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ABSTRACT

Clock instability is an error • source to high-
precision radio metric and radio interferometric
observations. Under most circumstances, such
observations take place over a period of time
within which modern precision clocks reveal a
fluctuation characterized by a flicker noise. An
undesirable property of flicker noise is the
correlation among all observations, with hopelessly
compl ica ted corre la t ion coeff ic ients . This
complication prohibits one from treating flicker
noise as random noise in covariance analysis
estimating its effects. This paper introduces two
alternative approaches. The first is that of
generating a sequence of number simulating the
flicker noise and then treating it as a systematic
error. A scheme for flicker noise generation is
given. The second approach is that of successive
segmentation: A clock fluctuation is represented
by 2N piecewise linear segments and then converted
into a summation of N+1 triangular pulse train
functions (TPTF). The statistics of the clock
instability are then formulated in terms of two-
sample variances at N+1 specified averaging times.
The summation converges very rapidly that a value
of N > 6 is seldom necessary. An application to
radio interferometric geodesy shows excellent
agreement between the two approaches. Limitations
to and the relative merits of the two approaches
are discussed.

•This paper presents the results of one phase of research carried
out at the Jet Propulsion Laboratory, California Institute of
Technology, under Contract No. NAS7-100, sponsored by the National
Aeronautics and Space Administration.
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INTRODUCTION

The developments of advanced technology in radio metric
observat ions for space navigation (Ref s . 1, 2) and in radio
interferometric observations (Refs. 3, 4) have been in a high gear
during the last decade. Among the error sources limiting the precision
of these observations is the instability in time and frequency
standards. The estimation of the effects of such clock instability is
becoming a vital part in system designs.

For a short averaging t ime ,T , most precision atomic clocks
possess a two-sample variance (Al l an var iance) of f r e q u e n c y
fluctuation, ay , which decreases as T~2 orf"*. In other words, the
fluctuation behaves either as a white phase noise or as a white
frequency noise. When one estimates the effects of such clock
instabil i ty via a covariance analysis wi th phase (or delay)
observables, a white phase noise can be treated as a random process
with no correlation among observations. A white frequency noise can be
treated in the same way except that all observations are correlated,
with simple correlation coefficients. Hence such clock instabilities
can be handled without difficulties.

Howeve r , most radio metr ic and radio in te r fe romet r i c
observations take place over a longer period of time within which a
clock fluctuation reaches its "flicker floor", having a constant two-
sample variance over all averaging .times of interest. Such flicker
noise has the undesirable characteristic of complicated correlation
among all observations, especially when observations are taken at
uneven intervals of time. Direct covariance analysis is generally
impractical.

This paper introduces two alternative approaches. In the first
approach, a sequence of numbers simulating flicker noise is generated
over the time period of interest. Its effects can then be treated as
that of a systematic error, with the error sensitivity defined by the
sequence of numbers. The second approach is that of a successive
segmentation: The statistics of a clock fluctuation are represented by
the amplitudes of a number of triangular pulse train functions (TPTF).
These amplitudes are, in turn, related to the two-sample variances at
successively halved averaging times. The problem is thus reduced to
that of estimating the effects of a number of (usually not more than 7)
TPTF with specific RMS amplitudes.
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Examples are given for an application to baseline vector
determination by radio interferometry. The numerical results show
excellent agreement between the two approaches. Limitations to and the
relative merits of these two approaches are discussed.

CLOCK INSTABILITY CHARACTERIZED BY a 2 « T~2 and a 2 « T'1y y

For convenience in investigating the effects of clock
instability, we shall briefly review the basis of covariance analysis.
Let there be M independent phase observations from which N parameters
are to be estimated. The "computed covariance matrix" is given by

Pv = (A
T W A)'1 (1)

X.

where A is an M x N sensitivity matrix with the (m,n) th element being
the partial derivative of the m observation with respect to the n
estimated parameter; W is usually a diagonal weighting matrix with
elements e

m where em is the assumed RMS random error of the m
observation. The diagonal elements of PX in (1) are the variances of
the estimated parameters due to the assumed random error in
observations.

