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ABSTRACT

The estimation of planetary magnetic fields from observations of the

magnetic field gathered along a spacecraft flyby trajectory is examined with

the aid of generalized inverse techniques, with application to the internal
magnetic field of Jupiter. Model non-uniqueness resulting from the limited

spatial extent of the observations and noise on the data is explored and
quantitative estimates of the model parameter resolution are found. The

presence of a substantial magnetic field of external origin due to the

currents flowing in the Jovian magnetodisc is found to be an important source

of error in estimates of the internal Jovian field, and new models explicitly

incorporating these currents are proposed. New internal field models are
derived using the vector helium magnetometer observations and the high field

fluxgate observations of Pioneer 11, and knowledge of the external current

system gained from the Pioneer 10 and Voyagers 1 and 2 encounters.

INTRODUCTION

Four spacecraft have thus far encountered Jupiter and permitted in situ

investigation of many aspects of the Jovian system, including detailed
observations of the inner magnetosphere. These spacecraft have explored

different regions of the inner magnetosphere by virtue of their unique

trajectories. The near-equatorial approach of Pioneer 10 to within 2.$ Jovian

radii permitted the first observations of what has become known as the
magnetodisc (Smith et al., 1974; Van Allen et al., 1974), a thin annular disc

of tenuous plasma and charged particles encircling the giant planet to

distances approaching 100 Jovian radii. Large scale azimuthal currents
flowing in this magnetodisc, subsequently observed by the Voyagers 1 and 2

spacecraft (;Jess et al., 1979a; Ness et al., 1979b; Bridge et al., 1979) lead

to a substantial magnetic field of ext .., rnal origin throughout the entire inner

magnetosphere. The high-inclination retrograde approach of the Pioneer 11

spacecraft yielded measurements of the inner magnetosphere at high latitudes

spanning a wide range of Jovian. longitude. In addition, the close approach of

s1.6 Jovian radii (R J ) made this trajectory the most favorable for the

purposes of estimating the internal magnetic field of Jupiter. Thus, models

of the internal field based on the Pioneer 10 measurements (Smith et al.,

1974) were quickly supplanted by models based on the Pioneer 11 observations
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(Davis and Smith, 1976; Acuna and Ness, 1976). The near equatorial approaches
of the Voyager 1 and 2 spacecraft, at, the close approaches of P5 and 10 Rio

have permitted more detailed studies of the external azimuthal current system

( Connerney et al., 1981) but have thus far a .4ded little to the present

understanding of the internal magnetic field of Jupiter (Ness et al., 1979b) .

As the number of available Jovian internal field models grows it becomes

increasingly important to evaluate the model non—uniqueness inherent in the

estimation of planetary magnetic fields from flyby observations. While some

of the proposed mot1#*l3 represented an intermediate stage of data processing

and analysis, in general differences between the proposed models reflect

differences in the number and kind of coefficients used in the hasic models,

differences in the actual observations, data intervals eWsen for analysis, 	 r

and the choice of weights applied to the observations in the least squares
minimization process. A recent summary of the magnetic field observations of

Jupiter (Smith and Gulkis, 1979) lists six spherical harmonic models of the

Jovian magnetic field; five based on the Pioneer 10 and 11 vector helium

magnetometer (VHM) data (Smith et al., 1974; Smith et al.; 1976) and one
derived from the Pioneer 11 fluxgate magnetometer (FGM) observations (Acuna

and Ness, 1976). These models (with the exception of P10-11 combined models,

e,,g., Smith and Gulkis, 1979) all represent a ' a-:od' fit along one trajectory
in the sense of minimizing the weighted or unweighted model, residuals, but

lead to substantially different model fields in other regions of space.

The model non—uniqueness we refer tc arises from the spatial limitations

of the available observations and the noise on the data. In the usual

spherical harmonic representation of planetary fields, there exist certain

linear combinations of the model parameters which lead to a very small

magnetic field along the spacecraft trajectory, but a large magnetic field

elsewhere (e.g., at the planet's surface). That is, observations along a

single flyby trajectory are insensitive to certain combinations of parameters.

This basic lack of information, inherent in the available observations, leads

to an unavoidable model non—uniqueness.

This paper concerns the estimation of planetary magnetic fields from

flyby observations, in particular from the Pioneer 11 flyby of Jupiter in
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December 1974. The non—uniqueness of derived models will be examined

utilizing the generalized inverse techniques that have been developed during
the last decade in other branches of geophysics, notably, seismic data

inversion (Wiggins, 1972) , gravity and magnetics ( Pedersen, 1977) , and studies
of the electrical conductivity of the earth (Johansen, 1977). The generalized

inverse techniques are of wide applicability in studying the often peculiar

properties of linear (or linearized) systems and provide a framework for the

evaluation of various models. The method underscores the uniqueness problems
associated with the derivation of spherical harnonic expansions for the
internal field and facilitates a systematic study of model parameter

resolution. As the inevitable comparisons between models derived from

different spacecraft flybys are made (e.g., Hide and Malin, 1979), it is

important to evaluate the observations for consistency and develop models
which are applicable to all of the flybys. The ultimate goal i•, to find one
model, or field description, which is appropriate to all the observations,

allowing integration of and sensible comparisons among the individual flybys.
Thus, we will in addition examine the basic models chosen to represent the

data and the validity tf assumptions required by the conventional spherical

harmonic analysis of these data. In this regard we will assess the importance

of the magnetic field contribution due to external currents in the Jovian

magnetodisc and propose improved models which ex plicitly incorporate these

effects. For this purpose, models of the inner magnetosphere resulting from

an analysis of Voyager 1, Voyager 2, and Pioneer 10 observations (Connerney et
al., 1981) will be used to supplement the conventional spherical harmonic
analysis.

The primary purpose of an internal field model is to provide an accurate

description of the magnetic field throughout all space, not just along a
single trajectory. Thus the ultimate test of a derived field model is how

well it predicts the field in regions of space far removed from the locus of
observations to which the model was fitted. Correlative data can be used to

test various models, as well as additional in situ magnetic field
observations. Comparison of predicted charge particle satellite absorption

with observations (Acuna and Ness, 1976) is a powerful test of field models,

since the trapped charged particle population reflects a global magnetic field

topology rather than a localized observation. Indeed, :;atellite charged
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particle absorptiOn signatures can be used (Acuna et al., 1080) to constrain

the initial field models. Other field topology diagnostics which have been

applied to the Jovian field with varying success include ultraviolet auroral

observations (Broadfoot et al., 1980), the polarization of Jovian decimetric
radiation ( Birmingham, 1980; de Pater, 1981) and the frequency and reaming

pattern of decameter radio emission (Alexander et al, 1975). These

observations can also in principle be used to constrain possible field models.

METHOD OF ANALYSIS

Increasingly more sophisticated models of the inte rnal Jovian magnetic
field have been proposed as the quantity and quality of available data

increased. The Pioneer 10 data were initially modeled As a centered, tilted

dipole and an Offset, tilted dipole (Smith et al., 1974; Van Allen et al.,

1974) . Ultimatel y, data were interpreted utilizing the spherical harmonic

analysis (Chapman and Bartels, 1940) conventionally used in. studies of the

earth's magnetic field. In the usual spherical harmonic analysis it is

assumed that the data were obtained in a source free region of space (such
that 4 c.1 = 7 x B a 0). The magnetic field B can then be expressed as the
gradient of a scalar potential function

B = -7V = - 7(V e + Vi)

which can be written as a sum of two potentials, representing sources internal
and external to the region of interest. The potential is expended in terms of

spherical harmonics

V = Ve + V i a a E ( r/a) n Tn e + (a/r) n+1 Tn i	 (2)

n=1

Where r is the distance to the planet's center, a is the planetary radius, and
the Ten and T  i are given by

T n i = 2	 P nm (cose) L gnm cos mo + hnm sin mm]	 (3)

m=0
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Tn 
=	 Pn

e	
m(cas6) [G nm cos MO + Hnm sin mO	 (4)

moo

where 8 and 9 are co-latitude and east longitude, respectively, the Pnm are

the associated Legendre functions with Schmidt normalization, and the gnm,
hnmr 

Gnm, Hnin are the internal and exteenal Schmidt coefficients. The series

(2) is terminated at a suitable n a nmax and the coefficients g
nm , hnm, Gnm,

H t1m are chc =en to minimize, in a least squares sense, the differences between

the model field and the observations. This is accomplished by solution of an

overdetermined linear system

Y =AX	 (S)

where Y is a column matrix of the N magnetic field observations, A is an N x M

matrix relating the observations to the model parameters, X, arranged as a

length M column matrix of the g nm , hnm , Gnm , Hnm coefficients. The details of

the 4i3ual least squares procedure in this application are summarized in Acuna

and Ness (1976b) .

'The shortcomings of this usual spherical harmonic analysis as applied to

the magnetic field observations at Jupiter have been discussed by both teams

of invest igrsto rs involved (Davis and Smith, 1976; Acuna and Ness, 1976b) .

Briefly, these shortcomings fall into two distinct areas which will be

discussed separately. The first involves inadequacies of the basic model and

the second involves the often peculiar properties of linear systems.

