUSTION RAMJET ENGINES Numerical study of a scramjet engine flow field [AIAA PAPER 81-0186] A81-20659 SUPERSONIC CRUISE AIRCRAFT RESEARCH A wind tunnel investigation of the aerodynamic characteristics of forward swept wings supersonic cruise aircraft research N81-16011 Complex configuration analysis at transonic speeds
measurements from a subsonic aircraft [AIAA PAPER 81-0298] A81-20736 SUBSOBIC PLOW Viscous-inviscid interaction on oscillating airfoils in subsonic flow [AIAA PAPER 81-0051] A81-20567 Solutions for slightly over- or under-expanded hot supersonic jets exhausting into cold subsonic mainstreams [AIAA PAPER 81-0257] A81-20705 Computer simulation of airfoil icing without runback	SUPERSONIC COMBUSTION RAMJET ENGINES Numerical study of a scramjet engine flow field [AIAA PAPER 81-0186] A81-20659 SUPERSONIC CRUISE AIRCRAFT RESEARCH A wind tunnel investigation of the aerodynamic characteristics of forward swept wings supersonic cruise aircraft research N81-16011 Complex configuration analysis at transonic speeds N81-16016
measurements from a subsonic aircraft [AIAA PAPER 81-0298] A81-20736 SUBSOBIC FLOW Viscous-inviscid interaction on oscillating airfoils in subsonic flow [AIAA PAPER 81-0051] A81-20567 Solutions for slightly over- or under-expanded hot supersonic jets exhausting into cold subsonic mainstreams [AIAA PAPER 81-0257] A81-20705 Computer simulation of airfoil icing without runback [AIAA PAPER 81-0402] A81-20809	SUPERSORIC COMBUSTION RAMJET ENGINES Numerical study of a scramjet engine flow field [ATAM PAPER 81-0186] SUPERSORIC CRUISE AIRCRAFT RESEARCH A wind tunnel investigation of the aerodynamic characteristics of forward swept wings supersonic cruise aircraft research N81-16011 Complex configuration analysis at transonic speeds N81-16016 Active controls for flutter suppression and gust
measurements from a subsonic aircraft [AIAA PAPER 81-0298] A81-20736 SUBSOBIC PLOW Viscous-inviscid interaction on oscillating airfoils in subsonic flow [AIAA PAPER 81-0051] A81-20567 Solutions for slightly over- or under-expanded hot supersonic jets exhausting into cold subsonic mainstreams [AIAA PAPER 81-0257] A81-20705 Computer simulation of airfoil icing without runback	SUPERSONIC COMBUSTION RAMJET ENGINES Numerical study of a scramjet engine flow field [AIAA PAPER 81-0186] A81-20659 SUPERSONIC CRUISE AIRCRAFT RESEARCH A wind tunnel investigation of the aerodynamic characteristics of forward swept wings supersonic cruise aircraft research N81-16011 Complex configuration analysis at transonic speeds N81-16016
measurements from a subsonic aircraft [AIAA PAPER 81-0298] A81-20736 SUBSOBIC FLOW Viscous-inviscid interaction on oscillating airfoils in subsonic flow [AIAA PAPER 81-0051] A81-20567 Solutions for slightly over- or under-expanded hot supersonic jets exhausting into cold subsonic mainstreams [AIAA PAPER 81-0257] A81-20705 Computer simulation of airfoil icing without runback [AIAA PAPER 81-0402] A81-20809 Spanwise distribution of control points in the method of finite elementary solutions [AIAA PAPER 79-1879] A81-21011	SUPERSORIC COMBUSTION RAMJET ENGINES Numerical study of a scramjet engine flow field [ATAM PAPER 81-0186] SUPERSORIC CRUISE AIRCRAFT RESEARCH A wind tunnel investigation of the aerodynamic characteristics of forward swept wings supersonic cruise aircraft research N81-16011 Complex configuration analysis at transonic speeds N81-16016 Active controls for flutter suppression and gust alleviation in supersonic aircraft IF-17 flutter model [MASA-CR-163934] N81-17097
measurements from a subsonic aircraft [AIAA PAPER 81-0298] A81-20736 SUBSOULC FLOW Viscous-inviscid interaction on oscillating airfoils in subsonic flow [AIAA PAPER 81-0051] A81-20567 Solutions for slightly over- or under-expanded hot supersonic jets exhausting into cold subsonic mainstreams [AIAA PAPER 81-0257] A81-20705 Computer simulation of airfoil icing without runback [AIAA PAPER 81-0402] Spanwise distribution of control points in the method of finite elementary solutions [AIAA PAPER 79-1879] A constrained inverse method for the aerodynamic	SUPERSORIC COMBUSTION RAMJET ENGINES Numerical study of a scramjet engine flow field [AIAA PAPER 81-0186] SUPERSORIC CRUISE AIRCRAFT RESEARCH A wind tunnel investigation of the aerodynamic characteristics of forward swept wings supersonic cruise aircraft research N81-16011 Complex configuration analysis at transonic speeds N81-16016 Active controls for flutter suppression and gust alleviation in supersonic aircraft YF-17 flutter model [NASA-CR-163934] SUPERSORIC DRAG
measurements from a subsonic aircraft [AIAA PAPER 81-0298] Viscous-inviscid interaction on oscillating airfoils in subsonic flow [AIAA PAPER 81-0051] Solutions for slightly over- or under-expanded hot supersonic jets exhausting into cold subsonic mainstreams [AIAA PAPER 81-0257] Computer simulation of airfoil icing without runback [AIAA PAPER 81-0402] Spanwise distribution of control points in the method of finite elementary solutions [AIAA PAPER 79-1879] A constrained inverse method for the aerodynamic design of thick wings with given pressure	SUPERSONIC COMBUSTION RAMJET ENGINES Numerical study of a scramjet engine flow field [AIAA PAPER 81-0186] A81-20659 SUPERSONIC CRUISE AIRCRAFT RESEARCH A wind tunnel investigation of the aerodynamic characteristics of forward swept wings supersonic cruise aircraft research N81-16011 Complex configuration analysis at transonic speeds N81-16016 Active controls for flutter suppression and gust alleviation in supersonic aircraft YF-17 flutter model [NASA-CR-163934] N81-17097 SUPERSONIC DRAG Data base for the prediction of inlet external drag
measurements from a subsonic aircraft [AIAA PAPER 81-0298] A81-20736 SUBSONIC PLOW Viscous-inviscid interaction on oscillating airfoils in subsonic flow [AIAA PAPER 81-0051] A81-20567 Solutions for slightly over- or under-expanded hot supersonic jets exhausting into cold subsonic mainstreams [AIAA PAPER 81-0257] A81-20705 Computer simulation of airfoil icing without runback [AIAA PAPER 81-0402] A81-20809 Spanwise distribution of control points in the method of finite elementary solutions [AIAA PAPER 79-1879] A81-21011 A constrained inverse method for the aerodynamic design of thick wings with given pressure distribution in subsonic flow N81-16006	SUPERSORIC COMBUSTION RAMJET ENGINES Numerical study of a scramjet engine flow field [AIAA PAPER 81-0186] SUPERSORIC CRUISE AIRCRAFT RESEARCH A wind tunnel investigation of the aerodynamic characteristics of forward swept wings supersonic cruise aircraft research N81-16011 Complex configuration analysis at transonic speeds N81-16016 Active controls for flutter suppression and gust alleviation in supersonic aircraft YF-17 flutter model [NASA-CR-163934] SUPERSORIC DRAG
measurements from a subsonic aircraft [AIAA PAPER 81-0298] Viscous-inviscid interaction on oscillating airfoils in subsonic flow [AIAA PAPER 81-0051] Solutions for slightly over- or under-expanded hot supersonic jets exhausting into cold subsonic mainstreams [AIAA PAPER 81-0257] Computer simulation of airfoil icing without runback [AIAA PAPER 81-0402] Spanwise distribution of control points in the method of finite elementary solutions [AIAA PAPER 79-1879] A constrained inverse method for the aerodynamic design of thick wings with given pressure distribution in subsonic flow N81-16006 Viscous-inviscid interaction on oscillating	SUPERSONIC COMBUSTION RAMJET ENGINES Numerical study of a scramjet engine flow field [AIAA PAPER 81-0186] SUPERSONIC CRUISE AIRCRAFT RESEARCH A wind tunnel investigation of the aerodynamic characteristics of forward swept wings supersonic cruise aircraft research N81-16011 Complex configuration analysis at transonic speeds N81-16016 Active controls for flutter suppression and gust alleviation in supersonic aircraft IF-17 flutter model [NASA-CR-163934] SUPERSONIC DRAG Data base for the prediction of inlet external drag N81-16018 SUPERSONIC PLIGHT Delta canard configuration at high angle of attack
measurements from a subsonic aircraft [AIAA PAPER 81-0298] A81-20736 SUBSOBIC FLOW Viscous-inviscid interaction on oscillating airfoils in subsonic flow [AIAA PAPER 81-0051] A81-20567 Solutions for slightly over- or under-expanded hot supersonic jets exhausting into cold subsonic mainstreams [AIAA PAPER 81-0257] A81-20705 Computer simulation of airfoil icing without runback [AIAA PAPER 81-0402] A81-20809 Spanwise distribution of control points in the method of finite elementary solutions [AIAA PAPER 79-1879] A81-21011 A constrained inverse method for the aerodynamic design of thick wings with given pressure distribution in subsonic flow N81-16006 Viscous-inviscid interaction on oscillating airfoils in subsonic flow	SUPERSONIC COMBUSTION RAMJET ENGINES Numerical study of a scramjet engine flow field [ATAM PAPER 81-0186] SUPERSONIC CRUISE AIRCRAFT RESEARCH A wind tunnel investigation of the aerodynamic characteristics of forward swept wings supersonic cruise aircraft research N81-16011 Complex configuration analysis at transonic speeds Active controls for flutter suppression and gust alleviation in supersonic aircraft YF-17 flutter model [NASA-CR-163934] Data base for the prediction of inlet external drag N81-16018 SUPERSONIC FLIGHT Delta canard configuration at high angle of attack A81-20351
measurements from a subsonic aircraft [AIAA PAPER 81-0298] Viscous-inviscid interaction on oscillating airfoils in subsonic flow [AIAA PAPER 81-0051] Solutions for slightly over- or under-expanded hot supersonic jets exhausting into cold subsonic mainstreams [AIAA PAPER 81-0257] Computer simulation of airfoil icing without runback [AIAA PAPER 81-0402] Spanwise distribution of control points in the method of finite elementary solutions [AIAA PAPER 79-1879] A constrained inverse method for the aerodynamic design of thick wings with given pressure distribution in subsonic flow N81-16006 Viscous-inviscid interaction on oscillating	SUPERSONIC COMBUSTION RAMJET ENGINES Numerical study of a scramjet engine flow field [AIAA PAPER 81-0186] SUPERSONIC CRUISE AIRCRAFT RESEARCH A wind tunnel investigation of the aerodynamic characteristics of forward swept wings supersonic cruise aircraft research N81-16011 Complex configuration analysis at transonic speeds N81-16016 Active controls for flutter suppression and gust alleviation in supersonic aircraft IF-17 flutter model [NASA-CR-163934] SUPERSONIC DRAG Data base for the prediction of inlet external drag N81-16018 SUPERSONIC PLIGHT Delta canard configuration at high angle of attack
measurements from a subsonic aircraft [AIAA PAPER 81-0298] A81-20736 SUBSOBIC FLOW Viscous-inviscid interaction on oscillating airfoils in subsonic flow [AIAA PAPER 81-051] A81-20567 Solutions for slightly over- or under-expanded hot supersonic jets exhausting into cold subsonic mainstreams [AIAA PAPER 81-0257] A81-20705 Computer simulation of airfoil icing vithout runback [AIAA PAPER 81-0402] A81-20809 Spanwise distribution of control points in the method of finite elementary solutions [AIAA PAPER 79-1879] A81-21011 A constrained inverse method for the aerodynamic design of thick wings with given pressure distribution in subsonic flow Viscous-inviscid interaction on oscillating airfoils in subsonic flow [AD-A093970] SUBSONIC SPEED Evaluation of aircraft interference effects on	SUPERSONIC COMBUSTION RAMJET ENGINES Numerical study of a scramjet engine flow field [ATAM PAPER 81-0186] SUPERSONIC CRUISE AIRCRAFT RESEARCH A wind tunnel investigation of the aerodynamic characteristics of forward swept wings supersonic cruise aircraft research N81-16011 Complex configuration analysis at transonic speeds Active controls for flutter suppression and gust alleviation in supersonic aircraft IF-17 flutter model [NASA-CR-163934] Data base for the prediction of inlet external drag N81-16018 SUPERSONIC DRAG Data base for the prediction at high angle of attack AR1-20351 Application of aerodynamic jump prediction theory to supersonic, high fineness ratio, cruciform finned bodies
measurements from a subsonic aircraft [AIAA PAPER 81-0298] A81-20736 SUBSOBIC FLOW Viscous-inviscid interaction on oscillating airfoils in subsonic flow [AIAA PAPER 81-0051] A81-20567 Solutions for slightly over- or under-expanded hot supersonic jets exhausting into cold subsonic mainstreams [AIAA PAPER 81-0257] A81-20705 Computer simulation of airfoil icing without runback [AIAA PAPER 81-0402] A81-20809 Spanwise distribution of control points in the method of finite elementary solutions [AIAA PAPER 91-879] A81-21011 A constrained inverse method for the aerodynamic design of thick wings with given pressure distribution in subsonic flow Viscous-inviscid interaction on oscillating airfoils in subsonic flow [AD-A093970] BV81-16983 SUBSOBIC SPEED Evaluation of aircraft interference effects on external stores at subsonic and transonic speeds	SUPERSONIC COMBUSTION RAMJET ENGINES Numerical study of a scramjet engine flow field [AIAA PAPER 81-0186] SUPERSONIC CRUISE AIRCRAFT RESEARCH A wind tunnel investigation of the aerodynamic characteristics of forward swept wings supersonic cruise aircraft research N81-16011 Complex configuration analysis at transonic speeds N81-16016 Active controls for flutter suppression and gust alleviation in supersonic aircraft YF-17 flutter model [NASA-CR-163934] SUPERSONIC DRAG Data base for the prediction of inlet external drag N81-16018 SUPERSONIC FLIGHT Delta canard configuration at high angle of attack A81-20351 Application of aerodynamic jump prediction theory to supersonic, high fineness ratio, cruciform finned bodies [AIAA PAPER 81-0222] A81-20685
measurements from a subsonic aircraft [AIAA PAPER 81-0298] A81-20736 SUBSOBIC FLOW Viscous-inviscid interaction on oscillating airfoils in subsonic flow [AIAA PAPER 81-051] A81-20567 Solutions for slightly over- or under-expanded hot supersonic jets exhausting into cold subsonic mainstreams [AIAA PAPER 81-0257] A81-20705 Computer simulation of airfoil icing vithout runback [AIAA PAPER 81-0402] A81-20809 Spanwise distribution of control points in the method of finite elementary solutions [AIAA PAPER 79-1879] A81-21011 A constrained inverse method for the aerodynamic design of thick wings with given pressure distribution in subsonic flow Viscous-inviscid interaction on oscillating airfoils in subsonic flow [AD-A093970] SUBSONIC SPEED Evaluation of aircraft interference effects on	SUPERSONIC COMBUSTION RAMJET ENGINES Numerical study of a scramjet engine flow field [ATAM PAPER 81-0186] SUPERSONIC CRUISE AIRCRAFT RESEARCH A wind tunnel investigation of the aerodynamic characteristics of forward swept wings supersonic cruise aircraft research N81-16011 Complex configuration analysis at transonic speeds Active controls for flutter suppression and gust alleviation in supersonic aircraft IF-17 flutter model [NASA-CR-163934] Data base for the prediction of inlet external drag N81-16018 SUPERSONIC DRAG Data base for the prediction at high angle of attack AR1-20351 Application of aerodynamic jump prediction theory to supersonic, high fineness ratio, cruciform finned bodies
measurements from a subsonic aircraft [AIAA PAPER 81-0298] A81-20736 SUBSOBIC FLOW Viscous-inviscid interaction on oscillating airfoils in subsonic flow [AIAA PAPER 81-0051] A81-20567 Solutions for slightly over- or under-expanded hot supersonic jets exhausting into cold subsonic mainstreams [AIAA PAPER 81-0257] A81-20705 Computer simulation of airfoil icing without runback [AIAA PAPER 81-0402] A81-20809 Spanwise distribution of control points in the method of finite elementary solutions [AIAA PAPER 79-1879] A81-21011 A constrained inverse method for the aerodynamic design of thick wings with given pressure distribution in subsonic flow Viscous-inviscid interaction on oscillating airfoils in subsonic flow [AD-A093970] N81-16983 SUBSOBIC SPEED Evaluation of aircraft interference effects on external stores at subsonic and transonic speeds N81-15997 SUBSONIC SIED TUBBELS Prediction and experimental verification of	SUPERSONIC COMBUSTION RAMJET ENGINES Numerical study of a scramjet engine flow field [AIAA PAPER 81-0186] SUPERSONIC CRUISE AIRCRAFT RESEARCH A wind tunnel investigation of the aerodynamic characteristics of forward swept wings supersonic cruise aircraft research N81-16011 Complex configuration analysis at transonic speeds Active controls for flutter suppression and gust alleviation in supersonic aircraft YF-17 flutter model [NASA-CR-163934] SUPERSONIC DRAG Data base for the prediction of inlet external drag N81-16018 SUPERSONIC FLIGHT Delta canard configuration at high angle of attack A81-20351 Application of aerodynamic jump prediction theory to supersonic, high fineness ratio, cruciform finned bodies [AIAA PAPER 81-0222] A81-20685 SUPERSONIC FLOW On a linear theory of a supersonic flow past a delta wing with subsonic leading edges
measurements from a subsonic aircraft [AIAA PAPER 81-0298] Viscous-inviscid interaction on oscillating airfoils in subsonic flow [AIAA PAPER 81-0051] Solutions for slightly over- or under-expanded hot supersonic jets exhausting into cold subsonic mainstreams [AIAA PAPER 81-0257] Computer simulation of airfoil icing without runback [AIAA PAPER 81-0402] Spanwise distribution of control points in the method of finite elementary solutions [AIAA PAPER 87-1879] A constrained inverse method for the aerodynamic design of thick wings with given pressure distribution in subsonic flow Viscous-inviscid interaction on oscillating airfoils in subsonic flow [AD-A093970] SUBSOBIC SPEED Evaluation of aircraft interference effects on external stores at subsonic and transonic speeds N81-15997 SUBSONIC WIND TUBBLS Prediction and experimental verification of transient airfoil motion in a small wind tunnel	SUPERSONIC COMBUSTION RAMJET ENGINES Numerical study of a scramjet engine flow field [AIAA PAPER 81-0186] SUPERSONIC CRUISE AIRCRAFT RESEARCH A wind tunnel investigation of the aerodynamic characteristics of forward swept wings supersonic cruise aircraft research N81-16011 Complex configuration analysis at transonic speeds alleviation in supersonic aircraft IF-17 flutter model [NASA-CR-163934] SUPERSONIC DRAG Data base for the prediction of inlet external drag N81-16018 SUPERSONIC PLIGHT Delta canard configuration at high angle of attack A81-20351 Application of aerodynamic jump prediction theory to supersonic, high fineness ratio, cruciform finned bodies [AIAA PAPER 81-0222] A81-20685 SUPERSONIC FLOW On a linear theory of a supersonic flow past a delta wing with subsonic leading edges 881-19872
measurements from a subsonic aircraft [AIAA PAPER 81-0298] A81-20736 SUBSOBIC FLOW Viscous-inviscid interaction on oscillating airfoils in subsonic flow [AIAA PAPER 81-051] A81-20567 Solutions for slightly over- or under-expanded hot supersonic jets exhausting into cold subsonic mainstreams [AIAA PAPER 81-0257] A81-20705 Computer simulation of airfoil icing without runback [AIAA PAPER 81-0402] A81-20809 Spanwise distribution of control points in the method of finite elementary solutions [AIAA PAPER 79-1879] A81-21011 A constrained inverse method for the aerodynamic design of thick wings with given pressure distribution in subsonic flow Viscous-inviscid interaction on oscillating airfoils in subsonic flow [AD-A093970] N81-16983 SUBSOBIC SPEED Evaluation of aircraft interference effects on external stores at subsonic and transonic speeds N81-15997 SUBSOBIC WIND TUBBELS Prediction and experimental verification of transient airfoil motion in a small wind tunnel [AIAA PAPER 81-0052] A81-20568	SUPERSONIC COMBUSTION RAMJET ENGINES Numerical study of a scramjet engine flow field [ATAM PAPER 81-0186] SUPERSONIC CRUISE AIRCRAFT RESEARCH A wind tunnel investigation of the aerodynamic characteristics of forward swept wings supersonic cruise aircraft research N81-16011 Complex configuration analysis at transonic speeds Active controls for flutter suppression and gust alleviation in supersonic aircraft IF-17 flutter model [NASA-CR-163934] Data base for the prediction of inlet external drag N81-16018 SUPERSONIC PLIGHT Delta canard configuration at high angle of attack A81-20351 Application of aerodynamic jump prediction theory to supersonic, high fineness ratio, cruciform finned bodies [ATAM PAPER 81-0222] SUPERSONIC FLOW On a linear theory of a supersonic flow past a delta wing with subsonic leading edges A81-19872 A cost-effective method for shock-free
measurements from a subsonic aircraft [AIAA PAPER 81-0298] Viscous-inviscid interaction on oscillating airfoils in subsonic flow [AIAA PAPER 81-0051] Solutions for slightly over- or under-expanded hot supersonic jets exhausting into cold subsonic mainstreams [AIAA PAPER 81-0257] Computer simulation of airfoil icing without runback [AIAA PAPER 81-0402] Spanwise distribution of control points in the method of finite elementary solutions [AIAA PAPER 87-1879] A constrained inverse method for the aerodynamic design of thick wings with given pressure distribution in subsonic flow Viscous-inviscid interaction on oscillating airfoils in subsonic flow (AD-A093970] SUBSOBIC SPEED Evaluation of aircraft interference effects on external stores at subsonic and transonic speeds N81-15997 SUBSONIC WIND TUNNELS Prediction and experimental verification of transient airfoil motion in a small wind tunnel [AIAA PAPER 81-0052] Wind tunnel model support, controlled by four microprocessors	SUPERSONIC COMBUSTION RAMJET ENGINES Numerical study of a scramjet engine flow field [AIAA PAPER 81-0186] SUPERSONIC CRUISE AIRCRAFT RESEARCH A wind tunnel investigation of the aerodynamic characteristics of forward swept wings supersonic cruise aircraft research N81-16011 Complex configuration analysis at transonic speeds N81-16016 Active controls for flutter suppression and gust alleviation in supersonic aircraft IF-17 flutter model [NASA-CR-163934] SUPERSONIC DRAG Data base for the prediction of inlet external drag N81-16018 SUPERSONIC PLIGHT Delta canard configuration at high angle of attack Application of aerodynamic jump prediction theory to supersonic, high fineness ratio, cruciform finned bodies [AIAA PAPER 81-0222] SUPERSONIC FLOW On a linear theory of a supersonic flow past a delta wing with subsonic leading edges A81-19872 A cost-effective method for shock-free supercritical wing design [AIAA PAPER 81-0383] A81-20796
measurements from a subsonic aircraft [AIAA PAPER 81-0298] A81-20736 SUBSOBIC FLOW Viscous-inviscid interaction on oscillating airfoils in subsonic flow [AIAA PAPER 81-051] A81-20567 Solutions for slightly over- or under-expanded hot supersonic jets exhausting into cold subsonic mainstreams [AIAA PAPER 81-0257] A81-20705 Computer simulation of airfoil icing without runback [AIAA PAPER 81-0402] A81-20809 Spanwise distribution of control points in the method of finite elementary solutions [AIAA PAPER 79-1879] A81-21011 A constrained inverse method for the aerodynamic design of thick wings with given pressure distribution in subsonic flow Viscous-inviscid interaction on oscillating airfoils in subsonic flow [AD-A093970] N81-16983 SUBSONIC SPEED Evaluation of aircraft interference effects on external stores at subsonic and transonic speeds N81-15997 SUBSONIC WIND TUNNELS Prediction and experimental verification of transient airfoil motion in a small wind tunnel [AIAA PAPER 81-0052] A81-20568 Wind tunnel model support, controlled by four microprocessors [ONERA, TP NO. 1980-149] A81-21917	SUPERSONIC COMBUSTION RAMJET ENGINES Numerical study of a scramjet engine flow field [ATAM PAPER 81-0186] SUPERSONIC CRUISE AIRCRAFT RESEARCH A wind tunnel investigation of the aerodynamic characteristics of forward swept wings supersonic cruise aircraft research N81-16011 Complex configuration analysis at transonic speeds Active controls for flutter suppression and gust alleviation in supersonic aircraft YF-17 flutter model [NASA-CR-163934] Data base for the prediction of inlet external drag Data base for the prediction of inlet external drag N81-16018 SUPERSONIC FLIGHT Delta canard configuration at high angle of attack A81-20351 Application of aerodynamic jump prediction theory to supersonic, high fineness ratio, cruciform finned bodies [ATAM PAPER 81-0222] A81-20685 SUPERSONIC FLOW On a linear theory of a supersonic flow past a delta wing with subsonic leading edges A cost-effective method for shock-free supercritical wing design [ATAM PAPER 81-0383] A81-20796 Calculation of supersonic gas flows about wings
measurements from a subsonic aircraft [AIAA PAPER 81-0298] A81-20736 SUBSOBIC FLOW Viscous-inviscid interaction on oscillating airfoils in subsonic flow [AIAA PAPER 81-0051] A81-20567 Solutions for slightly over- or under-expanded hot supersonic jets exhausting into cold subsonic mainstreams [AIAA PAPER 81-0257] A81-20705 Computer simulation of airfoil icing without runback [AIAA PAPER 81-0402] A81-20809 Spanwise distribution of control points in the method of finite elementary solutions [AIAA PAPER 91-0402] A81-21011 A constrained inverse method for the aerodynamic design of thick wings with given pressure distribution in subsonic flow Viscous-inviscid interaction on oscillating airfoils in subsonic flow [AD-A093970] N81-16983 SUBSOBIC SPEED Evaluation of aircraft interference effects on external stores at subsonic and transonic speeds N81-15997 SUBSONIC WIND TUBNELS Prediction and experimental verification of transient airfoil motion in a small wind tunnel [AIAA PAPER 81-0052] Wind tunnel model support, controlled by four microprocessors [ONERA, TP NO. 1980-149] Store separation simulation in subsonic wind tunnels	SUPERSONIC COMBUSTION RAMJET ENGINES Numerical study of a scramjet engine flow field [AIAA PAPER 81-0186] SUPERSONIC CRUISE AIRCRAFT RESEARCH A wind tunnel investigation of the aerodynamic characteristics of forward swept wings supersonic cruise aircraft research N81-16011 Complex configuration analysis at transonic speeds Active controls for flutter suppression and gust alleviation in supersonic aircraft YF-17 flutter model [NASA-CR-163934] SUPERSONIC DRAG Data base for the prediction of inlet external drag N81-16018 SUPERSONIC FLIGHT Delta canard configuration at high angle of attack A81-20351 Application of aerodynamic jump prediction theory to supersonic, high fineness ratio, cruciform finned bodies [AIAA PAPER 81-0222] A cost-effective method for shock-free supercritical wing design [AIAA PAPER 81-0383] A 81-20796 Calculation of supersonic gas flows about wings A81-21201
measurements from a subsonic aircraft [AIAA PAPER 81-0298] A81-20736 SUBSOBIC FLOW Viscous-inviscid interaction on oscillating airfoils in subsonic flow [AIAA PAPER 81-051] A81-20567 Solutions for slightly over- or under-expanded hot supersonic jets exhausting into cold subsonic mainstreams [AIAA PAPER 81-0257] A81-20705 Computer simulation of airfoil icing without runback [AIAA PAPER 81-0402] A81-20809 Spanwise distribution of control points in the method of finite elementary solutions [AIAA PAPER 79-1879] A81-21011 A constrained inverse method for the aerodynamic design of thick wings with given pressure distribution in subsonic flow Viscous-inviscid interaction on oscillating airfoils in subsonic flow [AD-A093970] N81-16983 SUBSONIC SPEED Evaluation of aircraft interference effects on external stores at subsonic and transonic speeds N81-15997 SUBSONIC WIND TUNNELS Prediction and experimental verification of transient airfoil motion in a small wind tunnel [AIAA PAPER 81-0052] A81-20568 Wind tunnel model support, controlled by four microprocessors [ONERA, TP NO. 1980-149] A81-21917 Store separation simulation in subsonic wind tunnels [MBB-PE-123/S/PUB/20] N81-16988 Evaluation of a subsonic cascade wind tunnel for	SUPERSONIC COMBUSTION RAMJET ENGINES Numerical study of a scramjet engine flow field [ATAR PAPER 81-0186] SUPERSONIC CRUISE AIRCRAFT RESEARCH A wind tunnel investigation of the aerodynamic characteristics of forward swept wings supersonic cruise aircraft research N81-16011 Complex configuration analysis at transonic speeds Active controls for flutter suppression and gust alleviation in supersonic aircraft YF-17 flutter model [NASA-CR-163934] Data base for the prediction of inlet external drag Data base for the prediction of inlet external drag N81-16018 SUPERSONIC FLIGHT Delta canard configuration at high angle of attack A81-20351 Application of aerodynamic jump prediction theory to supersonic, high fineness ratio, cruciform finned bodies [ATAM PAPER 81-0222] A81-20685 SUPERSONIC FLOW On a linear theory of a supersonic flow past a delta wing with subsonic leading edges A cost-effective method for shock-free supercritical wing design [ATAM PAPER 81-0383] A81-20796 Calculation of supersonic gas flows about wings
measurements from a subsonic aircraft [AIAA PAPER 81-0298] A81-20736 SUBSOBIC FLOW Viscous-inviscid interaction on oscillating airfoils in subsonic flow [AIAA PAPER 81-0051] A81-20567 Solutions for slightly over- or under-expanded hot supersonic jets exhausting into cold subsonic mainstreams [AIAA PAPER 81-0257] A81-20705 Computer simulation of airfoil icing vithout runback [AIAA PAPER 81-0402] A81-20809 Spanwise distribution of control points in the method of finite elementary solutions [AIAA PAPER 79-1879] A81-21011 A constrained inverse method for the aerodynamic design of thick wings with given pressure distribution in subsonic flow Viscous-inviscid interaction on oscillating airfoils in subsonic flow [AD-A093970] W81-16983 SUBSOBIC SPEED Evaluation of aircraft interference effects on external stores at subsonic and transonic speeds N81-15997 SUBSONIC WIND TUBNELS Prediction and experimental verification of transient airfoil motion in a small wind tunnel [AIAA PAPER 81-0052] Wind tunnel model support, controlled by four microprocessors [ONERA, TP NO. 1980-149] A81-21917 Store separation simulation in subsonic wind tunnels [MBB-FE-123/S/PUB/20] N81-16988 Evaluation of a subsonic cascade wind tunnel for compressor blade testing	SUPERSONIC COMBUSTION RAMJET ENGINES Numerical study of a scramjet engine flow field [AIAA PAPER 81-0186] SUPERSONIC CRUISE AIRCRAFT RESEARCH A wind tunnel investigation of the aerodynamic characteristics of forward swept wings supersonic cruise aircraft research N81-16011 Complex configuration analysis at transonic speeds Active controls for flutter suppression and gust alleviation in supersonic aircraft YF-17 flutter model [NASA-CR-163934] SUPERSONIC DRAG Data base for the prediction of inlet external drag N81-16018 SUPERSONIC FLIGHT Delta canard configuration at high angle of attack A81-20351 Application of aerodynamic jump prediction theory to supersonic, high fineness ratio, cruciform finned bodies [AIAA PAPER 81-0222] A81-20685 SUPERSONIC FLOW On a linear theory of a supersonic flow past a delta wing with subsonic leading edges A cost-effective method for shock-free supercritical wing design [AIAA PAPER 81-0383] A cost-effective method for shock-free supercritical wing design [AIAA PAPER 81-0383] Calculation of supersonic gas flows about wings A81-21201 Transonic wind tunnel development (1940 - 1950) N81-15971
measurements from a subsonic aircraft [AIAA PAPER 81-0298] A81-20736 SUBSOBIC FLOW Viscous-inviscid interaction on oscillating airfoils in subsonic flow [AIAA PAPER 81-0551] A81-20567 Solutions for slightly over- or under-expanded hot supersonic jets exhausting into cold subsonic mainstreams [AIAA PAPER 81-0257] A81-20705 Computer simulation of airfoil icing without runback [AIAA PAPER 81-0402] A81-20809 Spanwise distribution of control points in the method of finite elementary solutions [AIAA PAPER 979-1879] A81-21011 A constrained inverse method for the aerodynamic design of thick wings with given pressure distribution in subsonic flow Viscous-inviscid interaction on oscillating airfoils in subsonic flow [AD-A093970] N81-16983 SUBSOBIC SPEED Evaluation of aircraft interference effects on external stores at subsonic and transonic speeds N81-15997 SUBSONIC WIND TURNELS Prediction and experimental verification of transient airfoil motion in a small wind tunnel [AIAA PAPER 81-0052] A81-20568 Wind tunnel model support, controlled by four microprocessors [ONERA, TP NO. 1980-149] A81-21917 Store separation simulation in subsonic wind tunnels [MBB-FE-123/S/FUB/20] N81-16988 Evaluation of a subsonic cascade wind tunnel for compressor blade testing [AD-A093591]	SUPERSONIC COMBUSTION RAMJET ENGINES Numerical study of a scramjet engine flow field [AIAA PAPER 81-0186] SUPERSONIC CRUISE AIRCRAFT RESEARCH A wind tunnel investigation of the aerodynamic characteristics of forward swept wings supersonic cruise aircraft research N81-16011 Complex configuration analysis at transonic speeds Active controls for flutter suppression and gust alleviation in supersonic aircraft IF-17 flutter model [NASA-CR-163934] SUPERSONIC DRAG Data base for the prediction of inlet external drag N81-16018 SUPERSONIC PLIGHT Delta canard configuration at high angle of attack Application of aerodynamic jump prediction theory to supersonic, high fineness ratio, cruciform finned bodies [AIAA PAPER 81-0222] A81-20685 SUPERSONIC FLOW On a linear theory of a supersonic flow past a delta wing with subsonic leading edges Acost-effective method for shock-free supercritical wing design [AIAA PAPER 81-0383] Calculation of supersonic gas flows about wings A81-21201 Transonic wind tunnel development (1940 - 1950) N81-15971 SUPERSONIC INLETS Bigh-speed cowlings, air inlets and outlets, and
measurements from a subsonic aircraft [AIAA PAPER 81-0298] A81-20736 SUBSOBIC FLOW Viscous-inviscid interaction on oscillating airfoils in subsonic flow [AIAA PAPER 81-0051] A81-20567 Solutions for slightly over- or under-expanded hot supersonic jets exhausting into cold subsonic mainstreams [AIAA PAPER 81-0257] A81-20705 Computer simulation of airfoil icing without runback [AIAA PAPER 81-0402] A81-20809 Spanwise distribution of control points in the method of finite elementary solutions [AIAA PAPER 91-879] A81-21011 A constrained inverse method for the aerodynamic design of thick wings with given pressure distribution in subsonic flow Viscous-inviscid interaction on oscillating airfoils in subsonic flow [AD-A093970] N81-16983 SUBSOBIC SPEED Evaluation of aircraft interference effects on external stores at subsonic and transonic speeds N81-15997 SUBSONIC WIND TURNELS Prediction and experimental verification of transient airfoil motion in a small wind tunnel [AIAA PAPER 81-0052] Wind tunnel model support, controlled by four microprocessors [ONERA, TP NO. 1980-149] A81-20568 Wind tunnel model support, controlled by four microprocessors [ONERA, TP NO. 1980-149] N81-16988 Evaluation of a subsonic cascade wind tunnel for compressor blade testing [AD-A093591] N81-17107 SUCTION Compressible boundary-layer stability calculations	SUPERSONIC COMBUSTION RAMJET ENGINES Numerical study of a scramjet engine flow field [AIAA PAPER 81-0186] SUPERSONIC CRUISE AIRCRAFT RESEARCH A wind tunnel investigation of the aerodynamic characteristics of forward swept wings supersonic cruise aircraft research N81-16011 Complex configuration analysis at transonic speeds Active controls for flutter suppression and gust alleviation in supersonic aircraft YF-17 flutter model [NASA-CR-163934] SUPERSONIC DRAG Data base for the prediction of inlet external drag N81-16018 SUPERSONIC FLIGHT Delta canard configuration at high angle of attack A81-20351 Application of aerodynamic jump prediction theory to supersonic, high fineness ratio, cruciform finned bodies [AIAA PAPER 81-0222] A81-20685 SUPERSONIC FLOW On a linear theory of a supersonic flow past a delta wing with subsonic leading edges A cost-effective method for shock-free supercritical wing design [AIAA PAPER 81-0383] A cost-effective method for shock-free supercritical wing design [AIAA PAPER 81-0383] Calculation of supersonic gas flows about wings A81-21201 Transonic wind tunnel development (1940 - 1950) N81-15971
measurements from a subsonic aircraft [AIAA PAPER 81-0298] A81-20736 SUBSOBIC FLOW Viscous-inviscid interaction on oscillating airfoils in subsonic flow [AIAA PAPER 81-051] A81-20567 Solutions for slightly over- or under-expanded hot supersonic jets exhausting into cold subsonic mainstreams [AIAA PAPER 81-0257] A81-20705 Computer simulation of airfoil icing without runback [AIAA PAPER 81-0402] A81-20809 Spanwise distribution of control points in the method of finite elementary solutions [AIAA PAPER 79-1879] A81-21011 A constrained inverse method for the aerodynamic design of thick wings with given pressure distribution in subsonic flow Viscous-inviscid interaction on oscillating airfoils in subsonic flow [AD-A093970] N81-16983 SUBSONIC SPEED Evaluation of aircraft interference effects on external stores at subsonic and transonic speeds N81-15997 SUBSONIC WIND TUBNELS Prediction and experimental verification of transient airfoil motion in a small wind tunnel [AIAA PAPER 81-0052] A81-20568 Wind tunnel model support, controlled by four microprocessors [ONERA, TP NO. 1980-149] A81-21917 Store separation simulation in subsonic wind tunnels [MBB-PE-123/S/PUB/20] N81-1698 Evaluation of a subsonic cascade wind tunnel for compressor blade testing [AD-A093591] N81-17107	SUPERSONIC COMBUSTION RAMJET ENGINES Numerical study of a scramjet engine flow field [ATAM PAPER 81-0186] SUPERSONIC CRUISE AIRCRAFT RESEARCH A wind tunnel investigation of the aerodynamic characteristics of forward swept wings supersonic cruise aircraft research N81-16011 Complex configuration analysis at transonic speeds Active controls for flutter suppression and gust alleviation in supersonic aircraft IF-17 flutter model [NASA-CR-163934] Data base for the prediction of inlet external drag N81-16018 SUPERSONIC FLIGHT Delta canard configuration at high angle of attack A81-20351 Application of aerodynamic jump prediction theory to supersonic, high fineness ratio, cruciform finned bodies [ATAM PAPER 81-0222] A81-20685 SUPERSONIC FLOW On a linear theory of a supersonic flow past a delta wing with subsonic leading edges A cost-effective method for shock-free supercritical wing design [ATAM PAPER 81-0383] Calculation of supersonic gas flows about wings A81-21201 Transonic wind tunnel development (1940 - 1950) N81-15971 SUPERSONIC INLETS Bigh-speed cowlings, air inlets and outlets, and internal-flow systems

