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SUMMARY

This report describes a method of improving a dynamic analytical
model of a structure using natural frequencies and normal modes measured
in a test of the structure. The report includes a discussion of the
problem, the derivation of the algorithms and a description of the com-
puter implementation. In addition, applications of the method to a
large structure are presented. The results of these applications con-
firm the expectations that the method can become a practical and useful
tool in the development of valid dynamic analytical models.



INTRODUCTION

Structural dynamic analytical models of aerospace structures are re-
quired for analyses which are sensitive to the frequency response charac-
teristics of the model. The prediction of internal loads, aeroelastic
stability analyses, and dynamic optimization studies fall in this class.

Ground vibration tests are often performed to validate an analytical
model. These tests provide direct information which may lead to the correc-
tion of major deficiencies in the analysis such as insufficient modeling
detail in certain areas of the structure. In practice, the acceptance of an
an ana1ytica1 model 1is usually based on a subjective evaluation of the pre-
dicted and measured natural frequencies and mode shapes. No generally
accepted method is presently employed which uses the test data objectively
to improve the analytical model.

There are numerous sources of error in both the analysis and the test
which are related to theoretical and physical assumptions and mechanical
and equipment Timitations. The method described in this report does not
deal with the errors in the test data or the sources of the errors in the
analysis. What is determined are minimum changes in the analytical model

required to make it exactly predict the measured mode shapes and natural
frequencies.

This approach does not eliminate the need for engineering judgment.

It does, however, change the character of the judgment required. In the
conventional and the suggested method the engineer must first accept the
test data as a valid representation of the structure which is modeled.
Conventionally, the analytical predictions are then compared to the test
results. If the correlation is not "acceptable", methods of improving the
model must be decided upon. This process may be repeated until acceptable
correlation is achieved. This method can be very expensive and time con-

suming with no prior assurance of success.




In the sugaested method a cycle of subjective model improvement may
be carried out if obvious modeling deficiencies are apparent. Then the
analytical model improvements are computed which will result in a model
which will exactly predict the measured data. The judgment required
here is an engineering evaluation of the predicted minimum changes. If
they fall within acceptable limits the model may be taken as a valid base-
line for further analysis. If the changes are judged to be excessive or
unreasonable, it must be concluded that other major deficiencies exist
in the test or in the original model. This is information which cannot be
determined by the conventional procedure. Given good test data and a
reasonable, but not precise, analytical model, this method will yield an
improved model which is exactly compatible with the test.

As stated above, the subject of this report is a method of improving
analytical models of structures to make them agree with measured natural
frequencies and normal mode shapes. The technology related to aground vibra-
tion testing, the extraction of mode shapes and frequencies, and the vali-
dation and improvement of this data are important but are outside the scope
of this presentation. Similarly, the particular method used to obtain the
analytical model is not relevant.

The starting point for this analysis is the following data: a set of
normal mode shapes and natural frequencies which the analyst would Tike the
model to predict and a mass and stiffness matrix analytical model which is
representative of the structure such that small changes in the elements will
yield the desired characteristics. It should be noted that the require-
ment for "small" changes is not an assumption of the analysis but is speci-
fied so that the resulting model is representative of the physical struc-
ture. The criteria for "small" is left to engineering judgment.

Publications relevant to this area are all quite recent. In 1967,
Rodden] used ground vibration test data to derive structural influence
coefficients. This was a use of measured mode shapes and frequencies for



other than direct verification of model predictions. A method which cor-
rected a mass matrix and developed an "incomplete" stiffness matrix was
published in 197]2, a statistical approach to the problem was presented in
1974 by Collins, et a]?, and a perturbation method by Chen and Garba was
published in 19794. More comprehensive lists of publications are found

in References 5,6. Publications by Baruch and Bar Itzhack7’8 are very im-
portant and the method they developed for correcting the stiffness matrix
has been adapted for this analysis.

The method of "incomplete models" by Berman and F]anneHy2 developed
the conceptual basis of the method given here. A successful application to
a practical problem was presented in 19759. That method, however, has
several features which Timits its application to large systems. The
formulation of the mass correction method results in a set of underdeter-
mined simultaneous equations which are solved by the "pseudo inverse"
method. For structures with a large number of degrees of freedom and a
relatively large number of test modes the size of this problem can become
quite Targe. A method was recently developed and pubh’shed]0 which over-
comes this problem. The method of Reference 2 also does not provide for
the correction of the analytical stiffness matrix, but synthesizes an
"incomplete" stiffness matrix which may not be completely adequate for a
baseline analytical model. The method of Baruch7’8 has been adapted for
this purpose as part of the complete process described here. (see Refer-
ences 11,12 for comments on the general approach and the derivation of

Reference 7.)

Another deficiency of all previous methods is that the analytical
model must have degrees of freedom which are limited to the points at
which test measurements are made. This is undesirable since a larger
baseline model is normally desired. This limitation is also eliminated
in the procedure presented and makes use of an observation of Kidder]3.
A related use of this relationship for orthogonality checks has also

been published'?.



