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PREFACE

On May 19-21, 1980, NASALangley Research Center hosted a Conference on Auto-
mated Decision Making and Problem Solving. The purpose of the conference was to
explore related topics in artificial intelligence, operations research, and control
theory and, in particular, to assess existing techniques, determine trends of
development, and identify potential for application in automation technology programs
at NASA. The first two days consisted of formal presentations by experts in the
three disciplines. The third day was a workshop in which the invited speakers and
NASApersonnel discussed current technology in automation and how NASAcan and
should interface with the academic community to advance this technology.

The conference proceedings are published in two volumes. Volume I gives a
readable and coherent overview of the subject area of automated decision making and
problem solving. This required interpretation, synthesizing, and summarizing, and
in some cases expansion of the material presented at the conference. Volume II
contains the vugraphs with various annotations extracted from videotape records
and also written papers submitted by several authors. In addition, a summary of
the issues discussed on the third day has been published separately in NASATechnical
Memorandum 81846.
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NASACROSSCUTSTUDIESANDAPPLICATIONS

WILLIAMB, GEVARTER

NASAHEADQUARTERS



This is an indication of the history of NASA's activities. Landing on
the Moonindicated to us that we can do almost anything if we apply enough
resources to it--we established technological feasibility in the 1960's.

In the 1970's, we demonstrated that we could do certain things which
had utilitarian value; e.g. Landsat, communications programs, platforms
in space, lunar and asteroid mining, etc.

The problem is, however, we can not afford all of it. So we have to
establish economic feasibility which will be the prime concern for the
1980's space program. This concern will be with us also into the 1990's.
We have to demonstrate that space utilization is not only beneficial but
also affordable.

SPACE PROGRAM EVOLUTION

TRANSITION BY DECADES

1960's 1970's 1980's 1990's

AND BEYOND

TECHNOLOGICAL UTILITY ECONOMIC

FEASIBILITY DEMONSTRA] ION FEASIBILITY AFFORDABLE,
BENEFICIAL

MISSIONS



Within the automation structure, we have various areas. The things which
are listed here fall within generic technologies and application classes. This
is, of course, not the only possible subdivision of what we call automation.

AUTOMATION STRUCTURE

GENERIC TECHNOLOGY

DECISIONMAKINGANDLOGIC

KNOWLEDGEREPRESENTATION

PERCEPTION

LEARNING

HUMAN/MACHINE INTERACTION

MANIPULATION

MOBILITY

APPLICATION CLASSES

OPERATIONSSUPPORTANDPLANNING

TELEFACTORSYSTEMS

AUTONOMOUSSPACECRAFTOPERATION

INFORMATIONEXTRACTION



Some of the main points leading up to the automation program are shown
here.

Mission costs, e.g., ground operations of long duration missions began
to get out of hand.

The "Sagan Report" concluded that NASAappears to be behind the com-
puter science cutting edge technology between 5-15 years on the average.
This may be arguable at least in some areas. The "average" allows one to
be ahead in some areas while being behind in others. In very narrow specific
areas, NASAseems to be in the forefront if not considerably ahead.

The 1979 Innovators Meeting at Woods Hole, attended by Dr. Frosch,
came up with the idea of self-replicating telefactors. If such an idea
could be translated into practice, the impact on the affordability of space
systems could be tremendous. Machines (robots) would be able to replicate
and multiply exponentially. The only problem of course is how to build
the first robot to self-replicate. A one-week Goal-Setting Workshop, and
a ten-week Feasibility Workshop this summer will address these questions.

In response to these developments, we redirected OASTtechnology acti-
vities into the automation of selected ground operations and focused the
technology on machine intelligence while the workshop planning studies shown
here are ongoing and NASAautomation activities across the agency are being
reviewed.

Automated decision-making and problem solving is a major area in the
OAST program.



AUTOMATIONPROGRAMHISTORY

BACKGROUND

HIGHMISSIONSUPPORTCOSTS

"SAGANREPORT"

'79INNOVATORSMEETING

OASTRESPONSES

REDIRECTEDOASTTECHNOLOGYACTIVITIES

AUTOMATIONOFSELECTEDGROUNDACTIVITIES

TECHNOLOGYFOCUSONMACHINEINTELLIGENCE

SUMMERWORKSHOPS

1, LONG-RANGEGOALSWORKSHOP:,,,JUNE15-22

2, MISSION/TECHNOLOGYFEASIBILITY

WORKSHOP. JUNE23-AUG29. n l l i ! l i l i i i i

CROSS-CUTREVIEWOF NASAAUTOMATIONACTIVITIES
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Here we discuss briefly the Automation Program History, including
background and corresponding OAST responses. The NASAprogram office
needs are briefly identified in the NASAcrosscut activities.

One of the problems is that we tend to do something about things
which belong in neat little boxes. There is no box for"efficiency,"
so we do nothing directly for efficiency. This is a problem of organiza-
tion to make sure things do not fall between the cracks. For instance,
there is no place for computer-aided design. It is done as part of
projects where existing capabilities are used but hardly any new ones are
developed. Hence, the way an organization is structured often establishes
what the limits of the organization are.

AUTOMATION CROSS-CUT RESULTS

PRIORITY PROGRAM OFFICE NEEDS

OSTA - AUTOMATEDDATAINTERPRETATIONCAPABILITY

OSS - AUTOMATEDMISSION OPERATIONS

OSTA - SATELLITESERVICINGCAPABILITYAUTOMATED
LAUNCHCHECK-OUT

OSTDS- CONTINUEDAUTOMATIONOFTRACKINGAND
DATAACOUISITION NETWORKS



CROSS-CUTRESULTS

CURRENTNASAAUTOMATION-RELATED

DEVELOPMENTACTIVITIES

TELEOPERATORSENSORSANDCONTROL OSS& OSTSATJPL

SATELLITESERVICINGTECHNOLOGY OSTSATMSFC

MAN-MACHINECOMMUNICATION OSTDSATGSFC

PATTERNRECOGNITIONANDIMAGEANALYSIS OSTAATJSC

"NEEDS"DATASYSTEMARCHITECTUREAND OASTATGSFC& JPL

SYSTEMDESIGN

LARGESPACESTRUCTUREAUTOMATEDASSEMBLY OASTATLARC

ANDCONTROL

AUTOMATEDPOWERSYSTEMSMANAGEMENTFOR OASTATJPL

SPACECRAFT



CROSS-CUTRESULTS

RECENTAUTOMATIONOFMAJOROPERATIONSSUPPORTTASKS

STSFLIGHTDESIGNANDCREWACTIVITIES JSC/OSTS

PLANNING

KSCLAUNCHPROCESSINGSYSTEM LSC/OSTS

TRACKINGANDDATAACQUISITION GSFC/JPL/OSTDS

STSFLIGHTASSIGNMENTMANIFEST JSC/OSTS
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AUTOMATIONOPPORTUNITIES

. REVOLUTIONINCOMPUTERCAPABILITY

. INTENSIVESPACEEXPLORATIONANDUTILIZATIONREQUIRES

HIGHDEGREEOFAUTOMATION

. NSF/DOD/ARPASUPPORTHASESTABLISHEDRESEARCHBASE

. MISSIONOPERATIONSSUPPORTISCOSTEFFECTIVEAUTOMATION

AREA:

-APPROXIMATELY30%OFTOTALPROGRAMCOSTS

-CAPABILITIESCANBEINTRODUCEDASAVAILABLE

-SPACEQUALIFICATIONISNOTANISSUE

• TELEFACTORSYSTEMISNEEDEDFORSPACEOPERATIONSSUPPORT



AUTOMATIONPLANOVERVIEW

. DETAILEDANALYSISOFUSERAPPLICATIONS

. AUTOMATIONOFOPERATIONSSUPPORTFUNCTIONS;

EVOLVETOON-BOARDCAPABILITY

. DEVELOPMENTOFGENERICTELEFACTORTESTVEHICLE

. GENERICTECHNOLOGYPROGRAMLEADINGTOMACHINE

INTELLIGENCECAPABILITY
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PROPOSEDAPPROACHTODEVELOPING

ANAUTOMATIONTECHNOLOGYBASE

1, DETERMINETHESTATE-OF-THE-ARTACROSSTHEASSOCIATED

BREADTHOFTECHNOLOGY

- WHATTECHNOLOGYEXISTS
- ITSCAPABILITIES
- WHOHASIT
- HOWNASAMAYGAINACCESSTOIT
- THEFUTURECAPABILITYLEVELOFTECHNOLOGY

2, ABSTRACTFROMEXISTINGMODULESOFTECHNOLOGYHIGHER

LEVELORGANIZATIONALCONCEPTSTHATAREEASIERTOGRASP

Ai'_DUTILIZE

3, DEVELOPSELECTIVEIN-HOUSECAPABILITY

4, PROVIDEA MODULARTECHNOLOGYBASEFROMWHICHAPPLICATIONS

CANBEASSEMBLED

5, CONDUCTSELECTEDSYSTEMDEMONSTRATIONSINIMPORTANT

POTENTIALAPPLICATIONAREAS(RS/RT)

6, COORDINATEPROGRAMWITHOTHERAGENCIES
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A FRAMEWORKFORAUTOMATED

DECISIONMAKINGAND

PROBLEMSOLVING

EWALD HEER

UNIVERSITY OF SOUTHERN CALIFORNIA
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In the context of this Presentation, a problem is a stated or
perceived desire of one or more human beings to accomplish an objective.

For example, to keep a room's temperature at a certain level, or
to drive to the airport, or to play and win a chess game, or to build a
bridge, are such objectives.

Problem solving is the process of finding a way or means towards
accomplishing a desired objective.

At the highest level, the problem solving process can be sub-
divided into two distinguishable phases which include the process of
plannin 9 and e-x-ecution.

Planning is an objective or goal oriented process of preparing a
set of decisions, from alternative options, for action in the future.

The process of planning consists of objective identification, data
acquisition and forecasting, decision-making -- where the process of
decision-making involves synthesis, modeling and deductive activities.
This requires the selection of a plan, possibly out of many feasible
ones.

It requires the acquisition and deployment of operational re-
sources, and it requires the control of the process when it is executed.

Control consists of three major elements: sensing or perception,
deciding or reacting, and correcting, to stay within given limits.

14



PROBLEMSOLVING

. PLANNING - A GOALORIENTEDPROCESSOF PREPARINGA SET

OFDECISIONSFROMALTERNATIVEOPTIONSFOR

ACTIONINTHEFUTURE

. OBJECTIVEIDENTIFICATION

. DATAACQUISITIONANDFORECASTING

. DECISION-MAKING

- SYNTHESIS
- MODELING
- DEDUCTION

. EXECUTION - A GOALORIENTEDPROCESSOFSELECTINGAND

IMPLEMENTINGA SETOF DECISIONSWITHIN

GIVENCONSTRAINTS

. SELECTIONOF PLAN

. OPERATIONALRESOURCESACQUISITIONAND

DEPLOYMENT

. PROCESSCONTROLLING

- PERCEPTION
- REACTION
- CORRECTION
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We now look a t  some charac ter is t ics  of planning and execution. 

Two extreme cases w i t h  a continuous spectrum of poss ib i l i t i e s  i n  
between can be ident i f ied .  

F i r s t ,  the problem solver can identify and oversee every s tep  and 
decision point of a problem in su f f i c i en t  de ta i l  to  develop the en t i r e  
plan f i r s t ,  and then execute i t  accordingly. 

In t h i s  case, the planning horizon reaches the objective, because 
the problem solver has enough information a t  his command, e i the r  from 
experience o r  from records, t o  predetermine every step and decision point 
towards accompl ishing the objective. For instance, driving t o  the a i rpor t  
can be planned in great  detai l  beforehand, i f  the route has been experienced 
and remembered, or i f  an accurate map i s  avai lable.  However, i f  neither 
i s  avai lable,  and i f  our eyesight i s  very short  o r  not ex i s t en t ,  then our 
planning horizon i s  very short  -- involving perhaps only a few steps a t  a 
time. 

In the extreme case, we have then an example of the second s i tua t ion ,  
where the problem solver can identify and oversee only one step and one 
decision point a t  a time towards a s ta ted  goal. 

After each s tep ,  he must co l l ec t  additional information o r  chance 
t he  risk of solving the wrong problem or no problem at all. I n  this 
second case, problem solving usually involves a great deal of search 
ac t iv i ty  of one s o r t  of another. 

Humans have handled problem solving and decision-making tasks f o r  
millenia, although not always e f f i c i en t ly ,  t o  be sure. I t  i s  only during 
the l a s t  few decades tha t  we have begun t o  acquire some s c i e n t i f i c  under- 
standing of the processes by which humans solve problems and make decisions. 
We have learned tha t  the complexity of the problem solving process, which 
makes i t s  eventual outcomes (such as building a bridge, or  going t o  the 
moon and planets) so impressive, i s  a complexity assembled out of re la t ive ly  
simple interact ions among a large number of extremely simple basic elements. 

We have shown how t o  synthesize thinking processes with computers 
t h a t  paral lel  closely the thinking processes of human subjects ,  in a sub- 
s t an t i a l  number of d i f ferent  problem solving tasks. The range of tasks 
tha t  have been studied in t h i s  way i s  s t i l l  narrow. However, there i s  
l i t t l e  doubt tha t  i n  t h i s  range, a t  l e a s t ,  we know what some of the princi- 
pal processes of human thinking are ,  and how these processes are  organized 
in problem solving programs. 

We in fe r  from these statements tha t  the processes of problem solving 
and decision making can be automated, using d ig i t a l  computers, a t  l e a s t  t o  
a large degree. A t  a minimum, i t  will  be possible t o  use the d ig i t a l  compu- 
t e r  to  amplify the human mental capabi l i t ies  in problem solving and decision- 
making processes. 

The computer i s  already prol iferat ing in our society in management and 
industry to  a degree unimagined only a decade ago. The computer i s  assuming 
more and more of the functions previously done by humans and i s  moving the 
boundary between manual and automatic control more and more towards increased 
automation. I be1 ieve t h a t  problem solving and decision-making tasks,  i f  
done automati cal ly  by computers, require programs developed by using tech- 
niques of machi ne i ntel 1 i gence, operations research, and advanced control 
theory. 



PLANNING AND EXECUTION - 

a PLANNING HORIZON 

a SEARCH A C T I V I T I E S  

a PROBLEM SOLVING BY HUMANS 

a PROBLEM SOLVING BY MACHINES 

PROBLEM SOLVING BY H-M-SYSTEMS 

OPERATIONS RESEARCH 

ADVANCED CONTROL THEORY 

' MACH I NE INTELL IGENCE 



I n  t h e  f o l l o w i n g  few vugraphs, I would l i k e  t o  p u t  the  s u b j e c t  o f  
Automated Decision-Maki ng and Problem So lv ing  i n t o  t h e  c o n t e x t  o f  t h e  
NASA miss ion  environment. 

The NASA space a c t i v i t i e s  can be subd iv ided i n t o  f o u r  major  areas: 
Space Exp lo ra t ion ,  Global Services,  U t i  1  i z a t i o n  o f  Space, and Space 
T ranspor ta t i on .  

As t h e  space program matures, i t s  cen te r  o f  g r a v i t y  i s  expected t o  
move more and more towards u t i l i z a t i o n  o f  space and space t r a n s p o r t a t i o n .  
Th is  b r i n g s  w i t h  i t  s i m i l a r  o r  some o f  t h e  same concerns o f  p r o d u c t i v i t y ,  
c o s t  reduc t ion ,  and c o s t  e f f e c t i v e n e s s  t h a t  a r e  today a l ready  o f  such 
g r e a t  concern t o  t h e  ground-based i n d u s t r y .  

It i s  w i t h i n  t h i s  environment t h a t  automated decis ion-making and 
problem s o l v i n g  techno log ies  a r e  expected t o  have t h e i r  g r e a t e s t  p o t e n t i a l  
impact. 

L e t  us l o o k  a t  some o f  these systems by example i n  t h e  designated 
order .  

THE ENVIRONMENT OF NASA MISSIONS 

e SPACE EXPLORATION 

0 GLOBAL SERVICES 

0 U T I L I Z A T I O N  OF SPACE 

0 SPACE TRANSPORTATION 
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Mars surface robot will operate for two years and travel about
I000 km performing experiments automatically and sending the scientific
information back to Earth.



Artist's concept of a Mars surface scientific processing and sample
return facility. Airplanes transport samples into the vicinity of the
processing station. Tethered small rovers then bring the samples to the
station for appropriate analysis and return to Earth.



•,ii

Seasat. The oceanographic satellite's high-data-rate Synthetic
Aperture Radar imaging device has provided data on ocean waves, coastal
regions, and sea ice.
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Large space systems require robot and automation technology for
fabrication, assembly, and construction in space.
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Complex construction facility in space with automatic beam builders,
cranes, manipulators, etc., is served by the Shuttle.



Large space antennas are erected with the help of a space-based
construction platform. The Shuttle brings the structural elements to
the platform, where automatic manipulator modules under remote control
perform the assembly.



Space construction of large antenna systems with automated tools,
teleoperated manipulators, and free-flying robots.



Automated material processors on the lunar surface are serviced
by robot vehicles with raw lunar soil.



The stated examples provide insight into the type of systems which
are envisioned for the NASAspace program, and which provide the content
for the application of decision making and problem solving techniques.

Now let us see how we might establish a plausible connection between
these areas.

There are two main phases a space system goes through: the Develop-
ment Phase and the Operational Phase.

The development phase of a space system is not much different from
the development phase of any product in industry on Earth as shown in
this vugraph.

THEENVIRONMENTOFSPACE

SYSTEMDEVELOPMENT

. PLANNING

. CONCEPT

. TECHNOLOGY

. ENGINEERING

. DESIGN

. EXECUTION

. RESOURCES

. CONSTRUCTION/PRODUCTION

. TESTING

. SHIPMENT
28



THEENVIRONMENTOF SPACESYSTEMSOPERATIONS

. ONBOARDSPACECRAFTOPERATIONS

. NAVIGATION,GUIDANCE,ANDCONTROL

. RENDEZVOUS,STATIONKEEPING,ANDDOCKING

. LANDING,TRAVERSING,ANDASCENT

. DATAACQUISITIONANDPROCESSING

. HOUSEKEEPINGFUNCTIONSANDRESOURCECONTROL

. IN-SPACEHANDLINGANDASSEMBLY

. DEPLOYMENT,TRANSFER,ASSEMBLYANDJOINING

. INSPECTION,SERVICING,MAINTENANCEANDREPAIR

. RETRIEVINGANDRESCUE

. PROCESSINGANDMANUFACTURING

. MINING

. GROUND-BASEDOPERATIONS

. DATAINTERPRETATION,DISTRIBUTION,ANDARCHIVING

. GOALSELECTION,OPERATIONSPLANNING,ANDSEQUENCING

. SIMULATION

• MONITORING
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An example of a complex space operations facility is depicted here.
It is the construction of a space station. Bulk material is brought by
the Shuttle. Structural elements are fabricated at the construction faci-
lity and then assembled by remotely controlled manipulators.



CONTROL COMMUNICATION LINK REMOTE

• DISPLAY TELECOMMUNICATION • SENSORS ,

• MANIPULATORS
INSPECTION

• CONTROL _ _

-- • REMOTE ASSEMBLY
COMPUTING

• CONTROL

(COMMAND)

• MOBILITY
EXPLORATION

The concept of remote operation and control in space is shown here.
The decision-maker in the control center is represented by one or more
human operators. The remote system is controlled via telecommunication
links directly, or, the remote system can make its own decisions depend-
ing on the autonomous capabilities built into it.



MISSION OPERATIONS MODEL

I'--- -- " RF I

I I I I 1 I /

i ..,L._. /MAN-MACHINE

I I DISPLAYTERMINAL(S)
I I I
I I

CONTROL DATA I II HUMANCOMPUTER(S)I RFI PROCESSING OPERATOR(S)

I I SYSTEM I /

I_ COMMANDAND I
ACTUATORSI- I I CONTROLTERMINAUSI

I I REMOTESYSTEM I I GROUNDSYSTEM I I \
L (ROBOT) I ,_._ (CONTROLSTATION) ..j

I TEIFOPERATIONSYSTEM IL .............

In a more abstract representation, the "teleoperation system" is
between the humanoperator(s) and the objects and environments where
the system's objectives are executed. The autonomy of the remote system
increases, in general, as the control computer(s) capabilities grow in
terms of decision-making and problem solving capabilities.



HIERARCHYOF OPERATIONALSYSTEMS

f _ _ ___-_E'V_E,v
/

PLANNING LEVEL / GOAL SETTING,PLANNING AND

/ POLICY DEVELOPMENT

/ I i _\ \

POLICYEXECUTIONLEVEL i I

/ -" CENTRALSCHEDULINGAND CONTROL

/
PROCEDURAL

LEVEL r_ PROCESSCONTROL _-- -- PROCESSCONTROL --

/ t4 t_ t_ tt
PILOTLEVEL i,,- GENERATOR['_---I COMPUTERl-- 1 PROGRAM I--_ SET-POINTL__

I IISWITCHING SWITCHING
MECHANISM

LEVEL I ECHANISM TRO CONTROLLER

' t
1 = I _u_oc_s_II _u_P_OC_SI _u_P_OC_S_I su_P_OC_SI_>•.. = = _>

PROCES: I

PROCESSCLUSTER

A different cut of an operational system is given in this vugraph.
It shows the inherent hierarchical structure of operational systems.



The "low level" solution concepts identified here are generally
well within the scope of existing technology. They do not pose a tech-
nological bottleneck.

LOWLEVELSOLUTIONCONCEPTS

. ANALOG/DIGITAL(PID)CONTROLLERS

. DIRECTDIGITALCONTROL

. CONTROLMODESWITCHING

. FIXEDCONTROLPROGRAMS
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The "intermediate level" solution concepts are still under develop-
ment. Although they are in principle understood, the practical effective
application still needs R&Dwork in the area of system identification and
complex system modeling.

INTERMEDIATELEVELSOLUTIONCONCEPTS

• CONTROLPROGRAMSWITHPROCESSDRIVENPROGRAMSELECTION

. CONTROLPROGRAMSWITHPROCESSMODELING

SOLUTION

CONTROL ,__J_HVARIABLE CONSTRAINT

OPTIMUM

CONSTRAINT

SURFACE

THEORETICAL CONTROL VARIABLE

OPTIMUM
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The "high level" solution concepts require still the most extensive
research and developments. They usually pertain to problems with ill-
defined structures, not solvable by analytical mathematical approaches.
They usually require some search approach. Some of the solution concepts
incorporate the ability for the system to learn from past experiences
(operations, sensor information, etc.). This is illustrated in the
figure. If the system is disturbed from optimal performance, it may, e.g.,
return to optimal performance as shown by the double lined path. If the
system is disturbed in a similar fashion, it may have learned a better way
to return to optimal performance, namely by the single lined path.

HIGHLEVELSOLUTIONCONCEPTS

. CONTROLPROGRAMWITHSEARCHOPTIMIZATIONANDLEARNING

CAPABILITY

- STATISTICALSEARCH

- LINESEARCH

- UNIVARIATESEARCH

- COMPLEXMETHOD

- GRADIENTTECHNIQUES

- HEURISTICTECHNIQUES

STATE
VARIABLE DISTURBANCE

STATE VARIABLE
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Problems can be subdivided into two main categories: well-
structured problems, and ill-structured problems. The first require
routine repetitive decisions which are, generally amenable to program-
mable decision processes. The second require novel nonprogrammable
decision processes.

The decision-making processes can be subdivided into those
representative of those done by humans and those done by machine. Many
of such decision processes require a combination of humans and machines.

PROBLEMSTRUCTUREANDSOLUTIONTECHNIQUES

. WELL-STRUCTUREDPROBLEMS . ILL-STRUCTUREDPROBLEMS

. ROUTINEREPETITIVE . NOVELPOLICYDECISIONS
DECISIONS

. PROGRAMMABLEDECISION . NONPROGRAMMABLEDECISION
PROCESSES PROCESSES

. HUMANORIENTEDDECISION-MAKING

. HABIT . JUDGEMENT

. CLERICALROUTINE . INTUITIONANDCREATIVITY

. STANDARDPROCEDURES . RULESOF THUMB

. WELL-DEFINEDCOMMUNICATION . SELECTIONANDTRAINING
CHANNELS OF MANAGERS

. AUTOMATIONORIENTEDDECISION-MAKING

. OPERATIONRESEARCH . HEURISTICPROBLEM

. COMPUTERDATAANALYSIS SOLVING
ANDPROCESSING . HEURISTICCOMPUTER

PROGRAMS
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INTELLIGENTCONTROLSYSTEMS

GEORGE N, SARIDIS

PURDUE UNIVERSITY
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INTELLIGENT CONTROLS FOR ADVANCED

AUTOMATED PROCESSES

G. N. Saridis

Purdue University

ABSTRACT

This paper deals with the evolution of ideas of intelligent controls

and their application to high Level man-machine interactive systems like

general purpose manipulators, industrial robots, prosthetic devices for ampu-

tees, and orthotic devices for paralyzed persons. Some case studies are

presented to demonstrate the feasibility of the approach.

1. Introduction

The phenomenal technoLogicaL achievements of the past fifty years must

be credited to a Large extent to the development of the system theoretic

methodologies. These methodologies are based on a rigorous mathematical

modeling and subsequent analysis of the associated physical process, a sys-

tematic synthesis of precise controls resulting in the design and effective

operation of industriaL, economic, urban and even space expLoration systems

that have become essential parts of the socioeconomic environment of the

modern societies [27,38]. As the world economy is reaching a turning point

due to the depletion of certain popular energy resources while higher

demands are imposed from space exploration, work in hazardous environments,

modernization of industrial plans, and efficient transportation of Large

groups of people, new methodologies are developed suitable for computer

utilization and demonstrating advanced machine inteLLigence and decision

making [403. For over twenty years scientists have been developing the cog-

nitive field of Artificial Intelligence, more or less in the image of a hu-

man brain. Significant results have been accomplished in Speech Recogni-

tion, Image Analysis and Perception, Data Base Analysis and Decision-Making,
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Learning, Theorem Proving and Gains, Autonomous Robots, etc.

[1,8,9,13,14,15,16,20,21,25,28,29,30,32,34,35,37,49,50,51,54,55]. The dis-

cipline that couples these advanced methodologies with the system theoretic

approaches necessary for the solution of the current technological problems

of our societies is called "Intelligent Controls" [12,40].

Intelligent Controls utilizes the powerful high-level decision making of

the digital computer with advanced mathematical modeling and synthesis tech-

niques of system theory to produce a unified approach suitable for the en-

gineering needs of the future.

One of the most important applications of Intelligent Control Theory is

in manipulative systems. These systems may involve the control of a general

purpose manipulator for space exploration, like the Mars-rover, or a hazar-

dous environment robot for operation in a nuclear containment, or a hospital

aid manipulator, an electrically driven prosthetic limb to replace an ampu-

tated arm or even an orthotic brace to assist paralyzed people

[6,10,11,22,24,25,26,41,44,47,52]. Such devices impose special considera-

tions and _constraints in terms of small weight, small physical dimensions,

real time performance, human limb appearance and functionality, and most

restrictive, a small number of non-interacting command sources, i.e., of a

command vocabulary, and a small number of sensors. The above constraints ex-

clude computationally complex algorithms or long computation time. Also,

training of the operation to generate combinatorial command codes must be

very limited. Hence, such systems must maximize flexibility of performance

subject to a minimal input dictionary and minimal computational complexity.

The paper will consider the general theory of Intelligent Controls

first and then its application to general purpose robots, prostheses and

orthotic devices.
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2. Cognitive Systems and Intelligent Controls

Cognitive systems have been traditionally developed as part of the

field of artificial intelligence to implement, on a computer, functions

similar to the ones encountered in human behavior [1,12,28,33,37,54,55].

Such functions as speech recognition and analysis, image and scene analysis,

data base organization and dissemination, learning and high level decision

making, have been based on methodologies emanating from simple logic opera-

tions to pattern recognition and linguistic and fuzzy set theory approaches

[56]. The results have been well documented in the literature.

In order to solve the modern technological problems that require con-

trol systems with intelligent functions such as simultaneous utilization of

a memory, learning, or multilevel decision-making in response to "fuzzy" or

qualitative commands, a new generation of control systems has been

developed. They are named "Intelligent Controls" and utilize the results of

cognitive systems' research effectively with various mathematical program-

ming control techniques [27,38]. Each cognitive system associated with the

specific process under consideration may be considered as subtask of the

process requested by an original general qualitative command, programmed by

a special high-level symbolic computer language, and sequentially executable

along with decision making and control of the hardware part of the process.

Many systems have been designed to perform in the above manner. In the

area of manipulators and robotics many such systems have been developed for

object handling in an industrial assembly line, remote manipulation in ha-

zardous environments, the planet-exploration Mars-vehicle, hospital aids to

disabled, and autonomous robots [2,3,4,11,24,25,26,33,36,42,53]. In most

cases where the control process is remotely performed from the operator, its

function is semi-autonomous and the system must utilize some cognitive sys-
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tems to understand the task requested to execute, identify the environment

and then decide for the best plan to execute the task.

Various pattern recognition, linguistic or even heuristic methods have

been used to analyze and classify speech, images or other information coming

in through sensory devices as part of the cognitive system [1,5,6,23,28,37].

Decision-making and motion control were performed by a dedicated digital

computer using either kinematic methods, like trajectory tracking, or dynam-

ic methods based on compliance, dynamic programming or even approximately

optimal control [45].

A Hierarchically Intelligent Controls approach has been proposed by

Saridis as a unified theoretic approach of cognitive and control systems

methodologies. The control intelligence is hierarchically distributed ac-

cording to the principle of "Decreasing Precision with Increasing Intelli-

gence," evident in all hierarchical management systems [40]. It is com-

posed of three basic levels of controls even though each level may contain

more than one layer of tree-structured functions:

- The Organization level

- The Coordination level

- The Hardware Control level

The organization level is the master mind of such a system. It accepts

and interprets the input commands and related feedback from the system, de-

fines the task to be executed and segments it into subtasks in their ap-

propriate order of execution. An appropriate subtask library and a learning

scheme for continuous improvement provide additional intelligence to the or-

ganizer. Since the organization level takes place on a medium to large size

computer appropriate "translation and decision-making schemata" are
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linguistically implementing the desirable functions [41].

The coordination level receives instructions from the organizer and

feedback information from the process for each subtask to be executed and

coordinates the execution at the lowest level.

A lowest-level control process usually involves the execution of a cer-

tain motion and requires besides the knowledge of the mathematical model of

the process the assignment of end conditions and performance criteria or

cost functions. The coordinator, usually composed of adecision-making auto-

maton representing a context free language, may assign both the performance

index and end conditions as well as possible penalty functions designed to

avoid inaccessible areas in the space of the motion. The decisions of the

coordinator are obtained with the aid of a performance library and a learn-

ing decision-making scheme updated to minimize the cost of operation. Op-

timal or approximately optimal control system theory may be used for the

design of the lower level controls of decentralized subprocesses of the

overall process to be controlled.

The method has been successfully applied to the control of a general

purpose manipulator with visua| feedback and voice inputs [42], and a traffic

control system for an integrated urban and highway environment [43]. The

next section describes a hierarchically intelligent control system for a

prosthetic arm.

3. A Hierarchically Intelligent Control for a Prosthetic Arm

An electronically controlled, electrically driven prosthetic arm is an

excellent case for application of the hierarchically intelligent control

method. It has been found that a small number of non-interacting commands

can be easily retrieved conveniently from myoelectric signals [23,46].

These can serve to activate an artificial limb or a powered orthotic device
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in up to 6 degrees of freedom. Presently, we have successfully activated 6

functions using double electrode location, within adequate time. Anything

slower is again unacceptable to the user. Using pattern classification or

nonlinear signal identification, one can discriminate between up to some 30

different commands from two electrode sites [46]. More sites are prohibi-

tive since they hardly exist in high level amputees or in paralyzed persons

who are the ones who will most need a robotic arm. Also the more sites,

the more you constrain the freedom of movement of the user and the higher

the probability of failure. Furthermore, single sensors, lightweight and

which can be blended easily into the limb in its appearance without drawing

attention and causing embarassment to the user, can also be incorporated.

The simplest ones would be torque sensors and sensors to feed back to the

system joint positions. Feedback to the nervous system would of course be

best. However, apart from visual feedback, the progress here is unfor-

tunately slow and cannot yet be considered as being concrete help.

A design for a p-degree of freedom prosthetic arm with a hierarchically

intelligent controller, supervised and commanded by the brain has been

presented in [47] to establish the feasibility of such a control system us-

ing EMG commands and some sensory feedback. The purpose is to construct a

prosthetic upper limb for amputated persons or hazardous environment use,

with anthropomorphic characteristics of motion, which would receive commands

directly from the brain of the operator either through a direct tapping of

the nervous system or through electromyographic signals of any other source

of qualitative commands, resulting from the operator's survey of the en-

vironment. It is conjectured that such an anthropomorphic function of the

arm, in response to crude qualitative commands, can be obtained only by a

hierarchical, say, three-level control, with hierarchically increasing order
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of intelligence and hierarchically decreasing order of precision of control

signals as one moves from the electromechanical actuators of the arm to the

interface with brain. A block diagram in Fig. 1 illustrates the concept of

such a hierarchically intelligent control system. The thre_ levels of con-

trol are (1) a linguistic organizer, (2) a fuzzy automaton as a coordinator,

and (3) a bank of self-organizing controls. They are described briefly

below along with their function in the control system.

3.1 The Self-Organizing Control Level

The arm as a whole process may in general be subdivided into p sub-

processes, one per degree of freedom, described by the following set of gen-

eralized differential equations:

xI.= F,x.11 + B.(Xli)u'1 + fi(x'x'wi)

• = Hix i + vi i = 1, s, ..., pZ I

where x. is the n.-dimensional state vector, z. is the r.-dimensional output
1 1 1 1

vector, and u. is the m.-dimensional control vector of the ith subprocess;1 1

Fi, Bi_i ), and Hi are matrices of appropriate dimension, wi and vi ap-

propriate noise vectors, and fi(') nonlinear functions representing the

gravity influence and the coupling terms from other subsystems through vari-

ous reaction forces• If the subsystem was isolated from those force fields,

these terms would be zero and the system would be linear in x.. Further-I

more, the state and the output of the overall system are defined respective-

ly by:



T T T Tx = [Xl,...,x ], z = [Zl,...,z ]

--T T T T Txi = [Xl,X2,...,Xi_l,Xi+l,...,x ],

A performance criterion for the proper mechanical function of the sys-

tem may be defined as

P

j : _ niJ.(o.)
i=I 1 I

where J.(a.)i = 1,..p are appropriate performance criteria. _. are adju-
1 I I

stable coefficients relative to the speed of response of the subprocesses,

= 0,1,i = I,. ,p, relative to the ap-and _i are adjustable coefficients _i ""

propriate blending of primitive motions of the subsystems to generate an ap-

propriate compound motion for the arm. Obviously Ji(o.) is the performanceI

criterion for each subprocess, assumed to be of infinite duration for sim-

plicity of implementation, a conjecture verified experimentally. A feedback

control may be structured per subsystem as

ui(z) = KiQ(z.) + C.Q(z)I I

where the first part is the optimal control for the uncoupled subsystem,

while the second term represents a nonlinear term depending on the nonlinear

coupling with the other subsystems. The expanding subinterval algorithm may

be applied to yield the asymptotically optimal coefficients K. and C. for
I I

each subprocess, thus creating performance-adaptive Self Organizing Controls

for the lowest level of the hierarchically intelligent control system.

Self-organization is necessary to avoid parameter identification of the sys-

tem dynamics.
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The higher levels are interfaced with the individual self-organizing

controls through the adjustable relative speed coefficients _i" the blending

coefficients _i" and the desired final states x_(T).

From the preceding discussion, it is obvious that the third-level Self

Organizing Controls are designed for precision control of the mechanical

subprocesses at hand but do not exhibit higher-quality intelligent func-

tions, such as intelligent decision-making for motion coordination, direc-

tion, and goal accomplishment. With their limited capabilities, they resem-

ble more the reflexes of a biological system. The higher intelligent func-

tions are hierarchically distributed to the higher levels of the controls

which are described next.

3.2 The Fuzzy Automaton as a Control Coordinator

A fuzzy automaton has been developed as an extension of the variable

structure stochastic automata to accommodate inputs of a "fuzzy" nature de-

fined by Zadeh [56].

A fuzzy quantity belongs to a set of values describing an "object"

with undefined boundaries that are characterized individually by a mem-

bership coefficient to the set.

A fuzzy automaton is therefore defined as a sextuple [Z,Q,U,F,H,_],

where, in addition to the finite set of "fuzzy" inputs Z = {z}, finite set

of states Q = {q}, finite set of outputs U = {u}, state transition function

F, and output function H, a fuzzy membership vector _ is assigned to the

states of the automaton [19]. A membership transition matrix _k(n) for each

fuzzy input zk may be assigned to update the membership functions (.

Such a fuzzy automaton may be used to coordinate the p-primitive mo-

tions of the subprocess to form a desired compound movement of the arm from

an initial state Xo(tO) to a final predefined state xd(T). Such a coordina-
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tion is needed to put together the right amount of primitive motions and

their proper velocities in order to accomplish the proper compound motion in

response to a fuzzy command of the higher-level intelligent controller which

is not to be bothered with the details of coordination. A fuzzy automaton

[C,Q,Q,F,I,c] has a structure natural for such a coordinator, if C = {c} is

the set of fuzzy command inputs transmitted from the organizer, and Q = {q} is

the set of the states as well as outputs of the automaton representing the

appropriate performance criteria of each of the subprocesses assigned to

generate the appropriate motion.

3.3 Linguistic Methods for Intelligent Organization

Based on the preceding discussion, given a command and a terminal

state, the fuzzy automaton can be trained to produce the proper compound mo-

tion for the arm, which represents a level of control more intelligent than

the self-organizing. However, the commands generated from the brain of the

human operator are more in the form of compound tasks, like picking up a

glass of water to drink. Therefore an intelligent control system is needed

to interface the brain with the fuzzy automaton and translate the above

qualitative command to a sequence of compound motions of the area that will

accomplish the task. Such a control will be required to produce a segmenta-

tion of the task_providing appropriate xd(T) and qualitative information of

the compound motion of the arm for each segment. It should produce on-line

information about the change of direction, combination, or expansion of seg-

ments, evaluation of the accomplishment of the task and processing of senso-

ry feedback information from the brain, etc., without burdening the operator

with unnecessary details about the function of the arm.

A machine producing decisions and functions of such a high level of in-

telligence must be an advanced digital computer, capable of processing qual-

49



itative information of high content, but also of fuzzy nature in the sense

that high precision in execution is not required. A natural system for this

type of information processing is the previously mentioned linguistic

methods approach which has been developed in the modern literature for ar-

tificial intelligence, pattern-recognition, scene analysis, and other func-

tions [15]. Such methods process strings of words with logic instructions

to accomplish the task according to certain predetermined grammar and syntax

in manner similar to natural languages. In particular, stochastic grammars

developed by Fu [15] for syntactic pattern recognition or fuzzy grammars

proposed by Zadeh [56] are most desirable for a generation of the command

strings appropriate to organize the motions of the artificial arm. The

reader is referred to Ref. [47] for detailed information on this project.

