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FOREWORD

The work reported herein was performed under NASA Contract NAS 2-10680 under
the direction of NASA/Ames (National Aeronautics & Space Administration, Ames
Research Center), Moffett Field, California. Mr. George Aoyagi (NASA/Ames) was the

Project Monitor.

This report is the result of a conceptual design study to analyze and design an engine
flow diverter system along with accommodations for an ejector system in an existing

large scale wind tunnel model equipped with YJ-97 engines.

The contractor was General Dynamics Fort Worth Division, Fort Worth, Texas. Mr.
R. J. Springer (Program Manager) directed the study with the support of Dr. L. G. Hunter,
B. F. Langley, and O. R. Brock. The overall effort was under the supervision of Mr. C. F.
Crabtree, Engineering Chief, Propulsion Design Group. General Electric, General
Dynamics subcontractor, provided the engine performance data and performed the
Conceptual design study for the engine flow diverter valve. General Electric's technical
efforts were directed by Mr. T. Plant who was supported by J. Holowach, K. S. Scheffel,

and T. A. Hauer.

This report describes the results of work conducted during the period 6 August 1980

to 6 July 1981.
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SUMMARY

A conceptual design baseline configuration for an engine flow diverter - duct system
was developed for an ejector installation into an existing large-scale fighter model with
two YJ-97 engines. The eject\or selected for the conceptual design study was a short
diffuser type (Alperin ejector) and was to be located in the strake of the model. The
program objective was to accommodate the engine flow diverter, ducting, and lift ejector

system within the existing contours using as much of the existing mode! parts as possible.

Due to structural arrangements and available space in the model, the system could
not be accommodated within the existing model without significant modifications.
Various model modification options were evaluated. The most extreme modification
option required, in addition to moving the engine nacelles outboard, a five foot extension
to lengthen the model. A limited modification option did not include the five foot
extension. The limited modification was selected by NASA and was an option in which the
ejector was sized to take 50% of the engine flow with the remaining flow going to the
existing VEO nozzles. This modification is summarized in Figure 1.2. Since the program
objective was to evaluate the lift ejector performance, no consideration was given to the

location of the center of gravity or aerodynamic center of the model.

Circular and rectangular engine flow diverter valve and duct designs were
evaluated. A rectangular diverter valve and duct design was selected in order to provide

acceptable flow losses in the limited space available in the model.

Design tasks for the lift ejectors were not a part of this program. Since there was
no finalized definition available during this study the ejector configuration and size was

iii



scaled up from the preliminary design provided from a 0.2 scale model of the E205 Alperin

ejector configuration.

A computer program was developed to accommodate three modes of operation for
evaluation of the engine flow diverter and lift ejector system. The first mode of opera-
tion provides performance evaluation with all engine exhaust flow out the VEO nozzle and
none through the ejectors. The second mode of operation provides split flow to the lift
ejectors and through the VEO nozzle. The third mode of operation provides all flow to the

lift ejectors with ejector bleed nozzle flow.
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I.INTRODUCTION

The objective of this program is to conduct a conceptual design study of developing
an engine flow diverter system to supply engine exhaust gases to airframe mounted lift
ejectors for V/STOL type operation. The conceptual design study is to utilize an existing
large scale wind tunnel model equipped with two General Electric turbo jet YJ97 engines.
The system is to be designed for minimum effects on the engine operating characteristics
for minimum thrust loss and to fit within the contours of the existing large scale model
shown in Figure 1-1. In addition a computer program is to be developed to analyze the
effects on the engine operating characteristics, the pressure losses, the nozzle flow area,
the nozzle total pressure and temperature, nozzle flow rate, and nozzle thrust for dif-

ferent flow diverter modes of operation.

The conceptual design study was accomplished by first determining the limitations
and constraints fo the existing 3/4 scale NASA/Ames model shown on Figure 1-1. Various
model structural modification options were evaluated. General Electric, subcontractor to
General Dynamics, conducted the conceptual design study for the engine flow diverter
valve along with providing the engine operating characteristics for the YJ-97 engine.
General Dynamics accomplished the conceptual design for the flow diverter system ducting
and integrated the complete system into the existing mode! with modifications. A number
of structural modifications in the conceptual design study were developed to determine
the trade-off options that would best accommodate the lift ejectors and the engine flow
diverter-duct system into the model. The selected configuration concept modified the
existing 3/4 scale model by relocating the nacelles outboard, moving the engine forward,

and extending the VEO nozzles aft. These model modifications are shown in Figure {-2.



