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SUMMARY 

A review of some approximate modeling techniques used to develop 

analytical solutions for damaged, fiber-reinforced composite materials 

is presented along with previously unpublished results of the past 

year's research concerning the application of these methods to particular 

problems. 

The classical shear-lag stress-displacement assumption is funda- 

mental to much of this work. Based on this approximation, solutions 

are developed for the two-dimensional region containing unidirectional 

fibers with initial damage in the form of, respectively, a notch, a 

rectangular cut-out, and a circular hole. An ultimate stress failure 

criterion is used for both the fibers and the matrix; simple tension 

for the fibers and shear failure for the matrix. Models which account 

for longitudinal matrix yielding and splitting as well as transverse 

matrix yielding and fiber breakage as a function of initial damage, 

material properties and applied stress are presented. The fibers are 

taken as linearly elastic and the matrix material as either elastic- 

perfectly plastic or elastic-strain hardening. A cover sheet con- 

straining the unidirectional laminate is also introduced although 

only its influence on the unidirectional laminate is modeled; the 

stresses within the constraint layer are not computed. 

For ductiie matrix composites (boron/aluminum) the results 

indicate that longitudinal matrix yielding and transverse notch 

extension are the most significant forms of damage to include in order 

for the model to agree with experimental results. The extent of the 
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stable transverse damage is shown to be approximately constant, 

independent of initial notch length. Including a cover sheet and/or 

strain-hardening matrix has minor influence. In the case of brittle 

matrix composites (graphite/epoxy) longitudinal splitting is shown 

to be the dominant form of damage. 

Very little difference is found between the results for the 

three types of initial damage, i.e.,the notch, rectangular cut-out, 

and circular hole. In all cases, the presence of additional damage 

changes the nature of the stress distribution in the unbroken fibers. 

For the original Hedgepeth problem of a notched laminate the stresses 

decay as the square root of the distance from the notch tip; including 

longitudinal or transverse damage significantly reduces the stress 

concentration and gives a much more uniform stress state in the un- 

broken fibers. It is shown that this behavior cannot be accounted 

for by introducing an effective notch length or crack tip damage zone 

with a square-root behavior. 

The formulation of the problem for an edge notch in a uni- 

directional half-plane with no additional damage is also developed 

and the appropriate equations are recorded but numerical results are 

not given. This solution forms the basis for the general problem of 

adjoining half-planes of different fiber-matrix properties now being 

developed by the writers. 
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INTRODUCTION 

A major portion of the writer's research over the past few years 

has concerned the development of suitable analytical techniques for 

predicting the stress state and fracture behavior of damaged composite 

laminates. Much of this work has dealt with approximate solutions 

based on discrete fiber-matrix material models with particular simpli- 

fying assumptions used to relate fiber and matrix stresses to fiber 

displacements. The resulting solutions are not complete solutions 

to the equations of elasticity for the two phase region and a sig- 

nificant portion of the study has been the investigation of the 

agreement of the results with experimental data. 

In past reports and technical papers concerning this work, 

specific models and results have been presented in each paper, but 

no unified report has been written. Rather than add one more paper 

covering only the work of the past year it was felt to be an appro- 

priate time in the development of these methods to review the basic 

assumptions and discuss the significance of the models and the results, 

both for the convenience of having a more complete record and to be 

able to make some important observations concerning the nature of the 

different models, about which we have only recently become aware. 

The initial work in modeling a unidirectional composite contain- 

ing broken fibers was presented by Medgepet,h in [I] for broken fibers 

with no longitudinal or transverse damage other than the initial notch. 

This work was extended by Hedgepeth and Van Dyke in [2] for the special 

case of one broken fiber with matrix yielding parallel to the fiber and 



in [3] for one broken fiber with longitudinal splitting in the matrix. 

In all these studies the fiber breaks were assumed to lie on a transverse 

line and the shear-lag assumption was used. One very important feature 

of the shear-lag model is that it simplifies the equilibrium equations 

by removing the transverse displacement dependence from the longitudinal 

equation, and the fiber stress and the matrix shear stress can be 

determined without solving the transverse equation. In reference [2] 

Hedgepeth and Van Dyke used the same model to develop the solution for 

broken fibers in a three-dimensional unidirectional composite con- 

taining broken fibers with no additional damage. A detailed discussion 

of similar material modeling techniques and some simplified solutions 

are presented by Zweben in [S] and [5]. Eringen and Kim in [6] developed 

a modified solution for the original Hedgepeth problem, [l], by extend- 

ing the shear stress-displacement relation to include fiber bending as 

well as axial displacements ; no additional damage was accounted for in 

[6]. The stress-displacement relation assumed in [6] allows for better 

satisfaction of a stress free crack surface, i.e. the shear-lag 

assumption does not have sufficient freedom to remove the shear 

stresses from the crack surface. However, Eringen's model does couple 

the axial and transverse equilibrium equations and gives a somewhat 

more complicated set of differential-difference equations. The 

inclusion of matrix damage and transverse fiber breaks (notch extension) 

in Eringen's model appears to be much more difficult than in Hedgepeth's 

model and such modifications have not been attempted at this time. 

The initial damage in all of the above studies consisted of 

broken fibers in the form of a notch (crack). Franklin in [7] and 
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Kulkarni et.al. in [8] investigated the case of a circular cut-out 

containing no additional damage and found that the stress concen- 

trations in the unbroken fibers was changed very little over the 

corresponding solution for a notch. 

Goree and Gross in [9] extended the Hedgepeth solutions to 

include longitudinal matrix yielding and splitting for an arbitrary 

number of broken fibers and in [iO] developed a solution using the 

Eringen model of [6] for a three-dimensional unidirectional composite 

containing broken fibers but without matrix damage. The results of 

[9] gave very good agreement with experimental results for brittle 

matrix composite and reasonably good agreement for ductile matrix 

composites. The inclusion of transverse stable notch extension to 

this model is shown below to make a very significant improvement in 

the ability of the model to represent the behavior of a ductile 

matrix (boron/aluminum) laminate. 

Over the past year solutions have been developed for the following 

problems: 

1. transverse notch extension 

2. constraint (or cover) layer 

3. strain-hardening matrix 

4. rectangular (rather than slit) initial damage region 

5. circular initial damage region 

6. formulation of the edge crack problem. 

In the first section presented below the formulation of the original 

Hedgepeth problem [1] will be presented, using Fourier transform methods 

rather than the influence function technique as used by Hedgepeth as 



this is the foundation for the remaining solutions. The next sections 

will then consider the development of the equations for, respectively, 

longitudinal splitting and yielding of the matrix, transverse notch 

extension, constraint layer, strain-hardening matrix, rectangular 

damage region, circular damage region, and the edge crack solution. 

Results and comparisons of the various models will then be presented. 

Use of trade names or names of manufacturers in this report does 

not constitute an official endorsement of such products or manufac- 

turers, either expressed or implied, by the National Aeronautics and 

Space Administration. 



FORMULATION OF MATHEMATICAL MODELS 

A. Two-Dimensional Shear-Lag Model with Broken Fibers -. 

Consider a two-dimensional unidirectional lamina containing 

broken fibers as shown in Figure (1). The development presented in 

this section will be for no additional damage other than the broken 

fibers. This solution was first presented by Hedgepeth in [l]; however, 

as it is the fundamental solution on which ali of the following models 

are based, it will be included in this report for completeness. Further, 

the method of solution appropriate for the various extensions to this 

basic model is somewhat different than that of Hedgepeth in [l], i.e., 

Fourier transform techniques are used directly in the present work 

while liedgepeth developedlthe solution by means of influence functions. 

For no damage other than the initial notch the two methods are equiva- 

lent. However, for the extension to matrix yielding and splitting at the 

end of the notch containing more than one broken fiber, the Fourier 

transform method is more direct. 

The formulation given below will also develop the solution for 

the matrix normal stress which is not given in [l]. It should be 

noted that it is often attributed to the shear-lag solution that only 

shear stresses exist in the matrix. This need not be imposed on the 

solution, although a fundamental property of the shear-lag assumptions 

is that the differential-difference equations for axial and transverse 

fiber displacements uncouple such that the axial displacement can be 

found without solving the transverse equation. As the fiber stress 

and matrix shear stress are functions of the axial fiber displacement 

alone, these stresses can then be determined without knowing the 



transverse displacements. Once the axial fiber displacement is known. it 

is a simple matter to solve the transverse equation for the transverse 

fiber displacement and compute the matrix normal stress between fibers. 

Following Hedgepeth [1], the laminate is modeled as a two- 

dimensional region, shown in Figure (1), having a single row of parallel, 

identical, equally spaced fibers, separated by matrix. The damage is 

taken to consist of an arbitrary number of broken fibers such that all 

breaks lie along the x-axis, but they need not form a continuous break 

(notch). Later in this section the equations corresponding to a notch 

will be developed. It is this solution for a notch that is extended 

in the remaining sections. In all cases it is assumed that the fibers 

have a sufficiently higher elastic modulus in the axial direction than 

the matrix such that the fibers support all the axial stress in the 

laminate. The matrix supports transverse normal stresses and shear 

stresses. 

Admittedly, most unidirectional composites consist of more than 

one lamina with all fibers in each lamina surely not perfectly aligned 

either through the thickness, or within each layer. These variations 

can have a considerable influence on the stress state. For example in 

[11] and [12] it is shown that the shear stress becomes larger as the 

fiber spacing decreases. Local failures may we 11 occur at the critica 

points through the thickness in advance of laminate splitting which 

1 

could give an apparent shear stiffness considerably different from that 

for the matrix alone. It is assumed that such variations can be 

accounted for by an appropriate choice of a matrix shear modulus GE1 

and a shear transfer distance h. It is with this in mind that the 
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following development will be concerned with an equivalent lamina 

where GM and h are to be determined experimentally for any particular 

laminate. The following fundamental assumptions regarding the stress- 

displacement relations are made: 

1. The axial fiber stress, (SFln, in fiber n is given by 

dvn 
'F/n = EF dy ' 

where EF is the Young's modulus of the fiber and v, is the axial 

displacement of fiber n. 

2. The shear stress in the matrix, T n+l , between fibers n and 

n+l is given by 

GM 
' n+l I 

=- 
h ( 'n+l -vn) 3 

where GM/h is the equivalent shear stiffness of the matrix and 

v, is the axial displacement of fiber n. This relation is the 

basic shear-lag assumption. 

3. The transverse matrix stress, 
'MIn+J ' 

between fibers n and n+l 

is given by 

where EM/h is the equivalent matrix transverse stiffness and u, 

is the transverse displacement of fiber n. 

4. Consistent with the above assumptions it then follows that the 

stress state on a transverse plane is constant between fibers. 

With these definitions and assumptions, the equilibrium equations 

for a typical element as indicated in Figure (2) are as follows: 

AF ddFln + = 
t dy I n+l 

-T 
I 

= 0 
n m (A-1) 
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and 

'MIn+l -dMln + hqqn+,+qn} = O - (A.21 

Substituting from the above stress-displacement relations the 

following pair of differential-difference equations are obtained: 

EFAFh 2 
d v, 

GMt dy2 
- + Vn+, - 2v, + Vn-, = 0 

and 

EM 
-ii { 

'n+l - 2un + 'n-1 } + $$j {'n+J -'n-J} = O ' 

(A-3) 

(A.41 

As mentioned above, the equilibrium equation in the axial direction, 

equation (A.3), is seen to be independent of the transverse displace- 

ment and can be solved without solving equation (A.4). Hedgepeth [1] 

does not consider this transverse equation but develops a solution to 

the axial equation (A.3) only. We now proceed to develop a solution 

to equation (A.3) and, with this solution determined it will then give 

the solution to equation (A.4) for the transverse fiber displacements. 