SUBJECT INDEX SYSTEMS SIMULATION

Hyperbolic/parabolic development for the GIM-STAR	SWEPTBACK WINGS
code flow fields in supersonic inlets [NASA-CR-3369] N81-16416	Compressible boundary-layer stability calculations for sweptback wings with suction
SUPERSORIC JET PLOW	[AIAA PAPER 81-0196] A81-20840
Solutions for slightly over- or under-expanded hot	Some particular configuration effects on a thin
supersonic jets exhausting into cold subsonic mainstreams	supercritical variable camber wing N81-16005
[AIAA PAPER 81-0257] A81-20705	Aerodynamic interaction between a close-coupled
New interpretations of shock-associated noise with	canard and a sweptback wing in transonic flow
and without screech A81-22527	N81-16013 Examination of the vortex regime for highly swept
SUPERSORIC SPEEDS	wings by extrapolation of the Jones method
Wing-alone aerodynamic characteristics at high	[AAAF-NT-80-25] N81-16992
angles of attack [AIAA PAPER 81-0008] A81-20532	SYSTEM REPECTIVENESS High 'Q' ejection protection device
Effect of wing location and strakes on stability	A81-22093
and control characteristics of a monoplanar	SYSTEM FAILURES
circular missile with low-profile tail fins at supersonic speeds	A correlated random numbers generator and its use to estimate false alarm rates of airplane sensor
[NASA-TM-81878] N81-15978	failure detection algorithms
SUPPORTS Experimental study of the influence of supports on	A81-20448
the aerodynamic loads on an ogive cylinder at	Effects on anti-static additives on aircraft capacitance fuel gaging systems
high angles of attack	[AD-A092907] N81-17059
[AIAA PAPER 81-0007] A81-20531 SURFACE PROPERTIES	Environmental burn-in effectiveness [AD-A093307] N81-17060
Runway surface loading during aircraft landings	SYSTEM GENERATED ELECTROMAGNETIC POLSES
A81-19800	Improving surface current injection techniques via
SURFACE ROUGHNESS Modal analysis for aircraft response to runway	one- and two-dimensional models A81-19940
surface roughness	SYSTEMS ANALYSIS
[AD-A092057] N81-16043 SURGES	Robust autoregressive models for predicting aircraft motion from noisy data
Turbo-compressors surge and surge control	A81-20473
[AIAA PAPEE 81-0070] A81-20579 SURWRILLANCE RADAR	SYSTEMS ENGINEERING Air traffic control and position location by
Side lobe suppression with digital signal processing	satellite constellation in equatorial orbit
A81-20092	A81-21912
Target detection and parameter estimation in surveillance radars using MTI-PFT processing	A distributed airborne surveillance system A81-22618
A81-20094	Design, fabrication, and testing of the Maximum
A distributed airborne surveillance system A81-22618	Performance Ejection System (MPES) seat structure [AD-A092292] N81-16025
· Mini-RPV radar test program	Critical research issues and visual system
A81-22619 Multipath and interference effects in secondary	requirements for a V/STOL training research simulator
surveillance radar systems	[AD-A092561] N81-16072
A81-23359	Federal Radionavigation Plan. Volume 1:
SURVIVAL EQUIPMENT Survival and Flight Equipment Association, Annual	Radionavigation plans and policy [AD-A093774] N81-17030
Symposium, 17th, Las Vegas, Nev., December 2-6,	Pederal Radionavigation Plan. Volume 2:
1979, Proceedings A81-22076	Requirements [AD-A093775] N81-17031
Seat pack for fighter aircraft operating on the	Federal Radionavigation Plan. Volume 3:
NATO Northern Flank . N81-17010	Radionavigation system characteristics [AD-A093776] N81-17032
The evolution of the helicopter seat pan mounted	[AD-A093776] N81-17032 Pederal Radionavigation Plan. Volume 4:
Personal Survival Pack (PSP)	Radionavigation research, engineering and
N81-17016 SWEPT PORWARD WINGS	development [AD-A093777] N81-17033
Design of advanced technology transonic airfoils	SYSTEMS INTEGRATION
and wings N81-16000	Airline navigation planning
A wind tunnel investigation of the aerodynamic	A81-21966 SYSTEMS NAWAGEMENT
characteristics of forward swept wings	Annual report to the NASA Administrator by the
supersonic cruise aircraft research N81-16011	Aerospace Safety Advisory Panel on the space shuttle program. Part 2: Summary of
SWEPT WINGS	information developed in the panel's
The linear instability due to the compressible	fact-finding activities
crossflow on a swept wing A81-21168	[NASA-TM-82252] N81-16114 Pederal Radionavigation Plan. Volume 1:
Interference aspects of the A310 high speed wing	Radionavigation plans and policy
configuration N81-16001	[AD-A093774] N81-17030 Pederal Radionavigation Plan. Volume 4:
A constrained inverse method for the aerodynamic	Radionavigation research, engineering and
design of thick wings with given pressure	development
distribution in subsonic flow N81-16006	` (AD-A093777] N81-17033 SYSTEMS SIMULATION
An investigation of a swept wing-body	Air traffic simulation as a validation tool
configuration with drooped leading edge at low and transonic speeds	A81-21718 A case study - Real time simulation and structured
N81-16012	design
Some aerodynamic interference effects that	A81-21721
influence the transonic performance of combat aircraft	GPS receiver simulation A81-21913
N81-16014	Low level, adverse attitude escape using a
	vertical seeking ejection seat

A81-22094

T-38 AIRCRAFT SUBJECT INDEX

Civil aviation applications of Navstar/GPS	through	TELEMETRY	bin.a
differential techniques	A81-22374	A low cost multiple drone command and track system	A81-22613
T		TELEVISION CAMERAS A versatile miniature solid state television	
T-38 AIRCRAFT		camera /CCD/	
Initial development for a flutter analysis			A81-22620
damaged T-38 horizontal stabilators usin [AIAA PAPER 81-0365] TACAN	ASTRAN ASTRAN	TEBSILE STRENGTH Ductile fracture mechanic assessments of 2219-T851, 2024-T3 and 7075-T6 aluminum a	allovs
Analytic determination of interference thr	esholds	22,7 2037, 2021 20 424 1010 20 422222	A81-22628
for microwave landing system equipment a		TERMINAL AREA ENERGY MANAGEMENT	
TACAN/DME equipment		Integration of fuel conservative procedure:	s in the
[AD-A093448]	N81-17025	high density terminal area	101-20//60
TAKEOFF Some aspects of advanced flight management	svetome	TERMINAL CONFIGURED VEHICLE PROGRAM	A81-20468
and their application to modern transpor	t aircraft A81-20353	Operation and evaluation of the Terminal Configured Vehicle Mission Simulator in a automated terminal area metering and space	
frosted wings		environment	-
[AIAA PAPER 81-0404]	A81-20811		A81-21709
TAKEOFF BUNS Critical field length calculations for pre	liminary	Experiments using electronic display infor	Mation N81-17077
design	10112266	TERRAIN POLLOWING AIRCRAFT	.
TARGET ACQUISITION	A81-23366	A mobile computer-aided detection and track system for low-flying attack aircraft	King
Target detection and parameter estimation	in	-1	A81-20098
surveillance radars using MTI-FFT proces		Evolution of tactical and map displays for	high
	A81-20094	performance aircraft	
Application of Doppler information to auto	omatic	mpcm pactitmipe	N81-17072
target tracking	A81-20101	TEST FACILITIES Wind tunnel model support, controlled by for	onr
Automatic handoff of multiple targets	201 20101	microprocessors	
[AD-A093483]	N81-17101	[ONERA, TP NO. 1980-149]	A81-21917
TARGET DROBE AIRCRAFT		Escape systems testing on the Holloman high	h speed -
The BQM-74C target as a flying computer -	Its	test track	101 22000
language and its peripherals	A81-22611	Effect of facility variation on the acoust:	A81-22088 ic
QF-100 Pull-Scale Aerial Target program	20. 220	characteristics of three single stream no	
	A81-22612	•	A81-22534
The DAST-1 remotely piloted research vehic	:le	Shielded enclosure test bed requirement	204 46072
<pre>development and initial flight testing [NASA-CR-163105]</pre>	N81-17038	[AD-A092589] TEST PIRING	N81-16073
TARGET RECOGNITION	MOT 17030	Application of aerodynamic jump prediction	theory
Critical research issues and visual system		to supersonic, high fineness ratio, cruc	
requirements for a V/STOL training resea	rch	finned bodies	
simulator [AD-A092561]	N81-16072	[AIAA PAPER 81-0222] TEST STANDS	A81-20685
TECHNOLOGY ASSESSMENT	801-10072	Propeller propulsion integration, phase 1	
New ways in antenna technology for optimal	L	conducted in langley 30 by 60 foot full :	
adjustment of the background clutter		wind tunnel	
40 years of helicanter ica protection even	A81-20084	[NASA-CR-163921] TEST VEHICLES	N8 1-16058
40 years of helicopter ice protection expe at Sikorsky Aircraft	it lence	High bypass turbofan component development	_
[AIAA PAPER 81-0407]	A81-20813	modification 2	•
Economics of technological change - A join	it model	[AD-A093156]	N81-17093
for the aircraft and airline industries	104 24040	THERMOCHEMISTRY	
Ejection experience in P/FB-111 aircraft -	A81-21010 - 1967-1978	Thermodynamics of organic compounds [AD-A093087]	N81-17936
bjected capeticace in 1,15 director	A81-22098	THERMODYNAMIC PROPERTIES	
A feasibility study for advanced technolog	IY	Combustor liner durability analysis	
integration for general aviation	WO4 45085	[NASA-CR-165250]	N81-17079
[AD-A092437]	N81-15975	THERMODYNAMICS Thermodynamics of organic compounds	
A survey of computer simulations of digita avionics systems		[AD-A093087]	N81-17936
[AD-A091943]	N81-16049	THIN AIRFOILS	
The state of the art of general aviation a		Numerical solution of transonic flow through	gh a
[NASA-CR-159371] TECHHOLOGY TRANSPER	N81-16066	cascade with slender profiles	A81-21197
Civil aviation applications of Navstar/GPS	through	Analysis of a symmetric transonic aerofoil	
differential techniques		the finite element method - A new upwind:	
	A81-22374	technique	
The flight aggregates and applications of	DMP /DMP	BUTE DIECE	A81-22984
The flight assessment and applications of I, II	nur/nur.	THIN WINGS On a linear theory of a supersonic flow page.	et a
-, 	A81-21968	delta wing with subsonic leading edges	u
A feasibility study for advanced technolog	I Y		A81-19872
integration for general aviation	NO3 4507"	Some particular configuration effects on a	thin
[NASA-CR-159381]	N81-15974	supercritical variable camber wing	NO1-1600E
Evolution of materials and associated tech in the makeup of aerospace materials, pa		THREE DIMENSIONAL BOUNDARY LAYER	N81-16005
[AAAF-NT-79-22-PT-1]	N81-17050	Three-dimensional wing boundary layer calcu	ulated
Evolution of materials and associated tech	nologies	with eight different methods	
in the makeup of aerospace materials. I Examples	Part 2:	Core compressor orit stage state #-1	A81-21555
[AAAF-NT-79-22-PT-2]	N81-17051	Core compressor exit stage study. Volume (and performance report for the baseline	pata
		configuration	
		[NASA-CR-159498]	N81-16051

SUBJECT INDEX TRANSONIC PLOW

MUDDA DI MANCACANAY OF CO	Description compaints on American actions
THREE DIMENSIONAL PLOW	Precision correlation tracking via optimal
Body-fitted 3-D full-potential flow analysis of	weighting functions
complex ducts and inlets [AIAA PAPER 81-0002] A81-20527	A81-20450
Three-dimensional turbulent boundary layer	digitized images
development and separation in V/STOL engine	A81-20508
inlets at incidence with small-cross flow and	Control strategy for tracking a maneuverable model
curvature influences	[AIAA PAPER 81-0089] A81-20593
[AIAA PAPER 81-0254] A81-20703	GPS receiver simulation
3-D viscous analysis of ducts and flow splitters	A81-21913
[AIAA PAPER 81-0277] A81-20720	TRACKING RADAR
Three-dimensional model of spray combustion in gas	Adaptive control for electronic countermeasures
turbine combustors	A81-20470
[AIAA PAPER 81-0324] A81-20751	TRACKING STATIONS
Plight experiments with a slender cone at angle of	Air traffic control simulation models. Citations
attack	from the NTIS data base
[AIAA PAPER 81-0337] A81-20761	[PB81-800104] N81-17037
Calculation of supersonic gas flows about wings	TRAILING EDGES
A81-21201	
Three dimensional internal flows in	performance
turbomachinery, volume 1	N81-16007
[AD-A092737] N81-16065	TRAIBING AIRCRAPT
Three-dimensional internal flows in	Developments at VFW/Rhein-Flugzeugbau GmbH,
turbomachinery, volume 2	Moenchengladbach trainer aircraft design
[AD-A093130] N81-17090	A81-21574
Current problems in turbomachinery fluid dynamics	Evaluating spectrum effects in U.S. Air Force
[AD-A093375] N81-17387	attack/fighter/trainer individual aircraft
THRUST	tracking
An application of wake survey rakes to the	A81-21742
experimental determination of thrust for a	The effects of warhead-induced damage on the
propeller driven aircraft	aeroelastic characteristics of lifting surfaces.
[NASA-CR-163920] N81-15986	
THRUST AUGMENTATION	[AD-A093063] N81-17048
Prediction and evaluation of thrust augmenting	TRAJECTORY OPTIMIZATION
ejector performance at the conceptual design stage	
[AD-A093953] N81-17094	
THRUST VECTOR CONTROL	A81-20466
Two-axis, fluidically controlled thrust vector	Application of singular perturbation theory to
	onboard aircraft trajectory optimization for
[AD-A093888] N81-16996	
THUNDERSTORMS	[AIAA PAPER 81-0019] A81-20543
Design and preliminary tests of an IR-airborne	High altitude launch of the Cruise Missile
LLWS remote sensing system Low Level Wind	A81-22608
Shear	TRANSIENT RESPONSE
[AIAA PAPER 81-0239] A81-20694	Prediction and experimental verification of
Sources and detection of atmospheric wind shear	transient airfoil motion in a small wind tunnel
[AIAA PAPER 81-0391] A81-20801	[AIAA PAPER 81-0052] A81-20568
TILT ROTOR AIRCRAPT	A method for the prediction of wing response to
* Prediction of tilt rotor outwash	nonstationary buffet loads
Main Main Main Main Main Main Main Main	
TILT BOTOR RESEARCH AIRCRAFT PROGRAM	TRANSMISSIONS (MACHINE BLEMENTS)
The XV-15 - An initial Navy look	Gear unit noise and transmission errors
[AIAA PAPER 81-0155] A81-20635	
TIME OPTIMAL CONTROL	A81-20060
Design of disturbance-rejection controllers for	Gear meshing action as a source of vibratory
linear multivariable discrete-time systems using	excitation
entire eigenstructure assignment onboard	A81-20061
digital flight system of P-4 aircraft	Development and application of an analytical
A81-20454	method for predicting helicopter transmission
TIME SERIES ANALYSIS	noise
Stochastic modeling of an aircraft traversing a	A81-20062
runway using time series analysis	Modelling techniques for the reduction of noise
A81-23368	
TIP SPEED	A81-20063
The high-speed propeller program	TRANSMITTERS
N81-15972	Omega transmitter outages, January to December 1979
TITANIUM ALLOYS	[AD-A093425] N81-17035
Progress in P/M superalloy and titánium for	TRANSONIC PLIGHT
aircraft applications	Adaptive airfoils and wings for efficient
A81-22641	transonic flight
Superplastic formed and diffusion bonded titanium	A81-20349
	Delta canard configuration at high angle of attack
landing gear component feasibility study	
landing gear component feasibility study [AD-A092788] N81-16213	A81-20351
Tanding gear component feasibility study [AD-A092788] N81-16213 TOLERANCES (MECHANICS)	A81-20351 Transonic wing technology for transport aircraft
landing gear component feasibility study [AD-A092788] **TOLBRANCES (MECHANICS) Liniting application of the concept 'damage	
Tanding gear component feasibility study [AD-A092788] N81-16213 TOLERANCES (MECHANICS)	Transonic wing technology for transport aircraft
Tanding gear component feasibility study [AD-A092788] N81-16213 TOLEBANCES (HECHANICS) Limiting application of the concept 'damage tolerance' with regard to fighter aircraft [AAAF-NT-79-32] N81-17054	Transonic wing technology for transport aircraft N81-16002 Design and experimental verification of a transonic wing for a transonic aircraft
landing gear component feasibility study [AD-A092788] N81-16213 TOLEBANCES (MECHANICS) Limiting application of the concept 'damage tolerance' with regard to fighter aircraft [AAAF-NT-79-32] N81-17054 TORSION	Transonic wing technology for transport aircraft N81-16002 Design and experimental verification of a transonic wing for a transonic aircraft N81-16003
Tanding gear component feasibility study [AD-A092788] N81-16213 TOLEBANCES (HECHANICS) Limiting application of the concept 'damage tolerance' with regard to fighter aircraft [AAAF-NT-79-32] N81-17054	Transonic wing technology for transport aircraft N81-16002 Design and experimental verification of a transonic wing for a transonic aircraft
landing gear component feasibility study [AD-A092788] N81-16213 TOLEBANCES (MECHANICS) Limiting application of the concept 'damage tolerance' with regard to fighter aircraft [AAAF-NT-79-32] N81-17054 TORSION	Transonic wing technology for transport aircraft N81-16002 Design and experimental verification of a transonic wing for a transonic aircraft N81-16003
landing gear component feasibility study [AD~A092788] N81-16213 TOLBRANCES (MECHANICS) Liniting application of the concept 'damage tolerance' with regard to fighter aircraft [AAAF-NT-79-32] N81-17054 TORSION Compressor blade monitoring system for a VA1310	Transonic wing technology for transport aircraft N81-16002 Design and experimental verification of a transonic wing for a transonic aircraft N81-16003 Some particular configuration effects on a thin
landing gear component feasibility study [AD-A092788] N81-16213 TOLERANCES (MECHANICS) Limiting application of the concept 'damage tolerance' with regard to fighter aircraft [AAAF-NT-79-32] N81-17054 TORSION Compressor blade monitoring system for a VA1310 [Allis Chalmers) Wind Tunnel Compressor	Transonic wing technology for transport aircraft N81-16002 Design and experimental verification of a transonic wing for a transonic aircraft N81-16003 Some particular configuration effects on a thin supercritical variable camber wing
landing gear component feasibility study [AD-A092788] N81-16213 TOLBRANCES (MECHANICS) Limiting application of the concept 'damage tolerance' with regard to fighter aircraft [AAAF-NT-79-32] TORSION Compressor blade monitoring system for a VA1310 [Allis Chalmers) Wind Tunnel Compressor [AD-A092920] N81-17103	Transonic wing technology for transport aircraft N81-16002 Design and experimental verification of a transonic wing for a transonic aircraft N81-16003 Some particular configuration effects on a thin supercritical variable camber wing N81-16005
landing gear component feasibility study [AD-A092788] N81-16213 TOLBRANCES (MECHANICS) Limiting application of the concept 'damage tolerance' with regard to fighter aircraft [AAAF-NT-79-32] N81-17054 TORSION Compressor blade monitoring system for a VA1310 [Allis Chalmers) Wind Tunnel Compressor [AD-A092920] TRACKING (POSITION)	Transonic wing technology for transport aircraft N81-16002 Design and experimental verification of a transonic wing for a transonic aircraft N81-16003 Some particular configuration effects on a thin supercritical variable camber wing N81-16005 TRANSONIC FLOW Numerical simulations of a segmented-plenum, perforated, adaptive-wall wind tunnel
landing gear component feasibility study [AD-A092788] N81-16213 TOLBEANCES (MECHANICS) Limiting application of the concept 'damage tolerance' with regard to fighter aircraft [AAAF-NT-79-32] N81-17054 TORSION Compressor blade monitoring system for a VA1310 [Allis Chalmers) Wind Tunnel Compressor [AD-A092920] N81-17103 TRACKING (POSITION) A low cost multiple drone command and tracking system	Transonic wing technology for transport aircraft N81-16002 Design and experimental verification of a transonic wing for a transonic aircraft N81-16003 Some particular configuration effects on a thin supercritical variable camber wing N81-16005 TRANSOBIC PLOW Numerical simulations of a segmented-plenum,
landing gear component feasibility study [AD-A092788] N81-16213 TOLBRANCES (MECHANICS) Limiting application of the concept 'damage tolerance' with regard to fighter aircraft [AAAP-NT-79-32] N81-17054 TORSION Compressor blade monitoring system for a VA1310 [Allis Chalmers) Wind Tunnel Compressor [AD-A092920] N81-17103 TRACKING (POSITION) A low cost multiple drone command and tracking system A81-22613	Transonic wing technology for transport aircraft N81-16002 Design and experimental verification of a transonic wing for a transonic aircraft N81-16003 Some particular configuration effects on a thin supercritical variable camber wing N81-16005 TRANSONIC PLOW Numerical simulations of a segmented-plenum, perforated, adaptive-wall wind tunnel
landing gear component feasibility study [AD-A092788] N81-16213 TOLBEANCES (MECHANICS) Limiting application of the concept 'damage tolerance' with regard to fighter aircraft [AAAF-NT-79-32] N81-17054 TORSION Compressor blade monitoring system for a VA1310 [Allis Chalmers) Wind Tunnel Compressor [AD-A092920] N81-17103 TRACKING (POSITION) A low cost multiple drone command and tracking system	Transonic wing technology for transport aircraft N81-16002 Design and experimental verification of a transonic wing for a transonic aircraft N81-16003 Some particular configuration effects on a thin supercritical variable camber wing N81-16005 TRANSONIC PLOW Numerical simulations of a segmented-plenum, perforated, adaptive-wall wind tunnel [AIAN PAPER 81-0160] On the derivation of universal indicial functions for unsteady transonic flow
landing gear component feasibility study [AD-A092788] N81-16213 TOLBRANCES (MECHANICS) Limiting application of the concept 'damage tolerance' with regard to fighter aircraft [AAAP-NT-79-32] N81-17054 TORSION Compressor blade monitoring system for a VA1310 [Allis Chalmers) Wind Tunnel Compressor [AD-A092920] N81-17103 TRACKING (POSITION) A low cost multiple drone command and tracking system A81-22613	Transonic wing technology for transport aircraft N81-16002 Design and experimental verification of a transonic wing for a transonic aircraft N81-16003 Some particular configuration effects on a thin supercritical variable camber wing N81-16005 TRANSOBIC PLOW Numerical simulations of a segmented-plenum, perforated, adaptive-wall wind tunnel [AIAA PAPER 81-0160] On the derivation of universal indicial functions

TRANSONIC SPEED SUBJECT INDEX

Higher-accuracy finite-difference schemes for transonic airfoil flowfield calculations [AIAA PAPER 81-0381] A81-20794	Use of constrained optimization in the conceptual design of a medium-range subsonic transport [NASA-TP-1762] N81-16039
Numerical solution of transonic flow through a cascade with slender profiles	TRANSPORTATION Collision avoidance systems. Citations from the
A81-21197 Analysis of a symmetric transonic aerofoil with	NTIS data base [PB80-815020] N81-16038
the finite element method - A new upwinding technique	TRAVELING WAVES
A81-22984	Compressible boundary-layer stability calculations for sweptback wings with suction
Transonic flow calculations over two-dimensional canard-wing systems	[AIAA PAPER 81-0196] A81-20840 TROPICAL STORMS
[AIAA PAPER 79-1565] A81-23367 Application of transonic potential calculations to	The WC-130 meteorological system and its utilization in operational weather reconnaissance
aircraft and wind tunnel configurations N81-15992	[AD-A092637] N81-16699
Study of transonic flow fields about aircraft:	CAT altitude avoidance system
Application to external stores N81-15998	[NASA-CASE-NPO-15351-1] N81-16677 TROPOSPHERE
<pre>Design of advanced technology transonic airfoils and wings</pre>	Analysis of wind vector components in the lower troposphere Applications to aircraft operations
N81-16000 Aerodynamic interaction between a close-coupled	at terminals [AIAA PAPER 81-0387] A81-20799
canard and a sweptback wing in transonic flow N81-16013	TURBING BLADES Mean rotor wake characteristics of an
Some aerodynamic interference effects that	aerodynamically loaded 0.5 m diameter fan
influence the transonic performance of combat aircraft	[NASA-TM-81657] N81-16053 JT8p-15/17 high pressure turbine root discharged
N81-16014	blade performance improvement engine design
Supercritical flow past symmetrical airfoils [AD-A093300] N81-16984	[NASA-CE-165220] N81-17080 TURBOCOMPRESSORS
TRANSORIC SPEED Evaluation of aircraft interference effects on	Dynamic pressure response with stall on axial flow compressor rotor blades
external stores at subsonic and transonic speeds	[AIAA PAPER 81-0069] A81-20578
N81-15997 An investigation of a swept wing-body	Turbo-compressors surge and surge control [AIAA PAPER 81-0070] A81-20579
configuration with drooped leading edge at low and transonic speeds	Evaluation of compressor blade endurance limits by an accelerated method
TRANSONIC WIND TUNNELS	A81-22182 Core compressor exit stage study. Volume 2: Data
Measurements of flow quality in the Ames 2 x 2ft transonic wind tunnel	and performance report for the baseline configuration
[AIAA PAPER 81-0156] A81-20636	[NASA-CR-159498] N81-16051
Transonic wind tunnel development (1940 - 1950) 881-15971	Compressor blade monitoring system for a VA1310 (Allis Chalmers) Wind Tunnel Compressor.
Wind tunnel wall interference	[AD-A092920] N81-17103
[AD-A093301] Evaluation of the acoustic and aerodynamic	TURBOFAN AIRCRAFT Experimental study of the interaction between the
characteristics of several slot-baffle configurations for transonic wind tunnel walls	wing of a subsonic aircraft and a nacelle of a high by-pass ratio engine
[AD-A093957] N81-17106 TRANSPONDERS	TURBOFAN ENGINES N81-16010
Detection of military aircraft in an Air Traffic	Unsteady fan blade pressure and acoustic radiation
Control Radar Beacon System (ATCRBS) environment [AD-A093427] N81-17036	from a JT15D-1 turbofan engine at simulated forward speed
TRANSPORT AIRCRAFT Some aspects of advanced flight management systems	[AIAA PAPER 81-0096] Non-isoenergetic turbulent jet mixing in a
and their application to modern transport aircraft	constant area duct in turbofan engines
A81-20353 Disturbance estimation for a STOL transport during	[AIAA PAPER 81-0347] A81-20768 Prediction method for the overall performance of
landing [AIAA PAPER 81-0018] A81-20542	turbofan engines [AIAA PAPER 81-0367] A81-20786
Application of singular perturbation theory to	Developments at VFW/Rhein-Flugzeugbau GmbH,
<pre>onboard aircraft trajectory optimization for commercial jet transport aircraft</pre>	Moenchengladbach trainer aircraft design A81-21574
[AIAA PAPER 81-0019] A81-20543	Core noise measurements from a small, general
A head-up display for low-visibility approach and landing	aviation turbofan engine 181-22531
[AIAA PAPER 81-0130] Effect of transport aircraft wing loads spectrum	Design, durability and low cost processing technology for composite fan exit guide wanes
variation on crack growth A81-21738	A81-22664 Design and evaluation of an integrated Quiet Clean
The influence of beards on the efficiency of aviators' oxygen masks	General Aviation Turbofan (OCGAT) engine and aircraft propulsion system
A81-22100 Study of a crack propagation on the flap rail of a	[NASA-CR-165185] N81-16057 Exhaust emission characteristics and variability
transport aircraft A81-22633	for maintained General Electric CP6-50 turbofan engines
Transonic wing technology for transport aircraft	[AD-A092291] N81-16064
N81-16002 Design and experimental verification of a	Samarium cobalt (SMCO) generator/engine integration study
transonic wing for a transonic aircraft N81-16003	[AD-A092904] N81-17087
Experimental study of the interaction between the	Multi-plane high speed balancing techniques and the use of a high specific stiffness Ti-Borsic
wing of a subsonic aircraft and a nacelle of a high by-pass ratio engine	material for vibration control [AD-A093122] N81-17092
N81-16010	

SUBJECT INDEX VARIABLE CYCLE ENGINES

Multivariable control synthesis program: Control aspects of the P100 altitude demonstration of	Three-dimensional model of spray combustion in gas turbine combustors
the multivariable control system	[AIAA PAPER 81-0324] A81-20751
[AD-A093868] N81-17095	
Material and structural problems in aircraft	U
engine technology CPM-56 engine [AAAF-NT-79-23] N81-17096	ULTRASOBIC SPECTROSCOPY
TURBOPANS	Non-destructive testing of adhesive-bonded joints
High bypass turbofan component development,	A8 1-20 162
modification 2	UNDERWATER BREATHING APPARATUS
[AD-A093156] N81-17093 TURBOJET ENGINES	Helicopter emergency underwater escape A81-22101
Nuclear blast response of airbreathing propulsion	UNSTRADY PLOW
systems. Laboratory measurements with an	On the derivation of universal indicial functions
operational J-85-5 turbojet engine [AD-A092229] N81-16063	for unsteady transonic flow [AIAA PAPER 81-0328] A81-20753
TURBOHACHIBERY	A computerized study of wave characteristics in a
Three dimensional internal flows in	time dependent compressible flow
turbomachinery, volume 1	[AIAA PAPER 81-0410] A81-20838
[AD-A092737] N81-16065 Three-dimensional internal flows in	A discrete vortex method for the non-steady separated flow over an airfoil
turbomachinery, volume 2	A81-22568
[AD-A093130] N81-17090	Philosophy and results of steady and unsteady test
Current problems in turbomachinery fluid dynamics	techniques on a large scale transport aircraft
[AD-A093375] N81-17387 TURBOPROP ENGINES	model in the ONERA transonic tunnel S1 MA. Part 1: Philosophy and results of steady tests.
Jet wing interference for an overwing engine	Part 2: Interest of large models in unsteady
configuration	aerodynamics
N81-16008	N81-16019
Turboprop Cargo Aircraft Systems study, phase 1 [NASA-CR-159355] N81-16041	Unsteady wakes downstream from a profile oscillating in incidence aerodynamic flow
TURBOSHAFTS	tests on helicopter rotor blade profiles
Multi-plane high speed balancing techniques and	[AAAF-NT-80-10] N81-16989
the use of a high specific stiffness Ti-Borsic	UBSTRADY STATE
material for vibration control [AD-A093122] N81-17092	The spectral analysis of nonstationary random processes - Applications to aircraft
TURBULENT BOUNDARY LAYER	overflight-type noises French thesis
.Scale effects on turbulent boundary layer	A81-21922
development and flow separation around V/STOL	UPPER SURPACE BLOWING
inlets at high incidence [AIAA PAPER 81-0014] A81-20538	Influence of jet location on the efficiency of spanwise blowing
Numerical simulations of a segmented-plenum,	A81-20352
perforated, adaptive-wall wind tunnel	Experimental development of an advanced
[AIAA PAPER 81-0160] Mbroadinonsianal tumbulant boundary layor	circulation control wing system for Navy STOL
Three-dimensional turbulent boundary layer development and separation in V/STOL engine	aircraft [AIAA PAPER 81-0151] A81-20632
inlets at incidence with small-cross flow and	USER MANUALS (COMPUTER PROGRAMS)
curvature influences	Turbine modeling technique to generate off-design
[AIAA PAPER 81-0254] A81-20703 Three-dimensional wing boundary layer calculated	performance data for both single and multistage
with eight different methods	axial-flow turbines [NASA-CR-165244] N81-17078
A81-21555	USER REQUIREMENTS
TORBULENT PLOW	Federal Radionavigation Plan. Volume 2:
Numerical investigation of a model of turbulent combustion of hydrocarbons	Requirements [AD-A093775] N8 1-17031
[AIAA PAPER 81-0039] A81-20559	ו מון ומנו
The numerical solution of incompressible turbulent	· V
flow over airfoils	· · · · · · · · · · · · · · · · · · ·
[AIAA PAPER 81-0047] Measurements of flow quality in the Ames 2 x 2ft	V/STOL AIRCHAFT An analytical solution of lift loss for a round
transonic wind tunnel	planform with a central lifting jet
[AIAA PAPER 81-0156] A81-20636	[AIAA PAPER 81-0011] A81-20535
Numerical study of a scramjet engine flow field [AIAA PAPER 81-0186] A81-20659	Scale effects on turbulent boundary layer
Three-dimensional internal flows in	<pre>development and flow separation around V/STOL inlets at high incidence</pre>
turbomachinery, volume 2	[AIAA PAPER 81-0014] A81-20538
[AD-A093130] N81-17090	Numerical optimization of circulation control
TURBULENT JETS	airfoils FAIAA PAPER 81-00161 A81-20540
Non-isoenergetic turbulent jet mixing in a constant area duct in turbofan engines	[AIAA PAPER 81-0016] A81-20540 Three-dimensional turbulent boundary layer
[AIAA PAPER 81-0347] A81-20768	development and separation in V/STOL engine
TURBULENT WAKES	inlets at incidence with small-cross flow and
Effects of design variables on spoiler control effectiveness, hinge moments, and wake turbulence	curvature influences [AIAA PAPER 81~0254] A81-20703
[AIAA PAPER 81-0072] A81-20581	Piloting techniques on the backside - Flight path
Unsteady wakes downstream from a profile	angle control
oscillating in incidence aerodynamic flow	A81-21673
tests on helicopter rotor blade profiles [AAAF-NT-80-10] N81-16989	Propulsion system mathematical model for a lift/cruise fan V/STOL aircraft
TWO DIMENSIONAL PLOW	[NASA-TM-81663] N81-16055
Numerical study of a scramjet engine flow field	VARIABILITY
[AIAA PAPER 81-0186] A81-20659	Methodology for determining sampling intervals
Transonic flow calculations over two-dimensional	[AD-A092591] N81-16825
canard-wing systems [AIAA PAPER 79-1565] A81-23367	VARIABLE CYCLE ENGINES Acoustic and aerodynamic performance investigation
TWO PHASE PLOW	of inverted velocity profile coannular plug
Particle dynamics of inlet flow fields with	nozzles variable cycle engines
swirling wanes [AIAA PAPER 81-0001] A81-20526	[NASA-CR-3149] N81-16854
[22 24 24 24 24 24 24 24 24 24 24 24 24	

Model aerodynamic test results for two variable	VERY LOW PREQUENCIES
cycle engine coannular exhaust systems at	Omega signal coverage prediction diagrams for 10.2
simulated takeoff and cruise conditions.	kHz. Volume 1: Technical approach
Comprehensive data report. Volume 1: Design	[AD-A092741] N81-16030
layouts [NASA-CR-159819-VOL-1]	Omega signal coverage prediction diagrams for 10.2 kHz. Volume 2: Individual station diagrams
Model aerodynamic test results for two variable	[AD-A092742] N81-16031
cycle engine coannular exhaust systems at	Omega signal coverage prediction diagrams for 10.2
simulated takeoff and cruise conditions.	kHz. Volume 4: Bearing angle tables
Comprehensive data report. Volume 2: Tabulated	[AD-A092744] N81-16032
aeroynamic data book 1	VHP OMBIRANCE NAVIGATION
[NA SA - CR - 159819 - VOL - 2 - BK - 1] N81 - 17082	The flight assessment and applications of DME/DME.
Model aerodynamic test results for two variable	I, II
cycle engine coannular exhaust systems at	A81-21968
simulated takeoff and cruise conditions.	Characterizing cross-track error distributions for
Comprehensive data report. Volume 2: Tabulated aerodynamic data book 2	continental jet routes A81-21969
[NASA-CR-159819-VOL-2-BK-2] N81-17083	VIBRATION DAMPING
Model aerodynamic test results for two variable	Modelling techniques for the reduction of noise
cycle engine coannular exhaust systems at	and vibration in gearboxes
simulated takeoff and cruise conditions.	A81-20063
Comprehensive data report. Volume 2: Tabulated	Practical gust load alleviation and flutter
aerodynamic data book 3	suppression control laws based on a LQG
[NASA-CR-159819-VOL-2-BK-3] N81-17084	methodology Linear Quadratic Gaussian
Model aerodynamic test results for two variable	[AIAA PAPER 81-0021] A81-20544
cycle engine coannular exhaust systems at simulated takeoff and cruise conditions.	Damping of aircraft wing vibrations by automatically controlled internal forces
Comprehensive data report. Volume 3: Graphical	A81-21060
data book 1	Multi-plane high speed balancing techniques and
[NASA-CR-159819-VOL-3-BK-1] N81-17085	the use of a high specific stiffness Ti-Borsic
Model aerodynamic test results for two variable	material for vibration control
cycle engine coannular exhaust systems at	[AD-A093122] N81-17092
simulated takeoff and cruise conditions.	VIBRATION EPPECTS
Comprehensive data report. Volume 3: Graphical	Sandwich structures with high transmission loss
data book 2	A81-20069
[MASA-CR-159819-VOL-3-BK-2] N81-17086 Aerodynamic/acoustic performance of YJ101/double	Development of a shadow mask type high-resolution color picture tube for cockpit display
bypass VCE with coannular plug nozzle	A81-23095
[NASA-CR-159869] N81-17846	VIBRATION HODE
VARIABLE GEOMETRY STRUCTURES	A frequency-domain technique for aeroelastic mode
Adaptive airfoils and wings for efficient	estimation
transonic flight	A81-20475
A81-20349	VISCOUS PLOW
A numerical simulation of hypersonic viscous flow	A numerical simulation of hypersonic viscous flow
over arbitrary geometries at angle of attack [AIAA PAPER 81-0050] A81-20566	over arbitrary geometries at angle of attack [AIAA PAPER 81-0050] A81-20566
VARIABLE SWEEP WIEGS	Viscous-inviscid interaction on oscillating
Project and experimental fatigue test of the wing	airfoils in subsonic flow
of a modern combat aircraft	[AIAA PAPER 81-0051] A81-20567
A81-22625	Calculation of viscous, sonic flow over
Some particular configuration effects on a thin	hemisphere-cylinder at 19 deg incidence - The
supercritical variable camber wing	capturing of mose vortices
VELOCITY MEASUREMENT	[AIAA PAPER 81-0189] 3-D viscous analysis of ducts and flow splitters
A survey of recent atmospheric turbulence	[AIAA PAPER 81-0277] A81-20720
measurements from a subsonic aircraft	Viscous-inviscid interaction on oscillating
[AIAA PAPER 81-0298] A81-20736	airfoils in subsonic flow
Mean rotor wake characteristics of an	[AD-A093970] N81-16983
aerodynamically loaded 0.5 m diameter fan	Three-dimensional internal flows in
[AIAA PAPER 81-0208] A81-20830	turbomachinery, volume 2
Mean rotor wake characteristics of an	[AD-A093130] N81-17090
aerodynamically loaded 0.5 m diameter fan [NASA-TM-81657] N81-16053	VISIBILITY Operational problems associated with head-up
PERBAL COMMUNICATION	displays during instrument flight
Bilingual air traffic control in Canada	[AD-A092992] N81-17058
A81-20915	VISUAL AIDS
PERTICAL AIR CURBENTS	Glideslope descent-rate cuing to aid carrier
Analysis of wind vector components in the lower	landings
troposphere Applications to aircraft operations	[AD-A092193] N81-16033
at terminals	VISUAL PERCEPTION
[AIAA PAPER 81-0387] A81-20799 PERTICAL TAKROPP	Critical research issues and visual system requirements for a V/STOL training research
Numerical calculation of jet-induced ground effect	simulator
in VTOL	[AD-A092561] N81-16072
[AIAA PAPER 81-0015] A81-20539	VOICE COMMUNICATION
ERTICAL TAKEOFF AIRCRAFT	Problems of voice communication in helicopters
VTOL control for shipboard landing in high sea	A81-20074
states	VORTEX BREAKDOWN
A81-20471	Hinged strakes for enhanced maneuverability at
Flight test evaluation of a digital controller	high angles of attack
used in a VTOL automatic approach and landing system	[AIAA PAPER 81-0357] A81-20776 VORTEI PLAPS
A81-22549	The aerodynamics of inverted leading edge flaps on
ZDRAFT-A graphite code for VTOL aircraft ground	delta wings
footprint visualization	[AIAA PAPER 81-0356] A81-20775
[AD-A093311] N81-17042	VORTEL GENERATORS
A study of State Feedback Implicit Model following	Forced vortices near a wall
control for VSTOL aircraft	[AIAA PAPER 81-0256] A81-20704
[AD-A093253] N81-17099	