The method described has been implemented in a computer program and

has been applied to the LDEF]5 structure. The results are presented in

this report.
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KA’MA
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SYMBOLS

Unit matrix
Full dimproved stiffness and mass matrices

Full approximate analytical stiffness and mass matrices

Partitions of KA’MA corresponding to test coordinates
Partitions of KA’MA corresponding to coupling coordinates
Partitions of KA’MA corresponding to unmeasured coordinates

T

oM =1

AT Th

number of modes

Number of degrees of freedom
Minimization function
Lagrangian multiplier

Matrices of Lagrangian multipliers

Modal matrix

ith mode, ith column of ¢

Measured and unmeasured partitions of ¢,

Lagrangian function
Diagonal matrix of measured natural frequencies

ith natural frequency, Qs
Superscript, transpose of matrix

Sum of the squares of the elements of the included matrix.



THEORETICAL DEVELOPMENT

Basic Relationships

This analysis makes use of two theoretical relationships which apply
to linear, undamped structures represented as finite element models.
These are: the orthogonality of the normalized modes,

oMo = 1 (1)

and; the eigenvalue equation for the ith mode,
[K - Mle, = 0 (2)
A11 of the analysis that follows js based on these two equations.
Full Mode Computation

It is desired to correct an analytical model which is not limited to
the degrees of freedom measured in a test. There are several possible
methods of achieving this goal. One method was first investigated and
then was superseded by the method presented. This method consisted of:
reducing the model to the test coordinates; correcting the reduced model;
then performing an "inverse Guyan reduction." Another approach would use
a geometric interpolation method to estimate the modal displacements at
the unmeasured coordinates. For complex three-dimensional structures with
relatively few measurements such methods may not be appropriate.

The method presented here may be thought of as an interpolation method
based on the physics of the structure, rather than the geometry. The rela-
tionship between two subsets of a mode shape has been given by K1'dder‘]3

using a partitioned form of equation (2):



-4 ) V= 0 (3)

o -~ - -

where the ¢] represents the measured and ¢2 represents the unknown
i i

elements of the ith mode shape, w; is measured and K and M reasonably
represent the structure. From equation (3) it is apparent that

] 2
P = Ky -0t Mg) (KT - 9 My ey )

Equation (4) may be solved at three levels of approximation. If w, is
considered to be very small and ignorable, we have, in effect, the reduc-
tion of Guyan]6. If it is small, the series approximation of Kidder]3
may be used. Otherwise an exact solution is most efficiently performed
by solving the simultaneous equations (e.g., LU decomposition) rather than

inverting the matrix. This is the procedure presently implemented.

At the start of the process for improving the analytical model one
has only approximate mass and stiffness matrices. If these matrices are
reasonable approximations, ¢, can be expected to be reasonably accurate.

In any case, however, the analysis that follows will result in a corrected
mass and stiffness model which will predict the measured ws and ¢] . The
i

predicted changes are left to the engineer, as previously discussed, for
his evaluation as being physically representative of the structure.

When the corrected matrices are obtained, an iteration throuah the
above procedure is an option which can be expected to improve the results
and converge rapidly if the changes are "small".

Given a means of transforming the measured mode shapes to the modes
over the full coordinate system, it is now possible to work with the full
matrices in equations (1), (2).
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Mass Matrix Improvement

When there are fewer modes than degrees of freedom there are an infin-
jte number of mass matrices which will make the modes orthogonal (equation
(1)). If some measure of the change in the mass matrix is minimized a
unique solution will result.

It is physically reasonable and mathematically convenient to minimize

the function

-k -1
e = [[MyTEM - My )M, TR (%)

A

where M is the unknown improved matrix and MA is the given analytical

matrix. This function tends to minimize the relative changes in the
elements of the matrix. (Note that it is not necessary to compute MA

-

since only MA appears in the final result.)

Defining a Lagrangian muitiplier, A for each element in equation

ije
(1) the following Lagrangian function may be written:

I

e~ 3

lp=e+.§

j Ao: (@

1 243 (M—MA)®- I + mA)ij (6)

L

where my = @TMAQ, the measured generalized mass matrix having unit

diagonals, and @T(M - MA)¢ -T+m =0 (equation (1)), Differentiating

equation (6) with respect to each element of M and equating these results
to 0 will satisfy the minimization of equation (5) if the constraint of
equation (1) is also satisfied. This process results in the matrix
equation

-1 T

oM T M- MM, + ane! = 0

A ATA

or
_ T
M - My o= iMp0ne My (7)

where A is a square (m x m) matrix of Aij'



Substituting equation (7) into equation (1) allows the solution for A:

-1 -1
A= -2 My (I-mA) My (8)
which is then substituted into equation (6) to obtain
- -1 -1 .7
M= MA + MA@mA (I-mA) my @ MA (9)

Equation (9) is an easily evaluated expression for the corrected
mass matrix to make it consistent with the measured modes. Note that M
is symmetrical as is theoretically necessary. The only inversion required
is that of my which is of the order of the number of measured modes. This
process is considered an improvement on the method of Reference 2 when
applied to large matrices.

