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1.0 I NTROG;: CT I ON

This report contains the results of stray-light transmittance analysis

on Perkin-Elmer's design of the Infrared Astronomical Satellite (IRAS),

design ntomb.r 693-10000, Revision E, dated May 9, 1978. The system was

evaluated for scattered radiation propagation with the use of the APART

(Arizona's Paraxial Analysis of Radiation Transfer, version 6), and the

propagation of diffracted energy with both PADE (Paraxial Analysis of

Diffracted Energy) and Perkin-Elmer's GUERAP II programs. The results of

scatter and diffraction are first presented separately, with the combined

transmittance values being presented later.

The scattered radiation analysis was performed by using both a 5%

diffuse black on all the baffle and vane surfaces and by using a math-

erratical model of the Martin Black scattering characteristics. The results

of the IR scattered-radiation analysis show that the majority of radiation

comes from the inner-secondary baffle and the object side of the aperture

stop. In the visible wavelengths, the primary and secondary mirrors are

the dominant soirees of unwanted radiation at all off-axis angles.

For all wavelengths, diffraction effects are dominant only at the

large off-axis angles, except for a few specific cases at smaller angles.

This is somewhat contrary to popular opinion which holds that at the

long wavelengths diffraction effects will predominate. This report

clearly shows that at the longer wavelengths the diffraction contributions

go up significantly; however, surface-scattering characteristics are also

larger, resulting in more unwanted energy reaching the image plane due to

scattered radiation. 	 It is the comparative increase which determines

which propagation process predominates.

1
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The following tasks were outlined in the Statement of Work-, l

1. Perform an inde pendent analysis of the off-axis rejection of

the IRAS Telescope System (including sunshade, optical sub-

system, and field optics) considering the effects of both

scattering and diffraction over the operating wavelength range

of the telescope. The telescope design analyzed shall represent

the flight design to the maximum extent possible. The optical

suhsysteme ls defined to include the telescope optics, struc-

ture, and baffles. The requirements for off-axis rejection

shall be as defined in Specification 2-26412 "Performance

Requirements for an Infrared Telescope System for the Infrared

Astronomical Satellite (IRAS)" Revision 5, dated September 15,

1977 or the latest modification thereto. The analysis shall

Include but not be limited to the following elements:

(a) Computation of the off-axis rejection of the optical

subsystem by itself for direct comparison with the

Perkin-Elmer analysis.

(b) Computation of the azimuthal variation of diffraction of

the telescope for comparison as in (a) above.

(c) Computation of the effects of the field optics including

both the cavity behind the field lens and the aperture

that preceeds the detector cavity.

(d) Computation of the system off-axis performance at

632.8 nm and 14.4 nm.
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The analysis in each task shows, in most cases, good agreement with

Perkin-Elmer's original analysis, even though the systems analyzed were

slightly different.

The specular sunshield effectively blocks off the solar radiation

for off-axis angles greater than 6n°. However, because of its specular

coating, it may collect and reflect unwanted radiation from near off-

axis sources into the system. The field masks and lcn-,e5 in the final

flight system will alter the propagation piths to the individual detector,...

In all cases this will result in better Taff-axis rejection. 	 For a few

off-axis positions, the mask:, will provide the crucial reduction required

to meet the specifications.

The stray light requirements used in this analysis ire those defined

in Specification 2- 26412, which are repeated here:

3.2.2.3 Stray Light Rejection

The Telescope System stray light rejection require-
ments are defined as follows:

a. Let P(0) be the power (watts) from an
unwanted point source detected when the
Telescope System's line of si g ht is
displaced an angle 0 from the point source.
NO = 0) - P(0) is then the power that
could be detected if the point source
were imaged directly on the detector.

b. The normalized off-axis attenuation A(©)
is defined as

A(0)

	

	 1	
P(') sr-1

n P 76

where Q is the solid angle (sr) subtended
by the detector. The Telescope System shall
have a normalized off-axis attenuation ec?ull
to or less than the values of AN) tabulated
below in Table 3.2.2.3.
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Table	 3.2.2.3
REQUIRED AM sr-1

Spectral Band	 (um)

© o.4 - o.9 P -	 15	 15 - 30 48 - 81 87 - 118

50 1	 x	 10 7 X to o 	3 x 10- 1 4 x 10- 2 2 x— 1_ o=
24 0 3 x	 10- 1 1	 x	 10- 5	8 x 10- 6 4 x 10- 6 5 x 10-6
60° 3 x	 10- 7 5 x	 10- 8	1	 x 10- 7 2 x 10- 7 1	 x 10-7
88 0 1	 x	 10- 7 2 x 10- 8	 9 x 10- 9 4 x 10- 9 4 x 10-9

In any computerized stray-light analysis, the model of the system is

very important, including the scattering characteristics of the surfaces.

The surface elements that were used in this analysis are shown in Figs.

1 to 3. Figure 1 shows those elements that were modeled as existing in

object space (space one). Table 1 describes each surface according to

the numbers that appear in the three figures. Because of the nature of

the APART program, the appropriate ;lemecits must be entered into each

space of the system. As can be seen in the three figures, the elements

in each space nco l not be the same.

Elements numbered 5 and 6 are the sections of the primary baffle

which have vanes. In APART, the locus of vane tips is entered as the

"surface" of the element. This accounts for the odd shape of sections 5

and 6 relative to section 8.

Section 8 has some localized vane structure to shield rivets along

the barrel baffle seam that is not accounted for in the analysis. These

structures are comparatively small and should not adversely affect the

results.
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Table 1.	 Description of Objects Used 	 in APART.

•	 .	 x	 s	 M	 - f t .i ► a.s.:t-s:x^vs'^-Y S.s l . :fhvfa Y.a..tas3':sar:ar r.es ro'il.ar .wa-s .r;as ams:atiR .aJa^r a : -.z rt es s yle:. wak:lfi^,scr,

Ob;ect N	 Description	 Sections

1 Elliptical	 tilted diffracting edge 1 x 5

2 Sliced at	 31° conic l	 reflecting shield 5

3 Disk as	 radiators 4

4 Entrance port diffracting edge 1

5 Front section of main tube where first 5 5
vanes are 88.5 mrn separation

6 Second front section of main tube where 8 4
vanes are spaced 44.2 mm apart

7 R1ght side of the last vane of object 6 2

8 Vaneless side wall of the main baffle 5

9 Vane at	 right side of object 8 1

10 Small	 right	 side of object	 9 1

11 Baffle extending	 front 	 stop backward 1

12 Left side of aperture stop vane 1

13 Diffracting aperture stop tip 1

14 Right	 side of aperture stop 1

15 Small	 cylinder extending	 from aperture 1

stop to primary mirror

16 Cylindrical	 outside of secondary	 structure 1

17 Conical outside of the secondary baffle 1

18 Secondary baffle tip 1

19 Inside of secondary baffle 5

20 Small	 extension from secondary baffle 1

toward secondary mirror

Back side of spider support 10 x 3

22 Outside of	 inner conical	 baffle 5 x 5

23 Inner obscuration vane at	 the primary mirror 1

24 Diffracting edge at 	 tip of	 inner conical	 baffle 1

25 Diffracting edge at 	 tip of	 inner conical	 baffle 1

26 Cylindrical	 end of	 inner conical 1

27 Middle part of	 the	 inner conical	 baffle 4

28 Cylindrical	 right	 end of	 inner conical	 baffle 2

r
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Table 1. Description of Objects Used in APART, Cont.

.1 ^E@E'X.tLdpriGi'^Y:i^Y-R3C.atat'<..L^'^E'1i :S YT 1n"6 Axx:Z"E^#ss'0.^^A:=i.^Z:3.^ttA 6"1t3,_E.B^ . i:1^aB'JC iii ^liR':'i3i3R^_i'^^cilR_: -^1

1

Object #	 Description
	

Sections

29	 Steep cone at right end of inner conical baffle 2

30	 Image baffle
	

2

31	 Image
	

5

32	 Secondary mirror
	

4

33	 Primary mirror
	

6

34	 Not used

35	 Primary mirror as used in space three
	

6
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2.0 ANALYSIS OF THE OPTICAL SUBSYSTEM (OSS)

2.1 COMPARISON WITH PERKIN-EL14ER I S ANALYSIS

2. 1.1. The Visible Band. The analysis of the optical subsystem

(OSS) was performed to permit a comparison with the Perkin-Elmer analysis

as reported in PE Report No. 13616.	 Initial evaluation of this report

and a listing of the input data decks revealed some conflicting informa-

tion. Figures 1 and 2 from the report are reproduced here as Figs. 4

and 5. By observation, one can see that the size of the inner-primary

baffle near the primary is much too large and the aperture stop appears

to be too small. A check of the data input listing, 3 Fig. 6, shows that

neither is the case. As was explained in the introduction, object 2 in

the PE report should have the locus of the vane tips used as the "surface".

The drawing is inconsister' with the actual (and correct) date input. The

only error in PE's input data is the reference values of the marginal and

chief rays for each of the spaces. The detailed effect of this error on

the calculations is quite complicated; briefly, it will shift the loca-

tion of the image of the objects.

Table 2 shows the percent of power contributed to the full detector

area (r - 5.04 cm) from each of the individual objects. The black coat-

ings were assumed to be 5% Lambertian diffuse. Ths mirror coating had

a BRDF of 1.75E-1 sr-1 at B - 00 = .01 with a 0-1 falloff. This value

is 100 times higher than the BRDF specified by PE for 10 v. However,

PE later  did specify a (a/a 0)-' scaling at X. a 10 p. The mirror BRDF

used is thus about 2.3 times lower than the appropriately scaled data.

Subsequent analysis reported herd will include the BRDF scaled according
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V jl =411 Of 'I
vt 85 1014 toW10LUIt
Ot+.JF_C1 2	 -1 10	 - 1 o dds	 03 1)9 1 -1 .3	 -*01.127198
Ota./E C T 2	 1 10 -o3999 o309 1 -1
06JEC 7 1	 1 10 -190.	 27.73	 1 -1
n9-Jf C t 1	 1 10 -80.38 47.35 1 -1

ot o JLL 1 3	 1 10 -.05413 9367 1 -1
0 1WECT 4	 1 10 -005413	 930	 1 -1
WIJECT 4	 1 10 -.054	 •367	 1 -1
ORA CT 5 1 3 -.H?44	 .058 11
04JECT 5	 1 3 -.747	 0058	 1	 1 Rear Part of ApertureUHJECT h	 1 3 -.!1244	 .059	 1 -1 Stop Only.
04JECT 6	 1 3 -.8244 U.	 1 -1
04JECT 7	 1 5 - .147	 .059 1	 1
0 14 JE C T 7	 1 5 -.	 HB,g 	 .1116	 1 1
OHJECT 8	 1 5 -03899 905729 1 1
UHJECT H	 1 b	 0.	 .100	 1	 1
U19JECT 0	 1 5 - .7474313	 .05771 1 - 1
00JECT 4	 1 5 -.5986 01069 1 -1
wwrCt 10 1	 3 -97474313	 . 05771 1	 1
04JECT 10' 1	 3	 -.'1474,113	 1). 1 1
UHJECT 11 1	 10 -.3999 .0562d 1	 -1
n 1WEC 1 11 1	 10	 0.	 o056	 1	 -1
0HJEC 1 12 1	 5	 .01.66	 9310	 1 - 1
OPJECT 12 - 1	 5	 n.	 .310	 1	 -1 .3 4.96E -4
UHJECT 22 - 1	 5	 U.	 .310	 -1	 -1 .3 4.96E-4
o"JECT 22 1	 1)	 .0266	 .310	 -1 -1
OkJECT 32 1	 lit	 -1.2K5	 0 JOY -1 -1
00JE C T 32 1	 10 - .3999	 9309 - 1 - 1
OVA CT 33 1	 10 - .3999	 .361 - 1 - 1 1

U ►+JECT 33 1	 10	 -.05413	 .361 -1 -1

13

UHJECT 34 1 10 -.05413 03 -1 -1
0^9JEC 1 34 1 10 -.054 .367 -1 -1	 t}1;1^^
04JE CT 35 1 3 - .6244 .058 - 1 1	 OF FCK'.R ZJIV''T'Y

04JECT 35 1 3 -.747 .059 -1 1
04JECT 36 1 3 -.6244 0059 -1 •1
0 14JECT 36 1 3 - .4244 0 0 - 1 - 1
0 0 JECT 37 1 5 -0147 .OSY -1 1
0(4Jt;CT 37 1 5 -05886 01116 -1 1
0 1WECT 38 1 5 - 0 3994 .05128 -1 1
MWECt 39 1 5 0 0 0100 -1 1
0 14JECT 39 1 5 -07474313 005771 -1 -1
UHJECT 39 1 5 -05886 01089 -1 -1
OHJECT 41 1 10 -03999 .05b28 -1 -1 	 ••
WIJECT 41 1 10 0. 0056 -1 -1
oAJECT 40 1 3 -07474313 005711 -1 1
11HJFCT 40 -1 3 -.7474313 0. -1 1 90506bb239 b084Hb89E-3
01JECT 60 -1 3 -07414JI3 005771 1 10050856239 6.d48889E-3
0HJECT bO 1 1 - 0 1474313 us 1 I
04JECT 11,,2 1 10 -1.285 * 309 1 -1
04JECT h? 1 to -93999 .3090 1 -I
UHJECT 63 1 10 -03999 0361 1 -1
O ►'JECT h3 1 10 -.,05413 0367 1 -1
OBJECT 64 1 10 -.05413 030 1 -1
UPAJECT 64 1 10 -6054 0367 1 -1
09JECT 6R 1 5 - .3999 .05728 1 1
OHJECT 68 1 5 0. .100 1 1

Fig. 6.	 Input Data listing from Perkin-Elmer's Analysis.
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to the PE formula.	 In either case. the significant contributors are the

Inner-secondary baffle. the primary, and the aperture stop.

A detailed critique of the design or an analysis for each off-axis

is to compare results with

in the principal propaga-

ht version (OSS plus sun-

there will be greater

changes will be readily

position will be avoided here as this analysis

those obtained by PE. Significant differences

tion paths will be highlighted. When the ;lig

shield, field optics, and masks) is evaluated,

detail so that the effects of suggested design

recognized.

The above analysis, with a 5% diffuse black coating, was repeated

using a mod!1 of Martin Black as the surface scatterer. A brief descrip-

tion of the model is given in Appendix A. This model accounts for the

higher forward scatter and lower back sco;', ,:r that is characteristic of

Martin Black. The results with the Martin Black model (Table 3) show

some significant changes in the prcpagation paths due to the above char-

acteristics. The A(0) values are plotted in Fig. 7 f_^r both runs along

with the specification for the 0.4 to 0.9 p bank.

A comparison of PE results (Fig. 8) with our analysis shows excellent

agreemeot except for one data point at 10°. PE reports that the major

contributor at this angle should be the inside of the secondary baffle.

However, this was added as a separate hand calculation. 7 APART calcu;ated

the power focused onto the inner-secondary baffle; it then computed the

radiation scattered forward toward the image of the detector as imaged

by the secondary and also the energy backscattered to the primary and

through the secondary before reaching the image. The area directly

f
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seen from the image did not receive direct illumination,thus, the hand

calculation appears to be in error.