EXTERNAL FIELDS

Inadequacies in the basic model include the assumption that the data were

obtained in a source-free space and the inefficiency of modeling fields due to

external currents as an expansion of the form (2) with a limited number of

terms. In the spherical harmonic analysis of Voyager 1 and 2 magnetic field

data (Ness et al., 1979a,b) the reduced g10 terms were attributed to the

repeated passage of these spacecraft through an annular current sheet (i.e.,

the magnetodisc) circling Jupiter. It is now clear (Connerney et al., 1981)

that Pioneer 10 and Voyagers 1 and 2 were repeatedly immersed in a current-
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carrying region even as they traversed the innermost Jovian magnetosphere.

Azimuthal current, densi`ies in the magnetic equatorial plane of s 5 x 106

A/RJ2 at a radial distance of 5 R J were typical of models considered for both

Voyager and Pioneer 10 encounters. Consequently, it is necessary to analyze
these data in the context of a model which is applicable in a region of space

containing sources. Whilo it is quite possible that Pioneer 11 remained in

source-free space during .encounter, it is most probable that the magnetic

field observations include a sizeable contribution from the external current

system. Some of the 'systematic effects' in the residual (cbserved minus

calculated field) noted by Davis and Smith (1976) in their analysis of the

Pioneer 11 vector helium magnetometer data attest to the presence of this

sheet perturbation field. For this encounter ti,e problem is one of 'leakage'
or aliasing Of the field due to external currents into coefficients describing

the internal field (gnm , hnm).

A reasonable starting point in the effort to construct, improved models is

to concatenate a spherical harmonic expansion of the type (2) containing only

internal terms with an explicit model of the current system in the Jovian

magnetosphere. While several models of the Jovian ►nagnetosphere and external

current system exist (Barish and Smith, 1975; Goertz et al., 1976; Jones et
al. (1980); Beard and Jackson, 1976; Engle and Beard, 1980; Connerney et al.,

1981) only the model of Connerney et al. (1981 1) represents a detailed vector
fit to magnetometer observations in the innermost magnetosphere (< 20 R J ), the

region of importance here. The other models represent qualitative fits (Beard

and Jackson, 1976; Engle and Beard, 1980; Barish and Smith, 1976) or are

applicable in the more distant magnetosphere (Goertz et al., 1976) and often
match only scalar magnitude. The Euler potential models of Goertz et al.

(1976) and Jones et al. (1980) are valid only in the near equatorial region of
the distant (R > 20) magnetosphere, while the Biot—Savart model of Jones et

al. ( 1980) was compared only with observations obtained at radial distances

exceeding 20 RJ. Thus the Connerney model, particularly the analytical

approximatio:is discussed in the Appendix to Connerney et al. (1981), will be
utilized to describe the external field. In a combined model we write

B - Bi +b
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where B is the total field, b the perturbation field due to external currents,
and Bi is the internal field. 8 1 is derivable from a scalar potential (1) and

F is computed as the curl of a vector potential A due entirely to external

currents. 'Y'heparameters of the model external current system and modol

internal field can then be simultaneously determined by inversion of the

magnetic field data. In this paper we treat the parameters of the modeled

external current system as fixed constants, determined by the V1, V2, and P10

encounters. Thus we assume at present that the near axis field due to

external currents in the Jovian magnetosphere is time invariant, such that the

model field fitted to the V1, V2 and P10 observations is appropriate to the

P11 flyby as well. The magnetic field of the magnetopause and tail current

systems is estimated to be only a few gammas in magnitude in the inner

magnetosphere ( Engle and Heard, 1980; Ness et al., 19790) and is neglected in
the computation of S.

The perturbation field, b, is computed using the approximate formulas

given in the appendix to Connerne y et al. (1981) for the near-axis region of
the Jovian magnetosphere ( in magnetic equatorial coordinates)

6p = ( µ01o) 
p 

[11F 1 - 11F23
2	 2

and

Bz = (µ 0 ) [2D ( Z2
 + a2)-1/2

2

p2 ( Z-D - Z+D) - 2D
( Z2

 + b2)-1/21

4 F 1 ^	 F 2

where

F1 z [(z-D ) 2
 + a231/2

F2 = [(z+D ) 2 + a2]1/2

p and z are the radial and vertical coordinates, D is the annular current,

sheet half- thickness, and a ( b) is the inner (outer) radial extent of the

current annulus. For the V1 sheet model used in this paper, we adopt (µoIo/2)
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: 225 0 a = 5 R J , b = 50 R J , and D = 2.5 R J , the resulting field quantities

expressed in gammas. Magnetic field quantities in the usual System I11 (1965)

coordinate system are obtained by the appropriate coordinate transformation.

The magnetic field topology in the magnetic equatorial plane of the field due
to the V1 model current is illustrated in Figure 1. - The magnitude of the

field due to the sheet currents at the origin is 0 200Y.

GENERALIZED INVERSE THEORY

The analysis of a linear system of the type (5) is conveniently

accomplished using the generalized inverse theory that has been successfully
utilized in the last decade in a number of branches of geophysics (Jackson,

1972; Pedersen, 1977; Wiggins, 1972) . Instead of proceeding directly with the
linear system ( 5) , however, we will present the methodology in a form

applicable to non-linear problems, in anticipation of non -linear relationships

between the observations and the model parameters. For example, field

magnitude observations ( obtained while the spacecraft traversed Jupiter's

shadow and lost orientation information) are non-linear in the parameters of

the usual spherical harmonic models. Vector field observations are

non-linearly related to model parameters in the context of the kind of models

suggested in the previous section. Indeed, should correlative observations be

included in the inversian process, it is likely that they too will be

non-linear in the model parameters.

We assume that the i-th observation, Y i , is related to the model

parameters by the function F i ( x i ) , The functions F i (x^) may be expanded in a

Taylor series about some initial parameter set, x100

0

Y  = F i ( X 1 o ) +
aFiI

Ax  + •••
aXj1 o

Neglecting all but terms of order . 1, and letting AY i = Y  - Fi(X10),
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DYi	
Ei

— I	 AXE
ax j	 X oj

which has the same form as the matrix equation

X A Z (5)

If we let the column vector 4 represent the model residuals (observed minus
modeled field), the vector X represent the parameter corrections requirad to

bring the model into closer agreement with the data, and the A matrix, a

matrix of partial derivatives of the model field with respect to th-e model
parameters, i •e . ,

A a	 aF1 ...... 
aF1

aX^ axM

aF N 	aFN

aX 1 	aXM

We will proceed with (5) with the understanding that non-linear problems are

accommodated by considering them to be locally linear and iterating to a final

solution.

The matrix formulation of the generalized inverse method utilizes the

singular value decomposition of Lanczos (Lanczos, 1961) to rewrite (5) as

?=un7T x
	

(6)

where Q is an N x M matrix consisting oT the M orthonormaliced eigenvectors
associated with the M largest eigenvalues of AAT ,	 is the M x M matrix

consisting of the orthonormalized eigenvectors of ATA as columns, and A is an

M x M diagonal matrix consisting of the eigenvalues, a i , of ATA. The d matrix

is by convention assembled with the largest X  in the upper left, all elements

Positive and in order a 1 > A2 > • • . N M I i.e.,
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A l 0	 .... 0

w.
A	 o Y)

0 aM

Oporating on the left with QT , we write

	

(GTY) _ 7(7TR)
	

(7 )

Since A is an M x M diagonal matrix (7) can be regarded as M independent

equations relating ' eigendata' (on the left) , through the eigenvalues a i , to

eigenvectors of parameter space, the linear combiration of the original

parameters VTA• The solution to (5), that is, the parameter vector X

minimizing in a least squares sense (Lanczos, 1961) the differences between

the model and observations, is given by

	

IZ7A
-1 UT 	 (8)

writing 9 r QT 4, the solution can be constructed by a summation over the

orthonormalized Vi of parameter space;

M

= Z	 (s i/a i ) V i
	 ( 9)

i=1

Considerable insight into the estimation problems can be obtained by an

examination of (9) . Assume that in the original statement of the problem
( equation 5) the data are (by suitable transformation--see Jackson, 1972)

normal random variables of zero mean and unit variance. In (9) the si are
then of unit variance. The variance of the parameter vector ( solution) is
largely due to ,just a few of the a i ' s of the A matrix corresponding to the

directions in the parameter space (71 
I s ) along which the solution is poorly

determined. The singular value decomposition yields not only a method of

constructing solutions but a characterization of both parameter and data space



as well.

4!e stated earlier that magnetic field observations along a flyhy trajec-

tory are insensitive to certain linear combination of parameters. One

advantage of the singular value decomposition is that these parameter vectors

which are poorly constrained by the available observations are explicitly

identified, i.e., they are the eigenvectors associated with the small

eigenvalues of TTX. To illustrate this, we show in Figure 2a a surface

isointensity contour map of a maliciously constructed, hypothetical Jovian

magnetic field. Illustrated in Figure 2a is the surface expression of a

particular combination of internal field parameters ( eigenvector of parameter

space) which leads to a virtually unobservable magnetic field along the

Pioneer 11 trajectory, but a significant field elsewhere. Had Jupiter's

Internal field been so constructed, the Pioneer 11 fluxgate magnetometer would

not have detected it. We have in this example assumed observations within 5

R J at v' .5 minute intervals and a random noise component of .005 G everywhere;

the parameter set for this example i.s ,just the appropriately scaled

eigenvector associated with the minimum eigenvalue. In Figure 2b we ahow the

surface isointensity contour map of an internal field which would be

undetectable; assuming measurements with a random noise component of 1 1,10 of the

ambient Jovion field magnitude rather than a constant noise component as in

2a. Observations within 5 R J of Jupiter at 0 1 minute intervals are as g uned .