4. Conclusions

Through the above example of the control of the prosthetic arm the

concept of a hierarchically intelligent man-machine interactive control system

has been proposed and its feasibility established. Generalization to other

man-machine interactive systems or even autonomous robots should be

straightforward and would be one of the areas of future research in control

systems. Intelligent control looks like the natural successor of currently

researched Adaptive Learning and Self-Organizing Control Systems. Such a

direction has been selected because of the impact of the digital computer in

modern technology. Intelligent controls should represent the perfect match-

ing between a lower level control hardware and a digital computer for higher

level decision-making according to the principle of increasing intelligence

with decreasing precision in a hierarchical control structure.

Application of intelligent controls has tremendous potential for large

scale industrial processes and the development of highly sophisticated an-
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thropomorphic robots, without excluding the possibilities of utilization in

modern socioeconomic, transportation and other such systems.
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This is a flowchart which represents the function of intelligent
machines as a mapping between anthropomorphic tasks and analytic opera-
tions.
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This block diagram outlines the basic functions of a man-
machine interactive manipulator.

LOCAL CONTROL H'OQ'RS / REMOTE PLANT-ENVIRONMENT

-..ICOMPU_RI ,

/ /
Man-machine interactive remote-controlled manipulator
(example of servo-operated system).

This is a block diagram of the functions of the SRI robot
Shakey.
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I__ I

l

The SRI robot system "Shakey" (example of "problem
solving approach" operated system).

Reprinted from reference 38, pp. 454 and 457, by courtesy of Marcel Dekker, Inc.
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This is a block diagram showing the components of the "intelligent
arm" of the Advanced Automations Research Laboratory at Purdue University.
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CONTROL PERCEPrRONICS I I -

DEVICE I I

MANUAL

CONTROL

c. 1979 IEEE \

"INTELLIGENTCONTROL"

HIERARCHICALMARRIAGE

OF

COMPUTERSOFTWARE

AND

CONTROLSYSTEMS

ORA

MANAGERIALAPPROACH

TOPROCESSCONTROL
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This is a block diagram of the structure of a "hierarchically
intelligent control" system.

1/P CO;,IHAND

l
TRAJECTORY SEGMENTATION

LEVEL I
TASKS 0RGA--_AT'I ON

SUBTASKS

1'!

ELEI_IENTARY
MOTIONS

I
t

MOTION BLENDER

1'!
I LEARNING AUTOMATON LEVEL 2

COORDINATION

II ,___ SUBGOAL SUBGOAL r
! I P
i

I I
i

LEVEL 3
CONTROL

!

I CONTROLLER CONTROLLER1 p

!
SUBPROCESS _ SUBPROCESS I PROCESS

I 1 1 P II

THEHIERARCHICALLYINTELLIGENTCONTROLSTRUCTURE c. 1979IEEE
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This givesa theoreticaljustificationof "hierarchically
intelligentcontrol."

TI{EORETICALAPPROACH:

DECENTRALIZATION OF CONTROL PROCESS, HIERARCHICAL APPROACH, MULTIPLE

PERFORMANCE CRITERIAj SYNTHESIS OF ANALYTICAL SYSTEM THEORETIC METHODS

AND HEURISTIC ARTIFICIAL INTELLIGENCE TECHNIQUES,

THREE HIERARCHICAL ASPECTS:

-VERTICAL DECOMPOSITION ACCORDING TO FUNCTION (LEVELS)

-HORIZONTAL DECOMPOSITION ACCORDING TO SUBPROCESS (STRATA)

-SEQUENTIAL SOLUTION, TEMPORAL DECOMPOSITION (LAYERS)

EXISTING METHODS: ONE GOAL, ONE LEVEL, ONE STRATUM, ONE LAYER,

LINEARIZATION ABOUT NOMINAL TRAJECTORY.

CONTRIBUTIONS:

-HIERARCHICAL DECOMPOSITION

-NONLINEAR PERFORMANCE ADAPTIVE CONTROL STRUCTURE

-LINGUISTIC COORDINATION, APPLICATION OF FORMAL LANGUAGES TO

DYNAMIC SYSTEMS

PRINCIPLE OF INCREASING INTELLIGENCE AND DECREASING PRECISION,



This is the formulationof hierarchicallyintelligentcontrol
for a prostheticarm.

PROBLEMFORMULATION

7-DEGREE-OF-FREEDOM PROSTHESIS_ 7 DC MOTORS WITH POTENTIOMETERS

AND TACHOMETERS_ COMPUTER CONTROL,

EXISTINGDEVICES: "MUSCULAR CONTROL BY BOWDEN CABLES_ REQUIRE

CONSIDERABLE MENTAL EFFORT_ SLOW,

MAIN OBJECTIVE: AUTOMATE PART OF THE DECISION-MAKING PROCESS

BY ESTABLISHING COMPUTER REFLEXES WITH LEARNING CAPABILITY,

DEFICIENT COMMUNICATION WITH THE CENTRAL NERVOUS SYSTEM, REPLACE

52 MUSCLE PAIRS BY 7 MOTORS,

PERFORMANCE CRITERIA: ANTHROPOMORPHIC TRAJECTORIES, LOW ACCELERATION,
LOW ENERGY CONSUMPTION,

MOTION OF THE WRISTj ORIENTATION OF THE HAND,
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O_

Here is shown the EMG Signal Generation for the hierarchically intelligent control of a prosthetic arm.

_ ELECTRODE,S

1.....' CIRCUIT I_ INTERPRETE_ '" CON ROLLER

THe EMG encoding and decoding and control system.



Here we have the binary code used for EMG signal command and its
linguistic interpretation.

CommandVocabulary

Binary Code CommandPrimitive Terminal Symbol

0001 1 T1

O010 2 T2

0011 3 T3

0100 4 T4

0101 5 T5

0110 6 T6

Olll 7 T7

I000 8 T8

1001 Go to T9

1010 Move joint TIO

1011 Orient hand T11

1100 Not T12

II01 Very TI3

1110 Fast TI4

fill Stop Tl5

c. 1977 IEEE
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This is an explanation of the linguistic organization level.

ORGANIZATIONLEVEL ELECTROMYOGRAPHIC SIGNALS, PULSE WIDTH MODULATION, BINARY CODING,
INVARIANCE TO NOISE, FATIGUE, MUSCULAR WEAKNESS_ EASY TO LEARN_

MORSE CODE,

15-WORD VOCABULARY, 4-BIT WORDS, LINGUISTIC STRINGS, OR SENTENCES,

RECOGNITION OF SYNTACTICALLY VALID COMMANDS_ HAPPING INTO SEQUENCE

OF STATE SPACEGOALS_ I,E, DESIRED ANGULARPOSITIONS,

MOTION REDUNDANCY: FOUR ANGULAR DEGREES OF FREEDOM, ONLY THREE

CARTESIAN COORDINATES, NONUNIQUE TRANSFORMATION, LEARNINGs LOW

ENERGY_ SMALL ANGULAR DISPLACEHENTS_ ANTHROPOMORPHIC MOTION,

This is an example of formal grammar and languages.

INTRODUCTION TO GRAMMARS SENTENCE

NOUN PHRASE VERB PHRASE

/ / \
ARTICLE NOUNPHRASE VERB ADVERB

I ! IADJECTIVE NOUN

i I
THE LITTLE BOY RAN QUICKLY

S* NP,VP (1)
NP* A, NP (2)
VP. V, ADV (3)
NP+ ADJ,N (4)
A* THE (5)

ADJ . LITTLE (6)
N . BOY (7)

V + RAN (8)

ADV. QUICKLY (9)

FOURCONCEPTS:

NONTERMINALS: S, NP,VP,N,ADJ,ADV,A,V
TERMINALS: THE, LITTLE_ BOY_ RAN_ QUICKLY

START SYMBOL: S

REWRITING, OR PRODUCTION RULES (1),,,(9)



This is an example of a parsing algorithm for formal languages
and advantages of the Cocke-Younger-Kasami parser which was used in
the prosthetic arm.

A PARSING ALGORITHM

FOUR TYPES OF GRAMMARS

1, UNRESTRICTED

2, CONTEXT SENSITIVE:_IA_2+ _IB_2
3, CONTEXT FREE: A +

4, FINITE STATE: A + AB,A + A

CHOMSKY NORMAL FORM: A . BC

A+A

COCKE-YOUNGER-KASAMI PARSING ALGORITHM:

- DYNAMIC PROGRAMMING CONCEPT

- EASY TO IMPLEMENT

- ADAPTABLE TO STOCHASTIC AND FUZZY

GRAMMARS WITH ON-LINE LEARNING

- TIME,',#N3, SPACE_N 2

These are the syntactic rules used for commandgeneration of
the prosthetic arm.

CommandSyntax Rules

I. NI . TI5 13, N5 . T3

2. N| . N4Nj Ih. N5 . T4

3. N2 . T12 15. N5 . T5

4. N2 + T!3 16. N5 . T6

5. N3 .N2N 3 17. N5 . T7

6, N3 . TI4 18, N5 "_"T8

7. N4 .N4NIO 19. N6 "* T9

8. N4 . NGN7 20. N7 + NsN8

9. N4 . NgN8 21. N8 . N5N5

I0. N5 . NzN5 22. N9 . TI0

11. N5 . TI 23. NI0 . NIIN 8

12. N5 . T2. 24. NI| "+ TIIc. 1977 IEEE
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Here we have the formulation of the coordination problem as a
minimum energy problem and a block diagram of the linguistic parser to
implement the first part of the coordinating controller.

FORt'_ULATIONOF THE COORDINATION PROBLEM

LEVEL1
.=

Jm,

xd

LEVEL 2

LEVEL 3

MINIMUM ENERGY

i(_) = LIM_..IE I_ 16,(t) T(t)Idt

J(_,,) : _ , Jl(_)
i=1 i

_j(_d _ FEATURE _ l PARS ING %,,0,

IEXTRACTION "[ ALGORITHM •

e = [e I, e 2, e3, e4]T
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This block diagram shows all the functions of the organization
level.

EMG SIGNALS

i I
I

I

I Linguistic String

I

I PARS_NO] ORG,N_ZER
(

J Command Parse

II I_N.RP_tTA.ONI
I 'Command Variables

J BLENDING

c. 1977 IEEE ACTUATORVARIABLES

The organization level of an "intelligent" prosthetic arm.

COORDINATIONLEVEL

FOR GIVEN CONTROL PATTERN (INITIAL, FINAL POSITION, VELOCITY)_

SELECT COORDINATION INPUT, SYNERGY OF CONTROLLERS

OVERALL DYNAMIC PERFORMANCE CRITERION, MINIMUM ENERGY,

FEATURE EXTRACTION

PARTITION OF FEATURE SPACE BY CONTEXT FREE GRAMMARS IN CHOMSKY

NORMAL FORM,

SYNTACTIC CLASSIFICATION INTO COORDINATION CLASSES,

MULTILAYERED PARSING ALGORITHM OF DYNAMIC PROGRAMMING TYPE,

LEARNING BY GRAMMATICAL INFERENCE
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This is a commandparse example for the prosthetic arm.

N
I

_/(2) -_
N4 _3

N4 N2 N3NIO

N6 N7 Nld _N_ T{2

T9 N5 N8 H5 N TI T1TII 5 3 4

I <,2> f(2,)_ (18> l<,l)
T2 N5 N5 T8 i

/,,o,\
N2 N5 N2 N5

I<41II, lII31I<,,)
Tj3 T8 TI2 TI

String: T9 T2 TI3 T8 TI2 TI TI I T8 TI TI2 TI3 TI4

(goto) (2) (very8) (notI) (orienthand)(8) (l)(not)(very)(fast)

c. 1977 IEEE

These are the command executions at the organization level.

_VACHINE II_CE

LEVEL1: ORGANIZATION ErlG

EXECUTIVE LEVEL [TRAtlSLATIONI
PURPOSIVE COMMANDS (TASK ORIENTED)

INPUT: LIHGUISTIC STRING ---,--...._--

SPACE (t_CHINE LANGUAGE) ]
MOTION BLENDER: (3D)

I) RED_TION OF REDUNDANCYIN WRIST MOTION J-'--:------ "_--]
It)HAND ORIENTATION

TERMINAL SYMBOLS: ANGULAR X
GO TO (X, Y, Z) COORDINATES

MOVE JOINT (I, e) (7D)

SET SPEED (FAST SLOW) I LOWER- _

AVOID (OBJECT) [ LEVELS/FOLLON (CONTOUR)

CONSTRAINT H (OBJECT IN HAND HORIZON_L)

CONSTRAINT V (OBJECT IN HAND VERTICAL)
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This is an introduction to fuzzy set theory with comparison with
probabilistic models.

FuzzY SETS

FuzzY CONCEPT PROBABILISTIC ANALOG

A = (x,"A(X)) A = (X,PA(X))
_A(X): GRADE OF MEMBERSHIP OF PA(X): PROBABILITY THAT

INA BELONGS TOA

.AnB(X) : MIN (.A(X), .B(X)) PAnB(X) : PA(X) • PB(X)

.AUB(X) : MAX (_A(X), uB(X)) PAUB(X) = PA(X) + PB(X)

.B(Y) : SUP x MIN (.A(X), _B(Y/X)) PB(Y) : IX PA(X) " PB(Y/X)

Block diagram of the coordinator showing cascaded the linguistic
parser and the "fuzzy automaton" which provides the learning algorithms.

I'Ol Control
Pattern

FEATURE1
EXTRACT101,t

F2 I Feature

Vect')r

I PARSIrlG
ALGORITIIM

cjI CiassC°°rdinatl°n

I LEARNING
ALGORITHM

aJ I VectorCoordination

Linguistic Coordination Block Diagram
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This shows the "fuzzy automaton" as an on-line learning scheme
for the coordination of motion of the prosthetic arm.

Fuzzy Automaton

Ai

/ GRADES OF
COORDINA-

CLASS COORDINATION

__ VARIABLE STATE [ I • MAXIMUM VECTOR

TRANSTTrON I / •e SELECTION * v

Ci MATRIX i- _ I
PERFORMANCE

Rj (k) EVALUATION _.J

c. 1977 IEEE

CONTROLLEVEL

MOTION OF THE WRIST) 4 DEGREES OF FREEDOM, BIOLOGICAL PRINCIPLE

OF LEAST INTERACTION) EACH JOINT TRAJECTORY AS IF SUBSYSTEM ISOLATED

FROM ENVIRONMENT AND COUPLING EFFECTS,

CONTROL STRUCTURE: LINEAR PART + NONLINEAR PART, CONTROL VARIABLE

OBTAINED BY NONLINEAR TRANSFORMATION APPLIED TO ACTUAL INPUT_

I,E, TORQUE,

PARTIAL KNOWLEDGE OF DYNAMICS, COMPUTATIONAL SIMPLIClTY_ UNKNOWN

PARAMETERS, PERFORMANCE ADAPTIVE APPROACH,

EXPANDING SUBINTERVAL ALGORITHM FOR ON-LINE LEARNING) REDUCTION

OF UNCERTAINTIES AS PROCESS EVOLVES, KINEMATIC PERFORMANCE CRITERION,

MULTILAYERED LEARNING TECHNIQUE FOR ACCELERATION OF CONVERGENCE

RATE, KALMAN FILTERING FOR STATE ESTIMATION,

EACH LOCAL PERFORMANCE CRITERION HAS A VARIABLE PARAMETER, OR

COORDINATION INPUT, SELECTED BY HIGHER LEVEL,

DIRECT INPUT TO MOTORS

REFLEX ACTION
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This is the block diagram of the self-organizing adaptive hardware
controller for the i-th subsystems.

SUBGOAL___--

_-- _l Li' Hi IULi

___ CONTROLLER

M A

f(xI, xj) xI
•e

FUNCTIONGENERATOR_--

t "I
Xo

_r, : J OTNERSUBSYSTEMS
uNI !I

__. KALMANFILTER

M

xI

-.-_INONLINEARTRANSFORF_TION

T!

ITHSUBSYSTEM __

S_ructureof the nonlinear performance
C. 1977 IEEE adapLlve' controller
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DYNAMICHODELOF THEARMFORTWO-DIMENSIONALMOTION:

SHOULDERANDELBOWFLEXION-EXTENSION

°2 c3 .= 1 ctl+ c5cos%

;4 Cl+ c2sI_°4 c6+ c7c°s°4 c8+ c9c°seLl

Ci064(eLI+ 2_2)SINOq + CliCOSQ2 + C12COS(O2+ ell).I-I"2

C13_262Sin°4 + C14_-2(e2+ e4)SINO4 + C15COS(e2 + e4)+ T4

= D(%6) [H(o,6)+ T]

= F(o,3)+ U

F(') = D(')H(')

U= D(')T

FORMULATIONOF THEDIRECTCONTROLPROBLEMFORONESUBSYSTEM

o°

o=f(e,6)+u+n

= Ax+ B If(x, Y) + u + n] PLANTMEASUREMENT

z=Cx+v

X=_ OU I 01

PERFORmaNCECRITERION:

4

T+_ i:l

CONTROLLERSTRUCTURE:

u =L(x- xd) + K f(x, Y)

= uL + uK
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This is a generalblockdiagramof a self-organizingperformance
adaptioncontrolprovidingon-linelearningfor the improvementof its
performance.

_¢(t} _,j(t)

i_
U_t)( F(o)

/ $t

//

Per Interval '_

Performance
Evaluator

THE SELF-ORGANIZING PERFORMANCE ADAPTIVE CONTROL SYSTEM OF SARIDIS

c. 1979 IEEE
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These are simulation results of the application of self organizing
performance adaptive algorithm showing the effects of learning after several
iterations (curve d).

e(rad)

Four trajectories taken at
different states of the

1" k learning process.

1.4 Trajectory Iteration No. Perfor. Index

a 3 491

I ,2 b 19 218

c 53 145

1.0 d 193 4O

0.8

0.6

0.4

0.2

0o0

-0.2

-0.4

-0.6

..... ' _- ' ' '.........' ' ' ._ t(sec)

,4 ,8 1,2 1.6 2,0 2,4 2.8 3.2
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This is a comparison of simulation results of a complete coordinated
motion after a period of learning, to the actual motion of a human arm
recorded through a "goniometer."

04 a simulation

1.6 b goniometer

].4 \

1.2 \

l.0 a \b

0.6

0.4

0.2 _
' , I t f I . , 02

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Angular Position (RAD)

Phase Plane Trajectory for
a Coordinated Motion

c. 1977 IEEE
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DECENTRALIZEDSTOCHASTICCONTROL

JASON L, SPEYER

UNIVERSITY OF TEXAS
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The objective is to present a perspective of the state of control
theory as it relates to decentralized stochastic control. Decentralized
stochastic control is characterized by being:

I. Decentralized in that the information to one controller is
not the same as information to another controller.

2. The system including the information has a stochastic or
uncertain component. This complicates the development of
decision rules which one determines under the assumption
that the system is deterministic.

3. The system is dynamic which means the present decisions
affect future system responses and the information in the
system. This circumstance presents a complex problem where
tools like dynamic programming are no longer applicable.

It is our intent to discuss these difficulties from an intuitive
viewpoint. Particular assumptions are introduced which allow a limited
theory which produces mechanizable affine decision rules.

This slide gives motivation for having a decentralized control
system.
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DECENTRALIZEDSTOCHASTICCONTROL

APPLICATIONS

e POWER SYSTEMS

e TRANSPORTATION SYSTEMS

e AEROSPACE SYSTEMS

AIRCRAFT (CCV), C3 SYSTEMS

CHARACTERIZATION OF THESE SYSTEMS

e SYSTEM FORMS A NETWORK OF NODES USUALLY

SPACIALLY DISTRIBUTED

• AT EACH NODE, THERE IS A CONTROLLER OR DECISION

MAKER

THE OBJECTIVE OF THE CONTROL DESIGN IS THAT THE SYSTEM DEGRADE

GRACEFULLY UNDER STRUCTURAL PERTURBATIONS, NETWORK STRUCTURE

IMPOSED,

DECENTRALIZED CONTROL THEORY GIVES INSIGHT INTO THE STRUCTURE

OF THE CONTROLLER,
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This slide presents concepts associated with centralized stochastic
feedback controllers. The issue is what constitutes the information neces-
sary to construct a centralized causal stochastic controller.

CENTRALIZEDSTOCHASTICCONTROL

e PROPERTIES OF THE STATE OF THE SYSTEM:

- VALUE OF PRESENT STATE IS THE MINIMAL INEORMATION

FOR PREDICTING THE FUTURE STATE

- VALUE OF PRESENT STATE SUFFICIENT FOR CONTROLLING

SYSTEM TO ACHIEVE DESIRED GOALS,

e IN STOCHASTIC SYSTEMS, THE STATE MIGHT BE THE PROBABILITY

DENSITY FUNCTION OF THE STATE CONDITIONED ON THE OBSERVA-

TION HISTORY,

e SEPARABLE CONTROLLER: THE OPTIMAL CONTROL DEPENDS UPON

THE CONDITIONAL PROBABILITY DENSITY FUNCTION,

e CENTRALIZED CONTROLLERS ARE CHARACTERIZED AS SEPARABLE

CONTROLLERS SINCE THERE IS ONLY ONE DECISION MAKER WITH

ACCESS TO ALL INFORMATION,

- THIS CHARACTERIZATION ALLOWS NESTING OF THE

CONDITIONAL EXPECTATIONS USED IN THE DYNAMIC

PROGRAMMING ALGORITHM,
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This slide indicates the difficulties of extending centralized
concepts to the decentralized problem.

DECENTRALIZEDSTOCHASTICCONTROL

e MANY DECISION MAKERS,

e EACH DECISION OR CONTROLACTION AFFECTS FUTURE DECISION

OF ALL CONTROLLERS,

e CONTROL ACTION AND INFORMATION OF EACH DECISION MAKER

ARE ONLY PARTIALLY SHARED,

e DETERMINATION OF A "STATE" FOR THE DECENTRALIZED PROBLEM

IS NOT CLEAR IN THAT THE SUMMARY OF DATA FOR ONE CONTROLLER

IS DIFFERENT FROM THE SUMMARY OF DATA FOR ANY OTHER CON-

TROLLER:

- NESTING OF CONDITIONAL EXPECTATIONS IN GENERAL

NOT POSSIBLE; DYNAMIC PROGRAMMING NOT APPLICABLE,

e INFORMATION STRUCTURE ALLOWING THE NESTING OF CONDITIONAL

EXPECTATIONS IS CALLED A CLASSICAL INFORMATION PATTERN,
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This presents a description of the simple problem constructed
by Witsenhausen for which signaling takes place. This is a dynamic

problem with information uncertainty. The importance of this pro-
blem is to show how complex the optimal control strategies may be if

only certain information patterns are allowed.

Witsenhausen, H., "A Counterexample in Stochastic Optimal
Control," SIAM J. Contr., Vol. 6, 1968.

WITSENHAUSEN'SCOUNTEREXAMPLE

e MAJOR CONCEPTS IN GENERALIZED SYSTEM THEORY INCLUDING

THE CLASSIFICATION OF INFORMATION STRUCTURES ARE DUE TO

WITSENHAUSEN,

I IMPORTANT ILLUSTRATION IS WITSENHAUSEN'S COUNTER EXAMPLE

TO THE OPTIMALITY OF LINEAR CONTROLLERS FOR THE LQGPROBLEM

WITH NONCLASSICAL INFORMATION PATTERN:

- Two CONTROLLERS OPERATING IN SEQUENCE

- DYNAMICS ARE LINEAR WITH RANDOM I,C,

- THE COST CRITERION IS THE EXPECTED VALUE OF A

QUADRATIC PENALTY ON THE FIRST CONTROL AND THE

SECOND CONTROLLER'S DYNAMIC STATE,

- INFORMATION PATTERN, FIRST CONTROLLER KNOWS DYNAMIC

STATE PERFECTLY, SECOND CONTROLLER HAS ONLY A

NOISY MEASUREMENT OF DYNAMIC STATE AFTER CONTROLLER

ONE HAS ACTED

- CONTROLLER TWO DOES NOT KNOW CONTROLLER ONE'S

CONTROL OR OBSERVATION,

- RESULT: NONLINEAR CONTROLLERS ARE BETTER THAN BEST

LINEAR CONTROLLERS,

- CONTROLLER ONE TRADES OFF THE COST OF ENHANCING

CONTROLLER TWO'S OBSERVATION SIGNAL-TO-NOISE WITH

HAVING CONTROLLER TWO REDUCE HIS STATE - SIGNALING,
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SOMEEXTENSIONSOF WITSENHAUSEN'SWORK

. Ho,KASTNER, AND WONG OBTAINED FURTHER RESULTS ON

SIGNALING AND BOUNDS ON THE OPTIMALITY OF SOME SPECIAL

PROBLEMS USING INFORMATION - THEORETIC BOUND OF SHANNON.

- FURTHERMORE. THEY SUGGEST THAT SIGNALING IS A

THRESHOLD PHENOMENON, IF

1, THE COST OF SIGNALING IS TOO HIGH

2. SIGNAL CHANNEL TOO NOISY

3, THE UNDERLYING STATE TOO PREDICTABLE

THEN SIGNALING WILL NOT EXIST.

e DETERMINATION OF INFORMATION STRUCTURES FOR WHICH SEPARABLE

CONTROLLERS OCCUR:

- HoAND CHU INTRODUCED THREE IMPORTANT IDEAS:

1. PARTIALLY NESTED INFORMATION STRUCTURES.

EXPANDS THE CLASS OF CLASSICAL INFORMA-

TION PATTERNS.

2. RADNER_S STATIC TEAM RESULTS.

RADNER GAVE CONDITIONS UNDER WHICH THE

PERSON-BY-PERSON TEAM OPTIMAL SOLUTION

IS ALSO THE GLOBAL OPTIMUM,

3, FORTHE STATIC LQGTEAM PROBLEM THE OPTIMAL

DECISION RULES ARE AFFINE.
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- Ho AND CHU SHOWED THAT FOR THE PARTIALLY

NESTED INFORMATION STRUCTURE THE DYNAMIC LQG

PROBLEM HAS AN AFFINE DECISION RULE,

- BUILDING ON THESE RESULTS, SANDELL AND

ATHANS, YOSHIKAWA_ AND KURTARAN DEVELOPED

SEQUENTIAL SOLUTION FOR THE LQGPROBLEM WITH i

ONE-STEP DELAYED INFORMATION PATTERN VIA

DYNAMIC PROGRAMMING_ I,E,_ THE CONTROL AT

EACH NODE IS A FUNCTION OF ITS PRESENT

OBSERVATION AND THE INFORMATION AT ALL THE

NODES ONE STAGE BEHIND, THE CONTROLLERS

REMAIN AFFINE,

- KURTARAN CONJECTURED THAT THE OPTIMAL CONTROL

FOR MORE THAN ONE STEP DELAY WAS IN THE CLASS

OF SEPARABLE CONTROLS, COUNTER EXAMPLES ARE

GIVEN BY VARIAYA AND WALRAND AND YOSHIKAWA,

- YOSHIKAWA GAVE A SUFFICIENCY CONDITION FOR

SEPARABLE CONTROLS,

- GENERAL CASE OF ONE-STEP DELAY INFORMATION

PATTERN GIVEN BY VARIAYA AND WALRAND, BY

DYNAMIC PROGRAMMING,
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This slide gives the statement of Radner's theorem which is
essential for the dynamic decentralized results. This theorem is
extremely difficult to verify and although it is a critical result,
Radner did not use it in showing that the linear decision rule
for the LQG (Linear-Quadratic-Gaussian) Team Problem is globally
minimizing, but took a different approach. The object of our work
was to relax the local finiteness condition with differentiability
conditions that can be verified. In this way, we were able to verify
that the positive LEGT (Linear-Exponential-Gaussian-Team) problem is
globally optimum. This allows a generalizationofthe present LQG
results.

Radner, R., "Team Decision Problems," Ann. Math. Statist.,
Vol. 23, No. 3, pp 857-881, 1962.

Krainak, J., Speyer, J., and Marcus, S., "Static Decentral-
ized Team Problems: Sufficient Conditions, Algorithms, and
the Exponential Cost Criterion," Proceedings of the 19th
IEEE Conference on Decision and Control, December 1980.

Speyer, J., Marcus, S., and Krainak, J., "A Decentralized Team
Decision Problem With An Exponential Cost Criterion," IEEE
Transactions on Auto. Contr., Vol. AC-25, No. 5, October 1980.
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GENERALIZATIONOFRADNER'STHEOREM

. THE PROCEDURE HAS BEEN TO REDUCEDYNAMICPROBLEMS WITH

PARTIALLY NESTED INFORMATION PATTERN TO STATIC TEAM

PROBLEMS.

. THE HEART OF STATIC TEAM RESULTS IS RADNER'STHEOREM.

LET X BE THE "STATE OF THE WORLD,"U BE THE CONTROL

VARIABLE, Y (') BE THE DECISION RULE (U = y(X)), _(X,u)

BE THE COST OFFUNCTION; AND J(y) = E [4(x,Y)]BE THE

COST CRITERION. IF

1. _ (X,U) IS CONVEX AND DIFFERENTIABLE IN U V X,

2, INF J (Y)> -

..... 3. J(Y) IS LOCALLY FINITE,
A

4. Y=Y SATISFIES THE STATIONARY CONDITIONS,
A

THEN Y IS GLOBALLY MINIMIZING.

- LOCALLY FINITE: GIVEN THE STATIONARY DECISION

RULE, •VERIFY THAT ALL PERTURBED FUNCTIONS RESULT

IN FINITE COST. THE EXPECTATION OPERATION MAKES

VERIFICATION DIFFICULT.

e KRAINAK, SPEYER, AND MARCUS RELAXED RADNER'S CONDITIONS BY

REMOVING THE LOCALLY FINITE CONDITION.

- RADNER GIVES CONDITIONS FOR WHICH PERSON-BY-PERSON

OPTIMALITY IMPLIES GLOBAL OPTIMALITY.

- KRAINAK SHOWS THAT CONVEXITY AND STATIONARITY

DIRECTLY IMPLY OPTIMALITY.
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In the following two slides, the LEGT problem performance index
is characterized.

SOLUTIONTO RADNER'SSTATICTEAMPROBLEM

0 Two FORMULATIONS GIVE LINEAR DECISION RULES:

- LQG_ LINEAR - QUADRATIC - GAUSSIAN

__(x,u)= xTQx+ uTNx + uTRu , R >0

- LEG_ LINEAR - EXPONENTIAL - GAUSSIAN

(X,U) = .EXP_(X,U) ....-_L \ _(X_)- IF U > 0,, POSITIVE EXPONENTIAL
X=O

- IF u< O, NEGATIVE EXPONENTIAL _

- EXPONENTIAL FUNCTIONS ALLOW FOR MULTIPLICATIVE

RATHER THAN ADDITIVE COST CRITERION, THIS IS A

NATURAL SETTING TO MODEL PROBABILISTIC COST

CRITERION USED FOR EXAMPLE IN C_ PROBLEMS,

0 RADNER SOLVES THE LQGPROBLEM AND OBTAINS AN AFFINE

DECISION RULE,

- VERIFICATION OF OPTIMALITY IS DONE THROUGH HILBERT

SPACE ARGUMENTS AND NOT BY DIRECT VERIFICATION OF

HIS THEOREM,

88



e AFFINE DECISION RULES SATISFY THE STATIONARY CONDITIONS

FOR THE LEG PROBLEM (SPEYER, MARCUS, KRAINAK):

- THE LEGPROBLEM HAS THE PROPERTY REFERRED TO AS

THE "UNCERTAINTY THRESHOLD PRINCIPLE," IF CERTAIN

STATISTICAL OR COST PARAMETERS BECOME TOO LARGE_

THE COST CRITERION CEASES TO EXIST,

- FOR THE POSITIVE EXPONENTIAL, ALTHOUGH LOCAL

FINITENESS IS NOT VERIFIABLE, AFFINE DECISION

RULES ARE SHOWN TO BE MINIMIZING BY THE RELAXED

FORM OF RADNER'S THEOREM,

- SINCE THE NEGATIVE EXPONENTIAL IS NOT CONVEX,

FURTHER WORK IS NEEDED TO SHOW THAT THE LINEAR

DECISION RULE WHICH SATISFIES THE STATIONARY

CONDITIONS IS GLOBALLY OPTIMAL,

- THE STATIONARY CONDITIONS ARE A K- SET OF COUPLED

ALGEBRAIC MATRIX EQUATIONS WITH NUMEROUS POSSIBLE

SOLUTIONS,
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I IN DEVELOPING AIRCRAFT REDUNDANCY SYSTEMS, EACH SENSOR

CAN HAVE ITS OWN MICROPROCESSOR WHICH CALCULATES A LOCAL

ESTIMATE OF THE STATE,

- IF THE TOTAL STATE IS NOT OBSERVABLE FROM THE

LOCAL OBSERVATIONS_ ONLY THE OBSERVABLE PART OF

THE STATE IS ESTIMATED ALLOWING REDUCED ORDER

ESTIMATORS (LEVY AND CASTANON),

I THESE ESTIMATES SHOULD BE USED FOR DEVELOPING ANALYTIC

REDUNDANCY MANAGEMENT SCHEMES (WILLSKY),

- HYPOTHESIS TESTING METHODS USE THESE ESTIMATES,

I,E,, THE WALD SEQUENTIAL PROBABILITY RATIO TEST

ENHANCED BY AN OPTIMAL STOPPING RULE OF SHIRYAYEV

(DECKERT, DESAI, DEYST, WILLSKY),

e IN THE LQGONE-STEP DELAY INFORMATION SHARING PATTERN,

THE DATA THAT IS TRANSMITTED CAN BE COMPRESSED BY DETER-

MINING THE MINIMUM INFORMATION NEEDED BY EACH CONTROLLER

AND STILL ALLOW SEPARABLE CONTROL LAWS,

e ANY TRANSMISSION NOISE PRODUCES NONMECHANIZABLE OPTIMAL

NONSEPARABLE CONTROL LAWS, THUS,ONLY SUBOPTIMAL STRUC-

TURES CAN BE MECHANIZED,

- INCREASED TRANSMISSION DELAY ALLOWS IMPROVED

TRANSMISSION SIGNAL-TO-NOISE RATIO,
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LOCALESTIMATION,DATAPROCESSING,INFORMATION

COMPRESSION,ANDFAULTDETECTION

0 RATIONALE FOR NETWORK STRUCTURE:

- SPACIAL DISTRIBUTION OF SENSORS AND ACTUATOR IS

IMPOSED FOR THE PURPOSE OF GRACEFUL DEGRADATION

UNDER STRUCTURAL PERTURBATIONS,

e FOR THIS PURPOSE, IT MAY BE REQUIRED THAT EACH NODE

PROCESS ITS OWN INFORMATION,

e FOR LINEAR - GAUSSIAN MODELS LOCAL KALMAN FILTERS ARE

CONSTRUCTED TO PRODUCE CONDITIONAL MEAN ESTIMATES BASED

UPON THE LOCAL OBSERVATIONS,

e SUPPOSE THESE LOCAL CONDITIONAL MEAN ESTIMATES ARE TO BE

COMBINED TO PRODUCE THE CONDITIONAL MEAN ESTIMATE BASED

UPON ALL THE INFORMATION IN THE NETWORK,

e THE GLOBAL ESTIMATE IS A WEIGHTED SUM OF ALL THE LOCAL

ESTIMATES PLUS A SUM OF VECTORS THAT MUST BE CALCULATED

AT EACH NODE (SPEYER) , FORTUNATELY, ONLY A FINITE

DIMENSIONAL STATE NEED BE CALCULATED,

e THE DATA PROCESSING NEEDED FOR THIS DISTRIBUTED SYSTEM

IS GREATER THAN IF IT WERE CENTRALIZED, HOWEVER, THE

DATA IS PROCESSED IN PARALLEL,
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I. INTRODUCT:ON

As the need to manage a variety of large, complex systems is

growing, so is the need for a methodology which addresses the issues encountered

it: design of real time system control. Such issues include dynamical responses

to decision variables, uncertainty and errors, desired performance attributes,

and complexity.

One candidate discipline for the development of such a methodology

is that of control theory, which has, in several cases, successfully merged

the first three of the above issues into a framework which can address

practical problems. However, the fourth complexity has proven to be a more

difficult challenge. This paper will briefly outline the historical develop-

ment of control theory, the issues it has addressed, and directions which are

being explored as the scope of the systems to be managed increases.

II. HISTORY

A. Feedback Control >ystems

The roots of control theory lie in the study of small systems such

as motors, valves, etc. which have the properties that

a) The system is well understood

b) Certain outputs are measured (which provide information

on the internal workings of the system)

c) Inputs can be supplied to it which then affect future

outputs

The object of the designer of a control system for such applications was

to construct a mechanism (as simple to implement as possible) which derived

a set of inputs to be applied as a result of pa_ outputs which had been

observed.
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A key point which surfaces even at this early stage in the development

of the field is that of (a). The system to be controlled was always one which

could be analyzed with well-understood physical principles complemented by

reasonable engineering insight (e.g. which second-order effects could be neglected).

This analysis could lead to a model of the system, often taking the form of

ordinary differential equations, which was complete and accurate within some

small margin of error.

This leads to a separation of concepts which has persisted to the present.

Control theorists assume that, in principle, all of the knowledge pertaining

to the relationships of inputs to outputs exists a_riori and can be used

to guide the selection of future inputs to produce the desired future outputs

(i.e. the structure of the task domain is known). There may be residual

errors (or noise) in this knowledge due to approximations and simplifications,

but then it is the task of the feedback controller tocompensate for such

errors. Finally, the objective of the control system is well understood -

to keep the outputs at or near some nominal value in the face of the errors.

The typical implementation of such a control system consists of

i. Subtracting the nominal values of the outputs (those expected

in the absence of errors) from those actually observed

2. Manipulating these error signals with integrators, summers, etc.

to produce adjustments to input signals (and deriving this structure

and related constants is the designer's task)

3. Adding the adjustments to the nominal inputs (those required to

obtain the nominal outputs)

While the above is very implementation-oriented, it begins to illustrate

the conceptual issues involved in any real time decision system. One can
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view the control system as making a series of decisions as to which inputs

to supply at each time, based upon information obtained through observations

of the error signals. The key difference between this and knowledge-based

approaches to declsionmaking is the fact that the designer's understanding of the

system structure has been distilled to such an extent that very little is left:

namely, that which directly impacts the computation of the next input. The

understanding of the system is incorporated in the off-line development of

the controller, which in turn only processes the new information which appears

in the on-line setting. This leads to the conclusion that basic feedback

control techniques cannot be applicable to problems where the system structure

changes (e.g. as a result of component failures, additions to it, wear, etc.)

These initial developments were thus limited as automatic decision

systems, yet began to deal with the issues of feedback (which can drastically

alter qualitative system behavior).

Progress proceeded in three different directions from here:

i. Classical frequency domain control theory, using transform

techniques and thus limited to systems modelled by linear

differential equations (and, until recently, to those with

single inputs and single outputs)

2. Modelling of systems, in which quite large systems could be

modelled (primarily for simulation purposes). This includes

the development of statistical techniques for deriving the

system structure from observed data

3. Modern control theory,in which the mathematical concepts of

state, probability, and optimization are combined into a

framework which yields control decisions which are, in a special

sense, the "best" possible

Of these, the first two are fascinating but only indirectly related to the
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problem of automated decisionmaking to control large o_ complex systems,

but the latter _is of d_irect interest.