Stiffness Matrix Improvement

In a similar but considerably more complicated manner, it is possible
to correct the stiffness matrix using Eq.(2) and the now known frequen-
cies, modes, and improved mass matrix. The most convenient formu]ation*
includes three equations of constraint: the eigenvalue equation for
all the measured modes, the orthogonality relationship for the stiff-

ness matrix, and the requirement for symmetry which is not automatically
satisfied as in the case of the mass matrix:

2

Ké - MoQ“ = 0 (10)
2Tks - 9% = 0 (11)
K -k =0 (12)

The number of elements in each of these equations are {nxm), (mxm),
and (nxn) respectively, where n is the order of the M and K matrices

—
This analysis is equivalent to that of References 7 and 8 but the intro-
duct1qn of equation (11) improves the derivation and the final form used
here is somewhat more convenient (see Reference 12).

1
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and m is the number of modes.

The function to be minimized is analogous to that of equation (5)

L

- -
e = [IMTEHK - KM 2| (13)

Defining a Lagrangian multiplier matrix for each of the constraint
equations (A, ,A ,AS) results in the Lagrangian function

K*"o
n m 2
b=e+ I T A (Ko - Mo @ )1.
i=1 j=1 "§j )
m m n n
L (@TK® - 92)1j DT A (K-KT)ij (14)
i=1 j=1 7§ i=1 =1 7ij

Note that the K matrix is the only physical parameter which is unknown.

Differentiating equation (14) with respect to the elements of K
and setting this result to 0 results in:

-1 T T T_
A)M FAS H A 0+ A - A = 0

2 MV (K=K .

or

T

T T
K = -1/2M[Ae Hen o+ A - AT (15)

Ka

. T
Substituting this result into equation (12) to solve for As - AS and sub-
situting into (15) eliminates As and gives:

_ T T T\.T
K=Ky - 1/8 M (en, + Ao M = 1/8 Mo(Aj + A Jo M (16)
Substitute (16) into constraint equation (11) and using @TM¢ = ] gives:
T, _ T 2 T T
1/4 (Ao + A, ) = ¢ Kpd - 9 - 1/4 (AK Mo + o, AK) (17)



and then substituting equation (17) into (16) results in

M

T 2) T T(1 - Moo

_ T
K = KA - Mo(o KA® -7 )e'M - 1/4 Mon, )

- 1/8 M(I - @@TM)AK@TM (18)

This equation is substituted in the final constraint, equation (10)
giving

1/4 M(I - @@TM) A, = (I - Moo

T
K )

Kp® (19)

where the relationship (I - M@@T)MQ = Md - M¢ = 0 is used.

Note that equation (19) may not be solved for AK since I - @@TM is
*
singular . The quantity on the left hand side of equation (19) and its
transpose appear in equation (18) and these substitutions give
T T

Kdd'M + MOO K

T 2\ T

+ Me(d'K, & + Q7)o'M (20)

K=K A

which is precisely the form of Reference 7.

A more convenient formulation of this relationship may be written

+ (b + AT (21)

=~
"

Ka

where

(1 - 172 Moo’ (Mea? - SO (22)

>
"

Note that no matrix inversions are required for the evaluation of the
corrected stiffness matrix.

* T . .
If (I - ®®'M) is not singular, then & = (I - &¢

)1

™ (1 - o6'M)e=
(I - o0

(I - @@TM) must be singular.

® - &) = 0 which is contradictory, therefore

13



COMPUTER IMPLEMENTATION

General Description

A computer program was developed and implemented on an IBM 360 at
the Kaman Aerospace Corporation. This program was used for all the appli-
cations described in this report.

The program performs the following functions:

(1) Mass and stiffness matrices on sequential files are reordered
to place test degrees of freedom in the upper left of each matrix. (A
separate program, AMID, performs this function)

(2) Test data (frequencies and mode shapes) are read. If there are
fewer test points than degrees of freedom, equation (4) is solved to
compute the full modes. A user option is available to ignore the fre-
quency terms which makes the computation more efficient since the equa-
tions are solved only once for all the modes.

(3) The mass matrix correction is computed using equation (9).
Prior to this computation the mode shapes are normalized to make the diagonal
elements of ma equal to 1.

(4) The stiffness matrix is corrected using equations (21), (22).

(5) The improved mass and stiffness matrices are placed on sequen-
tial files and statistical data is computed and listed. This data con-
sists of: RMS of original matrix, RMS of changes, the ratio of the proceed-
ing, the mean absolute ratio of the diagonal changes to the original dia-
gonals, the RMS of the changes divided by the corresponding diagonal

. 2
elements, i.e., the square root of the mean of z (M - MA)ij/(MA X MA. ).

L 11 NN
In addition, the 50 Tlargest changes are printed.

14



(6) If desired, the process may be iterated from step (2) to improve
the computed full mode shapes.

Computer Requirements
The program was written to operate in a moderate partition of core
(e.g., 100K decimal words). The program is easily redimensioned, if
necessary, to treat problems of different sizes.