Note that in this example the field magnitude is smaller but comparable to the

previous example, and that the eigenvector is considerably different,

reflecting a difference in information content in the two data sets.

The q matrix is a function of the trajectory, the model, and the

transformation utilized to condition the data. If the model chosen is

sufficiently accurate, or descriptive of the magnetic field environment, the

Y  (observed minus modeled field) will be of zero mean. Each observation, Yi9

and correspondingly, each row of the A matrix is divided by the estimated

standard deviation of that observation, v i , such that the standardized

variable Yi/a i has a unit standard deviation. Thus the residual for each

observation is scaled with the width of the population from which it was

drawn, its expected error. For independent observations, the A matrix assunes

the form

12.



1	 aF 1 	 1	 aF1

a1 ax 	 cN

1	 aFN 	1	 aFN

a 
	 ax 	 °N ax 

^	 r

corresponding to a least squares minimization of

(Y-AJX) T 5(Y —A 2)	 (11)

where the matrix 5 is the diagonal matrix with elements D i = 11a i2

For data which are not statistically independent, the inverse covariance
matrix of the observations replaces b in (11) (Jackson, 1972). In either case

the choice of weights relates to the statistics of the noise on the data, and,
by modification of the A matrix (10), alters not only the final model but the

orthogonalization of data and parameter space as well. Thus care must be
taken to insure that the weights chosen reflect some real knowledge of the
noise statistics of the data.

We have thus far assumed that the M eigenvalues, a i , of the matrix ATA

are non-zero, in which case (9) represents the classical least squares

solution, The Lanczos inverse also leads to a solution when only K of the M

eigenvalues are non-zero. The non-zero X i are arranged in the diagonal matrix
A as before with X i , i > K = 0. Equation (9) becomes

K

(K) = E	 ( S i /A, i ) 7 i	 (12)

i=1

i.e., only the eigenvectors corresponding to non-zero eigenvalues are allowed

in the solution. Those parameter combinations which, by (6), do not

contribute to the observations are :ignored in the construction of the solution.

The minimum length solution (12) is unique in the space spanned by the K

eigenvectors V i , i = 1, K, and has no projection along the remaining M-K
eigenvectors (corresponding to the zero eigenvalues) which define the region

13
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of parameter space that is inaccessible to the present linear system. This

inaccessibility reflectes a basic lack of information inherent in the

available observations. The unavoidable consequence of such a deficiency is a

lack of parameter resolution, that is, the existence of linear combinations of

parameters (V i , i = K+1 ... M) which may be added to the solution o" the

linear system without change to the model response.

Eigenvalues which are non-zero but small lead to a similar loss of

resolution when noise on the da':a is considered. The projection of the

solution vector onto the V i corresponding to the large X i will be well

constrained; the projection onto the V i associated with the small A i will be

relatively poorly constrained, by virtue of the factor (A iA	 in (12).

Errors in the parameters resu;,ting from noise upon the observations will

appear predominently in linear combinations corresponding to the poorly

determined eigenvectors. A vivid and perhapi more fam,%liar example of this

effect occurs in the geomagnetic field models derived from scalar

observations. ;tern and Brede %amp (1975) have shown that errors in field

models derived from scalar data are enhanced for certain sequences of terms,

first derived by Backus (1970). This 'Backus effect' , subsequently observed

(Stern et al., 1981) in models derived from Magsat observations, suggests the

ne;;r-singular nature of the A matrix for this problem, and the presence of

eigenvectors (related to the Backus series) which have Small associated

eigenvalues. Again assuming the data have been transformed such that the Yi

are statistically independent and of unit variance, the variance of the jth

model parameter is

K<M	
Vji 2

S2 j (K)	 E	 03)

i=1	 xi

In constructing a solution vector, we are free to restrict the solution to K <

M eigenvectors, reducing the parameter variance to an acceptable level. In so

doing one avoids a, large contribution to the r=rameters due entirely to a

small noise component on the data, at the expense of an unavoidable loss of

model parameter resolution.

14



Parameter resolution is conveniently described by the resolution matrix,

R, (e.g., Jackson, 1972) relay ing the K eigenvector parameter estimate R(K) to

a solution of the linear system (5) ,

R(K) =
7nK".1 QTY

., v nK-1 
UT 

'u ! 
VT R

-QKQKX

7K V
T

The subscript K to a matrix denotes the matrix obtained by setting each column
i for i > K of the original matrix to zero. An element R i (K) of the estimated

solution is the convolution of the ith row of the resolution matrix with a

solution of (5). For K o M, the R matrix is the identity matrix; as fewer

eigenvectors are admitted in the construction of the solution, the R matrix

off—diagonal elements grow at the expense of the diagonal elements, reflecting

a loss of parameter resolution. An example illustrating the trade-off between

parameter standard deviation and resolution is given in Figure 3. in this
example we assume an internal spherical harmonic field model of order 3 and

500 vector magnetic field observations along the Pionuier 11 trajectory within
5 R J of Jupiter, the observations including a noise component with .005 G

standard deviation. The RMS model residuals 910 
parameter resolution

(diagonal element of R) and the g10 parameter standard deviation are shown as

a function of the number of eigenvectors admitted in the construction of a

solution. The very modest improvement in model fit (RMS) attained by using

the last two eigenvectors is accompanied by a large increase in parameter

standard deviation and only a small gain (2%) ir-i parameter resolution. An
es^imate for g 1 0 of 4 .35 G, based on the 13 ev fit, may be more appropriate

than the estimate of 4.18 G resulting from the 15 ev solution. With 13 ev,
the off—diagonal terms of the resolution matrix are sufficiently small that
'leakage' from the higher order parameters ( which are presumably small in

magnitude) inco the g10 estimate should not be important, i.e., 910 is
expected to be adequately resolved at R 11	 .98.
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The advantages of obtaining additional magnetic field information far

removed from the observations available along the flyby trajectory can be

understood by considering only the poorly determined parameter vectors. Such

information may include the correlative observations referred to earlier as

well as additional in situ magnetic field observations. The additional

observations will in general be in regions where the poorly determined

eignevector• s lead to relatively large fields (e.g., Figure 2) . These new

observations effectively limit the range accessible to the previously poorly

determined eigenvectors, acting as a constraint on the solutions. This can be

quantitatively explored by forming a combined system of all the observations

(e.g., equation 10) and comparing the new eignevalues with the old, or in an

approximate way (Jackson, 1972) by estimating the (larger) eigenvalues of an

augmented A matri;: of N + 1 rows. The potential benefits in terms of improved

model parameter variance and resolution are great since they der ,pnd critically

upon the minimum eigenvalue.

To define the entire range of values a parameter may assume, we use the

concept of an extreme parameter set as developed by Johansen (1977) . Because

of correlations between the parameters, the extreme value of any parameter is

achieved for a specific parameter vector--its extreme parameter set. This

represents :'ze direction in parameter space along which the model response

(RMS change) is minimized for a change In a specified parameter. This

direction is found by considering the change in the model response, AQ, due

to an excursion, e, in parameter space from the model minimum

&Q - ET 712 VT e
	

(14)

In the coordinate system defined by the eigenvectors +' i , AQ is given by

AQ = e'T n2 Er
	

(15)

describing an M dimensional hyperellipsoid with axes parallel to the 7 i I s of

length a 1/X i . The extreme parameter set associated with the extreme values

of the ith parameter is determined by requiring the gradient of the error

surface to have only a component along the ith parameter.
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Q A2 PT I  = 3a
1

where a  is the column vector with the ith element equal to one and all others

zero, resulting in

Ei-57A2VTai	 (16)

where S is a constant and E  is the extreme parameter set for the ith
parameter. Any linear combination of the model parameters may be extremized

in this fashion. *n actual practice one perturbs the solution ill the

direction given by (16) until AQ appropriate to a specified significance level

is achieved to find the magnitude of the extreme parameter sets, as suggested
by Johansen ( 1977). This procedure requires that the problem be sufficiently

linear in the neighborhood of the solution such that the basis vectors of
parameter space (7 1 1 3) are not appreciably altered in the process. The

problems considered here are sufficently linear that we may use for S the

value obtained from the linear approximation, resulting in

91 = V A
-2 f ai/j1 A-1 vT a 1 11	 (17)

for AQ = 1, corresponding to a 68^ confidence limit.