In addition General Dynamics developed a computer program that provides a means
for analyzing the flow diverter/ejector performance by varying parameters, such as mode
of operation, change in engine operating characteristics, pressure drop losses, flow coeffi-
cients, and changes in ejector nozzle areas. The computer accommodates three modes of
operation for evaluation of the engine flow diverter and lift ejector system. The first
mode of operation provides performance evaluation with all engine exhaust flow out the
VEO nozzle and none through the ejectors. The second mode of operation provides split
flow to the lift ejectors and through the VEO nozzle. The third mode of operation pro-

vides all flow to the lift ejectors with ejector bleed nozzle flow.



FIGURE 1-1. LARGE SCALE WIND
TUNNEL MODEL




MODIFICATION DESIGN CONCEPT
FOR BASELINE CONFIGURATION

ENGINE NACELLES
22,0 IN., OUTBD.MOVE

FWD. EJECTORS
(36,5 IN, X 54,5 IN.)

ENGINES \\\\\\\\\\____}
13.0 IN. FWD MOVE :
FWD/AFT

EJECTOR DUCTING
FIGURE 1-2

AFT EJECTORS
(36.5 IN. X 36,5 IN.)

VEO NOZZLES
7.0 IN, AFT MOVE



2. MODIFICATION OPTIONSTO
EXISTING MODEL

Modifications necessary to install an engine flow diverter system, as shown in Figure
2-1, into the existing 3/4 scale model located at NASA/Ames have been determined
through progressive design concepts. Care has been taken to evaluate the design on the

basis of material availability, fabrication effort and cost effectiveness.

Initially a 1/10 scale drawing (GD3616-R001) was made of the model with full-scale
sections taken of the strake area at various critical locations such as the cross section of
the torque-box support as shown on sheet 2 of the drawing. This highlighted the structural

areas of most concern.

A second scale drawing (GD3616-R002) was made with a close approximation of
properly sized Alperin ejectors overlayed onto the strake area. Ejector envelope
dimensions were obtained from the 7 x 10 model drawing, reference 2-3. The proportions
of the ejectors to the 3/4 scale model clearly showed the need to alter either the model or

ejectors or both for a workable arrangement.

The third drawing (GD36 16-R003) represented only a slight modification by moving
the engine nacelles outboard 17.00 in. to widen the strake for the ejectors and by
shortening the ejectors to avoid moving the primary attachment fittings. No attempt was

made to coordinate the sizing of the ejector with the performance of the engine.

In order to satisfy performance and physical requirements, the fourth drawing
(GD3616-R004) shows the engine nacelle moved outboard 17.00 in. and an extension

section of 58.95 in. added to the awrframe. This would allow the fit of a sized ejector



TYPICAL DUCTING AND EJECTOR

ARRANGEMENT

INBD

FWD

DUCT INLET FLOW

FIGURE 2-1
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more closely matched to the engine characteristics. However, the overall height of the

ejector far exceeded the height of the existing strake.

As a logical progressive variation, drawing No. 5 (GD36 16-R005) indicated a
maximum outboard movement of 24.50 in. for the engine nacelle and continued with the
58.95 in. extension section concept. In addition the strake area was thickened to accept

the extra depth without leaving the ejector projected into the airstream.

A final design concept which would provide suitable test data and still be cost
effective is shown on drawing GD3616-R006. The engine nacelles were moved outboard
22.00 in. and the strake raised to house the ejectors. The engines were moved 13.00 in.
forward and the VEO nozzle moved 7.00 in. aft to accommodate the diverter valve and
ejector ducting. The different conceptual designs studies and the selected configuration

concept (Study No. 6) are shown in Table 2-1.
2.1 EXISTING LIMITATIONS AND CONSTRAINTS

There were several limitations and constraints to be considered not only in the

existing scale mode! but also with the primary design items such as the ejectors, engine

and the VEO nozzle.