The effects of an error source different from the assumed random
errors can be calculated by the following "consider covariance matrix"
(Ref. 5)

P'x = (Px AT W) Pc (Px AT W)T (2)

where P_ is the error covariance matrix of the M observations.

683



For a clock instability characterized by a two-sample variance
ay (T) « t , its effects on the M observations are the same as that of
an uncorrelated random error with a standard deviation TOy(T). Thus Pc
in (2) becomes a unity matrix multiplied by a constant T 0 ̂  (T). The
effects on the estimated parameters are given by the square roots of the
diagonal elements of P'x.

For a clock instability characterized by a two-sample variance
Oy (T) = T~l, its effects on the m^ phase observation is the accumula-
tion of phase, from the beginning of the experiment, due to a white
frequency noise. That is, the error covariance matrix Pc will have
elements

min(m,n)

= TO 2(T) [t . , . - t ]
y min(m,n) o

where

(A)
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tp is the epoch of the experiment and t^ is the mean time at which the
irn observation is taken. With PC calculated by (3) and (H) , the
effects of such clock instability on the estimated parameters are again
given by the square roots of the diagonal elements of P'x.in (2).

SIMULATION OF CLOCK INSTABILITY CHARACTERIZED BY a y
2 « T°

A clock fluctuation characterized by a constant two-sample
variance independent of averaging time is said to behave as a flicker
noise. It has strc^ng correlation among observations. To the knowledge
of the author no exact expression exists for the error covariance of
observations due to such noise. A close approximation can be derived
from the following flicker noise model of Barnes and Allan (Ref. 6):

m

t= £ ( m + l - i ) 2 / 3
g i (5) .

m 1=1 X

This model simulates equally spaced (in time), discrete flicker noise
from a sequence of independent, random numbers g^ (or discrete white
phase noise) of unity variance. For observations taken at even time
intervals At, the error covariance matrix PO will have elements

2 2p = (At) a < <j) <j> >
m,n y m n

min(m,n) j (f-^

2 O 2 1^ (m+1- i)2/<\(n + 1 i)2/3
°y £i

where < > denotes the ensemble average and. min ( m , n ) is defined in
For observations taken at uneven time intervals I ^ t , the

elements of matrix P becomec
min(k ,k )

/. ^2 2 V^m "n j. i -N 2 /3 / , , . T .x2 /3p = (At) a > (k + 1 - i) (k + 1 - i)m , n y ' m n •
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m

with K = I. (7a)

Therefore, the calculation of the elements of PC becomes complicated
and impractical.

An alternative approach is to simulate the clock instability in
the time period of interest by a flicker noise model, such as that
given in (5), and then treat it as if it were a systematic error.
(However, statistical results can be obtained only through averaging an
ensemble of such errors. This will be further discussed later). In
other words, the P in (2) is decomposed into CC where C is a column
matrix with its M elements given by

e = At a <j>. (8)

m y k
m

for observations at uneven time intervals Im^t. Here $\L is defined in
(5) and (7a).

Equation (8) suffers from the disadvantage of having to record a
very large number of random samples g^ and to perform a very large
number of summations. A computationally more efficient flicker noise
model can be generated by the following empirical recurrence formula
:for a = 1):

y

<J> = 1.95 cf> .. - 0.95 <J>
m m-1 m-^

(9)

where g are now random numbers of standard deviation 1.35.
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To compare the two flicker noise models, eq. (5) and eq. (9),
4001 samples are computed from each model. Two-sample variances are
calculated and plotted in Fig. 1. The ay <* T° behavior is verified
for both models with the recurrence formula of (9) being slightly
better. Note that for larger T the number of samples in the
calculation of ay is smaller and the uncertainty of cry is larger.
With the flicker noise model given in (9), the solution covariance
matrix P'x can be calculated from (2) with PQ = CC™; the elements of
the column matrix C are

e - At o *. (10)

y k

with km defined by (7a).