One additional practical consideration relating to the non-linearity of

the problem has to do with the method ( 9) of construc ting solutions at each

iteration. If the A matrix is close to being ill-conditioned in the sense

that some of the 1i are very small, the solution vector will require a large

step in parameter space which may well be greater than the region in which the

linearization is appropriate. The iterative process may then diverge unless

some method of limiting the iterative step size is employed. In such cases
the Stability of the iterative procedure is improved by limiting the step size
(noteably in the directions corresponding to the small eigenvalues) by using

(e.g., Lawson and Hanson, 1974, Chapter 25)

	K 	 $i a

	

X = I	 V	 (18)

i=1 (1 12 + a2)
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where a is chosen approximately equal to the smallest eigenvalue included in

the inversion. This technique (known as Marquardt's algorithm) is invoked

only as convergence problems arise and is quite vmnecessary in the context of

the present nearly—linear problems considered here.

APPLICATION TO PIONEER 11 OBSERVATIONS

The Pioneer 11 spacecraft had onboard two magnetic field experiments

(Smith et al., 1976; Acuna and Ness, 1976) , each of which recorded the

magnetic field along the Pioneer 11 trajectory. The vector helium

magnetometer (VHM) has been described by Smith et al. (1975) as accurate at

the 1% level (at low field values) whereas the high field fluxgate ( FGM) is

essentially a constant noise instrument with a quantization uncertainty of

.006 gauss ( Acuna and Ness, 1975) . The high field instrument would be

expected to provide a better estimate of the Jovian field near close approach

(I 8I s 1.13 Gauss at the inbound occulation) while the vector helium

magnetometer would out perform the fluxgate in a low field environment. In

either case the random noise component assumed in what follows is a sum of all

noise sources, including, for example, instrumentation noise and local

magnetospheric noise. A single least squares fit to the combined data sets,

each observation appropriately weighted as discussed in the previous section,

would result in the optimal model. Unfortunately, the two data sets are

incompatible in the sense that the systematic differences in the observed

field as measured by the two instruments are larger than expected on the basis

of the instrument descriptions. This is illustrated in Figure 4, which shows

the differences between the VH14 and FGM measurement, for each component of the

field during encounter as a percentage of the total field magnitude. Rather

than produce a model which fits neither set of data, we will of necessity

continue the practice of considering each data set independently. Resolution

of the differences between the two data sets is beyond the scope of the

present work.

The FGM observations have been analyzed by Acuna and Ness (1976a,b) in

the traditional least squares fit to a spherical harmonic expansion of order 3
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including internal terms only. They obtained the GSFC 0 4 internal field model

as the unweighted least squares solution to 685 vector observations at radial

distances of R < 6 Rio Details of their analysis are given in Acuna and Ness

(1976b). We will first present the results of a similar analysis, assuming an

expansion of internal harmonics to order 3, but within the framework of the

generalized inverse methodology. A model explicitly including the effects of

the field due to external currents will then be considered.

Our FGM data set consists of 499 vector observations obtained

approximately every 35 seconds along the Pioneer 11 trajectory within 5 R 

radial distance, and 20 fiei;! magnitude observations obtained near closest

approach when the orientation of the spacecraft is uncertain. Inclusion of

the magnitude observations along this part of the trajectory increases the

information content of the data set at the expense of introducing some

non—linearity in the estimation problem and requiring an iterative solution.

Since the FGM is essentially a constant noise instrument ( Acuna and Ness,

1975), and the FGM observations are limited by instrument noise, we choose for

each observation equal weights (Eqn. 10) of o f a .005 Gauss, The use of equal

weights i,ltroduces only a scale factor as compared with an unweighted least

squares and does riot effect the orthogonalization of parameter space or the

final model. Assuming as a model a Schmidt norm;7,lized spherical harmonic

expansion of order n = 3 (internal terms only) we find after two iterations a

15 eigenvector fit (Eq. 9) very similar to the GSFC 0 4 model, differences

between the two solutions due only to a difference in observations used. The

salient features of the singular value decomposition are illustrated in Figure

5, at the final iteration. In this figure the eigenvalues of the A matrix,

and the associated eigenvectors of parameter space are listed, in addition to

the solution vector, parameter standard deviations (Eq. 13) and extreme

parameter sets (Eq. 16) . A diagnostic parameter ' lin' is also indicated: this

is the cosine of the angle between the parameter vector and the local normal

to the error surface. A change in the value of an individual parameter with

lin = 1 results in a comparatively large model response (RMS increase) since

that parameter vector is nearly perpendicular to the error surface, that is,

it is oriented in the direction of the maximum model response (RMS change)

The weighted RMS residual is computed at each iteration assuming internal

consistency (Birge, 1932)

19



2	 N
S INT° N—'

Z 1/ci2

essentially a prediction of the probable error based on propagation of errors,

and also assuming external consistency

N
2

S2 
EXT R--

Z 1/ci2
based on the realized differences, c i s A comparison of these two estimates is
often useful in identifying the presence of systematic effects in the data.

The eigenvalues for this system range from x650 to 010. The classical

measure of the condition, or stability, of a linear system is the 'condition

number' , v, defined as the ratio of the largest and smallest eigenvalue

( Lane zos , 1971) ,

v = _

^M

or sometimes the square root of the above. In the present example, a
'condition number' of v : 65 is interpreted in the following way: errors in

the 15th generalized parameter (15th eigenvector) can be expected to be 065

times larger in magnitude than errors in the 1st generalized parameter. The

'condition number' is thus a useful tool in diagnosing the need for a singular

value analysis, but it cannot address individual parameter errors or

resolution, or correlations among the model parameters.

Inspection of the eignevectors associated with the eigenvalues of the A

matrix is useful in visualizing the characteristics of the problem solution.

For example, in Figure 5, the eigenvectors associate with the mall eigen-

values are the linear parameter combinations which are poorly constrained by
the observations. The parameter with the smallest absolute error (J 	 2;
parameter g 1 1 ) has only small components among the last (poorly determined) 5

eigenvectors, that is, it is well approximated by a linear combination of the

first (well determined) 10 eigenvectors. Conversely, the parameters with the

1
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largest absolute errors (J = 11, 9 32 , and J = 13, h3 1 ) are those which are	 j

heavily represented in the last few eigenvectors. Furthermore, these two

parameters are equally represented in the 15th eigenvector but with opposite

signs, indicating a strong negative correlation between these two parameters.
A change in the parameter g 32 will most likely be accompanied by a nearly
equal and opposite change in the parameter h31 A similar relationship exists

between the parameters 9 3 1 (J : 10) and g33 (J = 12) , as evidenced in the 14th
eigenvector. i

The extreme parameter sets are listed in Figure 5 for each parameter,

computed using (16) . These are the parameter combinations which may be added

to or subtracted from the optimal solution to achieve the extreme values of
each individual parameter. The error surface chosen here is &Q = 1

corresponding to a 68% confidence limit.

A useful illustration for the purpose of emphasizing the differences
between internal field models is a surface isointensity contour map such as

that in Figure 2a. Figure 2a, the 'undetectable planet' was constructed by
selecting the internal field coefficients to be proportional to the 15th

eigenvector, that combination of parameters to which the observations are

least sensitive. It is perhaps more instructive to compare the surface

isointensity contour map corresponding to the best fitting model (Figure 6)

with the surface isointensity contour maps that result when this parameter

vector is added to (Figure 7a) or subtracted from (Figure 7b) the least
,:quares solution. These two extreme models lead to differences in the surface
field magnitude of s1 G.

While this example is representative of the differences in field

topology and magnitude appropriate to the range of models consistent with the

observations, it is by no means unique. Any linear combination of the poorly
determined eigenvectors, consistent with the constraint (14) and some chosen

significance level (OQ) , can be added to the least squares solution with
similar results. The surface isointensity contour map corresponding to the

least squares 15 eigenvector solution,, is practically identical to that of the
GSFC 04 model of Acuna and Ness (1976), reflecting only differences in the

radial extent of observations included in the analysis and the inclusion of
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additional magnitude obsarvations near close approach. Thus, the model

uncertainties illustrated in Figure 7 can also be regarded as typical of the

04 model.

For some applications a model constructed of only 13 eigenvectors,

ignoring the last two (poorly determined) eigenvectors, may be preferable to

the 15 eigenvector solution. In Figure 3 it is clear that the 15 eigenvector

fit is only marginally better than the 13 eigenvector fit in terms of the RMS

of the residuals ( although the 14th and 15th parameter vectors are statisti-

cally significant, in that 
014 

and 015 > 1). The loss in parameter resolution

that results in constructing the solution with only the first 13 eigenvectors

is illustrated in Figure 8, which lists the resolution matrix as well as the

quantities discussed in the context of the 15 eigenvector fit. All of the lour

order terms (n	 1, n - 2) are well resolved, since the corresponding diagonal

elements of the resolution matrix are near unity. Additionally, the g30 term

(J - 9) is well resolved, and the h 3 3 term (J = 15) somewhat less so, The

remaining 3rd order terms are rather poorly resolved. The surface

isointensity map of this model field, illustrated in Figure 9, is more dipolar

than that of the 15 eigenvector fit as a result of the concentration of higher

order parameters in the unused eigenvectors. While the 13 eigenvector model

may provide a better estimate of the well resolved parameters, it is unique

only in a subset of parameter space. We are free to add linear combinations

of the excluded eigenvectors to the solution, subject to some maximum

allowable RMS increase corresponding to a chosen significance level.