After careful review of NASA furnished drawings of the model, it was determined to
retain two major pieces of structure. The forward primary attachment ring and the
torque box primary attachment fitting which supports the engine nacelle and wings would
remain unaltered except for a widening section. The forward ring and the torque box
limit the length of ejectors and the torque box further constrains any ducting to a
maximum of 9.00 in. equivalent diameter and dictates the waterline level of the ducts, as

shown in Dwg. GD3616-R001, Sheet 2.
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TABLE 2-1

STRUCTURAL MODIFICATION STUDY

MOD
STUDY NO.
1 (Existing)
2
3

GD
DRAVWING

GD3516-R00!
GD3616-R002
GD3616-R003

GD3616-R00%

GD3616-R005

GD3616-R006

B.L.

48.0
438.0
65.0

65.0

72.5

70.0

ENGINE

INLET
F.S.

116.5
116.5
116.5

116.5

116.5

116.5

i

i
1

I

VEO STRAKE
NOZZLE , THICKNESS
F.S. . (INCHES)
Varies
170.8 15.0-21.0
170.8 1500"2100
170.8 15,0-21.0
Varies
170.8 15.0-21.0 (1)
31.5(1)
170.8 (Constant)
15.35 (2)
177.8 (Constant)

(1) Adds 58.95 inch extension starting at F.S. 166.5.

(2) Engine moved forward 13.0 inches.
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The strake level and thickness were also factors in the envelope size of the ejectors.

For obvious reasons of aerodynamics, the strake thickness needed to be identical to the

ejector height.

The ejectors were given definition through a series of inputs from Flights Dynamics
Research Corp. (FDRC), NASA/Ames and General Dynamics. The diffuser skirts, as
described by FDRC, would fold up during forward flight mode creating a relatively smooth
lower strake area. As a refinement to the design concept of the ejector per FDRC, the
inlet ducts on each side have been reshaped thereby confining the ejector to a 36.50 in.
width giving a rectangular overall cross section. This is best shown in VIEW A-A, dwg..

GD 3616-R006.



3. ENGINE FLOW DIVERTER VALVE STUDY

3.1 INTRODUCTION

The effective application of the ejector lift system requires that the engine exhaust
flow be routed from its normal path to the ejector bays with a minimum loss in total pres-
sure. With this consideration, the task at hand is to design a high performance engine
flow diverter valve system which can be installed within the hardware constraints of the
existing model. The following sections discuss the procedure and results of this study.
The formulation of a set of design requirements is presented in Section 3.2. The selection
of an acceptable design concept and the evolution of its performance and integration into
the model is discussed in Section 3.3. Section 3.4 covers the analytical investigation into
the flow characteristics of the diverter valve system. The results of using the diverter
valve in an off-design flow-splitting mode is presented in Section 3.5. The conceptual
mechanical design including design criteria and details of the non-flight weight diverter
valve design are discussed in Sections 3.6 and 3.7. Section 3 concludes with a discussion

of a flight weight type diverter valve design.

3.2 DESIGN REQUIREMENTS

Design requirements were generated from two sources. NASA established the

operating requirement while the existing model presented the physical constraints.

3.2.1 Performance Requirement

The ejector system performance requirement was simply stated. The diverter valve

and ejector ducting system losses shall be small enough to allow the ejectors to attain a

18



nozzle pressure ratio (NPR) of at least 2.7. As losses in ducts are normally expressed in
terms of total pressure loss, this NPR requirement must be related to total pressure loss.
This can be accomplished by examining the YJ-97 gas generator cycle data plotted in
Figure 3-1. Each of the plots represents the nozzle pressure ratio behavior of an exhaust
system with a different total pressure loss between the turbine exit (Station 5.1) and the
exhaust system throat (Station 8). In this case, Station 8 may be thought of as the ejector
nozzle exit. Figure 3-1a represents the ideal case when there is no pressure loss in the
exhaust system. Successively, then, Figures 3-1b, ¢, and d represent exhaust systems that
have a 5%, 10% and finally 15% total pressure loss between Stations 5.1 and 8. Consider
the no loss case plotted in Figure 3-1a. Nozzle pressure ratio is plotted versus the Station
8 effective exhaust area as a function of the corrected rotor speed (N/ \/O_in percent) and
compressor stall margin (SMIC, in percent). (The effective area is equal to the physical
area times the discharge coefficient.) The horizontal line at NPR = 2.7 is the NASA
performance requirement. Any operating point above this line, a NPR of 2.7 or higher can
be attained. In fact, with Ae8 = 109 in.2, N/ﬁ: 101.5% and SMIC = 21%, the system
would attain NPR = 3.6.. Note also that this plot indicates that Aqg must be between
100.7 in.2 and 131.2 in.2 to attain an NPR = 2.7. At 101.5% speed a T5.1 temperature