SEGMENTATION OF CLOCK INSTABILITY

In this section, the effect of clock instability is studied by
an alternative approach. It is clear that a clock instability
characterized by ay2(-r)

 a Ta with a j> - 1 will have a cumulative
effect. Hence, a clock with instability behaving differently from a
white phase noise will appear as clock drift. Such clock drift in the
time period of interest, say 0 < t < T , can be approximated by a
piecewise linear representation as shown in Fig. 2 (a) and (b). The
number of segments can be arbitrary; however, for the convenience of
the following study, it is selected to be 2. Fig. 2 (b) is a special
case of N = 4.

The piecewise linear representation of a clock drift can further
be decomposed into the summation of a sequence of N + 1 triangular
pulse train functions (TPTF), Fn:

Drift

where Fn contains 2
n~1 triangular pulses of widths T/2n~1 and of

heights bn ^>bn o»"-i and bn pn-1 (for n = 0, Fn contains half a
triangular pulse bf height bQ). 'Pig. 2 (c) displays the component
terms of (11). Therefore, a given clock drift functions which is
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approximated by 2N piecewise linear segments is uniquely defined by 2N

heights of triangular pulses. Since these TPTF are independent of and
uncorrelated with one another their total effect is the quadratic sum
of individual effects. That is,

£ T, 2 ,. . n-1
n

Fn (bn,l"-" bn,2 '
=

Effect of Drift (t) = [
n=

p
The RMS vaues of b _ are related to the two-sample variances cre by the
definition of gy

2: ' .

2b . , 2

' n * ° (13)

where {} denotes the RMS value. Hence all triangular pulses in the
same TPTF have the same RMS height which is directly related to °y at a
specified averaging time:

(b } = (b } = (72/2) (T/2n) a (T/2n), n 4 0 (14)
n,i n Y

For n = 0, {bQ} = T a (T)

Therefore, the RMS effect of clock instability with known cy(T)for T/2N

< T < T can be represented by the superposition of TPTF of specific RMS
heights. Only terms with T/2n longer than the shortest time interval
between observations need be included in (12). For instance, a 12-hour
experiment with a min imum time interval of 10 minutes betweeji
observations requires only 7 TPTF, with the last term containing T/2 .
Furthermore, for ay^ « T° (flicker noise), eq. (12) converges very
rapidly; neglecting all but the first three terms will result in an
error of less than 1 %.
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In most radio metric observations for space navigation, the
estimated parameters are the amplitudes of diurnal sinusoidal functions
(Ref . 2). Hence, over a view period of 8 hours or shorter, the error
signature can be divided into three catagories: A bias error
(approximating cos x with small x), a ramp error (approximating sin x
with small x) and a r a n d o m error. On the other hand, radio
interfere me trie observations for clock synchronization, baseline vector
determination, polar motion/ U Tl determination, etc. are taken
"randomly" on many different radio sources. It is such randomness that
loosens the coupling between systematic error sources and estimated
parameters. However, for such "random" observations, the error sources
can also be divided into bias, ramp and random errors.

The RMS values of bias, ramp and random components of TPTF are
calculated in the appendix. The values for the first 7 TPTF are
summarized in Table I. Since these components are independent and
uncorrelated the quadratic sum of their effects yields the effects of
the TPTF. Also, as mentioned earlier, the T P T F are independent of and
uncorrelated with one another. Hence, the magnitudes of errors of the
same catagories (bias, r a m p and r a n d o m ) from all T P T F can be
quadratically s u m m e d together, the effects of which are then
individually estimated. Therefore, the estimation of clock instability
effects is reduced to the estimations of the effects of a bias error, a
ramp error and a random error (white phase noise) which are trivial.

NUMERICAL EXAMPLES

To illustrate and compare the two approaches introduced above,
they are applied to a problem of baseline vector determination by radio
interfere me try. The baseline chosen is 300 km in length with its
center at a latitude of 35° North. Both 6-hour (33-observation) and 8-
hour (44-observation) experiments are studied. The observation
sequences are parts of a 30-hour sequence observing 14 extragalactic
radio sources. To reduce the effects of observation sequence, each of
the 6-hour and 8-hour time periods scans through the 30-hour sequence
and the mean error is calculated from all possible 6-hour or 8-hour
periods. The error source considered is a clock instability with Af/f
= 10~14 for all ton each end of the baseline, thus aYT) = >/2 x 10~1 . A
unity matrix is chosen as the weighting matrix, W. The quadratic sum
of the baseline component errors is to be examined.