Figure 9 is a very simplified drawing of the rays that can reach

the secondary baffle. The main baffle tube blocks out ail the radiation

to the sections on the secondary baffle that can be seen directly.

Formation of primp image

Illuminated
area of
mi rror

r ^ ,

k..

Rays hit only front of baffle

r^ r

Fig. 9. The Left Sections of the Secondary Baffle do not
Receive Direct Illumination.

There is one last point to discuss in the comparative analysis of

the visible band results. This APART analysis predicts the contributions

from the front side and back side of the aperture stop is the reverse of

that presented by PE. The magnitude of the power contributed also appears

to be reversed. Only a small portion of the back surface can receive

radiation compared to the entire front surface, which is seen directly.

With Lambertian coatings, then, the front side must contribute more.

2.1.2. The 8-151, IR Band. The OSS was evaluated for its off-axis

rejection using a 5% Lambertian diffuse coating. The mirror coating had

't
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a DRDF of 1.75 E-3 at 8-10 - . 01 with 0-1 falloff. too is the sine of

the angle of incidence, while R is the sine of the angle from the surface

normal to the observation point. Table 4 shows the contributions from

each object. One can readily see that the mirror scatter plays a second-

ary rold in the IR. In this analysis, it is by definition (and generally

accepted as a true statement) that mirror scatter goes down with increas-

ing wavelength. Therefore, unless the BRDF of the black surfaces also

decrease with wavelength, one should not expect significantly better off-

axis rejection at the longer wavelengths.

The major contributors are the inner-secondary baffle, the aperture

stop, and the inner-primary conical baffle. Note that the back side of

the strut contributes only 5.6% of the total energy and that Is only at

one angle. The orientation of the struts is shown in Figs. 10 and iI.

In particular, one of the struts is aligned with the peak of the sun-

shield tip. The values calculated in this analysis have the strut and

the off-axis point source in the same plane. For small off-axis angles

the unwanted radiation is (nearly) focused onto the strut, making this

azimuth the worst case.

Table 5 shows the same analysis but with Martin Black on the baffle

surfaces. As was the case with the analysis in the visible band, the

percentage numbers vary but the same objects are critical to the system's

performance. This is due to the variation in the forward and backward

scatter characteristics. In most cases this shifts the percent contri-

buted from a back scatter path to the forward scatter path. Figure 12

shows the relative A(e) values for the two runs along with the specifica-

tion. The Martin Black A(8) values are more often below the IRAS 8-15u

spec tine.

4	 ''
d

R ti	 '
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4

Figure 13 compares the PE results with the 5% results. The contri-

button calculated by PE, as indicated by the dashed line at 10 degrees,

Is much higher. The contribution from the front side of the aperture

Is atout 10% higher than predicted by PE for the back side. These are

the same values as calculated in the visible, because the 5% black

hasn't changed with wavelength.

2.1.3. Black Coatings at Long Wavelengths. When the Martin Black

coating was used to evaluate the OSS in the 8-i5p band, the predicted

values were, in several cases, above the 8-15-p spec line. At the longer

wavelengths the spec line moves down to lower rejection values. However,

existing data indicates that the hemispherical diffuse reflectivity in-

creases with wavelength (Fig. 14). This implies that at some off-axis

angles A(0) will be above the spec lines for all the IR bands.

The above statement must be tempered with the following additional

statements: Other measured data 9 exists which indicates that the increase

Is not as pronounced (Fig. 15). At the longer wavelengths the surface

roughness relative to the wavelength, is much less. As with the mirrors

one might suspect that the diffuse BRDF should drop significantly while

the specular component will increase. it is not known whether the data

In Fig. 14 includes both the specular and diffuse component.

In any case, it is imperative to have measured BRDF data as a func-

tion of the input and output angles. Such data is not presently avail-

able for the wavelengths above 10.6p. Without it, the validity of the

evaluations at the longer wavelengths is questionable.
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In the analysis of the flight system, discussed later in this report,

It will be assumed that the BRDF profiles at all wavelengths remain the

same, only the magnitude varies with wavelength as indicated in Fig. 14.

If, as discussed above, the coating exhibits a marked specular

reflection at the longer wavelengths, this could significantly alter the

predicted attenuation factors. Most likely the specular component will

not be a delta function but exhibit a relatively high NRDF over a fairly

large solid angle (* .02 sr-1 ). Under such circumstances, the forward

scatter from the secondary baffle towards the secondary mirror would be

significantly higher and specular reflections from the inner conical

baffle towards the field mask would cause additional problems for large

off-axis angles. it would then be desirable to eliminate all possible
4-

near-specular paths.

3.0 SUNSHIELD ANALYSIS

This portion of the analysis was performed in two stages. In this

section the characteristics of the sunshield itself will be explored.

The overall effect of the sunshield will be discussed later as part of

the evaluation of the overall flight system design.

The sunshield design can be seen in Fig. 10. Figure 16 shows a

profile of the shield. The design of the shield has been detailed else-

where; 
10 

basically it blocks sunlight for off-axis angles greater than

60° when the sun is In the plane of the tip of the cone. Earth light

is rejected at 88° for off-axis angles in the opposite direction.

The underside of the sunshield has a specular surface to reduce the

thermal loading on the telescope. When the unwanted source Is more than

I
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64° off axis only diffuse scatter and self-emitted radiation will enter

the main tube. For specular surfaces, the emissivity is low and the

diffuse scatter is low, hence the hunt load will be law and the attenua-

tion high.

However, at small off-axis angles unwanted light is specularly

reflected into the main tube, increasing the heat load and the AM

values. The problem Is three-dimensional, but Fig. 16 will help to

clarify the problem. Ray 1 from a source 5.7° off-axis will ,Just reach

the entrance part of the main tube. So the increase to the specular

reflected energy should start at quite small off axis angles. Ray 2 is

from a source 23.48° off-axis. Beyond this angle, specular paths do not

enter the entrance port and the input energy will fall off.

The three dimensional nature of the problem also causes skew rays

to be focused into the system. To analyze the problem quickly, several

scale models of the sunshield were made using specularly coated Mylar.

Transmittance measurements were made as a function of the off-axis posi-

tion of the source (Fig. 17). The peak input power is for a source point

25° off axis as shown in Table 6. This is very unfortunate because the

A(d) for the OSS Is Just slightly above the specification for off

axis angles of 24-60 0 when the system was evaluated using Martin Black.

The sunshield will cause the values to go even higher.

By changing the angle of the sunshield, the peak value due to spec-

ular reflection may be moved to a less obnoxious off-axis angle. Depen-

ding on how this is done, it will usually affect moments of inertia and/

or the radiators that presently exist.
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Table 6. Data from Measurements on a Sample Sunshade.

r:era ^^ .z+RZCsr+.r.r:a^wx' : ra-sreea :^^w,srxaaa^aeacr.:r»:-zwa:ra.cssrrwc^nae. .away-=r3ct+swrdasax ° 	mc:c^r^n^es.a

Off-axis
Ang le F

0 1.00
5 1.03

10 1.10
15 1.29
20 1.59
25 1.69

30 1.64
35 1.51
40 1.40
45 1.18
50 .99

SIN "R	 Q0 	F

SIN
is the power into the main baffle sections

mo is the power into the system without	 the sunshield

4.0 FIELD MASK AND LENSES

To analyze the effects of the field stop and the field optics, a

single detector was selected and located on axis. The field of view

from the detector was calculated using ACCOS by running rays from the

edge of the detector surface backwards through the lens, and using the

field stop as the limiting aperture for the rays, determining the direc-

tion they leave the field-optics set. This was done for the band 1

field-lens assembly with the data as supplied by Ball Brothers Research

Corporation in a 16 May 1978 letter number 86563.78.0.0038. A picture

of this process is shown in Fig. 18. From this data, it was determined

that the transfers from the objects along the inside of the inner primary-

mirror baffle could not reach the detector (Objects 26, 27, 28, and 30).

These transfers were eliminated from the analysis for the 111 single detector.
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The field stop is oversized allowing ail the stray radiation from the

secondary mirror (object 32) and objects imaged through it to reach the

detector. These transfers were changed to account for the smaller size

detector rather than the whole image surface. The limiting field of

view from the detector casts an elliptical-shaped hole onto the inner-

secondary baffle. To model this transfer, the size of the elliptical

aperture projected o..t to the secondary baffle was determined and entered

as an obscuration in APART, with the detector being modeled as a rectangu-

lar disk. i

4.1 DIFFRACTION EFFECTS

The size of the field stops must be oversized because they are in

the far-field diffraction region of the system aperture stop. The field

stops are, however, not in the far-field region for power transfers coming

directly from the inner-secondary baffle, where here we must consider near-

field diffraction from a linear edge. In this case, the light rays dif-

fracted around the edge will be of secondary importance compared to the

direct rays near the edge which will pass undiffracted to the detector.

The inner-secondary baffle is the only object in which edge diffraction

would produce any measurable contribution.

5.0 ANALYSIS OF THE FLIGHT DESIGN

The preliminaries of the scattered-light analysis on the flight

design have been considered. What remains is the scatter and diffraction

analysis on the flight-design system as a whole. This section contains

the stray-light analysis of the flight system including the OSS, sunshield,

field mask and lenses. The diffraction analysis will be presented in the

next section.
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The physical size and shape of the objects are shown in Figs. 1, 2,

and 3, except for the detector area which is shown in Fig. 18.

The BRDF values of the mirrors are according to PE's formula as

described in Appendix A. By definition, there is no wavelength scaling

with the 5% diffuse surface. When Martin Black is used the values and

profiles remain constant except for the 100 micron band. In this band

the BRDF profile is ASSUMED to remain the same while the magnitude is

Increased by a factor of 10. This results in an inc^ease in the A(®) of

ION where N is the number of Martin Black-surface scatters encountered.

The scattered light from the sunshield becomes a factor only for

very large off-axis angles (z88°). The F pecular component is of no

consequence at these angles. No measured BRDF values were available for

this surface, therefore it was assigned a Lambertian diffuse component of

.001 for all wavelengths. At these angles the sunshield is the only sur-

face that is directly illuminated so the A(9) values will scale directly

with the sunshields surface scatter. The .001 BRDF yields A(e) values

well below the spec line and, as will be seen, diffraction effects pre-

dominate at these large off-axis angles.

5.2 SCATTERED LIGHT ANALYSIS 0.4-0.9 BAND

The contribution of power from each object to the image plane is

shown in Tables 7 and 8, for the 5% and Martin Black coatings respec-

tively.

At 5° the direct scatter from the directly illuminated primary and

secondary mirrors are the major sources of scattered light.
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At 100 9 the secondary Is no longer directly illuminated. The primary

mirror and inner-secondary baffle are now the major contributors of

scattered light. The mirror scatter remains fixed for both the 5% diffuse

and Martin Black calculation, so the relative importance shown in the

percent table is due to the change in the black-scattering characteristics.

There are three paths of scatter from the secondary to the detectors

(Fig. 19):

1. Directly from the left most sections (20%) of the baffle

to the detector.

2. To the image of the detector as reflected in secondary (right

most sections- 20%)

3. To the image of the detector as reflected by the primary

and secondary (right most sections - 20%).	 a'

The projected solid angle of the detector, as seen from the source

sections, is 100 times less from the last two positions when compared

to the directly seen area. However, the left most sections are not•di-

rectly illuminated at, or beyond, 10 degrees.

With the 5% black the forward and backscatter contributions are

approximately equal. This is unrealistic. With the Martin Blackmode•1

the black-scatter path (Path 3) drops'by a factor of about 1 0 while the

forward scatter BRDF goes up by about 100. The forward-scatter path is

the dominant propagation path because of the near specular forward scat-

tering coaracteristics.

For angles between 17° and 24° the primary mirror and aperture stop

are both illuminated. The primary receives considerably more power and

is thus the major contributor; its relative contribution decreasing as

the entrance operture shades it at larger angles.
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For angles larger than 24' no objects are illuminated that are

seen from the image. Up to 88' the main tube (objects 5, 6, 8) are

Illuminated and these in turn scatter to ail of the objects seen by the

visible detector. At the 30' angle object 8 can transfer power directly

to the inner-secondary baffle which causes its contribution to be higher

than for larger angles. For all angles larger than 30; the contributions

remain fairly constant with only the magnitude dropping with higher angle.

At angles greater than 88' the specular heat shield is illuminated

(assumed reflectivity p - 0.001) and this drops the scatter another 4

orders of magnitude.

In summary, the inner-secondary baffle, inner conical baffle, and the

mirrors are the dominant sources of scatter. The BRDF at B-So 
- 0.01 of

4-
the mirror is 0.414 sr' 1 which is high even for average quality mirrors.

Somewhat better performance can be expected.

Figure 20a shows the plot of A(9) for the 5% diffuse, Martin Black

model, and the spec line. The only problem in meeting the specification is

at the 60° angle; diffraction is always below the scatter.

5.3 SCATTERED LIGHT ANALYSIS (ilu BAND)

For all the IR bands, the importance of mirror scatter drops signifi-

cantly. In ideally baffled systems, the A(8) values should be determined

solely by the optical surfaces (mirror scatter) or by diffraction. However,

In this system the limiting factor is either the black surfaces or diffrac-

tion. Based upon the available information, the hemispherical-diffuse

scatter for Martin Black remains relatively constant until the 100m IR band.

The A(A) value will not drop significantly if the principle contributor is

a black surface.
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diffuse black model

a Martin Slack model
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Fig. 20a. A(e) for Martin Black and 5% Coatings In the 0.4-0.7 p Band.
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5.3.1.  5' and 10 Off-a_ is So^Positions. The principle path

of propagation is from the source to the inner-secondary baffle (after

reflecting off the primary) to the detector as seen in reflection. This

is the same path which was discussed in detail In the discussion of the

visible band.

.3.2. 17', 24° and 30° Off-axis Source Positions. The dominant

path of scatter is from the front side of the aperture to the detector.

This is a bacRscatter direction for near-normal angle of incidence; a

near optimum condition for Martin Black. The path is the result of the

stop location. Because the stop is not at the secondary, the physical

size of the secondary mirror must be oversized to accomodate a field of

view, allowing out-of-field elements to be seen from the detector.	 a,-

At 24 0 and 30° off-axis angles, power is directly loaded onto the

rear sections of the main tube (elements 6 and 8). From there energy

scatters directly to the inner-secondary baffle. Half of the radiation on

the secondary baffle comes from the last section of vanes on object 6,

while the other half comes from object 8. The radiation on the inner-

secondary baffle then scatters towards the secondary mirror and reflects

to the detectors. This second-order path is significant enough to almost

equal the first-order path from the aperture stop to the detectors.

The specular reflections off the sunshield have their greatest

Impact at these angles and continuing up to about 500 off-axis. The

amount of increase Is relative to the values shown in Fig. 19.

5.3.3. 60° to IOc_ Off-axis Source Positions. At 60 ® off-axis the

propagation path is from the source to the front section of the outer-

L-1.1
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primary baffle, to the Inner-secondary baffle (via a reflection off the

primary) and then forward scattering to the detector. The specular reflec-

tions of the sunshield are no longer significant because they do not enter

the main tube.