B. Modern Control Theory

By precisely defining and using the notion of the state of a system

(all knowledge of the past relevant to determining the effect of future inputs),

modelling the system as a set of transformations (one of which is selected

by the inputs) on that state, and seeking to find controls which optimize

some performance index, quite a bit can be deduced about the structure of a

suitable controller for the system. That the formulation of a control problem

in these terms is about identical to that of early problem-solving methods

(e.g. GPS by Newell, Shaw & Simon) is probably not coincidental. Both were

attacking the same question: how to manipulate a world to achieve desired

ends.

The difference in the two approaches comes in the kinds of additional

assumptions on system structure which have been made to allow their practical

application (both solve any decision problem in principle). Modern control

theory is best applied in contexts of systems with "simple" structure,

in which either the number of states is small enough to allow each to be

considered explicitly (e.g. queueing systems) or the structure is such as

to allow a multitude of states to be considered implicitly through symbolic

manipulations (e.g. least-squares best fit in target tracking problems).

In decisionmaking terms, the fundamental impact of this way to

formulate the problem comes as a result of a separation principle: it is

sufficient (and usually necessary) for the controller to know the current

state of the system (or a probability distribution on it) in order to derive

the optimal control. This leads to an implementation which falls into two
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pieces: (i) a state estimator which both keeps track of the evolution of

the system state as a result of inputs applied, and uses information gained

through observation of outputs to update its estimate of that state, and

(2) a controller which chooses an input to apply given the state information

supplied by the estimator. Since the state estimator must operated using

real time observations, its operation cannot be predetermined and hence it

must contain a model of the system on-line in order to perform its function.

(The controller, however, can be dete_nined beforehand and thus implemented

essentially as a table lookup or deterministic function evaluation).

The strengths of the modern control theoretic approach _re chiefly:

i. It deals with several facets of the decision problem (multiple

inputs and outputs, uncertainty, performance goals) in one

framework

2. It allows sophisticated analytical techniques to be brought

to bear which exploit the structure of a problem

3. It supports the precise definition of concepts involved, their

interrelationships, and thus techniques for validation of

assertions about the decisions being made

However, the moderncontrol methodology faces severe limitations due to some

serious drawbacks, particularly when one contemplates applying it to large,

complex, or distributed systems.

i. The tools for dealing with the above issues are not always

suitable for an application (e.g. probabilistic models are

unavailable, or a meaningful performance measure is not apparent).

2. The analytical tools are often applicable to very narrow classes

of systems and much insight is required to formulate the control

problem in terms which fall into one of these classes.
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3. Practical application of the analysis to complex systems is

severely limited by the computational resources required, even

if the control problem is solvable in principle.

Thus modern control theory can be viewed as a library of analytical techniques

which are suitable for special classes of problems, and the control engineer

is faced with the problem of selecting those which best suit a problem at

hand. Recent research has gone into extending this catalog in at least four

areas:

i. Relating modern control ideas to those developed in the

classical setting

2. Bringing in notions of estimating the system structure,as

well as its state,on-line

3. Extending the formulation to include multiple decision makers

with different performance criteria but identical information

about the system (games)

4. Dealing with issues of complexity directly , perhaps using several

controllers with differing information about the system

The first three are exciting areas of work as they combine different

approaches to a problem, yet they do not address the issues of complexity directly

(the identical information assumption in (3) precludes the "cooperating

experts" viewpoint which is included in (4)). The fourth, however, deals

directly with them.

C. Large Scale System Theory

Large scale system theory is inherently an ill-defined area, as

the definition of "large" changes with each advance in computing technology.

A working definition has been that a system is large if none of the standard
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control techniques can be applied due to practical constraints. Examples

include control of the U.S. electric power system, transportation networks,

manufacturing systems, large space structures, and command and control systems.

One approach to controlling a large system is to decompose it into

weakly interacting, small subsystems. Quite a bit of current research is

moving along these lines, as new ways to exploit nascent system structure are

found. Two of these include spatial separation, in which several parts

of a system each impact others in a way which is minor compared with its

internal working (e.g. geographically separated traffic systems), and

temporal separation, in which the rates of change of two parts of a system

are so diverse that one looks like noise to the other, and the latter like

a constant to the former. Again, though, these approaches are constrained

to apply only to problems which can be posed so as to display the requisite

structure.

A second approach is to postulate the existence of several controllers,

either cooperating as a team or working individually, but which have different

information being received about the system. Each may observe different

outputs, be responsible for different inputs, and be responsible for

different aspects of the system's behavior. This decentralization of decision-

making power is motivated by either:

I. Constraints on the implementation (communications from all

sensors to one site would be prohibitively expensive)

2. An approach to handling complexity through the divide and

conquer concept

Research in decentralized control which, has followed the lines suggested by

the first of these has been fairly successful. For certain feasible
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communications policies (i.e. for a fixed, known control system structure)

problems can be formulated which reduce down to parameter optimization problems.

This somewhat begs the question of what co_-mmunications structure should be used,

and focuses on how to use that which one may have.

Unfortunately, decentralization in modern control theoretic frame-

work has not proven to be successful in handling complexity - in fact, just

the opposite is true. Even superficially simple problems become quite complex

when approached this way, but it is becoming clear why.

i. Optimization strongly encourages centralization - it is clearly

better (if one assumes unbounded processing power) to have one

decision maker receive all information and make decisions based

on it, than to have the information in separate places. Thus

care has to be taken to formulate a decentralized decision problem

to prevent escape hatches through which the equivalent of

centralization can occur.

2. As a corollary to this, it may be reasonable for one decision

maker to use the system being controlled as a communications

channel to transmit extremely crucial information to another

decision maker. Thus its decisions are not only directed towards

achieving desired performance of the system, but also to communicating

and thus affecting performance indirectly. Such signalling strategies

are not necessarily undesirable, but they greatly complicate the

analysis required to understand decentralization.

3. There is a problem in that each decision maker needs not only

to consider the impact of its decisions on the system directly,

but also to consider its impact in the context of inputs being

supplied by other decision makers. This naturally requires some
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ability to predict what those otiler inputs are likely to be, and

thus some knowledge of the strategies used by the other decision

makers. This second-g,essing argument is particularly bothersome

when it recurses: each of the other controllers must model the one

decision maker, which includes the latter's knowledge of the former's

knowledge of the latter .....

The above problems encountered in the straightforward extension of

modern control theoretic ideas to decentralization may not be insurmountable

(and evidence is accumulating that the second-guessing problem can be resolved),

but they do make it worthwhile to consider new approaches to complex control

problems which draw on the capabilities and advantages of established control

theoretic techniques, yet allow the consideration of complexity in a more

natural framework. Such new approaches demand imagination and innovation,

and some tentative forays into defining some will be mentioned next.

However, it is worthwhile to summarize the advantages of modern control

approaches to real time control of systems which have been presented above.

i. The most successful applications of control theory have been

in contexts where the system displays simple structure which

can be well modelled.

2. For those situations where a single performance criterion can

be defined, these techniques always generate decisions which

are consistent in the system-wide sense, and which use all

available information from all services in the most effective

way possible.

3. For those situations where meaningful probabilistic descriptions

of uncertainty can be constructed, the decisions reflect that
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uncertainty and take into account the fact that more information

will be available in the future.

4. Control theory is well suited for dealing with dynamical systems,

where the effects of a decision propagate through time.

5. Through a combination of engineering insight and mathematical

analysis, automated decision systems can be built which quite

successfully operate in real time.

III. RESEARCH DIRECTIONS

_ile there is no cIear path to gain understanding of the issues

of complexity and decentralization, there is considerable feeling that such

understanding can be obtained. It is important that any approach to automated

decisionmaking in a complex environment deal squarely with the relevant issues

of dynamics, uncertainty, system-wide performance goels, and complexity,

preferably in a unified and well defined framework. Three approaches which

are currently being actively pursued are:

i. Continuation of the development of special techniques for problems

with special structure. By working through a series of special

cases, each progressively richer in detail than the last, the

available understanding of interrelations of decisions, particularly

in the decentralized case, can be increased.

2. Hybrid approaches:there is a great possibility that a judicious

combination of control theoretic techniques with those of high

level problem solving as developed by the artificial intelligence

community can provide a great payoff. The specialized control

theoretic techniques might be viewed as a lower level of

decision making backed up by, and supporting, higher level knowledge

processing. For example, the high level processes might generate
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plausible courses of action which can then be augmented by the

low level control derivations. Similarly, the higher level

might generate hypotheses as to what is occurring within the

system, while lower level statistical techniques evaluate them

in light of specific sensor information (in fact, such an architecture

has already been developed in a few applications such as EKG

analysis and aircraft tracking systems). Essentially, the high

level, knowledge-based processing can deal with the combinatorial

explosion generated by complex decision domains, while the lower

level techniques can fine tune the result. The complementarity

of control theoretic and AI techniques, as well as the similarity

of their essential concepts, bodes well for research in this area.

3. Mathematical modelling of knowledge: control theorists have

developed ways to define concepts of structure, performance,

and information, but have yet to deal with the concept of the

knowledge available to a decisionmaker. However, both in the

hybrid approach to complexity and in the case of decentralization,

this seems to be a major issue. A goal of such research might be

to formulate models of knowledge which are amenable to the

same sorts of manipulation as information, performance, etc.

Some very preliminary ideas are emerging along this line, but

it will be some time before they can be put into perspective.

In conclusion, then, it seems that a major thrust of future research

in large scale systems and decentralized control will and should be along lines

devoted to blending knowledge-based processing with more analytical control

techniques. Such work should expand the scope of problems which can be solved with

an automated decision system, and be useful in a wide variety of practical settings.
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MAJOR POINTS:

1o CONTROL THEORY PROVIDES A WELL-ESTABLISHED

FRAMEWORK FOR DEALING WITH AUTOMATIC DECISION

PROBLEMS

2, CONTROL THEORY PROVIDES A SET OF TECHNIQUES

FOR AUTOMATIC DECISION MAKING WHICH EXPLOIT

SPECIAL STRUCTURE

3, CONTROL THEORY DOES NOT DEAL WELL WITH COMPLEXITY

4, POTENTIAL EXISTS FOR COMBINING CONTROL THEORETIC

AND KNOWLEDGE-BASED CONCEPTS INTO A UNIFIED

APPROACH

OUTLINE

ROADMAP OF CONTROL THEORY

- CLASSICAL

- MODERN

- LARGE SCALE

CONTROL OF LARGE SCALE SYSTEMS

- DECOMPOSITION

- DECENTRALIZATION

- HYBRID APPROACHES

RESEARCH DIRECTIONS
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TWO APPROACHES TO AUTOMATIC DECISION MAKING:

GO_AL_ MAKESYSTEM BEHAVEWEL_L

EXPLOIT REGULARITIES FIND GENERAL MECHANISMS

OF SYSTEM STRUCTURE TO ACHIEVE FLEXIBILITY

LINEARITY GPS

CONVEXITY TREE SEARCH

DISCRETENESS RULE-BASED SYSTEMS

REPETITIVE STRUCTURE EXPERTS

" I /
DISTINCT DICHOTOMY

OF APPROACHES

GENERAL VIEW OF CONTROL THEORY:

DESIRED

BEHAVIOR

I PHYSICAL I ACTUAL _

INPUTS SYSTEM BEHAVIOR

DEClSIONSIOEClSION'KINGisYsTEM

GOAL: DESIGN DECISION MAKING SYSTEM TO CAUSE PHYSICAL

SYSTEM TO DISPLAY DESIRED BEHAVIOR
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BACKGROUND OF CONTROL THEORY:

INPUTS WHICH

ACHIEVE DESIRED

OUTPUTS DESIRED

L_ I O_TPUTS

ACTUAL ACTUAL ERROR
SYSTEM

+ INPUTS OUTPUTS

MODIFICATIONSTO INPUTS COMPENSATIONI_

GOAL: DESIGN COMPENSATION TO BE

1. EFFECTIVE IN MAINTAINING DESIRED OUTPUT

2, SIMPLE TO IMPLEMENT
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LINEAR SYSTEMS THEORY

- DEVELOPMENT OF SPECIAL UNDERSTANDING OFj AND

ANALYSIS AND DESIGN TECHNIQUES FOR, "SMALL"

LINEAR SYSTEMS

x=Ax+Bu

Y=Cx

- ORIENTED AROUND FREQUENCY DOMAIN TECHNIQUES

- IMPORTANT AS LINEARITY IS A COMMON PROPERTY

OF (APPROXIMATIONS TO) PHYSICAL SYSTEMS
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MODELLING

- TECHNIQUES TO CONSTRUCT MODEL OF A SYSTEM GIVEN

INPUT/OUTPUT DATA

- STATISTICS AND OPTIMIZATION ARE MAJOR COMPONENTS

- RELY ON ENGINEERING INSIGHT AS TO TYPE OF MODEL

- CAN BE APPLIED TO LARGE SYSTEMS, PARTICULARLY

IN SIMULATION

ELEMENTS OF HODERN CONTROL THEORY

1, OPTIMIZATION - SERVES TO CONVEY OBJECTIVES OF

DECISION SYSTEM

_Do AS WELL AS POSSIBLE

OBJECTIVES

OEC'SIONSI WORLOIREACT'ON'' _ _ COMPARE

ASSUME REACTIONS CAN BE ORDERED WITH RESPECT TO ONE

ANOTHER (QUANTIFIABLY)

EXAMPLES: MINIMIZE FuEL USE

TIME

RMSERROR

PROBABILITY OF ERROR

NOTE: PERFORMANCE MEASURES OFTEN INCOMPLETE
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ELEMENTS OF MODERN CONTROL THEORY

2, DYNAMICS - DECISIONS AFFECT ONE ANOTHER_ AND

THEIR EFFECTS PROPAGATE THROUGH TIME

_PLAN AHEAD

OBJECTIVES

DECISIONS WORLD REACTIONS "-_"-iCOMPARE I

ASSUME THERE IS SOME MODEL OF THE WORLD (STATE SPACE FORM)

WHICH RELATES:

STATE AND INPUTS AT TIME t .....

TO

STATE AND OUTPUTS AT TIME t + _t

EXAMPLE: x = ,t)

- ROCKET TRAJECTORY

- VOLTAGES AND CURRENTS

NOTE: MODEL USUALLY ASSUMED TO EXIST BEFORE CONTROL SYSTEM

IS DESIGNED
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ELEMENTS OF MODERNCONTROLTHEORY

3, UNCERTAINTY - DUE TO UNI.IODELLEDPHENOMENA

ERRORS_NOISE

===>HEDGE

UNCERTAINTY OBJECTIVES

DECISIONS i WORLD REACTIONS=__-- COMPARE I

UNCERTAINTY CAN BE DESCRIBED PROBABILISTICALLY OR AS AMBIGUITIES

EXAMPLES: TRACKING MOVING TARGETS

COMMUNICATION IN NOISE

CONTROL OF SYSTEMS WHICH FAIL

NOTE: NEED FOR DESCRIPTION OF UNCERTAINTY GREATLY

INCREASES MODELLING EFFORT
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ELEMENTS OF MODERN CONTROL THEORY

4, FEEDBACK - OBSERVATIONS ARE AVAILABLE WHICH PROVIDE

INFORMATION WHICH HELPS RESOLVE UNCERTAINTY

===--=_REFINEPLANS AS TIME PASSES

UNCERTAINTY

I 0BJECiIVES

DECISIONS --__ WORLD REACTIONS, --Ij.-- COMPARE 'I

OBSERVATIONS

I CONTROLLER I_

NOTE: FEEDBACK CAN DRAMATICALLY ALTER SYSTEM BEHAVIOR
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MODERNCONTROLTHEORY

STOCHASTIC OPTIMAL DECISION MAKING

OPTIMIZATION

!
FEEDBACK UNCERTA INTY

IF ANY INTERESTING DECISION PROBLEM DISPLAYS THESE FOUR

CHARACTERISTICS_

THEN MODERN CONTROL OFFERS

1, A WELL DEFINED FRAMEWORK FOR ADDRESSING THEM

2, A SET OF TECHNIQUES WHICH YIELD INSIGHT INTO

THE _T_T_B_U_ OF A GOOD DECISION SYSTEM

3, SOLUTIONS WHICH CAN BE IMPLEMENTED IN REAL

TIME FOR SYSTEMS WITH SPECIAL STRUCTURE
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MODERN

SCALE _GAMES

SYSTEM THE

ROBUST CONTROL

- DESIGN CONTROL SYSTEM WHICH IS INSENSITIVE TO

ERRORS IN MODEL DUE TO

- INACCURATE DATA

- APPROXIMATIONS

- SLOW CHANGE (WEAR)

- APPROACHES:

i, DESIGN CONTROLLER FOR CLASS OF SYSTEMS

"CONTAINING" THE ACTUAL ONE

2, ADAPT THE CONTROLLER TO CHANGES iN THE

SYSTEM
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GAMES

DYNAMIC, STOCHASTIC GAMES

0BJECTIVES

FOR A

_[ COMPARE ]

21  OR.OI"

OBJECTIVES
FOR B

ASSUME MULTIPLE DECISIONMAKERS WITH

1, IDENTICAL INFORMATION (MODEL AND OBSERVATIONS)

2, DIFFERENT OBJECTIVES
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LARGE SCALE SYSTEM THEORY

ATTEMPTS TO DEAL WITH SYSTEMS FOR WHICH

SOLUTION BY NORMAL MODERN CONTROL TECHNIQUES

IS IMPRACTICAL (DUE TO COMPLEXITY)

1, DECOMPOSITION

2, DECENTRALIZATION

D-
L --

WORLD

3, HYBRID APPROACHES
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CONTROL THEORY

LINEAR MODERN MODELLING

SYSTEMS CONTROL

ROBUST SCALECONTROL SYSTEM

DECOMPOSITI DECENTRALIZED

TECHNIQUES CONTROL
_LEDGE-BA_

,. 'STEMS THEORY
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LARGE SCALE SYSTEM THEORY

1, DECOMPOSITION = "DIVIDE AND CONQUER"

EXPLOIT STRUCTURES SUCH AS

A,WEAK SPATIAL COUPLING

-I I -r

;I I r

L

B,WEAK TEMPORAL COUPLING

[ I
J - I

I

_STANT" I

I
I
I
i
I

I I
I I
I [
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LARGE SCALE SYSTEM THEORY

2, DECENTRALIZATION - USE SEVERAL DECISION MAKERS TO

SHARE EFFORT OF CONTROL EACH

"SIMPLER" THAN EQUIVALENT CENTRALIZED

CONTROLLER

WORLD

,[3--
ASSUME

1, ALL SHARE COMMON OBJECTIVE

2, EACH RECEIVES DIFFERENT INFORMATION (SPECIALIZATION)

PARADOX: THIS MAKES PROBLEM MUCH MORE COMPLEX!
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DECENTRALIZED CONTROL

i, OPTIMIZATION SIRONGLY ENCOURAGES CENTRALIZATION

ANALYSIS SEEKS WAYS TO ACHIEVE COMMUNICATION

I A I_'

I
I

y

r

i i

I B L-

B MUST NOTSEND A ALL OBSERVATIONS OR A WILL ACT AS
CENTRAL DECISION MAKER

• FORMULATE WITH CARE

• LIMIT COMMUNICATIONS
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DECENTRALIZED CONTROL

2, SOLUTIONS MAY BE RANDOMIZED

EXAMPLE: INTERRUPTED PHONE CALL

A

X Y

X, BAD GOODB Y GOOD. BAD

WITH NO PRIOR COMMUNICATION, EACH CHOOSES X OR Y WITH

PROBABILITY 1/2

TWO STEP DECISION PROCESS:

i, SET UP PROTOCOLS (PRIOR)

2, USE THEM (REAL TIME)

DECENTRALIZED CONTROL

3, SECOND GUESSING

A's MODEL OF EXTERNAL WORLD INCLUDES B,

B's MODEL OF EXTERNAL WORLD INCLUDES A,

AND A'S MODEL OF B.

A's MODEL OF EXTERNAL WORLD INCLUDES B,

AND B'S MODEL OF A, AND B's MODEL

OF A's MODEL OF B,

O

CONVERGENCE ? MAYBE!
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DECENTRALIZED CONTROL

4, SIGNALLING

A cAN_USE SYSTEM DYNAMICS AS COMMUNICATION CHANNEL TO B

,', A'sDECISIONS INCLUDE OPTIONSWHICH COMBINE CONTROL

WITH COMMUNICATION

SIGNALLING DEGRADES PERFORMANCE DUE TO DIRECT IMPACT

OF A_ BUT MAY IMPROVE IT INDIRECTLY THROUGH B
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LARGE SCALE SYSTEM THEORY

3, HYBRID APPROACHES - COMBINE CONTROL THEORETIC

AND ARTIFICIAL INTELLIGENCE CONCEPTS IN

MUTUALLY BENEFICIAL WAY

A, BILEVEL SYSTEM

HIGH LEVEL KNOWLEDGE

(HYPOTHESIS GENERATOR)

I SUGGESTIONS -- OBSERVATIONS

---DEcISIOINSI__ SPECIAL MECHANISMS _i_

(HYPOTHESIS EVALUATOR)

EXAMPLE: EKG ANALYS IS

MULTIOBJECT TRACKING

123



HYBRID APPROACHES

B, MANIPULATION AND MODELLING OF KNOWLEDGE

1. UNDERSTAND ISSUES SUCH AS

- PERSPECTIVE

EXPLANATION

- QUERIES

- LIMITED COMMUNICATION/MEMORY/PROCESSING

WHEN SEVERAL DECISION MAKERS EXIST

2, DECOMPOSE KNOWLEDGE IN REASONABLE WAY

(ALGEBRAIC ?)

EXAMPLES: MULTIOBJECT TRACKING

POWER SYSTEM SECURITY

COMMAND AND CONTROL SYSTEMS

RESEARCH DIRECTIONS

A, ANALYTIC

DECOMPOSITION: DEVELOP NEW TECHNIQUES FOR

DECOMPOSING OR SIMPLIFYING

PROBLEMS

' DECENTRALIZATION: DEVELOP APPROACHES TO SPECIAL

CLASSES OF PROBLEMS TO HANDLE

- SECOND GUESSING

- SIGNALLING

- PROTOCOLS

MODELLING: DEVELOP NEW CLASSES OF MODELS WHICH

ARE SUSCEPTIBLE TO ANALYSIS

IN SHORT: EXPAND SET OF SPECIAL TECHNIQUES WHICH CAN BE

BROUGHT TO BEAR ON PROBLEMS
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RESEARCH DIRECTIONS

B, STRUCTURAL

EXPLOIT COMPLEMENTARITY OF AIAND CONTROL THEORY

AS MODELLING AND DECISION MAKING TECHNIQUES

DEVELOP WAYS TO EXPRESS_ MODEL_ AND ANALYZE THE

CONCEPT OF KNOWLEDGE IN A FRAMEWORK OF

MULTIPLE_ COOPERATING DECISION MAKERS

COMBINE THESE INTO METHODOLOGY WHICH DEALS WITH

DYNAMICS_ UNCERTAINTY_ OBJECTIVES_ FEED-

BACK_ COMMUNICATION_ AND DISTRIBUTION

OF CONTROL_ INFORMATION AND KNOWLEDGE

IN A UNIFIED FRAMEWORK
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SYSTEMSMODELINGPAST,PRESENT,ANDFUTURE

ASVIEWEDFROMA NETWORKMODELINGPERSPECTIVE

GARY E, WHITEHOUSE

UNIVERSITY OF CENTRAL FLORIDA
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In this talk, the general area of stochastic networks will be
discussed. In particular, I plan on discussing GERT (Graphical Evalua-
tion and Review Technique). This is a procedure which combines the
disciplines of flowgraph theory, moment generating functions, and PERT
to obtain the solution to stochastic problems. It has been claimed
that this procedure makes it possible to analyze complex systems and
problems in a less inductive manner. GERTis primarily an analytical
technique, but we will also be discussing a number of simulation
versions of the GERTsystem.

GERT(GRAPHICALEVALUATIONANDREVIEWTECHNIQUE)

IS A PROCEDUREWHICHCOMBINESTHEDISCIPLINESOF

FLOWGRAPHTHEORY,MOMENTGENERATINGFUNCTIONS,AND

PERTTOOBTAINA SOLUTIONTOSTOCHASTICPROBLEMS,

ITHASBEENCLAIMEDTHATTHISPROCEDUREMAKESIT

POSSIBLETOANALYZECOMPLEXSYSTEMSANDPROBLEMS

IN A LESSINDUCTIVEMANNER,

The GERTis made up of logical nodes and directed branches. This
slide shows three input characteristics for the logical nodes and two out-
put characteristics. The exclusive-or node will be realized as soon as
one of the paths incident to the node is completed. The inclusive-or
node behaves in the same manner but the exclusive-or node system is drawn
in such a fashion that one and only one path incident to the node can be
realized in any particular realization of the node. The AND input node
behaves in the same fashion as the PERTnode in that all paths incident
to the AND node must be completed before any output is possible. On the
output side, the DETERMINISTIC node causes all branches emanating from
the node to be realized. For the PROBABILISTIC output, one and only
one branch emanating from the node will be taken. From a notational stand-
point, there are six possible nodes. The information on a directed branch
includes the probability that a branch will be taken. This probability
will be one unless it emanates from a probabilistic output side in which
case the sum of the probabilities emanating from the node will add up to
one. In addition, the branch includes a function of an additive parameter,
usually time. The probability and the additive factor are combined into a
W function which is made up of the product of the probability and the moment
generating function of the additive element.
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Logicalnodes. A node in a stochastic network consists of an

input (receiving, contributive) side and an output (emitting, distributive )
side. In this chapter we will consider three logical relations on the input side
and two types of relations on the output side. The three logical relations on
the input side are:

Name Symbol Characteristic

EXCLUSIVE-OR I_ The realization of any branch leading into the
1"-4 node causes the node to be realized; however,

one and only one of the branches leading into
this node can be realized at a given time.

INCLUSIVE-OR <,,/] The realization of any branch leading int6 the
'"4 node causes the node to be realized. The time

of realization is the smallest of the completion
times of the activities leading into the INCLU-

d SIVE-OR node.AND The node will be realized only if all the branches
leading into the node are realized. The time of
realization is therefore the Iargest of the comple-
tion times of the activities leading into the AND
node.

On the output side, the two relations are defined as:

Name Symbol Characteristic

DETERMINISTIC _) All branches emanating from the node are taken
if the node is realized, i.e., all branches emanating
from this node have a p parameter equal to 1.

PROBABILISTIC I_ Exactly one branch emanating from the node is
taken if the node is realized.

For notational convenience, the input and output symbols are combined
below to show that there are six possible types of nodes:

A directed branch GERT element
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This slide demonstratesthe use of the various input and output node
characteristics in a space rendezvous environment. In the top figure,two
vehicles must be successfully launched before mission can be a success.
The two outputs for the model show mission success which is only realized
if both vehicles are launched successfully, thus the AND type input side,
and mission failure which will be realized if either or both of the vehicle

launchings are unsuccessful, thus the INCLUSIVE-ORinput. The diagram on
the lower portion represents an expansion of the earlier diagram and shows
a modification to allow for measuring maneuverability capabilities along
with successful launching. Nodes l and 2 will only be realized if both
vehicles are launched successfully because of the AND type input side. If
both vehicles are launched successfully,node S will be realized if and
only if one of the vehicles is successful in maneuvering. Therefore, in
this model we will have success if both vehicles are launched and at least

one has maneuvering capabilities.

Successful launch

Vehicle 1 L__ _, _j,_,_(_ Mission success

/

Stochastic network model of the rendezvous of two

vehicles.

Unsuccessful launch

Successful Successful

[",._/ launch _ _ maneuverability _._

LJ _ k._ r_ _ Mane_uvering_

Vehicle l _k / r "N_ failure/ Successful

_.._ Success ful__.__...... ..... ! "
Vehicle 2 \ launch fail-dle /

 su cessf lla ch /
Figure modified to include maneuvering success of

the rocket.
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The previous slides showed networks which were highly aggregated
models of complex operations. One of the advantages of stochastic net-
works is their usefulness at many levels within a problem area. For
example, the branch "successful launch" can be divided into many branches
and nodes. For example, the network shown on this slide illustrates this
concept. In this network the AND node plays a predominant role in the
activity up to and including the terminal countdown. This is due to the
fact that all activities must be performed prior to lift-off. This, of
course, is a simplified view of the system; however, it serves the pur-
pose of illustrating that part of a stochastic network can be a PERT-
type network. After the terminal countdown inclusive-or possibilities
are presented and the probabilistic output nodes are shown. The event
represented by the node labeled "Successful Orbit" is an EXCLUSIVE-ORnode
since a successful orbit can occur in two mutually exclusive ways. The
broken lines represent activities that do not contribute to the success-
ful launch but are branches associated with the system models. In this
case, they would'lead to the node "unsuccessful launch."

Successful launch

f subsystems Checkout of Orbital correction
achieved

__. subsystems \
_ / Terminal \ Successful \orbit Successful \

Assembly Checkout countdown phase t Flight

_ e

faBi_ie s ___ failu_re __;,_

Unsuccessful Boost phase
orbit failure

Detailed model of the successful launch branch.
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Continuing this example, consider the branch "terminal countdown" a
segment of which can be represented by the network shown on this slide.
The network shows three preparatory actions such as power on, stimuli
calibrated, and recorder-oh, which are required before the test can begin.
The test is performed and based on the results of the test the countdown
is continued, diagnosis is initiated, or the test is performed again.
This last action illustrates the concept of feedback in stochastic net-
works. The networks on this and previous slides are obviously not complete
descriptions of countdown procedure but are useful in illustrating the
communications capabilities of GERT. Also, by decomposing the problem into
segments we can compute parameters of interest for the aggregate model, thus
the probability of a successful launch could be computed by evaluation of a
more detailed networks.

0 Terminalcountdown _

Preparatory "_
action _o@'_,,_

. Test _]

J _ _'] " (""_eturntosta_k_3.cCjjtjdU:n

...... _ Of test

Detail model of the terminal countdown branch.

The networks made entirely of EXCLUSIVE-ORnodes form a very special
class of GERTproblems. These problems have been studied in great detail
and they can be analytically solved using flowgraph techniques. We will
concentrate on some applications of this special class of problems before
moving into the simulation mode.

THEEXCLUSIVE-ORGERTNETWORKSFORMA SPECIALCLASS

WHICHCANBE SOLVEDANALYTICALLYUSINGFLOWGRAPH

TECHNIQUES
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This slide attempts to summarize the steps involved in the solutions
of problems involving EXCLUSIVE-ORGERTnetworks. First, the analyst
converts a qualitative description of the system into the network form
and then he collects the necessary data to describe the elements of the
network. He next calculates the topology equation to determine the
equivalent function for solving the network. The formula shown on this slide
is a vehicle for evaluating flowgraphs, a technique used in feedback control
systems. After the W function has been calculated, it is possible to extract
specific pieces of information such as the probability associated with W
function and the moment generating function of the additive parameter asso-
ciated with the elements analyzed. From this moment generating function
moments such as the mean, variance, etc., can be calculated. Finally, as
the last step inferences are drawn from the analysis and modifications are
made.

STEPSON THESOLUTIONOF PROBLEMSBYMEANSOF GERT

(FOR "EXCLUSIVE-OR"NETWORKS)

1, CONVERT A QUALITATIVEDESCRIPTIONOF A SYSTEM OR PROBLEM TO
A MODEL IN NETWORK FORM,

2, COLLECT NECESSARY DATA TO DESCRIBE THE TRANSMITTANCES OF THE

NETWORK,

3, APPLYTHETOPOLOGYEQUATIONTO DETERMINETHEEQUIVALENTFUNCTION
OR FUNCTIONSOFTHENETWORK,

WE(S)= ( (PATHX NON-TOUCHINGLOOPS))/LOOPS

= PEME(S)

4, CONVERT THE EQUIVALENT FUNCTION INTO THE FOLLOWING TWO PERFORMANCE

MEASURES OF THE NETWORK:

4,1 THE PROBABILITYTHAT A SPECIFICNODE IS REALIZED,

PE = WE(s) Is=O

4,2 THE MOMENT GENERATINGFUNCTIONOF THE TIME ASSOCIATEDWITH
A NODE IF IT IS REALIZED,

ME(S) = WE(s)/P E

5, MAKE INFERENCESCONCERNINGTHE SYSTEM UNDER STUDY FROM THE
INFORMATIONOBTAINED IN 4 ABOVE,
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This slide demonstrates the use of this procedure on a rather simple
network. The network represents a prisoner in the dungeon. The dungeon
has three doors: one door leading to freedom, one leading to a long tunnel,
and a third leading to a short tunnel. The prisoner selects a door at
random and if it leads to a tunnel, he tours the tunnel eventually return-
ing to the dungeon. Selection procedure continues until freedom is found.
The network demonstrates the visual attractivenessof this technique. This
problem could be solved by semi-Markovianprocesses which are generally
difficult to understand by practitioners. The network is then converted
into a W function which is the equivalent transmittance in the beginning to
the end of the network. This function includes the probability of the
prisoner gaining freedom and some measure of time associated with this time
in the system. It is interesting to note that the moment generating func-
tion for time in the short tunnel is moment generating function of a constant
l time uni_ and the moment generating function for the long tunnel is 3 time
units. The probability of exiting from the dungeon is found to be one and
thus the moment generating function is equivalent to the W function. The
mean time to exit this system is the first derivative of the moment generating
function with respect to "s" evaluated at s=0. The mean is found to be 4 time
units. The variance and other moments can be obtained from the W function.

1/3E1S

1/3EOs>O

1/3E3S

WE(S) = I/_E SI_(1/3ES+1/3ES)

PE= WE(S) Is=0 = i

ME(S)= WE(S)/PE = WE(S)

DME(s) I = 4 UNITS
= DS I S=0
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To continue our interest in GERTmodels of countdown procedures,
consider this and the following slides as further application of this
technique. In the figures shown on this slide, we have a PERTnetwork
description of a countdown. The five activities are A,B,C,D,E. The
subscript I indicates a start of an activity and the subscript 2 indicates
the end of an activity. Two types of relationships are used in this net-
work: (I) functional precedence which implies an activity on the same
horizontal line deals with the same equipment module and hence these acti-
vities can be used to detect malfunctions in a given module; and (2) time
precedence relationships.

PERTnetwork description of a countdown

This slide gives a two-port description of an activity. Inputs
are "no undiscovered malfunction" and "undiscovered malfunction." The
outputs are "no undiscovered malfunction," and "undiscovered malfunction."

INPUT ACTIVITY OUTPUT

(States) (States)

:.o.o°°o.o°..°0°°...°o...

No undiscovered : No undiscovered

Undiscov_,ed (_ / -.%Undlscoveredmalfunction : :--I,, (_) malfunction

...,.o,....,..o.,,.......

A two-port description of an activity
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This slide expands the countdown representation shown using the
two-port representation used in the previous slide. In this figure,
node LI indicates a launch with no undiscovered malfunctions, and node 5
indicates a launch with undiscovered malfunctions. The performance
measure o.f interest is the probability of obtaining successful launch
which is the function of the probability of realizing node L2 and the
probability that the time to achieve node LI is within a specified launch
window. To obtain this performance measure, first an analytical deter-
mination of two-port as detailed is made. Then the probability and times
as analytically determined were used in a simulation model.

Expanded network description of a countdown
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This slide represents an analytical determination of the two-port
phenomenon described, and would be incorporated in the detailed complete
network shown in the next slide,

Externalconstraints External constraints

_1_ No
lakSum und_sco_red

No malfu_dion indc,atecl

External constraints Extem_ conMraints
failures

Malfunctiol not indicated

"_*__'_o-*°-_P_'_b_°_"_o_H_e_*_e'_* .OOlleHH,O*

Detailed description of an activity
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Finally, this slide shows the GERTnetwork description of the network
countdown. Questions regarding the work activities reflected by the
performance measure can then be proposed and modifications of the model
can be achieved.

A B C
:................. : : ................ :..................

GERTnetwork of a countdown

(Note: Except as noted all unmarked branchesnot enclosed in boxes have
probability : 1, time = O.
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This slide demonstrates information available from the GERTnetwork.
For systems that involve expensive parts, attempts are often made to
salvage or recover parts for future use. For such systems, we might like
to determine the expected life of one of these parts in terms of both
time and number of users. This model considers the possibility of a
recovery of a rocket after a test, assuming that there is no deterioration
in the system. Node 1 represents the initial flight, node F represents
any flight, G is a successful flight, B an unsuccessful flight, D non-
recovery after G, and E non-recovery after B. Information included on the
diagram is the probability of successful flight and appropriate probabi-
lities of recovery. Time parameters include flight time and various
recovery times.

TMT(S)
11

SMs(s) S [_

RM R (s) )_ _ _ 'L ' (I-S)Ms(s)

GERT representation of a rocket recovery problem.

Events:

i _ initial flight.

f _ any flight.

g = a successful flight.

b = an unsuccessful flight.

d = nonrecovery after g.

e _ nonrecovery after b.

Probabilities:

S _ probability of a successfffl flight.

R _ probability of a recovery after g.

T = probability of a recovery after b.

MGF:

Ms(s) = MGF of a flight time.

MR(s) = MGF of the time of recovery after g.

Mr(s) = MGF of the time of recovery after b.

G. E. Whitehouse, Systems Analysis and Design Using Network Techniques, c. 1973,
pp. 382-383. Reprinted by permission of Prentice-Hall, Inc., Englewood Cliffs, NJ.
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Typical information that I was able to calculate for this model of
the recoverable rocket using techniques reported in reference 1 includes the
life of the rocket, the number of flights until non-recovery, the proba-
bility of at least one successful flight, and the first passage time until
we achieved our first success. There are a number of other pieces of
information which could be analytically derived from models of this sort.
These all represent viable performance measures in this type of problem.

TYPICAL INFORMATIONAVAILABLE FROMTHE GERT

MODELOF THE RECOVERABLEROCKET

1. THE LIFE OF THE ROCKET

2. THE NUMBEROF FLIGHTS UNTIL NONRECOVERY

3. PROBABILITY OF AT LEAST ONESUCCESS

4_ THE FIRST PASSAGE TIME TO A SUCCESS

The network in this system represents a model of a repair situation.
Suppose a device is being developed for a given application. The applica-
tion is such that the device when put into operation either succeeds or
fails to accomplish what it is designed to do. Suppose further there is
only one thing that can go wrong with the device and the device will
eventually fail due to this fault. The whole purpose of the development
effort on the device is to discover what the cause of the failure is and
then attempt to redesign or fix the device so it will not fail again.
Assume repair either fixes the device or not; i.e., the probability "l-p"
of defective operation is constant until the device is completely fixed
and always works. The development effort then consists of repeated trials
on the device. If the device operates successfully on any given trial,
the designer or development engineer decides to make no redesign action.
He proceeds to the next trial on the chance that he has already fixed the
device and its probability of failure is zero. If it fails on any given
trial, the engineer goes to work on it and has probability "a" of fixing
the device permanently prior to the next trial. The network includes the
moment generating functions for the repair time and trial times. There
are three outcomes that are possible from a given outcome: (1) the trial
is successful given a device is faulty, (2) the trial is a failure given
the device is faulty, and (3) the trial is successful; the device is fixed.