In practice, one or more clock parameters can be included in the
estimated parameter list to reduce the effects of clock instability
(Ref . 7). In the following, we shall study the problem under different
circumstances: Estimating 3 baseline components alone, 3 baseline
components and a clock offset, and all the preceding plus up to 8 equal
segments of clock rate offset. It should be noted that when 2m

segments of clock rate offset are to be estimated, the effects of Fn
for n i m are to be excluded.
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Table II summarizes the baseline solution sensitivities to a
bias error, a ramp error and a white phase noise. These sensitivities
are to be used in the segmentation approach: The effects of clock
instability are to be determined by (i) calculating the RSS values of
bias, ramp and random components, according to (14) and Table I, from
all TPTF of concern, (li) multiplying by the corresponding baseline
error sensitivities in Table II, and (ili) quadratically summing these
three error components.

Fig. 3 compares the effects of the clock instability on baseline
solutions as estimated by simulation approach and by segmentation
approach, for both the 6-hour and 8-hour experiments. Excellent
agreement between the two approaches is seen.

DISCUSSEDN AND SUMMARY

Two different approaches have been introduced for the estimation
of clock instability effects on radio metric and radio interfere metric
observations. The simulation approach is straightforward and can be
applied to any type of problems; but it requires the simulation of a
flicker noise. The statistical characteristics of a flicker noise can
be attained only when a large number of samples are included. In the
above examples, the 33 and 44 consecutive observations scan through a
30-hour sequence, resulting in, respectively, 128 and 117 different
clock instability samples. Hence the mean values of the solution
errors approach to their statistical values. Without such averaging
the results fluctuate a good deal. Fig. 4 shows such fluctuation of a
solution error from the 128 individual samples of 33-observation
sequence.

The segmentation approach requires the estimation of the effects
of a bias, a ramp and a random noise. The RSS magnitudes of these
components from a few TPTF need to be calculated. However, this
approach results in statistical values of clock instability effects
without the need of averaging over many samples. Also, the
segmentation approach is so versatile that clock instability with any
shape ofa (T) can be treated since the variation of tfy is explicitly
accounted for (cf. equation 14) in the error estimation procedure.

When a problem with a diurnal variation has a view period
exceeding 8 hours, bias and ramp together can no longer represent the
systematic error signature. An additional error component, a single
triangular pulse , F^ , with its mean value removed, needs to be
considered. This is equivalent to adding a quadratic term into the
small-argument approximation of a cosine function. With this
modification, the RMS value of the random component for n=1 in Table I
is to be transfered to the new component. Of course, the random
component from FR with n > 1 will still be needed.
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APPENDIX

Calculation of RMS values of Bias, Ramp and Random Components
of TPTF of Unit RMS Heights

Bias Component:

A sequence of triangular pulses of height +1 has a bias value
of +1/2. Since FQ and F« contain no more than one pulse their bias
values are simply ± 1/2. For n > 1, each pulse in Fn may have an
independent sign (+ or -). Since Fn contains 2n triangular pulses,
each of them has an RMS bias value of (1/2)(1/2n~1) = 1/2n. The RMS
value of bias for all pulses in F is the quadratic sum of those of all
2n pulses. Hence

n i „ 9 1/2
{bias} = t(2 ) 0-/2V] (A.1)

Ramp Component:

It is readily shown that FQ, containing_one half of a triangular
pulse, has a ramp component of RMS value 1/2/3 and that F^, containing
one pulse, has no ramp component. For Ffl with n > 1, the triangular
pulses can be grouped into symmetrical pairs (with respect to the
center of the time period). A pair of pulses with the same signs (++
or —) does not contribute to ramp component. A pair with opposite
signs (+- or -+) has a ramp component of heights ± 3m/2 where m is
the separation between the two pulses of the pair (m = 1, 3,."i 2n -
1). The RMS value of such ranp component is 1/</3 its height, i.e.,
(3ni/22 n~2)(l//3). The probability of forming a pair of pulses with
opposite signs is 1/2 (the other 1/2 for pulses with the same signs).
Hence the RMS value of the ramp component of all 2n pairs of pulses
in Fn is given by

2"ll-l , /9
V^ , 9n 9 9 9 '

ramp = [ 2-f (7) (3m/2/n"2) (l/*^) ]
m=l,3, . . .