SUBJECT INDEX WIED TUBBEL TESTS

VORTEX RINGS		EAVIEG	
Sound radiation from vortex systems		Fabrication and physical testing of graphite	
	21591	composite panels utilizing woven graphite	
VORTEX SHERTS Examination of the vortex regime for highly swe	nt	with current and advanced state-of-the-art	resin
wings by extrapolation of the Jones method	·μ·	systems [NASA-CR-152292] N	81-17175
	16992	BIGHT INDICATORS	01-17175
VORTICES		A rotating, wind tunnel balance and associat	ed
Influence of jet location on the efficiency of		experimental techniques	
spanwise blowing	20250		81-17108
Calculation of viscous, sonic flow over	20352	Pirst results obtained with a rotating const	
hemisphere-cylinder at 19 deg incidence - The		used in measuring flying qualities of tunnel aircraft models	AIDG
capturing of nose vortices	•		81-17109
	20661	BIGHT REDUCTION	
Forced vortices near a wall		Current and projected use of carbon composit	es in
	20704	United States aircraft	
Sound radiation from Vortex systems	21591	Application of carbon fibre composites to mi	81-16145
A discrete wortex method for the non-steady	-1331	aircraft structures	illeary
separated flow over an airfoil			81-16147
		EIGHTING PUNCTIONS	
Interference effects of concentrated blowing and	d	Precision correlation tracking via optimal	
vortices on a typical fighter configuration	16009	weighting functions	81-20450
VORTICITY EQUATIONS		IND SHEAR	10 1-20450
Examination of the vortex regime for highly swe		Design and preliminary tests of an IR-airbor	ne
wings by extrapolation of the Jones method		LLWS remote sensing system Low Level W	
[AAAF-NT-80-25] N81-	16992	Shear	
•••			81-20694
W		Microbursts as an aviation wind shear hazard [AIAA PAPER 81-0386] A	81-20798
BAKES		The effect of heavy rain on windshear attrib	
Mean rotor wake characteristics of an		accidents	
aerodynamically loaded 0.5 m diameter fan			81-20800
[AIAA PAPER 81-0208] A81-	20830	Sources and detection of atmospheric wind sh	
WALL PLOW Porced vortices near a wall			81-20801
	20704	An airport wind shear detection and warning using Doppler radar: A feasibility study	system
WARNING SYSTEMS			81-16681
. A correlated random numbers generator and its us		IND TONNEL APPARATUS	
to estimate false alarm rates of airplane sen	SOI	A rotating, wind tunnel balance and associat	:ed
failure detection algorithms	20448	experimental techniques	01-17100
Disturbance estimation for a STOL transport dur		[AAAF-NT-80-13] First results obtained with a rotating const	181-17108
landing	1.1 9	used in measuring flying qualities of	
[AIAA PAPER 81-0018] A81-	20542	tunnel aircraft models	
. Collision avoidance systems. Citations from the			181-17109
NTIS data base		IND TUNNEL CALIBRATION	_
**** [PB80-815020] N81-	16038	Evaluation of a subsonic cascade wind tunnel	. ror
Extraction of wavedrag from airfoil wake		compressor blade testing [AD-A093591] N	81-17107
measurements	i	IND TUNNEL MODELS	
[AIAA PAPER 81-0291] A81-		Laser measurement of angle of attack on	
WAVE EQUATIONS		wind-tunnel models	
Radiation boundary conditions for wave-like			81-20419
equations numerical jet acoustics experimentation		Wind tunnel model support, controlled by fou microprocessors	IL.
	20223		81-21917
WAVE PROPAGATION		Store separation simulation in subsonic wind	tunnels
A computerized study of wave characteristics in	a		181-16988
time dependent compressible flow	20020	A rotating, wind tunnel balance and associat	ed
[AIAA PAPER 81-0410] A81-: WEAPON SYSTEMS	20838	experimental techniques [AAAF-NT-80-13]	181-17108
QF-100 Full-Scale Aerial Target program	•	IND TONNEL STABILITY TESTS	
	22612	Philosophy and results of steady and unstead	ly test
WEAPONS DELIVERY		techniques on a large scale transport airc	
Analytical methods for store separation flight		model in the ONERA transonic tunnel S1 MA.	
WEATHER	22344	1: Philosophy and results of steady tests Part 2: Interest of large models in unste	
Briefs of fatal accidents involving weather as a	a	aerodynamics	au y
cause/factor, US General Aviation, 1978			81-16019
	16028	On the flight mechanics of remotely piloted	
WEATHER MODIFICATION		[81-17049
The WC-130 meteorological system and its utilization in operational weather reconnaiss		IND TUNNEL TESTS	rts on
	16699	Experimental study of the influence of suppo the aerodynamic loads on an ogive cylinder	
WEATHER RECONNAISSANCE AIRCRAPT		high angles of attack	
The WC-130 meteorological system and its			81-20531
utilization in operational weather reconnaiss		Prediction and experimental verification of	•
•	16699	transient airfoil motion in a small wind t	
WEATHERING The effect of the in-service environment on		[AIAA PAPER 81-0052] A Effects of design variables on spoiler contr	81-20568
composite materials (resume of the April 1980	1	effectiveness, hinge moments, and wake tur	
Athens conference)			81-20581
	16146	Unsteady fan blade pressure and acoustic rad	iation
		from a JT15D-1 turbofan engine at simulate	ed
		forward speed	81-20598
		[AIAA PAPER 81-0096] A	01-40330

WIND TUNNEL WALLS SUBJECT INDEX

Measurements of flow quality in the Ames 2 x 2ft	Model aerodynamic test results for two variable
transonic wind tunnel	cycle engine coannular exhaust systems at
[AIAA PAPER 81-0156] A81-20636	simulated takeoff and cruise conditions.
Plight experiments with a slender cone at angle of attack	Comprehensive data report. Volume 3: Graphical data book 2
[AIAA PAPER 81-0337] A81-20761	[NASA-CR-159819-VOL-3-BK-2] N81-17086
The aerodynamics of inverted leading edge flaps on	Laser scattering applications development test in
delta wings	AEDC tunnel B at Mach number 8
[AIAA PAPER 81-0356] A81-20775	[AD-A093929] W81-17105
A parametric study of the static longitudinal aerodynamic characteristics of parallel lift	WIND TUNNEL WALLS Numerical simulations of a segmented-plenum,
delta wing configurations at low Reynolds numbers	perforated, adaptive-wall wind tunnel
[AIAA PAPER 81-0409] A81-20814	[AIAA PAPER 81-0160] A81-20640
Wind tunnel model support, controlled by four microprocessors	Wind tunnel wall interference [AD-A093301] 881-17104
[ONERA, TP NO. 1980-149] A81-21917	Evaluation of the acoustic and aerodynamic
Pinite element method study of	characteristics of several slot-baffle
wing-fuselage-nacelle interactions of a Palcon	configurations for transonic wind tunnel walls
20 type aircraft at Mach = 0.79 N81-15994	[AD-A093957] N81-17106 WIND TUNNELS
Design and experimental verification of a	Application of transonic potential calculations to
transonic wing for a transonic aircraft	aircraft and wind tunnel configurations
N81-16003	N81-15992
Jet wing interference for an overwing engine configuration	Propeller propulsion integration, phase 1 conducted in langley 30 by 60 foot full scale
N81-16008	wind tunnel
Experimental study of the interaction between the	[NASA-CR-163921] N81-16058
wing of a subsonic aircraft and a nacelle of a	WIND VARIATIONS
high by-pass ratio engine	Analysis of wind vector components in the lower troposphere Applications to aircraft operations
A wind tunnel investigation of the aerodynamic	at terminals
characteristics of forward swept wings	[AIAA PAPER 81-0387] A81-20799
supersonic cruise aircraft research	WIND VELOCITY MEASUREMENT
N81-16011 An investigation of a swept wing-body	Analysis of wind vector components in the lower troposphere Applications to aircraft operations
configuration with drooped leading edge at low	at terminals
and transonic speeds	[AIAA PAPER 81-0387] A81-20799
N81-16012 Aerodynamic interaction between a close-coupled	WINDPOWERED GRNERATORS Stability of large horizontal-axis axisymmetric
canard and a sweptback wing in transonic flow	wind turbines
N81-16013	A81-22526
P-3 Orion fuel-saving modification wind tunnel study	WIBDSHIBLDS Computer analysis of bird-resistant aircraft
[AD-A091906] N81-16044 Gravimetric investigation of the particle number	transparencies
density distribution function in the high speed	A81-22087
cascade wind tunnel for laser anemometry	Evaluation of bird load models for dynamic
measurements [ESA-TT-625] N81-16069	analysis of aircraft transparencies [AD-A092909] N81-16995
A theoretical method for the simulation of	WING PLAPS
separation behavior of aircraft external stores	The aerodynamics of inverted leading edge flaps on
applications to computerized wind tunnel tests [MBB-FE-122/S/PUB/16] N81-16987	delta wings [AIAA PAPER 81-0356] A81-20775
The effects of warhead-induced damage on the	WING PLOW METROD TESTS
aeroelastic characteristics of lifting surfaces.	Wing-alone aerodynamic characteristics at high
Volume 2: Aerodynamic effects [AD-A093063] N81-17048	angles of attack [AIAA PAPER 81-0008] A81-20532
[AD-A093063] N81-17048 Model aerodynamic test results for two variable	Philosophy and results of steady and unsteady test
cycle engine coannular exhaust systems at	techniques on a large scale transport aircraft
simulated takeoff and cruise conditions.	model in the ONERA transonic tunnel S1 MA. Part
Comprehensive data report. Volume 1: Design lavouts	 Philosophy and results of steady tests. Part 2: Interest of large models in unsteady
[NASA-CR-159819-VOL-1] N81-17081	aerodynamics
model aerodynamic test results for two variable	N81-16019
cycle engine coannular exhaust systems at	WING LOADING Refeat of transport aircraft Wing loads spectrum
simulated takeoff and cruise conditions. Comprehensive data report. Volume 2: Tabulated	Effect of transport aircraft wing loads spectrum variation on crack growth
aeroynamic data book 1	A81-21738
[NASA-CR-159819-VOL-2-BK-1] N81-17082	WING HACELLE COMPIGURATIONS
Model aerodynamic test results for two variable cycle engine coannular exhaust systems at	Finite element method study of wing-fuselage-nacelle interactions of a Falcon
simulated takeoff and cruise conditions.	20 type aircraft at Mach = 0.79
Comprehensive data report. Volume 2: Tabulated	N81-15994
aerodynamic data book 2 [NASA-CR-159819-VOL-2-BK-2] N81-17083	Experimental study of the interaction between the wing of a subsonic aircraft and a nacelle of a
Model aerodynamic test results for two variable	high by-pass ratio engine
cycle engine coannular exhaust systems at	N81-16010
simulated takeoff and cruise conditions.	Theoretical and Experimental studies of
Comprehensive data report. Volume 2: Tabulated aerodynamic data book 3	<pre>aerodynamic interference effects aerodynamic forces on winglets and on wing nacelle</pre>
[NASA-CR-159819-VOL-2-BK-3] N81-17084	configurations for the YC-14 and KC-135 aircraft
Model aerodynamic test results for two variable	N81-16017
cycle engine coannular exhaust systems at simulated takeoff and cruise conditions.	WING OSCILLATIONS Unsteady wakes downstream from a profile
Comprehensive data report. Volume 3: Graphical	oscillating in incidence aerodynamic flow
data book 1	tests on helicopter rotor blade profiles
[NASA-CR-159819-VOL-3-BK-1] N81-17085	[AAAF-NT-80-10] N81-16989

SUBJECT INDEX 1F-12 AIRCRAFT

II	-	-	20	ь.	3													
	5.	im	11	at	ed	a	ir	CI	af	t 1	take	eoff	per	Eorma	nce v	/itb		
							in											
)4]						A81-208	311
	۲.											ough	the	use	of t	he		
											<u>jue</u>							
	_										12]					_	A81-208	116
	G													rese	earch	for		
		S	цÞ	er	so	נמי	.c	CI	uı.	se	ai	rcra	Et					
		_															A81-226	165
II														1 - 4				
	A													ock-f	ree			
											3 a (esig.	0				A81-207	206
	Ŧ.											e + b.		10 hi	ah e	000	wing	30
	٠.						iti					L CH	. nj		.g	Pecu	*****	
		•			9,4			. • •	•								N81-160	001
	1	n t	er	fe	re	nc	:e	ef	fe	cts	s o:	£ co	ncen	trate	ed blo	owin	g and	
	_	v	oτ	ti	ce	.5	on	ı a	t	V D	ica	l fi	ghte	r cor	figu	cati	on.	
									_				.				N81-160	009
II	IG	P	RO	PI	L	s	1											
	H.	in	qe	đ	st	ra	kε	25	fo	re	enh	ance	d max	neuve	erabi.	lity	at	
		h.	ig	Ь	an	gl	es		£	at	tac.	k						
		[Αİ	AΑ	P	AF	ER	8 1	1-	035	57]						A81-207	76
	5	tr	10	tu	га	1	٧e	ig	ht	C	ompa	aris	on o	fa j	joine	l wi	ng and	
									.1									
		[AΙ	AA	E	A I	EE	8 8	11-	03	56 J						A81-201	785
	A	P	ar	an	et	ri	.c	st	ud	y (of '	the	stat.	ic lo	ngit	ıdin	al	
															rall			
		a.	•±	ta		11	ıg	CC	ni.	191	ıra	tion	s at	TOM	Reyno	oras	number	
											9]			e 1			A81-208	374
	Ç.	a I	cu	Ta	τı	OL	. 0	ı	su	pe	rso.	nic	gas :	LIONS	abo	ut w		
	*	~		٠.	_	٠.				a							A81-212	t O I
	A												esig. ct 4		lana: est c			
							.33			La		Fa		. 10	:St C	1565	N81-159	77
	h									۵r۹	Se 1	neth	na fi	or th	ae ae	rody	namic	• • •
	-														pres			
	•												flo					
						_											N81-160	006
	D	es.	ig	n	st	ud	l y	fo	r	the	i :	nner	win	gof	a tra	ansc		
		¥.	in	g-	bс	a y	, c	0.0	bi	nai	tio:	n of	asp	ect 1	atio	0		
																8		
																8	N81-16	115
ΙI																		15
		ff	ec	t	οí		mp		ŧ					XPV-			N81-160 osite)15
		ff	ec	t			mp		:t					XPV-			osite	
	E	f f	ec	t g	οí		mp		ŧ					XPV-				
II S	e IG	ff v s	ec in PA	t g N	of bo	X		ac		daı	nag	e on	the		- 12A ·	comp	osite 181-22	
II S	E	ff v s pa	ec in PA	t g N is	of bo	d i	st	ac	.bu	da:	nag on	e on	the	oʻl po	-12A o	comp	osite 181-22	
II S	E G S	ff v s pa	ec in PA et	t g N is	of bo	d i	st f	ac	.bu	da:	mag on ele	e on	the	oʻl po	- 12A ·	comp	oosite A81-220 the	576
II	E G S	ff S pai	ec in PA et AI	t g N is ho	of bo	d i	st f	ac	.bu	da:	nag on	e on	the	oʻl po	-12A o	comp	osite 181-22	576
II S	E IG S	ff S pai	ec in PA et AI	t g is ho AA	of bo	di of AF	st f	ri in	.bu iit '9-	da: tio e (nag on ele: 79]	e on of c ment	the ontro	ol po solut	oints	in	00site 181-220 the 181-210	576)11
II	E IG S	ff S Pa (T	ec in PA et AI IP	t g N is ho AA Ca	of bo	di of AF	ist E f	ri in	.bu iit '9-	da: tic e (mag on ele 79]	e on of c ment	the ontrary:	ol po solut	oints	in	oosite A81-220 the	576)11
II	E IG S	Span [T	ec in PA et IP Li	t 9 Nis ho AA Ca	of bo	di of AF	st f	ri iin 7	.bu it '9- a	tio	nage eler 79] p-f:	e on of c ment	the ontrary:	ol po solut	oints	in	a81-226 the A81-216 Shuttle	576)11
PIN	e ig s ig a	ff v span [Top O	ecin PA et AIP Lib	t g Nis ho A A Cat	e d ti	di of AF	st Est or	ri in fin fin 1 7	bu it '9- a mp	tio	mag on ele 79]	e on of c ment	the ontrary:	ol po solut	oints	in	00site 181-220 the 181-210	576)11
PIN	E IG S IG A	ff span	ecin PA PA Et IP Li ID NI	t g Nis ho AA S cat AA BL	e d P	di of AF	st EB OF ST	ri in f in	bu 11t 19- a mp 11-	tice (18'	nag ele 79] p-f: ved	e on of c ment in c yaw	ontro	ol po solut oller trol	oints	in the	A81-226 A81-216 Shuttle	576)11
PIN	E IG S IG A	ff v span m (T)	ecin PA et III III III	t g N is hold S cat AA BL	e d P	di of AF	ist free or ST	ri in in in in in	bu 11t 19- a mp 11-	tice (18°	nag ele 79] p-f: ved 74]	e on of c ment in c yaw	ontro	ol po solut oller trol	oints	in the	a81-226 the A81-216 Shuttle	576)11
PIN	E IG S IG A	ff v same of the s	ecin PA et IP II I I I I I I I I I I I I I I I I	t g N is ho A A A B L Phe	e d P	di off	st f es or Es si en	ri in f 8	bu it 9- a mp 11- iES	dantice (18°	nag ele 79] p-f: ved 74]	e on of c ment in c yaw	ontro	ol po solut oller trol	oints	in the	A81-226 A81-216 Shuttle	576 011 2 582
PIN	E IG IG IG F	ff Span (Tropo (F) los (ecin PAWellibliblibliblibliblibliblibliblibliblib	t g Nis ho AA EL ph te	e d P ti en E E E E E E E E E E E E E E E E E E	di of of of of of of of of of of of of of	ist fer en Since fer	ri in 7 of 8	bu it '9- a mp iles al	tice (18°	nagon (1991) peferored (1991) f	e on of c ment in c yaw usel	ontro	ol posolut oller trol and	oints cions to	in the	asite Asi-226 the Asi-216 Shuttle Asi-205	576 011 2 582
PIN	E IG IG IG F	ff Span (T) PPO (P) ems	PAN	t g Nisha A Scatt A A B L b L c A A B L c C A B L c C C C C C C C C C C C C C C C C C C	e d P ti en s - Ta	di of AF	ist for en SI or SI or ion	oac ri in f in f in f in f in f in f in f in	bu iit '9- a mp il- iES al	dan tice (18'	nagonagon (nagonagon) (nagonag	e on of cment in cyaw	the ontro	ol posolut oller trol and	oints cions to	in the	oosite A81-220 the A81-210 Shuttle A81-205 selage N81-155 critical	576 011 6 582
PIN	E IG S	ff v sam [Tpo [los [ems [PAN	t g N is had Sait AAR Photos Sait AAR S	e d P ti e E A G e B T a G G G G G G G G G G G G G G G G G G	di of of of of of of of of of of of of of	ist for Est Sien of 75 on 151	ri in f in f in f in f in f in f in f in	bu it '9- a mp il- ilBS al id id ira	dan tice (18° tip co ongers	nage on elections p-f: ved 74] for ons	e on of coment in coment was a way a way a war a	the ontro	ol posolut oller trol and deter	oints cions to to	in the fus	osite A81-220 the A81-210 Shuttle A81-209 selage N81-15	576 011 6 582
PIN	E IG S	ff v sam [T. po [Pos [ems [t	ech PAN et IPI III III III III III III III III II	t g Nischaa Saitaa Black Bhasa steach	e d P ti e E E E E E E E E E E E E E E E E E E	di of of of of of of of of of of of of of	ist for Encor Sien 75 on ifi	oac ri iin 640 iiin iin iin iin iin iin iin iin iin i	bu it 9- amp 11- iES ald id ira	dan tice (18° tip rov 000°	nage ponelei relei red red red red red red red red red red	e on of coment in coment was a way a war a	the ontro	ol posolut oller trol and deter	oints tions to to	in the fus	the A81-220 Shuttle A81-200 Selage N81-150 Stritical ET	576 011 6 582
PIN	E IG S	ff v sam [Tropo los [ms [ts	ech PAWELLIBUS NADOLADE	t g N is had sait AAA BL phe sate are	ed P ti en S constant C constant	di of	ist for Encorate ST ST 101 101 101 101 101 101 101 101 101 10	ri fin file file file file file file file file	bu it 9- a mp il- iES al id ira	tice (18° one	nag	e on of c ment in c yaw usel hod for or t of a	the ontro	ol posolut oller trol and deter g sto	oints ions to wing minimore f	in the fus of only	osite A81-220 the A81-210 Shuttle A81-209 selage N81-15 ritical n81-160 stores	576 011 582 983
PIN	E IG S	ff v Sam [TpO [Fos [ts-	ech PAWELLIC SALE SALE SALE SALE SALE SALE SALE SALE	t g Nisho A A S Cat A A B L P h e S A Cat A A B L Cat A A B L Cat A Cat	e d P ti e E E E E E E E E E E E E E E E E E E	diofe of the control	ist for Encorer ST ST ST ST ST ST ST ST ST ST ST ST ST	ri iin of iin iiii iiiiiiiiiiiiiiiiiiiiiiiiiiiii	bu it 9- amp ilES al id ica iet ha	tice (18° ong ers	nag	e on of c ment in c yaw usel hod for or t of accomp	the ontro	ol posolut oller trol and deter g sto	oints ions to wing minimore f	in the fus of tun tun	the A81-210 Shuttle A81-209 selage N81-159 ritical er Stores	576 011 582 983 068
II N	E IGS	ff Sam Tropo [Fos [ts - [ech PAW ELIPIN SANDOLAD DE PER BER BER BER BER BER BER BER BER BER B	t g Nisho A A S Cat A A B L P h e S A Cat A A B L Cat A A B L Cat A Cat	e d P ti e E E E E E E E E E E E E E E E E E E	diofe of the control	ist for Encorer ST ST ST ST ST ST ST ST ST ST ST ST ST	ri iin of iin iiii iiiiiiiiiiiiiiiiiiiiiiiiiiiii	bu it 9- amp ilES al id ica iet ha	tice (18° ong ers	nag	e on of c ment in c yaw usel hod for or t of accomp	the ontro	ol posolut oller trol and deter g sto	oints ions to wing minimore f	in the fus of tun tun	osite A81-220 the A81-210 Shuttle A81-209 selage N81-15 ritical n81-160 stores	576 011 582 983 068
PIN	E IGS	ff w same from from from from from from from from	ein PAW tlibis SANDOLADE BES	t g Nisha Sait A BL phe Sate a B-	ed P tier AG est PF	diof of of PAF OR icor icor icor icor icor icor icor icor	ist for EB ST 1 or 1 or 1 or 1 or 1 or 1 or 1 or 1 or	ri find file file file file file file file file	bu it '9- a mp ilES ald id ica iet ano /P	tice (18° 18° 18° 18° 18° 18° 18° 18° 18° 18°	page property of the constant	e on of c ment usel hod for or t of a ccomp]	the contract on the contract of the contract o	ol position of the column of t	oints cions wing minipore f	in the fus of tun tun	the A81-210 Shuttle A81-209 selage N81-159 ritical er Stores	576 011 582 983 068
II N	E IGS	ff v sam [Tpo [Is [ms [ts - [Bhe	ech PAULICAIS YNAHOLOGE BETT	t g Nischaal Albert Steam B et	ed P tier F ac of the property	diof of of one one one one one one one one one one	ist for Est or Since for infi ion call 22	ri fin fin fin fin fin fin fin fin fin fi	bu it 19- a mp 11- iRS ald icha icha icha	dan tice entire oon entire thomas wing wing wing wing wing wing	nagon eleitor	e on of coment in constant with the component of a component of a component in comp	the contrary:	ol posolut oller trol and deter g sto imula aft e ized	oints tions to wing minipore f ations wind	in the fus of nal tur	the A81-220 Shuttle A81-200 selage N81-150 Fritical Stores N81-160	576 011 582 983 068 585
II N	E IGS	ff w sam [Tpo [Is [ts - [Bea	ein PAULILIAUS SANDOLADE BEST	t g N is cat A B L is A A B L is A B L	ed P tier F C O et t P F i c Y i c	dioff of the control	ist FEB OF STIP FEB OF STIP FE	ri fin fin fin fin fin fin fin fin fin fi	bu it 19- a mp 11- iRS ald icha icha icha icha icha icha icha icha	das tice e (18° ti) roo ongers a stice hockers	nage on selections 79] p-f. wed 74] f. set. ons 1 f. or 1/16	e on of c ment in c yaw usel hod for or t occomp ment ence	the contrary:	ol posicion older	ving minini ore f. ation exter wind	in the fus	the A81-210 Shuttle A81-209 selage N81-159 ritical er Stores	576 011 582 983 068 585
II N	E IGS	ffw Sam [Tos ems the after	ein PAWELLING SANDOLA DE PER SERVICE DE LA COMPANIO DEL COMPANIO DEL COMPANIO DE LA COMPANIO DEL COMPANIO DEL COMPANIO DE LA COMPANIO DEL COMPANIO DEL COMPANIO DE LA COMPANIO DEL	t g Nischaa Saita Bheata Beata	ed P til General og State og S	diofe of the control	ist FEB OF STORE S	rifing fine file file file file file file file fil	bu it 9- amp iles ald ica ica ica ica ica ica ica ica	das tice 18 18 100000 ers a stice hockers with	nagonelei 79] p-fived 74] for toons 1 for 16 eri feri	e on of coment in coment usel hod for or tofoap] menteence end o	the contrary: control con ages for win he s. ircr uter al s effin wi	oller coller coller and deter g sto imula aft (coller col	ving. wing. wing. wing. wing. wing.	in the fust of turn turn agerce	the A81-210 Shuttle A81-200 selage N81-15:ritical er N81-160 stores nel tet	0011 0011 00111 00111 00111 00111 00111 00111 00111 00111 00111 00111 0011 0011 00111 00111 00111 00111 00111 00111 00111 00111 00111 00111 0011 0011 00111 00111 00111 00111 00111 00111 00111 00111 00111 00111 0011 00111 00111 00111 00111 00111 00111 00111 00111 00111 00111 0011 00111 00111 00111 00111 00111 00111 00111 00111 00111 00111 00
II N	E IGS	ffw Sam [Tos ems the after	ein PAWELLING SANDOLA DE PER SERVICE DE LA COMPANIO DEL COMPANIO DEL COMPANIO DE LA COMPANIO DEL COMPANIO DEL COMPANIO DE LA COMPANIO DEL COMPANIO DEL COMPANIO DE LA COMPANIO DEL	t g Nischaa Saita Bheata Beata	ed P til General og State og S	diofe of the control	ist FEB OF STORE S	rifing fine file file file file file file file fil	bu it 9- amp iles ald ica ica ica ica ica ica ica ica	das tice 18 18 100000 ers a stice hockers with	nagonelei 79] p-fived 74] for toons 1 for 16 eri feri	e on of coment in coment usel hod for or tofoap] menteence end o	the contrary: control con ages for win he s. ircr uter al s effin wi	oller coller coller and deter g sto imula aft (coller col	ving. wing. wing. wing. wing. wing.	in the fust of turn turn agerce	the A81-220 the A81-210 Shuttle A81-209 selage N81-159 ritical er N81-160 stores nel ter N81-160	0111
	E IGS IGE D A IGT	ff v Sam Troof los [ts-[Beafc	ein PAWELLING SANDOLA DE PER SERVICE DE LA COMPANIO DEL COMPANIO DEL COMPANIO DE LA COMPANIO DEL COMPANIO DEL COMPANIO DE LA COMPANIO DEL COMPANIO DEL COMPANIO DE LA COMPANIO DEL	t g Nischaa Saita Bheata Beata	ed P til General og State og S	diofe of the contract of the c	ist FEB OF STORE S	rifing fine file file file file file file file fil	bu it 9- amp iles ald ica ica ica ica ica ica ica ica	das tice 18 18 100000 ers a stice hockers with	nagonelei 79] p-fived 74] for toons 1 for 16 eri feri	e on of coment in coment usel hod for or tofoap] menteence end o	the contrary: control con ages for win he s. ircr uter al s effin wi	oller coller coller and deter g sto imula aft (coller col	ving. wing. wing. wing. wing. wing.	in the fust of turn turn agerce	the A81-210 Shuttle A81-200 selage N81-15:ritical er N81-160 stores nel tet	0111
	E IGS IGE D A IGT	ff Sam Troof Services (Line of Control of Co	ech PAWELLIDIS SANDOLA DE PER LIDIS SANDOLA DE PER LIDIS SANDOLA DE PER LIDIS DE CONTROL DE LIDIS DE LI	t 9 N ischaft ARL phe Steam B e octi	ed P tiers of tiers o	diofe of file	ist for PER or PER SI ien if: 75 cal PC and iculati	ri fin fin fin fin fin fin fin fin fin fi	bu it 19- amp 11- iRS ald ichan 19- ira icha	dan tice 118 till 100 tico 000	mag	e on of coment in compused hod for or tof a encemp ment ence nd o	ontro	solution of the control of the contr	ving- wing- wing- wing- wing- wind- wind- wind- wind- wind- catlo	in the fust of turn agerce	the A81-220 the A81-210 Shuttle A81-209 selage N81-159 ritical er N81-160 stores nel ter N81-160	0111
	E IGS IGE D A IGT	ff v Sam Tpo Flos ms ts LBeatc Sam	ech PawtIpins Sanother Brock of PawtIpins Sanother Brock of Part Sanother Brock of PawtIpins Sanother Brock of Paw	t 9 Nischaa Sciaa Bheathaire Ar an	ed P tie FG ens T co e t t p P F i c y s g u	difference of the control of the con	ist for PER or PER sien 1257 sal 1222 anic iti	riiin 7 f i 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	buit'9- a pp. 11-Siza id on Pp	dan tice 118 till 100 tich 100	mag	e on of coment in compused hod for or tof a encemp ment ence nd o	ontro	solution of the control of the contr	ving. wing. wing. wing. wing. wing.	in the fust of turn agerce	the A81-220 the A81-210 Shuttle A81-209 selage N81-159 ritical er N81-160 stores nel ter N81-160	0111
	E IGS IGE D A IGT	ff v Sam Tpo Flos ms ts LBeatc Sam	ech PawtIpins Sanother Brock of PawtIpins Sanother Brock of Part Sanother Brock of PawtIpins Sanother Brock of Paw	t 9 Nischaa Sciaa Bheathaire Ar an	ed P tie FG ens T co e t t p P F i c y s g u	difference of the control of the con	ist for PER or PER sien 1257 sal 1222 anic iti	riiin 7 f i 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	bu it 19- amp 11- iRS ald ichan 19- ira icha	dan tice 118 till 100 tich 100	mag	e on of coment in compused hod for or tof a encemp ment ence nd o	ontro	solution of the control of the contr	ving- wing- wing- wing- wing- wind- wind- wind- wind- wind- catlo	in the fust of turn agerce	the A81-220 the A81-210 Shuttle A81-209 selage N81-159 ritical er N81-160 stores nel ter N81-160	983 068 068 07
	E IGS IGA IGT IGA	ff v Sam [To pool of the pool	ein Pawtlpidis sanothep-BSrrrin pr	t 9 NischAS at ARL pt Stream Break to 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ed Financia of Fin	diof of of of of in in in in in in in	ist FB or FB sien F or FS sien F or F or F or F or F or F or F or F or	oac riiin 7 f ii 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	bu it 9- a mp il 8 a l d l l l l l l l l l l l l l l l l l	dan tice 18 tipo 00 onger a n tipo vsi us peet: for	mag pelei pelei reto reto reto reto reto reto reto reto	e on of c ment in c yaw usel for or t of a comp ment ence end o he y wing	the contrary: contrary: ages for win he s. ircr uter al s effin vii C-14	oller coller trol and detect g sto imula aft call ized tudia ects ng na and	ving- wing- wing- wing- wing- wind- wind- wind- wind- wind- catlo	in the fustor of the turn agence agen	the A81-220 Shuttle A81-200 selage N81-150 ritical er N81-160 stores N81-160 dynamic	983 068 068 07
II N	E IGS IGA IGT IGA	ff Sam [TPO [Plos [ts-[Beafc Sat na	ein Partipils sanober Briefon pra ar	t 9 NischAAS ciAABL pheaster - oa a - eocti vs aod	ed Fier Season S	diofAF of file	stf file or strain to the stra	oac rifing f is to be seen a s	but 19 a mp-18 a id 1 fra than P Etal 1 gh ana	dan tice (18') tion one a n vice (18') xpect: for an prace	nagonelei 79] pedd] pedd fire for the fire for for the fire for the fire for the fire for the fire for the fi	e on of c ment in c yaw usel for or t of a comp ment ence end o he y wing	the contrary: co	oller coller trol and detect g sto imula aft call ized tudia ects ng na and	ving- wing- wing- wing- wing- wing- wind- ation cation fical KC-1	in the fustor of the turn agence agen	the A81-220 Shuttle A81-200 selage N81-150 ritical er N81-160 stores N81-160 dynamic	983 068 068 07
	E IGS IGA A IGT	ff Sam[TPO[Plos[ts-[Beafc Sat na[ein Pawellibis sanobee-BSrrrn ta nri	t g Nischa ata Alphe Asserta B eddei in a oa A	ed Figure 1 of the Figure 2 of	difference of the control of the con	ist FEB OFFST PEB 100 FEB 100	rification of the control of the con	but 9 a mp 11-Silver 11-Si	dan tice (18') tion (18')	page on peleiform of the period of the perio	e on of c ment in c yaw usel hod for or t of a comp ment ence nd o he y wing ects	the contrary: contrary: contracy: ages for win he s. ircr uter al s for c-14 s for on	oll posicion poller trol and detection in trol	ving- wing- wing- wing- wing- wing- wind- ation accell- KC-1	in the fustor of the turn agence agen	the A81-220 Shuttle A81-200 selage N81-150 ritical er N81-160 stores N81-160 dynamic	983 068 017
	E IGS IGA A IGT	ff v Sam [TPO For Sat na am	ein Awtipilous Sanothee BSrrrn ta nrii	t g N schall had a	ed Fire Grant Control of the Fire Grant Cont	difference of the contract of	is ff constant in the constant	rice of its section of the section o	but 19 a mp 1881 aid 11 light etanny But 15 light etanny But 15 light etanny But 15 light etanny 1881	dan tion one and one one and one one one one one one one o	on elegate on the second of th	e on of c ment in c yaw usel hod for or t accomp ment ence one Y wing ects rist	the contrary: contrary: contrary: ages for vin. he s. ircr uter al sffin. c-14 s fo. on vics	ol posolut oller trol and deter g sto inula stized tudis ects ng na and r eff	ving- minini re f. ations ations c to fine fine fine fine fine fine fine fine	in the fus calutt of alum	the A81-220 Shuttle A81-200 Selage N81-150 Stritical Serior N81-160 M81-160 M81-160 M81-160 M81-160 M81-160 M81-160 M81-160	983 068 017
	E IGS IGA A IGT	ff v Sam [TPO For Sat na am	ein Awtipilous Sanothee BSrrrn ta nrii	t g N schall had a	ed Fire Grant Control of the Fire Grant Cont	difference of the contract of	is ff constant in the constant	rice of its section of the section o	but 19 a mp 1881 aid 11 light etanny But 15 light etanny But 15 light etanny But 15 light etanny 1881	dan tion one and one one and one one one one one one one o	on elegate on the second of th	e on of c ment in c yaw usel hod for or t accomp ment ence one Y wing ects rist	the contrary: contrary: contrary: ages for vin. he s. ircr uter al sffin. c-14 s fo. on vics	ol posolut oller trol and deter g sto inula stized tudis ects ng na and r eff	ving- wing- wing- wing- wing- wing- wind- ation accell- KC-1	in the fus calutt of alum	the A81-210 Shuttle A81-210 Shuttle A81-200 Selage N81-150 Scritical Selage N81-160 A81-160 A81-160 A81-200 A81-200	0111 6 582 6 583 6 6 6 8 6 6 6 8 6 7 6 6 6 6 6 6 6 6 6 6
	E G S G A G G A A D	ff Sam Tro Pols [ts - [Beafc Sat na ama	ecin PAW	t 9 Miscock Mi	ed Figure 1 at 1 a	doff of AF of the control of the con	stiff or stiff of the stiff of	rification of the second of th	but 9 a mp 1. Baid of Etalon 1. Baid of Et	das tice 18 tipo 00 oers atio vs. weets t pace 03 fton	on elected with the control of the c	e on of c ment in c yaw usel hod for or t of ap comp ment ence nd or he Y wing ects rist ng V	the contrary: contrary: ages for win he s. ircr uter al s effin vii C-14 s for on ics	oll posicion policion policio policion policion policion policion policion policion policion policio policion policion policion policion policion policion p	ving: ving: ving: ving: ving: ving: vind: vind: ccll: cc	in the fus agree and the concession on the concession of the conce	osite A81-220 the A81-210 Shuttle A81-200 selage N81-15 ritical n81-160 stores nel te N81-160 dynamic dircraf(N81-160 A81-200 A81-200 A81-200	0111 6 582 6 583 6 6 6 8 6 6 6 8 6 7 6 6 6 6 6 6 6 6 6 6
	E G S G A G G A A D	ff Sam Trols [ms [ts - [Beafo sat a amat	ecin PAwaller Pawalle	t 9 NishAA atAARpheAsteAnra B edocti vs aldAngm in	ed Figure 1 at 1 a	difference of the control of the con	stf BB or BEST of Step 10 10 10 10 10 10 10 10 10 10 10 10 10	rification of the state of the	but 19- amples aid of the body But 1 shall rac er	das tice 18 tipo 00 oers atio vs. weets t pace 03 fton	on elected with the control of the c	e on of c ment in c yaw usel hod for or t of ap comp ment ence nd or he Y wing ects rist ng V	the contrary: contrary: ages for win he s. ircr uter al s effin vii C-14 s for on ics	oll posicion policion policio policion policion policion policion policion policion policion policio policion policion policion policion policion policion p	ving- minini re f. ations ations c to fine fine fine fine fine fine fine fine	in the fus agree and the concession of the conce	osite A81-220 the A81-210 Shuttle A81-200 selage N81-15 ritical n81-160 stores nel te N81-160 dynamic dircraf(N81-160 A81-200 A81-200 A81-200	0111 6 582 6 583 6 6 6 8 6 6 6 8 6 7 6 6 6 6 6 6 6 6 6 6
	E G S G A G G A A D	ff Sam Trols [ms [ts - [Beafo sat a amat	ecin PAwaller Pawalle	t 9 NishAA atAARpheAsteAnra B edocti vs aldAngm in	ed Figure 1 at 1 a	difference of the control of the con	stiff or stiff of the stiff of	rification of the state of the	but 19- amples aid of the body But 1 shall rac er	das tice 18 tipo 00 oers atio vs. weets t pace 03 fton	on elected with the control of the c	e on of c ment in c yaw usel hod for or t of ap comp ment ence nd or he Y wing ects rist ng V	the contrary: contrary: ages for win he s. ircr uter al s effin vii C-14 s for on ics	oll posicion policion policio policion policion policion policion policion policion policion policio policion policion policion policion policion policion p	ving: ving: ving: ving: ving: ving: vind: vind: ccll: cc	in the fus agree and the concession of the conce	osite A81-220 the A81-210 Shuttle A81-209 selage N81-159 ritical ser N81-160 dynamic dircraft N81-160 A81-200 A81-200	0111
	E GG S GG A A D J	ff Sam Poles [ts-[Reafo sat a amage of the state of the sate of th	ecin PAWATIPIO SANORO DE LA CALLE DEL CALLE DEL CALLE DE LA CALLE	t 9 N scath All he	ed P tereson of the P t	difference of the control of the con	stiff or series of the series	ring f i 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	but 19- amples id in the bold of the bold in the bold	ticoloris all tipoloris all programme of the coloris all programme of the coloris all tipoloris all	on electron of the control of the co	e on of c ment in c yaw usel hod for or t of a comp ment ence nd or he Y wing ects rist ng V for	the contrary: contrary: ages for win he s. ircr uter al s fo. on ics ibra int	oll posicion policion policio policion policion policion policion policion policion policion policio policion policion policion policion policion policion p	ving: ving: ving: ving: ving: vind: cto: in the fus agrand are a a a a a a a a a a a a a a a a a a	osite A81-220 the A81-210 Shuttle A81-200 selage N81-15 critical critical n81-160 dynamic dircraf n81-160 A81-200 A81-200	0111	
	E GG S GG A A D J	ff w Sam TPO (Pos (ts - LEbafc Sat na (maa etc m	ecin PAwatiPipe Pawati	t 9 N so A attALPhee Attended B et al Control of the Attended	of both definition of the first	difference of the control of the con	stiff or serious of the serious of t	according to the control of the cont	but 19- amp-sile and 11-sile a	das tice 18 tion one a section of the control of	nagonello ped lo	e on of c ment in c yaw usel hod for cor ta occomp mente end o he Y wing ects rist ng v ctio	the contrary: co	oll posicion policion policio policion policion policion policion policion policion policion policio policio policion policion policion policion policion po	ving: ving: ving: ving: ving: ving: vind: vind: ccll: cc	in the fus agrand are a a a a a a a a a a a a a a a a a a	osite A81-220 the A81-210 Shuttle A81-200 selage N81-15 critical critical n81-160 dynamic dircraf n81-160 A81-200 A81-200	0111
	E GG S GG A A D J	ff w Spam [Tpp0 [-Pos[ts-[Lebeafc Saat naima etc mn	ecin PAWHILITAUS SANONONOON DE ANTE PER	t 9 N sch A attALP te Stream a - to ei in a od Annom ifi ott	of book ed F tiered and the F tiered and	diofe of the control	stiff or serious of the serious of t	ff ff in the state of the state	but 19- amp-sile and 11-sile a	das tice 18 tion one a section of the control of	nagonello ped lo	e on of c ment in c yaw usel hod for or t of a comp ment ence nd or he Y wing ects rist ng V for	the contrary: co	oll posicion policion policio policion policion policion policion policion policion policion policio policio policion policion policion policion policion po	ving: ving: ving: ving: ving: vind: cto: in the fus agrand are a a a a a a a a a a a a a a a a a a	osite A81-220 the A81-210 Shuttle A81-200 selage N81-15 critical critical n81-160 dynamic dircraf n81-160 A81-200 A81-200	0111 6 582 6 583 6 6 8 6 8 6 8 7 6 6 8 6 8 6 8 7 6 8 6 8	

Comparison of flight load measurements obtained from calibrated strain gages and pressure transducers
[AD-A093758] N81-17044
WORK CAPACITY
Maximizing the capacity of a single-runway airport A81-22193

X

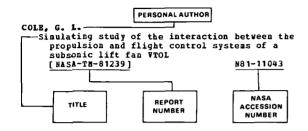
X WING ROTORS
Acoustics of rotors utilizing circulation control
[AIAA PAPER 81-0092] A81-20596

XV-15 AIRCRAPT
The XV-15 - An initial Navy look
[AIAA PAPER 81-0155] A81-20635

Y

Application of a tip-fin controller to the Shuttle
Orbiter for improved yaw control
[AIAA PAPER 81-0074]

IC-14 AIRCRAPT
Theoretical and Experimental studies of
aerodynamic interference effects --- aerodynamic
forces on winglets and on wing nacelle
configurations for the IC-14 and RC-135 aircraft
N81-16017


IF-12 AIRCRAPT
Graphite polyimide fabrication research for
supersonic cruise aircraft
A81-22665

PERSONAL AUTHOR INDEX

AERONAUTICAL ENGINEERING / A Continuing Bibliography (Suppl. 135)