These outcomes are represented by the events on the GERT network.
The moment generating function of the time to successfully diagnosis and
fix the fault is shown by the function at the top of the slide. The
information at the bottom of the slide demonstrates the various informa-
tion available by further analyzing the network and includes the number
of trials necessary until the device is successfully fixed. We can also
find the number of failures before we successfully complete our repair.
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a(l -- p)M,(s)M,(s)
Ms'3(s) = I -pM,(s)- (I - a)(I --p)M,ls)

where
14/11 = PMt(s),

WI2 = (l-p)Mt(s),
W21= ( 1-a)pMt(s),
1#22= (l-a) (1-p)Mr(s)

and W23=aMr(S).

GERT representation of a reliability repair model.

Some examples of the information available from this model using counters
are :

I. The MGF of the number of trials necessary until the device is operative
is found by tagging all elements with an e_ tag, solving the graph for
Ms._(s, c), and then equating s = 0. The MGF of the number of trials
until the device is dependable is:

all --_p)e z_
Ms, j(s,c)_ o = I -pe c - (I - a)(1 - p)e _

2. The MGF of the number of failures can be investigated if we tag all the
elements entering the nodes representing ,a failure (in this case node 2)
with an eCtag and then solve for Ms._(s, c):

a(l -- p)e c
Ms.3(S,C) I_,o : 1 --p -_ (I - a)(I --p)e c

G. E. Whitehouse, Systems Analysis and Design Using Network Techniques, c. 1973,
pp. 385-386. Reprinted by permission of Prentice-Hall, Inc., Englewood Cliffs, NJ.
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The network becomes considerably more complicated when there is
more than one fault. The network in this slide demonstrates a version
which would involve the attempt to analyze and fix two levels of faults.

4/24

where

1,911 = .bi O P2Mtts), W26 = al O a 2 O Pl M,(s). [4:55 = Pl MttsL

WI2 = Pl U p2gt(s), ['1}27= a I O a2Mr(s). 14:56 = Pl Mr{S)"

W21 = t_i N a2 n/51 n i;2Mr(s), W33 = P2Mt(s), 14/65 = d I n PlMr(S),

14/22 = a I N a2 AP 1 UP2Mr(s), W34 =P2mt (sL W66 = a i nPlMr(sL

W23 =a I n if2 N ['i2Mr(s), 14J43 = ?t2 n _2Mr(s), Wf,9 =aiMr(sl,

['924 =a I n if2 n P2Mr(s), W44 =if2 n P2Mr(s), "_i = 1 -a i,

W25 =al ha2 nplmr(S), 14:47 =a2Mr(s), and It. = 1 -/].

GERT representation of a two-level reliability repair model.

Events: Probabilities:

I -= success, given that both modes broken. Pt _ probability of mode I causing failure.

2 : failure, given that both modes broken. ,02 - probability of mode 2 causing failure.
3 -, success, given that mode I fixed, a_ = probability of fixing mode I.

4 = failure, given that mode I fixed, a2 -: probability of fixing mode 2.
5 .: success, given that mode 2 fixed.

6 -: failure, given that mode 2 fixed.
7 - success, given that both modes fixed.

G. E. Whitehouse, Systems Analysis and Design Using Network Techniques, c. 1973,
pp. 386-387. Reprinted by permission of Prentice-Hall, Inc., Englewood Cliffs, NJ.
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This slide attempts to show the use of GERTmodeling in the research
and development situation. Basically, the research and development
process consists of five milestones: (I) the completion of model defini-
tion, (2) the completion of research activities, (3) acceptance of the
proposed solution, (4) completion of the prototype, and (5) implementa-
tion of the solution. The network on this slide represents the general
network model of the activities of achieving the first three milestones.
Since a hierarchical network development procedure will be used, the
activities are defined in broad terms. The network in this slide illus-
trates three attempts at obtaining solutions foragiven problem. If all
three solutions are unacceptable, then either a redefinition of the problem
will be made, or a new need will be explored and the researcher will
essentially give up on the previous problem.

Need Problem definition Solution

defined completed generated
Source node

I_ Define a need i_Define a problem f-.NEvolve solutions/.--.NEvaluate solution

/ / unacceptable evolve another solution_.._

/ /
/ _,,.._v'aluate solutio_...._ acceptable

( ( -'_'__ / Snionkc

_ unacceptable - evolve another solut!on _table

>  ,o,u,io
_e2tabl_..e - restate_pr°ble m

__",-_.,_nacceptable - find a new need

GERT research model.

G. E. Whitehouse, Systems Analysis and Design USing Network Techniques, c. 1973,
p. 410. Reprinted by permission of Prentice-Hall, Inc., Englewood Cliffs, NJ.
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The network in this slide represents the activities in problem defini-
tion. On the chart is shown a creative thought process following the
establishment of the need. As shown, there are four separate efforts
involved in attempting to defined the problem. On the outside of the node
following the creative thought, a probabilitic node is used to indicate
that the problem is either defined or not based upon the creative thought
efforts. No definition will evolve only if all four efforts are unsuccess-
ful. The point A in this diagram represents a possible regeneration point
of the problem definition process. If the characteristics of the activi-
ties involved in a problem definition do not change based upon previous
attempts at problem definition, a return to the original start node can be
made and the network need not be repeated as shown on the bottom half of
this slide. Since learning occurs in the research and development process,
it is more reasonable to indicate a repeat with new parameters of activities
involved in the problem definition. This lack of regeneration points in the
research and development process probably, I believe, has hindered many ana-
lysis attempts.

_ Evaulation I .,"1 Problem

need / _ _¢#j' definition

Vy _ proposed

r'-_ _ 'k_ _ Failure of first

V _ No d e !)n,i?.!on
C_ought k,._,,./ formulated

Evaluation

_ Failure of second
\ "_ attempt to define

No definition
formulation Process

I v I repeats
Creative thought

GERT problem definition.

G. E. Whitehouse, Systems Analysis and Design Using Network Techniques, c. 1973,
p. 411. Reprinted by permission of Prentice-Hall, Inc., Englewood Cliffs, NJ.
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The networks in this slide demonstrate one possible representation
of the research activity for one researcher involved in proposing solu-
tions. Also shown in this slide is the evaluation procedure model in
network form for considering both time and cost considerations involved
in proposed solutions. Thus, a model will only be successful if both time
and money are considered within acceptable bounds.

• Network for Generation of Proposed Solutions.

Researcher 1

Researcher II D_ i, k

Literature search (
(analysis of diffusion Researcher 1II

coefficient)
Design of Development of

apparatus production facility

First evahtation of solution

Time

Acceptable

o_

Researcher I1__

Rest,r_'r m

Money

Network for generation of proposed solutions.

G. E. Whitehouse, Systems Analysis and Design Using Network Techniques, c. 1973,
p. 413. Reprinted by permission of Prentice-Hall, Inc., Englewood Cliffs, NJ.
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The figure in this slide shows a network for generating and evaluating
the solutions serially. Thus, this figure includes milestones 1 and 2.

A

Prob}em
defined

Solutions Evaluation Second set of le
generated proposed solutions Evaluation

generated.

Series proposals. ,_

Tying the detailed elements together results in the network shown in
this slide which illustrates one possible network for representing the
scientific method approach to planning research and development. This also
demonstrates how large scale GERTnetworks can be developed in a modular
sense.

Milestone I Milestone 2 Milestone 3 Milestone 4 Milestone 5

Establish Acceptable

with respect

\ acceptable

with respect unacceptable

At the second failure to define the __(
problem the need is re-examined.

J I I I t_ I l__l
Problem definition phase Research activity Evaluation of solutions Prototype Implementation

A GERT network representation of an example

R & D project.

G. E. Whitehouse, Systems Analysis and Design Using Network Techniques, c. 1973,
pp. 414-415. Reprinted by permission of Prentice-Hall, Inc., Englewood Cliffs, NJ.
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There have been many applications of GERTmodels in many areas. This
slide lists a few which might be of interest to the NASA environment. They
include rather elaborate project management models along with quality
control and reliability models. Inventory and production systems have
been modeled as have been manufacturing and queueing systems. Communica-

_ tions systems have been modeled for the government, along with models for
fault detection in electronic circuitry.

i
f

OTHERAREASOFAPPLICATION

i, PROJECTMANAGEMENT

2, QUALITYCONTROLCOSTMODELS

3. INVENTORYMODELS

4, PRODUCTIONMODELS

5, MANUFACTURINGSYSTEMS

6, QUEUEINGANALYSIS

7. COMMUNICATIONSYSTEMS

8, FAULTDETECTION
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It would be nice to be able to model all nodes and solve them ana-
lytically. Work has not developed along these lines. Most work has
attempted to take the AND and INCLUSIVE-OR nodes and convert them into
EXCLUSIVE-ORnodes. This slide demonstrates some alternatives and the
conversion actually gives an incorrect analysis to the model in question.
Most efforts for the solution of more complicated networks involving _
nodes other than the EXCLUSIVE-ORnodes are now solved using simulation
techniques.

(0.3;13)

(1_;0)

Representation of a network composed of AND nodes
as one with EXCLUSIVE-OR nodes.

7 "_

o.o2e,!:o.98"- r

(a)

0.3e _9s + 0.7e 6s

0.02e TM + 0.98e TM
II

(b)

0.006e 19s + 0.014e 16s + 0.294e 19s + 0.686e TM

(c)

Reduction of a network composed of AND nodes.
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This slide represents the nodes used in the so-called GERTSIIQ
Model. These nodes have DETERMINISTIC and PROBABILISTIC output in
addition to having the capability of modeling INCLUSIVE-OR, EXCLUSIVE-OR
and AND types of inputs. The input side is released based upon the in-
formation shown on the node in question. In addition to these nodes,
there are also nodes involved in queueiog. Nodes at the bottom of this
slide show queueing type nodes. These nodes include information about
the initial number in a queue, along with the maximum number acceptable
in a queue. PROBABILISTIC and DETERMINISTICoutputs are possible.

Number Deterministic Probabilistic
of

releases output output

Number of _Nod e
releases number

to repeat

Initial number in queue Node number
Probabilistic

Maximum_erministic @output
allowed in queue output

Queue nodes
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This slide demonstrates the use of GERTIIIQ in the analysis of
experiments performed in space by a space crew. The performance of _
experiments in space made by a space crew is almost always severely
constrained by time. Many experiments are usually proposed by a scientific
community and of those proposed a subset must be chosen for a given space
mission. The sequencing of those experiments which can be completed is then ac-
complished. A GERTSmodel of the sequence of experiments is developed and
shown on this slide. I have assumed that the three possible outcomes from
the performance of each experiment are (I) successful completion, (2)
failure and (3) inconclusive results. If an experiment is successfully
completed, the next experiment in the sequence is performed. If failure
occurs, the experiment is scrubbed and the next experiment is performed.
If the results of the experiment are inconclusive, an experiment is
repeated "n" times until a success or failure occurs. The experiment is
scrubbed if tried "n" times and results are still inconclusive. The net-
work shown in this slide represents a three experiment program. Node 2
is the start node and indicates a transfer to node 3, which represents
the decision point for the first experiment. If the first experiment is
successful, the activity from node 3 to node 4 is realized. If the first
experiment fails, the activity from node 3 to 19 is taken. The second
experiment is started by transferring from node 19 to 4. If the results
from the first experiment are inconclusive, the activity from node 3 to
node I0 is taken. The output of node I0 is deterministic and hence when
the first experiment is performed again a signal is sent to node 13
to indicate the first experiment has been performed once. Thus, for each
experiment we will either transfer to node 4 or 13. When node 13 is real-
ized, 3 times the activity from node 13 to node 14 is realized. This acti-
vity is labeled as activity I. It causes the network to be modified by _
replacing node 3 by node 7. When this occurs, transfer will automatically
be made to node 4. The other experiments are handled in essentially the
same manner.
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16

[]

GERT network for the analysis and sequencing of space

e×periments.

EXPERIMENTCHARACTERISTICS

Probability Allowable

Probability Probability of Numbers
of of Inconclusive of

Experiment Success Failure Results Repeats

1 0.6 0.1 0.3 3.
2 0.5 0.1 0.4 3

3 0.7 0.1 0.2 2

.(
Mean Minimum Maximum Standard

Experiment Time Time Time Deviation

1 10,0 5,0 20,0 2,0
2 20.0 15.0 25.0 1.0

3 15.0 10.0 30.0 3.0
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This slide shows the computer input for these nodes. The system
is a data driven system.

INPUT DATA FOR EXAMPLE 'i""_"

SPACE EXPS 2 5201973 400 4 40 1267 1 EX 2 10

21 1 1 1 10 1 2 EX 2 20

2 1 0 D EX 2 30

3 3 1 1P 5 1 A EX 2 40
4 3 1 1P 25 3 A EX 2 50
5 3 1 1P 37 3 A EX 2 60
6 2 1 D 37 3 A EX 2 70
7 1 1D EX 2 80
8 1 1D EX 2 90
9 1 1D EX 2 100

10 1 1D 3 EX 2 110
11 1 1D EX 2 120
12 7 1D EX 2 130
13 3 D EX 2 140

14 3 1 D 1 1 F EX 2 150
15 3 D EX 2 160
16 3 I D 65 1 F EX 2 170
17 2 D EX 2 180
18 3 1 D 60 2 F EX 2 190
19 3 I 1D 1 1 A EX 2 200
20 3 1 1D 27 2 A EX 2 210
21 3 1 1D 41 3 A EX 2 220

0 EX 2 230

10 5 20 2 EX 2 240
20 16 25 1 4 EX 2 250
15 10 30 3 EX 2 260
0 EX 2 270

1 2 3 1 2 EX 2 280
6 3 4 2 2 EX 2 290
3 3 10 4 1 EX 2 300
1 3 19 4 1 EX 2 310
5 4 5 3 2 EX 2 320 r
4 4 11 4 I EX 2 330
1 4 20 4 1 EX 2 340
7 5 6 4 1 EX 2 350
2 5 12 4 1 EX 2 360
1 5 21 4 1 EX 2 370

1 7 4 2 2 EX 2 380
1 8 5 3 2 5 EX 2 390
1 9 6 4 1 EX 2 400
1 10 3 1 2 EX 2 410

1 10 13 4 1 EX 2 420
1 11 4 2 2 EX 2 430
1 11 15 4 1 EX 2 440
1 12 5 3 2 EX 2 450
I 72 17 4 1 EX 2 460 "_
1 13 14 4 1 1 EX 2 470
1 15 16 4 1 2 EX 2 480
1 17 18 4 1 3 EX 2 490
1 19 4 2 2 EX 2 500
1 20 5 3 2 EX 2 510
1 21 6 4 1 EX 2 520

0 EX 2 530

1 3 7 EX 2 540
2 4 8 6 EX 2 550
3 5 9 EX 2 560 _'
0 EX 2 570
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The output on the slide shows the probabilities of a success,
failure and inconclusive results for all experiments along with the in-
formation regarding experimental time. To reach node 4 it took over 46 time
units with a standard deviation of 18 time units. In some cases, it
took as little as 24 time units and in other cases took over 114 time
units. The number of times experiment 1 was completed within a given
time interval is presented in the histogram showh below. Similar statis-
tical quantities are available on the other nodes in the system.
Another interesting feature that we could have incorporated in this
model would be to sequence experiments dependent upon the results of
some other experiments.

GERT$ II/S_MMARY REPORT

GERT SIMULATION PROJECT 2 BY SPACE EXPS

DATE 5/20/1973

"'FtNAL RESULTS FOR 400 S_MULATIONS**

# OF
NODE PROB,/COUNT MEAN 8TD. DEV. OBS. MIN, MAX. NODE TYPE

6 1.0000 66.1562 21,8904 400. 36.7050 137.6164 A

21 0.1300 68.2321 21.8631 52. 37.9771 118.8463 A
20 0,1525 44,6016 16.2177 61. 26.6203 96.1071 A

19 0.1575 13.3597 6,6627 63. 5.5631 32,2204 A

18 0.0350 77.9196 22.1003 14. 52.1680 119.6703 F
16 0.0675 73.4611 7.2378 27. 66.5126 93.7269 F

14 0.0350 29.9889 3.0599 14. 25.3156 36.6681 F
5 1.0000 65.8379 i1.5760 493. 36.7050 137,6164 A

4 1.0000 46.1740 18.7907 670. 24.5228 114.1765 A

3 1.0000 14.1291 7.5545 576. 5.0000 43.2401 A

"HISTOGRAMS**

LOWER CELL
NODE LIMIT WIDTH FREQUENCIES

6 37.00 3.00 2 10 32 44 30 18 17 11 28 25 21

17 18 12 11 14 .,19 13 7 4 5 2

6 5 4 8 1 5 3 3 0 5
21 41.00 3,00 4 5 1 5 2 2 0 5 2 0 3

5 2 1 1 0 4 2 1 3 0 1

0 1 0 0 2 0 0 0 0 0
20 27,00 2.00 4 5 7 4 5 1 2 2 3 3 2

2 2 4 2 1 0 0 0 3 3 0

2 0 2 0 0 0 1 0 0 1

19 1.00 1.00 0 0 0 0 0 2 3 4 7 8 10
9 2 0 1 2 0 0 0 5 0 0

2 3 0 0 0 2 0 1 0 2

;- 18 50,00 2.00 0 0 1 0 1 1 2 0 2 0 1
0 0 0 0 0 0 0 1 0 1 1

0 0 0 0 1 0 O 0 0 2
16 66,00 1.00 0 0 4 1 1 2 6 2 4 1 0

0 0 0 1 0 1 1 0 0 1 0

0 0 0 0 0 0 1 1 0 0
14 1.00 1.00 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 7 0 1 4

5 37,00 3.00 2 12 39 49 41 24 21 15 36 35 27
22 22 13 13 17 20 13 9 6 6 3

10 5 6 9 I 6 4 4 0 5
4 25.00 3.00 2 59 135 73 17 31 28 30 44 55 35

8 20 15 15 14 23 10 4 8 8 4
10 10 2 1 6 1 0 0 2 0

3 6.00 1,00 0 11 20 41 59 74 81 55 37 13 11

8 10 8 11 20 13 19 15 10 10 2

1 4 10 3 2 3 5 2 3 15
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This slide shows a tree developed by Dr. Pritsker showing the evolu-
tion of various GERTtechniques through the QGERTprogram which was
developed around 1974. As you can see, there are many versions of GERT,
many of which have been developed for special purposes. The diagram
shows the evolution of GERTfrom PERT, generalized activity networks and _
flowgraphs, then shows the influence of simulation through such languages
as GASPthrough various versions of GERTSIIio The most significant de-
velopment after GERTSIII was Q-GERT.

GANTT Charts, PER_, CPM 1

I
1 I

I Q-GERT An_ysis Pro_im I

The GERT familytree.

(from ref. 2)
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This slide shows the philosophy in developing a Q-GERT model. The
network is developed in a symbolic form and is represented by the Q-GERT
network model. This model is then translated into data format fed into

the computer along with the Q-GERT analysis program, and typical Q-GERT
summary reports are generated. This is essentially the same approach
used in GERTS III, except that the Q-GERT model is much more general.

O-GERT
NetworkSymbols

Q-GERT NetworkI Model

ata Describing

etwork Model

_A Q-GERT
r_lysis Program

I; °ioo Q-GERT o
Summary Reports o

0

Componen_ of Q-GERT modeling and _alysis.

(from ref. 2)
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Many of the models used in Q-GERTare queueing type models. The
one shown on this slide is very simple and represents the inspection of
TV sets. Node 1 represents the arrivals of units to the system. They
then move into a queue and wait in front of two inspectors. At node 3
inspection is completed and 85 percent are packaged while 15 percent are
sent to an adjustor represented by node 4. The adjustor completes his
work and the TV set is returned to the inspection facility. There are
numerous QGERTmodels, some of which are very complicated; I do not
intend to spend much time on these because they are essentially the
same as the network versions of the SLAM language which we will now
discuss.

Return of Adjusted Sets

:i}...,.,.o,00 O 0 _,o....
TV Sets _._

Waiting Sets

Mspectors

Schematicdiagramofinspectionandadjustmentstations,ExampleI.

/ ,%o,u,o.
Arrivals Queue for Service by Departures

inspectors inspectors to packing

Q-GERT model of inspection and adjustment stations, Example I.

(from ref, 2)
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The latest development is the SLAMsimulation language. This
language involves a network simulation at a higher level than Q-GERT,
discrete simulation or continuous simulation. This language can combine
all of these features and an analyst can use whichever type of simula-
tion that seems to be appropriate to the model at hand. I am person-
ally inclined to do most of my modeling in the network simulation mode,
but find the ability to interact with the discrete and continuous modes a
very attractive feature.

SLAM LANGUAGE

COMBINES:

, NETWORK SIMULATION

' DISCRETE SIMULATION

' CONTINUOUS SIMULATION

This slide attempts to illustrate the relative position of SLAMto
other familiar simulation languages. Simulation languages are essen-
tially either continuous or discrete. Those which are discrete are
either process oriented such as GPSS, or event oriented such as SIMSCRIPT.
Some of the familiar continuous models include CSMPand DYNAMO. SLAM
essentially combines the elements of QGERTalong with those of the GASPIV
language. GASPIV was previously developed to combine continuous and event
simulation. This marriage leads to a very powerful simulation language
which I would recommend for your consideration.

WHYSLANSIMULATIONLANGUAGE?

ISCRETE CONIINU_I
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To demonstrate some of the features of the SLAMlanguage, this
network representation can be considered. The basic element is the
queue node which includes information dealing with the initial number
in the queue, maximum number, priority for storing elements in the
queue, number of parallel servers, and the like.

Radio Being Inspected

0000 O---"
Arriving _ - ' "
Radio Queue of Radios Inspection Inspected Radio

Waiting for Inspection Station

[_ Inspector (Server)

Radio (Entity)

Initial Num- File Number for Storing Waiting Entities
ber in ._ ..tr--_. _=./

Queue _ IFL'_ Service Activity

Maximum _"_,. [_Number in "_"_
Queue "_ _ "_,

QUEUE Node Number of Activity
Indicator Parallel Number

Identical
Servers

(from ref. 3)
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This slide is a model demonstrating the information available on
the simplest of queueing models. This model involves the generation of
elements and shows the capabilities of delaying arrivals, generating
time between arrivals, and limiting the number of arrivals. From the
queueing standpoint, it gives information with respect to the initial
number in the queue, limit on the number in the queue and service time.
The termination node is also shown to collect information on the number
of units to be processed through the system. At the bottom of the slide,
the language necessary to process this simple queueing system in SLAM is
shown.

No Mark Time Between No Entities Store Entities Number of En-
Attribute Arrivals Initially in in File 10 When titles to
Number _ Queue Waiting for Terminate a Run

9._ _ Terminate

Specified 10. Delay Time /

Time of First _ _ to Travel
Entities

to QUEUE

Arrival '_k _ I "_ ServiceTime / _ _ Symbol

_ I_17LimitonNumb_ ' =,
No / Server Num_rof Arrivals Take I Branch When No Limit on Number

Node is Released of Entities Number of Parallel Servers
in Queue

;EXAMPLE OF A SLAM STATEMENT MODEL
NETWORK; START OF NETWORK STATEMENTS

CREATE,10.,7.; TIME BETWEEN ARRIVALS = 10
ACTIVITY,3; TIME TO REACH QUEUE NODE IS 3
QUEUE(10); USE FILE 10 FOR QUEUE
ACTIVITY(I)/3,9; SERVICE TIME = 9
TERMINATE,100; RUN MODEL FOR 100 ENTITIES
ENDNETWORK; END OF NETWORK STATEMENTS

(from ref. 3)

The next slide presents a somewhat more interesting and complicated
model and demonstrates some of the flexibility available in SLAMnet-
work modeling. The system essentially involves a truck hauling problem.
Bulldozers collect material and two loads of dirt are necessary to fill
a truck. Before a truck can be filled, there must be a loader, a truck
and appropriate material to be loaded. The ASMnode in this model is
an assembly node and it says there must be at least one time in the
truck queue, load queue, and the loader queue before the truck can be
loaded. The load accumulation node requires that two loads must be avail-
able before a load moves into the load queue. The LIT represents the
selection of servers which are the service time to load the product.
After the product has been loaded, the loader returns to the loader queue
and the truck moves to the dumping area. Finally, the truck returns to
the trucking queue. This model could be used to determine the appropriate
number of trucks, loaders and bulldozers necessary to accomplish an effec-
tive program. While this is not a space project, I believe analyzing it
demonstrates some of SLAM's potential for analyzing NASA's progress.
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Truck Return
RNORM (18,3)

Bulldozing

ERLNG (4., 2._ Load Loading Hauling Dumping

_ _ RNORM UNFRM

I

I _ EXPON (12.)

I
I

II Loader Return
5

SLAM network model of truck hauling system.

Truck Return

Trucks

[_ Hauling Dumping

O Bulldozing _ Load Loading _-__)'_ Queue _

Loaders

/k

Loader Return

A truck hauling situation.

(fromref.3)

160



There have been many SLAMapplications to date, some of which include
work station analysis, machine tool breakdowns, traffic problems, quarry
operations, job shop scheduling, hospital modeling, and pilot ejection,
which involve the network, continuous, and discrete analysis.

TYPICALSLAMAPPLICATIONS

- WORKSTATIONSIN SERIES

- MACHINETOOLBREAKDOWNS

- TRAFFICLIGHTMODEL

- QUARRYOPERATIONS

- JOBSHOPSCHEDULING

- PSYCHIATRICWARD

- PILOTEJECTION

- WORLDDYNAMICS

- SOAKINGPITFURNACE

In the spirit of the decision modeling theme of this conference,
two final topics were selected to consider. The network shown on this
slide is a model proposed a number of years ago by Graham to analyze
research and development expenditures using a network type approach.
The definitions of the events and outcomes are given on this slide.
For each branch, Graham gives the probability that the branch is real-
ized given that the preceding node has been realized, the time and
the cost associated with the activity.
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Q

•yes __

<\ _ __ I_ _

foo Q

A noLQ

?yes 0 QN @
R & D expenditures.

Events:

1. Feasibility study indicates whether electrical control of high temperature
system is feasible,

2. Determination of the suitability of ac control.
3. Determination of the suitability of dc control.
4. Optimum integration of ac/dc units achieved.
5. and 7. Unit economic feasibility of the design.
6. Determination of feasibility of pneumatic control.

Activities:

(A) Pneumatic feasibility study.
(B) ac Control investigation.
((7) dc control investigation. Outcomes:
(D, F, J, K, L, N, and O) Report writing.
(E and G) Investigation of optimum ac/dc integration. (I, II, III, V, VI) Project dropped.
(H and M) Economic analysis. (IV, VII) Project into production and marketed.

G. E. Whitehouse, Systems Analysis and Design Using Network Techniques, c. 1973,
pp. 405-406. Reprinted by permission of Prentice-Hall, Inc., Englewood Cliffs, NJ.

The network at the top of the next slide shows information that Graham assumed

for his research and development project. These values are inserted in the GERT

network shown at the bottom of the page. Several changes were made in changing
to GERT format. First, the AC/DC control investigations are performed simulta-
neously and thus are indicated on the network without the aid of a bracket.
Second, nodes I and II do not result in the project being dropped as implied

by the previous figure. The analysis of this network has interesting results.
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0.4; 1; 1,500 Q

_0.6; 1; 10,000

0.7 1; 5; 20,000

</j 4;20,000 _6;1;10,OOO 0.3;1;1,500 _

[0.4; 1; 1,500 Q

o3 5;40ooo 1ooG

.5; 1;

10.5; 5; 35,000? 0.4; 1; 1,500
0.6; 1; 1,500

R & D project with costs and time shown.

jc"-.T_ "__ _ _

= _ _v L..<_ ..--'- .'/
_" F-'-.Lr I" /

WTv,L//I"'ZJ ,"

,t///

where

1,1/,2 = 0.7e 4s+40m, ]4/51V = 0.7eS+l.Sm

W,6 = 0.3e 5s+40m, 14/5111 = 0.3e s+'.Sm,

14121 = O.16eS+3m W6v = 0.SeS+l.Sm

W24 a = 0.36e s.2Om, 14167 = 0.SeSS+35m

W24b = 0.24e s+''.5m, _I/TV , = 0.6es*l.Sm

W24c = 0.246' s+ll5m and WTVII= 0.4e s+LSm.

W45 = e5S+2Om,

GERT representation of a R &D project.

G. E. Whitehouse, Systems Analysis and Design Using Network Techniques, c. 1973,
pp. 407-408. Reprinted by permission of Prentice-Hall, Inc., Englewood Cliffs, NJ.
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Analysis of the GERT network associated with Graham's analysis
allowed us to determine the expected costs associated with a project
along with the expected time of completion. The probabilities of
marketing electronic and pneumatic devices are also able to be calcu-
lated.

Ma. e(s, m) = 0.7e4'+4°"(0.16e '_ 3"(0.36e ,,_zo,, 4 0.48e" _"s")(e s'+zo,,)

× (0.7e _+j.Sr_q 0.3e'+"sm))

-F 0.3e_"_4°"(0.5e '_ I,s_ -t 0.5e 5'_ 3s,_)

× (0.4e,_ _.5,, -t 0.6e '_' ,.s,,))

$=0The expected cost of the project will equal dMj.e(s, rn)/(dm)]m_o.

dMIdme(S'm) _,L° =_ 67.582

This is interpreted as 67.582 thousands of dollars, which checks with the
published work of Graham_

The expected time of the project will equal OM,. E(s, m)/(Os)I_ °o.

°_M1'o_sE(S'm) _, o = 9.58 months

This quantity is the expected duration of the project,which was not calculated
by Graham.

The probability of marketing an electronic control device is
W,.,v(S, m)l_L°o.

W,.iv(S, m)l_ °o= (0.7)(0.84)(1.0)(0.7)= 0.4116

The probability of marketing a pneumatic device is equal to W,.v.
(s, m) 1_,i%.

W,,v,i(s, m)[_:_o= (0.3)(0.5)(0.4) = 0.0600

G. E. Whitehouse, Systems Analysis and Design Using Network Techniques, c. 1973,
pp. 407-408. Reprinted by permission of Prentice-Hall, Inc., Englewood Cliffs, NJ,
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The basis of a number of sequential decision making systems is the
decision tree shown on this slide. The two basic elements are the
decision node and a chance node. This particular decision tree involves
the decision whether an item should be marketed nationally or regionally.
While it is possible to effectively analyze a model of this sort, there
has been some concern about information that might be overlooked. A
number of years ago, I developed a technique called INFOClSION which
attempted to incorporate some of the modeling ideas discussed in this
presentation into the decision tree approach.

0.2

0

0;3 i

Small
regional / _ 0._ I
demandJ6.5 ,.,oe_/'_ 0,3

o-5

--4" d_mana _ Remain

Intz_duce_ u._ . 2.2" O.g

nationally _ 0.2 -0

2.2_Q o.5 -5

Declsion tree analysis of a marketing model. The square
nodes are "decision nodes," the round ones are "chance
nodes."

Reprinted with permission from Industrial Engineering magazine, July 1974.
c. American Institute of Industrial Engineers, 25 Technology Park/Atlanta,
Norcross, GA 30092.

The next slide shows some of the nodes I choose to use for the analysis
INFOClSION model. Nodes include the decision node but allow for various
decision criteria. The revenue and expense node allows for probabilistic
data in much the same way PERTnetworks do. This system also allows for
voting strategies.
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TYPE SYMBOL PARAMETERS DESCRIPTION

Decision C = Criterion Selects "Best" Alternative

(D) E = Max Expected Return
U = Max Expected Utility
A =-Aspiration Level

C, P P = Most Probable Future

Node # P = Utility Curve # Reference # for Criterion U only

P = Aspiration Level $ Amount Aspired to -- for
Criterion A cnl_

Chance _ None Selects one alternative according

(O) _ to probabilities of activitiesemanating from this node.

Revenue $ = First year Optimistic, Most Likely, and
(R) __ Revenue Estimates Pessimistic Estimates of Revenue

during first year.

R-A,N,B
T-A,N,B R = Annual Change Optimistic, Most Likely, and
Node # i Rate Estimates Pessimistic Estimates of Annual

_-'_i Growth (or Decline) Rate.

T = Duration Optimistic, Most Likely, and
Estimates Pessimistic Estimates of number

of years that revenue will last.

Revenue _ $ = Revenue Estimates Optimistic, Most Likely, and

(R) _ Pessimistic Estimates of one-time

revenue.

Expense S = First year
(E) $-A,N,B Expense EstimatesR-A,M,B

T-A,M,B R = Annual Change Analogous to Revenue Parameters

Node # Rate Estimates

- Duration Estimates

Expense
(E) $-A,M,B $ = Expense Estimates Analogous to Revenue Parameters

i

Node #

Vote P1 _ Condition for The number of inflowing activities
_P1,P2 7 First Realization which must occur_efore this node(v) \ / is realized for the first time

(and emanating activities

released).

P2= Condition for The number of additional inflowing
Subsequent activities which must occur before
Realizations this node is realized (and

emanating activities released) for
all times subsequent to the first.

Construc- /_ Nonfunctional. For building

tion _ purposes, and 'statistic collection
(N) purposes only.

Node description used in the Info-Cision technique.

Reprinted with permission from Industrial Engineering magazine, July 1974.
c. American Institute of Industrial Engineers, 25 Technology Park/Atlanta,
Norcross, GA 30092.
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This slide demonstrates the modification of the network previously
analyzed for a marketing selection and shows the differences that might
exist. This model allows for discounting of money and also allows for
different types of decision criteria. In this particular case, a utility
decision criterion will be used and information regarding the time for
marketing sampling was built into the model. While it is not particularly
important to consider the results of this model, it is interesting to note
that this technique has been applied to a number of government and indus-
trial applications. It may be that there are some opportunities to incor-
porate this philosophy into some of NASA's future decision modeling exer-
cises.

Don't Market

o5o

1-1-1

Marke t Sma II 1-_ 7
Sample Demand

2-2-2 .5 Go National --I00

Large __

Demand

Market
Nationally -5

Info-Cision model of the marketing problem. Dollars are expressed in
thousands and the rate of return is 12 percent.

Reprinted with permission from Industrial Engineering magazine, July 1974.
c. American Institute of Industrial Engineers, 25 Technology Park/Atlanta,
Norcross, GA 30092.
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This slide lists five important references which I believe would
be useful in your further work in the stochastic network area. I would
be personally happy to interact with any NASA individual who might be
interested in pursuing the _opics discussed here and to try to relate
them to NASA's problems. I want to thank you very much for inviting me
to present my thoughts to you, and I hope that I have fostered some
interest on your part in the stochastic network area.

REFERENCES

1, WHITEHOUSE-SYSTEMSANALYSISANDDESIGNUSINGNETWORK
.TECHNIQUESPRENTICE-HALL1973,

2, PRITSKER- MODELINGANDANALYSISUSINGQ-GERTNETWORKS
HALSTEDPRESS1977,

3, PRITSKERAND PEGDEN-.INTRODUCTION TO SIMULATION ANDSLAM
HALSTEDPRESS1979,

4. ELMAGHRABY- ACTIVITYNETWORKSPROJECTPLANNINGANn
CONTROLBY NETWORKMODELS WILEY-INTERSCIENCE197Z,

5, WHITEHOUSE- "USING DECISION FLOW NETWORKS"
ENGINEERING JULY 1974,
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The decade of the 1970's witnessed a stunning improvement in the

computability and applicability of network programming problems. Current

applications involve problems having thousands or millions of variables

and thousands of constraints. Network codes developed in the 1970's are

I00 - 200 times as fast as their predecessors.

The main purpose of this talk is to survey the capabilities of

network codes and their extensions to specially structured integer program-

ming problems which can be solved by using the solutions of a series of

ordinary network problems.

Most of the actual computational methods and results surveyed in this

talk are taken from papers or working papers by the author and his students.

This was done because of their easy availability. Many other authors have

contributed important ideas to this area which we do not have time to

discuss here. References to their work are given in the bibliography. It

is not the purpose of this talk to give a historically accurate and complete

account of the advances in network modeling and computing, so that the

bibliography will have to suffice as a substitute for such a historical ac-

count.
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FACTORIES(SOURCES)I= {1,...,M}

SUPPLIESAI FOR I_I

MARKETS(SINKS)J= {1,...,N}

DEMANDSBj FOR JeT

ASSUME

_I A_ = Z BjjEJ

SEMIASSIGNMENTPROBLEM

Bj = 1 FOR j_J

ASSIGNMENTPROBLEM

AI "-1 FOR _I, AND

Bj = 1 FOR J_J

SLIDE1

SLIDE I gives the basic notation for a transportation problem having m

factories and n markets. The factories have supplies a. and the markets
i

have demands bj. Note that the sum of the supplies is assumed to be equal to

the sum of the demands. When the demands are l's the problem is called a

sem±-assignme_t problem; and when the supplies are also l's, it is called an

assignment problem.
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SLIDE 2 gives the transportation problem constraints which the
variables xij must satisfy. The first constraint says that the total
amount shipped from warehouse i is equal to the amount it contains;
the second constraint says that the sum of the amounts shipped to market
j is equal to its demand; the last constraint is just non-negativity.
The (bipartite) graph at the bottom shows that the direction of shipping
is from factories to markets.

XIj = AMOUNTSHIPPEDFROMFACTORY_ TOMARKETj,

CONSTRAINTS

[ XIj = A I FOR I_l
j 6J

xij : Bj FOR J_J
I_I

Xij > 0 FOR Icl, J_J,

SLIDE2
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Slide 3 gives the two kinds of objective functions we will consider.
The sum objective adds together all the shipping costs from each ware-
house to each market. It is appropriate for bulk shipments of non-
perishable goods. The bottleneck objective is appropriate, when ci'4 is
interpretedas the timeto shipgoodsfromfactory i to market O,
and the objectiveis to minimizethemaximumtimealongany routewhich
carriesa positiveshipment. The bottleneckobjectiveis appropriate
when consideringproblemssuchas shippingperishablegoodsto markets
in whichwe are concernedwith the longesttimefor any shipmentto get
to its destination,or sendingtroopsto stagingareasin a case in which
the unit is not readyto go untilall sub-unitshave achievedtheirstart-
ing positions.

OBJECTIVEFUNCTIONS

SUMOBJECTIVE

CIj = COST OF SHIPPING ONE UNIT FROM I TO J,

MINIMIZE{ Z : Z Z xijcij .
IEI JEJ

Z = TOTALSHIPPINGCOST

EXAMPLE:GROCERYWAREHOUSESTOSUPERMARKETS

BOTTLENECKOBJECTIVE

Cij : TIME TO SHIP ONE UNIT FROM I TO J

MINIMIZE {Z = MAXIMUM Cij}

Xlj >0

Z = MAXIMUMSHIPPINGTIME

EXAMPLES:PERISHABLEGOODS,STAGINGOFTROOPS

SLIDE3
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Slide 4 introduces the concept of a transshipment node; that is, one
which is both a source and a sink. Network problems are transportation
problems in which most nodes are transshipment nodes. Usually, not all of
the possible arcs connecting pairs of nodes are assumed to exist in net-
work problems; that is, the problems are sparse. Very large sparse
problems have been formulated and solved relatively quickly.

TRANSSHIPMENTNODE: ONETHATAPPEARSBOTHASA SOURCE

ANDASA SINK,

EXAMPLE:FACTORY-WAREHOUSE-MARKETSYSTEM

I

NETWORKPROBLEMS:MOSTNODESARETRANSSHIPMENT,

SPARSE:NOTALLARCSAREUSED,CANBETAKENADVANTAGEOF,

SLIDE4
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FASTPRIMALMETHODSFORSOLVINGBOTHSUMANDBOTTLENECK

PROBLEMSWEREDEVELOPEDINTHE1970's.