* 4n-s 'E'1 m
2]172

n-1,3,...
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1/2
-(3-

1/2

(A.2)

Random Component:

The total RMS value of Fn is the same as that .of a single tri-
angular pulse, !#}. With the bias and ramp component given by (A.I) and
(A.2) the RMS value of the random component of Fn is simply

2 2 1/2
{Random} = (1/3 - {bias} - {ramp} ) (A.3)
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TABLE 1

RMS Values of Bias, Ramp and Random Components
of TPTF of Unit RMS Heights*

n {Bias} {Ramp} {Random}

0

1

2

3

4

5

6

0.500

0.500

0.354

0.250

0.177

0.125

0.088

0.289

0 .

0.306

0.242

0.175

0.125

0.088

0

0.289

0.339

0.461

0.521

0.550

0.564

* A triangular pulse of unit height has a total RMS value of 1/vT.
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QUESTIONS AND ANSWERS

DR. REINHARDT:

Recent data have indicated over the past couple years that the prob-
lem with hydrogen masers or with cesiums too is not really flicker
noise. It is a combination of environmental effects and random walk
which can be analytically treated much more easily than flicker
noise. Have you looked into using those approaches to handling
problems of correlation noise in frequency standards?

DR. WU:

Well, of course, flicker noise is just an assumption of clock in-
stability. It is an approximation, but the segmentation approach
I was just introducing here can be applied to any sigma versus tau
shift. That means it doesn't necessarily have to be a flicker fre-
quency noise.

DR. REINHARDT:

If you use other noise models which are really applicable like ran-
dom walk of frequency or an environmental effect, they are analyt-
ically solvable, while flicker noise presents a lot of computational
problems; they do not. And you might get a more fruitful result by
using the real models for behavior.

DR. WU:

If the characteristic is purely white phase noise or white frequency
noise, you can easily do it with conventional covariance analysis,
but whenever there is some combination of these noises or you have
some variations in the sigma versus tau shape, then you have dif-
ficulty.

DR. PETER KARTASCHOFF, Swiss Post Office

I wonder if in the segmentation approach you used here, what is the
statistical uncertainty on these ramp and drift and random com-
ponents in this approach, because I am asking myself if you just
have a statistical uncertainty, if you repeat this process which
will be of the same order of magnitude, then the uncertainty you
get with the simulation process is mainly according to the theory
of Audoin and Lesage?

Whereas, that there might be a danger that the segmentation
approach used on limited data would give a too optimistic result,
and then if you repeat the same experiment more and more, and
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finally you get this very slow convergence to the flicker noise
process, and there I would recommend what Victor Reinhardt said,
that actually there have been for ten or more years, efforts to
turn around the flicker process.

And the combinations of white and random walk rates and so on,
but I think we have to live with the fact that the flicker process
is here and nature doesn't care about mathematical difficulties;
nature is there and the flicker process is there, and for many
years we had no physical models on flicker process, but three
years ago there was a conference in Tokyo only on flicker phenomenon.

Now, we have about ten models of flicker noise, ten physical
models. We just do not yet know which is the good one, but I think
we will have to live many years with the problem of flicker. I
just would like to make these comments. One should look in this
approach you made because it is very interesting in its computa-
tional simplicity, but I would say a little bit of warning. What
is the real uncertainty? I would bet it will fall back on Audoin's
and Lesage's prediction on uncertainty of the estimates. Thank you.

DR. WU:

Of course, what I am introducing here is just a technique to esti-
mate clock instability with a given shape of sigma versus tau shift.
So, whether the actual clocks will be right on flicker frequency
noise or not is another story.
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