Noting the coefficient of the first term in equation (A.3), the 

following changes in the variables are suggested: 

EFAFh 
y= xn 9 

M 

dvn 
oFln = om zFln = EF dy , and 

(A.51 

V AFh 
= 0 

n 03 ~ v, , 
EFGMt 

where n,Cr Fin ’ V, are nondimensional. Equation (A.3) then becomes 

independent of all material properties as 

d2V 
2 + v,,, - 2v, + v, 1 = 0 

2 - 
dn 

u-w 



This differential-difference equation can be reduced to a differential 

equation by defining a new function i(n,e) such that the normalized 

displacement V,(n) is the Fourier coefficient in a Fourier series ex- 

pansion. That is, 

00 . 
c-d = C V,(n)e-lne , and (A-7) 

n= - OD 

as the displacements are continuous functions of n,this representation 

is necessarily valid and can be inverted to yield 

VJn) = T& iTI i(n,e)elne de . 
-71 

w3) 

Substitution for Vn(n) in terms of i(n,e) in equation (A.6) re- 

sults in 

de=O. (A.9) 

This equation is of the form 

F& JTI F(n,e)eine de=O, for all n and n. 
-lT 

The function F(n,e) is continuous in e and therefore, if the integral 

is to vanish for all n the function F(n,e) must be zero. The equation 

specifying i(n,e> is then 

d2i 

d,12- 
s2v = 0 , (A.10) 

where 

62 = 2[1 -cos(e)] = 4 sin2(e/2) . 

The solution to the problem of vanishing stresses and displace- 

ments at infinity and uniform compression on the ends of the broken 

fibers will now be sought. The complete solution is obtained by adding 
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the trivial results corresponding to uniform axial stress and no broken 

fibers to the following solution. 

The boundary conditions are, 

VJd = 0 

for all fibers, 

dV,h) 
drl = ZFJn = 

for broken fibers, and 

v&l) = 0 3 

as n-f,= , (A.ll) 

1 3 at n=O , (A.12) 

at 1=0 3 (A-13) 

for unbroken fibers. 

Equation (A.lO) has the complete solution satisfying vanishing 

stresses and displacements remote from the damage as 

!(~,e) = A(e)e-"n , 

where the function A(e) must be determined from the remaining boundary 

conditions. 

Using equations (A.8) and (A.14) the displacement is given by 

V,(n) = & iTI A(e)e-'nelne de. 
-IT 

(A.15) 

Noting the form of the above integral for n = 0, the boundary condi- 

tion of no displacement for the unbroken fibers, equation (A.13) is 

identically satisfied by taking 

A(e) = C BRe-lRe , 
R 

with R being the index of each broken fiber and the B, are constants. 

One then has precisely the number of constants B, as broken fibers. 

These constants B, are determined from the remaining boundary condition, 

equation (A.12), of a unit compressive stress on the broken fibers at 
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TJ = 0. Substituting equation (A.16) into (A-15), equation (A.12) then 

gives, at n = 0 , 

. . 
& fr c B, &e-'Ree'ne de = 1 ; 6 = 2 sin(e/2) 

me n 
(A.17) 

for R and n corresponding to all broken fiber indices. This equation 

then gives a system of linear algebraic equations for the unknowns B, 

and the solution is complete. If the broken fibers are symmetric about 

the zero fiber, and therefore form a notch, the above equations are con- 

siderably simplified. Let the center fiber be located by the index n= 0, 

then equation (A.7) may be written as a cosine series as 

Voh) 
C-he> = 2 + F V,(n)cos(ne) , 

n=l 

from which 

vn(,,) = p jTI &,e)cos(ne)de , 
0 

(A.18) 

(A.19) 

where, as in equation (A-14), v(q,e) = A(e)essn. 

Equation (A.16) is a cosine series for this symmetric case and is given 

by N 
A(e) = c B, cos 

!t=O 

where N is the index of the 

known constants B, with the 

condition of uniform stress 

(A.12). This gives 

3 N IT 

be) 3 (A.20) 

last broken fiber. One then has N+l un- 

solution given by satisfying the boundary 

on the broken fibers at n = 0, equation 

k c B, / 6 cos(ae)cos(ne)de = 1 , n = O,l,...,N (A.21) 
a=0 0 

where, as before, recall that 6 = 2 sin(e/2). For example, if N= 0 



which corresponds to one broken fiber, equation (A-21) gives B, directly 

as 

BO 
= IT/[~ jR 2 sin(e/2)de] = g = A(e) . (A.22) 

0 

The maximum fiber stress in the first unbroken fiber is at n=O 

and is given by 

oF1l(o) d’+(O) 
= 

0 dn = L ~'-6 A(e)cos(e)de = i , 
a3 nO 

or, for a unit stress at infinity and an unloaded free end of the broken 

fiber 

'F/l(') = 
'FIT='+ cloo 

1 +&f 

The normalized crack opening displacement is given by equation (A.19) as 

2V,(O) = 5 . 

For the general case of 2N+l broken fibers, and with the axial 

fiber displacement now known, the transverse fiber displacement u,(n) 

may be determined from equation (A.4). For the specific case of a 

symmetric number of broken fibers in which the axial displacement is 

given by an even valued transform, equation (A.19), the transverse 

displacement will be odd valued and is given by 

k-be) = F U,(n)sin(ne), and 
n=l 

U,(n) = f ,I" i(n,e)sin(ne)de , 

where 

u&d y’(n) = 7 
co 

(A.23) 

(A.24) 

12 



c 

Substituting this representation into the normalized form of equation 

(A.4), the resulting transverse displacement is then given by 

U,(n) = - + 
GMh GMt 
- - 
EM J- 

ITI dV(n,e) sin(e) de 
AFEFh o dn 1 -cos(e) * (A.25) 

In the following sections the above solution for a symmetric notch 

will be modified to account for the various damage models. 
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B. Two-Dimensional Shear-Lag Model with Broken Fibers and 
Longitudinal Matrix Splitting and Yielding 

The solution developed in section A will now be extended to in- 

clude longitudinal splitting and yielding of the matrix as shown in 

Figure (3). This solution along with extensive results is given in [9]. 

All the previous assumptions are assumed valid and it is only necessary 

to account for the additional damage region parallel to the fibers. It 

is assumed that splitting and yielding of the matrix initiates at the 

notch tip and progresses longitudinally between the last broken fiber 

and the first unbroken fiber as shown in Figure (3). The matrix ma- 

terial is assumed to be elastic-perfectly plastic. 

The same free-body diagram of section A, shown in Figure (2) is 

considered with additional conditions for the last broken fiber, denoted 

by n=N, and y 5 L, to account for the longitudinal damage taken as 

T 
I 

= -T< y-a > (B-1) 
N+l 

where 

<Y-R> = 1 , Y22 3 

<y-g> = 0 , y < R , and (B-2) 

L equals the total damaged length, a the split length, and ho the matrix 

yield stress. Yielding is assumed to occur when the matrix shear strain 

reaches the yield strain, yo. Splitting occurs at a multiple of y. as 

given by the particular matrix material. 

The equilibrium equations in the longitudinal and transverse 

directions, respectively, for all fibers n, with the exception of N and 

~+l when y 5 L, are then 

14 



$ *+Tn+l-T =o , 
I I n 

---.-- - ___._.. L ..- -~--- 

(B.3) 

and 

'M(n+l -'M 

For fiber N,y 2 L, -C 

and 

(B-4) 

I N+l = - =o <y-R>, and the equilibrium equat ions are 

AF d"Fl~ 
t dy- 0 <y-a> - T 

I N =o, 

'M\N+l - 'MIN 
+kd 

2 dy 
To<y-R’ + T 

I> N 
=o. 

(B-5) 

(B.6) 

For fiber N+l, y 2 L, T N+l = - ~~cy-I>, and the equilibrium equations 

are 

AF doFbrl + 'c 
t I N+2 

+To<y-R>= 0 , (B-7) 

and 

'MlN+2 - 'MIN+l 0 
< y-g > =o . (B-8) 

Substituting the stress-displacement relations into the equilibrium 

equations, the following pairs of equations are obtained: 

For all fibers except N and N+l when y 2 L , 

EFAFh 
2 

d 'n + - - 
GMt dy2 

Vn+l - 2v, + Vn-l = 0 , 
> 

and 

EM 
h 

{ 
'n+l - 2un + 'n-1 > + $${'n+l -vn_l)=o' 

For fiber N,Y ( L I 

EFAFh d 
2 

VN 
--+ VN-1 -vN 

h 

'Mt dy2 
--T GM o <y-i> = 0 ) 

(B.9) 

(B.lO) 

(B.ll) 
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and 

EM 
h 'N+l -2uN+UN-1 }+;-&{$v~-v~-~]-T~ <y-a>} = 0. (B.12) 

For fiber N+l, y LL. 

EFAFh 
2 

d 'N+l hT 

GMt dy2 + ‘N+2 - 'N+l + + <y-a ' = ' 3 (B-13) 

and 

EM 
h ‘N+2 - 2uN+1 +UN}+ i$ {$[vN+2-vN++=o <y-a>}=O.(B.14) 

Again, the axial equilibrium equation is independent of the trans- 

verse displacement, u,. 

The three equilibrium equations in the longitudinal direction are 

then: 

for all fibers, except N and N+l when y 2 L , 

EFAFh d2vn 

GMt dy2 
- + Vn+l - 2vn+vn 1 = 0 , 

for fiber N, Y I L 

E,AFh d2vN 
-$- dy2 + VN-l - VN 

h 
--T GM o <Y-a ' = o 3 

and for fiber N+l, Y L L 

EFAFh 
2 

d 'N+l 
GMt dy2 + 'N+2 -VN+ 

(8.15) 

(~-16) 

The same change in variables as 

1 
+J- 

GM 
-co <y-a > = 0 . (B.17) 

before will be used, with the following 

additional terms: 
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dVn '0 
UFln = urn -&- = ?o / 

J 

EFht dV, 
- - 
GMA~ dn ' 

EFAFh 
L= TcX 

J- M 

(B.18b) 

(B.18~) 

(B.18d) 

where n. a,, , V,, y. ,a, and B are nondimensional. 

In these equations,EF, AF, t, L,and R are taken as actual fiber 

modulus, fiber cross-sectional area, lamina thickness, and damage dimen- 

sions, respectively. The quantities -r. and GM/h are equivalent yield 

stress and lamina stiffness, respectively, and are to be determined 

experimentally. The yield stress, ~~~ should be reasonably close to 

the matrix yield stress obtained from a test using matrix material 

alone as long as the damage occurs 

the interface or within the fiber. 

less well defined as discussed. 

The resulting nondimensional 

in the matrix rather than along 

The quantity GM/h is felt to be 

equations are: 

For all fibers, except N and N+l when n < c1 , - 

d2V 
2 + vn+l - 2v,+v, 1 = 0 ) 
dn 

2 

for fiber N, n 5 CY 

d'VN 
-- - 
dn 

2 'N+ 'N-1 - -c,q+ > = 0 , 

(B.19) 

(B.20) 

and for fiber N+l, T-I < c1 - 
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2 
d 'N+l 

dn 
2 - 'N+l 

+ vN+2 + To <n-B. = 0 . 