For off-axis angles greater than 88% the first collecting element

must be the specular sunshield. This radiation is scattered tc, the vanes

on the main baffle, then to the inner-secondary baffle, and finally to

the detector.

5.4 SUMMARY OF THE SCATTERED-LIGHT ANALYSES AND RECOMMENDATIONS.

Figures 2Ob to 20e show the predicted performance of the IRAS system

in each of the wavebands. From the previous discussion and the percent

table (Table 9) for the 11 micron band, one sees that the mirror scatter

Is not significant. To reduce the scattered light, one or more of the

following steps must be made:

1. Find a better black coating.

2. Change the projected solid angle between the inner-secondary

baffle and detectors and also between the aperture stop and

the detectors.

3. Reduce the power that reaches the two critical objects: the

aperture stop and the secondary baffle.

The first solution is probably not possible in the near future.

The second solution can be realized by shifting the stop to the secondary,

sacrificing some light-gathering power. An analysis of the APART output

indicates that the A(6) values should drop by a factor of 90 for all but

the 5° off-axis position. At this angle the effect of stop shift is too

X,
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Fig. 20b. A(0) for OSS In the lip Band.
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Fig. 20c. A(6) for oss In the 22V Band.
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difficult to predict because low mirror scatter will be replaced by

higher diffuse scatter. But, without the additional scatter. the forward

scattering path would be eliminated, dropping the A(8) value by a factor

of 10.

The above changes require no change in the secondary baffle design.

By making the baffle more cylindrical and adding cylindrical vanes at

the base of the secondary baffle, even lower A(6) values can be achieved.

It is strongly recommended that these changes be seriously considered.

The above changes would block the most serious near specular path

(off the inner-secondary baffle's black surface), which would be very

high if the surfaces are becoming more specular with wavelength.

A specular black coating on the existing aperture stop would have

a lower diffuse scatter than Martin Black. However, this would be effec-

tive (lower A(9)) only for a small range of angles about 17 0 . The specula-

reflection would also have to be considered and controlled.

The third solution is a redesign such that the aperture stop and

secondary baffle would receive less power requiring a redesign of the

sunshield, main-baffle tube, and the use of angled vanes. How effective

this could be would depend highly upon the size and shapes that would be

allowed.
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E	 ^rK	
6.0 DIFFRACTION

Since there is no previous publication on our diffraction algorithm,

a detailed explanation of its methods and limitations will be presented

here.

6.1 INTRODUCTION

In the analysis of stray radiation In an optical system due to an

out-of-field source. it is usually necessary to calculate the near-field,

wide-angle dlffraction from apertures that are orders of magnitude larger

than the mean wavelength of the radiation. Since the well-known Fresnel

or Fraunhofer approximations do not apply, this would require doing a

two-dimensional complex numerical integration over the area of the aper-

ture with a sampling interval on the order of a wavelength. Even with
	

4-

today's computer systems, the storage and calculation requirements would

be excessive.

However, we will show how this cumbersome numerical problem can be

reduced by suitable approximations to the summation of only a few numbers.

The procedure involves a rigorous transformation of the two-dimensional

Integral over the aperture to a one-dimensional integral along the edge

of the aperture. This one-dimensional integral can then be accurately

approximated by the sum of the contributions from a few points on the

aperture edge. The final simplification involves neglecting the phases

i
of the individual contributions so that complex numbers do not have to

-:6

be used.
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6.2 THEORY

6.2.1 Scalar Diffraction Theory. The various components of elec-

tric and magnetic field vectors are coupled together by Maxwell's equa-

tions. A self-consistent solution of these equations for complex

arbitrary geometries and materials would be difficult. Few such solu-

tions exist even for simple idealized systems. However, the problem can

be simplified by assuming that the transverse components are independent

of each other so that we will only have to deal with a single scalar

quantity, u, that represents one of the transverse components. This

assumption turns out to yield accurate results as long as the size of

the apertures and observation distances are many wavelengths.

Since this complex scalar field amplitude u(x,y,z,t) obeys the wave

equation, for harmonic time signals, u becomes independent of time and
1

must be a solution of the Helmholtz equation.

V2 u+K2 u-0	 (K=2w	 (1)

The solution in the case of diffraction can be represented as a two-

dimensional integral over the diffracting aperture.li

A ^A. rI
I	 •.

•	 APERTURES	 OBSERVATION
SOURCE	 AREA A	 P	 POINT

E

C

Fig. 21. Typical Geometry for Diffraction Integral

u(P)
	 f! (G 3n u ate) do	 (2)

A

where G is a Green's function which will be specified later.

.

a
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It is necessary to know the value of the field and its normal deri-

vative everywhere on the aperture. In general, this would be a function

of the material properties of the diffracting aperture. If we assume

that the aperture is perfectly absorbing or "black", then Kirchhoff's

approximate boundary conditions may be used in the plane of the aperture:

U 
a au 

• 0	 outside aperture opening	 (3)

u 6 
au
	

are the some as the incident 	 (4)
field inside opening

Although these conditions seem quite reasonable, they lead to a mathe-

matical inconsistency in that they are not reproduced by our formula for

the diffracted field when the observation point is in the aperture plane.

Nevertheless, experimental measurements 12 have found that they produce	
a-

surprisingly accurate predictions, again as 16ng as we are not too near

the aperture.

It is now left to specify the function G. G must also be a solution

of the Helmoltz equation. The simplest choice turns out to be a spheri-

cal wave that emanates from the point of interest in the aperture.

ikr
G ^ 

e

	

	
(5)

r

This choice of Green's function corresponds to the Fresnel-Kirchhoff

formulation of diffraction. Other Green's functions are possible which

can lead in some cases to substantially different results. We will

return to this point in a later section.

:r
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6.2.2 Boundary Wave Diffraction. The edge of a diffracting aper-

ture appears bright when viewed from within the shadow. This observation

was given theoretical footing by Sommerfeid!s rigorous solution of the

diffraction from the semi-infinite plane. 
13 

His result could be manipu-

lated to yield a wave component that emanates from the edge.

Then Rubinowicz was able to rigorously decompose the Kirchhoff scalar

diffraction formula into a geometric wave and a diffracted boundary wave

for arbitrary apertures by properly modifying the region of Integration. 14

Fig. 22. Regions of Integration in Boundary-wave Formulation.

Then

U • u
G
 + u 	 (6)

where the geometrical field is:

► '	 e i kd
uG	 d	 in light region

(7)
0	 in shadow region

and the diffracted field is given by:15

4

t
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l	 eikr	 eikp	 eIkp	 eikr

uD 	 1 j ^^ an .......
	 . an ...

r
	do

p	 p

_ I	 elk_...( 	 id t
TV f rp
	

(14.0) dt
r

	 (8)

On the boundary of the geometric shadow where ; -p - -1, both the

geometrical and diffracted field are discontinuous. These discontin-

uities compensate one another such that the total field is continuous

across the shadow edge.

6.2.3. The Method of Stationary Phase. We have reduced the calcula-

tion of diffraction from integrating over an area to integrating along a

line. For the large apertures encountered in real optical systems, this

one-dimensional integral would still require excessive calculational

effort, either analytically or numerically. However, because the aper-

tures are orders of magnitude larger than the wavelength, the stationary

phase approximation can be applied.

For convenience, we can write the equation for the diffracted field

in the form:

Jiku(t)
uD
	
f(a) a	 dt
	

(9)

a

The interval of integration (a,b) does not necessarily enclose the entire

edge since the edge could be only partially illuminated by the source or

seen from the observation point due to intervening objects.

This integral can be suitably approximated by the method of

stationary phase: 16

tom**

k

t

{
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u0 	F 
f(tl)e ik (ti) ^

j t

el s/4•SIGN(u"(tl))

i n1 

+ IF Me Iku (b) • f(a)siku (a) 
+ t1( 1 )	 (10)ku b	 ku a	 K5'

Observation
point

center of curvature
of edge

Fig. 23. Vector Definitions for Stationary Phase Approximation
to the Boundary Wave Integral.

where

v  n r+p

u I (t) n 	
du(t)

di

u"(t)	
(rXJ) 2 + ( p̂ 	 r+R^

f(t)	 a(t)( X04	 a(t)	 incident amplitude a
4nr(i+r • p)	 p

The points on the edge of stationary phase (minimum or maximum

optical path difference from source to edge to observation point) are

determined by:

C.

U1 (t i ) • 0	 a < ti < b	 i n I,N	 01)
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In the case of a closed smooth path of integration, there will No in

general at lust two points of stationary phase and the contribution

from the end points of the Integratlon,will be zero. in most cases, the

contribution from the endpoints will be negligible if a point of station-

ary phase exists within the interval because it scales as A 2 as opposed
to only A for the stationary phase contribution.

6.2.4. Addition of the Fields from the Diffraction Points. The

diffracted field at the observation point now has the form of a simple

summation of complex numbers, i.e..

uD	 E 
An e t0n 	 An . On REAL	 (12)

nu t
	 An 0

where N is the number of stationary phase points on the diffracting

element of the edge plus two. The irradiance is Just the modulus

squared of u D :

ED • IUD 12' uDuD* 	 (13)

Upon substitution:

ED[no

N

	

	 I 	 N	 -im

I An et	 n	

E An a n^
 n•1

N	 N N
A

n 

2 + 2	 A A cos (0 -O )	 (14)n! I	 n=1 Mn n m
	 n m

Since the a's and m's are smooth functions of the system variables, the

first term represents the D.C. component while the second term contains

the osciilitory behavior. If we want the envelope of the diffraction

pattern in the vicinity of the observation point, let
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cos(®n.4m1 ♦ 1 	 (15)

then:
N	 N N

MAX [E j- g A Z + 2 E E An
na i "	 n•1 mot " m

2	
(16)

nil An

i.e., the different terms are exactly in phase.

Suppose, that one is more interested in an average value or, in a

statistical sense, the most likely value of the irradiance. The phase

Is related to the system parameters by:

Z^ (OPTICAL PATH LENGTH) 	 (17)

It is therefore a function of the source location, observation point

location, location of the edge and wavelength of the radiation. If the

Incoherent source and/or detector are of a finite size then it is neces-

sary to integrate over thee. Likewise, if this incident radiation is

polychromatic, then one must integrate over the wavelength band. In

general, the phase difference will vary rapidly, so that the integration

will be over a function that oscillates many times around a mean value

of zero. Therefore,	 cos(	 gym) ' 0	 and

N

1 ED	 1	 %2	
(1 S)

n

i

l•
9	 ,i

jThe average value of the irradiance is:

i
	 D> - 	A 2	 (19) 

nit 

n

. j	 •	 r

L ^	 1
•	 v 

^+il: ".:..:	 _	 c .._u -a+	 ,.. --	 a .... 	 . ._. ffi....+:^i¢YlYYCW.._.fa:.:'...auv.'YU^4tvt....,. —.m:'^vz,...^ 	 •. 	 .. ;'s	 ' . ..r u-' .__.s.,...	 as ruL.._.r^t..:er_ _ 	 <.	 ^	 ,.	 '
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F,

One could arrive at the same result using on . equivalent statistical

argument. if the location of the source, aperture, and observation point

ri

and wavelength have a certain uncertainty associated with them, then the

phase is a random number. If its distri ition function extends over many

radians (O.P.D. of several wavelengths), then the expectation value of

the cosine of the phase differences will be zero. Therefore, the expected
4

ialue of the irradiance is just an incoherent superposition of the indi-
r.-

vidual contributions:u

<ED)	 E A 2	 (20)
 

n
o  n

Finally, suppose all the contributions are approximately equal then:

An	a	 n-1,2...N	 (21) 4L,

and

MAX [E D) = N < ED,	 (22)

However, if one contribution dominates over the others

then

Al -	 A 8	 A2	-	 A3 ... An = 0 (23)

MAX [ED ] ' <E D)
(24)

Therefore, it depends on the particular problem as to which number ?s

more meaningful. In either case, it is not necessary to keep track of

the phases of the individual diffraction contributions, and the calcula-

tion of diffracted energy is reduced to the summation of a few real

numbers.
r
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ig edge segment
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0

Collector

point
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6.; THE PADE COMPUTER PROGRAM

A computer program, based on the theory develo, -o t o the preceding

section, has been written to calculate the diffracted energy in a complex

optical system. Called PADE (Paraxlal Analysis of Diffracted Energy), the

program is structured after the APART program so that the two can be used

In conjunction to calculate mixed mode, i.e., diffraction and scattering,

stray radiation paths.	 `

As in APART, objects are divided into sections.

Fig. 24. Sectioned Diffracting Edge.

Imaging and obscurations are handled just as they are in APART.

To calculate the diffracted energy from a particular section on the

edge, a modification of the basic APART equation (see Appendix C) is used:

^c W E l • BDDF • GCF'	 (25)

1t
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where Oc is the power on the collector area and E i is the power incident

on a unit area surface normal to the incoming beam at the edge point.

The GCF' factor is the same as in APART except that the edge is treated

as a ficticious unit area surface normal to both the incoming and out-

coming beam depending on whether it is a collector or source. respectively.

The BRDF of a scattering surface has been replaced by a newly defined

function the BDDF (Bi-directional Diffraction Distribution Function) which

contains the directional characteristics of the diffraction process at

the edge.

A spherical coordinate-system is used in specifying the incoming and

outgoing directions from the center of each edge segment.

fig. 25. Local Spherical Coordinate System for Edge Segment.

For an arbitrary unit vector v:

v • x - sink sinO	 (26)
v • y - cosm	 (27)

v- z - sing cosO	 (28)

We adopt the convention that the subscript "i" refers to the incoming

k
	 direction and "o" to the outgoing. Also we must define the BODF accord-

ing to the power equation

r;
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E

GOOF	
El

- r02	 (2gj
i

where E
C
 is the irradiance at the collector, which is a distance r0

away, and E  is the irradiance incident onto the edge.

The BOOF will have three separate forms. (Since we assume incoherent

addition.each contribution can be treated separately.) The first is the

simplest and occurs when the optical path difference is constant across

the edge segment. The last two correspond to the two terms of the sta-

tionary phase approximation. In all cases there is one factor that is

common to all of them:

(roxri)-t,

B'	 n i+ro-rI I
	30

The vector operations can be written in terms of the incoming and out-

going angle pairs (0 i ,9 I ) and (00,80).

	

( P0x "r i )-1 = cos0
0 

sin0 1 cos0 i - sin0o 
cos90 cos0 1	(31)

	r 0-"r l = cos0 1 cos0
o
 + sin0 i sin00 cos (8 1 -80)	 (32)

When the O.P.D. across the edge segment of length L is less than

a wavelength X, then

BDOF = 81 	 (33)

which is independent of X.