TYPICALRESULTS: 100x 100 DENSEPROBLEMS.

COSTCHOSENININTERVAL

OBJECTIVE 0-10 0-100 0-1000 0-10000

SUM .438 2.090 2.351 2.419
BOTTLENECK .490 1.229 1.123 1.023

NOTETHATBOTTLENECKPROBLEMSAREAPPROXIMATELYONEHALFAS

DIFFICULTAS SUMPROBLEMS.

NOTEMINIMUMCOSTEFFECT.

SPARSEPROBLEMSCANBESOLVEDMUCHFASTER.

1000x 1000 SPARSEPROBLEMSCANBE SOLVEDINLESSTHAN

2 MINUTES.

MUCHBIGGERPROBLEMSHAVEBEENSOLVED

50,000x 50,000

SLIDE5
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The idea of computational complexity is in vogue among computer
science and OR practitioners. As noted on Slide 6, transportation and
network problems are among the easiest such problems since they are
polynomially bounded; that is, in the worst case the maximum number of
steps required to solve such a problem can be constrained by a bound
which is a polynomial function of the amount of input data needed.
Transportation problems are natural integer problems since they will

have integer solutions when the ai's and bj's are integers. For both
these reasons, these problems are important in applications.

THEREARESEVERALPOLYNOMIALLYBOUNDEDPRIMALALGORITHMSFOR

THESUMPROBLEM,

FORD-FULKERSONDUALMETHOD

BALINSKI-GOMORYPRIMALMETHOD

SRINIVASAN-THOMPSONCOSTOPERATORMETHOD

THESRINIVASAN-THOMPSON-SZWARZ-HAMMERALGORITHMCANBE

SHOWNTOBE POLYNOMIALLYBOUNDED,

THOMPSONHASA NEWRECURSIVEMETHODFORBOTHSUMAND

BOTTLENECKPROBLEMSWHICHISPOLYNOMIALLYBOUNDED,

ALSO,IFTHE AI'S AND Bj'S AREINTEGRALTHENA BASICPRIMAL

FEASIBLEINTEGERSOLUTIONWILLBEFOUNDBYTHESE

PRIMALALGORITHMS,THISISA NATURALINTEGERPROBLEM,

THENATURALINTEGERPROPERTYMAKESTHESEMODELSUSEFULFOR

APPLICATIONS,

SLIDE6
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Slide 7 shows a typical network application in the area of manpower
planning. Here there are three ranks and a maximum of five years of
organizational age. Separations from the organization are indicated by
upward slanting arrows, promotions by downward slanting arrows, and con-
tinuations in rank by horizontal arrows. The full model also has upper
bounds on flows in each of these arcs. Note that there is one source
node and one sink node (retirement), and all other nodes are retirement
nodes. This is fairly typical for a network application.

State version of the manpower model with R : 3 and T = 5. Upward slanting

arrows denote separations, horizontal arrows denote continuation in rank, and

downward slanting arrows denote promotions. The yearly number of new employees

is x0, the yearly number of retirements is XR, and the yearly separations

(sum of flows on all upward slantlng arrows) is Xs; we require xR + xS = xO.

SLIDE7
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Slide8 showsa fairlytypicalwarehouse(or factory)to market
applicationwhich is a straightforwardtransportationproblemapplica-
tion, Unfortunately,manysuch applicationsalso haveother constraints
whichare not transportationtypeconstraints.The singlesource
constraintat the bottomof the slide is one such. It imposesthe very
commonlyoccurringrequirementthatall the demandat a givenmarketbe
suppliedfrom a singlewarehouse. We discussmethodsfor imposingsuch
constraintsnext.

EXAMPLE2. WAREHOUSESTO MARKETS

M1 M2 ,,, MN

W1 Cll c12 ,., ClN A1

W2 c21 c22 ,,, C2N A2

WM CM1 CM2 ,,, CMN AM

B1 B2 ,,, BN

IFWE ADDOTHERCONSTRAINTSWE USUALLYDESTROYTHE NATURAL

INTEGERPROPERTY,

EXAMPLE: SINGLE(SOLE) SOURCECONSTRAINT

f.°Xlj : Bj

I,E,,ALLTHE DEMANDAT A MARKETMUSTBE SUPPLIEDFROMA

SINGLEWAREHOUSE,

SLIDE8
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Slide 9 gives a computational flow diagram of the Regret Heuristic
which (sometimes) finds good feasible solutions to single source problems.
Note that it contains a random choice element so that each time it is run
a (potentially) different solution is found. This heuristic is not guar-
anteed to get a feasible solution, but it usually does, and about half of
the time the feasible solution is also optimal.

SINGLESOURCEREGRETHEURISTIC

REGRETj= (SECOND SMALLEST ENTRY - SMALLEST ENTRY)j

IINITIALIZEI

CHOOSECOLUMN 'IHAVINGLARGESTREGRETI

1 I CHOOSEAT RANDOM

UPDATEI |AMONGTHESMALLESTCOSTS
COSTS II

_ ASSIGNEDy s __

RUNTHISPROGRAMSEVERAL(SAY10) TIMES:SAVEBEST

SOLUTIONFOUND,

SLIDE9
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In contrast to a heuristic code which can only produce feasible
solutions, an algorithm is a code which will, if it is run long enough,
produce an optimal soluti6n to a decision problem (when such an optimal
solution exists). Slides lO and II discuss some of the concepts needed
to implement a branch and bound algorithm for solving the single source
problem. On Slide lO, note that the first thing we do is to relax the
integer single source constraints to be just nonnegativity constraints.
The relaxed problem is an ordinary transportation problem whose solution
value gives a lower bound on the value of the unrelaxed problem. Usually,
the relaxed solution will not satisfy all the single source constraints;
variables which violate these constraints are called fractional variables.
We choose one such variable and branch; that is, we consider the two sub-
problemsin which the fractional variable is set either to zero or to the
total demand of the column it is in. We relax the remaining variables in
these two subproblems and solve them as transportationproblems to get
their lower bounds. This process is continued until we get either a
feasible solution which allows us to update the upper bound (UB), or else
we obtain a lower bound greater than an already achieved upper bound and
can terminate search on this branch of the search tree--the latter step
is also called fathoming. A typical search tree is shown in Slide II.

BRANCHANDBOUNDALGORITHM

RELAXTHESINGLESOURCECONSTRAINT

= TO XIj _ 0
xIJ 0

SOLVETHERESULTINGTRANSPORTATIONPROBLEM.ITSVALUE

GIVESA LOWERBOUNDONTHEVALUEOFTHESINGLE
SOURCEPROBLEM

FINDA COLUMNWITHA FRACTIONALVARIABLE,I,E.,

0 < <BjXIj

BRANCH:DEVELOPTHESEARCHTREE

SOLVEEACHTRANSPORTATIONPROBLEMTOGETLOWERBOUNDS(LB),

SLIDE10
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BRANCHANDBOUND(CONT)

WHENEVERLB_ UB FATHOM,I,E,,DON'TSEARCH

LOWERINTHETREE,

WHENEVERA FEASIBLESOLUTIONISFOUND(SATISFYING

SINGLESOURCECONDITIONS)WITHA BETTERBOUND

UPDATEUB

WfIENSEARCHISCOMPLETEHAVEOPTIMALSOLUTION

TYPICAL
SEARCH
TREE

X

OPTIMAL X X

X X FEASIBLE
FEASIBLE FATHOM

SLIDEii
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Slide 12 gives a LIFO (Last In First nut) or depth first branch and
bound algorithm for solving the single source transportation problem.
Note that it begins by finding a heuristic solution to give the initial
value of UB, the upper bound. Then the relaxed problem is solved. Then
a column having a fractional variable is selected and one of*the cells
having largest flow is selected; it is fixed in, that is, made to supply
the total demand. If the resulting solution is single source, we update
UB and backtrack, that is, go upward on the search tree. If it is not a
single source solution, we test to see if the value of the subproblem is
> UB to see if we can fathom. If we can fathom, we backtrack--otherwise
we choose another fractional variable and search deeper in the tree.
The computational procedure stops when we try to backtrack from the
initial node of the search tree.

LIFOBRANCHANDBOUNDALGORITHM

FORTHESINGLESOURCEPROBLEM

FINDHEURISTICSOLUTIONi
SETUB= HEURISTICVALUE,I

i

[SOLVERELAXEDPROBLEM,I
,_,.

CHOOSECOLUMNWITHFRACTIONALl

_ VARIABLEHAVINGLARGESTDEMANDI
="

CHOOSECELLINTHATCOLUMN1
IHAVINGLARGESTFLOW,FIX |
HALLCELLIN(MAKEALLOTHER|
ICOSTSINTHATCOLUMN- AND|
IRESOLVE), |

_ALUE-> UB_ NO .. _uu_,_._. YES _i UBI

| IBACKTRACK:L YES
_OUTLASTCELL _' ]. FIXEDIN?I

\ ITHATWASFIXEDIN]

_ _ST T_NNF_OP. BES AS!BLE
ISOLUTIONFOUNDISOPTIMAL

SLIDE12

182



As noted at the top of Slide 13, the forward and backtrack movements
in the search tree are actually performed by using cost operators which
are computationally inexpensive. Also shownthere are computation times
obtained recently by Nagelhout and Thompson. Note that the heuristic
frequently finds the optimum. Also note that solution times vary erratic-
ally depending on the size of the search tree. In one case, computation
was stopped because of excessive time. These are typical results for this
kind of problem.

MOVINGUPANDDOWNTHESEARCHTREE

IS DONEBYAPPLYINGCOSTOPERATORS,

A TYPEOFPARAMETRICPROGRAMMING.

COMPUTATIONALRESULTSFOR SINGLE-SOURCESUM PROBLEMS

NUMBEROF
SEARCH

HEURISTIC TREES TOTAL
M X N % ERROR CPUTIME NODES TIME (SECS)

100 x 100 0 2,11 505 23,88

100x 200 3,3 4,38 946 48.07

100 x 300 0 7,71 20 18,75

100 x 350 - 9,94 6749 7600

100 x 400 0 10,78 3 23,39

COMPUTATIONALTIMESFOR SINGLE-SOURCEBOTTLENECKPROBLEMS

NUMBEROF
HEURISTIC SEARCHTREE TOTAL

M X N GET OPTIMAL? NODES TIME(SECS)

100 x 100 No 46 19,1

100 x 150 No 9263 115,4

100 x 400 YES - 12,48

100 x 400 No 133 106

SLIDE13
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Slides 14 and 15 discuss the Travelling Salesman problem which can be
solved by similar procedures. The rubber band heuristic for the travelling
salesman proceeds as follow_. Choose any three cities and find their smallest
subtour; now choose any city omitted and try inserting it in between pairs
of cities on the subtour so far constructed; continue until a complete tour
is obtained. The relaxed problem is an assignment problem which, if solved,
will usually have loops or subtours. To develop a branch and bound code we
solve the relaxed (assignment) problem, select a smallest subtour, choose
an arc on that subtour and fix it out; now solve the new relaxed problem
and iterate until a feasible tour is found, then backtrack, etc. The rest
of the code is similar to that for the single source problem.

TRAVELLINGSALESMANPROBLEM

GIVEN N CITIESFINDA ROUTETHATGOES
THROUGHEACHCITYEXACTLYONCEAND
MINIMIZESTHETOTALMILEAGETRAVELLED
(OR,MINIMIZESTHEMAXIMUMINTERCITY
DISTANCE,)

HEURISTICSOLUTION: RUBBERBANDHEURISTIC,

PROBLEMRELAXATIONS:ASSIGNMENTPROBLEMOR

BOTTLENECKASSIGNMENTPROBLEM

RELAXEDPROBLEMHASSUBTOURS,

/
BRANCHINGRULE, CHOOSEA SMALLESTSUBTOURAND

BRANCHONSOMEARCINIT,

SLIDE14
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Slide 15 gives some computation times for sum and bottleneck travelling
salesman problems. Note that for the sum case, the total solution time
goes up rapidly with the number of cities, but the average time to the first
tour (which is usually within a few percent of the optimum) remains small.
The first tour found by the algorithm can be used as an improved heuristic
solution. The most amazing results are for the bottleneck travelling sales-
man problem; Smith and Thompson have solved such problems for up to 2,000
cities. The reason that this is possible is that the search trees remain
surprisingly small as noted at the bottom of Slide 15.

RANDOMLYGENERATEDASYMMETRICSUMPROBLEMSCOSTS(0-i00)

(SMITH-SRINIVASAN-THOMPSON,1977)

NO,CITIES 50 i00 150 180

AVE,TIME

TO OPTIMALITY 1,72 52,98 65,28 617,12

AVE,TIME

TO FIRSTTOUR ,6 5,2 9,0 23,00

TIMESAREMEASUREDON UNIVAC-II08,

FIRSTTOURSAREALWAYSWITHIN5% OF OPTIMUM
ANDUSUALLYMUCHCLOSER

BIVALENT(COSTS0-1)PROBLEMSWITH200CITIESSOLVED
IN LESSTHAN6 SECS.

RANDOMLYGENERATEDBOTTLENECKPROBLEMS
(SMITH-THOMPSON,1975)

NO.CITIES 200 500 iO00 1500 2000

AVE.TIME
TO OPTIMALITY 2.75 20.08 33.72 206.43 343.87

AVE.NO.OF
NODESIN 6.6 16.8 7 16 12
SEARCHTREE

i

SLIDE15
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The last major example to be discussed is the capacitated warehouse
location problem stated in Slide 16. Note that the xii variables are
as before, but the Yi variables take on only the integer values 1 if
warehouse i is open,°and 0 if it is closed. In the objective function
a fixed charge Fi is added when warehouse i is opened. The relaxed
problem here is obtained by just requiring Yi >9, i.e., nonnegativity.
We do not discuss further details of the branch and bound code.

CAPACITATEDWAREHOUSELOCATION

VOTERREDISTRICTING

PROBLEM

MINIMIZE{I_I J_J xIJ CIJ +x_I FIYI}

j_j xIj = AI YI

i_I XIj : Bj

J O WAREHOUSE I CLOSED
XIj _ 0 YI =

_1 WAREHOUSE I OPENED

PROBLEMRELAXATION

TRANSPORTATIONPROBLEM

1 N N+I

1 Cll ClN 0 AI

0 !
M CIM CMN _ AM

B1 BN BN+1

SLIDE16
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Slide 17 gives computational results obtained by Nagelhout and Thompson
on this problem. Note that the bottleneck problems are much easier than
the sum problems, since the bottleneck code has no failures while the sum
code failed to solve two sum objective problems, It is also true that the
variance of times is much less for the bottleneck than for the sum objective
problems.

The problems discussed so far are far from exhausting the applications
of network and transportation problems.

WAREHOUSELOCATIONPROBLEMS

SUM OBJECTIVE

SEARCH
SIZE TREENODES TIME(SECS)

15 x 50 35 3

25 x 50 500 30 (2FAILURES)

15 X 45 1000 35

BOTTLENECKOBJECTIVE

SEARCH
SIZE TREENODES TIME(SECS)

15 x 50 102 2,4

30 x 90 214 5,3

50 x 150 457 17,0

NOFAILURES

SLIDE17
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Slide 18 lists 8 other application areas which will be briefly discussed.
Also discussed are two other network models. The first is a network with '
gains in which the quantity of the good can increase or decrease as it flows•
along an arc. An example of an increase is: Suppose the commodity is
money and flowing on the arc means being on deposit in a savings account for
a period of time; the money can then be augmented by an interest payment,
An example of a decrease is: Suppose the quantity is electrical power flow-
ing in a wire; it can be decreased due tO power losses The final generali-
zation is to multi-commodity flows in which we consider several commodities
flowing on the same arc and competing for its capacity.

OTHERAPPLICATIONS

i. K-TOURTRAVELLINGSALESMAN

2, OPTIMALGROWTHPATHS

3. CASHMANAGEMENTMODEL

4, ELECTRICALPOWERDISTRIBUTION

5, ELECTRICALPOWERCAPACITYPLANNING

6, TRANSPORTATIONWITHSTOCHASTICDEMANDS

7, DECISIONCPM

8, CLUSTERANALYSIS

EXTENSIONS

1, NETWORKSWITHGAINS

2, MULTI-COMMODITYFLOWMODEL

SLIDE18
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Because of the interest expressed to me by various participants in the
subject of scheduling, I shall preface my talk with some introductory remarks
on this vibrant (and rather, infant) field. My objective is to give a brief
"state of the art" review.

Scheduling usually refers to the assignment of time intervals to the ex-
ecution of tasks. This is typically accomplished by assigning start times and
completion times to each task. Such assignment is subject to a variety of con-
straints (such as earliest ready times, precedence relations among tasks,
non-splitting limitations, machine (or processor) capacity bounds, etc.), and
is carried out to achieve a variety of objectives (relative to tardiness, flow
time, number of required processors, setup and/or inventory costs, etc.).

At the dawn of the activity, optimization was the call of the day.
Then, as the "easy" problems were exhausted - which occurred about the early
sixties - it became obvious that another approach was needed, and heuristic
schedulin 9 became the fashion, especially in the so-called "job shop " sched-
uling problems in which no discernable pattern of job movement could be estab-
lished. A typical endeavor would proceed as follows: the analyst first de-
fines the problem, then suggests a heuristic, then "tests" it on a variety of
problems of different parameters, and finally makes some statistical infer-
ences about the "goodness" of his heuristic. I usually refer to these proce-
dures as "unreliable heuristics" because their application guarantees no opti-
mum, and the abortion of the procedure at any point of time yields no bounds
on the error committed (= the difference between the best solution in hand and
the (unknown) optimum).

These heuristic approaches stand in sharp contrast to implicit enumer-
ation schemes (such as branch-and-bound procedures) that employ heuristics in
several of their phases but, if permitted to run to termination, will yield
the optimum.

I shall have more to say about heuristics in just a moment. Allow me
first to finish this chapter of the story.

While confronting progressively more "difficult" problems, analysts
noticed a strange phenomenon, namely, that the degree of "difficulty" seems to
change rather abruptly. A problem that is easily optimized for two machines
simply defies optimization for three machines under the very same criterion;
and another problem that is easily resolved (optimally) under one criterion
again defies solution under a miniscule (or seemingly miniscule) change in
criterion!

The "tour de force" in this region came in 1971 when the theory of NP-
completeness was born. This is neither the time nor the place to expound on
this intriguing and controversial theory. Suffice it here to say that some
scheduling problems (about 320 of them as of the moment, with additions almost
daily) have been proven to be NP-complete, and that the solution of any one of
them by an algorithm that runs in polynomial time (in the size of the input)
would signal the solution of all scheduling problems in the class NP. Since
several brilliant researchers have been trying their best to solve some of
these problems for a number of years with no success (the literature on the
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Traveling Salesman Problem should attest to this fact!), it seems highly
improbable that these difficult problems will ever be solved by a "decent"
algorithm.

This theory had two immediate impacts. First, it gave broad outline and
a taxonomy to an area which, up to that time, did not have any. Second, it
gave theoretical justification to the use of the above-mentioned, ignominious,
"unreliable heuristics." For now, since there is little hope of achieving the
optimum in "reasonable time," the field is left wide open to enterprising
heuristicians!

SCHEDULING:

OPTIMIZATION

HEURISTICS

-.-COMPLEXITYTHEORY

FIGURE1

I would like to mention three important points before leaving this
subject.

First, the combinatorial theory of complexity (and NP-completeness) is a
deep and important theory that helps us classify problems in the class NP. It
also says something about the asymptotic behavior of problems: a problem that
is known to be in the class NP-complete will require resources (time, computer
capacity, etc.) that expand at a rate that is not bounded by any finite-order
polynomial. But the theory gives us no clue to the solvability of small
problems -this information must be gathered empirically, and depends on
several local factors that include the type and size of the computer used, the
expertise of the programmer, etc.

Second, the theory of combinatorial complexity spawned interest in heur-
istics from another point of view. I promised you before that I shall return
to the subject of heuristics, and here I am! In particular, if a problem is
known to be NP-complete, then perhaps a "good" heuristic (that runs in pol_-
nomial time) is the most we can hope for. But how to measure the "goodness"
of a heuristic? Answer: by its worst case performance. Briefly, Heuristic A
is preferred to Heuristic B if the maximum (relative) deviation from the opti-
mumthat results from the use of A is smaller than that of B. This criterion
has two stri, kes against it: it is difficult to determine the "worst case per-
formance" analytically, and, even if it were easily determinable, the criter-
ion is too pessimistic. This latter objection is the age-old comment levied
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against the min-max loss criterion in classical decision theory. And it gave
rise to a criterion that is based on the probabilistic behavior of the heuris-
tic. Research in this area is still in its infancy and, therefore, I shall
say no more about it.

Third, I certainly do not wish to leave the impression that the theory
(of combinatorial complexity) is complete or that it answers all the questions
asked. Far from it; the theory itself is in a feverish state of development,
since the space of NP itself is not completely mapped out, let alone problems
that are outside the space NP! On the other hand, everyday problems in sched-
uling have to be solved in some fashion, optimally or otherwise, and the
theory of NP-completeness offers little help in this regard.

To sum up, scheduling at the practical level is forging ahead with
heuristics and approximate procedures most of the time, and at the theoretical
level with research in optimizing procedures for problems that have not yet
been classified as NP-complete, as well as with research in completing the
taxonomy of the field.

APPROXIMATION:

MEETPRE-SPECIFIED

ERROR

WORSTCASEPERFORMANCE:

(HEURISTIC)

PROBABILISTICBEHAVIOR

FIGURE 2

With almost half of my allocated time already gone, I would like now to
turn to the original topic of my talk which is Sequential Decision
Processes.

I would like to follow the outline exhibited in Figure 3, with special
emphasis on needed research.
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SEQUENTIALDECISION PROCESSES:SERIAL

DP FORMALISM

STATE VECTOR "EXPLOSION"

MULTIVARIATE OPTIMIZATION

APPROXIMATION: 0RTHOG, PLYN,

SPLINES

NoN-SERIAL SYSTEMS

INFINITE HORIZON

MARKOV AND SEMI-MARKOV PROCESSES

FIGURE3

The basic mathematical tool of analysis is dynamic programming, which
was originally developed for,"serial'_ systems as shown in Figure 4, but which
has since been developed to encompassdiverging, converging, feedforward, and
feedback branches, as shown in Figure 5. . . ..... _'

The notation in these diagrams is as shown in the corner: each stage of
the p_ocess has an input state s4 that is chosen from somedecis.ion space D3,
and a "reward" r_, which may notVbe a reward at all but someexcretion or v
product that bea_s no relation to the future states or decisions of the sys-
tem, though it may be combined i_p somefashion with other "rewards" of
previousor subsequent S_ages toyield the global_'reward. '' ...._ ..... ' _....

l.woul,dlike to point.out that the model depicted_in.%hese d_agrams is
quite general, and can easily accommodatemany characteristics-that are pecul-
iar to any specific application. For one example, from a dimensional point
of view, there need not be (and, in reality, it rarely happens that there is)
any uniformity between the state, decision or reward. For another example,
uncertainty is easily (from a conceptual.point of view) accommodatedin all
three parameters: state, decision, and reward.
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STRICTLYSERIAL PROCESS

d. eD.

S. j _

sj_ sj

R

fj(sj) -- Opt {rj(sj, dj) o fj-1 (_)}

dj e Dj s"_-- tj (sj, dj)

FIGURE4

_ _CONVER(;IN(;
N N-I N-2 N-3 4 3 2 I

FIGURE5
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General as it may be, the model suffers from some important deficiencies
that detract from its utility.

The first and most widely known is the so-called "curse of dimensional-
ity" of the state vector; to wit, if the state is represented by a vector of
dimensionality n > 4, then obtaining numerical answers becomes well-nigh
impossible. The_are two approaches that have been proposed as a means of
resolution of this problem:

1. In discrete spaces, group (or "coagulate") subspaces into
representative points and investigate only those points.

2. In continuous spaces, use orthogonal polynomials (which require, for
their definition, an infinitesimalproportion of points at which the
optimum is determined),or splines (up to cubic order).

The most serious problem attached to both approaches is that of error
propagation. This is inherent in the very nature of the DP approach: the
determination of the optimum of the N-stage problem involves the optimum of
the (N-1)-stage problem; hence, if the latter is only approximately known, so
is the former. But, since the N-stage optimum is evaluated only at a few
points and is approximate anywhere between these points, it is easy to see
how the error in determining the value of the optimum at these points is
compounded stage after stage.

203



PROBLEMS

i, CURSE OF DIMENSIONALITY OF STATE V_CTOR

A, DISCRETE SPACE:

GROUP OR "COAGULATE" INTO SUBSETS

B, CONTINUOUS SPACES:

USE ORTHOGONAL POLYNOMIALS

USE SPLINES

PROBLEM OF ERROR PROPAGATION

FIGURE 6
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Another nasty problem facing the analyst is that of simultaneous

optimization over several variables, as illustrated by Fj(Sj) in Figure 7,

Now, this runs counter to the grain of DP which insists on "breaking
up" the search over m-dimensional spaces into m searches each in one dimension
only. Unfortunately, the device used to accomplish this end increases the
dimensionality of the state vector, and we are back to the "curse of
dimensionality" discussed before!

PROBLEMS(CONT'D)

2, SIMULTANEOUS OPTIMIZATION OVER SEVERAL VARIABLES

Fj(Sj) = OPT IRj (Sj;Djl,,,,DiM)OF:i (_j)l
DjI,,,,,DjM ' J-z I

_j = Tj(Sj;DjI,,,,,DjM)

EXAMPLE 0PT'L PROJECT "COMPRESSION"

AII- ACTIVITY I HAS: DURATION
COST

RELIABILITY

RESOURCE CONSUMPTION

GI: DIM! (AI)----.-DIM2(AI)

DURATION YI = GI(XI)

_INVESTMENT

PRECEDENCE

FIGURE 7
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An excellent example of such eventualities can be found in the problem
of "optimal project compression." I would like to spend a few minutes on this
example, because it also ties our topic to another subject that is relevant to
NASAactivities; namely, Activity Networks.

Now, a project is a collection of activities that occur over time and
consume resources, and are related by precedence. The duration Yi of activity
i is a function of the amount of resources utilized by the activity, written
as Yi(xi}, where xi is the "investment" in the resources. The function gi may
assume any shape, as shown in the top diagram of Figure 8, or it may be dis-
continuous as shown in the bottom diagram. If it assumes the latter shape,
the following DP approach has been proposed for the optimal project
"compression" under a specified budget.

POSSIBLEFORMSOF G_

YU _ CONCAVE

I
YE I I _"

XL. Xu X[

I
YU "-"_ _

O"

0 _'

YE
I I

XL XU

FIGURE 8
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To render the approach clear, I shall illustrate it by reference to the
network of Figure 9, in which there are six activities with the precedence
shown. The functional equation of DP is also shown in Figure 9, and the DP
iterative scheme follows in Figures 9 and 10. Everything works fine because
the network is completely d.ecomposable.The logic of the iterative scheme is
depicted in Figure ll; but suppose it is not, such asin the miniscule networkof
Figure 12. A "straightforward"applicati-6_-ofthe DP formalism will lead to
the simultaneous optimizationover x3 and xs! Now, we must either perform
this optimization,or else be obliged to "condition" on one of the decision
variables; that is, add it to the state vector as exhibited in Figures 12 and
13. The logic of this process cannot be exhibited in an elegant (and simple)
manner as was done in the previous Figure 11.

TOTALAVAILABLEFUNDS K

MINIMIZE TOTAL PROJECT DURATION - MINIMIZE LONGEST PATH

MIN MAX IY1 + Y2 + Y5 + Y6 i YI + Y3 + Y5+ Y6j YI+ Y4+ Y6}x

= MIN IYz+ Y6+ MAX [Y2+ Y5 $ Y3+ Y5 ; Y4]}
X

M_N {Yz+Y6+ MAX [Ys+MAX (Y2; Y3) ; Y4]I

DPFORMALISM

FI(K) = MIN G3(X3) ; O_K _ K _ K

o_x3_ K

F.2(K) = MIN MAX{ G2(X2) ; FI(K - X2) }; O_K_K
o_x2_K

FIGURE9
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F6(K)= MIN {GI(X 1) + F5(K-X1) },
x1

NOTE THAT NUMBER OF DP STAGES EQUALS NUMBER OF ACTIVITIES

COMPLETELY DECOMPOSABLE AN,

FIGURE10

DP MODEL OF "COMPLETELY
DECOMPOSABLE" ACTIVITY NETWORK

XI X6 X4 X5

K ' K-XI K-XI-X6 ' K-X,-X_-X. r K-XI-X6-X4-X5

"--_[_--_ _'_--_ _) J u_- _ _.]X2K.XI_X6.X4_Xs_X 2

_.-_.z_ /x
I i "_-_×.

Y1 Y6 {4 Y5 Y2 _ J=

: R
FIGUREII
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A2

I " 1MINMAX Y1+ Y5 ; Y2+ Y3+ Y5_ Y2+ Y4X

= MINMAX IY1+Y5; Y2 + MAXIY3+Y5; Y41 1X

TOTALAVAILABLEFUNDS= K

FIX X5 _ [0,K ]

F1 (K,X5) =M_ IG3(X3)+X3 ] of K_ K

F2 (K,X5)= MINx6MAXIG4(X4),F1 (K- X4 - XS'X3)1
O_K_K

FIGURE 12
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F3 (K'X5)=IMINi MAX GII(XI)+;{5;G2 (X2)+

F2 (K- X1 - X2 - _.5'X5) I

1:3(K) = MIN F3 (K,X5)
X5

ALTERNATIVEAPPROACH:FIX X2 INSTAGE3

F3 (K,X5'X2) = MINMAXIG1 (X1) + Y5 ; Y2 +
X1

F2 (K- X1- X2 - X5'X5)I

F3 (K'X5)- MIN F3 (K,X5'X2)
X2

_ _5)F3 (K) = MIN F3 (K,
X5

FIGURE i3

21 0



So far, I have stated (and illustrated) a problem, but have not yet
indicated any approach for its resolution. Since I am running out of time,
let me just mention two avenues of attack that have been proposed:

I. Utilize concepts of dominance through bounding in the DP formalism
to reduce the amount of computing required. Basically, this
advocates the "marrying" of DP recursion and Branch-and-Bound
methodology.

2. Relax the requirement of strict optimality in the search over the
state space, and be content with a tolerable error.

Suffice it to say here that both approaches are still in their infancy;
a great deal of work has to be done to place them on sound footings.

CONCEPTSOFDOMINANCETHROUGHBOUNDING:

MARRYDP & B & B

RELAXATIONOFSTRICTOPTIMALITYIN

SEARCHOVERSTATESPACE

FIGURE 14
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I want to give a sampling of model building and systems related to
natural, human understanding. I shall cover four topics of about 15 min.
each. The topics are shown here going from the most theoretical to the
most practical. Collectigely they draw on the same ideas.

The needs of further development are given at the bottom.

WORDEXPERTPARSING

, SEMI-AUTOMATICDIGITALDESIGN

, CAUSALMODELINGANDMONITORING

e ZMOB

NEED: e MODELSOFNL UNDERSTANDING

• MODELSOFHUMANUNDERSTANDING

OF CAUSALITY

• MODELSOFGENERALKNOWLEDGESTORAGE

, GOODREAL-TIMEDISPLAY-ORIENTED

HUMANINTERFACES

A few years ago, the most important issue to us was that of size of
ambiguity and meaning of words. Somehow a fundamental notion seems to
select the correct meaning of a word in a certain context. Every single
word has usually many intepretations. For instance, we have here
the verb "to take." To cope with this kind of complexity, we came up
with the word "expert parser."
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3ome eansms of the verb "to take"

1 John took it a|ey,
2 John took a break,
} John took • look,

John took a _Ivo.
5 John took it likl I man.
6 John took five.
? 3ohn took a drive.
8 John took out the garbage.
9 john got the food to take out.
10 John took in a stranger.
11 john took her in his acms.

12 John took away the gun.
1} John took her for an idiot.
l& John took a latter.
15 .John took to the road,
16 John took back the book,
17 john took her into hie confidence.
18 John took leave of Hery.
19 John took a leave of absence.
20 _ohn took two aspirins.
21 John took a flu shot,
22 John took her by the hand,
2_ John took her hand,
2k John took everything but harmed no one.
25 John took notes in philosophy.
26 John took steno.
2? John took a dip.
28 The rent payment took John under.
29 That took • load off John.
_0 John took I left,
31 John took off his clothes,
3Z John took off for Hera.

]_ John took off for the bell game,
3& John took the ¢eg._..e_one.
35 John only took en ounce.
36 3ohn took • chance.
37 John took • leak.

36 John took grief from _ary.
39 John took over the department.
kO John took down the poster.
_1 _ohn took Mary for a ride.
k2 _ohn took the sucker For a ride.
&3 John took down the message.
_ _ohn took him to the mat.

_5 John took back Mary.
_6 John took • take.
_? John took after hie father.
;8 john took upon the occasion to say a feu words.
_9 John took Hery around town.
50 John took his time.
51 John took care of Mary,
52 John took e nap.
53 3ohn took 8 picture of Hary.
5& John took advice from Mary.
55 John took Marv ae an example,
56 John took it out on Mary.
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Here we have a discrimination tree or sense net for "take." This
approach is very radical from what was being done before. Here the
notion is: make every word by the language its own independent program.
Instead of writing systems of rules, we are saying be more anarchistic
about it but go the route of a highly distributed collection of experts.
So we take the word "take" and think of all the possible meanings of the
verb and put them into a construction called a word expert. If you have
a sentence, you call up all your word experts from a disk which are LISP
coroutines, then, on "go,"they talk to each other independently, and form
clusters, etc. until the sentence is parsed. As an example, we got 13 of
us lined up in a ro_gave everyone a 3x5 card with a word, and said "go."
In about 20 minutes, the given sentence was parsed even though we had
many ambiguous words in the sentence. The sentence was"The sudden
death of the chimney sweeps threw the town in a state of shock." All
our feelings about making every word an expert were enhanced. One can
think of a lot of practical spin-offs.
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WORDEXPERTPARSING

Traditional Word Expert
Parser Parser

I TEXT _JTEXT r_

I i I ...
'r ,,,

Rule-Apply i no expert expert "" expert
Interpreter

Relaxation of

Distributed Experts

L lparse

parse

Much of what has been said is on this slide. There are also other
experts for punctuation symbols, which becomerather important at times
because they have semantic content.



This is an expert in LISP code for "pit," These are decision-en-
coded tree logics. We compile such things in CONNIVER style LISP code.
We need fairly elaborate coroutine control.

{sex.re p_t
(_COU_S (PP sometimes nl}

(ACT sometimes n2}}
(staftnode hE)
(network

(hA ((le_pect_ '(group FP)) el)
((Iconcept (slaVic) 'PP) nS)
(t (bsusp-until-true '(Izunp (kr|qhtv))) nO})

(nl (t (6PP-constzuct) n3))
(n2 ((6suspec_p '(class LOCATIOil}} n_)

((leus_ectp '(class VOIAqE)) n))
((&suepectp '(cites tO(X}}} _4)
(t (6cusp-until-true 'el hal)

(n3 (t (reface (class volume)}'
(estate (vol_me-tyl_ holo-in-qzeend}}
(JPP-close)
(Storm/note)))

(n4 (t (6store (class FOOD))
(tarots (foo_-type ffBUIT))
(actors (fruitotype P&RT-Off))
(6PP-close)
(stecminate))}

(mS (t (6suap-untll-true 'ell}))))

!tespert deep
(qrouga (PA always nil)
(8tactnode nB)
(network
(nO (t (tPP-construct) el}}
(el ((Sauspecto '(class LOCATION})n2)

((Iterminatedm (i¢iqhtw)} n3}
((&ron_ (Izi_htw)} n4)
(t (Isuap-until-true '(Stump (Sr/qhtv}}} el}}

(n2 (t (estate (site I_RGE))
(estate (size-4ieenalon DBPIlt))
(_const_sin '(class VOLUNE))
(_termlnste)))

(n3 ((6descriptor_ '(class HUb.AN))
(_stote (lflteltectual-levet fllGR))
('terminate))

((_escriptorp '(class VOLUHE}} n_)
(_ (6s.sp-until-true 'nil)))

(n4 (t (&constrain '(class VOLC,qE} '(C1888 HOtR_N))
(_sOsn-until-troe

'(Ster_inate_p (ir/ghtw}}} nl)}))

texpert in
(qroups (T sometlmes n|)

(LOC sometimes nl))
(locals PP-db class}
(stectnode nl)
(network
(nl (t (6T-LOC-constcuct)

(6expectori_htc '(class SITUATIOIO)}
(_sump-unttl-posted '(control-state UNKNOWN)) n2))

(n2 (t (;_-LOC-resumet
(cond ((co cl08s 'tlme} (&Y-LOC-ty_e class}}

(t (&T-LOC-tyne 'location})}

(&terminste))))}
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We do not have a monster system at this time. The system has about
twenty words and each word has about five senses at this time. The most
elaborate sentence we have parsed is "The deep philosopher throws the
peach pit into the deep pit." It has a lot of interesting ambiguities in
it. The following two slides show how the parsing is done.

'T,L EXtWG_D4

(PPOG <$$NOTED *WD* *DB* GROUPS>
<G$BINDALL>
<GSGOI S_LAB>

$$START <SETQ *WP* 'WORE4>
<SETQ aDS m NIL)
<SETQ GNODPS '_PP SOM_I'I_tS N_) (ACT SOMETIMES N2))>

N_ <ITRACE-MSG "muDs> AT NODal • 'NO>
<COND [<&EXPECTP '(GROfJP PP)> <GO NI>]

[<&CONCEPT (&L£FTC) 'PP> <GO _5>]
IT <GO $$LAS2>]>

$$LAR2 <tQUEUE-EXPEPT-SU_PEND (tRUWTIRE (&RUNP (&RIGHTW))) 'WOE04
>

<UNFLAG 'WORD4 'SUSPENDED>
<tPEMPROP-BB 'WORD4 'STATUS e-OLD-STATUS>
<FLAG '_ORO4 'SUSPENDED>
<tPUT-B_ 'WORD4 'STATUS 'SUSPZNDED>
<NOTE 'SUSPENDED)
<tTBACE-MSG 'SUSPENDED " EIPEIITI " 'WORD4>
<AU-REVOIR $$LAB3>

SSLAB3 <tFECPEN-D8 *DR e)
<GO Ng>

IJ] <DO <%TR&CE-MSG "''"') AT NODE! " 'NI>
<COND iT <&PP-CONSTR_T>

<GO N2H >>
N2 <tT_AC_-MSG •mmom) AT NO_I • oN2>

<COND [<&SUSPECTP '(CLASS LOCATION)) <GO N$>]
[<&SUSPECTP '(CLASS VOLUME)> <GO N3>]
i<_USPECTP '(CLASS FOOD)> <GO _4>]
IT <GO $$LAB5>]>

_$LA_5 <t0UEUE-CXFERT-SUSF_ND (tRUNTIME T) 'WORD4>
<U_PL_G '_:OPD4 'SUSPENDED)
<VRLMPROV-BB 'WORD4 'STATgS '-OLD-STATUS>
<FLAG 'WORD4 'SUSPENDED)
<.PUT-02 'WORD4 'STATUS 'SUSPENDED)
<,JUTE 'SUSPENL)£D>
<tT_ACE-P1SC 'SUSP£H_D • EXPERT, " 'WORE4>
<_U-£LVOI8 _$L&B6)

$$LA_5 <tPEOP£t_-D_ *O_*>
<CO N2)

I!3 <DO <qIRACE-t_SG "----> AT NODEs " 'N3>
<COND IT <&STOPE (CLASS VOLUME)>

<&STO_L, (VOLUME-TYPE HOLE-IN-GROUND)>
<&PP-CLOSE)
<(D_FLAG 'WORD4 'SUSPENDED) (%REHPROP-BB '
_OPO4 'STATUS '-OLD-STATUS) (FLAG '_OFD4 '
TEPHINATED) (|PUT-BE 'WORD4 'STATUS '
TERHIP:ATED) (NOTE 'TERMINATED) (tTRAC_-MSG '
T_R_IMATED • EXPERTs • '_ORD4) (ADIEO)>]>>

:_4 <P_ <_TRACL-HSG "====> AT NODE! " 'N4>
<COtlD [T <&STO_ (CLASS FOOD)>

<&STORK (FOOD-TYPE F_UIT)>
<&STORE (FRUIT-TYPE PART-OF)>
<&PP-CLOSE>
<(UNFLAG 'WOSD4 'SUSPENDED) (tREMPROP-BB '
_ORD4 'STATUS '-OLD-STATUS) (FLAG 'WORD4 '
TEH_;I_AT£D) (tPUT-88 'WORD4 'STATUS '
TERMINATED) (NOTE 'TERMINATED) (%TRACE-MSG '
T_RMIN&T_D " EXP_RT: " 'WORD4) (ADIEU)>]>>

N5 <%TRACE-HSG "====> AT NODEs " 'NS>
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ZVAL: (%SCAN 'CONCEP_I) The Iscan function lists the
(*PICTU_* CONCEPT2) facts in a concept bin-- this
(*CONCEPT--CLAS_* TIME) concept bin contains the three(*CONCEPT-TYPE SETTING) items common to settln6 bins.