Defining a new unknown function f(n) such that 

f(n) = vN-vN+l -To <n-B> if n<a , 

and 

fbl) = 0 , 'II" 

(B.21) 

with g(n) = VN-VN+l for the same range of n values, the above three 

equations then become: 

(B.22) 

d2V 
"+v 
dn 

2 n+l -2v,+v, 1 = 0 9 

dLVN 

dn 
2 + 'N+l -2vN+vN-l = - f(n) , 

and 

(8.23) 

(B.24) 

dLVN+l 
dn 

2 + vN+2-2vN+1 +$ = fh). (B.25) 

These differential-difference equations may be reduced to differen- 

tial equations by introducing the even valued transform as 

V 
V(be) = +-+ F V,(n)cos(ne) , 

n=l 

from which 

V&l) = 2 TT ,/" &,e)cos(ne)de , (8.27) 

and the three equations become: 

2[1 -cos(e)]i cos(ne)de = 0 (~.28) 

for all fibers, except N and N+l when n 5 a , 
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43 -cos(e)]i cos(ne)de = - f(n) , 
> 

(B.29) 

fiber N, n( a, and 

2[1 -cos(e)]i cos(ne)de = f(o) , (B.30) 

fiber N+l, rl La. Making use of the orthogonality of the circular func- 

tions these three equations may be written as one equation, valid for 

all values of n and T-I, as follows: 

2[1 -cos(e)]i 

= p <a-n> IRf(rl){cos[(N+l)e] -cos(Ne)l cos(ne)de . (B.31) 
0 

This equation is of the form 

2 J*F(n,e)cos(ne)de = 0 for all T-I and n 
TO 

(B.32) 

and noting the definition of i(,,e) in equations (B.26) and (B.27) it 

is seen that the function F(n,e) is even valued in e and therefore, if 

the integral is to vanish for all n, the function F(q,e) must be zero. 

The single equation specifying i(n,e) is then 

d2i -- 
2 

& = - <a-n > D2f(q) (B.33) 
dn 

where 

g2 = 2[1 -cos(e>] = 4 sin2(e/2) , (B-34) 

and 

D2 = cos(Ne) -cos[(N+l)e] . (8.35) 

It is very significant that the irregular boundary condition, 

equation (B.l), of specified stress over a finite length, not coincident 
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with either coordinate axis can be accounted for exactly and that the 

problem reduces to one differential equation which must satisfy boundary 

conditions along the coordinate axes only. The ability to do so strongly 

depends on the form of the failure criterion. A condition in which both 

normal and shear stresses were included generally would couple the axial 

and transverse equilibrium equations and yield a far more complicated 

set of differential equations. 

The solution to the problem of vanishing stresses and displace- 

ments at infinity and uniform compression on the ends of the broken 

fibers will now be sought. The complete solution is obtained by adding 

the results corresponding to uniform axial stress and no broken fibers 

to the following solution. 

The boundary conditions are then 

V,=O asn-ta , 

for all fibers, 

(~.36) 

dvn 
-= Q' = - l3 dn 

for T-l=03 (B.37) 

for broken fibers, and 

v,=o , for n=o, 

for unbroken fibers. 

(B.38) 

Using a technique such as variation of parameters to determine a 

particular solution to equation (B.33), the complete solution satisfying 

infinity is stresses and displacements at 

i(n,e) = A(e)eW6n + $ <a-n >iasinh[s(n-t)]f(t)dt 
n 

(B.39 

where the unknown functions are A(e) and f(t). The remaining two boundary 

conditions give 

20 

I 



d’+,(O) dn sA(e) + D2Jacosh(st)f(t)dt cos(ne)de = - 1 
0 > 

(8.40) 

for all broken fibers, and 

!$ Iasinh(st)f(t)dt cos(ne)de=O (B.41) 
0 > 

for all unbroken fibers. Equation (B.41) is solved exactly by taking 

D2 
N 

A(e) - o 6 Iasinh(6t)f(t)dt = c B, cos(m8) (B.42) 
Ill=0 

where the 8, are constants. Equation (B.40) then gives a system of N+l 

algebraic equations for the N+l constants B,,, in terms of f(n) which 

is, as yet, unknown. For the case of no damage the problem is then 

exactly the same as section A of the present report. 

For matrix damage, a # 0, equation (B.40) must be supplemented by 

the condition that 

f(n) = g(n) -To 'n-6' , n I_a 

= 
vN - vN+l - To < n-6 ’ , 

and recall from equation (B.22) that f(a) = 0 and therefore 

g(a) = To . 

(B.43) 

(B.44) 

The constants B, and the function g(o) are then specified by 

requiring that equations (B.40), (B.43) and (B.44) be satisfied. Using 

equation (B.39) and after considerable algebraic manipulation, the 

displacement of any fiber for all values of n is 

N 
c cos(me)cos(ne)de 

Ill=0 

+ ; .raf(t){cn(It-,,l) -c,(t+dldt 3 
0 

(B.45) 
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where 

2 
C,(S) = i ;' $ em6' cos(ne)de 

Equation (8.40) then becomes 

2 Ia 
N 

-6 c B,.,, cos(me)+D21ae -6-t g(t)dt- D2 ; Jae-6tdt 
TO Ill=0 0 OB > 

x cos(ne)de = - 1, n=O,l,...,N (~.46) 

and equation (B.43) along with (B.45) gives, for n 5 a , 

g(r)) = vN - vN+l , 

= 2 JR,+’ 
N 

TO 
C B,,., cos(me)Ccos(Ne) -cos[(N+l)e]}de 

tll=O 

+ ; lag(t) CN(lt-nl) -cN(t+n) -CN+l(It-nI)+C~+l(t+n) dt 
0 c 1 

- 2 la 
B 

cN(It-nl) - CN(t+d -' N+l ( 1 t-n 1 > + $+I ( t+n)) dt - 

The condition that 

g(a) = To 

also must be satisfied. 

(B.47) 

(B.48) 

Physically, it would be more direct to specify the applied stress 

ua, and the number of broken fibers, N, and determine the damage zone 

a and B depending on given yielding and splitting conditions. As a and B 

appear in the limits of the above integrals this is not convenient 

mathematically and it is easier to specify the number of broken fibers, N, 

and the damage zone a and B, and compute the required applied stress urn. 
These equations were solved as follows: 
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(I) An initial set of constants B, was determined for the problem 

of no damage, a = f3 = 0 in equation (~.46), i.e., 
N 
c Bm$ ~~6 cos(me)cos(ne)de = 1, n=O,l,...,N . 

m=O 0 
(B.49) 

(II) These initial constants were then substituted into the integral 

equation (B.47) and, along with equation (B.48), the function 

g(n) and awere determined using the desired values for a and B. 

(III) Using g(n) and io., a new set of constants, B, ,was computed from 

equation (B.46) with the desired values of a and 8. 

(IV) This procedure was repeated until the unknowns changed less 

than a prescribed amount with additional iterations. 

In the above solution the unknown function, g(n), was assumed to 

be piecewise linear over the interval 0 5 n 5 a of the form 

!3?n) = y; + y; T’ , i = 1,2,...,k 

when the interval was divided into k equal subdivisions. The function 

g(n) then contained 2k unknowns with one additional unknown being Fo. 

As g(n) is the displacement difference it should be a positive, mono- 

tonically decreasing function and its representation as a piecewise 

linear function should be sufficiently accurate. The ( k+l) equations 

were obtained by requiring that the integral equation, equation (B-47), 

be satisfied at the (k+l) end points, (k-l) equations resulted from the 

requirement of continuity of the function g(n) between adjacent intervals 

and the last equation was given by g(a) = io. 

With the longitudinal displacement vn now known, the transverse 

displacement u, is obtained by solving equations (B.4), (B.6), and (B.8). 

This solution is recorded below for completeness. 
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umGMh IT 
'n=-- 

aEMEF o/ 
{sin(Ne)+sin[(N+l)e]} 

sin(ne)de 
1-cos(e) * 

(B.50) 

The matrix normal stress, uMln , is related to the transverse displace- 

ment, u,, through the stress-displacement relations discussed in sec- 

tion A. Knowing u, from equation (B.50) the matrix normal stress can 

be computed for all values of n and n. 

In the next section this solution is modified to account for 

transverse damage. 
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c * Two-Dimensional Shear-Lag Model with Broken Fibers, Longitudinal ~~~~t;i-s~i.~tt~~~.-a~~ ~~iie, d.i n 
g and Transverse Matrix and Fiber -- _-_ -_ 

Damage 

A certain amount of stable transverse extension of the initial 

notch under increasing applied loads has been observed in tests on 

unidirectional and cross-ply composite laminates [13]. In case of 

single-ply and multi-ply unidirectional laminate this occurs in the 

form of breakage of an arbitrary number of fibers ahead of the initial 

notch tip sometimes accompanied by fracturing of the matrix and more 

often without any matrix fracture. In the later case the damage 

may be observed with x-ray or by etching away the matrix. The matrix 

material undergoes extensive longitudinal yielding in both the cases. 

This behavior appears to be strongly dependent on the laminate thick- 

ness; a detailed investigation into this question is currently underway 

by the present writers. The breakage of fibers is found to not be 

confined to a straight line in the transverse direction, that is, all 

fibers do not break along the x-axis even though the initial notch 

is oriented along the x-axis. This creates a zone ahead of the 

notch tip in which fibers do not possess their original stiffness and 

hence results in a reduced axial load carrying capacity of these 

fibers. If all the fiber breaks are not along the same line this 

reduction will not be as drastic as for rectilinear extension and 

thus the damage zone will support considerably more load than that 

of a matrix region alone. 

In order to account for this behavior, an idealized model having 

transverse damage ahead of the initial notch in addition to the longi- 

tudinal matrix damage considered in section B is now developed. 
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This is shown in Figure (4). It is mathematically untractable to 

account for the distribution of breakage of fibers occurring at 

points other than those on the x-axis; the model then assumes all 

breaks to occur on the x-axis and accounts for the stiffness by 

assuming these fibers to carry a reduced load as described below. 

The transverse damage consists of an arbitrary number of broken fibers 

which are constrained by the adjoining matrix and/or by the unbroken 

fibers through the thickness. These fibers in the transverse damage 

zone will be referred to as constrained fibers. The extent of con- 

straint is represented by a stiffness coefficient y and is assumed 

to be constant for all the constrained fibers. The stiffness coeffi- 

cient,y , is given by 

stress in the constrained fiber 
Y= stress in the first unbroken fiber * 

Longitudinal damage, yielding and splitting, is assumed to occur at 

the end of the original notch as in section A. 