The number of words of core required is given approximately as:

13,000 + 4(NMMAX)Z + 4(NMAX) + (NMAX) * (NMMAX) + (NEQZ)/4

where
NMMAX = maximum number of modes
NMAX = maximum number of degrees of freedom
NEQ = the number of degrees of freedom minus the number of

test coordinates

For the cases run in this study: NMMAX = 20; NMAX = 510; NEQ = 508-101 =
407. The core requirements are 68252 words.

In addition six sequential files are required, where each must be
Targe enough to hold a complete matrix. Two of these files contain MA’ KA
and two will contain M, K at the compietion of the analysis.

LDLT Decomposition

The solution for the full mode shapes is the portion of the program
which most severely taxes the computer resources. In the cases run, for
example it is necessary to solve 407 simultaneous equations. By the most
direct method, inversion of the matrix in core, 2(407)2 = 332K words of
storage would be required. For this reason and for efficiency in computation
time, a modified LU decomposition algorithm was developed which performed
these solutions in 1/8 the storage, or 42K words.

15
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The decomposition algorithm takes advantage of the symmetry of the
equation coefficients and forms a lower, diagonal, Tower transposed matrix
decomposition.

Consider a symmetric matrix, A, which we desire to represent by a
product of a lower triangular matrix, L, a diagonal matrix, D, and the
transpose of L. Introducing the D matrix, allows one to specify that the
diagonal elements of L are unity.

A=LoDLT (23)
or
n n T
a;: = ¥ ¥ g, d £,:
EAER I B
n .
= k§1 Eik ij dkk (since dtk =0, £ # k)
min{i,j)
- T T T (24)
(since zik = 0, k>i and ij =0, k>j)
Since aij = aji’ one may work only with the lower triangle of A:
J
aij = kE1 Kik Kjk dkk (25)
(i>J)

If it is assumed that all the £'s are known up to, but not includ-
ing column J and all the d's are known up to but not including dJJ, then

I, -1, .
a3y = I Ly dy = T Ly dyy +dgy (since g4y = 1)
k=1 k=1
or J-1 )
S (26)

where all values on the right hand side are known.



Also

or

a5

i>d

£

i>J

J =
R T N S
3-1
- [aid T2y ik ok Gk /ag

d

kk t Lig dag

where all the values on the right hand side are known.

Thus, it is possible, using equation (26), (27) to read one column

of A at a time and, starting at the diagonal element, compute the corres-

ponding rows and columns of L and LT.

ments of L in the lower rectangle of L which intersects the diagonal.

maximum storage required is then (n/2)2, where n is the order of the

matrix.

This process requires all the ele-

The

In the actual algorithm which was implemented, the decomposition is

separated into three phases.

A work area of variable dimensions is set

up. The first phase (LDLT1) Toads as many columns of A as will fit in

T

this area and computes the corresponding columns of L, D, L' . Then the

next phase (LDLT2) loads a column of A and solves for one column of L,D,L

at a time, starting at the diagonal. The third phase (LDLT3) starts when

the work area can hold all the remaining rows of A. During this entire

T

process, the work area is continually being redimensioned and the rows of

L and the rows of LT (columns of L) are written on to a sequential file.

When this process is completed, the solution of the matrix equation

Ax = LDL x

b is simply performed as follows:

(1) solve for Xns ONE element at a time from Lx2 = b, where Xo =

T

DL'x (note L is a lower triangular matrix);

(2) solve for xq from Dx; = x,, where Xy = LTx (note D is a diagonal

matrix);

17
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(3) solve for x from LTx = Xy where x is the solution of the
original equation (note LT is an upper triangular matrix and the solution
must proceed from the bottom up).



* *
l APPLICATION TO SIMULATED TEST DATA

Program Validation

| In order to validate the program and the algorithms a 92 degree of
freedom NASTRANT model and the first six analytical modes and frequencies
were employed. The odd numbered degrees of freedom were treated as test
data. When the analysis was performed using the frequency dependent terms,
the "unmeasured" modal displacements were exactly predicted. The procedure
was repeated with arbitrary changes in natural frequencies and mode shapes
and eigenanalyses were performed on the corrected mass and stiffness
matrices. In each case the eigenanalysis yielded the modified natural fre-

| quencies and the full modes. These tests validated both the algorithms and
the computer code.

Sample Analyses

The model referred to in the previous paragraph was used to perform
| preliminary analyses with simulated test data. The analytical model has
92 degrees of freedom and represents a full scale, three-dimensional, un-
constrained helicopter fuselage. Forty-six of the degrees of freedom of
the first six elastic modes were used to simulate measured test data.

The first series of analyses used the exact mode shapes and intro-
duced arbitrary simulated frequency errors. The exact and modified fre-
quencies are shown in Table I and the results of the analyses are shown
in Table II. 1In each case, both frequency options were exercised. That
is, in equation (4) ws was included or w; was set to 0 (equivalent to
Guyan transformation). Note that when the frequencies are ignored in
equation (4), the mass correction is unrelated to the measured frequen-
cies and in each case the resulting errors in the computed full modes re-
sults in a significant change in the mass matrix.

*
The information in this section was previously published in Reference 17.

+NASTRAN: Registered trademark of the National Aeronautics and Space
Administration.