VALUE: CONCEFTI

EVAL: (ZSCAN 'CONCEPT2)

This picture bin . contains a
*DESCRIPTOR* (TT?_ IU_ICE) I_RD3) description of the morning.
*DSCR:PTOR**DESCR PTOR*DETE ZN^TE'(CLASS i,,cZudl.,-ch.c it :. a decen.n..range (_i_less duration) of
*CONCEPT-CLASS* T IP/E) t/me.
*CONCEPT-TYPE* PICTURE)

VALUE: CONCEPT2

Execution of "the deep p£t" is an interesti_8 ezsopla of the coaplexit7

of control flov in the Word Expert Parser. Since both "deep" and "pit" have

more th_n a single sense (implemented!), they must ezchanJe pieces of

information about Chesselves before either can succeed at deCeminin$ its

sense •

EVAL: (ZSENTENCE: TI_ DEEP PIT)
CONTROL STATE: NL_-SENTENCE
VALUE: T

EVAL: (ZPARSE)

NEW SENTENCE: THE DEEP PIT
WORD NAHES: WORDI WORJ)2 WORD3

EXECUTINC 'THE' EXPERT: MORDI
*****TRANSLATING SENSE EXPERT FOR MORDI

**EXPERT COtIPILE TIME: 56 The "the" expert runs as slvaysl**OFTIMIZATION TIME: 1237
*****EXPERT FOR WORDI TRANSLATED
-=='-> AT NODE: NI
NEW CONCEPT: CONCEPTI TYPE: PICTURE
CONTROL STATE : PICTURE-CONSTRUCTION
EXPERT TERMINATED: WOEDI

EXECUTINC 'DEEP' EXPERT: WORD2 The "deep" expert runs until ic
*'***TRANSLATING SENSE EXPERT FOR WORD2 needs to Know someChLn_ of the

**EXPERT COMPILE TIME: 02_I expert to its rlght. It _uspends**OPTIMIZATION TIME: 58 execution until "_,tc" has
*****EXPERT FOR WORD2 TRANSLATED suspended or cer,_Inared. It
-'--> AT NODE: NO makes no o_pectac_nns or
----_ AT NODE: Nl constralnts, _iv/n_ "VtC" the
EXPERT SUSPENDED: WORD2 freedom to be an:;thln_.
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EXECUTING 'PIT' EXPERT: WORD3 "Pit" now r_e, but cannot
*****TRANSLATING SENSE EXPEIT FOR WO_D3 dimcTlminste bet_men "fruit pSt"
**EXPERT COMPILE TIME: 307 and "hole in the ground'. It
**OPTIMIZATION TIM[: 5852 muapende itself umEll sosethin8

"-"-> AT NODE: NI "deep is reaumkened. '
----> AT NODE: N2

**RESTAIT DEMON FOR WOAD2 1_IGGEUD:
* (*EXPERT-STA_* _WJ)3 S(_P|NDED) The "deep" expert now 8e?ej *Z
**EXPEIIT FOe WOltD2 QU_b YIIST gave the vord to my ttlht 8

EXPERT SUSPENDED: WORD3 chance to be what it teated _it had no _dee. N_ I'll
EXECUTING DEEP' EXPERT: WOLD2 constrain it to be semethlnt,"---> AT NODE: NI I can describe -- S hol_ ii_
"---> AT NODE: N4 sround or a pereem. A_ thil

**R_START DEMON FOR WORD3 TRIC_*ERED: point, the re_ore, deep
* (*EX]PERT-STATE* _)1_2 SUSPENDED) constrains pit aed euelmMe
**EXPERT FOR WORD3 QUEUED LAST itself until pit terminates.

EXPERT SUSPENDED: WOEDZ Since "pit" was wmitln8 for
anythlns, it now q_eues up.

EXECUTING 'PIT' EXPERT: WORD3
,,,,,,-->AT NODE: N2 "Pit" now runs for the last t_JW,

---> AT NODE: N3 l t, constraints focusln8 onplth_CONTROL STATE: UNKNO_ discrimination. Since
**RESTART DEMONFOR WORD2 TRIGt'_RED: terulnate8, the restart demon for
* (*EXPERT-STATE* WORD3 TE_ANATED) "deep" Is triggered, and "deep"
**EXPERT FOR WORD2 9UEUED FIRST is queued.

EXPERT TERMINATED: WeirD3

finally, "deep" rune for the last
EXECL_ING 'DEEP' EXPERT: W_D2 time, termlnattn8 wt_h the sense
"---> AT NODE: NI of . large voluae . althemBh
--.--> AT NODE: N3 "pit tried to clou its concept
----> AT NODE: N2 bin, "deep still had not
EXPERT TERMINATED: WORD2 terminated, and so a de.on vae
CONCEPT CLOSED: CONCEPTI _lanted to close the concept vh.e_t

deep finished Thus, the
VALUE: T picture concept is now closed.

EVAL: (%SCAN 'CONCEPTI)

*DESCRIFTOR* (SIZE-DIHENSION DEFTR) WORD2)
*DESCRIPTOR* (SIZE LARGE) WORD2)
*DESCRIPTOR* (VOLOME-TYPE BOLE-IN-GROUND) WORD3)
*DESCRIPTOR* (CLASS VOLUME)WO_tD3) . .
*DESCRIPTOR* DETERMINATE WORDI) The concept bin for the deep
*CONCEPT-CLASS* VOLUME) pit contains a description of a
*CONCEPT-TYPE* PICTURE) large, volume of air in the

srot_G.
VALUE: CONCEPT1

Summary and conclusions.- We have mapped out a theory of organization and control
for a meaning-based language understanding system. In this theory, words, rather

than rules, are the units of knowledge, and assume the form of procedur_ enti-
ties which execute as generator-like coroutines. Parsing a sentence in context
demands a control environment in which these experts can ask questions of each

other, forward hints and suggestions to each other, and suspend. Our theory is
a cognitive theory of both language representation and parser control.
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We are using this type of work in approaching the problems of the
second topic I would like to discuss; that is, SADDfor semi-automatic
digital design.

We try to provide a semi-informed digital designer with a scratch
pad capability in the initial phases of the design.

I like to show this as an application of the notion word expert
parser.

VIRTUESOFSENSENETPARSING

1, ALLOWSMODULARGROWTHOF LANGUAGEKNOWLEDGE(NUMEROUSRESEARCHERS

CAN MAKERELATIVELY INDEPENDENTCONTRIBUTIONS)

2, KNOWLEDGEIS GLOBALLYDISTRIBUTED_ LOCALLYCONCENTRATED(IT IS

RELATIVELY TRANSPARENT_UNLIKE GRAMMAR'S)

3, KNOWLEDGEIS REDUNDANT(COMPREHENSIONNEVERFAILS TOTALLY)

q, KNOWLEDGEINTERACTSMODULARLY_USING FAIRLY SIMPLE CONTROLSTRUCTURES

5, SENSENETSSUGGESTFORMATFOR LEARNINGLANGUAGE(THEY PROVIDESTRUCTURES

THAT ARE RELATIVELY EASYTO AUGMENT)

6, IT LEADSTO SOMEDIRECT IDEAS ABOUTCONTEXTUALINTERACTIONAMONGWORDS

(CONSTP_AINTFORWARDING,MODELCONTEXTINTERACTION)

7, ITS FORMDOESNOT CONSTRAINONE'S AMBITIONS AS MUCHAS GRAMMAR'S(IT IS

EASIER TO INTERACTWITH OTHERMODELCOMPONENTS)

8, IT IS EASILY SEGMENTABLE(SENSENETS CANBE STOREDON RANDOMACCESS

MEDIUM_ASSEMBLEDAS REQUIRED)

9, IT ACCOUNTSFORMANYIDIOSYNCRASIESOF LANGUAGEUNDERA UNIFORMDATA

STRUCTURE(WORD-SPECIFICCONSTRUCTIONSARE NATURALTO ENCODE)

10, IT HAS SOMEINTUITIVE APPEALAS BEING CLOSETO HOWHUMANS(WELL, OK,,,

HOWI) PARSEAND LEARN LANGUAGE
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We described the circuit by these 41 sentences which are the input to
our current model. We spell everything out. The model has about 9 con-
ceptual categories; e.g., it knows about clocks, latches, buffering,
counting, combinational circuits. We call these things frames, a la Minsky.

Gradually, we get an overall framework.

SCR_ENSPLITTERDESCRIPTION

I. THE DISP_Y C_CTER COUNTER (DCC)COUNTSPROM e TO 3S19.
THE_C-BASE R_GISTER (DCCB_)nESETSDURIN_VERTICALS_N_ (VS_NZ).
THE SCANLINE COUSTER(SLC) COU:_TSPROMis TO 4.

4" THE S_ INCOME.S WHEN THE HOriZONTALBLAN_(SHANK) ENDS.
s. Tee SLC _SeTS WHBNW_mt P_m.
_. wags THECOUNTOP THE S_ EOUA_ 4, THE COtmTOF THE tX:CCA_URED-ZU

THE mAD oF T.E _CSR WHENSHANK BEGINS.
7. THE DCC CAPTURED-PROM TEE DCCSR WHEN HBLANK BEGINS.
8. EACH-TIME THE COUNT OF THE PIXEL COUNTER {PC} EQUALS 5 ENDS, THE DCC

INCREMENTS.

9. THE PIXEL COUNTER (PC) COUNTS PROM B TO 5,
•1|. THE PC INCREMENTS EACH-TIME THE OUTPUT OF TEE WASTER CLOCK (MC) PALLS.
11. A COUNT OF THE PIXEL COUNTER (PC) EQUAL TO 5 CALLED L_STCOL.
12, THE COUNT OF THE PC RESETS TO 0 DURING HBLANK.
13. THE COUNT OF THE DCC CAPTURED-IN THE LOW-ORDER BITS OF THE ADDRESS OF

THE DISPLAY ME_,ORY (DM).
/4, THE MASTER CLOCK {MC) DUTY-CYCLE IS SQUARE-WAVE.
15, T_E MC PREOUENCY IS lgMHZ,
Ig. T_Z KkSTER CLOCK (MC) DIVIDED-BY 8 AND CAPTURED-IN THE CLOCKED-INPUT OP

THE SYNC-GENERATOR (SG).
17. THE SYNC-GENERATOP (SG) PRODUCES FIELD.
15. THE SG PRODUCES HBLANK.
19. THE SG PRODUCES VSLANK.
211. T_E SG PRODUCES CSYNC.
21. THE 2 LOW-ORDER BITS OF THE R'_D OF THE SLC SENT-TO LINE 2 AND LINE 3

OF THE ADDRESS OF THE CHARACTER GENERATOR MEMORY (CG).
"_ FIELD SENT-TO LINE i OF THE ADDRESS OF CG.

• CG CHIP IS EPROM-27|8.

24. THE FETCHED CHARACTER REGISTER (FCL) WIDTH IS 8.
25. THE READ OF THE DN LATCHED-INTO THE FCL EACH-TIME LASTCOL FALLS.
26. THE VALUE OF THE PCL SENT-TO THE HIGH-ORDER 7 LINES OF THE ADDRESS OF

THE CG.
27. THE 5 LOW-ORDER LINES OF THE READ OF THE CHARACTER GENERATOR MEMORY

(CG) LOADED-INTO THE SHIFTER (SR) WHEN LASTCOL FALLS AND WHEN THE LEFT
MARGIN SUPPRESSOR SWITCH (LMS} IS OFF.

28. BIT 6 OF THE LOAD OF THE SR LOADED-WITH 8 WHEN LASTCOL FALLS AND WHEN
THE _S IS OFF.

2%. TEE LMS TURNED-ON BY BBLAN_.
3|, THE L_S TURNED-OFF WHEN LASTCOL PALLS.
31. THE DISPLAY MEMORY (DM) WORDS ARE 4e96.
32. THE DM WORD-WIDTH IS 8.
33, THE RO6T ADDRESS BUSS (HSA) SENT-TO THE LOW-ORDER ADDRESS OF THE DM

EITHER WHEN A MEMORY READ REQUEST (MR) OCCURS OR WHEN A MEMORY WRITE

REQUEST (WR) OCCURS.
34. THE O_JTPUT VIDEO (VID) OF THE SR IS-INVERTED WHEN FIGURE GROUND LOGIC

(FGL) IS ON TO-BECOME PVID.
35. THE FVID SUPPRESSED EITHER BY THE OUTPUT OF THE WINK CLOCK (WC) OR BY

SUPPRESSOR LOGIC (SL) TO-BECOME OUTVID.
36. OUTVID SUPPRESSED EITHER BY HHLANK OR BY VBLANK TO-BECOME TVVID.
37. THE TWID SENT-TO THE TV INTERFACE LOGIC {TIL).
38. THE PGL LOADED-FROM THE HIGH-ORDER BIT OF THE FCL EACH-TIME LASTCOL

PALLS AND WHEN LMS IS ON.
THE WC DUTY-CYCLE IS SQUARE-WAVE.

4m. THE WC FREQUENCY IS |.SHE.
41. THE SL ENABLED EITHER BY A MR OR BY MW, AND DELAYED-FOR 3 LASTCOL

PERIODS.
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DESIGNOVERVIEW

. SPECIFICATIONACQUISITION

. SPECIFICATIONDEDUCTION

. CIRCUITSELECTION

. CIRCUITIMPLEMENTATION

. CIRCUITSIMULATION

To give an example of how SADD works, the parser is a very abbreviated
work of "expert parser." All individual words are represented by proce-
dures. The sentence G1..... builds the small data base GI-G25.

The following slides show the kinds of layouts that get constructed.
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PA RS ING

INITIAL SENTENCE

WREN THE COUNT OF THE SLC EOUALS 4, THE COUNT OF THE DCC
CAPTURED-IN THE LOAD OF THE DCC-BASE REGISTER (DCCBR)

WHEN THE HORIZONTAL BLANK (HBLANK) BEGINS.

OBJECT TYPE FINAL PARSE

<CO_ itlonal> *COMMA* <slgnal-obJ> CAPTURED-IN

<slgnal-obj> <conditional> *PERIOD*

FINAL PARSE

GI *COMMA* G7 CAPTURED-IN GI3 G2_ *PERIOD*

G1-

G2 - (GI TYPE CONDITION)

G3 - (GI SIGNAL-MNEM DS4)
G4 - (GI FUNCTION-MNEM SLC)
G5 - (G1 CONDITION HIGH)

G6 - (Gl FUNCTION-TYPE COUNTER)

G7 -

G8 - (G7 TYPE SIGNAL)
G9 - (G7 SIGNAL-MNEM COUNT)
GI| - (G7 FUNCTION-MNEM DCC)

GII - {G7 CONDITION HIGH)
GI2 - (G7 FUNCTION-TYPE COUNTER)

GI3 -
G14 - (G13 TYPE SIGNAL)

GI5 - (GI3 SIGNAL-MNEM LOAD)

GI6 - (GI3 FUNCTION-MNEM DCCBR)
GI7 - (GI3 CONDITION HIGH)
GI8 - (G13 FUNCTION-NAME (DCC-BASE REGISTER))

GIg - (G13 FUNCTION-TYPE REGISTER)

G28 -

G21 - (G2e TYPE CONDITION)

G22 - (G2Q SIGNAL-MNEM HBLANK)
G23 - (G2| FUNCTION-MNEM UNKNOWN)

G24 - (G2| CONDITION UP)
G25 - (G2B SIGNAL-NAME (HORIZONTAL BLANK))

VERB EFFECT ON MODEL

Verify G7 is a slgnal-object
Verify GI8 is a slgnal-object
Connect GI3 to G7 under conditions G1 and G20
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PARSINGDIRECTIVESFORMANIPULATINGTHEMODEL

i, SPECIFYA FUNCTION

THEDISPLAYCHARACTERCOUNTER(DCC)COUNTSFROM

0 TO3519,

2, ASSIGNA VALUETO A FUNCTION'SASPECT

THE WINK CLOCK (WC) FREQUENCY IS 0,5 Hz,

3, MAKEA CONNECTION

THELOADOFTHEDCCCAPTURED-FROMTHEDCCBRWHEN

HBLANKBEGINS,

THEDCCBRRESETSDURINGVBLANK,

4,DEFINEA CONCEPTUALSIGNAL

5,DEFINETHESOURCEOFA CONCEPTUALSIGNAL

THE SYNC GENERATOR (SG) PRODUCES VBLANK,
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i. THE DISPLAY CHARACTER COUNTER (DCC) COUNTS FROM 0 TO 3519.

2. THE DeC-BASE REGISTER (DCCBR) RESETS DURING VERTICAL BLANK (VBLANK).

3. THE SCAN LINE COUNTER (SLC) COUNTS FROM 15 TO 4.

4. THE SLC INCREMENTS WHEN THE HORIZONTAL BLANK (HBLANK) ENDS.

5. THE SLC RESETS WHEN VBLANK FALLS.

6. WHEN THE COUNT OF THE SLC EQUALS 4, THE COUNT OF THE Dec CAPTURED-IN THE

LOAD OF THE DCCBR WHEN HBLANK BEGINS.

7. THE Dec CAPTURED-FROM THE DCCBRWHEN HBLANK BEGINS.

8. EACH-TIME THE COUNT OF THE PIXEL COUNTER (PC) EQUALS 5 ENDS, THE Dec

INCREMENTS.

13. THE COUNT OF THE Dec CAPTURED-IN THE LOW-ORDER BITS OF THE ADDRESS OF THE

DISPLAY MEMORY (DM).

COUNTER

COUNTER COUNT-SEC

(15-4)

COUNT-UP
-- DS4

DS5 PC LOAD SIC +

, "RESET"

[

COUNT-UP _+]
LOAD v READ

COUNTER I REGISTER

COUNT-SEe

(0-3519)

READ _+ LOAD

Dec DCCBR

1"RESET"
ADDRESS

MEMORY

DM

]
VBLANK HBLANK
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The common sense algorithm is a general purpose theory of how
humans perceive causality. This theory developed several links as
shown here. We distinguish one-time causality vs. continuous causality.
The primitives that enter are action, state, and state change. States
enable actions. Shown here are several representations of causal links.

COMMON SENSE

CAUSAL KNOWLEDGE

CAUSAL LINKS (CSA)

@ .-<D
( )-*- :

@ -(3
ENABLEMENT

CONFLUENCE

THRESHHOLD

233



 cAINLIN
O.NECTEO<pR SSORE) VALVE

PILOT VAI
OPEN

c: FUELFLOW_
NTO CHAMBER; STRIKE

_L. MATCH
DAMPER

OPEN

AIR PRESENT MATCH
TEMP, AT [NCHAMBER

PRESENT COMBUSTION
INLET PIPE POINT

INTACT

COMBUSTION

POS
OF

B .IC
STRIP

DEC : INCRE
[NTEMP, AROUNZ NTEMP,

NOZZLE NOZZLE TOGETHER

ISSIPATION ,AROU_ [EMP, =
NOZZLE

ACQUISITION

SIMULATION

INFERENCE SOLENOID

QA (Pf'-ILOTVALVE PLUNGER INMONITORING

_, CLOSED

This is an approximationof the workings of a furnace, We have
here everything all spelled out with a collection of rules with all
actions and states and state changes. We can represent fairly complex
causal models this way.
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STATE EQUIVALENCE

@...@

STATE ANTAGONISM (FEEDBACK LOOPS)

Qo •o(_)

STATE COUPLING

0..._

COMPOUND STATE %_
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In monitoring a complex physical site which should become aware of
itself, we came up with this project CAM (Causal Monitor Project). There
is the obvious need for causal models (monitors) with a good repertoire
of abstract causality and the ability to interact with the 'experts as they
see a particular site. These are the things we want the system to do.

CAMGOALS

1, CONTINUOUSLY SENSE AND SYMBOLICALLY MONITOR ALL SENSORS

IN A WAY THAT IS APPROPRIATE IN THE CURRENT OPERATING

CONTEXT,

2, CONTINUALLY VERIFY THAT CAUSALLY RELATED SENSOR GROUPS

OBEY SYMBOLICALLY EXPRESSED RULES ABOUT THEIR INTER-

RELATIONSHIP,

3, BE AWARE OF HUMAN OPERATOR'S EXPRESSED INTENT AND ADJUST

EXPECTATIONS AND CAUSAL RELATIONS ACCORDINGLY,

4, KNOWABOUT COMPONENT AND SENSOR FAILURE MODES, THEIR PRE-

CURSORS, INDICATORS, PROBABLE CAUSES AND CORRECTIVE PROCE-

DURES AND POLICIES,

5, KNOWABOUT STANDARD "MANEUVERS" EXPRESSED AS ACTION

SEQUENCES WITH STEP-WISE EXPECTATIONS AND CONFIRMATION,

6, CONTINUOUSLY SYNTHESIZE ALL HIGH LEVEL SYSTEM ASPECTS AND

SELECT WHICH INFORMATION TO DISPLAY AND IN WHAT FORMAT

(INTELLIGENT SCREEN CONTROLLERS),

7, CONTAIN ON-LINE POLICY INFORMATION FOR CONTINGENCY SITUATIONS,
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REAL-TIMECAUSALMONITORS

FORCOMPLEXPHYSICALSITES

CAMGENERATORMODELS:

l NOWLEDGE UNITS

__kABOUTPHYSICALsITES _,,,.USER"_b_FRAME-DRIVEN-_INTERFACE

/
.(/_ODUCTION RUL£-LIKE_
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PHYSICALSITEFRAMES

SENSOR NAME, PHYSICAL UNITS SENSED, SENSING RATE IN

CONTEXT, LIMITS IN CONTEXT

ACTUATOR NAME, UNITS CONTROLLED, DRIVER PROCEDURE,

MEASURABLES (EXPECTATIONS)

COMPONENT NAME, ASSOCIATED SENSORS, ASSOCIATED ACTUATORS,

ASSOCIATED FAILURE MODES

FAILURE SENSOR CLUES, PROBABLE CAUSES, APPLICABLE

MODE CORRECTIVE MANEUVERS, ASSOCIATED DISPLAY PACKETS

ACTION RELEVANT ACTUATORS (CLUSTERS) AND MEASURABLES,

STEP ASSOCIATED MANEUVERS

MANEUVER STEP SEQUENCE IN CONTEXT, INTENDED GOAL

OPERATING GLOBAL SENSOR RELATIONS, APPROPRIATE MANEUVERS,

CONTEXT APPROPRIATE DISPLAY PACKETS

DISPLAY SENSOR GROUPS, SCREEN ALLOCATION IN CONTEXT,

PACKETS DISPLAY FORMAT

OPERATOR ASSOCIATEDMANEUVERS(ANDGOALS),ASSOCIATED

INTENT CONTEXTS
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IF

CONTEXT= MORNINGPOWERUP

AND

PRESSURE.SENSOR17 (SAMPLEAT5 SEC)-

PRESSURE.SENSOR32 (SAMPLEAT5 SEC)

>0,5

AND

SENSOR14--CLOSED(SAMPLEAT30SEC)

THEN

ASSERT FAILUREMODE23

ASSERT OPERATINGCONTEXT41

Failure mode 23 and

operating context 41
asserted

Difference _-, Sensor 14 Operating context =
computer and L_) morning power up
threshholder closed

Sensor 32 Sensor 17
reader reader - NO UNIVERSAL

QUANTIFIERS
30 sec.

clock - NOPSPATTERN
5 sec
clock MATCHING
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The common theme of all our work has been distribution of informa-
tion. The question is what do we do to back all of this up with real
computing. There are not many models around to run in real time. It is
particularly bad, e.g., in vision. You can not do everything on conven-
tional machines. You have to make some commitments to parallelism and
parallel processing. We had some ideas and worked on a system we call
ZMOB.

One Z80A can not do much, but 256 Z8OA's can do a lot, doing fairly
complex vision algorithms with considerable speed. This is not yet ready
for use. This is not a synchronous machine. The ZMOBworks like a con-
veyor belt which will be able to shift about 20 MHz. We hope this will
become a community-wide resource at Maryland University.

DISTRIBUTIONOFCOMPUTATION

TOMEETREAL-TIMECONSTRAINTS

. THEPDMLATTICECANBE PARTITIONED(E.G.,SENSOR

GROUPS,CLOCKS,TRESHHOLDMEASURERS,FAILUREMODES)

. INDIVIDUALPROCESSORSNEEDONLYKNOWTHEIRABOVE

NODES(ANDHENCEWHERETO SENDTHE INFORMATIONWHEN

A CHANGEOCCURS)

. THESPECIALIZEDTASKS(OPERATORINTERFACE,DISPLAY

HANDLERS)CANBE PUTINA SUBSETOF THEPROCESSORS

. THESYSTEMAT LARGECANBE AS REDUNDANTAS NECESSARY
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Processor OrgAnlzst_ofl.
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Z80A

o 8-BITARCHITECTURE

e 65KADDRESSSPACE

e 256 I/OPORTSPACE

• 4 MHZ CYCLETIME

• 2 _s TYPICALINSTRUCTIONTIME

• 7 8-BITWORKINGREGISTERS(2SETS)

• STACKREGISTER

• PROGRAMCOUNTER

• IX,IY INDEXREGISTERS

o APPROXIMATELY150 INSTRUCTIONS

• FASTBLOCKTRANSFERANDSEARCHINSTRUCTIONS

e EXISTINGHIGHLEVELLANGUAGES(PASCALLISP)

• APPROXIMATELY$10:

NAIL STOP
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PRIX_UIOI PROCESSOR

INTl./tiers INBOUND _.SSA_ES

THROUGHPUT:

i/3SEC 9 POINTAVERAGE(8-BITINTENSITIES)

OVERA 512x 512 IMAGE

i SEC SIMPLEEDGEDETECTORAT EACHPOINT

OF 512x 512 IMAGE

i00SEC COMPLICATEDI0LABELRELAXATIONALGO-

RITHMON512x 512x 10 IMAGE

200,000 SWAPPINGRATE: INDIVIDUALPROCESSOR
BYTES/SEC

20-50 SWAPPINGRATE: ZMOB
MILLION
BYTES/SEC
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PROBLEMSOLVINGWITH

UNCERTAINKNOWLEDGE

BRUCE BUCHANAN

STANFORD UNIVERSITY
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First, some basics to set the content. Then I will give some specific
examples. At the end, I want to indicate the state of the art.

Basically, we like to _ivide the world of problem solving as shown
here.

In AI, we try to deal with symbolic problem solving techniques for
which a mathematical technique is not available.

TYPESOF COMPUTING

NUMERIC SYMBOLIC

ALGORITHMIC Computational InformUon
Mathematics Storllge& Retrieval ]

HEURISTIC UnprovableAssumptions Artificial
in Computations Intelligence

We believe that we build systems capable of expert level performance.
The system represents domain-specific knowledge such as knowledge about
geology, medicine, etc. and enables a process in which it uses such know-
ledge in an understandable line of reasoning. The MYCIN system is one example
of such a system.

EXPERTSYSTEM

' CAPABLEOFEXPERT-LEVELPERFORMANCE

' REPRESENTSDOMAIN-SPECIFICKNOWLEDGE
NATURALLY

' USESKNOWLEDGEINAN UNDERSTANDABLE
LINEOF REASONING
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Now we are at the level of building computer programs at the
level of assistant.

PROBLEMSOLVINGACTIVITIES

CLERK TABULATIONS

STATISTICIANASSOCIATIONS

ASSISTANT- INTERPRETATIONS

MANAGER- "HARD"DECISIONS

SCIENTIST- NEWTOOLS

POLITICIAN- NEWGOALS

PHILOSOPHER- NEWVALUES

These are ill-structured problems in which we deal with empirical
data. The sources of uncertainty are therefore numerous as shown here.
You never have a complete set of data in most cases, and you have no
guarantee that the data is correct or that your rules of reasoning are
complete or correct. In general, the theory is often incomplete for the
particular domain of knowledge. You have to use judgemental rules to get
at many of these problems.

SOURCESOFUNCERTAINTY

MISSINGDATA

ERRONEOUSDATA

MISSINGRULES

ERRONEOUSRULES

INCOMPLETETHEORY
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We have to rely on redundancy in the data. Often you have over-
lapping data, overlapping rules, etc. We can rely on the expert heu-
ristics to solve a class of problems. If this can be captured in a
computer program, then th_ computer program will do better than the non-
expert. At the moment, we can not capture all but we have to exploit
some techniques; e.g., the action strategy enables us to exploit the
redundancy to reach correct solutions.

CORRECTIONSFORUNCERTAINTY

REDUNDANTDATA

REDUNDANTRULES

EXPERTS'HEURISTICS

CAUTIOUSSTRATEGY

These are the general issues in building an expert system. It does
not need to be a simulation, but it needs to be understandable. How can
knowledge be employed in expert problem solving,heuristic search, model
of cooperating experts, incremental requirement, etc?

There is no clearcut answer for best control structure. Knowledge
acquisition is a bottleneck. We are getting better, e.g., 5-10 years for
mass spectrometry to 2-3 years for the MYCIN system, and a few weeks now.

Explanation is essential in an expert system. The person using the
system needs to understand how the conclusions have been arrived at. He
needs to be able to judge whether he wants to accept or reject the answer.
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ISSUES

KNOWLEDGEREPRESENTATION

KNOWLEDGEUTILIZATION

KNOWLEDGEACQUISITION

EXPLANATION

CONSTRUCTIONOFWHOLESYSTEMS

"KPlOWL/II4_£NGIN£BtIN6"

ACQU_ITION

REPR_ION

__..SYSTEM DEStGNER ,_

I _°°w'e°oe_°°i _ .
Knowledge

Consultation _ _ Base

I Driver /-

case da_vtce
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This shows the particular representation which we have chosen.

We put the fact triple,in the inference rules. If you have a certain
number of facts, then you can come to certain conclusions, often only
weakly suggested.

FACTTRIPLE

THE X OF I IS Z (WITHCF CERTAINTY)

RULE

IF FACTI & FACT2 & ,,, & FACTN

THEN CONCLUDE FACTO (WITHCERTAINTY CF)

MYCIN SYSTEM...... ,

FOR RECOMMENDINGTHERAPYFOR INFECTIOUSDISEASES

IINTERACTIVE_L. PHYSICIANPROGRAMF'" , REQUESTINGADV|CEI

-_ l I {_ INFORMKI'ION1

I GENERAL I

I KNOWLEDGE ABOUTPATIENT|

I BASE /

SYSTEM

1
T.E A Y

COMMENDATIONi
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This is an example of how MYCINworks, This is used for research
only, We used this for testing whether you can use this very simple
representation of knowledge to build a program capable of expert
performance. The system is asking questions of the user and based on
the answers it reaches conclusions.

USER'SDESCRIPTIONOF PATIENT

Tniswill bepatient5311

If youwouldcareto entera brief summaryof PATIENT-53g'sCase,
to beusedfor easyfuture referenceto this file, plNsedosonow
(typeas manylinesas required,terminatewitha control-Z_:

"" 34 yr oldwhitemalewith severeburn. After 15days
•* of hospitalizationpt becamedisorientedandfebrile. On I6(h
• " hospitaldayLPperformed.PMN100,PMN"1.99,Pro280, Glu5
•* (periphblood91uunk). WBC1900with88'/. PMNand5"lobands.
"" P_ haddrug-inducedaplasticanemia. Currentreedat timeof LP:
•* Cephala(hin.Finalorg: Pseudomoas-aeruglnosa.CorrectRx: Ickml
• " wouldhavebeenCarb+ Tobraor (Genta).Sameas I_ 504except
"* gramstainof CSFomitted.
• * Z

The system asks questions like these.

INFECTIOUSDISEASECONSULTATIONSESSION
(USER'SRESPONSESFOLLOWDOUBLEASTERISKS)

.................... PATlENT-538...................

II Patient'sname:
*" PT538

2) Age:
"" 34YEARS

3) Sex:
• . MAEL
• MALE

4) Race:
•* WHY
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The system can be asked questions about why some information is
required as shown here.

(i.e. WHY is it importantto determinethe raceof PATlENT-538?)

(I.O) The raceof a patientis oneof the 5 standardparametersthat

Identifya patient

This maybe usefullater in the consultation.Forexample,it is

relevantin determiningthe organisms(otherthen thoseseenon

culturesor smears)whichmightbecausingthe Infection.

(backto question4..)

** CAUCASIAN

We skipped some questions to (14)

Here we have also an intermediate conclusion at the bottom.

14) Has 1",538recentlyhadsymptomsof persistenthqmbcheor

other abnormalneurologicsymptoms(dizziness,lethargy,
etc.)?

•. YES

15) HasPt538recentlyhadobjectiveevidenceof abnormal

neurologlcsigns (nuchal rigidity,coma,seizures,etC.)

documentedbyphysicianobservationor examination?

•" YES

TheCSFcultureswill beconsideredto beassociatedwith

MENINGITIS.
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It also allows entering blocks of data as shown here and on the follow-
ing few slides.

Pleaseenter the resuHsof pendingcultures in the followingtable.

slte culture date stain mthed

number collected examined ol collection

(urine, sputumonly)

61"" CSF IZ34 30-,lan-77 YES •

23) For howmanydayshm Iq_]ll hadabnormalneurolog¢signs?

*" 7.2 HOURS

24) Forhowmanydayshis Pt538had neurolog¢symptoms?

•* I DAYS

25) Has PLY38hadrecent evidenceof tender or enlargedsalivary

glands?

•" NO

261 Has Pt538beenexposedto any contagiousdiseaserecently

(e.g. meningococcaldisease,mumps)?

•" NO

Pleaseenter CSFfindingsin the followin9table

..(;_J_ Percent Protein CSF Peripheral
WUI., PMN Glucose Glucose

27)" 100 99 280 5 UNKNOWN

253



38) Haspt538ever under9o_ f4_mqctomy?
"" NO

39) Is Pt538a burn Iwtkmt?
•* WHY

(i.e. WHY is it importanttodeterminewhetherPATIENT-538has

beenseriouslyburned?)

(4.0) Thiswill aid in determiningthe organisms(otherthanthoseseen

on culturesor smears)whichmightbecausingthe infection.

It hasalreadybeenestablishedthat

(4.I) the infectionwhichrequirestherapyis
meningitis,and

(4.2) organismswerenotseenon the stain ot this

pendingcsfculture,

and

(4.3) the typeof the infectionIs bacterial

Therefore,if

(4.4) pt538hasbeenseriouslyburned

then

there is suggestiveevidence(.5) that pseudomonas-aeruginosa

is oneof the organisms(otherthanthoseseenon cultures
or smears)whichmightbecausingthe infection.

Author: Yu
(RULE578)
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Going on like this for about 40-80 questions and answers we come to
another set of intermediate conclusions with sufficient evidence.

My therapyrecommendationswill bedesignedto treat for organisms

that either are very likelyor, althoughlesslikely, wouldhavea

significanteffecton therapyselectionif theywerepresent. It i s

importantto coverfor the followingprobableinfection(s)and

associatedorganism(s):

INFECTION-Iis MENINGITIS

+ (ITEM-I) E. COLI (from clinical evidenceonly)
+ (ITEM-2) PSEUDOMONAS-AERUGINOSA(fromclinicalevidence

only)

+ (ITEM-3) KLEBSIELLA-PNEUMONIAE(fromclinicalevidenceonly)

+ (ITEM-4) DIPLOCOCCUS-PNEUMONIAE(from  idenceY

_Consldering for useagainstAMPICILLIN-ANO-GENTAMICIN
,,,q

INFECTION-I ... /
,dl

42) Doyou havereasonto suspectthat Pt538mayhaveimpairedrenal
function?

o, NO

43) Pt538'sweightin kilograms( or number POUNDS):
•" 70
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Finally we come to the recommendation by the system given here.

REC-I Mypreferredtherapyrecommer,dationis as follows:

In orderto coverfor Itlms<l 2 3 47:

Givethe followingin combination:

I) AMPICILLIN

Dose:3.5g (2&Oml) q4h IV (calculatedon blsisof
50 mglkg)

2) GENTAMICIN

Dose:119mg (3.0 ml, 80 m(J12 ml ampule)

q8h IV (calculatedon basisof
I. 7 mg/kg)plusconsidergiving5mgq24hIntrathecal

Comments:Monitorserumconcentrations

Sincehighconcentrationsof penicillinscar inactivate

aminoglycosides,donot mixthesetwoantibioticsin the
sameiV bottle.

If for some reason we can not implement the best recommendations,
we may ask for the next best recommendations shown here.

[REC-2] Nextbestthera_ recommendation:

In orderto coverItems< I 2 3 ):

Give: GENTAMICIN

Dose: il9 mg(3.0 ml, 80mg/2mlampule) qJl.I IV

(calculatedon basisof 1.7 mglkg)plusconsider

giving5m9q24hintrathecal

Comments:Monitorserumconcentrations

In orderto coverfor Item_4 ):

Give: PENICILLIN

Dose:3.5 millionunits(7.0 ml) q4h IV (calculated

on basisof 50000unitslkg)
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Here is how well the system did in a trial.

The experts were asked blindly. They did not know that the results
would be compared to computer results. MYClN was performing as well as
the faculty at Stanford.

Ratingsby 8 Experts

on I0 MeningitisCases

(Perfect Score- 80)*

MYCIN 52 ActualTherapy 46

Faculty-I 50 Faculty-4 44
Faculty-2 48 Resident 36

Inf. Dis.Fellow 48 Faculty-5 34
Faculty-3 46 Student 24

" EquivalentTherapyor AcceptableAlternate • I

UnacceptableTherapy• 0
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Here is a simple rule with extra information which may further
justify the final recommendation. For instance, where does Rule 300
come from?