With reference to Figure (4), n=O,l,...,N corresponds to broken 

fibers in the initial notch region, n= N+l, N+Z,...,M corresponds to 

constrained fibers in the transverse damage zone and n=M+l, M+2,...,m 

corresponds to unbroken fibers. By comparing Figures (2) and (4), it 

may be observed that the only difference between this model and the 

one considered in section B is in the boundary conditions along the 

x-axis. These boundary conditions are given in Figure (5). The 

governing differential-difference equations and also the final equa- 

tion specifying v(n,e) will be the same as those of section B. Starting 

from the differential equation derived in section B, the solution is 

obtained using the appropriate boundary conditions following the pro- 

cedure described in section B. 
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The governing differential equation is given by 

d2i &2ij = -a 
2 - <a-~ > D2f(n) , (c.1) 

dn 

where all the quantities have the same meaning as in section B. With 

reference to Figure (5), the boundary conditions, after normalization 

are given as follows: 

(i) As n+m v, = 0 for all fibers. (C-2) 

dVn 
(ii) At n = 0 F= ZFln = - 1 for broken fibers, (C.3) 

and 

dVn 
-= 'JFln = dn - l+y 'FlM+l 

for broken fibers,(C.4) 

where (JFJM+l is the normalized stress in the first unbroken fiber at 

n=O and y is the stiffness coefficient defined earlier. 

(iii) At n = 0 v, = 0 for unbroken fibers. (C.5) 

As in section B, the complete solution to equation (C.1) satisfying 

vanishing stresses and displacements at infinity is given by 

i(n,e) = A(e)e-"n 
2 

+ J$ <a-B > 1 c1 sinh[a(n-t)]f(t)dt , V-6) 
rl 

where the unknown functions are A(e) and f(t). The remaining two bound- 

ary conditions give d’+,(O) do +D2 la cosh(H)f(t)dt cos(ne)de=-1 
0 > 

n=N+l ,...,N, (C.7) 

dV,(O) 
dn -&A(e) +D2;Ucosh(6t)f(t)dt 

> 
cos(ne)de=-1 +yO 

F M+I 

n=N+l ,...,M, (C.8) 
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and 

cos(ne)de = 0 

n=M+l, M+~,...,w. (C.9) 

Equation (C.9) is solved exactly by taking 

A(e) - g 
M 

I"sinh(6t)f(t)dt = c Bm cos(me) 
0 m=O 

(C.10) 

where B, are constants. The stress in the first intact fiber, 

‘FIM+ly is given by 

dVM+l (‘) 2 rr 
dn 

=- 
TO 

-gA(e)+ D21acosh(Gt)f(t)dt cos[(M+l)e] 
0 > 

= 
-" 'FIErl+l . (C.11) 

Using equations (C.10) and (C.ll) in equations (C.7) and (C.8), A(e) 

and 'FIM+l may be eliminated resulting in M + 1 algebraic equations for 

M+l constants Bm in terms of f(n) which is, as yet, unknown. For 

longitudinal matrix damage, equations (C.7) and (C.8) must be supple- 

mented by the conditions that 

and 

f(Tl) = g(n) - To <n-B> 3 77<a, (C.12) 

g(a) = To . (C.13) 

From equations (C.6) and (C.lO), A(e) may be eliminated to obtain 

v(n,e) in terms of constants B, and unknown function f(t). Recalling 

the relation between &,e> and V,(n), an expression can be obtained 

for the axial fiber displacement V,(n) as 

vnb-J B, cos(me)cos 

+ kJaf(t)ICn( 
0 

It-nj)-C,(t+n)Idt , (C.14) 

(ne)de 
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where 

2 
C,(s) =cgl'%e -SE cos(ne)de . 

Equations (C.7) and (C.8) then become 

(C-15) 

M 
-6 c B, cos(me)+D2Jae 

-5t 
g(t)dt-D 2- u -6tdt 

m=O 0 
-co/ e 

B 

cos(ne)de = - 1 n = 0,l N ,-.-, , (C.16) 

and 

M a -5t 
-6 c B, cos(me)+D2 / e g(t)dt - ToD21ae -6tdt X 

m=O 0 B I 

(cos(ne) -y cos[(M+l)e]}de= -1 +y n=N+l ,...,M.(C.17) 

Equation (C-12) along with equation (C.14) gives 

g(q) = f ;me-5n 
M 
C B, cos(me){cos(ne> - cos[(N+l)e])de 

m=O 

c,(lt-Q[) -CN(t+q) -CN+l(lt-~l)+CN+l(t+~) 
> dt 

2 -- IQ CN(lt-d 
B { 

The condition that 

g(u) = To 

must also be satisfied. 

) - $b+d - $+I W-d )+c N+l 

(C.19) 

Equations (C-16) to (C.19) are of the same form as those obtained 

in section B for g(n) and the constants B,; however, they now contain 

the additional parameters M and y . The procedure to obtain displace- 

ments and stresses is the same as before. For boron/aluminum laminate 

the size of the damage zone (M-N) was found to be approximately constant 

for all initial notch lengths (N). The coefficient y decreased with an 
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increase in the initial notch length. The results are discussed below 

where it is shown that table transverse notch extension is possible, 

with the extension becoming unstable in a boron/aluminum laminate at 

about seven damaged fibers. 
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ode1 with Broken Fibers, Longitudinal- 
ng with a Surface-Constraint L ayer 

A constraint layer is added parallel to the main lamina of the 

problem considered in Section B, providing additional shear stiffness. 

The constraint layer is an attempt to account for either the misalign- 

ment of fibers in a multi-ply unidirectional laminate, or the presence 

of a non-zero ply in the composite laminate. The extent of the above 

effects may be represented by the amount of constraint the layer intro- 

duces, defined in Figure (6) as the constraint ratio. The constraint 

ratio may be varied by varying the constraint layer parameters. How- 

ever, in the present investigation no explicit relationship between 

the constraint ratio and constraint layer parameters is considered. 

Displacement-stress relations similar to those in section B are assumed 

so as to obtain decoupling of the equilibrium equations. Only fiber 

stresses and matrix shear stresses will be developed in the present 

study. The equilibrium equations in the transverse direction are more 

difficult than those in the previous models due to the presence of the 

constraint layer and will be considered at a later time. 

A free-body diagram of an element consisting of the main lamina 

and the constraint layer is shown in Figure (6). With reference to the 

free-body diagram, the equilibrium equations in the axial directions are 

given below. For all fibers n, with the exception of N and N+l when 

y 2 L the equilibrium equation is 

AF daFln 
T.dy+Tn+l-Tn=O. 

I I (D-1) 
For fiber N and N+l, ye L, T l N+l 

= - ~~ <Y-R> and the equilibrium equa- 

tions are 
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(D.2) 
N+l 

and 

AcYEIEl+T 
t dy I 

+T <y-g>+ 
N+2 ' 

(IlINt - Al,,} $= 0 - (D.3) 

The following stress-displacement relations are introduced in equations 

(D.l) through (D-3) as before: 

dvn 
'Fin = EF dy ' 

‘n+l - vnL and (D-4) 

T’ I n+l = T ; ’ bn+l - VJ - 

The equations (D-1) through (D-3) then become 

2 
AFEF d 'n GM 
--+-Ii- t 

dy2 
(v n+l - 2v,.,+~,,-~) + +$ (v,,+~ - ~v,,+v,-~) = 0 (D-5) 

for all fibers, except N and N+l when y 5 L , 

AFEF d2VN GM G't' --- T 
t 

dy2 ' 
<Y-R> - - 

h ( VN-vN-l)+ ,,'t bN+l -2VN+V,&1) = 0 

for fiber N when y 5 L, and 
NW 

AFEF d2vN+1 + ~ 
t 

dy2 
0 

<y-R> + GM 
h bN+2 - VN+l > + K (VN+2 - 294+1 + vN) = o 

(D.7) 

for fiber N+l when y 2 L . 

By defining 
G' t' h _ 

cR=FT%T 
constraint ratio, and rearranging terms, 

equations (D.5) through (D-7) may be rewritten as 
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AFEFh 
2 d v, 

- - 
GMt dy2 

+ (1 + CR)(Vnil - 2v, + v& = 0 , (D-8) 

AFEFh d2vN 
- - 

GMt dy2 
+ (1 + CR)(VN+l - 2vN + VN-1) = & To <Y-" + VN+l+N ' 

and 
(D-9) 

AFEFh 
2 

d 'Nil h 

GMt dy2 
+ (l+CR)(VN+2-2vN+l+vN) = VN-vN+l - G'CO <y-k> . 

(D-10) 

The same change of variables as in Section B will be used in order to 

normalize the quantities in the equilibrium equations. The resulting 

nondimensional equilibrium equations are: 

for all fibers, except N and N+l when n -C Q , - 

d2V 
-+ + (1 + CR) (v,,l - 2v, + v,-l > = o , 

dn 
(D.ll) 

for fiber N, when T-I 5 c1 

d2V 
4 + (1 + cR)(vN+1 - 2v,4 + $-]) = vN+l - VN + To< ll-B >, (D.12) 
dn 

and for fiber Nil, n < c1 - 

d2VN+1 
dn 

2 + (1+cR)(vN+2-2vN+1 +$I = - $,,+I -VN)-+,-f-. (D.13) 

Defining a new function f(n) such that 

f(q) = vN - vN+l - ;o<n-fi > if n<a , (D.14) 

and f(n) = 0 if rl'" , (D.15) 

with g(n) = VN - VN+l 3 for the same range of n values, the above three 

equations then become: 
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d2Vn 

dn2 
+ (1 + CR)(Vnil - 2v, + Vnel) = 0 ¶ (~-16) 

and 

2 
d 'Nil 

dn 
2 + t1 + ',$tvN+2 - 2vN+1 + VN) = f(n), 

(D.17) 

(~-18) 

These differential-difference equations may be reduced to differen- 

tial equations by introducing a new function v(n,0) previously defined 

in section B, so that, Vn(n) is given by 

V,(n) = t ~~ i(n,e) cos(ne)de . 
0 

(D-19) 

After substituting for Vn(n) from equation (D.19) the above three equa- 

tions become, respectively, 

2(1 + CR)[l -cos(e)]v cos(ne)de = 0 , 

2(1+CR)[1 - cos(e)]i cos(Ne)de = - f 

and 

(D.20) 

n> , (D-21) 

2(1 +CR)[l -cos(e)]i cos[(N+l)n]d = ‘1 fP> - (D-22 

Making use of the orthogonality of the circular functions these 

three equations may be written as one equation, valid for all values of 

n and n as follows: 

34 

2(1 +CR)Cl - cos(e>]i cos(ne)de 
> 

= 5 <cr-rl>/'f(l7){cos[(N+l)e] - cos(Ne) } cos(ne)de . (D-23) 
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This equation is of the form 

f IT o F(n,e)cos(ne)de = 0 , forall nandn . 

Since F(n,e) is even valued in 8, if the integral is to 

n the function, F(n,e), must be zero. The single equat 

i(n,e) is then given by 

& 

dn2 
- ti2 i = - <u-n > D2f(,1) , 

vanish for all 

ion specifying 

(D-24) 

52 = 2(1 +CR)[l - cos(e)]= [2Jsin(e/2)12 , 

and 

(D-25) 

D2 = cos(Ne)- cos[(N+l>e] . (~-26) 

The equation (D-24) is exactly of the same form as the correspond- 

ing differential equation, equation (B-33) of section B, the only dif- 

ference being in the definition of 6. Consequently, the expression 

for V,(n), the algebraic equations for the constant B,,and the integral 

equation are the same as in section B. They are reproduced here for 

completeness. 

The displacement of any fiber for all values of n is 

V,(n) = f r*e-" 
N 

0 
c B,cos(me)cos(ne)de 

m=O 

+ ; .fclf(t) Cn( It-nj) -C,(t+n) dt , 
0 > 

where 

-65cos(ne)de . 