Otherwise, the method of stationary phase is employed, and one
3

must know whether a point of stationary phase is located within the

segment. This point is located where

u'(R)	 u'(0) + u"(0)z + ...	 0	 (34)

a
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t is the arclength distance from the center of the segment. The

two derivative terms can be written as:

11 1 (0)	 - ("ro+"ri)-1 - - (sing, sine, + sin#o stneo)	 (35)

(PoxJ)2	 (r,xt)z 	 (roty,, n
u (0) - r--- + — , - ^—

o	 t

1 - (sin#osine
0

) 2 + 1 - (sinf,sine,) 2	cosmi+cosmo

	

ro	
r 
	 -

(36)

wherewhere r, is the distance to the source, and R is the radius of curvature

of the segment. The approximate arclength distance to the stationary

phase point is therefore:

R s	 u.. 0
	

(37)

If is >L, then there is definitely no stationary phase point within

the segment. The BDDF now depends on whether this segment is at the

endpoint of the integration. In other words, if the adjacent segments

on each side of the present one are both illuminated by the source, and

seen from the collector, the BDDF is zero for the segment even though

radiation falls on it. If only one adjacent path Is not possible then:

2
BDDF - B' gnu 

^ 
0	 (38)

If both adjacent paths are Impossible, the BDDF is twice this. in either

case, the diffraction is proportional to the square of the wavelength.

The formula for x  is only approximate and it is important to know
precisely whether the stationary phase point is in the interval 121 S 2 .

e
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If we knew u'(t) at the ends of the segment then we would be able to

tell by the relative signs of p'(t) at these points, i.e.,

I F	 u' (-^) v' (2) 5 0 then	 ^ it	 5

IF	 v'(-p u'(2) > 0 then	 It s l > T

It turns out that u'(t) can be expressed exactly in terms of the midpoint

information for a curved or straight segment. First, define:

( R -_ 
cosh) 'sin(R) - sinf sine cos(R)

CURVED

1 + 2 
R 

[(R - coo)(1-cos( t)) - sink sine sin(')] EDGE
r	 r

h( )	 t	
sinm sine

/- 
r

1 +(r - 2 sino sine]	
STRAIGHT EDGE	 (39)

then

u'(t)	 h1(t) + ho (Q)	 (40)

If the stationary phase point is definitely in the segment, then

by the method of stationary stationary phase:

BDDF - S' u„ A0	(41)

which varies proportionately with the wavelength. The subdivision of

the edge is selected so that there is only one point of stationary phase'

In any one segment.

A
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6.4 COMPUTER ANALYSIS OF IRAS

6.4.1. Introduction. The analysis of stray radiation due to dif-

fraction in the IRAS system was performed using the PADE computer program,

Arizona's version of the GUERAP 11 program and analytical methods. The

combination of the three not only served to provide a cross check but to

make up for the limitations of each. The GUERAP 11 program cannot handle

struts or diffracting edges after an optical element. The PADS program

was developed to overcome these deficiencies. However, it proved to be

too cumbersome in analysis the fine-scale diffraction from the struts

and therefore more elegant analytical methods were employed.

6.42. _PADE Analysis. The figure of merit used in this analysis

Is the customer's attenuation factor A(e). It is defined as the ratio

of the detector power for an off-axis source to an on-axis one divided

by the solid angle of the detector

A(9) _ S2PPe^
	

(42)

If the irradiance on the image plane is fairly uniform, then A(9) is

Insensitive to the size of the detector since both S2 and P(e) are pro-

portional to the area of the detector. For this diffraction analysis,

the image plane was divided into 18 equal areas.

The irradiance at the center points of each section due to diffirac-

tion is calculated by the PADE program and then multiplied by the area

of the section in order to get the total power on the section. (This
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5.04 cm

-r

• it • 40'00"

Fig. 26. Sectioned image Plane.

assumes the irradiaAce is urfiform across the section which is not the

case for the sharp peaked diffraction spikes). The power from each

section is summed up to get the total power in the image plane. It is

this power combined with the solid angle of the entire image plane,

n • n(S 	 ? = 2.6 . 10- 4 which is used to c,&.culate the A(8). Essentially

we consider the image plane to be a big detector whose output is the

average of 18 point detectors. This should be kept in mind when inter-

preting the results of this analysis.

The diffracting edges used in the analysis of IRAS are shown in

Figs. 27, 28, and 29. Figure 29 also defines the azimuthal angle 0.

Edges with two digit numbers can be seen by the detectors in the image

plane. Therefore, as long as they are illuminated .by the source the

system will be dominated by first-order diffraction. Below tii4° the

first order diffraction scales by a since it is due primarily to con-

tributions from stationary phase points on the circular apertures.

Up to about 24° the diffraction will scale as a 1 since It is the result

of the endpoint term of tha stationary phase method. The one exception

occurs at the peak of a diffraction spike (m = 90 0 ) from the struts.

V
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Due to the point-like nature of our image plane array, the diffraction

will be independent of the wavelength in this case.

For source angles greater than 24% none of the critical edges are

illuminated and second-order diffraction dominates. This involves dif-

fracting off the entrance aperture (edge /4) and then proceeding to

diffract from the critical two-digit edges. The angle at which the

entrance aperture stops receiving energy from the source depends upon the

azimuth of the source be^:ause of asymmetrical nature of the front of the

sunshleld. When the source angle is larger than this angle, the dominant

diffraction path Is from the source to the tilted elliptical shield aper-

ture to the entrance aperture to the critical edges to the detector, i.e.,

third-order diffraction. No fourth order diffraction paths were considered

in this analysis.
I

The primary analysis was carried out at a wavelength of 102.5u and

for three azimuth angles; 20°, 90° and 180°. The off-axis angles for

each azimuth were picked in order to bracket key angles, i.e., where the

diffraction goes from one order to the next. The resulting attenuation

factors along with the specification are plotted In Fig. 30. All points

lie below the spec. except for the 85° off-axis, 180° azimuthal point

which is approximatel y an order of magnitude higher. The three azimuth

results are approximately the same up to 45° off-axis after which the

asymmetrical shield causes a drop from second to third-order diffraction. 	 3
3

Tables 10,11. and 12 are compilations of the percentage contribu-

tion to the energy in the image plane from the critical edges for each

azimuth. At 5 0 off-axis, the distribution for the 20 0 and 180° azimuths

Y.

I

- T.
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0 10 20 30-40 50 60 70 80 90 100 110 120
OFF-AXIS ANGLE 4

Fig. 30. Attenuation Factor vs. Off-axis Angle for a = 102.5u.
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are nearly identical. The only difference being the expected asymmetric

contribution from strut edges it and 12 for 20° azimuth. However, these

results differ greatly from the 90° azimuth distribution. Now the lower-

strut edge X10 is the major contributor instead of the aperture stop.

At first glance, this seemed correct since this is the azimuthal angle

at which one would expect a long diffraction spike to cross the image

plane. However, the diffracted energy is about two orders of magnitude

smaller than analytical expressions predicted. This discrepancy is

covered in detail in Section 6.5.

At the higher source angles, nearly all the diffracted energy comes

from the aperture stop. This is because the source for the critical edges

at these angles is the entrance aperture. The diffracted energy from a

circular edge is approximately proportional to 6- 3 where 6 is the diffrac-

tion angle, i.e., the angle between the incoming and outgoing direction.

Since the angle subtended by the image of detectcr array is small, the

outgoing direction, is essentially parallel to the optical axis. There-

rure, d is much smaller for the aperture stop than any other critical

edge, and the diffraction from it will dominate.

The 102.5u results can be scaled to produce the other bands. in

particular, each data point is scaled'by J1 n according to which diffrac-

tion order n dominates. The attenuation factors for the mean wavelengths

of the other bands are plotted in Figs. 31, 32, 33 and 34. In all cases,

the results are near or below the specifications.
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Fj	
6.4.3. GUERAP II Analysis. A diffraction analysis of IRAS was

also done using Arizona's version of the GUERAP II diffraction program.

The program is based upon the same theory as PADE except that it cal-

culates only the contributions from points of stationary phase and not

from the integration end points or edges with constant phase difference

across them. 17 For this reason, GUERAP it cannot handle straight edges

in general and therefore cannot calculate the diffraction from the struts.

Even for points of stationary phase, the actual implementation of the

same equation is considerably different in the two codes. GUERAP ii

considers the diffraction to occur along an astigmatic differential ray

while PADS treats the ditiracting edge as a psuedo-scattering surface

with a specular BRDF. The calculations of the two programs were compared

against the analytical solution for first-carder diffraction off a cir-

cular aperture (see Appendix 3) and ail three results differed by less

than 1% from each other.

Because of program limitations, GUERAP 11 also cannot do diffrac-

tion off of edges that follow an optical element. (The secondary mirror

edge is an example.) None of these edges were the major sources of

diffracted energy in the PADE analysis.

Figure 35 is a comparison of the PADS, GUERAP 11, and Perkin-Elmer

calculations for two different wavelengths. PADE and GUERAP II agree

quite well at 5° off-axis where the first-order diffraction off the

aperture stop dominates. However, the Perkin-Elmer hand calculation

seems to he ,omewhat low. For the larger source angles, second-order

diffraction dominates and the computer calculations differ by nearly

an order of magnitude. This is probably a combination of two things.
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First, the Arizona version of GUERAP ii was found to produce inconsistent

results for multiple diffraction, although single diffraction tests out

fine. Second, due to the quantum nature of the PADE algorithm, its

calt-lation will tend to be low for multiple diffraction. A future

version of the program will minimize this effect.

6.5 ANALYT I CAL RESULTS FOR STRUTS

6.5.1. Introduction. The diffraction from the struts will produce

a sharply peaked pattern in the image plane. It would be economically

infeasible to use the computer program to reproduce the fine scale struc-

ture of this pattern due to the very small sampling interval that would

be required for the azimuthal angle. However, the geometry of the struts

permits the use of a modified Fraunhofer approximation to the diffraction

integral. Therefore, an accurate analytical expression for the diffrac-

tion from an equivalent tilted slit can be found.

6.5.2. Angular Spectrum Approach to Diffraction. The standard

Fraunhofer formula expresses the diffraction field in the focal plane

perpendicular to the optical axis in terms of a scaled Fourier transform

of the aperture function a(x,y).18

Lens
(xi,Yi)

afx,Y
r _ !	 u(x,y) Observation

plane

Focal length f

Fig. 36. Usual Fraunhofer Diffraction Geometry.
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%ere

u (x, y) a A x-xi 
y yi

—^— , —^--
	 (43)

A(E,n) -	
a(x.Y) e-ik(Ex+ny) dxdy	 (44)

id (x i ,y i ) are the coordinates of the intersection of the incident ray

throuqh the center of the aperture with the observation plane. Note that

the diffracted field is shift-invariant, i.e., the pattern shifts along

with the incident point but does not charge shape around it.

We could easily calculate the diffraction from a rectangular slit

using the above formulation. Except that the approximations used in its

derivation would restrict us to small regions around the optical axis,

i.e., small angies of incidence and diffraction. Tilting the slit by a
s-

large angle OW) is equivalent to large incident and diffraction angles, ,

a violation of the usual Fraunhofer assumptions. However, it is possible

to find a similar expression for the diffracted field on a hemisphere

of radi gs f centered on the aperture, that is accurate for large angles.19

This approach is based on the angular spectrum of plane waves and expresses

the field in terms of direction cosines instead of spatial coordinates.

::	 A
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The field on the hemisphere is now proportional to:

A(*-o f , Q-Bi)

and therefore shift-invariant in direction cosine space.

The full expression for the field is given by:

e 
ikf

u	 Q -ms- A(a-a i s-B I )	 (45)

where Q is an obliquity factor that depends on the Green's function used

In the basic scalar-diffraction integral. For the Fresnal-Kirchhoff

theory

tkr	 Y;Y
G	 , Q ^
	

(46)

where y Is the z-direction cosine of the observation point and Y I of the

incident point. In the diffraction theory of Rayleigh and Sommerfeld,

the Green's function is selected 16 order to remove the mathematical

inconsistency of the Fresnel-Kirchhoff theory by requiring that only the

field and not its normal derivative need to be known at the aperture.

The Green's function that accomplishes this vanishes everywhere in the

aperture plane:

ikr	 tk^
G n =- - 

e.. -	 (47)

where ? is the distance from the point in this aperture to the image

formed by the aperture plane of the observation point. This leads to

an obliquity factor given simply by:

Q - Y
	

(48)

r'
	 The diffest.-,ce between the. two forms of the obliquity factor car,

i
	 best be shown in a polar diagram for y, - 1.

J
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Fig. 39. The Two Different Obliquity Factors.

Substantially different predictions would occur at large diffraction

angles. Experimental data in this region is needed to decide between the

two. In the absence of such data, we have chosen to use the Fresnel-

Kirchhoff obliquity factor since it is based on the same theory as the 	
4L-

computer algorithm and therefore will permit checking of the analytical

and numerical results.

6.5,3. The Rectangular Slit. The diffraction from one strut can

be equivalently represented by its complement, a rectangular slit. The

field due to the three struts will be the sum of three properly oriented

slits. It will be sufficient for our purposes to consider Just the

field due to one strut.

The transmission function for a rectangular slit can be writtehr

In the form

a(x,y) - RECT (AX) - RECT (;) )
	

(49)

i
	

(x( < ^r

RE CT (x)	 }
	

1x! -

0
	

! x l >



a(X•Y) Be

X

Y

Fig. 40. Transmission Function for Rectangular Slit.

The spectrum of this function is:

A(^,u)	 [Ax-sine(CAx/a)]-[Ay-sinc(nAy/a)]
	

(50)

whe re

sinc(x) . 
since 	 (51)

Upon substitution, the diffracted field is found to be:

U	 (Y12XQy -[sinc Ax(a -a i )/J► ]- sinc[Ay(8-s t )/a]-e
ikf
	(52)

and the irradiance is given ey:

E .
	

(Y+Yi)AXAy -si
nc[Ay(a-a )/a]- si nc[Ay(6-S i )/a] 

2	 (53)f	 t 

Of Ay	 Ax, then the diffraction pattern has the form of straight

short and long diffraction spikes in direction cosine space. However,

the spikes will appear curved when projected on the hemisphere depending

on how the observer is oriented with respect to the plane of the aper-

ture.

The direction cosines can be expressed in terms of the off-axis

and azimuthal angles, 8 and m respectively.

C
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Fig. 41. Diffraction Spikes in Direction Cosine Space.

Y

----- - - - -,r• (x ► Y IZ)

I
Z

Fig. 42. Definition of System ©ff-axis and Azimuth Angles.

a	
f 

w slnOsin^

S * f • sinNcos^

Y . r a cos9

The equation of the long spike is:

5 • a l	(57)

For an on-axis detector 9-0, therefore this condition becomes

Si	
sln O i cosd i • 0	 (58)

,,



Ao

FT

P(e) a Ao+u12

P (0) a Ao

A(e)	
P o

no -P(0)	
f ® 2

(60)

(61)

with

0 - O f , a - 0 , a 1	 sine, , Y, - cosef,

90

If the source is off- axis, i.e., ®-0, then the detector will pick up

the spike when

cos®I • 0	 (59)

or for source azumuthai angles 41 • t90*. The two halves of the spike

are diametrically opposed since 4 	 1800.

The peak of the long spike can be expressed in terms of the attenua-

tion factor A(e) for is small infinitesimal on •axis detector of area Ao.

Let Ao be the area of the collecting aperture, then

(1+cos8 )QxAy	 2
A(® 1 ) ' a^--^ ----- sinc(ax•sin(91) /a)

0

The envelope of this is:

22
1	 (l+cosei)a	 1	 R,.