Two observations remaining to the model residuals for the FGM data se.

are of importance in regard to the significance level corresponding to the

choice of aQ - 1. The first is that the RMS of the residuals, 0500 Y, is

largely due to the quantization step size of the instrument; the true

instrumentation noise is a fraction of that. The second is that the

quantization noise is not random, rather, it exhibits a positive correlation

at small lags and a negative correlation at larger lags. The correlation

length is several samples (minutes) at large radial distances (5 R J ) where the

field is comparatively small. At small radial distances the correlation

vanishes. The quantization errors, however, do not seriously affect the

model, as they are as often positive as negative. In constructing solutions

M M
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(9) only the quantity 9 = QT? is important, and the sum over the quantization

errors is likely to be small since each positive residual is paired with a

nearly equal negative residual in the immediate vicinity. The quantization

errors contribute substantially to the RMS of the residuals, but not

appreciably to the model misfit. Thus the correlation among the residuals,

effectively dotcraasing the number of independent observations, is largely

Offset by the decrease in the estimated noise upon the data (disregarding the

quantization 'noise').  For this reason we regard the choice of a = 500 7,

corresponding to s 68; confidence level of a Gaussian distribution as a

conservative estimate.

We have demonstrated that a sizeable parameter vector can be found (e.g.,

Figs. 2a, 2b) which leads to a small field along the Pioneer 11 trajectory.

In much the same wry a small field ( systematic 'error) along the Pioneer 11

trajectory can lead to a large error in the estimated parameters. The

magnetic field of the large scale azimuthal currents produce a large (.,200y)

correlated 'error' along the entire Pioneer 11 trajectory under consideration

(Conne, • ney et al., 1981) . This 'error' contributes substantially to d	 UTY

due to the large positive correlation (no cancellation) and thus results in a

significant bias in the derived internal field models. The best way to remove

such a bias is to include explicitly the magnetic field produced by these

currents in the physical model chosen to represent the observations. A 15

eigenvector fit to the FGM observations, assuming a N = 3 internal spherical

harmonic expansion and the V1 model external field, results in a modest RMS

decrease to 492 y but a significant change in many of the model parameters

(Table 1). Comparison of the surface isointensity contour map of this model

field (Figure 10) with that of the earlier 15 eigenvector model (Figure 6)

indicates surface field magnitude errors of 'A l Gauss result from neglect of

the external field in the earlier model. Differences in the internal field

parameters resulting from inclusion of the sheet field are as large as s .12 G

(Table 1) and often larger than the corr oes pond ing parameter standard

deviations. Thus the presence of an unmodeled field of external origin is at

least as important as the noise on the data in this examaple. Since no

additional free parameters have been introduced (the parameters of the current

sheet regarded as fixed, determined by the more advantageous Pioneer 10 and

Voyager flybys) the singular value decomposition remains unchanged. A
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formulation of this problem in which the sheet parameters are treated as

variables would show more clearly the interdependence of the internal

coefficients and the curriint sheet parameters.

The VHM observations have been analyzed (Smith et al., 1976; Davis and

Smith, 1976; seer also Smith and Gulkis, 1979) in the traditional least squares

fit to a spherical harmonic expansion.	 Noteable differences in their

analysis include a larger radial range of observations used (r < 8 R J ), the

use of external spherical harmonics in the expansion (2) , and the use of a ra

weighting scheme whereby all observations are weighted with some power of the

radial d13tanee of the observation. For reasons discussed in Davis and Smith
(1976) this group prefers a r3/2 weighting of each observation. In addition,

they use (Davis and Smith, 1976) 05 minute averaged values of the observed
field along the trajectory in their analysis.

Our VHM data set consists of 324 vector (-, 1 minute averages)

observations within R s 5 R J of Jupiter as obtained from the National Space

Science Data Center at Goddard Space Flight Center. In contrast to the

uniform weighting appropriate to the FGM observations, we adopt for the VHM

observations weights proportional to the local field magnitude, c i = .01 JBi .

The constant of proportionality adopted here (.01) enters only as a scale

factor in the error analysis. This particular weighting, appropriate for

observations with a noise component of 1 0o of the local I BI , results in a more

heavily weighted (in r) system than any of the r°` schemes proposed by Davis

and Smith (1976) . ( The weights, Wi t defined by Smith et al. (1976) and Davis

and Smith (1976) appear linearly in their formulation of the least squares

problem. Therefore these w  must be compared to the 34uare of the weights

01a i ) appearing in this work.) The resulting model ( listed in Table 1) leads

to a surface isointensity contour map, illustrated in Figure 11, that is much

more similar to that of the FGM (or GSFC 04 ) modal than previous analyses of

these data (using r3/2 weights) would suggest. The choice of weights

proportional to J BI affects not only the final model but the orthogonalization

of parameter space as is illustrated in Figure 12. We have assumed in this

example a model field of internal terms to order 3 so that the VHM and FGM

inversions can be directly compared. Comparing the eigenva.lues of the two

inversions, we note that the FGM observations lead to a slightly better
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determination of some eigenvectors and a poorer determination of others. Yet

individual parameters would be better determined by the VHM inversion since

they require a summation over many eigenvectors. The 'lin' diagnostic

parameter demonstrates that all of the dipole parameters is the VHM inversion

lie closer to the eigenvectors of parameter space in this problem and

therefore are more easily estimated independently of the other parameters. A

detailed study of the remaining features of this singular value decomposition

is similar to the FGM example and thus will not be repeated; instead we will

address an additional concern of systematic errors present in the VHM model

residuals.

The fact that the model residuals are characterized by an extremely large

correlation length precludes any attempt to quantify the parameter errors.

For this reason the extreme parameter sets have been omitted and the quoted

parameter standard deviations are to be disregarded. These systematic errors

include the presence of an unmodeled external field, which we shall return to

shortly, and systematic errors associated with instrumental range changing and

other affects ( see Davis and Smith, 1976, Figure 1 and accompaning

discussion) . While these effects are only as large as s .5 or 1% of the total

field they do dominate the observed residuals. Another systematic effect in

previous analyses of these data involves the use of 5 minute averages of the

field as instanteous values. Near close approach, the 5 minute averaged field

differs by as much as 0.6% from the instantaneous field at the midpoint of the

data averaging interval (which is used as the model field) . Since this effect

is comparable in size to the observed residuals it seems appropriate to use 1

minute averages instead or compute the model response as the averaged field

over the measurement interval. We have chosen to use of minute averages as

supplied by the NSSDC for computational convenience.

Inclusion of the magnetic field contribution due to the external currents

in the analysis of the VHM observations leads to a much improved fit to the
observations. The resulting parameter set, listed in Table 1, leads to a

surface isointensity contour map (Figure 13) that still resembles the previous

map but differs in field magnitude by o1 G at the surface. Differences in the

internal field parameters are as large as s .2 G, occurring predominently in

the quadrapole and octopole terms. A more dramatic decrease in the RMS of the
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residuals from 93 Y to 57 Y results from the use of the V1 current sheet model

in the inversion, in contrast to the relatively modest improvement (504 Y to
492 y) noted in the F'GM fit. It is worthwhile to note again that this

improvement in the RMS residuals is not gained at the expenme of additional

free parameters, i.e., the sheet field is regarded as a known (based on the

other Pioneer 10 and Voyager t, 2 flybys) quantity. A relatively modest

further improvement in the RMS of the residuals (to 56Y) is obtained by

assuming either a closer inner radius of 4 R J rather than 5 as in the V1

model, or a constant u0 Io/2 s 250 rather thati 225 as in the V1 model. Again,

a simultaneous inversion of the internal and external field parameters would

yield more information, but must await further analysis of the Voyager

observations. The kind of correlations existing between internal and external

field parameters that would be evident in a singular value decomposition of a
ecmh' .ned internal / external system are already implied in the present analysis.

Note that the internal field parameters have been able to 'absorb' most of the

external field, which averages 0200 'Y along the tra,jtctory. The ability of
the external field to partially masquerade as internal coefficients, leading

to the large parameter changes indicated in Table 1, portends such an

interplay of internal and external field parameters.

DISCUSSION

The internal Jovian field models presented here differ substantially from

the models of Acuna and Ness (1976) and Smith et al. (1976) . In the first
case the difference arises almost entirely out of a consideration of the

fields of external origin, while in the -Qcond both the weights applied to the
observations and the inclusion of the fields of external origin contribute to

the difference. The resulting models are found to be more similar than
previously thought. The large differences in the models of Table 1, based on

the VHM observations, and the models of Smith et al. (1976) bears witness to

the effects of the weighting scheme utilized to condition the observations,

and to the increased importance of external fields in this data set. Indeed,
the weights utilized in this .riper as appropriate to the VHM observations have
in fact made the model more sensitive to small fields at greater distances and

elevated the importance of unmodeled external fields.
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The differences between the internal field models advocated here (GSFC 15

%vs and JPL 15 evs, outlined in Table 1) and previous models are more readily

apparent, in Figures 14 and 15. In Figure 14 we compare the GSFC 15 evs and 04

models on the (oblate) Jovian surface by contouring the difference in field

direction and the normalized difference in field magnitude resulting from each

model, These differences are greatest in the northern hemisphere, where the

local field angle differ-s by up to 4 0 and the local field magnitude differs by

as much as d%. In Figure 15 the same comparison is made between the JPf. 15

evs model and ti;e SHA 23 model. He re again the differences appear greatest in

the northern hemisphere, where the local field direction differs by up to 300

and the local field magnitude differs by as much as 50%. A similar comparison

between the JPL 15 evs and the more recent P11A model (Smith et al., 1976)

leads to differenck contours much like those illustrated in Figure 15 but with

maximum differences of 18 0 in field angle and 20% in field magnitude. The

P11A model is a tit to observations obtained by both Pioneer 10 and 11,

however, and therefore is not directly comparable to the JPL 15 evs model.