(D.27) 

The algebraic equations for the constants B, are given by 
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2 a 6 c B, cos(me) + D / e -5tg(t)dt _ D2 ; Jae-Gt 
0 OB 

cos(ne)dt = - 1 , n = O,l,...,N . (~.28) 

The function g(n) is given by the integral equation 

g(n) = 2 ITle-gn 
TO 

c B, cos(me)D2de 

+ ; rag(t) dt 
0 

$,+,I) -$b+d -‘Nil (It-n/)+CN+l(t+n) dt. (D-29) 
> 

The condition that 

must also be satisfied. 

The numerical technique described in section B is employed to 

obtain the solution to the above equations. 
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E. Two-Dimensional Shear-Lag Model with Broken Fibers, Longitudinal 
Matrix Splitting, ~~ ._c_ and Yielding with an Elastic-Linear Strain- 
Hardening Matrix 

In section B, longitudinal matrix splitting and yielding was con- 

sidered with the matrix material being elastic-perfectly plastic. In 

this section a bilinear stress-strain behavior for the matrix material 

is assumed, as shown in the figure below. 

Bilinear stress-strain relationship 

A free-body diagram for a typical element is given in Figure (2) 

with the special condition for the last broken fiber, N now given by 

T 
I N+1 = cG*yN+l - (GM - G*)v,l <Y-R> , (E-1 1 

where the negative sign is taken to account for negative shear strain, 

so that the absolute value of y. is specified. 

The equilibrium equations in the longitudinal and transverse 

directions, respectively, for all fibers n, with the exception of N 

and N+l when y < L are - 
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t t$$+.n+l+T I I n 
=o , 

and 

'Mln+l - 'M/n + ?? dy h A- (TIni + 'In) = 0 . (E-2) 

For fiber N, y 2 L the equilibrium equations are 

AF duFlN 
t dy + CG*rN+l - (GM-G*)y,] <y-Q> - T(~ = 0 , 

and 

u"IN+l -'M N 
+ i $ [{G*YN+~ - (GM-G*)y,It <Y-Q> + -rIN]=O. (E.3) 

For fiber Nil, y 2 L the equilibrium equations are 

I N+2 - LG*yN+l - ( Gr4 - G*)y,l <y-Q > = 0 , 

and 

'MINi2 -+&+I 
+ m- [Tl 

2 dy N+2 
+ {G*yN+l - (GM - G*)y,Il <y-Q >] = 0 . 

(E-4) 

Introducing the stress-displacement relations defined in sections 

A and B, and also noting that ynil = (vnil -v,)/h, the equilibrium 

equations in the longitudinal direction may be written as follows. 

For all fibers except N and N+l when y 5 L , 

AFEFh 
2 

d 'n + (v ~ - 
GMt dy2 

n+l - 35 + Vn-l > = 0 - 

For fiber N, when y 5 L , 

AFEFh 2 
d vN 

Gmt dy2 
- + (VN-, - v,,,) - (1 - 5) & -Co <y-Q > 

+ G* (VNil - 
GM 

VN) <y-Q>= 0 . 
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For fiber Nil, when Y L L Y 

AFEFh d2vN+1 
GMt dy2 + 'N+2- 'Nil + (' - 5) 

G* -- 
GM 

(VN+l - VN) <y-k > = 0 . (E.7) 

The equilibrium equations in the longitudinal direction are independent 

of transverse displacements u,. Therefore, only the solution for the 

longitudinal displacement Vn will be considered. 

The same change of variables as in section B will be used in 

order to normalize the quantities in the equilibrium equations. The 

resulting nondimensional equations are: 

for all fibers, except N and N+l when n < ~1 - 

d2V 
+ + vnil - 2v,+v, 1 = 0 , 
dn 

w3) 

for fiber N, when n (a 

d2VN 
-- VNiVN-l-(I-~)~o<~-~>+~ (VN+l-VN) <n-@>=O, (E-9) 
do2 

for fiber Nil, when n < ~1 - 

2 
d 'Nil -__ 

dn 
2 + ‘N+2 - 'Nil + (1 -gpo<n+>-g (VNil -vN)q-f3>= 0 . 

(E-10) 

For the sake of simplicity, let GR = E and 
M 

TOR = (1 -$) To . (E-11) 

As before, a new function f(n) is defined such that 

f(n) = VN-VN+l - -VA) 
> 

<TI B> 3 if TI < a 3 

and f(n) = 0 , if nla. (E.12) 
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With the introduction of f(n), the equations (E.8) to (E.lO) may 

be written as follows: 

d*V 
"+v 

2 n+, - 2v, + vn-, = 0 , 
dn 

(E.13) 

dLVN 

drl 
2 + 'N+l 

- 2vN+vN-, = - f(n) , 

and 
2 

d 'N+l 

dn* 
+ vN+2-2vN+,+vN = f(n) * 

(E.14) 

(E.15) 

Equations (E.13) to (E.15) are exactly of the same form as the cor- 

responding equations of section B, i.e., equations (B.23) to (B-25). 

The only difference is in the function f(n), which is now defined as 

f(n) = g(n) - ?oR <n-B> , for T)<a, (E.16) 

so that 

g(n) = (1 -GR <n-~>)(vN-vN+l) 3 (E-17) 

and 

gb) = ToR - (E.18) 

The boundary conditions on stress and displacements are the same 

as those of section B. Following the procedure detailed in section B, 

the axial displacement in fiber n for all values of rl is given by 

Vn(n) = % ;'e-'n 
N 
c B, cos(me)cos(ne)de 

m=O 

+ ; Iaf(t) 
0 

where 

cos(ne)de , 

6 = 2 sin(0/2), 

and D2 = cos(Ne) - cos[(N+l)e] . 
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Boundary conditions on fiber stress yield the following equation: 

N 
6 c B, cos(me) + D2Ja e -6t 2- 

m=O 0 
g(t)dt-D ToR ; 

cos(ne)de = - 1 , n = 0,l 3*--, N . (E-20) 

Putting n= N and N+l in (E.19) and subtracting VN+, from VN gives 

=.L,"e 
VN-NN+l x o 

-611 N 
c B, cos(me)D*de 

m=O 

+ ; /cc f(t) 
0 

It-n I) - cN(t+17) - $+, ( It-d) + ‘N+++‘l) dt- 
> 

tion of g(n), equation (E.21) reduces to the following: 

g(o) = [l -GR<n-@>] 
[ 

4 

+ ; Ia 
0 

- qoR' 

IT -6rl N 
/e 
0 

c B, cos(me)D2de 
m=O 

cN( It-n I) - CN(t+ri) - $+, ( It-d) 

(E.21) 

Multiplying equation (E.21) by (1 -GR < n-B>)and recalling the defini- 

+cN(t+n) dt . } 1 (E.22) 

Further simplification of (E.22) yields the integral equation 

g(n) = [l - GR< T-I-B >] $ ;'eW6n cB, cos(me)cos(ne)D*de 
[ 

-CN+,(h-d)+C N+l (t+d dt 
> 

5 OR a - -- 
2 r 

B 
$( 1 t-n 1) - $(t+d - $+, (It-d> 

(E.23) 

The last condition that must be satisfied is 

g(a) = yoR = To(l -GR). 
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Equations (E.20) and (E.23) together with equation (E.24) are solved 

employing the numerical technique described in section B in order to 

obtain displacements and stresses. 

The above development of the different modifications to the fun- 

damental solution of section B has been presented with each change con- 

sidered separately in the past three sections (C,D and E). This pro- 

cedure was used to note more clearly the necessary changes. However, 

in developing the computer codes for these solutions we have included 

all the modifications in one code and have investigated the influence 

of the various models as a complete set. In the results, to be dis- 

cussed later in this report, it was found that the transverse damage 

model of section C was the most significant. The inclusion of a stra 

hardening matrix had very little influence on the ability of the solu 

tion to give results consistent with experiments for ductile matrix 

laminates. Perhaps if unloading had been considered,more dependence 

would have been noted. Also, the constraint layer (cover sheet) was 

not significant in comparing with experimental data on unidirectional 

laminates, however it certainly would be for cross-ply laminates. 

in- 

The following two sections present the solutions for a rectangular and 

circular damage region without including a strain-hardening matrix or 

a cover layer but including all other damage. The main purpose was to 

investigate the changes given by different initial damage shapes. 
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F. Two-Dimensional Shear-Lag Model with a Rectangular Notch, Longi- 
tud~~ai.~~trixSplitting and Yielding and Transverse Matrix and 
Fiber Damage 

In the next two sections we extend the above solutions to account 

for an initial damage zone in the shape of respectively; a rectangular 

notch and a circular cut-out. These represent more realistic damage 

shapes and it is of primary interest to investigate the differences 

in the results as compared to the idealized model of a slit as previously 

discussed. The same basic assumptions as before will be made and, as 

the solutions are developed very easily from the past work, only the 

fundamental differences will be discussed. Both longitudinal and trans- 

verse damage will be included initially. That is, the development will 

concentrate on the necessary changes to the complete solution presented 

in section c rather than starting with no damage and developing each 

successive solution. For both of these cases the only significant 

difference in the solutions is the change in boundary conditions on the 

initial damage region and, for the rectangular opening in particular, 

these differences give almost trivial changes in the resulting form 

of the equations. 

The solution to be developed in this section is for an initial 

damage region having the form of a rectangular opening. Under loading, 

damage is taken, as before, in the form of longitudinal splitting and 

yielding of the matrix and transverse damage to the fibers. The longi- 

tudinal damage is assumed to occur at the end of the initial notch 

between the last broken fiber and the first unbroken fiber. Transverse 

damage is modeled, in the same manner as in the preceding sections, as 
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reduced load carrying fibers along the horizontal axis. Figure (7) 

depicts the geometry for this study. This last assumption is admittedly 

a simplification as one would assume that the location of the maximum 

axial stress in the first unbroken fiber in front of the notch, before 

transverse damage occurs, would be at the corner of the notch rather 

than the center. If this is true then notch extension would, at least, 

begin at the corner. The results from the present solution indeed in- 

dicate the maximum stress to occur at the corner. However, the difference 

between this maximum stress and the stress at y= 0 is small and further, 

the location of the maximum stress in adjacent unbroken fibers away 

from the notch changes from the corner to the y-axis after only a few 

fibers. Preliminary experimental studies now being initiated also 

indicate that transverse extension does originate at the notch corners 

but successive breaks occur in a random manner tending to be symmetric 

about the x-axis. So, even though the model does not account for this 

irregularity in transverse extension,it is felt to be a reasonable 

approximation, especially for larger notch extension. 

With the above assumptions, the solution is then developed by 

modifying the previous results to account for the boundary conditions 

of zero shear stress on the sides of the notch and a unit compression 

stress on the ends of the fiber at the top (and bottom) of the notch. 

As the solution already allows for matrix splitting, the first of the 

above conditions is met simply by setting the minimum value of the split 

length (8) equal to the half-notch height. The remaining boundary 

condition is satisfied by taking n= H (normalized half-notch height) 
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rather than q=O as in equation (B-46); this is 

t I*- 
N 
c B, cos(me)&e -6H cos(ne)de = - 1 . 