	 ]

0 2n • sino
l
	• Aa 27r • tan 0112

substituting in the follow;ng values:

0  - S°

Ay - 20cm	 A(ei) - 2.21

Ao - 2400cm2

it is important to point out that the envelope of the spike is rigorously

independent of wavelength only for a point detector.

(62)

(63)

(64)
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6.5.4. The Tilted Strut. The value of A(e I ) calculated from the

analytical expression is about three orders of magnitude larger than that

calculated by the PACE program under the some conditions. At first, it

was thought that one of the calculations must be in error. liowevsr, it

turns out the discrepancy is due to the fact that the tilt of the strut

was not taken into account in the analytical solution.

Tilting the strut or aperture plane is equivalent to a rotation of

the incident and observation points. Let w be the angle of rotation

of the strut. •

Fig. 43. Coordinate System Rotation.

Then the new coordinate system is related to the old by:

X6 • x	 (65)

y' • y cosw - z sinw,	(66)

z' + y sinw + z cosw (67)

The new direction cosines in terms of the or'ginal off-axis and azimuthal

angles become:

a • sine Ono
	

(65)

S - sine coso cosw - cease sinw
	

(69)

Y - sine coso slnw + cose cosw
	

(7a)

a
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and the condition for an on-axis detector being at the peak of the long

spike Is again

p • 01 with s a 0	 (71)

this becomes

-sinw • sinc l cos# 1 cosw - cosf l sinw	 (72)

or
sinw(1-cos* )

cost • cosw' s^"n I • - tanw tan(+ l /2)	 (73)

Therefore. the source azimuthal angle at which this would occur is a

function of both the tilt of the strut and the off-axes angle:

ml	
cos-1(tanw-tanm /2) 	 (74)

for 8 n 5° and w • 68°

m l	 ±96.20	 r	 (75)

The spike has shifted about V in azimuth due to the tilt of the strut
and no longer forms a straight line since 0 - 0-I

	180 .°

The PADF calculation was redone using the azimuthal angle determined

precisely from the above formula and the value of A(e i ) agreed closely

with the analytical result.

6.6 CONCLUSIONS AND RECOMMENDATIONS

The diffraction due to the circular aperture is in most instances

below the specification. However, the diffraction spikes from the struts

are well above the specs. Also their spatial characteristics will make

them hard to differentiate from astronomical point sources. A possible

solution to the strut problem is to serrate their edges in order to break
r

R.
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up the phase awdition across them. This is, in effect, an apodization

technique which will not reduce the total energy diffracted by the strut,

but will redistribute it in a smoother manner.
.v

The transmission function Is effectively tapered such that A(9) falls as 	 a-

(sin®) -" instead of (sinO)
-a
 along the spike. A more detailed calcula-

tion2o could be carried out to precisely determine what will be gained

by serrating the struts.

If the stop of the system is shifted to the secondary mirror, the

strut diffraction is unaffected. However, this should result In lowering

the circular diffraction by making second order diffraction takeover at

a smaller off-axis angle. The exact effect is hard to estimate since

there is a possibility that more diffracting edges, i.e., the main baffle

vanetips, might start to contribute. A more detailed calculation is

needed.
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7.0 COMBINED SCATTER AND DIFFRACTION RESULTS

The combined effects of scatter and diffraction are shown in

Figs. 45 to 49. Tables 13 to 17 show the A(D) values and percentages

due to each method of propagation. Only at very large nff-ax;s angles

are the diffraction effects dominate, although they are significant at

some other angles in some of the bands. These results do include the

diffraction from the struts. However, these off-aIxis angles are in

the meridional plane (azimuth - 100'), on the earth's side of the sun-

shIoId.

For certain azimuthal positions the dlffraction'from the struts

will cause locally high peaks in the .A(B) values, which are not accounted

for in these figures.

7.1 DIFFRACTED, THEN SCATTERED RADIATION I
The effect of radiation which is first diffracted to and then scat-

tared from the critical objects (secondary baffle and aperture stop) was

not directly evaluated. However, an analysis of the APART and PADE out-

puts indicate the following:

1. Diffraction, then scatter, effects at 25° off-axis is not a

significant propagation path (less than 1%).

2. Diffraction-scatter effects at 60° are comparable to or

higher (10x) than the multiple scatter effects.

These results are preliminary and are based on the average incident

irradiance, at the apertures or critical objects, which can vary con-

siderably due to obscurations. it is possible that this typ-. of pro-

pagation will be of some significance at angles greater than 40° where

three consecutive black scattering surfaces are involved.

s
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8.0 SUMMARY AND CONCLUSIONS

The stray-Ilght analysis comparison with PE shows very strong

agreement, even though the resolution and number of surface elements

were more elaborate in the present analysis to account for many fine

structures In the system. There is a considerable difference in the

A(0) when a 5% diffuse is compared to Martin's black coating. The A(D)

values are usually tower with Martin Black; the exception being at 10°.

The forward scatter off the secondary baffle, the backsw-atter off

the aperture stop and diffraction from the aperture stop, secondary

baffle, and the struts are the major contributors of unwanted energy.

The primary scattering object, which causes the A(0) values to be

higher than the spec line, is the forward scatter off the secondary

baffle. This requires a redesign. There are two choices possible:
	 c-

I. Shift the stop location to the secondary mirror. The forward

scatter path would be eliminated. in addition, the scatter

path from the original stop and structures would also be

eliminated along with the diffraction effects from the present

aperture stop. The diffraction contribution from the secondary

mirror (the new stop) would increase some, but it will not be

as much as the present values from the stop near the primary.

This is the recommended solution. The expected result is an

estimated decrease in the A W value by a factor of 100.

2. Redesign the secondary baffle. °E originally recommended a

more cylindrical design for the secondary baffle. This recom-

mendation is on sound principles and should have been implemented.
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By making the baffle more cyllndrlcal i one or two vanes can be used to

block out almost all of the forward near-specular scatter from the

secondary--the mayor path at almost all angles.

moo	 VANES BLOCK SPECULAR PATH

• .. i
	

!^....^ LOCUS OF FORMER BAFFLE

^ SECTION OF THE BAFFLE
THAT COULD BE SEEN DIRECTLY

g	 BY THE DETECTOR BEFORE REDESIGN

f	 '

SECONDARY
MIRROR

Fig. 50. The More Cylindrical Secondary Baffle.

The direct back scatter to the detectors can also be reduced by having
k-

the incident energy fall on the cylindrical wail which is out of the

field of view of the detectors.

This change will not alter the backscatter from the aperture stop

nor its diffraction effects. However, diffraction is a major problem

only at large off-axis angles, and aperture backscatter is a problem

only in the 170 to 24 0 range.

It should be obvious that both improvements are desirable. The

result of making both changes would leave the diffraction from the second-

ary baffle and the spikes from the struts as problem areas. As discussed

in the section on diffraction, these are localized effects. Also, it

may  be possible to dissipate the energy in the spike over a broader

collector area. It would probably keep the diffracted energy at least

closer to the spec line if not below it.
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The overall design is not an optimum one for stray-light suppression;

Cassegrain designs seldom are. in an ideal baffled system. the detectors

see only the imaging surfaces and the cavity in its immediate location.

which does not receive significant amounts of unwanted energy. This

usually involves some type of reimaging system, with field stops and

Lyot stops. Then the A(Q) values are determined by 3rd order diffraction

(and higher) or by scatter from the imaging elements.

The following has been reserved for last with hopes that it would

carry the greStest lasting impact. The BRDF values used were taken at

10.6 u and extrapolated to 120 V. Over this range the "hemispherical

diffuse" has increased by more than a factor of 20. It is highly unlikely

that the BRDF profiles remain anywhere near constant over this range.

It is STRONGLY recommended that high priority be placed on having BRDF
	 It

measurements made at long wavelengths; both on Martin Black and on the

mirrorsl Then the values used and calculated in this report can be

related to the measured data to determine the actual performance of the

system at the long wavelengths.
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APPENDIX A

A.0 SURFACE SCATTER MODELS

A.1 MIRROR SCATTER

The mirror scatter model used by Perkin-Elmer is

BRDF n 1. 75 x 10-5

e
(A-1)

where 8 is expressed in radians. This model has a 0 dependence on the
scattering aniLle. This model yields satisfactory results at the 10.6U

wavelength as it tends to parallel other measured data we have seen. The

8 dependence, however, changes with samples and wavelength. The shape of

a typical scattering function also changes with the A as can be seen in

Fig. Al. Here, we notice that the scattering function becomes asymmetri-

cal with incidence angle. The asymmetry can be removed when the data is

replotted in a new coordinate set a, S, as shown below. The a,$ coordi-

nates and the measurement hemisphere is illustrated in Fig. A2. It has

been shown by Harvey (1976) that scatter data from smooth samples is

linear-shift invariant and can be plotted as a single profile of the

BRDF in 
B-Bo 

space. We have taken the PE mirror scatter model and re-

plotted it in B-B. with their a-z scaling to use as the visible wave-

lengths BRDF (Fig. A3).

In our analysis, we have used PE's BRDF only scaled to the Harvey

type 8-00 plot, however, we feel that it has several shortcomings. First,

the wavelength scaling does not fit with the 3 dependence they have chosen.

Harvey has derived a scaling law which accounts for the magnitude and

the grating effect (i.e., narrow-angle scatter at short wavelengths is a

A- i

E	 I
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predictor of wide-angle scattering at longer wavelengths). The scaling

law is

Sta^ B : aA) 	
S o	

;A)84 (A-2)

where "a" is the wavelength change of the scaling. From this form, one

can derive a A scaling law that is a function of the slope of the BRDF

as expressed in B- Bo space;

S s (6-00)m 	m is the slope of the BRDF curve	 (A-3)

from the scaling law,

I o- m
S (as)	 a 

a

S(a6) a a m (0-0 
)M

4.

S (ao) -S(0)	 (A-4)
a

Thus, for the Perkin-Elmer slope of 8-1 , the scaling law should have been

1/A 3 . We feel, however, that the slope of the BRDF curve should have

been more like a 1.9 to 0-2 which yields a scaling law of i/A 2 . This

slcae is more in line with those that we have seen for visible scattering

data. The effect of using PE's scaling law is that the visible BRDF's

seem to be pessimistic for near and large-angle scattering (Fig. A4).

With the analysis of the IRAS system based upon these scattering BRDF's,

any tests on a real model will be subject to the BRDF's of the mirrors

actually used and may vary considerably with the analysis presented

here.
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When scaling to longer wavelengths, another effect of the scaling

may occur; the roll-off or "shoulder" to the BROF curve may be shifted

to larger angles for much longer wavelengths. The roll-off is usually

not seen for visible and near IR wavelengths, because it occurs at very

small angles (Fig. AS), but could be shifted far enough over to be picked

up at the much longer IR bands. The only effect of this would be to

lower the mirror scattering even more than tNe Ax wavelength scaling law

suggests. At longer wavelengths the mirror-scatter contribution is neg-

Ilglble at most source ' angies, so this effect would make; the mirror's

contribution even less. Figure A6 illustrates the shoulder that is

observed on some mirror samples.

A.2 BLACK SURFACE SCATTER
r

Perkin-Elmer used a 5% Lambertian reflectivity for their analysis.

We have repeated the analysis with that reflectivity as well as using a

mathematical model of Martin Black for comparl'son. The Martin Black

model is based upon measured data on several samples. The key differ-

ence between a lambertian model and the Martin Black model is that the

real surfaces have higher BRDF's for non-normal Incidence angles than do

Lambertlan surfaces.

This difference can have profound effects on the resultant sca * ered

light in a system, depending on the scattering angles and vanes used on

the baffles. Differences of up to two orders-of-magnitude have been

noted on previous analyses where the two scattering models have been

used. The use of the 5% diffuse model is an attempt to account for this

large forward scatterinb, but yields pessimistic results when used for



A•8

a

O
•

O

N

°o
a

•M

+n•1

.G
ma

O
9

,
O

u
N
C
E

i.
R et

ut
td
g,1 O

N

O
fV

O ^

O
G1

^

O
00

M
O

O
11

O
II

V
..

o^
0

O y

O

O
.r

^O

O
.r

it

N

t
w
C
d

u

W

W
0

uuu.•
w
W

01
C

r+
A
L.

Y1

E
60

pL
N

O

U;
Q

O

U.

`-



..................._-	 .....

k;

i

A-9
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scattering from near normal surfaces. At near-normal angles of incidence

Martin Black has an equivalent reflectivity of 0.5% instead of the 5%

that the PE data would suggest.

Details of the Martin Black Scatteringdel

The scattering model is based on measured data from two Martin Black

samples (Figs. A7 and AB). The backscatter is modeled as linear in B-Bo

space with an ordinate value predicted by the following equation for

0-0
0
 • 0.01

BROF • 10[3.(e 	 (A-5)

The slope of the backscatter curve is determined by a minimum BRDF input

for the 
B-Bo 

• 1.0. This same slope is also used for the linear fall-off

in a of a,6 space.

The magnitude of increase in the BRDF for forward-scattering angles

as a function of the incident angle e l is:

k-

a	 '+
Log(ABRDF) • 0.2 + 0.6 nit

an increasing function with 0 1 . The functional form of the forward

(A-6)

scatter from the 0-0 0 • 0.01 to the maximum forward scatter angle is a

quadradric function fit to the two end points;

9 1 a	 B-Bo
2

BROF(B-Bo )	 BRDF(B-Bo•0.01) + 10.2 + 0.6 	 2! ]* [T- 001
for a-ao • 0.

(A-7)

An artist's conception of the surface contours of this rather compli-

cated scattering function is shown in Fig. A9 for a e l of about 30°.

A new three-dimensional scattering function is formed for each incident
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angle on a surface. When the Martin Black model is used in APART ] this

function Is calculated for oach previous source:source:coilector

combination. The BROF as calculated by the APART model Is plotted for

several 0
i
 In Fig. A10.
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11.0 COMPARISON OF BOUNDARY WAVE AND STATIONARY PHASE RESULTS WITH
CLASSICAL DIFFRACTION SOLUTIONS.

The following analytical results were derived during the develop-

ment of the PADS program for the purpose of comparing the results of the

theory on which it is based with more established methods. Some of the

solutions were also used as test cases for debugging the computer code.

5.1 THE SEMI-INFINITE PLANE (STRAIGHT EDGE)

i	 There are very few closed form rigorous solutions of Maxwell's

equations. One such is Sommerfeld's solution of the perfectly conducting,

infinitely thin, semi-infinite sheet. The geometry and angle definitions

M
are shown In Fig. BI

k	
Unit amplitude
plane wave

i
Observation

point

m
i	 r

a
X

Screen

Fig. Bl. Polar Coordinate System for Semi-infinite
Plane.

The Z-component of the electric field at the observation point is

given by:

u(r,®,a) - U(r,o-a) + U(r,o+a) 	 (8-1)
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The first term represents the diffraction of the incident wave while the

second term is due to the reflected wave. The minus sign is taken when

the Incident electric field vector is parallel to the plane of the screen.

The plus sign corresponds to a polarization perpendicular to the screen.