MAY 1981

Typical Personal Author Index Listing

Listings in this index are arranged alphabetically by personal author. The title of the document provides the user with a brief description of the subject matter. The report number helps to indicate the type of document cited (e.g., NASA report, translation, NASA contractor report). The accession number is located beneath and to the right of the title, e.g. N81-11043. Under any one author's name the accession numbers are arranged in sequence with the IAA accession numbers appearing first.

name the accession numbers are arranged in sequence with the IAA numbers appearing first.	l accession
Α	
ABELKIS, P. R. Effect of transport aircraft wing loads spewariation on crack growth	ectrum
ABERNATHY. J. M.	A81-21738
An analysis of gap effects on wing-elevon	
aerodynamic characteristics	
ACKERMANS, P. H.	A81-20783
High-level languages in affordable aircraft simulators	:
	A81-20418
ADAM, C. P. Preliminary Airworthiness Evaluation (PAE 1	l) of
the YCH-47D helicopter	, 01
[AD-A092633]	N81-16046
ADAMS, R. J.	
Multivariable control synthesis program: (
aspects of the P100 altitude demonstration	on of
the multivariable control system [AD-A093868]	N81-17095
AIDALA, P. V.	801-17033
Complex configuration analysis at transonic	speeds N81-16016
ALBANES, V.	
Design of guidance and control digital auto	pilots A81-22973
ALBE, F.	
Controls of aeronautical structures under f testing by holographic pulsed lasers	atigue
interferometry	
ALBERY, W. B.	A81-22692
Optical infinity lens development for flight	.+
simulator visual displays	
practice (Total Arphaule	N81-17071
ALLAIRE, P. B.	
Nonlinear analysis of squeeze film dampers	applied
to gas turbine helicopter engines	
[AD-A091905]	N81-16062
ALLEN, R. R.	
Longitudinal instability in braked landing [ASME PAPER 80-WA/DSC-12]	A81-21083
ALLIOT, J. C.	AU 1-21003
A French flight test program on the	
electromagnetic effects of lightning	WO4 1/455

AB, J. G.
Spanwise distribution of control points in the method of finite elementary solutions
[AIAA PAPER 79-1879]
A81-

ANDERS, G. Philosophy and results of steady and unstatechniques on a large scale transport at model in the ONERA transonic tunnel S1 in the Philosophy and results of steady teachers. Interest of large models in unstanding	ircraft MA. Part sts.
aerodynamics	N81-16019
ANDERSON, J. R. Environmental burn-in effectiveness [AD-A093307] AHDERSON, O. L.	N81-17060
Solutions for slightly over- or under-expa supersonic jets exhausting into cold sul mainstreams	anded hot bsonic
[AIAA PAPER 81-0257]	A81-20705
A model for the analysis of premixing-prevaporizing fuel-air mixing [AIAA PAPER 81-0345]	passages A81-20767
ANDREAS, R. D. A single gimbal/strapdown inertial navigate system for use on spin stabilized flight	
vehicles [SAND-80-2479C] AMSELL, G. S.	N81-16037
Composite structural materials [NASA-CR-163946] ANTONA, R.	N8 1-17039
Mathematical aspects of the probabilistic evaluations of structural safety and ND:	τ
capabilities	A81-22635
Evaluation of explosafe. Explosion suppre	ession
system for aircraft fuel tank protection [AD-A093125]	a №81-17047
ARESTOL, T. M. Seat pack for fighter aircraft operating of	n the
NATO Northern Plank	N81-17010
ARMSTRONG, G. W. High bypass turbofan component development	
modification 2 [AD-A093156]	N8 1-17093
ARMAUD, J. L. Controls of aeronautical structures under	
testing by holographic pulsed lasers interferometry	
ARTHUR, S. F.	A81-22692
Preliminary Airworthiness Evaluation (PAE the YCH-47D helicopter	1) of
[AD-A092633]	N81-16046
ASTRIDGE, D. G. Modelling techniques for the reduction of	noise
and vibration in gearboxes	A8 1~ 20063
ATHAMS, M. VTOL control for shipboard landing in high	504
states	. Seu ≜81-20471
ATRAGHJI, E.	HO 1-204/1
The tale of two wings	N81-16004
AYERS, W. H. Three-dimensional model of spray combustic	n in gas
turbine combustors [AIAA PAPER 81-0324]	A81-20751
[DID PAPE OI-VJ44]	A01~20/31

A81-21011

	•
BARK, J. H. Scale effects on turbulent boundary layer	
development and flow separation around V/	STOL
inlets at high incidence	
[AIAA PAPER 81-0014]	A81-20538
BAILEY, B. W.	
Aircraft accident investigation as it relat life support equipment	es to
IIIe puppore ederbacae	A81-22103
BAKER, L. E.	
Turbine engine fault detection and isolation	n
program, phase 1. Volume 2: Requirement definition for an integrated engine monit	S
system	oring
[AD-A093226]	N81-17088
Turbine engine fault detection and isolation	n
program, phase 1. Volume 1: Requirement	
definition for an integrated engine monit system	oring
[AD-A093225]	N81-17089
BALL, B.	
Porced vortices near a wall	
[AIAA PAPER 81-0256]	A81-20704
BANDA, S. S. Aircraft lateral parameter estimation from	fliaht
data with unsteady aerodynamic modelling	,
[AIAA PAPER 81-0221]	A81-20684
BARAN, H. A.	
Digital Avionics Information System (DAIS):	Lite
Cycle Cost Impact Hodeling System (LCCIH) managerial overview	
[AD-A093281]	N81-17062
BARKER, C.	
Gear upit noise and transmission errors	A81-20060
BARRETT, L. E.	A01-20000
Bonlinear analysis of squeeze film dampers	applied
to gas turbine helicopter engines	
[AD-A091905]	N81-16062
BARTOH, G. Aircraft manufacturers approach to the	
E.M.C./Avionics problems associated with	the use
of composite materials	
_	N81-16156
BASKARAH, V.	
Effect of rear stagnation point position an	ıd
	ıd
Effect of rear stagnation point position an trailing edge bluntness on airfoil charac BASKIOTIS, C.	d teristics A81-21013
Effect of rear stagnation point position an trailing edge bluntness on airfoil characters. BASKIOTIS, C. Parameter identification and discriminant a	d teristics A81-21013
Effect of rear stagnation point position an trailing edge bluntness on airfoil characters. BASKIOTIS, C. Parameter identification and discriminant a for jet engine mechanical state diagnosis	d teristics A81-21013 nalysis
Effect of rear stagnation point position an trailing edge bluntness on airfoil characters. BASKIOTIS, C. Parameter identification and discriminant a for jet engine mechanical state diagnosis	d teristics A81-21013
Effect of rear stagnation point position and trailing edge bluntness on airfoil characters. BASKIOTIS, C. Parameter identification and discriminant a for jet engine mechanical state diagnosis. BATY, D. L. An advanced electronic cockpit instrumentat	nd teristics A81-21013 malysis ;
Effect of rear stagnation point position an trailing edge bluntness on airfoil characters. BASKIOTIS, C. Parameter identification and discriminant a for jet engine mechanical state diagnosis. BATY, D. 1. An advanced electronic cockpit instrumentat system: The coordinated cockpit display	nd teristics A81-21013 analysis A81-20474
Effect of rear stagnation point position and trailing edge bluntness on airfoil characters. BASKIOTIS, C. Parameter identification and discriminant a for jet engine mechanical state diagnosis. BATY, D. 1. An advanced electronic cockpit instrumentat system: The coordinated cockpit display	nd teristics A81-21013 malysis ;
Effect of rear stagnation point position and trailing edge bluntness on airfoil characters. BASKIOTIS, C. Parameter identification and discriminant a for jet engine mechanical state diagnosis. BATT, D. 1. An advanced electronic cockpit instrumentat system: The coordinated cockpit display. BAUCOM, R. M.	teristics A81-21013 malysis A81-20474 ion
Effect of rear stagnation point position and trailing edge bluntness on airfoil characters. BASKIOTIS, C. Parameter identification and discriminant a for jet engine mechanical state diagnosis. BATY, D. 1. An advanced electronic cockpit instrumentat system: The coordinated cockpit display	teristics A81-21013 malysis A81-20474 ion
Effect of rear stagnation point position and trailing edge bluntness on airfoil characters. BASKIOTIS, C. Parameter identification and discriminant a for jet engine mechanical state diagnosis. BATT, D. 1. An advanced electronic cockpit instrumentat system: The coordinated cockpit display. BAUCOM, R. M. Graphite polyimide fabrication research for supersonic cruise aircraft.	teristics A81-21013 malysis A81-20474 ion
Effect of rear stagnation point position and trailing edge bluntness on airfoil characters. BASKIOTIS, C. Parameter identification and discriminant a for jet engine mechanical state diagnosis. BATY, D. 1. An advanced electronic cockpit instrumentat system: The coordinated cockpit display. BAUCOM, E. M. Graphite polyimide fabrication research for supersonic cruise aircraft. BAUMHISTER, K. J.	A81-22665
Effect of rear stagnation point position and trailing edge bluntness on airfoil characters. BASKIOTIS, C. Parameter identification and discriminant a for jet engine mechanical state diagnosis. BATT, D. 1. An advanced electronic cockpit instrumentat system: The coordinated cockpit display. BAUCOM, R. M. Graphite polyimide fabrication research for supersonic cruise aircraft.	A81-22665
Effect of rear stagnation point position an trailing edge bluntness on airfoil characters. BASKIOTIS, C. Parameter identification and discriminant a for jet engine mechanical state diagnosis. BATY, D. 1. An advanced electronic cockpit instrumentat system: The coordinated cockpit display. BAUCOM, B. M. Graphite polyimide fabrication research for supersonic cruise aircraft. BAUMEISTER, K. J. Numerical techniques in linear duct acousti status report [ASME PAPER 80-WA/NC-2]	A81-22665
Effect of rear stagnation point position an trailing edge bluntness on airfoil characters. BASKIOTIS, C. Parameter identification and discriminant a for jet engine mechanical state diagnosis. BATY, D. L. An advanced electronic cockpit instrumentat system: The coordinated cockpit display. BAUCOM, B. M. Graphite polyimide fabrication research for supersonic cruise aircraft. BAUMEISTER, K. J. Numerical techniques in linear duct acousti status report [ASME PAPER 80-WA/NC-2] BAUMGARDMER, M.	nd teristics A81-21013 inalysis A81-20474 ion N81-17074 A81-22665
Effect of rear stagnation point position and trailing edge bluntness on airfoil characteristics, C. Parameter identification and discriminant a for jet engine mechanical state diagnosis. BATY, D. L. An advanced electronic cockpit instrumentat system: The coordinated cockpit display. BAUCOM, H. H. Graphite polyimide fabrication research for supersonic cruise aircraft. BAUMEISTER, K. J. Numerical techniques in linear duct acousti status report [ASHE PAPER 80-WA/NC-2] BAUMGARDMER, H. Samarium cobalt (SECO) generator/engine	nd teristics A81-21013 inalysis A81-20474 ion N81-17074 A81-22665
Effect of rear stagnation point position an trailing edge bluntness on airfoil characters. BASKIOTIS, C. Parameter identification and discriminant a for jet engine mechanical state diagnosis. BATY, D. L. An advanced electronic cockpit instrumentat system: The coordinated cockpit display. BAUCOM, B. M. Graphite polyimide fabrication research for supersonic cruise aircraft. BAUMEISTER, K. J. Numerical techniques in linear duct acousti status report [ASME PAPER 80-WA/NC-2] BAUMGARDHER, M. Samarium cobalt (SMCO) generator/engine integration study	nd teristics A81-21013 nalysis A81-20474 ion M81-17074 A81-22665 CS - A
Effect of rear stagnation point position and trailing edge bluntness on airfoil characteristics, C. Parameter identification and discriminant a for jet engine mechanical state diagnosis BATY, D. L. An advanced electronic cockpit instrumentat system: The coordinated cockpit display BAUCOM, H. M. Graphite polyimide fabrication research for supersonic cruise aircraft BAUMEISTER, K. J. Numerical techniques in linear duct acousti status report [ASME PAPER 80-WA/NC-2] BAUMGARDMER, M. Samarium cobalt (SMCO) generator/engine integration study [AD-A092904] BAYLISS, A.	Additeristics A81-21013 Inalysis A81-20474 Ion N81-17074 A81-22665 CS - A A81-21120
Effect of rear stagnation point position an trailing edge bluntness on airfoil characters. BASKIOTIS, C. Parameter identification and discriminant a for jet engine mechanical state diagnosis. BATY, D. L. An advanced electronic cockpit instrumentat system: The coordinated cockpit display. BAUCOM, B. M. Graphite polyimide fabrication research for supersonic cruise aircraft. BAUMRISTER, K. J. Numerical techniques in linear duct acousti status report [ASME PAPER 80-WA/NC-2]. BAUMGARDMER, M. Samarium cobalt (SMCO) generator/engine integration study [AD-A092904]. BAYLISS, A. Radiation boundary conditions for wave-like.	Additeristics A81-21013 Inalysis A81-20474 Ion N81-17074 A81-22665 CS - A A81-21120
Effect of rear stagnation point position and trailing edge bluntness on airfoil characters. BASKIOTIS, C. Parameter identification and discriminant a for jet engine mechanical state diagnosis. BATY, D. L. An advanced electronic cockpit instrumentat system: The coordinated cockpit display. BAUCOM, R. M. Graphite polyimide fabrication research for supersonic cruise aircraft. BAUMEISTER, K. J. Numerical techniques in linear duct acousti status report. [ASME PAPER 80-WA/NC-2] BAUMGARDMER, M. Samarium cobalt (SMCO) generator/engine integration study. [AD-A092904] BAYLISS, A. Radiation boundary conditions for wave-like equations	A81-22665 CS - A A81-21120 N81-17087
Effect of rear stagnation point position and trailing edge bluntness on airfoil characteristics. C. Parameter identification and discriminant a for jet engine mechanical state diagnosis. BATY, D. L. An advanced electronic cockpit instrumentat system: The coordinated cockpit display. BAUCOM, R. M. Graphite polyimide fabrication research for supersonic cruise aircraft. BAUMEISTER, K. J. Numerical techniques in linear duct acousti status report. [ASME PAPER 80-WA/MC-2] BAUMGARDMER, M. Samarium cobalt (SMCO) generator/engine integration study [AD-A092904] BAYLISS, A. Radiation boundary conditions for wave-like equations	Additeristics A81-21013 Inalysis A81-20474 Ion N81-17074 A81-22665 CS - A A81-21120
Effect of rear stagnation point position and trailing edge bluntness on airfoil characteristics. BASKIOTIS, C. Parameter identification and discriminant a for jet engine mechanical state diagnosis. BATY, D. L. An advanced electronic cockpit instrumentat system: The coordinated cockpit display. BAUCOM, R. M. Graphite polyimide fabrication research for supersonic cruise aircraft. BAUMHISTER, K. J. Numerical techniques in linear duct acousti status report [ASME PAPER 80-WA/NC-2] BAUMGARDMER, M. Samarium cobalt (SMCO) generator/engine integration study [AD-A092904] BAYLISS, A. Radiation boundary conditions for wave-like equations. BEALE, R. B. Two-axis, fluidically controlled thrust vec	Additeristics A81-21013 Inalysis A81-20474 Ion M81-17074 A81-22665 CS - A A81-21120 M81-17087
Effect of rear stagnation point position and trailing edge bluntness on airfoil characteristics. C. Parameter identification and discriminant a for jet engine mechanical state diagnosis. BATY, D. L. An advanced electronic cockpit instrumentat system: The coordinated cockpit display. BAUCOM, R. H. Graphite polyimide fabrication research for supersonic cruise aircraft. BAUMHISTER, K. J. Numerical techniques in linear duct acousti status report [ASME PAPER 80-WA/NC-2]. BAUMGARDMER, H. Samarium cobalt (SMCO) generator/engine integration study [AD-A092904]. BAYLISS, A. Radiation boundary conditions for wave-like equations. BEALLE, R. B. Two-axis, fluidically controlled thrust vectors.	A81-22665 CS - A A81-21120 N81-17087 A81-20223
Effect of rear stagnation point position an trailing edge bluntness on airfoil character for jet engine mechanical state diagnosis BATY, D. L. An advanced electronic cockpit instrumentat system: The coordinated cockpit display BAUCOM, B. M. Graphite polyimide fabrication research for supersonic cruise aircraft BAUMRISTER, K. J. Numerical techniques in linear duct acousti status report [ASME PAPER 80-WA/NC-2] BAUMGARDMER, M. Samarium cobalt (SMCO) generator/engine integration study [AD-A092904] BAYLISS, A. Radiation boundary conditions for wave-like equations BEALE, R. B. Two-axis, fluidically controlled thrust vector control system for an ejection seat [AD-A093888]	Additeristics A81-21013 Inalysis A81-20474 Ion M81-17074 A81-22665 CS - A A81-21120 M81-17087
Effect of rear stagnation point position and trailing edge bluntness on airfoil character for jet engine mechanical state diagnosis. BATY, D. L. An advanced electronic cockpit instrumentat system: The coordinated cockpit display. BAUCOM, R. M. Graphite polyimide fabrication research for supersonic cruise aircraft. BAUMHISTRE, K. J. Numerical techniques in linear duct acousti status report [ASME PAPER 80-WA/NC-2] BAUHGARDMER, M. Samarium cobalt (SMCO) generator/engine integration study [AD-A092904] BAYLISS, A. Radiation boundary conditions for wave-like equations BEALE, R. B. Two-axis, fluidically controlled thrust vector control system for an ejection seat [AD-A093888] BEDARD, A. J., JR.	A81-22665 CS - A A81-21120 N81-17087 A81-20223 tor N81-16996
Effect of rear stagnation point position an trailing edge bluntness on airfoil character for jet engine mechanical state diagnosis BATT, D. L. An advanced electronic cockpit instrumentat system: The coordinated cockpit display BAUCOM, B. M. Graphite polyimide fabrication research for supersonic cruise aircraft BAUMRISTER, K. J. Numerical techniques in linear duct acousti status report [ASME PAPER 80-WA/NC-2] BAUMGARDWER, M. Samarium cobalt (SECO) generator/engine integration study [AD-8092904] BATLISS, A. Radiation boundary conditions for wave-like equations BEALE, R. B. Two-axis, fluidically controlled thrust vector control system for an ejection seat [AD-8093888] BEDARD, A. J., JR. Sources and detection of atmospheric wind seat	A81-22665 CS - A A81-21120 N81-17087 A81-20223 tor N81-16996
Effect of rear stagnation point position and trailing edge bluntness on airfoil characteristics. BASKIOTIS, C. Parameter identification and discriminant a for jet engine mechanical state diagnosis. BATY, D. L. An advanced electronic cockpit instrumentat system: The coordinated cockpit display. BAUCOM, R. M. Graphite polyimide fabrication research for supersonic cruise aircraft. BAUHRISTER, K. J. Numerical techniques in linear duct acousti status report [ASME PAPER 80-WA/NC-2] BAUHGARDER, M. Samarium cobalt (SMCO) generator/engine integration study [AD-A092904] BAYLISS, A. Radiation boundary conditions for wave-like equations. BEALE, R. B. Two-axis, fluidically controlled thrust vector control system for an ejection seat [AD-A093888] BEDARD, A. J., JR. Sources and detection of atmospheric wind seat [AIAA PAPER 81-0391] BEHHING, F. P.	A81-22665 CS - A A81-21120 N81-17087 A81-20223 tor N81-16996 hear
Effect of rear stagnation point position an trailing edge bluntness on airfoil characterialing edge bluntness on airfoil characterial state diagnosis BATY, D. L. An advanced electronic cockpit instrumentat system: The coordinated cockpit display BAUCOM, B. M. Graphite polyimide fabrication research for supersonic cruise aircraft BAUMEISTER, K. J. Numerical techniques in linear duct acousti status report [ASME PAPER 80-WA/NC-2] BAUMEARDMER, M. Samarium cobalt (SECO) generator/engine integration study [AD-A092904] BAYLISS, A. Radiation boundary conditions for wave-like equations BEALE, R. B. Two-axis, fluidically controlled thrust vectoritol system for an ejection seat [AD-A093888] BEDARD, A. J., JR. Sources and detection of atmospheric wind seat [AIAA PAPER 81-0391] BENHING, F. P. Cold-air investigation of first stage of	A81-22665 CS - A A81-21120 N81-17087 A81-20223 tor N81-16996 hear A81-20801
Effect of rear stagnation point position an trailing edge bluntness on airfoil characteristics. C. Parameter identification and discriminant a for jet engine mechanical state diagnosis. BATY, D. L. An advanced electronic cockpit instrumentat system: The coordinated cockpit display. BAUCOM, B. M. Graphite polyimide fabrication research for supersonic cruise aircraft. BAUMRISTER, K. J. Numerical techniques in linear duct acousti status report [ASME PAPER 80-WA/NC-2]. BAUMGARDMER, M. Samarium cobalt (SMCO) generator/engine integration study [AD-A092904]. BAYLISS, A. Radiation boundary conditions for wave-like equations. BEALE, R. B. Two-axis, fluidically controlled thrust vec control system for an ejection seat [AD-A093888]. BEDARD, A. J., JR. Sources and detection of atmospheric wind s [AIAA PAPER 81-0391]. BENNING, F. P. Cold-air investigation of first stage of 4-1/2-stage, fan drive turbine with avera	A81-22665 CS - A A81-21120 N81-17087 A81-20223 tor N81-16996 hear A81-20801
Effect of rear stagnation point position an trailing edge bluntness on airfoil characteristics, C. Parameter identification and discriminant a for jet engine mechanical state diagnosis BATY, D. L. An advanced electronic cockpit instrumentat system: The coordinated cockpit display BAUCOM, B. M. Graphite polyimide fabrication research for supersonic cruise aircraft BAUMEISTER, K. J. Numerical techniques in linear duct acousti status report [ASME PAPER 80-WA/NC-2] BAUMCARDUER, M. Samarium cobalt (SMCO) generator/engine integration study [AD-A092904] BAYLISS, A. Radiation boundary conditions for wave-like equations BEALE, R. B. Two-axis, fluidically controlled thrust vec control system for an ejection seat [AD-A093888] BEDARD, A. J., JR. Sources and detection of atmospheric wind s [AIAM PAPER 81-0391] BEHHING, F. P. Cold-air investigation of first stage of 4-1/2-stage, fan drive turbine with avera stage-loading factor of 4.66	A81-22665 CS - A A81-21120 N81-17087 A81-20223 tor N81-16996 hear A81-20801

```
BEKBULATOV, B. S. Evaluation of compressor blade endurance limits by
      an accelerated method
                                                       A81-22182
BELLMAN, D. R.
   Skin friction measuring device for aircraft [BASA-CASE-FRC-11029-1]
                                                       B8 1- 17057
BEHNETT, G.
Propeller propulsion integration, phase 1
                                                       NB1-16058
BESSLING, Ho
Gravimetric investigation of the particle number
      density distribution function in the high speed
      cascade wind tunnel for laser anemometry
      measurements
      [ ESA-TT-625]
                                                       N81-16069
BETZIG, R. E.
   Experiments on the linear and non-linear evolution of the double helical instability in jets
      [AIAA PAPER 81-0415]
BEYERS, H. E.
A new concept for dynamic stability testing
[AIAA PAPER 81-0158]
                                                       A81-20638
BIASSONI, G.
   Patigue life evaluation of a helicopter main rotor
                                                       A81-22631
BINIAS. G.
   Pormation tracking. Part 2: Tracking and control
      procedures
      [ PPH-279-PT-21
BISHOP, D. E.
NOISECHECK procedures for measuring noise exposure
     from aircraft operations
      [AD-A093948]
                                                       N81-17849
BLACKIB, I. T. B.
   Integration of sensors with displays
                                                       NS1-17067
BLACKMORE. W. L.
   3-D viscous analysis of ducts and flow splitters
     [AIAA PAPER 81-0277]
                                                       A81-20720
BLAIR, A. B., JR.
Effect of wing location and strakes on stability
      and control characteristics of a monoplanar
      circular missile with low-profile tail fins at
     supersonic speeds [NASA-TM-81878]
BLASENAK, J. H.
   Non-isoenergetic turbulent jet mixing in a
     constant area duct
      [AIAA PAPER 81-0347]
                                                       A81-20768
BLECHERHAM, S. S.

Design, durability and low cost processing
technology for composite fan exit guide vanes
                                                       A81-22664
BLICK, E. P.
   An airport wind shear detection and warning system using Doppler radar: A feasibility study
      [NASA-CR-3379]
BLIGHT, J. D.
   Classical and modern control design of a
     speed-hold system for a STOL airplane
     [AIAA PAPBR 81-0017]
                                                       A81-20541
BLISS, D. B.
   Wind tunnel wall interference
     [AD-A093301]
                                                       N81-17104
BLOZY, J. T.
   Acoustic and aerodynamic performance investigation
     of inverted velocity profile coannular plug
     nozzles
     [NASA-CR-3149]
BOCK, H.-W.
   Improvement of effective minor lobe behavior of
radar antennas through signal processing
                                                       A81-20091
BORHM-DAVIS, D. A.
Human Factors of Plight-deck Automation:
     NASA/Industry Workshop
[NASA-TM-81260]
                                                       N81-16022
BOLAND, J. S., III
Automatic handoff of multiple targets
     [AD-A093483]
BOPPE, C. W.
   Complex configuration analysis at transonic speeds
                                                       N81-16016
BORGHT R.
   Numerical investigation of a model of turbulent
     combustion of hydrocarbons
[AIAA PAPER 81-0039]
                                                       A81-20559
```

PERSONAL AUTHOR INDEX CASTINE, J. W.

BORODIN, IU. P. The use of acquetic emission for detection	a and	BRYAN, D. P. Refeact of load spectrum wariables on fatis	
The use of acoustic emission for detecting and evaluating of fatigue cracks severity during		Effect of load spectrum variables on fatigue crack initiation and propagation; Proceedings of the	
static and cyclic loading of structure	elements A81-20214	Symposium, San Prancisco, Calif., May 21	1, 1979 A81-21730
BOSSI, J. A.		BRYANT, W. H.	
Disturbance estimation for a STOL transpo- landing	rt during	Plight test evaluation of a digital control used in a VTOL automatic approach and la	
[AIAA PAPER 81-0018] BOTERO, P. W.	A81-20542	system	A81-22549
A computerized study of wave characterist	ics in a	BRYSON, A. E., JR.	
time dependent compressible flow [AIAA PAPER 81-0410]	A81-20838	Disturbance estimation for a STOL transpor landing	t during
BOTHE, H.		[AIAA PAPER 81-0018]	A81-20542
In-flight calibration of aircraft antenna radiation patterns		BURHRING, W. Coherent signal processing in frequency ag	jile
BOWERS, F. J.	A81-21825	pulse radar units	A81-20097
Preliminary Airworthiness Evaluation (PAE	1) of	BUENMERSTEDE, J.	
the YCH-47D helicopter [AD-A092633]	N81-16046	Application of Doppler information to auto target tracking)matic
BOWES, M. A. Development and application of an analytic	an l	BUNDICK, W. T.	A81-20101
method for predicting helicopter transm		Civil aviation applications of Navstar/GPS	through
noise	A81-20062	differential techniques	A81-22374
BOWLES, R. L.		BURNSIDE, W. D.	
Operational energy conservation strategies commercial aviation	s 11	Airborne antenna pattern code: User's man [AD-A092316]	nual N81-16357
	A81-20465	BURT, E.	
BOYSAB, P. Three-dimensional model of spray combustic	on in gas	Electromagnetic coupling to advanced compo aircraft with application to trade-off a	
turbine combustors [AIAA PAPER 81-0324]	A81-20751	specification determination	N81-16166
BRAGG, M. B.	201 20101	BURTOH, R. V.	
An analytical approach to airfoil icing [AIAA PAPER 81-0403]	A81-20810	Two-axis, fluidically controlled thrust we control system for an ejection seat	ector
BRASHBARS, R. C.		[AD-A093888]	N81-16996
Ejection system evolution	A81-22080	BUTLER, J. M. Bigh-solids coatings for exterior aircraft	
BRAY, R. S. A head-up display for low-visibility appr	oach and	BUTLER, M. C., JR.	A81-20861
landing		The design, testing, certification and pro	
[AIAA PAPER 81-0130] BREMER, S. A.	A81-20623	of an emergency parachute for use in lig aircraft	jht
Impact of aircraft emissions on air quali vicinity of airports. Volume 1: Recen		[AIAA PAPER 81-0413]	A81-20817
measurement programs, data analyses, an		C	
submodel development [AD-A089962]	N81-16628	CADY, P. M.	
BRETTLE, J.		A solid-state airborne sensing system for	remote
The electrical effects of joints and bond carbon fiber composites	S 1M	sensing	A81-23034
BRINDLE, J.	N81-16153	CALLANAN, J. B. Thermodynamics of organic compounds	
Flat panel display technology review		[AD-A093087]	N81-17936
BRINDLE, J. H.	ม81-17065	CALLIBAN, J. Thermal considerations in the patching of	metal
Helmet mounted displays: Design consider		sheets with composite overlays	
BRIVIO, A.	N81-17073	CAMPBELL, J. A.	A8 1-20297
Patigue life evaluation of a helicopter man	aim rotor	Evaluation of RF anechoic chamber fire pro systems	tection
	A81-22631	[AD-A092478]	N81-16070
BROCARD, Y. Aerodynamic interaction between a close-c	oupled	CANNING, T. N. Experimental study of the influence of sup	ports on
canard and a sweptback wing in transonic	c flow N81-16013	the aerodynamic loads on an ogive cylind high angles of attack	ler at
BROCKMAN, R. A.		[AIAA PAPER 81-0007]	A81-20531
Evaluation of bird load models for dynamic analysis of aircraft transparencies	С	CARACEBA, P. Design and preliminary tests of an IR-airle	orne
[AD-A092909]	N81-16995	LLWS remote sensing system	
BROWN, A. P. Non-destructive testing of adhesive-bonder	d joints	[AIAA PAPER 81-0239] CARLIN, J. M.	A81-20694
ROWN, E. L.	A81-20162	The effects of the direction of control lo a one-dimensional tracking task	ading on
Assessment of risk to Boeing commerical to	ransport	[AD-A092459]	N81-16067
aircraft from carbon fibers [NASA-CR-159211]	N81-17171	CARTER, C. R. Air traffic control and position location	b∀
BROWN, G. L.		satellite constellation in equatorial or	bit
A supplementary EMC analysis of the propo- Airport Surface Detection Equipment (AS:		CASALEGHO, L.	A81-21912
[AD-A092965] BROWN, S. D.	N81-17342	Project and experimental fatigue test of t of a modern combat aircraft	he wing
Peasibility evaluation of advanced multif			A81-22625
eddy current technology for use in nava. maintenance environment	l air	CASTINE, J. W. A new technology - Piezoelectric polyvinyl	idono
			тиене

A81-22099

CAVALLINI, G.	CHU, Y. Y.
Crack growth propagation under variable amplitude loading in aerospace structures	Analysis and modeling of information handling tasks in supervisory control of advanced aircraft
A81-22	
CHAKRAVARTY, A. J. M.	CLARK, R. W.
Application of singular perturbation theory to onboard aircraft trajectory optimization	New approach to the solution of large, full matrix equations
[AIAA PAPER 81-0019] A81-20	543 A81-21552
CHAN, Y. K. A correlated random numbers generator and its use	CLARKE, C. A. Assessment of risk to Boeing commerical transport
to estimate false alarm rates of airplane senso	
failure detection algorithms	[NASA-CR-159211] N81-17171
CHANDHOK, V. K.	448 CLAYTOB, R. M. Two-stage combustion for reducing pollutant
Progress in P/M superalloy and titanium for	emissions from gas turbine combustors
aircraft applications	[NASA-CR-163877] N81-16056
CHANDRASEKHARAN, B. M.	641 COCHRANE, J. QSBA Joint Navy/NASA sea trials
The effects of warhead-induced damage on the	[AIAA PAPER 81-0152] A81-20633
aeroelastic characteristics of lifting surfaces	
Volume 2: Aerodynamic effects [AD-A093063] N81-17	Laboratory studies of flight mechanics using 048 catapult launched models
CHAO, P.	[AAAF-NT-80-15] N81-17055
Aircraft EMP isolation study [AD-A093772] N81-17	COLE, G. L.
[AD-A093772] N81-17 CHAPHAB, A. J.	333 Propulsion system mathematical model for a lift/cruise fan V/STOL aircraft
Effects of commercial aircraft operating	[NASA-TM-81663] N81-16055
environment on composite materials A81-22	COLE, J. D. Transonic flow calculations over two-dimensional
CHAPMAN, D. C.	canard-wing systems
Model 250-C30/C28B compressor development	[AIAA PAPER 79-1565] A81-23367
N81-17	466 COLLYBR, S. C. Glideslope descent-rate cuing to aid carrier
Modeling, acquisition and processing during large	landings
displacements	[AD-A092193] N81-16033
[AAAF-NT-80-16] N81-17 CHAUMETTE, D.	OS6 COMVERSE, G. L. Turbine modeling technique to generate off-design
Limiting application of the concept 'damage	performance data for both single and multistage
tolerance with regard to fighter aircraft [AAAP-NT-79-32] N81-17	axial-flow turbines 054 [NASA-CR-165244] N81-17078
CHAUSSEE, D. S.	COOLES, H. D.
A numerical simulation of hypersonic viscous flow	Critical research issues and visual system
over arbitrary geometries at angle of attack [AIAA PAPER 81-0050] A81-20	requirements for a V/STOL training research 566 simulator
CHEB, LT.	[AD-A092561] N81-16072
Higher-accuracy finite-difference schemes for transonic airfoil flowfield calculations	COOMROD, J.
[AIAA PAPER 81-0381] A81-20	Flat panel display technology review 794 N81-17065
CHEVALIER, J. P.	CORN, P. B.
Material and structural problems in aircraft engine technology	Aircraft and environmental factors influencing lightning strike
[AAAP-NT-79-23] N81-17	
CHEVIS, R. W.	COTON, P.
Centrifugal compressors for small aero and automotive gas turbine engines	Modeling, acquisition and processing during large displacements
N81-17	
CHIANG, D. C. Computer code for the determination of ejection	COUEDOR, C. First results obtained with a rotating construction
seat/man aerodynamic parameters	[AAAP-NT-80-14] NS1-17109
[AD-A092721] N81-16	
CHIAPPETTA, L. B. A model for the analysis of	Unsteady wakes downstream from a profile oscillating in incidence
premixing-prevaporizing fuel-air mixing passage	
[AIAA PAPER 81-0345] A81-20	
CHIRSA, S. Comparison of systems of power generation during	Escape systems testing on the Holloman high speed test track
emergencies /aboard aircraft/	A81-22088
CHIN, D. O.	203 COUSINS, W. T. Dynamic pressure response with stall on axial flow
Sample data effects of high-pass filters	compressor rotor blades
[NASA-TP-1797] N81-16	
CHIPMAN, R. R. Demonstration of a method for determining critica	COVEY, B. R. Operational energy conservation strategies in
store configurations for wing store flutter	commercial aviation
[AD-A092257] N81-16 CHORLEY, R. A.	
The electro-optical display/visual system	COVITT, A. L. Band sharing - A case study
interface: Human factors considerations	A81-21869
CHOU, D. C. 881-17	066 CREAMER, P. H. Omega signal coverage prediction diagrams for 10.2
Scale effects on turbulent boundary layer	kHz. Volume 1: Technical approach
development and flow separation around V/STOL	[AD-A092741] N81-16030
inlets at high incidence [AIAA PAPER 81-0014] A81-20	Omega signal coverage prediction diagrams for 10.2 538 kHz. Volume 2: Individual station diagrams
Three-dimensional turbulent boundary layer	[AD-A092742] N81-16031
development and separation in V/STOL engine	Omega signal coverage prediction diagrams for 10.2
inlets at incidence with small-cross flow and	kHz. Volume 4: Bearing angle tables
curvature influences	[AD-A092744] N81-16032

CUMABI, A.		DEMEL, H. F.	
A frequency-domain technique for aeroelast:	ic mode	Samarium cobalt (SMCO) generator/engine	
estimation	A81-20475	integration study	N81-17087
CURRY, R. B.	801-20475	[AD-A092904] DENOVCHEK, J. H.	NO 1-17007
Human Pactors of Plight-deck Automation:		High altitude launch of the Cruise Missile	·
NASA/Industry Workshop	v01 16000	DECAMPATION C. D.	A81-22608
[NASA-TM-81260]	N81-16022	DESJARDINS, S. P. Aircraft crash survival design guide. Volu	ıma 1•
_		Design criteria and checklists, revision	me
D		[AD-A093784]	N81-16997
DABROWSKA, J.	. т	DESLANDES, R. Evaluation of aircraft interference effects	
Angle of attack - Its measurement and usage	A81-19799	external stores at subsonic and transonic	
DAMBRA, F. H.			พ81-15997
An overview of the research conducted in		A theoretical method for the simulation of	
Aerospatiale on internal noise	A81-20054	separation behavior of aircraft external [MBB-PE-122/S/PUB/16]	stores N81-16987
DAMFORD, E. O.	20034	DESTRIGUER, D.	10 10 10 70 7
DMAHTC's support to National Ocean Survey		The influence of beards on the efficiency of	f
LORAN-C+charting	V01 17007	aviators' oxygen masks	
[AD-A093748] DASTIM, S. J.	N81-17027	DIETENBERGER, M. A.	A81-22100
Experiences with composite aircraft structu	ıres	Simulated aircraft takeoff performance with	1
	A81-22678	frosted wings	
DAULERIO, L. A.		[AIAA PAPER 81-0404]	A81-20811
Low level, adverse attitude escape using a vertical seeking ejection seat		DIGHTON, R. D. Designing the Hornet for improved R and M	
Total sounding officers and	A81-22094	[AIAA PAPER 81-0230]	A81-20688
DAVIS, J.		DIKE, G.	
A survey of computer simulations of digital	L	Electromagnetic coupling to advanced compos	
avionics systems . [AD-A091943]	N81-16049	aircraft with application to trade-off an specification determination	ıa
DAZZO, J. J.		•	N81-16166
Design of disturbance-rejection controllers		DILL, H. D.	
 linear multivariable discrete-time systement entire eigenstructure assignment 	is using	Effects of fighter attack spectrum on crack	381-21741
entire ergenstructure assignment	A81-20454	DOBBEK, R. J.	A01-21741
DE GRAAF, E. A. B.		Escape from military fighters - A modern pe	rspective
Evaluation and comparison of nondestructive	e		A81-22096
service inspection methods	A81-20135	DONNELLY, S. P. Omega signal coverage prediction diagrams f	or 10 2
DE JONGE, J. B.	201 20133	kHz. Volume 1: Technical approach	01 10.2
Effect of gust load alleviation on fatigue	and	[AD-A092741]	N81-16030
crack growth in ALCLAD 2024-T3	101 21720	Omega signal coverage prediction diagrams f	
DE OTTO, G. L.	A81-21739	kHz. Volume 2: Individual station diagr	M81-16031
Fatigue design criteria and fleet fatigue	life	Omega signal coverage prediction diagrams f	
. survey at Aeronautica Macchi		kHz. Volume 4: Bearing angle tables	
DE RIJK, P.	A81-22624	[AD-A092744] DOUGHERTY, S.	N81-16032
Evaluation and comparison of nondestructive	e	A new technique for tracking sequences of	
service inspection methods		digitized images	
	A81-20135		A81-20508
DEAR, R. G. Integration of fuel conservative procedures	s in the	DOWNING, D. R. Flight test evaluation of a digital control	ler
high density terminal area	3 III CIIC	used in a VTOL automatic approach and lan	
	A81-20468	system	
DEBELLIS, W. B.	. 4	DROUGGE C	A81-22549
An investigation of the five point restrain system for aviators	10	DROUGGE, G. An investigation of a swept wing-body	
[AD-A093065]	N81-16998	configuration with drooped leading edge a	t low
DEBRA, D. B.	_	and transonic speeds	
Prediction and experimental verification of transient airfoil motion in a small wind		DRUMMOND, J. P.	N81-16012
[AIAA PAPER 81-0052]	A81-20568	Numerical study of a scramjet engine flow f	ield
DEHOFF, R. L.			A81-20659
Turbine engine fault detection and isolation		DUPRESHE, D. A.	
program, phase 1. Volume 2: Requirement definition for an integrated engine monit		The XV-15 - An initial Navy look [AIAA PAPER 81-0155]	A81-20635
system	,	DULIS, E. J.	
[AD-A093226]	N81-17088	Progress in P/M superalloy and titanium for	
Turbine engine fault detection and isolation program, phase 1. Volume 1: Requirement		aircraft applications	A81-22641
definition for an integrated engine monit		DONN, M. G.	A01-22041
system		Nuclear blast response of airbreathing prop	ulsion
[AD-A093225]	N81-17089	systems. Laboratory measurements with an	
Multivariable control synthesis program: (aspects of the P100 altitude demonstration		operational J-85-5 turbojet engine	N81-16063
the multivariable control system	,, UL	[AD-A092229] DUBN, P. D.	201 10003
[AD-A093868]	ม81-17095	Hydrographic applications of the global	
DEL BELLO, R.		positioning system	vo.1 43000
A frequency-domain technique for aeroelasti estimation	rc mode	[AD-A093750] DUVAL, D. A.	N81-17029
	A81-20475	Evaluation of a subsonic cascade wind tunne	1 for
DEL CORE, A.	_	compressor blade testing	
Definition of loading sequence for full sca fatigue test	116	[AD-A093591]	N8 1- 17 107

DZIWAK, W.	BVANICH, P.
Robust autoregressive models for predicting aircraft motion from noisy data A81-20473	Icing tunnel tests of a glycol-exuding porous leading edge ice protection system on a general aviation airfoil
	[AIAA PAPER 81-0405] A81-2083 EVANS, R. H.
E BASTEP, P. E.	The UK Ministry of Defence programme on the electromagnetic properties of carbon fiber
Analysis of a symmetric transonic aerofoil with the finite element method - A new upwinding	composites N81-1615
technique A81-22984	BWALD, B. Transonic wing technology for transport aircraft
<pre>BBACKER, J. J. Aerodynamic/acoustic performance of YJ101/double bypass VCE with coannular plug nozzle</pre>	N81-1600 BWINS, D. J. Measurements of structural mobility on helicopter
[NASA~CR-159869] N81-17846 BBERT, H.	structures A81-2006
New techniques and development trends in the system architecture of EDP systems for radar data processing and airspace control	F
A81-20103 EDSINGER, R. W.	<pre>PAGOT, H. Controls of aeronautical structures under fatigue</pre>
A correlated random numbers generator and its use to estimate false alarm rates of airplane sensor failure detection algorithms	testing by holographic pulsed lasers interferometry A81-2269
A81-20448	PARRELL, A. J.
EDWARDS, B. J. G. The presentation of static information on air traffic control displays	An improved flight data transcriber [AD-A091981] N81-1643 FEREELL, K. R.
N81-17064 BGGLESTON, D. S. The 17th JANNAP combustion meeting, volume 1	AGARD flight test instrumentation series. Volume 10 on Helicopter flight test instrumentation f AGARD-AG-160-VOL-10] N81-1704
[NASA-TM-82238] N81-16253 EHEMANHTRAUT, R.	PPOWCS WILLIAMS, J. E. Sound sources in aerodynamics - Pact and fiction
Detection of direction changes of flying targets from position coordinates of the radar data A81-20099	[AIAA PAPER 81-0056] A81-2057 PIJITA, H. Noise generation mechanism of low pressure
BL-SAGIR, S. H. Air traffic control and position location by	propeller fans [AIAA PAPER 81-0090] A81-2059
satellite constellation in equatorial orbit A81-21912 ELARABY, H.	FINCT, A. Aircraft EMP isolation study [AD-A093772] N81-1733
Turbo-compressors surge and surge control [AIAA PAPER 81-0070] A81-20579 ELPSTROM, G. H.	PINLBY, W. E. A survey of recent atmospheric turbulence measurements from a subsonic aircraft
Extraction of wavedrag from airfoil wake measurements [AIAA PAPER 81-0291] A81-20732	[AIAA PAPER 81-0298] A81-2073 FISCHER, H. Developments at VFW/Rhein-Flugzeugbau GmbH,
BLHORE, K. L. An airport wind shear detection and warning system	Moenchengladbach A81-2157
using Doppler radar: A feasibility study [NASA~CR-3379] N81-16681	<pre>FISCHER, R. W. Gear meshing action as a source of Vibratory</pre>
ENDERS, J. H. Special Aviation Fire and Explosion Reduction (SAFER) advisory committee, volume 1	excitation A81-2006 FISHER, D. F.
[AD-A092016] N81-16024 ENGLAR, R. J.	Flight experiments with a slender cone at angle of attack
Experimental development of an advanced circulation control wing system for Navy STOL	[AIAA PAPER 81-0337] A81-2076 FITTS, J. H. Precision correlation tracking via optimal
aircraft [AIAA PAPER 81-0151] A81-20632 EPLEY, L. B.	weighting functions A81-2045
A study of State Peedback Implicit Model following control for VSTOL aircraft	PLESKES, W. Evaluation of false alarm information with the ELRA
[AD-A093253] N81-17099 EPSTEIN, A. H. Current problems in turbomachinery fluid dynamics	A81-2010 POGEL, P. Design and evaluation of an integrated Quiet Clean
[AD-A093375] N81-17387 ERBACHER, H. A.	General Aviation Turbofan (OCGAT) engine and aircraft propulsion system
Experiences with composite aircraft structures A81-22678	[NASA-CB-165185] N81-1605 FORESTER, C. K. Body-fitted 3-D full-potential flow analysis of
BRICKSON, J. C., JR. Numerical simulations of a segmented-plenum, perforated, adaptive-wall wind tunnel	complex ducts and inlets [AIAA PAPER 81-0002] A81-2052
[AIAA PAPER 81-0160] A81-20640 BRHOULT, H.	FORTE, I. Bounds for the additional cost of near-optimal
The spectral analysis of nonstationary random processes - Applications to aircraft overflight-type noises	CONTROLS A81-2107 FOWLER, F. D.
ERZBERGER, H. A81-21922	Air traffic control problems - A pilot's view
Application of trajectory optimization principles to minimize aircraft operating costs	A81-2091 PRANKENBERGER, C. E. United States Army helicopter icing qualification
ESLINGER, R. C.	1980 [AIAA PAPER 81-0406] A81-2081
QP-100 Pull-Scale Aerial Target program	

PERSONAL AUTHOR INDEX GOODMAN, S. A.