19




TABLE I. - EXACT AND MODIFIED SIMULATED
TEST NATURAL FREQUENCIES

Mode Exact natural fre- Arbitrary changed Change
quency, Hz frequency, Hz %

1 4.18 3.98 -4.8
2 5.12 5.57 +8.8
3 6.87 7.16 +4.2
4 8.02 8.75 +9.1
5 12.39 11.94 -3.7
6 15.75 15.12 -4.0

TABLE II. - EFFECT OF NATURAL FREQUENCY
ERROR ON IMPROVED MODEL (a)

Case Modes with changed Mass matrix Stiffness matrix
frequencies (b) changes, % (c) changes, % (c)
With(d) Without(e) [With(d) Without(e)
1 Al7l exact 0 7.2 0 A1
2 Mode 2 (+2.6%) .002 7.2 .0007 .41
3 Mode 2 .005 7.2 .0022 L4
4 Modes 1,2 .014 7.2 .0023 .41
5 Modes 1-6 .43 7.2 .023 .40
L

@ A11 six modes used in each case with exact shapes
b Changed frequency given in Table I (except case 2)
¢ Change is rms of changes/rms of original elements
d Frequency terms included in equation (4)

€ Frequency terms omitted from equation (4)

20



Table 111 illustrates the effect of mode shape errors while using

exact frequencies and Table IV includes the effects of both mode shape

and frequency errors.

TABLE III. - EFFECT OF MODE SHAPE ERROR ON
IMPROVED MODEL (a)
Case Description Mass matrix changes | Stiffness matrix changes
(b) %1 (C) %a (C)
With (d) Without (e) With (d) Without (e)
6 2 figures 1.2 8.0 .14 .45
1 figure 1.6 6.9 1.2 1.3

a . . . .
Al11 six modes used in each case with exact frequencies

b

c,d,e
See Table II.

A11 mode shapes rounded to specified number of significant figures

TABLE IV. - EFFECT OF FREQUENCY AND MODE SHAPE

ERROR ON IMPROVED MODEL (a)

Case Description Mass matrix changes | Stiffness matrix changes
(b) %3 (C) %, (C)
With (d) Without (e) With (d) Without (e)
Case 5 + 6 1.6 8.0 .14 .44
9 Case 5 + 7 1.6 6.9 1.2 1.3

45ix modes used in each case

bErrors in mode shape and frequency as in referenced cases

c,d,e,
See Table II.
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The data presented in the tables suggests that the original premise
of this analysis is valid. That is, if a "reasonable" model is available
and "reasonable" test data is obtained, relatively small changes in the
model can make it consistent with the test data. It is also apparent from
this data, that it may not be appropriate to ignore the frequency dependence
in equation (4) since this results in relatively large (and unnecessary)
changes in the matrices. This is true even where only the lowest frequency
modes are used. This effect will become more important when higher fre-

quency modes are used in the analysis.

An important observation may be made based on an inverse interpreta-
tion of the data obtained. If one desires to develop an analytical model

which will accurately predict the natural frequencies and modes, the
accuracy requirements on the mass and especially the stiffness matrices

appear to be quite stringent.

The orthogonality of the computed full modes with respect to the
analytic mass matrix is worthy of inspection. Consider case 5 in which
all the first six frequencies of the analytical model have been assumed
to be in error. Tables V and VI are the respective generalized mass
matrices, my s with and without the frequency dependent terms. Table VI
is the orthogonality check matrix which would be obtained if a (Guyan)
reduced mass matrix were used. Note that the modes are much better than
an analyst would conclude using that conventional procedure. This effect,
however, appears to be less important when there are significant errors
in the modes and frequencies, as illustrated in Tables VII, and VIII.
Note that after the mass matrices are corrected the resulting generalized
mass matrices would always be unit matrices.

22



TABLE V. ORTHOGONALITY CHECK MATRIX FOR

CASE 5 WITH FREQUENCY DEPENDENCE.

.0
.00005 1.0
.00048 -.00007 1.0
.00022 .0026 .00033 1.0
.012 .00002 .010 .00024 1.0
.0048 .00044 .00033 .0029 .0025 1.0
TABLE VI. - ORTHOGONALITY CHECK MATRIX FOR EXACT
MODES WITHOUT FREQUENCY DEPENDENCE.
.0
.0006 1.0
.010 .0005 1.0
.0011 -.013 -.0018 1.0
11 -.0001 .165 .011 1.0
.017 011 .0035 .069 .010 1.0
TABLE VII. - ORTHOGONALITY CHECK MATRIX FOR CASE 9
WITH FREQUENCY DEPENDENCE
.0
011 1.0
.016 -.0074 1.0
.038 -.185 .0M 1.0
.0036 -.011 .0055 -.0084 1.0
.038 .070 -.0091 -.0047 -.0073 1.0

23
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TABLE VIII. - ORTHOGONALITY CHECK MATRIX FOR CASE 7

OR 9 WITHOUT FREQUENCY DEPENDENCE

011
.027
.037
.102
.042

.0071
.192
.0090
.062

1.0

.0071 1.0

.161 .0002 1.0
-.0069 .064 .0036

1

.0




APPLICATION TO LDEF DATA

Description of Model and Test Data

The AMI method has been applied to the Long Duration Exposure Facility
(LDEF) without trays. (See Ref. 15 for a description of the structure.)
The structure was tested at the Langley Research Center and data represent-
ing the first 16 measured modes were supplied by the Government and used
in these analyses. The tests used up to 130 degrees of freedom, however
only 101 were common to all the modes. These 101 were then used as the
test degrees of freedom in the analyses.