RULE_

If: I) The infectionwhich requirest,erapy is meningitis,and
2) Sickle-cell-diseaseis one of the relevantItemsfrom the

historyof the patient
Then: There is weaklysug9estiveevidence(.35) that

diplococcus-pneumoniaeis one of the organismsfor
which therapy shouldcover

AUTHOR: Yu

LITERATURE:

G. Karalazin"Sickle-cellanemia-clinical manifestationsin 100
patients"AmJMedSci269:511975.

E. Barret-Connor"Acutepulmonarydiseaseand sickle-cellanemia"
ARRD104:159Aug 1971
M. Robinson"Pneumococcalmeningitisin sickle-cellanemia
"NEJM27&10061966

JUSTIFICATION:None

PATIENTS: None

ORIGINAL DATE: 24-NOV-7612:37:29
LASTEDIT DATE: 24-NOV-7612:37:29
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RULE FORMAT

IF: I) THE STAIN OF THE ORGANISM IS
GRAMNEG, AND

2) THE MORPHOLOGY OF THE ORGANISM IS
ROD. AND

3) THE PATIENT IS A COMPROMISED HOST
THEN: THERE IS SUGGESTIVE EVIDENCE (.6) THAT

THE IDENTITY OF THE ORGANISM IS
PSEUDOMONAS

(SAND (SAME CNTXT GRAM GRAMNEG)
(SAME CNTXT MORPH ROD)
(SAME CNTXT COMPROMISED))

(CONCLUDE CNTXT IDENT PSEUDOMONAS TALLY 600)

RULE 035

I Identity I

i 'I \

t'_ / I \

'_t/ // I \-

Illustration of MYCINand/orSubgoal

Treewith DepthFirst Search
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It is also important to answer questions which the system did not

do and why.

"" WHYDIDN'T YOU GIVETETRACYCLINEFORE. COLI IN REC-I?

Shall I describethe therapyalgorithmfor you?"" NO

TETRACYCLINEwasdiscountedfor ITEM-I becausethere is evklence

that this e. coil is not sensitiveto it.

40) HasHerbertLevinbeenexposedrecentlytoMUMPS?

ee N

41) DoesHerbertlevinhavea historyofSICKLE-CELL-DISEASE?

** COMMENT

Commenton subject:Redundantquestmn

Pleasetypeyourcommentsbelow,usingas manylinesasrequired,
terminatingyour messagewitha blank line.

"Pt 504 Mycinaskedif he had"sickle-cell-disease"andthe patientwasknown
to bewhite (caucasmn)

elll

Thankyouforyourcomments Wewill respondsoon Youmaynow

f,,ontinuefrom the pointatwhich youtyped"COMMENT".

" NO
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This brings us to the problem of transferring the knowledge. The
programmer cannot read a textbook and put it into the program. He needs
to be knowledgeable in the subject area, he needs to be an expert to
formulate the right statements and questions.

KNOWLEDGE SOURCE I
I

' i I I II -----> PROGRAMMER _ PROGRAM
I
I
I

KNOWLEDGE TRANSFER

The expert needs to do the translation for the programmer as shown
in the next slide. We tried to bypass the expert and programmer by
writing general induction programs forming general rules.

DATA

--_ EXPERT ...)AGENT ,. ) PROGRAM
(PROGRAMMER)

I

TEXTBOOKS

GIVING KNOWLEDGE TO A PROGRAM

("KNOWLEDGE ACQUISITION")
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This program was written a few years ago. Here the expert has seen
a recommendation, but he has expected something else. The system now
tries to find out what the expert knows, which it does not-know, and it
queries the expert as shown in the next slides.

My therapy recommendation will be based on the followin 8
probable ia_ection(s) and potential causatlve organism(s_.

INFECTION-I is PRIMARY-BACTEREMIA

<Item I>E.COLI [ORGANISM-I]

<Item 2>PSEUDOMONAS-AERUGINOSA [ORGANISM-I]

Are all these value, correct?

._,,N

Are there any values missing?

_** Y

Which one(s)?

°°** KLEBSIELLA-PNEUMONIAE PROTEUS-NON-MIRABILIS

Are there any values that shouldn't have appeared?

_** Y

Which one(s)?

°** PSEUDOMONAS-AERUGINOSA

262



Is this rule correct?
..**Y

Should its premise have failed for this case?
..**Y

Which clause of the premise should have been false? {give.]
..** l

No conclusions were reached concerning the category of ORGANISM-L

Should it have been possible to conclude a value?
++**Y

We'll start with the PSEUDOMONAS-AERUGINOSA tint.

The following rules were used in deducing that the identity of
ORGANISM-I is pseudomonas-aeruginosa
RULE 184

Since I) the category of ORGANISM-1 is not known
2) the gram stain of 0RGANISM-1 is gramneg
3) the morphology of 0RGANISM-1 is rod
4) the aerobicity of ORGANISM-1is facul

There is weakly suggestive evidence (.3) that the identity of
ORGANISM-I is pQeudomonas-aeruginesa

Which one?
**** ENTF..ROBACTERIACEAE

There were no rules successfully invoked in the
tempt to deduce that the category of

GANISM-I is enterobacteriaceae

The following (potentially applicable) rules were NOT executed
because the **/d clause failed,

(RULE t16 AND RULE 050 ARE PRINTED OUT FOR INSP_ON)

263



Are all these rules correct?
._**Y
Should any of them have been successfully invoked?

Is there a rule missing?

Ok, then I need a rule that would allow me to dedu_ that the
category or ORGANISM-I is enterobaeteriacue

Would you like to give me such a rule now?
4.,**y

Good_

This is my understanding of your rule-
RULE _,g

If" 1} The infection is primary-bacteremia,and
2) The site of the culture is one of:

those sites that are normally sterile
Then: There is strongly suggestiye eviden_ __8)that tin

d the organmmis enterobacterm_mscategory

0_._? CYmor No)
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The system now tries to remi'ndthe expert of things he might have
forgotten. There is here some intelligence involved.

I hate to criticize, Dr. Davis, but did you know that moot .rules
about what the category of an organism might be, that mention-

the infection
the site of a culture

ALSO mention-
[A] - the prm.l of entry of an organ_m

Shall I try to wnte a clause to account for [A]?
_,**Y
How about-

[A] The portal o5 entry o5 the organism is gi
Ok?
,_**Y

A big problem is working on checking rules. Some of the checks are
indicated here.

CHECKS ON RULES
ii i i i

LOGICAL INCONSISTENCYWITH EXISTING RULES

OVERLAPWITH EXISTING RULES

COMPLETENESSOF RULE

SUCCESS FOR CORRECTINGPERCEIVEDERRORS

EFFECTSON TEST CASES IN LIBRARY
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In this case, the system has meta rules, higher level rules,
or strategy rules; in this case, medical strategies.

METARULE 002

If I) the patient is a compromised host, and
2) there are rules which mention in their prem_, pmudomouas
3) there are rules which mention in their premme klebs/ellas

There is suggestive evidence (.4) that the former should be done before the
latter.

Everything mentioned was in the context of MYClN. Weare in fact
working with several different programs, and l'd like to summarize the state
of the art here.

MYCINhas about 450 rules, on the order of I000 to 2000 auxiliary
facts about medicine, drugs, etc. It has a vocabulary of about 2000 words,
but the domain is very narrow.

We feel very constrained that we need one expert as "knowledge Czar."
Wedo not know enough to automate the input from various experts and
integrate it.

EXPERTSYSTEMS:STATEOFTHEART

' NARROWDOMAINOFEXPERTISE

' LIMITEDLANGUAGEFOREXPRESSINGFACTS
AND RELATIONS

' LIMITINGASSUMPTIONSABOUTPROBLEMAND
SOLUTIONMETHODS (HELPREQUIREDFROM
A "KNOWLEDGEENGINEER")

' STYLIZEDI/OLANGUAGES

' KNOWLEDGEBASEEXTENSIBLEABOVEA THRESHOLD

' LITTLEKNOWLEDGEOF OWN SCOPEAND LIMITATIONS

' STYLIZEDEXPLANATIONSOF LINEOF REASONING

' SINGLEEXPERTAS "KNOWLEDGECZAR"
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PROBLEMSOLVINGINA

DISTRIBUTEDENVIRONMENT

RICHARD F, RASHID

CARNEGIE-MELLONUNIVERSITY
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COMPONENTS

DISTRIBUTEDPROBLEMSOLVINGISA BLENDOF

TWODISCIPLINES:

1, PROBLEMSOLVINGANDAI

2, DISTRIBUTEDSYSTEMS(MONITORING)

Examples of a multi-process language environment include MESA, SMALL-
TALK, SAIL, SIMULA, and ADA. (See, for example, Mitchell, 1978 ).

Multi-programmed single processors represent the most commonclass of
computer systems. Examples include the POP-IO running TOPS-tO, TOPS-20, or
TENEX, the VAX running UNIX, etc.

Carnegie-Mellon's CM-* is a good example of a tightly-coupled multi-
processor. It consists of 55 LSI-II's connected by a multi-level bus struc-
ture. [Srwiorek, 1978].

Xerox Alto's or Three-River's Corporation Perqs connected via an
ethernet are good examples of loosely-coupled processors. The distinction
between tightly-coupled and loosely-coupled is made primarily on the basis of
physical distance and, therefore, delay in communication. Bandwidth can
remain quite high in loosely-connected systems. For example, two Xeros Alto's
connected via an ethernet actually can communicate at higher bandwidth than
two distant LSI-II's Cray-l.
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WHATISIT?

PROBLEMSOLVINGWITHMULTIPLELOGICALPROCESSING

ELEMENTS

, MULTIPLE-PROCESSLANGUAGEENVIRONMENTS

. MULTI-PROGRAMMEDSINGLEPROCESSORS

. TIGHTLY-COUPLEDMULTI-PROCESSORS

. LOOSELYCOUPLEDPROCESSORS(NETWORKS)

It may be necessary to distribute because the application itself is one
of managing distributed resources (e.g., distributed sensor net) and communi-
cation delays preclude centralized processing.

It may be desirable to distribute because a single computational engine
(even a Cray-l) may not satisfy the needs of a given task.

In addition, considerations of reliability may dictate distribution.

See subsequent slides.

269



REASONS:

o HAVETO DISTRIBUTE

o NEEDTO DISTRIBUTE

e WANTTO DISTRIBUTE

HAVETODISTRIBUTE:

e PROBLEMITSELFMAYBE DISTRIBUTED

- DISTRIBUTEDSENSORS,HIGHCOMMUNICATIONCOSTS

e SPECIALIZEDHARDWAREREQUIRED

e PROBLEMMAYBE LARGERTHANCANBE HANDLEDBY A SINGLE

PROCESSOR

NEEDTODISTRIBUTE:

e PROBLEMMAYBETOOCOMPLEX
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WANTTODISTRIBUTE:

IIALGORITHMMAYBEINHERENTLYPARALLEL

. REDUNDANCYANDRELIABILITY

. CHEAPERORFASTERTOUSEA NUMBEROFSMALL

PROCESSORSRATHERTHANONELARGEPROCESSOR

- HARPYMACHINE:4 LSI-11'sFASTERTHAN

1 KL-IOFORSPECIALTASK

The HARPYmachine built at CMUis a good example of a simple, cheap
multiprocessor which takes advantage of parallelism to outperform a much
faster uniprocessor. The HARPYmachine consists of five LSI-11's connected by
a bus to a "smart" memory - a bit-slice microprocessor which implements in
microcode the access to the HARPYdatabase. The memory box-microprocessor is
well matched in speed to the needs of the LSI-II's so that maximal parallel-
ism is achieved.
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TRADITIONALPROBLEMSOLVING

. ACQUIREKNOWLEDGE(USUALLYFROMA THEORY,

ORFROMEXPERTS,ORFROMPROGRAMMER)

. GATHERRAWMATERIALS(DATAFROMOUTSIDE

ENVIRONMENT)

. SEARCHFORSOLUTION

If the search space is small, exhaustive search is almost always the
best approach. A large search space, however, may make exhaustive search
prohibitively expensive even for the fastest computers. Thus, some decisions
must be made as to what part of the solution space to search.

SEARCH

SMALLSPACE=> NOPROBLEM

LARGESPACE=> DECISIONMAKING(HEURISTICS)
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Branch and bound is a classical algorithm inherited from the field of
operations research. The BEAM[Loweure, 1976] search was developed at
Carnegie-Mellon University as part of the HARPYsystem. MSYSis yet another
search strategy developed by Marty Tenenbaum and Harry Barrow at SRI. NOAHis
a planning system developed by Sacerdoti, also while he was at SRI [Sacerdoti,
1977]. Decision theory is a statistical theory utilized by a number of AI
systems such as Yakimovsky's image segmentation program done at Stanford in
1974 [Feldman, 1974].

SEARCHTECHNIQUES

EXAMPLESOF TECHNIQUESUSEDTO HELPMAKEDECISIONS

ABOUTTHEEXPLORATIONOFA SEARCHSPACE:

. BRANCHANDBOUND

. BEAM

. MSYS

. PLANNING(NOAH)

. DECISIONTHEORY
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COMPLEXITYvs, UNCERTAINTY

TWOBASICPROBLEMSOCCURAGAINANDAGAININTHE

DESIGNANDIMPLEMENTATIONOF PROBLEMSOLVING

SYSTEMS:

. COMPLEXITY

. UNCERTAINTY

COMPLEXITY

COMPLEXITYISA CLASSICPROBLEMNOTONLYINAIBUTALSO

INSYSTEMS,ITAFFECTSTHEWAYINWHICHA PROGRAMMERWILL

SOLVEA PROBLEM,ITCAUSESTHEPROGRAMMERTO:

• PARTITIONA PROBLEMINTOTRACTABLECOMPONENTS

• ANDMINIMIZEINTERACTIONBETWEENCOMPONENTS

BOTHINPROBLEMSOLVINGANDOPERATINGSYSTEMSINCREASED

COMPLEXITYHASLEDTO HIERARCHICALSTRUCTURINGOF PROGRAMS,

MODULARIZATION,AND"DISTRIBUTEDPROCESSING"ONSINGLE

PROCESSORS,
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UNCERTAINTY

ASUNCERTAINTYINCREASES,GREATEREMPHASISIS

PLACEDON:

e COOPERATIONBETWEENCOMPONENTS

e LARGE,SHAREDKNOWLEDGEBASES

e THEHANDLINGOFCOMPETINGHYPOTHESES

e TECHNIQUESFORRESOLVINGCONFLICTSDUE

TODECISIONSMADEWITHUNCERTAINDATA

HUMANORGANIZATIONS

HUMANORGANIZATIONSAREDISTRIBUTEDPROBLEM

SOLVINGSYSTEMS(FOX,1979),THEYCONSISTOF:

, COLLECTIONSOFINDEPENDENTPROCESSORS,

EACHWITHA LARGEDATABASEOFKNOWLEDGE

ANDSOPHISTICATEDDEVICESFORSENSORY

INPUT

o NARROWBANDWIDTHCOMMUNICATIONSCHANNELS

BETWEENPROCESSORS(SLOWSPEED,LONGDELAYS)
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BOUNDEDRATIONALITY

A KEYCONCEPTINTHETHEORYOF HUMANORGANIZATIONS

IS"BOUNDEDRATIONALITY":

. CONTROLBOUNDS

. INTERPRETATIONBOUNDS

. DECISIONBOUNDS

SAMPLEORGANIZATIONS

SINGLEHUMAN

SMALLGROUP

SIMPLEHIERARCHY

COMPLEXITY UNCERTAINTY

UNIFORMHIERARCHY

HETERARCHY

MARKET
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"Abstraction" means collecting data, analyzing it, and condensing it
into a more meaningful form. For example, a speech processing unit may
abstract a set of sounds into the form of phonemes or even words. Abstraction
reduces the volume of communication and, therefore, its costs.

"Omission" may be possible in some cases. Certain information collected
at various levels of the system can be recognized as unnecessary and simply
forgotten.

A problem may be decomposed into sub-problems which are independent and
do not require communication.

DECOMPOSITION

INDECOMPOSINGA SYSTEM,THEGOALISTO

ACHIEVEINTERACTIONLOCALITY,SYSTEMS

WHICHEXHIBITINTERACTIONLOCALITYARE

CALLED"NEARLYDECOMPOSABLE,"TWO

DIVISIONTECHNIQUESUSEDBY CORPORATIONS

ARE:

i, PRODUCTDIVISION

2, FUNCTIONALDIVISION
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REDUCINGCOMMUNICATIONCOSTS

COMMUNICATIONCOSTSCANBEREDUCEDBY:

e ABSTRACTION

o OMISSION

. DECOMPOSITION

HANDLINGUNCERTAINTY

INHUMANORGANIZATIONS,UNCERTAINTYCANBEHANDLED

INA NUMBEROFWAYS(GALBRAITH,1973):

. SLACKRESOURCES

. SELF-CONTAINMENT

. VERTICALINFORMATIONPROCESSING

. LATERALRELATIONS
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STRUCTURESFOR

DISTRIBUTEDPROBLEMSOLVING

LESSERANDCORKILL(LESSER,1979)HAVEPROPOSED

DIFFERENTIATINGDISTRIBUTEDPROBLEMSOLVING

SYSTEMSINTOTWOCLASSES:

• COMPLETELYACCURATE/NEARLYAUTONOMOUS

e FUNCTIONALLYACCURATE/COOPERATIVE

EXAMPLESYSTEMS

SEVERALDISTRIBUTEDPROBLEMSOLVINGSYSTEMSHAVE

ALREADYBEENCONSTRUCTEDORPROPOSED:

e HEARSAYII(HERMAN,LESSER,REDDY,ETAL)[LESSER,1979]

• DISTRIBUTEDHEARSAYARCHITECTURE(ERMAN,

LESSER)

• HARPYMACHINE(BISIANI,MAUERSBERN,REDDY)

• DISTRIBUTEDNOAH(CORKILL)(SEE[LESSER,1979])

• TRAFFICCONTROL(DISTRIBUTEDRELAXATION)

(BROOKS,LESSER)

• CONTRACTNETS(SMITH)[SMITH,1977]
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HEARSAYII

HEARSAYIIWASA SYSTEMDESIGNEDTOUNDERSTAND

HUMANUTTERANCES,

o LARGEDEGREEOFUNCERTAINTY

e STRONGLYHIERARCHICAL

-HIERARCHICALBLACKBOARD(PHONETIC,

SYNTACTIC,ANDSEMANTICLEVELS)

-HIERARCHICALOFCONTROL(KS's)

o CENTRALIZEDDATABASEANDSCHEDULER

DISTRIBUTEDHEARSAYII

HEARSAYIIARCHITECTUREWASMODIFIEDTOHANDLE

A PROBLEMUSINGDISTRIBUTEDSENSORS;

e ARCHITECTURE:

-NUMBEROFNODESEACHWITHITSOWN

KS'sANDBLACKBOARDS(HETERARCHYOF

HIERARCHIES)

-HYPOTHESESEXCHANGEDAMOINGALLNODES

(ONLY"BEST"EXCHANGED)

-COMMUNICATIONUNCERTAINTYCONSIDERED

PARTOFOVE_LLPROBLEMUNCERTAINTY
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DISTRIBUTEDHEARSAYII

• RESULTS:

- SYSTEMPERFORMEDEVENWITHUPTO50%OF

MESSAGESLOST.

- LOSSOFSOMEMESSAGESACTUALLYIMPROVED

PERFORMANCE.

HARPYMACHINE

• THEHARPYSPEECHUNDERSTANDINGALGORITHMWASUSED

TODESIGNA SPECIFICMULTI-PROCESSOR.

• HARPYMACHINE:5 LSI-11'sANDSPECIALMICROPROGRAM

DATABASEPROCESSOR

• HARPYMACHINEISANEXAMPLEOFDISTRIBUTEDPROBLEM

SOLVINGWITHA CENTRALIZEDDATABASE.DATABASE

WASACTUALLYFASTERTHANPROCESSORSANDTHESYSTEM

ASA WHOLEPERFORMEDHARPYALGORITHMSFASTERTHAN

ANYPREVIOUSLYUSEDMACHINE,EVENKL-IO.
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DISTRIBUTEDTRAFFICCONTROL

o RELAXATIONALGORITHMADAPTEDTODISTRIBUTED

TRAFFICCONTROLSYSTEM.

• RESULTS:POOR(TRASHING,PERFORMANCE

DEGRADATION)

• REASONS:TOOLITTLE"RATIONALITY"ATNODE

CONTRACTNETS

o A CONTRACTNETISTHECOMPUTERREALIZATIONOF

A MARKETSTRUCTUREINHUMANORGANIZATION.

• PROCESSESMAKECONTRACTSANDSUPPLYSERVICES.

o BASICDECISION_KINGDEVICEIS"PRICE."

o ASWITHHUMANORGANIZATIONS.CONTRACTNETS

AIDINREDUCINGCOMPLEXITYBUTAREUNABLETO

HANDLEUNCERTAINTY.
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DISTRIBUTEDSEARCH

DISTRIBUTEDPROBLEMSOLVINGIMPLIESDISTRIBUTED

SEARCH.DIFFERENTAPPROACHESEXISTINSPECIFYING

THENATUREOF THEDATABASEBEINGSEARCHED;

, SYNTHETICDATABASE--EACHNODEHASA LOCAL

DATABASEWHICHMAYNOTBE CONSISTENTWITH

THATOF OTHERNODES.THEDATABASEASA

WHOLEISTHESYNTHESISOFTHEDATABASESOF

ALLNODESTAKINGINTOACCOUNTCONFLICTS.

. DECOMPOSEDDATABASE--EACHNODEHASA

GLOBALLYCONSISTENTPORTIONOF THEWHOLE

DATABASE. WHOLEISJUSTTHESUMOF ITS

PARTS.

SYSTEMISSUESINDISTRIBUTEDPROBLEMSOLVING

[RASHID.1980_

ONEREASONTHATFEWTRULYDISTRIBUTEDPROBLEM

SOLVINGSYSTEMSEXISTHASBEENTHELACKOF TOOLS.

SOMEOFTHEISSUESINDESIGNINGTOOLSFOR

DISTRIBUTEDPROBLEMSOLVINGARE:

, LOGICALROLEOF COMMUNICATION

. BINDINGANDADDRESSING

, HANDLINGOFASYNCHRONOUSEVENTS.ERRORS

, FAULTTOLERANCE
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CMUIPC

AN INTER-PROCESSCOMMUNICATIONFACILITYISBEING

BUILTAT CMUFORDISTRIBUTEDPROBLEMSOLVING,

MAINFEATURES:

, PROVIDESLOGICALCONCEPTOFCOMMUNICATION

INDEPENDENTOFOSOR NETWORKING

e COMPLETLYASYNCHRONOUS(MESSAGE-BASED)

e LOCALLYDEFINEDBUTHASNATURALAND

TRANSPARENTNETWORKEXTENSION

CMUIPC

MAINFEATURES:

e COMMUNICATIONRATHERTHANPROCESSORIENTED

, ABILITY"fOHANDLEBOTHCA/NAANDFA/C

ALGORITHMS

e ABILITYTOEXPLICITLYMANAGECOMMUNICATION

LINKS
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PORTS

A PORTIS:

• A KERNELOBJECT

• A QUEUEFORMESSAGES

• KNOWNTOPROCESSESONLY

THROUGHLOCALNAME

USEOFPORTS

. IDENTIFYTRANSACTION

• IDENTIFYDATASTRUCTURE

(INANOTHERPROCESS)

• ISOLATECOMMUNICATION
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MESSAGES

. A MESSAGEISA COLLECTIONOFTYPEDDATAOBJECTS,

. A MESSAGEISSENTFROMA PROCESSTOA PORT,

. MESSAGESAREHANDLEDBYTHESYSTEMACCORDINGTO

THEIRTYPE(I,E,.SERVICECLASS),

. NAMES,ACCESSANDOWNERSHIPTOPORTSCANBEPASSED

INMESSAGES.

MESSAGETYPES

EACHMESSAGEHASA MESSAGETYPEWHICHDETERMINES

ITSSERVICECLASS.A MESSAGE'STYPEDETERMINESITS:

. RELIABILITY

. SEQUENTIALITY

. MAXIMUMAGE

. PRIORITY

. SENSITIVITYTOFLOWCONTROL

MESSAGETYPESARECONSIDEREDADVISORY
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PORTACCESSLIST

, PORTSAREKNOWNTOPROCESSESONLYASLOCAL

NAMES

o EACHPROCESSHASINTHEKERNELANACCESSLISTOF

PORTS

e PROCESSESMAYONLYREFERTOPORTSBYTHEIRLOCAL

NAMES,(NOACCIDENTALACCESS,)

, KERNELHASCOMPLETEKNOWLEDGEOFCOMMUNICATION,

FLOWCONTROLALTERNATIVES

POSSIBLEFLOWCONTROLALTERNATIVES:

1, INFINITEMESSAGEQUEUES

2, EXPLICITFLOWCONTROLMESSAGES

3, AUTOMATICQUEUEBACKPRESSURE

- BASEDONSENDER'SOUTSTANDINGMESSAGES

- BASEDONMESSAGESWAITINGFORPORT
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FLOWCONTROLINCMUIPC

NORMALCASE:

• IFA PROCESSATTEMPTSTOSENDA

MESSAGETOA FULLPORTOFANOTHER

PROCESS,ITWILLBESUSPENDED

UNTILTHEREQUESTCANBE COMPLETED,

FLOWCONTROLINCMUIPC

EXCEPTIONS:

• A PROCESSCANASKTO BE IMMEDIATELY

NOTIFIEDRATHERTHANSUSPENDEDIF

THERECEIVINGPORTISFULLjOR

• A PROCESSCANREQUESTTO RECEIVE

NOTIFICATIONWHENTHEMESSAGECANBE

ACCEPTED(INTHEFORMOFA MESSAGEFROM

THEKERNEL),
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EXCEPTIONHANDLING

. PROCESSESMAYASSOCIATESOFTWAREINTERRUPT

HANDLERWITHMESSAGERECEPTION

. ASYNCHRONOUSERRORSARESIGNALLEDACROSS

PROCESSBOUNDARIESWITHEMERGENCYMESSAGES

. SINCEKERNELKNOWSWHICHPROCESSESARECOM-

MUNICATING,ITCANNOTIFYPROCESSESOF

PARTNER'SDEATH

EMERGENCYMESSAGES

. EMERGENCYMESSAGESHAVEHIGHESTPRIORITY,

ARESPECIALLYFLOWCONTROLLED,ANDHAVE

NOMAXIMUMAGE.

. USEDTOALLOWURGENTINFORMATIONTO BE

FORWARDEDBETWEENPROCESSESINDEPENDENT

OFMESSAGEBACKLOG,

. PURPOSE:

. ERRORNOTIFICATION

. SPECIALEVENTPROCESSING

. DEBUGGING
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ACQUIRINGA NAME

A PROCESS'A'MAYACQUIRE]HENAMEOF ANOTHER

PROCESS'B'IF:

o 'B'LSTHEFATHEROF 'A'

'B'SENDS'A'A MESSAGE

o 'A'KNOWSTHESTRINGNAMEFOR'B'

ANDREQUESTS'B'NAMEFROMTHE

NAMESERVER

o A PROCESS'C'WHICHKNOWS'B'SENDSA

MESSAGETO 'A'ANDTELLSITABOUT'B'

NAMESEARCH

A DYNAMICCATALOGUEOFSTRINGNAMESAND

ASSOCIATEDPROCESS-PORTNUMBERS

o PROVIDESLINKBETWEENUNRELATED

PROCESSESWHICHWISHTO COMMUNICATE

• PROVIDESACCESSTOOTHERSERVICES

(E,G,,FILESYSTEM,ARPANET,ETC,)

o ALLOWSFORCREATIONOFGENERIC

PROCESSESON REQUEST

o LOCATESPROCESSESAI_DSERVICESON

FOREIGNHOSTS(THROUGHNETWORKSERVERS)
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NETWORKSERVERS

e EXISTATPROCESSLEVEL(NOTKERNELLEVEL)

e SERVEAS 'SHADOWS'FOREXTERNALPROCESSES

e CONVERTMESSAGEFORMATS,DATATYPES,ETC,

e SERVICECOMMUNICATIONLINKSANDPROTOCOLS

• PROVIDEEXTERNALNAMESERVICE(OPTIONAL)

ADVANTAGES

• CAPABILITY-BASEDCOMMUNICATIONWHICHALLOWS

TRANSPARENTREDIRECTIONOFMESSAGES

• AUTOMATICNOTIFICATIONOFPROCESSDEATH

e EMERGENCYMESSAGESFORERRORHANDLING

• REDIRECTIONOF NAMEBINDINGREQUESTS

29]



CMUIPC

IMPLEMENTATION:

e VAX/UNIX(MARCH,1980)

PLANNEDUSE:

, CMU'STESTBEDDISTRIBUTEDSENSORBED
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I. INTRODUCTION

HUMAN CHARACTERISTICS AND ESPECIALLY HUMAN LIMITATIONS

SHOULD PROVIDE INPUT FOR THE DESIGN OF AUTOMATED PROBLEM SOLVING

AND DECISION MAKING SYSTEMS, AND IN SOME CASES SHOULD BE THE

GOVERNING FACTORS. THERE ARE DIFFERENT REASONS FOR THIS DEPENDING

ON THE TYPE OF SYSTEM INVOLVED.

I. REMOTE OR UNTENDED SYSTEMS ARE EXPECTED TO PERFORM, IN

SOME SENSE, AS WOULD A PERSON WERE HE THERE, SO THE DEFAULT

CONDITIONS MUST BE ONES THAT SUCH A PERSON WOULD JUDGE AS

REQUIRING HIS INTERVENTION. THE FUNCTIONING OF SYSTEMS THAT ARE

REMOTE AND RELATIVELY AUTONOMOUS SHOULD EXCEED, IF POSSIBLE, THE

CAPABILITIES OF A PERSON. BUT THERE WILL NECESSARILY BE BOUNDS TO

THIS COMPETENCE. RECOGNITION OF THEM AND RAPID AND ACCURATE

TRANSFER OF CONTROL RESPONSIBILITY, STATUS INFORMATION, AND

DIAGNOSTIC INFORMATION REQUIRES CAREFULLY DESIGNED INTERFACING

WITH HUMAN CHARACTERISTICS. THERE IS ALWAYS A MAN-MACHINE

INTERFACE!

2. DECISION AND PROBLEM SOLVING SYSTEMS THAT ARE EXPECTED

TO AUGMENT HUMAN CAPABILITIES THROUGH A COOPERATIVE INTERACTION

PLACE A PREMIUM 0N THERE BEING AN EASY AND NATURAL COMMUNICATION

WITH THE 0PERATOR/SUPERVISOR. FOR EFFICIENCY, THESE SYSTEMS MUST

ALSO SHARE THE LOAD WITH THAT PERSON IN A WAY THAT MAXIMIZES
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OVERALL PERFORMANCE. IF THIS IS TO BE DONE, THE USUAL

ENGINEERING SOLUTION OF HAVING THE OPERATOR TAKE CARE OF THE ODDS

AND ENDS T}_T ARE INCONVENIENT TO ACCOMPLISH AUTOMATICALLY WILL

HAVE TO GO IN FAVOR OF GLUING HUMAN CHARACTERISTICS MAJOR

CONSIDERATION.

CONSEQUENTLY, IT IS IMPORTANT TO UNDERSTAND SOMETHING OF

THE HUMAN INFORMATION PROCESSING LIMITATIONS, BIASES AND

PREDELICTIONS THAT AUTOMATED DECISION MAKING AND PROBLEM SOLVING

SYSTEMS WILL HAVE TO CONTEND WIT}{. THE VIEWPOINT THAT WILL BE

TAKEN IN DOING THIS WILL BE THAT OF SIMON'S (1957) CONCEPT OF

BOUNDED RATIONALITY. THIS VIEW IS ESSENTIALLY THAT BECAUSE OF

THEIR VERY LIMITED INFORMATION PROCESSING CAPABILITY, PEOPLE CAN

ACT RATIONALLY ONLY WITH RESPECT TO MODELS OF THE WORLD THAT ARE

EXTREME SIMPLIFICATIONS OF REALITY. THIS VIEW ENABLES US TO

FOCUS ON THOSE LIMITS WHICH AUTOMATED SYSTEMS SHOULD AUGMENT AND

WITH WHICH THEY MUST INTERACT. THERE IS ANOTHER SIDE TO THE

NOTION OF BOUNDED RATIONALITY THAT IS OFTEN NEGLECTED WHEN 0NE

CONSIDERS HUMAN PERFORMANCE, AND THAT IS THE EXCEEDINGLY RICH AND

SUBTLE WEB OF INTENTIONS, EXPECTATIONS, AND VALUES WITHIN WHIG}{

THAT RATIONALITY, HOWEVER BOUNDED, IS EXERCISED.

2. HUMAN INFORMATION PROCESSING CHARACTERISTICS AND LIMITATIONS

2.1 SINGLE CHANNEL P_OCESSOR:

FOR ALL PRACTICAL PURPOSES, ONE CAN ATTEND TO ONLY ONE

THING AT A TIME. ACTIONS CAN BE CARRIED OUT IN PARALLEL IF THEY

DO NOT INTERACT TOO STRONGLY, JUST AS WHEN DRIVING ONE CAN
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DOWNSHIFT ON A TURNJ DECISION MAKING AND ACTION SELECTION AT THE

CONSCIOUS LEVEL CAN ONLY BE DONE IN SERIES. WHEN INPUTS COME

CLOSE TOGETHER IN TIME, THE FIRST MUST GENERALLY BE PROCESSED

COMPLETELY BEFORE THE SECOND CAN BEGIN TO BE ACTED UPON (WELFOHD,

1968). PERCEPTUAL PROCESSES THAT REQUIRE ACTIVE INTERPRETATION

MUST ALSO BE MULTIPLEXED IF A NUMBER OF INPUT SOURCES ARE TO BE

MONITORED. ONE MAY BE ABLE TO DO THIS QUITE RAPIDLY, BUT IF THE

NUMBER OF SOURCES IS LARGE, OR IFTHEY ARE NOT WELL INTEGRATED,

THERE MAY BE A SIGNIFICANT PENALTY IN SWITCHING RATE.

THERE IS A REMARKABLE ABILITY TO DISCRIMINATE AMONG

DIFFERENT SOURCES OF INPUT EVEN WHEN THEY ARE COMPETING FOR THE

SAME SENSORY CHANNEL, AS IS EVIDENT FROM THE FACT THAT ONE CAN

CONVERSE AT A LOUD PARTY. EVEN IF ONE IS ATTENDING TO ONE INPUT

SOURCE EXCLUSIVELY, OTHER SOURCES CAN INTERRUPT AND CATCH ONE'S

ATTENTION. THIS, OF COURSE, IS BOTH AN ADVANTAGE AND A SOURCE OF

ERRORS AND ACCIDENTS.

2.2 VIGILANCE_

ONE OFTEN HAS TO ATTEND "FOR" RATHER THAN "TO" SOMETHING,

AND IN THIS CASE THE HIGHLY SELECTIVE ATTENTIONAL MECHANISM MAY

HAVE NO EXTERNAL STIMULUS ON WHICH TO FOCUS. IN CASES OF THIS

KIND PERFORMANCE CAN BE UNRELIABLE, AND IS GENERALLY FOUND TO

CHANGE OVER TIME (BROADBENT & GREGORY, 1963). THIS MAY BE DUE TO

BOREDOM, DISTRACTION, AND THE LIKE, WHICH REDUCE ONE'S ABILITY TO

DETECT SIGNALS. BUT THERE IS ALSO A CURIOUS CHANGE IN ONE'S

CRITERION F0H DECIDING THAT A SIGNAL HAS BEEN RECEIUED_ ONE TENDS

TO REQUIRE STRONGER EVIDENCE AS TIME ELAPSES WITH VERY FEW
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SIGNALS HAVING BEEN OBSERVED. THIS "VIGILANCE DECREMENT" CAN BE

OVERCOME BY ARTIFICIALLY INCREASING THE SIGNAL FREQUENCY.

2.3 LIMITED SHORT TERM MEMORY SPAN:

THE AMOUNT THAT CAN BE KEPT IN THE SHORT TERM OR WORKING

MEMORY IS ONLY ABOUT 8 ITEMS (MILLER, 1956) UNLESS THERE IS

STRONG SEQUENTIAL CONSTRAINT, AS THERE IS IN LANGUAGE, IN WHICH

CASE THE AMOUNT OF INFORMATION THAT CAN BE HELD IN STORE IS

ROUGHLY CONSTANT. (MARKS & JACK, 1952). SINCE, WITH RANDOM

SEQUENCES, THE INFORMATION PER ITEM IS NOT IMPORTANT, SMITH

(CITED IN MILLER, 1956) LEARNED TO TRANSLATE BINARY TO DECIMAL

DIGITS VERY RAPIDLY AND BY THIS MEANS COULD ALMOST TRIPLE HIS

SPAN FOR BINARY DIGITS, THE NUMBER OF DIGITS HE COULD HEAR AND

REPEAT BACK IMMEDIATELY AFTERWARD.

2.4 LIMITED PROCESSING RATE:

THE RATE AT WHICH ONE CAN TRANSMIT INFORMATION IN SENSORY-

MOTOR TASKS, SUCH AS COMMUNICATING WITH A COMPUTER, IS IN THE

NEIGHBORHOOD OF ONLY 10 BITS/SECOND, ALTHOUGH DIFFERENT TASKS

HAVE DIFFERENT MAXIMUM RATES (SHERIDAN & FERRELL, 1974). THE

HIGHEST TRANSMISSION THAT HAS BEEN MEASURED FOR A KEYING TASK IS

ABOUT 16 BITS/SECOND FOR PIANO PLAYING, AND THAT WAS FOR RANDOM

MUSIC! JUDGMENTS THAT CATEGORIZE INPUTS ARE LIMITED IN THE

AMOUNT OF INFORMATION THEY CAN CONVEY IF THERE IS NO OPPORTUNITY

FOR COMPARISON WITH A STANDARD. CATEGORIZING ON A SINGLE

DIMENSION CAN TRANSMIT ONLY SEVERAL BITS, EVEN WITH HIGHLY

DISCRIMINABLE STIMULI SUCH AS DIFFERENT HUES. BUT WHEN COMPARISON
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",,,,,uHSETTE_< THASTIS POSSITBLE, DISC_AI["]Ib,"ATION IS EXCEEDINGLY GOOD, vT,_-

Vi'iEN CATEGORIES :";UST _,_ JUDGED ABSOLUTELY.

2.5 30UhCES OF PE]:_FOR>'._A?,]CEE','i,_:_0_'{S:

PEAFOAHANCE EAII0RS A',{E ]'[ERE I).]TE,."JDEDTO HEA,N TIIOSE THAT DO

[gOT INVOLVE BASIC ..'<ISCO['_CEPIIONS, BIASES, O'A 0VET{SIGHTS. THEY

RESULT LA_SELY F'A0I'4TASH DE[<A,_DS E_CEEDI._',IG THE ,BASIC INFORMATION

PI-tOCESS Ib._G CAPABILITIES OF THE PEI{SON, 0i FRO:{ TASK AND

SITU..",.TI0);AL FACTOAS THAT AT_E SUFFIC!E).JTLY MISMATCHED '.,.:ITH HIS

SE[JSOi;,Y-I.10TOf_ #_ND PE/;ICEPTUAL Ci{AiiACTEI_ISTICS.