FRANKEBBERGER, C. E., JR.		GANGSAAS, D.	
Preliminary airworthiness evaluation AH-1S helicopter equipped with a substitute str		Classical and modern control design of a speed-hold system for a STOL airplane	
exhaust pipe	argue	[AIAA PAPER 81-0017]	A81-20541
	N81-16045	Practical gust load alleviation and flutte	
PRARRY, J. P.	1310	suppression control laws based on a LQG	
Compressor blade monitoring system for a VA (Allis Chalmers) Wind Tunnel Compressor	1310	methodology [AIAA PAPER 81-0021]	A81-20544
	N81-17103	GARZ, U. W.	201 20344
PRAY, J. M. J.		Studies on proper simulation during static	testing
A constrained inverse method for the aerody design of thick wings with given pressure		of forward speed effects on fan noise [NASA-CR-165626]	N81-16853
distribution in subsonic flow		GARY, B. L.	CC001 -1 0M
	N81-16006	An airborne sensor for the avoidance of cl	ear air
PREDIANI, A. Ductile fracture mechanic assessments of		turbulence [AIAA PAPER 81-0297]	A81-20735
2219-T851, 2024-T3 and 7075-T6 aluminum a	llovs	CAT altitude avoidance system	A0 1-20735
	A81-22628	[NASA-CASE-NPO-15351-1]	N81-16677
FREEDY, A.		GAOSE, L. W.	• •
Analysis and modeling of information handli tasks in supervisory control of advanced		Effect of impact damage on the XFV-12A com wing box	posite
	N81-17061	1119 201	A81-22676
FREEMAN, D. C., JR.	G1 1 1 -	GEDGE, M. R.	
Application of a tip-fin controller to the Orbiter for improved yaw control	Sunttre	Studies on proper simulation during static of forward speed effects on fan noise	testing
	A81-20582	[NASA-CR-165626]	N81-16853
PREEMAN, W. T., JR.		GERMAN, J.	
Graphite polyimide fabrication research for supersonic cruise aircraft		Design and evaluation of an integrated Qui General Aviation Turbofan (OCGAT) engine	
	A81-22665	aircraft propulsion system	and
PREZELL, T. L.		[NASA-CR-165185]	N81-16057
A preliminary human factors flight assessme	nt of a	GHIA, K. N.	
Marconi automatic map [AD-A092585]	N81-16036	Three-dimensional internal flows in turbomachinery, volume 2	
FRIEDLANDER, B.	,	[AD-A093130]	N81-17090
Adaptive control for electronic countermeas		GHIA, U.	
PRINGS, G.	A81-20470	Three-dimensional internal flows in turbomachinery, volume 2	
Exhaust emission characteristics and variab	ility	[AD-A093130]	N8 1- 17090
for maintained General Electric CF6-50 tu	rbofan	GIACCHETTO, A.	
engines [AD-A092291]	N81-16064	Philosophy and results of steady and unste techniques on a large scale transport ai	
FRISH, G. D.		model in the ONERA transonic tunnel S1 M	
Low level, adverse attitude escape using a		 Philosophy and results of steady tes 	
vertical seeking ejection seat	381-2209#	 Philosophy and results of steady tes Part 2: Interest of large models in uns 	
vertical seeking ejection seat	A81-22094	 Philosophy and results of steady tes 	
vertical seeking ejection seat FUDAKOWSKI, T. Bilingual air traffic control in Canada		 Philosophy and results of steady tes Part 2: Interest of large models in uns aerodynamics GIANI, N. 	teady N81-16019
Vertical seeking ejection seat FUDAKOWSKI, T. Bilingual air traffic control in Canada	A81-22094 A81-20915	 Philosophy and results of steady tes Part 2: Interest of large models in uns aerodynamics GIANI, N. Study of a crack propagation on the flap r 	teady N81-16019
vertical seeking ejection seat FUDAKOWSKI, T. Bilingual air traffic control in Canada	A81-20915	 Philosophy and results of steady tes Part 2: Interest of large models in uns aerodynamics GIANI, N. 	teady N81-16019
vertical seeking ejection seat FUDAKOWSKI, T. Bilingual air traffic control in Canada FUECHTER, M. Target detection and parameter estimation i surveillance radars using MTI-FFT process	A81-20915 n ing	1: Philosophy and results of steady tes Part 2: Interest of large models in uns aerodynamics GIABI, H. Study of a crack propagation on the flap r transport aircraft GLASBR, P. W.	teady N81-16019 ail of a
vertical seeking ejection seat FUDAKOWSKI, T. Bilingual air traffic control in Canada FUECHTER, N. Target detection and parameter estimation i surveillance radars using MTI-FFT process	A81-20915 n	1: Philosophy and results of steady tes Part 2: Interest of large models in uns aerodynamics GIANI, N. Study of a crack propagation on the flap r transport aircraft GLASER, P. B. Mean rotor wake characteristics of an	N81-16019 ail of a A81-22633
vertical seeking ejection seat FUDAKOWSKI, T. Bilingual air traffic control in Canada FUECHTER, M. Target detection and parameter estimation i surveillance radars using MTI-FFT process	A81-20915 n ing A81-20094	1: Philosophy and results of steady tes Part 2: Interest of large models in uns aerodynamics GIABI, H. Study of a crack propagation on the flap r transport aircraft GLASBR, P. W.	N81-16019 ail of a A81-22633
Vertical seeking ejection seat FUDAKONSKI, T. Bilingual air traffic control in Canada FUECHTER, N. Target detection and parameter estimation i surveillance radars using MTI-FFT process FUJII, T. Acoustic fatigue strength of fiber-reinforc plastic panels	A81-20915 n ing A81-20094 ed	1: Philosophy and results of steady tes Part 2: Interest of large models in uns aerodynamics GIANI, N. Study of a crack propagation on the flap r transport aircraft GLASER, P. W. Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fa [AIAA PAPER 81-0208] Mean rotor wake characteristics of an	N81-16019 ail of a A81-22633
Vertical seeking ejection seat FUDAKONSKI, T. Bilingual air traffic control in Canada FUBCHTER, N. Target detection and parameter estimation is surveillance radars using MTI-FFT process PUJII, T. Acoustic fatigue strength of fiber-reinforce plastic panels	A81-20915 n ing A81-20094	1: Philosophy and results of steady tes Part 2: Interest of large models in uns aerodynamics GIANI, N. Study of a crack propagation on the flap r transport aircraft GLASER, P. W. Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fa [AIAA PAPER 81-0208] Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fa	N81-16019 ail of a A81-22633 A81-20830
vertical seeking ejection seat FUDAKONSKI, T. Bilingual air traffic control in Canada FUECHTER, M. Target detection and parameter estimation is surveillance radars using MTI-FFT process FUJII, T. Acoustic fatigue strength of fiber-reinforce plastic panels FUJITA, T. T.	A81-20915 n ing A81-20094 ed A81-20873	1: Philosophy and results of steady tes Part 2: Interest of large models in uns aerodynamics GIANI, N. Study of a crack propagation on the flap r transport aircraft GLASER, P. W. Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fa [AIAA PAPER 81-0208] Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fa [NASA-TH-81657]	N81-16019 ail of a A81-22633
Vertical seeking ejection seat FUDAKONSKI, T. Bilingual air traffic control in Canada FUBCHTER, N. Target detection and parameter estimation is surveillance radars using MTI-FFT process PUJII, T. Acoustic fatigue strength of fiber-reinforce plastic panels FUJITA, T. T. Microbursts as an aviation wind shear hazar [AIAA PAPER 81-0386]	A81-20915 n ing A81-20094 ed A81-20873	1: Philosophy and results of steady tes Part 2: Interest of large models in uns aerodynamics GIANI, N. Study of a crack propagation on the flap r transport aircraft GLASER, P. W. Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fa [AIAA PAPER 81-0208] Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fa	N81-16019 ail of a
Vertical seeking ejection seat FUDAKONSKI, T. Bilingual air traffic control in Canada FUBCHTER, M. Target detection and parameter estimation is surveillance radars using MTI-FFT process FUJII, T. Acoustic fatigue strength of fiber-reinforce plastic panels FUJITA, T. T. Microbursts as an aviation wind shear hazar [AIAA PAPER 81-0386] FUKUDA, T.	A81-20915 n ing A81-20094 ed A81-20873 d A81-20798	1: Philosophy and results of steady tes Part 2: Interest of large models in uns aerodynamics GIANI, N. Study of a crack propagation on the flap r transport aircraft GLASER, P. N. Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fa [AIAA PAPER 81-0208] Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fa [NASA-TH-81657] GLASSON, D. P. Robustness properties of a new multirate d control system	n81-16019 ail of a a81-22633 n a81-20830 n n81-16053 igital
Vertical seeking ejection seat FUDAKONSKI, T. Bilingual air traffic control in Canada FUBCHTER, N. Target detection and parameter estimation is surveillance radars using MTI-FFT process PUJII, T. Acoustic fatigue strength of fiber-reinforce plastic panels FUJITA, T. T. Microbursts as an aviation wind shear hazar [AIAA PAPER 81-0386]	A81-20915 n ing A81-20094 ed A81-20873 d A81-20798	1: Philosophy and results of steady tes Part 2: Interest of large models in uns aerodynamics GIANI, H. Study of a crack propagation on the flap r transport aircraft GLASER, P. W. Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fa [AIAA PAPER 81-0208] Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fa [NASA-TH-81657] GLASSON, D. P. Robustness properties of a new multirate d control system [AIAA PAPER 81-0022] GLIATTI, R. L.	N81-16019 ail of a A81-22633 A81-20830 N81-16053 igital A81-20545
Vertical seeking ejection seat FUDAKONSKI, T. Bilingual air traffic control in Canada FUBCHTER, M. Target detection and parameter estimation is surveillance radars using MTI-FFT process FUJII, T. Acoustic fatigue strength of fiber-reinforce plastic panels FUJITA, T. T. Microbursts as an aviation wind shear hazare [AIAA PAPER 81-0386] FUKUDA, T. Acoustic fatigue strength of fiber-reinforce plastic panels	A81-20915 n ing A81-20094 ed A81-20873 d A81-20798	1: Philosophy and results of steady tes Part 2: Interest of large models in uns aerodynamics GIANI, N. Study of a crack propagation on the flap r transport aircraft GLASER, P. W. Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fa [AIAA PAPER 81-0208] Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fa [NASA-TH-81657] GLASSON, D. P. Robustness properties of a new multirate d control system [AIAA PAPER 81-0022]	n81-16019 ail of a a81-22633 n a81-20830 n n81-16053 igital a81-20545 gery
Vertical seeking ejection seat FUDAKOWSKI, T. Bilingual air traffic control in Canada FUECHTER, M. Target detection and parameter estimation i surveillance radars using MTI-FFT process FUJII, T. Acoustic fatigue strength of fiber-reinforc plastic panels FUJITA, T. T. Microbursts as an aviation wind shear hazar [AIAA PAPER 81-0386] FUKUDA, T. Acoustic fatigue strength of fiber-reinforc plastic panels FULLER, J. B.	A81-20915 n ing A81-20094 ed A81-20873 d A81-20798	1: Philosophy and results of steady tes Part 2: Interest of large models in uns aerodynamics GIANI, N. Study of a crack propagation on the flap r transport aircraft GLASER, P. W. Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fa [AIAA PAPER 81-0208] Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fa [NASA-TH-81657] GLASSON, D. P. Robustness properties of a new multirate d control system [AIAA PAPER 81-0022] GLIATTI, B. L. Tri-bar reading correction for oblique ima	N81-16019 ail of a A81-22633 A81-20830 N81-16053 igital A81-20545
Vertical seeking ejection seat FUDAKOWSKI, T. Bilingual air traffic control in Canada FUECHTER, W. Target detection and parameter estimation is surveillance radars using MTI-FFT process PUJII, T. Acoustic fatigue strength of fiber-reinforce plastic panels FUJITA, T. T. Microbursts as an aviation wind shear hazare [AIAA PAPER 81-0386] FUKUDA, T. Acoustic fatigue strength of fiber-reinforce plastic panels FULLER, J. B. A distributed airborne surveillance system	A81-20915 n ing A81-20094 ed A81-20873 d A81-20798 ed	1: Philosophy and results of steady tes Part 2: Interest of large models in uns aerodynamics GIANI, N. Study of a crack propagation on the flap r transport aircraft GLASER, P. W. Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fa [AIAA PAPER 81-0208] Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fa [NASA-TH-81657] GLASSON, D. P. Robustness properties of a new multirate d control system [AIAA PAPER 81-0022] GLIATTI, B. L. Tri-bar reading correction for oblique ima GOCLOWSKI, J. C.	N81-16019 ail of a A81-22633 A81-20830 N81-16053 igital A81-20545 gery A81-22495
Vertical seeking ejection seat FUDAKOWSKI, T. Bilingual air traffic control in Canada FUECHTER, W. Target detection and parameter estimation is surveillance radars using MTI-FFT process PUJII, T. Acoustic fatigue strength of fiber-reinforce plastic panels FUJITA, T. T. Microbursts as an aviation wind shear hazare [AIAA PAPER 81-0386] FUKUDA, T. Acoustic fatigue strength of fiber-reinforce plastic panels FULLER, J. B. A distributed airborne surveillance system	A81-20915 n ing A81-20094 ed A81-20873 d A81-20798	1: Philosophy and results of steady tes Part 2: Interest of large models in uns aerodynamics GIANI, N. Study of a crack propagation on the flap r transport aircraft GLASER, P. W. Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fa [AIAA PAPER 81-0208] Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fa [NASA-TM-81657] GLASSON, D. P. Robustness properties of a new multirate d control system [AIAA PAPER 81-0022] GLIATTI, B. L. Tri-bar reading correction for oblique ima GOCLOWSKI, J. C. Digital Avionics Information System (DAIS) Cycle Cost Impact Modeling System (LCCIM	n81-16019 ail of a a81-22633 n a81-20830 n n81-16053 igital a81-20545 gery a81-22495 : Life
Vertical seeking ejection seat FUDAKONSKI, T. Bilingual air traffic control in Canada FUECHTER, N. Target detection and parameter estimation is surveillance radars using MTI-FFT process FUJII, T. Acoustic fatigue strength of fiber-reinforce plastic panels FUJITA, T. T. Microbursts as an aviation wind shear hazare [AIAA PAPER 81-0386] FUKUDA, T. Acoustic fatigue strength of fiber-reinforce plastice panels FULLER, J. B. A distributed airborne surveillance system	A81-20915 n ing A81-20094 ed A81-20873 d A81-20798 ed	1: Philosophy and results of steady tes Part 2: Interest of large models in uns aerodynamics GIANI, N. Study of a crack propagation on the flap r transport aircraft GLASER, P. W. Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fa [AIAA PAPER 81-0208] Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fa [NASA-TH-81657] GLASSON, D. P. Robustness properties of a new multirate d control system [AIAA PAPER 81-0022] GLIATTI, B. L. Tri-bar reading correction for oblique ima GOCLOWSKI, J. C. Digital Avionics Information System (DAIS) Cycle Cost Impact Modeling System (LCCIM managerial overview	N81-16019 ail of a A81-22633 A81-20830 N81-16053 igital A81-20545 gery A81-22495 : Life). A
Vertical seeking ejection seat FUDAKOWSKI, T. Bilingual air traffic control in Canada FUECHTER, N. Target detection and parameter estimation i surveillance radars using MTI-FFT process FUJII, T. Acoustic fatigue strength of fiber-reinforce plastic panels FUJITA, T. T. Microbursts as an aviation wind shear hazare [AIAA PAPER 81-0386] FUKUDA, T. Acoustic fatigue strength of fiber-reinforce plastic panels FULLER, J. B. A distributed airborne surveillance system G GAJEWSKI, R. R.	A81-20915 n ing A81-20094 ed A81-20873 d A81-20798 ed A81-20873	1: Philosophy and results of steady tes Part 2: Interest of large models in uns aerodynamics GIANI, N. Study of a crack propagation on the flap r transport aircraft GLASER, P. W. Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fa [AIAA PAPER 81-0208] Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fa [NASA-TM-81657] GLASSON, D. P. Robustness properties of a new multirate d control system [AIAA PAPER 81-0022] GLIATTI, B. L. Tri-bar reading correction for oblique ima GOCLOWSKI, J. C. Digital Avionics Information System (DAIS) Cycle Cost Impact Modeling System (LCCIM managerial overview [AD-A093281] GOPP, R. C.	N81-16019 ail of a A81-22633 A81-20830 N81-16053 igital A81-20545 gery A81-22495 : Life) A81-17062
Vertical seeking ejection seat FUDAKONSKI, T. Bilingual air traffic control in Canada FUECHTER, N. Target detection and parameter estimation is surveillance radars using MTI-FFT process PUJII, T. Acoustic fatigue strength of fiber-reinforce plastic panels FUJITA, T. T. Microbursts as an aviation wind shear hazare [AIAA PAPER 81-0386] FUKUDA, T. Acoustic fatigue strength of fiber-reinforce plastice panels FULLER, J. B. A distributed airborne surveillance system G GAJEWSKI, R. R. Modal analysis for aircraft response to run	A81-20915 n ing A81-20094 ed A81-20873 d A81-20798 ed A81-20873	1: Philosophy and results of steady tes Part 2: Interest of large models in uns aerodynamics GIANI, N. Study of a crack propagation on the flap r transport aircraft GLASER, P. W. Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fa [AIAA PAPER 81-0208] Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fa [NASA-TH-81657] GLASSON, D. P. Robustness properties of a new multirate d control system [AIAA PAPER 81-0022] GLIATTI, B. L. Tri-bar reading correction for oblique ima GOCLOWSKI, J. C. Digital Avionics Information System (DAIS) Cycle Cost Impact Modeling System (LCCIM managerial overview [AD-A093281] GOPP, R. C. Analysis of wind vector components in the	N81-16019 ail of a A81-22633 A81-20830 N81-16053 igital A81-20545 gery A81-22495 : Life). A N81-17062 lower
Vertical seeking ejection seat FUDAKONSKI, T. Bilingual air traffic control in Canada FUECHTER, N. Target detection and parameter estimation is surveillance radars using MTI-FFT process PUJII, T. Acoustic fatigue strength of fiber-reinforce plastic panels FUJITA, T. T. Microbursts as an aviation wind shear hazare [MIAM PAPPER 81-0386] FUKUDA, T. Acoustic fatigue strength of fiber-reinforce plastice panels FULLER, J. B. A distributed airborne surveillance system G GAJEWSKI, R. R. Modal analysis for aircraft response to runsurface roughness	A81-20915 n ing A81-20094 ed A81-20873 d A81-20798 ed A81-20873 A81-20873	1: Philosophy and results of steady tes Part 2: Interest of large models in uns aerodynamics GIANI, N. Study of a crack propagation on the flap r transport aircraft GLASER, P. W. Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fa [AIAA PAPER 81-0208] Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fa [NASA-TH-81657] GLASSON, D. P. Robustness properties of a new multirate d control system [AIAA PAPER 81-0022] GLIATTI, B. L. Tri-bar reading correction for oblique ima GOCLOWSKI, J. C. Digital Avionics Information System (DAIS) Cycle Cost Impact Modeling System (LCCIM managerial overview [AD-A093281] GOPP, R. C. Analysis of wind vector components in the troposphere Applications to aircraft ope	N81-16019 ail of a A81-22633 A81-20830 N81-16053 igital A81-20545 gery A81-22495 : Life). A N81-17062 lower
Vertical seeking ejection seat FUDAKONSKI, T. Bilingual air traffic control in Canada FUECHTER, N. Target detection and parameter estimation is surveillance radars using MTI-FFT process FUJII, T. Acoustic fatigue strength of fiber-reinforce plastic panels FUJITA, T. T. Microbursts as an aviation wind shear hazare [AIAA PAPPER 81-0386] FUKUDA, T. Acoustic fatigue strength of fiber-reinforce plastice panels FULLER, J. B. A distributed airborne surveillance system G GAJEWSKI, R. R. Modal analysis for aircraft response to runsurface roughness	A81-20915 n ing A81-20094 ed A81-20873 d A81-20798 ed A81-20873	1: Philosophy and results of steady tes Part 2: Interest of large models in uns aerodynamics GIANI, N. Study of a crack propagation on the flap r transport aircraft GLASER, P. W. Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fa [AIAA PAPER 81-0208] Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fa [NASA-TH-81657] GLASSON, D. P. Robustness properties of a new multirate d control system [AIAA PAPER 81-0022] GLIATTI, B. L. Tri-bar reading correction for oblique ima GOCLOWSKI, J. C. Digital Avionics Information System (DAIS) Cycle Cost Impact Modeling System (LCCIM managerial overview [AD-A093281] GOPP, R. C. Analysis of wind vector components in the	N81-16019 ail of a A81-22633 A81-20830 N81-16053 igital A81-20545 gery A81-22495 : Life). A N81-17062 lower
Vertical seeking ejection seat FUDAKONSKI, T. Bilingual air traffic control in Canada FUECHTER, N. Target detection and parameter estimation is surveillance radars using MTI-FFT process PUJII, T. Acoustic fatigue strength of fiber-reinforce plastic panels FUJITA, T. T. Microbursts as an aviation wind shear hazare [AIAA PAPPER 81-0386] FUKUDA, T. Acoustic fatigue strength of fiber-reinforce plastice panels FULLER, J. B. A distributed airborne surveillance system GAJEWSKI, R. R. Modal analysis for aircraft response to runsurface roughness [AD-A092057] GALL, D. A French flight test program on the	A81-20915 n ing A81-20094 ed A81-20873 d A81-20798 ed A81-20873 A81-20873	1: Philosophy and results of steady tes Part 2: Interest of large models in uns aerodynamics GIANI, N. Study of a crack propagation on the flap r transport aircraft GLASER, P. W. Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fa [AIAA PAPER 81-0208] Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fa [NASA-TH-81657] GLASSON, D. P. Robustness properties of a new multirate d control system [AIAA PAPER 81-0022] GLIATTI, B. L. Tri-bar reading correction for oblique ima GOCLOWSKI, J. C. Digital Avionics Information System (DAIS) Cycle Cost Impact Modeling System (LCCIM managerial overview [AD-A093281] GOPP, R. C. Analysis of wind vector components in the troposphere Applications to aircraft ope at terminals [AIAA PAPER 81-0387] GOLOB, R. A.	N81-16019 ail of a A81-22633 A81-20830 N81-16053 igital A81-20545 gery A81-22495 : Life). A N81-17062 lower rations A81-20799
Vertical seeking ejection seat FUDAKOWSKI, T. Bilingual air traffic control in Canada FUECHTER, M. Target detection and parameter estimation i surveillance radars using MTI-FFT process FUJII, T. Acoustic fatigue strength of fiber-reinforc plastic panels FUJITA, T. T. Microbursts as an aviation wind shear hazar [AIAA PAPER 81-0386] FUKUDA, T. Acoustic fatigue strength of fiber-reinforc plastic panels FULLER, J. B. A distributed airborne surveillance system GAJEWSKI, R. R. Modal analysis for aircraft response to run surface roughness [AD-A092057] GALL, D. A French flight test program on the electromagnetic effects of lightning	A81-20915 n ing A81-20094 ed A81-20873 d A81-20798 ed A81-20873 A81-22618	1: Philosophy and results of steady tes Part 2: Interest of large models in uns aerodynamics GIANI, N. Study of a crack propagation on the flap r transport aircraft GLASER, P. W. Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fa [AIAN PAPER 81-0208] Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fa [NASA-TM-81657] GLASSON, D. P. Robustness properties of a new multirate d control system [AIAA PAPER 81-0022] GLIATTI, E. L. Tri-bar reading correction for oblique ima GOCLOWSKI, J. C. Digital Avionics Information System (DAIS) Cycle Cost Impact Modeling System (LCCIM managerial overview [AD-A093281] GOPP, R. C. Analysis of wind vector components in the troposphere Applications to aircraft ope at terminals [AIAA PAPER 81-0387] GOLUB, R. A. Unsteady fan blade pressure and acoustic r	N81-16019 ail of a A81-22633 A81-20830 N81-16053 igital A81-20545 gery A81-22495 : Life) A N81-17062 lower rations A81-20799 adiation
Vertical seeking ejection seat FUDAKOWSKI, T. Bilingual air traffic control in Canada FUECHTER, M. Target detection and parameter estimation i surveillance radars using MTI-FFT process FUJII, T. Acoustic fatigue strength of fiber-reinforc plastic panels FUJITA, T. T. Microbursts as an aviation wind shear hazar [AIAA PAPER 81-0386] FUKUDA, T. Acoustic fatigue strength of fiber-reinforc plastic panels FULLER, J. B. A distributed airborne surveillance system GAJEWSKI, R. R. Modal analysis for aircraft response to run surface roughness [AD-A092057] GALL, D. A French flight test program on the electromagnetic effects of lightning	A81-20915 n ing A81-20094 ed A81-20873 d A81-20798 ed A81-20873 A81-22618 way N81-16043	1: Philosophy and results of steady tes Part 2: Interest of large models in uns aerodynamics GIANI, N. Study of a crack propagation on the flap r transport aircraft GLASER, P. W. Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fa [AIAA PAPER 81-0208] Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fa [NASA-TH-81657] GLASSON, D. P. Robustness properties of a new multirate d control system [AIAA PAPER 81-0022] GLIATTI, B. L. Tri-bar reading correction for oblique ima GOCLOWSKI, J. C. Digital Avionics Information System (DAIS) Cycle Cost Impact Modeling System (LCCIM managerial overview [AD-A093281] GOPP, R. C. Analysis of wind vector components in the troposphere Applications to aircraft ope at terminals [AIAA PAPER 81-0387] GOLOB, R. A.	N81-16019 ail of a A81-22633 A81-20830 N81-16053 igital A81-20545 gery A81-22495 : Life) A N81-17062 lower rations A81-20799 adiation
Vertical seeking ejection seat FUDAKOWSKI, T. Bilingual air traffic control in Canada FUECHTER, N. Target detection and parameter estimation i surveillance radars using MTI-FFT process FUJII, T. Acoustic fatigue strength of fiber-reinforc plastic panels FUJITA, T. T. Microbursts as an aviation wind shear hazar [AIAA PAPER 81-0386] FUKUDA, T. Acoustic fatigue strength of fiber-reinforc plastic panels FULLER, J. B. A distributed airborne surveillance system GAJEWSKI, R. R. Modal analysis for aircraft response to run surface roughness [AD-A092057] GALL, D. A French flight test program on the electromagnetic effects of lightning Tension induced in the cables inside closed structures and in carbon epoxy submitted	A81-20915 n ing A81-20094 ed A81-20873 d A81-20798 ed A81-20873 A81-20873 A81-20873	1: Philosophy and results of steady tes Part 2: Interest of large models in uns aerodynamics GIANI, N. Study of a crack propagation on the flap r transport aircraft GLASER, P. W. Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fa [AIAA PAPER 81-0208] Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fa [NASA-TM-81657] GLASSON, D. P. Robustness properties of a new multirate d control system [AIAA PAPER 81-0022] GLIATTI, R. L. Tri-bar reading correction for oblique ima GOCLOWSKI, J. C. Digital Avionics Information System (DAIS) Cycle Cost Impact Modeling System (LCCIM managerial overview [AD-A093281] GOPP, R. C. Analysis of wind vector components in the troposphere Applications to aircraft ope at terminals [AIAA PAPER 81-0387] GOLUB, R. A. Unsteady fan blade pressure and acoustic r from a JT15D-1 turbofan engine at simula forward speed [AIAA PAPER 81-0096]	N81-16019 ail of a A81-22633 A81-20830 N81-16053 igital A81-20545 gery A81-22495 : Life) A N81-17062 lower rations A81-20799 adiation
Vertical seeking ejection seat FUDAKOWSKI, T. Bilingual air traffic control in Canada FUECHTER, W. Target detection and parameter estimation is surveillance radars using MTI-FFT process FUJII, T. Acoustic fatigue strength of fiber-reinforce plastic panels FUJITA, T. T. Microbursts as an aviation wind shear hazare [AIAA PAPER 81-0386] FUKUDA, T. Acoustic fatigue strength of fiber-reinforce plastice panels FULLER, J. B. A distributed airborne surveillance system G GAJEWSKI, R. R. Modal analysis for aircraft response to runsurface roughness [AD-A092057] GALL, D. A French flight test program on the electromagnetic effects of lightning Tension induced in the cables inside closed structures and in carbon epoxy submitted lightning-type impulse current	A81-20915 n ing A81-20094 ed A81-20873 d A81-20798 ed A81-20873 A81-22618 way N81-16043	1: Philosophy and results of steady tes Part 2: Interest of large models in uns aerodynamics GIANI, N. Study of a crack propagation on the flap r transport aircraft GLASER, P. W. Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fa [AIAN PAPER 81-0208] Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fa [NASA-TH-81657] GLASSON, D. P. Robustness properties of a new multirate d control system [AIAN PAPER 81-0022] GLIATTI, B. L. Tri-bar reading correction for oblique ima GOCLOWSKI, J. C. Digital Avionics Information System (DAIS) Cycle Cost Impact Modeling System (LCCIM managerial overview [AD-A093281] GOFF, B. C. Analysis of wind vector components in the troposphere Applications to aircraft ope at terminals [AIAA PAPER 81-0387] GOLUB, R. A. Unsteady fan blade pressure and acoustic r from a JT15D-1 turbofan engine at simula forward speed [AIAA PAPER 81-0096] GOOD, W. D.	N81-16019 ail of a A81-22633 A81-20830 N81-16053 igital A81-20545 gery A81-22495 : Life). A N81-17062 lower rations A81-20799 adiation ted
Vertical seeking ejection seat FUDAKOWSKI, T. Bilingual air traffic control in Canada FUECHTER, N. Target detection and parameter estimation is surveillance radars using MTI-FFT process PUJII, T. Acoustic fatigue strength of fiber-reinforce plastic panels FUJITA, T. T. Microbursts as an aviation wind shear hazare [AIAA PAPPER 81-0386] FUKUDA, T. Acoustic fatigue strength of fiber-reinforce plastice panels FULLER, J. B. A distributed airborne surveillance system GAJEWSKI, R. R. Modal analysis for aircraft response to run surface roughness [AD-A092057] GALL, D. A Prench flight test program on the electromagnetic effects of lightning Tension induced in the cables inside closed structures and in carbon epoxy submitted lightning-type impulse current	A81-20915 n ing A81-20094 ed A81-20873 d A81-20798 ed A81-20873 A81-20873 A81-20873	1: Philosophy and results of steady tes Part 2: Interest of large models in uns aerodynamics GIANI, N. Study of a crack propagation on the flap r transport aircraft GLASER, P. N. Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fa [AIAA PAPER 81-0208] Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fa [NASA-TH-81657] GLASSON, D. P. Robustness properties of a new multirate d control system [AIAA PAPER 81-0022] GLIATTI, B. L. Tri-bar reading correction for oblique ima GOCLOWSKI, J. C. Digital Avionics Information System (DAIS) Cycle Cost Impact Modeling System (LCCIM managerial overview [AD-A093281] GOPP, R. C. Analysis of wind vector components in the troposphere Applications to aircraft ope at terminals [AIAA PAPER 81-0387] GOLUB, R. A. Unsteady fan blade pressure and acoustic r from a JT15D-1 turbofan engine at simula forward speed [AIAA PAPER 81-0096] GOOD, W. D. Thermodynamics of organic compounds	N81-16019 ail of a A81-22633 A81-20830 N81-16053 igital A81-20545 gery A81-22495 : Life). A N81-17062 lower rations A81-20799 adiation ted
Vertical seeking ejection seat FUDAKOWSKI, T. Bilingual air traffic control in Canada FUECHTER, W. Target detection and parameter estimation is surveillance radars using MTI-FFT process FUJII, T. Acoustic fatigue strength of fiber-reinforce plastic panels FUJITA, T. T. Microbursts as an aviation wind shear hazare [AIAA PAPER 81-0386] FUKUDA, T. Acoustic fatigue strength of fiber-reinforce plastice panels FULLER, J. B. A distributed airborne surveillance system G GAJEWSKI, R. R. Modal analysis for aircraft response to runsurface roughness [AD-A092057] GALL, D. A French flight test program on the electromagnetic effects of lightning Tension induced in the cables inside closed structures and in carbon epoxy submitted lightning-type impulse current Flight tests for studying radioelectric perturbations of an electrostatic origin	A81-20915 n ing A81-20094 ed A81-20873 d A81-20798 ed A81-20873 A81-22618 way N81-16043	1: Philosophy and results of steady tes Part 2: Interest of large models in uns aerodynamics GIANI, N. Study of a crack propagation on the flap r transport aircraft GLASER, P. N. Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fa [AIAA PAPER 81-0208] Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fa [NASA-TH-81657] GLASSON, D. P. Robustness properties of a new multirate d control system [AIAA PAPER 81-0022] GLIATTI, B. L. Tri-bar reading correction for oblique ima GOCLOWSKI, J. C. Digital Avionics Information System (DAIS) Cycle Cost Impact Modeling System (LCCIM managerial overview [AD-A093281] GOPP, R. C. Analysis of wind vector components in the troposphere Applications to aircraft ope at terminals [AIAA PAPER 81-0387] GOLUB, R. A. Unsteady fan blade pressure and acoustic r from a JT15D-1 turbofan engine at simula forward speed [AIAA PAPER 81-0096] GOOD, N. D. Thermodynamics of organic compounds [AD-A093087] GOODMAN, S. A.	N81-16019 ail of a A81-22633 A81-20830 N81-16053 igital A81-20545 gery A81-22495 : Life N81-17062 lower rations A81-20799 adiation ted A81-20598
Vertical seeking ejection seat FUDAKOWSKI, T. Bilingual air traffic control in Canada FUECHTER, M. Target detection and parameter estimation i surveillance radars using MTI-FFT process FUJII, T. Acoustic fatigue strength of fiber-reinforc plastic panels FUJITA, T. T. Microbursts as an aviation wind shear hazar [AIAA PAPER 81-0386] FUKUDA, T. Acoustic fatigue strength of fiber-reinforc plastic panels FULLER, J. B. A distributed airborne surveillance system G GAJEWSKI, R. R. Modal analysis for aircraft response to run surface roughness [AD-A092057] GALL, D. A French flight test program on the electromagnetic effects of lightning Tension induced in the cables inside closed structures and in carbon epoxy submitted lightning-type impulse current Flight tests for studying radioelectric perturbations of an electrostatic origin	A81-20915 n ing A81-20094 ed A81-20873 d A81-20798 ed A81-20873 A81-22618 way N81-16043	1: Philosophy and results of steady tes Part 2: Interest of large models in uns aerodynamics GIANI, N. Study of a crack propagation on the flap r transport aircraft GLASER, P. N. Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fa [AIAA PAPER 81-0208] Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fa [NASA-TH-81657] GLASSON, D. P. Robustness properties of a new multirate d control system [AIAA PAPER 81-0022] GLIATTI, B. L. Tri-bar reading correction for oblique ima GOCLOWSKI, J. C. Digital Avionics Information System (DAIS) Cycle Cost Impact Modeling System (LCCIM managerial overview [AD-A093281] GOPP, R. C. Analysis of wind vector components in the troposphere Applications to aircraft ope at terminals [AIAA PAPER 81-0387] GOLOB, R. A. Unsteady fan blade pressure and acoustic r from a JT15D-1 turbofan engine at simula forward speed [AIAA PAPER 81-0096] GOOD, N. D. Thermodynamics of organic compounds [AD-A093087] GOODMAN, S. A. Robust autoregressive models for predictin	N81-16019 ail of a A81-22633 A81-20830 N81-16053 igital A81-20545 gery A81-22495 : Life N81-17062 lower rations A81-20799 adiation ted A81-20598
Vertical seeking ejection seat FUDAKOWSKI, T. Bilingual air traffic control in Canada FUECHTER, W. Target detection and parameter estimation is surveillance radars using MTI-FFT process FUJII, T. Acoustic fatigue strength of fiber-reinforce plastic panels FUJITA, T. T. Microbursts as an aviation wind shear hazare [AIAA PAPER 81-0386] FUKUDA, T. Acoustic fatigue strength of fiber-reinforce plastice panels FULLER, J. B. A distributed airborne surveillance system G GAJEWSKI, R. R. Modal analysis for aircraft response to runsurface roughness [AD-A092057] GALL, D. A French flight test program on the electromagnetic effects of lightning Tension induced in the cables inside closed structures and in carbon epoxy submitted lightning-type impulse current Flight tests for studying radioelectric perturbations of an electrostatic origin	A81-20915 n ing A81-20094 ed A81-20873 d A81-20798 ed A81-20873 A81-22618 way N81-16043	1: Philosophy and results of steady tes Part 2: Interest of large models in uns aerodynamics GIANI, N. Study of a crack propagation on the flap r transport aircraft GLASER, P. N. Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fa [AIAA PAPER 81-0208] Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fa [NASA-TH-81657] GLASSON, D. P. Robustness properties of a new multirate d control system [AIAA PAPER 81-0022] GLIATTI, B. L. Tri-bar reading correction for oblique ima GOCLOWSKI, J. C. Digital Avionics Information System (DAIS) Cycle Cost Impact Modeling System (LCCIM managerial overview [AD-A093281] GOPP, R. C. Analysis of wind vector components in the troposphere Applications to aircraft ope at terminals [AIAA PAPER 81-0387] GOLUB, R. A. Unsteady fan blade pressure and acoustic r from a JT15D-1 turbofan engine at simula forward speed [AIAA PAPER 81-0096] GOOD, N. D. Thermodynamics of organic compounds [AD-A093087] GOODMAN, S. A.	N81-16019 ail of a A81-22633 A81-20830 N81-16053 igital A81-20545 gery A81-22495 : Life N81-17062 lower rations A81-20799 adiation ted A81-20598