In addition, the government developed a NASTRAN model of the structure,
having 1097 degrees of freedom.* This model was subsequently reduced to 508
degrees of freedom by eliminating the rotational degrees of freedom and cer-
tain axial degrees of freedom. It was this 508 degree of freedom model
from which the analytical MA’ KA matrices were used in these analyses.

A special program was written by the Government to extract the mass and
stiffness matrices from the NASTRAN analysis and format them for use by the
AMID program.

As an illustration of the reasonableness of the analytical model,
Table IX shows a comparison of the measured natural frequencies and those

obtained from analysis using the 1097 degree of freedom model.

Table X gives the relationship between the test points and the
degrees of freedom of the reduced model and illustrates the reordering
of the matrices which was required before processing of the data.

*
Developed by Thomas C. Jones of the Systems Engineering Divisions at
the NASA Langley Research Center.
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TABLE IX. - COMPARISON OF MEASURED AND COMPUTED NATURAL
FREQUENCIES.a

Mode Measured natural fre- Computed natural

number quencies, Hz frequencies, Hz
(b)

1 14.18 13.83

2 21.50 22.78

3 23.26 23.83

4 24,36 24.37

5 24.63 26.10

6 26.29 28.76

7 27.66 28.90

8 28.67 29.77

9 29.22 29.87
10 33.42 29.96
11 34.49 30.79
12 35.37 31.85
13 41.04 35.58
14 42.11 38.46
15 42.99

16 43.48

26

mode shapes is not implied.

a Frequencies are in numerical order, full correspondence between

b Computed from 1097 degree-of-freedom NASTRAN model. This data
is not used in the AMI analysis.




TABLE X. - TEST DEGREES OF FREEDOM RELATED TO GRID
POINTS AND MODEL DEGREES OF FREEDOM.
Test point Test d.o.f. Grid point Original model Reordered
(a) d.o.f. model d.o.f.
1 Y,Z 2 50,51 1,2
2 Y 3 83 3
4 Y,Z 5 171,172 4,5
5 Y,Z 6 207,208 6,7
7 Y,Z 8 210,21 8,9
10 Y,Z 11 89,90 10,11
12 X,Y,Z 1 38,39,40 12,13,14
14 Y,Z 14 86,87 15,16
15 Y,Z 15 118,119 17,18
16 Y,Z 17 230,231 19,20
17 Y,Z 18 267,268 21,22
19 Y,Z 20 273,274 23,24
21 Y 22 188 25
22 Y,Z 23 129,130 26,27
24 Y,Z 13 62,63 28,29
25 Y,Z 26 126,127 30,31
26 Z 27 169 32
28 Y,Z 29 290,291 33,34
29 Y 30 327 35
31 Y,Z 32 336,337 36,37
33 z 34 247 38
34 Y 35 185 39
36 Y 25 97 40
37 Y 38 182 41
38 Z 39 222 42
40 Y,Z 41 353,354 43,44
45 JA 46 304 45
46 Y,Z 47 243,244 46,47
48 Y 37 144 48
49 Y 50 238 49
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TABLE X. - CONCLUDED.

Test point Test d.o.f. Grid point Original model Reordered
(a) d.o.f. model d.o.f.

50 Z 51 285 50
52 Y,Z 53 400,401 51,52
53 Y 54 416 53
55 Y,Z 56 425,426 54,55
57 Z 58 331 56
58 Y,Z 59 281,282 57,58
60 Y 49 179 59
61 Y,Z 62 298,299 60,61
62 Y,Z 63 347,348 62,63
64 Z 65 438 64
65 Z 66 451 65
67 Y,Z 68 459,466 66,67
69 Y,Z 70 379,380 68,69
70 Y,Z 71 344,345 70,71
72 Y,Z 61 235,236 72,73
73 Y 74 359 74
74 Z,Y,Z 75 393,394,395 75,76,77
76 Y,Z 77 471,472 78,79
77 X,Y,Z 78 481,482,483 80,81,82
79 Y,Z 80 488,489 83,84
81 X,Y,Z 82 418,419,420 85,86,87
82 Y,Z 83 391,392 88,89
84 X,Y 74 294,295 90,91
86 Z 181 43 92
87 X,Y 184 7,8 93,94
88 VA 115 166 95
92 Y 10002 74 96
97 Z 7802 362 97
98 Y,Z 7902 479,480 98,99
99 Y,Z 8402 215,216 100,101

aX,Y,Z refer to axial, lateral, vertical deflections.
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Summary of Improved Matrices

The mass and stiffness matrices were improved using several combina-
tions of measured modes and with and without the frequency dependent terms
in the full modes computation. Several combinations of modes were used
prior to the inclusion of the 16 modes. The reason for this was to detect
any sensitivities to particular combinations of modes. If, for example,
one mode was nearly a linear combination of other modes (therefore not a
true mode) one would expect large changes in the matrices.