Ai'_ II;]POI<TA[J'IFORt,'iOF MIS'dhTCk, _J]i-{IC'.{}{AS ITS ANALOG IN

_{IGiiE_{ Lr'_'_)r:_-'COG?'..[IT IVE F<;.J_7"__ 10NING AS ';_,,ELL,IS THAT I?,,t _,,_!IICHTHE._

AESI:'OMSES A PE:{SO?,t HAS LEAANED TO ASSOCIATE _,OITH PhRTICULAP,

STIMULI ARE, BECAUSE OF Tile _,_"A Y THE TASK 07{ EI,]UIPMENT IS

STI',UCTU£ED, NO LONGEP, THE flIGHT 0.NES. THIS STI',"'-:ULUS-._,ESP0[gSE

INS0.'>'IP_C_TIL]ILITY i:,ESULTS Ii,J CLOSI,_G UALVES %'!!{ET'J0.NE VOULD OPEN

l__:''t, _.1I c'::"_ ..< I_",P[_0PEX C0.',:'.IA,]_,5 I CO ................. ._.,E,--',DII',JG INDICAT0I;S, USING ........ _n- [,J ,,_pTt_'_-'_

SYSTEfffS, OF'E-\ATIh]G Tile I,;_;,0I'.JGCONT_OLS lh] AI/{C:RAFT, ETC. SUCI I

Ei:L."%01:',SCA_,J _E I'_EDU:BED BY [:".£0PE_{DESIGN.

l_._FO_li.h_lO_'.]OU_gLLO.:_.B IS THE hESULT OF THE T_.\$i(AE:_UI'AIN,fi A

.... _ "" H1{ICiiElk P:KOCES$ ING __7 = 7 :IAN ONE _,-_.

CONDI'II0._S A;%E :.'10},ZNTAI;iY, IT "lAY BE POSSIBLE TO COPE WITI{ T/-IE','4

"..,;ITi-LOUT SEAIOUSLY C0[-IPAOXISITJG PEI%F0-LMANCE. 0NE M':-_Y BE ABLE TO

ST0iiE If<PUTS IN IIEH0!"tY FOR LATE.:I F!-0CESSING 0i{ C01<BI_E ACTI0}_S IN

SUCIL A k'AY TI-:AT 1"I(0 CAN TIE CA;%P, IED OUT AT ONCE. FOR THE ,MOST

}:'A."tT, _.0bEUEiL, 0['JE [_US_- I_{_L]E OFF IIAPID I\ESP0.,"[SE I,;IT}{ ACCU_"_ACY IN
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SOME WAY, E.G. BY RESPONDING LESS PRECISELY OR WITH GREATER

CHANCE OF SELECTING THE WRONG RESPONSE. IT MAY BE POSSIBLE

SELECTIVELY TO ATTEND TO THOSE INPUTS TI_T ARE THE MOST

IMPORTANT, BUT IF DEMAND IS SUFFICIENTLY HIGH, PARTS OF THE TASK

WILL BE OMITTED (MILLER, J., [962). THE INTERNAL LOAD OF WORRY

AND DAYDREAMING AND THE ENVIRONMENTAL LOAD OF DISTRACTION AND

UNCOMFORTABLE CONDITIONS REDUCE THE CAPACITY ONE HAS TO PERFORM A

TASK AND MAKE OVERLOAD MORE LIKELY (FERRELL, 1980).

A MUCH MORE SUBTLE FORM OF ERROR IS THAT IN WHICH A

PORTION OF A SEQUENCE OF CUES AND ACTIONS THAT MAKE UP A SKILLED

BE}_VIOUR OCCURS IN AN INAPPROPRIATE CONTEXT, AND THE ENTIRE

BEHAVIOUR IS CARRIED 0UT(NORMAN, 198_). EVERYONE HAS HAD THE

EXPERIENCE OF FINDING HIMSELF DOING ONE THING WHEN HE INTENDED TO

DO ANOTHER. THIS PARTICULAR ERROR IS DANGEROUS, SINCE IT IS

LIKELY TO OCCUR IN CIRCUMSTANCES WHERE PROCEDURES ARE IMPORTANT

AND HIGHLY LEARNED. CHECK LISTS, SUCH AS ARE USED IN AVIATIONI

GUARD AGAINST IT.

2.6 IMPLICATIONS OF BASIC PROCESSING CHARACTERISTICS:

AUTOMATED SYSTEMS, BY REDUCING THE NEED FOR ROUTINE

INTERVENTION AND INTERACTION WITH PEOPLE HAVE TENDED TO REDUCE

THE FREQUENCY OF INSTANCES IN WHIG}{ HUMAN CAPACITIES ARE EXCEEDED

BY TASK DEMANDS. THAT IS ONE OF THE PRINCIPAL REASONS FOR

AUTOMATION, IN ADDITION TO ACHIEVING HIGHER OVERALL PERFORMANCE.

THE NATURE OF HUMAN LIMITATIONS SUGGESTS THOSE ASPECTS OF

FUNCTIONING THAT IT IS MOST CRITICAL TO AUTOMATE. DATA INPUT,

MEASUREMENT, SHORT TERM STORAGE OF INFORMATION, RAPID ANALYSIS OF
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MULTIPLE INPUTS, AND OPERATIONS OF ALL KINDS IN WHICH SPEED OF

RESPONSE IS IMPORTANT ARE ALL PRIME TARGETS FOR AUTOMATION.

THERE IS, HOWEVER, AN ASPECT OF THE PROBLEM THAT CAN BE

OVERLOOKED FROM THIS STEREOTYPICAL VIEWPOINT. AS MENTIONED AT

THE BEGINNING, THERE IS ALWAYS A MAN-MACHINE INTERFACE. WITH AN

AUTOMATED SYSTEM, PARTICULARLY ONE THAT OPERATES IN A COGNITIVE

RATHER T]_N PHYSICAL MODE, ONE SHOULD BE CAREFUL NOT TO TRADE

HIGH RATES OF ROUTINE ERROR BUT GLOBAL RELIABILITY FOR ROUTINE

RELIABILITY BUT THE POTENTIAL FOR DISASTER. ONE DOES NOT WANT TO

ALLOW THE SENSITIVITY OF THE SYSTEM TO ERROR TO INCREASE BY

SHIFTING THE LEVEL AT WHICH PEOPLE INTERACT WITH IT IN A ROUTINE

WAY UPWARD FROM OPERATION TO PLANNING AND STRATEGY FORMATION. A

WAY TO AVOID SUCH AN INCREASE IS, OF COURSE, TO INSTITUTE

PROCEDURAL CHECKS AND INSTITUTIONAL SAFEGUARDS. A MORE

SATISFACTORY METHOD IS TO DESIGN THE SYSTEM SO THAT HIGHER LEVELS

OF INTERACTION WITH IT ARE CARRIED OUT IN HIGHER LEVELS OF

DISCOURSE. THIS WAS THE PROMISE OF HIGH LEVEL PROGRAMMING

LANGUAGES, A PROMISE THAT, FOR THE ORDINARY USER, AT LEAST,

REMAINS UNFULFILLED.

3. CHARACTERISTICS RELATED TO DECISION

3.1 INFERENCE AND UNCERTAINTY:

THE CHARACTERISTICS OF PEOPLE THAT RELATE TO THEIR

PERCEPTION OF RANDOMNESS AND TO THE INFERENCES THEY MAKE UNDER

CONDITIONS OF UNCERTAINTY ARE POTENTIALLY IMPORTANT IN AUTOMATED

DECISION AND PROBLEM SOLVING SYSTEMS FOR SEVERAL REASONS. A)
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PEOPLE'S SHORTCOMINGS MAY POINT THE WAY TO THOSE ASPECTS OF

DECISION MAKING AND PROBLEM SOLVING THAT WOULD MOST BENEFIT FROM

AUTOMATION. B) SUCH SYSTEMS WILL ALMOST CERTAINLY REQUIRE HUMAN

JUDGMENTS AS INPUT. C) USERS WILL HAVE TO INTERPRET THE OUTPUT,

THE ACCEPTABILITY AND USEFULNESS OF WHICH WILL DEPEND IN SOME

MEASURE ON HOE_ IT IS PERCEIVED. D) THE PROBLEMS OF EVALUATION OF

PERFORMANCE THAT CONFRONT THE RESEARCH ON HUMAN BEHAVIOR MUST BE

DEALT WITH IN THE DESIGN OF AUTOMATED SYSTEMS.

ALTHOUGH PEOPLE CAN OFTEN MAKE ACCURATE JUDGMENTS ABOUT

SOME ASPECTS OF DIRECTLY OBSERVED RANDOM PROCESSES (FIKE &

FERRELL_ 1978,. PETERS0N & BEACH, 1967), THERE IS AMPLE EVIDENCE

INDICATING THAT VERY SERIOUS ERRORS ARE LIKELY IF PEOPLE ATTEMPT

TO FUNCTION AS "INTUITIVE STATISTICIANS".

3.1.1 THE HYPOTHESIS OF RANDOMNESS:

RANDOMNESS IS AN HYPOTHESIS THAT A PERSON MAY OR MAY NOT

ACCEPT, AND WHICH, IF ACCEPTED, IS LIKELY TO LEAD TO CERTAIN

EXPECTATIONS ABOUT THE EVENTS IN QUESTION- ONE OF THESE

EXPECTATIONS IS JOCULARLY CALLED THE LAW 0F SMALL NUMBERS

(TVERSKY & KAHNEMAN 1971). THE LAW OF SMALL NUMBERS IS

ESSENTIALLY THE BELIEF THAT RANDOMNESS IS A PROPERTY OF EVENTS

THEMSELVES AND THAT, SINCE SAMPLE SIZE IS NOT A PROPERTY OF

EVENTS, IT IS IRRELEVANT IN CONSIDERATIONS OF RANDOMNESS. FOR

EXAMPLE, STATISTICALLY NAIVE PEOPLE EXPECT THAT IN A RANDOM

SEQUENCE IN WHICH A PARTICULAR EVENT OCCURS WITH PROBABILITY P,

ALL SUBSE_UENCES SHOULD BE IRREGULAR AND SHOULD EXHIBIT THAT

EVENT IN APPROXIMATELY THE PROPORTION P REGARDLESS OF THEIR

LENGTH. THE BIAS IS SO STRONG THAT EVEN PSYCHOLOGISTS WITH
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GRADUATE TRAINING IN STATISTICS GROSSLY UNDERESTIMATE THE SAMPLE

SIZES NECESSARY FOR SIGNIFICANT DIFFERENCES WHEN THEY MUST DO S0

WITHOUT BENEFIT OF CALCULATION. A DEVIATION OF A GIVEN AMOUNT

FROM THE EXPECTED PROPORTION IS GENERALLY SEEN AS BEING JUST AS

LIKELY REGARDLESS OF THE SAMPLE SIZE. SYSTEMS ENGINEERS WITH

GRADUATE TRAINING IN PROBABILITY AND STATISTICS CAN ACCURATELY

JUDGE THE STANDARD DEVIATION OF NORMAL DISTRIBUTIONS FROM SMALL

SAMPLES, BUT THEIR JUDGMENTS OF THE STANDARD DEVIATIONS OF THE

MEANS OF THOSE SAMPLES ARE SERIOUSLY IN ERROR BECAUSE THEY GIVE

SO LITTLE WEIGHT TO SAMPLE SIZE (FIKE_ 1967).

THE GAMBLER'S FALLACY IS ANOTHER PREVALENT MISCONCEPTION

ABOUT THE NATURE OF RANDOM SEQUENCES. THE RUN OF AN EVENT THAT

IS NOT IMMEDIATELY FOLLOWED BY A COUNTERBALANCING DECREASE IN THE

FREQUENCY OF ITS OCCURRENCE APPEARS TO CONTRADICT THE CONSTANCY

OF THE PROBABILITY OF THE EVENT. THE IDEA IS SO COMPELLING THAT A

PROFESSOR AT A MEETING OF THE AMERICAN INSTITUTE FOR DECISION

SCIENCES GAVE A PAPER EXPLAINING WHY THE GAMBLER'S FALLACY IS NOT

A FALLACY.

IN GENERAL, THERE SEEMS TO BE A DISPOSITION TO PREFER THE

INTERNAL UNCERTAINTY ABOUT THE CORRECTNESS OF A DETERMINISTIC

SUBJECTIVE MODEL OF WHAT IS GOING ON TO THE EXTERNAL UNCERTAINTY

IMPLIED IN THE MORE PARSIMONIOUS, BUT LESS INTUITIVELY APPEALING

STOCHASTIC MODEL. HOWEVER, PEOPLE SEEM LITTLE BETTER ABLE TO DEAL

WITH THEIR INTERNAL UNCERTAINTY THAN WITH EXTERNAL RANDOMNESS, AS

i SHALL BE INDICATED FURTHER ON.
i

PEOPLE'S ESTIMATES OF PROBABILITY ARE MOST RELIABLE IN JUST

THOSE SITUATIONS IN WHICH MACHINE ESTIMATES ARE ALSO POSSIBLE_
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NAMELY DIRECTLY OBSERVED SEQUENCES OR SAMPLES OF EVENTS. BUT FOR

LESS WELL DEFINED SITUATIONS, SUBJECTIVE ESTIMATES WILL PROBABLY

HAVE TO BE USED IF FORMAL DECISION ANALYSIS IS TO BE UNDERTAKEN.

NUMEROUS, SYSTEMATIC BIASES IN SUBJECTIVE PROBABILITY HAVE BEEN

FOUND. MANY OF THEM APPEAR TO RESULT FROM PLAUSIBLE BUT

MISLEADING HEURISTICS BEING USED TO FACILITATE JUDGMENT. SOME OF

THESE WILL BE CONSIDERED BELOW.

3.1.2 REPRESENTATIVENESS:

REPRESENTATIVENESS REFERS TO THE TYPE OF BIAS THAT OCCURS

WHEN DATA IS ASSUMED TO GOME FROM THE CATEGORY OF WHICH IT IS

MOST REPRESENTATIVE2 WITHOUT REGARD FOR THE PRIOR LIKELIHOOD OF

THAT CATEGORY (KAHNEMAN & TVERSKY, 1972). IT IS A VERY COMPELLING

BIAS IN THE SENSE THAT EVEN WHEN CALLED TO PEOPLE'S ATTENTION,

THEY FIND IT HARD TO RECONCILE THEIR SUBJECTIVE FEELINGS WITH

WHAT THEY KNOW TO BE STATISTICALLY CORRECT. FOR EXAMPLE, IF THE

PRIOR PROBABILITY OF A CONDITION IS .l AND A TEST OF WHETHER OR

NOT THIS CONDITION HOLDS IS CORRECT 9Z% OF THE TIME, IT SEEMS NOT

TO BE INTUITIVELY SATISFYING TO HAVE TO CONCLUDE THAT THE

PROBABILITY OF THE CONDITION GIVEN A POSITIVE TEST RESULT IS ONLY

•5. THE PRIOR SEEMS IRRELEVANT IN VIEW OF THE TEST.

THERE IS AN INTERESTING QUALIFICATION TO THIS RESULT. IF

THE DATA THAT DETERMINES THE PRIOR CAN BE INTERPRETED CAUSALLY

RATHER THAN SIMPLY DIAGNOSTICALLY, IT IS GIVEN MORE WEIGHT

(TVERSKY & KAHNEMAN, 1977).

3.1.3 AVAILABILITY:

WHEN JUDGING THE LIKELIHOOD OF EVENTS THAT CANNOT BE
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DIRECTLY OBSERVED, ONE MAY SAMPLE ONE'S MEMORY FOR THEM AND JUDGE

THE LIKELIHOOD IN RELATION TO THE EASE OF RECALL OR BY THE

RELATIVE NUMBER OF INSTANCES THAT CAN BE BROUGHT TO MIND. FOR

EXAMPLE, IF ONE WERE TO ASSESS THE RELATIVE LIKELIHOOD OF A

RANDOMLY CHOSEN WORD BEGINNING WITH K AS OPPOSED TO HAVING K AS

ITS THIRD LETTER, ONE MIGHT ATTEMPT TO GENERATE SAMPLES OF SUCH

WORDS AND THIS COULD EASILY LEAD TO THE ERRONEOUS CONCLUSION THAT

WORDS BEGINNING WITH K ARE MORE LIKELY (TVERSKY & KAHNEMAN,

1973A). THE MANNER IN WHICH INFORMATION IS STORED IN MEMORY, THE

WAY IN WHICH IT IS ACCESSED, AND SUCH ASPECTS AS SALIENCY, EMOTIONAL

CONNOTATION, AND ASSOCIATION CAN BIAS THE RECALL OF EVENTS OR THE

PRODUCTION OF INSTANCES. THIS MAY ALSO HELP EXPLAIN WHY

DESIRABLE EVENTS ARE OFTEN GIVEN HIGHER PROBABILITY THAN

UNDESIFU%BLE, AND EVENTS RECENTLY CONSIDERED SEEM MORE LIKELY TO

OCCUR.

3.1.4 CALIBRATION AND OVERCONFIDENCE:

CALIBRATION IS THE EXTENT TO WHICH THE FREQUENCIES OF

OCCURRENCE OF EVENTS MATCH THE SUBJECTIVE PROBABILITIES ASSIGNED

TO THEM. IT CAN BE ASSESSED FOR SETS OF EVENTS THAT ARE NOT

REPEATABLE, BUT ONE MUST BE CAREFUL THAT THE EVENTS CONSTITUTE AN

EXCHANGEABLE SET. THE GENERAL FINDING IS THAT OF OVERCONFIDENCE,

ASSIGNMENT OF PROBABILITIES THAT ARE TOO EXTREME (LICHTENSTEIN &

FISCHHOFF, 1977). IN ADDITION, THE DEGREE OF OVERCONFIDENCE

DEPENDS ON THE OVERALL PROPORTION OF OCCURRENCE. IN THE TYPICAL

EXPERIMENT ONE GIVES HIS SUBJECTIVE PROBABILITY OF A CORRECT

CHOICE, AND IN THIS CASE THE DEGREE OF OVERCONFIDENCE IS LESS THE

HIGHER THE PROPORTION OF CORRECT CHOICES. INDEED, WHEN IT IS
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HICK ENOUGH THE CALIB_iATION SHOWS UNDERCONFIDENCE. A MODEL

ACCOUNTING FOR THIS EFFECT IN TERMS OF A FAILURE TO CHANGE THE

RESPONSE CRITERIA IN ACCORDANCE WITH THE DIFFICULTY OF THE ITEMS

HAS BEEN DEVELOPED (FEKRELL & MCGOEY, 1980). CALIBRATION ACCURACY

CAN BE MUCH IMPROVED WITH FEEDBACK (LICHTENSTEIN & FISCHHOFF,

1979). WEATHER FORECASTERS ARE REASONABLY WELL CALIBRATED.

THERE CAN BE NO FUNCTION CHARACTERISTIC OF AN INDIVIDUAL

THAT RELATES SUBJECTIVE PROBABILITY TO OBJECTIVE RELATIVE

FREQUENCY, SINCE THE EXISTENCE OF SUCH A FUNCTION_ OTHER THAN THE

IDENTITY FUNCTION, WOULD REQUIRE THAT SUBJECTIVE PROBABILITIES

NOT SUM TO ONE FOR MUTUALLY EXCLUSIVE AND EXI_USTIUE EVENTS.

THUS CALIBF_TION IS PECULIAR TO THE TASK AND IS IN RELATION TO

THE SET OF JUDGMENTS THAT ARE MADE.

CALIBRATION CAN BE ASSESSED FOR CONTINUOUS VARIABLESJ T00J

AND OVERCONFIDENCE IS COMMON IN THAT CASE. ONE INFERS THE

SUBJECTIVE PROBABILITY DENSITY FUNCTION BY FINDING THE PROPORTION

OF INSTANCES IN WHICH THE CORRECT VALUE FELL WITHIN SUBJECTIVELY

GIVEN INTERVALS OF THE VARIABLE CORRESPONDING TO STATED

INTERFRACTILE RANGES. USUALLY THE VARIANCE OF THE SUBJECTIVE PDF

IS TOO SMALL, INDICATIVE OF OVERCONFIDENCE. IT tUS BEEN PROPOSED

THAT THIS RESULTS FKOM A HEURISTIC WHEREBY ONE ANCHORS ON HIS

BEST GUESS FOR THE VALUE OF THE VARIABLE AND THEN ADJUSTS UP AND

DOWN TO OBTAIN THE FRACTILES (TVERSKY & KAHNEMAN, 1973B). THE

ADJUSTMENT TENDS TO BE INSUFFICIENTJ PERHAPS BECAUSE THE VARIETY

OF POSSIBLE SOURCES OF UNCERTAINTY IS NOT RECOGNIZED.

3.1.5 OTHER CHARACTERISTICS OF PROBABILISTIC INFERENCE:

IN SEQUENTIAL PROBABILITY REVISION IN WHICH THE
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PROBABILITY OF AN HYPOTHESIS IS UPDATED ON THE BASIS OF EVIDENCE,

IT IS COMMONLY FOUND THAT THE REVISION IS LESS EXTREME THAN IS

ACTUALLY WARRANTED. THIS CONSERVATISM, AS IT IS KNOWN, IS IN PART

AN ARTIFACT OF THE LIMITED SCALE OF PROBABILITY, BUT IT ALSO IS

DUE TO INABILITY OF THE PERSON ACCURATELY TO COMBINE THE IMPACTS

OF THE EVIDENCE EVEN THOUGH HE IS AN EXCELLENT JUDGE OF WHAT

EVIDENCE IS RELEVANT (EDWARDS, 1968). A SIMILAR INABILITY TO

COMBINE DATA OPTIMALLY IS FOUND IN COMPARISONS OF PEOPLE'S

JUDGMENT WITH LINEAR REGRESSION MODELS (DAWES & CORRIGAN, 1974).

OPTIMAL MODELS ARE FAR SUPERIOR TO HUMAN JUDGMENT WITH THE SAME

EVIDENCE, AND MODELS BASED ON THE JUDGE'S OWN JUDGMENTS ARE MORE

RELIABLE THAN THE JUDGE.

3.1.6 IMPLICATIONS OF PEOPLE'S PROBABILISTIC INFORMATION

PROCESSING CHARACTERISTICS FOR AUTOMATED DECISION AND

PROBLEM SOLVING S_STEMS:

ON THE WHOLE, THE CURRENT FASHION IN EXPERIMENTS THAT

SUGGEST THAT PEOPLE ARE ILL-E(_UIPPED TO DEAL INTUITIVELY WITH

UNCERTAINTY IN A STATISTICALLY SOUND MANNER STRONGLY SUGGESTS

AUTOMATING AS MUCH OF THEIR PERFORMANCE IN THIS AREA AS POSSIBLE.

THE CURRENT WORK TOWARD AUTOMATING THE PRODUCTION OF

PROBABILISTIC WEATHER FORECASTS IS AN INDICATION OF WHAT MAY BE

DONE ALONG THIS LINE IN A WELL DEFINED (THOUGH EXCEEDINGLY

COMPLEX) PROBLEM.

ALTHOUGH PEOPLE'S PERFORMANCE APPEARS TO BE VERY POOR WHEN

COMPARED WITH THE OPTIMAL BEHAVIOR IN CLEAR-CUT EXPERIMENTS, IT

SHOULD BE REMEMBERED THAT PEOPLE DEAL WITH UNCERTAINTY IN FACT,

EVEN IF VERY SUBOPTIMALLY BY SOME STANDARDS. THE TECHNIQUES BY
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WHICH THEY DEAL WITH UNCERTAINTY APPEAR TO BE ONES THAT PRODUCE

ADEQUATELY RATIONAL BEHAVIOR IN THE FACE OF VERY LITTLE

INFORMATION AND A RELATIVELY SMALL AMOUNT OF COMPUTING CAPACITY

AND IN TIlE PRESENCE OF VERY LARGE UNCERTAINTIES ABOUT THE

STRUCTURE OF THE PROBLEMS BEING DEALT WITH. AUTOMATION ALLOWS

REMEDYING THE COMPUTATIONAL LIMITATION TO SOME EXTENT, AND

POSSIBLY ALLEVIATING THE LACK OF INFORMATION SOMEWHAT, BUT TIlE

UNCERTAINTIES ABOUT THE STRUCTURE OF THE PROBLEMS BEING DEALT

WITH REMAIN. IT WOULD NOT BE SURPRISING TO FIND THAT AUTOMATED

DECISION SYSTEMS EVOLVE INTO ONES THAT EXHIBIT THE SAME KINDS OF

SUBOPTIMALITY THAT ONE FINDS IN EXPERIMENTS WITH PEOPLE.

IF THIS IDEA HAS ANY VALIDITY, IT MAY BE WORTH WHILE TO

ATTEMPT TO STUDY THE WAYS IN WHICH PEOPLE CAN FORMULATE ROBUST

STRATEGIES IN THE PRESENCE OF UNCERTAINTY WITH THE OBJECTIVE OF

IMPLEMENTING SUCH TECHNIQUES IN AUTOMATED SYSTEMS.

PEOPLE MUST INTERPRET THE OUTPUT OF AUTOMATED OR SEMI-

AUTOMATED SYSTEMS. TO THE USER, THE SYSTEM IS A SOURCE OF

UNCERTAIN INFORMATION AND POSES THE NEED TO MAKE DECISIONS WITH

RESPECT TO IT. HIS RESPONSE TO IT WILL EXHIBIT THE SAME KINDS OF

BIAS AND SUBOPTIMALITY SHOWN IN HIS OTHER RESPONSES TO

UNCERTAINTY. THIS SHOULD HIGHLIGHT THE IMPORTANCE OF

ESTABLISHING A SUITABLE LEVEL OF COMMUNICATION WITH SUCH DEVICES.

3.2 UTILITY AND VALUE:

THERE ARE TWO KINDS OF EVALUATION THAT NEED TO BE

CONSIDERED, I) MEANS END ANALYSIS IN WHICH EVALUATION IS

CONCERNED WITH THE EFFECTIVENESS OF DIFFERENT PROCEDURES OR
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SOURCES OF ACTION IN ACHIEVING A GOAL, AND 2) THE EVALUATION OF

OUTCOMES WITH RESPECT TO THEIR DESIRABILITY IN THE USUAL DECISION

THEORETIC SENSE.

3.2.1 EVALUATION OF MEANS END RELATIONSHIPS:

IN SKILLED MANUAL AND COGNITIVE PERFORMANCE PEOPLE ARE

EXTREMEMLY CAPABLE OF EVALUATING THE RELATIVE EFFECTIVENESS OF

PROCEDURES AND ACTIONS, AND THEY DO S0 WITH GREAT SPEED.

MANIPULATION, THE USE OF TOOLS, CHESS PLAYING, CONTROL OF

AIRCRAFT ARE GOOD EXAMPLES. MACHINES CAN DO ALL OF THESE THINGS,

THE LATTER BETTER THAN PILOTS CAN, BUT THERE IS N0 QUESTION OF

THE PREEMINENCE OF THE HUMAN IN THE MORE COMPLEX ENVIRONMENTS.

THE BASIS SEEMS TO BE THE HIGHLY INTEGRATED STIMULUS- RESPONSE

ASSOCIATIONS IN MEMORY THAT TAKE MANY YEARS AND MUCH PRACTICE TO

DEVELOP, AND THAT OPERATE BELOW, OR NOT MUCH ABOVE THE LEVEL OF

CONSCIOUSNESS FOR THE MOST PART.

THE IMPLICATION FOR AUTOMATED SYSTEMS IS NOT CLEAR, EXCEPT

THAT PERHAPS A SIMILAR APPROACH MAY BE NECESSARY IF VERY RAPID

SKILLED PERFORMANCE IS DESIRABLE, AS IT IS WITH MANIPULATION.

ALBUS & EVANS (1975) HAVE WORKED TOWARD THIS END USING A MODEL OF

THE CEREBELLUM TO ATTEMPT TO AVOID THE EXCEEDINGLY HIGH

COMPUTATIONAL COSTS OF GEOMETRICAL ANALYSIS NEEDED TO DECIDE HOW

TO CARRY OUT MANIPULATIONS-

THE STUDIES OF MEANS END ANALYSIS IN TASKS IN WHICH

SENSORY MOTOR SKILLS FIGURE LESS AND AD H0C REASONING IS OF MORE

IMPORTANCE, SUCH AS TROUBLE SHOOTING, INDICATE THAT PERFORMANCE

IS VERY MUCH DEPENDENT UPON AVAILABLE INFORMATION- WHEN ONE HAS

TO DERIVE POSSIBLE PROCEDURES WITHOUT ASSISTANCE, LIKELY
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PROSPECTS ARE OVERLOOKED, PROPERTIES OF THE DEFECTIVE SYSTEM ARE

IGNORED AND THE LIMITS OF ONE'S INFORMATION PROCESSING CAPACITIES

BECOME EVIDENT. TROUBLE SHOOTERS ADOPT HEURISTICS TO ASSIST

THEIR JUDGMENT, AND THEY ARE GENERALLY SUBOPTIMAL, BUT OFTEN

ADEQUATE (ROUSE, 1978).

THE IMPLICATIONS HERE ARE THAT AUTOMATION OF THIS KIND OF

EVALUATION AND DECISION TASK IS LIKELY TO BE WORTHWHILE,

EXPECIALLY WHEN THE MODELS OF THE PROCESS ARE CLEAR CUT.

AUTOMATED SYSTEMS FOR AIDING THE OPERATOR AND FOR TRAINING HIM

ARE ACTIVELY BEING DEVELOPED.

3.2.2 UTILITY:

UTILITY THEORY ALLOWS ONE TO DETERMINE THE RELATIVE

PREFERENCE THAT SHOULD BE ACCORDED CONSEQUENCES THAT WOULD

OTHERWISE BE INCOMMENSURABLE. IT IS A PRESCRIPTIVE THEORY, NOT A

DESCRIPTIVE ONE, AT LEAST NOT A VERY POWERFUL DESCRIPTIVE ONE.

THERE IS AMPLE EVIDENCE THAT ACTUAL PREFERENCE STRUCTURES

FREQUENTLY FAIL TO SATISFY THE AXIOMS OF UTILITY THEORY, AND THAT

KNOWING WHAT ONE PREFERS IS MORE OF A K DYNAMIC PROCESS OF SEARCH

AND RECONSIDERATION THAN A SIMPLE STATE OF KNOWLEDGE.

IN COMPLEX DECISION SITUATIONS, THE ROLE OF UTILITY THEORY

IS TO PROVIDE A MEANS FOR ARRIVING AT A DECISION. ONE MAY BE

WILLING TO ACCEPT IT FOR THIS PURPOSE, EVEN IF IT DOES NOT PERMIT

AN ACCURATE REPRESENTATION OF ONE'S PREFERENCE STRUCTURE. THIS IN

ITSELF IS A DECISION OF SOME MOMENT AND SHOULD BE RECONSIDERED

ANEW IN EACH CASE.

A CATALOG OF THE WAYS IN WHIG}{ UTILITY THEORY CAN FAIL TO
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ACCOUNT FOR PREFERENCE WOULD BE VERY LONG, BUT A FEW OF THE

PROBLEMS CAN BE MENTIONED.

I. PROBABILITIES AND VALUES ARE OFTEN NOT INDEPENDENT IN A

PERSON'S IMPLICIT VIEW (SLOVIC, 1966).

2. PREFERENCES FOR THE VARIANCE, OR EVEN THE SKEW OF

PROBABILISTIC ALTERNATIVES ARE OFTEN FOUND (VANDERMEER, 1963).

3. PEOPLE FREQUENTLY ARE UNABLE TO MAKE CONSISTENT

COMPARISONS BETWEEN SURE THINGS AND BETS.

4. UTILITIES FOR A GIVEN COMMODITY ARE OFTEN FOUND TO BE

DIFFERENT DEPENDING ON HOW THE UTILITY IS ASSESSED.

5. MULTIDIMENSIONAL ALTERNATIVES ARE OFTEN INTRANSITIVELY

VALUED, ESPECIALLY IF THE COMBINATIONS OF ADVANTAGES OF THE

DIFFERENT DIMENSIONS CAN BE VIEWED FROM DIFFERENT PERSPECTIVES

(TVERSKY, 1969).

6. ASSESSMENT OF THE UTILITY OF ONE OUTCOME MAY DEPEND ON

THE RANGE OF OTHER OUTCOMES WITH WHICH IT IS COMPARED

(KRZYSZTOFOWICZ & DUCKSTEIN, 1980).

3.2.3 IMPLICATIONS OF BEHAVIOR WITH RESPECT TO UTILITY:

INSOFAR AS AUTOMATED SYSTEMS DEAL WITH DECISIONS AND

PROBLEMS OF A RELATIVELY VALUE FREE SORT, OR DEAL WITH ONES ON

WHICH THERE IS UNIVERSAL AGREEMENT ABOUT THE 0RDERINGS AND

IMPORTANCE OF THE CONSEQUENCES, THE ANOMALIES IN UTILITY THEORY

WILL NOT MATTER. BUT WHEN THEY DEAL WITH QUESTIONS OVER WHICH

THERE IS DISPUTE, OR WHEN OUTCOMES DEPEND ON THE INPUT VALUES IN

AN IMPORTANT AND COMPLEX WAY SO THAT THE RELATION IS NOT OBVIOUS,

THEN IT IS LIKELY THAT ANALYSIS BEYOND THE LEVEL OF UTILITY WILL

BE NECESSARY ADEQUATELY TO INFORM THE AUTOMATED SYSTEM.
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ULTIMATELY DECISIONS HAVE TO BE MADE, AND PROBLEMS RESOLVED, IF

NOT SOLVED. BUT THE PROSPECT OF CREATING THE GOLEM REFERRED TO BY

WIENER, THE DECISION MAKING MACHINE THAT MAKES DECISIONS WITH

WHICH WE DISAGREE--BUT TOO LATE, IS NOT A HAPPY ONE.

4- CHARACTERISTICS RELATED TO PROBLEM SOLVING

4.1 HUMAN-COMPUTER SYMBIOSIS, WHAT HAPPENED TO IT?

THE SCOPE OF THE QUESTION OF HUMAN CAPACITIES FOR PROBLEM

SOLVING ENCOMPASSES MOST OF PSYCHOLOGY, AND CANNOT BE CONSIDERED

IN DETAIL. IT IS INSTRUCTIVE TO CONSIDER THE "MAN-COMPUTER

SYMBIOSIS" ENVISIONED BY J.C.R. LICKLIDER MORE THAN 20 YEARS AGO

(LICKLIDER, 1960). IN THAT SEMINAL PAPER HE ENVISIONED THAT ONE

SHOULD BE ABLE "TO THINK IN INTERACTION WITH A COMPUTER IN THE

SAME WAY THAT YOU THINK WITH A COLLEAGUE WHOSE COMPETENCE

SUPPLEMENTS YOUR OWN..." THERE ARE A GREAT MANY PEOPLE WHO USE

COMPUTERS MUCH OF THEIR TIME, BUT ARE THERE ANY WHO WOULD

CHARACTERIZE THE INTERACTION IN THOSE TERMS? WHY?

THERE ARE AT LEAST TWO IMPORTANT PARTS TO THAT ANSWER, AND

THEY BOTH SUGGEST THAT IF THERE WAS ANY LACK OF UNDERSTANDING IN

1960 IT WAS MORE ABOUT THE NATURE OF DIALOGS WITH ONE'S

COLLEAGUES THAN ABOUT WHAT COMPUTERS COULD POTENTIALLY DO.

I. THE PROPOSAL WAS, ESSENTIALLY, THAT THE COMPUTER WOULD

DO WHAT IT DOES BEST, NAMELY FAST COMPUTATION AND SEARCHING AND

STORAGE OF INFORMATION, THE ROUTINE ASPECTS OF INTELLECTUAL WORK.

THIS IS A GOOD IDEA, BUT IT TURNS OUT TO BE FEASIBLE FOR HIGH
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LEVEL PROBLEMS ONLY IF EITHER THE USER IS VERY HIGHLY SKILLED AT

USING A QUITE COMPLEX SYSTEM OR IF THE MACHINE CAN COMMUNICATE AT

THE LEVEL OF THE PROBLEM RATHER THAN AT THE LEVEL OF WHAT IT DOES

BEST. SINCE IT IS NOT KNOWN HOW TO ACCOMPLISH THE LATTER, AT

LEAST VERY WELL, THE FORMER IS THE CURRENT VERSION OF SYMBIOSIS.

2. LICKLIDER'S CONCEPTION OF SYMBIOSIS REQUIRED THE

MACHINE TO BE EXCEEDINGLY GENERAL IN ITS CAPABILITIES, YET STILL

AVOID t_VING THE USER NEED TO CONCERN HIMSELF WITH THE MECHANICS

OF HOW THE PROGRAMS WORKED AND COULD BE USED. VERSATILITY IN

COLLEAGUES IS RARE ENOUGH, AND IN INTELLIGENT ARTIFACTS IT IS

LIKELY TO BE VERY SUPERFICIAL. THE IMPORTANT ADVANCES IN

EXTENDING THE SCOPE OF COMPUTER APPLICATIONS HAVE IN LARGE

MEASURE DEPENDED UPON EXTREMELY CAREFUL ANALYSIS OF THE TASKS TO

BE DONE. QUITE STRUCTURED TASKS THAT WILL BE CARRIED OUT

REPEATEDLY CAN_ THUS3 BE DONE QUITE INTELLIGENTLY BY MACHINE, BUT

IL_STRUCTURED, AD HOC TASKS MUST RELY ON THE OPERATOR'S DIRECTION

AND SUPERVISION.

THE TWO REQUIREMENTS, THEN, ARE THAT THE SYSTEM BE ABLE TO

COMMUNICATE AND TO PLAN AND ORGANIZE ITS BEHAVIOUR AT THE

HIGHEST, OR PROBLEM LEVEL. THIS SEEMS TO IMPLY THAT IT MUST BE

ABLE TO THINK ABOUT ITSELF IF THE IDEAL OF MAN-COMPUTER SYMBIOSIS

IS TO BE REALIZED IN THE FORM ENVISIONED BY LICKLIDER.

4.2 RECOMMENDATIONS:

SEVERAL GENEraL RECOMMENDATIONS ARE SUGGESTED BY THE

FOREGOING. AUTOMATED AND SEMI-AUTOMATED OR INTERACTIVE SYSTEMS

WILL PROBABLY BE MOST EFFECTIVE IF THEY ARE SPECIAL PURPOSE, AND
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IF THE PURPOSE AND THE TASK ARE UERY CAREFULLY ANALYZED WITH A

VIEW TOWARD MAXIMUM MAN-MACHINE COMMUNICATION AT A LEVEL AT WHICH

THE TASK }[AS MEANING FOR THE USER. PEOPLE STRUCTURE THEIR

EXPERIENCE ACCORDING TO MEANING, AND ORGANIZE THEIR MEMORIES AND

THEIR PLANS AIi0UND INTERPRETATIONS OF THE TASK THAT INVOLVE HIGH

LEVELS OF GENEP_LITY AS %_ELL AS SPECIFIC PROCEDURES. OPTIMALITY

IN PROBLEM SOLVING, AS IN DECISION MAKING, IS LIKELY TO PROVE

LESS IMPORTANT THAN ROBUSTNESS. FINALLY, THE HUMAN IS FALLIBLE_

PRONE TO MISPERCEPTIONJ OVERLOAD, ERROR, AND GENERAL BUMBLING.

THE SYSTEM SHOULD NOT TRUST HIS PERFORMANCE--BUT IT SHOULD PAY

STRICT ATTENTION TO HIS HUNCHES.
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