0 m=O 

All other equations are unchanged. 
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G. Two-Dimensional Shear-LxModel with a Circular Cut-out, Longi- 
tudinal Matrix Splitting and Yiefdiznd Tr>%sKeyM%??ix -- 
and Fiber Damage 

The solution to this problem for the case of no additional 

damage was presented by Frankli-n in [7] and Kulkarni et. al. in [8]. 

Both of these studies had difficulty satisfying the stress free 

boundary condition of the circular boundary; Franklin's solution gave 

zero stress in the fibers but did not consider the non-zero shear 

stresses in the matrix while Kulkarni attempted to remove the shear 

stresses by an averaging technique. The results of the two are, 

however, not significantly different. In the present solution we 

formulate the boundary conditions in the same way as Franklin but 

the ability of the present model to allow for matrix splitting gives 

some necessary additional freedom to satisfy the stress free conditions 

more accurately. Longitudinal and transverse damage is also included 

with the longitudinal damage being at the edge of the hole and the 

transverse damage originating and extending along the horizontal 

axis as in the slit and the rectangular notch. 

To develop the stress free boundary conditions on the hole 

surface first consider an unnotched laminate having uniform applied 

stresses at infinity and determine the fiber stresses on a circular 

region having the radius of the desired cut-out as shown in Figure (8). 

The negative of these stresses are then the appropriate boundary 

stresses to be applied to the edge of the circular hole in an infinite 

laminate having vanishing stresses and displacements at infinity. 

A typical element on the boundary of the circular hole is shown 

in Figure (9). A series of these inclined elements were joined together 
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to form an approximation of the circular boundary as shown in Figure 

(10). It is seen in Figure (10) that for each element a small vertical 

matrix boundary exists on which the shear stress, as given by the shear- 

lag assumption, will not be zero. The largest such surface is between 

the last broken and first unbroken fiber. By setting the matrix 

split length (B) equal to this distance,this portion of the shear 

stress boundary condition is satisfied. The shear stress condition 

on the remaining elements is not satisfied. 

Referring to Figure (9) and summing forces in the horizontal and 

vertical directions yields 

AF ‘00 -t.~~!z.~ sin(e,) -t~~~ R, cos(en) = 0 , 

and 

-tuRRn cos(e,)+t~~~ R, sin(e,) = 0 . 

Solving for the boundary stresses yields 

OR 
AF = urn EE sin*(e,) , 

and 

AF ~~~ = urn rF sin(e,)cos(e,)~ 

(G-1) 

(G.2) 

(G-3) 

(6.4) 

As previously mentioned, the negative of these stresses will be 

applied to the boundary of the hole in order to remove the resultant 

stress on the hole boundary. Since it is only necessary to solve the 

axial equation in order to obtain the axial stresses and displacements, 

a boundary condition in the axial (fiber) direction is the only one 

needed. Thus the appropriate boundary condition can be derived by 

summing forces in the axial (y) direction. 

AF AF 
htaF n 

sin(e,) + T,+,cos(e,) = - urn ht sin(e,) . (6.5) 
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The same equation can be derived by sun-@ng forces in the radial and 

transverse directions and solving the resulting equation simultaneously. 

The stresses can now be expressed in terms of displacements by 

using the shear-lag assumptions as before. Upon substitution, the new 

boundary condition becomes 

AFEF dvn -- 
GMt dy sin(en) 

From the geometry 

can be expressed as 

R=*N+l h ~, 2 

-uU3AF 
+ [V,,, - VJ cos(e,) = ~ 

GMt 
sin(e,) . G.6) 

of the hole, as seen in figure (8), the radius 

where the coordinates of a particular point are 

'n = hn and 

Y, = h J -n*+ (?!+L)’ . 
The boundary condition for the circular hole then becomes 

dVn -+ % 
dn P n+, - Vnl = - 1 , 

(G-7) 

(G.8) 

(G-9) 

where 

2n 
"n = 2N+1 and Ho= 

This boundary condition must be satisfied at the appropriate value 

along the boundary of the hole. It is seen that the normalized coordinate 

n is then 

(G.lO) 

48 



Finally, the boundary condition becomes 

2 I*- 
N 
c B, cos(me)de 

-h, 

T 0 m=O 
cos(ne)de 

"n N 
+ 1 IT c B, cos(me)e-'n (cos[n+l)e]-cos(ne)}= -1 . 

0 m=O 

(G.11) 

This boundary condition replaces equation (B.46) used in the slit prob- 

Tern. Note that this solution is not independent of material proper- 

ties due to the term Ho defined above. 

Since the damage is defined in the same manner as in section B for 

the slit, the integral equation for the present solution remains the 

same. The only other change is that the slit length (6) must be, at 

least, equal to the matrix mismatch on the last inclined element 

This value is given by 

' = [2Ho&] 

. 

l-an 

(G.12) 

The solution is obtained in the same manner as in the previous sections. 
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H. Two-Dimensional Shear-Lag Model with Broken Fibers for the Half-Plane -__- 

The motivation for much of the above work has been the interest 

in attempting to develop approximate analyses capable of predicting 

accurately the fracture behavior of hybrid (buffer strip) composite 

laminates. In this report solutions have been developed and the sig- 

nificance and validity of the various models will be demonstrated for 

the unidirectional full-plane laminate following this section. Based 

on the understanding developed in this phase of the study, future work 

will involve the extension of these models to multi-material laminates. 

As a first step in this direction the solution for adjoining uni- 

directional half-planes containing damage at, or near, the interface 

will be investigated. The solution presented below is a fundamental 

part of this extension, and consists of the solution for an edge crack 

in a unidirectional half-plane. Using superposition, i.e.; matching 

boundary conditions on the interface, this solution can then be added 

to a second half-plane having different fiber and matrix properties to 

construct the adjacent half-plane problem. 

A two-dimensional array of parallel fibers with an arbitrary num- 

ber of broken fibers at the free edge is shown in Figure (11). The 

laminate is subjected to a prescribed shear stress and transverse normal 

stress along the free edge in addition to a remote uniform tensile stress 

in the axial direction. No additional damage other than the broken 

fibers at the free edge is considered at this time. 

With reference to the free-body diagrams shown in Figure (12) the 

equilibrium equations in the axial and transverse directions are given 

below. The boundary conditions on the free edge must now be specified 
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as opposed to the full-plane solution, in which they were accounted for 

by symmetry. We assume the first fiber in the half-plane to be embedded 

in the matrix material and, as seen in Figure (ll), it will have a 

different set of equilibrium equations than all the remaining fibers. 

The equations of equilibrium are: 

I 2 
-t-c,=o, 

and 

42 -'MI1 

for the first fiber. 

!!&h+tT, 
dy n+l 

-t=( =o 9 
n 

and 

'"In+l-uM/n + i i&{T/n+l+Tln)= O ' 

(H-1 > 

0-1 

(H-3) 

(H-4) 

for all other fibers. 

Substituting the stress-displacement relations of Section A into 

the above equilibrium equations the following pairs of equations are 

obtained : 

2 AFEFh d v1 
h =o, GMt dy2+ (V2-V1)-Ta 5 (H-5) 

and 

EM GM d 
h (9 - u,) - UMl, + 2 dy (9 - v,) + ; 6 Ta = 0 , 0-w 

for the first fiber. 

AFEFh 2 
d v, 

-GF ---$ + bn+, - 2vn + vn-,) = o 3 (H-7) 

and 
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EM GM d 
h tUn+l - *‘n + ‘n-1 1 + 2 dy tVn+l - Vn-l 1 = 0 0-w 

for all other fibers. -. 

From equations (H.5) and (H.7) it can be observed that the axial 

equilibrium equations are independent of transverse displacement. 

Since only fiber axial displacements and axial stresses will be 

developed in this section, the solution for the transverse direction 

equilibrium equation will not be given here. 

The same change of variables as in section A will be used to 

normalize the quantities in the equilibrium equations. The resulting 

equations in the nondimensional form are given by 

d‘v, 
2+ (V*-V,)-Ta = 0 , 
dn 

for the first fiber, and 

d‘V, 

7 
+ ('n+l -*v,+v,-,) = 0 ) 

for all other fibers, where 

Defining a new function f,(n) such that 

f,(ll) = Ta-V, , 

for all values of n the above two equations become 

d*V 
-+ v*- 
drl 

*v, = f,(n) , 

(H.9) 

(H-10) 

(H.11) 

for the first fiber, and 
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n 

dLV 
---$ + v,,, - *v, + v,-, = 0 , (H.12) 

for all other fibers. 

These differential-difference equations may be reduced to dif- 

ferential equations by introducing a new function i(n,e) such that 

the normalized displacement V,(n) is the Fourier coefficient in a 

Fourier series expansion. In order to represent the free-edge boundary 

conditions as discussed earlier, it is appropriate to utilize a sine 

transform. Then 

V(n,e) = Y V,(n)sin(ne) , 
n=l 

(H.13) 

and 

Vn(n) = c ,'lr V(n,e)sin(ne)de . (H.14) 

With the introduction of i(n,e) the equilibrium equations become, 

respectively, 

2[1 - cos(e)]i sin(e)de = f,(n) , 

and 

2[1 -cos(e)]V sin(ne)de = 0 . 

(H.15) 

(~.16) 

Making use of the orthogonality of circular functions these two 

equations may be written as one equation valid for all n as follows: 

2[1 -cos(e)]i sin(ne)de 

= p ;'f,(n)sin(e)sin(ne)de . 

This equation is of the form 
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2 ~ ,'" F(n,e)sin(ne)de = 0 , for all n and n , 

and noting the definition of i(n,e) in equations (H-13) and (H.14) it 

is seen that the function F(n,e) is odd valued in e and, therefore, if 

the integral is to vanish for all n the function F(n,e) must be zero. 

The single equation specifying i(n,e) is then 

d*i -- 

dn 
2 s*i =f, b-d sink 

where 
3 

(H.17) 

6 L = 2[1 -cos(e)] = 4 sinL(e/2) . 

As before, the solution to the problem of vanishing stresses and 

displacements at infinity and uniform compression on the ends of broken 

fibers will now be sought. 

The boundary conditions are given by 

V, = 0 as n-fm, 

for all fibers, 

dVn 
-=oFIn=-l , at n=o, 
dn 

(t-1.18) 

for all broken fibers, and 

V,(O) = 0 at n=o , 

for all unbroken fibers. 

Equation (H.17) has the complete solution satisfying vanishing 

stresses and displacements remote from the damage as 

i(n,e) = A(e)e-" _ sins(e) Imsinh[6(n-t)]f, 
rl 

(t)dt , (H.19) 

where the functions A(e) and f,(t) must be determined from the remaining 

boundary conditions. Using equation (H.14), the displacement is given by 
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-y- Jmsinh[6(n-t)]fl(t)dt sin(ne)de . 
n 1 

(H.20) 

The remaining boundary conditions give 

d’+,(O) 
dn -sA(o) -sin(e) Iwcosh[6(n-t)]f,(t)dt sin(ne)de=-l , 

0 > 
(H-21) 

for all broken fibers, and 

V,(O) = $ ITI A(e) + sins(e) Jmsinh(st)fl(t)dt sin(ne)de = 0 , 
0 0 

(H.22) 

for all unbroken fibers. Equation (H.22) is solved exactly by taking 

A(e) + sin6(e) 
N 

/" sinh(&t)f,(t)dt = c Bm sin (me) , (H.23 
0 m=l 

where Bm are constants. Equation (H.22) then gives a system of 

N algebraic equations for N constants, Bm, in terms of f,(n) which is 

as yet unknown. Eliminating A(8) between equations (H.20) and (H.23), 

the displacement V,(n) can be given as 

V,(n) = f peS6n 
N 
c Bm sin(me)sin(ne)de 

m=l 

- ; Jm f,(t) C,(It-nl) -C,(t+n) dt , (H.24) 
0 > 

where 

Cn(s) = p ,'" sins(e) e-" sin(ne)de 

and 

6 = 2 sin(e/2) . 