Table XI summarizes the results, without frequency dependent terms, in
terms of three measurements of the changes in the matrices. The first is
simply the root mean square (rms) of the changes in the elements divided
by the rms of the original matrix. This is not considered a meaningful
measure of the changes in the mass matrix which is strongly diagona].*

The other two measures are the absolute mean ratio of the diagonal changes
and the rms of the changes divided by the square root of product of the
two corresponding diagonal elements. The Tast two are considered to be
more meaningful descriptions of the changes in the matrices.

The Appendix illustrates typical lists of the 50 Targest changes in

the elements of the mass and stiffness matrices.

N
*
The rms of the elements of a diagonal matrix, A, is Y as./N

}1/2

but the rms of the diagonal elements is [Z aii/N which is more rep-

resentative of the "average" element. A diagonal matrix having 10 elements:
1, 2, ... 10, would have an rms of 1.96 and an rms of the diagonals ele-
ments of 6.20. This effect becomes greater as the matrix order increases.
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TABLE XI. - MATRIX CHANGES WITHOUT FREQUENCY TERMS IN FULL MODE

COMPUTATION
Modes Description Mass matrix Stiffness matrix
changes, % changes, %

(a) (b) (c) (d) (b) (c) (d)
7,8,10,15 Al11 vertical .94 .04 L1 .07
1,3,4,9 AT1 torsion 1.73 .13 .08 .05
2,5,11,12 A1l Tateral .45 .02 .09 .05
A1l above 6.83 .46 .16 .15
6,13,14,16 Misc. coupled 2.10 N .13 .10 .07 .08
1 -4 By frequency 1.64 1 1 .08 .04 .08
5-8 2.02 .08 .10 1 .06 1
9 - 12 .40 .02 .03 .08 .05 .05

13 - 16 .99 .06 .06 11 .08 .08
1-16 A1l modes 14.74 1.24 .95 .20 .24 .18
3 See Table IX
b rms (changes)/rms (original elements)
© mean absolute ratio of diagonal changes/original diagonal
d 1/2

rms change (i,j)/(original (i,i) x (j,J) )

Note that the data presented in Table XI is in percent.

In théfworst

case, the most meaningful measure of the changes,(d), indicates a change of

Tess than 1% in the mass matrix and less than

.2% in the stiffness matrix.

The changed matrices will have as eigensolutions the first 16 frequencies

and mode shapes which were measured in test.

This last statement is based

on the analysis and has been verified for simple models but has not actu-

ally been verified for this data.
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Some of the above conditions were analyzed using the frequency terms

in the full mode computation. These cases are summarized in Table XII.

TABLE XII. - MATRIX CHANGES WITH FREQUENCY TERMS IN FULL MODE

COMPUTATION
Modes Description Mass matrix Stiffness matrix
changes, % changes, %

(a) (b) (c) (d) (b) (c) (d)

1 -4 Low frequencies 1.20 .03 .06 .06 .03 .07
5 - 8 | Higher frequencies | 57.8 2.23  2.23 .07 .10 .12
9 - 12 | Higher frequencies .64 .04 .04 .07 .04 .06
13 - 16 | Highest frequencies { 1.63 .06 .10 .06 .02 .06
5,7,8,9 | 6 omitted 56.3 1.9 1.9 .09 .08 .10
5,6,7,9 | 8 omitted 4.2 .23 .24 .06 .03 .08

%See Table IX

b,c,d See Table XI
The data in Table XII requires some discussion. When the frequency

dependent terms are included in the analysis, the unmeasured modal dis-
placements will differ from those computed without these terms. However,
those actually measured are not changed in either case. Thus, either
improved model will predict the measured modes even though it is expected
that the frequency dependent analysis will give a better model.

In general, the results in Table XII are of similar order of magnitude
as Table XI, except for the case using modes 5 - 8 where the ratios of
the rms values is 57.8% with frequency dependence and 2.02% without. Two
further cases were run to try to determine if a particular mode is responsi-
ble for this large change. The last two cases in this table indicates that
when mode 8 is omitted, the results are more compatible with the other data
obtained. The frequency dependent algorithm should yield more accurate full
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mode shapes, thus, while this condition requires further investigation, it
is possible that measured mode 8 is not a truly independent mode but is in
reality a linear combination of other modes.* It is interesting that this
effect did not show up in the simpler analysis without frequency dependent
terms.

Sensitivity Studies

Measured mode shapes and natural frequencies cannot be precise. To
gqualitatively examine the effects of these errors in this process, two sets
of data were synthesized. First, since frequencies are usually more accurate-
1y measured than mode shapes, all the mode shapes were rounded to 1 signifi-
cant figure.

This data is shown in Table XIII. Note that the changes in the matrices
are quite consistent with these obtained using the precise measured modes
(Tables XI, XII).

TABLE XIII. - MATRIX CHANGES WITH 1 SIGNIFICANT FIGURE IN MEASURED
MODE SHAPES.