For r » A, the Fresnel integral U can be accurately represented by

the first term of its asymptotic expansion. This is equivalent to apply-

Ing the method of stationary phase to U. As a result, the total field u

can be split Into a geometrical and diffracted component, I.e.,

u • uG + up	 (0-3)

where
e-ikr cos(-a)_ e-ikr cos(#+a)	 0 s < v-a

u 
	 a ikr cos(e-a)	 s-a < 4 < s+a

0 s+a<®<2n	 (B-4)^'

and

u • SEC( ) + SEC( -r)	 r Qrw
re1(kr + v/4)

(B5)
0 C'

It was this result that led Rubinowicz to seek a rigorous splitting

Into geometrical and diffracted components of the general scalar Kirchhoff

field. Now does his boundary wave result compare with the Sommerfeld

solution? To make this comparison, one must realize that Kirchhoff theory

deals with "black" or perfectly absorbing and not perfectly conducting or

reflecting screens. By neglecting the effects of the reflected wave,

the Sommerfeld solution can be modified for a "black" screen to yield:

e ikr cos(f-a) 	 0< f< n+ a

uG • 0	 n + a < f < 2v	 ( B-b)



u	 SEC( a
) 1	 Z ei(kr + */4)

D 0	 Ti r cr

B-3

(8-7)

Note that the field is now independent of Incident polarization.

The corresponding boundary wave solution contains the same geometri-

cal field. However, the diffracted field Is given by:

uD	 -	 r etkr 
^rxo) • z 

dz
1 4nr ( 1 +r•p)

(B-8)

which can be approximated by applying the method of stationary phase:

sin( -a	 • JY i(kr + n/4)
uD^rwr cos (o-*)	 k e

- TANG) • I r-T 
e i(kr + n/4)

2	 Ti 4 irkr

The two solutions differ by only an obliquity factor which is a

function of the angle from the incident direction:

(B-9)

s-

	

6 - m - a
	

(0-10)

Figure 82 is the plot of the two obliquity factors as a function of the

diffraction angle 6.

4..

	

3	 it
Geometric shadow

boundary
2 Sommerfel	 '

Sec6/2

i

oundary wive
Tan a/

n
Gam-a

Fig. 82. Comparison of Sommerfeld and Boundary-wave
Obliquity Factors.
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Both solutions go to infinity at the boundary of the geometrical field.

The biggest difference between the magnitudes of the two solutions occurs

in the "back" diffraction direction, i.e., 6 • 0.

8.2 NEAR- FIELD ON-AXIS DIFFRACTION FROM A C14CULAR APERTURE
(OR OBSTACLE).

Even when one proceeds to a scalar theory, exact closed form so"u-

tlons of diffraction problems are far and few between. In most cases

the Fresnel or Fraunhofer approximations must be employed. One geometry

that permits oAe to carry out the Integration is when a circular aperture

Is Illuminated by plane wave incident normal to the aperture and the

observation point lies on a line normal to the aperture that passes

through its center.

[;of
ircular aperture
 radius a

I

Aikz	 P^	 _'''^=	 Obse nation point

z —	
--

1

Fig. B3. RotAtionally Symmetric Geometry for the
Circular Aperture.

The total diffraction field is found by integrating Kirchhoff's formula

over the area of the aperture.

1	 eikr au - u a 
elkr do

U
	

W jf 

	 r an	 an . r	 (B- 11)
A.
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For this particular geometry this reduces to:

1 tkz ra 
e ikr z(ik - ^)

U • I. e	 1 •.-- --- T - i k pdp	 (8-12)
0

After some work and integrating by parts:

U . a
ikz - (1 + a) e ikd	 d . 3ate`+ z	 (B-i3)

The interesting thing to note here is that this rigorous scalar result

ends up to be the sum of the incident wave and a wave that appears to ori-

g1nate from the edge of the aperture.

This result can be obtained with a lot less work by using the boundary

wave formulation. The field is now given by

u • u  + up . e ikz + up	 (8-1411;

where
l

.. 1	 tteikr (rxp)^¢ addup	
I 1	 r	 (l+r•p)

a	 2n
1 aikd	 a/d

a ( d9^ d ^d  ,
0

Therefore

2	 •.
u	

eikz _ 
I d 

(tea 	eikd	
(B-16)

This does indeed agree with the previous result since it can be shown

that

a— 2 	 + z)	 (8-17)
dz (1-z!d)	 d



U	
elkz - zw ea (8-18)

0-6

It is worth noting at this point, that a different result would be

obtained if the Rayleigh-Sommerfeid theory was employed. In this case:

Again the only difference is in the obliquity factor of the edge dif-

fracted wave.

Fresno I-Kirchof

leiBh-Sommerfeld

Z/e
1	 2

Fig. 04. Comparison of Fresnel-Kirchhoff and Rayleigh-
Somnerfeld Obliquity Factors.

However, experimental measurements on relatively large apertures indicate

that the Kirchhoff result is more accurate than the Rayleigh-Sommerfeld,

even though the Kirchhoff theory is mathematically inconsistent.

It is now a trivial matter to obtain the field from a circular

obstacle using the boundary wave formulation. With u G • 0, it follows

that

u • up • - 0 + dj eikd

The relative irradiance is equal to the squared modulus.

1 (1 + Z) 2E
-^	 ri	 d

(B-19)

'11-20)

Therefore, the on-axis point behind a circular obstacle is always bright,

as is well-known from observation. However, for the circular aperture,

the irradiance at the on-axis point will go to zero at certain locations

due to the interference of the incident field with the edge diffracted wave.
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B.3 FAR-FIELD ON-AXIS DIFFRACTION FROM OBLIQUELY ILLUMINATED
APERTURES

Wide-angle, far-field diffraction can be accurately described using

the angular spectrum approach. If a(x;y) is the aperture transmittance

at z-0, then

Y+Yi eikr
u	 --7-- 

i	
A(a-a1	 B• 8 1 )	 (8•21)

and

A Q, n) n fj a(x.y) e-ik(Ex+ny) dxdy	 (8-22)

and (a,O,Y) are the direction cosines of the observation point and

(a 1 , 6 1 , Y l ) of the intersection of the incident ray through the center

of the aperture with the observation hemisphere of radius r.

B.3.1 The Rectangular A erture.	 a-

For a rectangular aperture, the transmission function is:

a(x,y) - RECT( N
Ax

 • RECT(Jy )	 (B-23)

therefore

A Q ,n) - [Ax-elnc(Ax&/A)] • [Ay • sinc(Ayn/A)]	 (B-24)

where	 slnc(x) . sin(nx)
nx

The field is:

(Y+Yi)AxAy	
Ikr

U n	 2 Far	 a	
sinc[Ax(a-a1)/A] • sinc[Ay(B-BI)/A]

(6-25)
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krt ,''

Consider the simplified geometry of Fig. 85.

Y

ii
1
1

----------^ z
e 

/ 1

I

i

Fig. B5. Obliquely Illuminated Rectangular Aperture.

e-8

x

	

o	 ai	 s0

	

r	 z	 ^.

where	 Y	 1	 (B-26)

	

S i	 sinei

	

Y i	 cosel

Then, the expression for the field becomes

( 1
+Y	 Ax

	U
	 , 12nz6	

- sin[kOIAy/2] eikz
	

(B-27)
i

Again, one can arrive at the same result without any complicated

Integration by applying the boundary wave formulation. First, note that

the (ixp)-R factor 'is zero for the two vertical edges, therefore they

do not contribute to the diffracted field for this particular geometry.
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For the top horizontal edge (N1)

( rxo) -1 • sines • 
01	

(6-28)

P-P • - cose I • -y i	(B-29)

r+p • z + 0
1 Ay/2
	 (8-30)

Its contribution to the diffracted field is:

1	
Ax/2 

eik(z+BIAy/2) 
sine•	 t

ul	
z	 -cosel dx

-Ax/2

S1 
Ax	 ik(z

+Si
 Ay

/9)
•	

nz _
Yi	 a	 (8-31)

Similarly for the bottom edge Q2)

0 1 
Ax	 ik(z+S1Ay/2)

U2	 nz I-Yi	 a	 ( 8 -32) t.

The total diffracted field is the sum of the contributions from the two

edges.

	

u • u1 + u2 • i2lrz(l -
y^ sin(kS 1 Ay/2)e

ikz	
( B-33)

i
S	 I+Y

Using the fact that Bi + Yi •1 , one can show that 
1 
Y	

ii
i and

i	 i
therefore the results of the two dif 0erent methods are in exact agreement.

8.3.2 Circular Aperture

Consider now a circular aperture.

R

X

.r

Fig. B6. Obliquely Illuminated Circular Aperture.
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The transmission function is:

i
a(x,y) • CYL 

	
•

'%	 n 0

(x2+y2) < R2

(x2+y2 > R2	(8-34)

Its transform

A(^,n)	
R 
J1 

(kR 
C= )

	

(8-35)

The diffracted field in the case of the geometry of the preceding section

is therefore given by:

U . a sue- Jl (kRBi) eikz
	

(B-36)

In order to do the boundary wave calculation, it will be necessary

to apply the principle of stationary phase to the 'ntegral around the -

edge of the aperture. For a circular aperture, the points of stationary
t

phase correspond to the intersection of the aperture edge with a plane

normal to it that passes through the source point, the center of the

aperture, and the observation point. In this case, the points of intersect

lie in the y-r plane. The two points of stationary phase are

(x,y) • 0 ± R).

We can now proceed as in the previous section by noting that:

u" ( R ) - d (r+p)	 Ri	 --( B-37)

The contribution from the maximum o.p.d. point (#I) is:

tai	
R^	

ik[z♦
RBi) -in/4ui •	 nz -yi	 Bi e
	 e



(8-39)

Similarly for the minimum o.p.d. point:

U2	
_	 B i	 R_7► eik(z-RBI) 

elw/4

N7277 Bi

B-11

This combined with the fact that:

3g	 1-Yi
i	 .

transforms the first expression into the second.

rf
^,

The total field is:

U • ui + u2 n AMi _	 sin(kR$I - n/4) elks	
(8-40)

The two results are not in exact agreement but it can be shown that

the second solution is a very good approximation to the first when

kRS I >> 1. The Bessel function can be approximated quite well by the

first term of its asymptotoc expansion under this condition, i.e..

J, (A a .1= si n(x- n /4) 	 x >> 1	 ( 8-41)

Fig. B7. Approximation to the First-order Bessel Function.

x

t:
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0.1.3 Rotated Square
arse Aeor

We will now treat the problem of a rotated square aperture.

In particular, an aperture rotated 45° to yield a diamond.

Fi9.'B8. Obliquely Illuminated Diamond Aperture.

In this case,

ff
A(O,n) 
	
a(x,y) e'ikny dxdy

•	 a (y) eikny dy	 (6-42)

fa(y) 	 a(x,y) dx • S r • TRI (yr/S) 	 ( B-43)

Therefore

A(O,n) • S 2 - sinc2 [sn/A T]	 (6-44)

and
0+Yi)a

U 
• n8	

sine ^kS I S/2^ 
eikz	

(8-45)

i

Again, we must use the method of stationary phase in order to solve

th ,i problem by the boundary wave technique. However, there are no points

on the edge of this aperture for which the optical path is a maximum or

minimum. Therefore the dominant contribution to the integral comes from
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the endpoints. Since the integration is broken up into four parts (one

for each edge), there will be eight (8) different contributions to the

Integral (two endpoints per Integral). Referring to Fig. 08, we find

that for each endpoint:

Endpoint AAQxp) (r+-) - I r+

1 01/T - B 1/4 z + 01S14

2 B1 /f2 - B 1 / r z

3	 - - 6 1/r - 0 1 /VT z

4 - 01/r - 0 1/r z - 0 
1 
S / r2

5 - B i/r 01/r z - BIS/A

6 - B
1 /A 01! ►r2 z

7 01 r2 01 /07 z

8 B1 /& 01/r z + BiSlr

Therefore

Aelkz	 NO 
I 
SIVY 	 -ikBIS/ r NO I S/ r	 ikOIS/ rj

u	
8n2z(1 "Y1) 

l e	 -1-1+e	 +e	 -1-1+e

Combining terms, yields

U •	 sin2(kgIS/2/2-) eikz
n z(1•Yi)

Since

(6- 46)

i+Y i 	 1

B 2 - ^	 ( e -47)
1

This agrees exactly with the angular spectrum calculation even though we

have used the stationary phase approximation. It turns out that stationary

Y
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x.14 i

phase approximation as applied to the and points of the integration is

the same as the linear phase approximation used in the angular spectrum

approach.

a

4.-

E-

k
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AI ►►► t 11%111

lilt- APART titdr (Arizona's+ Pari ► xial Analyviisi of R. ►d list Ifill- 'r.un.fe11) it% at- determ ► ttsist le litray radial tin ►
t	 aualyos, pr► 11;ram4 ; ► hail ►► • of yielding tl4antitat(ve del.criptluiia 4117 sy%tcxls. 111011+, With Insight 111110 the '+Sat•

1i ► ing axe h.oii sxl preset► t . APARI iisv% y •y peometri ► , ► t oltt ii•s tit 	 primarily rotat io11,lliy symmmetric: ► 1 ..ys.
-14 it sccllunal mower map of the interstsl stirlltres oil' u system 	 identifies "critical"ti'mi+.	 AIt1Ri pPl►vltlt 

oh)t-rl , • .44 .01 from the ilm.oge. Vane stru4 101 1 41 % tore modeled by ct ►nfigur.1 1 14HI factors, fMtcc the geometrie'll
tr►t11 spo rt of ► tilt i". ►:Inr lit-lwren till' i le erl►ai uhjecls Ilait I1cc11 caicul ;lled ,slid stored, oonxtrit turnl ►huai:ez+ tit
tilt• .) .It,w ton ► he atialyzed wir11uul re•rintising the c4 ►mlplete plograw.

1 nt roth ►c t i o0

list, probleas of anaiycing %catlered radiation in n sensor systexs is difficult because of the x411111011+ity
of uh)rct co il( igurattons among which scattered energy can be transferred and because of the variation of lite
ltcattering charitutcrititic% of the sorfuces. Any quantitative analysis of scattered energy within a %ystem

will involve an overwhelii ► igg number of calculations. One solution to this problem tit to minimiw tilt , ntim;t.er
of Villcul ill 10n+ in a tlltuler that develops utter Insight into this scattering xicehoniAms involved in the sv-,itvm.
Osw does not want just a numlier at the end of the analysis but also the knowledge of the significant factors

involved that make till the number and how systen changes affect the tnimber. APART was developed to %epartte
the problexs into a logical xe4111e11cc of procedures and calculations that dovelops utter Insight for Improve•

must of the toy%%.:m and to minimize the computational effort.