limit allows a minimum stall margin of only 21%.

Move now to Figure 3-1d and examine the effect on attainable NPR of a 15% loss in
total pressure through the exhaust system. Here, the highest attainable NPR is 3.06
occurring at the same engine operating point as in Figure 3-la. However, the required
Aeg is now 128 in.2, With lower total pressure at the exit, the exhaust flow requires a
larger area for the same mass flow and total temperature. Note that the required NPR of

2.7 can only be attained over a much smaller portion of the engine operating envelope.

The result is a limited capability system with a small envelope for experimentation.
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With these data in mind, a target exhaust system total pressure loss of no more than
10% was selected. Available data on the Alperin ejector design estimates the total pres-
sure loss through it alone is about 7%. This leaves only about 3% for the remainder of the
exhaust system which includes the engine diffuser, diverter valve, and ducting from the
diverter valve to the ejector bay. The operating characteristics of a system with this
target loss are plotted in Figure 3-lc. To attain a NPR of 2.7, Aeg Will be between 117

in.2 and 136 in.2 with a rotor speed above 94% and stall margin below 26%.

3.2.2 Physical Constraints

The requirement to install the diverter valve within the existing nacelle hardware
placed severe physical constraints on the design. A top and side view diagram of the nacelle/
diverter valve area is presented in Figure 3-2. In the top view, the diverter valve en-
velope is seen to be 33 inches long running from nacelle Stations 137.8 to 170.8. The
valve must turn the flow inboard with the inner turning radius just aft of the bulkhead at
NS 143.5. The inboard thrust link will have to be re-positioned. The side view (Figure
3-2b) illustrates that in flow-through operation the diverter valve must raise the center-

line of the flow 4.4 inches from waterlines 35.6 to 40.0.

_Within this physical size envelope, the diverter valve system must (1) have the capa-
bility to divert the entire engine flow to the ejector ducting, pass all of the engine flow
straight-through to the VEO nozzle or split the engine flow between the ejector bay
ducting and the VEO nozzle, (2) provide accommodation for the thermal growth, (3) pro-
vide a port and connecting ducting to the existing spanwise blowing (SWB) nozzle, and (&)
transition between circular at NS 137.8 and rectangular at NS 170.8. Another criteria was
established several months into the program when it was determined that the ducting

downstream of the diverted leg would have to be rectangular. The diverter valve would
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therefore have to connect to rectangular ducts at both of its exits. A discussion of the

criteria affecting the details of the mechanical design is presented in Section 3.6.

3.3 Concept Design

Three candidate diverter valve concepts were considered and evaluated versus the
design requirements outlined in Section 3.2.2. Once a concept was selected the size and
integration evolved to meet the performance requirement of Section 3.2.1. For the final
configuration, the method of estimating the performance is presented at the end of this

section.

3.3.1 Candidate Diverter Valves

Three diverter valve concepts were considered for this study. Two had been pre-
viously developed and tested by GE in programs related to the XV5A VTOL aircraft. The
third is a new concept derived from variable area bypass technology used in variable cycle

engines.