Modes Description Mass matrix Stiffness matrix
change % change, %

(a) (b) (e} (d) | (b) (c) (d)

1 -4 Without freq. terms | 2.15 .14 .14 .09 .04 .09
5-8 ) 1.93 .08 .10 L1 .06 .09
9 -12 " .38 .02 .03 11 .08 .08
13 - 16 ! 1.02 .05 .06 .13 .10 L1
5-8 With freq. terms 53.5 2.01 2.00 .08 11 .13

3see Table IX
b,c,d

See Table XI
*Information supplied related to the testing indicates that mode 8 has a
predominately free-free bending shape and was quite difficult to isolate

as such in the test.
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The second set of data used the 1 significant figure mode shapes with
a set of arbitrarily modified frequencies. These changes are of the order
of + 5% but were arranged to make sets of frequencies close together and
in one case (mode 10) reversed the order of the modes. The modified fre-
quencies are shown in Table XIV and the results of the AMI analysis are
given in Table XV,

TABLE XIV. - ARBITRARY FREQUENCY CHANGES

Mode Test frequency, Arbitrary changed Change,
Hz frequency, Hz %
1 14.18 13.53 -4.5
2 21.50 22.28 +3.6
3 23.26 22.60 -2.8
4 24.36 23.08 -5.2
5 24.63 26.10 +6.0
6 26.29 26.42 0
7 27.66 26.73 -3.4
8 28.67 27.06 -5.6
9 29.22 30.24 +3.4
10 33.42 35.01 +4.8
11 34.49 32.63 -5.4
12 35.37 33.42 -5.5




TABLE XV. - MATRIX CHANGES WITH APPROXIMATE MODE SHAPES
AND FREQUENCIES.

Modes Description Mass matrix Stiffness matrix
changes, % changes, %

(a) (b) (c) (d) (b) (c) (d)
1 -4 |Without freq. terms |2.15 .14 .14 | .09 .04 .09
5 -8 . " " 1.93 .08 .10 .12 .06 .09
9 - 12 ! " . .38 .02 .03 .10 .08 .08
a

Frequencies given in Table XII, mode shapes to 1 significant figure.

b,c,d
See Table XI

Relationship to Structure

There is no physical reason for assuming that the changes in the matrices
have any specific physical significance since the changes are only one set (a
minimum) out of an infinity which will make the analytical model predict the
test results. However, if the analytical model had errors at certain grid
points, one might expect these grid points to be significantly changed.

An examination of the 50 largest errors in the first four cases of

Table XI shows that several grid points appear more often than one would
expect by pure chance. This information is shown in Table XVI.
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TABLE XVI. - GRID POINTS APPEARING MOST OFTEN IN
50 LARGEST CHANGES(a)

Grid Point DOF 4 Vertical 4 Torsion 4 Lateral 12 Modes
(b) (b) (c) (d) (e) (f)
101 X,Y,Z 26 40 19 25
102 X,Y,Z 41 3 18 46

37 Y 19 22 17
8 Y 22 5
10002 Y 20

(a) Values in table are the number of occurrences in the 50 largest
changes.

(b) See Table X
(c),(d);(e),(f) Lines 1,2,3,4 of Table XI.

It should be emphasized that one should be extremely cautious in
drawing conclusions from such data. However, it certainly would be appro-
priate to examine the modeling and test structure at such grid points to
seek evidence of modeling or test error. Potential sources of such errors
could be: errors in material properties; incorrect coordinates; key punch
error; inproper location of transducer; incorrect calibration; electronic
failure; structure loaded to nonlinear range.
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Application to Reduced Model

There is another application of the AMI method which does not use
test data but, instead, uses the computed frequencies and mode shapes of
the full model to improve a reduced model. It is well known that reduced
models do not have the same dynamic characteristics as the full models.
This procedure modifies the reduced model so that it will duplicate speci-
fied frequencies and mode shapes of the complete analytical model.

In the case tested, modes 1, 2, 3, 4, 5, 6, and 8 which were computed
by the 1097 degree of freedom model (Table IX) were used to correct the
508 degree of freedom reduced model. The changes, in terms of the ratios
of the rms values were: mass matrix, 1.4%; stiffness matrix, 1.5%.

CONCLUDING COMMENTS

An analytical method has been developed which computes minimum changes
in an analytical model of a structure to make it agree with modal test data.
The method is direct and does not involve successive iteration.

The method was implemented on a computer and applied to a realistic
structure. The changes in the model which were computed were generally
well within the expected uncertainties in the analytical model.

Careful examination of the effects of using different combinations
of modes may uncover poor interpretation of test modes. Careful examina-
tion of the elements of the model which change most may uncover inadequa-
cies in the analytical model or in the test data.

A brief study of arbitrary changes in mode shapes and frequencies
disclosed no numerical sensitivities.
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The application of this method to improve reduced models may Tead to
better small dynamic analytical models of structures.

The results of this study are considered to have been very successful
and a continuation of this area of research and applications to other
structures is highly recommended.
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Sample Largest Change Output
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.152E 00
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