Overview

AI'Alt'I 1% comlxis.cd of thret , % , ,h prolgram o; called: Program Oov, Program Iwo. and Proloram Three, which to-
gether la . ,riiima rolls, function •.. lhose proogr.a 14% (Iigtire 1) colmmoosicatc with va4:l ► other toy disk files contaln-
ing s.) .Il'x► lnf •oosul.lt oso tool flu• rr.ulis tot' cisl4111;11loons;,	 lite pro lsram% v;ni by run separolt-ly o- in flute sti l l 4.
tteyut-lsct, . I'rogr.on fhlr c4affativ. the rode for two 'A llaratc c:ilcos Litiunv: it %call from the itotare a	 wmural lilt, iilo:
into for till ohjccts Ill 	 spavv. 'lilt, remaininl; lorottrams xmist be executed xclfnvnlially. although tint • prol;ram
m:iy be executed Mally 1 iamcs. befurc the pext i% exct 114.41.

gcall A(rim image

'lilt , t r • .t %tell its an APART analysis is to have lite- program "loci, nut" from the image to detvrminc which
ol► jo-ov. ou t , st-en vothvr directly or alt refleeliun. 'llfis calculaitiois serves two functions: first. it ,ill
cht-ck 1441 .any Jc.1 1;a ilaws that might he in the system, for exr►ntple, not• flaw might he ;tit improperly Jc-
%il;114•61 11a1 ' flt' 111;11 ;illtm % rnt • rgy (sum 1 stray radiation source to directly reach cite detector. 	 Ih •1igniou one
nt'an •. I111m if • ;clv:teJ Im .il;e lo:nt outward to detvrmine all olt)ects that; are seen from that image point. 	 lite
prugr :ttm J1va41es tike length of the oh)ccts seen from the image into five sections and determines the position
U1141 ;0%1;14 A which each sectiun is seen. APART also outputs a two-dimensional priotur plot of the objects

a% tile) appear when lirvjcctt-d onto the exit pupil of the system. With the combination of these output •+, one
can quickly determune the status of the design. Redesign can take place at this point in the analysis~ at
pracli.ally no co:.t to the user.

'lilt: second function served by Program One is to find the "critical" objects. These arc the objects that

scatter directly to the image anti will be the sourccso at tine final level of scatter. Titus. they Itate a
"Crolicill" effect on the system perforinnnce. the second to the last ievel of scatter is also partially

detcrmtncd; %t.ittered r:4Jiation will he traced only tit these "critical" objects. 'lite final determination of

the scattering piths is the linking of the ohjuctr that receive the initial unwaitted energy to the critical

oltjerts. or to surfaces that scatter to the critical ohjccts. A "level of scatter" is a scatter, or set of

sr:lttrr	 whe ► chy radiation is transferred to another object. 'lite other object may he the same one suer% in
reflectioln for even another part of the same obj ^ •_i . Vatic structure oil an object will alter the nunibur of
scatters If►at will qtake kill uric level of scatter. 11ra concept of levels of scatter is very imitortaiit to the
undcrsl ; ►►nlntl' of Progr ;un Three	 ecuti ►in anti will Pr explained tlarther under "Program Three Calcul a tion..."

'lliv. :.call from tie• Im.il,c cult	 •thin is i tide pvndcnt from the remainder of APART and can be rerun its many
titles at, occes ••ary tar eliniinrttc tov Jesign flaws or reduce tilt, number of-crit i cal o11jects. Once the user is
satisfied with the Jc:cigo its analy,.eJ so far, he may continue the APA14 analysis.

Ima}ring Ai lt11 ►̂ t,ct% in roach'+111111.c

lite liorpoo; of this step in the APART analy ,;in t •: to identify the power transfers; to be calculated later
fit 	 analyst. for very simple systems without any optical elements, one call write these tratlsrt• rs witliout
oily .cttelp"ter anal)"+ t^. Ilowever, when (life is .On •. tilt , ritil t a sy^itcnt with several imaging element's. it is loot
clear• whetllei• all object east transfer power to ifnother through several optical eiementti. i'rugram One helps in
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Fig. i. Flow diagram of the APART program.

till .: dctermiaatior4 by calculatiol, the magnification and position of each object as it appears from each space

within a -.y-clem. • lie program plots thi% information from each %pace and, with the aid of a straight edge.

Ian lcli If puwcr conid t ► •mrifor from one object to another. It i% also easy to determine which objects,

mighi oh •,vive .my of the power to he transferred between the two objects. Several obscuratiun% caul black

ally a4 ::ti of 1114 • ht-am, !11441 these mntit be dete rmined for input into the next program.
It I ., much ux4r4 • efficient to have the usur select the obj4-ets that can lie irradiated by the stray radta-

tiun -.mace and select life i+.iths that radiation can follow to reach the critical objects rather than have
the , conynuter Ill hotly calculate every possible power transfer. By manually selecting the power transfers,
one I-, doing a to%1, quite simple for a human, and avoiding a very difficult, lengthy calculation for the

compntcr. 'Ihc other advantages in this interaction are that much computer time is saved by limiting the

number of power transfers to I!c calculated, and the user gains insight into which power transfers are pos-

sih!c within a system and which surfaces can most influence the energy reaching the image.

Y-Y lmatfi nl: Techniclu(1

711roughout Program One and Two imaging calculations are needed. To do this imaging, APART uses the first-

order geometrical optics tool--the y-y diagram. 0,7) The y-y technique is much faster than other geometri-
enl optical tec11niyucs. It uliaws the imaging of objects with a minimum of calculations regardless of the

m ►mber of intervcaual; imaging elements. Al'ANT rust calculate the imaged. location and the magnification of
surfaces and nh ,;cnrations to do the power transfer calculations. With the y-y technique, this is a ,, simple

as finding the intersection of two lines and calculating an area. Consider the y-y diagram for a simple

mirror or luu; wits; the object at minus infinity and the stols at the optical element ( Figure 2). The dis-
tances brtweat planes in the system, or points in the diagram, are given by the formula

t12 ' n ( y 172 - 7IY2)1)R	 (1)

where )IC is the lagrange invariant of the systcn and n is the index of refraction for the space in the
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system or the line in the dlarram.
Imaged i ►ci l,ht ., utu calenlatsJ 1 ► y con-mictini; is "cot ► jorate" line from the origin throarh the point to ha

i0i; ► 1;► 'd tit the line rt-pre%votinit the .pa, iut ►► winch the oigvct is to tie imaged (Piiturc 3),	 the iutet
114111 of the c ► a ► ,1ullate line and the tm. ► i,c lint' tt ► vct, the y' auJ y' pc► ints of the im4041 plane. Ale ► mat;cd
distauee ► ao be coleulated uninit Equation (1). ,uul tilts magnification Is given Ivy the ratio of the y or y

110s technique Is valid for any object% in tiny space within the itysion. Thits, the imaging involve% quiet,

calculations that avoid trigonometric and -4gtiarc root function: ► that are significantly more time con%ill" ► nt;
to cdlculaie when compared to multiplication unit Jivir+ion,

r	 r
MIRROr	 „^,^,^	 )MACE LINE	

(YA is

CONIUGAI E

I	 LINE

Fig. 2. Y-Vf diagram of a one-mirror system. 	 Fig. 3. Imaging of point (y,y) into space toiiv.

Power Transfer Calculations

Program Two calculates some of the factors leading up to the power transfer calculation in Program 1hrev.
Program 11+o divides all of the objects in the system into sections anti if requested, into fu r ther sull-^rc-
tions. Al'AIt1' calculatcs the power transfer from these sections to sections through the system to art ► ve tit
the total transferred energy.

Power Transfer l: ► tit ions

The equation that relates power transfer from one section to another Is

dPc • (Ls (0,0) dA s cos (0s) dAc cos(OC )1/RZ se	 (3)

where dl' is the incremental amount of power transferred. L (0.+) is the bidirectional radiance of the source

section. cdA^ and JA are the elemental areas of the source And collector. O K and 0, ;t re the angles tit-it the
line of siitht from ti ► c .cn ►rce to the collector makes with the respective surface n8rmals, and 0 and m are
the projected and rzima ► thal angle-..

111c total power he on the collector ,action is found by the integration in citt,ed form of a double inte-
gral over the areas of the salute and collector slid then fly the evaluation of the re,ulta►N alltobra ► c e.pre%-
%ion:

t	 Pc!1 Ill. 5(0,®) co.(oS) co,(3C )1 /112 5c ) JAK dAc .	 (4)

AI'Allf does a numerical integration by s ►dxlividial; the objects into ele►mntal r:ectiunti that cu re -awill when
cu;mared to they distance between them. 'lite integral s are evaluated its sums over the ;soiree and cullec li p s-
sect ions:

Pc a FA EA (I"It (0,!) cos(o5) cos(nC) AA5AAc1/g?sc)'	 (S)
c s

Vie bldirectiunal rcflcctuncc distribution function (1114917) is deflneJ as

(6)t1Rl ►i'(0 i	 i Q0,to)	 1;(01,01) 



Where 140 1 .+ i ) is the bidirectional irradiance onto tilt , source Kill-face, and "i" .11141 "o" refer to till• invident
(i) or se.111tred (o) direction of tilt, ray. APART considers the radiaucv over file vlemeulai area ol ` the

suurcv ai . ► voll'Aant and 11%vs the 1111111 • to calculate the power Weidt,nt on tht, collet-tOr "to tl f111161ti4 ► 11 of the
lower il,c,1414`111 kill the source.

yMiltip lying asld dividing Equation ( 3) by C(O i ,/ i ) and druppinit the angular dependence for eouveoienve
yields.

L	 ccet►0 cos8 dA
cdPc	(I' dAs) ---- s RZ	 .	 (7)

Cquutiun (7) bas been separated Into three terms that can be rewritten as

dPc a 11111117 dPs 'GCP.	 (11)

Ono can recognize the 11ROF )as defined in Equation (6)) and dP as the power on the incremental source area
and a slow term called the geometrical configuration factor ((d):

MP to 
cosos cosoc dAc

lip

Wben the Power Iritlsfer equati41n has been written in the three - part form of Equation (H). the foiluwinll
4114,0111;0tive stalvNeuts can too made:

1) When only the coatings (IIIHIF) are varied to evaluate their effects on a system, the
Gi:r does not chtlttge and it caul be calculated once and stored for subsequent analysis.

2) When the system is not changed and only the source off-axis angle is altered in the
analysis. the GCF remains fixed.

3) if an object in a system is altered in its size or shape, only transfers to or from
this object, or transfers where it was used as an abscuration will need to be recal-
culated.

Program Wit calculates the GCF between all previously determined source -collector cumhinations. Program
Two also calculates and stores the angle information necessary for the calculation of the RRUF in Program
Three. 'llius, by sturing this information, the computer time to do a number of analyses of a system is re-

duced t remcndois%ly.
Progia m T o divides objects into pi scetiolis and axial, or z. sections. The reasons for this type of 	 ^-

divi •.i11u will btcoun • apparent when symmetry rules are used. The program could divide the objects into hun-

dred •. 111 s.eet inns, but the storage problems in core become insurninuittable, so APART limits the Itumber of
of 14111 ult •lect to (it,,	 If n14 ► re accuracy is desired, each section of each object may be further sub-

divid4 •d 111111 .1•. many suh.erli11ns as one desires. Figure 4 illustrates how a cone caul be divided. The •e-
%4111 4► i 1114• .111gle and W1 61aic111,11iull betwet • n the subsections is averaged over ono section- to- section
trap -Ave . and •+Inrod 1'40 . 1'rul;raro Thl-ve's use.	 ilia,, problems such a • ; accurately determining the shadow of a
6 1 41114 . 41111,1 a runt • can be handled Willi as uulch accuracy as desired.

Fig. 4. Sections and subsections on a cone.

SYnnnot rr •Gun•:iderations

Mit • n objects Within a system are rotationally symmetrical about the optical axis:, APART can use the sym-

Poetry lit furthe- reduce the necessary (A:F and angle calculation%. One can sce ii, Figure Sa that the trans.

fer f41,u,1 pi -wi:r kin three to pi section one involves only an ankle sign change from the pi section three to

pi stO ion fiv4 • tram sfer. 'Ittis use of symmetry eliminates 1/5 of the calculations. Furthermore, the above

C-4
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so--e of symnxe t ry visit be rotated, as in Figury Sit. '1110 :dove transfers arc the .male it% the trnn%rer from pi
xecllou twit l it pi sectiuus four or five. llnty , to completely specit •y a (lower tranxPer between objects wit"
ane z section .Ind five its svctitio%, lastly three calculations are necessary. 'Ikeuty five calculation% would

by nece •;sary fur similarly sectioned ubjectri that were asymlavtrieal.

C=5

APART also uses this %a ►t1c type of symmetry when calculating! the Subsection- to- sul ►section transfers. Sy ►n-
ae • Iry occur •: here when ilia- cumber of pi subsection+ oil the suu1,ce section e/luals the number of pi suhsertiaus
fill the cullerlur seetiun. 'Ill is isse of symmetry r0tievd the computer Iime'Cur n tit rev -by- three subsection
trulelfer lit about half fit' what it wuuid have been with no symmetry.

(0# , . l 1, 114 , 1 1 tell-;

Pr11g,raw Two considers olontructiuns when calculating; the ('d : h. the obstructions, imaged or not, are handled
Ill v%%volt ial ly the 4:1111t • In;umcr as imaged objects. 'Ilia- vector from the source point to the collector point is
used to determinu the (x,y) intercept in the plane of an apertu re or disk, where ti ►e intercept must be
respectively inside or outside for power to pass. All ohscurvt g ons are handled in a binary manner for the
tra114cr bclwecn siti ►sections to subsections. However, the average over a'section- to- section transfer will';
result in :l more realistic determination of the shadow. Obstructing conical sections pose additional prob-

lems because of their three-dimensional character. A ray now has the possibility of being blocked, passing
around the cone, or passing through the cone. If the ray passes through both ends of the cone, the ray is

not ohslructrd. Ohviously, if the ray passes through one end and not the other, it fails. For the last case
Of a ray passing outside both cone ends, a further check must be made: from the source point, two planes can
be drawn tangent to the obstructing cni,r, establishing; a trapezoidal plane in space when intersected with the
two colic ends. 'lbe ray is now checked for its position inside or outside of the trapezoid and, in conjunc-

tion with the other two texts, will determine the power transfer.

Now that thv putter transfers have been identified and the GCF and angle information for them calculated

and %tared, the APART analysis need~ to calculate the remaining terms in Cquation (8) and determine the re-
sultant icatter throughout the system.

PMaLram '11 ► rce Calcul at ions

Program 11irve has two main functi ►,ns: to calculate the BRDF for each section within the system for the
angles needed and to calculate the power increment , throughout the system. The result is the amount of power
on all of the ubjects :lard insight into how this power got there.

Surface Scatter Calculations

i_	 APART can accept HIM( : values for a surface in a number of ways. First, actual data can be input in a
tabled form.	 the data will be linearly interpolated for the angles actually enco untered in Program Tlirrc.
Second, the program can use any one of several models for the BRDF of the surface. The accuracy and speed

of the mudels over the table lookup approach depend upon the coating, the cost, and the time to make suffi-
cient measurements to fill the table.

71ie simplest model for surface scatter is a Lambertian model. Isere, one inputs the total hemispherical
reflectivity of the surface as a coating type for the surfaces on which it is to he used. The HItUP term in

L/luatiun (8) is a constant, and the calculation is finishcd. Because Lamhertian scattering needs nn angular

inforinatiun in Program Three, one can have Program Two ignore the lengthy surface anglm calculations for
these transfers, saving even more computer time.