But the inclusion of additional observations along another trajectory in the

P11A model fit apparently results in an internal field model that more closely

resembles the JPL 15 evs model presented here.

The generalized inverse technique described here should prove valuable

not only in the estimation of planetary magneic fields and the study of

non—uniqueness problems encountered in geomagnetic models based on scalar

observations (e.g., Stern et al., 1981) , but in a variety of other

multivariate problems as well. The methodology has been widely used in

related geophysical disciplines in the past decade and has proven to be a

powerful analysis tool. Indeed, some (e.g., Wiggins, 1972) consider

multivariate inversion studies without such resoluti->n analyses to be

incomplete at best, and often misleading. In such cases the magnitude of the

condition number of the (appropriately weighted) matrix to be inverted can be

diagnostic of the need for a singular value decomposition.

The kind of model advocated here, combining an internal spherical

harmonic expansion with an explicit model of the field due to external current

systems, is regarded as essential to understanding and integrating the

magnetic field observations of each of the spacecraft that have thus far
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encountered Jupiter. Perhaps one model will ultimately enable meaningful

comparisons of the various flybys and a more detailed description of the inner

magnetosphere of Jupiter. Further progress can be expected from analysis of

the Voyager observations and also possibly from further analysis of the

Pioneer 10 and 11 observations. At the present level of analysis, the small

instrumental and other systematic effects present in the VH14 observations are

the most important remaining source of errors. For the purpose of eliminating

or reducing these effects (and quantization errors in the FGM data as well)

further analysis, conducted in payload coordinates, would )ie extremely useful.

Analysis of the data in payload coordinates, while cumbersome, enables the

modeling of quantization errors, axis non—orthogonality, and range sensitivity

or gain errors. Such an analysis is not cur v ently possible with the reduced

data available at the NSSDC.
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FIGURE CAPTIONS

Figure 1. Magnetic field topology in the magnetic equatorial plane of the

field due to large scale azimuthal currents to the Jovian magnetosphere

(V1 model of Connerney et al	 1981). The current flows eastward in an

annulus 5 R J thick extending from 5 to 50 R J .

Figure 2. 'Invisible planet': Surface isointensity contour map of a Jovian

model magnetic field which would not have been detected by a magnetometer

on Pioneer 11 (a) (upper panel) assuming observations with a .005 G

random noise component; (b) (lower panel) with a noise component

proportional to the local field magnitude ( see text) . A dynamical

flattening of 1/15.4 is assumed in the determination of the surface

equipotential ( all surface maps) ,

Figure 3. Pioneer 11 FGM inversion example illustrating the trade—off between

parameter resolution and parameter standard deviation of the main dipole

coefficient (g 1 0 term).

Figure 4. A comparison of the Pioneer 11 FGM and VHM measurements of the

Jovian magnetic field within 6 R J . Quantization effects are evident at

large radial distances, but the systematic differences between the two

measurements are clearest near close approach.

Figure 5. Pioneer 11 FGM inversion example at the final (third) iteration,

Figure 6. Jovian surface isointensity contour map illustrating a 15

eigenvector solution using the Pioneer 11 FGM observations.

Figure 7a,b. Jovian surface isointensity contour maps obtained by perturbing

the FGM 15 ev solution by a parameter set ( proportional to the 15th ev)

to which the observations are least sensitive. These maps illustrate the

differences in surface field magnitude appropriate to the range of

internal field models consistent with the observations.

Figure 8. Pioneer 11 FGM inversion example illustrating a 13 eigenvector
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solution.

Figure 9. Jovian surface isointensity contour map of the 13 ev solution using

Pioneer 11 FGM observations.

Figure 10. Jovian surface isointensity contour map of the 15 ev solution

model, obtained from the Pioneer 11 FGM observations and a model magnetic

field in which external sources are explicitly included.

Figure 11. Jovian surface isointensity contour map of the 15 ev solution using

Pioneer 11 VHM observations.

Figure 12. Pioneer 11 VHM inversion example.

Figure 13. Jovian surface isointensity contour map of a 15 ev solution using

Pioneer 11 VHM observations and a model magnetic field in which external

sources are explicitly included.

Figure 14. Comparison of the GSFC 15 evs magnetic field model and the 04

model at Jupiter's surface. In the upper panel the difference in field

direction (degrees) is contoured. In the bottom panel the normalized

difference in local field magnitude ( percent) is contoured.

Figure 15. Comparison of the JPL 15 evs magnetic field model and the SHA 23

model, differences contoured as in Figure 14.
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04+fo ITERATION NUR?rER 3 M 	 +++aa++►++

NTUOIAL 33 Et ATEfRNAL I O OROOS OF'1FIT

1N! OF EI IOEJMCTORS s 15
PAAM^EA VECTOR

4.1$4 -0,442 0.528 -0,210" -0.668 0.355 -0.061 -0,433 -0.223
-0.319 0.647 -0.305 -0.337 0.116 0.314

SINii" VALUES OF A

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15

1 65,5+.717 430,400 373,533 352.283 224.787 210.074 123.227 103447 85.552 63,639 $8.931 44.022 25.270 16.874 10,537

V MATRIX

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1	 0.614 -0.364 0.478 -0,037 -0.001 -0.321 0.248 -0.072 0. OM -0,074 0.038 -0.204 0,104 -0,0;2 -X3.140
2	 0.163 -0, -0,175

-0
705 -0.035 -0,347 0,336 0,167 -0.298 -0.346 0,107 0.034 -0.002 0,043 -0.069 -0.029

3	 -0 S24 0.113 0,527 ,361 -0.321 -0,139 -0.009 -0,198 0.065 0,047 -0.162 -0,220 -0.192 0.036 -X1.090
4	 -0.125 0.123 -0.194 0.383 -0,276 -0.566 0.200 -0,031 -0..q2 -0.276 -0.300 -0.033 0.152 0.067 -0.022
5	 0.M4 0.191 0.322 0.279 -0.410 0.238 -0.472 0.204 -0.260 0.217 -0.109 0.063 0.192 -4.197 -0,192
6	 0.08$ -0.026 -0.297 -0.199 -0.515 -0.291 -0, 329 -0.030 0.2"02 -06224 0.482 0.013 -0.012 --0, 03x3 0.0"02
7	 0.311 0,211 -0,317 -0,589 -0.250 0.148 0,224 0.292 -0.066 0.015 -0.387 -0.117 0,073 0.101 -0.Ou
8	 -.0. 1% -.1.193 -0.023 -0,301 0.316 -0,369 -0.1.00 0.475 -0, 406 0.184 0,183 0,023 O,O03 -0.130 -0. M
9	 ?.099 -0.039 0.115 -0.290 0,134 0,010 -0,116 -0.240 0.050 --0:M -0.143 0.529 0.642 -0. M-) -0.066
10	 -0.079 -0.136 -0.091 0.115 -4.096 -0.217 0.183 0,115 0.444 0,456 -0.359 0,288 -0.035 -0.479 0.064
11	 -0.147 0.105 0.251 0.009 -0.137 0.067 0.381 0,397 -0.06S 0.010 0.305 -0.040 0,352 -0.073 0,589
12	 0.070 0.151 -0.078 -0.038 -0.101 -0.210 0,085 -0.260 -0.034 0.664 0.274 0.143 0.229 0.490 -0.072
13	 -0.227 0.111 -0.133 0.158 0,028 0.147 0.233 0.065 0.769 -0.021 0.201 -0.403 O.G98 -0.170 -0.591
14	 0.144 0.331 -0.037 -0.148 0.110 0.034 0,224 -0.458 -0.359 0.038 0.185 0.006 -0.110 -0.595 0.026
15	 0.004 -0.095 -0.148 -0.051 0.166 -0.066 -0.383 -0.215 0.014 0.190 -0.248 -0.54 0.353 -0.099 0.374

FAM*7ERS AND PARIS M ER AMT}ETITSP ITSIATIOi 1 3

WEIGHTED RM DEVIATION 0.00504 EXTERNAL
WIGHTED MIS MIATION 0.005,40 INTER11A1.