GOODYKOOBTZ, J. Effect of a semi-annular thermal acoustic shield on jet exhaust noise	н
A81-22532	HABERCOM, G. B., JR.
GORDOF, M. Death and injury in aerial spraying - Pre-crash, crash, and post-crash prevention strategies	Collision avoidance systems. Citations from the NTIS data base [PB80-815020] N81-16038
GOTO, N.	Air traffic control simulation models. Citations from the NTIS data base
Piloting techniques on the backside - Flight path angle control	[PB81-800104] N81-17037 HAINES, A. B.
A81-21673 GRAGG, C. D. Escape systems testing on the Holloman high speed	Prospects for exploiting favourable and minimizing adverse aerodynamic interference in external store installations
test track	N81-15996
GRAVELLE, A.	HAINES, P. A. The effect of heavy rain on windshear attributed
Philosophy and results of steady and unsteady test techniques on a large scale transport aircraft	accidents [Alla PAPER 81-0390] A81-20800
model in the ONERA transonic tunnel S1 MA. Part Philosophy and results of steady tests. Part 2: Interest of large models in unsteady aerodynamics 	#ALAMISH, #. Death and injury in aerial spraying - Pre-crash, crash, and post-crash prevention strategies A81-22115
N81-16019	HALIBURTON, T. A.
GRAY, T. D.	Potential use of geotechnical fabric in airfield runway design
<pre>Evaluating spectrum effects in U.S. Air Force attack/fighter/trainer individual aircraft tracking</pre>	[AD-A092686] N81-16071 HALL, K. R.
A81-21742 GREEN, K. A.	An application of wake survey rakes to the experimental determination of thrust for a
ZDRAFT-A graphite code for VTOL aircraft ground footprint visualization	propeller driven aircraft [NASA-CR-163920] N81-15986
[AD-A093311] N81-17042	HALL, W. B., JR.
Prediction and evaluation of thrust augmenting	Turbine engine fault detection and isolation program, phase 1. Volume 2: Reguirements
ejector performance at the conceptual design stage [AD-A093953] N81-17094	definition for an integrated engine monitoring
GREENELL, R. A.	system [AD-A093226] N81-17088
Airborne-fiber optics manufacturing technology, aircraft installation processes	[AD-A093226] N81-17088 Turbine engine fault detection and isolation
[AD-A093304] N81-17902	program, phase 1. Volume 1: Requirements
GREGOREK, G. M. An analytical approach to airfoil icing	definition for an integrated engine monitoring system
[AIAA PAPER 81-0403] A81-20810	[AD-A093225] N81-17089
GREITZER, E. M. Current problems in turbomachinery fluid dynamics	Multivariable control synthesis program: Control aspects of the P100 altitude demonstration of
[AD-A093375] N81-17387	the multivariable control system [AD-A093868] N81-17095
GRIBETZ, B. Death and injury in aerial spraying - Pre-crash,	[AD-A093868] N81-17095
crash, and post-crash prevention strategies A81-22115	A parametric study of the static longitudinal aerodynamic characteristics of parallel lift
GRIEM, H. Some aspects of advanced flight management systems	delta wing configurations at low Reynolds numbers [AIAA PAPER 81-0409] A81-20814
and their application to modern transport aircraft A81-20353	HAMBURG, G. Multi-plane high speed balancing techniques and
GROEGER, I. Increased target resolution and minor lobe	the use of a high specific stiffness Ti-Borsic material for vibration control [AD-A093122] N81-17092
reduction with active group antennas A81-20090	HAMED, A.
GUERRISI, R. Neurotramatological aspects in ejected pilots	Particle dynamics of inlet flow fields with swirling vanes
Neurotramatorogical aspects in ejected priots N81-17012	[AIAA PAPER 81-0001] A81-20526
GOLEVSKII, I. V. The use of acoustic emission for detecting and	HAMED, A. A. Three dimensional internal flows in
evaluating of fatigue cracks severity during	turbomachinery, volume 1
static and cyclic loading of structure elements A81-20214	[AD-A092737] N81-16065 HAMERMAH, J. A.
GUNTER, R. J. Nonlinear analysis of squeeze film dampers applied	The use of total simulator training in transitioning air-carrier pilots: A field
to gas turbine helicopter engines [AD-A091905] N81-16062	evaluation [NASA-TM-81250] N81-16994
GUPTA, R. R. Omega signal coverage prediction diagrams for 10.2	<pre>HAMILL, P. Aircraft NO/x/ emissions and stratospheric ozone</pre>
kHz. Volume 1: Technical approach [AD-A092741] N81-16030	reductions - Another look [AIAA PAPER 81-0306] A81-20741
Omega signal coverage prediction diagrams for 10.2 kHz. Volume 2: Individual station diagrams	HANKINS, G. B., JR. Solutions for slightly over- or under-expanded hot
[AD-A092742] N81-16031 Omega signal coverage prediction diagrams for 10.2	supersonic jets exhausting into cold subsonic mainstreams
kHz. Volume 4: Bearing angle tables	[AIAA PAPER 81-0257] A81-20705 BARDY, B.
GURMAN, B.	Development and demonstration of an automatic
Plat panel display technology review 881-17065	control and recovery system for remotely piloted vehicles
GUTIERREZ, O. A. Bffect of facility variation on the acoustic	BARRIS, A. S.
characteristics of three single stream nozzles	A guidance document on airport noise control
A81-22534	[AD-A092228] N81-16629

PERSONAL AUTHOR INDEX HOLDRIAN, J. D.

NOISECHECK procedures for measuring noise	exposure	HENNESSY, R. T.	
from aircraft operations [AD-A093948]	N81-17849	Critical research issues and visual system requirements for a V/STOL training resear	ch
HARRIS, M. J. Experimental development of an advanced			N81-16072
circulation control wing system for Navy aircraft	STOL	HEMSLER, T. MLS channel assignment model	
[AIAA PAPER 81-0151] HARRISON, J. H.	A81-20632	[AD-A093449] HERON, K. H.	N81-17026
Summary of aviation safety program resumes safety	. Cabin	Acoustic radiation from honeycomb sandwich	plates A 81-20070
[AD-AÖ91938]	N81-16027	HESS, T. E.	
HARRISON, R. L. Human Factors of Plight-deck Automation:			A81-22648
NASA/Industry Workshop [NASA-TM-81260]	N81-16022	HEWELL, J. G., JR. Turboprop Cargo Aircraft Systems study, pha	se 1
HARRISON, W. D. Ejection experience in P/PB-111 aircraft -	1967-1978		N81-16041
	A81-22098	Some wake-related operational limitations o	£
HASKINS, D. R. Fault-tolerant actuation concept for a res	earch	[NASA-TM-81920]	N81-15985
test aircraft [AD-A093113]	N81-17100	<pre>HICKS, P. A. The ANK - A four dimensional navigation/fli</pre>	qht
HAUPTHANN, MR. Side lobe suppression with digital signal	processing	management system for today	A81-22615
	A81-20092	HILAIRE, G.	
HAWLEY, K. B. A feasibility study for advanced technolog	у	Evolution of materials and associated techn in the makeup of aerospace materials, par	
integration for general aviation [NASA-CR-159381]	- N81-15974	[AAAF-NT-79-22-PT-1] Evolution of materials and associated techn	N81-17050
HAWTHORNE, W. R.		in the makeup of aerospace materials. Pa	
Current problems in turbomachinery fluid d [AD-A093375]	улашіся N81-17387	Examples [AAAF-NT-79-22-PT-2]	พ81-17051
HAYASHI, K. Development of a shadow mask type high-res	olution	HILL, R. G. Laser measurement of angle of attack on	
color picture tube for cockpit display		wind-tunnel models	.04 20440
HAYFORD, D. T.	A81-23095	HINZ, T.	A81-20419
Feasibility evaluation of advanced multifr eddy current technology for use in naval maintenance environment	air	Gravimetric investigation of the particle n density distribution function in the high cascade wind tunnel for laser anemometry	
[AD-A093314] HAZELWOOD, C.	N81-17476	measurements [ESA-TT-625]	N81-16069
Detection of military aircraft in an Air T Control Radar Beacon System (ATCRBS) env (AD-A093427)		HIRSCH, R. Examination of the vortex regime for highly wings by extrapolation of the Jones metho	
HEREISEN J. C.		[AAAF-NT-80-25]	N81-16992
Progress in P/M superalloy and titanium fo aircraft applications		HIRSCHBEIN, M. S. Stability of large horizontal-axis axisymme	tric
HECK, J. D.	A81-22641	wind turbines	A81-22526
Evaluation/redesign of the F-105 pitch rat	e gyro	HODGE, W. F. Civil aviation applications of Navstar/GPS	through
pack [AD-A092109] HECKMANN, G.	N81-16048	dirferential techniques	A81-22374
Finite element method study of		HODGES, W. T.	AOT LLST
<pre>wing-fuselage-nacelle interactions of a 20 type aircraft at Mach = 0.79</pre>		Effects of commercial aircraft operating environment on composite materials	A81-22681
HEPFLEY, R. K.	N81-15994	HODGSON, R. M.	
Atmospheric disturbance models and require for the flying qualities Military Standa		A solid-state airborne sensing system for r sensing	emote
Handbook [AIAA PAPER 81-0302]	A81-20739	HOFFMAN, D. J.	A81-23034
HEGNA, H. A. The numerical solution of incompressible t		Effects of commercial aircraft operating	
fiow over airfoils			A81-22681
[AIAA PAPER 81-0047]. HEININGER, K. L.	A81-20563	Environmental exposure effects on composite materials for commercial aircraft	•
Abstract interface specifications for the device interface module	A-7E	[NASA-CR-165649] HOGAN, T. A.	N81-16139
[AD-A092696]	N81-16770	Flame tube and ballistic evaluation of Expl	
HEINOLD, D. Impact of aircraft emissions on air qualit	y in the	aluminum foil for aircraft fuel tank expl protection	
vicinity of airports. Volume 1: Recent measurement programs, data analyses, and		[AD-A093542] HOH, R. H.	N8 1-17046
submodel development [AD-A089962]	N81-16628	Atmospheric disturbance models and requirem for the flying qualities Military Standar	
HEINZ, R. A. JT8D engine internal exhaust mixer technol	oa 🛚	Handbook	A81-20739
program		HOLDEMAN, J. D.	
[AD-A093057] HEMDERSON, R. S.	N81-17091	Ozone contamination in aircraft cabins - Re from GASP data and analyses	
The WC-130 meteorological system and its utilization in operational weather recon	naissance	[AIAA PAPER 81-0305] Ozone contamination in aircraft cabins: Re	A81-20740 sults
[AD-A092637]	N81-16699	from GASP data and analyses	N81-16021

HOLLA, V. S. Effect of rear stagnation point position and trailing edge bluntness on airfoil charact		1	
ž.	81-21013	IIDA, S.	
HOLLISTER, W. H. Advancement on Visualization techniques		Acoustic fatigue strength of fiber-reinford plastic panels	
[AGARD-AG-255] Display concepts for control configured vehi	181-17063	INDRL, I. N.	A81-2087.
	181-17076	Evaluation of RF anechoic chamber fire pro- systems	tection
GPS receiver simulation		[ÄD-A092478]	N81-1607
HOLT, D. R.	181-21913	INN, R. C. Y. Aircraft NO/x/ emissions and stratospheric	ozone
Some particular configuration effects on a t	hin	reductions - Another look	
supercritical Variable camber wing	181-16005	[AIAA PAPER 81-0306] IVABOV, V. I.	A81-2074
HOBICZ, G. P.	101 10003	The use of acoustic emission for detecting	and
Numerical simulations of a segmented-plenum, perforated, adaptive-wall wind tunnel	•	evaluating of fatigue cracks severity du static and cyclic loading of structure el	
[AIAA PAPER 81-0160] A	81-20640	beaution and operate requiring of before the	A81-2021
HOPKINS, J. The Global Positioning System versus gravity	•	_	
disturbance modeling in an inertial naviga		J	
system [AIAA PAPER 81-0087] A	81-20591	JACOCKS, J. L. Evaluation of the acoustic and aerodynamic	
HORNE, C.		characteristics of several slot-baffle	
Unsteady fan blade pressure and acoustic rad from a JT15D-1 turbofan engine at simulate		configurations for transonic wind tunnel [AD-A093957]	walls N81-1710
forward speed [AIAA PAPER 81-0096]	81-20598	JAEGER, D. ENC, lightning and NEMP-protection-new	
HOUCK, J. A.	20330	requirements for approved specifications	when
Operation and evaluation of the Terminal Configured Vehicle Mission Simulator in an	1	using CFRP	N8 1- 16 152
automated terminal area metering and spaci		JAMES, R. H.	
environment	81-21709	New approach to the solution of large, full equations	matrix
HOWELL, W. E.		C44441040	A81-21552
Civil aviation applications of Navstar/GPS t differential techniques	hrough	JAMSRM, B. J., JR. Flow visualization through the use of the	
A	81-22374	smoke-wire technique	
HSIEH, T. Calculation of Viscous, sonic flow over		[AIAA PAPER 81-0412] JANUS, A. S.	A81-20816
hemisphere-cylinder at 19 deg incidence -	The	JT8D-15/17 high pressure turbine root disch	arged
capturing of nose vortices [AIAA PAPER 81-0189]	81-20661	blade performance improvement [NASA-CR-165220]	N8 1- 17 08 0
HSU, D. A.	1141	JAYACHANDRAN, T.	1
The evaluation of aircraft collision probabi at intersecting air routes	111t1es 181-21967	Methodology for determining sampling interv [AD-A092591] JENELL, W. P.	N81-16829
HUDSON, K. E.		Atmospheric disturbance models and requires	
The influence of beards on the efficiency of aviators' oxygen masks		for the flying qualities Hilitary Standar Handbook	d and
A	81-22100	[AIAA PAPER 81-0302]	A81-20739
HUPPMAN, J. K. Hinged strakes for enhanced maneuverability	a+	JIMES, L. A. SAPEST computer simulation of ejection seat	
high angles of attack		performance	
[AIAA PAPER 81-0357] A	81-20776	JOHNSON, F. B.	A81-22089
Liquid crystal displays	_	Problems of voice communication in helicopt	
HULING, S. F.	181-17068	JOHNSON, G. L.	A81-20074
Robust autoregressive models for predicting		Aircraft accident investigation as it related	tes to
aircraft motion from noisy data	81-20473	life support equipment	A81-22103
HUMPHREYS, D. A.		JOHNSON, W.	
Three-dimensional wing boundary layer calcul with eight different methods	lated	Mini-RPV radar test program	A81-22619
À	81-21555	JOHES, E.	
HUSBANDS, C. R. An airborne integrated communications networ	:k	Thermal considerations in the patching of a sheets with composite overlays	ietal
utilizing fiber optics		•	A8 1-2029
HUSON, G. G.	181-21880	JUBE, G. The effect of the in-service environment or	1
Experimental development of an advanced circulation control wing system for Navy S	STOL	composite materials (resume of the April Athens conference)	
aircraft			N81-1614
[AIAA PAPER 81-0151] HWANG, J. C.	181-20632	JUPP, J. A. Interference aspects of the A310 high speed	i wing
Numerical calculation of jet-induced ground in VTOL	effect	configuration	N81-1600
[AIAA PAPER 81-0015]	81-20539		10 I - I OU
HYDE, M. E. LPI, short-range communications between airc	raft	K	
in rendezvous		KAMBE, T.	
A	181-22493	Sound radiation from vortex systems	

KARCHERR, A. Core noise measurements from a small, gener aviation turbofan engine	al	KORTOV, V. S. Application of excelectron emission for qual	Lity
	A81-22531	control of gas-turbine engine parts	81-21367
KATZ, J. A discrete vortex method for the non-steady separated flow over an airfoil		KOSHAR, A. MLS channel assignment model	181-17026
	A81-22568	KOSMOS, G. Airborne-fiber optics manufacturing technological designs and the second designs and the second designs are second des	
Glideslope descent-rate cuing to aid carrie landings		aircraft installation processes [AD-A093304]	181-17902
KERTOB, J. R.	N81-16033	KOSOBSKY, L. Mini-RPV radar test program	
Shrinkage-compensating cement for airport pavement. Phase 3: Firous concretes. A	ddendum	KOTSABASIS, A.	81-22619
	N81-17299	The DAST-1 remotely piloted research vehicle development and initial flight testing	e i81-17038
[AD-A093375]	N81-17387	KOZEL, K.	
KIDA, T. Lifting-line theory of oblique wings - Appl of the Galerkin method to the lifting-lin		Numerical solution of transonic flow through cascade with slender profiles	a 181-21197
equation	A81-19873	KRAUS, W. Delta canard configuration at high angle of	attack
KIDWELL, G. H., JR. Numerical optimization of circulation contr			81-20351
airfoils	A81-20540	The BQM-74C target as a flying computer - It language and its peripherals	s
KIHH, R. T.		1	81-22611
<pre>LPI, short-range communications between air in rendezvous</pre>		Transonic wing technology for transport airc	
KING, J. K. Potential use of geotechnical fabric in air	A81-22493	KRBTSCHMER, D. Considerations of the use of vitiated prehea	181-16002
runway design		- 1	81-20023
KISHIMOTO, F.	N81-16071	RRISHNAN, V. Stochastic modeling of an aircraft traversing	ng a
Development of a shadow mask type high-reso color picture tube for cockpit display	lution	runway using time series analysis	81-23368
KLEIN, R. W.	A81-23095	KRUECKER, K. Improvement of effective minor lobe behavior	of.
Display concepts for control configured veh	icles N81-17076	radar antennas through signal processing	181-20091
KLEMENTOWSKI, L.		KUBO, S.	
A versatile miniature solid state televisio camera /CCD/	n a	On a linear theory of a supersonic flow past delta wing with subsonic leading edges	t a
KINTUCK, D. H.	A81-22620		181-19872
Cabin fire simulator lavatory tests		NUHN, P. M. Design and preliminary tests of an IR-airbor	ne
KUENPSEY, J. T.	N81-16020	LLWS remote sensing system [AIAA PAPER 81-0239]	81-20694
Economics of technological change - A joint for the aircraft and airline industries		KUIPERS, J. B. SPASYN - An electromagnetic relative position	n and
/ RNOTT, P. R.	A81-21010	orientation tracking system	81-21828
Acoustic and aerodynamic performance invest of inverted velocity profile coannular pl nozzles		KUBZ, K. S. Improving surface current injection technique one- and two-dimensional models	
	N81-16854	A contract of the contract of	81-19940
bypass VCE with coannular plug nozzle [NASA-CR-159869]	N81-17846	KURANOV, V. N. The use of acoustic emission for detecting a evaluating of fatigue cracks severity duri	ng
KOCIAN, D. P. Helmet mounted displays: Design considerat			ments 181-20214
KORNIG, K.	N81-17073	KURKOWSKI, R. Design and preliminary tests of an IR-airbor	ne:
Propeller propulsion integration, phase 1	N81-16058	LLWS remote sensing system	81-20694
KOESTER, K. Mini-RPV radar test program	201 10000	KUTLER, P.	
	A81-22619	A numerical simulation of hypersonic viscous over arbitrary geometries at angle of atta [AIAA PAPER 81-0050]	
Icing tunnel tests of a glycol-exuding poro leading edge ice protection system on a g aviation airfoil	us eneral		
[AIAA PAPER 81-0405]	A81-20837	LAANABEN, D. H.	
A feasibility study for advanced technology integration for general aviation		Aircraft crash survival design guide. Volum Design criteria and checklists, revision	
[NASA-CR-159381] KOLK, J. T. V. D.	N81-15974		181-16997
Design study for the inner wing of a transo wing-body combination of aspect ratio 8	nic	Computer-aided process planning system for aircraft engine rotating parts	
	N81-16015	ž	81-19836
KOLOTNIKOV, M. E. Evaluation of compressor blade endurance li	mits by	Wing-alone aerodynamic characteristics at hi	.gh
an accelerated method	A81-22182	angles of attack [AIAA PAPER 81-0008]	81-20532

LAMBERT, G. E.	LEKOUDIS, S. G.
An engineering model for assessing load sequencing effects	The linear instability due to the compressible crossflow on a swept wing
A81-21737	A81-21168
LAHICH, D.	LEONARD, R.
Impact of aircraft emissions on air quality in the	Current and projected use of carbon composites in United States aircraft
vicinity of airports. Volume 1: Recent airport measurement programs, data analyses, and	B81-16145
submodel development	LEVART, P.
[AD-A089962] N81-16628	Experimental study of the interaction between the
LARGE, R.	wing of a subsonic aircraft and a nacelle of a
A wind tunnel investigation of the aerodynamic characteristics of forward swept wings	high by-pass ratio engine 181-16010
N81-16011	LEVERTON, J. W.
LAROCHE, P.	Helicopter internal noise - An overview
Plight tests for studying radioelectric	A81-20055
perturbations of an electrostatic origin N81-16160	The state of the art of general aviation autopilots
LARSON, C. R.	[NASA-CR-159371] N81-16066
Evaluating spectrum effects in U.S. Air Force	LEWIS, D. H.
attack/fighter/trainer individual aircraft	Two-stage combustion for reducing pollutant
tracking A81-21742	emissions from gas turbine combustors [NASA-CR-163877] N81-16056
LARSON, H. J.	LI, K. H.
Methodology for determining sampling intervals	Supercritical flow past symmetrical airfoils
[AD-A092591] N81-16825	[AD-A093300] N81-16984
LARSON, R. S. Convective amplification of gas turbine engine	LIARD, P. New materials and helicopter certification
internal noise sources	[AAAF-NT-79-26] N81-17052
A81-21595	LIEBERHAN, M.
LARUSSA, J. A.	Effect of refining variables on the properties and
Optical infinity lens development for flight simulator visual displays	composition of JP-5 [AD-A093842] N81-17281
N81-17071	LIJEWSKI, L. E.
LASSITER, J. O.	Application of aerodynamic jump prediction theory
Initial development for a flutter analysis of	to supersonic, high fineness ratio, cruciform finned bodies
damaged T-38 horizontal stabilators using NASTRAN [AIAA PAPER 81-0365] A81-20784	[AIAA PAPER 81-0222] A81-20685
LAU, C.	LINDENBAUM, S. P.
Energy maneuverability display for the Air Combat	Turboprop Cargo Aircraft Systems study, phase 1
Maneuvering Range/Tactical Training System	[NASA-CR-159355] N81-16041
(ACHE/TACTS) [AD-A092974] N81-17041	Clideslope descent-rate cuing to aid carrier
LAURIE, E. J.	landings
Demonstration of a method for determining critical	[AD-A092193] N81-16033
store configurations for wing store flutter [AD-A092257] N81-16068	LITTLE, L. J. Field evaluation of the LR80 land navigation system.
LAWMASTER, J. D.	[AD-A091885] N81-16035
Potential use of geotechnical fabric in airfield	LITHIHCZYK, M.
runway design (AD-A0926861 N81-16071	Flow phenomena along fuselages and wing-fuselage/
[AD-A092686] N81-16071	systems of gliders [NASA-TM-75401] N81-15983
The XV-15 - An initial Navy look	Discussion of test results in the design of
[AIAA PAPER 81-0155] A81-20635	laminar airfoils for competition gliders
LAYCOCK, J. The electro-optical display/visual system	[NASA-TM-75402] N81-15984 LIVINGSTON, D.
interface: Human factors considerations	Characterizing cross-track error distributions for
N81-17066	continental jet routes
LEAVITT, L. D.	A81-21969
Effects of sidewall geometry on the installed performance of nonaxisymmetric	LLEWELLYN, H. A new technique for tracking sequences of
convergent-divergent exhaust nozzles	digitized images
[NASA-TP-1771] N81-15976	A81-20508
LEE-BECHTOLD, S.	LLOYD, B. A.
Thermodynamics of organic compounds [AD-A093087] N81-17936	Non-destructive testing of adhesive-bonded joints A81-20162
LEE, A. G.	LODGE, K. J.
P-3 Orion fuel-saving modification wind tunnel study	The electrical effects of joints and bonds in
[AD-A091906] N81-16044 LRE, B. H. K.	carbon fiber composites N81-16153
A method for the prediction of wing response to	LOEWENSTERN, R.
nonstationary buffet loads	A new technology - Piezoelectric polyvinylidene
[AD-A093037] N81-17043	fluoride communications transducers
LEE, J. T. Pulsed Doppler radar detects weather hazards to	LOEWY, R. G.
aviation	Composite structural materials
[AIAA PAPER 81-0235] A81-20691	[NASA-CR-163946] N81-17039
LEE, S. C. S.	LOZOWSKI, E. P.
Fabrication and physical testing of graphite composite panels utilizing woven graphite fabric	Computer simulation of airfoil icing without runback [AIAA PAPER 81-0402] A81-20809
with current and advanced state-of-the-art resin	LUCCHI, G. A.
systems	New airborne weather radar systems
[NASA-CR-152292] N81-17175 LRISTHER, R.	[AIAA PAPER 81-0237] A81-20692 LUDLOPP, A.
Store separation simulation in subsonic wind tunnels	Target detection and parameter estimation in
[MBB-FE-123/S/PUB/20] N81-16988	surveillance radars using MTI-FFT processing
	A81-20094

PERSONAL AUTHOR INDEX MEAD, D. J.

LUERS, J. K. The effect of heavy rain on windshear attraction accidents	ibuted	Evaluation of alternative procedures for atmospheric absorption adjustments during certification. Volume 2: Computer prog	
[AIAA PAPER 81-0390]	A81-20800	[AD-A093267]	N8 1- 1785
LUIDEN, R. W. Scale effects on turbulent boundary layer development and flow separation around V, inlets at high incidence	/STOL	MARSH, J. B. Analysis of a symmetric transonic aerofoil the finite element method - A new upwind technique	
[AIAA PAPER 81-0014]	A81-20538	MARTEL, C. R.	A81-22984
Three-dimensional turbulent boundary layer development and separation in V/STOL enginees at incidence with small-cross flo	ine	Static charge in aircraft fuel tanks [AD-A093552]	N8 1- 17045
curvature influences [AIAA PAPER 81-0254]	A81-20703	An overview of the research conducted in	
LUNDRY, J. L. A system for aerodynamic design and analys.	is of	Aerospatiale on internal noise	A81-20054
supersonic aircraft. Part 4: Test case: [NASA-CR-3354] LY, U.	s N81-15977	MASCETTI, G. J. Operational energy conservation strategies commercial aviation	in
Practical gust load alleviation and flutte	r	MATHER, R. L.	A81-20465
suppression control laws based on a LQG methodology		LPI, short-range communications between ai	rcraft
[AIAA PAPER 81-0021] LYONS, J. W.	A81-20544	in rendezvous	A81-22493
The influence of v isual requirements on the of military cockpits	e design N81-17075	MATSUSHITA, M. Development of a shadow mask type high-res color picture tube for cockpit display	olution
		HATSUYAHA, G. T.	A81-23095
M		A feasibility study for advanced technolog	y
MACDIARMID, I. P. Aircraft manufacturers approach to the E.M.C./Avionics problems associated with of composite materials	the use	<pre>integration for general aviation [NASA-CR-159381] A feasibility study for advanced technolog integration for general aviation</pre>	N81-15974 Y
-	N81-16156	[AD-A092437] MCCARTHY, J.	N81-15975
MACK, L. M. Compressible boundary-layer stability calc for sweptback wings with suction		An airport wind shear detection and warnin using Doppler radar: A feasibility stud	У
[AIAA PAPER 81-0196] HACKIERHAH, D.	A81-20840	[NASA-CR-3379] MCCARTY, R. E.	N81-16681
A new technology - Piezoelectric polyvinyl fluoride communications transducers	idene	Computer analysis of bird-resistant aircra transparencies	ft
MACLEOD, R.	A81-22099	MCCEOSKEY, W. J.	A81-22081
New NDT techniques used for aircraft maint MAHONEY, J.	A81-20168	Viscous-inviscid interaction on oscillatin airfoils in subsonic flow [AIAA PAPER 81-0051]	A81-2056
NOISECHECK procedures for measuring noise from aircraft operations		Viscous-inviscid interaction on oscillatin airfoils in subsonic flow	
[AD-A093948] MAHONRY, J. M.	N81-17849	[AD-A093970] HCCUNE, J. B.	N81-16983
A guidance document on airport noise contr [AD-A092228]	ol N81-16629	Current problems in turbomachinery fluid d [AD-A093375]	ynamics N81-1738
MALARÎK, R. W. Adhesive bonding of avionic structures	A81-22646	MCFADDEN, R. Microwave Landing System (MLS) clearance f assessment tests	ormat
MALLOW, P. J. Validation of a two dimensional primitive	variable	[AD-A093553] MCKAY, G.	N81-17024
computer code for flow fields in jet eng		High-solids coatings for exterior aircraft	A81-2086
[AD-A092138] MALMUTH, N. D.	N81-16060	MCKENNEY, H. An assessment of technical factors influen	cina the
Transonic flow calculations over two-dimen- canard-wing systems	sional A81-23367	<pre>potential use of RPVS for minefield dete [AD-A092682]</pre>	
[AIAA PAPER 79-1565] HANESS, S. G.	EG1 25507	Evolution of tactical and map displays for	high
Helicopter emergency underwater escape	A81-22101	performance aircraft	N81-17072
MANZ, MR. Measurement of radar in radio service airc	raft A81-20079	BCHILLAN, O. J. Data base for the prediction of inlet exte	rnal drag N81-1601
HARCHMAN, J. P., III The aerodynamics of inverted leading edge: delta wings	flaps on	BCMULDROCH, C. G. VTOL control for shipboard landing in high states	sea
[AIAA PAPÉR 81-0356] MARK, A.	A81-20775	MCRAE, D. S.	A81-2047
Computational design of large-scale blast [AIAA PAPER 81-0159]	simulators A81-20639	<pre>Plight experiments with a slender cone at attack</pre>	
MARK, W. D. Gear meshing action as a source of vibrator excitation	гу	[AIAA PAPER 81-0337] MCVEY, J. B. A model for the analysis of	A81-20761
MARSH, A. H. Evaluation of alternative procedures for	A81-20061	premixing-prevaporizing fuel-air mixing (AIAA PAPER 81-0345) MCWHORTER, J.	passages A81-20761
atmospheric absorption adjustments durin- certification. Volume 3: Tables of atm absorption losses		Propeller propulsion integration, phase 1 [NASA-CR-163921]	N81-16058
[AD-A093144]	N81-17848	MEAD, D. J. Sandwich structures with high transmission	loss

MELLOE, A. H. Semi-empirical correlations for gas turbine emissions, ignition, and flame stabilizat		MOORADIAN, G. C. LPI, short-range communications between aircrain rendezvous A8	aft 1-22493
MELNICK, W. Flat panel display technology review	N81-17065	MOORE, I. B. A low cost multiple drone command and tracking system	
MBHG, P. R.	801 17005	A8	1-22613
Experimental analysis of IMEP in a rotary combustion engine [NASA-TM-81662]	N81-16054	MOORHOUSE, D. J. Atmospheric disturbance models and requirement for the flying qualities Military Standard a	
ABRCER, J. E. Application of transonic potential calculations aircraft and wind tunnel configurations	tions to	Handbook [AIAA PAPER 81-0302] A8 HORELAND, S.	1-20 7 39
	N81-15992	US Army working group on aircraft noise	1-20053
MERCER, S. Aircraft EMP isolation study	N81-17333	MORELLO, S. A. Application of trajectory optimization princil	
[AD-A093772] MEREDITH, P. T. A feasibility study for advanced technology		to minimize aircraft operating costs	1-20466
integration for general aviation [NASA-CB-159381]	- #81~15974	Experiments using electronic display informat:	ion 1-17077
MERKULOV, V. I.	801-13974	HORENO, V.	(-1/0//
Damping of aircraft wing vibrations by automatically controlled internal forces			1-17079
METCALPE, M. P.	A81-21060	MORITA, Y. An assessment of technical factors influencing	g the
Jet wing interference for an overwing enging configuration		potential use of RPVS for minefield detection [AD-A092682] N8	on 1-16047
MICHEL, J. P.	N81~16008	MORIZUMI, N. Piloting techniques on the backside - Plight	path
Large area gas discharge displays	N81~17070	angle control	1-21673
MIDDLETON, W. D.		MORONEY, W. P.	
A system for aerodynamic design and analysis supersonic aircraft. Part 4: Test cases	s	Energy maneuverability display for the Air Con Maneuvering Range/Tactical Training System	mbat
[NASA-CR-3354] HILBY, S. J.	N81~15977		1-17041
An application of wake survey rakes to the experimental determination of thrust for propeller driven aircraft		MORRIS, C. R. K., JR. A flight investigation of performance and load for a helicopter with RC-SC2 main-rotor blad	
[NASA-CR-163920]	N81~15986	sections	
Propeller propulsion integration, phase 1 [NASA-CR-163921]	N81~16058	MORRIS, P. M.	1-15982
HILLER, H. E. Two-axis, fluidically controlled thrust vec	ctor	Preliminary airworthiness evaluation AH-15 (Pl helicopter equipped with a substitute straig	
control system for an ejection seat [AD-A093888]	N81-16996	exhaust pipe [AD-A092614] N8	1-16045
MILLER, R. L. A guidance document on airport noise contro		MOSHER, M. Acoustics of rotors utilizing circulation con-	
[AD-A092228] MIHAILOS, A. H.	N81-16629	[AIAA PAPER 81-0092] A8	1-20596
Calculation of supersonic gas flows about	wings 	Turboprop Cargo Aircraft Systems study, phase [NASA-CR-159355] N8	1 1-16041
MINECCI, J. J. Composite fuselage development for Naval as	ircraft	MUBLLER, R. Design and experimental verification of a	
AIBKER, M.	A81-22648	transonic wing for a transonic aircraft	1-16003
Target detection and parameter estimation : surveillance radars using MTI-PPT process		MULLEY, W. Plat panel display technology review	
	A81-20094	N8	1-17065
Sound radiation from vortex systems		MULVILLE, D. R. Current and projected use of carbon composite:	s in
HINTS, B.	A81-21591	United States aircraft	1-16145
Robust autoregressive models for predicting	g	MORMAN, R. M. Application of transonic potential calculation	
aircraft motion from noisy data	A81-20473	aircraft and wind tunnel configurations	
A cost-effective method for shock-free		MYERS, A. F.	1-15992
supercritical wing design [AIAA PAPER 81-0383]	A81-20796	Qualification of HiMAT flight systems	1-22603
MOBA BAK, A.	10. 20.00	١,	
Turbo-compressors surge and surge control [AIAA PAPER 81-0070]	A81-20579	N	
Cold-air investigation of first stage of		HAPP, T. Aircraft EMP isolation study	1-17333
4-1/2-stage, fan drive turbine with avera stage-loading factor of 4.66	-	BAGRL, G.	
[NASA-TP-1780] HOLL, J. H.	N81-16050	Application of low frequency eddy-current for inspection of civil aircraft	
Progress in P/M superalloy and titanium for aircraft applications	г		1-20110
••	A81-22641	Development of a shadow mask type high-resolu-	tion
MONTOYA, L. C. Skin friction measuring device for aircraft		color picture tube for cockpit display A8	1-23095
[NASA-CASE-PRC-11029-1]	N81-17057		

PERSONAL AUTHOR INDEX PARKER, R. A.