Laboratory measurements of mirror surfaces have tended to indicate that a "%mouth" mirror surface has a
well-behaved linear shift - iovariant BMW functioti . (a) This function is linear when plotted on log;-log; palls
with the ordinate iteini; the 11ROF and the Abscissa being (8-11 0 ) where B is the sine of the ang;lr of scattering
and Bo is the sine or the specular angle. A typical example is shown in Figure G. The program models this
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Fill. 4. Bt1Dir of an average mirrbr.

fot ruugther %urfaces that do not follow the linear shift-invariant properties observed on mirror%, there
is a ntttdcl talled "blacks." Phis routine also utilizes data plotted in the Ilarve y - s hack mariner dc,crihvd for
the mtrrnr %url'ate% above. 'IUe%e types of coatings are more %ImiIar to diffuse hinck surfaces like %tirtan
Rlack or Ul nlark Velvet than they are to mirrors. Measured data from these types of surface, indicate that
th< dupe •, and •.tartillit ptttnts for %mall angle scattering channe with tite incident angle. Tiva, the input
for tilt- Itrug;rron tuxiel int ludo% it 	 for the change in %lope as a function of the incident angle and :a"
factut• fill' the change ► u DR1W at A-0 0 • 0.111. '1110 calculations for this type of model are much longer than
fur the Latnl ► t• rttan model, and flits model is intended to be used us a final analysis tool for a very accurate
de%cript;t a l k of it sensor.

UP addition of vanes to a snrfaco is handled In a unique fashion. lip to this point in the analysis, all
surfaces were treated as cylinders or disks. Cones that have vane% designed onto the baffle cones are con-
sidered to he conical sections with the cone being located at the locus of vane tips. Vanes could he handled
by inputting; each side of a Vtuw as a disk. with a cylinder to separate the Vanes. This would include a
large number of objects in the system and a tremenu r+us number of angle and GCF calculations in Prorrom 'Wo.
Vam ►es, a% handled by APART, need only one angle and GCr calculations per section. Program Three know%, for
a given transfer, ;.hut the angle into the surface and the ankle out o1'	 a surface will be. For the vaned
surface, as well as any other model, the program calculates the apparent reflectivity of the surf4je for
thove angles. lo handle vaned surfaces, Program Three utilizes configuration tractor geometry to calculate
the power transfers within the vanes resulting; in the BRltf of live vaned section. Titus, APART replaces a
vaned ol)JCct with an equivalent nonvaned surface that has all 	 highly unsymmetrical RItDh. 7hc input
parameters necessary to describe a vaned surface include: the angle at which the vanes are tilted, their
depth below tl ► e locus of vane tips, their spacing, their diffuse reflectivity, and their distance from tite
optical axis.

All vaned surfaces will have edges oil 	 vanes, and these edges are also handled in a unique manner. As
was previously mcationed, APART knows the angle radiation is hitting; a surface, and the angle radiation kill
leave the %cetiou on its way to the collector.Thus, for a toroidal edge, the illuminated and "seen" poet of
the edge call be easily calculated. 'I'hc are length of the overlap can also he calculated. the arc length,
along with a correction factor for the angle at which the illuminated portion of the edge is seen, is assuaacd
to he a cylinder just a% in the vaned surface calculation. An apparent reflectivity is calculated for tho
sa.tall cylinder reptrsentang the arc lerijth and is ac!ded to the vane :cflcctivlly aac calculated .,I,,,tc. 	 lane.
all edges within at system are calt:ulated in a deterninistic nt:nrnc r . rite input parameters for this surface

,r
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motlel are the diffuse reflectivity of the edges and the radio-& of curvatu res of the edge tip. APART vies,
handle different reflectivilies and edge radii for vane lips located in different sections of tl ►e •.amc oh
jcct

Thu-&, APAI ► I can utilize it variety of measured data to calculate the 0111 ►r of the surfaceii. Now I-, of the
varlahle:% to lquation (8) have beest calculated for ;t given srctiou•It ► - re^ ► ri ► tratiNfer. All that rermins to
the analyses is to have the program cycle through all of the object's seellons and accumulate the re • 1111 from
(squat lust (a).
Power Incresa•nts

lite remaining term in Equation (Q) to be calculated is dP	 1s, start the calculations in 1'roFr,im 'litree,

one must 3"411;11 sonic starting; .Mount of power onto some sources) section. 'liter initialized ;otlrcc may he
a point Incited .iamc distns,ce from the entrhn-c port of the system, if one is socking, to find a point ,ourcc

transmittance (PSI'). AMRT contains a , imps loader routine that can load airy or all sect ► nnr. of t1,r.c oi•-
jects with Power. fibre snirhisticatod loaner routines can be written that will include unusual obscuratiuus
or other situations not included in the general program.

lite user must now enter the source-collector combinations as A function of the levels of scatter into

Program Thrce. i'or example, at level one scatter the sources will be the objects that were loadeJ with the

initial power. The collectors at level one scatter are all of tl ►e objects to which the sources can tr.insfer
power, The GC p 's and angles for these transfers, as calculated in Program No, must he recalled for this

transfer calcnl..tion. The program will calculate dP for each source and collector section of the inl •ut com-
binations. Each increment of power reaching a collector section 

is 
'stored separately and also is added after

all power from all sources has been calculated. Ti ►us, at tl►e end of a level of scatter calculation., the
Program will have stored all increments of power to all the collectors and the total anx+unt of pacer on each

section of the collectors.
At the next level of scatter calculations, the above collectors will heco ►ne sources. The sum of the in-

crements of power on the collectors (r4 luation (5)i will become the dPof rquation (8). tithe sequence of

calculations will continue until the image is a collector. The calculation ,; can be carried out to a higher
level of scatter if one wishes, but usually the energy reaching; the image at tite higher level is considerahly

luster than that received at a lower level of scatter.

(Ine soureer •.cctivn may contribute increments of lower to ti ►e same collector section hy several optical
li.iliv. (i.e., ditertly or by reflection). When this power Is Ilion -citicred from the collector nto a ,ingly

direction tuwatrd a second level collector, each increment of power incident on the first collector will coii-

trilivac a different proportion of the scattered energy because of the different input angles. This is he-

cause the ltitl►i is generally angle dependent. Although the separate storage of these increments of pot.er is
a necessary and laborious w-&k, it is respunsibie for the u-&cr l,.4 insight into the system scatterini , meeh3-
ng*nra,

'Ilse program can output 3 map of the increments of power reaching ;sty object the user wishes. of particii

lar rntercA is a map of object-& contributingpower to the ini;rge.	 I it particular critical ohieci is ., m.tiur

contributor of power, one can tell at 
it 

glance which ,sections on that critical object contributed the u,u t

Power. Tables 1 and 2 illustrate somo of the output from Program 'Three fur two objects transferring; pui.cr to

the image.

Table 1. Power on One Section of the Image Coming fro m the litain Tube
71iis o^e^eCt ir. considcrcJ to 'tiio imapc

This Is the lower on pi section 3, z section I

0 0 0 0 0.18x:-06 Total -	 1.83E-07

0 0 0 0 0 Total -	 0
0 0 0 0 0 Total -	 0
0 0 0 0 0 Total -	 0
0 0 0 0 0.11SE-06 Total -	 1.83E-07

Total	 0 0 0 0 3.67-L

Total llowcr to t ills section is 3.671(-07

Tab Ic 2. Power on clue Sect ion of the I mage Com ing from tile Pri mary Mirror

Titus olrjort ' is cou+ie,^rvJ fir 011 ► c im.igo

This i. the power on pi section 3, t section 1

0.381:-08 0.37r-08 0.37r-08 0.36L-08 0.351:-s,8 Total =	 1.84r-08

0 0 0 0 0 Total •	 0
0 0 0 0 0 Total •	 0
0 0 0 0 0 Total =	 0
0.381. -o R 0.3 r -os 0.371:-0R 0.36r-s,8 0.351:-0R 'rot ai x	 1.8•i r-os

Total	 7.G2i.-iii Tim-oil 7 s(,'t =ii tt 7..2:ai--tlSl Y. 1(it =ii

iotml_lw,.c l' to- this rction is 3 .r.81- 0 8	 ._
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Ihe ►e will b y one array of this type for each section of the Image and one group of nrrays from all objects

"	 transferring power to it. 'she ms Wvcrs in tl ►e array -4 contain the iucremtents of power incident on the usage
from vacl ► : -t;tion of the source listed. In the examtplos shown, the source.objects have five pi and r sec-
tions enrh. For exam ►ply , the lmw ,-r incident on the itwige from the primary mirror's pi section one aml . sec-
t1w► four in O.ihl:418. lire user coirid now realize that only two sections of the rkrlrt tube tr.u ► ster l^.n.cr to
the image compared to Iii nectlon ,4 from the pritwsry mirror. Furtbvrtmre, the power coming from the nt.t ► n tube
is als►ut lu timom higher than from tiro primitry mirror. Ilion, for the data prese n ted, the srltntfi ► • :utt path is
from the fifth t section of the satin tube to the image. Otto can also request that the increments of power to
the critical objects be printed. In this manner. the user call trace all of the scattered radiatio., through-

out the system and identify the radiation from the significant paths followed to reach the image.

Ilse user, having identified the important scattering paths, now has available the possible alternatives to
improve the system performance. First, one can rerun only the significant path, and vary the surface coat-

ings on the critical objects to determine their effects. It is important to realize that the addition of
coatings or.vanes on a surface does not mean that all of APART must be rerun with new input throughout, All

that must be done is to change ono card of the Program Three input deck and rerun Program Three. This step
can also be done in the same job sequence by stacking runs. If the result of this step does not result in

sufficient system improvement, one can consider time passible redesign of the system to eliminate the sections

of the critical objects from the view of the image. Rerunning the Program One scare from the image will be

helpful in this procedure. A third possibility is to alter the radiation incident on the most important sec-
tions of the critical objects. If the power reaching the critical sections can t- lowered by system rede-

sign or surface coatings, the power on the image likewise will be reduced. Thus, with the use of APART the
user knows just which steps are possible to alter the system performance.

I

Program alt +ut

There are numerous output options available to the user of Program Three. The printing of the map of the

power increments mentioned above is an example of a very detailed output. At the termination of each level

of scatter, it running total of the po ►tor distribution on each object and the power incident at this level can
he printed. Folluwing all of the levels of scatter, a table of objects contributing power to the image can

he output. This table lints the percent of the total energy reaching the image at each level of scatter
from Inch object anj the total power reaching the image at each level (Table 3). 'Clu s percent t. ►hlo give ►
the user immediate insight into which objects are prime contributors and at what level they arc; however, tits

knowledge of which sections of these objects are the most significant is lost in this output.

Table 3. A Percent Table for 3 Levels of Scatter

Percent of Power Contributed
by Each Object as a Function

Each Scatteri ng I.cveI

!?lite s Level of Scatter
I Source 1 2 3
•2 Mnin Tube 0.0 0.0 0.0
3 Outer Secondary Oaf 0.0 2.4 100.0
4 Inner Secondary 0.0 0.0 0.0
S Outer Conical 0.0 0.0 0,0
6 Inner Conical 0.0 0.4 0.0
7 0.0 0.0 0.0
8 Secondary Backing 0.0 0.0 0.0
9 Secondary Mirror 0 . 0 0.0 0.0
10 Primary Mirror 0 . 0 $8.2 0.0
11 (Entrance fart 0.0 39.0 0.0
12 Image Plane 0.0 0.0 0.0
13 Dummy 0.0 0.0 0.0

c-

	

Total Power
	 0.0	 0.47711-04	 0.87911-07

• Itepreticntntive Cassegrain Stray Radiation Analysis

Fullowinl, the calculation of all levels of scatter for an off-axis source angle, the program can store in-
formatiuu for coml ►ariaots with other source angles. An accumulated percent table can be stored for up to 10
source ankles. 11tis table includes the total energy reaching the image and the percent of energy coming from
each of the uhicets in the system making up that total. Thus, the user can sec how the energy reaching the

image changes with different off-axis source angles.

A figure of merit for the stray radiation rejection performance of the system called point source trans.

mittance (PS1) can be dcfit,ed for each off-axis point as either

	

PST •	 Power/unit area on image	
(10)lower unit area at entrance port pct •prn.licular to source

or,

Uazl('2 AL 'AGE IS
OF POOR QUALrry

x



PST .	 Total  . Itow .-^ on i n: ►ce	 (! 1)
To — lower on eni ranee port

11 •oso PST'% caul he stored for each source angle and plotted against the off-axis angle at the end of a cycle
of source angle%. 11 ►c plot call be either a printer plot or a Cal Comp plot.

Cycle% of source a ►Gles can .Ilan Ile stuckeJ in a single jell execution. Por example, one could run 10
source angles oila system with 9 0' baffle vanes on file slaint^,..:, alter file vano angles to 00 6 , and have the
progr am plot both sets of results together. tip to eight cycles of source angles can be overplotted in one
)all execution, Parametric studies of the surface coatings as well as the effect of the NRDI' on a sy%tcm's

lnerformance can be made with very little sotiuit time.

Earth Integration

With the generated PST data, the contribution from a broad source can be integrated by subdividing the
source and determining the off - axis angle for oach section. The PST curve can be interpolated and a re-
sulting irradiance on the image calculated. Such a routine, written by Cary llunt, Spery Support Services,

Huntsville, Alabama, has been incorporated into APART. It is designed ti integrate the radiation from an
carch -shal lud object for a set of earth limb angles designated in the input. Tine PST value% are spline inter-
polated for the off-axis subsections of the earth. The irradiance on the earth, albodo, earth's radius,
orbital altitude, and look angles to the hard earth are input variables. Output is the irradiance on the

image and the total power reaching the imago as a function of a set of earth limb angles.

Comaparison with Measured Data

Tile true value of an analysis program Is measured by how accurately it predicts the real result. APART
predictions have been compared to %ystems tested for their stray radiation rejection, and the results have
usually been within a factor of two. no complex HOST sensor ha-t been analyzed with APART (() nnJ the re-
sults have given us insight into how simple the scattering mechanisms can be, even in a complicated system.

One system, a 0.5-m-diametor model of the Largo Space Telescope (LST) has been designed, analyzed, fabri-

cited, and tested to help determine APART's worth. Before testing; started, an analysis of the %ys.cm  in its

te ► :ing chamber revealed that the testing chamber was going to have a major influence on the amount of poa.cr
reaching the image.' As a result, the testing precedurc had to be redesigned. The measured values gave very

good agreement with the computer predictions. ( I) The APART analysis was also helpful in directing the de-
bugging of the test procedures.

Conclusion

fie APART program has been written to -inalyze the stray radiation in optical systems. It was designed.to

be straightforward in structure with a versatile output and a simple nonredundant input. It gives the user
an excellent insight into the scattering, mechanisms present within a system and also a clear understanding of

how to improve the system for better stra y radiation performance. APART uses a minimum of computer core and
central processor time because it stores the results of calculations to eliminate unnecessary recalculation.
Its ability to accurately predict the system performance as well as its ability to develop user insight have

dispelled some preconceived notions about scattering principles.
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