Equation (H.21) then becomes 

N m -At 
-6 c B, sin(me) + sin(e) / e 

m=l 
V, (t)dt 

0 

- sin(e) Ime 
-6.t - 

T,(t)dt 
> 

sin(ne)de = - 1, (H.25) 
0 

where f,(t) has been replaced by ?a - V,(t) . 
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Equations (H.lO) along with (H-24) gives 

V,(n) = G LTe-" c B, sin(me)sin(e)de 

+ ; Jrn v, (t) - ?,(a C,(lt-171) -C,(t+n) > dt , (~.26) 
0 

where 

C,(E) = c ," sinz(e) emsg de . 

Equations (H.25) and (H.26) must be solved simultaneously for V,(n) 

and the constants B,. Once V,(n) and B, are known, the displacement 

of any fiber n can be obtained from equation (H.20) and hence the fiber 

stresses. 

These equations were solved as follows: 

(I) An initial set of constants Bm was determined by setting f,(t)=O, 

that is, V,(t)= Fa(t) in equation (H.25) giving 

N 
-l -d C B, sin(me 
I 

de= - 1, n=1,2,...,N . (H.27) 
m=l 

(II) These initial constants were then substituted into the integral 

equation (H.26) and the function V,(t) was determined for a known 

distribution of T,(t). 

(III) Using V,(t), a new set of constants B, was computed from equation 

(H.25). 

(IV) This procedure was repeated until the unknowns changed less than 

a prescribed amount with the additional iterations. 

In the above solution, the unknown function, V,(n) was assumed 

to be piecewise parabolic over the interval 0 < n < 03 of the form - - 

i = 1,2,...,k 
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when the interval was divided into k subdivisions. The function, V,(n) 

contained 3k unknowns. (k+l) equations are obtained by requiring that 

the integral equation (H.26) be satisfied at the (k+l) end points, 

(2k-2) equations resulted from the requirement of continuity of the 

function V,(n) and its first derivative between adjacent intervals 

and the last equation was given by setting V,(n) = 0 as n -t m. Because 

the interval of integration was infinite, the piecewise linear approxi- 

mation for V,(n) unlike in the preceding sections was found to be 

inadequate. 
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SOLUTIONS AND RESULTS 

Numerical solutions have been developed for all the specific prob- 

iems discussed in the previous sections, using an IBM 370 computer at 

Clemson University. For the case of a notch with no additional trans- 

verse or longitudinal damage, as considered in section A, the solution 

involves inverting the system of algebraic equations (A.21) for the 

constants, B,. In sections B-G the inclusion of longitudinal damage 

requires the introduction of an unknown function g(n) representing the 

displacement difference between adjacent fibers in the damage zone. 

Satisfaction of the boundary conditions then gives a far more complex 

system of algebraic equations for the constants Bm, coupled with a 

Fredholm integral equation for the function g(n). The form of this pair 

of equations is identical for all sections B-G (see equations (B.46), 

(B.47), and (B.48)). The solution technique discussed in section B for 

these equations is appropriate for the remaining sections through G. 

For the half-plane considered in section H, even though no longitudinal 

damage is assumed, a set of equations similar to those of sections B-G 

still results. A discussion of an appropriate solution technique for 

the half-plane is given at the end of section H and some changes made 

necessary by unbounded intervals of integration are considered. 

For the present report the main emphasis will be to compare the 

results of the various models and demonstrate the agreement with 

available experimental results. More detailed results for the original 

Hedgepeth problem are given in [ll; the inclusion of longitudinal damage 

for one broken fiber is given in [2] and [3], and the general solution 

of section B is presented in [9]. 
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Some interesting observations concerning the case of broken fibers 

with no additional damage, as presented in section A and Cl] are first 

considered, with particular emphasis on the behavior of the fiber stress 

in front of the notch. The normalized fiber stress in the first 

unbroken fiber was shown in Cl] to have the following representation: 

dF 4.6.8..........(2r + 2) 
Kr = < = 3.5.7..........(2r + 1) 

where OF is the stress in the first unbroken fiber, and r is the total 

number of broken fibers. This equation may be written as 

Kr = (.2r (r + l)! (r)! 
-(2rr---- * 

Using Stirling's formula for the asymptotic representation of (r)! when 

r is large, i e. 

(r)! -f Jznr (k)r , 

and substitut i ng into equation (2), gives 

K =fiiF 
r2. (3) 

If the total number of broken fibers is odd and the notch is symmetric 

about the y-axis, as is the case in all the full-plane problems consid- 

ered here, then r = 2N t 1, where N is the last broken fiber, so that 

equation (3) may be written as 
7 i-- 

a,1 =$ 
"'Ntl L 

m= ,/s fi , for large N. 

The present failure criterion is similar to the "point stress" cri- 

terion presented by Nuismer and Whitney in 1151, at least when applied 

to the models of sections A and B. That is, if transverse damage is not 

admitted then laminate failure is assumed to occur when the stress in 

the first unbroken fiber reaches the unnotched ultimate stress. The 
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remote failure stress, oo3, is then given by equation (1) for any number 

of broken fibers, r, where 0 
F. 

is replaced by the unnotched strength qc. 

Following 1151, a fracture toughness parameter can be defined as 

KQ = cs*G where a is the crack half-length. KQ is given by 

equation (4) for large crack lengths as 

(5) 

where d is the fiber spacing, a = Nd, and orn = d,&$%. 

A comparison can also be made between the solution of section A 

and that of a homogeneous isotropic plate with a central notch of length 

2 atGriffith crack). The stress distribution at the crack tip along the 

x-axis is given by 

(6) 

This equation can be modified for a unidirectional lamina in terms of 

the discrete fiber spacing and fiber index as 

"Fi, = 
nd 

- (N t CNJ2df = jn+ ' n ' N +- ly 17) 

where 

a F 

d 

n 

N 

CN 

is the normalized stress in the fiber n, 
n 

is the fiber spacing, 

is the fiber index 

is the index of the last broken fiber, and, 

is a constant needed to fit the data for each particular 

initial notch length specified by N. Note that (N + CN)d 

represents an equivalent notch half-length. 
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For n = N + 1 this equation is set equal to equation (21, with r = 2N + 1, 

in order to determine the constant CN for any particular N. The 

following table of values for CN as a function of N results: 

. ..--. -=~~ ~--~-~~ 

CN 0.6614 0.6742 0.6805 0.6814 0.6815 

(1 -;I 

For large N equation (7), with n = N + 1, and equation (4) in place 

of equation (2) gives the limiting values of CN as 

Lim 
Ntl 

= 
: fi, 

N-+m N + 1)2 - (N + CN)' 

from which 

CN’+z 0.6815 = C. (8) 

It is then seen that CN is approximately equal to a constant, C, 

independent of N. Now, using the above values for CN the stress in 

fibers n > N + 1 in front of the notch was computed from equation (7) 

and compared with the solution of section A. For all notch lengths the 

agreement was found to be excellent as shown in Figure (13). Therefore 

the central notch in a unidirectional laminate using the shear-lag 

model has a square-root type stress distribution with an equivalent 

notch length given by (N + CN)d where the constant CN = C = 1 - l/r 

for all N. That is, the stress in the first unbroken fiber is given by 

the modified Griffith solution, equation (71, which also correctly 

predicts the stresses in the remaining unbroken fibers. 
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An analogous investigation concerning the maximum fiber stress and 

the fiber stress decay away from the notch when longitudinal and trans- 

verse damage is present, as given in sections B and C, is now discussed. 

The results are considerably different from the above and it is indi- 

cated that a basic assumption of 1151 in which a square-root behavior 

was assumed to exist may be in error. That is, for cases having 

longitudinal and/or transverse damage the notch tip fiber stress as 

determined from sections B and C does not have a square-root form. To 

demonstrate this for longitudinal damage we used equation (71, with 

n = N + 1, to represent the fiber stress in front of the notch and 

determined the constant CN by comparing with the numerical results. A 

significantly different value of CN was found for each particular N as 

indicated in the following table. In constructing this table the ulti- 

mate stress in fiber N + 1 was taken as constant for all values of N; 

the remote stress and damage length, a, then changed with N. 

N 0 1 3 14 

~_- ..-.-. 

CN 0.6459 0.5008 0.3437 -0.2364 

Further, using a specific value of N and the corresponding CN, the 

fiber stress computed for n > N + 1 from equation (7) was found to be 

different from the numerical results. An example of the fiber stress 

for seven broken fibers, and longitudinal damage consisting of yielding 

given by c1 = 5.0 is given in Figure (13). First, comparing with the 

results of the no damage, it is seen that the stress distribution is 

greatly reduced and distributed more uniformly to the adjacent fibers. 
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Second, the results are seen to be different from equation (7) but not 

drastically so. 

When transverse damage is included the stress field, shown in 

Figure (13) for four damaged fibers, is fundamentally different from 

that of the modified Griffith form, equation (7). A value of CN was 

not determined. It is indicated below that both longitudinal yielding 

and transverse damage are necessary in order to agree with the limited 

experimental results for boron/aluminum laminates. 

The failure criterion for longitudinal damage alone is the same as 

in section A. When the stress in the first unbroken fiber reaches the 

unnotched laminate stress and fails, then the stress in the adjacent 

unbroken fiber will be above the critical value. 

If transverse damage is also present the failure criterion is more 

complicated. The results from the model developed in section C indi- 

cated that stable transverse fiber breaks can occur. Failure of the 

first fiber does not then necessarily signify lamina failure as it may 

well require an increased applied stress to critically stress the next 

fiber. Recall that in the lamina, the fiber breaks occur in front of 

but not necessarily in line with the initial notch, with the matrix 

material remaining intact. Shear stress transfer from the matrix as 

well as some small axial matrix stress then gives a reduced load carry- 

ing capacity to the damage region in front of the notch as accounted for 

by the stiffness coefficient, y . Typical results are shown in Figure 

(14) for an initial notch length corresponding to seven broken fibers 

and a fiber stress in the damaged zone corresponding to a stiffness 

coefficient of y = 0.90. It is seen that the transverse damage is 
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stable until about seven additional fibers are broken. At this point 

the curve levels off and successive breaks require no increase in 

applied stress, d . m An appropriate failure criterion is then to 

determine the applied stress, oco, giving unstable transverse damage. It 

is significant that the number of stable fiber breaks was approximately 

constant, independent of initial notch length. This constant damage 

zone size was about seven broken fibers which is in good agreement with 

the observed results of Awerbuch and Hahn [13]. 

The value of y, which represents the stress carried by the 

transverse damage region, was found to be that giving the best fit to 

the COD and strength curves along with a constant damage zone length. 

As the initial notch length increased, the load carried by the transverse 

damage region decreased, while the size of the region remained constant. 

Extensive experimental studies to investigate this behavior are 

underway. 