WANDA, V. P.		WIELSEN, J. D.	
Analytic determination of interference thres		Experimental study of the influence of supp	
for microwave landing system equipment and		the aerodynamic loads on an ogive cylinde	rat
TACAN/DHE equipment [AD-A093448]	81-17025	high angles of attack [AIAA PAPER 81-0007]	A81-20531
MAPPI, A.		WIEMANN, J. R.	201 20331
Crack propagation in lugs		Preliminary airworthiness evaluation AH-15	(PROD)
	81-22629	helicopter equipped with a substitute str	
WASTROM, G. D.		exhaust pipe	-
Ozone contamination in aircraft cabins - Res	ults		N81-16045
from GASP data and analyses	04 003+0	Preliminary Airworthiness Evaluation (PAE 1) of
	81-20740	the YCH-47D helicopter	was 10000
Ozone contamination in aircraft cabins: Res from GASP data and analyses	UILS	[AD-A092633] HISSIM, R.	N81-16046
	81-16021	Active controls for flutter suppression and	anet
NEDERVERN, A.	0, 10021	alleviation in supersonic aircraft	gusc
Effect of gust load alleviation on fatigue a	nd		N8 1-17097
crack growth in ALCLAD 2024-T3		HIXON, D.	
	81-21739	On the derivation of universal indicial fun	ctions
HELSON, D. P.			A81-20753
Model aerodynamic test results for two varia	ble	HORMAN, D. C.	
cycle engine coannular exhaust systems at		Practical gust load alleviation and flutter	
simulated takeoff and cruise conditions.	_	suppression control laws based on a LQG	
Comprehensive data report. Volume 1: Des	ign	methodology	
layouts	04 47004	[AIAA PAPER 81-0021]	A81-20544
	81-17081	•	
Model aerodynamic test results for two varia	Die	lacktriangle	
cycle engine coannular exhaust systems at		ADDIEN G 7 10	
simulated takeoff and cruise conditions. Comprehensive data report. Volume 2: Tab	nla+od	OBRIEN, W. F., JR.	-1 61
aeroynamic data book 1	uraceu	Dynamic pressure response with stall on axi	at itom
	81-17082	compressor rotor blades [AIAA PAPER 81-0069]	A81-20578
Model aerodynamic test results for two varia		ODGERS, J.	401-20370
cycle engine coannular exhaust systems at		Considerations of the use of vitiated prehe	at
simulated takeoff and cruise conditions.			A81-20023
Comprehensive data report. Volume 2: Tab	ulated	OLESKIW, M. M.	
aerodynamic data book 2		Computer simulation of airfoil icing withou	t runback
[NASA-CR-159819-VOL-2-BK-2]	81-17083		A81-20809
Model aerodynamic test results for two varia	ble	ONASSEY, R. C.	
cycle engine coannular exhaust systems at		Longitudinal instability in braked landing	
simulated takeoff and cruise conditions.		[ASME PAPER 80-WA/DSC-12]	A81-21083
Comprehensive data report. Volume 2: Tab	ulated	OSTOWARI, C.	
aerodynamic data book 3		Effects of design variables on spoiler cont	
	81-17084	effectiveness, hinge moments, and wake tu	
Model aerodynamic test results for two varia	ble		A81-20581
cycle engine coannular exhaust systems at		OSTROWSKI, J.	_
simulated takeoff and cruise conditions.	ntimol	Flow phenomena along fuselages and wing-fus	erage
Comprehensive data report. Volume 3: Gradata book 1	pnicai	systems of gliders	พ81-15983
	81-17085	[NASA-TM-75401] Discussion of test results in the design of	
Model aerodynamic test results for two varia		laminar airfoils for competition gliders	
cycle engine coannular exhaust systems at	210		N81-15984
simulated takeoff and cruise conditions.		OTTEN, L. J.	
Comprehensive data report. Volume 3: Gra	phical	A survey of recent atmospheric turbulence	
data book 2	•	measurements from a subsonic aircraft	
[NASA-CR-159819-VOL-3-BK-2]	81-17086		A81-20736
NEUMAN, D. D.		OWEN, P. K.	
Band sharing - A case study		Measurements of flow quality in the Ames 2	x 2ft
	81-21869	transonic wind tunnel	
NEWMAN, J. S.		[AIAA PAPER 81-0156]	A81-20636
The need for airport noise monitoring system			
Their uses, and value in promoting civil a		Р	
	81-16627		
Helicopter noise contour development techniq	ues	PAARMANN, L. D. Evaluation of RP anechoic chamber fire prot	ontion
and directivity analysis [AD-A093426]		Evaluation of RF anechoic chamber fire prot	
	81-17851		
	81-17851	systems	
Correlation of helicopter noise levels with physical and performance characteristics	81-17851	systems [AD-A092478]	N81-16070
physical and performance characteristics		systems [AD-A092478] PAGE, D. M.	
physical and performance characteristics [AD-A093428]	81-17851 81-17852	systems [AD-A092478] PAGE, D. M. Airline navigation planning	N81-16070
physical and performance characteristics [AD-A093428] NEWMAN, R. L.	81-17852	systems [AD-A092478] PAGE, D. M. Airline navigation planning	
physical and performance characteristics [AD-A093428] NEWMAN, B. L. Operational problems associated with head-up	81-17852	systems [AD-A092478] PAGE, D. M. Airline navigation planning PAIRMAN, D.	N81-16070 A81-21966
physical and performance characteristics [AD-A093428] NEWMAN, R. L. Operational problems associated with head-up displays during instrument flight	81-17852	systems [AD-A092478] PAGE, D. M. Airline navigation planning	N81-16070 A81-21966
physical and performance characteristics [AD-A093428] NEWHAN, R. L. Operational problems associated with head-up displays during instrument flight [AD-A092992] NICHOLS, J. H., JR.	81-17852	systems [AD-A092478] PAGE, D. M. Airline navigation planning PAIRMAN, D. A solid-state airborne sensing system for r sensing	N81-16070 A81-21966
physical and performance characteristics [AD-A093428] NEWMAN, R. L. Operational problems associated with head-up displays during instrument flight [AD-A092992] NICHOLS, J. H., JR. Experimental development of an advanced	81-17852 81-17058	systems [AD-A092478] PAGE, D. M. Airline navigation planning PAIRMAN, D. A solid-state airborne sensing system for r sensing PALLADINO, J. A.	N81-16070 A81-21966 emot <i>e</i>
physical and performance characteristics [AD-A093428] NEWAN, R. L. Operational problems associated with head-up displays during instrument flight [AD-A092992] BICHOLS, J. H., JR. Experimental development of an advanced circulation control wing system for Navy S	81-17852 81-17058	systems [AD-A092478] PAGE, D. M. Airline navigation planning PAIRMAN, D. A solid-state airborne sensing system for r sensing	N81-16070 A81-21966 emot <i>e</i>
physical and performance characteristics [AD-A093428] NEWNAN, R. L. Operational problems associated with head-up displays during instrument flight [AD-A092992] NICHOLS, J. H., JR. Experimental development of an advanced circulation control wing system for Navy Saircraft	81-17852 81-17058 TOL	systems [AD-A092478] PAGE, D. M. Airline navigation planning PAIRMAN, D. A solid-state airborne sensing system for r sensing PALLADINO, J. A. High bypass turbofan component development, modification 2	M81-16070 A81-21966 emote A81-23034
physical and performance characteristics [AD-A093428] NEWMAN, R. L. Operational problems associated with head-up displays during instrument flight [AD-A09292] NICHOLS, J. H., JR. Experimental development of an advanced circulation control wing system for Navy S aircraft [AIAA PAPER 81-0151]	81-17852 81-17058	systems [AD-A092478] PAGE, D. M. Airline navigation planning PAIRNAN, D. A solid-state airborne sensing system for r sensing PALLADINO, J. A. High bypass turbofan component development, modification 2 [AD-A093156]	N81-16070 A81-21966 emot <i>e</i>
physical and performance characteristics [AD-A093428] NEWNAN, R. L. Operational problems associated with head-up displays during instrument flight [AD-A092992] BICHOLS, J. H., JR. Experimental development of an advanced circulation control wing system for Navy saircraft [AIAA PAPER 81-0151] BICKEL, U.	81-17852 81-17058 TOL	systems [AD-A092478] PAGE, D. M. Airline navigation planning PAIRMAN, D. A solid-state airborne sensing system for r sensing PALLADINO, J. A. High bypass turbofan component development, modification 2 [AD-A093156] PAN, Z.	N81-16070 A81-21966 emote A81-23034 N81-17093
physical and performance characteristics [AD-A093428] NEWNAN, R. L. Operational problems associated with head-up displays during instrument flight [AD-A092992] NICHOLS, J. H., JR. Experimental development of an advanced circulation control wing system for Navy Saircraft [AIAA PAPER 81-0151] NICKEL, U. Increased target resolution and minor lobe	81-17852 81-17058 TOL	systems [AD-A092478] PAGE, D. M. Airline navigation planning PAIRMAN, D. A solid-state airborne sensing system for r sensing PALLADINO, J. A. High bypass turbofan component development, modification 2 [AD-A093156] PAN, Z. Three-dimensional model of spray combustion	N81-16070 A81-21966 emote A81-23034 N81-17093
physical and performance characteristics [AD-A093428] NEWMAN, R. L. Operational problems associated with head-up displays during instrument flight [AD-A092992] NICHOLS, J. H., JR. Experimental development of an advanced circulation control wing system for Navy S aircraft [AIAA PAPER 81-0151] NICKEL, U. Increased target resolution and minor lobe reduction with active group antennas	81-17852 81-17058 TOL 81-20632	systems [AD-A092478] PAGE, D. M. Airline navigation planning PAIRNAN, D. A solid-state airborne sensing system for r sensing PALLADINO, J. A. High bypass turbofan component development, modification 2 [AD-A093156] PAN, Z. Three-dimensional model of spray combustion turbine combustors	M81-16070 A81-21966 emote A81-23034 M81-17093 in gas
physical and performance characteristics [AD-A093428] NEWMAN, R. L. Operational problems associated with head-up displays during instrument flight [AD-A092992] BICHOLS, J. H., JR. Experimental development of an advanced circulation control wing system for Navy saircraft [AIAA PAPER 81-0151] BICKEL, U. Increased target resolution and minor lobe reduction with active group antennas	81-17852 81-17058 TOL	systems [AD-A092478] PAGE, D. M. Airline navigation planning PAIRNAN, D. A solid-state airborne sensing system for r sensing PALLADINO, J. A. High bypass turbofan component development, modification 2 [AD-A093156] PAN, Z. Three-dimensional model of spray combustion turbine combustors [AIAA PAPER 81-0324]	N81-16070 A81-21966 emote A81-23034 N81-17093
physical and performance characteristics [AD-A093428] NEWMAN, R. L. Operational problems associated with head-up displays during instrument flight [AD-A092992] NICHOLS, J. H., JR. Experimental development of an advanced circulation control wing system for Navy saircraft [AIAA PAPER 81-0151] NICKEL, U. Increased target resolution and minor lobe reduction with active group antennas	81-17852 81-17058 TOL 81-20632	systems [AD-A092478] PAGE, D. M. Airline navigation planning PAIRNAN, D. A solid-state airborne sensing system for r sensing PALLADINO, J. A. High bypass turbofan component development, modification 2 [AD-A093156] PAN, Z. Three-dimensional model of spray combustion turbine combustors [AIAA PAPER 81-0324] PARKER, R. A.	M81-16070 A81-21966 emote A81-23034 M81-17093 in gas A81-20751
physical and performance characteristics [AD-A093428] NEWNAN, R. L. Operational problems associated with head-up displays during instrument flight [AD-A092992] NICHOLS, J. H., JR. Experimental development of an advanced circulation control wing system for Navy Saircraft [AIAA PAPER 81-0151] NICKEL, U. Increased target resolution and minor lobe reduction with active group antennas NIEBBRDING, N. C. High temperature electronic requirements in	81-17852 81-17058 TOL 81-20632	systems [AD-A092478] PAGE, D. M. Airline navigation planning PAIRNAN, D. A solid-state airborne sensing system for r sensing PALLADINO, J. A. High bypass turbofan component development, modification 2 [AD-A093156] PAN, Z. Three-dimensional model of spray combustion turbine combustors [AIAA PAPER 81-0324] PARKER, R. A. Abstract interface specifications for the A	M81-16070 A81-21966 emote A81-23034 M81-17093 in gas A81-20751
physical and performance characteristics [AD-A093428] NEWNAN, R. L. Operational problems associated with head-up displays during instrument flight [AD-A092992] BICHOLS, J. H., JR. Experimental development of an advanced circulation control wing system for Navy saircraft [AIAA PAPER 81-0151] BICKEL, U. Increased target resolution and minor lobe reduction with active group antennas NIEBERDING, W. C. High temperature electronic requirements in aeropropulsion systems	81-17852 81-17058 TOL 81-20632	systems [AD-A092478] PAGE, D. M. Airline navigation planning PAIRNAN, D. A solid-state airborne sensing system for r sensing PALLADINO, J. A. High bypass turbofan component development, modification 2 [AD-A093156] PAN, Z. Three-dimensional model of spray combustion turbine combustors [AIAA PAPER 81-0324] PARKER, R. A. Abstract interface specifications for the A device interface module	M81-16070 A81-21966 emote A81-23034 M81-17093 in gas A81-20751

PARKER, R. L. Evaluation of the acoustic and aerodynamic	POBD, F. H. JT8D engine internal exhaust mixer technology
characteristics of several slot-baffle	program
configurations for transonic wind tunnel walls	[AD-A093057] NB 1-17091
[AD-A093957] N81-171	
PARWAS, b. L. Abstract interface specifications for the A-7E	AGARD flight test instrumentation series. Volume 10 on Helicopter flight test instrumentation
device interface module	[AGARD-AG-160-VOL-10] B81-17040
[AD-A092696] N81-167	70 POOLE, R.
PATTERSON, J. L.	The electrical effects of joints and bonds in
A numerical simulation of hypersonic viscous flow over arbitrary geometries at angle of attack	carbon fiber composites N81-16153
[AIAA PAPER 81-0050] A81-205	
PAVEL, A. L.	40 years of helicopter ice protection experience
A survey of recent atmospheric turbulence measurements from a subsonic aircraft	at Sikorsky Aircraft [AIAA PAPER 81-0407] A81-20813
[AIAA PAPER 81-0298] A81-207	
PEAKE, D. J.	Effect of load spectrum variables on fatigue crack
Plight experiments with a slender come at angle of	
attack [AIAA PAPER 81-0337] A81-207	Symposium, San Francisco, Calif., May 21, 1979 161 A81-21730
PECHON, A.	Effects of fighter attack spectrum on crack growth
Auto-adaptive piloting	A81-21741
[GA~380] N81-171	02 POURBAIX, B. Numerical investigation of a model of turbulent
PEDRIANI, C. Flame tube and ballistic evaluation of Explosafe	combustion of hydrocarbons
aluminum foil for aircraft fuel tank explosion	[AIAA PAPER 81-0039] A81-20559
protection	POWELL, J. A.
[AD~A093542] N81-170 PRETEK, W.	46 High temperature electronic requirements in aeropropulsion systems
Multi-plane high speed balancing techniques and	[NASA-TH-81682] N81-16388
the use of a high specific stiffness Ti-Borsic	POWELL, R. W.
material for vibration control	Application of a tip-fin controller to the Shuttle Orbiter for improved yaw control
[AD~A093122] B81-170 PERACCHIO, A. A.	[AIAA PAPER 81-0074] A81-20582
Studies on proper simulation during static testing	
of forward speed effects on fan noise	Critical field length calculations for preliminary
[NASA-CR-165626] N81-168	53 design A81-23366
PERKINS, E. W. Data base for the prediction of inlet external dra	
N81-160	18 Mini-RPV radar test program
PERKINS, S. C., JR.	A81-22619
Data base for the prediction of inlet external dra N81-160	
PETERS, J. H.	from a JT15D-1 turbofan engine at simulated
Extension of ejection seat capability for high	forward speed
speed conditions	[AIAA PAPER 81-0096] A81-20598
PRTIAU, C.	Evaluation of explosafe. Explosion suppression
A conversational, topological grid method and	system for aircraft fuel tank protection
optimization of structural calculations	[AD-A093125] N81-17047
involving finite elements [AAAP-NT-79-30] N81-170	PRICE, H. 153 Aircraft EMP isolation study
PETRONEL, S.	[AD-A093772] N81-17333
Study of a crack propagation on the flap rail of a	
transport aircraft A81-226	Laser scattering applications development test in AEDC tunnel B at Mach number 8
PPEIPPER, N. J.	[AD-A093929] N81-17105
A computational model for low speed flows past	PRICE, W. J.
airfoils with spoilers [AIAA PAPER 81-0253] A81-207	The apparent ignoring of pilot fatigue by the NTSB in airline crashes
PIATT, N.	A81-22104
Forced vortices near a wall	PRIDE, R. A.
[AIAA PAPER 81-0256] A81-207	FULL MI 000403
PISSO, G. P. Helicopter fatique qualification	[NASA-TH-80218] N81-1613/ PROBERT, B.
A81-226	
PITTS, P. L.	supercritical variable camber wing
Electromagnetic measurement of lightning strikes to aircraft	PROULY, P.
[AIAA PAPER 81-0083] A81-205	
POLASEK, J.	A81-20915
Numerical solution of transonic flow through a cascade with slender profiles	PRUITT, V. R. Energy maneuverability display for the Air Combat
A81-211	
POLHEMUS, W. W.	(ACHR/TACTS)
Characterizing cross-track error distributions for	
continental jet routes A81-219	PUCCI, S. L. 169 Viscous-inviscid interaction on oscillating
POLLARD, J. S.	airfoils in subsonic flow
Helicopter internal noise - An overview	[AIAA PAPER 81-0051] A81-20567
POED, C. R. A81-200	7)55 Viscous-inviscid interaction on oscillating airfoils in subsonic flow
Laser measurement of angle of attack on	[AD-A093970] B81-16983
wind-tunnel models	PULLIAM, T. H.
A81-204	119 A numerical simulation of hypersonic viscous flow over arbitrary geometries at angle of attack
	[AIAA PAPER 81-0050] A81-20566

PERSONAL AUTHOR INDEX RZONCA, L.

PUSKAS, B.		RETTIE, I. H.	
Development of the first ram air emergency		Theoretical and Experimental studies of	
parachute for personnel applications	A81-22078	aerodynamic interference effects	N81-16017
	NO 1-22070	RIABOV, A. N.	801-10017
		The use of acoustic emission for detecting	and
Q		evaluating of fatigue cracks severity dur	
QUAM, D. L.	637-34	static and cyclic loading of structure el	
Aircraft lateral parameter estimation from data with unsteady aerodynamic modelling	rlight	RIBNER, H. S.	A81-20214
[AIAA PAPER 81-0221]	A81-20684	Perspectives on jet noise	
QUEEN, S.			A81-20829
QSRA Joint Navy/NASA sea trials		RICE, W. J.	
[AIAA PAPER 81-0152]	A81-20633	Experimental analysis of IMEP in a rotary	
_		combustion engine [NASA-TM-81662]	N81-16054
R		RICHTER, E.	BO: 10054
RAJ, P.		Samarium cobalt (SMCO) generator/engine	
A cost-effective method for shock-free		integration study	
supercritical wing design	104 20306		N81-17087
[AIAA PAPER 81-0383] RAKOWSKI, J.	A81-20796	RICHTER, E. D. Death and injury in aerial spraying - Pre-c	rash.
Runway surface loading during aircraft land	lings	crash, and post-crash prevention strategi	
	A81-19800		A81-22115
RAMPINI, P. M.		RIPPL, K. H.	
Neurotramatological aspects in ejected pilo		EMC, lightning and NEMP-protection-new	
RANDALL, C. C.	N81-17012	requirements for approved specifications using CPRP	Auen
Turboprop Cargo Aircraft Systems study, pha	ise 1		N81-16152
[NASA-CR-159355]	N81-16041	RITCHEY, V. S.	
RANDLE, R. J., JR.		Analytical methods for store separation fli	
The use of total simulator training in			A81-22344
transitioning air-carrier pilots: A fiel evaluation	La	ROBBINS, K. Studies on proper simulation during static	testing
[NASA-TM-81250]	N81-16994	of forward speed effects on fan noise	ccocing
RANGANATH, H. S.		[NASA-CR-165626]	N81-16853
Automatic handoff of multiple targets		ROCK, S.	
[AD-A093483]	N81-17101	Multivariable control synthesis program: C aspects of the F100 altitude demonstration	
RAO, D. M. Hinged strakes for enhanced maneuverability	z at	the multivariable control system	on or
high angles of attack	, 45	[AD-A093868]	N81-17095
[AIAA PAPER 81-0357]	A81-20776	ROCK, S. H.	
RASSOKHA, A. A.		Prediction and experimental verification of	
Use of speckle-holographic interferometry t		transient airfoil motion in a small wind	A81-20568
the strain-strain state of a gas-turbine disk close to the blade root fixing	engine	[AIAA PAPER 81-0052] ROCKMORE, A. J.	NO 1-20300
	A81-21366	Adaptive control for electronic counterneas	sures
RATLIPP, A. W.			A81-20470
Hyperbolic/parabolic development for the GI	IM-STAR	ROE, G.	
ું. code ું. [NASA-CR-3369]	N81-16416	The influence of visual requirements on the of military cockpits	e design
RAULT, A.	801 10410	or military cocapies	N81-17075
Parameter identification and discriminant a	nalysis	ROESSLER, W. U.	
for jet engine mechanical state diagnosis		Operational energy conservation strategies	in
RAWLINGS, R. C.	A81-20474	commercial aviation	A81-20465
The flight assessment and applications of I	OME/DME.	ROSBOROUGH, S. E.	BO1 20403
I, II	,	Fuel consumption aspects of some noise abat	ement
·	A81-21968	procedures	
RAY, C. J.		DOCP H C	A81-20350
High-solids coatings for exterior aircraft	A81-20861	ROSE, W. C. A survey of recent atmospheric turbulence	
RAYMOND, J.		measurements from a subsonic aircraft	
Parameter identification and discriminant a		[AIAA PAPER 81-0298]	A81-20736
for jet engine mechanical state diagnosis		ROSEN, K. M.	
READER, D. C.	A81-20474	40 years of helicopter ice protection exper at Sikorsky Aircraft	tence
An inflatable seat for aircraft passengers		[AIAA PAPER 81-0407]	A81-20813
	A81-22091	ROSENFELD, M. S.	
REDEKER, G.		Effect of impact damage on the XPV-12A comp	osite
Design and experimental verification of a		wing box	104 22676
transonic wing for a transonic aircraft	N81-16003	RUPP, A.	A81-22676
REDFORD, J.	NO 1- 10003	New ways in antenna technology for optimal	
Flat panel display technology review		adjustment of the background clutter	
	N81-17065		A81-20084
REES, J. W., II		RUSSO, A.	: n ma+
Hydrographic applications of the global positioning system		Fatigue life evaluation of a helicopter mai	ru TOTOL
(AD-A093750]	N81-17029	~ ~ ~ ~	A81-22631
RENTZ, P. E.		RUSTENBURG, J. W.	
NOISECHECK procedures for measuring noise	exposure	Comparison of flight load measurements obta	
from aircraft operations	NO4 - 470/20	from calibrated strain gages and pressure	9
[AD-A093948] RESHOTKO, M.	N81-17849	transducers [AD-A093758]	N81-17044
Core noise measurements from a small, gener	ral	RZOHCA, L.	
aviation turbofan engine		Omega transmitter outages, January to Decem	
	A81-22531	[AD-A093425]	N81-17035

. R.	fig	hte	E	a
	_	_		

SAFF, C. attack spectrum on crack growth Environment-load interaction effects on crack

growth in landing gear steels
[AD-A093803] N81-17242 SAKAGUCHI, D. K.

Air traffic simulation as a validation tool

A81-21718

SALZER, B. 1. W.
Modelling techniques for the reduction of noise and vibration in quarboxes AR1-20063

SAMUBLS, M. F.
Structural weight comparison of a joined wing and a conventional wing

[AIAA PAPER 81-0366] A81-20785 SANDERSON, K. C.
AGARD flight test instrumentation series. Volume

10 on Helicopter flight test instrumentation N81-17040 [AGARD-AG-160-VOL-10] SANO, M.

Acoustic fatigue strength of fiber-reinforced

plastic panels A81-20873

SATTERPIELD, R. A survey of computer simulations of digital avionics systems [AD-A091943] N81-16049

SAWYER, R. A.

Jet wing interference for an overwing engine

configuration N81-16008 SAYER. S.

Omega signal coverage prediction diagrams for 10.2 kHz. Volume 1: Technical approach N81-16030 Omega signal coverage prediction diagrams for 10.2 kHz. Volume 2: Individual station diagrams N81-16031 [AD-A092742]

Omega signal coverage prediction diagrams for 10.2 kHz. Volume 4: Bearing angle tables [AD-A092744] N81-16032

SCHLAM, B.
Plat panel display technology review

SCHHIDT, N. Design and experimental verification of a transonic wing for a transonic aircraft

N81-16003 SCHHIDT, W.

Aerodynamic subsonic/transonic aircraft design studies by numerical methods

SCHHITT, V. Aerodynamic interaction between a close-coupled canard and a sweptback wing in transonic flow N81-16013

SCHOCK, H. J. Experimental analysis of IMEP in a rotary combustion engine

[NA SA-TM-81662] N81-16054 SCHORESTER, J. A.
Unsteady fan blade pressure and acoustic radiation
from a JT15D-1 turbofan engine at simulated

forward speed A81-20598

[AIAA PAPER 81-0096]
SCHOPIRLD, J. B.
Aircrew compliance with standard operating procedures as a component of airline safety

[AD-A092443.] NB1-16023 SCHOLTEN, J. B. H. M.
A lifting surface theory for the sound generated
by the interaction of velocity disturbances with

a leaned vane stator [AIAA PAPER 81-0091] A81-20595

Application of low frequency eddy-current for inspection of civil aircraft A81-20110

SCHUTTER, K. J. Cabin fire simulator lawatory tests [NASA-CR-160909]

SCHWARTZ, B.
High 'Q' ejection protection device

A81-22093

N81-16020

N81-17065

SCHWARZ, W.
A mobile computer-aided detection and tracking system for low-flying attack aircraft
A81 A81-20098

SCHWEIKHARD, W. G.
Icing tunnel tests of a glycol-exuding porous leading edge ice protection system on a general aviation airfoil [AIAA PAPER 81-0405] A81-20837

SCOTT, B. C. A head-up display for low-visibility approach and landing [AIAA PAPER 81-0130] SCOTT, I. G. A81-20623

Acoustic emission and corrosion

A81-20211 SEARLE, H.
Turboprop Cargo Aircraft Systems study, phase 1 [NASA-CR-159355] N81-16041

SBB, N. J. The state of the art of general aviation autopilots

| Nasa-cr-159371 | N81-16066

SEBBASS, A. R. Adaptive airfoils and wings for efficient transonic flight

A cost-effective method for shock-free supercritical wing design [AIAA PAPER 81-0383] A81-20796

A81-20349

A81-22102

SERTHARAM, B. C.
Effects of design variables on spoiler control

effectiveness, hinge moments, and wake turbulence
[AIAA PAPER 81-0072] A81-2058 A81-20581 SEGAL, H. a.
Aircraft pollution in the vicinity of airports

[AIAA PAPER 81-0309] A81-20743 SELIKHOV, A. P. The use of acoustic emission for detecting and

evaluating of fatigue cracks severity during static and cyclic loading of structure elements

Propulsion system mathematical model for a lift/cruise fan V/STOL aircraft [NASA-TH-81663]

SERTOUR, G. Evolution of materials and associated technologies in the makeup of aerospace materials, part 1 [AAAF-NT-79-22-PT-1] N81-17050 Evolution of materials and associated technologies

in the makeup of aerospace materials. Part 2: Examples [AAAF-NT-79-22-PT-2] N81-17051

SEXTOR, M. R. Dynamic pressure response with stall on axial flow compressor rotor blades [AIAA PAPER 81-0069]

SHANG, J. S. Numerical simulation of wing-fuselage interference
[AIAA PAPER 81-0048] A81-205

Transonic flow calculations over two-dimensional

canard-wing systems
[AIAA PAPER 79-1565]
SHANNON, R. H. A81-23367 Delayed ejection

SHARPLES. T. Application of carbon fibre composites to military aircraft structures

N81-16147 SHASH, Y. Turbo-compressors surge and surge control [AIAA PAPER 81-0070] A81-20579

SHAW, L. M.
Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fan [AIAA PAPER 81-0208] A81-20830 Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fan

[NASA-TM-81657] N81-16053 SHAW, R. J.

An analytical approach to airfoil icing
[AIAA PAPER 81-0403]

A81-20810 SHEETS, S. G. Qualification of HiMAT flight systems

PERSONAL AUTHOR INDEX STAUDACHER, W.

SHEPPARD, D. D.		SHITE, B. K.	
Radio direction finding on high frequency	short	Thermodynamics of organic compounds	
duration signals [AD-A092136]	N81-16029	[AD-A093087] SMOOTS, C. W.	N81-17936
SHORE, J. E.	801 10025	Evaluation of RF anechoic chamber fire pro	tection
Abstract interface specifications for the	A-7E	systems	WO 4 46030
device interface module [AD-A092696]	N81-16770	[AD-A092478] SHULLIH, J. I.	NB1-16070
SHORIN, V. V.		Gearbox isolation for reducing gear tooth	noise in
Application of excelectron emission for qu	ality	single rotor helicopter	101 20073
control of gas-turbine engine parts	A81-21367	SOBIECZKY, H.	A81-20073
SHOTTER, B. A.		Adaptive airfoils and wings for efficient	
Gear unit noise and transmission errors	A81-20060	transonic flight	A81-20349
SHOWALTER, T. H.	201 20000	Design of advanced technology transonic ai	
The use of total simulator training in	.1.4	and wings	WO 4 4 COOO
transitioning air-carrier pilots: A fie	:Iu	SOLTAN, P.	N81-16000
[NASA-TM-81250]	N81-16994	Flat panel display technology review	
SIEBERT, D. Improved secondary radar antennas for flig	h+	SORENSEN, J. A.	N81-17065
safety installations	пс	Application of trajectory optimization pri	inciples
-	A81-20083	to minimize aircraft operating costs	=
SILVA, J. H. H. Measurements of structural mobility on hel	icopter	SPAMER, T.	A81-20466
structures		An engineering model for assessing load se	equencing
CTMDCON Y M	A81-20064	effects	101-31727
SIMPSON, L. T. Improving surface current injection techni	ques via	SPANIER, G.	A81-21737
one- and two-dimensional models		Consolidated car display: A summary repor	
SINCLAIR, D. W.	A81-19940	process and the results of the consolidation critical and supplementary terminal area	
Evaluation of the acoustic and aerodynamic	:	traffic control information for display	
characteristics of several slot-baffle		presentation	WO 4 4 C 0 2 //
configurations for transonic wind tunnel [AD-A093957]	N81-17106	[AD-A092450] SPEIGHT, J. J.	N81-16034
SINGLEY, G. T., III		DMAHTC's support to National Ocean Survey	
Aircraft crash survival design guide. Vol Design criteria and checklists, revision	ume 1:	LORAN-C-charting [AD-A093748]	N81-17027
[AD-A093784]	N81-16997	SPRECER, P. A.	401 17027
Test and evaluation of improved aircrew re	straint	Transport jet aircraft noise abatement in	
systems for combat helicopers	พ81-17017	countries: Growth, structure, impact. 1: Europe, July 1980	AOTAME
SIPURHIN, I. G.		[NASA-CR-152356]	N81-17623
Evaluation of compressor blade endurance l	limits by	Transport jet aircraft noise abatement in	
an accelerated method	A81-22182	countries: Growth, structure, impact. 2: Pacific basin, August 1980	AOLGE
SIROBI, V. A.		[NASA-CR-152357-VOL-2]	N81-17624
Neurotramatological aspects in ejected pil	N81-17012	SPRADLRY, L. W. Hyperbolic/parabolic development for the (TM-STAR
SKRZYNSKI, S.		code	
Discussion of test results in the design of laminar airfoils for competition gliders		[NASA-CR-3369] STACK S. H.	N81-16416
[NASA-TH-75402]	N81-15984	A computer-aided design system geared toward	ard
SLADE, D.		conceptual design in a research environment	
Effects on anti-static additives on aircra capacitance fuel gaging systems	III	[AIAA PAPER 81-0372] STAGER, P.	A81-20789
[AD-A092907]	N81-17059	Bilingual air traffic control in Canada	
SLESARRY, A. I. Application of excelectron emission for qu	ıalitu	STAHARA, S. S.	A81-20915
control of gas-turbine engine parts		Study of transonic flow fields about aircr	aft:
	A81-21367	Application to external stores	WO.4 45000
SLIWA, S. M. Use of constrained optimization in the con	ceptual	STAID, P. S.	N81-15998
design of a medium-range subsonic transp	ort	Acoustic and aerodynamic performance inves	
[NASA-TP-1762]	N81-16039	of inverted velocity profile coannular prozections	plag
SLOOFF, J. W. A constrained inverse method for the aerod	lynamic	[NASA-CR-3149]	N81-16854
design of thick wings with given pressur		STALLINGS, R. L., JR.	
distribution in subsonic flow	N81-16006	Wing-alone aerodynamic characteristics at angles of attack	high
SMIGIELSKI, P.	201 10000	[AIAA PAPER 81-0008]	A81-20532
Controls of aeronautical structures under	fatigue	STALBAKER, J. P.	TH COLD
testing by holographic pulsed lasers interferometry		Hyperbolic/parabolic development for the C code	918-21W
-	A81-22692	[NASA-CR-3369]	N81-16416
SHITH, D. G. Impact of aircraft emissions on air qualit	v in the	STANDEN, N. M. Fuel consumption aspects of some noise about	atement
vicinity of airports. Volume 1: Recent	airport	procedures	
measurement programs, data analyses, and		STANZIONE, T.	A81-20350
submodel development [AD-A089962]	N81-16628	Tri-bar reading correction for oblique image	igery
SMITH, G. T.	<i>E</i>	-	A81-22495
Composite containment systems for jet engi blades	ne ran	STAUDACHER, W. Influence of jet location on the efficience	y of
[NASA-TM-81675]	N81-17480	spanwise blowing	
			A81-20352

PERSONAL AUTHOR INDEX

Interference effects of concentrated blows wortices on a typical fighter configurat		SULLIVAN, D. J. Critical research issues and visual system requirements for a V/STOL training resear	ch
STAUPENBIEL, R. On the flight mechanics of remotely pilote [BMVG-PBWT-79-28]	ed vehicles N81-17049	simulator [AD-A092561] SWITHEMBARK, J.	N81-16072
STEEB, R.		Three-dimensional model of spray combustion	in gas
Analysis and modeling of information handl tasks in supervisory control of advanced [AD-A092906]		turbine combustors [AIAA PAPER 81-0324] SZEGO, A.	A81-20751
STRELE-PERKIES, A.		Evaluation of explosafe. Explosion suppres	sion
The evolution of the helicopter seat pan man Personal Survival Pack (PSP)	lounted	system for aircraft fuel tank protection [AD-A093125]	N81-17047
TOTAL DELIZION (LDI)	N81-17016	[20 2030.22]	
STEGER, J. L.		T	
A numerical simulation of hypersonic visco over arbitrary geometries at angle of at [AIAA PAPER 81-0050]		TABAKOFF, W. Non-isoenergetic turbulent jet mixing in a	
STEIR, G.		constant area duct	
VTOL control for shipboard landing in high states	ı sea	•	A81-20768
states	A81-20471	TAI, T. C. Numerical optimization of circulation contr	ol
STEIBBERG, A. H.		airfoils	
Bounds for the additional cost of near-opt	imal		A81-20540
controls	A81-21075	TALBOT, R. J. The flight assessment and applications of D	MR/DMR.
STEPHENS, J. R.	101 21073	I, II	20, 2024
NASA's activities in the conservation of s	strategic		A81-21968
aerospace materials	101	TALCOTT, N. A., JR.	ha
STEVERS, D. D.	A81-22535	A computer graphics display technique for t examination of aircraft design data	.ne
A flight investigation of performance and	loads		A81-20788
for a helicopter with RC-SC2 main-rotor	blade	TAN, C. S.	
sections [NASA-TM-81898]	N81-15982	Current problems in turbomachinery fluid dy [AD-A093375]	N81-17387
STEVENS, H. C.	#61 1330 <u>2</u>	TABEJA, B. R.	20. 1.3q.
Multipath and interference effects in seco	ondary	Economics of technological change - A joint	model ·
surveillance radar systems	A81-23359	for the aircraft and airline industries	A81-21010
STIMPFLIEG, A.	A01-23333	TANNER, T. A.	101 21010
Controls of aeronautical structures under testing by holographic pulsed lasers interferometry	fatigue	The use of total simulator training in transitioning air-carrier pilots: A fiel evaluation	.d
Intelletometry	A81-22692		N81-16994
STOCKHAN, N. O.		TASK, B. L.	
Scale effects on turbulent boundary layer development and flow separation around W		Helmet mounted displays: Design considerat	21015 N81-17073
inlets at high incidence	1/3101	TAYLOR, B.	101-17075
[AIAA PAPER 81-0014]	A81-20538	Impact of aircraft emissions on air quality	
Three-dimensional turbulent boundary layer		vicinity of airports. Volume 1: Recent	airport
<pre>development and separation in V/STOL eng inlets at incidence with small-cross flo</pre>		measurement programs, data analyses, and submodel development	
curvature influences		[AD-A089962]	N81-16628
	A81-20703	TAYLOR, W. P.	
STONE, P. R., JR. Turboprop Cargo Aircraft Systems study, ph	ase 1	Effect of refining variables on the propert composition of JP-5	ies and
[NASA-CR-159355]	N81-16041	[AD-A093842]	N81-17281
STOTLER, C. L.		TRRRACCIANO, G.	
Development program for a graphite/PMR 15 polyimide duct for the F404 engine		Definition of loading sequence for full sca fatigue test	те
politated dust lot the 1407 chighte	A81-22647		A81-22626
STOTTS, L. B.		THOMAS, K.	
LPI, short-range communications between ai in rendezvous	rcraft	The influence of the compressibility in sim the conduct of exterior loads of a carrie	
In Tendertons	A81-22493	[MBB-FE-122/S/PUB/17]	
STRACK, W. C.		THOMAS, R. H. P.	
An overview of general aviation propulsion research programs at NASA Lewis Research		Thermodynamics of organic compounds	N8 1-17936
[NASA-TM-81666]	N81-16052	[AD-A093087] THOMPKINS, W. T., JR.	80 1-17930
STRICKLAND, S. H.		Current problems in turbomachinery fluid dy	
Some implementation considerations for num	erically	[AD-A093375]	N8 1-17387
stable flight filters	A81-20485	THOMPSOH, C. B. 3-D viscous analysis of ducts and flow spli	tters
STRIKE, W. T. Laser scattering applications development			A81-20720
ABDC tunnel B at Mach number 8	NO1 .17105	The UK Ministry of Defence programme on the	
[AD-A093929] STURGEON, W. R.	N81-17105	electromagnetic properties of carbon fibe composites	i.L
Development and demonstration of an automa		-	N81-16154
control and recovery system for remotely	y piloted	THORNQUIST, L.	
Vehicles	A81-20476	The tale of two wings	N81-16004
SULIMA, A. M.		THRALL, B. W., JR.	
Application of excelectron emission for qu	ality	Prospects for bonding primary aircraft stru	cture
control of gas-turbine engine parts	A81-21367	in the 80's	A81-22679

PERSONAL AUTHOR INDEX YOU GLARM, U.

MINITES D		rianno I	
TINLING, B. E. Propulsion system mathematical model for a		VAGHERS, J. Some implementation considerations for nume	rically
lift/cruise fan V/STOL aircraft	N81-16055	stable flight filters	101-2000
[NASA-TM-81663] TIPBIS, V. A.	CC001-10A	Application of singular perturbation theory	A81-20485 to
Computer-aided process planning system for		onboard aircraft trajectory optimization	104 205#2
aircraft engine rotating parts	A81-19836	[AIAA PAPER 81-0019] VALCIK, L.	A81-20543
TISSBAU, R.		Shielded enclosure test bed requirement	
Wind tunnel model support, controlled by f microprocessors	our	[AD-A092589] VAN DER HORVEN, A. J. M.	N81-16073
[ONERA, TP NO. 1980-149]	A81-21917	Prediction method for the overall performan	ce of
TOMAINE, R. L. A flight investigation of performance and	loads	turbofan engines [AIAA PAPER 81-0367]	A81-20786
for a helicopter with RC-SC2 main-rotor		VAN KEUK, G.	
sections [NASA-TM-81898]	N81-15982	The state of development and design of targon processing of the ELRA system	jet data
TOON, O. B.			A81-20089
Aircraft NO/x/ emissions and stratospheric reductions - Another look	ozone	VANDERPLAATS, G. N. Numerical optimization of circulation contr	·ol
[AIAA PAPER 81-0306]	A81-20741	airfoils	
TORNGREN, L. The tale of two wings		(AIAA PAPER 81-0016) VARLEY, R. J.	A81-20540
and that of the range	N81-16004	Centrifugal compressors for small aero and	
TREADGOLD, D.		automotive gas turbine engines	N8 1- 17467
Some aerodynamic interference effects that influence the transonic performance of c		VATSA, V. H.	801-17407
aircraft	204 46044	Solutions for slightly over- or under-expan	
TRIEBEL, C. F.	N81-16014	supersonic jets exhausting into cold subs mainstreams	conic
Samarium cobalt (SMCO) generator/engine		[AIAA PAPER 81-0257]	A81-20705
integration study [AD-A092904]	N81-17087	VAVRINCOVA, M. Numerical solution of transonic flow through	ıh a
TSAI, H. J.		cascade with slender profiles	•
An application of wake survey rakes to the experimental determination of thrust for		VDOVIAK, J. W.	A81-21197
propeller driven aircraft		Aerodynamic/acoustic performance of YJ101/d	louble
[NASA-CR-163920] TSAPARAS, G.	N81-15986	bypass VCE with coannular plug nozzle [NASA-CR-159869]	N81-17846
Flat panel display technology review		VENKATESAN, C.	101-17040
TSOU, P. K.	N81-17065	Stochastic modeling of an aircraft traversi runway using time series analysis	ing a
Numerical calculation of jet-induced groun	d effect		A81-23368
in VTOL [AIAA PAPER 81-0015]	181-20539	VERBRUGGE, R. A rotating, wind tunnel balance and associa	ted
TUCHELMANN, Y.	200 20000	experimental techniques	
New developments of data processing in computer-controlled manufacturing system	e /DNC	[AAAF-NT-80-13] VERRIERE, J.	N81-17108
PMS/	a / Duc,	Unsteady wakes downstream from a profile	
	A81-19845	oscillating in incidence	N81-16989
TURCO, R. P. Aircraft NO/x/ emissions and stratospheric	ozone	[AAAP-NT-80-10] VETTES, B.	NO 1-10989
reductions - Another look	104 207#4	Ergonometric study of ejection through a br	eakable
[AIAA PAPER 81-0306] TURKEL, R.	A81-20741	canopy	N81-17011
Radiation boundary conditions for wave-lik	e	VICARS-HARRIS, M.	_
equations	A81-20223	A versatile miniature solid state television camera /CCD/	on .
TURKOWSKI, L.			A81-22620
Flow phenomena along fuselages and wing-fu systems of gliders	serage	VICKERS, T. K. Maximizing the capacity of a single-runway	airport
[NASA-TM-75401]	N81-15983		A81-22193
TYBURSKI, J. J. Low level, adverse attitude escape using a		VIETS, H. Forced vortices near a wall	
vertical seeking ejection seat		[AIAA PAPER 81-0256]	A81-20704
	A81-22094	VINING, R. E., JR. Effect of impact damage on the XFV-12A comp	osite
·tJ		wing box	
UHUAD, G. C.		VINT, A.	A81-22676
A wind tunnel investigation of the aerodyn	amic	Jet wing interaction to give improved comba	t
characteristics of forward swept wings	N81-16011	performance	N81-16007
URBETTE, K. B.		VITALE, U.	
Flat panel display technology review	N81-17065	Neurotramatological aspects in ejected pilo	nts N81-17012
UTAH, D. A.		VOELKER, H.	
Crack growth modeling in an advanced powde metaliurgy alloy	Г	New techniques for the monopulse-radar trac high-maneuverability aircraft	king of
[AD-A093992]	N81-17235	· · · · · · · · · · · · · · · · · · ·	A81-20102
		VOGEL, S. A. Computer-sided process planning system for	
V		Computer-aided process planning system for aircraft engine rotating parts	
VACCARIBO, C. A. A case study - Real time simulation and st	ructured	VON GLAHN, U.	A81-19836
design		New interpretations of shock-associated noi	se with
•	A81-21721	and without screech	A81-22527

N81-16051

VOOGT, H.		WERLE, S. J.	
Design study for the inner wing of a trans	onic	Solutions for slightly over- or under-expa	
wing-body combination of aspect ratio 8	N81-16015	supersonic jets exhausting into cold sub mainstreams	SOUIC
		[AIAA PAPER 81-0257]	A81-20705
W		BERNICKE, R. K.	
WADHWAHI, D. S.		Prediction of tilt rotor outwash [AIAA PAPER 81-0013]	A81-20537
Non-destructive testing of adhesive-bonded		WESLEY, A. C.	
ULCAT M W	A81-20162	Integration of sensors with displays	NO 1 . 17065
WAGDI, M. W. Control strategy for tracking a maneuverab	le model	WESSE, Y.	N81-17067
[AIAA PAPER 81-0089]	A81-20593	Auto-adaptive piloting	
Plostromanotic counting to advanced corne	cita	[GA-380]	N8 1-17102
Electromagnetic coupling to advanced compo- aircraft with application to trade-off a		WEST, B. S. Evaluation of bird load models for dynamic	
specification determination		analysis of aircraft transparencies	
WALSH, B.	N81-16166	[AD-A092909] WESTERMARK, H.	N81-16995
Bilingual air traffic control in Canada		Standardisation - An alternative approach	to ATC
•	A81-20915	automation	
WARD, W. C.	wimum.	WESTKARMPER, J. C.	A81-22192
Design, fabrication, and testing of the Ma Performance Ejection System (MPES) seat		The effects of warhead-induced damage on t	he
[AD-A092292]	N81-16025	aeroelastic characteristics of lifting s	
WATERMAN, T. B. Evaluation of RF anechoic chamber fire pro	tection	Volume 2: Aerodynamic effects [AD-A093063]	N8 1- 1704 6
systems	rection	WHITE, D. J.	301 17040
[AD-A092478]	N81-16070	Evaluating spectrum effects in U.S. Air Fo	
WATKINS, M. L. An advanced electronic cockpit instrumenta	tion	<pre>attack/fighter/trainer individual aircra tracking</pre>	ft
system: The coordinated cockpit display		crucking	A81-21742
	N81-17074	WHITE, J. W.	
WATSON, J. A survey of computer simulations of digita	1	A general mapping procedure for variable a acoustics	rea duct
avionics systems		[AIAA PAPER 81-0094]	A81-20597
[AD-A091943]	N81-16049	WHITEEY, W. J.	
WATSON, J. C. AV-8B composite fuselage design		Cold-air investigation of first stage of 4-1/2-stage, fan drive turbine with aver	age
[AIAA PAPER 81-0232]	A81-20690	stage-loading factor of 4.66	
WATTS, A. C.	ion	[NASA-TP-1780]	N81-16050
A single gimbal/strapdown inertial navigat system for use on spin stabilized flight		WHITTEN, R. C. Aircraft NO/x/ emissions and stratospheric	ozone
vehicles		reductions - Another look	
[SAND-80-2479C] WEBB, R. C.	N81-16037	[AIAA PAPER 81-0306] WIBERLEY, S. B.	A81-20741
Samarium cobalt (SMCO) generator/engine		Composite structural materials	
integration study		[NASA-CR-163946]	N81-17039
[AD-A092904] WEBER, J.	N81-17087	WIENER, E. L. Human Pactors of Flight-deck Automation:	
Flight companies present new aircraft - Bo	eing	NASA/Industry Workshop	
737-200 advanced	104 24575	[NASA-TM-81260]	N81-16022
WEBER, R.	A81-21575	VILLIAMS, J. W. Improving surface current injection techni	ques Via
Flight tests for studying radioelectric		one- and two-dimensional models	•
perturbations of an electrostatic origin		D7117C D 1	A81-1994
WECK, M.	N81-16160	WILLIS, B. A. An overview of general aviation propulsion	
New developments of data processing in		research programs at NASA Lewis Research	Center
computer-controlled manufacturing system	s /DNC,	[NASA-TM-81666] WILSON, C.	N8 1-16052
PMS/	A81-19845	Design and evaluation of an integrated Qui	et Clean
WEEKS, T. M.		General Aviation Turbofan (OCGAT) engine	and
A wind tunnel investigation of the aerodyn- characteristics of forward swept wings	amic	aircraft propulsion system [NASA-CR-165185]	N8 1-16057
Characteristics of forward sweet wings	N81-16011	WILSON, D. S.	201 10051
WEIDNER, B. B.	fiold	Compressor blade monitoring system for a V	A1310
Numerical study of a scranjet engine flow [AIAA PAPER 81-0186]	11e1d 181-20659	(Allis Chalmers) Wind Tunnel Compressor [AD-A092920]	N81-17103
WEINSTOCK, G. L.		WILSON, G. W.	
Electromagnetic integration of composite s	tructure	Preliminary Airworthiness Evaluation (PAE	1) of
in aircraft	N81-16159	the YCH-47D helicopter [AD-A092633]	N81-16046
WEITZ, P.	_	WILSON, K. H.	
Effects on anti-static additives on aircra	ft	Some aerodynamic interference effects that	
<pre>capacitance fuel gaging systems [AD-A092907]</pre>	ม81-17059	influence the transonic performance of c aircraft	CHPGE
WELLS, G.			N81-16014
Propeller propulsion integration, phase 1	N81-16058	WILSON, V. B. Superplastic formed and diffusion bonded t	itaninm
[NASA-CR-163921] WELLS, W. R.	201 10430	landing gear component feasibility study	
Aircraft lateral parameter estimation from		[AD-A092788]	N8 1-16213
data with unsteady aerodynamic modelling [AIAA PAPER 81-0221]	A81-20684	WISLER, D. C. Core compressor exit stage study. Volume	2: Data
WENTZ, W. H., JR.		and performance report for the baseline	
Effects of design variables on spoiler con		configuration	N81-16051
effectiveness, hinge moments, and wake t [AIAA PAPER 81-0072]	MEDULENCE A81-20581	[NASA-CR-159498]	30 I - 1003 (
- · · · · · · · · · · · · · · · · · · ·			

PERSONAL AUTHOR INDEX ZUMWALT, G. W.