=	 4.184	 ADJ n 	 0.000	 STD DEV = 0.0150 ( 0.00211)LIN s	 0.7997
003	 0.006	 0.003	 0.018	 -0.004 0,007 0.020	 0.009	 -0.002	 -0.041 0.001	 0.056	 0.004	 -0.023
s	 -0.442	 ADJ =	 0.000	 STD DEV s 0.0077 (0.002881	 LIN s	 0.7948
008	 0.000	 0.001.	 0.015	 0.001 0.000 0.014	 0,008	 0,011	 -0.013 -0.006	 0.026	 0.021	 -0.006
s	 4.528	 ADJ n 	 0.000	 STO DEV s 0.0132 ( 0.00233)	 LIN s	 0.7565
000	 0.013	 0.000	 0.005	 -4.006 0.006 0.010	 -0.015	 -0.008	 -0.044 0.002	 0.026	 -0.005	 -0.025
s	 -0.210	 ADJ n 	 0.000	 SID DEV s 0.0116 ( 0.00477°	 LIN s	 0.6273
OOi	 -0.001	 0.012	 0.003	 -0.009 0,008 -0.001	 0.015	 -0.013	 -0.006 0.010	 0.012	 -0.015	 0,000
n 	 -0.833	 ADJ t	 0.000	 STO DEV s 0.0.736 ( 0.003$3)	 LIN s	 0.5660
005	 0.003	 0.001	 0.024	 -0.001 0.004 O.OM	 0.014	 0.010	 -0.034 4.005	 0.049	 0,014	 -0.020
s	 O.r33	 ADJ •	 0.000	 STD DEV s 0.0170 ( 0.00493)	 LIN s	 0.6022
001	 -0.006	 -0.006	 -0.002	 0.017 -0.011 -0.002	 -0.001	 0.018	 0.028 -0.022	 -G,016	 0.075	 0.017
s	 -0.061	 ADJ =	 0.000	 STD OEV s 0.0131 ( 0.00297)	 LIN =	 0.6908
000	 0.006	 0.007_	 0.007	 -0.014 0.013 0.007	 0.006	 -0.015	 -0.032 0.016	 0.031	 -0.021	 -0.017
_	 -0.435	 ADJ •	 0.000	 STO VEY s 0.0252 f 0.00445)	 LIN =	 0.5027
004	 0.005	 0.000	 0.021	 -0.002 0.004 0.025	 0.006	 0,006	 -0.042 -0.005	 0.05,.	 0.013	 -0.02'3
s	 -0.?23	 ADJ s	 0.000	 STD DEV s 0.0295 f 0.00713)	 LIN =	 0..346
002	 -0.007	 0.006	 0.011	 -0.001 O.GO3 0.005	 0.029	 0.002	 0.000 0.006	 0.022	 -0.001	 0.080
_	 -0.319	 ADJ s	 0.000	 STD DEV = 0.0317 ( 0.00814)	 LIN =	 0.3140
003	 -0.003	 -0.005	 0.008	 0.010 -0.006 0.005	 0.002	 0.032	 0.0I2 -0.026	 -0.004	 0.031	 0.010
s	 0.647	 ADJ s	 0.000	 STD DEV s 0.0565 ( 0.00623)	 LIN =	 0.3411
002	 -0.010	 -0.001	 -0.014	 0.000. -0.007 -0.019	 0.000	 0.007	 0, 057 ` -0.006	 -1.047	 0 ^0 4	 0.038
s	 -0.305 ADJ s	 0.000	 STD DEV = 0.03 ( 0.00883)	 LIN s	 0.2904
,002	 0.001	 0.004	 -0.004	 -0.011 0.006 -0.004	 0.005	 -0.024	 -0.010 0.033	 0.006	 -0.031	 -0.009
s	 -0,587	 ADJ s	 0.000	 STD VEY = 0.0584 ( MOM	 LIN = 0.3183
003	 0.006	 0.002	 0.020	 -0.005 0.007 0.022	 0.011	 -0.002	 45.045 0.003	 0,058	 0.003	 -0.027
s	 0.116	 ADJ s	 0.000	 STD DEV s 0.0360 ( 0.00478)	 LIN =	 0.4°M
,004	 -0.002	 -0.005	 0.009	 0.011 -0.007 0.009	 -0.001	 0.027	 0.006 -0.028	 0.004	 0.036	 0.006
s	 0.314	 ADJ s	 0.000	 STD DEV : 0.0419 ( 0.00954)	 LIN =	 0.'618
001	 -0.008	 0.000	 -0.011	 0.007 -0.005 -0.017	 0.000	 0.00a	 0.051 -0.007	 -0.0338	 0.005	 0.042

J= 1

J= 2

J= 3

J 4

J s S
1

J s 6

J= 7

J s B

•J = 9

J=10

J=11
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f;#+f ITERATION WIDER 3 ++++•+++;++Him F++#""# +t+ A+i 0+#+.++#+

PSFC PIOW II AT UPITER R ( 5 RJ
INTOWL 3 EXTcS) AL 0 ORDe"ii OF PIT

15,"̂0 0?WvATIOh'S
1aIMM CF EIGENVECTORS = 13

	

PAPAME- 	 VECTOR

4.= -0.396 0.62; -0.197 -0.635 0.295 0.015 -0.139 -0.138
-0.307 -0.013 -0.312 0.117 0.194 -0.122

SINOtA.AR VALUES OF A

	1 	 2	 3	 4	 5	 6	 7	 8	 9	 t0	 it	 12	 13	 14	 15

1 656.201 431.931 373.032 353.699 226.516 208.427 122.960 103.226 85.67' 62.979 59.562 43.692 25.2 9 16.934 10.=

C MATRIX

	

1	 2	 3	 4	 S	 6	 7	 8	 9	 10	 it	 12	 13	 14	 15

1 0.615 11.563 0.471 -0.073 -0.025 -0.331 0.243 -0.071 0.086 -0.069 0.056 -0.201 0. t(4 0.049 -0.139
2 -0.159 -0.700" -0.177 -0.038 0.363 0.309 0.167 -0.220 -0.344 0.107 0.019 -0.001 0.043 0.069 -0.029
3 -0.525 0.1I3 0.523 -0.384 0.314 -0.160 -0.012 -0.201 0.065 0.010 -0.1U -0.227 -0.189 -0.037 -0.090
4 -0.126 0.120 -0.193 0.384 0.232 -0.585 0402 -0.057 -0.236 -0.327 -0.236 -0.034 0.132 -0.070 -01023
5 0.223 0.180 0.330 0.233 0.418 0.212 -0.465 0.200 -0.266 0.1% -0.162 0.053 0.194 0.199 -0.190
6 0.088 -0.023 -0.209 -0.190 0.504 -0.319 -0.336 -0.007 0.286 -0.124 0446 0.029 -0.015 ON 0.032
7 0.309 0.223 -0.323 -0.573 0.267 0.145 0.234 0.276 -0.072 -0.063 -0.379 -17.127 0.075 -0.103 -0.083
8 -0.192 -0.189 -0.036 -0.312 -0.335 -0.358 -0.133 0.490 -0.407 O.Z28 0.136 0.016 0.009 0.1'2 -0.230
9 -0.100 -0.033 0.111 -0.293 -0.132 0.017 -0.122 -0.234 0.050 -0.""00 -0.092 0.539 0.637 0.0+6 -0.068
10 -0.079 -0.136 -0.094 0.110 0.077 -0.221 0.187 0.103 0.438 0.378 -0.461 0.269 -0.036 0.419 0.062
11 -0.146 0.100 0.254 0.011 0.144 0.077 0.337 0.392 -0.066 0.066 0.292 '-0.029 0.349 0.031 0.592
12 0.069 0.153 -0.078 -0.035 0.090 --0.214 0.032 -0.262 -0.023 0.706 0.143 0.132 0.ZU -0.486 -0.067
13 -0.226 0.106 -0.127 0.166 -0.016 0.149 0.234 0.064 0.272 0.008 0.212 -0.395 0.401 0.173 -0.5^
14 0.142 0.336 -0.035 -0.141 -0.105 0.039 0.217 -0.464 -0.41 0.115 0.131 0.016 -0.115. 0.593 0.021
15 0.003 4.089 -0.154 -0.058 -0.195 -0.067 -0.4 -0.221 0.014 0.121 -0.260 -0.591 0.356 0.'05 4.313

RESOLUTION MATRIX (V VT)