The first previously tested concept is referred to as the "Sugar Scoop" diverter valve
(Figure 3-3). The valve consists of a circular section modified "tee" pipe in which a
hollow quarter ellipsoid, or "Sugar Scoop" is mounted. The mounting angle of the sugar
scoop within the pipe section is such that it may be rotated 180° about its axis of sym-
metry, giving flow paths in the straight through and diverted directions which approach
constant circular section ducts. The data base (reference 3-1) for this concept consists of

a 10" diameter cold flow model test.
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Figure 3-3a. "SUGAR SCOOP"
DIVERTER VALVE CONCEPT
(STRAIGHT-THROUGH OPERATION)



Figure 3-3b. "SUGAR SCOOP"
DIVERTER VALVE CONCEPT
(DIVERTED OPERATION)




A schematic of the second previously tested concept is shown in Figure 3-4. This
two vane valve also is constructed in a modified "tee" form. The flow through this valve
may be completely diverted, flow straight-through, or split between the two legs
depending on the positioning of the two vanes. This valve may be constructed in either
axisymmetric or two-dimensional form. The data base consists of 10" diameter circular
section cold flow model tests with two different turn radius ratios. In addition, it was

tested in full scale behind a non-afterburning J-85 engine (reference 3-2).

The final candidate is a peripheral port diverter illustrated in Figure 3-5. This con-
cept requires a variable throat area VEO wing nozzle to block the straight-through flow
when diverted flow is required. A rotating outer section of the diverter duct controls the
area of the diverter ports. The diverter flow is captured in an annular manifold for dis-

charge at the desired circumferential location. No test data exists on this concept.

3.3.2 Concept Selection

The selection of the most acceptable diverter valve concept was based on an
evaluation of each candidate against five criteria. A summary of the evaluation is pre-
sented in Table 3-1. The first criteria evaluates turning total pressure loss at the
common design Mach number of 0.3. The values for candidates 1 and 2 come from test
data. It was assumed that the diverted flow for candidate 3 would suffer a plenum loss of
its total dynamic head. The "Sugar Scoop" valve did not have a suitable flow sphitting
capability. The peripheral port diverter required a variable area VEO wing nozzle to
provide blockage. The two vane diverter valve was the only concept adaptable to both
circular and 2D cross-sections. Finally, the peripheral port design did not lend itself to
provisions for SWB operation in the straight-through mode of operation. This evaluation

process identifies the two vane design as the best candidate.
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TABLE 3-1

CONCEPT SELECTION

CANDIDATE DIVERTER VALVE CONCEPTS

CRITERIA (1) SUGAR SCOOP|(2) TWO VANE (3) PERIPHERAL PORT

Pt loss (APT/qj) .58 e35%.,69%* 1.0

Flow Splitting No Yes Yes

Operation

Independent Yes Yes No

Operation

Axi or 2-D No Yes No

SWB Operation Yes Yes No

* Turning vane radius ratio - 1.0
** Turning vane radius ratio - 0.63
Note: The turning vane radius ratio is defined as the center turning vane radius of the

curveture divided by the duct diameter.

3.3.3 Diverter Valve Size, Performance and Integration Evolution
With the two vane diverter valve concept selected, the process of integrating an
acceptable performance design could begin. As a first step, a diverter valve which fit
within the space allocations called out in Section 3.2.2 was sketched and its performance
estimated. Its total pressure losses were found-to-be too high. An iteration process was
then begun which entailed an easing of a physical limit (by moving some structure) and a
re-evaluation of performance. The evolution of design which justifies the major structural

modifications are presented herein.

A sketch of a design which fits within the existing model structural constraints is
presented in Figure 3-6. It has a 14" diameter circular cross-section. The side view shows

the orientation to the SWB nozzle. This sketch may not be mechanically feasible as no
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® Fits within existing model structural constraints

\

o May not be mechanically feasible

® Poor aercdynamics performance

FIGURE 3-6. TWO VANE DIVERTER VALVE DESIGN #1
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space allowances were made for thermal growth accommodation. In addition,the many
curved lines may be difficult to construct. This design requires repositioning of the in-
board and center thrust links (as do all subsequent designs). The immediate determining
factor is the valve total pressure loss estimate presented in Figure 3-7 which was cal-
culated from the experimental data of reference 3-2. Here, the total pressure loss ratio
from the turbine exit to the diverter valve outlet is plotted for each engine operating
point. As explained in Section 3.2.1, the probable operating point will be at high rotor
speed (294%) and low s