High-solids coatings for exterior aircraft A81 WOOD, B. C.	
	-20861
Special Aviation Fire and Explosion Reduction (SAFER) advisory committee, volume 1	
WOODCOCK, S.	- 16024
Cathode ray tubes and plasma panels as display devices for aircraft displays	
WOODWARD, C. C.	-17069
	-22093
WORATSCHEE, B. Preliminary airworthiness evaluation AH-1S (PE helicopter equipped with a substitute straig	
	-16045
WORRELL, C. L. Production of LORAN-C reliability diagrams at	the
Defense Mapping Agency [AD-A093749] N81	-17028
WOZUMI, J. T. An engineering model for assessing load sequen	cing
effects	- I-21737
WURSTER, D. New navigation systems for helicopters	
A81	-22167
Y	
YAMARTINO, R. J.	. +ho
Impact of aircraft emissions on air quality in vicinity of airports. Volume 1: Recent air measurement programs, data analyses, and	port
	1-16628
YANG, ZJ. Three-dimensional turbulent boundary layer	
development and separation in V/STOL engine inlets at incidence with small-cross flow an	ıd
	-20703
YEN, K. T. An analytical solution of lift loss for a roun	ıd
	-20535
YETTER, J. A. Effects of sidewall geometry on the installed	
performance of nonaxisymmetric convergent-divergent exhaust nozzles	15076
YOUNG, M. I.	1-15976
Stability of large horizontal-axis axisymmetri wind turbines	i-22526
	1-22326
Z	
	craft 1-22503
ZANIHE, J. J. ZDRAFT-A graphite code for VTOL aircraft groun	ıd
	- 17 04 2
footprint visualization [AD-A093311] N81	17042
footprint visualization [AD-A093311] N81 ZENNER, K. New developments of data processing in	
footprint visualization [AD-A093311] N81 ZENNER, K. New developments of data processing in computer-controlled manufacturing systems /E PMS/	ONC,
footprint visualization [AD-A093311] N81 ZENNER, K. New developments of data processing in computer-controlled manufacturing systems /FMS/ A81 ZEBOBI, T. J.	омс, I-19845
footprint visualization [AD-A093311] ZENNER, K. New developments of data processing in computer-controlled manufacturing systems / EPMS/ A81 ZENOBI, T. J. Design, fabrication, and testing of the Maximu Performance Ejection System (MPES) seat stru [AD-A092292]	DNC, I-19845
footprint visualization [AD-A093311] N81 ZENNER, K. New developments of data processing in computer-controlled manufacturing systems /E PMS/ A81 ZENOBI, T. J. Design, fabrication, and testing of the Maximu Performance Ejection System (MPES) seat stru [AD-A092292] ZIRIH, L. I. High bypass turbofan component development,	ONC, I-19845 im
footprint visualization [AD-A093311] ZENNER, K. New developments of data processing in computer-controlled manufacturing systems /E PMS/ A81 ZEBOBI, T. J. Design, fabrication, and testing of the Maximu Performance Ejection System (MPES) seat stru [AD-A092292] ZIRIM, L. I. High bypass turbofan component development, modification 2	ONC, I-19845 im
footprint visualization [AD-A093311] ZENNER, K. New developments of data processing in computer-controlled manufacturing systems / EFMS/ ZENOBI, T. J. Design, fabrication, and testing of the Maximu Performance Ejection System (MPES) seat stru [AD-A092292] ZIRIM, L. I. High bypass turbofan component development, modification 2 [AD-A093156] N81	DNC, 1-19845 am cture 1-16025
footprint visualization [AD-A093311] ZENNER, K. New developments of data processing in computer-controlled manufacturing systems / LPMS/ ZENOBI, T. J. Design, fabrication, and testing of the Maximu Performance Ejection System (MPES) seat stru [AD-A092292] ZIRIW, L. I. High bypass turbofan component development, modification 2 [AD-A093156] ZRNIC, D. S. Pulsed Doppler radar detects weather hazards taviation [AIAA PAPER 81-0235] A81	DNC, 1-19845 am cture 1-16025
footprint visualization [AD-A093311] ZENNER, K. New developments of data processing in computer-controlled manufacturing systems / EPMS/ ZENOBI, T. J. Design, fabrication, and testing of the Maximu Performance Ejection System (MPES) seat stru [AD-A092292] ZIRIM, L. I. High bypass turbofan component development, modification 2 [AD-A093156] ZENIC, D. S. Pulsed Doppler radar detects weather hazards taviation	DNC, 1-19845 1m 1cture 1-16025 1-17093

AERONAUTICAL ENGINEERING / A Continuing Bibliography (Suppl. 135)

MAY 1981

Typical Contract Number Index Listing

Listings in this index are arranged alphanumerically by contract number. Under each contract number, the accession numbers denoting documents that have been produced as a result of research done under that contract are arranged in ascending order with the *IAA* accession numbers appearing first. The accession number denotes the number by which the citation is identified in either the *IAA* or *STAR* section.

AF PROJ. 1209	AP-AFOSR-333
N81-17333 AF PROJ. 2003	AF-AFOSR-337
N81-16049 AF PROJ. 2051	AP-AFOSR-356
N81-17062	
AP PROJ. 2104 N81-16043	AFOSR ISSA-8
AF PROJ. 2202 N81-16995	AFPEA PROJ.
AF PROJ. 2301 N81-17045	AT (49-25) -10
N81-17048	DA PROJ. 1L1
AF PROJ. 2307 N81-16026	DA PROJ. 1L1
N81-16065	
N81-16071 N81-16984	DAAB07-76-C-
N81-17090	DAAG29-77-C-
N81-17104	Jan-025 77 0.
N 81-17387	DAAG29-78-G-
AF PROJ. 2308	
N81-17936 AF PROJ. 2313	DAAH01-80-C-
N81-17061	DAAJ02-77-C-
AF PROJ. 2402 N81-16213	DAAK70-78-C-
N81-16996	
N81-17060 AF PROJ. 2414	DACA89-79-C-
N81-17103 AF PROJ. 2420	DAHC04-69-C-
N81-17235	DNA001-79-C-
AF PROJ. 3048	2004 70 4
N81-17045 N81-17046	DNA001-79-C-
N81-17047	DOT-CG-95148
N81-17059	
AF PROJ. 3066	
ท81-17088 ท81-17092	DOT-FA72NA-7
N81-17092 N81-17093	DOT-FA76WAI-
N81-17095	JOI 12.0221
AP PROJ. 3145	
N81-17087 AF PROJ. 4519	DOT-PA77WAI-
N81-16357	DOT-FA77WAI-
AF PROJ. 7184 N81-17058	DOT-FA77WAI-
AF PROJ. 7231 N81-17849	DOT-PA78WA-4
AF-AFOSE-76-2881	
A81-20223 AF-AFOSR-78-3525	DOT-FA78WA-4
A81-20704 AF-AFOSR-80-0174	DOT-FA78WAI-
A81-20751	DOT-PA79WA-4
AF-AFOSR-0087-79 N81-16071	DSA900-77-C-
AP-AFOSR-0147-80 #81-16026	PAA PROJ. 04
AF-AFOSR-0230-80 N81-16984	PAA PROJ. 20
AF-A FOSR-3260-78	
ม81-17076	PMV-F AU-128
'	

N81-17104 73-77 N81-17045 N81-17048 80-0004 N81-17936 80-P7-21 N81-16048 004 A81-20691 1-62209-AH-76 N81-17046 1-62209-AH-79 N81-16997 A81-22619 -0009 N81-16062 -0036 A81-20783 -0258 N81-17101 -0021 N81-16997 -0198 N81-16047 -0004 A81-20809 -0016 A81-20768 N81-16063 -0205 N81-16073 80-A N81-16030 N81-16032 A81-21967 -612 N81-17025 N81-17026 N81-16628 -778 N81-17342 A81-20691 4105 N81-16629 N81-17848 -893 A81-20740 N81-17327 -3840 N81-16070 43-311-520 N81-17035 01-521-100 N81-16064 A81-21555

PHV-P AU-1379
A81-21555 F4D600-79-C-0001
N81-15992 F04701-78-C-0021
A81-21913 P08635-79-C-0119
A81-20531 . P19628-78-C-0006
N81-17025 N81-17026
N81-17342 F19628-79-C-0001
A81-21880 F29601-78-C-0082 N81-17333
F30602-79-C-0068 N81-16357
P33615-75-C-2053 N81-17095
P33615-75-C-3112 A81-21741
F33615-75-C-5218 N81-17062
P33615-76-C-2036 A81-20705
F33615-76-C-3070 N81-16996
F33615-76-C-3103 N81-16995
F33615-76-C-3116 A81-21738
F33615-77-C-0514 N81-17849
F33615-77-C-2018 N81-17087
F33615-77-C-2069 A81-21505
P33615-77-C-3115 N81-17047
F33615-77-C-5082 N81-17235
P33615-78-C-2060 N81-17093
F33615-78-C-2062 N81-17089
F33615-78-C-2162 N81-17088
F33615-78-C-3014 N81-16016
F33615-79-C-0521 N81-17058
F33615-79-C-1870 N81-16049
F33615-79-C-2018 N81-17092
F33615-79-C-3001 A81-20566
F33615-79-C-3019 N81-17103
F33615-79-C-3401 N81-16213
F33615-79-C-3411 N81-17060
P33657-79-C-0378 N81-17059
P33700-78-C-0001 A81-21738
F44620-75-C-0047 N81-15998
P49520-78-C-0041 N81-17090
P49620-78-C-0041 N81-16065
F49620-78-C-0084 N81-17387
P49620-79-C-0054 A81-20753
P49620-79-C-0130 N81-17061
F744620-76-C0044 A81-23367
MD-77,93304,00 A81-20474 NAG3-18 A81-20597
NAG3-18 A81-20597

NAG 3-28	181-20810
NAS1-14101	A81-20223
NAS1-14732	N81-16016
BAS1-14892	A81-21552
NAS 1-15085	N81-16853
NAS1-15148	N81-16139
NAS1-15325	A81-20544
NAS1-15510	N81-17171
NAS1-15534	N81-15977
NAS1-15644	N81-16042
NAS1-15708	N81-16041
NAS1-15770	N81-15974
NAS1-15783	N81-16416
NAS1-15795	N81-16416
NAS 1-16255	N81-16066
NAS2-8874	N81-16018
NAS2-9081	A81-20541
NAS2-9513	N81-16018
NAS 2-9881	A81-20741
NAS 2-9977	N81-17175
NAS2-10352	A81-20636
NASZ-10370	NO1-1605#
NASS-19777	NO 1- 10034
MA33-20001	NR1-17001
NAG3-28 NAS1-14101 NAS1-14892 NAS1-14892 NAS1-15085 NAS1-15148 NAS1-15510 NAS1-15534 NAS1-15534 NAS1-15770 NAS1-15770 NAS1-15783 NAS1-15795 NAS1-16255 NAS2-8874 NAS2-9811 NAS2-9881 NAS2-9881 NAS2-9887 NAS3-10578 NAS3-20061	N81-17082 N81-17083
	N81-17084 N81-17085 N81-17086
	N8 1-17086
NAS3-20070	N81-16051
NAS3-20070 NAS3-20582 NAS3-20584 NAS3-20630 NAS3-21037 NAS3-21269 NAS3-21836 NAS3-21999 NAS3-21909	N8 1-17846
NAS3-20584	N81-16057
NAS3-20630	N81-17080
NAS3-21037	A81-22664
NAS3-21269	A81-20767
NAS3-21836	N81-17079
NAS3-21999	N81-17078
NAS7-100	A81-20840
	N81-16677
NAS8-33369	A81-20811
NAS8-33369 NAS8-33458 NAS9-15591	N81-16681
NAS9-15591	N81-16020
NGL-22-009-1	
	A81-20471
NGL-22-009-1 NGL-33-018-0	A81-20471 03
NGL-33-018-0	A81-20471 03 N81-17039
	A81-20471 03 N81-17039
NGL-33-018-0 NGR-05-020-0	A81-20471 03 N81-17039 19 A81-20542
NGL-33-018-0	A81-20471 03 N81-17039 19 A81-20542
NGL-33-018-0 NGR-05-020-0 NGR-14-001-0	A81-20471 03 N81-17039 19 A81-20542 08 A81-20798
NGL-33-018-0 NGR-05-020-0	A81-20471 03 N81-17039 19 A81-20542 08 A81-20798 D0001
NGL-33-018-0 NGR-05-020-0 NGR-14-001-0 NOAA-NA-80AA	A81-20471 03 N81-17039 19 A81-20542 08 A81-20798 D0001 A81-20798
NGL-33-018-0 NGR-05-020-0 NGR-14-001-0 NOAA-NA-80AA NSF ATM-79-2	A81-20471 03 N81-17039 19 A81-20542 08 A81-20798 D0001 A81-20798
NGL-33-018-0 NGR-05-020-0 NGR-14-001-0 NOAA-NA-80AA NSF ATM-79-2	A81-20471 03 N81-17039 19 A81-20542 08 A81-20798 D0001 A81-20798 1260 A81-20798
NGL-33-018-0 NGR-05-020-0 NGR-14-001-0 NOAA-NA-80AA NSF ATM-79-2	A81-20471 03 N81-17039 19 A81-20542 08 A81-20798 D0001 A81-20798 1260 A81-20798
NGL-33-018-0 NGR-05-020-0 NGR-14-001-0 NOAA-NA-80AA NSF ATM-79-2 NSG-1402 NSG-1454 NSG-1454	A81-20471 03 181-17039 19 A81-20542 08 A81-20798 D0001 A81-20798 1260 A81-20798 N81-1658
NGL-33-018-0 NGR-05-020-0 NGR-14-001-0 NOAA-NA-80AA NSF ATM-79-2 NSG-1402 NSG-1454 NSG-1454	A81-20471 03 1881-17039 19 A81-20542 08 A81-20798 D0001 A81-20798 1260 A81-20798 N81-16058 N81-15986 A81-217623
NGL-33-018-0 NGR-05-020-0 NGR-14-001-0 NOAA-NA-80AA NSF ATM-79-2 NSG-1402 NSG-1454 NSG-1454 NSG-2129 NSG-2129	A81-20471 03 1881-17039 19 A81-20542 08 A81-20798 D0001 A81-20798 1260 A81-20798 N81-16058 N81-15986 A81-21010 N81-17623 N81-17623
NGL-33-018-0 NGR-05-020-0 NGR-14-001-0 NOAA-NA-80AA NSF ATM-79-2 NSG-1402 NSG-1454 NSG-2129 NSG-2328 NSG-3238 NSG-3238	A81-20471 03 1881-17039 19 A81-20542 08 A81-20798 D0001 A81-20798 1260 A81-20798 N81-16058 N81-15986 A81-21010 N81-17623 N81-17623
NGL-33-018-0 NGR-05-020-0 NGR-14-001-0 NOAA-NA-80AA NSF ATM-79-2 NSG-1402 NSG-1454 NSG-2129 NSG-2328 NSG-3238 NSG-3238	A81-20471 03 1881-17039 19 A81-20542 08 A81-20798 D0001 A81-20798 1260 A81-20798 N81-16058 N81-15986 A81-21010 N81-17623 N81-17624 A81-2058
NGL-33-018-0 NGR-05-020-0 NGR-14-001-0 NOAA-NA-80AA NSF ATM-79-2 NSG-1402 NSG-1454 NSG-2129 NSG-2129 NSG-2328 NSG-3238 NSG-4002 NSG-40017 NSG-4017 NSG-7373	A81-20471 03 181-17039 19 A81-20542 08 A81-20798 D0001 A81-20798 1260 A81-20798 181-16058 N81-15986 A81-21010 N81-17623 A81-20568 N81-17037
NGL-33-018-0 NGR-05-020-0 NGR-14-001-0 NOAA-NA-80AA NSF ATM-79-2 NSG-1402 NSG-1454 NSG-2129 NSG-2129 NSG-2328 NSG-3238 NSG-4002 NSG-40017 NSG-4017 NSG-7373	A81-20471 03 1881-17039 19 A81-20542 08 A81-20798 10001 A81-20798 1260 A81-20798 N81-15986 A81-21010 N81-17623 N81-17624 A81-20568 N81-17038 N81-17038 N81-17038
NGL-33-018-0 NGR-05-020-0 NGR-14-001-0 NOAA-NA-80AA NSF ATM-79-2 NSG-1454 NSG-1454 NSG-2129 NSG-2328 NSG-3238 NSG-3238 NSG-4002 NSG-4017 NSG-7373 N00014-76-C-	A81-20471 03 181-17039 19 A81-20542 08 A81-20798 D0001 A81-20798 1260 A81-20798 N81-16058 N81-15986 A81-21010 N81-17623 N81-17624 A81-20548 N81-17038 N81-17038 N81-17097 0260 A81-20818
NGL-33-018-0 NGR-05-020-0 NGR-14-001-0 NOAA-NA-80AA NSF ATM-79-2 NSG-1402 NSG-1454 NSG-2129 NSG-2129 NSG-2328 NSG-3238 NSG-4002 NSG-40017 NSG-4017 NSG-7373	A81-20471 03 1881-17039 19 A81-20542 08 A81-20798 D0001 A81-20798 1260 A81-20798 181-16058 N81-15986 A81-21010 N81-17623 N81-17624 A81-20568 N81-17038 N81-17038 N81-17038
NGL-33-018-0 NGR-05-020-0 NGR-14-001-0 NOAA-NA-80AA NSF ATM-79-2 NSG-1402 NSG-1454 NSG-2129 NSG-2328 NSG-2328 NSG-3238 NSG-4002 NSG-4017 NSG-7373 N00014-76-C-	A81-20471 03 1881-17039 19 A81-20542 08 A81-20798 10001 A81-20798 1260 A81-20798 N81-15986 A81-21010 N81-17623 N81-17038 N81-17038 N81-17038 N81-17097 0260 A81-20818 0079 N81-15992
NGL-33-018-0 NGR-05-020-0 NGR-14-001-0 NOAA-NA-80AA NSF ATM-79-2 NSG-1454 NSG-1454 NSG-2129 NSG-2328 NSG-3238 NSG-3238 NSG-4002 NSG-4017 NSG-7373 N00014-76-C-	A81-20471 03 181-17039 19 A81-20542 08 A81-20798 D0001 A81-20798 1260 A81-20798 N81-16058 N81-15986 A81-21010 N81-17623 N81-17623 N81-17624 N81-17097 0260 A81-20818 0079 N81-15992
NGL-33-018-0 NGR-05-020-0 NGR-14-001-0 NOAA-NA-80AA NSF ATM-79-2 NSG-1402 NSG-1454 NSG-2129 NSG-2328 NSG-3238 NSG-3238 NSG-3023 NSG-4002 NSG-4007 NSG-7373 N00014-76-C- N00014-78-C-	A81-20471 03 1881-17039 19 A81-20798 00001 A81-20798 1260 A81-20798 181-16058 N81-15986 A81-21010 N81-17623 N81-17624 A81-20526 A81-20818 0079 N81-15992 0590 A81-20526
NGL-33-018-0 NGR-05-020-0 NGR-14-001-0 NOAA-NA-80AA NSP ATM-79-2 NSG-1402 NSG-1454 NSG-2129 NSG-2328 NSG-3238 NSG-3238 NSG-30238 NSG-37373 N00014-76-C- N00014-78-C-	A81-20471 03 1881-17039 19 A81-20742 08 A81-20798 100001 A81-20798 1260 A81-20798 N81-16058 N81-15986 A81-21010 N81-17624 A81-20568 N81-17038 N81-17038 N81-17097 0260 A81-20818 0079 N81-15992 0590 A81-20526
NGL-33-018-0 NGR-05-020-0 NGR-14-001-0 NOAA-NA-80AA NSF ATM-79-2 NSG-1402 NSG-1454 NSG-2129 NSG-2328 NSG-3238 NSG-3238 NSG-3238 NSG-4002 NSG-4017 NSG-7373 N00014-76-C- N00014-78-C- N00014-78-C-	A81-20471 03 181-17039 19 A81-20542 08 A81-20798 D0001 A81-20798 1260 A81-20798 181-16058 N81-15986 A81-21010 N81-17623 N81-17624 A81-20526 0481-20818 0079 N81-15992 0590 A81-20526 0062 N81-16068
NGL-33-018-0 NGR-05-020-0 NGR-14-001-0 NOAA-NA-80AA NSF ATM-79-2 NSG-1402 NSG-1454 NSG-2129 NSG-2328 NSG-3238 NSG-3238 NSG-3023 NSG-4002 NSG-4007 NSG-7373 N00014-76-C- N00014-78-C-	A81-20471 03 1881-17039 19 A81-20542 08 A81-20798 D0001 A81-20798 1260 A81-20798 181-16058 N81-16058 N81-17623 N81-17623 N81-17624 A81-20568 N81-17038 N81-17038 N81-17097 0260 A81-20818 0079 N81-15992 0590 A81-20526 062 N81-16068 5384
NGL-33-018-0 NGR-05-020-0 NGR-14-001-0 NOAA-NA-80AA NSF ATM-79-2 NSG-1402 NSG-1454 NSG-2129 NSG-2129 NSG-2328 NSG-2328 NSG-3238 NSG-4002 NSG-40017 NSG-7373 N00014-78-C- N00014-78-C- N00019-79-C- N000024-78-C-	A81-20471 03 181-17039 19 A81-20742 08 A81-20798 100001 A81-20798 1260 A81-20798 181-16058 N81-15986 A81-21010 N81-17624 A81-20568 N81-17037 0260 A81-20818 0079 N81-15992 0590 A81-20526 0062 N81-16068 5384 N81-16068
NGL-33-018-0 NGR-05-020-0 NGR-14-001-0 NOAA-NA-80AA NSF ATM-79-2 NSG-1402 NSG-1454 NSG-2129 NSG-2129 NSG-2328 NSG-3238 NSG-4002 NSG-4017 NSG-7373 N00014-76-C- N00014-78-C- N00019-79-C- N000024-78-C-	A81-20471 03 181-17039 19 A81-20542 08 A81-20798 D0001 A81-20798 1260 A81-20798 181-16058 N81-15986 A81-21010 N81-17623 N81-17624 A81-20526 0481-20818 0079 N81-15992 0590 A81-20526 0062 N81-16068 5384 N81-16253 0124
NGL-33-018-0 NGR-05-020-0 NGR-14-001-0 NOAA-NA-80AA NSF ATM-79-2 NSG-1402 NSG-1454 NSG-2129 NSG-2328 NSG-3238 NSG-3238 NSG-3238 NSG-3002 NSG-4002 NSG-4007 NSG-7373 N00014-76-C- N00014-78-C- N00014-78-C- N00014-78-C- N00024-78-C- N00039-79-C-	A81-20471 03 1881-17039 19 A81-20542 08 A81-20798 D0001 A81-20798 1260 A81-20798 181-16058 N81-16058 N81-17623 N81-17624 A81-20568 N81-17038 N81-17038 N81-17097 0260 A81-20818 0079 N81-15992 0381-20526 0481-20526 0481-20526 0481-20526 0481-20526 0481-20526 0481-20526 0481-20526 0481-20526 0481-20526 0481-20526 0481-16068 5384 N81-16053
NGL-33-018-0 NGR-05-020-0 NGR-14-001-0 NOAA-NA-80AA NSF ATM-79-2 NSG-1402 NSG-1454 NSG-2129 NSG-2328 NSG-3238 NSG-3238 NSG-3238 NSG-3002 NSG-4002 NSG-4007 NSG-7373 N00014-76-C- N00014-78-C- N00014-78-C- N00014-78-C- N00024-78-C- N00039-79-C-	A81-20471 03 181-17039 19 A81-20542 08 A81-20798 D0001 A81-20798 1260 A81-20798 181-16058 N81-15986 A81-21010 N81-17624 A81-20568 N81-17037 0260 A81-20818 0079 N81-15992 0590 A81-20526 0062 N81-16068 5384 N81-16253 0124 A81-20470 0193
NGL-33-018-0 NGR-05-020-0 NGR-14-001-0 NOAA-NA-80AA NSF ATM-79-2 NSG-1402 NSG-1454 NSG-2129 NSG-2328 NSG-3238 NSG-3238 NSG-4002 NSG-4017 NSG-7373 N00014-76-C- N00014-78-C- N00014-78-C- N00014-78-C- N00024-78-C- N00039-79-C- N000123-78-C-	A81-20471 03 181-17039 19 A81-20542 08 A81-20798 D0001 A81-20798 1260 A81-20798 181-16058 N81-15986 A81-21010 N81-17623 N81-17624 A81-20526 0062 N81-15992 0590 A81-20526 0062 N81-16068 5384 N81-16253 0124 A81-20470 0193 N81-17902
NGL-33-018-0 NGR-05-020-0 NGR-14-001-0 NOAA-NA-80AA NSF ATM-79-2 NSG-1402 NSG-1454 NSG-2129 NSG-2328 NSG-3238 NSG-3238 NSG-3238 NSG-3002 NSG-4002 NSG-4007 NSG-7373 N00014-76-C- N00014-78-C- N00014-78-C- N00014-78-C- N00024-78-C- N00039-79-C-	A81-20471 03 1881-17039 19 A81-20542 08 A81-20798 D0001 A81-20798 1260 A81-20798 181-16058 N81-16058 N81-17623 N81-17623 N81-177624 A81-20546 A81-20818 0079 M81-17097 0260 A81-20818 0079 M81-15992 0381-20526 0481-20526 0481-20526 0481-20526 0481-20526 0481-20526 0481-20526 0481-20526 0481-20526 0481-20526 0481-20526 0481-20526 0481-20526 0481-20526 0481-20526 0481-16068 0590 0590 0590 0590 0590 0590 0590 059
NGL-33-018-0 NGR-05-020-0 NGR-14-001-0 NGR-14-001-0 NOAA-NA-80AA NSF ATM-79-2 NSG-1402 NSG-1454 NSG-2129 NSG-2328 NSG-3238 NSG-3238 NSG-4002 NSG-4017 NSG-7373 N00014-76-C- N00014-78-C- N00014-78-C- N00019-79-C- N00039-79-C- N000123-78-C- N001123-78-C-	A81-20471 03 1881-17039 19 A81-20798 00001 A81-20798 1260 A81-20798 1861-16058 N81-16058 N81-17624 A81-20568 N81-17624 A81-20568 N81-17038 N81-17097 0260 A81-20818 0079 N81-15992 0590 A81-20526 0062 N81-16058 S384 N81-16253 0124 A81-20470 0193 N81-17902 1491 N81-17981
NGL-33-018-0 NGR-05-020-0 NGR-14-001-0 NOAA-NA-80AA NSF ATM-79-2 NSG-1402 NSG-1454 NSG-2129 NSG-2328 NSG-3238 NSG-3238 NSG-4002 NSG-4017 NSG-7373 N00014-76-C- N00014-78-C- N00014-78-C- N00014-78-C- N00024-78-C- N00039-79-C- N000123-78-C-	A81-20471 03 181-17039 19 A81-20542 08 A81-20798 D0001 A81-20798 1260 A81-20798 181-16058 N81-15986 A81-21010 N81-17623 N81-17624 A81-20526 0062 N81-20526 0062 N81-16068 5384 N81-16253 0124 A81-20470 0193 N81-17902 1491 N81-17281
NGL-33-018-0 NGR-05-020-0 NGR-14-001-0 NOAA-NA-80AA NSF ATM-79-2 NSG-1402 NSG-1454 NSG-2129 NSG-2328 NSG-3238 NSG-3238 NSG-3238 NSG-4007 NSG-7373 N00014-76-C- N00014-78-C- N00019-79-C- N00024-78-C- N000123-78-C- N00140-78-C- N00140-78-C-	A81-20471 03 1881-17039 19 A81-20542 08 A81-20798 D0001 A81-20798 1260 A81-20798 181-16058 N81-16058 N81-17023 N81-17624 A81-20546 A81-2079 0260 A81-20818 0079 N81-17097 0260 A81-20818 0079 N81-15992 0381-20818 0079 N81-15992 0381-20818 0481-20818 079 N81-15992 0481-20526 0481-20526 0481-20526 0481-20526 0481-17092 0481-17092 0481-17092 0481-17902 0491 0481-17281 0481-17940
NGL-33-018-0 NGR-05-020-0 NGR-14-001-0 NOAA-NA-80AA NSF ATM-79-2 NSG-1402 NSG-1454 NSG-2129 NSG-2328 NSG-3238 NSG-3238 NSG-3238 NSG-4007 NSG-7373 N00014-76-C- N00014-78-C- N00019-79-C- N00024-78-C- N000123-78-C- N00140-78-C- N00140-78-C-	A81-20471 03 181-17039 19 A81-20542 08 A81-20798 D0001 A81-20798 1260 A81-20798 181-16058 N81-16058 N81-17624 N81-17623 N81-17623 N81-17097 0260 A81-20818 0079 N81-15992 0590 A81-20526 0062 N81-16068 5384 N81-16253 0124 A81-20470 0193 N81-17281 0117 A81-17281 0117 A81-19940
NGL-33-018-0 NGR-05-020-0 NGR-14-001-0 NOAA-NA-80AA NSF ATM-79-2 NSG-1402 NSG-1454 NSG-2129 NSG-2328 NSG-3238 NSG-4002 NSG-4017 NSG-7373 N00014-76-C- N00014-78-C- N00014-78-C- N00024-78-C- N000123-78-C- N00140-78-C- N00140-78-C- N00140-78-C-	A81-20471 03 181-17039 19 A81-20542 08 A81-20798 D0001 A81-20798 1260 A81-20798 181-16058 N81-15986 A81-21010 N81-17623 N81-17624 A81-20526 0062 N81-16068 5384 N81-16253 0124 A81-20470 0193 N81-17281 0117 A81-17281 0117 A81-19940 0076 N81-16972
NGL-33-018-0 NGR-05-020-0 NGR-14-001-0 NOAA-NA-80AA NSF ATM-79-2 NSG-1402 NSG-1454 NSG-2129 NSG-2328 NSG-3238 NSG-3238 NSG-3238 NSG-4007 NSG-7373 N00014-76-C- N00014-78-C- N00019-79-C- N00024-78-C- N000123-78-C- N00140-78-C- N00140-78-C-	A81-20471 03 181-17039 19 A81-20542 08 A81-20798 D0001 A81-20798 1260 A81-20798 181-16058 N81-15986 A81-21010 N81-17623 N81-17624 A81-20526 0062 N81-16068 5384 N81-16253 0124 A81-20470 0193 N81-17281 0117 A81-17281 0117 A81-19940 0076 N81-16972

CONTRACT NUMBER INDEX

N62269-79-C-0275
N81-17242
N62269-79-C-0292
N81-17100
N68335-78-C-1121
N81-17476
N68335-79-C-2055
A81-20539
WF41400000 N81-17094
N81-17242
ZF21242001 N81-16770
075-725-470 N81-17024
219-151-120 N81-16034
505-01-13-02 N81-15985
505-32 N81-16050
505-32-02 N81-16053
505-32-82 N81-16388
505-34-33-05 N81-16039
505-35-21 N81-16022
505-35-31 N81-16994
505-36-31 N81-16040
505-41-22 N81-16052
N81-16054
505-43-23-02 N81-15978
530-01-13-01 N81-15974
530-03-13-03 N81-15976
532-05-12 N81-16055
. 533-01-43-01 N81-15982
534-03-23-01 N81-16137
N81-17171
734-10-11 N81-17175

1. Report No. NASA SP-7037(135)	2. Government Access	ion No.	3. Recipient's Catalog	No.
4. Title and Subtitle			5. Report Date	0
A5000AUT.0AL 500.0550.00		<u></u>	May	
AERONAUTICAL ENGINEERING A Continuing Bibliography	(Supplement 13	5)	6. Performing Organia	zation Code
7. Author(s)			8. Performing Organiz	ation Report No.
		·	10. Work Unit No.	
9. Performing Organization Name and Address				
National Aeronautics and Washington, D.C. 20546	Space Administr	ation	11. Contract or Grant	No.
			13. Type of Report ar	nd Period Covered
12. Sponsoring Agency Name and Address				
			14. Sponsoring Agency	Code
15. Supplementary Notes				
•				
			•	
16. Abstract				
To. Abstract				
This bibliography lists 5	36 reports art	icles and other d	Ocuments	
This bibliography lists 536 reports, articles, and other documents introduced into the NASA scientific and technical information system				
in April 1981.				
		•		
	·			
17. Key Words (Suggested by Author(s))		18. Distribution Statement		
Aerodynamics				
Aeronautical Engineering		Un c lass	ified - Unlimit	ed
Aeronautics Bibliographies	•			
otottogi apilies				
19. Security Classif. (of this report)	20. Security Classif. (o	f this page)	21. No. of Pages	22. Price
Unclassified	Unclas	ssified	168	\$5.00 HC
	J	 	L	l

PUBLIC COLLECTIONS OF NASA DOCUMENTS

DOMESTIC

NASA distributes its technical documents and bibliographic tools to eleven special libraries located in the organizations listed below. Each library is prepared to furnish the public such services as reference assistance, interlibrary loans, photocopy service, and assistance in obtaining copies of NASA documents for retention.

CALIFORNIA

University of California, Berkeley

COLORADO

University of Colorado, Boulder

DISTRICT OF COLUMBIA

Library of Congress

GEORGIA

Georgia Institute of Technology, Atlanta

ILLINOIS

The John Crerar Library, Chicago

MASSACHUSETTS

Massachusetts Institute of Technology, Cambridge

MISSOUR

Linda Hall Library, Kansas City

NEW YORK

Columbia University, New York

OKLAHOMA

University of Oklahoma, Bizzell Library

PENNSYLVANIA

Carnegie Library of Pittsburgh

WASHINGTON

University of Washington, Seattle

NASA publications (those indicated by an "*" following the accession number) are also received by the following public and free libraries:

CALIFORNIA

Los Angeles Public Library

San Diego Public Library

COLORADO

Denver Public Library

CONNECTICUT

Hartford Public Library

MARYLAND

Enoch Pratt Free Library, Baltimore

MASSACHUSETTS

Boston Public Library

MICHIGAN

Detroit Public Library

MINNESOTA

Minneapolis Public Library

MISSOURI

Kansas City Public Library

St. Louis Public Library

NEW JERSEY

Trenton Public Library

NEW YORK

Brooklyn Public Library

Buffalo and Erie County Public Library

Rochester Public Library

New York Public Library

OHIO

Akron Public Library

Cincinnati Public Library

Cleveland Public Library

Dayton Public Library

Toledo Public Library

TENNESSEE

Memphis Public Library

TEXAS

Dallas Public Library

Fort Worth Public Library

WASHINGTON

Seattle Public Library

WISCONSIN

Milwaukee Public Library

An extensive collection of NASA and NASA-sponsored documents and aerospace publications available to the public for reference purposes is maintained by the American Institute of Aeronautics and Astronautics, Technical Information Service, 555 West 57th Street, 12th Floor, New York, New York 10019.

EUROPEAN

An extensive collection of NASA and NASA-sponsored publications is maintained by the British Library Lending Division, Boston Spa, Wetherby, Yorkshire, England. By virtue of arrangements other than with NASA, the British Library Lending Division also has available many of the non-NASA publications cited in *STAR*. European requesters may purchase facsimile copy of microfiche of NASA and NASA-sponsored documents, those identified by both the symbols "#" and "*", from: ESA Information Retrieval Service, European Space Agency, 8-10 rue Mario-Nikis, 75738 Paris CEDEX 15, France.

National Aeronautics and Space Administration

THIRD-CLASS BULK RATE

Postage and Fees Paid National Aeronautics and Space Administration NASA-451

Washington, D.C. 20546

Official Business

Penalty for Private Use, \$300

10 1 SP-7037, 060481 S90569AU 850609 NASA SCIEN & TECH INFO FACILITY ATTN: ACCESSIONING DEPT P O BOX 8757 BWI ARPRT BALTIMORE MD 21240

POSTMASTER:

If Undeliverable (Section 158 Postal Manual) Do Not Return

NASA CONTINUING BIBLIOGRAPHY SERIES

NUMBER	TITLE	FREQUENCY
NASA SP-7011	AEROSPACE MEDICINE AND BIOLOGY Aviation medicine, space medicine, and space biology	Monthly
NASA SP-7037	AERONAUTICAL ENGINEERING Engineering, design, and operation of aircraft and aircraft components	Monthly
NASA SP~7039	NASA PATENT ABSTRACTS BIBLIOGRAPHY NASA patents and applications for patent	Semiannually
NASA SP7041	EARTH RESOURCES Remote sensing of earth resources by aircraft and spacecraft	Quarterly
NASA SP-7043	ENERGY Energy sources, solar energy, energy conversion, transport, and storage	Quarterly
NASA SP-7500	MANAGEMENT Program, contract, and personnel management, and management techniques	Annually

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546