1	 2	 3	 4	 3	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15

1	 0.M -0.007 -0.011 0.000 -0.036 0.002 -0.006 -0.041 -0.012 -0.015 0.07? 0.015 -0.090 -0.026 0.057
2	 -0.007 0.994 0.000 0.004 -0.019 -0.011 0.005 -0.019 -0.005 -0.031 0.012 0.031 -0.029 -0.04 0.004
3	 -0.011 0.000 0.991 -0.005 -0.010 0.014 -0.011 -0.014 -4.004 0.023 0.056 -0.024 -0.046 0.024 0.040
4	 0.000 0.004 -0.005 0.995 0.010 0.015 -0.009 0.007 0.002 O.= 0.019 -0.035 -0.001 0.042 0.016
5	 -0.036 -0.019 -0.010 0.010 0.924 -0.023 0.003 -0.080 -0.022 -0.034 0. 09 7 0.084 -0.146 -0.114 0.0m
6	 0.002 -0.011 0.014 0.015 -0.023 0.957 0.027 -0.016 -0.003 -0.097 -0.064 0.099 0.015 -0.115 -O.OS3
7	 -0.006 0.005 -0.011 -0.009 0.005 0.027 0.983 0.000 -0.001 0.055 0.057 -0.056 -0.031 0.063 0.044
8	 -0.041 -0.019 -0.014 0.007 -0.080 -0.016 0.000 0.914 -0.024 -0.073 0.122 0.073 -0.167 -0.103 0.073
9	 -0.012 -0.005 -0.004 0.002 -0.022 -0.003 -0.001 -0.024 0.993 -0.018 0.037 0.018 -0.048 -0.026 0.022
10	 -0.015 -0.031 0.023 0.035 -0.034 -0.097 0.055 -0.073 -0.018 0.767 -0.076 0.237 -0.046 -0.235 -0.075
11	 0.078 0.012 0.036 0.019 0.097 -0.064 0.057 0.122 0.037 -0.076 0.643 0.079 0.334 -0.060 -0.244
12	 O.OtS 0.031 -0.024 -0.035 0.084 0.099 -0.056 0.073 0.018 0.237 0.079 0.759 0.045 0.289 0.078
13	 -0.090 -0.029 -0.046 -0.001 -0.146 0.013 -0.031 -0.167 -0.048 -0.043 0.r^4 0.045 0.624 -0.090 0.216
14	 -0.026 -0.040 0.024 0.042 -0.114 -0.115 0.063 -0.103 -0.026 -0.285 -0.060 0.289 -0.090 0.648 -0.071
15	 0.050 0.004 0.040 0.016 0.033 -0.WJ 0.044 0.073 0.022 -0.075 -0.244 0.078 0.216 -0.07I 0.631

PARAMETERS AND PARAMETER ADJUSTMENTS, ITERATION t 	 3

WEIGHTED RMS DEVIATION 0.00530 EXTERNAL
WIGHTED RMS DEVIATION 0 . 00500 INTERNAL

J =	 1 PARAMETER = 4.352 ADJ a 0.000 STD DEV = 0.0072
J =	 2 PARAMETER = -0..396 ADJ = 0.000 STD DEV = 0.0060
J =	 3 PARAMETER s 0. 624 ADJ = 0.000 STD DEV = 0.0101
J =	 4 PARAMETER : -0.197 ADJ = 0.000 STD DEV = 0.0107

J =	 5 PARAMETER = -0.635 ADJ = 0.000 STD DEV = 0.0105
J =	 6 PARAMETER = 0.295 ADJ = 0.000 STD DEV = 0.0102
J -	 7 PARAMETER = 0.015 ADJ = 0.000 SM DEV = 0.0067
J =	 8 PARAMETER _ -0.139 ADJ = 0.000 STD DEV = 0.0084
J =	 9 PARAMETER = -0.138 ADJ = 0.000 STD DEV = 0.0287
J = 10 PARAMETER = -0.307 ADJ s 0.000 STD DEV = 0.0129
J = 11 PARAMETER = -0.015 ADJ = 0.000 STD DEV = 0.0156
J = 12 PARAWM = -0.312 ADJ = 0.000 STD DEV = 0.0153
J = 13 PARAMETER = 0.117 ADJ = 0.000 STD DEV = 0.0191
J = 14 PARAMETER = 0.194 ADJ = 0.000 STD DEV = 0.0086
J = 15 PARAMETER = -0.122 ADJ = 1;4 000 STD DEV = 0.0205

0.00211) LIN = 0.7987
0.00287) LIN = 0.7963
0.00233) LIN = 0.7559
0.00433) LIN = 0.6245
0.00382) LIN = 0.5687
0.00493) LIN = 0.60
0.0,0297) LIN = 0.6921
0.00444) LIN = 0.5025
0.00709) LIN = 0.33.̀A
0.00819) LIN = 0.3106
0.00622) LIN = 0.3421
0. 00,n2) LIN = 0.2904
0.00%2) LIN = 0.3176
0.00477) LIN = 0.4552
0.00948) LIN = 0.3636
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**+++ ITERATION NtW 2	 +++4++++++►++

P. PIONEPR I1 AT JLFITEt R C 5 RJ
INTERNAL	 3 EXTERWit.	 0 ORDER OF FIT
9r. OBSEWATION8
NtPW OF EICEWECTORRS s 15
PARAMETER VECTOR :

4.064	 -0.452 0.567 -0.098 -0.934 0.368 -0.101 -0.423 -0.306
-0.5%	 0.523 -0.261 -0.365 0.014 0.351

SINDIAR VALM OF A

1	 2 3 4 5 6 7 8 9 10 it 12 13 14 15

1 487.543 339.907 370.964 249.973 230.272 176.354 136.261 124.348 104.962 91.721 71.262 45.689 43.120 32.646 28.903

V MATRIX

1	 2 3 4 5 6 7 8 9 !0 it 12 13 14 15

1 0.772	 -0.235 0.544 0.008 0.128 -0.013 0.018 -0.022 0.012 -0.081 0.032 -0.042 -0.159 0.027 0.019
2 0.257	 0.896 0.049 0.152 -0.186 -0.162 0.075 -0.084 -4.124 0+067 -4.067 -0.=1 -0.064 0.042 -0.030
3 -17.514	 0.170 0.77;1 -0.140 0.133 0.096 0.146 -0.009 0.065 0.043 0.009 -9.143 0.047 0.010 0.081
4 -0.089	 -0.081 0.067 -0.282 -0.174 -0.745 -0.201 -0.396 0.220 -0.220 -0.104 0.082 0.048 0.019 0.037
5 -0.041	 0.055 -0.204 -0.197 0.589 -0.2% 0.529 0.138 -0.170 -0.178 0.037 -0.069 -0.323 0.124 -0.015
6 -0.083	 -0.028 0.101 0.327 0.332 -0.394 -0.425 0.351 -0.026 0.493 -0.023 0.078 -0.078 0.101 -0.199
7 -0.117	 -0.064 0.004 0.822 0.120 -0.052 0.164 -0.271 0.284 -0.304 0.062 -0.064 -0.049 -0.003 0.079
8 -0.101	 -0.205 0.081 0.157 -0.589 -0.209 0.179 0.449 -0.237 -0.099 -0.072 -0.323 -0.232 0.209 0.081
9 -0.073	 -0.039 0.112 0.066 -0.060 0.085 0.153 0.087 -0.064 -0.040 -0.572 0.694 -0.221 -0.183 0.021

10 0.015	 0.037 0.058 -0.013 -0.162 -0.084 0.199 0.204 0.190 0.011 0.607 0.578 0.133 0.,"7 0.103
11 -0.084	 0.073 0.114 0.016 0.028 0.059 -0.264 0.137 -0.257 -0.612 0.136 0.105 0.057 -0.009 -0.639
12 -0.055	 -0.072 0.074 0.101 -0.044 -0.189 0.041 -0.118 -0.521 0.088 0.405 0.089 -0.018 -0.660 0.188
13 -0.107	 0.104 -0.050 -0.083 -0.011 0.253 -0.391 -0.085 0.109 -0.057 0.275 -0.002 -0.787 0.045 0.178
14 -0.079	 -0.153 0.048 0.082 -0.021 0.089 0.032 -0.547 -0.538 0.213 -0.016 0.098 -0.037 0.544 -0.105
I5 -0.009	 -0.090 -0.001 -0.037 -0.217 0.003 0.353 -0.173 0.238 0.361 0.140 -0.062 -0.24% -0.212 -0.664

PARAMETERS AND PARAfE:TFR ADJUSTMENTS, ITERATION A 	 2

4EIWM RMS DEVIATION 0.00093 EXTERNAL
4RIWTED RMS DEVIATION 0.00126 INTERNAL

J= t
J= 2
J= 3

J= S
J= b

J= 8
J = 10
J	 11
J =12
J=13
J=14
j = 15

s	 4.064 ADJ s 0.000 STD DEV s 0.0047	 1

-0.452 ADJ n 0.000 STD BEY = 0.0040	 1

=	 0.567 ADJ = 0.000 STD DEV = 0.0053	 1

_	 -0.098 ADJ = 0.000 STD DEV = 0.0071
-0.934 ADJ s 0000 STD DEV = 0.0103	 i

=	 0.368 ADJ = 0.000 STD DEV = 0.0109
s	 -0.101 ADJ s 0.000 STD DEV • 0.0069
_	 -0.423 ADJ = 0.000 STD DEV = 0.0128
s	 -0.306 ADJ = 0.000 STD DEV = 0.0193
_	 -0.596 ADJ = 0.000 STD DEV • 0.0192
=	 0.528 ADJ = 0.000 STD DEV = 0.0236
_	 -0.261 ADJ = 0.000 STD DEV = 0.0227
_	 -0.365 ADJ = 0.000 STD DEV = 0.0200

0.014 ADJ = 0.000 STD DEV = 0.0186
s	 0.351 ADJ s 0.000 STD BEY = 0.0254

0.00228) LIN s 0.9515
0.00265) LIN = 0.9499
0.00236) LIN = 0.9231
0.00563) LIN = 0.7710
0.00525) LIN = 0.7612
0.00599) LIN = 0.7009
0.04446) LIN = 0.8324
0.00528) LIN = 0.6721
0.01139) LIN = 0.3029
0.0I208) LIN = 0.4`44
0.00982) LIN = 0.3583
0.01068) LIN = 0.3856
0.00920) LIN = 0.3571
0.00826) LIN = 0.4452
0.01038) LIN = 0.4633
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