The results of the present methods are shown below to predict 

accurately the fracture behavior of both brittle and ductile matrix 

composites in terms of crack opening displacement (COD) and fracture 

strength. It then seems reasonable to conclude that the manner of 

stress distribution in the fibers is given with the same degree of 

accuracy. If this is true then it follows that, for the notched 

laminate with longitudinal and transverse damage, the fiber stresses in 

front of the notch are less severe than a square-root behavior. The 

failure criteria suggested by Nuismer and Whitney [15], either the 

"point stress" or the "average stress" criterion both assume a stress 

field in the front of the notch as 
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'F- x -- 

um 42_a2 
; (see equation (10) ofb5]), 

where a is the half notch length. Based on the above observations these 

criteria are perhaps not valid for unidirectional laminates. It 

appears then that longitudinal and/or transverse damage reduces the 

influence of a notch to a greater degree than an equivalent notch length 

model, with a square-root behavior, would p*redict. It is important to 

note that, even though the present study indicates the true fiber stress 

distribution, section C, to be different from [15], results using the 

classical square-root behavior do predict the fracture characteristics 

of laminates with surprising accuracy. For example, see the work of Poe 

and Sova presented in references [16] and [17]. This is perhaps fortui- 

tous as the stress is not drastically different from a square-root form 

even though only the undamaged laminate of section A agrees accurately 

with the square-root behavior of equation (7). 

It has been demonstrated in [9] that for composites with a brittle 

matrix such as epoxy, the extensive splitting and the eventual insta- 

bility in the longitudinal direction can be predicted by introducing 

longitudinal damage alone as covered in section B. Results for cases of 

one and seven broken fibers are presented in Figure (15). 

For a composite with a ductile matrix such as aluminum some negli- 

gible splitting has been observed 1141 and Cl], but the stress in the 

fibers continues to increase with increased remote stress until the 

ultimate fiber stress is reached. In order to predict the fracture 

behavior of composites with a ductile matrix, such as boron/aluminum, it 

was found to be necessary to improve the model presented in section B. 
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Effectiveness of these improved models, which are developed in sections 

C-E, will now be discussed. 

In all these cases, the model parameters such as number of con- 

strained fibers, stiffness coefficient, strain-hardening ratio, and 

constraint ratio were varied and their effect on the fracture charac- 

teristics of the laminate was investigated. A comparison of predicted 

values with the experimental results of Cl31 was done with respect to 

two fundamental characteristics, crack opening dispiacement and laminate 

strength. 

As explained in section B, the fiber axial displacement and 

stresses can be computed for different material properties, applied 

stress, and notch lengths. For a particular laminate a plot of COD vs 

applied load was obtained and then, by comparing with the experimental 

study of Awerbuch and Hahn in [13] for the unidirectional boron/ 

aluminum laminate, appropriate values of ~~ and the stiffness constant 

GM/h were determined. The laminate used in [13] had the following 

material and geometric properties: 

EF = 475 x log Pa, 

AF = 1.59 x 10m8m2 (0 = 0.1427 mm), 

t = 0.165 mm/ply, eight plies 

Oult = 3.98 x log Pa 

W = width = 25.4 mn and 

fiber center line spacing = 0.178 mm. 

For a laminate having seven broken fibers, which corresponds to a 

notch length of about 1.27 mm, the load vs COD curve required specific 

values of TP and GM/h in order to give a "best fit" to the experimental 
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results of 1131. The numerical values of GM/h and T determined in 0 
this manner are given in the following table for the various models: 

longitudinal transverse 
damage, B damage, C 

constraint 
layer, D 

strain 
hardening, E 

GM/h 65.4x1012N/m2 115x1012N/m2 148x10 12N/m2 . 35 9x1012N/m2 

109x106 N/m 2 88~10~ N/m2 82~10~ N/m2 164x106N/m2 

For the strain-hardening case the modulus ratio was taken as GR = 0.5 

and for the constraint layer CR = 0.05. Using the above tabulated 

values in each model gave essentially the same COD curves for both seven 

and twenty-nine broken fibers with both being in close agreement with 

the experimental results of [13]. This comparison is shown in Figure 

(16). 

The differences in the four models in predicting COD curves is then 

small although the particular values of the material constants GM/h 

and ~~ are considerably different as seen from the table. 

Now using the above constants for GM/h and -c 0' the normalized 

ultimate fiber stress 

%1t s=- 
T 0 

was computed for a specific ultimate fiber stress. Then the remote 

stress required to give a particular ultimate stress in the first 

unbroken fiber, or unstable extension in the case of section C, was 

determined from a plot of applied stress, dm, vs fiber stress,oF , Figures 

(17) and (18). This gives the strength of the laminate as a function of 

number of broken fibers (or notch length). This was repeated for all 
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the models in sections B through E. Figure (19) shows the plot of 

applied stress as a function of number of broken fibers for the differ- 

ent models along with the experimental results of [13]. 

From Figure (19) it may be observed that even though COD was insen- 

sitive to model parameters, the strength curve was very much dependent on 

them. All the models predict the same trend in strength curves as those 

given by the experimental results. However, for the case of longitudi- 

nal damage, the model gives a much larger decrease in strength for small 

notch lengths than the experiment. At longer notches the model predicts 

the failure stress reasonably well. An increase in the fiber ultimate 

stress tends to rotate the curve about the knee of the curve without 

much change in the behavior for the shorter notches. 

Addition of a constraint layer does not make a significant differ- 

ence in the predicted strength curve. Variation in the constraint ratio 

had a similar effect as that of increasing the fiber ultimate stress in 

the longitudinal damage model. 

The strain-hardening model predicts strength values much lower than 

those of the longitudinal damage model, making it more and more notch 

sensitive. The best predicted values of the strain-hardening model are 

no better than those of the longitudinal damage model. 

The transverse damage model, however, predicts strength values very 

close to the experimental results and seems to account for an essential 

damage mode. By varying the transverse stiffness coefficient and number 

of constrained fibers, it was possible to move the predicted strength 

curve such that it fit the experimental results exceptionally well. One 

important observation was that the number of constrained fibers required 
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to fit the experimental data was approximately a constant at all notch 

lengths, indicating that the transverse damage zone size ahead of the 

, notch tip was independent of the notch size. 

Introduction of transverse damage in addition to longitudinal 

damage then not only predicts COD in good agreement, at the same time it 

predicts strength values exceptionally well. The above computed value 

of ~~ is close to the yield stress for a homogeneous aluminum specimen. 

The equivalent stiffness, GM/h, for h = 1.78 x 10e4 m (i.e., the 

center-line distance between fibers) gives a shear modulus of 

GM = 20.5 x 10 ' N/m2 which is also close to the shear modulus of 

aluminum. For annealed aluminum the yield stress is about 95 x 106 N/m2 

and the shear modulus is 27 x 109 N/m2. 

Also of interest is the extent of the longitudinal yielding which 

is given by 

i = 5 = 
EFAFh J GM~ % = 3.54 fiber spacings. 

For the case of seven broken fibers the damage length corresponds to 

cx = 11.5 or, therefore, i = 40.7 fiber spacings (approximately 6 times 

the crack length). For twenty-nine broken fibers c1 = 35, and L = 123.9 

fiber spacings (approximately 4 times the crack length). Experimental 

determination of the extent of longitudinal yielding is now being 

investigated by the writers; however, this damage does seem reasonable. 

With the above observations in mind it should be emphasized that in 

order to predict the fracture behavior of unidirectional composites with 

a ductile matrix it was essential to consider the transverse damage of 
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matrix and fibers along with the longitudinal matrix damage as modeled 

in section C of this report. 

Note that the above results indicate an approximately constant 

transverse damage zone size of seven fibers, independent of initial 

notch length, which is in agreement with both Awerbuch and Hahn [13] and 

Nuismer and Whitney [15]. However,the disagreement with Nuismer and 

Whitney [15] as discussed above is that the present solutions predict 

fiber stresses in front of the notch to be different from and less 

severe than a square-root behavior. 

The final results to be presented in this report concern the solu- 

tions developed in sections F and G for the rectangular and circular 

cut-outs. Of principal interest will be the comparison of these results 

with the corresponding solutions for the notch. Extensive results are 

presented by Jones Cl81 where it is demonstrated that very little dif- 

ference exists between the three solutions concerning maximum fiber 

stress and the stress distribution in front of the damage. 

In Figure (20) results are presented for eleven broken fibers in 

the instance of no additional damage. The differences are largest in 

this case; any longitudinal or transverse damage brings the solutions 

closer together. Figure (21) gives the results for the same geometry 

with longitudinal damage, ~1 = 4, and transverse damage of four fibers. 

In both cases the material constant, HO, needed in the solution for 

the circular hole, was taken as 5.0 which corresponds to a volumetric 

ratio of 50% and EF/GM = 50. Within the range of realistic material 

properties for fiber dominated laminates, changes in HO have little 

effect on the solution. 
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The behavior depicted by these two figures is typical of the gen- 

eral results and one can conclude that the shape of the initial damage 

is less significant in determining the laminate fracture properties than 

the total number of fibers broken. These results are fundamentally dif- 

ferent from the case of an isotropic plate in which the sharp notch has 

singular stresses near the notch tip with a square-root singularity; the 

rectangular hole also has singular stresses but with a power of less 

than one-half; and the circular hole has a stress concentration of 

three, independent of hole size. 

Future work in the area of this study will include a detailed 

experimental investigation of the damage growth in notched boron/ 

aluminum unidirectional laminates and the extension of the above half- 

plane solution to include damage and the presence of an adjacent half- 

plane of different material properties. 
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Figure 1. Two-dimensional unidirectional lamina with broken fibers. 
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Figure 2. Free-body diagram of a typical element. 
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Figure 3. Two-dimensional unidirectional lamina with broken fibers 
and longitudinal matrix splitting and yielding (first 
quadrant). 
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Figure 4. Two-dimensional unidirectional lamina with broken fibers, 
longitudinal matrix splitting and yielding and transverse 
fiber and matrix damage (first quadrant). 
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Figure 5. Boundary conditions along the x-axis for the transverse 
damage model. 
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Figure 6. Free-body diagram of an element consisting of the main 
lamina and the constraint layer. 
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Figure 7. Two-dimensional unidirectional lamina with a rectangular 
notch, longitudinal matrix splitting and yielding and 
transverse damage (first quadrant). 
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Figure 8. Two-dimensional unidirectional lamina with a circular 
cut-out, longitudinal matrix splitting and yielding and 
transverse damage (first quadrant). 
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Figure 9. Free-body diagram of a typical element 
at the circular 

cut-out. 
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Figure 10. Assembly of boundary elements for the circular cut-out. 
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Figure 11. Two-dimensional unidirectional half-plane with broken 
fibers at the free edge. 
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Figure 12. Free-body diagrams of typical elements for the half- 
plane problem. 
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Figure 13. Comparison of notch tip stress distribution for seven 
broken fibers. 
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Figure 14. Applied stress as a function of number of constrained fibers in the transverse 
damage zone for seven broken fibers. 
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Figure 15. Maximum fiber stress for yielding and splitting. 
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rl = 0.0, as a function of applied stress for the 
case of no splitting and 29 broken fibers. 
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Figure 19. Strength curve: Applied stress as a function of number of broken fibers. 
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Figure 20. Comparison of notch tip stress distribution for.various 
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